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Editorial on the Research Topic

Roles of Tumor-Recruited Myeloid Cells in Immune Evasion in Cancer

During tumor formation and progression, tumors develop an immunosuppressive and tolerogenic
microenvironment. Tumor-associated myeloid cells, including myeloid-derived suppressor cells
(MDSCs) and tumor-associated macrophages (TAMs) represent one of the major
immunosuppressive components in the tumor. Tumor-recruited myeloid cells contribute to
tumor growth by exerting profound immunosuppressive effects through inhibition of adaptive
and innate anti-tumor immune responses, stimulation of tumor angiogenesis, and remodeling
extracellular matrix. This Research Topic aims to provide a comprehensive overview of the tumor-
recruited myeloid cell subsets, describe the immune function of MDSCs, TAMs, tumor-associated
neutrophils, and review the novel approaches targeting myeloid cells to enhance anti-tumor
immunity and improve the efficacy of cancer immunotherapy. Our collection of 12 manuscripts
consists of 2 Original Research papers, 3 Mini-Reviews, and 7 Reviews are summarized below. This
Research Topic covers different aspects of MDSCs biology, including their generation and
mobilization in cancer, mechanisms of tumor-associated immune suppression, and their
contribution to resistance to immunotherapy. Also, it highlights the novel approaches for
targeting MDSCs in cancer.
GENERATION AND MOBILIZATION OF MDSC IN CANCER

The increased accumulation of MDSCs in both peripheral blood and tumor tissues is very well
documented for multiple cancer types in both experimental and clinical settings. Myeloid cell
recruitment into tumors is associated with enhanced tumor-induced myelopoiesis and
inflammation, which drives mobilization of myeloid cells to the tumor site. Tumors are
inherently pro-inflammatory, with infiltrating myeloid cells thought to be critical for tumor
development, maintenance, and progression. As demonstrated in experimental and clinical
org August 2021 | Volume 12 | Article 74960515
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studies, both chronic and acute inflammation can drive
tumorigenesis of different origins (1–4). Despite our still
limited knowledge of cancer-specific mechanisms of generation
and tumor recruitment, it is clear that bone marrow and spleen
are major sources of MDSCs. Wu et al. concisely reviewed
experimental and clinical studies highlighting the mechanisms
of tumor-mediated stimulation of myelopoiesis in tumor hosts
with a major focus on the spleen, the major site of extramedullary
hematopoiesis in the cancer setting. The authors summarize the
distinct mechanisms, functional specialization, and clinical
relevance of cancer-associated myeloid cell generation in the
spleen and its potential as a novel therapeutic target. They also
provide insight into mechanisms of tumor-dependent
development of MDSCs from hematopoietic stem cells and
myeloid cell progenitors and highlight the roles of specific
hematopoietic cytokines and tumor-derived factors in this
process. Karin reviewed the roles of specific chemokine
receptors and their ligands in cancer-associated multistep
MDSC mobilization. Although myelopoiesis is coordinated by
multiple cytokines and transcription factors, mobilization is
selectively directed by chemokine receptors and may differ
between M-MDSC and PMN-MDSC. These myeloid cells may
then undergo further expansion at these secondary lymphatic
organs and then home to the tumor site. Thus, mobilization of
MDSCs from bone marrow to the blood is directed by specific
chemokine receptors such as CCR2 for monocytic MDSCs via
CCR2-specific ligand CCL2, and CCR5 for the PMN-MDSCs via
CLL3, CCL4, or CCL5 ligands. It should be noted that other
chemokine-mediated signaling pathways including CXCL/
CXCR2 also contribute to the tumor recruitment of myeloid
cells and that signal integration between different chemokines
may also play an important role in their differentiation
and function.
MYELOID CELLS IN THE TUMOR
MICROENVIRONMENT

While PMN-MDSCs are relatively short-living cells, monocytic
MDSCs upon entering tumor tissue frequently differentiate into
immunosuppressive tumor-associated macrophages (TAMs)
and can function there for a long time. Wu and Zhang
summarize the broad role of TAMs and TANs (tumor-
associated neutrophils) in cancer, provide detailed information
on how these cells contribute to the growth of primary and
metastatic tumors, and discuss their clinical relevance. Davidov
et al. review the recent advances in data science, including
bioinformatics, single-cell RNA sequencing (scRNAseq) and
mass cytometry, which have enabled the development of novel
approaches to explore the myeloid cells in the tumor
microenvironment. These methods may provide a greater
understanding of the mechanisms of tumor-associated immune
suppression and tolerance, differentiation and polarization of
myeloid cells in the tumor microenvironment, and interaction of
tumor-infiltrating myeloid cells with immune cells, tumor cells,
and stromal compartment. Zwing et al. provide a detailed
Frontiers in Immunology | www.frontiersin.org 26
analysis of spatial organizational patterns of tumor-associated
myeloid cells and T cells in tumor tissues obtained from 74
previously untreated patients with colorectal cancer. This study
combined the digital image-based analysis, including cell density,
cell-to-cell distance, and spatial overlap, with gene expression
profiling to link the tumor spatial features with the biological
function of tumor-infiltrating immune cells. In these patients,
MDSCs seem to accumulate mostly at the invasive tumor edge
and are strictly associated with CD8+T cells. This confirmed
previous findings from Weed et al. in a limited number of
patients with HNSCC and suggests that myeloid cells may
provide a physical barrier to exclude CTL from the tumors.

Currently, patient stratification models focus mostly on the
tumor-infiltrating CD8+ T cells in tumor tissue. However, data
provided by the authors, clearly suggest that both numbers of
CD8+ T cells and the spatial relationship between myeloid and T
cells should be taken into account for the immune-based patient
classification and stratification. Additionally, similar analyses
should be performed after therapy to evaluate how anti-cancer
treatment modulate MDSC and T cell infiltration.
MECHANISMS OF IMMUNE
SUPPRESSION AND IMMUNE
RESISTANCE MEDIATED BY MDSC

Several molecular mechanisms deployed by cancer-associated
myeloid cells mediate the inhibition of innate and adaptive anti-
tumor immune response, thus promoting immune evasion. The
review by Grzywa et al. focused specifically on the role of myeloid
cell-derived arginase (ARG) in the regulation of cancer
immunity. ARG expression is substantially elevated in myeloid
cells in cancer and mitigates antitumor response via multiple
mechanisms. Authors provide detailed overview of the
biochemistry and metabolism of arginase and its substrate L-
arginine in tumors and in tumor-associated myeloid cells. ARG-
expressing myeloid cells strongly inhibit T cell proliferation by
impairing CD3 zeta chain expression, and this effect could be
reversed by supplementation of L-arginine or by small molecule
arginase inhibitors. Lebegge et al. focused on multiple innate
immune mechanisms by myeloid cells that contribute to cancer
immunotherapy resistance and promote tumor growth. The
mechanisms include the release of pro-inflammatory
mediators, neutrophil degranulation and respiratory burst,
neutrophil extracellular trap formation, tissue pathogen, and
damage recognition mechanisms, and others. Daveri et al.
summarize various roles of microRNA in shaping myeloid cell-
mediated resistance to the cancer immunotherapy. Small non-
coding RNA molecules, the microRNAs (miR) contribute to
myeloid cell regulation at different levels, including cell
metabolism and immune function, as well as affecting MDSC
differentiation and skewing their phenotype. MiR expression in
myeloid cells can be indirectly induced by tumor-derived factors
or through direct miR import via extracellular vesicles. Indeed,
extracellular vesicles are becoming important factors that
regulate both MDSC differentiation and function.
August 2021 | Volume 12 | Article 749605
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MDSC AS BIOMARKERS FOR RESPONSE
TO THE CANCER IMMUNOTHERAPY

The increased presence of immunosuppressive cells in patient’s
peripheral blood and tumor tissue may affect the response of
cancer patients to immunotherapy. Peranzoni et al. reviewed the
existing evidence of the relation betweenmyeloid cell subsets and the
responseof cancerpatients to the treatmentwith immunecheckpoint
inhibitors. The authors propose that circulating and tumor-
infiltrating myeloid cell populations can be used as predictive
biomarkers for immune checkpoint inhibitors in different human
cancers, both at baseline and on treatment. Thus, in patients with
advanced melanoma, treated with a combination of anti-PD1
antibody and a multi-peptide vaccine, the M-MDSC expansion in
peripheral blood was associated with poorer response to the
immunotherapy. The authors also note that given the plasticity of
myeloid cells and the differences in the microenvironment among
tumors, the phenotype of this lineage can greatly vary. Therefore, the
simple abundance of CD68 cells, classically considered to represent
macrophages, is thus rarely informative, while the functional
orientation of myeloid cells by multi-parameter IHC, flow
cytometry, or RNA sequencing allows defining a clearer
relationship between the distinct subsets and the clinical outcome.
This review also highlightsmyeloid cell plasticity andhow treatments
can induce the appearance of different immune evasionmechanisms.
TARGETING MDSC IN CANCER

Recent years have been marked by significant progress in
developing, cl inical testing, and validation of new
immunotherapeutic agents for cancer therapy, including immune
checkpoint inhibitors, engineered immune cells, and novel cancer
vaccines. However, the clinical efficacy of cancer immunotherapy is
limited due to tumor-associated immune suppression and immune
tolerance. Therefore, targeting MDSCs holds a great potential to
boost the anti-tumor immune response and produce a more
powerful therapeutic effect than immunotherapy alone. de Cicco
et al. reviewed recent progress in the development of novel strategies
for targeting MDSCs in cancer such as: (i) depletion of MDSC
populations; (ii) prevention of MDSCs recruitment and/or
migration to the tumor site; (iii) attenuation of immune
suppression in cancer by targeting specific molecular pathways
that are involved in MDSC-mediated inhibition of anti-tumor
immune response; iv) promoting the differentiation of MDSCs
into mature non-suppressive myeloid cells like M1-macrophages
or dendritic cells. The heterogeneity of these myeloid cells makes
their identification in human cancer very challenging. The authors
Frontiers in Immunology | www.frontiersin.org 37
suggest that since phenotype and mechanisms of action of MDSCs
appear to be tumor-dependent, it is important to accurately
characterize the precise MDSC subsets that have clinical relevance
in each tumor environment tomore efficiently target them. Also, the
authors provide the specific characteristics of immunosuppressive
myeloid cell subsets detected in several human cancers including
melanoma, breast cancer, prostate cancer, colorectal cancer,
hepatocellular carcinoma, and lung cancer. Alban et al.
demonstrated that monocytic MDSCs in glioblastoma express
high levels of CD74, which serves as a cognate receptor
macrophage migration inhibitory factor (MIF). Targeting of
MDSCs with ibudilast, a MIF-CD74 interaction inhibitor, resulted
in a reduction of the production of monocyte chemoattractant
protein 1 (MCP1, CCL2) and stimulated the expansion of CD8 T
cells. However, using ibudilast as a single agent for the treatment of
the experimental model of glioblastoma did not improve the
survival rate. Sieminska and Baran reviewed targeting MDSCs in
colorectal cancer. Since survival and expansion of MDSCs is
regulated by PGE2, administration of COX2 or MPGES1
inhibitors in animals with experimental tumors results in a
reduction of MDSCs and inhibition of tumor growth.

In conclusion, our Research Topic underscores the diverse
roles of tumor-associated myeloid cell subsets in in immune
evasion and the active suppression of anticancer immune
responses. At the same time, this manuscript collection clearly
indicates that there is still much to discover about the novel
MDSC markers, cancer-specific mechanisms of MDSCs
generation, and molecular pathways that control differentiation
and polarization of recruited myeloid cells in tumor tissue.
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Amino acid metabolism is a critical regulator of the immune response, and its modulating

becomes a promising approach in various forms of immunotherapy. Insufficient

concentrations of essential amino acids restrict T-cells activation and proliferation.

However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze

L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and

ARG2, have been found to be present in tumors and their increased activity usually

correlates with more advanced disease and worse clinical prognosis. Nearly all types

of myeloid cells were reported to produce arginases and the increased numbers of

various populations of myeloid-derived suppressor cells and macrophages correlate with

inferior clinical outcomes of cancer patients. Here, we describe the role of arginases

produced by myeloid cells in regulating various populations of immune cells, discuss

molecular mechanisms of immunoregulatory processes involving L-arginine metabolism

and outline therapeutic approaches to mitigate the negative effects of arginases on

antitumor immune response. Development of potent arginase inhibitors, with improved

pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies

based on targeting immunoregulatory pathways controlled by L-arginine degradation.

Keywords: arginase, arginine, immunosuppression, tumor immunology, immunotherapy, T lymphocyte, T-cell

metabolism

INTRODUCTION

The idea that the immune system can be harnessed to destroy tumors has been pursued for over
a century (1). However, for decades the efforts have mainly focused on stimulating the immune
system with recombinant cytokines, immune adjuvants, or co-stimulatory agonists that seemed
critical for the induction of potent and sustained immune responses (1, 2). The rationale was that
the immune system in cancer patients lacks sufficient power to mount anti-tumor response. It now
seems however, that the interference with pathways dampening lymphocyte reactivity appears to be
more effective in cancer patients than over-stimulation of effector mechanisms of immune system.
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The most successful approaches to impair tumor-elicited
immunosuppressive mechanisms turned out to be monoclonal
antibodies (referred to as immune checkpoint inhibitors)
interfering with co-inhibitory molecules or their ligands,
such as CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4), PD-1 (programmed cell death protein 1), or
PD-L1 (programmed death-ligand 1). The spectacular
therapeutic effects with unexpected ability to induce long-
term tumor control led to clinical approval of checkpoint
inhibitors (3–5).

Despite unprecedented antitumor efficacy, checkpoint
inhibitors are effective in a minority of cancer patients,
however. Thus, identification of response biomarkers as well
as resistance mechanisms has become a priority for cancer
researchers. A number of molecular mechanisms involved in
the evasion of the anti-tumor immunity have been characterized
in recent years (6). Central among them is the development of
chronic inflammation (7, 8). Epidemiological data indicate that
chronic inflammation is associated with poor prognosis (9).
Mounting evidence indicates that the tumor microenvironment
alters lymphoid and myeloid cells and converts them into
potent immunosuppressive cells. It has become clear that
tumor microenvironment, rich in inflammatory cells, is an
indispensable component in the neoplastic process fostering
proliferation, survival, and invasiveness of tumor cells (7).
Chronic inflammation also triggers multiple regulatory pathways

aimed at dampening immunity. The evolutionary rationale for

this is to mitigate tissue damage and fibrosis. Coincidentally,
the regulatory pathways impair development and/or activity
of adaptive immune mechanisms that could be involved in
eradication of tumor cells (8). Simultaneously, tumor cells
frequently co-opt some of the signaling molecules participating
in inflammation, such as adhesion molecules, cytokines,
and growth factors for migration, invasion, and metastasis.
Although there are many phenotypical and functional changes
in different myeloid cell subpopulations, their precise role in
the development of cancer resistance to immunotherapy is
still not well-understood. This review will address the role
of arginases (ARG), enzymes produced by tumor-infiltrating
myeloid cells. The role of L-arginine (L-arg) metabolism in
the regulation of immune response was of great interest in
the 1980s and 1990s. However, further studies were focused
mainly on L-arg-derived nitric oxide (NO) and its antimicrobial
activity (10, 11), rather than immunosuppressive effects of
L-arg deprivation. It is currently experiencing a renaissance
due to increased awareness of the role of metabolic pathways
in the regulation of immune cells function as well as due to
the development of selective arginase inhibitors with improved
pharmacokinetic properties. Novel tools and experimental
models allowed to more precisely and comprehensively address
the critical metabolic adaptations to microenvironmental
changes experienced by immune cells. This is a clearly
arginase-centered review, and it should be kept in mind
that there are multiple other independent mechanisms of
tumor immune evasion, including those affecting amino
acids metabolism.

ARGININE AND ARGINASES—BASIC
BIOCHEMISTRY

L-arginine is a dibasic cationic amino acid participating
in a variety of metabolic pathways (Figure 1) (12). There
are three major sources of L-arg in the body—dietary
intake, endogenous de novo production from L-citrulline
or recycling, i.e., retrieval from degraded proteins. Under
pathological conditions (bleeding, sepsis, trauma, cancer, or
chronic inflammation) endogenous sources of L-arg become
insufficient (13). Thus, L-arg is considered to be a semi-essential
or conditionally-essential amino acid that in stressful conditions
must be supplied in diet. Most of the endogenous L-arg synthesis
is carried out in the kidney proximal tubules from intestinal
L-citrulline (14). L-Arg plasma concentrations range between
50 and 250µM (15–18) and are much lower than those in
subcellular compartments (up to 1mM) (19). In mammalian
cells, L-arg transport through the plasma membrane is mediated
by at least eight transporters (20). The uptake of L-arg occurs
mainly via cationic amino acid transporters (CAT-1, CAT-2A,
CAT-2B, and CAT-3, SLC7A1-3) (21). In human T-cells L-arg
transport is mediated mainly by CAT-1 (22), while in myeloid
cells by CAT-2 (23). Moreover, L-arg is transported through the
plasma membrane by b0,+ AT (SLC7A9) and ATB0,+ (SLC6A14)
that also transport neutral amino acids (20, 24, 25). L-type amino
acid transporters γ+LAT1 (SLC7A7) and γ+LAT2 (SLC7A6)
mediate mostly arginine export from the cells (20, 24). L-arg is
metabolized in animal cells by four groups of enzymes, some
of which exist in various isoforms. These include arginases,
nitric oxide synthases (NOS), arginine decarboxylase (ADC), and
arginine:glycine amidinotransferase (AGAT). Moreover, arginine
deiminase (ADI) that hydrolyzes L-arg to L-citrulline and
ammonia is expressed by some bacteria (26, 27). It is the first
enzyme of the arginine dihydrolase system (ADS) that generates
alkali and ATP for growth (28). These enzymes are encoded by
arginine catabolic mobile element (ACME) (29) that was detected
in Staphylococcus aureus and Staphylococcus epidermidis (30). L-
arg metabolism by ADS enables survival in acidic environments,
including human skin, disrupts host arginine metabolism, and
contributes to the success of community-associated methicillin-
resistant S. aureus (CA-MRSA) (31).

Arginases are manganese-containing enzymes that hydrolyze
L-arg to L-ornithine and urea in the liver urea cycle (32).
This is the most important pathway responsible for the
conversion of highly toxic ammonia to excretable urea (33).
L-Ornithine is a substrate for ornithine decarboxylase (ODC)
that initiates polyamines synthesis, or it is metabolized by
ornithine aminotransferase (OAT) to proline. Polyamines, such
as putrescine, spermine, or spermidine are necessary for cell
proliferation, while proline is necessary for collagen synthesis.
Initially, it was thought that arginase is expressed only in the liver.
However, further studies revealed that arginase is ubiquitously
expressed in many types of cells (33), and that there are
two different isoforms of this enzyme that catalyze the same
biochemical reaction, but are expressed by different cells and are
located in different cellular compartments. Human arginase 1
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FIGURE 1 | Scheme for arginine metabolism. In mammalian cells, L-Arginine is a substrate for four enzymes: ARG, NOS, ADC, AGAT. L-Arginine downstream

metabolites are components of multiple metabolic pathways and are necessary for cells proliferation and collagen synthesis. ADC, arginine decarboxylase; AGAT,

arginine:glycine amidinotransferase; AGMase, agmatinase; ARG, arginase; ASL, argininosuccinate lyase; ASS, argininosuccinate synthase; GAMT, guanidinoacetate

N-methyltransferase; NOS, nitric oxide synthase; OAT; ornithine aminotransferase; OTC, ornithine transcarbamylase; P5C, pyrroline-5-carboxylic acid. Figure was

modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

(ARG1) has 322 amino acids and is a cytosolic protein expressed
primarily in the liver cells (34) as well as in the cells of themyeloid
lineage (35). Human arginase 2 (ARG2) consists of 354 amino
acids and can be found in mitochondria (36). It has ubiquitous
expression, but usually at a lower level than ARG1. ARG2 has
58% sequence identity to ARG1 (37), but both enzymes are nearly
identical within the catalytic region. There are also types of cells,
such as endothelial cells, which have relatively high expression
of both isoenzymes (38). The summary of the most important
information on the two isoforms of arginase is presented in
Table 1.

An important metabolic pathway of L-arg involves the activity
of NOS. There are three isoforms of this enzyme—neuronal
(nNOS or NOS1), inducible (iNOS or NOS2) and endothelial
(eNOS or NOS3). NOS2 can be induced in many types of cells,
but when present in activated myeloid cells it produces NO at a
very high rate. There are multiple layers of competition between
NOS2 and ARG1 in myeloid cells and both enzymes are induced
by cytokines regulating different types of the immune response.
NOS2 in myeloid cells is induced by type 1 cytokines (mainly
IFN-γ), while ARG1 expression is regulated by IL-4 and IL-
13. Considering that Km of ARG1 is ∼1,000-fold higher than
that of NOS2, the intracellular L-arg could be expected to be
mainly metabolized to NO, rather than to L-ornithine and urea.
However, Vmax of NOS is three orders of magnitude slower
than that of ARG1 (53, 54). Thus, both enzymes compete for
the same substrate. Intriguingly, insufficient L-arg concentrations
lead to NOS uncoupling, whereby rather than NO these enzymes
generate superoxide anions. Superoxide then rapidly reacts with
any available NO molecules to form peroxinitrites that further
decrease NOS activity by oxidizing tetrahydrobiopterin (BH4)

(54). Moreover, induction of ARG1 that limits L-arg availability
is involved in the regulation of NOS2 expression as L-arg is
necessary for the translation of NOS2-encoding mRNA (55).

During acute wound healing resident myeloid cells express
high levels of NADPH oxidase (NOX2) and NOS2, which
participate in normal antimicrobial defense mechanisms by
producing superoxide anion and NO, respectively. Then, after 3–
5 days, a repair phase is initiated, which is associated with the
appearance of ARG1+ macrophages. L-arg degradation produces
L-ornithine that is converted by OAT to L-proline used as a
substrate in collagen synthesis (56). ODC converts L-ornithine to
polyamines that stimulate cell proliferation. This highly regulated
process is perpetuated in tumors that are frequently described as
wounds that never heal (57).

ARGININE AND ARGINASE IN TUMORS

Tumor progression is associated with alterations in metabolic
pathways in tumor cells as well as in the cells forming the tumor
microenvironment. Altered metabolic phenotype of tumors
includes changes in L-arg concentrations. For example, the
concentration of L-arg in the core regions of solid tumors is
about 5 times lower as compared with tumor periphery and this
difference turned out to be the highest among all of the measured
amino acids (58). Quantification of interstitial fluid metabolites
in murine tumors has also revealed that L-arg is themost strongly
depleted amino acid in the tumor microenvironment (59). The
mechanisms of L-arg depletion are incompletely elucidated. On
the one hand, L-arg can be consumed by tumor cells that have
increased metabolic demands and use it for protein synthesis, but
it can also be used by enzymes such as arginases or NOS. Many
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TABLE 1 | Properties of the two arginase isoforms.

Enzyme Arginase 1 Arginase 2

Genomic location in mouse 10; 10 A4 12; 12 C3

Number of amino acids 323 354

Genomic location in human 6q23 14q24.1

Number of amino acids 322 354

Sequence identity ARG2 has 58% sequence identity to ARG1

Structure Homotrimer

Catalyzed reaction L-arg → urea + L-ornithine

Localization Cytosol Mitochondrion

Tissue specificity Liver, to a lesser extent kidney Expressed ubiquitously, mainly kidney and prostate

Phenotype of knockout (KO)

mice

Lethal, death occurs typically by postnatal day 17 (39). In

conditional knockouts, death of adult mice occurs

typically after 21 days of KO induction (40)

KO viable and apparently indistinguishable from wild-type

mice (41, 42)

Phenotype of deficiency in

humans

Urea cycle disorder, hyperargininemia, progressive

neurologic impairment (43)

Defects not described.

ARG2 level is increased in ARG1-deficient patients (43, 44)

Effect of ARG on immune

response

Immunosuppression (45) Unclear - immunosuppression (46–49), but also expressed by

proinflammatory cells (50–52)

studies reported that arginases can be produced by tumor cells
(46, 60, 61), but even larger number of reports indicate that the
major L-arg-metabolizing cells are found in the tumor stroma. It
has not been studied in sufficient detail as to which cells in the
tumor environment are mainly responsible for L-arg depletion.
It is also entirely possible that this process is highly variable and
changes in the course of tumor progression, with tumor cells
or stromal cells predominating in L-arg metabolism at various
stages of neoplastic disease.

Arginase and Tumor Prognosis
High ARG expression and activity have been reported in many
types of human cancers, but its role as a prognosis factor remains
vastly undetermined and usually studied on small populations
of patients. Moreover, drawing conclusions from the limited
number of studies is further complicated by a lack of standardized
criteria for ARG measurements. For example, different cutoff
criteria were applied to groups of patients with “low arginase”
and “high arginase” expressing tumors, or studying either
ARG1 or ARG2 expression profiles. Nonetheless, increasing
evidence shows that overexpression of ARG1/2 (with or without
subsequent decline in serum L-arg concentrations) should be
perceived as a poor prognostic factor in a wide variety of cancer
types including head and neck cancer (62), neuroblastoma (46),
acute myeloid leukemia (AML) (61), pancreatic ductal carcinoma
(63), ovarian carcinoma (64), or colorectal cancer (65). High
expression of ARG1 in hepatocellular carcinoma also seems to
play a role as a negative predictive factor that correlates with
shorter median time to recurrence (66) and more aggressive
tumors (67), but further evidence is required to support these
observations as a contradictory report exists (68).

Although a number of studies provide strong evidence for
increased ARG activity in both tissue (69) and blood (70–72)
obtained from patients with breast cancer, so far no study was
conducted to establish the role of ARG activity in determining
the prognosis of breast cancer patients. Notably, contradictory

reports exist that show a decrease in blood plasma ARG activity
in breast cancer patients, however, these are based on very limited
number of enrolled patients (73, 74). Similarly to breast cancer,
increased ARG activity was found in skin (75), cervical (76),
thyroid follicular (77), thyroid papillary and follicular variant of
papillary (77), gastric, bile duct (78), and esophageal (79) cancers.
However, again no study exists in these types of cancers that
would demonstrate the impact of ARG activity/abundance on
patients’ prognosis.

Finally, there are tumors such as prostate (80–82) and lung
cancer (83) as well as tumors that are auxotrophic for L-arg (these
are not capable of re-synthesis of L-arg from citrulline due to
the lack of expression of argininosuccinate synthetase-1, ASS-1),
such as melanoma (84) and renal carcinoma (85, 86), where no
correlation between ARG levels and survival has been found.

A critical question arises whether ARG in tumors is produced
by tumor cells or by tumor-associated stromal cells that include
mesenchymal as well as immune cells, among which myeloid
cells seem to be the main source of the enzyme. Regrettably,
no studies have been conducted that would directly address
this issue and whether this is of any significance for cancer
patients survival, whether ARG is expressed by tumor or tumor-
infiltrating myeloid cells.

ARGINASE IN TUMOR-INFILTRATING
MYELOID CELLS

Myeloid cells are major contributors to immune defense against
pathogens and play an important role in tissue remodeling.
During acute infections GM-CSF drives myelopoiesis in the
bone marrow, and G-CSF as well as M-CSF induce further
differentiation of granulocytes and macrophages, respectively
(87). Some tissue macrophages develop from embryonic
precursors that directly home to peripheral tissues and become
a self-renewing population (88). Mature myeloid cells are
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FIGURE 2 | Cancer cells recruit myeloid cells to tumor microenvironment (TME) and induce their polarization to immunosuppressive phenotype. Myeloid cells,

including macrophages, MDSC, dendritic cells, and neutrophils create tumor-promoting, immunosuppressive TME via multiple factors including reactive oxygen

species (ROS), cytokines (IL-10, TGF-β), PD-L1, as well as ARG1. Created with BioRender.

specialized in killing infectious microorganisms and play an
important role in promoting development of adaptive immunity.
However, in cancer and other chronic inflammatory conditions
constant production of low concentrations of myeloid growth
factors and various inflammatory mediators dysregulate myeloid
cells differentiation (Figure 2) (89–94). It is currently not well-
understood what events trigger this disturbed myelopoiesis, but
it must be emphasized that this process evolves over many years
of tumor development and likely involves multiple independent
mechanisms. Some of these might be completely stochastic, but
in the course of tumor progression become promoted in a trial-
and-error process that selects for mechanisms that best fit the
demands of growing tumors.

Myeloid cells, especially tumor-infiltrating myeloid cells
(TIMs), are a highly heterogeneous population (95). TIMs
include monocytes, macrophages, dendritic cells, granulocytes,
mast cells, as well as their immature precursors that have not
completed their differentiation processes. The latter cells are
normally found in the bone marrow, but in the course of tumor
development they frequently expand and relocate to the spleen,
lymph nodes and the tumor itself, and can be found at increased
numbers in the peripheral blood (96, 97). These cells express
immune checkpoint molecules, deplete essential metabolites,
release immunosuppressive adenosine and its metabolites,
produce reactive oxygen species, secrete immunoregulatory
cytokines, growth-promoting, and proangiogenic factors

(Figure 2). Moreover, they induce various populations of
regulatory T-cells that impair antitumor immune response (98).
Due to their strong immunosuppressive functions these cells
have been termed myeloid-derived suppressor cells (MDSCs).
There are two major subsets of MDSCs—monocytic (M-MDSC)
and granulocytic (polymorphonuclear, PMN-MDSC) (99).
Both have been associated with dysregulation of immune
response in murine cancer models and in cancer patients,
although still the majority of studies report the suppressive
potential of total MDSCs (100). In mouse tumor models that
mostly involve transplantation of tumor cells, the expansion
of MDSCs is very rapid. This is in contrast to slow-growing
tumors, including diethylnitrosoamine (DEN)-induced or
MYC-expressing hepatocellular carcinoma, that in terms of
the rate of tumor progression more accurately reflect human
cancer (101). In many types of humans tumors, including lung,
colon, uterus, cervix, bladder, or thyroid gland cancers, the
increased numbers of M-MDSCs in peripheral blood correlate
with worse clinical outcomes (102). In melanoma or liver cancer,
however the increased numbers of both PMN-MDSCs and
M-MDSCs were associated with poorer outcomes (102), while
in renal cell carcinoma PMN-MDSCs seem to predominate
(103). Importantly, increased numbers of MDSCs are observed
also in patients with pancreatic premalignancy—intraductal
papillary mucinous neoplasm (IPMN), and in patients with
colon adenomas, as compared with healthy controls (97).
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TABLE 2 | Differences in arginases expression in myeloid cells between mouse

and human.

Type of cell Arginase 1 Arginase 2

Mouse Human Mouse Human

Monocytes + (106) –c (107, 108) + (109) + (50, 110)

Macrophages +
a (111) –c (105) +

b,c,d (36, 112) + (113)

M2 macrophages +
a (114) –c (108) –d,e (51) –e (50)

TAMs + (115) –f (116) + (117, 118) + (63)

MDSCs +
a (103) + (103) + – (119, 120) + (121)

Neutrophils + (122) + (105, 123) + (117, 124) + (113)

Dendritic cells +
a (112) –c (105) + – (112, 125) + (126)

a Induced by Th2 cytokines.bNot significantly modulated by Th1 cytokines.cNot

significantly modulated by Th2 cytokines. d Induced by LPS.eARG2 is proposed as a

marker of proinflammatory M1 macrophages (50–52, 127). fARG1 expression in human

TAMs was minimal and on the same level as in control tissue-resident macrophages (116).

+, expression; –, undetectable or very low expression; TAMs, tumor associated

macrophages; MDSCs, myeloid-derived suppressor cells.

Nearly all myeloid cells have been shown to produce
ARG1 in mice (Figure 2). However, there are substantial
differences in the expression of arginases by myeloid cells
between mice and men (104). In humans, arginase is
produced mainly by granulocytes and no arginase activity
is detectable in monocytes, macrophages nor dendritic cells
(105). The differences in expression of both isoforms of
arginase by myeloid cells in mice and humans is summarized
in Table 2.

The first report linking immunosuppression with arginase
activity in macrophages was published over 40 years ago (128).
However, the concept that L-arg metabolism is associated with
regulation of the immune response did not gain much attention
initially. It was suggested that suppressive effect of arginase
may be just an interesting problem of in vitro culture (129).
However, soon other studies described depletion of L-arg by
macrophages expressing arginase both in vitro (130) and in
vivo in tumor-bearing mice (131). The authors hypothesized
that arginase may be an effector mechanism of macrophages
against infectious microorganisms and tumor cells (131). After
over 30 years we know that arginase plays an opposite role
in immune response and is one of the main mechanism
of immunosuppression.

L-arg depletion by suppressive myeloid cells in the tumor
microenvironment can occur by increased L-arg uptake by CAT-
2B transporters (132), which is followed by arginase-mediated
hydrolysis (Figure 3). Myeloid cells also secrete arginase to the
microenvironment (133), where it acts mainly locally due to
short circulating half-life (134). Murine MDSCs deplete L-arg
by increased uptake and intracellular degradation, in contrast to
human MDSCs that mainly release arginase into the circulation
(103). ARG1 may also be secreted in extracellular vesicles (EVs)
by MDSCs (135). In EVs, arginase remains stable and may
exert greater than local effects, for instance in draining lymph
nodes (64).

Arginase in Myeloid-Derived Suppressor
Cells
MDSCs have been the most intensively studied cells in terms
of L-arg metabolism. Bronte et al. were the first to show that
myeloid cells accumulating in the spleens of tumor-bearing mice
express ARG1 and suppress the proliferation of allogeneic T-
cells (141). Liu et al. showed that myeloid cells in the tumor

microenvironment express arginase and suppress cytotoxic T

lymphocyte (CTL) activity in NO-independent manner (142).
Since then, many other studies confirmed that immature tumor
myeloid cells express ARG1 in mice and humans with cancer
and that the activity of this enzyme is involved in suppression of
T-cell response (132, 143–146). The majority of studies indicate
that arginase plays a more important role in PMN-MDSC rather
than M-MDSC (103, 147–149). However, the role of this enzyme
in the regulatory activities of the latter cells should not be
completely dismissed. For example, iNOS inhibitor together with
ARG inhibitor diminished the suppression driven by M-MDSC,
with no effect on PMN-MDSC (150).

In humans, PMN-MDSCs store ARG1 in granules and release
it to the extracellular milieu (103). It leads to the depletion
of L-arg and suppression of anti-tumor response. In patients
with pancreatic ductal adenocarcinoma CD13hi PMN-MDSCs
were identified that produce ARG1 and suppress alloreactive T-
cell responses in ARG1-dependent manner. Patients with more
CD13hi PMN-MDSCs had significantly shorter survival than
those with predominant CD13low PMN-MDSCs in the tumor
infiltrates (149). Similarly, ARG1-producing MDSCs in patients
with renal cell carcinoma turned out to be of granulocytic
lineage (103). Interestingly, treatment of patients with IL-2
increased the number of these cells in peripheral blood, as
well as in the plasma concentrations of ARG1 (103). Whole
mount labeling and clearing followed by three-dimensional
light sheet microscopy of head and neck carcinomas identified
intratumoral hotspots of PMN-MDSCs that co-localized with T-
cells. Those T-cells that were in close proximity to ARG1-positive
PMN-MDSCs had strongly reduced expression of granzyme B
(serpin participating in cytotoxic effects of T-cells) and Ki67
(a proliferation marker) (151). In multiple myeloma IL-18 was
shown to induce ARG1+ PMN-MDSCs that suppress immune
response (152). In KRASG12D genetically engineered mice that
develop lung tumors resembling NSCLC, PMN-MDSCs were
observed to cause T-cell suppression by L-arg depletion. Arginase
inhibitor has not only restored T-cell function, but caused
significant regressions of tumors in these mice (117). Arginase-
expressing MDSCs were also shown to induce Tregs in murine
tumor models (153) as well as in cancer patients (154). In some of
these studies, this effect was abrogated by arginase inhibitor (153)
indicating a specific role of this enzyme in Treg development
(see below).

Arginase expression in tumor MDSCs is increased as
compared with the cells of the same phenotype isolated
from spleen (155). Both inflammatory and tumor-derived
factors are involved in the regulation of ARG1 expression
in MDSCs (Figure 4). For example, tumor-infiltrating MDSCs
stimulated with TGF-β and IL-10 demonstrated high ARG1
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FIGURE 3 | L-Arginine-depleting arginases lead to the impaired anti-tumor response. Arginases may act intracellularly (cytoplasmic ARG1 and mitochondrial ARG2)

and extracellularly (secreted ARG1) leading to the local depletion of L-arginine in tumor microenvironment (TME). Moreover, ARG1 may have effects in sites distant

from the TME, when packed into extracellular vesicles (EVs), transported over long distance and internalized by myeloid cells, for instance, in tumor-draining lymph

node. Arginase inhibitors (ARGi) should target both isoforms (ARG1 and ARG2) and easily penetrate the cell membrane to block extracellular and intracellular

arginases, as well as arginase in EVs. Created with BioRender.

activity (156). One mechanism involves stress sensor C/EBP-
homologous protein (CHOP), which directly activates ARG1
gene through inhibition of LIP transcription suppressor. CHOP
expression in MDSCs is induced by ROS and further by
the activating-transcription factor-4 (ATF-4) (157). Intriguingly,
diminished L-arg concentrations have been shown to induce
accumulation of arginase-expressing MDSCs in the tumors

after administration of pegylated recombinant ARG1 to tumor-
bearing mice (158) indicating potential threats associated
with L-arg-depleting therapeutic strategies for cancer. ARG1
levels in MDSCs from patients with head and neck cancer
were regulated by STAT3 signaling (159). Accordingly, STAT3
silencing in MDSCs from prostate cancer patients abrogated
their immunosuppressive activity (160). Chronic stress, which

Frontiers in Immunology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 93815

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grzywa et al. Arginase and Anti-cancer Immune Response

FIGURE 4 | Several tumor-associated factors promote ARG1 expression in myeloid cells. ARG1 expression is mainly induced by type 2 cytokines (IL-4, IL-13), as well

as immunosuppressive cytokines (TGF-β, IL-10). Moreover, it may be promoted by TME factors including hypoxia and acidosis, as well as stress mediators. ARG1

expression is also induced by GM-CSF (136), TLR agonists (137), and cAMP (138). IL-10 and IL-21 increase IL-4-induced ARG1 expression (139, 140). Created with

BioRender.

frequently accompanies cancer, was reported to increase the
generation of ARG1+ MDSCs in mice and humans, through
catecholamines stimulating β2 adrenergic receptors (β2AR).
Induction of ARG1 by isoproterenol (a β2AR agonist) was
associated with STAT3 phosphorylation in MDSCs (161). It was
found that prostanoids produced by COX2 are responsible for
mediating ARG1 overexpression in MDSCs by lung cancer cells
in in vitro and in vivo models (162). The mechanism of ARG1
upregulation inMDSC is probably controlled by EP4 receptor for
PGE2. Those findings were confirmed in other tumors (144, 163).
MDSC not only infiltrate tumor and its environment, they were
also found in peripheral blood. (103). MDSC abundance in blood
correlated with staging in HNSCC patients. Moreover, MDSC
in HNSCC have high level of pSTAT3 and ARG1 and potently
inhibit T-cells proliferation (159).

Macrophages
Macrophages are the main phagocytic population of cells
within tumors (47). However, contrary to their natural role
in promoting immunity against infectious microorganisms,
tumor-associated macrophages (TAMs) are involved in
promoting tumor progression, partly through creating an
immunosuppressive microenvironment (47). The majority of
reports on macrophages in cancers describe their function in
the context of in vitro polarization into M1 or M2 subsets (164).
This classification is currently not recommended as TAMs are
represented by a continuum of phenotypic variants (47), but
will be incidentally used hereafter considering that the existing

literature specifically refers to M1 andM2macrophage subsets. It
must be underscored however, that TAMs are highly diverse and
form a wide range of populations with various functional roles
(165). Additionally, these cells do not form a stable population,
but are highly variable both in time and location within the
tumor milieu (165, 166). So called M1 macrophages are induced
by lipopolysaccharide (LPS) and type 1 cytokines (mainly
IFN-γ), express high levels of tumor necrosis factor (TNF),
IL-12, iNOS, and MHC class II molecules and are considered to
participate in anti-tumor immunity (47). M2 macrophages are
induced by type 2 cytokines and express ARG1, IL-4, IL-13, IL-
10, and CD206 (47, 167). Cytokines, especially those associated
with type 2 immune response (IL-4 and IL-13) that activate
the transcription factors STAT6, PU.1, and CCAAT/enhancer
binding protein β (C/EBPβ) were shown to directly induce
signaling pathways leading to increased production of ARG1
in macrophages (168). IL-4- and IL-13-activated STAT6 with
STAT3 and C/EBPβ bind to an enhancer in the ARG1 locus
(169). Some cytokines, including IL-10 and IL-21, upregulate
the expression of IL-4Rα and IL-13Rα1, leading to the increased
IL-4-induced ARG1 expression (139, 140). M2 macrophages are
the most abundant population of myeloid cells in tumors, and
their presence is usually associated with poor prognosis, tumor
cell invasion, metastasis, and neovascularization (170, 171).
Importantly, TAMs are considered to be of either embryonic
origin or to derive from hematopoietic stem cells (HSCs) (172–
175). Both populations are found in the tumors in approximately
similar ratio, but it seems that it is mainly the latter population
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that includes cells with immunosuppressive properties (47).
HSC-derived macrophages in a tumor microenvironment sense
local physicochemical conditions that are different than in many
normal tissues and include hypoxia, acidosis, changes in the
composition of extracellular matrix proteins (that affects rigidity
of the tumor tissue), nutrient insufficiency, different cellular
metabolites, various growth factors and inflammatory mediators
(prostanoids, cytokines, etc.) (165). Necrosis and other forms
of cell death lead to appearance of cell debris as well as cell
death-associated molecular patterns [CDAMPs, also known
as death-associated molecular patterns—DAMPs (176)] that
additionally affect differentiation of macrophages. Many of these
environmental conditions have been shown to induce ARG1 in
TAMs including hypoxia via hypoxia-inducible factors (HIFs)
(177), lactic acid (in a HIF-1α-dependent mechanism) (178), or
COX2 via prostaglandin E2 (162) (Figure 4). Even local acidosis
might be involved in ARG1 induction as resting macrophages at
pH of 6.1 were observed to induce expression of VEGF, HIF-1α
and ARG1 (179), and induction of ARG1 by IL-4 was stronger at
pH of 6.8 (180). Cancer-associated fibroblasts (CAFs) have been
shown to regulate macrophage differentiation and confer these
immunosuppressive cells with the ability to secrete high levels
of IL-6 and to produce collagen that leads to the development
of tumor desmoplasia (181). Collagen forms a scaffold for many
secreted mediators including TGF-β. The number of ARG1
positive macrophages was decreased in Mer tyrosine protein
kinase (MERTK) knock-out mice (182). MERTK is involved
in signaling triggered by recognition of apoptotic cells. Quite
unexpectedly, a recent study revealed that type I interferons
(IFNs) inhibit monocyte to macrophage differentiation within
tumor and induce strong expression of ARG1 (183).

Macrophages are the main source of ARG1 within tumors
in a murine model of colon adenocarcinoma (115). In vivo
imaging of tumor macrophages revealed that in contrast to
tumor periphery these cells are highly mobile within the
tumor microenvironment, exhibit structural diversity and gene
expression profile that includes increased ARG1. The number of
these ARG+ macrophages significantly decreased after anti-PD-1
monoclonal antibody treatment (115). TAMs in lung cancer and
melanoma also express more ARG1 than all other cells within
tumor combined (178) and have over 20 times higher expression
of ARG1 as compared with peritoneal macrophages (184).

Arginase production by macrophages not only leads to the
inhibition of anti-tumor response via L-arg degradation, but also
increases the proliferation of tumor cells, which is associated with
the production of L-ornithine and then a polyamine—putrescine
that promote tumor cells proliferation (185). Moreover, L-
arg depletion in the tumor microenvironment attenuates NO
production and reduces its cytotoxic effects on tumor cells
(185). Several studies also indicate that arginase activity
might be associated with delivery of additional metabolites
with immunosuppressive properties. For example, inhibition
of polyamines synthesis together with blocking of dietary
polyamine transport was shown to exert antitumor effects
that were associated with decreased numbers of intratumoral
MDSCs and increased numbers of T-cells (186). Similar approach
was shown to increase in granzyme B+IFN-γ+CD8+ T-cells

and a decrease in immunosuppressive tumor-infiltrating cells
including PMN-MDSCs, Tregs, and M2 macrophages (187).

Neutrophils
Neutrophils are the most abundant leukocytes in peripheral
blood and are produced in the bone marrow at a prodigious
rate of 1 × 1011 cells per day (188). These cells constitute
a rapidly reacting part of innate immune response, playing
important role in defense against bacteria and fungi. Despite
their important role in host defense, the increased numbers
of neutrophils in blood of cancer patients correlate with poor
prognosis (189). These cells can also be found in tumors,
but their role in tumor has been largely neglected, mainly
due to the belief that their life-span is one of the shortest
among all leukocytes. However, tumor-associated neutrophils
(TANs) persist in tumor microenvironment for extended time in
response to GM-CSF and TGF-β (126). TANs are divided into
two subtypes: N1 and N2, with anti-tumor and protumorigenic
phenotype, respectively, but to date no specific molecular surface
markers have been identified to distinguish them. Nonetheless,
N2 neutrophils are characterized by high arginase expression
(132, 190). ARG1 is in fact constitutively expressed in human
neutrophils. However, these cells do not metabolize L-arg (123)
possibly due to the confinement of ARG1 in gelatinase granules
(191). Neutrophils can release ARG1 leading to the suppression
of T-cells function (192). This process requires simultaneous
exocytosis of ARG1-containg gelatinase granules and azurophil
granules (192). It was assessed that 1 × 106 of neutrophils
secrete ARG1 at amounts sufficient to catabolize all the L-arg
contained in 5ml of blood in 1 h (193). At least in some tumors
ARG1+ neutrophils are quite abundant and the presence of
ARG1+ neutrophils correlates with suppressed T-cell functions
(193, 194). Intriguingly, in non-small cell lung cancers despite
high arginase activity in tumor microenvironment, most of
the TANs display low or no ARG1 expression, in contrast to
neutrophils in peritumoral tissue that strongly stain for ARG1
(193). It turned out that tumor cells release IL-8 that induces
ARG1 exocytosis from neutrophils into extracellular milieu
(193) (Figure 4). Degranulated neutrophils are also expanded
in peripheral circulation of cancer patients, and ARG1 released
from these cells strongly contributes to general suppression of
T-cell functions (195). ARG1 released from neutrophils has also
been shown to inhibit the proliferation of NK cells and IL-
12/IL-18-induced production of IFN-γ (196). Zoledronic acid, a
bisphosphonate used in the treatment of osteoporosis has been
shown to induce ARG1 in neutrophils that suppress the activity
of γδ T-cells (197). All these observations indicate that ARG1+

neutrophils seem to play a detrimental role in tumor progression,
mainly due to immunosuppressive effects. Notably however,
a recent study indicated that high intratumoral neutrophil
numbers expressing ARG1 correlate with better survival of
patients with colorectal cancer (198).

Dendritic Cells
Dendritic cells (DCs) are classically described as professional
antigen-presenting cells that produce cytokines and provide co-
stimulatory molecules, leading to naïve T-cells activation and
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differentiation into effector cells (199). There are conventional
DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived
DCs (MoDCs) that have different origin and differ in function.
Within cDCs there are additional subsets both in mice and
in humans that are referred to as cDC1 and cDC2. cDCs1
are presumed to be primarily involved in cross-presentation
of antigens to CD8+ T-cells, while cDCs2 seem to be largely
associated with stimulating CD4+ T-cells (200). Another layer
of subdivision into migratory and lymph node (LN)-resident
DCs reflects location and the mechanisms of antigen acquisition
by these cells. Migratory CD103+ DCs take up antigens in
non-lymphoid tissues (including tumors) and traffic through
lymphatic vessels into LNs. LN-resident CD8αα+ DCs enter the
LNs from the blood and acquire antigens draining through the
lymphatics or transported to LNs by other cells (200).

Tumors are frequently infiltrated by various populations
of DCs. During infections DCs acquire, process and present
antigen in association with MHC molecules, deliver co-
stimulatory signals and release cytokines that shape T-cell
responses. The same role is expected to be played by DCs
in tumors. However, the stimulatory activity of these cells is
often compromised and tumor DCs often drive tolerance rather
than immunity in cancer patients (201). The mechanisms of
tumor-infiltrating DCs that hamper development of antitumor
immune response include decrease in MHC class I and
II levels as well as in co-stimulatory molecules (CD40,
CD80, CD86), rise in co-inhibitory molecules (such as PD-
L1, PD-L2, VISTA), increased tryptophan degradation by
indoleamine 2,3-dioxygenase (IDO1), decreased release of IL-
12, but increased secretion of IL-10 and TGF-β, among others
(201). Arginases can be added to this expanding list, based on
numerous reports.

Lung cancer cells isolated from murine tumors induced
DCs to differentiate into regulatory cells that suppressed T-
cell response through ARG1 (202). In another study tumor-
infiltrating DCs were observed to decrease the expression of
CD3ζ in T-cells in ARG1-dependent manner and induced
anergy in naïve CD8+ T-cells (203). ARG1 produced by DCs
promotes the generation of FoxP3+ Tregs (204, 205). Not
only ARG1 was shown to be expressed by DCs. Human fetal
cDC2 cells uniquely express constitutively high levels of ARG2,
through which these cells inhibit T-cell activation and TNF-α
release (206).

The expression of ARG1 in DCs is regulated by a number
of cytokines and tissue factors (Figure 4). As in other myeloid
cells, ARG1 is induced by type 2 cytokines, including IL-
4 and IL-13. Tregs were reported to induce ARG1 in
DCs in a TGF-β-dependent mechanism (207). Supernatants
from tumor cells experiencing endoplasmic reticulum (ER)
stress and unfolded protein response (UPR) was shown to
induce ARG1 in DCs (208). Retinoic acid was also shown
to be a key mediator regulating expression of ARG1 in
DCs, mediated by retinoic acid-responsive elements in the 5′

non-coding region of the ARG1 gene. Blockade of retinoic
acid receptors makes DCs less responsive to IL-4 and GM-
CSF (205).

MECHANISMS OF IMMUNOREGULATORY
FUNCTION OF ARGINASE

An obvious question in understanding the role of amino acid-
degrading enzymes in the regulation of the immune response
is why do myeloid cells degrade L-arg Perhaps the best answers
come from studies in mice with targeted deficiency of ARG1
in myeloid cells and the regulation of immune response and
inflammation triggered by infectious microorganisms. ARG1
induced in macrophages during Schistosoma mansoni infection
prevented cachexia, neutrophilia, and endotoxemia during acute
schistosomiasis. Moreover, ARG1+ macrophages promoted
TGF-β production and Foxp3 expression, suppressed antigen-
specific T-cell proliferation, and limited Th17 differentiation.
In mice with deficiency of ARG1 in myeloid cells infection
with Schistosoma mansoni triggered a lethal T-cell-dependent
immunopathology with non-resolving inflammation (209). On
the other side, ARG deficiency in myeloid cells results in
substantially decreased tumor growth (210) and increased
CD8+ T-cells numbers and activity as compared with wild-type
mice (211).

Effects on Effector Functions in T-Cells
Lack of any single essential amino acids restricts T-cells activation
and proliferation and this phenomenon is not specific to L-arg.
Depletion of L-histidine, L-leucine, L-lysine, L-phenylalanine, L-
threonine, and L-valine inhibited the proliferation of T-cells to a
similar extent as L-arg depletion (207). Of importance, however,
only arginases as well as IDO that hydrolyzes L-tryptophan
(212, 213) are substantially increased in cancer.

Role of L-arg in T-Cell Proliferation
One of the hallmarks of ARG activity in the immune system
is impaired T-cell proliferation (Figure 5). Proliferation of both
human and murine T-cells is completely inhibited in L-arg-
free medium after stimulation with anti-CD3- and anti-CD28-
coupled beads or different types of mitogens. A similar inhibition
of the T-cells proliferation is also triggered by ARG-producing
cells, and this effect is restored by L-arg supplementation or
arginase inhibitors (123, 132, 203, 214, 215). It is of note that T-
cells remain viable in L-arg-depleted medium (123) and resume
proliferation as soon as L-arg is added to the culturemedium. The
minimum L-arg concentration in cell culture medium necessary
for one division of murine T-cell was determined to be 23µM
(216). Upon activation, when large amounts of L-arg are needed,
T-cells rely mainly on the extracellular L-arg transport. A potent
increase in the expression of cationic amino acid transporter-1
(CAT-1) is observed in both naïve andmemory CD4+ and CD8+

T-cells after activation (22). Silencing of CAT-1 expression leads
to the inhibition of T-cell proliferation, but not impaired TNF-α,
IFN-γ, IL-2, IL-6 production (22).

Role of L-arg in T-Cell Cytokine Production
Secretion of several cytokines that play a critical role in T-
cell differentiation and effector functions is also diminished
in L-arg-starved cells (Figure 5). Conspicuously, this especially
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FIGURE 5 | L-Arginine depletion by arginase potently inhibits immune response. Lack of L-arg completely inhibits proliferation of T-cells and leads to the decreased

cytokine production. It is caused by downregulation of signal-transducing CD3ζ chain, cell cycle arrest, and affected formation of the immune synapse between T-cells

and APC. Created with BioRender.

refers to the secretion of Th1 cytokines, including IFN-γ and
tumor necrosis factor β (TNF-β) (123, 214, 217), although T-
cells cultured in L-arg-free medium also secrete lower amounts
of IL-5, and IL-10 as compared with T-cells cultured in
complete medium (218). The decrease in IFN-γ secretion is
also induced by ARG+ tumor-infiltrating DCs (203) and ARG
inhibitors administered in vivo increase IFN-γ secretion (219).
On the contrary, the synthesis of IL-2, IL-6, and IL-8 seems
to be unaffected by the absence of L-arg (217), although in
another study PMN-MDSCs were shown to suppress IL-2
production from T-cells and this effect was restored by ARG
inhibitor (220).

Role of L-arg in T-Cell Differentiation
Upon antigen recognition naïve T-cells proliferate and acquire
effector functions that are dependent on multiple additional
signals delivered in the microenvironment of secondary
lymphoid organs. The signals include various cytokines,
growth factors, and surface-associated molecules (including co-
stimulatory and adhesion molecules) (221, 222). Accumulating
evidence indicates that L-arg metabolism plays an important
role in regulating T-cell differentiation. For example, oral
administration of L-arg in a mouse model of breast cancer
increased the levels of T-bet, a transcription factor associated
with Th1 cells (223). Moreover, it increased the frequency of
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CD8+ T-cells, and mRNA levels of granzyme B and IFN-γ in
the tumor (223). High extracellular L-arg increased the survival
of T-cells stimulated with IL-2 after cytokine withdrawal and
favored the formation of central memory T-cells (224). Inhibition
of L-arg transport into the cell decreased T-cell longevity further
confirming the role of L-arg in human T-cells survival (224).

Somewhat enigmatic and to some extent contradictory reports
refer to L-arg metabolism and Treg cells development. In an
interesting study FoxP3+ Tregs were shown to induce ARG1
(as well as other enzymes involved in amino acid metabolism)
in DCs, thereby increasing amino acid consumption in local
microenvironment. This reduced mTOR signaling and favored
development of additional Tregs (207). Inhibition of mTOR
signaling by rapamycin or amino acid depletion was shown to
induce FoxP3, but L-arg deficiency was effective only when TGF-
β was added (207). Moreover, ARG2 was found in Tregs from
normal skin and its expression increased in metastatic melanoma
(225). ARG2 in Tregs was demonstrated to attenuate mTOR
activity and conferred Tregs with enhanced suppressive activity
(225) suggesting that low intracellular L-arg concentrations
may facilitate Tregs development. Consistently, with these
findings, T-cells from mTOR-deficient mice preferentially
become regulatory, but not effector T-cells (226).

However, another study showed that mice fed with L-arg-
deficient diet had modestly reduced number of peripheral
effector Tregs and these cells had reduced expression of ICOS and
CTLA4. L-arg turned out to be essential for sustaining mTORC1
activity, functional programming, and Treg cell-mediated
immunosuppression (227). Moreover, disruption of mTORC1
in FoxP3+ T-cells caused a loss of Treg suppressive activity
in vivo and led to development of systemic immunopathology
in mice indicating that Treg cell responses are critically
dependent on mTORC1 signaling (228). Clearly, the effects of
L-arg metabolism on T-cell differentiation are very complex
and require further studies, especially that still another report
indicated that ARG1 in MDSCs is participating in promotion of
Th17 differentiation (229).

Molecular Mechanisms of
Immunoregulatory Effects Associated With
L-arg Metabolism
The exact molecular mechanisms of L-arg starvation-mediated
immunosuppression still remain to a large extent enigmatic.
Up to now, L-arg starvation was shown to affect T-cell antigen
receptor ζ chain (CD3ζ) expression (230) and phosphorylation of
other signal-transducing proteins (231), and therefore to impair
transduction of activation signal, cell cycle progression (232), as
well as formation of the immune synapse (231) (Figure 5).

Downregulation of the CD3ζ and Impaired Signal

Transduction
The main mechanism by which L-arg starvation inhibits T-
cells proliferation is through downregulation of the CD3ζ
chain (230, 233). CD3ζ is a critical component of the TCR
complex that couples antigen recognition to the intracellular
signaling pathways (234). After T-cells stimulation, TCR

proteins including CD3ζ undergo internalization followed by
re-expression, externalization, or sorting to lysosomes for
degradation (235, 236). A common finding in cancer patients is a
marked decrease in the expression of CD3ζ in T-cells (143, 237).

Many studies reported that L-arg depletion in culture medium
leads to a rapid decrease of CD3ζ levels (132, 230, 238). Of note,
the changes in TCR receptor subunits expression during L-arg
starvation are observed only in stimulated T-cells (218). This
decrease is specific to L-arg-starvation, since lack of glutamine
or leucine (233) as well as glycine or lysine (218) did not
change the levels of CD3ζ. However, a decrease in CD3ζ was
also reported to be caused by hydrogen peroxide secreted from
tumor macrophages (239). The decrease in CD3ζ is completely
reversed by L-arg supplementation in cell medium (230) or ARG
inhibition when co-culture with ARG-producing cells is used
(132). A similar downregulation of CD3ζ and CD3ε levels is
induced by tumor-associated myeloid cells, which express ARG1
(132). This effect is prevented by the addition of ARG inhibitor
(N-hydroxy-nor-L-arg) or L-arg supplementation, but not by
the catalase, a hydrogen peroxide scavenger (132), as suggested
before (239).

How L-arg starvation selectively impairs CD3ζ expression
still remains unclear. L-arg starvation of human T-cells did not
affect the degradation of CD3ζ in proteasome or lysosomes (218).
Therefore, it was suggested that L-arg depletionmay impair CD3ζ
synthesis (218) or the stability of mRNA for CD3ζ (230).

Cell Cycle Arrest
Another defined mechanisms by which L-arg starvation restricts
T-cells activation and proliferation is the regulation of cell
cycle progression (232) via modulation of cyclin D3 mRNA
stability (240). Cyclins, including cyclin D3 (241), are critical
regulators of the cell cycle, immune cells development and
proliferation (242). L-arg starvation arrests human T-cells in
G0-G1 phase (232). The levels of cyclin D3 as well as CDK4
significantly increase after T-cells activation, however, not in
absence of L-arg. Moreover, silencing of cyclin D3 in Jurkat cells
reproduces effects induced by L-arg starvation (232). Cyclin D3
was shown to be regulated by L-arg through transcriptional,
posttranscriptional, and translational mechanisms (232). In the
absence of L-arg human T-cells have decreased phosphorylation
of the retinoblastoma protein (Rb), which is the major substrate
for the cyclin D/cyclin-dependent kinase complex, as well as
decreased levels of E2F-1, which is crucial for the initiation of the
transcription of genes involved in the G2/S transition (232). In
the absence of L-arg there is a global arrest in de novo protein
synthesis. L-arg starvation also affects the expression of HuR,
RNA binding protein, that stabilizes mRNA of cyclin D3 by
the binding to the 3’-untranslated region (UTR) and shuttles its
transport to the cytoplasm. Silencing of HuR exerts similar effect
on T-cells proliferation as L-arg starvation (240).

Changes in the Immune Synapse Between APC and

T-Cells
Proliferation of T-cells after antigen presenting cells (APC)-based
cellular activation is also completely inhibited in the absence
of L-arg (231). The formation of immune synapse between
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T-cell and APC is critical for the activation of effector cell
(243). In L-arg-depleted medium, the formation of the immune
synapse is impaired. T-cells activated in the absence of L-arg
have increased F-actin concentration, which may be caused by
impaired cofilin dephosphorylation (231). Cofilin is a small actin-
remodeling protein that couples T-cell activation via the TCR
and co-stimulatory receptors in the immune synapse (231, 244).
Phosphorylation of ERK1/2 is significantly reduced in L-arg
absence, however, the phosphorylation of AKT is increased to the
higher level compared to the cells activated in L-arg-containing
medium (231). It leads to the impaired dephosphorylation
of cofilin that results in impair immune synapse formation.
Impaired dephosphorylation of cofilin in human T-cells was also
induced by cell-free human pus supernatant, which is known to
contain high arginase activity (123). This effect may be prevented
by arginase inhibitor (231).

L-arg in Metabolic Regulation of T-Cells
Proliferation and differentiation of T-cells can occur only
if sufficient access to metabolites and nutrients is ensured
(245). A recent metabolomic analysis of activated T-cells
revealed that out of 429 measured metabolites only 14
were less abundant in activated T-cells, and L-arg was the
only protein amino acid among them (224). A drop in
intracellular L-arg levels was observed despite induction of
CAT-1 transporters. Interestingly, the intracellular levels of L-
glutamine, which is also intensively metabolized in activated
cells, remained high. Along with CAT-1 induction, T-cell
activation was associated with increased expression of L-
arg metabolism-related enzymes including ARG2, OAT, and
spermidine synthase (SRM). Once entering the cell, L-arg
turned out to be rapidly converted into L-ornithine, agmatine,
and putrescine. Importantly, increasing L-arg concentration in
the culture medium upregulated gluconeogenesis-related genes,
serine biosynthesis pathway, and mitochondrial tricarboxylic
acid cycle, while downregulating glucose transporter and
glycolytic enzymes. These changes promoted mitochondrial
OXPHOS in activated T-cells, while downregulating glycolysis
(224). Global analysis of T-cells proteome changes in response
to high L-arg concentration revealed several proteins that are
responsible for increased T-cells survival. These can be assigned
into four functional groups, including mRNA splicing, DNA
repair mechanisms, regulation of the cytoskeleton and the
ribosome (224).

Oral supplementation of L-arg that increased its serum
concentration over 4-fold allowed more robust induction of
antigen-specific T-cell proliferation in mice. Moreover, T-cells
from ARG2−/− mice, incubated with supplemental L-arg or
treated with ARG inhibitor reveled much better survival after
cytokine withdrawal (224). In a complementary study, CD8+

T-cells from ARG2-deficient mice showed markedly superior
antitumor activity in mice and turned out to respond stronger
to PD-1 blockade as compared with ARG2+ T-cells (246).
Moreover, ARG2-deficient T-cells were characterized by faster
acquisition of effector functions, increased persistence and
enhanced differentiation into memory cells.

Altogether, these studies indicate that ARG2 might be a
metabolic gatekeeper in T-cells. In activated T-cells ARG2
degrades L-arg and generates agmatine and polyamines. In
case of accessible L-arg in the extracellular environment the
intracellular pool of this amino acid can be replenished. However,
at sites, where extracellular L-arg is depleted (by tumor cells or
tumor-infiltrating myeloid cells) the intracellular pool cannot be
restored leading to T-cell suppression (224).

Mechanisms of arginine-starvation sensing in immune cells
are still unclear. It is suggested that mTOR together with
GCN2 kinase regulate amino acid metabolism and response to
arginine starvation (207, 227, 232, 247, 248), however, the exact
mechanism is unknown and requires further investigation.

B Cells and L-arg
The role of L-arg in B-cells functions was much less investigated
and is poorly understood. It was shown that L-arg deficiency
due to high ARG1 activity in F/A-2+/+ transgenic mice, that
overexpress arginase in enterocytes, potently impairs early B
cell maturation with no major impact on T-cells (249). F/A-
2+/+ mice have reduced number of B cells, decreased serum
IgM concentration and hampered B cell maturation in the
early pre-B cell stage (249). L-Arg-free diet fed mice which
have significantly lower concentration of plasma L-arg compared
to L-arg-supplemented diet had also impaired antigen-specific
mucosal immune response against tetanus toxoid (TT). After
oral administration, no TT-specific fecal IgA antibodies were
detected in L-arg-free diet fed mice (250). Both PMN-MDSCs
and M-MDSCs were shown to regulate key B-cell functions,
particularly B-cell proliferation and antibody production. PMN-
MDSC-mediated B-cell suppression turned out to be cell contact
dependent and involved ARG1 (251). A recent study from
the same group indicated that M-MDSCs suppress B-cell
proliferation, and downregulate IgM, HLA-DR, CD80, CD86,
TACI, and CD95 in contact independent, but ARG1 and iNOS-
dependent mechanism (252).

Myeloid Cells and L-arg
The role of L-arg in differentiation of myeloid cells is poorly
investigated. Most of the studies focused on the role of ARG1
produced by myeloid cells rather than the dependence of these
cells on L-arg. Individual results in vitro show no influence of
L-arg on macrophages differentiation, maturation, and effector
functions. In the absence of L-arg, maturation of macrophages
into classically activated macrophages (M1) and alternatively
activated macrophages (M2) was unaffected (253). Moreover,
the production of cytokines by both macrophage subtypes
was unimpaired under L-arg-starvation (253). Likewise, the
expression of iNOS by M1 cells as well as the expression of
ARG by M2 cells turned out to be independent from the L-arg
concentration (253). However, ARG1 expression was essential
for monocytic DC differentiation (254). ARG1 was also recently
shown to be crucial in efferocytic clearance of apoptotic cells by
macrophages (255).

In vivo however, L-arg supplementation was shown
to promote Gr-1+CD11b−F4/80+, but suppressed Gr-
1+CD11b+F4/80+ macrophages in a murine model of breast
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cancer (223). However, these effects might not be caused
directly, but rather result from the effects on T-cells activation.
Another study showed that L-arg starvation promotes tumor
G-MDSC accumulation, which further suppress T-cells anti-
tumor response (158). Similar results were obtained with
PEG-asparaginase administration, suggesting that generally
amino acid starvation results in MDSC accumulation. PEG-
ARG1-induced MDSC accumulation was found to be regulated
by GCN2, since the accumulation of MDSCs in GCN2-
deficient mice treated with PEG-ARG1 was negligible (158).
Importantly, MDSCs isolated from GCN2-deficient mice
had similar immunosuppressive properties as compared with
MDSCs isolated from wild-type mice, which suggests that
GCN2 is involved in the accumulation of MDSC, but not
in their effector functions. Moreover, it was observed that
ARG2-releasing AML blasts as well as ARG2-rich plasma of
patients with AML promotes the differentiation of monocytes
toward M2 macrophages. These effects were diminished by L-arg
supplementation or arginase inhibitors (61).

NK Cells and L-arg
NK cells are less sensitive to low L-arg concentrations as
compared with T-cells however, L-arg starvation affects the main
effector functions of NK cells (196). L-arg starvation decreases
NK cells proliferation and viability, as well as cytotoxic activity
(210, 256). Depletion of L-arg leads to the reduction in the
expression of NKp46 and NKp30 activating receptors, as well
as the NK cell ζ chain expression in the FcγRIIIA, similar to
the CD3ζ chain in T-cells. Moreover, in the absence of L-arg
the production of IFN-γ by NK cells is significantly decreased
(256). Similar effect is exert by arginase from human neutrophils
(196). However, NK cell degranulation and cytotoxicity seems to
be unaffected by L-arg depletion (196).

L-arg Metabolites and Immune Response
L-arg is in the center of many metabolic pathways. Arginase
not only depletes L-arg, but also creates multiple downstream
metabolites including L-ornithine and urea, as well as L-proline,
glutamate, agmatine, putrescine, L-citrulline, and polyamines.

Ornithine
L-arg is degraded by arginase to L-ornithine and urea. While
the concentration of L-arg substantially decreases in cancer,
the concentration of L-ornithine increases (59, 75, 257). High
concentration of L-ornithine in tumor interstitial fluid may
inhibit anti-tumor cytotoxic response of CD8+ T-cells (258, 259),
and together with L-arg depletion, that affects T-cells properties
but not cytotoxicity (214), provide effective tumor evasion of
the immune system. Reversible inhibition of cytotoxicity of T-
cells in the presence of L-ornithine is independent from the type
of stimulation and it seems that it affects early stages of CTL
activation (258). However, L-ornithine did not impair mitogenic
response to the stimulation (258, 259), as well as IL-2 and IL-3
production (258). ODC catalyzes the conversion of L-ornithine
to polyamines.

Polyamines
A diamine putrescine, triamine spermidine, and tetraamine
spermine are ubiquitous L-ornithine metabolites associated
with important cellular processes. Polyamines are essential
for cell growth and proliferation during development, wound
healing, and tissue regeneration. ODC catalyzes the conversion
of L-ornithine into putrescine, which is then metabolized to
spermidine by spermidine synthase and spermine by spermine
synthase (260). At physiological pH polyamines are positively
charged and bind to acidic sites in DNA and RNA, controlling
gene expression (261). Moreover, polyamines have antioxidative
properties, bind to K+ channels, NMDA receptors, and modulate
the activity of various enzymes (261).

Growth promoting functions of polyamines are best described
in tumors. However, it seems that polyamines are also important
in T-cell clonal expansion. It has been suggested that the synthesis
of polyamines in T-cells is under the direction of Myc, as Myc-
deficient T-cells fail to induce ODC and other genes involved in
polyamine synthesis, leading to decreased polyamine production
(262). Spermidine is also a precursor of hypusine, which post-
translationally binds to eukaryotic initiation factor 5a (eIF5a).
Intriguingly, eIF5a, which prevents ribosomal stalling during
translation of certain mRNAs, is one of the most strongly
expressed proteins in activated T-cells (263).

Polyamines were reported to exert anti-inflammatory effects
in macrophages by restraining activation of M1 while promoting
differentiation of M2 subtype. For example, LPS-induced
expression of TNF, IL-1, IL-6, IL-12, iNOS, and CD80 was
suppressed by polyamines (264–266). Polyamines also modulate
immunoregulatory activities of DCs. IDO1 activity in TGF-β-
treated DCs requires ARG-1-dependent spermidine synthesis
that activates Src tyrosine kinase, which participates in IDO1
phosphorylation (267).

ARGINASE INHIBITORS

Expanding knowledge on the biological role of arginases
prompts the idea of therapeutic inhibition of these enzymes.
The interplay between ARG and NOS resulting mainly from
the competition for the common substrate L-arg makes
ARG inhibition an attractive approach in the treatment of
cardiovascular and inflammatory conditions (such as asthma,
diabetes, hypertension, atherosclerosis, coronary artery disease,
heart failure or erectile dysfunctions). Furthermore, inhibition
of immunosuppressive functions of arginases is being explored
in the treatment of cancer. Modulation of L-arg metabolism
is also being explored as a therapeutic strategy in Alzheimer’s
disease (268).

As many pathogenic bacteria (such as Helicobacter,
Mycobacterium, Salmonella), fungi (Candida) and parasites
(Trypanosoma, Leishmania, Schistosoma) express species-specific
isoforms of ARG to facilitate their survival in the host, finding
pathogen-ARG-specific inhibitors emerges as a timely approach
in the antibiotic-resistance era. Interestingly, Leishmania
parasites induce ARG1 expression in infected macrophages to
decrease L-arg availability for iNOS and thus to avoid NO toxicity
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(269). The latter observation further supports the potential use
of ARG inhibitors in the treatment of infectious diseases.

Currently, almost all ARG inhibitors being developed as
drug candidates are competitive inhibitors of both isoenzymes
(ARG1 and ARG2) and in vast majority are L-arg analogs (270).
Finding an isoform-specific ARG inhibitor is challenging as 100%
homology exists in the active site between human ARG1 and
ARG2. As the results of the preclinical, mainly in vitro, testing
of ARG inhibitors have been extensively reviewed elsewhere
(270, 271), here we just briefly summarize the data on in vivo and
clinical activity of selected ARG inhibitors.

So called first generation of ARG inhibitors such as
N-hydroxy-nor-L-arginine (nor-NOHA) (272), (S)-2-amino-6-
boronohexanoic acid (ABH) (273) and (S)-(2-boronoethyl)-L-
cysteine (BEC) (274) are reversible, modest inhibitors of ARG1
and ARG2 enzymatic activity with either poor pharmacokinetic
properties or insufficient penetration through the plasma
membrane. In mouse models nor-NOHA has been shown
to inhibit local tumor growth in B- and T-cells-dependent
manner as well as to reduce metastatic burden (132, 178,
275). Second generation compounds are characterized by
better pharmacokinetic and pharmacodynamic properties. As an
example, so called compound 9 [(R)-2-amino-6-borono-2-(2-
(piperidin-1-yl)ethyl)hexanoic acid] has been recently showed
to decrease the growth of KRAS mutated murine lung tumors
via inhibition of ARG activity in tumor-infiltrating myeloid
cells (117).

Up to date, there are only two ARG inhibitors being tested
in clinical trials. Both drug candidates have been developed by
Calithera Biosciences and are orally available small-molecule
compounds. INCB001158 (CB-1158) is being evaluated in
Phase 2 as a single agent and in combination with immune
checkpoint inhibitors in cancer (both solid tumors and multiple
myeloma), while CB-280 in Phase 1 in cystic fibrosis, exploiting
the novel idea of increasing NO production to improve lung
function. CB-1158 has been shown ex vivo to reverse human
T-cell immunosuppression mediated by ARG1 produced by
neutrophils as well as MDSCs (210). It also exerts immune-
based antitumor effects in syngeneic mouse tumor models in vivo
as a single agent as well as in combination with the immune
checkpoint inhibitors (210). An interesting ARG inhibitor to
watch is OATD-02 (276), a compound being developed by
Oncoarendi Therapeutics. In preclinical models it has been
shown to delay ovarian cancer progression and to revert ARG1-
mediated inhibition of antigen-specific T-cells proliferation and
to restore their CD3ζ levels (64). Moreover, in syngeneic
mouse tumors it potentiated the antitumor efficacy of immune
checkpoint inhibitors (277). The company claims OATD-02
Phase 1 trial in cancer patients to begin in 2020-2021.

Arginase inhibition cannot be replaced, however, by chronic
L-arg supplementation. Dietary intake of L-arg results only
in a transient increase of L-arg plasma concentration (278).
Moreover, if arginases are active in blood or body tissues, it is
very likely that they easily degrade the excessive amounts of this
amino acid.

Global ARG1 inhibition rises significant safety concerns.
ARG1 gene knockout mice die 10–14 days post-birth (39).

Similarly, induction of whole body Arg1 KO in adult “floxed”
Arg1 CreETT2 transgenic mice leads to the animals death in up to
2 weeks post-tamoxifen administration (279). The major cause of
death in Arg1 KO mice is hyperammonemia resulting from the
defect of the liver urea cycle. It is the lack of Arg1 expression
in the liver that is fatal, as hepatocyte-specific knockout
of Arg1 mimics the whole body deficiency of this enzyme
(280). Lack of Arg1 expression leads to altered hepatocytes
morphology, significantly increased plasma L-arg and L-
citrulline concentrations accompanied by decreased plasma L-
ornithine and L-proline concentrations (39). Interestingly, Arg2
knockout mice are viable and do not have a disabling phenotype
apart from high plasma L-arg concentrations and decreased male
fertility. Moreover, Arg2 KO mice have significantly extended
lifespan, indicating some role of this enzyme in aging (41).
Double Arg1 and Arg2 KO mice show the same phenotype
as Arg1-lacking animals. Unexpectedly, in Arg1 KO mouse
embryo no compensatory Arg2 expression was observed (281),
suggesting non-overlapping role of both arginase isoenzymes in
murine embryonal development. In humans, ARG1 deficiency
is a rare autosomal recessive disorder, resulting from over 40
reported mutations in ARG1. In the most severe form ARG1
deficiency results in hyperargininemia, neurological impairment
and eventually fatal episodes of hyperammonemia (282).
ARG1 deficiency is frequently accompanied by a compensatory
increase in ARG2 activity in the kidney, ameliorating metabolic
disturbances (44). The latter observation encourages a still very
challenging attempt to develop ARG1-specific inhibitors.

Animal studies confirmed that there is a safe therapeutic
window for tested ARG inhibitors. In both mice and rats, over
2-months long daily systemic administration of nor-NOHA did
not result in detectable toxicity. It is likely, that due to the
quantitative differences in ARG1 expression between the liver
and other tissues way lower ARG inhibitors concentrations are
needed to exert immunomodulatory and/or vascular effects than
to block the Krebs cycle in hepatocytes (270).

Initial results of the investigational trial of the oral
ARG inhibitor INCB001158 in colon cancer patients proved
acceptable safety profile of this drug candidate. A maximum
tolerated dose was not reached even for the twice daily total
dose of 150mg. Moreover, clinically significant urea cycle
inhibition was not observed. In microsatellite stable (MSS)
colorectal cancer patients involved in this study, 7 and 6%
of partial responses to the INCB001158 and pembrolizumab
(anti-PD1 monoclonal antibody) combination or INCB001158
monotherapy, respectively, were reported. Importantly, objective
pharmacodynamic parameters such as an increase in the
intratumoral CD8+ T-cells as well as dose-related increase in
plasma L-arg were achieved in the treated individuals (283).

To evaluate the clinical efficacy of ARG inhibition in a
comprehensive way we need much more data. Nonetheless,
existing preclinical and initial clinical evidence seems
to support the idea that therapeutic targeting of the
immunomodulatory ARG might serve as a potent addition
to the other immunotherapeutic strategies rather than as an
effective single agent treatment. Moreover, it would be crucial
not only to evaluate proper dosing, timing and treatment
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duration but also to find reliable biomarkers predicting desirable
clinical effects.

Although recent data support the idea that ARG
overexpression correlates with poor prognosis, a number of
studies indicate that arginine depletion may also be beneficial for
subgroups of patients, especially those with inactivation of ASS1
in cancer cells that leads to the dependence on exogenous L-arg
(284). L-Arg deprivation by ADI conjugated with polyethylene
glycol (ADI-PEG) (84, 285) as well as pegylated recombinant
human ARG (rhARG-PEG) (286, 287) were applied to the
treatment of arginine-auxotrophic tumors and showed potent
anticancer effects [reviewed in (288)].

Noteworthy, L-arg-restriction as the regulation of immune
response is not specific to the cancer. It was shown that
Helicobacter pylori by arginase not only produces urea which
can be used to CO2 and NH3 production by urease to support
acid tolerance (289). H. pylori using ARG also depletes L-arg
which leads to the downregulation of CD3ζ and inhibition
of T-cells proliferation during infection (290). T-cells response
is also suppressed via ARG by human embryonic stem cells
(291). ARG also mediates T-cells hyporesponsiveness in human
pregnancy (292), post-stroke immunosuppression (293), as well
as in the control of autoimmunity (294). Moreover, H. pylori
induces ARG2 expression in macrophages contributing to the
immune evasion by limiting production of antimicrobial NO
(48). Crucial role of ARG in the regulation of immune response
by impairing NO production was also described in the model of
cutaneous contact hypersensitivity (295) as well as in immune
response to Leishmania major infections (296). Importantly,
some intracellular pathogens induce expression of ARG1 in
macrophages that hampers effective immune response (137).
A recent study revealed that increased ARG levels may play
a role in fatigue intensification in cancer patients undergoing
external-beam radiation therapy (297)

FINAL REMARKS

ARG expression is substantially elevated in myeloid cells
in cancer and mitigate antitumor response via multiple
mechanisms. Intriguingly, cytotoxic effects of T-cells are
unaffected by a lack of L-arg, despite the fact that CD3ζ and
CD3ε are downregulated and thus TCR signal transduction
should be inhibited. In contrast, T-cell proliferation is strongly
suppressed, but it must be emphasized that T-cells proliferate
extensively in tumor-draining lymph nodes, and not in
the tumor. L-arg concentrations in tumor-draining LN have
not been measured so far. It would also be interesting to
see whether increased ARG activity contributes to fibrotic
processes leading to desmoplastic changes in some types
of tumors, such as pancreatic cancer. Increased activity of
arginases could limit L-arg availability to NOS—could it be
responsible for vascular abnormalities frequently described
in tumorsxx Altogether, increasing evidence indicates that
arginases become potentially important targets for therapeutic
interventions that might improve the efficacy of immunotherapy,
decrease infectious complications and improve quality of life of
cancer patients.
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Myeloid cells are key components of the tumor microenvironment and critical regulators

of disease progression. These innate immune cells are usually short-lived and require

constant replenishment. Emerging evidence indicates that tumors alter the host

hematopoietic system and induce the biased differentiation of myeloid cells to tip the

balance of the systemic immune activities toward tumor-promoting functions. Altered

myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary

organs. In this review, we outline the recent advances in the field of cancer-associated

myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis

in the cancer setting. We discuss the functional specialization, distinct mechanisms, and

clinical relevance of cancer-associated myeloid cell generation from early progenitors in

the spleen and its potential as a novel therapeutic target.

Keywords: cancer, myeloid cell, spleen, hematopoietic stem/progenitor cell, myelopoiesis

INTRODUCTION

Cancer is now viewed as an ecological disease in which interactions between neoplastic,
stromal, and infiltrating immune cells profoundly regulate disease progression. Myeloid cells
are major components of this ecosystem. These cells belong to the innate immune system and
comprise various mononuclear and polymorphonuclear phagocytes and precursors, including
monocytes/macrophages (Mos/Mφs), dendritic cells (DCs), granulocytes, and myeloid-derived
suppressor cells (MDSCs). Over the past two decades, a wealth of studies has revealed the crucial
roles that myeloid cells play in many, if not all, steps of tumor initiation, progression andmetastasis
(1–6). The importance of myeloid cells has been further underlined by identifying the broad
involvement of myeloid cells in regulating treatment responses and has thereby spurred interest
in therapeutically targeting these cells (7–12).

In addition to directly modulating myeloid cells in tumor tissues using small molecules (13–
16), antibodies (17–19), and nanoparticles (20–24), a novel myeloid cell-targeting strategy is
now emerging into the research spotlight. The idea is to limit the tumor-supporting myeloid
cell response at its root by restraining tumor-associated myelopoiesis. Tumor progression often
parallels a coordinated expansion and continuous accumulation of myeloid cells such as tumor-
associated macrophages (TAMs) (11, 25–28), neutrophils (TANs) (5, 15, 29–31), and MDSCs
(3, 32, 33). Considering that cells of the myeloid compartment are generally short-lived, this
growing and fast-turnover pool of tumor-associated myeloid cells needs to be promptly and
constantly regenerated from hematopoietic stem and progenitor cells (HSCs and HPCs, or HSPCs
combined). Therefore, tumors interfere with host hematopoiesis and skew the process toward
the generation of myeloid cells with tumor-promoting properties. The generality and importance
of hematopoietic deviation in cancers are supported by evidence from both human and mouse

33
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studies (34–38). Notably, hematopoietic alteration is not
restricted to the bone marrow (BM), the primary hematopoiesis
site for adults, but has also been observed in multiple
extramedullary organs. However, our knowledge about the
nature and properties of cancer-induced myelopoiesis, in
particular the necessity and advantages of extramedullary
hematopoiesis, is still limited. In this review, we briefly introduce
myelopoiesis in different sites discovered to date in the context
of solid tumors and then focus on the spleen, the major site
of extramedullary myelopoiesis. The expansion of downstream
immature [e.g., MDSCs (2, 39, 40)] or mature myeloid cells
[e.g., TAMs (41)] has been well-summarized in several recent
reviews; thus, here, we focus on the role of early HSPCs in
cancer-associated myelopoiesis.

SITES OF MYELOPOIESIS IN CANCERS

At steady state, HSPCs reside primarily in the BM and
generate cells of the blood and immune systems (42, 43),
with a small subpopulation constantly recirculating between
the BM and blood (44, 45). These peripheral HSPCs survey
extramedullary tissues and respond rapidly to danger signals
to resolve hematopoietic/immunological stress conditions (46).
In recent years, the paradigm that HSPCs divide in response
to peripheral cytopenia has given way to one in which HSPCs
can sense environmental stimuli and pro-inflammatory cytokines
directly and thus can actively serve as a foundation for the
immune response (47, 48). These mechanisms operating in
“emergency”myelopoiesis are hijacked by cancers, which instruct
HSPC activity, at least in part, through the constant and
progressive release of cytokines, chemokines, and metabolites
(49, 50). Here, we summarize the recent discoveries in cancer-
associated myeloid cell generation taking place in the BM and
extramedullary sites.

Bone Marrow
In the BM, the binding of stromal-cell-derived factor-1 (SDF-
1, also known as CXCL12) to its receptor CXCR4 represents
a critical axis in the BM retention and homing of HSPCs
(45, 51–53). Granulocyte colony-stimulating factor (G-CSF) is
known to antagonize this SDF-1/CXCR4 axis, modulate BM
HSPC mobilization, and direct hematopoietic differentiation. A
recent study using a mouse model of breast cancer showed that
tumor-derived G-CSF induces the expansion and differentiation
of HSPCs to skew hematopoiesis toward the myeloid lineage.
Myeloid-biased hematopoiesis results in the systemic expansion
of myeloid suppressors with the distinguishing characteristics
of tumor-induced immunosuppressive neutrophils (36). These
results are consistent with previous findings showing that the BM
CD11b+Gr1+ myeloid cell compartment expands in response
to tumor-derived G-CSF and is functionally altered before these
cells are mobilized into the circulation (54, 55), via the activation
of the retinoic-acid-related orphan receptor (RORC1/RORγ) and
CCAAT/enhancer-binding protein β (C/EBPβ) pathways (56).

In addition, other hematopoietic cytokines, such as
macrophage colony-stimulating factor (M-CSF) (57),

granulocyte/macrophage colony-stimulating factor (GM-
CSF) (58), vascular endothelial growth factor A (VEGF-A)
(59, 60), placental growth factor (PlGF) (59, 61), osteopontin
(62, 63), transforming growth factor-β (TGF-β) (60), and tumor
necrosis factor-α (TNF-α) (60, 64), are known to influence
hematopoiesis and are secreted by a variety of solid cancers to
affect the BM (65). Although the precise effect and mechanisms
are not yet fully elucidated, these cytokines may also impact the
differentiation pattern of HSPCs and regulate tumor-promoting
myeloid cell responses.

Primary Tumor and Pre-metastatic Sites
In the context of cancer, we have found that circulating HSPCs
from patients with various types of solid tumor, including
hepatocellular, breast, cervical, esophageal, gastrointestinal, lung,
and ovarian tumors, exhibit a generalized myeloid bias that
skews toward granulocytic differentiation (35). Whether these
trafficking HSPCs have a preset destination other than returning
to the BM remains unclear. One possible extramedullary site for
HSPC residence and function is the tumor. BM-derived HSPCs
have been observed within the stroma of primary tumors and
are thought to promote tumor progression (59, 62, 63, 66). In
support of these findings, we have found that there is significant
infiltration of CD133-expressing precursor cells with multipotent
colony-formation capabilities in human colon cancer tissues (35,
67). These HSPCs give rise to immature myeloid cells with a
potent immunosuppressive function in a glutamine metabolism-
dependent manner (67). Recent studies have demonstrated
that in addition to homing to the primary tumor, a distinct
subset of HSPCs that express vascular endothelial growth factor
receptor 1 (VEGFR1; also known as Flt1) can home to tumor-
specific pre-metastatic sites. These HSPCs express necessary
adhesion molecules and growth factors and differentiate into
immunosuppressive MDSCs to form a permissive niche for
incoming tumor cells (61, 68, 69).

In contrast to the above findings, there are some reports based
on transplant-treatment models showing that the transfer of BM-
derived HSPCs can enhance adoptive T cell immunotherapy
(ACT) in mouse melanoma (70) and glioma models (71), thus
arguing that HSPCs can play an antitumor role in ACT. Wildes
et al. reported that the combination of ACT and HSPC transfer
could lead to HSPC differentiation into immune-stimulating
DCs in mouse glioma. The treatment began with a sublethal-
or lethal-dose total body irradiation, followed by adoptive
transfer of autologous HSPCs and tumor-reactive T cells. These
T cells released IFN-γ in the brain tumor microenvironment
to augment HSPC differentiation into potent DCs, which in
turn further activated tumor-reactive cytotoxic T lymphocytes
(CTLs) in a positive feedback manner (72). Such treatments,
involving total body irradiation, may raise concerns regarding
the translational value, but these studies did provide hints
of the potential mechanisms by which altering the tumor
microenvironment/hematopoietic niche may reprogram the
typical immunosuppressive myelopoiesis and function of HSPCs.
Thus, current evidence suggests that the existence, biological
nature, and clinical relevance of myelopoiesis in primary
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tumors and pre-metastatic sites are highly heterogeneous
and tumor-dependent.

Spleen
The spleen is now viewed as the prominent site of extramedullary
hematopoiesis (EMH) in cancers. The spleen, which is located
in the abdominal cavity, right beneath the diaphragm and
connected to the stomach, is the largest secondary lymphoid
organ in the body. The spleen plays a crucial role in filtering
antigenic particles and abnormal cells from the blood, destroying
aged erythrocytes, and recycling iron and is an important
organ for the differentiation and activation of T and B
cells and production of antibodies (73–75). In hematology,
the spleen serves as an important reservoir of monocytes
(76, 77), platelets (78, 79), and memory B cells (80). The
spleen is also a significant site of hematopoiesis throughout
vertebrate evolution and during fetal development in humans
(81). Although the contribution of splenic EMH in steady-
state adults seems trivial, a vast spectrum of hematopoietic
stresses, including myelofibrosis (82), anemia (83), pregnancy
(84), infection (85, 86), myeloablation (87), myocardial infarction
(88, 89), diabetes (90), atherosclerosis (91, 92), colitis (93),
and spondyloarthritis (94), can induce profound EMH in the
spleen. Splenic EMH also occurs in the context of cancer. In
addition to reports on the expansion of myeloid precursors in
the spleen (95–97), Cortez-Retamozo et al. found that the spleen
of hosts bearing lung adenocarcinomas accommodates a large
number of HSPCs, including HSCs and granulocyte/macrophage
progenitors (GMPs), that are phenotypically and functionally
analogous to their BM counterparts. These splenic HSPCs give
rise to myeloid descendants, such as monocytes and neutrophils,
that subsequently migrate to the tumor and exert tumor-
promoting functions (34, 98). Consistently, in various mouse
models with transplanted, genetically engineered, or chemically
induced malignancies and in patients with hepatocellular,
gastric, renal, or pancreatic cancers, the spleen accommodates a
profound expansion of early HSPCs and supports myeloid-biased
myelopoiesis, suggesting the generality of splenic myelopoiesis
in various types of solid tumors (37). It is also noteworthy that
cancer-induced EMH does not produce only myeloid cells; in
late-stage cancers, the spleen generates unique erythrocytic cell
populations to further alleviate the disease (99–101).

To evaluate the significance of splenic myelopoiesis in cancers,
two central questions need to be addressed: (1) What is the
relative contribution of splenic myelopoiesis, compared with
that of the BM and other extramedullary tissues, to cancer-
associated myeloid cells? (2) Is splenic myelopoiesis a mere
complement to BM hematopoiesis or does it play a unique role
in generating particular myeloid subsets? To date, the relative
contribution of splenic myelopoiesis is controversial. Current
evidence suggests that this depends on the type of cancer and the
settings of the tumor model. In some experiments, splenectomy
causes a significant decrease in the tumor-infiltrating myeloid
population and restricts tumor growth (34, 102–104), whereas
in other settings, these effects seem marginal (37, 38, 105).
Beyond the comparison of production capacity, we recently
found that although splenectomy does not change the frequency

or distribution of tumor myeloid cells in a hepatoma model,
the abrogation of splenic EMH reduces the expression of
arginase 1 (Arg1) and abolishes the suppressive activity of
tumor CD11b+Ly6G+Ly6Clow granulocytic MDSCs, the major
MDSC subset in that tumor (37). Thus, emerging studies
suggest that splenic myelopoiesis is more than a complement
to BM myelopoiesis and may represent myeloid cell biogenesis
that is functionally and mechanistically different from its BM
counterpart. This mechanism is important for systemic tumor-
promoting myeloid cell responses. Therefore, a systematic
understanding of cancer-induced splenic EMH (myelopoiesis)
is critical for guiding the development of novel therapeutic
strategies targeting myeloid cell responses.

Other Extramedullary Organs
Hematopoiesis can take place in many tissues (106–108).
Although EMH plays a physiological role during fetal
development, its occurrence after birth is typically abnormal,
usually associated with inflammation or hematological diseases
such as myelofibrosis, leukemia, and hemolytic anemia. In
cases of malignant solid tumors, this process seems to rarely
develop in organs other than the spleen. The liver is an
important hematopoietic organ during the fetal stage, but liver
hematopoiesis in solid cancers has only been reported in patients
undergoing liver transplantation (109, 110). Even in the context
of hepatoma, there is no detectable HSPC accumulation in the
non-cancerous livers of mice bearing orthotopic hepatic tumors
or in the tumor stroma of patients with hepatocellular carcinoma
(37). Similarly, a recent study revealed that the lung is a reservoir
for HSPCs and an important site of platelet biogenesis in adults
(111). However, reports on lung hematopoiesis in cancers are
still rare (112).

MECHANISMS REGULATING SPLENIC
MYELOPOIESIS

Splenic EMH is a highly flexible and adaptable response that
differs in scale and output in homeostasis, under physiological
stress conditions, and in various disease states. How splenic
HSPC activity and the EMH niche are shaped to adapt to
the organismal environment is incompletely understood, but
it may involve at least two essential mechanisms: the selective
recruitment of HSPCs and dynamic HSPC-niche interactions
(Figure 1). Below, we discuss the potential mechanisms by
which splenic EMH is induced and regulated in the context
of cancer.

Stromal and Endothelial Cells
The structure and fundamental functions of the spleen have
been thoroughly described in recent reviews (73–75). The
spleen is organized in regions called the red pulp and white
pulp. During EMH, HSCs are found mainly around sinusoids
in the red pulp. Stem cell factor (SCF, also known as kit
ligand) and SDF-1 are key factors in the BM niche of
HSCs (42, 51–53). Based on the similarities between splenic
EMH and normal BM hematopoiesis under physiological stress
conditions such as myeloablation, blood loss, and pregnancy, the
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FIGURE 1 | Mechanisms regulating HSPC activity in the spleen. Schematic representation of the HSPC behavior during splenic myelopoiesis, showing multiple cell

types and factors of various origins that directly or indirectly regulate HSPC activity. The splenic HSPC response is initiated with (1) increased production of

chemokines, such as SDF-1 and CCL2, by endothelial cells and stromal cells around sinusoids. This change of chemokine production might be triggered by systemic

factors that convey organismal stress messages. (2) HSPC survival is supported with the key niche-derived cytokine SCF and HSPCs express CD47 to avoid being

engulfed by splenic macrophages. In addition, HSPCs express VLA-4 and downregulate S1P1 to maintain in the splenic niche. (3) Activated by systemic,

niche-derived, and neural signals, splenic HSPCs upregulate transcription factors including RORC1/RORγ and C/EBPβ to direct myeloid-biased differentiation.

Emerging evidence highlights the roles of the HSPC endogenous cytokines such as GM-CSF, and the transcription factor NF-κB that drives the production of

cytokines in HSPC, as key regulators of HSPC behavior. (4) HSPCs proliferate and differentiate into different myeloid cell populations to respond to the body’s or,

unfortunately, the tumor’s call. AGTE1A, type1A angiotensin II receptor; AngII, angiotensin II; C/EBPβ, CCAAT/enhancer-binding protein β; CCL2, C-C motif

chemokine ligand 2; CCR2, C-C motif chemokine receptor 5; CXCR4, C-X-C motif chemokine receptor 4; NF-κB, nuclear factor kappa-light-chain-enhancer of

activated B cells; RORγ, related orphan receptor γ; S1P1, sphingosine-1-phosphate receptor 1; SCF, stem cell factor; SDF-1, stromal-cell-derived factor-1; SIRPα,

signal regulatory protein α; Tlx1, T-cell leukemia homeobox protein 1; VCAM-1, vascular cell adhesion molecule-1; VLA4, very late antigen-4.

splenic EMH niche components are thought to be analogous
to those in the BM. Indeed, murine splenic stromal cells
(PDGFRβ+TCF21+ and Tlx1+) and endothelial cells have been
found to be the major source of SCF, whereas a fraction
of the non-endothelial SCF-expressing stromal cells are the
source of SDF-1. EMH induction significantly expands the SCF-
expressing endothelial and stromal cell populations to which
most splenic HSPCs are found to be adjacent (113, 114).
However, it should be noted that the structure of the human
spleen is different from that in mice in many aspects (74,
115), and this may also be true regarding the EMH niche
components. For example, SDF-1 expression has been detected
in humans (116) but not mouse (113) splenic endothelial cells.

A detailed depiction of the EMH niche in the human spleen is
still lacking.

Although the splenic EMH niche is poorly understood,
growing evidence indicates that tumor-induced splenic EMH
may not entirely mimic BM EMH. In hepatoma-bearing
mice, SDF-1 expression in the spleen is markedly decreased,
rather than increased, at both the RNA and protein levels.
In contrast, the CCR2 ligand CCL2, mainly expressed by
VE-cadherin+ stromal/endothelial cells, has been found to
profoundly increase as tumor grows (37). CCR2 is expressed
on a subset of the highly active HSPC population in the
circulation. Peripheral CCR2+ HSPCs are armed with pattern
recognition receptors (PRRs) such as TLR4 and TLR2 and
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FIGURE 2 | Crucial relationships for splenic HSPCs in cancer and potential therapeutic targets. Numerous cell types and factors come into play in regulating the

cancer-induced splenic HSPC activity, providing a wide range of potential therapeutic targets. This figure categorizes these interplays into four groups, and highlights

examples of some potential therapies. (A) The complex reciprocal interplay between HSPCs and niche cells. (B) The interaction between HSPCs and splenic

macrophages. Note that macrophages could play dual roles in modulating splenic EMH. (C) The regulation of splenic HSPC response by other splenic

microenvironmental components, e.g., the sympathetic neurons and leukocytes that produce catecholamines. (D) The remote control of splenic myelopoiesis by

tumor and possibly other distant organs such as the bone marrow. ACE, angiotensin-converting enzyme; AngII, angiotensin II; CCL2, C-C motif chemokine ligand 2;

CCR2, C-C chemokine receptor 2; HSPGs, heparan sulfate proteoglycans; IL-6, interleukin-6; M-CSFR, macrophage colony-stimulating factor receptor; S1P1,

sphingosine-1-phosphate receptor 1; SCF, stem cell factor; SIRPα, signal regulatory protein α; Tlx1, T-cell leukemia homeobox protein 1; VCAM-1, vascular cell

adhesion molecule-1; VLA4, very late antigen-4.

preferentially differentiate into reparative myeloid cells, such
as M2 macrophages, representing the most upstream point of
increased local myelopoiesis after aseptic inflammation, liver
injury, and myocardial infarction (117, 118). The CCL2/CCR2
axis is employed to mediate the splenic recruitment of
HSPCs in tumor-bearing mice. A lack of CCR2 expression on
HSPCs reduces splenic myelopoiesis, impairs the suppression
activity of tumor MDSCs, allows an increase in the number
of tumor-infiltrating IFNγ+CD3+CD8+ CTLs, and enhances
immunotherapy efficacy (37, 38). Thus, this selective recruitment

mechanism may in part account for splenic immunosuppressive
myelopoiesis in cancer.

Endogenous HSPC Signals and the
HSPC-Niche Interplay
In addition to niche signaling, it is well-accepted that HSPCs
themselves can secrete a long list of cytokines that modulate their
own function in an autocrine or paracrine manner in response
to stimuli (86). Although the contribution of these endogenous
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signals to the inflammatory response in inflamed tissues remains
doubtful, HSPC-derived pro-inflammatory factors may play a
significant role in the hematopoietic niche.We recently identified
a subset of GM-CSF-expressing HSPCs found exclusively in
the spleens of mice bearing different types of solid tumors but
not in the BM, control mouse spleen, or spleens of mice with
EMH induced by repeated bleeding (37). GM-CSF, as shown in
other studies (93, 94, 119), can direct HSPC proliferation and
myeloid differentiation. More surprisingly, GM-CSF-expressing
splenic HSPCs, but not BM HSPCs, can readily generate
myeloid suppressors independent of the presence of tumors
when transferred into tumor-free mice (37). These findings
represent the tip of a far larger iceberg. It is logical to
assume that under pathological conditions, a considerable
proportion of HSPCs may produce a broad spectrum of
cytokines in the splenic niche to direct splenic EMH. Moreover,
one may infer that these cytokines would also affect the
dynamic niche. If so, the HSPC-niche cell interplay would
be reciprocal. Understanding how the unique combination of
HSPC-derived and niche factors orchestrate HSPC activity to
regulate the output in the spleen of a tumor-bearing host
will certainly advance our understanding of cancer-induced
splenic myelopoiesis.

Macrophages as Double-Edged Swords in
Regulating Splenic EMH
Splenic red pulp macrophages also play an important role
in regulating splenic EMH. On the one hand, macrophages
retain HSPCs in the splenic red pulp by providing adhesion
via vascular cell adhesion molecule-1 (VCAM-1) and may
thus promote splenic EMH. Hindering macrophage maturation
using in vivo RNAi silencing, depleting splenic macrophages,
or silencing VCAM-1 in macrophages releases HSCs from the
spleen and compromises splenic EMH (120). On the other
hand, macrophages can regulate splenic EMH by phagocytosing
redundant HSPCs in the spleen. According to an early study,
the phagocytosis of HSPCs by the numerous active macrophages
present in the cords of the red pulp results in limited
EMH in human spleens (121), suggesting that phagocytosis
is a key mechanism regulating splenic HSPC activity. CD47
is a “don’t eat me” signal that inhibits phagocytosis by
binding to its receptor signal regulatory protein α (SIRPα),
which is expressed on phagocytes. HSPCs upregulate CD47
expression just before and during their migration to the
periphery to avoid inappropriate phagocytosis (122). Thus,
the downregulation of CD47 expression might lead to the
clearance of splenic HSPCs as they age or become dysfunctional.
Therefore, macrophages could play dual roles in modulating
splenic EMH. However, the roles that splenic macrophages
play in regulating cancer-induced splenic EMH during cancer
development and the relationship between these functions are
still largely unknown. Since therapies targeting macrophages
(21, 32, 123) and anti-CD47 treatment (122, 124, 125) are
emerging as novel anti-tumor strategies, a deeper understanding
of these issues may reveal the impact of these treatments on
splenic EMH.

The Nervous System and Neural
Signal-Expressing Cells
Recent studies have revealed an intricate, panicle-shaped
sympathetic architecture in the spleen (126). Most detectable
nerves entering the spleen arise from the nerve plexus
that surrounds branches of the splenic artery and are
catecholaminergic (127). Such sympathetic architecture is
absent in the other classic lymphoid organs, but whether and
how this unique innervation of the spleen contributes to the
distinct EMH remains largely unclear. A recent study showed
that in liver cancer models, blocking β-adrenergic signaling
could prevent the redistribution of splenic myeloid cells and
inhibit tumor growth induced by restraint stress (128). In
addition, immune cells such as macrophages and T cells can
also produce catecholamines (129, 130). Although data from
cancer models are limited, in hyperglycemic conditions, the
spleens of diabetic patients and mice harbor increased numbers
of tyrosine hydroxylase (TH)-expressing leukocytes that produce
catecholamines, and GMPs that are actively proliferating.
These two events are closely linked, as the interaction of
catecholamine and β2 adrenergic receptors expressed on splenic
GMPs mediates GMP proliferation and myeloid cell production.
Moreover, TH+ leukocytes are located close to splenic nerves
and express high levels of neuropeptide Y receptors, suggesting
that these cells are involved in neuroimmune communication
(90). These mechanisms may also exist in cancer-bearing
hosts. Future studies are required to identify the roles of the
nervous system and neural signal-expressing cells in regulating
cancer-induced myelopoiesis.

Signals From Distant Organs
Although it is almost certain that tumors can profoundly affect
splenic myelopoiesis, either directly or indirectly, as the tumor
influences the BM (65), themolecularmechanisms remain largely
undetermined. In the scenario of cancers expressing high levels
of CSFs, these cytokines may be the major cause of HSPC
mobilization, splenomegaly, and vigorous splenic myelopoiesis
(36, 97, 131, 132). In addition to hematopoietic cytokines,
other tumor-derived factors, e.g., peptides and carbohydrates,
can also impact on HSPC behaviors. Cortez-Retamozo et al.
showed angiotensin II (AngII), a peptide hormone that belongs
to the renin-angiotensin system, may also play a significant
role in HSPC retention (98). They found that the expression
of angiotensinogen, the AngII precursor, was upregulated in a
mouse model of lung adenocarcinoma as well as in human lung
cancer stroma. AngII could directly induce HSPC amplification
in the splenic red pulp, suppressing the signaling between
sphingosine-1-phosphate receptor 1 (S1P1) and sphingosine-1-
phosphate and thus sequestrating HSPCs in the spleen. A 3 week
treatment with the angiotensin-converting enzyme inhibitor
enalapril suppressed the expansion of HSPCs in the spleen but
not in the BM and reduced the amplification of monocytes
in the spleen and macrophage accumulation in the lungs (98).
Heparan sulfate proteoglycans (HSPGs) represent another class
of potential factors that tumors may exploit to impact on host
hematopoiesis. These molecules are composed of a core protein
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to which chains of the glycosaminoglycan, heparan sulfate (HS),
are covalently bound. HSPGs are wildly expressed and released
by most types of tumor cells (133) and have known essential
effect on furnishing the myelopoiesis microenvironment (134).
Early studies have implicated that these structures may play an
important role in regulating splenic EMH in tumor conditions
(135, 136), but the exact mechanism remains to be further
explored and validated. Nevertheless, these potential mechanisms
exemplify how the tumor remotely expands the splenic HSPC
response and regulates splenic myelopoiesis.

To date, we have limited information about the mechanism
by which tumors systemically modulate the scale, functional
characteristics, and output of splenic HSPC responses. Several
important questions warrant investigation. For example, do
the systemic factors derived from the tumor qualitatively
and quantitatively affect splenic EMH and myelopoiesis to
the same extent as they impact BM hematopoiesis? In
addition, although splenic EMH is myeloid-biased in early
stages, cancer-induced EMH also generates unique tumor-
promoting cells of the erythrocytic lineage in late-stage
cancers (99–101); what tumor-derived signals through which
mechanism mediates this functional shift of splenic EMH?
A better understanding of these issues is crucial to delineate
cancer-associated myelopoiesis and myeloid cell responses
and pave the way to developing novel strategies for cancer
immunotherapy (Figure 2).

CLINICAL RELEVANCE OF SPLENIC
MYELOPOIESIS IN CANCER

Splenic EMH in Humans
Although the role of splenic EMH in tumor-induced
myelopoiesis and disease progression is increasingly being
appreciated in animal models, it remains largely unknown
whether the same is true in cancer patients. Previous studies
in human subjects suggested that there is very limited
hematopoiesis in the fetal spleen (81, 121) and that adult
spleens from individuals without EMH (exemplified by
increased circulating HSPC numbers) do not contain committed
hematopoietic progenitors (137). Thus, it has been speculated
that the human spleen may not function as an EMH site for
alteredmyelopoiesis. However, this view has been challenged by a
growing body of more recent data. First, a study using functional
identification assays demonstrated that although the frequency
of early colony-forming units (CFUs) in the spleen of healthy
adults was significantly lower than that in the BM, the frequency
of cobblestone area-forming cells in long-term stromal cultures
and the frequency of secondary CFUs in long-term culture-
initiating cells (both assays determine the long-term HSCs) were
comparable in the spleen and BM (138). These results suggest
that the human spleen is an important reservoir of dormant early
HPCs or even HSCs at steady state. Second, the significant role
splenic EMH plays in human pathology is now emerging. The
expansion of splenic HSPCs has been observed in patients with
osteopetrosis (137), myelofibrosis (139), and acute myocardial
infarction (88), supporting the hypothesis that the spleen is the

preferred site for extramedullary “emergent” hematopoiesis in a
wide spectrum of pathological conditions.

We found that in cancer, in addition to the generalized
myeloid bias in the circulating HSPC compartment from various
patients with solid tumors, there is a positive correlation between
the levels of circulating GMPs and clinical stages in patients
with hepatocellular (HCC), cervical and colorectal carcinomas.
Moreover, within a small group of HCC patients, Kaplan-Meier
analysis revealed that the frequency of GMPs was negatively
correlated with the time to progression (35). Accordingly,
elevated proportions of HSPCs in the circulation were also found
in newly diagnosed cancer patients with rhabdomyosarcoma
and breast cancer and correlated with an increased risk for
metastatic relapse (69). These data indicate that there is a
correlation between heightened EMH and the progression of
human cancer. Moreover, the spleen has been reported to be a
site of cancer-related EMH in metastatic carcinomas of different
origins, including lung, breast, prostate, and kidney (140). We
and others have confirmed and extended this observation by
showing the splenic accumulation of HSPCs and myeloid cells in
patients with different types of solid tumor (34, 37). In a cohort
of patients with gastric cancers, the accumulation of HSPCs was
inversely correlated with reduced overall survival after surgery
(34, 37). However, larger-scale studies are required to confirm the
clinical relevance of splenic EMH in cancer and to test the utility
of HSPC number and phenotype in circulation as biomarkers
to predict disease progression and the therapeutic response in
cancer patients.

Impact of Splenectomy on Malignancy
To date, most clinical data regarding the impact of spleen
function on malignancy come from studies on splenectomized
patients. These studies relate to issues in two categories: (1)
whether splenectomy predisposes one to increased or reduced
risk of tumorigenesis and (2) the effect of splenectomy on
tumor growth, progression, and relapse. For the first issue,
epidemiological studies have observed that splenectomy is
followed by increased risk for a large array of solid tumors and
hematological malignancies (141–143). This finding is supported
by a recent population-based cohort study demonstrating that
people with splenectomy have an increased risk of developing
overall cancer, as well as certain site-specific cancers, especially
patients with non-traumatic conditions (144). These results
suggest that the normal spleen plays an immune surveillance role,
protecting against tumor development.

For the second issue, the effect of splenectomy pertaining
to cancer progression has also been studied, but the evidence
remains inconclusive. Studies on concomitant splenectomy in
patients with gastric, colon, liver, and pancreatic cancers have
shown marginal, if any, effects on the disease-free and overall
survival of patients (145). Among these data, it may be of
particular interest to look at the results from liver cancer
because the so-called “liver-spleen axis” in liver disease is now
gaining increasing attention (146–149). Liver transplantation
(LT) has been established as a standard treatment for patients
with HCC who meet the Milan criteria. Splenectomized LT
patients benefit from increased platelet counts, but they suffer
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risks, including increased operation time, intraoperative blood
loss, intraoperative red blood cell transfusion, and postoperative
complications (150). Splenectomy improves patient prognosis
but only in a subgroup of patients with an increased neutrophil-
lymphocyte ratio (NLR) and increased infiltration of CD163+

TAMs in the tumor stroma, both of which are indicative of
enhancedmyelopoiesis (151). However, whether the abolishment
of splenic myelopoiesis is directly involved in the therapeutic
effect of splenectomy and the mechanisms by which splenic
EMH, or lack thereof, may influence cancer progression and
treatment are yet to be elucidated.

TARGETING CANCER-INDUCED SPLENIC
MYELOPOIESIS

One explanation for the modest effect of splenectomy on tumor
progression in both patients and mice is that the spleen is
a multifunctional organ. As noted before, the spleen is an
important organ for blood homeostasis and is a reservoir of
various immune and blood cell populations that have differential
impacts on tumor progression via diverse mechanisms. The
ultimate impact of splenectomy on cancer patients is determined
by the net balance of these known or still unknown factors,
dependent on the individual’s status. Therefore, an enhanced
strategy is to seek a selective treatment modality that specifically
targets protumoral splenic EMH while maintaining the normal
physiological and antitumoral immune functions of the spleen
(Figure 2).

In this context, Ugel et al. evaluated a large panel of
conventional chemotherapeutic agents for their ability to
eliminate splenic committed myeloid precursors. Low-dose 5-
fluorouracil (5-FU) treatment, for example, could reduce the
splenic (but not BM) expansion of committed precursors
with high proliferative potential, restore antitumor immunity,
and enhance the efficacy of ACT, recapitulating the effect of
splenectomy (38). We recently found that a low-dose c-Kit
inhibitor inhibits proliferation, induces apoptosis, and thus
reduces the total number of upstream early HSPCs in the spleen
but has a much smaller effect on those in the BM. Moreover, low-
dose c-Kit inhibitor treatment attenuates endogenous GM-CSF
expression in splenic HSPCs, inhibits the suppressive functions
of tumor PMN-MDSCs, and synergistically increases the efficacy
of immune checkpoint blockade (37). Why splenic HSPCs
and committed myeloid precursors are more sensitive than
their BM counterparts to such treatments is presently unclear.
One possibility might be due to the anatomical structure and
physiological function of the spleen, which often causes drug
retention. Another possibility for the differential effects could
be the distinct cellular characteristics of the BM and splenic
HSPCs in tumor-bearing hosts. If so, a better understanding of
the biological features of splenic HSPCs and myeloid precursors
may provide a molecular basis for the development of novel
therapeutic strategies to selectively target splenic myelopoiesis.

In addition to the regulation of splenic HSPC proliferation
and survival, the specific abrogation of cancer-induced
myelopoiesis could also be achieved by targeting the recruitment

and retention of splenic HSPCs. In this scenario, the CCL2/CCR2
axis is attracting particular interest and plays multiple important
roles in systemic tumor-associated myeloid cell responses.
This axis mediates the migration of BM monocytes into the
bloodstream (152), guides monocytes to the marginal zone of
the spleen (38), and directs the infiltration of monocytes in
the tumor (34, 153, 154). Moreover, as noted before, CCR2
expression identifies an upstream subset of circulating HSPCs
that can respond to splenic CCL2 and home to the splenic niche
(38). Thus, CCR2-specific antagonists may act as multivalent
inhibitors targeting multiple events of cancer-induced myeloid
cell responses. Currently, a number of clinical trials have
been established to investigate the safety and efficacy of CCR2
inhibitors, including CCX872-B, PF-04136309, MLN1202, and
BMS-813160, for the treatment of solid tumors [reviewed in
(155)]. In addition, CD47 and AngII have been revealed as
critical mediators of splenic HSPC retention and expansion.
Blocking these signaling pathways may inhibit tumor-promoting
splenic myelopoiesis, as shown in mouse models (75, 122).
Nevertheless, the translational values of these findings need to
be further investigated in cancer patients to validate whether
the blockade of these signals will be effective and beneficial and,
importantly, whether the therapeutic effects rely on the impact
on altered myelopoiesis in the spleen.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The emerging field of cancer-induced hematopoiesis, EMH in
particular, complements and completes our knowledge of tumor-
associated myeloid responses. The spleen, as the main EMH
site in tumor-bearing hosts, generates significant amounts of
myeloid cells that continuously replenish the large and rapidly
turned over pool but is functionally and mechanistically different
from that in the BM. The understanding of the unique splenic
myelopoiesis opens a new avenue of myeloid cell-targeting
strategies, which pursue the goal of restraining systemic tumor-
promoting myeloid responses at their source.

From the therapeutic perspective, splenic myelopoiesis may
be the “weakest link” in the chain of myeloid cell reactions
because the spleen is a rather pharmacodynamically favorable
organ due to its anatomical structure and the large blood
flow (75). In addition, splenic HSPCs, partially due to their
highly proliferative nature and residence in a less protective
niche, are more vulnerable to targeted drugs than their BM
counterparts and downstream myeloid descendants (37, 38).
Therefore, targeting splenic myelopoiesis holds real potential to
restrain tumor-promoting myeloid cell responses and to tip the
balance toward tumor suppression. A better understanding of the
functional specialization and regulatory mechanism of splenic
myelopoiesis will provide the keys to controlling myeloid cell
responses at the source.

Finally, more human data are needed to demonstrate the
clinical relevance of splenic myelopoiesis in cancer patients.
Studies on cancer-induced splenic myelopoiesis in humans are
hampered by the limited availability of spleen samples, the poorly
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defined phenotypes and functions of the highly heterogeneous
circulating HSPC subsets, and the unclear nature of the
splenic niche constitution. In situ studies using novel multiplex
staining and detection methods, lineage-tracing and imaging
techniques, and informative tools and statistical modeling would
be invaluable for identifying disease-specific splenic myelopoiesis
patterns. Single-cell analyses, such as cytometry by time of
flight (CyTOF) and single-cell RNA sequencing, can help to
reveal the heterogeneity of splenic HSPC populations in different
conditions. Dynamic modeling using in vitro experiments will
be crucial to identify key regulatory pathways and search for
checkpoints that are susceptible to therapy. These advanced
methodologies and experimental models will not only facilitate
human studies but also facilitate the translation of clinical
insights back to improvements in mouse models, which may
produce applicable and precise therapeutics. Such parallel studies
may provide a long sought-after means to reshape the tumor

immune micro- and macroenvironment by rerouting myeloid
cell responses.
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Glioblastoma Myeloid-Derived
Suppressor Cell Subsets Express
Differential Macrophage Migration
Inhibitory Factor Receptor Profiles
That Can Be Targeted to Reduce
Immune Suppression
Tyler J. Alban 1,2, Defne Bayik 1,2, Balint Otvos 1,3, Anja Rabljenovic 1, Lin Leng 4,

Leu Jia-Shiun 5, Gustavo Roversi 1, Adam Lauko 1, Arbaz A. Momin 1,

Alireza M. Mohammadi 6, David M. Peereboom 2,6, Manmeet S. Ahluwalia 2,6,

Kazuko Matsuda 7, Kyuson Yun 5,8, Richard Bucala 4*†, Michael A. Vogelbaum 9*† and

Justin D. Lathia 1,2,6*†

1Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States, 2Case Comprehensive Cancer

Center, Case Western Reserve University, Cleveland, OH, United States, 3Cleveland Clinic, Department of Neurosurgery,

Cleveland Clinic, Cleveland, OH, United States, 4Departments of Medicine, Pathology, and Epidemiology & Public Health,

Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States, 5Department of Neurology, Houston Methodist

Research Institute, Houston, TX, United States, 6 Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland

Clinic, Cleveland, OH, United States, 7Medicinova Inc., La Jolla, CA, United States, 8Department of Neurosurgery, Weill

Cornell Medical College, New York, NY, United States, 9Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL,

United States

The application of tumor immunotherapy to glioblastoma (GBM) is limited by an

unprecedented degree of immune suppression due to factors that include high numbers

of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration

to the bone marrow. We previously identified an increase in immune suppressive

myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor

prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here

we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated

MDSCs and human GBM. We found that the monocytic subset of MDSCs (M-MDSCs)

expressed high levels of the MIF cognate receptor CD74 and was localized in the tumor

microenvironment. In contrast, granulocytic MDSCs (G-MDSCs) expressed high levels of

the MIF non-cognate receptor CXCR2 and showed minimal accumulation in the tumor

microenvironment. Furthermore, targeting M-MDSCs with Ibudilast, a brain penetrant

MIF-CD74 interaction inhibitor, reduced MDSC function and enhanced CD8T cell

activity in the tumor microenvironment. These findings demonstrate the MDSC subsets

differentially express MIF receptors and may be leveraged for specific MDSC targeting.

Keywords: MDSC, glioma, MIF–macrophage migration inhibitory factor, immunetherapy, immunesuppresion
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INTRODUCTION

Glioblastoma (GBM) is the most prevalent primary malignant
brain tumor and remains uniformly fatal despite aggressive
therapies including surgery, radiation, and chemotherapy (1, 2).
With limited treatment options, the success of immunotherapies
in other advanced cancers, including melanoma and non-
small cell lung cancer, has inspired investigation of immune
based therapies in GBM (3–6). However, early clinical trials
of immune checkpoint therapies in GBM have demonstrated
limited response, if any, and despite some evidence of immune
cell accumulation, GBM growth persists (7, 8). One explanation
for these failures could be the potent immunosuppressive
factors present in GBM, including the high tumor content
of myeloid-derived suppressor cell (MDSC) (9–12). MDSCs
are a heterogeneous population of bone marrow-derived cells
consisting ofmonocytic (M-MDSC) and granulocytic (G-MDSC)
subsets that accumulate in the tumor, spleen, and peripheral
blood of GBM patients, where they exert immune suppression by
dampening the function of natural killer (NK) cells and cytotoxic
T lymphocytes (CTLs) (13–18).

Recent work from our laboratory and others identified an
increase in circulating M-MDSCs in the peripheral blood of
GBM patients compared to benign and grade I/II glioma
patients (9, 19). However, this difference was not observed for
other immunosuppressive cell populations, such as macrophages
or T-regulatory cells, which were not different between
patients of different glioma grades. In addition, MDSCs
in the peripheral circulation and infiltrating in the GBM
microenvironment correlated with poor prognosis (9, 19). Based
on these observations in GBM and other cancers, attempts
to target MDSCs using multiple approaches, including low-
dose chemotherapy in a recent GBM trial are in clinical
evaluation (20). Notably, these approaches use non-specific
strategies that attenuate MDSCs, as opposed to targeted
approaches that are MDSC-specific and may have a higher
therapeutic utility.

In seeking to develop MDSC targeted therapies to reduce
immune suppression, we focused our attention on macrophage
migration inhibitory factor (MIF). MIF is highly conserved
in mammals, exhibiting approximately 90% homology across
species, and interestingly can also be found in parasites, plants
and cyanobacteria, possibly indicating its importance in basic
biological functions (21). MIF has also been shown to be
produced by many immune cells including T cells, monocytes,
macrophages, and neutrophils and has been shown to be
expressed in multiple cancers including GBM, lung cancer,
and breast cancer (21–23). In its secreted form, MIF is a
homotrimer and contains an enzymatic pocket at the interface
of two monomers (22). While the enzymatic pocket has been
clearly identified, there is no known natural substrate. There is
tautomerase activity with the substrate p-hydroxyphenylpyruvic
acid, although the Km/kcat is not in a physiologic range
(24, 25). MIF has been associated with multiple inflammatory
pathogeneses including sepsis, asthma, arthritis, inflammatory
bowel disease, malaria, and atherosclerosis (26, 27). Perhaps one
of the best examples of how MIF can alter the immune response
is that of sepsis, where inhibition of MIF has been demonstrated

to inhibit the inflammatory cascade induced by LPS that would
typically result in death (27). These early studies of MIF
also demonstrated that it is crucial for macrophage response
to pathogens, ultimately resulting in its name, macrophage
migration inhibitory factor (28, 29). In relation to GBM patients,
it is important to note that glucocorticoids, such as those used
to treat edema, induce MIF expression and that MIF is highly
expressed by GBM cells (30). Furthermore, MIF expression
is increased with glioma grade, and high levels of MIF in
The Cancer Genome Atlas (TCGA) datasets correlate with a
poor prognosis.

Targeting MIF is of interest due to our previous work where
we observed that MIF derived from GBM cells, specifically
therapeutically resistant cancer stem cells (CSCs), was necessary
for MDSC survival and function (31). Moreover, reducing
MIF levels in GBM cells did not alter their proliferation,
but when transplanted into an immune competent orthotopic
model, resulted in increased host survival and an increase in
the number of CD8T cells in the tumor microenvironment.
MIF has also been shown by other groups to enhance the
immune suppressive capacity of myeloid cells (32, 33); for
instance, MIF downregulation was demonstrated to aid in the
resistance of anti-VEGF therapies (34). In seeking to understand
exactly how MIF effects the immune response in GBM one
must consider that it has been shown to be highly context
specific, exerting both inflammatory and anti-inflammatory
effects depending on the disease and tissue (21, 31, 33, 35–
37). MIF signals through a variety of receptors, including via
its cognate receptor CD74, and by non-cognate interactions
with CXCR2, CXCR4, CXCR7. CD74 is the cell surface form
of the Class II invariant chain, but is expressed independently
of Class II to mediate MIF signal transduction (38–40). MIF
binding to CD74 leads to the recruitment of CD44 as a signaling
co-receptor, leading to downstream Src/MAPK signaling. By
contrast, MIF signaling through CXCR2 primarily through
PI3K/Akt-dependent signaling with Ca transients (41). The
pharmacologic targeting of MIF has also been of great interest
in a variety of inflammatory conditions including multiple
sclerosis, systemic lupus erythrematosus, rheumatoid arthritis,
inflammatory bowel disease, and other inflammatory disorders
(32, 42–49). Additionally, clinically approved MIF inhibitors
have been developed that could potentially be repurposed
for GBM (42). To gain a more mechanistic understanding
into the MIF signaling axis in MDSCs for potential targeting
in GBM, we examined the expression and function of
MIF receptors in MDSCs derived from mouse and human
GBMmodels.

METHODS

Co-culture Assay
Co-culture induction of MDSCs was adapted from previously
described work in melanoma (33). At day zero bone marrow
(BM) was freshly isolated from the tibias and femurs of male
000664-C57BL/6J. To obtain BM derived MDSCs, the freshly
isolated BM was incubated for 3 days in a medium consisting of
50% conditioned medium from a 24 h GL261 (glioma) cell line
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culture and fresh RPMImediumwith 10% FBS. Additionally, this
medium was supplemented with GM-CSF (40 ng/mL, Biolegend
Catalog # 575906), and IL-13 (80 ng/mL, Biolegend Catalog #
576306), which have been shown to increase MDSC expansion
and activity. BM was cultured in this medium in 6 well plates at
a density of 2,000,000 cells per well as previously described and
utilized for analysis on day 3 post initiation (33).

Flow Cytometry of Co-culture
At day 3 of the co-culture cells were extracted from the
wells using gentle washing with RPMI medium, blocked
in FcReceptor block (Miltenyi Biotec 130-092-575) and
then stained live on ice. Samples were then fixed using
eBioscience fixation buffer before analysis. Gating for MDSCs
was performed using FlowJOV10, andM-MDSCswere identified
by (Singlets/Live/CD45+/CD11b+/CD68-/IAIE-/Ly6G-/LyC+)
and G-MDSCs by (Singlets/Live/CD45+/CD11b+/CD68-/IAIE-
/Ly6C-/Ly6G+). Antibodies were obtained from Biolegend (San
Diego, CA) for analysis of mouse immune profile Fluorophore-
conjugated anti-Ly6C (Clone HK1.4, Catalog # 128024),
anti-Ly6G (Clone A8, Catalog # 127618), anti-CD11b (Clone
M1/70, Catalog # 101212), anti-CD68 (Clone FA-11, Catalog #
137024), anti-I-A/I-E (Clone M5/114.15.2, Catalog # 107606),
anti-CD11c (Clone N418, Catalog # 117330), anti-Ki-67 (Clone
16A8, Catalog # 652404), anti-CD45 (Clone 30-F11, Catalog
# 103132), anti-CD74 (Clone IN-1 Catalog # 740385), anti-
P2Ry12 (Clone S16007D, Catalog # 848004), anti-CXCR2 (Clone
SA044G4, Catalog # 149313), anti-CXCR4 (Clone L276F12,
Catalog # 146506), anti-CXCR7 (Clone 8F11-M16, Catalog #
331115), anti-CD44 (Clone IM7, Catalog # 103039). Antibody
compensation was performed using AbC Total Antibody
Compensation Bead Kit (Catalog # A10497).

Flow Cytometry Patient Tumor Samples
Flow cytometry data was utilized from Peereboom et al.
(20). Tumor tissue was received from recurrent GBM patients
undergoing treatment in clinical trial NCT02669173. Tissue
was digested in collagenase IV (STEMCELL Technologies) for
1 h at 37 degrees Celsius and then mechanical dissociated via
40-uM filter. Dissociated tumors were then washed in RPMI
medium before being viably frozen for flow cytometry analysis.
MDSC panel consisted of CD11b (Catalog # CD11b29), HLA-
DR (Catalog # 559866), CD14 (Catalog # 560180), CD15
(Catalog # 555400), CD33 (Catalog # 555450), CXCR2 (Catalog
# 551126), CD74 (Catalog # 555538 with Lightning-Link PE-
Cy7 Catalog # 762-9902). Staining and analysis were performed
using standard protocols previously described, with MDSCs
marked by CD11b+, CD33+, and HLA-DR–/lo and then further
subdivided into granulocytic MDSCs (CD15+) and monocytic
MDSCs (CD14+) (9, 20, 50). After gating for MDSC populations
the MFI of CXCR2 and CD74 was analyzed using FlowJo V10 for
each sample.

T Cell Suppression Assay
At day 3 post MDSC co-culture, T cell suppression was assessed.
Splenocytes were freshly isolated from male 000664-C57BL/6J
mice using sterile techniques. Post isolation the red blood cells

were lysed using RBC lysis buffer (Biolegend Catalog # 420301)
before being magnetically sorted using the (Pan T cell isolation
kit Catalog # 130-095-130, Miltenyi Biotec). Isolated T cells were
then stained using CFSE Cell Division Tracker Kit (Biolegend
Catalog # 23801). CFSE stained T cells were then collected and
distributed into round bottom 96 well plates at 100,000 cells
per well in IL-2(30 IU) as unstimulated control. Stimulated
controls additionally contained CD3/CD28 mAb-coated beads
(ThermoFisher Scientific) at a ratio of 3:1. T-cell activation was
measured by flow cytometry with the controls consisting of CFSE
labeled T cells alone and CFSE labeled T cells with beads. Co-
culture derived MDSCs, isolated by magnetic sorting (MACS
MiltenyiMDSC isolation kit Catalog # 130-094-538), were seeded
with T cells at a concentration of 1:2 (1MDSC for every 2 T cells).

Quantitative PCR
Quantitative PCR was performed for MDSC markers and
immune suppressive genes

Arg1 (Forward: AAGAATGGAAGAGTCAGTGTGG,
Reverse: GGGAGTGTTGATGTCAGTGTG) ,

iNOS (Forward: TGTGCTTTGATGGAGATGAGG,
Reverse: CAAAGTTGTCTCTGAGGTCTGG),

Ly6G (Forward:TTGTATTGGGGTCCCACCTG,
Reverse: CCAGAGCAACGCAAAATCCA),

CXCR2 (Forward: TCTTCCAGTTCAACCAGCC,
Reverse: ATCCACCTTGAATTCTCCCATC),

CD74 (Forward: ATGGCGTGAACTGGAAGATC,
Reverse: CAGGGATGTGGCTGACTTC),

MCP-1 (Forward: GTCCCTGTCATGCTTCTGG,
Reverse: GCTCTCCAGCCTACTCATTG).

RNA was isolated using Qiagen RNeasy Mini Kit and cDNA
was generated using aScript cDNA SuperMix (Quantabio). After
cDNA generation qPCR was performed using the Fast SYBRTM

Green Master Mix (ThermoFisher Scientific).

GBM-Seq Database Mining
Darmanis et al. data was utilized in this analysis where
normalized count data was acquired from http://www.gbmseq.
org/ (51). Subsequently, CD74 and otherMIF receptor expression
levels were graphed for the myeloid populations and other
immune populations as characterized by Darmanis et al. in their
supplemental data. All populations’ names were kept the same as
previously published and identified.

MIF Inhibitor Screen
The co-culture system was utilized to screen inhibitors of MIF
andMIF/CD74 interaction by dosing inhibitors at day zero when
the co-culture was initiated and then reading out % MDSCS of
live cells by flow cytometry. The same gating strategy as in the
co-culture methods section was used to determine if the MDSC
population was shifting. Screens were performed in biological
replicates of 3 on two separate experiments for a total of 6
biological replicates. The studied MIF inhibitors were anti-MIF
mAb (IIID.9), 4-IPP (Tocris Catalog # 3429) (52), Ibudilast (gift
of Medicinova) (53–55), ISO-1 (Tocris Catalog # 4288) (52),
MIF098 (56–58), AV1013(gift of Medicinova) (55), and the PDE4
inhibitor was Rolipram (Tocris Catalog # 0905).
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FIGURE 1 | Glioma educated MDSCS can be generated in vitro. MDSCs are induced using freshly isolated bone marrow cultured with 50:50 mix of fresh media and

conditioned media from a 24-h culture of GL261 cells with the addition of IL-13 and GM-CSF over 3 days (A). M-MDSCs were gated by

Live/CD45+/CD11b+/CD68−/MHC−/Ly6C+/Ly6G− while G-MDSCs were gated by Live/CD45+/CD11b+/CD68−/MHC−/Ly6C+/Ly6G+. Co-cultured MDSCs

from n = 6 mice were generated over 3 days and then isolated by magnetic bead sorting and subsequently used for T cell suppression assay where the controls were

T cells alone unstimulated without CD3/CD28 activation beads and T cells with CD3/CD28 activation beads (B). FACs sorting of M-MDSCs and G-MDSCs from 3 day

old co-cultures of n = 3 mice was used to isolate RNA and perform qPCR for Arginase (Arg1), Nitric oxide synthase (iNOS), and Ly6G (C). Two-Tailed T-Test was

performed for comparisons in (B,C) *<0.05, **<0.01, ***<0.001.

In vivo Syngeneic Glioma Model
Ibudilast treatment was assessed in two cohorts using the
syngeneic mouse model of glioma GL261 acquired from the NCI.
Six-week-old aged-matched male 000664-C57BL/6J mice were
anesthetized using isoflurane and then intracranially injected in
the left cerebral hemisphere with 20,000 GL261 cells in 5 µl
of RPMI medium using a stereotactic frame. This model has
been established in the laboratory with neurological symptoms
as an indicating endpoint and a median survival time of ∼20
days (31). Ibudilast treatment was via intraperitoneal injection
of 50 mg/kg 2x weekly starting day 5 post tumor implantation.
Ibudilast was suspended in a mixture of 50 µl PEG400 and 50
µl PBS for 100 µl injections as previously reported (54). Flow
cytometry was performed on mechanically dissociated tumors
isolated from the left hemisphere from sacrificed animals at

day 18 post implantation, and a terminal cardiac bleed was
analyzed for MDSC and T cell levels using the myeloid panel:
live/deadUV, CD45, CD11b, CD11C, IA/E, CD74, Ly6G, Ly6C,
CD68, and the lymphoid panel: live/deadUV, CD45, CD3, CD4,
CD8, LPD1, NK1.1, CD107a. Antibodies were obtained from
Biolegend (San Diego, CA) for analysis of mouse immune profile
Fluorophore-conjugated anti-Ly6C (Clone HK1.4, Catalog #
128024), anti-Ly6G (Clone A8, Catalog # 127618), anti-CD11b
(Clone M1/70, Catalog # 101212), anti-CD68 (Clone FA-11,
Catalog # 137024), anti-I-A/I-E (Clone M5/114.15.2, Catalog #
107606), anti-CD11c (Clone N418, Catalog # 117330), anti-CD3
(Clone 145-2C11, Catalog # 100330), anti-CD4 (Clone GK1.5,
Catalog # 100422), anti-CD8 (Clone 53-6.7, Catalog # 100712),
anti-NK1.1 (Clone PK136, Catalog # 108741), anti-CD45 (Clone
30-F11, Catalog # 103132). An initial study included 10 vehicles
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FIGURE 2 | Murine M-MDSCs express the MIF receptor CD74. n = 10 mice were intracranially injected with the syngeneic mouse glioma cell line GL261 at day 0 and

then at Day 18 post injection the tumor bearing and non-tumor bearing hemispheres were resected, dissociated, and analyzed by flow cytometry (A). M-MDSCs

Live/CD45+/CD11b+/CD68−/P2Ry12− /MHC−/Ly6C+/Ly6G−, and G-MDSCs Live/CD45+/CD11b+/CD68−/P2Ry12− /MHC−/Ly6C+/Ly6G+. n = 3 mice

were used for co-culture induction of MDSCs and at day 3 M-MDSCs and G-MDSCs were analyzed for the MIF receptors CD74, CD44, CXCR2 CXCR4, and CXCR7

by flow cytometry and gated for the % positive in each group (B, C). FACs sorting of G-MDSCs and M-MDSCs from co-cultures of n = 3 mice were performed and

then RNA isolated for qPCR analysis of the expression of MIF receptors (CXCR2, and CD74) as well as MCP-1, the CD74 downstream activation product (D). CD74

expression was assessed by flow cytometry using flow cytometry staining of co-cultures where the histogram demonstrates the expression level of CD74 on

M-MDSCs compared to G-MDSCs (E). Quantification of n = 3 co-culture derived M-MDSCs and G-MDSCs CD74 Mean Fluorescence intensity shows higher levels of

CD74 on M-MDSCs (F). Intracellular staining post permiablization of the same cohort of M-MDSCs and G-MDSs from (F) shows that CD74 levels were not

significantly different when staining internally (G). In vivo, the tumor bearing mice that were evaluated for MDSC levels in (A) were also evaluated for CD74 expression

on the surface of M-MDSCS, G-MDSCS and Microglia (H). Two-Tailed T-Test was performed for comparisons in (A, D, F, G, H). *<0.05, **<0.01, ***<0.001.

and 10 Ibudilast treated animals, but at day 18, the 2 vehicle
treated animals demonstrated neurological symptoms and were
euthanized prior to analysis time-point. Additionally, tumor

could not be identified visually at day 18 in 3 ibudilast treated
mice and 2 vehicle treated mice, so their matched non-tumor
bearing tissue was not included in analysis.
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FIGURE 3 | Human derived M-MDSCs express the MIF receptor CD74. Data mining of the GBM-seq database from Darmanis et al. (51), was used to analyze the

myeloid cell expression of the MIF receptors CD74, CXCR2, CXCR4, CXCR7 and CD44 showing that CD74 expressed by the myeloid populations in GBM tumor

(Continued)
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FIGURE 3 | single cell sequencing (A). Further analysis was performed separating the single cell populations into the previously published cell identities (B). Using a

previously published cohort of GBM patient tumors (20) n = 8 GBM patients the MIF receptors CD74 and CXCR2 were assessed on M-MDSCs and G-MDSCs

(M-MDSCs: CD11b+/HLA− DR−/CD33+/CD14+/CD15−, G-MDSCs: CD11b+/HLA− DR−/CD33+/CD14−/CD15+) (C,D). TCGA data analysis of GBMLGG

cohort identified MIF expression and CD74 expression levels correlating with survival with a similar hazard ratio (HR) (E,F). When a signature for both MIF and CD74 is

created where samples that were above the median for both MIF and CD74 expression compared to those below the median for both MIF and CD74 further

separates survival (F,G). Two-Tailed T-Test was performed for comparisons in (A,C,D) *<0.05, **<0.01, ***<0.001. Survival curve analysis was performed in GraphPad

Prism using Log-rank (Mantel-Cox) test for p-value and hazard ratio log rank was computed on the same data using GraphPad Prism.

Nanostring Analysis
RNA was isolated using RNeasy mini kit (Qiagen) and then
the nCounter R© Mouse Myeloid Innate Immunity Panel v2
was used to analyze the RNA expression of tumors isolated
from 6 endpoint vehicle tumors and 6 endpoint Ibudilast
treated animals.

Immunohistochemically Analysis
At endpoint, vehicle and ibudilast treated animals were perfused
with 4%PFA before removing the brain and fixing in PFA
overnight at 4◦C. Post Fixed brains were cryopreserved in sucrose
and embedded in O.C.T compound (Fisher Healthcare) to make
frozen sections (10µm thick). Endogenous peroxide activity
was quenched by 3% H2O2 incubation and blocked in 5%
normal goat serum/0.2%Triton in PBS for 30min before primary
antibodies were added. Phospho-Histone3 (1:500, catalog #
06-570, MillopreSigma) and Ki67 (1:1,000, catalog # ab15580,
Abcam) antibodies were allowed to bind overnight at 4◦C. After
rinsing with 1xPBS, biotinylated secondary antibodies (1:500,
Invitrogen) were added and incubated at RT for 1 h. Signal
was amplified using avidin-biotin complex staining (30min)
before DAB substrate was used to visualize the signal (Vector
Laboratories). Hematoxylin was used for counterstain. After
washing in PBS, the slides were dehydrated through alcohol series
and mounted with Permount (Fisher Chemical).

MCP-1 ELISA
R&D systems Mouse CCL2/MCP-1 DuoSet ELISA catalog#
DY479 was used to analyze MCP-1 in vitro from conditioned
media isolated at day 4 post treatment at varying doses 0–10µM
and in vivo from serum of n = 3 vehicle and n = 3 Ibudilast
treated mice at day 18 post tumor implantation following the
timeline for Ibudilast treatment described in the in vivo syngeneic
glioma model section.

Statistical Analysis
Graph-Pad Prism was utilized for statistical analysis of survival
curves for log-rank tests and also for T-tests throughout the
manuscript. ∗ <0.05, ∗∗ <0.01, ∗∗∗ <0.001. Nanostring statistics
were performed within nSolver software supplied by Nanostring
and the advanced analyzer V 4.0.

RESULTS

Development of MDSC Co-culture to Study
the MIF Signaling Axis
While MDSCs have been linked to GBM prognosis and
progression, technical hurdles including the inability for their

long-term expansion have been a challenge for mechanistic
insight and functional assessment (9, 19, 59). Our group
previously identified that MIF is secreted by GBM CSCs
and driving MDSCs, however the mechanism by which MIF
increased MDSC function remains unclear (31, 32). Initially
we sought to determine if the survival extension we previously
observed with MIF knockdown GBM cells was solely due to
an immunologic event. We performed the same studies in
immune compromised NSG mice and found that there was no
survival benefit when the adaptive immune response was absent
(Supplemental Figures 1A,B). Furthermore, when MIF was
depleted using an established neutralizing anti-MIF antibody
5-days post tumor implantation there was no survival benefit
(Supplemental Figure 1C). These findings confirm our previous
observations that MIF likely acts on the immune system, as
opposed to acting on GBM cells in an autocrine manner. To
further understand how GBM-derived MDSCs function, we
adapted a co-culture system previously developed in a melanoma
model (Figure 1A) (33). The co-culture utilizes freshly-isolated
bone marrow combined culture in 50% conditioned media from
a 24-hour culture of the mouse glioma cell line GL261 and
supplemented with GM-CSF and IL-13 to generate M-MDSCs
and G-MDSCs over a 3-day period. Day 3 was chosen for
MDSC generation assays based on a flow cytometry longitudinal
study of the culture showing a steep decline in viable CD45+
cells after day 4 (Supplemental Figure 1D). At day 3 of co-
culture, the numbers of M- and G-MDSCs were determined
by flow cytometry analysis where M-MDSCs were gated by
Singlets/Live/CD45+/CD11b+/CD68−/IAIE−/Ly6G−/Ly6C+

and G-MDSCs by Singlets/Live/CD45+/CD11b+/CD68-
/IAIE−/Ly6C−/Ly6G+. Furthermore, co-culture generated
MDSC function was determined by T cell suppression assay.
In this assay, CFSE labeled T cells which were activated by
CD3/CD28 mAb coated beads, were suppressed by MDSCs
at a ratio of 1 MDSC to 2 T cells (Figure 1B). Furthermore,
FACs sorted M-MDSCs and G-MDSCs were analyzed by QPCR
for Arginase-1, iNOS, and Ly6G to validate the subsets, and
G-MDSCs were observed to have increased Ly6G and iNOS,
while M-MDSCs highly expressed Arginase-1 (Figure 1C).
These data validate a model system for generating functional
GBM-educated MDSCs as a platform for functional assessment
and inhibitor studies.

In vivo and in vitro Analysis Demonstrate
M-MDSCs With Surface Expression of the
MIF Receptor CD74
In order to determine the MDSC subset driving immune
suppression GBM, we used a syngeneic model of glioma GL261,
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FIGURE 4 | Ibudilast inhibits the MIF disrupting M-MDSC generation in vitro. Utilizing the co-culture system described in Figure 1 MIF inhibitors were assessed for

their ability to inhibit MDSC generation (A). Inhibitors were added at 200µM at day 0 during the co-culture initiation and then assessed at day 3 for the % of

(Continued)
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FIGURE 4 | M-MDSCs of CD45+ cells (A) n = 6 mice from n = 2 separate experiments. As a control for Ibudilast off target effects on phosphodiesterase Ibudilast

was directly compared to Rolipram at 100 and 200µM doses n = 6 control and Ibudilast treated co-cultures from n = 6 mice and n = 3 Rolipram treated co-cultures

(B). n = 3 mice per co-culture were used and ibudilast evaluated at 10, 20, 50, 100, and 200µM and then assessed by flow cytometry at day 3 (C). To determine if

ibudilast was killing the M-MDSCs or G-MDSCs we isolated M-MDSCs and G-MDSCs from untreated co-cultures at day 3 from n = 3 mice by FACs sorting and then

treated them for 24 h with Ibudilast as an IC50 using celltiterglo as a readout for viability (D). Flow cytometry Ki67 staining of M-MDSCs at day 4 post treatment from

co-culture generation in n = 6 biological replicates (E). Shows The function of MDSCs treated with ibudilast was assessed by generating MDSCs in the presence of

ibudilast and then magnetically sorting for MDSCs comparing untreated and Ibudilast treated MDSCs (F). To assess the disruption of the MIF/CD74 signaling

mechanism M-MDSCs and G-MDSCs were FACs sorted from day 3 co-cultures and then subsequently 50 ng/ml MIF was added to each well containing 500,000

cells and then treated with Ibudilast at 200µM for 24 h prior to lysing the cells and performing western blot analysis for pERK and total ERK (G). MCP-1 ELISA was

performed on conditioned media from Co-cultures at day 4 post initiation, treated with Ibudilast ranging from 0 to 10µM, n = 3 biological replicates. (H)

Representative MCP-1 levels, y-axis normalized to mode and graphed in FlowJo using histogram plot comparing vehicle and Ibudilast treated M-MDSCs from

co-cultures treated with 200µM Ibudilast at day 4. (I) Quantification of n = 6 replicates from the experiment performed in (H), briefly, live M-MDSCs and G-MDSCs

were gated and then the mean fluorescent intensity of internally stained MCP-1 was measured and graphed for each replicate. T between Two-Tailed T-Test was

performed for comparisons in (A,B,D,E,H,J) *<0.05, **<0.01, ***<0.001.

whichwas intracranially implanted to generate syngeneic tumors.
At day 18 post implantation the tumor bearing (left) and
non-tumor bearing (right) hemispheres were removed and
analyzed by flow cytometry for MDSC subpopulations using
the same gating strategy as in the co-culture system with the
addition of pP2RY12 to exclude microglia. Analysis identified
higher levels of M-MDSCs in the tumor bearing and non-
tumor bearing hemispheres of the brain compared to G-MDSCs
(Figure 2A). In order to determine the MIF receptor profiles,
flow cytometry of the MIF receptors CD74, CXCR2, CXCR4,
and CXCR7 was performed 3-days post co-culture initiation
(Figures 2B,C). The percent positive for each receptor was
analyzed by flow cytometry, which identifiedM-MDSC as having
high expression of CD74 and its co-receptor CD44, while
G-MDSCS primarily expressed CXCR2 (Figures 2B,C). FACs
sorted M-MDSCs and G-MDSCS from co-cultures confirmed
these findings, showing CXCR2 expression in G-MDSCs, and
CD74 with the downstream effector MCP-1 as being highly
expressed, suggesting activation through MIF/CD74 signaling
axis (Figure 2D) (60). Furthermore, the analysis of M-MDSCs by
flow cytometry showed high levels of CD74 expression compared
to G-MDSCs (Figure 2E), and when quantified significantly
higher than in G-MDSCs (Figure 2F). Interestingly, when
MDSCs were permeabilized and stained for intracellular CD74
there was no difference between G- and M-MDSCs in the
intracellular amounts of CD74 (Figure 2G). In vivo analysis of
M-MDSCs in the tumor microenvironment using the syngeneic
glioma model further supports these findings by showing the
mean fluorescence intensity (MFI) of CD74 as higher on M-
MDSCs compared to G-MDSCs or microglia of the tumor
bearing hemisphere (Figure 2H). Taken together, these data
demonstrate differential MIF receptor expression in MDSC
subsets in mouse models.

GBM Patient Derived Specimens Show the
MIF Receptor CD74 Expressed on MDSCs
and Associate With Poor Prognosis
To determine if the findings in the mouse glioma model are
recapitulated in the tumor microenvironment of human GBM
patients, we utilized bioinformatics analysis of previously
published single-cell sequencing datasets and flow cytometry

analysis of GBM tumor specimens. The GBMseq dataset
provides single cell sequencing of 3,589 cells from a cohort
of 4 GBM patients annotated for their population names
(51). Utilizing this dataset, we isolated the log2 counts for
the myeloid populations identified and looked at the MIF
receptor expression of CXCR2, CXCR4, CXCR7, CD74, and
CD44 (Figure 3A) (40). Statistical analysis revealed that
CD74 was most highly expressed in the myeloid populations.
Furthermore, using the annotated populations, the level of
CD74 expression was compared across all populations in the
GBMseq dataset, which revealed highest levels on the myeloid
cells (Figure 3B). To validate these findings, a separate cohort
of 8 GBM tumors were analyzed by flow cytometry using a
human panel previously validated, where M-MDSCs were
identified by the following gating strategy singlets/live/HLA-
DR−/CD33+/CD11b+/CD14+/CD15− and G-MDSCs by
singlets/live/HLA-DR −/CD33+/CD11b+/CD14−/CD15+.
The expression of CD74 and CXCR2 were analyzed on each
subpopulation by MFI, where CD74 was shown to be more
highly expressed on M-MDSCs, while CXCR2 was more
highly expressed on G-MDSCs (Figures 3C,D). Based on these
findings, we tested the hypothesis that MIF and CD74 are
signaling together and driving GBM immune suppression. We
analyzed the cancer genome atlas (TCGA) GBMLGG database
for survival and MIF expression and CD74 expression and the
combination (Figures 3E–G). These data demonstrate that MIF
and CD74 expression individually predict a poor prognosis, but
when combined into MIF and CD74 double high as defined
by greater than median expression of MIF and CD74, then
the prognosis becomes poorer as demonstrated by hazard
ratios MIF alone HR: 1.51, CD74 alone HR: 1.69, MIF/CD74
HR:2.45 (Figure 3G). These data demonstrate that human GBM
specimens’ express the MIF receptor CD74 on M-MDSCs in the
tumor microenvironment and align with the murine models
used in these studies.

MIF Inhibitor Screening Identified the
MIF/CD74 Interaction Inhibitor Ibudilast
In order to identify a potential targeted therapy that acts
on the MIF/CD74 signaling axis and neutralizes M-MDSCs,
we utilized the in vitro co-culture system to generate glioma
educated MDSCS in the presence of different small molecule

Frontiers in Immunology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 119154

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alban et al. M-MDSCs Signal Through MIF/CD74

FIGURE 5 | Ibudilast inhibits the MIF disrupting M-MDSC generation in vitro. n = 6 vehicle and n = 6 Ibudilast treated mice (50 mg/kg 2x weekly starting day 5 post

tumor implantation) were sacrificed at endpoint and tumors were dissected from the brain for RNA isolation. RNA from isolated tumors of vehicle and ibudilast treated

(Continued)

Frontiers in Immunology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 119155

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alban et al. M-MDSCs Signal Through MIF/CD74

FIGURE 5 | mice was analyzed via Nanostring murine myeloid panel and PCA was performed showing separation of ibudilast vs vehicle (A). Volcano plot comparing

log2fold change in genes between Ibudilast and vehicle demonstrates significant changes in the myeloid populations between vehicle and ibudilast treated tumors (B).

Pathway analysis of Ibudilast treated tumors shows increased activation of many immune pathways including lymphocyte activation while there is a reduction in

antigen presentation (C). Summary of CD74 expression in histogram format comparing all Vehicle and all Ibudilast treated samples (D). Pathway analysis of

Nanostring data identifies the MAPK signaling pathway in Ibudilast treated tumors with a reduction in MEK2 (E). n = 3 mice treated with vehicle of 50 mg/kg 2x per

week Ibudilast were sacrificed at day 18 post tumor initiation and serum was isolated from their blood and measured MCP-1 by ELISA (F). A cohort of n = 8 vehicle

and n = 8 Ibudilast treated mice were sacrificed at day 18 post injection and tumor, non-tumor tissue, and blood were analyzed by flow cytometry for immune

populations where CD8T cells were shown to be significantly increased in the tumors of Ibudilast treated mice (G). Two-Tailed T-Test was performed for comparisons

in (F) * <0.05, ** <0.01, *** <0.001. All other statistics were performed in Nanostring Nsolver software including the PCA and volcano plot differential gene expression

and pathway analysis.

MIF inhibitors. In this system the generation of M-MDSCs
was monitored at day 3 post co-culture in the presence of
various MIF inhibitors at 200µM, a concentration achieved in
circulation with Ibudilast, a primary drug of interest due to its
known toxicity profile and ability to penetrate the blood brain
barrier (Figure 4A) (54, 61). Other MIF inhibitors previously
identified as either MIF tautomerase inhibitors (4-IPP, ISO-
1, AV1013, MIF098), or MIF/CD74 interaction inhibitors
(Ibudilast, MIF098), were compared to Ibudilast at similar
200µM concentrations to determine the specificity of Ibudilast
in reducing M-MDSCs (52, 55, 58). While Ibudilast has been
studied in different concentrations, it has recently been used at
a similar dose in a patient derived xenograft model of glioma
so we began with 200µM (43). For comparison, 4-IPP has
been used at 100µM in lung cancer studies along with ISO-1,
and MIF098 has been shown effective at 10µM (62–64). The
MIF/CD74 interaction inhibitor Ibudilast demonstrated an
effective reduction in M-MDSC generation (Figure 4A). This
reduction in M-MDSCs was not a result of a major change
in cell viability as assessed by live/dead staining. Additionally,
the MIF inhibitor 4-IPP, which does disrupt the interaction of
MIF with CD74 showed no efficacy (Figure 4A) (52). While
Ibudilast has been shown to inhibit the interaction of MIF and
CD74, it was first discovered as a phosphodiesterase inhibitor
(65, 66). To assess specificity, we compared Ibudilast at 100
and 200µM to Rolipram, which is a known specific and
potent phosphodiesterase inhibitor at the same concentrations

(Figure 4B) (67). Rolipram was unable to alter the generation of
M-MDSCs and thus the reduction of M-MDSCs is likely not due

to the ability of ibudilast to inhibit PDE activity. The reduction

in M-MDSC generation was not a result of a major change in cell

viability as assessed by live dead staining. M-MDSC generation

was reduced by ibudilast in a dose dependent manner treating

co-cultures at 10µM, 20µM, 50µM, 100µM, and 200µM

Ibudilast (Figure 4C). Also, to determine if MDSCs could be

killed by Ibudilast an IC-50 was performed using FACs sorted

M-MDSCS and G-MDSCs increasing doses of Ibudilast were

added to cultures for 24 h before being analyzed. No change

in viability of M- or G-MDSCs was detected, however the flow
cytometry analysis of Ki-67 on M-MDSCs treated with Ibudilast
demonstrated a reduction in proliferation (Figures 4D,E). The
function of MDSCs generated in co-culture with Ibudilast was
analyzed using the T cell suppression assay, and identified
as a reduction in the ability of MDSCs to suppress T cell
proliferation (Figure 4F). Additionally, untreated M-MDSCs
and G-MDSCs were isolated by FACs sorting and then treated

for 24 h with Ibudilast before western blot analysis for pERK,
a proximal downstream target of MIF/CD74 signaling (60).
This revealed a specific reduction of pERK signaling compared
to total ERK expression in M-MDSCs and not in G-MDSCs,
showing specific MIF/CD74 inhibition by ibudilast in M-MDSCs
(Figure 4G). Downstream of MIF/CD74 signaling, we analyzed
secretion of MCP-1 by ELISA. In these studies, conditioned
media from in vitro MDSC generation assays were used at
day 4 post initiation, with Ibudilast ranging from 0 to 10µM
(Figure 4H). MCP-1 secretion was demonstrated to be dose
dependent on Ibudilast within this assay (Figure 4H). To
ensure that MCP-1 secretion was inhibited in Ibudilast treated
M-MDSCs, we performed intracellular MCP-1 staining with
vehicle and Ibudilast treated groups (Figures 4I,J). In this
assay MCP-1 was shown to be increased intracellularly in M-
MDSCs treated with Ibudilast, compared to the vehicle control
(Figure 4J). In contrast G-MDSCs, which lack the MIF/CD74
signaling axis, had no change the intracellular storage of MCP-1
(Figure 4J). Internal accumulation of MCP-1 in Ibudilast treated
M-MDSCs also aligns with ELISA data showing reduced MCP-
1 in the media of Ibudilast tread co-cultures (Figure 4H).
Taken together, these data demonstrate that M-MDSC
expansion and function can be disrupted by pharmacologic a
MIF/CD74 inhibition.

Ibudilast Treatment Reduced MIF/CD74
Signaling in a Syngeneic Model
To determine the in vivo effects of Ibudilast treatment, a
cohort of tumor bearing animals were treated 5 days post
tumor implantation [at 50 mg/kg 2x weekly based on previous
experiments and the known effect dose effect of Ibudilast in a
murine model (54)]. Daily dosing has been demonstrated in
rodents to increase CYP enzymes and degrade ibudilast, reducing
the bioavailability (54), and thus high doses of bi-weekly ibudilast
was chosen for this treatment. Animals were analyzed at endpoint
and tumors were dissected from the brain for RNA analyses by
Nanostring Ncounter myeloid panel. Initial analysis by principal
component analysis revealed that vehicle tumors and ibudilast
tumors separate and the separation is driven by the vectors
of MIF, CD74, PTGS2, Arg1, CXCR2 (Figure 5A). A volcano
plot comparing the significantly differentially expressed genes
between vehicle and ibudilast treated tumors showed significant
change in immune genes upon treatment (Figure 5B). Pathway
analysis between vehicle and Ibudilast treated tumors showed
reduced antigen presentation, which coincides with reduced
CD74 and MHC expression following the hypothesis that
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Ibudilast is targeting CD74 in vivo as well as in vitro (Figure 5C).
Pathway analysis also demonstrated increased Lymphocyte
activation upon treatment showing possibly increased immune
response (Figure 5C) and CD74 expression was reduced upon
treatment (Figure 5D). Furthermore, analysis of Nanostring
data also revealed a predicted reduction of MEK2 expression,
which is downstream of MIF/CD74 signaling, but upstream of
the pERK reduction that we initially analyzed by western blot in
vitro (Figure 5E) and consistent with the western blot findings of
reduced pERK signaling upon Ibudilast treatment. Additionally,
MCP-1 was analyzed by ELISA in the serum of mice treated with
Ibudilast and identified a reduction of MCP-1 upon treatment

(Figure 5F). Flow cytometry analysis of tumor, non-tumor,
and blood from this cohort at day 18 post injection tumors,
14 days of Ibudilast treatment, identified an increase in CD8T
cells specific to the tumor, while other immune cell populations
were unchanged (Figure 5G, Supplemental Figures 2, 3).
Additionally, immunohistochemistry staining identified a
reduction of proliferation in Ibudilast treated tumors via reduced
p-Histone3 and ki-67 staining (Supplemental Figure 4).
Importantly, we saw no changes in other T cell or myeloid
cell populations, including the overall number of CD45+
cells (Supplemental Figures 2, 3). Taken together, these
data reveal that CD74/MIF inhibition via Ibudilast can

FIGURE 6 | Schematic depicting pathway described where MIF binds CD74 on M-MDSCs enhancing their activity to inhibit CD8T cells and also produce the

downstream target MCP-1. With the addition of Ibudilast to inhibit this process we show a reduction of the MDSCs generation and function removing the inhibitor

effect from CD8T cells.
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reduce MDSCs in vivo and increase immune activation in the
tumor microenvironment.

DISCUSSION

While multiple groups including our own have identifiedMDSCs
as being increased in GBM and other cancers (9, 11, 12, 19, 31),
our understanding of the factors driving these cells has been
lacking and strategies to target these cells has not matured.
Here we focused our efforts on MIF as a driver of MDSCs
based on our previous work showing that MIF depletion could
reduce MDSC function (31). Additionally, multiple groups have
indicated a link between MIF and MDSCs (32, 33, 68). Here
we found that the receptor CD74 may play a greater role in
GBM MDSC biology because the subset of MDSCs primarily
found in the tumor microenvironment were M-MDSCs, which
predominantly express CD74 as a MIF receptor. This is in
contrast to metastatic breast cancer models that show G-MDSCs
infiltrating tumors and driving metastasis (69, 70); where in
those cases we would hypothesize that CXCR2 or another MIF
receptor may play a more vital role. While our previous work
focused on the MIF/CXCR2 signaling pathway in GBM and
MDSCs the entirety of that was focused on G-MDSCs, marked by
CD244.2 positivity. These studies instead focus on the majority
population of MDSCs in our GBM mouse models, M-MDSCs,
and targeting their signaling pathwaywithMIF/CD74. In relation
we believe these pathways could be intertwined based the data
presented here showing that permeabilized G-MDSCs contained
CD74 levels similar to M-MDSCs. We hypothesize this could be
due to the known ability of M-MDSCs to differentiate into G-
MDSCs and during this process and maintain intracellular stores
of CD74 (18, 71). Further studies should be performed analyzing
the intracellular stores of CD74 during the differentiation process
to determine how this phenomenon occurs.

In seeking to target the interaction of MIF and CD74 on
MDSCs we identified Ibudilast as an agent of interest, and were
able to treat mice to reduce CD74 expression and increase
CD8T cells in the tumor. Importantly this inhibitor is blood
brain barrier penetrant, which overcomes one of the major
therapeutic obstacles in the treatment of brain tumors (54). One
difficulty in using Ibudilast in mouse models is the drug passage
effect, where daily treatment increases CYP enzymes leading to
rapid degradation (54). However, in humans the drug is stable
in the circulation and accumulates in the CNS with repeated
exposure such as daily dosing (53, 61). For these reasons in the
mouse model we settled on a 2x weekly dose of Ibudilast to
minimize the drug passage effect, but believe that Ibudilast may
be more efficacious in humans than in mouse models. Efforts are
currently underway to evaluate Ibudilast in GBM in a clinical
trial (NCT03782415) (43) and will likely provide more insight
into how this drug effects the anti-tumor immune response.
Additionally, Ibudilast recently demonstrated promising results
in a phase 2 clinical trial of multiple sclerosis, where it is thought
to have a protective effect by reducing brain atrophy, as compared
to anti-inflammatory drugs commonly used to treat multiple
sclerosis (44).

In summary we believe that the M-MDSCs driven by GBM
secreted MIF is signaling through the MIF receptor CD74

(Figure 6). Inhibition of the interaction between MIF and CD74
via ibudilast treatment results in reduced downstream signaling
of MCP-1, which has been shown to beMIF-dependent in studies
of autoimmunity (Leng et al., SLE study), and further drives
monocyte and MDSC recruitment to the microenvironment
and enhancing the expansion of M-MDSCs (Figure 6) (57,
60, 72, 73). The importance of MCP-1 in glioma MDSC
recruitment has recently been highlighted, where loss of CCR2,
the MCP-1 receptor, demonstrated a reduction of MDSCs in
the tumor and bone marrow of glioma bearing mice. (73)
While our data demonstrates these phenomena, we did not
readily observe enhanced survival in our model that involved
the use of Ibudilast as a single agent. Nonetheless, we observed
that Ibudilast produced an expansion of CD8T cells and
Nanostring analysis predicted an increase multiple pathways
including lymphocyte activation. These findings support an
interpretation that inhibition of immune suppression, alone, will
not be sufficient to produce an anti-tumor immune response.
This interpretation mirrors the clinical trial results to date that
indicate that treatment with an immune stimulatory therapy
alone has been an ineffective strategy. Instead, we hypothesize
that better clinical outcomes will be seen when the reversal of
tumor-induced immune suppression associated with Ibudilast is
combined with an immune stimulatory therapy.
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Supplemental Figure 1 | shRNA knockdown of MIF in GL261 was performed

using 2 separate shRNA’s which were the top targets from previously published

work from our group to generate stable knockdown cell lines of GL261 (A).

Comparing the survival of intracranially implanted tumors in NSG immune

incompetent mice demonstrate no survival difference in NSG mice (B). Treating n

= 10 GL261 tumor bearing mice 2x weekly with anti-MIF antibody (gifted from Dr.

Richard Bucala) vs. n = 10 IgG control treated mice demonstrated no survival

benefit (C). MDSC co-culture dynamics over time analyzing n = 3 mice in

separate co-cultures where one well was used each day over 7 days to check the

number of CD45+ cells by flow cytometry (D). Survival curve analysis was

performed in GraphPad Prism using Log-rank (Mantel-Cox) test for p value and

hazard ratio log rank was computed on the same data using GraphPad Prism.

Supplemental Figure 2 | Intracrainially injected tumors vehicle vs ibudilast

treated tumors, non-tumor tissue, and blood analysis from Figure 5 demonstrate

no significant difference in M-MDSCs, G-MDSCs, Macrophages, or Microglia

(A–D). Two-Tailed T-Test was performed for comparing vehicle vs. ibudilast in

each compartment ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.

Supplemental Figure 3 | Intracrainially injected tumors vehicle vs ibudilast

treated tumors, non-tumor tissue, and blood analysis from Figure 5 demonstrate

no significant difference in total CD45+ cells, CD4T cells, ratio of CD8/ CD4T

cells, or NK cells (A–D). CD74 expression was analyzed on vehicle and Ibudilast

treated M-MDSCs demonstrating an increase in CD74 protein expression on the

cell surface of M-MDSCs upon treatment in the tumor compartment only (E).

Two-Tailed T-Test was performed for comparing vehicle vs. ibudilast in each

compartment ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.

Supplemental Figure 4 | Intracrainially injected tumors vehicle vs ibudilast

treated mice were perfused at endpoint and tissue was paraffin embedded for IHC

analysis. Staining for p-Histone3 and Ki67 demonstrated a reduction in

proliferation in the ibudilast treated tumors. Two-Tailed T-Test was performed for

comparing vehicle (mock) vs. ibudilast treated tumors ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.
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Over the past decade, cancer immunotherapy has been steering immune responses

toward cancer cell eradication. However, these immunotherapeutic approaches are

hampered by the tumor-promoting nature of myeloid cells, including monocytes,

macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign

invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly,

the most primordial defense responses employed by myeloid cells against pathogens,

such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis,

actually seem to favor cancer progression. In this review, we discuss how rudimentary

defense mechanisms deployed by myeloid cells can promote tumor progression.

Keywords: cancer immunotherapy, tumor-associated myeloid cells, tumor microenvironment, innate immune

response, immune suppression, immunotherapy resistance

INTRODUCTION

Immune cells abundantly infiltrate tumors, creating a complex environment mediated by repetitive
cycles of antitumor responses and immune evasion (1). Myeloid innate immune cells, such as
granulocytes, monocytes, macrophages and dendritic cells (DCs), play an important role in cancer-
cell recognition, initiation of inflammation and antitumor responses (2). Chronic inflammation,
however, can initiate tumorigenesis and can drive cancer progression in some cancer types (3, 4).
Hence, myeloid cells play a dual role in cancer as they can initiate antitumor responses and
communicate with cells of the adaptive immune system, but also promote local inflammation
leading to chronic cancer-associated inflammation (5, 6).

In the tumor microenvironment, tumor-associated macrophages (TAMs) display an array
of phenotypes beyond the M1/M2 paradigm, ranging from antitumoral to immunosuppressive,
proangiogenic, immunomodulatory and tissue-remodeling phenotypes (7–9). The presence
of TAMs in most solid tumors is correlated with poor prognosis and overall survival of
patients (10). In addition to TAMs, solid tumors are also infiltrated by immunosuppressive,
immature myeloid progenitor cells, commonly referred to as monocytic or polymorphonuclear
myeloid-derived suppressor cells (M/PMN-MDSC) (11–13). Similarly, an increased infiltration
of MDSCs has been associated with poor prognosis for a variety of cancer types (14).
Neutrophils also contribute to tumor progression, yet establishing the difference between
PMN-MDSCs and tumor-associated neutrophils (TAN) remains challenging (11, 15, 16).
Although tumor-promoting functions have been attributed to other granulocytes, like
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eosinophils (17), basophils (18) and mast cells (19), further
research is required to fully elucidate their role in cancer,
as antitumoral roles have also been described (20, 21).
Another myeloid population in the tumor microenvironment
(TME) are DCs, that originate from different precursors and
display various phenotypes, ranging from immunosuppressive
monocyte-derived DCs (Mo-DCs) to immunocompetent cDC1
and cDC2 subsets (22). Altogether, the myeloid compartment
in the TME is heterogenous and varies across tumor types,
individuals and tumor stage (23). Nevertheless, the majority of
scientific discoveries points toward a more tumor-supporting
role for myeloid cells in the TME.

RUDIMENTARY MYELOID DEFENSE
STRATEGIES AS TUMOR PROMOTERS

The innate immune response by myeloid cells occurs as a
succession of events starting at signaling through cytosolic
or surface PRRs, followed by effector responses including the
release of cytokines, reactive oxygen species (ROS), reactive
nitrogen species (RNS), antibacterial peptides and degranulation
(Figure 1). PRR on myeloid cells can be triggered by pathogen-
associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs), but also indirectly by secondary
mechanisms such as complement activation and circulating
antibodies (Abs), resulting in cytolytic and phagocytic effector
mechanisms. Pathogen clearance is mediated by mechanisms
such as phagocytosis, respiratory burst with the production
of ROS and RNS and release of bacteriostatic peptides, but
also through the cell-extrinsic initiation of inflammation via
the release of proinflammatory cytokines and chemokines (24).
However, this succession of events does not always appear to
be a linear cascade, as feedforward loops and interactions exist
between different effector mechanisms (Figure 2). Yet, even such
early, innate effector mechanisms performed by myeloid cells
surprisingly seem capable of promoting tumor progression.

Pathogen and Tissue Damage Recognition
Mechanisms as Tumor Promoters
Toll-like receptors (TLRs), C-type lectin receptors (CLRs), the
retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and
NOD-like receptors (NLRs) are PRR families expressed by
macrophages and DCs, but also by non-immune cells, such as
endothelial cells and fibroblasts (25). Based on current literature,
it seems that PRR signaling can both contribute to cancer
progression and is capable of steering antitumor responses. Here,
we will focus on the tumor-promoting role of PRRs, where TLR
signaling and inflammasome activation will serve as an example
to demonstrate the effect of PRR signaling in tumor-infiltrating
myeloid cells.

In response to the tumor-derived proteoglycan versican V1,
TLR2- and TLR6-signaling in TAMs induces the expression
of cathelicidin (hCAP18/LL-37), an antimicrobial peptide
which in turn promotes the proliferation of human ovarian
cancer cells in vitro (26). When a TLR2-agonist, lipoprotein
Pam2CSK4, is administered intravenously, TLR2-expressing

PMN-MDSCs accumulate and proliferate systemically in EG7
lymphoma-bearing mice (27). Moreover, Pam2CSK4-mediated
TLR2 signaling promotes the survival of M-MDSCs and
mediates the differentiation of M-MDSCs into macrophages.
These macrophages are capable of presenting tumor antigens
to CTLs, resulting in interferon gamma (IFNγ) release upon
T-cell activation and the subsequent expression of inducible
nitric oxide synthase (iNOS) and nitric oxide (NO) release
by surrounding macrophages, which in turn leads to T-cell
suppression (28). In the presence of bacterial lipopolysaccharides
in the colonic lumen, TLR4 signaling in TAMs promotes chronic
inflammation through increased production of cyclo-oxygenase
2 (COX2) and prostaglandin E2 (PGE2) (29). Damage-associated
high mobility group box-1 protein (HMGB1), released from
necrotic keratinocytes in the skin upon irradiation, interacts with
TLR4 on bone marrow-derived immune cells (30). The resulting
signaling facilitates papilloma progression through an increase
in the recruitment of proinflammatory immune cells (30).
Moreover, HMBG1-mediated TLR4 signaling causes an increased
infiltration of radiation-resistant cells upon radiotherapy.

Upon intracellular PAMP or DAMP recognition by cytosolic
sensors like NLRP3, inflammasomes are assembled, which results
in the release of the proinflammatory cytokines IL-1ß and IL-
18 and leads to a proinflammatory form of cell death, also
referred to as pyroptosis (31). In different murine tumor models,
NLRP3 plays a role in the migration of MDSCs to the TME,
where MDSCs suppress antitumor CTL responses independent
of NLRP3 and induce unresponsiveness to DC vaccination (32).
The role of inflammasome activation in tumor progression
is also demonstrated in obese mice, where obesity-associated
NLRC4 inflammasome activation in tumor-infiltrating myeloid
cells promotes breast cancer progression (33). Importantly, the
release or administration of PRR agonists may give rise to
therapy resistance in patients that underwent radiotherapy (34),
chemotherapy (35, 36) or cancer vaccination (32). For example,
myeloid Gr1-negative cells accumulate in murine B16 melanoma
and CT26 colon adenocarcinoma tumors after local irradiation,
where mitochondrial DNA of dead, irradiated cancer cells
induces TLR9 signaling, which mediates revascularization and
immune evasion in an interleukin (IL)-6- and STAT3-dependent
manner (34, 37). Paclitaxel-induced TLR4 signaling in murine
and human breast cancer cells results in the production of the
proinflammatory cytokines IL-1ß and IL-6, which promotes the
expansion of MDSCs in the bone marrow and spleen as well as
their recruitment to the TME (36). In response to gemcitabine
and 5-fluorouracil chemotherapy, cathepsin B is released in
the cytosol of MDSCs which induces NLRP3-dependent IL-1ß
release (35). In return, IL-1ß drives the polarization of CD4+
T cells into Th17 cells that promote tumor angiogenesis in the
TME, which hampers the antitumor response of gemcitabine
and 5-fluorouracil.

Altogether, it seems that the tumor microenvironment can
be a source of PRR agonists, stimulating PRR signaling in
myeloid cells that in turn perform tumor-promoting functions.
Alternatively, PRR signaling can also directly affect cancer cells.
TLR4 expression and signaling in gastric cancer cells results
in mitochondrial ROS production, which induces secondary
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FIGURE 1 | Linear representation of classical innate immunity in response to threats and in the TME. (A) PAMPs and DAMPs are recognized by surface-expressed,

endosomal and cytosolic pattern recognition receptors (TLR, CLR, cytokine, chemokine receptors, NLRP3) which results in phenotypical changes that counteract

ongoing threats or tissue damage. (B) Effector mechanisms that take place during inflammation are degranulation, NETosis, release of proinflammatory mediators,

respiratory burst, phagocytosis and cell-dependent and -independent cytotoxicity. The net result is the recruitment of immunocompetent cells that mount an

inflammatory reaction and potentially resolve the infection. (C) However, in the tumor microenvironment innate myeloid cells promote tumor progression through active

(Continued)
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FIGURE 1 | recruitment to the TME in response to ß-defensins, cathelicidin, G-CSF, complement factors and chemokines. Once arrived in the TME, myeloid cells are

activated and release proinflammatory mediators, which empowers tumor-associated inflammation. Activation of myeloid cells also allows for remodeling of the tissue

vasculature and extracellular matrix, which also allows for cancer-cell invasion and metastasis. Furthermore, myeloid cells contribute to immunosuppression once

activated by for example, upregulation of PD-L1 and IDO release during antibody-dependent phagocytosis of target cells or stimulatory cytokines (IFNγ). DC, dendritic

cell; ECM, extracellular matrix; VEGFR2, vascular endothelial growth factor receptor 2; IFNγ, interferon gamma; ROS, reactive oxygen species; MDSC,

myeloid-derived suppressor cell; ADCP, antibody-dependent cell-mediated phagocytosis; IDO, indoleamine 2,3-dioxygenase; COX2, cyclooxygenase 2; PGE2,

prostaglandin E2; TNFα, tumor necrosis factor alpha; G-CSF, granulocyte colony stimulating factor; NOD, nucleotide-binding oligomerization domain; RIG, retinoic

acid-inducible gene; NLRP, nucleotide-binding oligomerization domain; leucine-rich repeat and pyrin domain containing.

FIGURE 2 | Cross talk between reoccurring innate effector mechanisms in the TME. Tumor-derived chemokines that are produced as a result of innate effector

mechanisms including C5a, C3a, cathelicidin and ß-defensin, recruit myeloid cells to the TME. Tissue vasculature during chronic inflammation is maintained by

complement anaphylatoxin C5a and beta-defensins. Anaphylatoxin C5a also recruits MDSCs with increased ROS and NRS production in the TME. Many innate

pathways converge at the production of ROS and NOS in the TME. For example, TLR2 signaling increases the antigen presenting capacity of TAMs, which activates

CTLs resulting in IFNγ release and subsequent ROS and NO release by TAMs. Neutrophil-derived ROS induces CTL apoptosis, while hydrogen peroxide released by

TAMs, induces the expression of TNFα and TNFαR1 in surrounding epithelial cells. A positive feedback loop seems to exist between the respiratory burst and TNFα

release, creating a potential cross talk between TAMs, neutrophils and epithelial cells in the TME. Furthermore, both ROS and TNFα also increases the expression of

integrins, which increases cell-cell contact and facilitates cell-mediated killing via ADCC and ADCP either by performed by monocytes to kill cancer cells, or by

MDSCs to suppress CTLs. ADCC, antibody-dependent cell-mediated cytotoxicity; MDSC, myeloid-derived suppressor cell; ADCP, antibody-dependent cell-mediated

phagocytosis; ROS, reactive oxygen species; RNS, reactive nitrogen species; TNFα, tumor necrosis factor alpha; TNFαR1, tumor necrosis factor alpha receptor 1;

CTL, cytotoxic T lymphocyte; IFNγ, interferon gamma; TCR, T-cell receptor; TAM, tumor-associated macrophage; CTL, cytotoxic T lymphocyte; TME, tumor

microenvironment; TLR2, Toll-like receptor 2; TAM, tumor-associated macrophage.

signaling cascades in response to oxidative stress that may
regulate cancer-cell survival (38). TLR4 signaling in colorectal
cancer and breast cancer cells promotes invasion and metastasis
of these cells (36, 39). Therefore, PRR signaling is not strictly a
myeloid cell-restricted, tumor-promoting mechanism.

Release of Proinflammatory Mediators as
Tumor Promoters
A common downstream effect of PRR signaling is the release
of proinflammatory cytokines, like IL-12, IL-6, IL-1β and tumor
necrosis factor alpha (TNFα). In the TME, cytokines like

IL-10 and transforming growth factor beta (TGF-ß) play an
important role in suppressing antitumor responses, so it is within
expectation that strongly opposing, proinflammatory mediators
would be capable of eliciting and sustaining antitumor responses.
However, a number of key proinflammatory cytokines, such
as IL-1β and IL-6, have been reported to promote tumor
progression through the mobilization of MDSCs (40, 41),
the contribution to chronic inflammation (40, 42) and the
stimulation of angiogenesis (43, 44). For example, in murine
models of pancreatic ductal adenocarcinoma, neutralization of
tumor-derived IL-1β enhances CTL-infiltration and ameliorates
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the response to anti-PD-1 immune checkpoint blockade (45). In
accordance, IL-1β-blockade synergizes with anti-PD-1 immune
checkpoint blockade in 4T1 breast cancers by restoring
the cytotoxic capacity of CTLs without inducing systemic
inflammation (46).

Other proinflammatory cytokines, such as TNFα and IFNγ,
seem to have an ambiguous effect on cancer progression. For
example, neutrophil-derived TNFα promotes the production
of NO in an autocrine manner, which in turn induces
apoptosis of non-activated CTLs in murine models of thoracic
malignancies (47). Subcutaneous Tnfr1-deficient fibrosarcoma
FB61 tumors are rejected in Tnfr-deficient mice, while tumor
growth is reestablished via an adoptive transfer of Tnfr1-
expressing MDSCs. Mechanistically, MDSCs of Tnfr-deficient
mice displayed increased caspase-8 cleavage which induces
apoptosis, and lower levels of c-FLIP, a natural caspase-8
inhibitor, which causes reduced accumulation of MDSCs in
the TME along with a reduced tumor-suppressive capacity
(48). These data suggest that endogenous and persistent TNFR
signaling promotes tumor growth by maintaining survival
of MDSCs (48). In accordance, a study by Sade-Feltman
et al. demonstrated that TNFα is required to maintain the
immature and immunosuppressive phenotype of MDSCs (49).
Hence, TNFα blockade using Etanercept, a biological compound
composed of the extracellular domain of TNFR fused to
an IgG1 Fc fragment, restores NK-cell cytotoxicity and T-
cell proliferation, reduces splenic MDSC accumulation and
enhances the maturation of MDSC into CD11b+CD11c+ and
CD11b+ F4/80+ cells (49). In addition, TNFα induced upon
anti-PD-1 immune checkpoint blockade, increases PD-L1 and
TIM-3 expression on tumor-infiltrating T cells and promotes
their cell death upon TNFα binding to TNFRs (50). TNFα
blockade increases the infiltration of tumor-specific CTLs,
reduces the proliferation of immunosuppressive, regulatory T
cells (Tregs) and minimizes toxicity of immune checkpoint
blockade (51–53). These tumor-promoting effects of TNFα in
the TME are in contrast to its inhibition of breast cancer-cell
proliferation by blocking the G1/S phase transition of the cell
cycle (54). Furthermore, TNFα may hamper the polarization
and differentiation of monocytes into M2-like TAMs, instead
steering the macrophage phenotype toward an anti-tumoral M1-
like TAM in the TME (55). Altogether, TNFα also carries the
potential to mount antitumoral responses in cancer therapy, as
described elsewhere (56).

The role of the proinflammatory cytokine IFNγ in tumor
progression appears to be concentration- (57, 58) and context-
dependent (28, 59). He et al. demonstrated that, at low local
levels, IFNγ promotes tumor progression of several murine
tumor models, including hepatic, mammary and skin cancer,
through increased gene expression of Cd274 (PD-L1), Ctla4 and
Foxp3, whereas at higher levels, IFNγ reduces the gene expression
of Foxp3 and co-inhibitory molecules (58). If either TNFα or
IFNγ signaling in tumor-infiltrating CD4+ T cells is absent upon
antigen recognition, tumor progression is stimulated, whereas
combined TNFα and IFNγ signaling in CD4+ T cells prevents
tumor angiogenesis and tumor-cell proliferation (59). Hence,
cytokines like IFNγ and TNFα can play dual roles in cancer

progression and the internal complexity of combined receptor
signaling strongly affects antitumor responses (59).

Besides cytokines, other inflammatory mediators influence
tumor progression. Indeed, proinflammatory enzymes and
products of the prostaglandin production pathway, including
COX2 and PGE2, have been associated with enhanced tumor
progression, as they induce the expression of PD-L1 on
macrophages and MDSCs (60). A tumor-promoting feedback
loop has been discovered betweenMDSCs, colorectal cancer cells
and T cells, that all release PGE2 and express receptor-interacting
protein kinase 3 (RIPK3) (61). PGE2-induced RIPK3 signaling in
MDSCs results in the expression of COX2 that catalyzes PGE2
synthesis, which is then released in the TME. PGE2 promotes
proliferation of cancer cells and suppresses T-cell activation
through RIPK3 signaling. Macrophage-derived IL-1β induces
ROS-dependent COX2 production and activity in breast cancer
cells, leading to PGE2 release in vitro (62). Culturing blood-
derived monocytes with PGE2 induces the expression of COX2,
which inhibits differentiation of monocytes into monocyte-
derived DCs. Instead, the expression of indoleamine 2,3-
dioxygenase (IDO), IL-4 receptor, iNOS and IL-10 is upregulated
and drives the suppressive phenotype of M-MDSCs in vitro (63).
Hence, PGE2 contributes to polarizing the phenotype of myeloid
cells in the TME.

In conclusion, two trends are observed regarding
proinflammatory cytokines or mediators; (1) either their
role in cancer progression is generally protumoral, such as IL-6,
IL-1β, or PGE2, or (2) their function in cancer progression
is ambiguous, such as for TNFα and IFNγ. The severity of
inflammation may play an important role here; to a certain
extent, proinflammatory mediators are required to stimulate
anti-tumoral T-cell responses, whereas prolonged exposure or
exposure to high levels of inflammatory mediators can lead to
unresponsiveness. In addition, it is not clear whether cancer
cells or myeloid cells initiate the expression and release of
tumor-promoting inflammatory mediators in the TME.

Respiratory Burst as Tumor Promoter
Upon PAMP recognition through PRR signaling, neutrophils and
macrophages engulf pathogens via phagocytosis, which activates
phagosome- and surface membrane-bound NADPH oxidase,
resulting in the production of superoxide (O−

2 ) and derivatives,
hydrogen peroxide (H2O2) and hypochlorous acid (HOCl),
through downstream processing by superoxide dismutase (SOD)
and myeloperoxidase (MPO) (64–66). The release of ROS
in phagosomes and the extracellular space is referred to as
the respiratory burst, which is a primary antimicrobial and
antifungal defense mechanism deployed by phagocytes (64).
MDSCs are a major source of ROS in the TME, where ROS
and peroxynitrite (HNO−

3 ) abrogate antigen recognition by CTLs
and instead induce tolerance (67, 68). This depends on direct
contact between T cells and MDSCs, mediated by the integrins
CD11b, CD18, and CD29 (68). Mechanistically, nitration and
oxidation of amino acids in the T-cell receptor (TCR) and
CD8 co-receptor molecules prevents interaction with major
histocompatibility complex (MHC) molecules, which in turn
induces tolerance (67). Constitutive upregulation of STAT3 in
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MDSCs directly regulates the expression of NOX2 components
necessary for the formation of the NADPH protein complex,
which is followed by a subsequent increase in production and
release of ROS (69). MDSCs are unable to suppress T cells in the
absence of NOX2 activity, and instead differentiate into mature
macrophages and DCs (69). ROS also mediate the polarization
of macrophages, as inhibition of O−

2 impedes the differentiation
of monocytes into M2 macrophages while differentiation into
M1 macrophages remains unaltered (70, 71). Thus, while ROS
production in MDSCs maintains their immature phenotype,
MDSC-derived ROS in the TME mediates the differentiation of
tumor-infiltrating monocytes. Furthermore, H2O2 released by
macrophages and neutrophils induces the expression of Tnfa
and Tnfr1 in epithelial cells, that in turn release TNFα leading
to the upregulation of other proinflammatory and angiogenic
factors, hence, sustaining tumor progression in a paracrine loop
(72). Aside from myeloid-derived ROS, Xia et al. demonstrated
that ROS can also be produced by cancer cells themselves. They
showed that ROS production by ovarian cancer cells promotes
angiogenesis and tumor growth through in vivo transcriptional
activation of Vegf and Hif1a (72, 73). The above-mentioned
studies provide evidence for the protumoral role of ROS in
tumor progression, by suppressing T-cell responses, supporting
angiogenesis and maintaining the phenotypical identity of
MDSCs, regardless of the strong pathogen-killing potential of the
respiratory burst in mature myeloid cells.

Release of Antibacterial Peptides as Tumor
Promoter
In addition to ROS, myeloid cells release a vast array of
antimicrobial peptides such as defensins and cathelicidins,
representing two major families of mammalian antibacterial
peptides. In leukocytes, α- and ß-defensins are stored in
cytoplasmic granules that fuse with the phagosome uponmicrobe
phagocytosis, while epithelial cells can secrete defensins to
maintain their barrier integrity (74). Yang et al. demonstrated
that ß-defensins act as a chemoattractant for immature DCs and
memory T cells by binding chemokine receptor CCR6, which
bridges the innate recognition of microbes and the initiation of
an adaptive immune response (75). As such, it is not surprising
that in a similar fashion immature DCs are recruited to the TME
in response to tumor-derived ß-defensins. Indeed, Conejo-Garcia
et al. discovered a subset of immature DCs, that is recruited to
murine and human ovarian tumors in response to ß-defensins
through CCR6 signaling and that acquires epithelial features,
including surface expression of CD31 and VE-cadherin. These
cells support vasculogenesis in a VEGFR-2-dependent manner
which leads to enhanced tumor progression (76). CCR6 signaling
also promotes murine transplantable colon cancer by recruiting
macrophages to the TME through a CCL2-CCR6 axis, which
results in the release of IL-1β, IL-6, and TNFα, further enhancing
tumor progression (77).

Holterman et al. reported that α-defensins overexpressed by
cancer cells, stimulate the proliferation and migration of bladder
cancer cell lines in vitro, most-likely in an autocrine and calcium-
dependent manner (78). Similarly, Xu et al. showed that human

ß-defensin 3 promoted in vitro proliferation, migration and
invasion of cervical cancer through the NF-κB signaling pathway,
demonstrating that cancer cells are also able to release defensins
(79). It is important to note that defensin-secreting cancer cells
are of epithelial origin, since epithelial cells are known to secrete
defensins as part of their barrier function. In addition, it should
be remarked that the role of defensins in tumor progression
also seems ambiguous and may vary according to the cancer
type or defensin molecule, as several studies showed a potential
antitumoral role of defensins in cancer (80, 81).

The release of cathelicidins, human LL-37 and murine
CRAMP, in the TME has been described in several studies,
whereby macrophages and neutrophils are the main sources. Li
et al. demonstrated that CD68+ macrophages in tumor tissue
of colorectal cancer patients stained positive for cathelicidin,
whereas weak to unmeasurable signal was picked up for
cathelicidins in colon epithelial cells (82). The importance
of cathelicidins in tumor progression was demonstrated by
a slower tumor growth in Lewis lung carcinoma-bearing,
cathelicidin-deficient mice, along with a reduced infiltration
of myeloid cells (83). These studies suggest that cathelicidins
are chemoattractants that recruit myeloid cells to the TME
(84), where, in turn, myeloid-derived cathelicidins directly
enhance cancer-cell proliferation, creating a self-sustaining loop
of cathelicidin production. In contrast, antitumoral roles of
cathelicidins, independent of myeloid cells, have also been
described. For example, cathelicidins could be involved in
potentiating the cytotoxic capacity of tumor-infiltrating NK
cells (85) and impairing the tumor-supportive role of cancer-
associated fibroblasts (CAFs) in colon cancer (86).

Neutrophil Degranulation as Tumor
Promoter
Neutrophils carry heterogenous primary, secondary and tertiary
granules that contain different enzymes andmodulatory proteins,
such as elastase, gelatinase, MPO, cathepsins, ficolin-1, and
lactoferrin (87). Neutrophil degranulation occurs in a calcium-
dependent manner in response to proinflammatory mediators
like TNFα (88), lipopolysaccharides (LPS) (89) and IL-8 (90).
The majority of neutrophil-derived granule contents promote
tumor progression, such as elastase, cathepsin D, cathepsin B, and
proteinase 3.

Neutrophil-derived elastase hydrolyses insulin receptor
substrate-1 (IRS1) in the cytosol of lung cancer cells, leading to
an altered regulation of phosphoinositide 3-kinase (PI3K). IRS1
degradation indirectly increases the interaction between the
p85 protein of PI3K and platelet-derived growth factor receptor
(PDGFR), which enhances cancer-cell proliferation through
signaling downstream of the PDGFR (91). Elastase released
by PMN-MDSCs in lymphangioleiomyomatosis patients, a
condition where estrogen-sensitive metastatic tumors grow in
the lungs, stimulate the proliferation, migration and invasion of
these tumor cells in vitro (92). Cathepsin-D stimulates cancer-
cell proliferation as well, but also stimulates tumor angiogenesis
and could protect cancer cells from apoptosis (93). Hepsin,
a transmembrane serine protease involved in cell motility
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and shape, is degraded by the proteasome through cathepsin
D-stimulated ubiquitination (94). By downregulating hepsin,
cathepsin D contributes to enhanced migration and invasion of
breast cancer. Cathepsin B cleaves cell cycle inhibitor p27Kip1

in the lysosomes of colorectal cancer cells, which contributes
to tumorigenicity and metastasis of colorectal cancer cells (95).
Extracellular matrix (ECM) and intracellular collagen IV can be
degraded by cathepsin B, stimulating tumor invasion, metastasis,
and the formation of vessel-like structures in vivo (96).

Although proteinase 3 can be secreted by myeloid cells,
neutrophils carry a membrane-bound proteinase 3 that seems
to play a role in cellular interactions. Neutrophils in acute
myeloid leukemia inhibit T-cell proliferation in a contact-
dependent manner. Antibody-based blockade of membrane-
bound proteinase 3 on the surface of neutrophils partially
restores proliferation of CD4+ and CD8+ T cells (97). The
resulting signaling cascade caused by the interaction between
membrane-bound proteinase 3 on neutrophils and receptor for
advanced glycation end-products (RAGE) on prostate cancer
cells promotes tumor-cell migration and metastasis to the bone
barrow, independent of the proteolytic activity of proteinase
3 (98). Combined efforts of neutrophil elastase, cathepsin G
and proteinase 3 activate progelatinase A, that degrades the
extracellular matrix followed by the subsequent release of growth
factors, tumor-cell invasion and angiogenesis in the TME (99).
In conclusion, the majority of enzymes released or upregulated
upon neutrophil degranulation can remodel the extracellular
matrix, which stimulates tumor-cell invasion, metastasis and
tumor growth, but also promotes tumor angiogenesis.

Neutrophil Extracellular Trap Formation
(NETosis) as Tumor Promoter
Neutrophil extracellular traps (NETs) are extracellular strands
composed of granule content and nuclear fragments that entrap
and kill bacteria through granule proteases and DNA histones
(100, 101). Various studies have demonstrated that the formation
of NETs is ROS-dependent (64, 102, 103), but can also occur
through CXCR2 signaling during chronic inflammation, and
through TLR2 and C3 signaling (101, 104). A study unraveling
the role of high sensitivity troponin T (hsTnT) plasma levels
in the onset of ischemic stroke, revealed an unexpected high
prevalence of cancer among patients with elevated hsTnT plasma
levels in the post mortem analysis (105). In these patients, the
elevated hsTnT plasma level was associated with an increased
plasma level of NET-associated citrullinated histoneH3, amarker
for NETosis, as well as increased plasma levels of G-CSF and
coagulation factors. This study demonstrates that NETosis can
take place in cancer patients with elevated citrullinated histone
H3 levels (105). In fact, tumor-derived G-CSF primes neutrophils
to form NETs, which could also contribute to a systemic,
prothrombic state in these cancer patients (105, 106).

Furthermore, a study by Miller-Ocuin et al. correlated
circulating neutrophil DNA, resulting from NETosis, to the
cancer stage of pancreatic ductal adenocarcinoma patients (107).
They demonstrated that neutrophil DNA activates pancreatic
stellate cells that support tumor progression, and propose that

NET DNA acts as a DAMP capable of stimulating tumor
progression (107). In patients that underwent major liver
resection of metastatic colorectal cancer, in which ischemia
and reperfusion is inevitable, NET formation was increased
compared to cancer patients that underwent minor liver
resection, in which ischemia and reperfusion is limited,
demonstrating that surgery-induced stress promotes NET
formation (108). These authors further demonstrated that NETs
in the liver provide an anchoring site for circulating cancer cells,
that supports metastases and cancer-cell growth after resection of
the primary tumor. Hence, NETsmay support tumor progression
through various mechanisms.

Surrounding macrophages deal with the aftermath of NETosis
by digesting cellular debris. Interestingly, M1-like macrophages
have been shown to release uncoiled or uncondensed DNA
upon interaction with NETs in vitro, suggesting a possible
contribution to NETosis through their own form of extracellular
trap formation (METosis) (109). It remains to be seen whether
such a mechanism contributes to the tumor-promoting effects
of macrophages.

Complement Activation as Tumor Promoter
Complement is an innate defense mechanism that detects and
eliminates pathogens from the circulation and tissues, clears
cellular debris and stimulates adaptive immunity.

Complement activation through the classical, alternative or
lectin-mediated pathway ultimately results in the formation of
a cytolytic membrane attack complex (MAC) in the membrane
of target cells or microorganisms (110) and the production
of anaphylatoxins C3a and C5a (111). Anaphylatoxins can be
involved in T-cell homeostasis (112, 113) and in the recruitment
of granulocytes (114–116), monocytes (117) and DCs (118) to
the site of inflammation through chemotaxis via C3a and C5a
receptors (C3aR, C5aR).

Aside from anaphylatoxin production during complement
activation, opsonin C3b and its cleavage products (iC3b,
C3c, C3d) are deposited on the surface of target cells or
microorganisms, when C3 is cleaved by C3 convertase (119).
Myeloid cells express complement receptors that bind C3-
derivatives, leading to phagocytosis, cell-cell adhesion and
adhesion to the extracellular matrix (120). Complement can also
steer the adaptive immunity by activating B and T cells through
combined engagement of complement receptors and the B-cell
receptor or TCR, respectively (121).

Overall, the resulting effector mechanisms of complement
activation are (1) cell-mediated phagocytosis (complement-
dependent cellular phagocytosis or CDCP) and (2) cytotoxicity
(complement-dependent cellular cytotoxicity or CDCC),
initiated by the interaction between opsonized target cells
or microbes and CR-expressing myeloid cells, as well as
(3) complement-dependent cytotoxicity (CDC) through the
formation of the MAC in the membrane of target cells or
microorganisms, and (4) the recognition and clearance of dying
cells (122) (Figure 3). However, distinguishing the different
effector mechanisms that contribute to cancer-cell eradication
as a result of complement activation remains challenging up
to now. Furthermore, complement-induced cytolytic effector
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FIGURE 3 | Cell-dependent and -independent effector mechanisms of complement activation and FcR-mediated killing. Complement factor- and antibody-opsonized

cancer cells can be eliminated through cell-dependent and cell-independent effector mechanisms. CRs and FcRs on phagocytes bind opsonins and antibodies,

respectively, on the surface of targeted cancer cells, followed by phagocytosis and/or release of lytic enzymes (granzyme B, perforins) and proinflammatory mediators

(TNFα, IFNγ). The classical pathway of complement activation mediates a cell-independent form of lytic cell death by introducing a MAC in the membrane of antibody

opsonized target cells that are recognized by complement C1 complex. ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent

cell-mediated phagocytosis; CDC, complement-dependent cytotoxicity; CDCC, complement-dependent cell-mediated cytotoxicity; CDCP, complement-dependent

cell-mediated phagocytosis; CRs, complement receptors; IFNγ, interferon gamma; TNFα, tumor necrosis factor alpha; C5a, complement factor 5a; C3a, complement

factor C3a; FcγR, crystallizable fragment receptor gamma; C1, complement factor.

mechanisms on the surface of host cells is prevented through
the expression of complement regulatory proteins (CRPs),
such as CD46, CD55, CD59 and factor H. Several cancer types
overexpress CRPs and make use of this defense mechanism
against complement-induced cytolysis (123–125), whereas
downregulation or blockade of CRPs sensitizes cancer cells to
complement- and antibody-mediated cytotoxicity (126, 127).

Complement Anaphylatoxins as Tumor Promoters
Complement activation has been reported to promote tumor
progression through the recruitment of immune suppressive
macrophages, MDSCs and neutrophils, while on the other hand,
there are also reports of its capacity to stimulate antitumoral

T-cell responses and the recruitment of NK cells (128–130).
Recruitment of MDSCs in response to anaphylatoxins has been
demonstrated in several studies (130–132). Markiewski et al.
revealed that aside from increased recruitment of MDSCs to
the tumor in response to C5a, the latter also enhances the
production of ROS and RNS in MDSCs via C5aR signaling
(132). As mentioned earlier, ROS and RNS release by MDSCs
in the TME abrogates antigen recognition by CTLs and instead
induces tolerance (67, 68). Moreover, C5a is also implicated in
the formation of new blood vessels. Corrales et al. demonstrated
that human umbilical vein endothelial cells treated with C5a
form vessel-like structures. They further elaborated on the vessel-
like structures in a murine 3LL lung cancer model, where they
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showed that the number of newly formed microvessels in the
tumor is reduced upon C5aR antagonism (133). While the role
of C5a in cancer progression has been extensively studied, less is
known about the implication of C3a in cancer. In the absence
of C3aR signaling, murine B16 melanoma tumor growth is
reduced, along with an increased tumor infiltration of CD4+

T cells and neutrophils (134). Similar results were observed in
orthotopic mouse models of lung cancer (CMT167, LLC), where
flow cytometry and immunohistochemistry analysis revealed an
increased abundance of activated CD4+ and CD8+ T cells in
tumors grown in C3-deficient mice (135). Interestingly, depletion
of CD4+ T cells, but not CD8+ T cells, restored tumor growth in
C3-deficient mice.

Tumor-infiltrating macrophages and neutrophils also
carry the potential to suppress the detrimental effects of
complement activation through IL-1ß-induced expression of
pentraxin 3 (PTX3) (136). Surface-expressed PTX3 recruits
complement factor H that inhibits the C3 cleavage upstream
of the complement cascade and prevents complement-induced
inflammation and recruitment of immunosuppressive myeloid
cells to the TME. However, Ptx3 is epigenetically silenced at
the gene level in murine and human colorectal cancer through
hypermethylation (136). Altogether, the above-mentioned
studies provide evidence for the role of complement in cancer
that seems to promote tumor progression by recruiting MDSCs
to the tumor, reducing the infiltration of activated CD4+

T cells and stimulating new vessel formation. The effect of
anaphylatoxins on tumor-infiltrating CTLs remains unresolved,
whereas several studies highlight the importance of CD4+ T cells
in response to anaphylatoxins.

Complement in Cancer Immunotherapy
Despite the intrinsic protumoral functions of complement in
cancer, it should not be forgotten that complement can be useful
in the context of antibody-mediated cancer immunotherapy.
Indeed, the classical pathway of complement activation, initiated
by antibody-opsonized target cells, is one of the effector
mechanisms of therapeutic monoclonal antibodies (mAb) (137,
138). This was demonstrated in a study by Lee et al., who
designed therapeutic mAbs capable of discerning complement-
mediated and Fc receptor (FcR)-mediated killing mechanisms
(139). Aglycosylated, anti-CD20 IgG1 mAb, engineered with a
C1q-selective Fc-part that does not bind FcRs, demonstrated
similar potency in clearing CD20+ Raji and Ramos lymphoblastic
cells compared to antibodies that rely on FcR-mediated functions
(139). Along the same line, the therapeutic anti-CD20 mAb
Rituximab at least partially relies on the classical complement
activation pathway for destruction of neoplastic CD20+ B
cells (140). However, the release of proinflammatory mediators
(IL-6, TNFα) and degranulation by granulocytes in response
to complement anaphylatoxins contribute to the toxic side
effects of anti-CD20 therapy, such as fever, dyspnea, chills
and flushes (141). Similarly, the in vivo effector functions
of Cetuximab, an anti-EGFR mAb, have been attributed to
complement activation in several murine models of non-small
cell lung carcinoma (142). However, it should be remarked that
the efficacy of mAb-mediated complement activation is likely

to be cancer type-dependent and may be influenced by the
characteristics of the cancer cells and/or factors present in the
tumor microenvironment.

Moreover, the efficacy of antibody-based therapy, that relies
on the cytotoxic effector mechanisms of complement and FcR-
mediated cytotoxicity, is restricted by the limited availability
of suitable antigens for therapeutic targeting. In addition, the
dual role of complement in cancer must be taken into account
when using complement as an effector mechanism of antibody-
based therapy. It appears that complement can promote tumor
growth through high C5a concentrations, sublytic MACs levels
and high CRP levels on the surface of cancer cells, while
intermediate concentrations of C5a, increased MAC formation
in the membrane of cancer cells and low surface expression of
CRPs could eliminate cancer cells (129, 143). Future therapeutic
strategies should take this delicate balance between tumor
promotion and tumor eradication into account.

FcR-Mediated Killing
When the Fc part of an antibody interacts with cognate surface-
expressed FcRs, this may result in ADCC, ADCP, antigen
presentation, degranulation and an altered cytokine production
profile (Figure 3) (144). NK cells are thought to be the main
effector cells of ADCC, yet studies have shown that antibody-
based cellular destruction mechanisms can also take place in the
absence of NK cells (145). The relevance for therapeutic mAbs
is shown by mice deficient in the common gamma chain of
the FcγR. These mice do not engage ADCC or ADCP in the
presence of Trastuzumab and Rituximab (145, 146). Members
of the mononuclear phagocyte system, including monocytes and
macrophages, are responsible for the working mechanism of
Rituximab (145). Indeed, CD20-targeted B-cell depletion seems
to be dependent on FcγRI and FcγRIII expressed by monocytes
and macrophages and is absent in colony stimulating factor
1-deficient mice, which lack tissue macrophage subsets (145).
Biburger et al. discovered a murine subset of Ly6Clow non-
classical monocytes capable of autoantibody-mediated platelet
depletion and antibody-dependent B-cell depletion via ADCC
and ADCP mediated by FcγRIV, a low affinity FcγR that is
not expressed by NK cells or tissue-resident macrophages (147).
Human CD16+ (FcγRI) monocytes similarly perform ADCC,
almost as efficiently as NK cells. TNFα release by these CD16+

monocytes upregulates type 2 beta integrins (CD11a, CD11b),
which facilitate the interaction between CD16+ monocytes and
antibody-coated cancer cells (148). The number of murine B16
melanoma metastases in the lung of FcγRIIb-deficient mice
significantly decreased when treated with a mAb targeting
melanoma differentiation antigen gp75 (146). FcγRIIb is an
inhibitory Fc receptor which is not expressed by NK cells.
Therefore, an enhanced ADCC response cannot be attributed
to increased NK-cell activation in FcγRIIb-deficient mice and is
likely monocyte/macrophage-mediated. Moreover, a synergistic
effect was observed when combining FcγRIIb deficiency and
a therapeutic mAb against mouse and human HER2 (4D5,
Trastuzumab) (146).

However, not all FcR-mediated effects are beneficial in the
context of mAb-mediated therapy. For example, phagocytosis of
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antibody-opsonized cancer cells by TAMs was shown to activate
the inflammasome AIM2, which results in the subsequent
release of IL-1ß, hence increasing PD-L1 surface expression
and cytosolic IDO production in TAMs (149). As a result,
TAMs that underwent ADCP display an immunosuppressive
phenotype, which is relieved upon PD-L1 and IDO blockade
(149). Furthermore, in vivo imaging by Arlauckas et al. (150)
demonstrated that PD-1-negative TAMs take up anti-PD-1
antibodies that were initially bound to PD-1+ CTLs, in an
FcR-mediated way. Hence, TAMs could serve as a sink for
anti-PD-1 antibodies and possibly also other mAbs, strongly
diminishing the efficacy of mAb-dependent therapies such as
immune checkpoint blockade (150).

ENTANGLED NETWORK OF INNATE
RESPONSES

Innate immune responses are often regarded as the default first-
line defense responses, that become less significant once a more
complex, adaptive and antigen-directed response is initiated.
With this review, we provide evidence for the detrimental
effects of innate effector mechanisms performed by myeloid
cells during cancer development and progression. Noteworthy,
effector mechanisms that are initially deployed by innate myeloid
cells, such as ROS production, release of inflammatory mediators
and response to PRR signaling, can be adopted by cancer
cells. However, contradicting literature studies are available
on the role of several innate defense mechanisms in cancer,
and this duality between tumor-promoting and -eradicating
roles seems to be linked to the presence of persisting, tumor-
associated inflammation. Inflammation is required to mount
anti-tumor immune responses, while chronic tumor-associated
inflammation promotes tumor progression. This duality can
even be extended to the response of so called “hot tumors”
and “cold tumors” to immunotherapy. Interestingly, mAb
therapy targeting immune checkpoints seem to be effective
in “hot tumors,” abundantly infiltrated by T cells, whereas

“cold tumors” that lack proper T-cell responses remain largely
unresponsive to mAb therapy (151). Cold tumors, however,
are still infiltrated by myeloid cells, that create an immune
suppressive environment, which impedes T-cell infiltration and
tumor eradication. Therefore, innate defense strategies might
play a more important role in cancers with an inflammatory
nature or origin, for example in organs like the liver, stomach,
lungs and skin due to alcohol abuse, H. pylori infection, tobacco
and asbestos, UV irradiation and even obesity. In any case,
due to the abundance of tumor-infiltrating myeloid cells in
multiple solid tumor types, their effector mechanisms should
be investigated in depth and exploited in cancer therapy,
perhaps alongside T-cell stimulatory immunotherapy to improve
therapy outcome.
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Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control

in subsets of patients. However, its effect can be blunted by myeloid-induced resistance

mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound

healing and to immune homeostasis maintenance. In cancer, their physiological activities

can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive

cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences.

The involvement of MDSCs in tumor development and progression has been widely

investigated and MDSC-induced immunosuppression is acknowledged as a mechanism

hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the

microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising

metabolism and function, as well as their skewing to a MDSC phenotype. miR expression

can be indirectly induced by cancer-derived factors or through direct miR import via

extracellular vesicles. Due to their structural stability and their presence in body fluids

miRs represent promising predictive biomarkers of resistance, as we recently found

by investigating plasma samples of melanoma patients undergoing immune checkpoint

blockade. Dissection of the miR-driven involved mechanisms would pave the way for the

identification of new druggable targets. Here, we discuss the role of thesemiRs in shaping

myeloid resistance to immunotherapy with a special focus on immunosuppression and

immune escape.

Keywords: microRNAs, myeloid-derived suppressor cells, immunotherapy, immune checkpoints, therapy

resistance, extracellular vesicles

INTRODUCTION

Myeloid cells are involved in inflammatory processes, including cancer, and their accrual
to the tumor microenvironment (TME) leads to immunosuppression and angiogenesis,
thereby promoting tumor growth. Thanks to their plasticity, they are acknowledged
cancer allies, negative prognostic factors, and pharmacological targets. Low/negative
HLA-DR expression (1) defines monocytic myeloid-derived suppressor cells (CD14+HLA-
DRlow/neg; M-MDSCs), which influence cancer aggressiveness and resistance to immune
checkpoint inhibitors (ICIs) (2). We focused on myeloid cells for more than a decade and
first defined M-MDSCs in melanoma patients (3). We dissected underlying mechanisms
via an in vitro tumor extracellular vesicle (EV)-healthy donor monocyte-MDSC model
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and identified a set of causally involved microRNAs (miRs),
the “MDSC-miRs.” miRs are small non-coding RNAs of ∼22
nucleotides, which modulate biological processes by mostly
interacting with the 3′-untranslated region (UTR) of the target
messenger RNA (mRNA). An imperfect base-pair interaction
induces translational repression, while a perfectly base-paired
miR directly cleaves the mRNA (4, 5). However, some miRs
can also bind the 5′-UTR of mRNA, upregulating its translation
(6). We measured increased MDSC-miR levels in circulating
CD14+ cells and lesions of melanoma patients in association
with myeloid infiltrates and peripheral blood MDSC accrual
(7, 8). Matching of MDSC-miR predicted target genes with
EV-MDSC transcriptional profile revealed miR involvement in
chemotaxis, adhesion, and differentiation of myeloid cells. The
upregulation of MDSC-miRs, including miR-146a, miR-146b,
miR-155, miR-125b, miR-100, let-7e, miR-125a, and miR-99b, in
baseline plasma predicted resistance to ICIs (8). In vitro, MDSC-
miR antagonists relieved the suppressive potential of patients’
monocytes leading to autologous T cell reactivation. Thus,
MDSC-miRs could account for myeloid deregulation, implying
an involvement of blood factors in the epigenetic control
of MDSC functions. A higher MDSC frequency is associated
with poor prognosis, even upon immunotherapy, anticipating a
reduced treatment efficacy. Pharmacological MDSC reduction,
inhibition of their suppressive activities or promotion of their
differentiation are under testing at preclinical and clinical
levels (9, 10). The functional roles of miR expression by
immune cells remain controversial. In case of MDSC-miRs,
their overexpression impacts myeloid cell differentiation and
polarization by participating in immunosuppressive pathways.
Like other miRs, also MDSC-miRs are detectable in EVs, whose
size correlates withM-MDSC frequency (8). Tumor and immune
cell EVs attracted interest as reservoirs of functional messages
exchanged between adjacent cells in the TME and at a distance.
EV membrane guarantees content integrity, enabling safe
traveling of proteins, lipids, and genetic material to interaction-
prone cells. Major efforts are dedicated to investigate EVs as
biomarkers of response or drivers of resistance mechanisms
to ICIs.

This review discusses the role of MDSC-miRs in shaping
myeloid resistance to immunotherapy with a focus on
immunosuppression and escape.

The Role of miRs in Cancer Therapy
Resistance
As oncomiRs or tumor-suppressors, miRs can promote or inhibit
cancer development. They directly target cell proliferation and
apoptosis genes, thus being involved in chemotherapy resistance,
drug target deregulation, and drug metabolism mechanisms
(11). In immunotherapy, miRs can control the success of
ICIs by targeting PD-1 and PD-L1, MHC-antigen presentation
machinery, and TLR signaling (12). Among MDSC-miRs, miR-
155 suppresses PD-L1 through directly binding the 3′-UTR of
PD-L1 in human lymphatic endothelial cells (13). The reduction
of PD-L1 expression and the consequent disruption of the

PD-L1/PD-1 axis may contribute to sustaining T cell antitumor
responses, thereby synergizing with ICIs to improve cancer
immunotherapy outcome. This miR contributes essentially to
mounting of CD8+ T cell responses by restraining T cell
senescence and exhaustion through epigenetic silencing of
transcription factors determining their terminal differentiation
(14). Moreover, miR-155 expression correlates with TCR
stimulation of tumor-infiltrating T cells in melanoma patients
(15). The MDSC-miR-146a, 146b, 155, and let-7, bind to
the 3′-UTR of TLRs or TLR-associated genes resulting in
post-translational TLR signaling repression and inflammatory
response modulation (16). Similarly, the MDSC-miR-125a and
let-7e regulate the inflammatory response and the IL-10-
mediated tolerance to LPS, by targeting the TLR4 pathway
in monocytes (17). TLR4 can promote expansion of PD-L1+

MDSCs, an effect mediated via HSP86-TLR4 signaling pathway
activation (18). Since specific miRs can directly activate TLRs
expressed at endosomal level (19, 20), MDSC-miRs might target
these proteins and contribute to expanding PD-L1 expressing
MDSCs. Thus, targeting MDSC-miRs might potentiate ICI-
based immunotherapy.

The development of therapeutic antagomiRs and miR
mimics have entered phase I and II clinical studies (21). The
DNA-single strand antagomiRs are usually designed on first-
generation antisense oligonucleotides or modified with locked
nucleic acids to reduce the oncomiR activity by competition
with the native cancer-suppressing target transcripts (22).
MiR mimics are double strand oligonucleotides that enter
the native cellular process mimicking pre-miR duplex (23).
Cobomarsen (MRG-106), a miR-155 inhibitor, has entered
phase I trials to study safety and potential efficacy following
local or intravenous administration in lymphoma and leukemia
patients (24).

Despite the therapeutic potential of miRs, their delivery
remains challenging, due to undesired off-target effects, hindered
cell uptake, and short circulation half-life (25). Synthetic
nanoparticles (NPs) mediate specific cell uptake and prevent miR
clearance (26). In preclinical models, effective miR supply was
obtained via neutral lipid emulsion-based approach for miRs
of the let-7 family, as well as neutral liposomes and synthetic
polyethylenimine-based nanocarriers for miR-145. Lastly, pH
low insertion peptide-modified antagomiRs were able to inhibit
the oncomiR miR-155 (27). Otherwise, miR-155-loaded NPs
can repolarize tumor-associated macrophages (TAMs) from
pro-tumorigenic M2 to anti-inflammatory M1-like phenotype,
reversing the immunosuppressive TME (28). In clinical setting,
NP-based miR manipulation comprises liposomal (DOPC)-
encapsulated siRNAs targeting EphA2 in solid tumors (29),
bacterial derived nanocells EDVs (EnGeneIC Delivery Vehicle),
or TargomiRs, for miR-16 mimic delivery (30). EVs may be
also suitable for miR delivery (31). Healthy donor plasma miR-
loaded EVs promoted apoptosis in HCC cells (31), while miR-
sponge engineered EVs reduced glioblastoma volume in rats
(32). Finally, the natural exchange of endogenous miRs between
immune cells, such asmiR-155 andmiR-146a carried by dendritic
cell EVs, controls inflammatory gene expression or promotes
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apoptotic cell clearance, as in case of endothelial cell EVs
transferring miR-125a to macrophages (33).

Specific miR inhibition is accomplished by Small Molecule
Inhibitors of miRs (SMIRs), which target synergistically tumor
cells and oncomiRs, such as linifanib. This VEGF- and
PDGF-receptor tyrosine kinase-inhibitor effectively inhibits the
oncogenic function of miR-10b in preclinical cancer models
(34). Finally, several miRs are related to tumor radioresistance
management, where, thanks to the inhibition of ATM protein,
they can modulate DNA damage response sensitizing tumor cells
to radiotherapy (35).

Epigenetic Regulation of Immune Cell
Functions by MDSC-miRs
The upregulation of miR-146a, miR-146b, miR-155, miR-125b,
miR-100, let-7e, miR-125a, and miR-99b can skew immune cells
into inhibitors of response to immune and other cancer therapies
(Table 1). Of note, five miRs out of eight show a coordinated
expression pattern due to their transcription as clusters. The
miR-125a∼99b∼let-7e cluster is hosted in the first intron of
the long non-coding RNA NCRNA00085, whereas miR-125b,
miR-100, and let-7a are hosted in MIR100HG (17, 58). A clear
association of miR-125a∼99b∼let-7e cluster and acquisition of a
myeloid immunosuppressive phenotype has been demonstrated
(17, 36, 59, 60). In particular, stimulation of monocytes with
GM-CSF, IL-4, and R848 TLR7/8 agonist upregulates the miR-
125a∼99b∼let-7e cluster, activates STAT3, and induces the
acquisition of an immunosuppressive phenotype. Conversely, the
depletion of the cluster reverses immunosuppressive functions
and MDSC phenotype hallmarks, by downregulating PD-
L1 and IDO, while increasing HLA-DR expression. This
contributes to STAT3 stabilization through downregulation of
TRIB2, a suppressor of MAPK signaling, and SOCS1, a key
regulator of cytokine signaling and STAT3 inhibitor. The miR-
125a∼99b∼let-7e cluster is negatively regulated by IFNγ, while
it is induced by STAT3 and SMAD3, in turn activated by IL-
10 and TGFβ immunoregulatory cytokines. miR-125a and let-7e
also exert their anti-inflammatory activity by targeting the TLR
signaling pathway molecules TLR4, CD14, and IRAK1, leading
to decreased pro-inflammatory cytokine release by myeloid cells
(17, 59).

MIR100HG and its encoded miR-125b and miR-100
are induced by TGFβ, the main cytokine released by M2
macrophages (61). TGFβ promotes cancer epithelial-to-
mesenchymal transition (EMT) through MIR100HG induction
and SMAD2/3 transcription factor activation. The dysregulation
of this cluster is also causally linked with drug resistance
in several tumor types (58, 62). In immune cells, miR-125b
expression is usually linked to antitumor M1-like macrophages,
whereas in T cells it inhibits CD4T cell differentiation and γδ T
cell activation (37). In contrast, little is known about miR-100
expression and function in immune cells. In regulatory T cells
(Tregs) increased levels of the edited variant of miR-100 changes
its target gene from MTOR to SMAD2, resulting in limited
differentiation and increase of Treg plasticity (38).

MDSC-miRs and Response to
Immunotherapy
Under physiological conditions the miR-146 family (miR-146a
and miR-146b) and miR-155 actively control innate immunity,
whereas in cancer these miRs have gained attention for their
deregulation and acquisition of oncogenic roles. Both are
transcriptionally regulated by NFkB, but with opposite functions:
miR-146 represents the anti-inflammatory and miR-155 the pro-
inflammatory counterpart. miR-146a/b act as negative feedback
regulators of TLR signaling through inhibition of the NFkB
pathway by downregulation of TRAF6 and IRAK1 (63), thereby
dampening the production of pro-inflammatory mediators (64).
On the other hand, miR-146b is also induced by TLR4 signaling
via an IL-10-mediated STAT3-dependent loop (65), and it
inhibits macrophage activation by targeting IRF5 (39). miR-146a
is an essential regulator of immune cell activation and malignant
transformation (64), and knockout mice are affected by chronic
NFkB dysregulation and myeloid malignancies (40, 41). Several
studies proposed miR-146a as an immunotherapeutic target: its
overexpression reduces the metastatic potential of breast cancer
(BC) cell lines through NFkB inhibition (42), whereas it supports
the M2-like phenotype of TAMs in endometrial cancer (43).
In a preclinical model of HCC, miR-146a inhibition alters the
STAT3 activation-associated cytokine profile improving the anti-
tumor effect of lymphocytes (44). Mastroianni et al. identified
miR-146a as a central negative regulator of the STAT1/IFNγ

axis, affecting migration, proliferation, and inducing PD-L1
expression. Combined PD-1 blockade and miR-146a antagomiR
improve survival of melanoma-bearing mice (45). We found
that high miR-146a levels, concomitantly with the other MDSC-
miRs, are associated withMDSC induction and ICI resistance (8).
In myeloid leukemia, miR-146a mimics can inhibit tumorigenic
NFkB activity (46). Finally, miR-146a is also involved in ICI-
mediated immune-related adverse events (irAEs), as shown
by knockout mice exhibiting increased T cell activity and
inflammation during ICI intake. These effects could be restrained
by miR-146a mimics (47).

The pro-inflammatory miR-155 is induced upon TLR/IFNγ

stimulation in monocyte/macrophages and drives their response
by regulating mRNA targets with inhibitory effects on innate
immune cell activation (66). In tumor cells, intrinsic miR-
155 mediates pro- or anti-tumor effects (67). Similarly to
miR-146a, miR-155 upregulation promotes cell proliferation,
colony formation, and xenograft tumor growth in BC models
by negative regulation of SOCS1 and SHIP1, leading to
constitutive STAT3 activation and pro-tumor inflammation (48).
Deficiency of miR-155 can also foster tumor growth through
MDSC recruitment and potentiation of their tumor promoting
functions, as demonstrated in BC. Here, miR-155 loss in
myeloid cells impairs TAM activation, while in tumor cells
it stimulates C/EBP-β-mediated cytokine production in turn
stimulating tumor-infiltrating MDSCs (49, 50). Similar results
were obtained in mouse models of melanoma and lung cancer
(51). As for other miRs also miR-155 appears to cover apparently
contradictory roles depending on the expressing cell or the
setting. Li et al. showed that upregulated miR-155 together with
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TABLE 1 | Role of MDSC-miRs in tumorigenesis and response to cancer therapies.

miR Cells Expression Target genes/Pathways Phenotype References

miR-125a∼

99b∼let-7e

Monocytes ↑ TRIB; SOCS1 Immunosuppressive properties mediated by STAT3

activation

(36)

miR-125a and

let-7e

Monocytes ↑ TLR4; CD14; IRAK1 ↓ Anti-inflammatory activity and cyto/chemokines (17)

miR-125b Macrophages ↑ IRF4 Acquisition of M1 phenotype (37)

T cells ↑ IFNG; IL10RA; IL2RB; PRDM1 Suppression of CD4+ T cell differentiation (37)

T cells ↑ CD107a; TNFA; IFNG Inhibition of γδ T cell activation (37)

miR-100 Tregs ↑ SMAD2 ↓ Treg differentiation and ↑ plasticity (38)

miR-146b Macrophages ↑ IRF5 ↓ M1 macrophage and inflammation (39)

miR-146a Monocytes ↓ TRAF6; IRAK1 ↑ chronic NFkB driving myeloid malignancy (40, 41)

Breast cancer ↓ TRAF6/IRAK1 ↑ NFkB activity and metastasis (42)

Endometrial cancer ↑ NIFK-AS1 ↑ M2-like phenotype of TAMs (43)

Hepatocellular carcinoma ↑ STAT3 Immunosuppression by ↑TGFβ, IL17, VEGF and

↓type I IFN

(44)

Melanoma ↑ STAT1/IFNγ axis; PD-L1 Melanoma migration, MDSC promotion and

resistance to ICIs

(8, 45)

MDSCs ↑ NFkB ↓ NFkB-mediated inflammation (46)

T cells ↑ IFNγ and perforin ↓ ICI-mediated irAEs severity (47)

miR-155 Breast cancer ↑ SOCS1/SHIP1 Activation of STAT3 signaling and pro-tumor

inflammation

(48)

Myeloid cells ↓ C/EBP-β Breast tumor growth by MDSC infiltration and TAM

tolerance

(49, 50)

MDSCs ↓ HIF-1α ↑ MDSC recruitment and function, ↑ solid tumor

growth

(51)

MDSCs ↑ SHIP1 ↑ STAT3 activation and expansion of functional

MDSCs

(52)

Colorectal cancer ↑ SOCS1 ↑ MDSC activity and tumor growth (53)

T cells ↑ SHIP1 ↑ IFNγ production, ↑ T cell-mediated antitumor

immunity

(54)

Melanoma ↑ ND MDSC induction ↑ resistance to immunotherapy (8)

T cells ↑ T cell activation markers ↑ T cell response (55)

T cells ↑ PRC2/Phf19 ↑ cancer immunotherapy by ↑ CD8+ T cell function (14)

T cells ↑ TIM3 Cytolytic activity of CD8+ T cells against HCC (56)

T cells ↑ ND ↑ antitumor activity of CD8+ T cells (57)

ND, not defined; ↑, increased; ↓, decreased.

miR-21 led to MDSC expansion, whereas their loss reversed this
effect. In particular, by targeting SHIP1 and PTEN these miRs
synergistically increase STAT3 activity, promoting MDSCs (52).
In this line, loss of miR-155 can enhance antitumor T cell activity
by reducing MDSC immunosuppression and tumor infiltration
(53). In contrast, miR-155 expression by T cells promotes
antitumor immunity and ICIs hinder miR-155-deficiency-
induced immune escape (54). We found that miR-146a and
miR-155 along with the other MDSC-miRs contribute to MDSC
induction (8), suggesting that the expression levels of different
miRs can influence the fine-tuning of pro- or anti-inflammatory
pathways depending on the cell type. Interestingly, in tumors
with highmutational burden, such as melanoma and lung cancer,
miR-155 was associated with a strong immune signature and
improved clinical outcomes (55). Likewise, miR-155 potentiates
immunotherapy through epigenetic regulation of CD8+ T
cell differentiation via PRC2/Phf19 signaling (14). Yan and

coworkers demonstrated that miR-155-induced downregulation
of TIM3, a negative immune checkpoint, enhanced the
cytolytic activity of anti-HCC CD8+ T cells (56). Finally,
miR-155 overexpression can optimize CD8+ T cell antitumor
activity and improve adoptive-transfer in low-affinity antigen
tumors (57).

EVs as miR Shuttles and MDSC Modulators
All cell types release EVs, membrane-surrounded structures
devoted to intercellular communication. EVs are present in
body fluids including plasma, serum, lymph, urine, saliva,
tears, and milk (68). Their content of proteins, nucleic acids,
lipids, and their stability, make EVs potential biomarkers and
therapeutic targets of disease (69, 70). Recent evidence shows
the ability of tumor-derived EVs to blunt anti-tumor immunity
at multiple levels (71). They can operate within the TME or
at a distance by boosting angiogenesis, triggering tumor cell
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EMT, activating cancer-associated fibroblasts, and shaping the
immune environment toward a condition of immune escape.
Tumor EVs can induce myeloid cell dysfunctions and increase
MDSC expansion (7, 8, 18, 72, 73). Indeed, EVs derived from
melanoma cell cultures as well as those from plasma of melanoma
patients contain the MDSC-miRs and promote the acquisition
of MDSC characteristics by healthy donors’ monocytes (8). The
potential of these miRs to induce such dramatic changes might
depend on their integrity, protected by the EV membrane, as
well as on their way of transfer. In fact, the internalization
of whole EVs carrying different miRs or EV receptor-ligand
interaction might account for diverse effects (74). In support of
our findings, Gerloff et al. (75) found that miR-125b encapsulated
in melanoma EVs promotes a TAM phenotype in macrophages
through targeting of lysosomal acid lipase (LIPA). In fact,
LIPA deficiency stimulates MDSC expansion in mice, and their
tumor promoting functions are driven by mTOR pathway
overactivation (76).

As a major obstacle to immunotherapy, it is crucial to
study MDSC effects in the TME (77). Myeloid EVs may
support immune activation or tolerance (78). Like other
cells, also MDSCs release EVs, taking part in intercellular
communication. Proteomics of MDSC EVs of BALB/c mice
bearing 4T1 or 4T1-IL-1β+ mammary carcinoma showed a
higher expression of 63 pro-inflammatory proteins in 4T1-
IL-1β+ mice, due to a more inflammatory environment. The
MDSC chemotactics S100A8 and S100A9 are abundant in

MDSC EVs and polarize macrophages into M2 phenotype (79).
These pro-inflammatory proteins are characterized by multiple
ubiquitination sites, and MDSC EVs were identified as carriers of
enzymes catalyzing ubiquitination (80). Interestingly, EVs from
TME-resident MDSC display a stronger immunosuppressive
potential than those deriving from spleen or bone marrow
MDSCs, suggesting the existence of different phenotypes and
functions (81). In contrast, the miR content of MDSC EVs is
still elusive, but the dissection could contribute to targeting
MDSC EVs release and spreading (82). EVs modulate innate
and adaptive immune responses via ligand-receptor interaction
or via miRs (83, 84). Indeed, a set of miRs including miR-155,
regulate PD-L1 protein expression (85) and induce MDSCs if
released via EVs by CLL cells (86). EVs also express immune
checkpoints. Actually, PD-L1 carried by EVs was investigated
for its role as biomarker and functional inducer of PD-1-
mediated immunosuppression (87–90). TIM3 and GAL9 bound
to EVs were proposed as prognostic biomarkers in NSCLC
patients (91).

Translational Implications
Large scale profiling studies demonstrated the association of
specific circulating miRs with certain types of human cancer,
proposing miRs as biomarkers (92). Their detection could
contribute to early cancer diagnosis, patient stratification, and
evaluation of therapy outcomes (93). miRs can be found free or
EV-bound in peripheral blood or other body fluids (94). Among

FIGURE 1 | Graphic representation of miRs shaping myeloid resistance to ICIs. Immune and tumor cells, both expressing miRs, mutually interact through miR-loaded

EVs. MDSC-derived miRs, including miR-146a, miR-146b, miR-155, miR-125b, miR-100, let-7e, miR-125a, and miR-99b can intervene in cancer progression and

interfere with the success of cancer immunotherapy by regulating immune checkpoints (ICs) and different molecular immune targets. Delivery of antagomiRs or miR

mimics with NPs, as well as SMIR drugs, represents the current therapeutic strategies to overcome resistance to ICIs induced by miRs. NPs, nanoparticles; SMIR,

small molecule inhibitor of miR; ICIs, immune checkpoint inhibitors; EVs, extracellular vesicles.
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MDSC-miRs, the miR-125a∼99b∼let-7e cluster was identified as
a potential diagnostic biomarker inmany tumor types. Colorectal
and ovarian cancer patients display lower levels of EV-bound
miR-99b compared to healthy controls (95, 96). Dysregulated
levels of free circulating let-7e were observed in retinoblastoma,
papillary thyroid carcinoma, lung, and prostate cancer (97–100),
whereas altered levels of EV-bound let-7 characterize esophageal
adenocarcinoma and lung cancer patients (101, 102). miR-125a
also represents a potential biomarker of treatment outcome
for HCC patients (103) and altered levels of this miR were
detected in certain blood malignancies (104, 105), where they
predicted response to chemotherapy, as demonstrated in patients
with myelodysplastic syndromes (106). In serum, increased miR-
146b levels correlate with papillary thyroid carcinoma recurrence
(92), while elevated miR-146a is associated with higher overall
response rate and survival in NSCLC (107). Furthermore, lower
EV-bound miR-146a levels correlate with cisplatin resistance
and shorter progression-free survival in NSCLC patients (108).
BC patients display high plasma miR-155 levels and in the
absence of disease, its increase is associated with treatment failure
(109). Interestingly, also urinary miR-155 can be correlated with
BC development (93, 110). In NSCLC, an increase of miR-
155 in plasma identifies stage I-II patients, implying this miR
as diagnostic tool (93, 111), although it was not suitable as a
prognostic biomarker (112). miR-155 expression is also related to
risk of relapse in colorectal cancer patients and chemoresistance
in pancreatic ductal adenocarcinoma, where anti-apoptotic
mechanisms are driven by tumor cell exchange of miR-155
containing EVs (93, 113, 114). Concerning MIR100HG, reduced
miR-100 expression coincides with diagnosis and prognosis
of bladder cancer (115). In contrast, higher circulating miR-
100 levels were found in HCC and esophageal squamous cell
carcinoma patients and predicted poor survival (116, 117).
Lastly, circulating miR-125b was identified as a biomarker of
diagnosis and poor prognosis in NSCLC, BC, colorectal, and
epithelial ovarian cancer patients, also during chemotherapy or
after surgery (118–123).

CONCLUSION

Despite major advances, the role of miRs, includingMDSC-miRs,
expressed by immune cells remains controversial. For instance,
both pro and antitumoral potentials are ascribed to miR-155,
depending on its expression levels (124). Of interest is also their
interplay: miR-146a−/− mice succumb to chronic inflammation
and miR-155 expressed by T cells contributes to shortening
lifespan by activating autoimmunity (125). The continuous
technical improvement will facilitate in-depth investigations
of the finely-tuned mechanisms governing the miR balance,
expression levels, and consequent repression/overexpression of
target genes to clarify the mechanisms governing myeloid
cell dysfunctions and MDSC activity. This will be of major
relevance also for cancer therapies. In fact, similarly to
SMIRs, also ICIs may induce changes in myeloid MDSC-
miR expression potentially related to clinical responses. The
complex tumor-immune relationship regulated by miRs and the

miR-based therapeutic approaches are summarized in Figure 1.
Thus, the dissection of therapy-induced miR modulation in
immune cells may contribute to decipher and antagonize
resistance mechanisms.
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Immune checkpoint inhibitors are becoming standard treatments in several cancer types,

profoundly changing the prognosis of a fraction of patients. Currently, many efforts are

being made to predict responders and to understand how to overcome resistance in

non-responders. Given the crucial role of myeloid cells as modulators of T effector cell

function in tumors, it is essential to understand their impact on the clinical outcome of

immune checkpoint blockade and on the mechanisms of immune evasion. In this review

we focus on the existing clinical evidence of the relation between the presence of myeloid

cell subsets and the response to anti-PD(L)1 and anti-CTLA-4 treatment. We highlight

how circulating and tumor-infiltrating myeloid populations can be used as predictive

biomarkers for immune checkpoint inhibitors in different human cancers, both at baseline

and on treatment. Moreover, we propose to follow the dynamics of myeloid cells during

immunotherapy as pharmacodynamic biomarkers. Finally, we provide an overview of the

current strategies tested in the clinic that use myeloid cell targeting together with immune

checkpoint blockade with the aim of uncovering the most promising approaches for

effective combinations.

Keywords: myeloid cells, predictive biomarkers, MDSC (myeloid-derived suppressor cell), TAM (tumor-associated

macrophage), circulating biomarkers, resistance to immunotherapy, immune checkpoint inhibitors, tumor

biomarkers

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have proven their efficacy in boosting the effector functions
of tumor-reactive T lymphocytes against cancer cells. ICI activity is carried out through the specific
targeting of negative immune checkpoint molecules or their ligands, expressed on either T cells or
myeloid and tumor cells (1). Since 2011, the FDA has approved 7 ICIs (one anti-CTLA-4, three
anti-PD-1, and three anti-PD-L1 antibodies) for several indications and many more drugs are in
preclinical and clinical development. However, despite the exponential increase in the use of ICIs
in the clinic, most patients with advanced cancers still do not respond to these treatments.

It is therefore imperative to understand the mechanisms of action of these drugs to better select
responder patients before or during treatment, as well as to design new drugs or combinations
that could increase the chances of clinical response and, at the same time, limit the exposure to
adverse effects and ineffective therapies for non-responding patients. The importance of reliable
biomarkers is progressively recognized for successful clinical trials and for the comprehension
of ICI. Most of the understanding for the approved immune checkpoint blockers comes from
preclinical experiments and still few clinically validated biomarkers are available.

Not surprisingly, biomarkers are currently mainly focused on T cells and tumor cells, but it is
becoming clear that other cell types in the periphery and at the tumor site can impact the efficacy of
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immunotherapy. Myeloid cells are among the “usual suspects,”
given their plasticity and their well-known role as immune
modulators in tumor growth and metastasis (2–5). The
modulation of ICI response by cells of the myeloid lineage
is currently being examined, mainly at the preclinical level.
Exploratory biomarkers in recent clinical trials have confirmed
the necessity to take into account the presence of these cells
for the selection of patients that could benefit from immune
checkpoint blockade and the design of ICI combinations with
myeloid-targeting agents (6–8).

Given the challenging translation of preclinical results into
the clinical setting, especially for the phenotypic description
of cell subsets, in this review we to focus on the clinical
evidence of the predictive value of myeloid cells, both at baseline
and during treatment, in response to the approved ICIs. An

FIGURE 1 | Myeloid cell subsets as potential predictive biomarkers in ICI-treated patients. The figure summarizes the clinical data on circulating or tumor-infiltrating

myeloid cells that are described as predictive of response/improved survival (green) or resistance/worse survival (red) in cohorts of patients treated with anti-PD-1,

anti-PD-L1 or anti-CTLA-4 antibodies. Positive predictors (green) are myeloid subsets whose amounts are either higher than a specific cut-off value and associated to

response/improved survival or lower than a specific cut-off value and associated to resistance/worse survival. Conversely, negative predictors (red) are myeloid

subsets whose amounts are either higher than a specific cut-off value and associated to resistance/worse survival or lower than a specific cut-off value and

associated to response/improved survival. The myeloid subsets are described in more detail in the main text and in the Supplementary Table 1. AISI, aggregate

index of systemic inflammation = platelet count x AMC x NLR; NLR, neutrophil-to-lymphocyte ratio; dNLR, derived neutrophil-to-lymphocyte ratio; LMR,

lymphocyte-to-monocyte ratio; TMR, Tregs to Lox-1+ PMN-MDSCs ratio; TAM, tumor-associated macrophages; TAN, tumor-associated neutrophils; M- or

PMN-MDSC, monocytic- or polymorphonuclear-myeloid-derived suppressor cells; mDC, myeloid dendritic cells; cDC, conventional dendritic cells.

overview of the myeloid biomarkers that will be described can
be found in Figure 1 and Supplementary Table 1. In addition,
we report some promising clinical results of ICI combinations
with myeloid-targeting drugs, highlighting the importance of
modulating these cell players for successful immunotherapy.

BIOMARKERS IN ICI THERAPY

Biomarkers are molecular or cellular parameters, measured in
fluids and tissues, that give information about the disease,
the condition of the host, the prognosis and the response
to a treatment. In the context of a clinical trial, several
types of biomarkers can be studied: prognostic biomarkers, that
give information about the outcome of patients irrespective
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of the treatment, predictive biomarkers, that estimate whether
an individual is likely to respond to a specific treatment,
pharmacodynamic biomarkers, that evaluate the impact of a drug
on its target and on disease progression, and safety biomarkers,
that can rapidly alert on the toxicity of a therapy (9–11).

In this review we chose to focus on potential predictive
and pharmacodynamic biomarkers, given their relevance for
translational medicine. Predictive biomarkers can be measured at
baseline or during treatment, helping in the selection of patients
that can most benefit from a treatment or in the rapid adaptation
of the therapy, respectively. This rational selection reduces the
risk of exposing non-responding patients to adverse effects.
Pharmacodynamic biomarkers allow to understand if patients
are responding to the administered drug and to shed light on
the mechanism of action of ICIs and their impact on the tumor
microenvironment (TME) and the immune system. They thus
help in a rapid assessment of response and can guide the choice
of combinations.

However, as some authors have pointed out, the formal
distinction between predictive and prognostic biomarkers
requires randomized trials with two treatment arms, where
the effect of a biomarker is evaluated in both the treatment
and the control group (12). As many of the studies reviewed
here comprise early phase clinical trials with only one arm
of treated patients, we cannot exclude the possibility that the
described predictive biomarkers might be instead prognostic or
both predictive and prognostic. We thus propose to consider
them as potentially predictive, unless otherwise specified,
but we also recommend to formally confirm the predictive
value of these biomarkers in ICI therapy through two-arm
randomized trials.

Biomarkers can be broadly divided into circulating (non-
invasive and measurable in the blood) and tumor biomarkers.
Since immunotherapy can be accompanied by significant
toxicities, high costs and the complexity of obtaining biopsies, the
development of complementary approaches, like non-invasive
biomarkers, is fundamental to maximize the therapeutic efficacy
and the success of clinical trials. Circulating biomarkers ensure a
finer follow-up of patients at baseline, during and after treatment,
permitting the early detection of relapse or resistance and the
rapid adjustment of therapy (13, 14). Different biomarkers, such
as circulating tumor DNA, circulating tumor cells, cytokines,
exosomes and factors such as lactate dehydrogenase (LDH)
and C-reactive protein (CRP) can be analyzed using liquid
biopsies (15–17). Additionally, investigating the presence and the
dynamics of peripheral blood leukocytes may unveil important
predictive and pharmacodynamic biomarkers.

In the context of ICIs, there are no validated circulating
predictive biomarkers yet. Nonetheless, blood tumor mutational
burden (bTMB) is gaining interest because it shows a good
correlation with TMB in non-small cell lung cancer (NSCLC) and
has thus the potential to become a useful non-invasive predictive
biomarker (18). Regarding pharmacodynamic markers, several
authors have observed an increase in Ki-67+PD-1+ T cells,
representative of a reinvigoration of exhausted lymphocytes, as
well as an expansion of tumor-specific T cell clones, in the
circulation of responders to ICIs (19–21).

However, circulating cell subsets other than T lymphocytes
might also be relevant in immunotherapy. In this regard, the
accumulation of myeloid-derived suppressor cells (MDSCs) has
been proven to impair the efficacy of anti-tumor therapies in
human cancers (22).

MDSCs are cells of myeloid origin with systemic expansion
in cancer that can be distinguished from mature, terminally
differentiated myeloid cells for their phenotype and for
their immune-suppressive functions. Before the definition of
standards for their identification in humans by a group of
experts in the field (23), many partially overlapping subsets
had been described, leading to confusion in the investigation
of their biological role. Three main categories of human
MDSCs exist: polymorphonuclear-MDSC (PMN-MDSC,
Lin−CD11b+CD15+CD14−), monocytic MDSC (M-MDSC,
Lin−CD11b+CD14+HLA-DRlow) and early-stage MDSC
(eMDSC, Lin−CD11b+CD33+CD14−CD15−HLA-DR−), each
containing different subsets with peculiar biochemical and
molecular markers. Besides the phenotypic characterization,
the gold standard for MDSC definition remains however their
immunosuppressive activity (23). Since these cells play a pivotal
role in the establishment of a potent immunosuppression, both
at a systemic and at the tumor level, some studies have started to
explore their potential as biomarkers of response to ICIs (6–8).

Besides MDSCs, the modulation of the expansion and
function of monocyte subsets has also been demonstrated to have
a role in different diseases (2, 24). Human monocytes can be
quantified by Coulter Counter impedance technology through
the absolute monocyte count (AMC) (25) or by multi-color
flow cytometry. Three major populations can be discerned based
on CD14 and CD16 expression: classical (CD14+CD16−), non-
classical (CD14dimCD16+), and intermediate (CD14+CD16+)
monocytes, with distinct surface markers and functions. Classical
monocytes exhibit a pro-inflammatory phenotype and are
mainly involved in anti-microbial responses, adhesion to the
endothelium, migration, and phagocytosis Intermediate and
non-classical monocytes emerge sequentially from the pool of
classical monocytes: intermediate monocytes are specialized in
antigen presentation and transendothelial migration, while non-
classical monocytes are responsible for complement and FcR-
mediated phagocytosis, transendothelial migration and anti-viral
responses (24, 26).

In addition toMDSCs andmonocytes, the systemic expansion
of neutrophils, eosinophils and immature myeloid cells has also
been shown to reflect the immunosuppressive status of TME
during immunotherapy (27). Neutrophil quantification can be
done with Coulter counters through the absolute neutrophil
count (ANC) or by flow cytometry (CD15+CD16+ cells). The
neutrophil-to-lymphocyte ratio (NLR), calculated as the ratio
between the ANC and the absolute lymphocyte count (ALC),
is also used to illustrate the expansion of the neutrophil
component to the detriment of lymphocytes, unveiling the
patient inflammatory status, while its derivative form, dNLR, is
given by the following formula: ANC/(WBC-ALC), where WBC
is the total number of white blood cells.

Besides blood markers, investigators have also analyzed the
tumor in search for predictive biomarkers. With an increasing

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 159088

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Peranzoni et al. Myeloid Cells in Immune Checkpoint Blockade

number of ICI-treated patients and the intensified use of
multiparametric analyses, new biomarkers are continuously
discovered. For the approved anti-PD-1 blockers, several
tumor biomarkers have been proposed, with variable level of
clinical validation on large cohorts of patients and different
cancers: PD-L1 staining (on tumor cells or both tumor
and immune cells) evaluated by immunohistochemistry IHC,
TMB, and the microsatellite instability (MSI) status, the
infiltration of CD8T cells, some transcriptomic signatures as TIS
(Tumor Inflammation Signature) and TIDE (Tumor Immune
Dysfunction and Exclusion), the presence of B cells and tertiary
lymphoid structures, as reported elsewhere (9–11, 28–30).
However, the predictive power of these biomarkers varies across
tumors and it seems important to combine at least some of them
to better distinguish potential responders from non-responders.

Even though the first markers were linked to features of
tumor cells and effector T cells, the growing interest in profiling
the whole TME is unveiling the potential predictive value for
immunotherapy of tumor-infiltrating myeloid cells. The main
myeloid populations found in tumors are tumor-associated
neutrophils (TANs), dendritic cells (DCs), tumor-associated
macrophages (TAMs), and monocytes (31). Depending on
the TME, these myeloid populations can adopt very different
phenotypes with distinct impact on the anti-tumor immune
response, angiogenesis and invasion. Many reviews have
analyzed the influence of tumor-infiltrating myeloid cells on
the prognosis of cancer patients (32–35) and the mechanisms
of negative and positive regulation of the anti-tumor immune
response (3, 4, 36). Although most findings come from
murine tumors, some clinical data are emerging that link
the presence of myeloid cells in the TME with the outcome
of approved immune checkpoint therapies, as discussed
later (6–8).

ANTI-PD-1 INHIBITORS

The immune-checkpoint Programmed cell Death protein 1
(PD-1) is physiologically up-regulated following lymphocyte
activation, and, through the direct interaction with its ligands
PD-L1 and PD-L2, limits the activity of T lymphocytes to prevent
excessive immune responses (37–39). The anti-PD-1 monoclonal
antibodies (mAb) Nivolumab and Pembrolizumab block the
interaction of tumor-reactive T cells expressing PD-1 with
leukocytes and tumor cells expressing PD-L1 and PD-L2 (40).
These antibodies are approved for the treatment of several cancer
types, in monotherapy or combination with chemotherapy and
anti-angiogenic drugs. Despite these antibodies have improved
the clinical outcome in a wide range of tumors, the long-
term benefits are restricted to a small proportion of patients,
emphasizing the need for more reliable biomarkers and new drug
combinations (40–45).

The evaluation of PD-L1 expression in tumors by IHC, TMB,
and MSI status at baseline are the only biomarkers used in the
clinical practice with ICIs but none of them alone is a strong and
universal predictor of response. As an example, PD-L1 staining
shows intra-patient tumor heterogeneity, evidence of response to

ICIs in patients with low/negative PD-L1 expression and a lack of
technical standardization (9–11, 13, 46).

Together with baseline biomarkers, on-treatment evaluation
of tumors can give important insights into the mechanisms of
action and resistance of ICIs, helping clinicians rapidly refine
the therapy in a personalized way. Responder biopsies are
characterized by an infiltration of T cells, especially CD8+, the
upregulation of genes related to T cell recruitment, activation,
proliferation, and cytotoxicity (e.g., CXCL9, CXCL10, PDCD1,
MKI67, GZMB, IFNG, and IFNγ-regulated genes) and an
augmentation of PD-L1 expression, as a consequence of IFNγ

release in the TME (47, 48). As the modulation of the TME
by ICIs is still unclear, especially for non-T cells, we highlight
here the studies that suggest the use of circulating and tumor
myeloid cells, at baseline or during treatment, as novel predictive
or pharmacodynamic biomarkers for anti-PD-1 inhibitors.

Circulating Biomarkers
Monocyte Lineage
Several reports indicate the baseline presence of the circulating
M-MDSCs as potentially related to the response to anti-PD-
1 blockade. As an example, advanced melanoma patients with
fewer M-MDSCs among peripheral blood mononuclear cells
(PBMCs) before Nivolumab treatment more likely belonged
to the responder and stable disease groups, thus suggesting
that long-term responses might be seen after Nivolumab even
in patients that have failed prior immunotherapy (49). This
concept was recently reinforced by the observation that an early
accumulation of M-MDSCs expressing the immunomodulatory
molecule galectin-9, associated with the concomitant expression
of Tim-3 on lymphocytes, was related to primary and secondary
resistance to Nivolumab in metastatic NSCLC. Compared
to healthy volunteers, a statistically significant increase in
CD14−CD15-HLA-DR+ dendritic cells and M-MDSCs (defined
here as CD14+HLA-DR+CD33+), together with a reduced
number of granulocytes, was found in these patients. Two weeks
after Nivolumab administration a rapid decrease in theM-MDSC
was observed in responders and in patients with stable disease,
while the number remained constant in non-responders. In
addition, the authors showed that the combined expression of
Tim-3 on CD8+ T cells and galectin-9 on M-MDSCs impaired
the secretion of IFNγ by activated CD8+ T cells in the presence of
anti-PD-1 in vitro, further suggesting that M-MDSCs can confer
resistance to Nivolumab treatment (50).

M-MDSC expansion was similarly associated with poorer
response in a cohort of advanced melanoma patients
treated with a combination of Nivolumab and a multi-
peptide vaccine. In these patients, the presence of different
suppressive populations, including an M-MDSC subset
(defined as CD11b+HLA-DRlowCD14+), a population of PMN-
MDSCs (Lin−CD14−CD11b+CD15+) and regulatory T cells
(CD3+CD4+CD127lowFoxP3+), was assessed at baseline and
during treatment. The authors showed a trend toward lower
baseline Tregs and M-MDSC levels in non-relapsing patients
as compared with relapsing ones, thus suggesting the negative
impact of these circulating populations on the clinical outcome,
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without clearly distinguishing their predictive vs. prognostic
value (51).

In a cohort of metastatic urothelial carcinoma (mUC)
patients treated with Pembrolizumab, successive doses of anti-
PD-1 decreased the frequency of PD-1+ M-MDSCs and
eMDSCs, even if these changes were not statistically significant
predictors of response. This decrease may indicate that MDSCs
can downregulate immune checkpoints at their surface as a
mechanism of resistance to ICIs, but it may also be the mirror
of a positive immunotherapeutic response with reduction of
immunosuppressive populations (52).

The accumulation of monocytes is also sometimes
associated with a worse outcome in different tumor types,
both at baseline and during anti-PD-1 therapy. A decrease in
CD11c+CD14+CD16+HLA-DRhi monocytes, accompanied by
a significant increase in overall survival (OS), has been observed
in recurrent glioblastoma after post-surgery Pembrolizumab, but
only in patients that had also received neo-adjuvant anti-PD-1
immunotherapy before surgery (53). Chasseuil et al. reported a
statistically significant decrease in OS in relation to an increase
in the total monocytic fraction in pre-treatment blood samples
from advanced melanoma patients treated with Nivolumab,
suggesting its potential as prognostic biomarker (54). In
addition, in a cohort of NSCLC patients, the post-treatment
AMC was higher in non-responders compared to responder
patients, suggesting a predictive role of monocytes in anti-PD-1
therapy (27). Interestingly, Sekine et al. also identified the
increase in the lymphocyte-to-monocyte ratio (LMR) after the
start of Nivolumab treatment as a good predictor of response
for NSCLC patients (55). An explanation to the negative impact
of the cells of the monocytic lineage on ICI response may rely
on the variety of mechanisms by which these cells can alter T
cell effector functions, including nutrient depletion, generation
of reactive oxygen species (ROS) and up-regulation of immune
checkpoint molecules (36, 56–58).

A high monocyte frequency is however not always
associated with a poorer response, as demonstrated by Krieg
et al. who found a higher frequency of classical monocytes
(CD14+CD16−CD33hiHLA-DRhi), measured before therapy by
single-cell mass cytometry, in melanoma patients responding
to anti-PD-1. A flow cytometry validation confirmed that a
frequency of classical monocytes higher than 19.38% before
therapy was associated with a better treatment outcome. These
conflicting results might be explained by the fact that these
monocytes have higher amounts of migration and activation
markers, such as ICAM-1 and HLA-DR, and might thus be
actively involved in the anti-tumor immune response induced
by anti-PD-1 (59). Indeed, classical monocytes express high
levels of chemokine receptors to migrate to inflamed tissues
and secrete pro-inflammatory soluble factors, potentially
shaping inflammation, and being a key player in the anti-tumor
response (24).

Similarly, in a cohort of advanced NSCLC patients, an
AMC higher than 700/mm3 (median AMC for responders) at
baseline was related to a shorter TTR (time to response) to
either Nivolumab or Pembrolizumab. According to the authors,
the positive role of monocytes could reflect a more intense

macrophage-mediated tumor cell cytotoxicity that synergizes
with the activity of tumor-reactive T lymphocytes. However, the
impact of AMC on response to ICIs is likely highly specific to
the tumor type, given that different tumors may release specific
cytokines promoting the polarization of TAMs toward either an
immunosuppressive or an anti-tumor phenotype (60).

Granulocyte Lineage
In a longitudinal study performed on the blood of NSCLC
patients before and after Nivolumab treatment, the ratio of Tregs
to PMN-MDSCs, TMR, was chosen as a predictor of response to
treatment: a TMR ≥ 0.39 after the first infusion was associated
with a higher probability of being a responder. This suggests
that PMN-MDSCs, distinguished fromnormal neutrophils by the
expression of the lectin-type oxidized LDL receptor-1 (Lox-1) in
this study, could impair the efficacy of anti-PD-1 therapy, while
highlighting at the same time an association between a higher
frequency of Tregs and a better response to treatment. In these
patients, CXCL2, CCL23, CX3CL1, and HMGB1 levels, known
to be related to MDSC recruitment and proliferation, were also
significantly higher in non-responders (61).

However, the role of PMN-MDSCs in tumors is still
debated: in fact, they have also been proven to be associated
with a better response to Nivolumab in advanced NSCLC
patients. In this cohort, high baseline levels of PMN-MDSCs
(Lin−HLA-DRlow/negCD33+CD13+CD11b+CD15+CD14−)
and low baseline CD8/PMN-MDSC ratios were associated
with a better OS. As a further confirmation of this results,
researchers identified an immunological asset as a possible
prognostic biomarker of OS and progression-free survival
(PFS) after Nivolumab treatment: in a multivariate analysis, the
combination of NLR < 3, baseline levels of PMN-MDSCs ≥ 6
cell/µl, eosinophil count ≥ 90 cells/mm3 and neutrophil count
<5,840 cells/mm3 showed a statistically significant association
with good prognosis (62).

Different studies performed on melanoma and metastatic
renal-cell carcinoma (mRCC) patients under anti-PD-1
treatment showed that neutrophil-to-lymphocyte ratio values≥5
were are strongly associated to shorter survival, thus assessing
its potential use as a strong prognostic, and maybe predictive,
biomarker (54, 63–67). Other retrospective studies in cancer
patients showed that high NLR values during or after Nivolumab
treatment, but not at baseline, were significantly associated with
a worse outcome (27, 55, 68–71). The predictive value of NLR
was recently formally assessed in a cohort of mUC patients, in
which associations between candidate biomarkers and clinical
benefit were investigated comparing a cohort treated with
anti-PD-1/anti-PD-L1 to a cohort treated with taxanes. A NLR
< 5 and a high single nucleotide variant count were proposed as
independent predictors of treatment response for ICIs (72).

The ANC, if above a certain threshold, also results negatively
associated with treatment response either at baseline (73, 74)
or on-treatment for different malignancies (27, 60, 75). In this
context, Pan et al. observed that metastatic melanoma patients
with high baseline ANC were more likely to undergo disease
progression than patients with low values (73). Additionally,
Nivolumab decreased the levels of ANC in the responder group
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of another cohort of melanoma patients, mirroring the decrease
in systemic inflammation levels (75). Multiple mechanisms
by which neutrophils may boost cancer growth have been
proposed, including the release of immunosuppressive cytokines
and chemokines that affect the recruitment and phenotype
of different immune cells. Neutrophils can also exert their
immunosuppressive function through production of arginase 1
(ARG1) and ROS. Arginase depletes a fundamental nutrient,
arginine, from the surrounding environment, leading to the
inhibition of T cell proliferation and function, while ROS can
suppress lymphocyte activation and, at high concentrations,
induce T cell apoptosis (76).

Interestingly, within the granulocytic fraction, eosinophils
seem to have a protective role and are usually associated with
favorable treatment outcomes (54, 74, 77). Even if their predictive
role remains unclear, a relative eosinophil count <1.5%, as well
as elevated baseline levels of LDH and CRP, were independently
associated with poor OS in a cohort of uveal melanoma patients
undergoing anti-PD-1 monotherapy (78). A possible explanation
behind the positive effect of eosinophils is their capacity to recruit
cytotoxic T lymphocytes through CCL5, CXCL9, and CXCL10, to
induce an anti-tumor phenotype in macrophages through TNFα
and IFNγ and to normalize the tumor vasculature (79).

To conclude, several reports indicate that MDSCs, monocytes
and neutrophils may reflect a compromised inflammatory status
and thus be a reliable negative predictor of response to anti-
PD-1 therapy. Nonetheless, some works underline how a high
monocyte frequency could have a positive impact on patient
outcome since it may mirror a macrophage-mediated cell
cytotoxicity at tumor site. Moreover, the role of granulocytes is
also debated, since eosinophils appear to have a protective role
given their ability to recruit cytotoxic T lymphocytes.

Tumor Biomarkers
Monocyte/Macrophage Lineage
One of the first papers comparing the tumor transcriptome at
baseline of melanoma patients undergoing anti-PD-1 therapy
described an “innate anti-PD-1 resistance signature” that
comprised genes involved in the mesenchymal transition
(AXL, ROR2, WNT5A, LOXL2, TWIST2, TAGLN, FAP),
immunosuppression (IL10, VEGFA, VEGFC) and monocyte and
macrophage chemotaxis (CCL2, CCL7, CCL8, and CCL13) in
non-responder patients (80). This signature was associated with
resistance to anti-PD-1, but not with anti-CTLA-4, in three
additional melanoma cohorts and was also described in other
tumor types, where its predictive value was however not proven.
In another paper describing predictive gene signatures related
to T cell dysfunction and T cell exclusion (TIDE) in melanoma
patients, the presence of TAM and MDSC signatures, along
with cancer-associated fibroblasts, was related to reduced T cell
infiltration and resistance to anti-PD-1 and anti-CTLA-4 (29).
Moreover, Neubert et al. observed that IFNγ and TNFα produced
by antigen-specific CD8+ T cells induced themacrophage-colony
stimulating factor CSF-1 in melanoma cells, possibly recruiting
and activating TAMs. Circulating CSF-1 levels in melanoma
patients are significantly higher than in healthy donors and
positively correlated with disease progression. In the same

cohort of melanoma patients treated with anti-PD-1 analyzed
in (80), the authors observed a co-enrichment of CD8+ T cells
with CSF-1 or various TAM-specific markers in pre-treatment
biopsies of non-responders, suggesting that the recruitment
of CD163+ M2-like macrophages by activated lymphocytes
might be a mechanism of resistance to immunotherapy.
Interestingly, in the presence of IFNγ and TNFα melanoma cells
can also upregulate TGFB, IL10, VEGFA, and VEGFC genes,
which can further modulate the immunosuppressive phenotype
of TAMs (81). A recent retrospective analysis in NSCLC
patients uncovered an epigenetic signature, called EPIMMUNE,
predictive for PFS upon anti-PD-1 treatment. The authors
observed that EPIMMUNE-negative tumors, prevalent among
non-responders, were particularly infiltrated by macrophages
and neutrophils, in contrast with EPIMMUNE-positive biopsies,
characterized by a strong lymphoid infiltrate (82). CD73hi

myeloid cells overexpressing several chemokine receptors and
immunosuppressive factors are also highly abundant in the TME
of glioblastoma, where they are negatively correlated with OS.
These cells persist in glioblastoma patients after Pembrolizumab
and hamper the efficacy of anti-PD-1 and anti-CTLA-4 inmurine
models (83).

Another interesting report of a predictive negative role
of macrophages in ICI therapy regards the phenomenon
of hyperprogression, an accelerated growth of tumors
observed in 9–29% of the patients under ICIs that is still
poorly understood. In baseline biopsies of a small cohort
of NSCLC cancer, Lo Russo et al. have described that a
subtype of clustered CD163+CD33+PD-L1+ macrophages
with epithelioid morphology was significantly enriched in all
hyperprogressor patients compared to patients not experiencing
hyperprogression (84).

Another important aspect that should be considered when
analyzing the TME is the localization of the different cell types.
On a small cohort of melanoma patients treated with anti-PD-
1, non-responders displayed a significantly higher proximity of
CD68+ myeloid cells to CD8+ T cells compared to responders
in pre-treatment and on-treatment biopsies (85). Intriguingly,
long-lasting contacts between macrophages and CD8+ T cells in
surgically resected NSCLC tumors are associated with impaired
motility and reduced infiltration of lymphocytes in tumor islets;
in pre-clinical models resistant to anti-PD-1, the concomitant
depletion of macrophages can restore T cell motility and
infiltration into tumor islets with increased tumor cell killing,
suggesting that myeloid cells can modulate the TME not only
through soluble mediators but also by physical contact with the
surrounding cells (86).

Given the plasticity of myeloid cells and the differences in
the microenvironment among tumors, the phenotype of this
lineage can greatly vary. The simple abundance of CD68+ cells,
classically considered to represent macrophages, is thus rarely
informative, while the functional orientation of myeloid cells
by multiparametric IHC, flow cytometry or RNA sequencing
allows to define a clearer relationship between the distinct subsets
and the clinical outcome (32). Therefore, functionally different
myeloid subpopulations can have an opposite effect on the
response of patients to ICIs. In some reports, for instance, the
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presence of PD-L1+ macrophages seems more valuable as a
predictive biomarker than the abundance of macrophages per
se. Clinical responses are linked to high expression of PD-L1 in
macrophages and dendritic cells in melanoma patients treated
with a combination of anti-CTLA-4 and anti-PD-1 and in ovarian
cancer patients treated with anti-PD-1, even if in the latter case
the results are not statistically significant due to poor responses
(87). Similarly, in the SARC028 trial, sarcoma patients who
had an objective response to Pembrolizumab had a significantly
higher average percentage of tumor cells and TAMs expressing
PD-L1 at baseline compared to non-responders (88). Moreover,
high counts of PD-L1+ macrophages, but not PD-L1+ tumor
cells, were predictive of better OS after anti-PD-1 or anti-PD-L1
therapy in NSCLC (89).

In melanoma patients treated with anti-PD-1, anti-CTLA-
4 or the combination, myeloid cells were enriched in non-
responder lesions (90). However, when themyeloid compartment
of the same cohort was analyzed in detail by single-cell RNA
sequencing (scRNAseq), TAMs of responders were found to
express CXCL10 and CXCL11 which, together with CXCL9, are
predictive markers of response to anti-PD-1 and anti-PD-L1 in
metastatic melanoma and mUC. The authors described distinct
gene expression profiles in macrophages from responder and
non-responder patients, unveiling other potential markers of
response and resistance that could help understand the complex
biology of the myeloid compartment in ICI therapy (91).

In another recent report, peripheral T cell and M1
macrophage signatures have shown to be enriched in NSCLC
patients that displayed durable clinical benefit after anti-PD-1
treatment compared to non-responders. In particular, PFS was
longer in patients with high peripheral T cell or M1 signatures,
but OS was not significantly different. The same authors observed
that these signatures behaved similarly in metastatic melanoma
patients treated with Nivolumab [analyzed in (92)], although
the differences between responders and non-responders did not
reach statistical significance (93).

These examples demonstrate the importance of a more
detailed analysis of the TME by multiparametric flow cytometry,
multidimensional IHC, as well as scRNAseq, to better understand
the role of each cell subset as biomarkers for immunotherapy.

Data regarding human myeloid cells during or after treatment
are limited and conflicting. As an example, in two different
studies with melanoma patients treated with Nivolumab or
Pembrolizumab, responder biopsies displayed an increase in
CD8+ T cells in both studies, but in one case there was a
reduction in the macrophage transcriptomic signature (92),
while in the other there was an increase in peritumoral
CD68+ macrophages after treatment (48). However, in the latter
cohort there was a significant increase in PD-L1 expression in
macrophages of responder patients, suggesting that the function
of these cells might be modified after anti-PD-1 therapy (48).

Neoadjuvant immunotherapy, currently explored for some
tumor indications to ameliorate the efficacy of surgical
resection, is giving important insights into the activity of ICIs
and pharmacodynamic biomarkers. In a cohort of advanced
melanoma patients that received neoadjuvant Pembrolizumab
before resection, anti-PD-1 therapy provoked an increase in CD8

TILs and an upregulation of PD-L1 and other genes involved
in T cell activation and migration. While these parameters were
associated with clinical benefit, an increase in CD163+ myeloid
cells and a decrease in CD3+ lymphocytes were observed in
patients that recurred after surgery. In one of these relapsing
patients, Nanostring analysis revealed the presence of T cell
activation transcripts but also the presence of a myeloid signature
(comprising CD14, CCL8, CXCL14, CLEC5A, and CSF1R genes),
confirming the immunofluorescence data (94). Moreover, the
same patient experienced p53 loss at recurrence, an event that
could further increase immunosuppression, as p53 activation
has been linked to MDSC reduction and anti-tumor immunity
in mice (95). In another cohort, neoadjuvant Nivolumab in
resectable NSCLC induced necrotic areas with large infiltrates of
lymphocytes and foamy macrophages in tumors of patients with
major pathological response at surgery (96, 97).

In glioblastoma patients treated with neoadjuvant anti-PD-
1, increased T cell infiltration and chemokine transcripts have
been described, even though there was no clear clinical benefit.
In these patients no obvious modulations of myeloid cells have
been observed (98), in line with what had been reported in
glioblastoma patients after Pembrolizumab (83).

Granulocyte Lineage
In two small cohorts of metastatic melanoma treated with anti-
PD-1, the infiltration of neutrophils, but not of macrophages,
was higher in patients with progressive disease relative to those
with clinical responses. The authors have shown that in murine
models the infiltration of macrophages and neutrophils are,
at least in part, mutually regulated and are also influenced
by tumor-intrinsic factors, thus pointing at the need of a
better understanding of the cross-talk between different cells
subsets in the TME (99). However, the role of TANs or other
tumor-infiltrating granulocytes in ICI treatment still needs to
be clarified.

These results suggest that, at least in some tumor types,
on-treatment myeloid cell density and phenotype in the
TME might be potentially used as both predictive and
pharmacodynamic biomarkers.

ANTI-PD-L1 INHIBITORS

Three drugs are currently approved to target PD-L1:
Durvalumab, Avelumab and Atezolizumab. These antibodies
are approved for fewer indications than anti-PD-1 blockers,
i.e., mUC, Merkel Cell carcinoma, NSCLC and, in combination
with chemotherapy, triple-negative breast cancer and small cell
lung cancer, with less reports so far about the predictive role of
myeloid cells on the clinical response.

Circulating Biomarkers
Bocanegra et al. analyzed the systemic differences in PD-
L1 expression that could explain the opposite response of
two patients with PD-L1-negative NSCLC tumors treated with
Atezolizumab. PBMCs were divided into CD11bhigh (monocytes,
M-MDSCs and neutrophils), CD11blow (DCs, PMN-MDSCs,
some T cells and NK cells), and CD11b− (T and B lymphocytes
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and plasmacytoid DCs) subsets. Responding patients exhibited
high percentages of PD-L1+ cells in CD11b− and CD11bhigh

immune cell types, but not in CD11blow cells. To confirm
and extend these data, other NSCLC patients under PD-1/PD-
L1 blockade were analyzed, showing a significant association
between a high percentage of circulating PD-L1+CD11b+ cells
at baseline and an objective clinical response. Moreover, a
tendency for responders to express high amount of PD-L1
within CD11b+CD14+ cells was observed, although it did not
reach statistical significance. Intriguingly, patients with high
percentages of circulating memory CD4+ T lymphocytes and low
percentages of PD-L1+ immune cells did not respond to ICIs,
highlighting the relevance of PD-L1 expression by myeloid cells
in predicting treatment efficacy (100).

In advanced NSCLC patients treated with Atezolizumab,
disease control was associated with decreased frequencies
of Tregs and Lin−HLA-DR−CD33+CD11b+ MDSCs and a
reduction in NLR after treatment (101).

In mUC patients, successive doses of Atezolizumab
and Avelumab correlated with a significant decrease of
PD-L1+ M-MDSC and PD-L1+ eMDSC (CD33+HLA-
DRlow/−CD14−CD15−) after the first dose. However, changes in
PD-L1 expression in MDSCs either before or after therapy did
not predict and neither correlate with ICI response, showing the
need for further studies to find predictive biomarkers in mUC
patients (52).

In a clinical trial involving patients with metastatic prostate
cancer treated with the PARP inhibitor Olaparib combined with
Durvalumab, a baseline Lin−HLA-DR−CD11b+CD33+ MDSC
fraction lower or equal to the median of the group correlated
with longer PFS. In this study, myeloid cells were also useful on-
treatmentmarkers, as patients with increased expression of CD83
on CD141+ mDC after treatment had prolonged PFS (102).

A case study report of a NSCLC patient treated with
Durvalumab as a maintenance therapy after chemotherapy and
radiotherapy showed a 3-fold drop in the level of IL-4Rα+

M-MDSC and in the expression of the CD274 (PD-L1), PTGS2,
IL10, and IDO1 genes in PBMCs after two administrations of
the anti-PD-L1 antibody, accompanied by a reduction in the
suppressive potential of these cells compared to baseline. After
6 months of Durvalumab, this patient is still in clinical and
radiologic disease remission (103).

As previously discussed, it should be considered that none of
these studies compared anti-PD-L1 therapy to other treatments.
Further investigation is thus needed to clarify the predictive
and/or prognostic role of myeloid cells in this context.

Tumor Biomarkers
Compared to anti-PD-1, the amount of information regarding
tumor biomarkers under anti-PD-L1 antibodies is still limited.
In a clinical trial with mRCC patients, a myeloid signature
comprising IL6, CXCL1, CXCL2, CXCL3, CXCL8, and PTGS2
genes has recently been proposed as a resistance mechanism
to Atezolizumab. Atezolizumab alone was more effective in
patients with tumors enriched in cytotoxic T cells (Teff

high) that
were also Myeloidlow. In the Teff

high Myeloidhigh subgroup, the
combination of Atezolizumab with the anti-VEGF Bevacizumab

showed better activity than Atezolizumab alone, suggesting
that the inhibition of VEGF could counteract the presence of
immunosuppressive myeloid cells (104).

In addition, myeloid-associated genes (COX2, IL8, IL1B)
in the tumor and circulating cytokines (IL-8 and IL-6) were
associated with resistance and shorter OS in urothelial bladder
cancer patients treated with anti-PD-L1 (Atezolizumab or
Durvalumab) (105–108).

In summary, myeloid cells have been investigated as predictive
markers of response to anti-PD-L1 treatment only in few studies,
comprising different tumor types and a variety of myeloid
subsets, hindering up to now the definition of biomarkers clearly
correlated to patient response.

ANTI-CTLA-4 INHIBITORS

CTLA-4 is another immune checkpoint that mediates the
physiological inhibition of activated T cells by competing
with CD28 for the binding of CD80 and CD86 costimulatory
molecules on antigen-presenting cells (APCs). Two monoclonal
anti-CTLA-4 antibodies, Ipilimumab and Tremelimumab, are
currently used in cancer to release the brake induced by
CTLA-4 and build an effective immune response. Ipilimumab
has been approved by the FDA for metastatic melanoma
and, in combination with Nivolumab, for RCC and MSI
CRC. Tremelimumab has been evaluated in the treatment of
melanoma, mesothelioma, NSCLC, head and neck squamous cell
carcinoma, prostate, pancreatic and hepatocellular carcinomas.
Initial phase I and II studies of Tremelimumab in metastatic
melanoma were promising, but a phase III trial was stopped
because the antibody did not demonstrate superiority to standard
chemotherapy, although responses were more durable (109).

Circulating Biomarkers
Monocyte Lineage
Many papers report the role of MDSCs as predictive markers
for anti-CTLA-4 treatment, especially in Ipilimumab therapy.
Among the three MDSC subsets, CD14+HLA-DRlow/−

M-MDSCs are more commonly associated with resistance to this
treatment. In regionally advanced melanoma patients treated
with neoadjuvant Ipilimumab, circulating CD14+HLA-DRlow/−

M-MDSC levels were lower at baseline but tended to increase,
although not reaching statistical significance, in the relapse-free
group, while frequencies in the relapsed group remained stable
(110). Another work on malignant melanoma patients treated
with Ipilimumab showed similar results: patients having distant
metastasis in the skin or lymph nodes had lower levels of
Lin−CD14+HLA-DR− M-MDSCs compared to patients having
distant metastasis in vital organs or increased LDH. When
comparing responders to Ipilimumab with non-responders,
significantly lower percentages of Lin−CD14+HLA-DRlow/−

M-MDSCs were observed in the former group (111). Similarly,
a high baseline frequency of M-MDSCs and high levels of IL-6
were associated with a reduced response to Ipilimumab in
melanoma patients (112).

A study partially contradicting these results showed no
significant differences between baseline levels of M-MDSCs in
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patients with clinical benefit and those with progressive disease.
However, after 3 and 9 weeks from Ipilimumab administration,
patients with clinical benefit showed lower frequencies of this
cell population, while no significant changes were observed
in patients with progressive disease. Moreover, at week three
after Ipilimumab M-MDSC were inversely correlated to survival
(113). A low frequency of M-MDSCs was associated with long-
term survival in another study on metastatic melanoma patients
treated with Ipilimumab. The 2-years survival probability after
Ipilimumab was 34.5% for patients with low MDSC frequency,
while there were no survivors among patients with higher
baseline levels.

A low AMC and a low frequency of CD14+ monocytes were
also strongly associated with a favorable outcome. A combination
model was defined including LDH,MDSCs, Relative Lymphocyte
Count, AMC, and Absolute Eosinophil Count, where each of
them also remained in the model as a significantly independent
biomarker (114).

In melanoma patients treated with Ipilimumab, the baseline
number of monocytes and neutrophils was significantly higher
in non-responder patients compared to responders. Interestingly,
before treatment, non-responders displayed a tendency for
an increased frequency of CD14+CD11b+HLA-DRlow/−SSClow

M-MDSCs as compared to responders and this difference
became significantly higher upon the first Ipilimumab infusion.
Moreover, M-MDSCs in responders were strongly reduced after
the first infusion, whereas they increased upon the second
Ipilimumab cycle in non-responders. CD15+CD11b+HLA-
DRlow/−SSClow PMN-MDSC levels were also evaluated, but
no differences were detected between the two groups of
patients. Interestingly, the level of intracellular nitric oxide
was significantly elevated in M-MDSCs from non-responders
compared to responders and higher M-MDSC percentages
in non-responders significantly correlated with elevated nitric
oxide production in these cells upon the first Ipilimumab
infusion. Moreover, PD-L1 expression was downregulated in
PMN-MDSCs of responders after the first Ipilimumab dose.
Besides MDSCs, a significant increase in the eosinophil count
after treatment was associated with an improved clinical
response (115).

An interesting work has also demonstrated thatmiRs inducing
MDSCs could represent predictive markers of response to ICIs
in advanced melanoma patients (5). In this study, extracellular
vesicles potentially derived frommelanoma tumor cells were able
to convert healthy donor monocytes into MDSCs (EV-MDSCs),
by downregulating HLA-DR at the RNA level. Monocytes
skewing to EV-MDSCs also showed changes in miR expression
as compared to normal monocytes. MiR-146a, miR-146b, let-
7e, miR-99b, and miR-125b were enriched in the extracellular
vesicle fraction responsible forMDSC generation and were found
to modulate the phenotype and function of monocytes toward
MDSCs in vitro. In metastases from melanoma patients, high
levels of miR-146a, miR-155, miR-125b, miR-100, let7e, miR-
125a, miR-146b, and miR-99b were detected and correlated
with CD163, CD14, CD209, CD68, ITGAM, and CD33 myeloid
markers. An increased level of MDSC-miRs was detected in
plasma samples from melanoma patients with advanced disease.

A retrospective analysis in metastatic melanoma patients treated
either with Ipilimumab, Nivolumab, or targeted therapy showed
that patients with a low miR-score had a significantly longer OS,
thus underlying the prognostic (and maybe predictive) value of
these M-MDSC-inducing miRs (116).

Given the relevance ofM-MDSCs as predictive biomarkers for
response to Ipilimumab, Kitano et al. proposed a computational
algorithm-driven analysis of PBMCs, demonstrating that
melanoma patients with a pre-treatment M-MDSC frequency
lower than 14.9% had a significantly longer OS and that M-
MDSC levels inversely correlated with peripheral CD8+ T
cell expansion following Ipilimumab treatment (56). Beside
melanoma patients, this algorithm will constitute a useful tool to
evaluate M-MDSC frequencies in other tumor types.

High pre-treatment levels of M-MDSCs were also associated
with reduced OS in castration-resistant prostate cancer treated
with combined GVAX/Ipilimumab immunotherapy. In these
patients, treatment-induced activation of conventional cDC1 and
cDC3 dendritic cells was associated with prolonged OS, but
also an increased risk of immune-related adverse events. In an
unsupervised cluster analysis, patients with low pretreatment
M-MDSCs, high pretreatment CD4+CTLA-4+ T cells and high
levels of cDC1/cDC3/monocyte activation during treatment
displayed prolonged survival (117).

CD14+IL-4Rα+ M-MDSCs were identified by Damuzzo et al.
as negative predictors of response to Ipilimumab. In this study,
four MDSC subsets were analyzed in the PBMCs of advanced
melanoma patients, at baseline and 12 weeks after Ipilimumab:
CD14+IL-4Rα+ M-MDSCs, CD14+HLA-DRlow/− M-MDSCs,
Lin−HLA-DR−CD33+CD11b+ eMDSCs, and CD15+IL4-Rα+

PMN-MDSCs. A significant expansion of the two subsets of
M-MDSCs and of PMN-MDSCs was observed at baseline
compared to healthy controls and, upon treatment, high levels of
CD14+IL-4Rα+M-MDSCs were independent prognostic factors
of reduced OS. Moreover, longer OS was associated with low
levels of IL-6, CRP, S100B, and LDH at baseline and after
treatment. In a multivariate survival model, high levels of LDH
and CD14+IL-4Rα+M-MDSCs post-treatment were identified as
negative independent markers of reduced OS, thus showing that
the IL-4Rα+M-MDSC subset should be considered, together with
CD14+HLA-DRlow/− cells, to select patients that could get most
benefit from anti-CTLA-4 (118).

Interestingly, the population of non-classical monocytes
has on the contrary been associated to a positive response
to ICIs. In fact, advanced melanoma patients responding to
Ipilimumab displayed the highest percentages and absolute
counts of circulating non-classical monocytes at baseline. The
authors showed that non-classical CD14+CD16+monocytes, but
not classical CD16− monocytes, were able to lyse Tregs ex-
vivo through CD16-Fc-mediated antibody-dependent cellular
cytotoxicity (ADCC) mediated by Ipilimumab (119).

In metastatic melanoma patients, low levels of
CD33+CD11b+HLA-DR− MDSCs before Ipilimumab
correlated with an objective clinical response, long-term
survival, increased CD3ζ chain expression in T cells and
an improved clinical status. Conversely, patients with more
than 55.5% circulating MDSCs had a significantly shorter OS
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(120). In a neoadjuvant study with Ipilimumab in advanced
melanoma, the treatment induced an expansion of activated
CD4+ and CD8+ melanoma-specific T cell clones, an increase
in circulating Treg, with greater Treg increase associated to
improved PFS, and a reduction in all MDSC subsets, especially
the M-MDSC fraction. A greater decrease in the circulating
HLA-DR−CD33+ MDSC population was related to improved
PFS in this cohort (121).

Granulocyte Lineage
Concerning PMN-MDSCs, this cell population is less frequently
associated with response to Ipilimumab. Only the level of PD-L1
in PMN-MDSCs has been reported to be lower in responders as
compared to non-responders in (115). In a cohort of melanoma
patients treated with Ipilimumab, the level of PMN-MDSCs
decreased after the first dose of Ipilimumab, but no information
is given about the impact on treatment response (122). Another
work on advanced melanoma patients treated with Ipilimumab
showed that patients with high ANC and dNLR at baseline had
an increased risk of death or disease progression (123).

Besides MDSCs, the relative eosinophil count, together with
an elevated serum LDH and CRP, was significantly associated
with survival in metastatic uveal melanoma patients treated with
combined Ipilimumab and anti-PD-1 (78).

In conclusion, the collected data point mostly to the
monocytic subsets, particularly CD14+HLA-DR+ M-MDSCs,
CD14+IL4-Rα+M-MDSCs and non-classical monocytes, as
useful markers for the selection of patients that could benefit
more from Ipilimumab immunotherapy.

Tumor Biomarkers
For anti-CTLA-4 Ipilimumab, the predictive value of tumor
biomarkers remains to be consolidated. The TIDE and TIS
transcriptomic signatures, as well as genes linked to T cells
cytotoxicity, Th1 chemokines and antigen presentation seem
useful for the identification of responders among melanoma
patients (29, 124). The mutational and neoantigen load (125) and
a high ratio of CD8+ density in the intratumoral region have
also been related to clinical benefit to Ipilimumab in melanoma
(126), while PD-L1 staining by IHC alone does not seem to be
predictive (127).

Monocyte/Macrophage Lineage
Even if few studies exist on the predictive role of myeloid
subsets, Capone et al. observed that BRAF WT melanoma
patients with durable clinical benefit from Ipilimumab had a
reduced transcriptomic “myeloid score.” In the same cohort, the
downregulation of CD73 gene, expressed by tumor-infiltrating
myeloid cells as previously discussed, was also associated with
response, irrespective of the BRAF status (128).

Interestingly, macrophage infiltration at baseline was
even more useful than CD8 density in the distinction of
responders vs. non-responders in a small cohort of melanoma
patients treated with Ipilimumab. Responders displayed a
higher CD68+/CD163+ ratio and higher CD68+CD16+

density at baseline than non-responders, with a concomitant
reduced infiltration of CD163+CD16+ macrophages. The

authors hypothesized that the enrichment of “inflammatory”
CD68+CD16+ macrophages over immunosuppressive CD163+

macrophages could create a more favorable TME for the anti-
tumor activity of Ipilimumab. Moreover, post-treatment tumor
biopsies from responders had lower Treg infiltration than lesions
from non-responder patients and the authors hypothesized
that this could be explained by the increased presence of FcγR
“inflammatory” macrophages capable of inducing ADCC in
the presence of the IgG1 Ipilimumab antibody and depleting
Tregs (119). This hypothesis is also supported by Arce Vargas
et al., who demonstrated how human Fcγ receptors expressed
by myeloid cells can induce ADCC after binding to a chimeric
murine anti-CTLA-4 with a human IgG1 Fc, in vitro and in
human-FcγR murine models. In addition, melanoma patients
with high TMB and the CD16-V158F polymorphism (conferring
higher binding affinity to IgG1 antibodies) had higher response
rates than all the other patients, suggesting that FcγR+ myeloid
cells in the tumor might contribute to the anti-tumor activity of
Ipilimumab through ADCC-dependent Treg depletion (129).

The localization of different subpopulations in the TME
(tumor region, stroma, invasivemargin) is crucial for response, in
addition to their phenotype and functional status. Madonna et al.
observed that melanoma patients having baseline biopsies with
few CD8+ T cells combined with high numbers of CD163+PD-
L1+ macrophages at the invasive margin survived significantly
longer than any other group upon Ipilimumab (127).

Little information is currently available for on-treatment
tumor biomarkers for anti-CTLA-4 therapy. A study of
neoadjuvant Ipilimumab in advanced melanoma showed an
increased infiltration of memory CD4+ and CD8+ T cells in
the TME. At the same time, a reduction in tumor-infiltrating
Tregs was associated with response or stable disease and
decreased levels of tumor HLA-DR−CD33+CD11b+ MDSCs
after treatment were associated with a longer PFS. As mentioned
in the previous section, in these patients an association between
reduction in systemic HLA-DR−CD33+CD11b+ MDSC and
improved PFS was also observed (121).

As previously stated, the predictive vs. prognostic value of
these biomarkers should be confirmed through randomized trials
since the treatment with anti-CTLA-4 has not been formally
compared to other treatments in most studies.

BINDING OF ICIs TO MYELOID CELLS:
POTENTIAL MECHANISMS OF ACTION
AND IMPACT ON BIOMARKERS

Together with their well-known regulatory functions on
lymphocytes extensively reviewed elsewhere (6, 7, 22, 23, 35),
circulating and tumor-infiltrating myeloid cells can express PD-
L1, PD-1 and Fcγ receptors (FcγR) and can thus directly bind
to ICIs and modulate their activity. On the other side, ICIs
can affect the phenotype of myeloid cells either through a
direct binding to these cells or through the indirect effects of
IFNγ and other mediators released by activated lymphocytes.
Even though murine and human myeloid subsets are identified
through different markers, preclinical models are crucial for
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the understanding of the mechanistic role of these cells
in immunotherapy.

As for other antibody-based therapies, an important aspect
to consider for ICIs is the expression of CD16, CD32, and
CD64 FcγRs on the surface of myeloid cells. Depending on the
isotype, the backbone of the mAb and the FcγR, the binding
of the Fc part of antibodies can have different consequences.
As reported before, the binding of Ipilimumab (119, 129), a
potentially depleting IgG1, to the FcγR of myeloid cells can
lead to the elimination of CTLA-4+ Tregs through ADCC or
antibody-dependent phagocytosis (ADCP). In this context, the
infiltration of the TME by myeloid cells can potentially be a
positive predictive biomarker for Ipilimumab therapy.

On the contrary, most anti-PD-1 and anti-PD-L1 antibodies
have low or significantly reduced binding to FcγR to avoid
potential ADCC and complement-dependent cytotoxicity
(CDC), especially when the target molecule is expressed
on effector T cells. In murine tumor models, the anti-PD-1
antibody can be transferred from CD8+PD-1+ T cells to
PD-1− macrophages through FcγRIIb/III receptors and the
same phenomenon can be reproduced in vitro with human
cells and Nivolumab. Besides, the use of FcγRIIb/III blocking
antibodies prior to anti-PD-1 improved its anti-tumor efficacy
in mice (130). In a similar way, another paper showed that a
human IgG4 anti-PD-1 antibody, bearing an S228P mutation
as most approved immune checkpoint blockers, mediated a
crosslink with FcgRI(CD64)+ macrophages, resulting in the
activation, rather than inhibition, of PD-1 signaling in T cells,
the elimination of PD-1+ CD8 cells by ADCP and increased
secretion of IL-10 by macrophages. Compared to an identical
anti-PD-1 antibody that lacked FcγR binding, the S228P-
mutated antibody displayed a reduced anti-tumor effect in vivo,
highlighting the potential role of FcγR-expressing myeloid cells
in the negative regulation of ICIs (131). These observations need
to be considered for the drug development of antibodies because,
even though most mAbs are IgG4 or mutated IgG1 with no
or low ADCC, ADCP, or CDC, they can still bind to different
FcγR with unclear clinical consequences. Further studies are
needed to elucidate whether the described mechanisms can also
be observed in patients, further supporting the predictive role of
specific subsets of myeloid cells in anti-PD(L)1 therapy.

In addition to this, several preclinical experiments have
tried to shed light on the impact of ICIs on myeloid cells,
which can express PD-1 and PD-L1. ScRNAseq of MC38
tumors in immunocompetent mice treated with anti-PD-1
revealed an expected increase in IFNγ, immune checkpoints and
costimulatory molecules in CD8 lymphocytes in responders.
Interestingly, this was accompanied by an enrichment in an M1-
like signature includingHLA-DR, CXCL9, CXCL10, CCL5, CCL8,
and STAT1 transcripts, while, conversely, an M2-like signature
comprising SPP1, PTGS1, MRC1, MSR1, ARG1, and CCR2
mRNA was observed in non-responders (132). In the T3 murine
model, progressing tumors are highly enriched in CD206+

macrophages, but anti-PD-1, anti-CTLA-4 or combination
treatment induced the accumulation of iNOS+ inflammatory
macrophages. ScRNAseq and mass cytometry further confirmed
the transformation of control tumors, mainly infiltrated by

CCR2+ monocytes and CX3CR1+CD206+CCL2+CD49d+

macrophages, into tumors enriched in iNOS+PD-L1+CXCL2+

cells after ICI treatment (133). In a similar way, Dhupkar et al.
have shown that anti-PD-1 treatment induced a significant
reduction in lung metastases and a decrease in PD-L1 expression
by metastatic tumor cells in human LM7 osteosarcoma-bearing
mice. In this T cell-deficient model, NK and macrophages were
PD-1+ and their fraction was increased in the tumor after
treatment; the anti-tumor effect of anti-PD-1 blockade was
lost after macrophage, but not NK cell, depletion. Moreover,
anti-PD-1 provoked an increase in CD86 and a reduction in
CD163 staining in lung metastases compared to control mice,
suggesting a shift from M1-like to M2-like macrophages (134).

PD-1+ macrophages have also been described in mice
and human colorectal cancer (CRC), where they display M2-
like features (CD206+CD64+ large, foamy macrophages with
uncleared phagocytic material) and are involved in tumor growth
and invasion. In the CT26model these macrophages had reduced
phagocytosis compared to the PD-1− counterpart, restored by
the knock-out of PD-L1 on tumor cells. In immunodeficient
mice bearing a PD-L1 human CRC xenograft, anti-PD-(L)1
inhibitors were able to reduce tumor growth and this effect was
abrogated by macrophage depletion (135). PD-1+ macrophages
with an M2-like phenotype have also been described in NSCLC
biopsies and in the murine LLC model. In murine tumors, PD-
1+ macrophages have a distinct transcriptomic profile compared
with PD-1− cells. In NSCLC tumors, PD-1+ macrophages are
mainly stromal CD163+ macrophages and are associated with
poor prognosis, suggesting once more that the phenotype and the
localization of myeloid cells are likely crucial parameters to take
into account for ICI biomarkers (136).

In a similar way, Hartley et al. investigated the direct
effect of anti-PD-L1 antibodies on PD-L1+ macrophages at
the tumor site, given the prevalence of this cell subset in
human tumors. The authors discovered that the treatment of
murine and human macrophages with anti-PD-L1 antibodies
increased their proliferation, survival and activation, as measured
by the upregulation of CD86, MHC II, CD40, TNFα, and IL-
12 and of several transcripts linked to myeloid inflammation.
The same effects could be induced when macrophages were
pre-treated with anti-FcRII/III antibodies. The authors have
hypothesized that PD-L1 provides a constitutive negative signal
in macrophages that can be reversed by anti-PD-L1 antibodies.
The anti-PD-L1 treatment in syngeneic mouse models increased
the number of TAMs and upregulated CD86 and MHC II, even
in the absence of T cells. The authors also showed that the
in vivo combination of anti-PD-1 and anti-PD-L1 antibodies,
given their non-redundant effects, is more effective than either
monotherapies in mice (137).

These preclinical experiments suggest that PD-1 and PD-L1
could negatively signal in macrophages, keeping them in a non-
inflammatory, non-phagocytic state. If confirmed in the clinical
setting, this could imply that anti-PD-(L)1 immunotherapy,
together with its effect on T cells, might also cause an enrichment
of M1-like macrophages either directly (though the binding to
PD-1 or PD-L1) or indirectly (through cytokines release by
activated lymphocytes). This phenotypic and functional switch
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could also be used as a tumor pharmacodynamic biomarker for
these antibodies.

COMBINATION STRATEGIES FOR
IMPROVING ICI THERAPY BY TARGETING
MYELOID CELLS: AN OVERVIEW OF
CLINICAL DATA

Despite the great success of ICIs, the large majority of patients
present a primary (never-responders) or acquired resistance after
a period of response (138), but to date the reasons remain
largely unclear. Combinatorial approaches with drugs that target
immunosuppressive networks have become attractive to extend
the benefits of immunotherapy to non-responding patients and
are currently being tested in various clinical trials, as shown in
Table 1. Through the modulation of distinct cell subsets, these
combinations can be useful to overcome primary, as well as
acquired, resistance to ICIs.

Given the impact ofmyeloid cells on immunotherapy reported
in the previous paragraphs, it seems reasonable to combine ICIs
with drugs that target these subsets (3, 5, 7). A huge amount
of preclinical data supports this hypothesis and the relevance of
these combinations is also emerging in the clinic. In the following
paragraphs, we discuss the main myeloid-targeting strategies
designed to enhance the antitumor activity of ICIs by either
decreasing the suppressive potential of myeloid cells, through
the inhibition of their recruitment, differentiation or function, or
boosting the anti-tumoral capabilities of specific myeloid subsets.

Inhibitors of Colony-Stimulating Factor 1
Receptor (CSF-1Ri)
As previously discussed, TAMs and MDSCs are critical players
within the immunosuppressive microenvironment. CSF-1 binds
to the CSF-1R tyrosine kinase receptor on myeloid cells leading
to myeloid cell proliferation, differentiation and recruitment into
tumors (182). CSF-1/CSF-1R blockade promotes antitumor T
cell responses and reduces tumor growth in several preclinical
models in combination with immunotherapy, despite showing
minor effects on tumor growth as a monotherapy (81, 86, 183,
184). Inspired by these encouraging preclinical results and by
the first clinical results from CSF-1Ri monotherapy (185), several
clinical trials combining ICIs with small molecules (as ARRY-382
or Pexidartinib) or mAbs (e.g., Emactuzumab or Cabiralizumab)
directed against CSF-1R are currently ongoing in patients with
solid tumors (Table 1).

Initial results from the combination of the anti-CSF-1R
Cabiralizumab with Nivolumab showed a durable clinical
benefit in heavily pre-treated patients with microsatellite
stable pancreatic cancer. A durable depletion of circulating
non-classical monocytes, a pharmacodynamic marker of
Cabiralizumab and other CSF-1R targeting agents (186, 187),
was observed with the Cabiralizumab monotherapy and the
combination with Nivolumab (139), with a dose-dependent
increase in the systemic levels of CSF-1 and IL-34 (CSF-1R
ligands). Within tumors, a decrease from baseline of M2-like
CSF-1R+CD163+ and total CD68+ macrophages, together

with a concomitant increase in CD8+ effector T cells, was
shown in patients treated with the combination. Furthermore,
a significant increase in the expression of CSF-1R ligands
and pro-inflammatory genes, associated with an M1-type
polarization, were observed only in the tumors of responders to
the combination (140). These results supported a Phase 2 study
of a triple combination of Cabiralizumab plus Nivolumab with or
without chemotherapy in advanced pancreatic adenocarcinoma
(188). The results of ICI combinations with other CSF-1Ri are
awaited to support the relevance of this promising approach.

Inhibitors of CD73 and Adenosine Pathway
Apart from molecules that interfere with the myeloid cell
recruitment, another interesting therapeutic approach is to target
their ability to create an immunosuppressive environment. As
previously described, CD73 is a myeloid marker that is emerging
as an important modulator of the response to ICIs (83, 128).
CD73 hydrolyses the adenosine monophosphate (AMP) into
adenosine and inorganic phosphate. The increased expression of
CD73 in TME directly associates with adenosine accumulation
and exerts multiple immunosuppressive actions on the anti-
tumor immunity (189, 190).

Adenosine signals through cyclic AMP that inhibits T cell
receptor activation (191). Preliminary data shows that patient
exposure to anti-PD-1/PD-L1 therapy increased the expression of
adenosine A2A receptor (A2AR) and CD73, suggesting that the
adenosine pathway might be a potential mechanism of resistance
to ICIs (192). As previously mentioned, CD73 inhibition may be
a useful strategy to improve the clinical outcome of glioblastoma
patients treated with immunotherapies (83). As a matter of fact,
the human anti-CD73 mAb MEDI9447 is currently being tested
in a Phase I study as monotherapy and in combination with
Durvalumab (144).

In a Phase 1/1b clinical trial, an oral small molecule
inhibitor of A2AR (CPI-444) has shown anti-tumor activity in
monotherapy and in combination with Atezolizumab in anti-PD-
1/PD-L1 resistant and PDL-1-negative patients (146). CPI-444
induced CD8+ T cell infiltration into tumors and IFNγ- and
Th1 signatures (192). The use of adenosine analogs or agonists
on PBMCs has allowed to identify a transcriptomic “adenosine
signature,” dominated by myeloid cytokines and chemokines,
nearly identical to the “myeloid signature” associated with poor
response to Atezolizumab in RCC patients (104). CPI-444 blocks
the induction of these genes in vitro and seems to have a
better anti-tumor activity in RCC patients with a high adenosine
signature compared to patients with low expression (147).

Anti-semaphorin 4D Antibodies
Semaphorin 4D (SEMA4D) is a transmembrane glycoprotein
that binds to Plexin receptors, regulating the movement
and differentiation of cells and displaying immunomodulatory
effects in the TME (193). High levels of SEMA4D positively
correlate with the presence of immunosuppressive TAMs and
MDSCs, with concomitant exclusion of activated APCs and
CD8+ T lymphocytes from the tumor (194). In preclinical
models, blockade of SEMA4D was associated with an increased
penetration of inflammatory F4/80+CD11c+ APCs and a
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TABLE 1 | Clinical Trials of combinations of ICIs with myeloid-targeting drugs.

ICI Drug Target Phase Clinical trial References

α-PD-1 Nivolumab

Pembrolizumab

Cabiralizumab

Cabiralizumab

Pexidartinib

ARRY-382

AMG 820

CSF1R Phase 1

Phase 2

Phase 1/2

Phase 1/2

Phase 1/2

NCT02526017

NCT03336216

NCT02452424

NCT02880371

NCT02713529

(139)

(140)

(141)

(142)

-

α-PD-L1 Atezolizumab

Durvalumab

Emactuzumab

Pexidartinib

CSF1R Phase 1

Phase 1

NCT02323191

NCT02777710

-

(143)

α-PD-1 Pembrolizumab LY3475070 CD73 Phase 1 NCT04148937 -

α-PD-L1 Atezolizumab

Durvalumab

TJ004309

MEDI9447

CD73 Phase 1

Phase 1

NCT03835949

NCT02503774

-

(144)

α-PD-1 Spartalizumab PBF-509 Adenosine-A2A

Receptor

Phase 1/2 NCT02403193 (145)

α-PD-L1 Atezolizumab

Durvalumab

Ciforadenant (CPI-444)

AZD4635

Adenosine-A2A

Receptor

Phase 1

Phase 1

NCT02655822

NCT02740985

(146, 147)

(148)

α-PD-1–

α-CTLA-4

Nivolumab-Ipilimumab VX15/2503

(Pepinemab)

Semaphorin 4D Phase 1

Phase 1

Phase 1

Phase 1

NCT03690986

NCT03373188

NCT03425461

NCT03769155

(149)

(149)

-

(150)

α-PD-L1 Avelumab VX15/2503

(Pepinemab)

Semaphorin 4D Phase 1/2 NCT03268057 (151)

α-PD-1 Nivolumab

Pembrolizumab

Epacadostat

Epacadostat

IDO-1 Phase 1

Phase 1/2

Phase 3

Phase 3

Phase 3

Phase 3

Phase 2

Phase 2

Phase 3

NCT03707457

NCT02178722

NCT02752074

NCT03260894

NCT03374488

NCT03358472

NCT03322540

NCT03322566

NCT03361865

-

(152)

(153)

-

(154)

(155)

(156)

(157)

(158)

α-PD-L1 Durvalumab Epacadostat IDO-1 Phase 1/2 NCT02318277 (159)

α-CTLA-4 Ipilimumab Epacadostat IDO-1 Phase 1/2 NCT01604889 (160)

α-PD-1 Nivolumab IPI-549 PI3K-γ Phase 1

Phase 2

NCT02637531

NCT03980041

(161)

α-PD-L1 Atezolizumab IPI-549 PI3K-γ Phase 2 NCT03961698 -

α-PD-1 Nivolumab APX005M CD40 Phase 1/2

Phase 1/2

NCT03214250

NCT03123783

(162)

-

α-PD-1 Pembrolizumab

Spartalizumab

MIW815

MK-1454

GSK3745417

MIW815

STING Phase 2

Phase 1

Phase 1

Phase 1

NCT03937141

NCT03010176

NCT03843359

NCT03172936

-

(163)

-

(164)

α-CTLA-4 Ipilimumab MIW815 STING Phase 1 NCT02675439 -

α-PD-1 Pembrolizumab ATRA Retinoic Acid Receptor Phase 1/2 NCT03200847 -

α-CTLA-4 Ipilimumab ATRA Retinoic Acid Receptor Phase 2 NCT02403778 (165)

α-PD-1 Nivolumab Trabectedin Phase 2

Phase 2

NCT03590210

NCT03886311

-

(166)

α-PD-L1 Avelumab

Durvalumab

Trabectedin

Trabectedin

Phase 1/2

Phase 1

NCT03074318

NCT03085225

-

-

α-PD-1–

α-CTLA-4

Nivolumab-Ipilimumab Trabectedin Phase 1/2 NCT03138161 (167)

α-PD-1 Pembrolizumab Axitinib VEGF-R Phase 1

Phase 3

NCT02133742

NCT02853331

(168)

(169)

α-PD-L1 Avelumab Axitinib VEGF-R Phase 3 NCT02684006 (170)

α-PD-1 Nivolumab Bevacizumab VEGF Phase 1

Phase 2

Phase 2

NCT03382886

NCT03890952

NCT03452579

-

-

(171)

α-PD-L1 Atezolizumab Bevacizumab VEGF Phase 1

Phase 1

Phase 2

Phase 3

Phase 3

NCT01633970

NCT02715531

NCT01984242

NCT02366143

NCT02420821

(172)

(173)

(104)

(174, 175)

(176)

α-CTLA-4 Ipilimumab Bevacizumab VEGF Phase 1 NCT00790010 (177–181)

α-PD-1 Pembrolizumab Trebananib Angiopoietin-2 Phase 1 NCT03239145 -
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decreased density of pro-tumorigenic CD206+ M2-like TAMs
in the TME. Combination with anti–CTLA-4 led to tumor
regression accompanied by enhanced T cell activity, increase
in activated CD86+ monocytes in the tumor, augmentation
of pro-inflammatory IFNγ, TNFα, and IL-6 and decrease in
immunosuppressive MCP-1 and IL-10 cytokines (195). Based
on these preclinical results, Pepinemab, a humanized anti-
SEMA4D mAb, is currently being evaluated in combination
with Ipilimumab and Nivolumab in solid tumors (149–151), as
reported in Table 1.

Inhibitors of Indoleamine 2,3-Dioxygenase
1 (IDO1)
Another important molecule involved in T cell
immunosuppression in the TME is IDO1, which catalyzes
the cleavage of L-tryptophan into kynurenine, leading to the
inhibition of effector T cell proliferation and to the increase of
Tregs (196, 197). IDO1 can be constitutively expressed by tumor
cells or by macrophages, MDSCs and DCs in the tumor or the
lymph nodes (198, 199) but can also be induced by inflammatory
cytokines, such as IFN-γ, potentially inducing resistance to
immunotherapy (200). High baseline IDO1 expression in tumors
has been shown to predict response to anti-CTLA-4 in metastatic
melanoma patients (201). In the B16 murine model, IDO1
inhibition combined with anti-CTLA-4 blockade resulted in
increased infiltration of effector T cells, while attenuating Treg
and MDSC accumulation (202). Expression of IDO1, PD-L1 and
CTLA-4 in PBMCs of melanoma patients have been shown to be
associated with a negative outcome, independently from disease
stage (203). Based on these evidences, IDO1 inhibitors have been
investigated for their potential to enhance the efficacy of ICIs.

Epacadostat is a highly selective oral inhibitor of IDO1
that induces enhanced proliferation of effector T cells and NK
cells, increased activation of CD86high dendritic cells and a
contraction of human Tregs in vitro and murine Tregs in vivo
(204, 205). Based on the encouraging results obtained in a
Phase 1/2 study (152), several Phase 2 and Phase 3 trials
(Table 1) were started to define the efficacy of the combination
of Epacadostat with Pembrolizumab. However, in patients with
advanced melanoma, the results of the Phase 3 study ECHO-
301 were disappointing, with no improvement in PFS or OS
in the combination vs. Pembrolizumab alone (153). Moreover,
this study lacked biomarkers, which could have answered several
key questions. In a recent review several explanations have been
proposed for the negative outcome of ECHO-301, including a
possible insufficient inhibition of IDO1, due to the inhibitor itself
or the clinical dose, and the inadequate selection of patients; the
authors however suggest to pursue the clinical development of
inhibitors of IDO1, which still remains an attractive target for
cancer immunotherapy (206).

Inhibitors of Phosphoinositide 3-Kinase γ

(PI3Kγ)
The PI3Kγ, highly expressed in myeloid cells, has recently
emerged as another key regulator of immunosuppressive
macrophages (207, 208). In preclinical models, PI3Kγ selective
targeting has been shown to reprogram macrophages into an
immune-activating phenotype and to enhance ICIs activity

(209). A Phase I study of the oral PI3Kγ inhibitor IPI-549 in
combination with Nivolumab showed favorable tolerability and
early signs of clinical activity in solid tumors. Upregulation
of PD-L1 and CXCL9/10 and re-invigoration of exhausted
PD1+CD8+CD45RA− T cells were observed in blood samples
during treatment, suggestive of immune activation and reduced
immunosuppression (161). Even if no data are available for the
modulation of myeloid cells in these patients, these encouraging
results show that PI3Kγ inhibition might help overcome
resistance to ICIs and have led to Phase II IPI-549 combinations
with Nivolumab or Atezolizumab (Table 1).

CD40 Agonists
As discussed previously and elsewhere (4, 5), myeloid cells can
also have an anti-tumoral role through antigen-presentation
and effector functions. The costimulatory protein CD40 is
expressed by myeloid cells and DCs and, when activated by its
ligand, promotes antigen presentation (210). A strong correlation
between survival of CRC patients and CD40 expression in tumors
was previously uncovered (211). In murine pancreatic tumor
models, CD40 agonists were combined with anti-PD-1 and
chemotherapy to trigger effective T cell immunity (212, 213).
In a CRC model, a CD40 agonist led to PD-L1 increase on
tumor-infiltrating monocytes and TAMs, PD-1 upregulation on
T cells and a synergistic tumor growth inhibition in combination
with an anti-PD-1 (214). Based on this preclinical evidence, the
combination of the APX005M CD40 agonist with Nivolumab
plus standard gemcitabine and nab-paclitaxel is currently being
tested with promising antitumor activity in pancreatic cancer,
where ICIs have been ineffective as single agents (215). In these
patients, baseline biopsies revealed a low CD8+ T cell and a
high macrophage infiltration. Moreover, the immune-profiling
of PBMCs showed a rapid activation of dendritic cells in most
patients upon treatment (162).

STING Agonists
Type I interferon pathway is crucial in linking the innate and
adaptive immune responses to mediate tumor rejection in mice
and humans (216, 217). The activation of the STimulator of
INterferon Genes (STING) pathway increases IFN-β production
by tumor-resident DCs and induces the recruitment and priming
of T cells against tumor antigens (218). The discovery of agonists
of STING in mice [5,6-dimethyllxanthenone-4-acetic acid or
DMXAA (219, 220)] and humans [MIW815/ADU-S100 and
MK-1454 synthetic cyclic dinucleotides or small molecules like
GSK3745417 (221, 222)] extended the possibilities of rational
combinations with ICIs. Until the development of small-
molecules suitable for systemic administration (223), clinical
trials with the first STING agonists were focused on intratumoral
delivery and thus limited to patients with accessible tumors.

In preclinical models, DMXAA, previously known for its
antivascular properties (224) was shown to indirectly affect the
release of TNFα and nitric oxide by TAMs (225, 226) and to
induce the repolarization of M2-like into M1-like macrophages
(227). DMXAA was able to promote rejection of B16 melanoma
cells with an increased influx of CD8+ TILs (228) and
triggered the cooperation between lymphocytes and monocytes,
macrophages and neutrophils in murine breast cancer (229).
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However, due to distinct amino acids, DMXAA does not activate
the human STING (219, 220), as confirmed by the negative
results of Phase 3 trial in NSCLC patients (230). Several agonists
specific for human STING have since been developed and
recently entered the clinic. The combination of intratumoral
MK-1454 plus Pembrolizumab resulted in encouraging efficacy
and an acceptable safety profile in solid tumors or lymphomas
(163). Moreover, the well-tolerated combination of intratumoral
MIW815/ADU-S100 with the anti-PD-1 Spartalizumab has
demonstrated antitumor activity in breast cancer and relapsed
melanoma (164). MIW815/ADU-S100 is also being investigated
in combination with anti-CTLA-4 in a Phase I trial. These STING
agonists have demonstrated evidence of myeloid cell activation in
patients through the induction of IL-6, CCL2 and type I IFN in
the bloodstream and PD-L1 upregulation in tumors (231).

All-Trans Retinoic Acid (ATRA)
One of the first molecules that has shown an effect on myeloid
cells is ATRA, a vitamin A derivative that binds to the
retinoic acid receptor on MDSCs and immature monocytes,
differentiating them into mature DCs (232). This molecule is
a standard treatment for patients with acute promyelocytic
leukemia (233) but it has been tested in clinical trials for
other indications, such as small-cell lung cancer, where anti-
tumor immune responses where accompanied by a decrease
in circulating total MDSC (Lin−CD33+HLA-DR−) and M-
MDSCs (234). In a small clinical trial, melanoma patients
treated with the combination of Ipilimumab and ATRA had
significantly decreased circulating MDSCs when compared to
Ipilimumab alone. Additionally, while a decrease in MDSCs
was observed with the combination, the frequency of MDSCs
increased over time in patients treated with Ipilimumab alone.
Interestingly, compared to Ipilimumab alone, the combination
induced an increased in circulating HLA-DR+ myeloid cells over
time, accompanied by a significant decrease in eosinophils. The
combination treatment was also associated with improved CD8+

T cell responses and the frequency of activated lymphocytes
inversely correlated with that of circulating MDSCs in all
patients (165). Even though patient enrollment in this study
was halted following the approval of anti-PD-1 antibodies,
the NCT03200847 clinical trial was launched with the aim of
testing the combination of ATRA and Pembrolizumab, with an
estimated completion date in June 2020.

Trabectedin
Another myeloid-targeting agent that could improve the efficacy
of ICIs is Trabectedin, a DNA-binder of marine origin approved
as a single agent for the treatment of soft tissue sarcoma
and, in combination with doxorubicin, for relapsed platinum-
sensitive ovarian cancer (235, 236). Trabectedin not only directly
kills tumor cells by interfering with cell cycle progression,
but also modulates the TME via a selective depletion of
TAMs and MDSCs (237). In a murine ovarian cancer model,
the combination of Trabectedin with anti-PD-1 significantly
prolonged mice survival, with a concomitant decrease in MDSCs
and TAMs and a significant increase of effector CD4+FoxP3−

T cells and CD8+ T cells (238). Based on this evidence, several

combination trials of Trabectedin and ICIs have been launched
but the efficacy in patients is still undefined (Table 1).

Anti-angiogenic Molecules
Myeloid cells in tumors can also be indirectly affected by
drugs that are not specifically design to target them. As an
example, the vascular endothelial growth factor (VEGF), in
addition to its role in angiogenesis, has profound effects on
immune cell functions: it inhibits DC maturation, antigen
presentation and lymphocyte infiltration, while promoting Treg
and MDSC expansion in the TME (239–243). Preclinical models
and phase 1 studies suggest that anti-VEGF molecules might
enhance the antitumor activity of ICIs by improving T cell
infiltration, upregulating MHC I expression and reversing
myeloid immunosuppression (244).

Based on this rationale, several clinical trials combining
ICIs and antiangiogenic agents are currently ongoing (Table 1).
The potential synergy of Ipilimumab and the anti-VEGF
Bevacizumab (Ipi-bev) has been investigated in metastatic
melanoma. Compared with pre-treatment or with post-treatment
samples from the Ipilimumab group, the combination enhanced
the intratumoral endothelial activation, resulting in increased
trafficking of CD8+ T cells and CD163+ dendritic macrophages
across the tumor vasculature. Although not functionally
characterized, macrophages displayed extensive dendritic
processes, suggesting that Bevacizumab might have increased
their maturation and antigen-presenting capacity (177).

In the same trial, the authors found that high circulating
Angiopoietin-2 (ANGPT2) [a vessel-destabilizing molecule and
critical regulator of blood vessel maturation (74)] levels at
baseline and early during treatment were associated with
shortened OS and reduced response. Treatment with PD-
1 blockade or Ipilimumab alone increased, whereas Ipi-Bev
decreased, serum ANGPT2 in a significant proportion of
patients (178). ANGPT2 binds to the Tie2 receptor and
can have an impact on monocytes and macrophages subsets
that express it (245–247). Tumor biopsies with high tumor
vascular ANGPT2 expression showed an increase in CD68+ and
CD163+ macrophages after Ipilimumab or Ipi-bev treatment.
Ipi-bev treatment, however, decreased tumor vascular ANGPT2
expression in a subset of patients, together with a decreased
CD68+ and CD163+ macrophage infiltration, suggesting that
ANGPT2 might have a role in resistance to ICI through
TAM recruitment and that Bevacizumab might influence
myeloid infiltration also by acting on the ANGPT2 levels.
Moreover, ANGPT2 promoted PD-L1 expression on M2-
polarized macrophages in vitro, hinting at another potential
mechanism of resistance in ICI-treated patients with increased
amounts of ANGPT2. In conclusion, ANGPT2 might serve as
a potential predictive biomarker for ICIs and a possible target
for combinations that could help reduce myeloid cell infiltration
and tumor immunosuppression (178). As a consequence, the
ANGPT2 inhibitor Trebananib is currently being tested in
combination with Pembrolizumab (Table 1) (248).

Several clinical trials combining ICIs with Bevacizumab are
also ongoing in mRCC (Table 1), in which elevated serum and
tumor VEGF levels have been associated with poor survival
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(249). In a study combining Bevacizumab with Atezolizumab, the
authors demonstrated the ability of Bevacizumab to induce a Th1
signature with chemokines involved in lymphocyte trafficking,
tumor MHC I protein expression and infiltration of tumor-
specific T cell clones. As reported for Ipi-bev combination (177),
the combination of Atezolizumab and Bevacizumab reduced
the presence of CD31+ blood vessels, especially of immature,
unstable ones, with a widespread infiltration of immune cells.
Notably, the on-treatment localization of CD68+CD163+, but
not CD68+CD163− macrophages, was observed adjacent to
immature, but not mature, vessels. Nonetheless, the role
and modulation of distinct TAM subsets during Bevacizumab
treatment needs to be further explored to better understand the
immune-related mechanisms of action of anti-angiogenic drugs
in ICI combos (172). Moreover, the anti-tumor activity seen with
the combination was associated with a further increase in CD8+

T cells and unique T cell clones in the tumor, supporting the
evaluation of this combination in phase 2 and 3 trials in mRCC
and in other tumor types.

As discussed in the previous paragraphs, the IMmotion150
study was the first randomized trial to investigate the clinical
activity of Atezolizumab with or without Bevacizumab against
the standard-of-care Sunitinib in mRCC. Sunitinib efficacy was
enriched in highly angiogenic tumors, while the combination
of Atezolizumab and Bevacizumab improved clinical benefit
compared with Sunitinib in Teff

high tumors. Atezolizumab
monotherapy was effective in tumors with pre-existing immunity
and a relatively low expression of myeloid-associated genes,
while the combination with Bevacizumab improved the clinical
outcome in Teff

highMyeloidHigh patients, confirming the ability of
Bevacizumab to overcome myeloid-mediated resistance in these
tumors (104).

CONCLUSIONS

The use of ICIs has greatly changed the survival of a substantial
fraction of patients with cancer in the last years. However,
the knowledge about the mechanisms of primary and acquired
resistance is still limited. The exploration of biomarkers in
clinical trials is essential to understand how the immune system

and the TME of each patient influence the response to ICIs and
thus how the therapy should be personalized.

In this review we have drawn attention to the impact of
myeloid cells on ICI therapy, with a special focus on clinical
data. The existing evidence supports the exploration and the
formal validation of myeloid subsets in blood and tumor as
both predictive and pharmacodynamic biomarkers and the
use of myeloid-targeting agents as rational partners for ICI
combinations. Even though most studies point to a regulatory
role of cells of the monocyte/macrophage lineage, different
subsets might be prevalent in different cancer types. Accordingly,
multiparametric technologies (multicolor flow cytometry, mass-
cytometry, multiplex immunofluorescence and bulk or scRNA
sequencing) are crucial for the study of biomarkers, as they
allow a more detailed characterization of the phenotype, function
and localization of subsets that are more informative than
the simple abundance of macro-populations detected with
classical methods. At last, the encouraging data from clinical
combinations of ICIs with myeloid-targeting drugs support the
idea that controlling the expansion, recruitment and function of
myeloid cells in tumors is crucial to extend the benefit of these
immunotherapies to non-responding patients.
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Suppression of antitumor immune responses is one of the main mechanisms by which

tumor cells escape from destruction by the immune system. Myeloid-derived suppressor

cells (MDSCs) represent the main immunosuppressive cells present in the tumor

microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous

group of immature myeloid cells with a potent activity against T-cell. Studies in mice have

demonstrated that MDSCs accumulate in several types of cancer where they promote

invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In

addition, different clinical studies have shown that MDSCs levels in the peripheral blood of

cancer patients correlates with tumor burden, stage and with poor prognosis in multiple

malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies

and their targeting may be a beneficial strategy for improvement the efficiency of

immunotherapeutic interventions. However, the great heterogeneity of these cells makes

their identification in human cancer very challenging. Since both the phenotype and

mechanisms of action of MDSCs appear to be tumor-dependent, it is important to

accurately characterized the precise MDSC subsets that have clinical relevance in each

tumor environment to more efficiently target them. In this review we summarize the

phenotype and the suppressive mechanisms of MDSCs populations expanded within

different tumor contexts. Further, we discuss about their clinical relevance for cancer

diagnosis and therapy.

Keywords: immune evasion, melanoma, breast cancer, hepatocellular cacinoma, non-small cell lung cancer

(NSCLC), myeloid derived suppressor cell (MDSC), prostate cancer, colorectal cancer

INTRODUCTION

Cancer immune surveillance is an important process by which the immune system can
eliminate nascent tumor cells and to control tumor evolution. Eventually, due to the genetic
instability, new tumor cell variants can become resistant to immune effector cells by decreasing
their immunogenicity and/or secreting and recruiting immunosuppressive factors in the tumor
microenvironment (TME). During this phase of equilibrium, if the immune system is unable
to eliminate these clonal variants, then tumors evolve mechanisms to escape from the immune
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attack allowing malignant progression (1, 2). These mechanisms
are diverse but primarily induce attenuation of anti-tumor
CD8+ T lymphocyte. Immunosuppressive myeloid cells,
including myeloid-derived suppressor cells (MDSCs) are key
mediators in assisting tumors to escape immune surveillance,
contributing to tumor development and progression. MDSCs
are a heterogeneous group of immature myeloid cells (IMCs)
with strong immunosuppressive patterns and functions. Under
normal condition, IMCs quickly differentiate into mature
granulocytes, macrophages, or dendritic cells (DCs) which play
essential roles in host defense against pathogens. However,
in a variety of pathologic conditions such as inflammation,
cancer and infection IMCs fail their normal differentiation and
acquire the features of immature and dysfunctional myeloid
population, which include MDSCs (2). Recently, it has been
introduced the hypothesis that MDSCs could also be derived
from mature myeloid cells such as monocytes and neutrophils
in cancer settings (3, 4). In particular, it has been demonstrated
that CD14+ cells exposed to extracellular vesicles (EVs)
(containing proteins, lipids, and genetic material) isolated from
melanoma cells, show a suppressive activity on T cells thus
referred as EV-MDSCs. Similarly, it has been reported that the
treatment of healthy donor-derived monocytes with chronic
lymphocytic leukemia (CLL) cells-derived exosomes induced
MDSCs functional characteristics on monocytes mainly driven
by miRNA-155 (5). Thus, deregulated myelopoiesis is a common
occurrence in cancer and it is accompanied by a reciprocal
decline in the quantity/quality of the lymphoid response (6).
Myelopoiesis is a tightly controlled process. Certain transcription
factors, such as CCAAT/enhancer binding protein-α (C/EBPα),
and interferon regulatory factor-8 (IRF-8), are instrumental for
normal myeloid cell development, differentiation and function
and they can be targets of tumor-derived factors (TDFs). Thus,
such TDFs may impair their expression, which ultimately affect
the fate of the resulting myeloid response. Indeed, interventions
that target atypical myelopoiesis by enhancing IRF-8 expression
demonstrated to abrogate MDSC-mediated immunosuppression
and to promote MDSCs differentiation in effector myeloid
cells including DCs and mature neutrophils with anti-tumor
activity (7–9). About 10 years ago, two major subsets of
MDSCs have been identified based on their phenotypic and
morphological features: monocytic-MDSCs (M-MDSCs) and
granulocytic-MDSCs (G-MDSCs). G-MDSCs are phenotypically
and morphologically similar to neutrophils, whereas M-MDSCs
are similar to monocytes (10). In tumor-bearing mice these cells
are characterized by the expression of CD11b and Gr-1 surface
markers. The granulocyte marker Gr-1 includes the isoforms
Ly6C and Ly6G, and these subsets can be more accurately
identified based on their expression as CD11b+Ly6ChiLy6G−

(M-MDSCs) and as CD11b+Ly6CloLy6G+ (G-MDSC) (11).
However, several other cell surface markers are introduced such
as F4/80, CD124 (IL-4Rα), CD115 (M-CSF-1R), and CD80
(B7.1), which are used for identification of MDSCs subsets and
to distinguish MDSCs from neutrophils and monocytes (2, 12).
In cancer, the frequency of G-MDSCs in the peripheral lymphoid
organs is higher than M-MDSCs. In contrast, MDSCs in tumor
sites are mainly M-MDSCs (13, 14). MDSCs are generated

in the bone marrow from myeloid progenitor cells and then
traffic through the circulatory system into solid tumors. The
accumulation of MDSCs in TME mainly depends on two groups
of signals. The first group include factors that are mainly secreted
by tumor cells, such as stem cell factor (SCF), granulocyte-
macrophage colony stimulating factor (GM-CSF), granulocyte
colony stimulating factor (G-CSF), vascular endothelial growth
factor (VEGF), macrophage colony-stimulating factor (M-CSF).
These factors stimulate myelopoiesis and promote the expansion
of MDSCs in lymphoid organs and TME by activating the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) signaling pathways. In particular, the transcriptional
factors/regulators STAT3, STAT5, IRF8, C/EBPβ, NOTCH play
a major role in this process. The second kind of signals includes
inflammatory cytokines and chemokines, produced mostly by
the tumor stroma, such as IFN-γ, IL-4, IL-6, IL-1β, and CXCL1,
which are responsible of inducing the suppressive activity of
MDSCs via NF-κB, STAT1, and STAT6 (10, 15). Studies focusing
on the role of MDSCs in cancer progression showed that the
main activity of these cells is to suppress immunity by perturbing
both innate and adaptive immune responses. In tumors, MDSCs
have been demonstrated to inhibit cytotoxic T cells proliferation
and activation leading to the failure of the anti-tumor immune
response, promotion of cancer progression and chemoresistance
(16). The main mechanisms implicated in MDSCs-mediated
immune suppression include: (i) deprivation of T cells from
essential amino acids; (ii) decreased expression of l-selectin
by T cells; (iii) induction of oxidative stress; (iv) induction
of immunosuppressive cells like regulatory T (T-regs) and T
helper (Th) 17 cells (16, 17). Although the role of MDSCs as
potent inducers of T-regs has been widely described in different
types of cancer, recent findings also demonstrate that T-regs
control MDSCs differentiation and function through different
molecules such as transforming growth factor (TGF)-β and the
programmed death ligand 1 (B7-H1) (18, 19). However, more
research is needed to better dissecting the cross-talk between
MDSCs and T-regs in the TME. In addition to suppression
of immune surveillance, MDSCs can also directly promote
tumor progression and metastasis through non-immunological
functions by affecting the remodeling of the TME and tumor
angiogenesis via production of VEGF, bFGF, Bv8, and matrix
metalloproteinase (MMP)-9 (20). The main factors implicated
in MDSC-mediated immune suppression include arginase
1 (ARG1), inducible nitric oxide synthase (iNOS), TGF-β,
IL-10, cyclooxigenase-2 (COX-2), indoleamine 2,3-dioxygenase
(IDO) and many others. M-MDSCs and G-MDSCs can utilize
different mechanisms to suppress immune response. M-MDSCs
express high levels of ARG1 and of iNOS, thus, they suppress
T-cell responses, both in antigen-specific and non-specific
manners, trough high production of nitric oxide (NO) in the
TME. On the other hand, G-MDSCs are capable of suppressing
immune responses primarily in an antigen-specific manner and
they act mostly through production of high levels of reactive
oxygen species (ROS) (14, 21). Several evidences suggest that
on a per cell basis M-MDSC are more potent than G-MDSC
(13). In contrast to murine models, the phenotype of MDSCs
in humans is not as well-defined. Tipically, human tumor
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infiltrating MDSCs express the markers CD33 common to cells
of myeloid lineage, but lack the expression of the maturation
myeloid marker HLA-DR. Analogously to the murine MDSCs,
human MDSCs are broadly classified into two different subsets,
monocytic and granulocytic, based on the expression of
the monocyte differentiation antigen CD14 and the mature
monocyte marker CD15. Thus, human M-MDSCs are mostly
CD33+CD11b+CD14+HLA-DR−/low whereas human G-
MDSCs are CD33+CD11b+HLA-DR−/lowCD14−CD15+.
However, the gating strategies used to identify MDSCs
populations can vary among researcher. G-MDSCs and
neutrophils share similar phenotype; however, they have
different density. Recently, identified lectin-type oxidized
LDL receptor 1 (LOX-1) allows for better distinction between
human neutrophils and G-MDSC. Immune suppressive LOX-1+

cells represent 4–15% of all neutrophils in blood of cancer
patients and up to 40% in tumor tissues, whereas in healthy
individuals, these cells represent <1% (22). Conversely, human
M-MDSC can be easily separated from monocytes based on the
expression of MHC class II molecules which is expressed only
on monocytes (HLA-DR+) (23). In addition to the granulocytic
and monocytic subtypes, a third small population of putative
MDSCs that includes cells with colony-forming activity and
promyelocytic appearance was described in humans. These
cells, termed immature or early-stage MDSCs (e-MDSCs), have
the phenotype CD33+CD11b+HLA-DR−CD14−CD15− cells
(11, 24). HumanM-MDSCs and G-MDSCs, like murine MDSCs,
have been shown to exhibit distinct functional attributes. In
particular, G-MDSCs primarily use ROS as the mechanism of
immune suppression whereas M-MDSCs show up-regulation
of iNOS, ARG1, and an array of immunosuppressive cytokines
(17). In recent years, the clinical role of MDSCs has emerged.
Numerous studies have reported the expansion of MDSCs in
various human cancers including breast, colon, lung, pancreatic,
renal, esophageal, and melanomas (24–26). Moreover, the
frequency of MDSCs have also been negatively correlated with
the response to immunotherapy (27). Therefore, targeting
MDSCs in cancer patients may be a viable therapeutic
approach to reverse immune escape and to maximize immune
based treatments.

However, an important issue in this viewpoint is the great
heterogeneity of these cells, which make the identification
and isolation of human MDSCs subsets very challenging.
Several data found a significant diversity in the MDSCs
subsets in different human cancers. Moreover, the frequency
and the mechanisms of action of each MDSCs subset seems
to be influenced by the cancer type (26). Thus, the precise
identification of cell surface markers and the exact definition
of human MDSCs in different types of malignancies can
be useful to improve the efficacy of immunotherapeutic
interventions and cancer treatment. In this review, we
summarize the phenotype and the biological function of
MDSCs populations expanded within different tumor contexts
which have showed the strongest negative association with
MDSCs, as well as discuss their clinical relevance for cancer
diagnosis and therapy.

MAIN STRATEGIES TO THERAPEUTICALLY
TARGET MDSCs IN CANCER

Inhibition of MDSCs in cancer therapy has proven to be a
potentially promising and well-tolerated treatment. Increasing
numbers of pre-clinical studies and clinical trials have been
performed over the past years in order to evaluate the safety
and the efficacy of MDSCs inhibition, alone or in combination
with other therapy (radiotherapy, chemotherapy, surgery or
immunotherapy) in cancers. Currently, different therapeutic
strategies aimed at eliminating MDSCs and/or abrogating their
pro-tumor activities are being investigated. These approaches
include (1) depletion of MDSCs; (2) inhibition of MDSCs
recruitment to the tumor site; (3) inhibition of MDSC’s
suppressive activity; (4) promoting MDSCs differentiation
(Figure 1).

In mouse models, depletion of MDSCs has been generally
accomplished by the use of antibodies that target the surface
markers Gr-1 or Ly6G (28). More recently, novel approaches
have been developed to more preferentially target and deplete
MDSCs. For example, “peptibodies” consisting of S100A9-
derived peptides conjugated to antibody Fc fragments have
shown potential in eliminating MDSCs in mouse models without
targeting other proinflammatory immune cells (29). In addition,
induction of Fas-FasL mediated apoptosis of MDSCs have been
resulted effective in suppressing tumor growth and restoring
T cells immune response in different murine tumor models
(30–32). Similarly, targeting the TNF-related apoptosis-induced
ligand (TRAIL) receptor could be a potent and selective method
for MDSCs depletion (33). Some chemotherapeutics such as
gemcitabine, 5-fluorouracil, paclitaxel, and doxorubicin were
shown to selectively eliminate MDSCs in the spleen, blood, and
tumor beds in several mouse tumor models resulting in the
enhancement of the function of immune effector cells (34–38).
These findings reinforce the concept that depleting MDSCs has
great therapeutic promise. In cancer patients, “conventional”
therapies including surgical resection (39), radiotherapy (40)
or chemotherapy with gemcitabine or 5-fluorouracil, showed a
decrease of MDSCs leading to the immune recovery and tumor
regression (35, 36). However, MDSC numbers and/or function
have been assessed in few chemotherapy clinical trials and have
shown mixed results.

Intensive investigations have been performed to reduce
MDSCs trafficking to peripheral lymph nodes and tumor sites.
Chemokine receptors are a key driving force for the migration
of MDSCs and blocking the interactions with their ligands is
a rational approach to inhibit MDSCs accumulation in the
TME (41). In particular, therapeutic blockade of CCL2-CCR2
interaction by using CCL2 neutralizing antibodies or CCR2
antagonist has demonstrated promising antitumor efficacies in
several preclinical cancer models (42–44). However, in a phase
II clinical trial, was reported that carlumab (anti-CCL2 mAb)
in patients with metastatic castration-resistant prostate cancer,
induced a rapid rebound of the circulating concentration of
free CCL2 to value higher than the pretreatment serum levels
(45). The CCR5–CCL5 axis has also a critical role in tumor
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FIGURE 1 | Strategies for myeloid-derived suppressor cells (MDSC) targeting. The main approaches to target MDSCs include: (1) depleting MDSC populations; (2)

preventing MDSC recruitment and migration to the TME; (3) attenuating the immunosuppressive mechanisms of MDSCs by downregulating the expression of ARG1,

iNOS, COX-2 and reducing ROS generation; (4) promoting the differentiation of MDSCs into mature non-suppressive myeloid cells like macrophages and dendritic

cells. Examples for each therapeutic approach are shown.

progression since it supports tumor invasion and migration
of MDSCs to the tumor site (46). Indeed, by targeting the
CCR5-CCL5 interaction, tumor growth and invasiveness were
suppressed in colorectal, prostate, breast cancer and melanoma
(47–50). Another well-characterized target to reduce MDSCs
trafficking is the colony-stimulating factor 1 receptor (CSF1R)
whose expression is restricted to monocytes and macrophages.
Various inhibitors against CSF1R (such as IMC-CS4, GW2580,
PLX3397, AMG820, and emactuzumab) have shown promising
antitumor efficacies by inhibiting the survival of M-MDSCs and
tumor associated macrophages (TAMs) and are being tested
in combination with chemotherapy or immunotherapies in
cancer patients (51). The following MDSCs inhibitors have been
evaluated in clinical trials (52): Reparixin and AZD5069 (CXCR2
antagonists), respectively, in phase II for breast cancer and in
phase Ib/II for advanced solid tumors and metastatic squamous
cell carcinoma; Plexidartinib (CSF-1R inhibitor) in phase II for
recurrent glioblastoma; Maraviroc (CCR5 antagonist) in phase I
for metastatic colorectal cancer. The expansion and recruitment
of MDSCs to the tumor sites is also mediated by MMP9. It
has been shown that administration of amino-bisphosphonates
drugs can prevent MMPs from undergoing prenylation, a post-
translational modification that is essential for their function. As
a result of reduced MMP9 prenylation, cleavage of the tyrosine
kinase c-Kit is diminished, causing reduced mobilization of
MDSCs (53). Amino-bisphosphonates have shown a good safety
and tolerance and seem to exert therapeutic effects, making them

promising candidates to target MDSCs (54–56). The inhibition
of VEGF receptor signaling also leads to a reduction of MDSCs
infiltration (57). Indeed, the tyrosine kinase inhibitor (TKI)
sunitinib was reported to decrease the number of circulating
MDSCs in renal cell carcinoma patients via blockade of VEGF
and c-KIT signaling (58). Interestingly, sunitinib treatment
resulted also in a significant reduction of STAT3 activation and
ARG1 expression in M-MDSCs that was accompanied with an
elevated activity and proliferation of CD8+ T cells (59).

Blockade of MDSCs immunosuppressive mechanisms
represents the major therapeutic approach to re-establishing
T-cells activity and immunotherapy success. MDSCs can
be functionally inactivated by targeting their suppressive
machinery. For example, disruption of the COX-2/prostaglandin
E2 (PGE2) signaling has been successful in repressing MDSC-
associated suppressive factors such as ARG1 expression and
ROS production, and improving T-cells frequency and immune
response (60, 61). Phosphodiesterase-5 (PDE-5) inhibitors are
also able to inhibit MDSCs functions by the downregulation
of iNOS and ARG1 expression and activities. In preclinical
mouse models, administration of PDE-5 inhibitors, such as
sildenafil and tadalafil, has been demonstrated to reactivate
antitumor immunity through T-cells and natural killer (NK)
cells and to prolong survival of tumor-bearing mice (62–
64). Recent clinical trials with PDE-5 inhibitors have also
shown enhanced intra-tumor T-cells activity and improved
patients’ outcome in head and neck squamous cell carcinoma
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(HNSCC) and metastatic melanoma (65–67). Blocking the
immunosuppressive function of MDSCs can also be achieved
by targeting phosphatidylinositol 3-kinase (PI3K). Knockout
of PI3K was found to reduce the accumulation of G-MDSCs
in tumor-bearing mice, breaking immune tolerance to cancer
(68). Anti-inflammatory triterpenoids, have been demonstrate to
reduce intracellular ROS production by MDSCs by upregulating
the nuclear factor erythroid 2-related factor 2 (Nrf2) which
plays an important role in the cellular protection against free
radical damage (69). Moreover, synthetic triterpenoids, such as
CCDO-IM and CCDO-Me, have shown promising anticancer
results in phase I clinical trials (69, 70). Administration of ATRA,
a vitamin A derivative binding to the retinoid receptor, also
led to the downregulation of ROS production in MDSCs by
activating the extracellular-signal regulated kinase (ERK)1/2
pathway (71). The selective class I histone deacetylase (HDAC)
inhibitor entinostat has been reported to have an inhibitory effect
on MDSCs immunosuppressive functions in several preclinical
tumor models (72–74). Indeed, analysis of MDSCs response to
entinostat revealed significantly reduced ARG1, iNOS, and COX-
2 levels in both M- and G-MDSCs subsets. Interestingly, the
combination of entinostat with immune checkpoint inhibitors
resulted in prolonged survival and delayed tumor growth along
with an increase of CD8+ T effector cells in tumor-bearing
mice (73, 74). Clinical trials involving entinostat are currently
underway (52). Recently, the inactivation of class II HDAC
(HDAC6) with ricolinostat was found to further increase the
inhibitory effect of entinostat on the MDSCs suppressive activity
and on tumor progression (75). STAT3 is another promising
target to reduce MDSCs immunosuppressive functions. Various
approaches for STAT3 inhibition, such as inhibiting the (1)
SH2 domain or dimerization, (2) upstream TKIs (e.g., JAK and
Src inhibitors), (3) antisense oligonucleotides, and (4) peptide
mimetics of physiological negative modulators of STAT3, have
been tested in pre-clinical model and in clinical trials. However,
their clinical use in advanced solid tumors have revealed limited
efficacy or excessive toxicities (76). Recently, the antisense
oligonucleotide STAT3 inhibitor, AZD9150, has been tested
in phase I/Ib clinical trials for the treatment of diffuse large
B-cell lymphoma. Systemic administration of AZD9150 in
patients showed a positive immunomodulatory effect, with a
marked decrease in G-MDSCs in the peripheral blood, and a
meaningful antitumor activity. Trials to combine this agent with
checkpoint-targeting immunotherapies are in progress (77).

Finally, another therapeutic approach used for targeting
MDSCs is aimed to induce MDSCs differentiation, converting
them into mature non-suppressive cells. One promising
therapeutic appears to be ATRA which was reported to induce
the rapid differentiation of MDSCs into mature myeloid cells,
such as macrophages and DCs, and to improve T-cells response
in cancer patients (78, 79). The mechanism of ATRA-induced
differentiation of MDSCs involves specific up-regulation of
glutathione synthase and neutralization of high ROS production
in these cells (80). Several studies indicate that vitamin D3 is
another agent that can promote myeloid cells maturation and
reduce the number of MDSCs in cancer patient. In particular,
vitamin D3 administration in HNSCC patients increased levels

of IL-12, IFN-γ, and improved T-cells blastogenesis (81).
Transcription factors instrumental for normal myeloid cells
development, differentiation and function can also be a target
to reducing aberrant myelopoiesis. In particular, the interferon
regulatory factor (IRF)-8 is a “master regulator” of normal
myelopoiesis, indispensable for producing monocytes, DCs
and neutrophils from myeloid progenitors (82). Thus, enforced
expression of IRF-8, either directly or indirectly, may facilitate
myeloid differentiation and improves immunotherapy efficacy
(83). Further, it has been hypothesized that tumor-induced
IRF8 downregulation occurred through a STAT3-dependent
interaction. Indeed, STAT3 inhibition can induce MDSCs
differentiation into immunogenic DCs or macrophages (84, 85).

MDSCs IN BREAST CANCER

Breast cancer (BC) is the most commonly occurring cancer and
the leading cause of cancer-related deaths in females worldwide
(86). Clinically, BC is a heterogeneous disease. Analyses of
gene-expression profiling have identified three main groups of
BC based on estrogenic receptor (ER), progesterone receptor
(PR) and human epidermal growth factor receptor (HER2/neu)
expression (87). This classification is critical for guiding
treatments, which mainly include surgery (mastectomy or
lumpectomy), radiotherapy, anthracycline-based chemotherapy
or hormonal therapies with anti-HER-2 monoclonal antibodies
(mAb), i.e., trastuzumab, pertuzumab, and TDM1 (88).
Immunotherapy is not yet considered a routine form of
treatment for BC patients. However, a recent pooled analysis of
1,954 breast tumor demonstrated that some BC, based on their
different immunogenic sensitivity, can be distinguished into
two discernible subtypes termed immune benefit-enabled and
immune benefit-disabled which showed significant differences
in distant metastasis-free survival (89). A better understanding
of the factors that regulate BC immunogenicity will contribute
to create more effective and personalized therapeutic strategies
that target specific immunogenic subtypes. In particular, BC
weak immunogenicity derive from mechanisms that diminish
immune recognition and promote strong immunosuppression.
Infiltration of immunosuppressive cells like T-regs, MDSCs
or TAMs in the TME has been demonstrated to be the major
mechanism of tumor escape from the immune system and the
main cause in the reduction of the efficacy of immunotherapy
(90). Indeed, circulating MDSCs in peripheral blood of BC
patients have been shown to be elevated in all stages of the
disease and to be positively correlated with clinical cancer stage
and extensive metastatic tumor burden (91, 92). Conversely,
tumors showing greater infiltration of about 50–60% of tumor-
associated effector cells, such as cytotoxic T cells, memory T
cells, NK cells, tend to be more immunogenic and more sensitive
to chemotherapy. Thus, their presence has been associated with
the suppression of metastatic recurrence resulting in a relatively
good prognostic outcome (93–96). Most of the research on
MDSCs in the TME has been performed in murine models,
which have provided the first evidence that MDSCs are involved
in the development and progression of BC. Thus, eliminating

Frontiers in Immunology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1680114

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


De Cicco et al. MDSCs and Cancer Immune Evasion

MDSCs can result in increased immune-mediated anti-tumor
responses and decreased tumor-burden (97–101). Nevertheless,
also in human it has been showed a direct correlation between
MDSCs levels in the peripheral blood of BC patients, disease
malignancy and poor prognosis. In one of the earliest study
by Diaz-Montero et al. (91), the percentage and the absolute
number of circulating MDSCs were significantly increased in
cancer patients compared to normal volunteers. A population
of MDSCs, defined as Lin−/Lo HLA-DR−CD33+CD11b+, was
detected in fresh whole blood from 106 BC patients. In these
patients, it was found that both percentage and absolute number
of circulating MDSCs were associated with the clinical cancer
stage. Significant differences were observed in mean MDSCs
between patients with early stages I/II cancer (1.96%) stage
III (2.46%) and advanced stage IV (3.77%). Overall, stage IV
patients with widely metastatic disease had the highest percent
(4.37%). In that report, it has been also observed that MDSCs
levels in the peripheral blood corresponded to circulating tumor
cells levels, which are another emerging prognostic marker.
Similarly, Solito et al. (102) also identified MDSCs (Lin−/Lo

HLA-DR−CD33+CD11b+) in 25 stage IV BC patients. They
showed that subjects with higher circulating MDSCs > 3.17%
(median) at baseline had a poorer overall survival (OS) than
patients with circulating MDSCs ≤ 3.17%, with median OS
times of 5.5 and 19.32 months, respectively. Interestingly, Yu
et al. identified a unique population of MDSCs in BC with the
phenotype CD45+CD33+CD13+CD14−CD15−. They found
that these cells increased both in primary cancer tissues and
in peripheral blood. The proportion of this cell population
correlated with clinical stage and lymph node metastasis
status in BC patients and exerted potent immunosuppressive
activity on T cells. Further, they reported that IDO, a rate-
limiting enzyme of tryptophan catabolism, was significantly
upregulated in tumor-infiltrating MDSCs than in periphery,
thereby suggesting a pivotal role in developing and maintaining
MDSCs-mediated immunosuppressive functions in tissue (103).
Recent studies also confirmed that tumor progression and
invasion paralleled the development of MDSCs. For instance,
Gonda et al. (104) reported that the levels of circulating MDSCs
(CD33+CD11b+CD14−) in the peripheral blood were increased
in BC patients compared with healthy controls. Moreover,
MDSCs levels were considerably higher in preoperative
patients and decreased in postoperative patients or following
chemotherapy, while they reached again high levels in patients
with recurrent disease. They found that, in preoperative patients,
MDSCs levels positively correlated with IL-6 production while
they negatively correlated with IFN-γ and IL-12 production.
IL-12 is known to be a modulator of immune suppression
which induces Th1 cells while IL-6 promotes a Th2-dominant
status. Thus, the immune suppressive function of MDSCs in
BC patients may involve multiple immunological pathways,
which impair the Th cell balance promoting a shift from Th1
to Th2 predominance. Additionally, Bergenfelz et al. (92),
reported an expansion of circulating CD14+HLA-DR−/low

M-MDSCs in patients with locoregional recurrence or metastatic
BC, which was correlated with increased metastasis to lymph
nodes and visceral organs, suggesting that circulating M-MDSCs

could be a potential biomarker for disease progression and a
guide to individualize efficient immunomodulatory treatments.
Also Safarzadeh et al. (105) showed that M-MDSCs (HLA-
DR−CD33+CD14+) represent a high percentage compared with
the G-MDSCs (HLA-DR−CD33+CD15+) subpopulation in BC
patients. A recent study found that cells with the M-MDSCs
phenotype CD14+HLA-DR−/low are present at significantly
higher frequencies in early-stage BC patients (40 patients
with clinical stages I/II), suggesting that M-MDSCs mostly
participate to the development of BC by protecting tumor
cells from immune attack. In particular, one of the suppressive
mechanisms proposed by the authors for M-MDSCs-mediated
immunosuppression is represented by ROS (106). Conversely,
Toor et al. (107) found that BC patients had significant elevated
levels of granulocytic CD33+ CD11b+HLA-DR−/lowCD15+

MDSCs in the TME vs. surrounding healthy tissue whereas
no significant differences were observed in their peripheral
blood compared to healthy individuals. However, a weakness
of this study may be the small number of patients included (23
patients). In BC, after differentiation and recruitment, MDSCs
suppress T cells via several pathways including the ARG1, ROS,
RNS, and NO pathways (108). Indeed, nitration/nitrosylation
of T cell receptors (TCRs) and CD8 molecules on the surface
of T cells induces T cell tolerance (109). The JAK/STAT
pathway is also important in regulating the various functions of
MDSCs. Indeed, the transcription factor STAT-3 modulates the
expression of target genes involved in various proinflammatory
functions. Among them, STAT-3 promotes IDO expression.
As mentioned before, IDO act as a major immune regulator
inhibiting immune surveillance and promoting immune
tolerance by suppressing TCR-mediated activation of T cells,
as well as inducing amplification of T-regs (110, 111). Besides
their canonical immunosuppressive functions, MDSCs have
also direct effects on BC cells contributing to invasiveness and
metastasis through the activation of the intracellular phosphatase
and tensin homolog (PTEN)/Akt pathway. Upregulation of Akt
in MDSCs results in increased expression of MMPs, including
MMP2, MMP13, andMMP14, in BC cells which in turn promote
invasion and metastasis (108). Moreover, MDSCs can act as
osteoclast progenitors promoting BC metastasis to the bone.
Through NO signaling and cross talk with BC cells, MDSCs
can differentiate into osteoclasts in the bone microenvironment
to exacerbate osteolysis in metastasizing BC which represent
important issue for BC patients, causing high morbidity and
mortality (98). In summary, these studies further strengthen
the observations that MDSCs numbers increase in patients with
BC as compared to healthy people, suggesting that targeting
MDSCs may significantly improve the effect of immunotherapy
protocols in patients with BC. In preclinical studies it has been
demonstrates that CCR5 antagonists inhibited the metastatic
potential of basal BC and reduced tumor growth (49). CSF-
1R inhibition and CXCR2 antagonism has also been used
in combination to reduce TAMs and G-MDSCs populations
and improve anti PD-1 efficacy (51, 112). Further, the HDAC
inhibitor, entinostat, in combination with the checkpoint
inhibitors anti–PD-1 and anti–CTLA-4, led to a significant
suppression of G-MDSCs in the TME and significantly improved
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tumor-free survival in HER2/neu transgenic BC mouse model
(74). Combination of entinostat with nivolumab and ipilimumab
is, currently, under evaluation in a phase I trial in patients with
invasive and metastatic BC (NCT02453620). Other clinical
studies aimed to investigate the effect of MDSCs inhibitors in
combination with immunotherapy are ongoing.

MDSCs IN COLORECTAL CANCER

Colorectal cancer (CRC) is the third most common cancer and
the second cause of cancer deaths worldwide (86). Only 5–
6% of CRC cases involve inherited genetic alterations while
environmental factors, lifestyle (such as physical inactivity,
smoking, alcohol consumption and obesity) and gut microbiota
are responsible of ∼90% of CRC occurrence (113). The
current approaches to treat metastatic CRC (mCRC) involve
multimodal therapy based on chemotherapy (including the
combination of cytotoxic drugs) or targeted agents (such as
bevacizumab, cetuximab, and panitumumab) (114). In the
last few years, immunotherapy, which typically rely on the
activation of T cells in the TME, has been considered for
mCRC patients (115). Checkpoint inhibitors such as antibodies
directed against cytotoxic T lymphocyte antigen-4 (CTLA-4)
and programmed cell death protein (PD-1)/PD-1 ligand (PD-
L1) resulted ineffective to produce durable clinical responses due
to tumor-mediated immune evasion and resistance, caused by
the presence, into the TME, of immunosuppressive cells like
MDSCs (116). In CRC, MDSCs are widely considered the link
between chronic inflammation and cancer. Indeed, patients with
inflammatory bowel disease, such as ulcerative colitis, show an
increased risk of developing CRC (117). Evidences from studies
in mouse models of colitis-associated cancer (CAC) indicate that
chronic inflammation can drive tumor initiation and progression
by enhancing MDSCs accumulation and immune suppression
(118, 119). Accumulating data also support a role for the
microbiota in CRC carcinogenesis (120). Recent studies have
shown that symbiotic bacteria like Fusobacterium nucleatum
and Helicobacter hepaticus can exacerbate the development of
cancer by inducing MDSCs expansion in the inflamed colon
of mice (121, 122). Although both MDSCs subtypes have been
found increased in several colon cancer mouse models, the
expansion of G-MDSCs resulted much greater compared to M-
MDSCs (118, 119, 122, 123). In CRC patients, at first, MDSCs
were identified generally as CD33+HLA-DR− (124, 125). Both
circulating and tumor-infiltrating MDSCs have been found
significantly expanded in patients with various stage of CRC
compared with healthy donors. Interestingly, their frequencies
were shown to increase with tumor stage and with the presence
of nodal and/or distant metastasis, indicating a correlation with
clinical cancer stage. These MDSCs displayed characteristics
of immature myeloid cells expressing no level of the lineage
markers CD3, CD14, CD19, and CD56. Notably, they showed up-
regulation of CD18/CD11b expression, which is critical for cell
adhesion and migration, suggesting the involvement of MDSCs
in CRC tumor development (124). Further, Zhang et al. (125)
demonstrated that Lin−/lowHLA-DR−CD33+CD11b+ MDSCs

had immunosuppressive effect on T cells and expressed high
level of the ectonucleotidase molecule CD39, which plays a key
role in mediating the suppressive activity of MDSCs on T cells,
by converting immunostimulatory ATP into immunosuppressive
adenosine. A better phenotypical characterization of MDSCs in
CRC patients was originally reported by OuYang et al. (126).
They observed an increased proportion of CD33+CD11b+HLA-
DR− MDSCs in peripheral blood and tumor tissues which
correlated with advanced disease stages and tumor lymph
node metastases. In particular, this population consisted for
the major part of a M-MDSCs subset (CD33+CD11b+HLA-
DR−CD14+CD15−) and an atypical G-MDSCs subset, with a
moderate expression of the granulocyte-monocyte progenitor
cell markers CD117 and a weak expression of the granulocytic
marker CD15. TheseMDSCs populations were found to suppress
both CD8+ and CD4+ T cells proliferation through the
oxidative metabolism, including the generation of NO and
ROS, as demonstrated by the high expression levels of the
immune mediators ARG1, iNOS, and NOX2. Conversely, Toor
et al. (127) identified CD33+CD11b+HLA-DR−/lowCD15+ G-
MDSCs as key players among others in CRC progression.
They found a significant expansion of G-MDSCs in both
circulation and in tumor tissues of 21 CRC patients with
different tumor stages. In particular, circulating G-MDSCs
were significantly elevated in CRC patients with regional
and distant metastases and exerted their immunosuppressive
functions trough the activation of ARG1. Several factors have
been implicated in the regulation of the accumulation and the
suppressive functions of MDSCs in CRC. IL-17 appears one
of the main driving chemoattractant forces, especially for G-
MDSCs, within the TME (128). In murine tumor models, IL-
17 promotes MDSCs tumor infiltration, in a CXCL5/CXCR2-
dependent manner, and enhances the immunosuppressive
activity of MDSCs (129). Chun et al. (119) postulated that
CCL2 acts as a neoplastic regulator of MDSCs, contributing
to their intratumoral accumulation and to G-MDSC-mediated
suppression of CD4+ and CD8+ T cells via STAT3-mediated
pathway. Indeed, increased CCL2 in patients with early-stage
colon cancer (colitis-associated CRC, adenocarcinomas, and
adenomas) influences carcinogenesis inducing MDSCs. Thus,
CCL2 neutralization may afford therapeutic opportunities to
decreased MDSC accumulation and function. Recent data
indicate that Yes-associated protein 1 (YAP1) and PTEN can
mediate CRC tumorigenesis through the induction of MDSCs in
the TME. In fact, Yang et al., describe that up-regulation of YAP1
in the tumor promoted MDSCs expansion through suppressing
PTEN expression and subsequently inducing the secretion of
GM-CSF (130). Further, inhibition of Kit has been demonstrated
to enhance the antitumor activity of immune checkpoint
inhibitors (anti–CTLA-4 and anti–PD-1) by selectively reducing
the immunosuppressive M-MDSCs population in Colon26
mouse tumor model (131). The humanized anti-Kit mAb
KTN0158 has also been evaluated in clinical trials for patients
with Kit positive advanced solid tumors (NCT02642016).
Notably, the inhibition of STAT3 signaling pathway with
nifuroxazide inhibited lung and abdomen metastasis in mice
and reduced the number of MDSCs in the blood, spleens and
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tumors, accompanied by the increased infiltration of CD8+

T cells (132). Targeting TRAIL-R2 with the agonist antibody
DS-8273a was applied in a phase I clinical trial in patients
with advanced cancers, including CRC patients, in combination
with nivolumab and caused selective depletion of MDSCs
without affecting mature myeloid or lymphoid cells (133). Thus,
a better identification of the molecular mechanism driving
MDSCs expansion in CRC may guide the future development
of new therapeutic strategies for CRC patients based on
targeting MDSCs.

MDSCs IN MELANOMA

Melanoma is the most aggressive and fatal form of skin cancer
with a high mortality rate. Primary melanoma is usually
curable with surgery when diagnosticated in early stages
(134). Nonetheless, melanoma is characterized by a lively
progression that is correlated to rapid metastasis development
to regional lymph nodes and distant organs as well as therapy
resistance by reducing the patients median survival to <1 year
(135). In fact, despite the recent introduction of encouraging
immunotherapies such as ipilimumab and pembrolizumab, that
target CTLA-4 and PD-1 respectively, the majority of patients
experience resistance and tumor progression (136). This critical
condition is partially due to the immunosuppressive mechanisms
established within the TME mediated by immunoregulatory
cells including T-regs and MDSCs that contributes to immune
evasion (137). In particular, multiple reports have highlighted
the role of MDSCs as one of the most important restrictions
preventing efficient melanoma treatment (116). Several reports
indicated an increased frequency of both M-MDSCs and G-
MDSCs in melanoma patients (138–141). For instance, Jordan
et al. demonstrated that the frequency of both M-MDSCs
(Lin−CD11b+HLA-DR−/lowCD33+CD14+) and G-MDSCs
(Lin−CD11b+HLA-DR−/lowCD33+CD14−) subsets was
significantly increased in the peripheral blood of stage IV
melanoma patients and was associated with disease progression
and decreased OS (142). Similarly, Filipazzi et al. reported
an expansion of CD14+CD11b+HLA-DR−/low M-MDSCs
in fresh whole blood from 70 advanced melanoma patients
suggesting an inverse correlation with immune responses to
cancer vaccine (138). Additionally, Weide et al. also reported
that circulating CD14+CD11b+HLA-DRlow M-MDSCs were
inversely correlated to both OS and the presence of functional
antigen-specific T cells in patients with advanced melanoma
(140). Conversely, more recently Stanojevic et al., demonstrated
that HLA-DR−/lowCD11b+CD33lowLin−CD14−CD15+ G-
MDSCs population was significantly higher in different
clinical melanoma stages according to both TNM and AJCC
classification (143). Thus, MDSCs abrogation and inhibition,
could be the next biggest aims for melanoma treatment
(144). In fact, in the last few years, various preclinical studies
have been focused in measuring and targeting MDSCs in
melanoma patients, resulting in tumor growth inhibition and
survival prolongation (145). Nevertheless, there are different
ongoing clinical trials focused on evaluating the effect of new

molecules that target MDSCs in melanoma patients such as
ATRA), SX-682 or omaveloxolone in combination with classical
immune checkpoint inhibitors (116, 144). ATRA, that has
previously demonstrated to induce differentiation of MDSCs
into macrophages and DCs in mice, (80) has been applied
in a phase II clinical trial in combination with ipilimumab
in melanoma patients. The study demonstrated that this
combination improved the clinical outcome by increasing tumor
antigen-specific T cell responses and reducing MDSCs frequency
as compared to ipilimumab alone (146). SX-682 is a selective
and potent antagonist of CXCR1/2 chemokine receptors that are
expressed on bothmelanoma cells andMDSCs supporting tumor
growth, immunosuppression and angiogenesis in response to
CXCL1, CXCL2, or CXCL8 (147–149). Omaveloxolone (also
referred as RTA408), is a semisynthetic oleanane triterpenoid
that represses ROS production and NO signaling in MDSCs
showing promising preclinical antitumor activity (150). Both
SX-682 and RTA408 have been applied in two different
clinical trials in combination, respectively with pembrolizumab
(NCT03161431) and ipilimumab or nivolumab (NCT02259231)
(116, 144, 151). Interestingly, MDSCs enrichment in melanoma
patients has been frequently associated to heightened amounts
of inflammatory mediators such as IFN-γ, IL-1β, IL-4, IL-13,
TNF-α, toll-like receptor (TLR) ligands, and PGE2 that support
MDSCs accumulation and activation (152, 153). PGE2 is
one of the best-characterized prostaglandins synthesized by
COX-2. Recently, we and others reported that COX-2 has a
crucial role in melanoma development and progression by
affecting patients progression free survival (PFS) (154–156). In
particular, PGE2 production by MDSCs has been associated
to ARG1 overexpression, STAT3 and STAT1 phosphorylation
and IL-10, ROS, and NO production that are correlated to
MDSCs suppressive activity (157–160). Thus, PGE2–dependent
activation of MDSCs result to be a potent additional mechanism
of tumor immune escape which is driven by COX-2 (161).
Indeed, COX-2 pharmacologic inhibition reverts MDSCs
suppressive phenotype by reducing the production of ROS and
NO, the expression of ARG1 and restoring the differentiation
of bone marrow cells (162, 163). Nevertheless, a better
understanding is necessary to figure out which mechanisms
PGE2 exploits for triggering MDSCs immunosuppressive
effects in malignant melanoma. Recently, a new class of
compound defined as hydrogen sulfide donors, has been shown
to inhibit both the expansion and the suppressive functions
of MDSCs in melanoma-bearing mice (164). Interesting
results have also been achieved in the field of microRNAs
(miRNAs) (165). miRNAs are relevant multifunctional post-
transcriptional modulators of gene expression which have
been reported to play a key-role in various human cancers
including melanoma (166–171). Different evidences established
an emerging role for miRNAs in the expansion and functional
activation of MDSCs during tumor development (165). For
instance, miR-155 has been shown to promote tumor growth
by triggering MDSCs ripening, endurance and function
through SOCS1 inhibition (172). More recently, Huber et al.,
discovered a set of miRNAs that are associated with the
phenotypic and functional features of MDSCs in melanoma
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patients (173). Most importantly, they reported that higher
expression of these miRNAs is correlated to shorter PFS in
patients receiving ipilimumab and nivolumab (173). Finally,
miRNAs identification as MDSC regulators, could be an
additional and promising strategy to fight and monitor systemic
immunosuppression that occur in melanoma patients, mainly
driven by MDSCs.

MDSCs IN PROSTATE CANCER

Prostate cancer is the most commonly diagnosed cancer in
males in the world and is responsible for about 20% of cancer-
related deaths (174). Prostate cancer diagnosis is divided in
low, intermediate and high risk according to Gleason patterns,
prostate specific antigen (PSA) levels and clinical stage (175).
Surgical or chemical androgen deprivation therapy (ADT) is the
first-line treatment once the disease spreads outside the prostate
in order to reduce circulating testosterone levels (176, 177).
Nevertheless, an important percentage of patients experience
resistance and tumor progresses to a more aggressive form
referred as castration-resistant prostate cancer (CRPC) after 18–
36 months (178, 179). This advanced form of prostate cancer is
usually treated with classical chemotherapy regimens including
docetaxel and cabazitaxel (179). Moreover, there are also novel
hormone therapies available for CRPC such as abiraterone and
enzalutamide (180, 181). In 2010, the U.S. Food and Drug
Administration (FDA) approved PROVENGE (sipuleucel-T),
the first immunotherapy agent for the treatment of patients
with asymptomatic or minimally symptomatic metastatic CRPC.
Sipuleucel-T stimulates T-cell immune response against prostate
cancer cells by targeting prostatic acid phosphatase (PAP), an
antigen that is highly expressed in most prostate cancer cells
(182). Despite these recent advances, treatments only provide
scanty survival benefits and most patients develop disease relapse
(183). Investigating on the mechanisms that may drive prostate
cancer progression, different data reported that it is surrounded
by a complex TME (184, 185). In particular, MDSCs are the
most renowned immune cells subset that has been reported to
infiltrate the prostate TME (186–188). In fact, by evaluating
the frequency of MDSCs in the blood of prostate cancer
patients the CD14+HLA-DRlow monocytic subset result to be
augmented compared with sex- and age-matched healthy donors,
whereas it is decreased after ADT (39, 189). Conversely, Chi
et al., reported that circulating CD33+CD11b+HLA-DR−CD14−

granulocytic MDSCs represented the major subtype of MDSCs
in patients with prostate cancer and their level were significantly
elevated compared with both healthy donors and patients
with benign prostatic hyperplasia (BPH) (190). Interestingly,
Idorn et al., showed that the levels of CD14+HLA-DRlow/−

M-MDSCs were increased in both untreated and docetaxel-
treated CRPC patients and that they were correlated with a
shorter median OS, suggesting that MDSCs support prostate
cancer progression (191). Additionally, they also reported a
significant positive correlation between MDSCs and T-regs
frequency in peripheral blood of CRPC patients denoting a cross-
talk between these two immunomodulatory cells (191). This

intricate scenario is orchestrated by different mediators such
as cytokines, chemokines and growth factors that contribute
to the accumulation of MDSCs in prostate tumors (192). In
particular, elevated levels of IL-6 pro-inflammatory cytokine,
have been reported to promote cancer cell growth and
significantly correlate with MDSCs expansion (193–195). In
fact, it has been showed, in mice, that high serum levels of
IL-6 were positively associated to MDSCs recruitment (195).
This data has been further reinforced by using IL-6 KO mice
in which the inhibition of tumor-produced IL-6 significantly
reduced MDSCs recruitment (195). Similarly, Chi et al. reported
that MDSCs frequency was correlate with serum levels of
IL-6 and IL-8 in prostate cancer patients (190). This IL-6-
mediated immunosuppressive effect involves different signaling
pathways including PI3K/PTEN/AKT pathway which in turn
triggers MDSCs recruitment (196, 197). Interestingly, more
recently, Calcinotto et al., reported that IL-23 cytokine is
another important MDSC-secreted factor that drives CRPC
progression in both human and mice by sustaining the growth
and the endurance of prostate cancer cells as well as the
transcription of androgen dependent genes such as Nkx3-1,
Pbsn, and Fkbp5 (186, 198). Moreover, co-administration of
anti IL-23 antibody with enzalutamide, reverted resistance to
castration in tumor-bearing mice by reducing tumor volume
and proliferation (186). These findings demonstrated that
MDSCs are the major players involved in prostate cancer
progression and resistance. Thus, immunotherapies focused on
the inhibition of either MDSCs recruitment or the inhibition of
other mediators that sustain MDSCs immunosuppressive effect
(e.g., IL-6 and IL-23) can be a promising therapeutic strategy
for prostate cancer patients. Several clinical trials targeting
MDSCs in prostate cancer are ongoing (197). One promising
agent is tasquinimod, an oral second-generation quinoline-3-
carboxamide derivative (199). Tasquinimod inhibits S100A9
protein that interacts with the receptor for advanced glycation
end products (RAGE) and TLR4, triggering the inflammatory
response (200). S100A9 is also involved in MDSCs recruitment
in solid tumors sustaining tumor growth and metastasis
development (201). A phase II clinical trial demonstrated that
tasquinimod improved both PFS and OS in prostate cancer
patients compared to placebo (202, 203). Nonetheless, in a
phase III randomized controlled trial, tasquinimod significantly
improved PFS but did not improve OS (204). However,
larger controlled clinical trials are needed to confirm and
validate tasquinimod as a standard agent for the treatment
of CRPC.

MDSCs IN HEPATOCELLULAR
CARCINOMA

Hepatocellular carcinoma (HCC) is one of the leading
causes of cancer-related death worldwide. Cirrhosis and
liver inflammation are frequently associated with HCC, and
inflammation is considered one of the main factors driving
hepatocarcinogenesis (205). HCC is a highly chemotherapy-
resistant tumor and the applicability of most cytotoxic drugs
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is severely limited by the underlying liver cirrhosis. Currently,
sorafenib and lenvatinib, oral multi-TKIs with antiangiogenic
activity, are the most widely used systemic therapeutic agents
which have showed increase in median survival in patients
with unresectable HCC, respectively of 12.3 and 13.6 months
(206, 207). Recently, other oral multi-TKIs, regorafenib
and cabozantinib, have been added as second line systemic
therapeutic options in patients with disease progression
on sorafenib (208, 209). In the last few years, the interest
in immunotherapies for HCC has been growing giving
great opportunities for treating HCC with newer and more
sophisticated agents (210). In particular, encouraging results
has been obtained with the anti PD-1 mAbs nivolumab and
pembrolizumab, which exhibited an objective tumor response of
about 20% in HCC patients who had been previously treated with
sorafenib (207, 211). Optimizing this response is challenging,
especially because of the immune environment on which HCC
arises. Although ∼25% of HCC show high or moderate levels of
lymphocyte infiltration (TILs), within the TME (212), they often
prove insufficient to control tumor growth because the expansion
of immunosuppressor cells like MDSCs and Tregs (213). Indeed,
there is a general consensus that various dysfunctions of
the immune system contribute to HCC development and
progression (214, 215). In the chronic inflammatory milieu
present in the liver of HCC patients, myeloid cells infiltrating
the tumor can acquire suppressive capability and contribute
to immune escape of HCC cells. In the last decade, the clinical
importance of MDSCs in HCC patients has been investigated.
Several authors have reported elevated level of total MDSCs
with the phenotype HLA-DR−/lowCD11b+CD33+ in HCC
patients compared with healthy controls (216–218). In other
studies, MDSCs were identified as CD14+HLA-DR−/low, which
are considered to be M-MDSCs. These M-MDSCs were found
to be significantly elevated in the peripheral blood or tumor
of HCC patients compared with chronic hepatitis patients
and healthy controls. Moreover, the frequency of circulating
MDSCs, both total and M-MDSCs, was significantly correlated
with reduced OS and tumor progression (213, 219, 220).
Later, Hetta et al. observed that HCV-HCC patients with
advanced stage had higher percentage of total MDSCs and
M-MDSCs in the peripheral blood compared with those with
early-stage HCC and healthy control. The frequency of M-
MDSCs subsets was positively correlated with liver related
laboratory parameters, especially AFP and ALT, which reflects
a hepatic insult whereas, was inversely related to the frequency
of CD4+, CD8+ T, and CD19+ B cells. Moreover, patients
with chronic liver disease had a significantly higher percentage
of MDSCs suggesting that an increased level of MDSCs may
contribute to the progression from chronic hepatitis to HCC
(221). In a recent publication, an extensive study on 183 HCC
patients showed the prognostic value of CD14+HLA-DR−/low

M-MDSCs for predicting early recurrence (within 2 years)
in patients undergoing curative resection. In particular, the
authors observed a significant positive correlation between the
frequency of MDSCs and the systemic immune-inflammation
index (SII), which is a powerful prognostic indicator of poor
outcome in HCC patients after resection. Thus, HCC patients

with high MDSCs level and high SII level had significantly
shorter time to recurrence (TTR) and OS than those with low
MDSC level and low SII level (219). However, due the limitations
of this study, such as relatively small cohort size, short follow-
up time, and data from a single study center, the prognostic
significance of MDSCs requires further validation. Clinical
studies of MDSCs in HCC have mainly focused on analyzing
M-MDSCs. Recently, Nan et al. employed a novel marker,
LOX-1, to analyze G-MDSCs in HCC patients and determined
that LOX-1+CD15+ cells were significantly increased both in the
peripheral blood and in tumor tissue of patients compared with
healthy controls and were positively related to OS. Moreover,
LOX-1+CD15+ MDSCs suppressed T-cell proliferation through
the ROS and ARG1 pathway and reduced interferon IFN-γ
production (222). Mechanistically, also M-MDSCs isolated
from the peripheral blood of HCC patients have been proven
to be immunosuppressive by inducing CD4+CD25+Foxp3+

regulatory T cells and inhibiting autologous NK cells, as
well as they shown to have high ARG1 activity (213, 223).
Nonetheless, Shen and colleagues, described an immature subset
of Lin− HLA-DR−CD33+ MDSCs in the peripheral blood of
patients with primary HCC and their frequency was found to
be positively correlated with tumor stage and splenomegaly.
In the same way, the immature MDSCs were able to inhibit
tumor-specific T-cell responses and IFN-γ secretion through
a suppressive mechanism involving ARG1 and iNOS enzymes
(224). Regarding the mechanism of MDSCs expansion, it was
found that the serum levels of suppressive cytokines like IL-10
and IL-13 as well as of tumor-promoting factors like G-CSF,
VEGF and MMP-13 were significantly increased in patients with
high frequency of MDSCs (220, 224). Indeed, these cytokines,
that trigger JAK-STAT signaling pathways are considered to be
the main regulators of the activation of MDSCs, which leads
to stimulation of myelopoiesis and inhibition of myeloid-cells
differentiation (225).

Most published studies on human MDSCs in HCC patients
have been done using blood samples. Thus, in order to
better understand the complex immunobiology of MDSC in
HCC, different murine HCC models have been employed:
carcinogen-induced, spontaneous and transplantable HCC.
Although all tumor bearing mice demonstrated elevated MDSCs
level (identified as CD11b+Gr-1+ cells), subtle differences
in frequency, location and function of MDSCs were found
among the murine models (226). Pre-clinical models of HCC
have been also used to evaluate the ability of sorafenib to
modulate MDSCs. Several studies have reported that sorafenib
could enhance the antitumor immunity by reducing MDSCs in
tumor-bearing mice (226, 227). On the other hand, targeting
MDSCs with anti-Ly6G or anti-IL-6 antibody significantly
reduced the frequency of Ly6G+ MDSCs in orthotopic liver
tumors improving the therapeutic effect of sorafenib (228).
However, Chen et al. (229) demonstrated that sorafenib increased
the intratumoral infiltration of Gr-1+ MDSCs through the
SDF1α/CXCR4 pathway while reduced the accumulation of
Gr-1+ myeloid cells in the surrounding fibrotic liver tissue.
Differences in these studies might depend on the mouse liver
cancer model, the sorafenib dose or the gating strategy used.

Frontiers in Immunology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 1680119

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


De Cicco et al. MDSCs and Cancer Immune Evasion

Further, recent studies have investigated the role of MDSCs in
the efficacy of checkpoint inhibitors in mouse HCC models.
Chiu et al. found that targeting the enzyme, ectonucleoside
triphosphate diphosphohydrolase 2 (ENTPD2), which support
the maintenance of MDSCs, enhanced the efficacy of PD-
1/CTLA-4 blockade (230). Likewise, depletion of the cell cycle-
related kinase (CCRK) reduced tumor-infiltrating MDSCs and
increased intratumor CD8+ T cells, thus enhancing the efficacy
of PD-L1 inhibitor to eradicate HCC (217). In addition, an
in vitro study demonstrated that combination of sorafenib
with an anti-CTLA-4 mAb restored the proliferation of CD8+

lymphocytes co-cultured with MDSCs (231). Radiotherapy is
commonly used as alternative approaches for HCC patients who
may experience serious adverse effects to chemotherapeutics.
Interestingly, a decrease in percentages of CD14+HLA-DRlow/−

MDSCs was observed in patients who received curative
radiofrequency ablation (220). Recently, it has been reported
that hypofractionated irradiation with high dose per fraction
reduced the level of circulating MDSCs in two HCC tumor-
bearing mouse models and decreased the expression of MDSC-
related stimulatory cytokines: IL-6, G-CSF and RANTES (232).
Collectively, these preclinical studies not only confirmed the
roles of MDSCs in tumor formation and progression but also
indicated the importance to reduce MDSCs in order to improve
the efficacy of therapeutic strategies in HCC. However, these
results remain to be confirmed in cancer patients. In this regard,
a recent phase I/Ib study (NCT01839604) tested the effect of
danvatirsen (AZD9150), a STAT3 oligonucleotide inhibitor, in
39 patients with advanced/metastatic HCC. At the end of the
study the results reported that only one patient had a partial
response. A phase I/IIa clinical trial is evaluating the outcome
of HCC patients, progressing under sorafenib, following the
treatment with regorafenib, a multi-TIKs that targets angiogenic
(VEGFR1–3, TIE2), stromal (PDGFR-β, FGFR), and oncogenic
receptor tyrosine kinases (KIT, RET, and RAF) in combination
with nivolumab (NCT04170556).

MDSCs IN LUNG CANCER

Lung cancer is one of the most commonly diagnosed
malignancies that is strongly correlated with cigarette
smoking and is a leading cause of cancer-related death
(233). Lung cancer is generally divided into two types:
small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). Both SCLC and NSCLC are treated with
similar chemotherapeutic agents often in combination such
as cyclophosphamide, doxorubicin, and vincristine (CAV)
or cyclophosphamide, doxorubicin and etoposide (CDE)
(234–236). In addition, different targeted antibodies and
immunomodulators are currently used for the treatment of
lung cancer (237, 238). However, a high percentage of patients
do not respond or develop resistance to treatment promoting
cancer progression (239, 240). MDSCs represent, together
with Tregs as well as TAMs, the major immunosuppressive
cells that make up the TME in lung cancer patients (241). For
lung cancer, the main body of literature reports increases of

monocytic CD33+CD11b+CD14+ MDSCs or granulocytic-like
CD33+CD11b+CD14− MDSCs (242–245). For instance, Feng
et al., defined MDSCs as CD11b+CD14+ expressing high
levels of the proinflammatory molecule S100A8/A9 whose
expression was highly correlated with the ability to suppress
T-cells proliferation (244). Recently, de Goeje et al., showed for
the first time that the immunoglobulin-like transcript 3 (ILT3)
represent a novel immunosuppressive molecule expressed by
defined MDSCs subsets in lung cancer patients. In particular,
ILT3 high expression on a specific subset of G-MDSCs,
defined as CD11b+CD14−HLA-DR−CD33+CD15+ILT3high,
was correlated with reduced survival into NSCLC patients
(246). Interestingly, increased frequency of both M-MDSCs
(HLA-DR−/lowCD11b+CD14+CD15−) and G-MDSCs (HLA-
DR−/low CD11b+CD14− CD15+) has been found not only
in the peripheral blood of patients but also in the tumor
lesions. Indeed, a strong elevation of both tumor-infiltrating
MDSCs subsets compared with the circulating subsets has been
showed, confirming that the tumor site is characterized by the
strongest immunosuppression. In particular, the frequency of
tumor infiltrating and circulating G-MDSCs correlated with
tumor progression (247). Among the different mediators that
have been reported to regulate MDSCs suppressive functions,
gp91phox, which is correlated to NADPH oxidase enzyme
(248), results to be upregulated in MDSCs of lung cancer
patients (242). The activity of NADPH oxidase enzyme translates
into an increase in ROS production which mediates tumor
immunosuppression and might thus represent a potential
target for therapeutic intervention. Other important mediators
involved in cancer immunosuppression are IDO and the
adenosine (ADO)-producing enzymes CD39 and CD73 (249–
253). It has been reported that ADO-producing enzymes are
expressed in MDSCs isolated from the peripheral blood of
NSCLC patients and favor their immunosuppressive function.
Further analysis identified a novel MDSCs subpopulation
enriched in CD39 and CD73 in tumor lesions of NSCLC
patients defined as Lin−CD14−CD11b+CD39+CD73+ and
Lin−CD14+CD11b+CD39+CD73+ that were found to be
positively correlated to disease progression and were reduced
after chemotherapy cycles suggesting them as predictive
tools for chemotherapy response (254). Moreover, the ratio
between Treg cells and G-MDSCs may also have an impact
on the response to nivolumab treatment, since patients with
a high frequency of circulating Tregs and low frequency of
G-MDSCs show improved PFS in NSCLC patients (255).
However, more research is needed to better understand the
correlation between MDSCs and Tregs in this type of cancer.
Given these evidences about the association between MDSCs
and anticancer therapies, strategies focusing on the functional
targeting of MDSCs are fast approaching clinical realization.
For example, depletion of MDSCs increases the frequency and
activity of NK and T cell effectors in the tumor and enhance
therapeutic vaccination responses (256). Furthermore, it has
been also demonstrated that dopamine receptor D2 (DR2)
agonists and histamine type-2 receptor antagonists, such as
carbegoline and cimetidine respectively, inhibit the progression
of lung cancer in both human and mouse models by affecting
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at least in part MDSCs proliferation and function (30, 257).
Interestingly, different natural compounds, such as resveratrol
and curcumin, have been defined as novel synergistic agents
for tumor immunotherapy. It has been demonstrated that
resveratrol reduces in vivo lung cancer development and
progression by inducing MDSCs apoptosis and reducing the
recruitment of G-MDSCs (258). Likewise, curcumin reduced

the frequency of MDSCs in the tumor and the spleen of
tumor-bearing mice that was correlated to the reduction of
IL-6 which is known to influence the function of MDSCs
(259, 260). Giving the promising data regarding the targeting
of MDSCs in mouse lung cancer, several clinical trials are now
ongoing in NSCLC patients (NCT02922764; NCT03846310;
NCT03801304; NCT04262388).

TABLE 1 | Phenotype and immunosuppressive features of MDSCs subsets in cancer patients.

MDSCs type Phenotype Immunosuppressive features Tumor Site References

T-MDSCs Lin−/Lo HLA-DR− CD33+CD11b+ - BC PBMCs (91, 102)

T-MDSCs Lin−/Lo HLA-DR− CD33+CD11b+ CD39 CRC PBMCs (125)

T-MDSCs Lin−/Lo HLA-DR− CD33+ ARG1, iNOS, MMP-13, VEGF HCC PBMCs (224)

T-MDSCs CD45+CD11b+ CD33+ - CRC TT (125)

T-MDSCs HLA-DR− CD33+ - CRC PBMCs/TT (124)

T-MDSCs CD33+CD45+CD13+CD14− CD15− IDO, IL-4R BC PBMCs/TT (103)

T-MDSCs CD33+CD11b+CD14− −
�

IL-6

−
� IL-12, INF-γ

BC PBMCs (104)

T-MDSCs HLA-DR− CD33+CD11b+

−
� INF-γ HCC PBMCs/TT (217, 218)

M-MDSCs HLA-DR−/lowCD14+ HMGB1, ARG1, S100P, MMP-9,

MMP-25

ROS

BC PBMCs (92, 105, 106)

M-MDSCs HLA-DR−/lowCD14+ - PC PBMCs (39, 191)

M-MDSCs HLA-DR−/lowCD14+

−
� INF-γ

−
�

IL-10, IL-13, VEGF

HCC PBMCs/TT (213, 219, 220)

M-MDSCs HLA-DR−/lowCD14+ Nkp30 blocking HCC PBMCs/TT (223)

M-MDSCs HLA-DR−/lowCD14+ gp91phox NSCLC PBMCs (242)

M-MDSCs CD33+CD11b+ HLA-DR− CD14+CD15− ARG1, CD39, iNOS, CXCR4 CRC PBMCs/TT (126)

M-MDSCs CD33+CD11b+ HLA-DR−/low CD14+ TGF-β MEL PBMCs (140–142)

M-MDSCs CD33+CD11b+ HLA-DR−/low CD14+ CD15− - HCC PBMCs/TT (216)

M-MDSCs CD33+CD11b+ HLA-DR−CD14+ - HCC PBMCs/TT (221)

M-MDSCs CD11b+CD14+S100A9+ ARG1, iNOS, IL-4Rα, IL-10 NSCLC PBMCs (224)

M-MDSCs CD16lowCD33+CD11b+ HLA-DR− CD14+CD15+ ARG1, ROS NSCLC PBMCs (245)

M-MDSCs CD11b+ HLA-DR−/low CD14+ CD15− CCR5, PDL-1 NSCLC TT (247)

M-MDSCs Lin−CD11b+ CD14+ CD73+ CD39+ IL-4R, HIF-1α, IL-10, COX-2 NSCLC PBMCs/TT (254)

G-MDSCs HLA-DR−/lowCD15+ - BC PBMCs (105)

G-MDSCs CD15+ ARG1 BC TT (107)

G-MDSCs CD33+CD11b+ HLA-DR− CD17+CD15+ −
�

ROS; PDL-1 CRC PBMCs/TT (126)

G-MDSCs CD33+CD11b+ HLA-DR−/low CD15+ ARG1 CRC PBMCs/TT (127)

G-MDSCs CD33+CD11b+ HLA-DR− CD14− - MEL PBMCs (142)

G-MDSCs CD33lowCD11b+ HLA-DR−/low CD14−CD15+ - MEL PBMCs (143)

G-MDSCs CD33+CD11b+ HLA-DR− CD14− −
�

IL-6, IL-8 PC PBMCs (190)

G-MDSCs CD33+CD11b+CD15+ IL-23 PC TT (186)

G-MDSCs CD33+CD11b+ HLA-DR−/low CD14−CD15+ - HCC PBMCs/TT (216)

G-MDSCs LOX-1+CD15+ ROS, ARG1 HCC PBMCs/TT (222)

G-MDSCs CD33+CD11b+ CD14−CD15+ ARG1, iNOS, IL-4R, INF-γR NSCLC PBMCs (243)

G-MDSCs CD16lowCD33+CD11b+ HLA-DR− CD14−CD15+ ARG1, ROS NSCLC PBMCs (245)

G-MDSCs CD33+CD11b+ HLA-DR− CD14−CD15+ ILT3high - NSCLC PBMCs (246)

G-MDSCs CD11b+ HLA-DR−/low CD14− CD15+ CCR5, PDL-1 NSCLC TT (247)

G-MDSCs Lin−CD11b+ CD14− CD73+ CD39+ IL-4R, HIF-1α, IL-10, COX-2 NSCLC PBMCs/TT (254)

BC, breast cancer; CRC, colorectal cancer; HCC, hepatocellular carcinoma; MEL, melanoma; NSCLC, non-small cell lung cancer; PBMCs, peripheral blood mononuclear cells; PC,

prostate cancer; TT, tumor tissue; M-MDSCs, monocytic-MDSCs; G-MDSCs, granulocytic-MDSCs; T-MDSCs, total-MDSCs.
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CONCLUSION

To overcome tumor immune evasion is the new challenge of
our era. Cancer immunotherapy has experienced remarkable
advances in recent years, and significant improvements have
been achieved in the treatment of several solid cancer types (e.g.,
melanoma, non-small cell lung cancer, bladder cancer). However,
formost patients a favorable initial response to treatment changes
afterwards, thereby leading to cancer relapse and recurrence. A
key factor underlying the limited response to immunotherapies is
the existence of multiple mechanisms mediating tumor immune
suppression (261). In this context, MDSCs have been recognized
to have a crucial role. Recent studies demonstrated the value of
MDSCs in predicting the response to cancer immunotherapies.
In particular, a close association of MDSCs level with patient
response to the checkpoint inhibitors anti-CTLA4 (262, 263) and
anti-PD-1 (264) has been observed. Moreover, a growing number
of studies have demonstrated a significant correlation between
circulating MDSCs frequency in cancer patients with tumor
stage, metastatic spreading, and course of the disease. Indeed,
a recent meta-analyses including 40 studies and 2,721 patients
with solid cancer support the existence of an association between
higher MDSCs levels and worse OS as well as shorter disease-
free survival/progression-free survival/recurrence-free survival.

The negative prognostic value of MDSCs was observed for
all MDSCs subtypes, most tumor types, and all tumor stages
suggesting a potential novel and promising use of MDSCs as
prognostic biomarkers and/or therapeutic target (265). Initial
studies monitored MDSCs in cancer patients, analyzed total
MDSCs population (G-and M-MDSC together). The diversity
of cell surface markers used to identify the main subsets of
tumor-derived MDSCs in human is very high, which is in
part due to the differences in the factors that are involved
in the development and activation of MDSCs. The complexity
of the human MDSCs phenotype is summarized in Table 1,
with the main MDSCs phenotypes expanded in cancer patients
and the common immunosuppressive mechanisms. The M-
MDSCs subset defined as HLA-DR−/lowCD14+, resulted to be
predominant in melanoma, breast cancer and hepatocellular
carcinoma. Conversely, in colorectal cancer G-MDSCs defined
as HLA-DR−/low CD15+ were the most abundant in both
circulation and in tumor tissues. In prostate cancer and in
lung cancer both G-MDSCs and M-MDSCs subsets were
significantly elevated in patients and positively correlated to
disease progression. However, despite most of the suppressive
mechanisms and phenotype differences reported seemed shared
among MDSCs subsets and tumor types, it is necessary to
further dissect their role in order to define whether these

TABLE 2 | Summary of clinical trials targeting MDSCs in cancer patients.

Drug Target Combination partner Tumor ClinicalTrials.gov identifier

ENTINOSTAT class I HDAC Nivolumab BC NCT02453620

IPI-549 PI3K Nivolumab NSCLC, MEL, BC NCT02637531

IPI-549 PI3K Tecentriq and Abraxane BC NCT03961698

REPARIXIN CXCR2 Paclitaxel BC NCT02370238

AB928 A2aR and A2bR IPI-549, PLD, NP BC NCT03719326

DS-8273a TRAIL-R2 Nivolumab CRC NCT02076451

PEXIDARTINIB CSF1R Durvalumab CRC NCT02777710

MARAVIROC CCR5 - CRC NCT01349036

DANVATIRSEN (AZD9150) STAT3 - HCC NCT01839604

REGORAFENIB multi-TKIs Nivolumab HCC NCT04170556

ATRA Retinoic acid receptor Ipilimumab MEL NCT02403778

SX682 CXCR1/2 Pembrolizumab MEL NCT03161431

RTA408 Nrf-2 Ipilimumab/Nivolumab MEL NCT02259231

Tasquinimod S100A9 - PC NCT01234311

AZD5069 CXCR2 Enzalutamide PC NCT03177187

Granocyte G-CSF Cabazitaxel plus Prednisone PC NCT02961257

RGX-104 LXR Nivolumab/Ipilimumab/ Docetaxel/Pembrolizumab NSCLC NCT02922764

AB928 A2aR and A2bR Carboplatin/Pemetrexed Pembrolizumab NSCLC NCT03846310

vinorelbine Cytotoxic Atezolizumab NSCLC NCT03801304

Oleclumab CD73 Durvalumab NSCLC NCT04262388

PD-0360324 CSF1 Avelumab NSCLC, MEL, BC NCT02554812

ARRY-382 CSF1R Pembrolizumab NSCLC, MEL, NCT02880371

AR, adenosine receptor; BC, breast cancer; CCR5, C-C chemokine receptor type 5; CXCR1/2, C-X-C motif chemokine receptor 1/2; CRC, colorectal cancer; CSF1, colony-stimulating

factor 1; CSF1R, colony-stimulating factor 1 receptor; G-CSF, granulocyte colony-stimulating factor; HCC, hepatocellular carcinoma; HDAC, histone deacetylase; LXR, liver X receptor;

MEL, melanoma; NP, nanoparticle albumin-bound paclitaxel; Nrf-2, nuclear factor erythroid 2-related factor 2; NSCLC, non-small cell lung cancer; PC, prostate cancer; PI3K,

phosphatidylinositol 3-kinase; PLD, pegylated liposomal doxorubicin; STAT3, signal transducer and activator of transcription-3; TKIs, tyrosine kinase inhibitors; TRAIL-R2, TNF-related

apoptosis-induced ligand receptor 2.

Frontiers in Immunology | www.frontiersin.org 13 July 2020 | Volume 11 | Article 1680122

http://www.ClinicalTrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


De Cicco et al. MDSCs and Cancer Immune Evasion

differences are real or related to some bias from analysis
of some markers/mechanisms. Numerous preclinical studies
carried out in mouse tumor models, have showed that targeting
MDSCs improved the effect of anti-cancer therapies (266–
268). Although tumor mouse models could be useful for a
better understanding of the mechanisms of induction, expansion,
trafficking, and function of MDSCs in tumor, and for a rapid
screening of anti-MDSCs agents in vivo, the translation in
human is not so straightforward. First, the identification of
human MDSCs phenotype is still challenging, owing the great
heterogeneity of MDSCs in different cancers. Second, most
human studies focus only on circulating MDSCs while little
is known about tumor infiltrating MDSCs. Thus, a better
and univocal characterization of the predominant subsets of
MDSCs in several types of cancer as well as their further
evaluation at the tumor site represent a compelling requirement
in order to develop new effective strategies for targeting MDSCs.
It is well-known that different subsets of MDSCs could use
different mechanisms to suppress T-cells function. Therefore,
the identification of the specific immunosuppressive mechanism
is also essential to find the proper agent to block it and,
consequently, to inhibit their function. Reduction of MDSCs
expansion and recruitment to peripheral lymph nodes and tumor
sites, inhibition of MDSC’s suppressive activity and promotion

of their differentiation into mature non-suppressive cells are

the current therapeutic approaches that are being investigated
to target MDSCs (Figure 1). So far, only few agents approved
by FDA have been reported to have direct effects on MDSCs
accumulation, maturation, and function (e.g., ATRA, Vitamin D,
Suitinib, Gemcitabine, Bevacizumab, Tadalafil). However, a wide
number of therapies and combination therapies are currently
being tested in human clinical trials (Table 2) demonstrating
an improvement of the patients’ clinical outcome (146, 202,
203). In sight of this, further studies are needed to identify
or confirm key mechanisms and upstream signals involved in
MDSCs generation, expansion and immunosuppressive function
in different malignancies. Advances in this field should facilitate
rational design of new strategies to target MDSCs in cancer in
order to enhance clinical responses to current immunotherapies
and improve OS in patients.
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Colorectal cancer (CRC) remains one of the most common malignancies diagnosed

worldwide. The pathogenesis of CRC is complex and involves, among others,

accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations

in gut microbiota, and lack of physical activity. A growing body of evidence suggests

that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic

functions. Immunosuppression observed during cancer development and progression

is a result of the orchestration of many cell types, including myeloid-derived suppressor

cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis,

and formation of metastases. This article focuses on MDSCs in relation to their role in the

initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs

in CRC are also discussed.

Keywords: colorectal cancer (CRC), myeloid-derived suppressor cells (MDSCs), inducible NO synthase (iNOS),

arginase-1 (ARG1), T regulatory cells (Tregs)

INTRODUCTION

Colorectal Cancer (CRC): Epidemiology and Immunity
According to the World Cancer Research Foundation, colorectal cancer (CRC) (referring to
malignancy of colon, rectum, or anus) is the third most common malignancy worldwide. In 2018,
more than 1.8 million new cases of CRC were diagnosed (1). About 20–25% of CRC cases are
caused by genetic predispositions, including monogenic mutations in mismatched repairing genes
associated with, e.g., DNA repair, the cell cycle, and apoptosis (2). Alongside inherited genetic
mutations, epigenetic changes also play a significant role in CRC development (3). The remaining
75–80% of cases develop spontaneously and are related to environmental factors such as lack of
physical activity, dietary habits, and smoking or alcohol abuse (4). Currently, alterations in the
composition of the gut microbiome and its metabolites (playing a role in damaging local tolerance)
are also considered as risk factors for CRC (5). An increased risk of CRC is often associated with
chronic inflammation of the mucous membrane, which may lead to cell dysplasia, as was proven
for patients with inflammatory bowel disease (IBD) (6).

The role of inflammation in CRC development was further supported by data showing that
non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of both CRC and colon
polyps, which are considered as a premalignant stage (7, 8). The tumor-infiltrating leukocytes
(TILs), especially lymphocytes, contribute to the immunoscore classification, where the density of
CD3+ and CD8+ T-cell infiltrate is used as a predictor of anti-tumor response and the prognostic
marker in CRC (9, 10). However, further studies have shown that most of the immune cells may
actually have a dual activity—anti- and pro-tumor, depending on the signals received from the
tumor microenvironment. Interestingly, the so-called myeloid-derived suppressor cells (MDSCs)
can switch the polarization of other cells to the status with pro-tumorigenic activity (11).
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MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

Already in the early 1900s, it was shown that cancer development
is often accompanied by extra-medullary hematopoiesis (EMH)
and neutrophilia (12). These “fresh” leukocytes were further
characterized by suppressive activity and were called immature
myeloid cells (ImC) or myeloid suppressor cells (MSC) (13).
Eventually, in 2007, their name was changed to MDSCs
(13). These cells represent a heterogeneous population of
granulocytes and monocytes that rapidly expand during
infection, inflammation, and cancer (14, 15). MDSCs, together
with the tumor-associated neutrophils (TANs), tumor-associated
macrophages (TAMs), and regulatory dendritic cells, compose
the population of myeloid regulatory cells (MRC), strongly
cooperating with each other during cancer development, and
progression (16). Based on mouse data, the MDSC population
has been divided into two subgroups: of monocyte (Mo-MDSCs),
defined as CD11b+Ly6G−Ly6Chigh, and polymorphonuclear
(PMN-MDSCs), CD11b+Ly6G+Ly6Clow, origin (11, 17, 18).
Reflecting MDSC populations already defined in mice, human
MDSCs have been described as Lin− HLA-DR−/low CD11b+

CD14− CD15+ CD33+ for PMN-MDSCs and Lin− HLA-
DR−/low CD11b+ CD14+ CD15− CD33+ for Mo-MDSCs. Very
recently, a population of early-stage MDSCs (e-MDSCs) was
detected and defined as Lin− HLA-DR−/low CD11b+ CD14−

CD15− CD33+ (17, 19). As their name suggests, these cells
possess immunosuppressive function and help cancer to escape
the surveillance of the immune system and support further tumor
development (17). Most studies point out that the suppressive
role of MDSCs in cancer is associated with the activation of
their two enzymes, namely inducible NO synthase (iNOS) and
arginase-1 (ARG1) (20–22). These enzymes are responsible for
metabolism of L-arginine, which is essential for the proliferation
and proper functioning of T cells (23). Moreover, NO and ROS
produced in these reactions are involved in the inactivation of
the T-cell receptor (TCR), causing a decrease in the expression of
CD3ζ chain and inducing T-cell apoptosis (18, 19, 22).

Expansion and Activation of MDSCs in
CRC
It is widely accepted that the level of circulatingMDSCs increases
in the late stage of cancer, correlating with disease progression
and formation of metastases (15, 24–26). However, recently, Ma
et al. showed that the MDSC level in circulation also increases in
premalignant states, such as colon polyposis (27).

The development of MDSCs is caused by various mediators
released under chronic inflammatory conditions, including
the release of chemokines (11, 15, 28, 29). One of them
that is particularly relevant is CCL2, which contributes to
tumor growth, progression, and metastasis development in
many tumors, including breast, ovarian, prostate, and CRC
(30–33). Previous studies in mice showed that CRC growth
could be supported by myeloid cells recruited by the CCL2-
CCR2 signaling pathway (33). CCL2 caused accumulation of
MDSCs and enhanced their immunosuppressive function during

colorectal carcinogenesis (34). It was also shown that the level
of CCL2 increased simultaneously with the progression of CRC
(humans), while the deletion of CCL2 led to the reduction of
the MDSC level (mouse model) (34). Further, RNS produced
by MDSCs may nitrite chemokines, e.g., CCL2 to N-CCL2,
which do not attract CD8+ T cells (like unmodified CCL2 does)
but instead recruit myeloid cells, e.g., monocytes (35). On the
other hand, several studies documented that CXCL1 is elevated
in human CRC (36–38). Further data indicated that CXCR2-
positive MDSCs are recruited through CXCR2 ligands, e.g.,
CXCL1 and CXCl2 are essential for chronic colonic inflammation
and colitis-associated tumorigenesis (39).

In addition to chemokines, an important role in the regulation
of MDSC activity is attributed to other inflammatory mediators
such as histamine and prostaglandins. It has been documented
that histamine induces MDSC proliferation and promotes
ARG1 and iNOS expression in Mo-MDSCs. At the same time,
histamine inhibits the expression of ARG1 and iNOS in PMN-
MDSCs, promoting the production of IL-13 and IL-4 (40).
Thus, histamine may activate Mo-MDSCs and PMN-MDSCs in
different ways (40, 41). Prostaglandin E2 (PGE2), on the other
hand, is a strong proinflammatory mediator produced by COX-2
(42) and may activate MDSCs through STAT3 phosphorylation
(43, 44). In CRC, persistent STAT3 activation is associated
with tumor growth (45, 46) and activation of MDSCs (47,
48). These observations are consistent with the results showing
effectiveness of COX-2 inhibitors in the reduction of the MDSC
level through blocking COX-2 and subsequent inhibition of
the STAT3 pathway (43, 44, 49, 50). Another arachidonic acid
metabolite, leukotriene B4 (LTB4), a product of 5-lipoxygenase
(5LO), acts as a chemoattractant for MDSCs, leading to their
accumulation. Deficiency of 5LO is associated not only with
a lowered circulation level of MDSCs but also with decreased
activity of ARG1 and iNOS (51).

The tumor microenvironment stimulates MDSCs also by
other factors induced by local hypoxia and low pH (52, 53). One
of them is hypoxia-inducible factor (HIF). Over-expression of
HIF-1α and also HIF-2α is associated with poor prognosis in the
majority of cancers, including CRC (54). HIF-1α is associated
with increased activity of ARG1 and iNOS in MDSCs, leading
to stronger inhibition of T-cell functions (55). Moreover, HIF-1α
can also enhance the suppressive nature of MDSCs by inducing
expression of programmed death-ligand 1 (PD-L1) (56), a ligand
for PD-1, leading to inhibition of IL-2 production and decreased
proliferation of cytotoxic T cells (56, 57). Additionally, HIF-1α,
by binding to a conserved hypoxia response element in the V-
domain of Ig suppressor of T-cell activation (VISTA) promoter,
upregulates VISTA expression onMDSCs, thereby inducing their
suppressive activity in the tumor microenvironment (58).

Many studies have shown that not only soluble mediators
but also extracellular vesicles, e.g., exosomes secreted by tumor
cells, may directly induce MDSC development and modulate
their activity (59). This was demonstrated formanymalignancies,
including melanoma, breast, lung, and CRC (60). The role of
cancer exosomes in CRC is complex, based on the type of cargo
material transferred from cancer cells to the cells of the immune
system, including MDSCs. This may occur through the delivery
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of tumor proteins, e.g., FasL (61) and Hsp72 (62), mRNA (63),
and non-coding microRNAs (miRNA) (64). The role of miRNA
in CRC, in particular, has been documented recently, with an
elevated level of miRNA-21 in patients’ sera correlating with poor
prognosis (65, 66).

MDSC Action in CRC
The suppressive function of MDSCs in CRC is mainly associated
with their ability to inhibit T-cell proliferation and to stimulate
Treg development (15). One of the important factors involved
in interactions between T cells and MDSCs is L-arginine,
an amino acid that is essential for T-cell proliferation and
proper functioning. MDSCs highly express ARG1, which uses L-
arginine, causing its depletion from the microenvironment (21,
22), which in turn affects T-cell functionality. Lack of L-arginine
blocks T-cell proliferation and decreases expression of CD3ζ
chain and IFNγ production (67–69). Studies on CRC have shown
that MDSCs impair T-cell activation through O−

2 production and
iNOS activity (70, 71), which can be reversed byMDSC depletion
or the use of iNOS and O−

2 inhibitors (72). The mechanism
of ARG1- and iNOS-dependent T-cell suppression has been
explained by studies showing that, under conditions where the
L-arginine level is reduced due to ARG1 activity, L-arginine is
preferentially used by iNOS for O−

2 and NO production, while
under normal conditions, where the L-arginine level is high, only
NO is produced (73). After mutual reaction of NO with O−

2 ,
a strongly reactive oxidizing agent, peroxynitrite (ONOO−), is
formed. It can cause nitration of proteins (74, 75) as well as
the induction of T-cell apoptosis through the TCR/CD3 complex
tyrosine phosphorylation pathway (22, 76, 77). Recent results
have also shown that MDSC level correlates with reduction in the
adaptive immune response to tumor antigens, e.g., MUC-1, both
by lowering the production of specific antibodies and activation
of tumor-specific T cells (27).

The interactions between MDSCs and Tregs in cancer are
well-documented. Mainly, the activation of Tregs by MDSCs
is caused by cytokines, including IL-10 and TGF-β, where the
latter is also associated with MDSC induction (78). However, the
relationship between MDSCs and Tregs in CRC is questionable.
Some authors indicate that MDSCs in CRC do not induce Tregs
development in vitro (70). On the other hand, mouse MDSCs
were able to induce Tregs in vitro and in vivo through the IL-10-
and IFN-γ-dependent pathway (79).

In addition to the role of MDSCs in immunosuppression that
is observed during tumor progression, they may also directly
stimulate tumor growth andmetastases, inducing, in cooperation
with VEGF, angiogenesis. Furthermore, MDSCs may introduce
high levels of MMP9 and pro-MMP9 into the extracellular
milieu, regulating VEGF bioavailability for colorectal cancer
cells (80, 81). At the initial stage of cancer, MDSCs, through
TGF-β, can also induce the epithelial to mesenchymal cell
transition (EMT) process, which is essential for metastases at
the late stage. These cells participate in extracellular matrix
degradation in order to prepare distant tissue for receiving
metastatic cells (82, 83). The latest findings reveal that PMN-
MDSCs also enhance CRC growth by exosomes and exosomal

protein S100A9 in the tumor microenvironment, especially
under hypoxic conditions (84).

Both populations of MDSCs can effectively inhibit T-cell
activity but using different mechanisms (85, 86). Some authors
suggest that Mo-MDSCs are more suppressive than PMN-
MDSCs (87), while others show the opposite result (88, 89).
PMN-MDSCs are mainly responsible for ROS production, while
Mo-MDSCs have high expression of iNOS, producing large
amounts of NO, which has a longer activity than ROS. Thus,
PMN-MDSCs, in contrast to Mo-MDSCs, need direct cell-to-
cell contact to suppress T cells (85, 90). In this context, it has
been documented that PMN-MDSCs preferentially settle the
peripheral lymphoid organs, while Mo-MDSCs mainly persist in
the tumor bed (85). In addition, MDSCs can also downregulate
innate immune response, e.g., affecting the activity of NK cells
(91). The crosstalk between MDSCs and cells in the CRC
microenvironment is summarized in Figure 1. According to
some authors, in human CRC, a major proportion of the MDSCs
in peripheral blood are PMN-MDSCs (86). However, there are
also studies showing an increased level of both populations (92–
95). Additionally, an e-MDSC population was also detected in
CRC patients (27, 96).

DETECTION OF MDSCs IN CRC

The composition of phenotypemarkers used forMDSC detection
and characterization in CRC quite often differs between studies.
The phenotype markers and functional characteristics of MDSCs
from various studies on human CRC are presented in Table 1.
While the majority of the authors agree that the general
phenotype of MDSCs is CD11b+ HLA-DR− Lin− CD33+

or functional markers, e.g., iNOS+ and ARG1+, there is
no consensus with respect to more specific markers such
as CD14, CD15, PD-L1, or CD124 (IL-4αR). The recent
recommendations of the COST-Mye-EUNITER consortium
provide the minimal phenotype characteristics necessary to
identify cells as MDSCs: CD14−CD11b+CD15+(or CD66b+) for
PMN-MDSCs; CD11b+CD14+HLA-DRlow/− CD15− for Mo-
MDSCs, and Lin−(CD3/14/15/19/56)/HLA-DR−/CD33+ for e-
MDSCs (17).

TARGETING MDSCs IN CRC

Despite the availability of chemo- and immunotherapy, surgery
is still the primary method of CRC treatment. However, in a
mouse model, it was shown that surgical removal of tumor
mass recruits MDSCs to the peritoneal cavity and promotes
tumor progression due to the surgical trauma, downregulating
the CXCL4 expression. CXCL4 inhibits tumor growth and
angiogenesis, which might be due to its inhibitive impact on the
recruitment of MDSCs (97). In this context, it seems that MDSC-
targeted therapy is urgently required for this type of cancer.

There are numerous studies concerning different small-
molecule compounds that are able to inhibit the suppressive
activity of MDSCs. In this section, however, the compounds
with potential for CRC treatment are mainly being discussed.
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FIGURE 1 | Crosstalk between MDSCs and other cells in the cancer microenvironment (created with BioRender.com). Factors like PGE2, IL-6, IL-10, and LTB4 are

involved in the induction of MDSCs, where IL-10 can also be involved in the generation of Mo-MDSCs from circulating blood monocytes. In addition, NO produced by

iNOS is required for the production of N-CCL2 from CCL2, acting as a chemoattractant for monocytes. In a similar manner, CXCL1 and CXCL2 binding to CXCR2

may recruit MDSCs to the tumor bed. Simultaneously, exosomes containing exosomal S100A9 protein are released by PMN-MDSCs, supporting the tumor growth.

On the other hand, EVs generated by the tumor transfer biologically active tumor-related factors, e.g., proteins and miRNAs, which may also be involved in the

induction of MDSCs from infiltrating monocytes. Moreover, hypoxia per se and hypoxia-related factors, including HIF1a, are also responsible for the induction of the

expression of suppressive molecules such as VISTA or PD-L1 on the surface of MDSCs, which act through VISTA receptor and PD-1 on the T cells, respectively. TGFβ

produced by MDSCs has a number of suppressive actions, e.g., MDSCs, through TGFβ, can induce the epithelial to mesenchymal cell transition (EMT) process,

which is essential for metastasis formation, or inhibit NK cells. Moreover, TGFβ has a great influence, together with IL-10, on the induction of Tregs, while Tregs,

producing TGFβ, induce in return MDSCs as a result of a positive feedback loop. In addition, MDSCs may also inhibit the production of antibodies and T cells directed

against tumor-associated antigens (TAA), such as MUC1. Additionally, NO, O2-, and a reduced concentration of L-arginine, which are associated with MDSC activity

in the tumor microenvironment, inhibit T-cell proliferation. Moreover, NO by itself can modify TCR structure and induce T-cell apoptosis.

One such is AT38, an inhibitor of RNS, which was used in
a mouse model of CRC where it proved to effectively reduce
nitration of chemokines, including CCL2. Administration of
AT38 also decreased the level of iNOS and ARG1 (35). Another

example is nitroaspirine, which, in a mouse model, increased
the number of tumor antigen-specific T cells and reduced both
ARG1 and iNOS activity in MDSCs (98). Triterpenoids were also
shown to reduce the suppressive functions of MDSCs through
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TABLE 1 | The phenotype markers and functional characteristics of MDSCs as published in various studies on human CRC.

Orgin/Tumor stage Phenotype Suppressive activity References

Circulating/I-IV Lin− HLA-DR− CD11b+ CD33+ CD13+ CD115low

CD117low CD124low CD14− CD15− CD66b−

CD34− CD39+ CD73− PD-L1low PD-L2− PD-1−

MDSCs correlate with tumor metastasis.

Inhibition of CFSE-labeled autologous CD3+ T cell

proliferation at 2:1 ratios with MDSCs in the absence or

presence of CD3/CD28 antibody stimulation for 3 days.

(26)

CD33+ from PBMC were

co-cultured with

SW480/SW620 cells to

induce tumor MDSCs

CD33+ CD11b+ HLA-DR−, CD14+ CXCR4+

CD39+ ARG-1+ iNOS+ ROS+ PD-L1+ CD73−

CD117+/− CD34+/− CD66b+/− CD15weak

Tumor-induced MDSCs promoted SW480 and SW620 cell

growth in a co-culture system in vitro. Tumor-induced MDSCs

suppressed the proliferation of PBMCs labeled with CFSE

more strongly than CD33+ cells cultured in medium alone.

(70)

Circulating/tumor tissue CD33+ CD11b+ HLA-DR− CD14+ CXCR4+/−

CD39+/− ARG-1+ iNOS+ PD-L1+ ROS+ CD73−

CD117+/− CD34+/− CD66b+/− CD15weak

MDSCs from tumor tissue have higher

PD-L1 expression

Advanced disease stage was associated with an elevated

level of circulating MDSCs; also, tumor resection reduces the

level of circulating MDSCs and Tregs measured 7 days after

surgery.

Circulating/IV CD14+ HLA-DR−/low S100A9high iNOS+ – (71)

Circulating/tumor tissue/III IV CD124+CD14+

CD124+CD15+

tumor tissue CD15+ CD14+

Mixed lymphocyte reactions in which gamma-irradiated

PBMC, CD14+, CD14−, and PMN from CRC patients were

added as stimulator to responder PBMC derived from healthy

donors. These experiments showed two main subpopulations

with suppressive activity present among CD14+ monocytes

in one and among PMN in the other.

(93)

Colorectal tumor/III PMN-MDSCs CD45+ Lin− HLA-DR− CD11b+

CD33+ CD66b+

Mo-MDSCs CD45+ Lin− HLA-DR− CD11b+

CD33+ CD14+

PMN-MDSCs isolated from tumor inhibited the proliferation of

activated autologous CFSE-labeled T cells and IFN-γ

production in medium containing CD3 and CD28.

(94)

Circulating CD33+ HLA-DR− CD11b+ CD15+

CD33+HLA-DR−CD11b+CD15−

CD33+HLA-DR −/lowCD14+

Upregulated plasma levels of IL-6 and IL-10, where IL-6

correlates with 15+ MDSCs and IL-10 with 15− MDSCs.

Also, CD15+ and CD15− MDSCs correlated with reduced

IFN-α responsiveness in CD4+ T cells.

(95)

Circulating/Metastasis PMN-MDSCs CD33+ HLA-DR−/low CD15+

CD124+ PD-L1+ CD73+ CD39+

Mo-MDSCs CD33+ HLA-DR−/low− CD14+ PD-L1+

CD73+ CD39+

Accumulation of PMN-MDSCs was associated with poor

prognosis; also, PMN-MDSCs have higher levels of PD-L1,

CD39, and CD73 expression and a stronger

immunosuppressive function than Mo-MDSCs.

Reduced TNF-α production and Ki67 proliferation marker of

CD3+ T cells, especially by PMN-MDSCs.

(89)

Circulating/I-IV CD33+ CD11b+ HLA-DR−/low CD15−CD14+

ARG-1+

CD33+ CD11b+ HLA-DR−

CD15+ CD14−ARG-1++

– (96)

Tumor tissue/I-IV CD33+ CD11b+ HLA-DR−/low CD15−CD14+

ARG-1+

CD33+ CD11b+ HLA-DR− CD15+ CD14−ARG-1+

CD33+ CD11b+ HLA-DR− CD15− CD14−

–

Circulating PMN-MDSCs CD14−CD33+HLA-DR−CD66b+ Human MDSCs increase fatty acid uptake and expression of

FAO-related enzymes, and, in mice, inhibition of FAO blocked

the tolerogenic function and immunosuppressive

mechanisms of MDSCs.

Inhibition of CFSE-labeled CD3+ T-cell proliferation after

co-culturing with MDSCs from mice in the presence

of anti-CD3.

(86)

Circulating Mo-MDSCs CD14+HLA-DR−/lo

PMN-MDSCs CD33+ CD11b+ CD14− CD15+

SSC hi

Mo-MDSC population was significantly expanded in CRC

patients; the immunosuppressive capacity of these cells was

evaluated in a T-cell suppression assay using a 3-way

allogenic mixed leukocyte reaction (MLR).

(92)

Circulating/cancer and

adenoma

Total MDSCs: CD11b+HLA-DR−/low CD33+

PMN-MDSCs: CD11b+HLA-DR−/low CD33+

CD15+ CD14−

Mo-MDSCs: CD11b+HLA-DR−/low CD33+ CD15−

CD14+

e-MDSCs: CD11b+HLA-DR−/low CD33+

CD14− CD15−

PMN-MDSCs are the main immunosuppressive population,

as depletion of CD15+ cells spares Mo-MDSCs and

eliminates most of the suppression of T-cell proliferation and

interferon production. MDSC levels negatively correlated with

anti-MUC1 IgG levels.

(27)
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downregulation of ROS and inhibition of STAT3. However, they
did not exert any effects on ARG1 activity, on NO production, or
on the frequency of MDSCs (99). In the human CRC, amiloride,
normally used to reduce high blood pressure, can also inhibit
tumor exosome formation, which has been shown to induce
suppressive functions inMDSCs (62). It was also reported that H2

blockers, e.g., cimetidine, appear to induce apoptosis of MDSCs
through a Fas-FasL-dependent pathway (100).

Another therapeutic approach involves the reduction of
MDSC expansion by using COX2 or PGE2 inhibitors, as PGE2
production could be associated with MDSC expansion in cancer
(43). Such inhibitors, e.g., indomethacin, celocoxib, melocoxib,
and acethylosalicylo acid (ASA), were able to reduce tumor
growth in various tumor models, including CRC (101–103). This
treatment could also modulate MDSC functions by inhibiting
ARG1 expression and ROS and NO production (104, 105).
ASA also reduced the level of chemokines, including CCL2, a
potent chemoattractant for MDSCs (106). Another way to block
MDSC accumulation is the inhibition of stem cell factor (SCF),
which causes MDSC recruitment when produced in the tumor
environment (107).

Another option for targeting MDSCs is inducing their
differentiation. For example, curcumin used in a mouse model
of CRC was able to decrease the level of PMN-MDSCs and
to induce differentiation of Mo-MDSCs into cells with M1-like
phenotype (108).

Another strategy for potential MDSC-targeted therapy
was suggested by Condamine et al. who pointed to a
shorter lifespan for MDSCs compared with neutrophils
and monocytes (109). This was associated with their
increased apoptosis rate in the periphery, related to high
expression of TNF-related apoptosis–induced ligand receptors
(TRAIL-Rs) due to the stress in endoplasmic reticulum
(ER) occurring under pathophysiological conditions like
cancer. Thus, targeting TRAIL-Rs by selective agonists can be
considered as a future therapy for reducing MDSC activity and
number (109).

Immunotherapy designed to target the checkpoint inhibitors
of the PD-1–PD-L1 pathway is currently one of the most
promising possibilities for reducing MDSC activity. Currently,
four monoclonal antibodies are already approved by the FDA
for the inhibition of this pathway: anti-PD-1 nivolumab and
pembrolizumab, and anti-PD-L1 atezolizumab and avelumab.
These inhibitors and several other checkpoint modulators
are under clinical investigation for CRC treatment (110). In
the clinical studies, nivolumab and pembrolizumab showed
good response rates of 26 and 57%, respectively (111). Better
results were obtained in the case of nivolumab combined with
ipilimumab (anti-CTLA-4) (111–113). However, in the context of
MDSCs, more satisfactory results were obtained where the PD-
L1 inhibitor was used (56). Recently, several chemotherapeutic
agents, e.g., gemcitabine, 5-fluorouracil, and doxorubicin, which
are used in conventional cancer chemotherapy have been found
to reduce MDSC numbers through the induction of apoptosis
in tumor tissues as well as in the peripheral lymphoid organs

(114–116), and combining these agents with immunotherapy
improved survival of tumor-bearing hosts. In keeping with this,
Limagne et al. in their study, provided a clinical rationale for
combining chemotherapy with anti-PD-1/PD-L1 antibodies for
more effective reduction of the immunosuppression caused by
PMN-MDSCs in metastatic CRC (89). In this context, FOLFOX
(5-fluorouracil + oxaliplatin) chemotherapy was shown to act
synergistically with anti-PD-1 (117).

In the context of immunotherapy, it is worth mentioning the
heterogenic genetic composition of CRC, which has important
therapeutic implications. The effectiveness of immunotherapy,
particularly immune checkpoint inhibition therapy, such as
CTLA-4 and PD-1, has been confirmed in mismatch-repair-
deficient (dMMR) and microsatellite instability-high (MSI-H)
(dMMR-MSI-H) tumors, while it was ineffective in mismatch-
repair-proficient (pMMR) and microsatellite instability-low
(MSI-L) (pMMR-MSI-L) tumors (118). This resistance for
immunotherapy of MMR-MSI-L tumors results from the
inability of immune cells to recognize MSI-L mutated tumor
cells and thereby reduced T-cell infiltration (119). However, it
was noticed that pMMR-MSI-L tumors are more extensively
infiltrated by Tregs and MDSCs than dMMR-MSI-H, which
may also explain the poor immune response (120). Thus,
to use of MDSC-targeted therapy seems to be a beneficial
opportunity to assist the effectiveness of surgery in patients with
pMMR-MSI-L cancer.

CONCLUSIONS

Tumor develops a variety of mechanisms to escape from immune
system surveillance, including the generation of MDSCs. There
is substantial evidence that MDSCs are involved in CRC
development and progression. MDSCs can be detected both
in the peripheral blood and tumor tissue; however, it is not
known if both or one of them are relevant for predicting
the prognosis for patients in the clinic. Therefore, more
in-depth investigation of the mechanisms of MDSC actions
in the tumor bed is still needed. Finally, more advanced
pharmacological data on specific treatments targeting MDSCs
are required. This could significantly improve the effectiveness
of the treatment of CRC patients, and also those with
pMMR-MSI-L tumors, who respond poorly to current forms
of immunotherapy.
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Tumor-mediated regulation of the host immune system involves an intricate signaling

network that results in the tumor’s inherent survival benefit. Myeloid cells are central

in orchestrating the mechanisms by which tumors escape immune detection and

continue their proliferative programming. Myeloid cell activation has historically been

classified using a dichotomous system of classical (M1-like) and alternative (M2-like)

states, defining general pro- and anti-inflammatory functions, respectively. Explosions

in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro-

and anti-inflammatory states with different combinations of tissue- and disease-specific

phenotypic and functional markers. These new definitions have allowed researchers

to target specific subsets of disease-propagating myeloid cells in order to modify or

arrest the natural progression of the associated disease, especially in the context of

tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor

initiation and maintenance, and strategies to reprogram their phenotypic and functional

fate, thereby disabling the network that benefits tumor survival.

Keywords: MDSC, TAM, TIME, sc-RNAseq, reprogram

INTRODUCTION

In recent decades the traditional view of tumor development and metastasis has evolved to include
new and emerging cell types, extrinsic to the tumor itself. Over time it has become apparent that
tumors are composed of many cell types from different origins, all with varying functions. By
defining the tumor as a distinct organ, cell populations can be broadly separated into two categories:
parenchymal tumor cells and stromal tumor-associated cells. Tumor-associated cells can originate
either from the tissue in which the malignancy arises, or they can migrate from the periphery
and infiltrate the tumor after it forms. The tumor itself and the tumor-associated cells together
comprise what is termed the tumor microenvironment (1). When the tumor microenvironment
being discussed relates to the influx and function of the immune system, it is termed the
tumor immune microenvironment (TIME) (2). Therapies targeting different components of
the tumor microenvironment, such as neovascularization, cellular proliferation, growth factors,
extracellular matrix proteins, and more, have all been utilized to regulate tumor growth, each with
various levels of success (3). More recently, targeting the immune component of the malignancy,
deemed immunotherapy, has shown great promise and curative potential in several tumors (4).
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Fundamentally, the goal of immunotherapy is to modulate the
mechanisms that tumors use to suppress the immune response.
The ability of a tumor to evade immune mediated killing
is one of the hallmarks of cancer development, highlighting
the importance of the immune response in preventing cancer
formation (1). Classically, the immune system is divided into two
branches: adaptive and innate. The innate division determines
how to respond to danger by sensing the environment with an
array of pattern recognition receptors and cytokine receptors that
allow them to sense tissue damage, pathogens, and inflammation.
The defining feature of the adaptive branch is its ability to
respond in an antigen specific manner and memory responses
(5). The importance of the innate immune system in regulating
malignancies has come into sharper focus with the discovery of
immunomodulatory myeloid cells residing within and around
tumors. These myeloid cells are known to play a central role
in suppressing adaptive immunity and are comprised of diverse
clusters that fulfill various roles in promoting the viability of
the developing malignancy. Two central groups of suppressive
myeloid cells are the tumor-associated macrophages (TAMs)
and myeloid-derived suppressor cells (MDSCs) (6). Initially
called natural suppressor cells, these cells were shown to inhibit
cytotoxic lymphocyte activity and support tumor growth (7). A
body of work has shown that tumor development frequently
causes defects in the differentiation and activity of myeloid cells,
ultimately leading to a functional state that favors the tumor
progression. Given the massive heterogeneity of infiltrating
leukocytes found in tumors, and the striking difference in the
TIME seen between different tumor types, there is a need to
better understand the mechanisms contributing to this overall
immune suppressive environment at the single cell and high-
dimensional level. Advances in single-cell RNA sequencing
(scRNAseq) and mass cytometry have enabled these types of

Abbreviations: TIME, tumor-immune microenvironment; TAM, tumor-

associated macrophage; MDSC, myeloid-derived suppressor cell; M-MDSC,

monocytic myeloid-derived suppressor cell; scRNAseq, single-cell RNA

sequencing; TRM, tissue resident macrophages; TLR, toll-like receptor; IFN,

interferon; GM-CSF, granulocyte-macrophage colony-stimulating factor; STAT,

signal transducer and activator of transcription; C-EBP, CCAAT/enhancer-

binding protein; IRF, interferon regulatory factor; ROR, retinoic acid-related

orphan receptor; CCL, C-C motif chemokine ligand; M-CSF/CSF1, colony

stimulating factor 1; VEGF, vascular endothelial growth factor; IL, interleukin;

PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1;

CTLA, cytotoxic lymphocyte antigen; iNOS, inducible nitric oxide synthase;

PPAR, peroxisome proliferator activated receptor; SOCS, suppressor of cytokine

signaling; ARG1, arginase 1; IDO, indoleamine-pyrrole 2,3-dioxygenase; Bcl-xL,

B-cell Lymphoma-extra large; ROS, reactive oxygen species; GCN2, general

control non-derepressible 2; CREB, CAMP response element-binding protein;

ATF, activating transcription factor; TGF, transforming growth factor; SPARC,

secreted protein acidic and rich in cysteine, osteonectin; CCR, C-C motif

chemokine receptor; MARCO, macrophage receptor with collagenous structure;

NRP2, neuropilin 2; APOE, apolipoprotein E; IFITM1, interferon-induced

transmembrane protein; TSPO, translocator protein; NSCLC, non-small-cell

lung cancer; LILRB, leukocyte immunoglobulin like receptor B; PIRB, paired

immunoglobulin-like receptor B; IL1RN, interleukin 1 receptor antagonist;

NFKBIA, nuclear factor κ B inhibitor α, I κ B α; VISTA, V-domain Ig suppressor

of T cell activation; CNS, central nervous system; GBM, glioblastoma multiforme;

HIF, hypoxia-induced factor; PDAC, pancreatic ductal adenocarcinoma; TME,

tumor microenvironment; PMN-MDSC, polymorphonuclear myeloid-derived

suppressor cell; α-, anti-.

studies and comparisons and are giving rise to new generations of
data that may provide greater understanding of the mechanisms
leading to immune suppression, TAM and MDSC polarization,
and immune evasion.

Studies testing the potential of modulating the TIME via
altering cellular recruitment, differentiation, proliferation,
and survival are currently underway. These are reviewed
elsewhere (8–11). Here, we discuss tumor associated suppressive
myeloid cells, analyze recent findings obtained through high
resolution dissection of their phenotypes, and highlight
potential reprogramming strategies to orient cells toward
anti-tumor functionality.

THE PLAYERS: TAMs AND MDSCs

In the 1960’s, it was first observed that tumor bearing mice
developed a leukemoid reaction with expanded myeloid cell
populations in both the circulation and in the tumor. This
correlated with enhanced tumor growth and these cells were
subsequently shown to suppress cytotoxic T cell activity (7).
Over time additional research has demonstrated that these
myeloid cells exist as two separate populations: TAMs and
MDSCs (12). Studies seeking to understand the factors that led
to the differentiation of these populations demonstrated that
tumor-associated macrophages develop from both tissue resident
and circulating monocyte populations (13). New myeloid cells
recruited from the bone marrow exhibit different programming
from embryonically derived tissue resident macrophages (TRMs)
(14), and commonly represent the definition of “tumor-
associated macrophage” populations (15, 16), albeit not without
debate, depending on tumor model (17–19).

Myeloid-Derived Suppressor Cells
Correctly identifying MDSCs in vivo remains challenging despite
decades of intense study. MDSCs are commonly identified in
tumor bearing mice by the Gr-1 surface marker, and recently,
CD84 has arrived into the spotlight as another potential marker
in murine models. There is potential for application of CD84 to
differentiate MDSCs from conventional myeloid cells in human
studies, but this has yet to be validated (20). Despite shortcomings
in MDSC phenotypic definitions, several surface markers are
employed in the literature with varying degrees of success and
have been discussed elsewhere (12, 21). Thus, the gold standard
and only reliable method to correctly identify MDSCs is to
evaluate their ability to suppress CD3-mediated T cell activation
and function in vitro (22–24).

MDSC recruitment and maintenance within the tumor tissue
is thought to be more complex than that for TAMs, in part
because of the hypothesized signaling required to maintain
MDSCs in an immature state. This is thought to be accomplished
by a combination of multiple growth factors and polyunsaturated
fatty acids (25). Supplementary inflammatory signals generated
by the tumor traps these immature cells in a pathogenic
suppressive state (25, 26). A combination of TLR4/IFNγ/GM-
CSF signaling and activation of intracellular STAT3 is needed
to control the development and function of MDSCs (27–30).
MDSCs are typically replenished by bone marrow precursors
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and the spleen functions as their reservoir (31), but it is
unclear as to how extramedullary hematopoiesis contributes to
their replenishment.

A growing body of evidence supports that MDSCs retain
some ability to polarize to a cell displaying more characteristics
of typical monocytes (32, 33). Genetic and pharmacologic
methods can promote maturation or polarization in MDSCs,
with multiple groups reporting that M-MDSCs can be
functionally characterized into not only suppressive states,
but also into reactive states (32, 34, 35). Transcriptional
programs initiated by c-EBPβ, STAT3, PU.1, IRF8, and
RORC1, among others, regulate the suppressive activities
of MDSCs (36). Blocking these programs to force MDSCs
into an activating, rather than suppressive role, is a potential
therapeutic strategy, with several mechanisms to do so (37).
MDSCs represent just one of the suppressive populations in
the TIME; quantifying the phenotypes and functional states of
the environment at the single cell level will offer more clues for
therapeutic applications.

Tumor-Associated Macrophage
Tumor-associated macrophages comprise the macrophage
populations located in and around a solid tumor (38).
Originating from both tissue resident macrophages and
circulating monocytes, TAMs are also known to perform a
prominent role in modulating immune responses to tumors
(39). TAMs can arise from peripheral monocytes in response to
a combination of CCL2 and CSF1 produced by the tumor (27–
30, 40, 41). Once monocytes reach the tumor site, they follow a
maturation course that leads to their TAM finale (42, 43), under
the influence of tumor factors, local cytokine milieu, and integrin
signaling (44). Other than replenishment of TAM populations,
the role of undifferentiated monocytes within the TIME has not
been clearly defined at the single-cell level. Additional important
signaling pathways resulting in macrophage recruitment and
subsequent TAM differentiation include VEGF, IL-4, CCL2,
CCL18, and CCL9 (45). TAMs further mobilize additional TAMs
to the tumor niche by signaling to the bone marrow via CCL8
(14) to replenish and maintain their populations, although an
undefined mechanism for the transition of TRMs to TAMs has
been observed (15). Through a combination of TLR and cytokine
signaling, infiltrating MDSCs can also differentiate into TAMs
and function as a source of TAM replenishment (46–49).

TAMs are identified and distinguished from MDSCs by
the presence of characteristic surface markers that are shared
with mature macrophages (22). Frequently described as
M2-like macrophages, TAMs have distinct phenotypic and
transcriptional characteristics that can be used to distinguish
them from conventional M2-macrophages. Additionally, TAMs
demonstrate marked immunosuppressive functionality not seen
in the M2 macrophage population (50).

TRMs have an interesting role in tumorigenesis. Because
they develop with the tissue, they are present long before
any noticeable malignancy, but are thought to contribute to
the early stages of tumor development (2). The contribution
of various myeloid cell ontologies to tumor development and
immunosuppression is highly debated (51), although myeloid

cells recruited from the periphery seemingly have a more
important role in propagating the growth and invasiveness
of malignancies (17, 52). However, this might be a tumor-
specific phenomenon, as evidence from breast cancer patients
and murine models shows proliferating resident macrophages in
the tumor contributing to the bulk of the myeloid compartment
(19). Interestingly, there is some evidence that both populations
may also play distinct roles in supporting tumor growth, and
their origins bias their transcriptional networks (53). Therefore,
it is possible that the developing tumor modulates both the tissue
resident and infiltrating myeloid cell populations concurrently.

SUPPRESSIVE MECHANISMS

The mechanisms of immunosuppression employed by TAMs
and MDSCs are targeted toward inhibiting the activity of
the adaptive immune system, namely T-cells, and NK cells.
Suppressive myeloid cells do so by either direct cell-cell
interaction with target cells, or through secreted factors.
The mechanisms to suppress anti-tumor immune responses
in vivo and have been extensively reviewed elsewhere (45,
50, 54–56). Briefly, they utilize four distinct functions to
suppress T-cell mediated immunity: (1) signaling via the
stereotypical inhibitory receptors PD-1 and CTLA-4 mediate
leukocyte apoptosis and anergy (57–61); (2) depriving the
local environment of nutrients necessary for T-cell activation
and function (62–67); (3) generation of nitric oxygen and
reactive nitrogen species, by iNOS expression, that induce T-
cell exhaustion (12, 23, 62, 68, 69); (4) production of reactive
oxygen species (12, 70). These mechanisms ultimately lead to
a decrease in the effect and numbers of anti-tumor T-cells
while enhancing the populations of tumor supporting regulatory
T-cells (23, 24, 71, 72).

Suppressive Programming
Stereotypically, STAT and PPAR signaling pathways are
independently responsible for programming that drives
suppressive functionality of myeloid cells (73, 74), but there are
studies that describe their joint interaction in programming as
well (75). STAT3 signaling in myeloid cells can be initiated by
tumor derived factors, including IL-10 and lactate. Activation
of STAT3 typically results in activation of SOCS to block
intracellular inflammation cascades and initiate an “M2-like”
state, complete with functional and phenotypical markers, such
as ARG1 and CD206. More importantly, STAT3 activation also
results in the production of factors that benefit tumor viability
and invasiveness, such as VEGF, matrix metalloproteases,
and IDO (76–78). With respect to MDSCs, STAT3 has been
identified as a crucial factor for both their development and
function. STAT3 is capable of modulating gene expression of
anti-apoptotic proteins Bcl-xL, c-Myc, Cyclin D1, and others to
promote cell survival. STAT3 also engages programs that prevent
monocytic lineages from terminal differentiation to maintain an
immature phenotype, a hallmark of M-MDSCs (27). Supporting
the central role STAT3 plays in MDSC function, inhibition or
deletion of STAT3 abrogates the function and development of
MDSCs in vivo (79, 80).
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STAT6 signaling also promotes a suppressive program
in myeloid cells. IL-4 and IL-13 induce a cascade of
phosphorylation events that eventually lead to phosphorylation
and homodimerization of STAT6, translocation to the nucleus,
and binding to the promoters for various “M2-like” genes, such as
ARG1 and CD206. As is the case for STAT3, STAT6 can also bind
to IFNγ-induced activation sites and repress the transcription
of associated genes (81). One of the transcriptional targets of
STAT6 is PPARγ, which augments the effect of the suppressive
programming set in place by STAT6 (75, 82). Moreover, PPARγ

also increases oxidative pathways that result in increased ROS
production (83), among other suppressive pathways (84).

GCN2, an intracellular nutrient sensor, also regulates
macrophage function and promotes the pro-tumorigenic
phenotype of both TAMs and MDSCs by enhancing translation
of the CREB-2/ATF4 transcriptional factor responsible for
promoting their differentiation (64). Fundamentally the
changes induced by these altered differentiation pathways
results in a pro-tumorigenic response rather than mediating
tumor elimination.

TUMOR-ASSOCIATED MYELOID CELL
SUPPORT OF TUMOR GROWTH &
PROGRESSION

In addition to their role in aiding tumor immune evasion,
TAMs and MDSCs also help orchestrate tumor progression.
MDSCs remodel the extracellular matrix and promote blood
flow to increase nutrient delivery via the production of
various metalloproteases, cathepsins, and pro-angiogenic factors
(24, 69). M-CSF can promote recruitment of peripheral
myeloid cells to the tumor site and differentiate them into
directors of angiogenesis (85). This distinct proangiogenic TAM
subset, identified by surface TIE2 expression, secretes classic
proangiogenic factors, such as VEGF proteins and SEMA4D
(86, 87). These factors simultaneously retain anti-inflammatory
functionality via autocrine and paracrine signaling through
TIE2 (88). The combination of neovascularization and immune
suppression can promote early dissemination of malignant cells
(89), potentially through the breakdown of cadherin junctions
between vascular endothelial cells (90). In some cases, the
mobilization of TIE2+ macrophages is initialized as a response
to chemotherapy, highlighting the complex systemic reaction
to therapy.

Myeloid cell support of tumoral fitness isn’t limited to the
primary site of malignancy, as subsets of patrolling monocytes
have been found to increase angiogenesis to distal metastatic sites
(19).MDSCs can serve a similar role and “fertilize the soil” in pre-
metastatic sites for malignant cells to settle. Through undefined
mechanisms, MDSCs can be recruited to a premetastatic niche
before TAMs and establish a nutrient-rich, vascularized, and
immunosuppressive environment for tumors to seed (91, 92).
Along the same lines, a subset of CCR2+ myeloid cells has
also been associated with primary tumor recurrence (19), or re-
fertilizing the soil for any remaining local or circulating tumor
cells to grow.

TAM/MDSC IDENTIFICATION ACROSS
TUMOR TYPES

Identification of cells implicated in facilitating cancer growth is
imperative for several reasons. Despite established knowledge
that TAM/MDSC infiltration is associated with worse prognosis
(93), it is clear that not all myeloid cells in the tumor
microenvironment directly benefit the growing malignancy.
Finding a defined population specifically associated with tumor
aggressiveness or invasiveness can serve as a prognostic marker.
Furthermore, chemotherapy is not a “silver-bullet” to diminish
or deplete malignant cells. It results in changes to the local and
distant environment that are not easy to predict without studying
the effects in vivo or ex vivo (40). Beneficial off-target effects
are possible, such as concurrently depleting myeloid cells from
the tumor microenvironment (94). Some therapies, however,
can exacerbate the suppressive actions of TAMs, MDSCs, and
other local myeloid cells, reducing their in vivo efficacy (95–
97). It is also unclear as to which myeloid cell subsets are
most affected by the therapy. Defining the myeloid cell subsets
that are resistant, or even retaliatory, to a particular therapy
is crucial for response prediction. Lastly, defining the myeloid
suppressive phenotype that is most associated with malignancy
and most associated with therapy resistance brings therapeutic
efforts one step closer to targeting a specific cell cluster that
contributes to several requirements of the hallmarks of cancer
(1, 98, 99).

Historically, identification of stromal contribution was
achieved with immunohistochemistry and staining for a limited
set of markers on serial sections. This practice, however, can
be quite wasteful of precious biological specimens and data
due to the limited number of concurrent stains that can
be performed. As the definitions of all of the players in
the tumor microenvironment are expanding exponentially, an
expanded panel of markers must be employed to adequately
study the TIME. Tissue analysis at single-cell resolution is
allowing for discoveries of distinct myeloid cell phenotypes
and connecting their gene and protein expression patterns
to immunosuppressive and tumor-promoting mechanisms (98,
100). The myeloid compartment has vast heterogeneity in itself,
even within monocyte/macrophage subsets (43). Commonly
identified subsets are TAMs, monocytes, TRMs, and MDSCs.
TAMs and MDSCs are the most interesting populations, as
they seem to have the highest correlation to tumor progression
and are typically present in the greatest quantities, compared
to other immune cells (69). Within these populations are even
more complex subsets. Technologies such as scRNAseq (101)
and mass cytometry (102, 103) have created new definitions
for these populations that highlight heterogeneity previously
unappreciated by conventional flow cytometry, allowing for
discoveries of rare cell populations. These technologies have
also effectively outdated the standard classification scheme of
M1- vs. M2-like phenotypes for macrophages. Standard M1/M2-
like phenotypic markers should not be applied with absolute
exclusivity, as many of the stereotypic genes that represent
classical or alternative activation states can be co-expressed and
even correlated with each other (43). Therefore, it is crucial
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to perform deeper statistical analyses to identify these smaller
subsets that are more closely associated with the initiation,
progression, andmaintenance of themalignant niche, in addition
to patient outcomes.

In defining the PD-1/PD-L1 (104) interaction and CTLA-
4/CD80/86 (105), the search for novel immune checkpoints
broadened into identifying new mechanisms that keep the
adaptive immune cell out of the tumor environment and
immunologically ignorant (2). More recently, myeloid cells in
and around the tumor microenvironment have been recognized,
as their utility for prognostication becomes more delineated.
Generally speaking, TAMs, and MDSCs perform the same task
of nurturing tumor growth among all cancers (106). The subset
of culprit cells and the mechanisms by which they cloak or
support the cancer can range. The surface markers of TAMs
and MDSCs are not easily defined. Some markers of alternative
activation are shared among TAMs and MDSCs, such as
CD163+, CD68+ (40), or CD206+ (107), the same cells can also
express markers of classical activation, such as CD169 and CD163
(107). Additionally, TAMs and MDSCs of different malignancies
have different phenotypes, indicating differences in mechanisms
of suppression, albeit with minimal conservation. Below, we
highlight breast, lung, and central nervous system malignancies
to address the myeloid cell heterogeneity, as these are the
tumor models that have sufficient studies defining single-cell
immune populations. For quick reference, immunosuppressive
mechanisms discussed throughout the text are summarized in
Figure 1 and Table 1. We have also summarized outstanding
myeloid cell populations discussed in the text in Table 2.

Breast Malignancy
Without stratifying by breast cancer subtypes or stages,
the myeloid landscape presented by different studies shows
similarities. Notably, individual TAMs co-express both M1-like
and M2-like associated genes along the same positive correlation
trajectory (43, 107). Azizi et al. (43) identified TAM populations
from human samples that expressed both classical and alternative
activation markers, such as CCL3 and MARCO, respectively, in
addition to enrichment of signaling networks that are associated
with each of the activation states. Highlighting a potential role
for further recruitment of additional TAMs to the malignant site,
one TAM cluster in the study by Azizi et al. (43) had distinctly
enhanced expression of STAT3, B7H3, CSF1R, and CCL3. This
same cluster also had upregulated SIGLEC1, which can serve as
an independent predictor of poor prognosis [(14, 43), Supp.]. A
separate TAM cluster in the same study was enriched in PPARG
and NRP2, indicating distinct functional properties as a potential
suppressor of T-cell activity through NRP2 (43, 119). Azizi et
al. (43) further validated the individuality of the clusters and
rejected the null hypothesis of unimodality across components
that explain their variation.

Using scRNAseq information, Wagner et al. (107) detailed
TAMs and MDSCs present in human breast cancer. A unique
population of PD-L1+ TAMs and a population of MDSCs
with high expression of CD38 is also identifiable among
breast cancer samples (107). Notably, CD38 has been found
to aid the proliferation and migration of tumor cells and

is also independently associated with the establishment of
an immunosuppressive environment, even when expressed on
M-MDSCs isolated from peripheral blood (120–122). As a
note of caution, studying peripheral blood immune cells as
biomarkers for diseases comes with its own challenges, as
PBMC phenotypes don’t necessarily agree with tumor-infiltrated
immune cells (106). The complexity and heterogeneity of intra-
tumoral myeloid cell populations is not well-represented by
peripheral myeloid cells, possibly due to the effect of local
tumor-associated signaling, therefore care must be taken when
associating peripheral cells to the local disease. However, locally
expressed CD38 can bypass disinhibition from PD-1/PD-L1
targeted therapy (123).

The TAM population in breast cancer studies seems to be
the most mature cell population, defined by a signature defined
by several factors, such as TREM2, APOE, and MARCO (43).
All can be used as phenotypic markers of mature myeloid
populations, such as macrophages, but TREM2 can serve as
a functional marker of an anti-apoptotic state (124). Similar
populations of TAMs are described in other cancers later (14,
112). Several studies showed the presence of undifferentiated
monocyte populations within the breast TIME. Azizi et al. (43)
described several monocyte populations with no enrichment of
immune gene sets in addition to several other populations that
are on track to dendritic cell differentiation. Likewise, Wagner et
al. (107) described a border of monocytes to wall off the TAMs
within the tumor core.

In murine models of breast cancer by Alshetaiwi et al. (20)
MDSCs can be distinguished with scRNAseq. However, their
identification presents a sizable challenge, as they do generally do
not form distinct clusters by standard informatics analyses. With
deeper analysis, they are distinguishable from other myeloid
cell populations by their own transcriptional signature (20).
Most notable in their transcriptional signature is the dramatic
upregulation of IFITM1 and SOCS3, marking their suppressive
programming, in addition to TSPO (translocator protein)
when compared to other myeloid cell clusters, highlighting
their functional role in the TIME. TSPO is a mitochondrial
membrane protein that, when activated, results in a respiratory
burst and generates reactive oxygen species from myeloid
cells, subsequently causing inhibition of T-cell activity (125).
Unfortunately, no studies to date have evaluated the phenotypes
of individual MDSC clusters to differentiate their functional roles
in the TIME, although it is hypothesized that distinct clusters do
exist (126).

Taken together, phenotypically distinct populations of
TAMs/MDSCs have different functional responsibilities
within the TIME in breast cancer. Notably, the majority of
these suppressive cells are more mature TAMs, rather than
MDSCs. Yet to be determined is the ontogeny of TAMs,
i.e., whether they are the product of MDSC maturation or
monocyte differentiation.

Lung Malignancy
Normal lung tissue is rich in immune cells responsible
for eliminating foreign bodies and infections, therefore it
is important to segregate TAM/MDSC populations from the
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FIGURE 1 | the growing tumor itself through various combinations of ligand-receptor interactions, and can be propagated by the tumor-associated myeloid cells.

Several markers, both surface and intracellular, can be used to not only identify the individual populations of tumor-associated myeloid cells, but also as therapeutic

targets. Therapies aimed at these targets generally serve to either deplete the individual clusters of cells from the TIME, or to reprogram them from pro- to anti-tumor

states. Presented are conserved targets on MDSCs and TAMs across tumor types, although they exist in different combinations amongst various tumor-associated

clusters. The simplified cell diagram on the top presents various surface targets to reprogram (red), deplete (blue), or a combination of both (purple), tumor-associated

myeloid populations, and the simplified diagram on the bottom presents intracellular targets. While only a single cell diagram is portrayed, these strategies represent

individualized therapies in targeting specific tumor-associated myeloid cell populations. While some receptors may overlap between populations, we hypothesize that

a multifactorial approach is imperative to abolish myeloid cell support of tumor growth.

TABLE 1 | Immunosuppressive mechanisms employed by MDSCs and TAMs, as well as stereotypic programming that regulate the mechanisms.

Effect Tumor type References

Immunosuppressive mechanism

PD-1/PD-L1 T-cell exhaustion/suppression

Myeloid cell suppressive programming

Glioma, Breast, Lung (non-small cell) (45, 55, 58–61)

(108, 109)

CTLA-4/CD80/86 T-cell exhaustion Breast, Lung (45, 58, 110, 111)

B7-H3 Receptor/B7-H3 T-cell exhaustion/suppression Breast, Lung (206, 207)

ARG Environmental nutrient depletion Breast, Lung (45, 62, 63)

IDO Environmental nutrient depletion Breast, Lung (55)

NOS T-cell suppression Breast, Brain, Lung (12, 23, 45, 55, 62, 68, 69)

ROS T-cell suppression Breast, Brain, Lung (12, 55)

Immunosuppressive program

STAT Inhibition of intracellular inflammation cascade

in suppressive myeloid cells

Anti-apoptosis in suppressive myeloid cells

Breast, Brain (GBM), Lung (75–78, 81, 82)

(27, 79, 80)

PPARγ Inhibition of intracellular inflammation cascade

in suppressive myeloid cells

Metabolic reprogramming in suppressive

myeloid cells

Lung, Breast (74, 75)

(83)

normal lung myeloid populations for correct analysis. In
adenocarcinoma, TAMs may have expression networks that
make them more readily identifiable from normal myeloid cells,
but deeper analyses like scRNAseq is required in order to
differentiate their signatures and identify distinct populations
(112, 113). TAMs in a later stage of macrophage differentiation
within lung adenocarcinoma are distinguishable from resident
myeloid cells via concurrent expression of TREM2, MARCO,
and APOE, as mentioned earlier. As in other tumors, the
TAMs from early lung adenocarcinoma express M1- and M2-
like markers, including HLA-DR and CD163, respectively.
Importantly, subsets of TAM populations in non-squamous cell
lung cancer (NSCLC) show an enrichment of PPARG expression
that can initiate anti-inflammatory transcriptional networks that
propagate immune ignorance (127, 128), differentiating them
from both normal lung macrophages and peripheral myeloid
cells (106, 112, 115, 129). Zilionis et al. (106) also describe a
population of tumor-infiltrating monocytes that express anti-
inflammatory-like markers, such as LILRB2, a potent activator of
the STAT6 signaling network. As this population has comparably
low CD14 expression, we speculate that this population of
monocytes could represent newly-trafficked cells [(106), Supp.]
that display immunosuppressive functionality early in the TAM
differentiation process. This supports the notion that tumoral
recruitment of suppressive cells happens early and at a systemic
level. Our group has shown that the murine homolog to

LILRB2, PIRB, can regulate the entire network of suppressive
functionality of myeloid cells, making the expression of LILRB2
an interesting therapeutic target (130). Additionally, we have
shown that targeted therapy against LILRB2 on tumor-infiltrating
myeloid cells can reverse their suppressive fate initiated by the
malignancy and diminish lung cancer tumor burden in murine
models (131).

Tumor associated myeloid cells in lung cancer have the ability
to further recruit newmyeloid cells, as seen in other cancer types.
Lambrechts et al. (113) describe the heterogeneity of immune
cells within NSCLC, and describe a particular myeloid cell
compartment that is enriched in several genes that recruit more
immune cells to its location, such as CCL2, CCL3, and CCL8,
in addition to IDO1, IL1RN (132). The same cluster exhibits
high expression of IL4I1, NFKBIA, VISTA, and LILRB4. Like
LILRB2, LILRB4-mediated ITIM signaling has a strong effect
on the anti-inflammatory phenotype of myeloid cells (133), and
we hypothesize that LILRB4 could act as a central regulator of
the immunosuppressive cascade network in this myeloid cluster,
as Deng et al. (134) showed a significant decrease of NFKBIA
(IκB) at the protein level, following genetic ablation of LILRB4
in myeloid cells (135). The additional correlation to VISTA
within the same cluster is of particular importance, as VISTA is
proving to be an attractive target to prevent inhibition of T-cell
cytotoxicity (136). In concert, this network would presumably
directly program newly recruited myeloid cells to a suppressive
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state and add to the immunosuppressive border surrounding the
growing malignancy.

Clusters of suppressive myeloid cells can incorporate other
cell types to augment their effect. A population of macrophages
has been shown to induce T-regulatory cells to further
fortify the immune barrier to cancer recognition (115). This
macrophage cluster expresses markers of T-cell recruitment,
such as CXCL9, CXCL10, and CXCL11, but the cluster is also
enriched for anti-inflammatory-like genes, such as STAT3, CCR2,
and LILRB2 [(115), Supp.]. Most importantly, the same cluster
is extraordinarily enriched for PDL1, IL4I1, and IDO1—genes
heavily implicated in suppression of cytotoxic T-cell activity
and induction of T-regulatory cell programming (137–142).
According to Maynard et al. (115), this cell population is
expanded in patients that show progression of malignancy on
therapy, highlighting a crucial mechanism for therapy failure that
corroborates previous work (143). This demonstrates another
role of myeloid cells in tumoral viability—creating a hospitable
environment for recurrence. While the entire population of
myeloid cells is frequently targeted for cancer therapeutics (144),
it’s clear that more efficient strategies are needed. From the
study by Lambrechts et al. [(113), Supp.], there does not appear
to be any one particular myeloid cluster that has outstanding
expression of PD-L1, PD-1, or B7-H3, underscoring the relevance
of the other strategies employed by TAMs to keep the adaptive
immunity at bay.

In summary, the lung cancer studies show off the power
of deep analysis of the tumor microenvironment. Even in the
case of the TAM compartment, which is frequently depicted
as a single cell type, there is substantial heterogeneity in
cell types that seemingly assume different roles to protect
and contribute to the tumor growth. This also underlines
a key aspect of immunotherapy targeted against the tumor
microenvironment: it is unlikely a single therapeutic would have
the capability to transform or reprogram all involved cells—in
this case, TAMs/MDSCs. While targets such as PD-1/PD-L1 or
CTLA4/CD80 are important, these mechanisms address just one
mechanism of TAM-mediated suppression, and a downstream
effector, which could explain the limited clinical benefit.

Central Nervous System Malignancy
Central nervous system (CNS) malignancies account for a small
percentage of all diagnosed cancers (145), but they are frequently
associated with abysmal prognoses. The resident immune system
of the CNS, namely the microglia, are established contributors to
CNS malignancies (146), but there are several other phagocytic
myeloid cell populations in the CNS that are also, if not more
so, implicated in a poor prognosis of the most aggressive form of
CNS malignancy, glioblastoma multiforme (GBM). Perivascular,
meningeal, and choroid plexus macrophages of the CNS have
generally been overlooked as contributors to GBM (147, 148),
but the involvement of bone marrow-derived myeloid cells has
recently been established, and even positively correlated, to poor
outcomes in GBM models (116, 149). As seen in the previous
cancer studies, GBM TAMs co-express M1- and M2-associated
markers, again making simple surface phenotyping of cells rather
difficult, and creating the need for mechanism and pathway

analysis (116). Invading peripheral myeloid cells show a greater
suppressive potential than do microglia, marked by increased
expression of IL10 and TGFB2—potent inducers of T-regulatory
cells (12, 43)—compared to the resident immune cells (116, 117).
Likewise, peripheral myeloid cells were also enriched in genes
involved in the citric acid cycle and TSPO compared to the
residentmicroglia, resembling TAMs that we speculate to directly
inhibit T-cell functionality mentioned previously in the Breast
Cancer section [(116), Supp.].

Unfortunately, current scRNA-seq studies of the TIME in
GBM use consensus clustering only to distinguish the roles of
microglia and peripheral macrophages. This method limits the
resolution and only allows for the evaluation of two myeloid
cell clusters. Despite this, Muller et al. (116) describe myeloid
cell heterogeneity that is the result of their spatial relationship
with the malignancy, suggesting that suppressive myeloid cells
perform different roles according to their physical location.
Likewise, Darmanis et al. (114) show that macrophages make
up the majority of myeloid cells within the tumor core and
microglia make up the myeloid population of the surrounding
stroma. The macrophages in the core seemingly contribute more
to the overall viability of the tumor via their expression ofVEGFA
and HIF1A, while the juxtatumoral microglia serve as the main
masqueraders of the malignancy with increased expression of
PDL1, B7H3, CD80, and CD86 (114). The myeloid cells within
the tumor core are also the main source of LILRB2 expression,
offering a selective target for reprogramming a significant cell
population for maintaining tumoral viability. Also interesting
is that the majority of LILRB2-expressing myeloid cells do not
co-express MARCO, a pattern recognition receptor enriched on
TAMs (150); we speculate that these cells could be MDSCs (114).
Most GBM-associated myeloid cell populations are involved in
recruiting additional immunosuppressive myeloid cells, marked
by exorbitant expression of CCL3 and TGFB2 in numerous GBM
specimens (116). Combined expression of CCL3 and TGFB2 in
a variety of bulk tumor samples from tissues of different origin
is strongly associated with the local presence of MDSCs, despite
the difficulty in their identification (151). More importantly, high
expression of the combination is associated with a worse overall
median survival in high grade glioma, referenced inmultiple data
repositories (152).

While there are limited studies that recognize the presence
of MDSCs, and specifically analyze heterogeneity of MDSCs,
in models of CNS malignancy, it is imperative that we discuss
them in this context. MDSCs have been detected in the
tumor microenvironment and play a significant role in tumor
progression (153). They do not exist in healthy CNS tissue
outside of the context of malignancy (149, 153). Alban et al.
(118) use MDSC infiltration in GBM as prognostic markers and
indicate a hazard ratio of 4.7 (1.69–13.4) when comparing overall
survival of patients with high MDSC GBM infiltration to low
infiltration. Under the assumption that all M-MDSC populations
that infiltrate GBMs are programmed into the same functional
state, their role is to secrete IL-10 and TGF-β, just like their
macrophage counterparts. The presence of these cytokines is
correlated to overall stage of the malignancy [(118, 149), Supp.,
(154)], indicating that there is most likely a dose effect as a
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greater amount of MDSCs in the local environment is correlated
to staging as well.

In addition to the local involvement of suppressive myeloid
cells, the peripheral differential cell count offers insight to
prognosis of GBM patients (118, 149). MDSCs in the periphery
are heavily implicated in higher grade, more aggressive
CNS malignancies. Peripheral MDSCs have a strong positive
correlation with worse prognoses in GBM patients, and the
converse is true as well. Alban et al. (118) showed that, after
surgical resection of GBMs, patients with increasing fractions
of MDSC populations had inferior survival time, compared to
those of decreasingMDSC fractions. A cohort of newly diagnosed
patients in the study received standard-of-care adjuvant therapy
(155), but the expansion of M-MDSCs were variable, indicating
a potential difference in activation of myeloid cells following
chemo- or radiotherapy (156, 157). Additionally, a number of
studies show increased peripheral MDSC counts in subsets of
patients who received dexamethasone perioperatively, indicating
a potential confounder, or contributor, in correlating overall
survival with MDSC levels (118, 148, 149).

GBM is well-known to be an extraordinarily heterogeneous
malignancy, making it very difficult to target with “off-the-
shelf ” therapy. However, it is striking to see that even across
the heterogeneity of malignancies from different patients,
the myeloid cell clustering, and signaling networks seem
to remain conserved (114). Manipulating the programming
of both bone marrow-derived myeloid cells and resident
microglia is important in regulating the entire network
of immune suppression and pro-tumor functionality.
While microglia appear to be attractive targets for the
popular therapies targeting PD-L1 or B7 family of proteins,
involvement of the peripheral immune system within the tumor
microenvironment is more closely associated to prognoses
and should also be considered for immunomodulation.
Whether the infiltrating TAMs, the malignancy itself, or a
combination of both is causing the suppressive programing
of the microglia remains to be determined. Table 1 details
the pathways and receptors that mediate immunosuppression
along with the specific effect and tumors impacted by the
signaling pathway.

METHODS TO PREVENT MYELOID CELL
CONTRIBUTION TO CANCER GROWTH

Currently, there are two main strategies for manipulating
tumor associated myeloid cells: depletion and reprogramming.
Depletion involves broad, systemic targeting of myeloid
cells, although newer, more specific approaches are aimed
at depleting only the myeloid cells that are specifically
involved with the malignancy (40). The therapeutic strategies
are summarized in Table 3, along with recent clinical
trial information.

Depletion
Strategies to deplete myeloid cells from the TME include
mechanisms to prevent myeloid cell trafficking to the malignancy

or initiate apoptosis. Tumoral recruitment and expansion
of bone marrow-derived myeloid cells occurs through a
CCR2-CCL2–dependent signal and, along with increasing
serum levels of CCL2, is independently associated with
worse prognosis. Disruption of CCR2 signaling prevents the
recruitment and development of suppressive myeloid cells,
while suppressing tumor metastasis and prolongs survival across
several cancer models (16, 176, 177). Importantly, disrupting
CCR2 signaling also reduces TAM/MDSC recruitment to
premetastatic niches (16).

Antagonizing the CSF1–CSF1R axis is an interesting approach
as it disrupts several mechanisms for therapeutic effect. Blocking
the axis can disrupt localization of suppressive TAMs to
the site of malignancy (178) as well as reprogram TAMs
for anti-tumor activity (162), in addition to preventing the
conversion of M-MDSCs to TAMs (12). JNJ-28312141, a
CSF1R inhibitor, depleted F4/80+ TAMs in a subcutaneous
H460 human lung tumor xenograft model and increased
plasma CSF1, a potential biomarker in CSF1R inhibition
(179). Biologics have also been studied in this regard—
RG7155, a monoclonal CSF1R antibody, greatly reduced
F4/80+ TAMs in animal models of colon cancer. RG7155
showed promise in human applications as well, as it induced
apoptosis of CSF1R+CD163+ macrophages in patients with
diffuse type giant cell tumor tissue (Dt-GCT) (178). However,
as CSFR1 blockage with pexidartinib has proven to be
ineffective in patients, targeting the CSF1–CSF1R signaling axis
might have limited applications (180). Combination therapy
of CSF1R blockade with immune checkpoint blockade is
currently ongoing in a solid malignancy clinical trial (Trial
# NCT02713529).

Targeting CD38 is proving to be a good strategy for
antibody-mediated depletion in some cancer models. CD38+

MDSC populations are expanded in cancer patients and
can even serve as an escape mechanism after PD-1/PD-L1
therapy. Daratumumab, a CD38 antagonist antibody, can deplete
immunosuppressive myeloid cells from circulation, as well as
serve as an independent therapy for CD38+ myelomas. CD38
antibody therapy initiates apoptosis via antibody-dependent cell-
mediated cytotoxicity and complement-dependent cytotoxicity.
Other suppressive cell types, such as T-regs, are also sensitive to
anti-CD38 treatment (122, 123, 181).

Liposomal delivery of dichloromethylene biphosphonates is
another effective method to deplete tumor associated myeloid
cells, as it deposits its payload directly into the intracellular space.
Liposomes are enclosed multifunctional structures that consist
of one or more phospholipid bilayers surrounding a hydrophilic
core. This organization allows for hydrophobic therapies to
associate with the lipid bilayer, and hydrophilic therapies,
including genetic material such as RNA, DNA or siRNA, to
be carried in the core. Clodronate and other bisphosphonates
are a class of drugs typically used for the treatment of
osteolytic bone disease and osteoporosis by inhibiting bone
resorption, as they specifically target the phagocytic cells
involved (182). By encapsulating clodronate in liposomes,
clodronate can be delivered to the tumor site where it is
phagocytosed by macrophages, ultimately initiating apoptosis.
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TABLE 2 | Specific clusters of myeloid cells highlighted in the text are summarized here.

Outstanding clusters Hypothesized role Cell type Tumor

studied

Species Reference

STAT3, B7H3, CSF1R, CCL3,

SIGLEC1

Additional myeloid recruitment TAM Breast cancer Human (43)

PPARG, NRP2 T cell suppression TAM Breast

cancer, lung

cancer

Human, murine (43, 106, 112)

PD-L1 T cell suppression TAM Breast cancer Human (107)

CD38 Tumor proliferation and migration M-MDSC Breast cancer Human (107)

TREM2, APOE, MARCO Mature TAM markers; global

immunosuppression;

anti-apoptosis

TAM Breast

cancer, lung

cancer

Human (43, 112, 113)

IFITM1, SOCS3, TSPO Global immunosuppression;

ROS production and T cell

suppression

MDSC Breast cancer Murine (20)

LILRB2 Global immunosuppression Monocyte-early TAM/MDSC Lung cancer,

GBM

Human (106, 114)

CCL2, CCL3, CCL8, IDO1, IL1RN,

IL4I1, NFKBIA, VISTA, LILRB4

Additional myeloid recruitment;

global immunosuppression

Monocyte-early TAM Lung cancer Human (113)

CXCL9, CXCL10, CXCL11, STAT3,

CCR2, LILRB2, PDL1, IL4I1, IDO1

Global immunosuppression; T

cell recruitment & suppression;

chemotherapy resistance

TAM Lung cancer Human (115)

IL10, TGFB2 Global immunosuppression;

tumor progression

MDSC & infiltrating macrophage GBM Human, rat (116–118)

TSPO ROS production and T cell

suppression

Infiltrating macrophage GBM Human (116)

VEGFA, HIF1A Tumor progression Infiltrating macrophage GBM Human (114)

PDL1, B7H3, CD86 T cell suppression Microglia GBM Human (114)

CCL3, TGFB2 Additional myeloid recruitment MDSC GBM Human (116)

Several clusters overlapped between various malignancies.

However, these effects have only been shown in vitro and animal
models (183–185).

An interesting, albeit controversial, aspect of MDSCs in the
TIME is the effect of chemotherapies on MDSC quantities
and suppressive programming. 5-fluorouracil (5-FU) and
gemcitabine were able to induce apoptosis and deplete MDSCs
in both spleens and tumors in 4T1 murine breast cancer model.
Moreover, both 5-FU and gemcitabine can activate caspase-1 and
induce IL-1β production via the NLRP3 inflammasome pathway
(186, 187). Evidence points to conflicting effects of IL-1β with
respect to the TIME. While some studies show a beneficial effect
of increased IL-1β in the TIME (64), others show that blockade of
IL-1β signaling can prevent immunosuppressive cell recruitment
(163). Other secondary effects of chemotherapy on the immune
system are discussed in depth elsewhere (40, 54).

Reprogramming
The tumor microenvironment can polarize TAMs to an
immunosuppressive M2-like functional state, leading to
enhanced tumor growth, progression, and metastasis. Besides
depleting TAMs andMDSCs,myeloid cells can be reprogrammed
toward a pro-inflammatory state by direct intervention via
small molecules and antibodies targeting key receptors. Two
reprogramming strategies can be used—blocking a receptor that

normally transduces an inhibitory intracellular signal, or using
an exogenous ligand to activate a receptor that stimulates pro-
inflammatory intracellular cascades (188). Despite its success in
diminishing tumor burden, pro-inflammatory agonist therapy is
frequently associated with systemic toxicity (189, 190), therefore,
we will discuss the former strategy.

Surface Targets
In some cases where disruption of the CSF1-CSF1R signaling
axis is unsuccessful in depleting TAMs, antagonism of CSF1R
signaling can reprogram TAMs away from an M2-like state.
Using glioma xenograft models, Pyonteck et al. (162) describe
how CSF1R antagonism did not decrease TAM numbers nor did
it alter their CSF1R expression pattern. However, inhibition of
AKT phosphorylation and M2-related gene expression, such as
ARG1 and CD206, indicated that CSF1R antagonism initiated
a functional shift to a pro-inflammatory state to block glioma
progression (162).

In a murine pancreatic ductal adenocarcinoma (PDAC)
model, crosstalk between B-cells and FcRγ+ TAMs resulted
in an M2-like phenotype through Bruton’s tyrosine kinase
(BTK) activation in a PI3Kγ-dependent manner. Using the
BTK inhibitor ibrutinib, PI3Kγ inhibition in PDAC tumor-
bearing mice reprogrammed TAMs toward an M1-like state and
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TABLE 3 | Therapies used to reprogram tumor associated macrophages and MDSCs.

Target Therapy/Treatment Clinical Trials References

BTK/ PI3Kγ Small molecule BTK inhibitor: Ibrutinib

Small molecule PI3K inhibitor: IPI-549

NCT03379428

NCT02403271

NCT02321540

NCT02950038

NCT02403271

NCT03535350

NCT03961698

NCT03719326

(158)

(159)

LILRB Anti-LILRB2 antibody N/A (131)

C5a/C5aR C5aR genetic deletion N/A (160)

Dectin-1 (CLEC7A)/Gal-9 Anti-Gal-9 antibody N/A (161)

CSF-1/CSF-1R Small molecule CSF-1R inhibitor: BLZ945 NCT02829723 (162)

IL-1β Anti-IL-1β antibody NCT02900664

NCT03742349

NCT03447769

NCT03968419

NCT03631199

NCT03626545

NCT03064854

(163)

HIF1α/β HIF1 genetic deletion N/A

NCT01036113

(164)

ANGPT2/TIE2 Small molecule TIE2 inhibitor: Rebastinib

Anti-ANGPT2 antibody: Nesvacumab

NCT02824575

NCT03717415

NCT03601897

NCT01688960

(164)

(165)

PERK (UPR) Inhibitor of unfolded protein response:

Tauroursodeoxycholic acid (TUDCA)

N/A (166)

Glutamine Synthetase (GS) Methionine Sulfoxamine N/A (167)

CPT1 (FAO enzyme)

HADHA (FAO enzyme)

Small molecule CPT1 inhibitor:

Etoximir/Perhexiline

Small molecule HADHA inhibitor: Ranolazine

N/A (168)

(169)

(170)

FPP Small molecule FPP inhibitor: Zoledronic Acid NCT02347163

NCT00295867

NCT00320710

NCT03664687

(171)

(172)

(173)

MARCO Anti-MARCO antibody N/A (150)

IRF5

IKKβ

Nanoparticle encapsulated mRNAs N/A (174)

DICER DICER genetic deletion NCT01353300

NCT00565903

(175)

PD-1/PD-L1 PD-1 genetic deletion

Anti-PD-1 antibody

NCT04173325

NCT03414684

NCT03925246

(108)

(109)

increased CD8+ T-cell cytotoxicity to slow PDAC tumor growth
(158). PI3K is a critical switch to promote suppressive activity
in macrophages, as PI3K signaling via AKT and mTOR inhibits
NFκB to promote M2-like functionality in TAMs. Conversely,
inhibiting PI3K prevents C/EBPβ activation and disinhibits
NFκB to induce a pro-inflammatory phenotype. Combining
PI3K blockade with anti-PD-1 therapy can promote tumoral T-
cell infiltration to slow tumor growth and enhance survival in
tumor-bearing mice (159).

Signaling pathways that activate NFκB to initiate pro-
inflammatory functionality represent valuable therapeutic
strategies. Our group found that PIRB/LILRB signaling pathways
can function as crucial regulators of NFκB activity. Ablation of

PIRB in MDSCs forced a transition to an M1-like phenotype,
resulting in decreased suppressive function, T-reg activation,
tumor growth, and metastasis (130). PIRB−/− monocytes
expressed stereotypic markers of inflammatory functionality,
such as increased iNOS, TNFα, with decreased IL-10 and ARG1
when compared to WT monocytes. PIRB−/− MDSCs also
demonstrated increased ERK, MAPK, and NFκB activation
upon LPS stimulation, and enhanced IFNγ-related inflammatory
responses. LILRB2—the human ortholog to murine PIRB—
blockade via monoclonal antibodies favored the activation of
NF-κB and STAT1 and the inhibition of STAT6 activation by
IL-4. In vitro, we observed decreased levels of CD14, CD163,
CD16, and DC-SIGN in A549-derived macrophages cultured
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in the presence of αLILRB2 antagonist antibodies. Humanized
MISTRG (M-CSFhi, IL-3/GM-CSFhi, and TPOhi) mice treated
with αLILRB2 antibodies to reprogram human macrophages
to a M1-like classically activated phenotype. Our group has
also generated BAC-transgenic mice expressing LILRB2 for
various studies. Recently we showed that αLILRB2 antibody
therapy had a synergistic effect when combined with αPD-1
therapy to diminish tumor burden in a lung cancer model with
BAC-transgenic LILRB2 mice, while simultaneously suppressing
MDSC and T-reg infiltration into the tumor site (131).

High Dectin-1 and the novel Dectin-1 agonist Galectin-9
expression were found in the TME of PDAC bearing mice.
Dectin-1 is a c-type Lectin expressed mainly on macrophages
and other myeloid-monocytic lineage cells. It is postulated
that Dectin-1 ligation in TAMs leads to immunosuppression,
thereby promoting PDAC growth. Dectin-1 does not have direct
pro-tumorigenic effect on transformed PDAC but its deletion
in tumor infiltrating macrophages induced immunogenic
reprogramming. Similar to the outcome of Dectin-1 deletion,
Galectin 9 neutralization enhanced intra-tumoral T-cell
activation in PDAC (161).

MARCO (macrophage receptor with collagenous structure) is
a scavenger receptor found on M2 immunosuppressive TAMs.
We discussed the presence of this receptor in TAMs across
multiple tumor types. Conditioned medium from cultured B16
melanoma cells and IL-10 stimulated culture resulted MARCO
expression on M0 bone marrow derived macrophages (BMDM).
Treatment with anti-MARCO antibodies decreased tumor sizes,
increased M1-like, and decreased M2-like TAM populations
in the TIME in 4T1 breast cancer and B16 melanoma mouse
models. The TIME displayed decreased immature macrophages,
increased CD4/T-reg cell ratio, and an upregulation of M1-like
genes such as TNF, IL-1β , NOS2, and a downregulation of IL-
10 suggesting polarization of TAMs to a more inflammatory
phenotype (150).

Last but not least, the PD-1/PD-L1 axis is one the best
studied and most clinically successful checkpoint inhibitors. In
cancer, the PD-1/PD-L1 axis is best known for T cell regulation.
Previously, macrophages were known to express PD-1 during
pathogenic infections (191, 192). Since then, it was discovered
that TAMs can also express high levels of PD-1, with increasing
levels over time in murine models and higher expression in
increasing human cancer disease stage. PD-1/PD-L1 blockade
in vivo increased PD-1+ macrophage phagocytosis activity and
reduced tumor growth in murine colon carcinoma models (108).
A more recent study showed that PD-1 ablation or blockade
with monoclonal antibodies prevented the accumulation of
granulocyte/macrophage progenitors under cancer driven
emergency myelopoiesis. Interestingly, PD-1 deficient myeloid
progenitors also had increased cholesterol synthesis which is
required for the differentiation of inflammatory macrophages.
Additionally, PD-1 ablation on myeloid cells decreased tumor
growth more effectively than T-cell specific PD-1 ablation
in a murine fibrosarcoma and melanoma models (109).
Cumulatively, PD-1/PD-L1 blockade or ablation on myeloid
cells promotes phagocytosis in macrophages, reprogramming of
myeloid progenitors and even furthers myeloid differentiation

via metabolic pathways. None of the aforementioned single-cell
studies show exceptional levels of PD-1 on myeloid cells, but that
does not exclude it from being a potential target for diminishing
immunosuppressive phenotypes of myeloid cells.

Soluble Targets
C5a is a protein fragment released from cleavage of complement
C5 that may be involved with PMN-MDSC recruitment. In
one study, C5a was found to enhance tumor growth and
inhibit CD8 T-cell mediated cytotoxicity by recruiting PMN-
MDSC (CD11b+Gr1+) to the tumor microenvironment. C5a
also enhanced PMN-MDSC’s suppressive capacity by increasing
the production of reactive oxygen (ROS) and nitrogen species
(RNS) which inhibits CD8+ T cell response (193). Ablation of
C5aR reduced the ratio of PMN-MDSC to M-MDSC in tumor
bearing mice compared to wild type mice. C5aR blockade is
a potential strategy to modulate the tumor microenvironment
by preventing the recruitment of immunosuppressive PMN-
MDSC (160).

IL-1β, a proinflammatory cytokine, is a potential target for
macrophage reprogramming because it impacts CSF1/CSF1R
signaling. In early tumor progression models using 4T1 cells
in Balb/c mice, IL-1β acts as a master cytokine, exhibiting
both pro- and anti-tumoral functionality (163). IL-1β recruited
CCR2+ inflammatory monocytes to the tumor site through the
induction of CCL2 but also promoted the differentiation of these
monocytes into immunosuppressive macrophages by inducing
CSF1. IL-1β deficient mice displayed significant reduction
in inflammatory monocytes recruitment and macrophage
differentiation. Combination therapy of αIL-1β and αPD-1
completely abrogated breast tumor progression (163).

Microenvironment
Besides cell surface receptors, cytokines and chemokines, the
oxygen level in the tumor also affects the microenvironment.
Tissue hypoxia develops as tumor cells proliferate until oxygen
demand overwhelms the supply. To restore oxygen to the
microenvironment, malignant cells initiate a hypoxic response
to drive a more aggressive phenotype, promoting angiogenesis,
cell proliferation, self-renewal, and other pro-tumoral programs.
Two master regulators of hypoxia in cells are HIF1α and
HIF2α. TAMs within this hypoxic environment are more
strongly associated with M2-like functionality (194), and HIF2α
ablation in TAMs resulted in a more favorable outcome in
models of hepatocellular carcinoma and colitis associated colon
carcinoma (164).

Just as oxygen levels affect the TIME, tumor vascularization
also plays a role. The angiopoietin (ANGPT2)/TIE2 kinase
signaling axis is essential to angiogenesis. TIE2 can be
found on a subset of pro-angiogenic macrophages (TIE2+

macrophages) and promote tumor angiogenesis and tumor
metastasis. Rebastinib, a TIE2 kinase inhibitor, suppressed the
infiltration of TIE2+ macrophages to the tumor site in the PyMT
mouse model of breast cancer (195). Another study showed that
vascular endothelial production of ANGPT2 recruited TIE2+

macrophages to the tumor and the inhibition of ANGPT2
binding suppressed TAM recruitment (165).
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Recent studies have attempted to explain why tumor-
associated immunosuppressive myeloid cells cannot simply be
binned in an M1/M2-like dichotomy, and Mohamed et al.
(166) describe ER stress as a potential mechanism. Undefined
tumoral signaling causes an upregulation in the unfolded protein
response of MDSCs, leading to an activation of the intermediate
media PERK and NRF2 drive the immunoregulatory phenotype.
PERK ablation led to a reprogramming of MDSC functionality,
specifically, to initiate a type I interferon anti-tumor response.
More importantly, similar anti-tumor effects can be achieved
with the exogenous administration of PERK inhibitors (166).

Metabolism
Recent studies have shown that immunometabolism plays a very
important role in the regulation of macrophage function in
the tumor microenvironment. The metabolic profile of TAMs
determines their status as pro- or anti-tumoral effector cells.
M1-like macrophage metabolism is generally characterized with
increased glycolysis, fatty acid synthesis, and a truncated TCA
cycle whereas M2-like macrophage metabolism is skewed toward
fatty acid oxidation (FAO) and the TCA cycle (196–200). For
example, tumor-derived lactate induces an M2-like state in
macrophages, measured by the induction of theM2-related genes
VEGF, RELMA, MGL1, andMGL2. Lactate can also promote the
expression of ARG1 and stabilize HIF1α–key functional elements
of a suppressive macrophage (201). Preventing the metabolic
profile initiated by lactate using a small molecule inhibitor
may reduce the presence of immunosuppressive myeloid cells
(77). Similarly, methionine sulfoxamine, a potent inhibitor of
glutamine synthetase, skewedM2-polarizedmacrophages toward
anM1-like state characterized by reduced intracellular glutamine
and increased succinate to promote glycolysis (167).

However, promoting glycolysis in macrophages of the TIME
is a risky endeavor as cancer cells also preferentially use
glycolysis as an energy source, according to the Warburg effect.
Therefore, targeting a metabolic pathway that inhibits tumor
progression while simultaneously promoting an anti-tumor
immune response would be an attractive strategy. FAO is one
potential pathway, as it is the defining metabolic program of M2-
like macrophages. FAO inhibition can impair the proliferation
of leukemia cells (168) and reduced cellular ATP and viability
in glioma (169). In multiple tumor models, tumor infiltrating
MDSC were found to have increased fatty acid uptake and
activated FAO (170). Etomoxir, a pharmacologic inhibitor of
FAO, decreased the overall metabolic activity of MDSCs, their
ability to prevent T-cell proliferation, and production of critical
cytokines that maintain the induction and differentiation of
MDSCs. Tumor-bearingmice treated with etomoxir and a related
inhibitor, ranolazine, showed delayed tumor growth attributable
to increased T-cell mediated cytotoxicity (170).

As previously mentioned, liposomal delivery of
bisphosphonates can be used to deplete macrophages via
apoptosis. Zoledronic acid (ZA) is a bisphosphonate containing
a double nitrogen group. It inhibits the active site of the enzyme
farnesyl pyrophosphate synthase in the mevalonate pathway,
which is critical for isoprenoid and cholesterol synthesis (171).
ZA also has a direct proapoptotic effect on tumor cells and

reduces their metastatic potential (172). TAMs were significantly
reduced in a TUBO cell murine mammary tumor model.
Peritoneal macrophages and TAMs in ZA-treated mice displayed
enhanced M1-like markers, shown by nuclear translocation of
NFκB, NOS expression, and NO production (173).

Genetic Modification
Gene therapy is a unique strategy to polarize TAMs. Zhang et
al. (174) describe using in vitro-transcribed mRNA encoding
IRF5 and its activating kinase IKKβ encapsulated in nanoparticles
to reprogram TAMs in models of ovarian cancer, melanoma,
and GBM. The nanoparticles were engineered with D-mannose
on the surface to efficiently and specifically target the mannose
receptor CD206+ on TAMs. UponmRNAuptake, TAMs adopted
a tumor-clearing, pro-inflammatory profile (174).

Similarly, endogenous RNA processing mechanisms can be
exploited to reprogram TAMs. MicroRNAs (miRNA) are a
class of small non-coding RNAs that negatively regulate RNA
transcription and transcript levels through a sequence dependent
mechanism. Normally, DICER, an RNAse-III enzyme, processes
hairpin-shaped precursor miRNAs into mature miRNAs (202).
Baer et al. (175) describe conditional deletion of DICER in TAMs
to prevent maturation of miRNAs that otherwise inhibit M1-like
functionality, rewiring the cells toward a pro-inflammatory state
characterized by the activation of IFNγ and STAT1 signaling.
Moreover, DICER-deficient TAMs promoted the recruitment of
cytotoxic T cells that completely eradicated tumors in mouse
models when combined with PD-1 checkpoint blockade (175). A
summary of these methods, specific targets, and ongoing clinical
trials to target them is provided in Table 3.

CONCLUSION, QUESTIONS, LIMITATIONS

Emerging techniques such as scRNAseq and mass cytometry
have allowed for enhanced analyses of previously uncharacterized
cell subsets in the tumor immune microenvironment, offering
new avenues for discovering potential novel therapeutic targets
and pathways that support tumor progression. Although these
have not translated into the clinic yet, there is optimism that
greater understanding of the tumor immune microenvironment
and associated immunomodulatory mechanisms will allow for
targeted therapeutic strategies to improve patient survival.
While the tumor-associated myeloid cell population collectively
functions to support the growing malignancy, subsets of
the population are driven by assorted environmental cues
that induce different functional programs. Different subsets
of tumor-associated myeloid cells can directly contribute to
the viability of the tumor, prohibit recognition of the tumor
by the adaptive immune system, and drive chemotherapy or
immunotherapy resistance. The questions left to be answered
are: what combinations of signals cause the heterogeneity
within the microenvironment and do they originate from the
parenchyma, stroma, or both? What effect does chemotherapy
or immunomodulation have on the various populations? Is
there a specific population that is correlated with local or distal
recurrence? For any of these cases, is one subset enough to drive
any of these phenomena, or is the collection of these subsets
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necessary? Is there a combination of therapies that would bemost
effective in eradicating these detrimental subsets?

Defining previously uncharacterized subsets of immune cells
by single-cell analyses is crucial to the understanding of tumor
biology, but in situ cell relationships also require attention. Loss
of tissue architecture is a major limitation to suspension-cell-
based assays, such as scRNAseq and suspension mass cytometry,
thereby discounting important spatial information that comes
from delineating cell-cell interactions. Several of the studies
referenced above underscored heterogeneity of myeloid cell
phenotypes based on their physical orientation to the tumor—
within the tumor or surrounding the periphery of the tumor
(18, 107, 116, 203). The location in which cells are found
also dictates their functional role in the development of the
malignancy, as juxtatumoral immune cells most likely serve as
a suppressive barrier to cloak the malignancy, while intratumoral
immune cells directly contribute to the viability of the growing
tumor (114). Techniques that incorporate spatial information
also offer the ability to determine direct cell-cell interaction
using Cell Neighborhood Analysis (204) and predict the roles
of immune cells (205). These functional states can serve as
additional prognostication metrics, as several studies to date
have already defined the presence of bulk TAMs and MDSCs
in tumor parenchyma vs. stroma in terms of patient outcomes

(19, 40, 100, 206, 207). Further work in associating the added
dimension of space to the tumor immune microenvironment
is required to fully understand the complex interplay between
myeloid cells and malignancies.
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Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of
immature myeloid cells. Under normal conditions, they differentiate into macrophages,
dendritic cells, and granulocytes. Under pathological conditions, such as chronic
inflammation, or cancer, they tend to maintain their immature state as immature
myeloid cells that, within the tumor microenvironment, become suppressor cells and
assist tumor escape from immune eradication. MDSC are comprised of two major
subsets: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC).
Monocytic myeloid cells give rise to monocytic cells, whereas PMN-MDSC share
similarities with neutrophils. Based on their biological activities, a two-stage model that
includes the mobilization of the periphery as myeloid cells and their activation within the
tumor microenvironment converting them into suppressor cells was previously suggested
by D. Gabrilovich. From the migratory viewpoint, we are suggesting a more complex
setup. It starts with crosstalk between the tumor site and the hematopoietic stem and
progenitor cells (HSPCs) at the bone marrow (BM) and secondary lymphatic organs,
resulting in rapid myelopoiesis followed by mobilization to the blood. Although
myelopoiesis is coordinated by several cytokines and transcription factors, mobilization
is selectively directed by chemokine receptors and may differ between M-MDSC and
PMN-MDSC. These myeloid cells may then undergo further expansion at these secondary
lymphatic organs and then home to the tumor site. Finally, selective homing of T cell
subsets has been associated with retention at the target organs directed by adhesion
molecules or chemokine receptors. The possible relevance to myeloid cells is still
speculative but is discussed.

Keywords: CCR5, CCR2 chemokines, cancer, myeloid derived suppressor cells, chemokine
INTRODUCTION

The tumor microenvironment (TME) is the environment around the tumor that includes sounding
blood vessels; immune cells; fibroblasts; soluble mediators, such as cytokines, chemokines, and
growth factors; and extracellular matrix (ECM). Among the immune cells that enable tumor escape
from immune eradication are myeloid-derived suppressor cells (MDSC). These are a heterogeneous
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population of cells that consists of myeloid progenitor cells and
immature myeloid cells (IMCs). Under nonpathological
conditions, these IMCs differentiate into monocytic cells that
later become macrophages, dendritic cells (DC), and mature
granulocytes. However, under stress and during chronic
inflammation, particularly cancer, they tend to response to
“emergency signals” (1, 2), and as a result, their maturation
into fully differentiated cells is inhibited while retaining their
suppressive activity (3–7). Their mechanism of action includes
secretion of Arginase 1 (encoded by ARG1) and inducible nitric
oxide synthase (iNOS, also known as NOS2) as well as an
increase in their production of nitric oxide (NO) and reactive
oxygen species (ROS) [for a recent review, see (8)]. MDSC also
express immune checkpoint inhibitors, among them PD-L1 and
also PD-1 (9). Along with this, very recently it has been reported
that targeted deletion of PD-1 from MDSC induces highly
effective antitumor immunity (10). Altogether, these render
MDSC immune suppressive, in particular of effector T cells,
which enables tumor escape from immune eradication (3–7). It
is, thus, believed that these cells play a major role in enabling
tumors to escape their elimination or blockade, which could be
beneficial for cancer immunotherapy (11).

Myeloid cells, as other bone marrow (BM)-derived cells, are
generated from hematopoietic stem and progenitor cells (HSPCs) in
a process termed myelopoiesis and then are mobilized from the BM
to the blood. HSPCs also migrate from the BM to secondary lymph
nodes and spleen (12). At these organs, the presence of myeloid cells
has also been recorded [reviewed in (13)]. Recently, it has been
reported that under “emergency” conditions occurring during stress,
inflammation, and cancer diseases, the retinoic acid–related orphan
receptor (RORC1/ROR/g) orchestrates emergency myelopoiesis by
suppressing negative (Socs3 and Bcl3) and promoting positive (C/
EBPb) regulators of granulopoiesis as well as the key transcriptional
mediators of myeloid progenitor commitment and differentiation to
the monocytic/macrophage lineage (IRF8 and PU.1) (2). This may
suggest that, under emergency conditions, myelopoiesis and rapid
extension of myeloid cells may also take place at secondary
lymphatic organs and spleen and, by so doing, allow massive
accumulation of these cells at tumor sites (2) [(see also reviews in
((1) and (14)) (Figure 1)].

Chemokines are a subgroup of chemotactic cytokines that are
well associated with chemo-attraction of various leukocytes,
either from the BM to the blood (mobilization); from the
blood to sites of inflammation, autoimmune sites, tumor sites,
etc.; and from tissues and blood to the lymph nodes (21–23). The
current review focuses on elaborating a sequential multistep
model for characterizing their myelopoiesis, mobilization,
recruitment, retention, and biological function. In this model,
the migratory properties of myeloid cells from BM (and perhaps
also from secondary lymphatic organs) to the blood
(mobilization), is likely to be directed by specific chemokine
receptors (Figure 1). The model that we are suggesting does not
contradict the two-stage model of Gabrilovich (11), but adds
several steps that are associated with the migratory properties of
these cells. For example, the first step in Dr. Gabrilovich’s model
corresponds to activation of myelopoiesis, mobilization to the
Frontiers in Immunology | www.frontiersin.org 2161
blood, and migration of myeloid cells to the tumor sites as
suggested in our multistep model as different steps.
MDSC SUBTYPES

MDSC are comprised of two major subsets: monocytic MDSC
(M-MDSC), and polymorphonuclear MDSC (PMN-MDSC). In
FIGURE 1 | The mobilization and migration of myeloid cells to the tumor site
as a multistep event The mobilization and migration of myeloid cells to the
tumor site is a multistep event in which cytokines, chemokines, and
transcription factors released from the tumor site reach the blood and,
thereafter, the BM and LNs and direct the different steps in myeloid cell
differentiation and migration. The first step (Step I) is rapid myelopoiesis of
myeloid cells at the BM and secondary lymphatic organs (LNs and spleen)
and is directed by several cytokines, among them interleukin-17A (IL-17A), G-
CSF, GM-CSF, TNFa, and others. Recently, the key role of the retinoic acid–
related orphan receptor (RORC1/ROR/g) in directing myelopoiesis in LNs has
been observed (2). The subsequent step (Step II) includes the mobilization of
myeloid cells to the blood and is directed by specific chemokine receptors:
CCR2 for monocytic myeloid cells (15) and CCR5 for the polymorphonuclear
myeloid cells (16) via CCR2 key ligand CCL2 and the CCR5 key ligands:
CCL3, CCL4, and CCL5 (Step II). Homing to the tumor site is likely to be
directed by many chemokines and chemokine receptors and is likely to have
low specificity (Step III). Step IV includes the retention of these cells at the
tumor site and, thus far, has been mostly studied for T cells (17–20). For
myeloid cells, it is still speculative.
October 2020 | Volume 11 | Article 557586
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human, M-MDSC are defined as CD11b+ CD14+ CD15−HLA-
DRlow/− cells. Due to the low or absent HLA-DR expression, M-
MDSC can be distinguished from monocytes. Human PMN-
MDSC are characterized as CD11b+ CD14−CD15+ HLA-DR−
or CD11b+CD14−CD66b+ (24).

In mice, M-MDSC are defined as CD11b+Ly6G−Ly6Chigh

and share phenotypical and morphological characteristics with
monocytes. PMN-MDSC are described as CD11b+Ly6Ghigh

Ly6Clow cells and resemble neutrophils (24).
M-MDSC and tumor-associated macrophages (TAMs) share

many features (25). Thus, it is believed that, at the tumor site, M-
MDSC may become TAMs. The question of whether PMN-
MDSC may also become mature granulocytes is still an open
question. There are two lines of evidence that support this
hypothesis: 1. Tumor-associated neutrophils and G-MDSC
represent similar functional states of cells originating from the
same cell type and induced within a tumor host. 2. Neutrophils
isolated from a normal tumor-free host substantially differ from
tumor-associated neutrophils or G-MDSC obtained from a
tumor-bearing host [reviewed in (26)].

Both types of MDSC express many chemokine receptors,
among them CCR5 and CCR2 (27). Within the TME, a vast
majority of MDSC are PM-MDSC (about 80%) even though they
have a shorter lifetime (11). Both also operate via similar
mechanisms of immunosuppression with a few differences:
Arginase-1 and prostaglandin E2 (PGE2) are preferentially
produced by PMN-MDSC, whereas NO is by M-MDSC [for a
recent review, see (3)]. It is also believed that M-MDSC are more
prominent than PMN-MDSC as they are thought to rapidly
differentiate to TAMs at the tumor site (28–35), whereas PMN-
MDSC play a major role in inducing peripheral T cell tolerance
(3, 11).
THE TWO-STAGE MODEL OF MYELOID
CELLS MOBILIZATION AND FUNCTION

Myelopoiesis during acute infection, stress, or trauma results in
rapid terminal differentiation of myeloid cells. By contrast, in
cancer and chronic inflammation, myelopoiesis is associated
with defective myeloid cell differentiation, which results in the
accumulation and persistence of immature myeloid cells at
cancer sites or chronic inflammatory sites. These cells then
function as suppressor cells and are, therefore, referred to as
MDSC (4, 6–8). Based on the above, D. Gabrilovich et al. suggest
a two-stage model that is based on the biological function of
myeloid cells during cancer and chronic inflammation (11). It
includes the myelopoiesis of these cells in BM, their mobilization
to the blood and secondary lymphatic organs as myeloid cells
(stage I), and later their transition and maintenance as MDSC
(stage II), which mostly takes place at the tumor site (11) or,
respectively, sites of chronic inflammation (36).

In both type of diseases, the rapid myelopoiesis of myeloid
cells at the BM is likely to be directed by several cytokines and
transcription factors, among them interleukin-17A (IL-17A)
ROR1C that induces IL-17A, G-CSF, GM-CSF, TNFa and
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others (2, 4, 6, 14, 37, 38), whereas maintenance of the
suppressive function is driven by several components that
affect the activities of MDSC at the tumor site, including
interaction with other cells, particularly T cells cytokines,
chemokines, and transcription factors, and the effect of
microRNA released from exosomes (39–41).

The second stage includes two distinct yet partially
overlapping types of signals. The first is associated with the
expansion of the immature myeloid cells and inhibition of their
terminal differentiation, and the second is their pathologic
activation as suppressor cells (42). The first group of signals is
mostly driven by tumor-derived growth factors as well as STAT3,
IRF8, C/EBPb, Notch, adenosine receptors A2b signaling, and
NLRP3 (43) and of microRNA released from exosomes (39–41).
The second type of signal is mediated by factors produced mostly
by the tumor stroma (proinflammatory cytokines, HMGB1) and
includes the NF-kB pathway, STAT1, STAT6, prostaglandin E2
(PGE2), and cyclooxygenase 2 (COX2) as reviewed in (42).

It should be noted that the mechanisms controlling the
suppressive activities may vary between PMN-MDSC and M-
MDSC. The first are short-lived (44), and their activity may
require close cell-to-cell contact with T cells (45), whereas M-
MDSC are long-lived and are likely to give rise to TAMs that,
under the TME milieu, suppress antitumor immune reactivity by
different mechanisms (46).

Despite the clear definition between myeloid cells in the
periphery and MDSC at the tumor site (11), it has been
reported in cancer MDSC in spleen, and secondary lymphatic
organs function as suppressor cells and execute far-reaching
immune suppression by reducing expression of the L-selectin
lymph node (LN) homing receptor on naive T and B cells, and
impair T cell activation also by inhibiting the homing of naïve
CD4+ and CD8+ T cells to LNs (47).
THE RECRUITMENT OF MDSC AT TUMOR
SITES AS A MULTISTEP EVENT
DIRECTED IN PART BY CHEMOKINE–
CHEMOKINE RECEPTOR PATHWAYS

The generation of myeloid cells and their recruitment to the
tumor site could be viewed as a multistep event, in which the
cross-talk between the tumor site and myeloid cells play a major
role. We are suggesting a four-step event that characterizes the
homing of these cells (step I–IV) and an additional two steps that
aim to focus on two complementary signaling events within the
TME that enable the transformation of myeloid cells into
suppressor cells and maintains their immature state as such
(Figure 1) as follows:

Step I
The first step is myelopoiesis. It could occur in the BM and also
possibly in the LNs and spleen as HSPCs also migrate from BM
to LNs, spleen, and peripheral tissues (12) and undergo
myelopoiesis there (2). Several key cytokines take a major role
in this step, including IL-17A, granulocyte-colony stimulating
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factor (G-CSF), granulocyte-macrophage colony-stimulating
factor (GM-CSF), and TNFa. All these cytokines are largely
produced at tumor sites, and their blood levels increase during
cancer diseases (48–56). Concurrent myelopoiesis at the BM and
secondary lymphatic organs may allow intensive accumulation
of myeloid cells at the tumor site (1, 2, 14).

Step II
The subsequent step (step II) is the mobilization of myeloid cells
that rapidly proliferated along myelopoiesis from the BM and
possibly secondary lymphatic organs to the blood. It is not yet
clear whether the mechanism by which these cells are mobilized
from the BM to the blood differs from the one by which they are
mobilized from the lymph nodes to the blood. Accumulating
evidence votes for a pivotal role of chemokine–chemokine
receptor interactions at this step (15, 16, 57). Several key
chemokines are largely produced at tumor sites, and their
blood level increases during cancer diseases, among them the
CCR2 ligand CCL2 (58), and CCR5 ligands, in particular CCL5
(59, 60). These soluble mediators are likely to participate in the
inter-talk between the tumor and leukocytes, either within the
tumor site or at the periphery. The CCR2–CCL2 axis is highly
relevant for monocytic and monocytic myeloid cells (15, 57),
particularly in inflammation (15) and cancer (28–31, 33, 34). In
2003, Geissmann, Jung, and Littman reported different migratory
properties for CX3CR1lowCCR2+Gr1+ and CX3CR1highCCR2-
Gr1+ cells, showing that those that are CCR2+ preferentially
home to inflammatory sites, whereas the others go to normal
tissues (57). This links CCR2 to selective homing of monocytic
myeloid cells to inflammatory sites (57). Three years later,
Sebrina et al. demonstrated the pivotal role of CCR2 in
directing the mobilization of Ly6Chigh monocytes from BM to
the blood (15). This study shows that CCR2KO mice display
fewer circulating Ly6Chigh monocytes and, after infection with
listeria monocytogenes, accumulate activated monocytes in BM
(15). This study also shows that the later chemotaxis of these cells
to the inflammatory site is not necessarily CCR2-dependent and
also occurs if using monocytic cells from CCR2 KO mice (15).
Later studies further explore the pivotal role of CCR2 in directing
the recruitment of CCR2+ monocytic cells to the tumor site to
support its development and suppress antitumor immunity (28–
31, 33, 34). More recently, Chang et al. observed in murine
glioma that CCL2 produced by microglia recruited CCR2+Ly6C+
monocytic MDSCs (M-MDSCs) to the tumor site, which is absent
in CCR2KO mice (61). Among the different ligands that bind
CCR2, CCL2 has been thought to be the dominant chemokine. An
additional chemokine that is likely to hold similar properties is
CCL12 (62).

Less is known about the mobilization of polymorphonuclear
myeloid cells from the BM (and perhaps lymphatic organs) to the
blood. Our group found interest in exploring the role of CCR5 and
its ligands in cancer. Individuals with a functional mutation in
CCR5 (deletion of the N-terminal 32 nucleotides) display a high
state of HIV resistance (63). Later, it was found that they also show
low prevalence of cancer diseases, particularly cancer of the prostate
(64). This motivated us to explore the underlying mechanism by
which the absence of CCR5 confers cancer resistance. In so doing,
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we have used CCR5KO mice and an autologous model of prostate
cancer in immunocompetent mice (16). In this study, we observed
that 1. CCR5 ligands directly support tumor growth via CCR5, and
thus, blockade of CCR5 ligands in a chimeric system in which
CCR5KOmice bearing CCR5+ tumor cells, targeting CCR5 ligands
restrains tumor growth (16). 2. CCR5 drives the accumulation of
MDSC at the tumor site; thus, in CCR5KO mice, the relative
number of GR1+ CD11b+ myeloid cells at the tumor site is very
low, and tumor development is arrested. Reconstitution of these
mice with GR1+ CD11b+ myeloid cells from WT mice (CCR5+)
reconstituted tumor growth (16). Further investigation shows that,
along with tumor development the level of CCR5 ligands that are
largely expressed with the TME, increases in the blood. This leads to
a rapid increase in the expression of CCR5 on myeloid cells at the
BM to a rapid mobilization of CD11b+Ly6GhighLy6Clow myeloid
cells that become PMN-MDSC at the tumor site (16). It has yet to be
studied if limited accumulation of PMN-MDSC at the tumor site in
CCR5KO mice exclusively results from reduction in their
mobilization from the BM to the blood, and/or from secondary
lymphatic organs to the blood, or also due to possible roles of CCR5
in directing the accumulation of these cells at the tumor site. In this
study, we also observed that the CCR5–CCR5 ligands interaction
also potentiates the suppressive activities of PMN-MDSC by
increasing the expression of Arginase 1 and possibly other
mediators that suppress effector T cell function (16). A recent
manuscript used the technology of deleting the genomic locus
incorporating the iCCRs of different chemokine receptors that
have been associated with myelomonocytic cell population
migration, including CCR1, CCR2, CCR3, and CCR5 to show
that tissue-resident myelomonocytic cell populations are
established even in their absence, whereas during inflammation,
CCR2 holds a key role in their targeted recruitment (65). Dyer et al.
have not explored their setup in a cancer disease model.

Step III
The third step (step III) includes the accumulation ofMDSC at the
tumor site and their retention there. In our opinion, this step is
more complex and less understood than most leukocyte subtypes.
The major obstacle is that myeloid cells express many different
chemokine receptors and may, thus, respond to many different
chemokines that are largely expressed at tumor sites. Then, what
causes chemokine receptor specificity? Indeed, many studies show
a significant role of different chemokines in myeloid cell
recruitment to tumor sites (Table 1). Among them, 1. the
CCL15-CCR1 signaling pathway (68, 69), 2. the CX3CL1 -
CCL26 pathway for recruiting M-MDSC (70), 3. the CXCL5/
CXCL2/CXCL1 chemokines were suggested to recruit PMN-
MDSCs to tumor tissue via CXCR2 in murine spontaneous
melanoma model (71), 4. CXCL13-CXCR5 signaling mediates
the migration of MDSCs to tumor tissue (72). Moreover, in
different cancer diseases, poor or good prognosis was associated
with high or low levels of these chemokines (Table 2) [for a recent
review, see (73)]. How could these observations take place with the
predominate role of the CCR5-axis for directing PMN-MDSC
recruitment and the CCR2-axis for M-MDSC selective
recruitment at tumor sites? We are suggesting, within the three-
step model described above, the highly selective step that
October 2020 | Volume 11 | Article 557586

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Karin The Development and Homing of MDSC
determines receptor specificity is the mobilization from the BM
and perhaps from the secondary LNs to the blood and that this
step serves as a bottleneck for selectivity in myeloid cell migration.

Step IV
Retention at the tumor site: This step is still speculative and has
been mostly studied for T cells thus far. It suggests that,
tentatively, myeloid cells could be recruited to tumor sites by
many different chemokine receptors, but their retention there is
more specific and may involve a limited number of chemokine
receptors and/or adhesion molecules (74). This option has been
explored thus far only for T cell migration. Key examples are the
retention of CD103+ memory T cells to tissues where they
become tissue resident memory T cells due to the interaction
of CD103 (an aE integrin) that binds a b7 counter integrin (17–
20), the L-selectin serving as a homing receptor for naïve T cells
(75), and the role of the a4b1 integrin in the retention of CD4+ T
cells in the inflamed brain (76). The relevance of this concept to
other leukocyte subtypes is yet to be studied.
POST-TRANSLATIONAL MODIFICATION
(PTM) OF CHEMOKINES AND SELECTIVE
MIGRATION OF PMN-MDSC

An important mechanism of fine-tuning chemokine activity is
PTM of chemokines and their receptors. One of the mechanisms
Frontiers in Immunology | www.frontiersin.org 5164
that may show high relevance to CCR5-dependent selective
migration of PMN-MDSC is PTM by CD26 [for a recent
relevant review, see (115)]. CD26 is a cell-bound enzyme
ubiquitously expressed on blood cells, especially on activated T
cells, fibroblasts, and epithelial cells. Two of the three CCR5
ligands, CCL4, and CCL5 are truncated by CD26, which may
selectively reduce CCL4/CCL5 activity on T cells but to a lesser
degree extend PMN-MDSC.
CLINICAL IMPLICATIONS IN CANCER
DISEASES: COULD REDUNDANCY IN
CHEMOKINES BE OVERCOME VIA
MONOTHERAPY?

Thus far, many clinical trials in humans in which single
chemokines or their receptors were targeted for therapy of
inflammatory autoimmunity or cancer failed. Two major
potential reasons could be taken into account: redundancy,
that is, different chemokines with similar properties bind the
same chemokine receptor, and overcompensation by production
of increased levels of targeted chemokine. Two possible
approaches to partially overcome this obstacle is by designing
a compound that would target all ligands of a single receptor or
prefer a receptor blockade over targeting a single chemokine. We
have taken the first approach and generated a chimeric CCR5
soluble receptor study (116) that could effectively inhibit cancer
TABLE 1 | The role of chemokines, cytokines, and other mediators in directing the different steps in myeloid cell migration and function.

Step Mediators References

Step I: Myelopoiesis IL-17A, G-CSF, GM-CSF, TNFa, RORC1, (1, 2, 43, 66, 67)
Step II Mobilization to the blood (and possibly also homing
to the tumor site):

CCR2 ligands (mostly CCL2) for monocytic cells, and CCR5 ligands, preferentially
CCL5 for PMN-MDSC

(15, 16, 57)

Step III: Homing to the tumor site CCL15-CCR1 signaling pathway, CX3CL1 - CCL26 pathway, the CXCR2-
CXCL5/CXCL2/CXCL1 pathway, the CXCL13-CXCR5 pathway

(68–72). Also recently
reviewed in (73)

Step IV: Retention at the tumor site Firm data only for T cells. Yet to be identified for myeloid cells. For T cells: (17–20,
74–76),

expansion of the immature myeloid cells and inhibition of
their terminal differentiation at the tumor site

STAT3, IRF8, C/EBPb, Notch, adenosine receptors A2b signaling, and NLRP3
and of microRNA released from exosomes

(39–41, 43)

Transformation of the immature myeloid cells into
suppressor cells

proinflammatory cytokines HMGB1, STAT1 STAT6, prostaglandin E2 (PGE2)
cyclooxygenase 2 (COX2)

reviewed in (42)
October 2020 | Volu
TABLE 2 | Key chemokines associated with myeloid cell homing and cancer prognosis.

Chemokine Key Target
receptor

Step Association with prognosis in the following cancer diseases Reference

CCL2 CCR2 II
III?

Pancreatic cancer, Bladder cancer, Breast cancer, Lung Adenocarcinoma, Renal cell carcinoma,
Ovarian cancer, Cervical carcinoma

(77–83)

CCL5 CCR5 II
III?

Breast cancer, Glioblastoma, Colorectal cancer, Osteosarcoma, Gastric cancer, Hepatocellular
carcinoma

(59, 60, 84–91)

CCL15 CCR1 III Head and Neck Squamous Cell Carcinoma (HNSCC), Colorectal cancer, Gastric cancer,
Hepatocellular carcinoma, Lung cancer

(69, 92–97)

CCL26 CX3CL1 III Colorectal cancer (98)
CXCL5/CXCL2/CXCL1 CXCR2 III Pancreatic ductal adenocarcinoma, Glioblastoma, Non-small cell lung cancer, Gastric Cancer,

Prostate cancer, Colorectal cancer, Bladder cancer
(99–107)

CXCL13 CXCR5 III Clear Cell Renal Cell Carcinoma (ccRCC), Gastric cancer, HBV-related hepatocellular carcinoma,
Breast cancer, Lymphoma

(108–114),
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of the prostate in C57Bl/6 mice (16). Then, together with Viktor
Umansky and his team, this study was further extended to a
transgenic model of melanoma showing that indeed the CCR5-
CCR5 ligand axis directs the accumulation of PMN-MDSC at the
tumor site and that CCR5-Ig also effectively inhibited the
development and progression of this disease (117). Others used
blocking mAbs to CCR5 or even one of its three ligands, CCL5,
to inhibit metastasis and improve the survival of tumor-bearing
mice (118, 119) and also enhance anti-PD1 efficacy in gastric
cancer (120). As for humans, Halama et al. recently showed
success in blocking colorectal cancer using a CCR5 small
molecule inhibitor that was previously developed for therapy
of HIV (121). If successful, we think that extension of this
therapeutic approach as a monotherapy or part of a combined
therapy could be further considered.
A FUTURE VIEW OF THE CLASSICAL
TWO-STAGE MODEL IN LIGHT OF
MODERN TECHNOLOGIES

The traditional classification of myeloid cells in the periphery
and MDSC at the tumor site have recently been revised using
several modern technologies, aiming at categorizing single cells
based on their gene signature (single-cell RNAseq) and
expression of cell surface receptors and some intracellular
proteins (mass cytometry, CyTOF). The basic hypothesis is
that, beyond the variety between human and mouse in the
classification of these cells (24), in each species, the gene
signature and cell surface protein expression may vary
depending on the organ from which cells are isolated (BM,
spleen, blood, LNs, tumor site) and may also differ between
tumor types (122–126). These studies are still in early
development but may pave a new direction in scientific
research and its translational implications.
CAN THE MULTISTEP MODEL EXPLAIN
THE PARADOX OF REDUNDANCY IN
CHEMOKINE–CHEMOKINE RECEPTOR
INTERACTIONS AND SELECTIVE
MIGRATION?

MDSC express many chemokine receptors and may, therefore,
potentially migrate in response to each of them (Table 1). The
multistep model suggests that, among the four different steps
(myelopoiesis, mobilization to the blood, recruitment, and
retention) the step of mobilization to the blood is likely to be
Frontiers in Immunology | www.frontiersin.org 6165
the more highly selective stage. In this event, CCL2 signals via
CCR2 to allow the effective mobilization of monocytic cells,
including monocytic myeloid cells (15, 57), whereas CCR5 via its
ligands, mostly CCL5, is likely to direct the mobilization of PMN
myeloid cells (16). The last has mostly been studied in our
laboratory and has to be further confirmed by others. It is
conceivable that the CCR2 and CCR5 axes are also involved,
together with other axes in step III of homing to the tumor site
(Table 1). This may explain why CCR2 and perhaps CCR5 are
indeed key drivers in the migratory cascade of myeloid cells.

Among these four steps, not much is known for the last one
(retention) for myeloid cells. For T cells, its selectivity and
specificity are mostly directed by selective adhesion receptors
(18–20, 75, 76). We do not exclude the possibility that a key
adhesion molecule or a key chemokine receptor may direct this
stage, making it a highly selective step as well.
CONCLUSIONS

Based on their biological function, the development of MDSC
includes two major stages: the first starts with myelopoiesis in the
BM and lymphatic organs and the second upon their entry to the
tumor site where they acquire suppressive capabilities and retain
their amateur state of development. Nevertheless, based on their
migratory properties, their generation and migration to the
tumor site could be described as a more detailed multistep
event in which their mobilization to the blood seems to be
chemokine-receptor dependent and also determines the
selectivity of their migration. We have uncovered a key role of
the CCR5 axis in directing the mobilization of PMN-MDSC and
suggest CCR5 blocking as a potential way for monotherapy or
part of combined therapy for cancer diseases.
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The development and progression of solid tumors such as colorectal cancer (CRC) are
known to be affected by the immune system and cell types such as T cells, natural killer
(NK) cells, and natural killer T (NKT) cells are emerging as interesting targets for
immunotherapy and clinical biomarker research. In addition, CD3+ and CD8+ T cell
distribution in tumors has shown positive prognostic value in stage I–III CRC. Recent
developments in digital computational pathology support not only classical cell density
based tumor characterization, but also a more comprehensive analysis of the spatial cell
organization in the tumor immune microenvironment (TiME). Leveraging that methodology
in the current study, we tried to address the question of how the distribution of myeloid
derived suppressor cells in TiME of primary CRC affects the function and location of
cytotoxic T cells. We applied multicolored immunohistochemistry to identify monocytic
(CD11b+CD14+) and granulocytic (CD11b+CD15+) myeloid cell populations together with
proliferating and non-proliferating cytotoxic T cells (CD8+Ki67+/–). Through automated
object detection and image registration using HALO software (IndicaLabs), we applied
dedicated spatial statistics to measure the extent of overlap between the areas occupied
by myeloid and T cells. With this approach, we observed distinct spatial organizational
patterns of immune cells in tumors obtained from 74 treatment-naive CRC patients.
Detailed analysis of inter-cell distances and myeloid-T cell spatial overlap combined with
integrated gene expression data allowed to stratify patients irrespective of their mismatch
repair (MMR) status or consensus molecular subgroups (CMS) classification. In addition,
org October 2020 | Volume 11 | Article 5502501170
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generation of cell distance-derived gene signatures and their mapping to the TCGA data
set revealed associations between spatial immune cell distribution in TiME and certain
subsets of CD8+ and CD4+ T cells. The presented study sheds a new light on myeloid and
T cell interactions in TiME in CRC patients. Our results show that CRC tumors present
distinct distribution patterns of not only T effector cells but also tumor resident myeloid
cells, thus stressing the necessity of more comprehensive characterization of TiME in
order to better predict cancer prognosis. This research emphasizes the importance of a
multimodal approach by combining computational pathology with its detailed spatial
statistics and gene expression profiling. Finally, our study presents a novel approach to
cancer patients’ characterization that can potentially be used to develop new
immunotherapy strategies, not based on classical biomarkers related to CRC biology.
Keywords: computational pathology, spatial statistics, tumor immune microenvironment, suppressive myeloid
cells, T cells, colorectal cancer
INTRODUCTION

Currently used classification of colorectal cancer (CRC) tumors
is based on classical pathological features such as tumor
architecture, infiltration of bowel wall, and involvement of
local lymph nodes assessed in the HE stained slides. Despite
being clinically relevant, pathology staging shows its limitations
especially in the era of cancer immunotherapy (CIT). With
pembrolizumab being registered for Microsatellite Instable
(MSI) tumors irrespective of the cancer type (1, 2), the role of
non-classical parameters like Mismatch Repair (MMR) status,
tumor infiltrating lymphocyte (TIL) density, or tumor mutation
burden (TMB) in predicting patients outcome increased
dramatically (3, 4). However, since many of the CIT regiments
target directly T effector cells (5, 6), ongoing research tries to
address primarily T cell biology partially overlooking the
importance of other immune cell types in shaping the tumor
immune microenvironment (TiME). One of them, namely
tumor myeloid derived suppressor cells (MDSC), has been
postulated to play an important role in generating a
suppressive environment negatively affecting the function of T
effector cells (7, 8). In the present study, we address the question
of how the distribution of certain types of MDSC in TiME of
primary CRC impact the location and function of cytotoxic T
cells. By leveraging computational pathology and spatial statistics
(9), we identified distinct spatial organizational patterns of
immune cells in the CRC TiME. Our research suggests that the
proximity of monocytic and granulocytic myeloid and cytotoxic
T cells may reflect their functional interactions. The spatial
analysis indicates that the location of monocytic cells correlates
with the presence of TCF7 memory stem-like lymphocytes and
tumor specific T cells, whereas spatial distribution of
granulocytic cells associates with the activity of CD4+

lymphocytes. In addition, our approach allowed to stratify
CRC patients into 4 categories according to the level of overlap
between myeloid and T cells irrespective of the MMR and CMS
status. Categories with high levels of spatial overlap generally
revealed down-regulation of cytotoxic T cell related pathways.
org 2171
MATERIALS AND METHODS

CRC Samples
Human primary CRC tumor specimens of 74 treatment-naïve
patients were acquired from Avaden Biosciences and Indivumed.
The samples were collected after obtaining patients informed
consent and approval from the respective Institutional Review
Boards or equivalent agencies. For all patients, additional clinical
information was provided, including gender, age, tumor stage
and grade, tumor-node-metastasis (TNM) classification, tissue of
excision detail, MMR status, CMS classification and TMB Score
(Table 1). Fresh specimens were prepared as formalin fixed and
paraffin embedded tissue (FFPET) blocks prior to shipment and
further used for either chromogenic immunohistochemistry
(IHC) staining or RNA extraction. The applied tissue
processing workflow is presented in the Supplementary
Material (Supplementary Figure S3), which includes all steps
described in the following paragraphs.

IHC Staining Protocols
Sections of 2.5mm thicknesswere stainedwith following single- and
double colored chromogenic immune assays: CD11b/CD14,
CD11b/CD15, CD8/Ki67, ARG1, and FOXP3. Staining
procedures were performed, using Ventana Discovery Ultra,
Discovery XT, or Benchmark XT automated stainers (Ventana
Medical Systems, Tucson, AZ) with NEXES version 10.6 software.
For all IHC assays, sections were first dewaxed, antigens were
retrieved with Tris-EDTA based Cell Conditioning 1 and
peroxidase inhibitor was applied to decrease endogenous
peroxidase activity. For the myeloid duplex assays, CD11b/CD14
and CD11b/CD15, the primary antibody CD11b (Abcam,
EPR1344, 1:400) was applied for 32 min at 37°C and then
detected with UltraMap anti-rabbit HRP secondary antibody and
subsequent Discovery Purple detection kit (Ventana Medical
Systems). After heat denaturation, second primary antibody,
either CD14 (Ventana Medical Systems, EPR3635, RTU) or
CD15 (Ventana Medical Systems, MMA, RTU), was applied for
32min at 37°C anddetectedwith eitherUltraMap anti-rabbit APor
October 2020 | Volume 11 | Article 550250
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UltraMap anti-mouse AP secondary antibody and subsequent
Discovery Yellow detection kit (Ventana Medical Systems).
Sections stained with CD8/Ki67 assay were first incubated with
primary antibody CD8 (Spring Biosciences, SP239, 1:12.5) for
32 min at 37°C. Bound CD8 antibody was detected with
UltraMap anti-rabbit AP secondary antibody and Discovery
Yellow detection kit (Ventana Medical Systems). The second
primary antibody Ki67 (Ventana Medical Systems, 30-9, RTU)
was added after heat denaturation for 8 min at 37°C, then detected
with Hapten linked Multimer anti-rabbit HQ and anti-HQ HRP
secondary antibody, followed by Discovery Purple detection kit
(Ventana Medical Systems). For ARG1 assay, sections were first
treated with primary antibody ARG1 [Abcam, EPR6672(B), 1:500]
for 60 min at 37°C and bound antibody was detected with
OmniMap anti-rabbit HRP secondary antibody and ChromoMap
DAB detection kit (Ventana Medical Systems). As last, sections
stained with FOXP3 assay were incubated with primary antibody
FOXP3 (Abcam, 236A-E7, 1:100) for 60 min at 37°C and positive
staining was detected with OptiView DAB detection kit (Ventana
MedicalSystems). The nuclear counterstaining was implied for all
assays by addingbothHematoxylin II andBluingReagent for 8min
each. Finally, slides were dehydrated and coverslipped with a
permanent mounting medium.
Frontiers in Immunology | www.frontiersin.org 3172
Digital Image Analysis
Immunostained slides were histologically evaluated by an expert
pathologist and then digitally scanned at 20X magnification with
the high throughput iScan HT (Ventana Medical Systems).
Whole-slide images were analyzed with the HALO Software
(IndicaLabs) tool. On each image, tumor and normal colon
regions were manually annotated and substantial areas of
necrosis or tissue artefacts were excluded. The invasive margin
was automatically applied, with a 500 µm width, encompassing
both tumor and normal colon regions at 250 µm each. Images of
the slides stained with CD8/Ki67 were registered to the images of
consecutively cut slides of CD11b/CD14 and CD11b/CD15 to
transfer annotations and for further spatial analysis. Annotations
of ARG1 and FOXP3 images were processed separately. Next,
images were used for training the algorithms to detect monocytic
CD11b+CD14+ and granulocytic CD11b+CD15+ myeloid cells,
ARG1+ immunosuppressive myeloid cells, proliferating and
non-proliferating CD8+Ki67+/– cytotoxic and regulatory
FOXP3+ T cells (Figure 2A). Total cell counts, annotation
areas and cell object XY coordinates were extracted for tumor,
invasive margin and normal colon regions of interest (ROI).
Spatial maps combining Ki67+ tumor cells, CD8+Ki67+/– T cells
and either CD11b+CD14+ or CD11b+CD15+ myeloid cells, were
used to visualize distribution patterns of immune cells in tumor
annotated areas and to further perform spatial overlap analysis
(see chapter 2.4.2). To provide additional information about cell
co-localization at higher resolution, distances between myeloid
cells and T cells were measured. Briefly, each detected CD8+ cell
was assigned to the nearest respective myeloid cell, the distances
between formed cell pairs were extracted and a global average
distance (GAD) per CRC sample was extracted.

Spatial Analysis
GADnorm parameter
To avoid potential bias from the amount of myeloid cells, the
GAD was normalized against the myeloid cell density and the
expected mean distance for a random distribution pattern of
myeloid cells (10):

GADnorm =
GAD
0:5ffiffi

n
A

p (1)

Here (1), n corresponds to the total number of myeloid cells
(CD11b+CD14+ or CD11b+CD15+) and A to the annotated
tumor area. To differentiate between (CD11b+CD14+ and
(CD11b+CD15+ derived GADnorm parameters we called them:
GAD_CD14 and GAD_CD15, respectively. These parameters
were then used for further gene correlation analysis (see
chapter 2.6).

Spatial Overlap Analysis
For better understanding the spatial relation between myeloid
and T cells in the TiME, we calculated the spatial overlap
between (CD11b+CD14+ or CD11b+CD15+) myeloid cells and
CD8+Ki67+/– T cells. First, spatial maps of annotated tumor
regions, including tumor cell, myeloid cell and T cell XY
coordinates, were overlaid with a hexagonal grid displayed
TABLE 1 | Clinical Data of CRC patients used in this study.

Parameters No. of patients percent (%)

Gender
Male 36 49
Female 38 51
Age
< 50 3 4
50–70 14 19
≥ 70 57 77
Tumor Excision
Right-sided 13 18
Left-sided 16 22
Rectum 17 23
NA 28 39
Tumor Grade
Grade 1 8 11
Grade 2 42 57
Grade 3 24 32
Tumor Stage
Stage I 2 3
Stage II 10 14
Stage III 15 20
Stage IV 47 64
pTNM Status
pT1 0 0
pT2 5 7
pT3 49 66
pT4 20 27
pN0 19 26
pN1 23 31
pN2 32 43
pMX 26 35
pM0 1 1
pM1 47 64
MMR Status
MSI 17 23
MSS 57 77
October 2020 | Volume 11 | Article 550250
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with a diagonal length of 250 µm (Figure 4A). For each single
tile, we computed cell densities of both myeloid and T cells,
which were then compared with corresponding median tumor
density of the whole CRC cohort. Tiles with immune cell
densities measured above the median tumor density were
labelled with “hot” for respective CD8+, CD11b+CD14+, and
CD11b+CD15+ (2). So, we defined a tile h with index i to be “hot”
for a cell type j if:

hij =
1 dij > Dj

0 otherwise

(
(2)

with I = 1,…, N, whereas dij representing the density of a cell type
j in tile i and Dj the median cell density.

This process resulted in a tiled spatial distribution map,
representing single T cell or myeloid cell “hot” tiles and
additional overlapping “hot” tiles with both high T cell and
myeloid cell density. In order to determine the amount of CD8+

“hot” areas that were also occupied by myeloid cells (3), we
counted overlap tiles that were both CD8+ and CD11b+CD14+ or
CD11b+CD15+ “hot” and normalized this value by the total
number of CD8+ “hot” tiles per sample. The Myeloid-T cell
Overlap (MTO) parameter for two cell types j,k was calculated as
in the following equation:

MTOj,k =
SN
i=1 hij*hik
SN
i=1 hij

(3)

Here (3), j accounted for cytotoxic CD8+ T cells and k either
for CD11b+CD14+ or CD11b+CD15+ myeloid cells. To differ
between MTO calculated for CD11b+CD14+ myeloid cells and
MTO calculated for CD11b+CD15+ myeloid cells, we named the
respective parameters MTO_CD14 and MTO_CD15. The MTO
parameters were further plotted against tumor CD8+ T cell
density in order to better characterize the CRC cases according
to the different levels of T cell infiltration Using their median
values of both parameters (CD8+ T cell density/MTO level), we
stratified the CRC patients into four categories: low/low
(category 1), low/high (category 2), high/high (category 3), and
high/low(category 4).
RNA Extraction and Sequencing
The AllPrep DNA/RNA FFPE Kit (Qiagen Cat No./ID: 80234) was
used to purify genomic DNA and total RNA from 10 µm thick
FFPET curls, according to the manufacturer’s instructions. RNA
sampleswere then assessed for quality and quantity using theQubit
instrument and the Agilent Bioanalyzer to determine the
degradation of the RNA samples (DV200 value). To further
generate the sequencing library, the hybridization-based Illumina
TruSeq RNA Access method was performed according to the
manufacturer’s instructions, with first preparation of the total
RNA library and second library enrichment for coding RNA.
Finally, normalized libraries were sequenced using the Illumina
sequencing-by-synthesis platform,with a sequencingprotocol of 50
bp paired-end sequencing and total read depth of 25M reads
per sample.
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Gene Expression and Correlative Analysis
Correlation Analysis With Distance Parameter
GADnorm

A single sample signature scoring method, BioQC (11) was
adapted to compute signature scores for patient samples in
both our CRC cohort and TCGA. We performed a centering
and rescaling transformation on the rank-biserial correlation
output by BioQC. First, rank-biserial correlation values were
multiplied by 10, and then median-centered for each signature.
This is to enable qualitative comparison to gene expression
values (log2 RPKM) and comparison across samples (a score
above 0 indicates the sample is enriched in the signature
compared to at least half of the population in the CRC cohort
or TCGA dataset).

Spearmans rank correlation coefficient was then used to
quantify the strength and direction of the association between
a signature or gene and either the 1) measured GADnorm

parameter in the CRC cohort, or 2) signature representing the
GADrscore CD14 or GAD_CD15 in the TCGA dataset,
respectively. To identify the signature in point 2), we used the
following cutoff for GAD_CD14 based correlation (|R| > 0.4): 64
genes in total (32 positively correlated genes, 32 negatively
correlated genes) and for GAD_CD15 based correlation (|R| >
0.3): 271 genes in total (180 positively correlated genes, 91
negatively correlated genes) (Supplementary Table S2).

The permutation test was performed to evaluate the
correlation between a signature or gene of interest and the
signature representing the global average distance (GAD_CD14
or GAD_CD15) (“distance signature” for short). The steps in the
permutation test for a signature or gene of interest (SGOI) were
as follows: first we computed the correlation coefficients of the
distance signature to the SGOI in each cancer cohort. Next, we
generated 10,000 random signatures of similar size to the
distance signature and we computed the correlation coefficients
for each random signature to the SGOI in each cancer cohort.
We counted how many times a random signature had absolute
correlation coefficient that exceeds the absolute correlation from
the distance signature. Finally, we divided this number by the
total number of random signatures in order to get the p-value for
the null hypothesis that the correlation of the SGOI to the
distance signature could have occurred by random chance alone.

Differential Gene Expression and Pathway Analysis
With Spatial Overlap Categories
redFor this analysis we used the DESeq2 (12) analysis pipeline to
investigate group differences in gene expression derived from
RNAseq summarized gene count data. More specifically, we
compared differences in gene expression between spatial
overlap category 1 and 2 and separately between category 3
and 4 in order to understand genetic differences associated with
high vs low overlap when CD8+ T cell density is high vs low. We
made these comparisons for each of the myeloid cell subtypes of
interest (i.e. (CD11b+CD14+ and CD11b+CD15+). For all
comparisons, the high vs low group label was assigned using a
median cutoff. We further investigated whether genes associated
with differences in Myeloid-T cell Overlap were associated with
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dysregulation of specific pathways using the LRpath analysis
pipeline (13) using the RNA-enrich option to account for biases
associated with gene count.

Statistical Methods
All statistical analysis was carried out using R (14). Statistical
significance for difference between IHC extracted features were
assessed with Mann-Whitney U Test. For correlation analysis
between cell densities in tumor ROI, the Pearson Correlation
Coefficients were calculated. The R package spatstat was
used for spatial analysis (15) and GGplot2 was used for
visualization (16).
RESULTS

T Cell and Myeloid Cell Subpopulations
Are Distinctly Distributed Across Tumor
Stromal and Tumor Epithelial
Compartments
The observation of digital images representing sections stained
with myeloid and T cell markers, shows specific immune cell
distribution patterns in the TiME. In the tumor ROI, we focused
on stromal and epithelial tumor compartments and assessed
their infiltration by monocytic CD11b+CD14+, granulocytic
CD11b+CD15+, and immunosuppressive ARG1+ myeloid cells
and also CD8+Ki67+/– cytotoxic and FOXP3+ regulatory T cells.
Cytotoxic T cell infiltration is observed in most cases only in the
stromal compartment. Minority of cases, mostly MSI type, show
additional CD8+ T cell infiltration into the epithelial tumor
compartment (Figure 1A). On the contrary, myeloid cells and
regulatory T cells exclusively occupy the stromal compartment,
as their distribution pattern in the tumor ROI is mirroring the
distribution of the stroma itself (Figure 1B). In the invasive
margin ROI, both myeloid and T cells tend to accumulate, with
myeloid infiltration being relatively higher. CD11b+ and ARG1+

myeloid cells are co-localizing close to the tumor epithelial
border, forming an envelope covering the invasive front of the
tumor ROI (Figure 1C).

Myeloid Cell Populations Show the
Highest Density in the Invasive Margin ROI
and Have Significantly Higher Density in
Tumor ROI of MSI Cases
Single immune cells were detected with trained algorithms in
annotated tumor, invasive margin and normal colon ROI and
cell densities of CD11b+CD14+, CD11b+CD15+ and ARG1+

myeloid cells, and CD8+Ki67+/–, CD8+Ki67+/– and FOXP3+ T
cells were computed respectively (Figures 2A, B). Generally, the
invasive margin ROI shows the highest immune cell infiltration
among all three analyzed ROIs with median cell densities: 142.82
and 227.42 cells/mm2 for monocytic and granulocytic myeloid
cells, respectively, 192.01 and 244.08 cells/mm2 for cytotoxic and
regulatory T cells, respectively. Interestingly, the measured cell
densities are significantly higher than in the tumor ROI, which is
dominated by immunosuppressive myeloid and regulatory T
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cells with median densities: 35.32 and 122.12 cells/mm2

formonocytic and granulocytic myeloid cells, respectively,
76.64 and 129.89 cells/mm2 for cytotoxic and regulatory T
cells, respectively. On the contrary, in the normal colon ROI
both T cell subpopulations represent higher median cell densities
than myeloid cells: 102.29 and 116.19 cells/mm2 for monocytic
and granulocytic myeloid cells, respectively, 233.32 and 214.11
cells/mm2 for cytotoxic and regulatory T cells, respectively.
Despite the fact that cytotoxic CD8+Ki67+/– T cells show the
lowest density in tumor ROI, the proportion of proliferating
CD8+Ki67+/– T cells to total CD8+Ki67+/– T cells is higher than
in invasive margin and normal colon ROIs (Supplementary
Figure S4).

Comparing the myeloid cell subpopulations, the monocytic
cells exhibit the lowest median density values, in both tumor and
invasive margin ROI. The immune cell population expressing the
suppressive ARG1+ marker, follows the granulocytic myeloid
cell expression levels in all ROIs. This is also reflected by
strong positive correlation (Pearson 0.92) between ARG1+ and
CD11b+CD15+ myeloid cell densities in tumor ROI (Figure 2D).
The monocytic myeloid cell density, on the contrary, shows only
a moderate positive correlation to ARG1+ cell density (Pearson
0.62). In addition, redproliferating CD8+Ki67+/– ,non-
proliferating CD8+Ki67+/– and total CD8+Ki67+/– cytotoxic T
cells show a moderate positive correlation with monocytic cell
density (Pearson 0.50, 0.48, and 0.50, respectively) and a weak
positive correlation with granulocytic myeloid cell density
(Pearson 0.36, 0.35, and 0.36, respectively). T regulatory cell
density is very weakly positively correlated with the densities of
other studied immune cell types. The same correlation analysis
was performed in the invasive margin ROI (Supplementary
Figure S5), only showing weak correlations between
monocytic myeloid cells and proliferating, non-proliferating
and total cytotoxic T cells (Pearson 0.18, 0.09, and 0.12,
respectively) and weak correlations between granulocytic
myeloid cells and corresponding cytotoxic T cells (Pearson
0.10, 0.14, and 0.13, respectively).

When comparing cell densities according to the patients
MMR status, we observe a generally higher immune cell
density in MSI cases in all ROIs, for both myeloid and T cells
(Figure 2C). However, myeloid and T regulatory cells show
significant difference only in tumor ROI, whereas proliferating
and non-proliferating cytotoxic CD8+ T cells are significantly
higher in MSI throughout all tissue ROIs.

In addition, when cell densities of each immune cell type in all
three ROIs were analyzed through hierarchical clustering, CRC
patients with higher myeloid content (cluster 2) tend to cluster
with both CD8+ T cell high and low density groups (Figure 2E).
Interestingly, this group of patients represents both MSI (N = 12)
and MSS (N = 18) cases, whereas the cluster with low CD8+

infiltration and lower myeloid content (cluster 1) only includes
MSS patients (N = 20). The CMS classes, however, are
inconsistently distributed throughout cluster 1 and 2, only
CMS1 follows the pattern of MSI patients with one exceptional
CMS1 case in cluster 1. The T regulatory cell densities were
equally distributed throughout both patient clusters.
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The Average Distance Between Monocytic
Myeloid Cells and Cytotoxic T Cells Is
Higher in MSI Cases
In order to characterize further distribution of myeloid and T
cells and their spatial relation, we used the normalized distance
parameter GADnorm of CD8+ T cells to CD11b+CD14+ and
CD11b+CD15+ (GAD_CD14 and GAD_CD15), respectively.

In the comparison between MSI and MSS cases, only
GAD_CD14 shows significantly higher values in MSI tumors
(p = 0.02) (Figure 3A). Interestingly, this observation was
confirmed when we mapped gene signatures derived from both
GAD parameters to the TCGA gene expression data of CRC
patients (N = 497) with known MMR status.

Additional analysis of TCGA data set revealed significant
negative correlation between GAD_CD14 derived signature and
the gene signature representing genes differentiating CD8+
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TCF7-high (CD8_G, stem-cell-like) vs. CD8+ TCF7-low T-cells
(CD8_B, exhausted-like or dysfunctional) (Feldman Signature)
(17) (Figure 3B). Conversely, we found GAD_CD14 derived
signature being positively correlated with the expression of
ITGAE (CD103) and TNFRSF9 (CD137) genes, which
represent activated tumor-specific T-cells (18). GAD_CD15
derived signature shows negative correlation with the GSE6566
signature representing genes differentiating between strongly DC
stimulated CD4+ T cells (memory cells) vs. weakly DC
stimulated CD4+ T cells (effector cells) (19).

Myeloid–T Cell Overlap Allows Grouping
Patients According to the Spatial Relation
of Immune Suppressive and Effector Cells
Since the GAD parameter reflects only general proximity of
myeloid and T cells in the TiME, we applied spatial overlap
A B

C

FIGURE 1 | Immune cell distribution in the TiME. (A) Representative IHC images (20x magnification) and corresponding spatial maps for CD8+ cytotoxic T cell
distribution in tumor stromal (right panel) and tumor epithelial (left panel) compartments indicating variety of lymphocytic infiltration patterns observed in CRC
samples. Involvement of tumor epithelium by CD8+ T cells depicted in the left panel representing an exemplary MSI case. CD8+Ki67+ staining serves as a surrogate
marker for proliferating cancer cells. Green lines in spatial maps are manually annotated for FOVs and mark the tumor epithelial border for better visualization.
Detailed view in the inlets. (B) FOVs, showing tumor stromal immune infiltration of CD11b+CD14+, CD11b+CD15+ and ARG1+ myeloid cells and FOXP3+ regulatory T
cells, with black dashed lines indicating the epithelial borders. There is a striking accumulation of myeloid cells predominantly in tumor stromal compartment (C) IHC
images (20x magnification), representing myeloid and T cell distribution in invasive margin ROI. Note the aggregation of myeloid cells along the tumor invasive front.
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FIGURE 2 | Immune cell densities computed in tumor, invasive margin and normal colon ROIs. (A) HALO Workflow for processing immune cell detection in all
annotated respective ROIs. (B) Global distribution of myeloid and T cell densities for tumor (N = 74), invasive margin (N = 51), and normal colon (N = 69) ROI.
Distribution of cell densities across the compartments suggests that despite the accumulation of immune cells in tumor invasive front the tumor bed is dominated by
myeloid and T regulatory immunosuppressive populations. (C) Comparison of myeloid and T cell densities according to CRC patients MMR status (MSI = red,
MSS = blue) in all 3 ROIs. Significant difference between MSS and MSI cases are observed for immunosuppresive cells only in tumor ROI (D) Correlation matrix of
myeloid and T cells densities measured in annotated tumor ROI. Sizes of the circles correspond to the strength of the Pearson correlation coefficient (inside the
circles) and colors correspond to the direction of the correlation (blue for positive, red for negative). Note strong correlation between ARG1+ and CD11b+CD15+ cell
densities indicating the immunosuppressive nature of granulocytic myeloid cells. Weak to moderate correlation between densities of cytotoxic T cells and myeloid cell
subpopulations suggests existence of other contributing factors like the spatial distribution. (E) Heatmap representation of hierarchical clustering of CRC patients
(columns) according to their measured immune cell densities (rows) in tissue annotated regions. Only patient specimens having all 3 ROIs (N = 50) were used for the
cluster analysis. Color coded bars corresponding to the MMR status and CMS classification of the cases were added on the top of the heatmap to illustrate the
distribution of MMR and CMS categories across clustered samples. Cluster 1 represents generally lower myeloid cell content and consists exclusively of MSS cases,
while cluster 2 shows generally higher immune cell infiltration in both MSS and MSI cases.
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analysis to detect differences in the local myeloid cell and T cell
distribution in the tumor ROI (Figure 4A). This resulted in the
MTO parameter, with both MTO_CD14 and MTO_CD15
parameters showing a very diverse distribution throughout the
whole cohort reflecting the heterogeneous pattern of single and
overlap tiles. The median values of MTOrscore CD14 and
MTO_CD15 are comparable as they represent similar median
overlap with cytotoxic T cells (0.35 and 0.33, p = 0.4,
respectively). Further comparison between MSI and MSS cases
shows that the median MTO is higher in MSI cases for both
monocytic or granulocytic myeloid cell subtypes, however the
difference is not statistically significant (Figure 4B).

Additional stratification of CRC patients (Figures 4C, D)
resulted in four categories, each being characterized by two
independent variables: amount of cytotoxic T cells in the tumor
Frontiers in Immunology | www.frontiersin.org 8177
ROI and their spatial distribution in relation to myeloid cells. For
MTO_CD14 stratification, 17, 20, 17, and 19 patients were assigned
to categories 1 to 4, respectively. Most of the MSI tumors (15 out of
16, 94%) are in categories 3 and 4 (8 and 7 cases, respectively) with
only 1 MSI case being assigned to category 2. For MTO_CD15
stratification, 21, 16, 21, and 16 patients were assigned to the
respective categories. Similarly to MTO_CD14 stratification, the
majority of MSI cases (16 out of 17 total, 94%) are found in
categories 3 and 4 (11 and 5, respectively) with 1 MSI case in
category 2. MSS cases are present in all four categories, with
categories 1 and 2 almost being exclusive for MSS cases and
categories 3 and 4 showing a mix of MSS with MSI cases. The
comparison of MTO_CD14 and MTO_CD15 stratification shows
that 31% (N = 23) of the CRC patients are differently distributed
between MTO low and high irrespective of the CD8+ T cell density.
A

B

FIGURE 3 | Global Average Distance (GAD) analysis in tumor ROI. (A) Comparison of GAD_CD14 and GAD_CD15 parameters between MSI and MSS cases in our
study CRC cohort (N = 74) (upper panel). Corresponding GAD derived gene signatures are mapped on the TCGA dataset encompassing 497 CRC tumors, and are
presented for MSI_high, MSI_low, MMS, and indeterminate cases (lower panel). For the TCGA dataset, statistical significance is calculated for the differences
between MSI_high and MSS categories and between MSI_low and MSS categories. Global average distance between myeloid cells and cytotoxic T cells is
significantly higher in MSI cases only for CD11b+CD14+ cells, which is validated in the TCGA CRC dataset. (B) Correlation plots of GAD derived gene signatures and
selected genes or gene signatures from TCGA dataset. Positively correlated genes CD103 and CD137 and negatively correlated Feldman gene signature are plotted
against GAD_CD14. Negatively correlated GSE6566 gene signature is plotted against GAD_CD15. Genes and gene signatures related to anti-tumor specificity, T cell
stemness and DC stimulation show association with the Global Average Distance.
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We further investigated differences between CRC samples
categorized for low and high spatial overlap of myeloid and T
cells using differential gene expression and subsequent pathway
enrichment analysis. When comparing CRC tumors with lower
CD8+ T cell density (categories 1 and 2), samples in category 2
characterized by high MTO show down-regulation of pathways
mainly related to T cell differentiation, T cell activation and pro-
inflammatory cytokine and chemokine release (Figures 4E, F).
The MTO_CD15 samples generally reveal more significantly
Frontiers in Immunology | www.frontiersin.org 9178
down-regulated pathways than MTO_CD14 samples in category
2, including additional cytokine IL17 and IL7 signaling,
complement activation and DC regulation of T helper cells 1
and 2 development pathways. Up-regulated pathways, on the
contrary, found inMTO_CD14 category 2 include NF-kB related
pathways, while MTO_CD15 category 2 show significance for
Ras signaling and caspase cascade in apoptosis. In contrast to
that, CRC tumors highly infiltrated by CD8+ T cells (categories 3
and 4) exhibit no significant difference in their pathway
A B

D
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FIGURE 4 | Spatial overlap analysis in tumor ROI. (A) Workflow of spatial overlap analysis generating overlap maps on representative example. The tumor annotated
sample was overlaid with a hexagonal grid. The density of CD8+ T cells and myeloid cells (monocytic or granulocytic, respectively) was identified for every grid tile. A
tile was considered as hot for a certain cell type, if its cell density was bigger than the median cell density within the whole cohort. This allowed the visualization of
areas showing spatial overlap between T cells and myeloid cells. (B) The MTO parameter distribution is represented for both myleoid cell types CD11b+CD14+ and
CD11b+CD15+, showing an overall similar distribution within the CRC cohort and when comparing between MSI and MSS cases. (C, D) Stratification of the samples
according to CD8+T cell density and Myeloid-T cell overlap (MTO). Exemplary overlap plots are depicted for each category: low/low (1), high/low (2), high/high (3) and
low/high (4), for MTO_CD14 and MTO_CD15 respectively. Both, MSI and MSS cases are distributed in categories with low and high spatial overlap between myeloid
and T cells, suggesting that the MTO analysis adds value to the characterization of CRC patient samples. (E, F) Pathway Enrichment Analysis represented for
comparison between category 1 and 2, respectively. Significantly down-regulated pathways are colored in light blue, significantly up-regulated pathways are colored
in dark blue. The comparison between category 4 vs 3 computed no significant differences and is therefore not shown. The spatial proximity of myeloid cells to T
cells can be connected with a decreased T cell effector function, when CRC samples show low CD8+ T cell density. With a high CD8+ T cell density, T cells seem to
overcome the immunosuppressive TiME.
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enrichment, when comparing between samples categorized in
low (category 3) and high (category 4) myeloid and T cell overlap
(data not shown).
DISCUSSION

Currently, patient stratification models focus mostly on the amount
of tumor infiltratingCD8+Tcells inCRC tumors.However, our data
suggests that both the amount of CD8+ T cells and the spatial
relationship between myeloid and T cells should be taken into
account in CRC tumor immune-based classifications. As there are
only a few good examples of prognostic biomarkers in clinical use for
stratifyingCRCpatients, this observation can be of high relevance. In
the present study, we focused on analyzing the myeloid cell
compartment in CRC primary tumor samples and its spatial
relation to CD8+ T effector cells. We observed that tumor invasive
margin is the tissue ROI in which most of the immune cell types
accumulate. Interestingly, whenMSI andMSS cases were compared,
CD8+ T cell densities were significantly higher in MSI cases in all 3
ROIs, i.e. tumor, invasive margin, and normal colon, whereas
myeloid cells showed significantly higher accumulation only in
tumor ROI. In addition, cytotoxic T cells tend to heavily infiltrate
into the tumor epithelial compartment in contrast to myeloid cells
which occupy almost exclusively the tumor stromal compartment
(Figures1,2). Interestingly, thenormal colonROI showsvery similar
immune cell infiltration patterns compared to tumor and invasive
margin ROIs. It can be explained with the fact that the normal tissue
represents a very heterogeneic architecture, including mucosa,
submucosa, tertiary lymphoid structures (TLS), and muscle or
adipose tissue. In addition, part of the invasive margin region
reaches into the normal tissue. All these structures show a different
immune infiltration, especially the mucosa and TLS show high
densities of mainly cytotoxic and regulatory T cells, but also some
myeloid cell subtypes. Previous findings of Galon et al. confirmed a
prognostic value of CD3+ and CD8+ T cell distribution in tumor and
invasive front ROIs in CRC patients’ stage I–III (20). In addition,
detailed analysis of consensus molecular subtypes (CMS) showed
high CD8+ T cell infiltration in CMS groups 1 (MSI-like) and 4
(mesenchymal)with the latter characterized by highmyeloid content
and theworst prognosis compared to other 3CMSgroups (4).Due to
the lack of clinical follow up data in our study cohort, we could not
correlate themyeloid cell content with patients’ prognosis. However,
hierarchical clustering (Figure 2E) according to immune cell
densities in all 3 ROIs resulted in 2 main groups—with higher and
lower myeloid content. Of these two, only “myeloid low” group
exclusively contains MSS cases, whereas “myeloid high” represents
both MSI and MSS phenotypes and has no clear molecular
characteristics with respect to the CMS classification. In general,
our observationsbasedoncomparisonofmyeloid andTcell densities
show thatmyeloid cell concentration in TiMEof CRC is not strongly
dependent on the molecular phenotypes. Additionally, there is only
weak to moderate positive correlation between CD8+ T cells and
monocytic and granulocytic densities in tumor ROI, suggesting that
not the amount of immune cells but rather their distribution plays a
more important role in shaping the TiME. Actually, Si et al. found
Frontiers in Immunology | www.frontiersin.org 10179
that tumor associated neutrophils (TANs) in head and neck cancer
execute their immunosuppressive role when they are in close
proximity with T cells (21). Activated T cell densities, however,
present both weak tomoderate positive or negative correlations with
neutrophils depending on TANs immunosuppressive or T cell
stimulatory functions, respectively. Our IHC methodology does not
allow to identify different subsets of TANs or TAMs. Despite that
limitation, we could observe high andmoderate association between
CD11b+CD15+ and CD11b+CD14+ cell densities and ARG1+ cell
densities, respectively (Figure 2D). Therefore, we assume that the
density correlations observed in our CRC cohort represent mostly
correlations with myeloid immunosuppressive subsets.

When we looked closer into the distribution of myeloid and T
cells in TiME bymeasuring the Global Average Distance (GAD), we
found that MSI cases have significantly higher GAD between CD8+

T cells andmonocytic CD11b+CD14+myeloid cells. This is not true,
however, for granulocytic CD11b+CD15+ myeloid cells. These
findings were confirmed with subsequent mapping of the gene
signatures derived from GAD_CD14 and GAD_CD15 to the
TCGA dataset, consisting of 497 CRC samples (Figure 3A). Our
observation can be potentially explained with the higher tendency of
cytotoxic T cells to infiltrate and reside in the tumor epithelium in
MSI cases (22), resulting in the bigger spatial separation of
monocytic myeloid and CD8+ T cells. In addition, the
GAD_CD14 derived signature shows negative correlation with
TCF7 related signature and positive association with expression of
CD137 and CD103 genes (Figure 3B). It indicates that tumors with
lower distance between monocytic myeloid and CD8+ T cells may
have more TCF7 memory stem-like T cells. As described by Held
et al., TCF7+ cells represent CD8+ T cell population residing
predominantly in tumor stroma (23). Therefore, our findings
suggest that the close proximity between monocytic myeloid and
cytotoxic T cells reflects tumor stromal co-localization of
CD11b+CD14+ myeloid cells with CD8+TCF7+ stroma-residual
stem cell-like T cells. On the contrary, tumors with higher
monocytic myeloid to T cell distance seem to have more intra-
epithelial activated tumor specific CD8+ T cells (CD103 + and
CD137+) that are spatially separated from stroma-residual myeloid
suppressive cells. For CD11b+CD15+ granulocytic myeloid cells, the
distance to CD8+ T effector cells does not correlate with MMR
status probably due to the fact that this particular spatial parameter
reflects different aspect of TiME not related to the microsatellite
stability. In fact, tumor associated neutrophils are very
heterogeneous cell population with several pro- and anti-tumor
functions (24). They can engage with different tumor resident
immune cell types performing either stimulatory or inhibitory
functions (25). Our findings suggest that tumors with lower
distance between granulocytic myeloid cells and cytotoxic T cells
may have higher CD4+ memory T cell content. This observation
may indicate substituting immunostimulatory role of CD4+

memory T cells in the situation when CD8+ T cell activity is
downregulated by granulocytic immunosuppressive myeloid cells.

Since GAD does not give a detailed insight into the
distribution patterns of myeloid and T cells in TiME, we
introduced the spatial overlap analysis using the Myeloid T cell
overlap (MTO) parameter. Using both the amount of myeloid-T
October 2020 | Volume 11 | Article 550250

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zwing et al. Spatial Organization of CRC TiME
cell overlap and the CD8+ T cell density, we assigned CRC
patient samples into 1 of 4 categories (low/low, high/low, high/
high, or low/high) (Figures 4C, D). We observed CRC tumors
showing high spatial overlap, with low (category 2, high/low) and
high CD8+ T cell density (category 3, high/high), reflecting co-
localization of the majority of infiltrating T cells with myeloid
cells. In comparison, categories containing CRC tumors that
show low MTO and either low (category 1, low/low) or high
CD8+ T cell density (category 4, low/high) represent tumors with
low level of co-localization. Interestingly, the MSI cases, which
show predominantly high CD8+ T cell density, intermingle with
MSS cases and are distributed between categories 3 and 4. It
potentially indicates that the spatial organization of CRC TiME
does not depend on the tumor MMR status but is rather a result
of local interactions between myeloid and T cell populations.
This is probably the reason why 31% of CRC cases in our cohort
are assigned to different overlap-derived categories when
MTO_CD14 and MTO_CD15 are compared.

To better reflect the T cell activity in cases showing high
amount of spatial overlap areas between immunosuppressive
myeloid cells and cytotoxic T cells in tumor ROI, MTO
categories 1 (low/low) and 2 (high/low) and categories 3 (high/
high) and 4 (low/high) were compared by using differential gene
expression and subsequent pathway enrichment analysis
(Figures 4E, F). Only categories with low CD8+ T cell density
appear to show significant differences in the regulation of
cytotoxic T cell activity. For both MTO_CD14 and MTO_CD15
the category 2 characteristic for high spatial overlap depicts a
general down-regulation of T cell related pathways. First, the
analysis suggests an impaired IL12 mediated T cell differentiation
into T helper 1 (Th1) and Th2 cells when immunosuppressive
myeloid cells occupy T cell infiltrated areas in the tumor ROI. This
is followed by a reduced cytotoxic T cell activity, marked by lower
expression of cell surface molecules, a dysfunctional activation
initiation of the T cell receptor (TCR) and by down-regulated
cytokine signaling. These findings are in line in with the described
in literature mechanisms of T cell suppression by activated
neutrophils requiring direct contact between them and T cells
(26). While the effects on cytotoxic T cell function is very similar,
functional differences between monocytic and granulocytic
myeloid cells are mainly detected in pathways up-regulated for
NF-kB signaling (CD11b+CD14+) and Ras signaling and
apoptosis (CD11b+CD15+). It may indicate differences in cell
specific functions, e.g. changes in monocytic MDSCs pro-
inflammatory function and anti-tumor activity of neutrophils
(27, 28). On the contrary, the comparison between MTO
categories characteristic for high CD8+ T cell density revealed
no significant differences in the functional status of cytotoxic T
cells. These results suggest that with increased infiltration by CD8+

Tcells the local immunosuppressive effect of interactingmyeloid cells
is overcome or is not dominating any longer in TiME.

Our study has certain limitations. The CRC cohort we analyze is
relatively small (N = 74) and misses clinical follow-up information.
We partially address it by validating our results on the TCGA
database through mapping of the distance derived signatures. In
addition, we used CMS classification as a surrogate of the clinical
Frontiers in Immunology | www.frontiersin.org 11180
outcome. Due to the limitation of IHC methodology and bulk gene
expression analysis using whole tissue sections we could not study
presence and location of other types of cells (e.g. cancer cells,
fibroblasts, certain immune cell subsets) that may have potential
impact on the distribution of T cells. One of the solutions to that
problem could be application of multiplex immunofluorescence and
spatial genomics methods which would allow detailed analysis of
several tumor compartments and more complex immune cell
phenotypes. Instead, we used image registration capabilities of
HALO software to analyze several immune cell types in the same
coordinate system.

In summary, this study presents a multimodal approach
addressing the distribution of myeloid and T cells in the TiME of
CRC tumors. We combine digital image-based analysis, including
cell density, cell-to-cell distance and spatial overlap, with gene
expression profiling to link the tumor spatial features with the
biological function of tumor infiltrating immune cells. Importantly,
our data shows that myeloid cells, in general, play a crucial role in
building the TiME of CRC tumors. In our cohort, we observe high
variability of tumor infiltration pattern by monocytic and
granulocytic myeloid cells and their spatial relation to cytotoxic T
cells.Ourfindingssuggest that the locationandthe functionofCD8+

T effector cells is influenced by the tumor stroma-residual myeloid
cells. In particular, GAD_CD14 derived gene signature indicates
that the locationofmonocytic cells correlateswith thedistributionof
TCF7 memory stem-like lymphocytes and tumor specific T cells.
Additionally, the spatial overlap analysis shows the suppressive
functional effect of both monocytic and granulocytic myeloid cells
on cytotoxic T cells, when co-localizing in immune dense areas in
the tumorROI. Given that current patients stratificationmodels are
focusing mostly on the amount of tumor infiltrating CD8+ T cells,
results of our study provide strong rationale for including spatial
relation between myeloid and T cells into CRC tumor immune-
based classifications. Our system for characterization of CRC
samples, based on both spatial relationship and T cell density, is a
promising tool for investigation as a potential prognostic biomarker
for CRCandwarrants additional investigation. Further validation is
needed to correlate this tool with clinical outcome in the hope of
supporting patients’ enrichment strategies.
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Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) have
been extensively studied. Their pleotropic roles were observed in multiple steps of tumor
progression and metastasis, and sometimes appeared to be inconsistent across different
studies. In this review, we collectively discussed many lines of evidence supporting the
mutual influence between cancer cells and TAMs/TANs. We focused on how direct
interactions among these cells dictate co-evolution involving not only clonal competition of
cancer cells, but also landscape shift of the entire tumor microenvironment (TME). This co-
evolution may take distinct paths and contribute to the heterogeneity of cancer cells and
immune cells across different tumors. A more in-depth understanding of the cancer-TAM/
TAN co-evolution will shed light on the development of TME that mediates metastasis and
therapeutic resistance.

Keywords: tumor-associated neutrophils, tumor-associated macrophages, metastasis, tumor microenvironment,
tumor evolution
INTRODUCTION

Tumors are heterogeneous at multiple levels. Genomic and transcriptomic profiles classifies many
cancers into different intrinsic subtypes (1–5). Individual tumors consist of not only neoplastic cells
but also a variety of stromal cells and extracellular matrix components that together constitute
tumor microenvironment (TME) that determines tumorigenesis and tumor progression. Even for
cancer cells within the same tumor, yet another layer of heterogeneity exists among different cells
due to clonal evolution or variable status of differentiation. These different levels of heterogeneity
represent a major obstacle against effective therapies that can be applied to most patients.

Neutrophils and macrophages are the most abundant immune cells that infiltrate tumors (6–8).
The crosstalk between tumor cells and the infiltrated neutrophils and macrophages can contribute
to drive tumor growth and metastasis. Recent research suggests that frequencies of tumor-associated
macrophages (TAMs) and tumor-associated neutrophils (TANs) can vary across different breast
cancers, thereby forming a previously unappreciated level of heterogeneity across patients, but
extrinsic to cancer cells. This heterogeneity appears to be somewhat inheritable but may become
altered when tumors are subjected to therapeutic interventions. It is compelling to hypothesize that
cancer cells co-evolve with TAMs and TANs: whereas TAMs or TANs confer selective advantages to
cancer cells with specific properties, different cancer cell clones also preferentially recruit certain
org December 2020 | Volume 11 | Article 5539671183
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myeloid cell populations, thereby forming a loose symbiosis-like
relation that is highly context-specific.

Both TAMs and TANs have immunosuppressive functions
and are known to modulate anti-tumor immunity, which are
covered by outstanding reviews in this issue or elsewhere (7–10).
In this review, we focus on evidence showing that TAMs and
TANs directly participate in tumor initiation, proliferation, and
metastasis. We will highlight the heterogeneity of breast cancers
and how this heterogeneity can reciprocally shape the
surrounding tumor microenvironments. Finally, we will discuss
our lack of knowledge in direct cancer-myeloid interactions that
are selective based on different cancer-intrinsic properties and
myeloid subpopulations. Although the principle and hypothesis
may not be cancer type–specific, we will use breast cancer as a
representative in the final discussion to integrate our knowledge
and exemplify future directions.
TUMOR-ASSOCIATED NEUTROPHILS

Neutrophils are the first line of defense of our immune system,
abundantly circulating in peripheral blood. When foreign
pathogens invade human bodies, neutrophils are quickly
recruited to the site of inflammation to exert antimicrobial
moieties (11, 12). Neutrophils make up a considerable
proportion of the immune cells infiltrated in primary tumors
including lung, breast, gastric and others and are associated with
poor overall survival and recurrence-free survival (6, 13). Meta-
analysis has shown that a high density of intratumoral
neutrophils are independently associated with unfavorable
survival, whereas the peritumoral and stromal neutrophils
were not (14). Traditionally believed as short-lived, neutrophils
have been shown to have longer lifespans in tumor bearing
settings, likely due to support from tumor secreted cytokines (15,
16). Tumor associated neutrophils (TANs) actively participate in
various steps of tumor progression and have been reported to
have both antitumor and pro-tumor roles. Direct cytotoxicity of
TANs has been found to inhibit tumor progression and
metastasis (17–19), however a larger number of pro-tumor
functions have been uncovered. These include angiogenic
switch, promotion of migration and invasion, as well as
exertion of immunosuppression (7). Like TAMs, TANs of
different roles on tumors were classified as N1 (antitumor) or
N2 (protumor). A study by Fridlender et al. showed that
blockade of TGF-beta increased recruitment of anti-tumor
pro-inflammatory neutrophils. These neutrophils exhibited
nuclei that were hypersegmented compared to neutrophils
present under TGF-b suffice conditions. These two different
kinds of neutrophils are termed as TAN N1 or N2 (20). It
remains to be elucidated whether the N1 and N2 statuses result
from polarization or different degrees of maturation. Regardless,
this and related studies demonstrated that neutrophils are not a
homogenous entity and should be studied in a context
dependent manner. In the following paragraphs, we will focus
on the roles of TANs in specific aspects of tumor progression
(Table 1).
Frontiers in Immunology | www.frontiersin.org 2184
THE IMPACT OF TANS IN HUMAN
CANCERS

The correlation between neutrophils and cancer prognosis
remains to be precisely characterized (Table 2). In peripheral
blood, high neutrophil to lymphocyte ratio (NLR) is associated
with worse prognosis in patients with a variety of cancers,
including breast cancer (13, 45). In many studies, the infiltration
of TANs in cancer follows a similar trend and is associated with
poor clinical outcomes (6, 13). In terms of microenvironmental
characteristics, TANs were found to be inversely correlated with T
cell infiltration and positively correlated with angiogenesis,
consistent with pro-tumor roles (57, 58). However, there were
also studies showing TANs as good prognostic factors in colorectal
cancer, squamous cell carcinoma and invasive ductal breast
carcinoma. The antitumor effects of neutrophils may be
mediated through direct killing or coordinating with adaptive
lymphocytes. These seemingly controversial results, sometime
even within the same cancer type, might be derived based on
different markers used. For example, frequency of high CD66+

neutrophil is positive correlated with CRC malignancy, while
myeloperoxidase (MPO+) neutrophils exhibited the opposite
trend as good prognosis factor (51, 52). These discrepancies
highlight the urgent need for precise characterization of the
heterogeneous “neutrophil” populations. The current marker
system is clearly insufficient. The functionally distinct
subpopulations need to be identified and separated, in both
experimental and clinical studies.
TANS IN TUMOR INITIATION

Inflammation-induced damage promotes tumorigenesis
independent of cancer-intrinsic genetic mutations. Studies
showed that neutrophils are more frequently recruited to
tumor-prone tissue through chemotaxis (21, 59). Using three
genetically engineered spontaneous tumor mouse models to
mimic the tumorigenesis in human, Jamieson et al. found that
CXCR2 ligands were upregulated in all three models, including
intestinal adenoma (ApcMin/+), the invasive intestinal
adenocarcinoma (Ah−CreER; ApcF/+; PtenF/F) and the
spontaneous oral papilloma (K14−CreER;KrasG12D/+) model.
CXCR2 inhibition or deficiency suppressed tumor formation in
ApcMin/+ model and Ah−CreER; ApcF/+; PtenF/F model,
respectively. Administration of carcinogens failed to induce
papilloma or adenoma in CXCR2 deficient mice, in which
neutrophils trafficking was significantly impaired. Depletion of
Ly6G+ cells using anti-Ly6G antibodies showed a similar
inhibitory effect of tumorigenesis in both chemical-induced
and spontaneous models. Although the detailed mechanism
was not discussed, myeperoxidase (MPO) was detected on
neutrophils, which might link the reactive oxidative stress
induced by neutrophils to tumorigenesis (21). The genotoxic
substances released by neutrophils can initiate a carcinogenic
response by inflicting DNA damage on epithelial cells.
Neutrophils was reported to stimulate ROS and telomere DNA
December 2020 | Volume 11 | Article 553967
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damage in hepatocytes. Upon depletion of hepatic neutrophils by
anti-Ly6G (1A8) antibody, diethynitrosamine (DEN) induced
hepatocellular carcinoma was attenuated. Anti-oxidant
treatment led to protection against progression of DEN
induced hepatocellular carcinoma (22). Another study reported
that neutrophils were recruited to KrasG12V-expressing
astrocytes in an optical transparent larva zebrafish model of
glioblastoma by CXCR1. The proliferation of these tumor-
initiating astrocytes was also blunted when neutrophil
chemotaxis signaling CXCR1/2 was inhibited (23). Thus, it
Frontiers in Immunology | www.frontiersin.org 3185
appears that TANs can enhance tumor initiation either
through exerting genotoxicity by inducing ROS or potentiating
the tumor initiating cells.
TANS IN TUMOR PROLIFERATION

Several molecules (NE, MMP9, Bv8) expressed on neutrophils can
mediate their positive roles in tumor proliferation. As a serine
protease, the proteolysis ability of neutrophil elastase (NE) is able
TABLE 1 | The role of tumor-associated neutrophils in cancer.

Function Identification Markers Tumor model Experimental system Reference

Tumor initiation CD11b+ Ly6G+; MPO+ ApcMin/+, Ah−CreER; ApcF/+; PtenF/F, K14−CreER;KrasG12D/+ spontaneous
models, carcinogen induced model

Mouse, in vivo (21)

CD11b+ Ly6G+ Diethynitrosamine induced hepatocellular carcinoma, nfkb1−/− Mouse, in vivo (22)
Mpx Gfap-KrasG12V astrocytes Zebra fish larvae (23)

Tumor
proliferation

NE TE-1, TE-7, TE-8, TE-12, TE-13 Human, in vitro (24)
NE loxP-Stop-loxP K-rasG12D Mouse, in vivo (25)
CD11b+ Ly6G+ Ly6C+ PC3 Human, in vivo;

human, in vitro
(26)

Cytoplasic granule
morphology MMP9+

MMP-9−/− HPV16 model Mouse, in vivo (27)

Proliferation
Metastasis

MPO D2.0R Mouse, in vivo (28)

Angiogenesis Chick heterophils, gradient
centrifugation

Chick embryos with 3D collagen grafts Chick, in vivo;
Human, in vivo

(29)

Ly6G+ Chick embryos with 3D collagen grafts; PC3, L929, B16, LLC Chick, in vivo;
Mouse, in vivo,
Human, in vivo

(30)

CD11b+ Gr1+ EL4, LLC, B16F1, T1B6 Mouse in vivo (31)
CD11b+ Gr1+ RIP-Tag2 model; HM7 Mouse, in vivo;

human, in vivo
(32, 33)

Invasion and
migration

Gradient centrifugation AsPC-1, HepG2, MDA-MB-468 Human, in vitro (34–36)

EMT Gradient centrifugation,
NASDCL, elastase

PDAC biopsies, T3M4, HuH7 Human, patient samples;
Human, in vitro

(37)

CD66b+ MKN45, MKN74 Human, in vitro (38)
CD66b+ Lung carcinoma samples Human, patient samples (39)
CD11b+CD66b+ MCF-7 Human, in vitro (40)

CTC
proliferation

Ly6G+, Wright-Giemsa
staining

BR16-GFP Human, in vivo (41)

Extravasation CD11b+ C8161.CI9, 1205Lu; A375, MDA-MB-231 Human, in vitro (42, 43),
Metastasis Ly6G+ 4T1 Mouse, in vivo (44)
Decem
ber 2020 | Volume 11 | Art
TABLE 2 | The clinical relevance of TANs in human cancers.

Type of Cancer Marker Correlation Reference

Breast cancer Peripheral blood neutrophil to lymphocyte ratio
(NLR)

Short- or long-term mortality (45)

Renal cell carcinoma CD66b+ Short RFS (46)
Melanoma CD66b+ and CD123+ DCs Poor prognosis (47)
Head and neck cancer Polymorphonuclear granulocytes Poor survival (48)
Hepatocellular carcinoma CD66b+ Early recurrence and decreased PFS/OS (49)
Colorectal cancer CD66b+ Better prognosis (50)
Colorectal cancer CD66b+ Poor prognosis (51)
Colorectal cancer MPO+ Better prognosis (52)
Gastric adenocarcinoma CD15+ Independent and unfavorable factor in prognosis (53)
Human gliomas CD15+ and MPO+ High tumor grade (54)
Pancreatic
adenocarcinoma

Polymorphonuclear granulocytes More malignant subtype (55)

Pancreatic
adenocarcinoma

CD66b+ Associated with shorter survival along with pan-macrophages and M2
macrophages

(56)
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to release growth factors from cancer cells. In an in vitro
esophageal cell line model, NE treatment led to a rapid release
of TGF-a, PDGF and VEGF along with EGFR phosphorylation.
Increased cell proliferation and invasion was also observed in all
five cell lines tested (24). In a loxP-Stop-loxP K-rasG12D (LSL-K-
ras) model of mouse lung adenocarcinoma, Houghton et al.
showed that neutrophil elastase is endocytosed by tumor cells
where it degrades IRS-1 and skews the PI3K toward tumor
proliferation (25). Hammes et al. demonstrated NE is produced
by infiltrating immune cells using live imaging of nude mice
bearing PC3 tumors. Inhibition of NE could suppress PC3
xenograft growth. Mechanistically, NE activates MAPK and its
downstream signaling in PC3 cells (26). Inhibition of NE by Elafin
also shows tumor suppressing activity by inducing Retinoblastoma
pathway dependent cell cycle arrest and elevated apoptotic cell
death (60). Coussens et al. showed MMP9 was mainly expressed
by neutrophils, macrophages and mast cells. MMP9 knockout
mice exhibited reduced keratinocyte hyperproliferation and bone
marrow transplantation of MMP9 expressing cells can restore the
tumor growth in these mice (61). The NE and MMP9 loaded on
the neutrophil extracellular traps (NETs) were also found to
awaken dormant cancer cells to proliferate through sequential
cleavage of laminin in the extracellular matrix of the dormant
cancer cells to activate integrin and YAP signaling (28). Taken
together, the protease-enriched secretome of TANs appear to be
able to activate several growth factor pathways at different levels to
enhance proliferation.
TANS IN ANGIOGENESIS

MMP9 produced by neutrophils in the tumor microenvironment
was also found to be strongly associated with the tumor
angiogenesis. Using a quantitative non-tumor in vivo model to
induce angiogenesis in 3D collagen rafts, Quigley et al. revealed
that the angiogenesis is facilitated by the MMPs of the infiltrated
inflammatory cells including heterophils. And the potent
angiogenic characteristic was related to the active form of
MMP-9 that was free of tissue inhibitor of metalloproteinases
(TIMP) (29). They also showed in a later study that tumor
infiltrated neutrophils are a major source of MMP-9 and is
highly linked to tumor angiogenesis in a PC3 orthotopic prostate
cancer xenografts in NOD/SCID mice (30). Using a RIP-Tag2
model of pancreatic islet carcinoma, Bergers et al. revealed the
specific angiogenesis role of MMP-9 by releasing VEGF from
normal and hyperplastic pancreatic islets (62). The absence of
MMP-9 function reduced the angiogenic switching and the
growth of tumor cells. An increased intratumor infiltration of
neutrophils was correlated with glioma grade as well as the
resistance to anti-VEGF therapy (31, 63). Structurally similar to
VEGF, G-CSF induced Bv8 secretion by bone-marrow-derived
cells was implicated in tumor angiogenesis by neutrophils.
Shojaei et al. elucidated the role of Bv8 in RIP-Tag angiogenic
switching, where systemic depletion of Bv8 by anti-Bv8 antibody
at early stage significantly reduced angiogenic islets number as
well as the homing of CD11b+ Gr1+ cells to the emerging
Frontiers in Immunology | www.frontiersin.org 4186
neoplastic lesions (32, 33). Anti-CSF or anti-Bv8 confers
additional effect on anti-VEGF therapy. Therefore, both MMP-
9 and Bv8 are responsible for the angiogenic effects of TANs.
TANS IN METASTASIS

The roles of TANs in metastasis are pleiotropic and highly context
dependent. The 13762NF rat mammary adenocarcinoma clones
with varying metastatic potentials showed a dose-dependent
increase of invasion in a reconstituted basal membrane invasion
culture system when co-cultured with neutrophils (a.k.a.,
polymorphnuclear leukocytes or PMN) from tumor bearing rats.
These clones also exhibited increased lung metastases in vivo when
co-injected with the tumor elicited neutrophils compared with those
PMNs from normal rats (64). The same group also discovered later
that bone marrow cellularity and myeloid erythroid ratios positively
correlated with the metastatic potentials of the tumors these rats
bared (65). Jung et al. showed an increased neutrophil extracellular
traps formation in blood sample after co-cultured with AsPC-1 cells.
Using in vitro Boyden chamber model, NETs increased migration
and invasion of AsPC-1 cells than intact neutrophils alone, which
can be inhibited by histone binding agents, some DNA-degrading
enzyme as well as Toll-like receptor neutralizing antibodies (34).
The interactions between cancer cells and neutrophils are not
unidirectional. Reciprocally, the survival of neutrophils can be
enhanced by tumor supernatant from hepatocellular, cervical,
colorectal and gastric carcinoma cell lines. This effect can be
mimicked by Hyaluronan fragments. Blocking the interactions
between HA and TLR4 on neutrophils could mitigate this pro-
survival of neutrophils as well as the migration of cancer cells (35).
Strell et al. found that MDA-MB-468 cells that secreted IL-8 and
GRO-a increased the migratory activity of neutrophils and
recruitment to tumor cells to enable cell-cell interaction, which
led to the binding of b2-integrins expressed by neutrophils and its
receptor ICAM-1 on MDA-MB-468 cells. The focal adhesion
molecules including FAK were then phosphorylated by SRC
kinase and the p38 MAPK was activated by Rho kinase.
Eventually, the migration of tumor cells was increased (36). These
studies highlighted the importance of the crosstalk between
neutrophils and cancer cells during tumor progression, and
demonstrated effects of neutrophils on pathways related to
migration and invasion.

TANs can trigger epithelial-mesenchymal transition (EMT).
Neutrophil elastase cleavage of E-Cadherin induced EMT in
pancreatic and liver cancer cell line in vitro. Co-culture with
either neutrophils or NE could induce rapid cell dyshesion and
E-Cadherin degradation as early as 3 h after co-culture. In
parallel, the upregulation of TWIST, translocation of b-catenin
into the nucleus, nuclear expression of ZEB1, and the
downregulation of keratin was also observed. Using PDAC
biopsy samples, Steffen et al. showed the positive correlation of
PMN infiltration with the EMT status using ZEB1 or nuclear b-
catenin expression (37). Li et al. found that neutrophils were
enriched in gastric cancer tissues in patients, especially in the
tumor invasive edge. Coculturing of tumor associated
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neutrophils with gastric cells in vitro significantly decreased E-
cadherin expression along with the upregulation of vimentin and
ZEB1. The migration and invasion of the gastric cancer cells were
also increased. This effect was related to the IL-17a secreted by
neutrophils. Blocking IL-17a with neutralizing antibody
inhibited the TAN-stimulated activities in gastric cancer cells
(38). Hu et al. showed a negative association of intratumoral
CD66+ PMNs expression with the E-cadherin expression.
Neutrophils induced EMT was observed in vitro accompanied
by enhanced migration of tumor cells, where TGF-b/Smad
signaling was initiated and in part related to this process (39).
A study by Wang et al. demonstrated that it was the neutrophils
isolated from breast tumors but not from peripheral blood can
significantly promote migration and invasion of a panel of breast
cancer cell lines in vitro. MCF7 cells cultured with 30%
conditioned medium from tumor infiltrating neutrophils
showed mesenchymal morphology a long with the
downregulation of E-cadherin as well as the upregulation of
Twist expression. These effects were abrogated by blocking
TIMP-1 of neutrophils. Reciprocally, MCF7 cells that
underwent EMT could stimulate the neutrophil expression of
TIMP-1 through CD90 in a contact dependent manner (40).

Neutrophil derived enzymes also promote tumor
intravasation besides angiogenesis. Using a chick embryo
spontaneous intravasation assay, Bekes et al. demonstrated an
essential role of proMMP9 protease in modulating certain
variants of PC3 or HT-1080 cell intravasation in vivo (66).
The neutrophils expressing MMP9 were recruited to primary
tumors of highly disseminating variants to enhance their
intravasation and angiogenesis. Blocking neutrophil influx by
anti-IL-8 antibodies diminished both intravasation
and angiogenesis.

After intravasation, it is inevitable for circulating tumor cells
to encounter leukocytes. Szczerba et al. found a rare but
consistent CTC-WBC clusters in peripheral blood samples
from both breast cancer patients and tumor bearing mice.
Most of these clusters are CTC-neutrophil clusters, which
correlates with significantly worse progression-free survival in
patients. Compared to CTC alone, CTCs from clusters were
observed to be more proliferative with a marked enrichment in
positive regulators of cell cycle and DNA replication (41).

Extravasation is a key step for disseminated cancer cells to seed
in the distant organs. Neutrophils were seen to facilitate this
process. Attracted by IL-8 secreted by melanoma, neutrophils
interacted with the melanoma cells through b2-integrin ICAM-1
and promoted docking along vascular endothelium. Blocking IL-8
secretion from these melanoma cells significantly decreased
extravasation (42). Chen et al. employed an in vitro multiplexed
microfluidic model of human microvasculature to observe in real-
time the physiologically relevant transportation of circulating cells
in a high spatial resolution. Co-injection of melanoma cells with
LPS stimulated human PMNs resulted in the quick formation of
tumor cell-PMN heterotypic aggregates along the endothelial
under flow by both mechanical trapping and neutrophil-
endothelial adhesions. By secreting IL-8, PMNs were
chemotactically confined by tumor derived CXCL-1, which
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enhanced the extravasation of adjacent melanoma or breast
cancer cells through a modulation of the endothelial barrier by
IL-8. Using a neutralizing antibody against IL-8 could abrogate
both PMN sequestering and the extravasation of tumor cells.
Similarly, the inflamed PMNs exhibited confined migration and
enhanced tumor cell extravasation in zebrafish embryos (43). The
adhesion between neutrophils and disseminated tumor cells also
plays a role when tumor cells arrived the organ of metastases.
Clusters of neutrophil and H-59 Lewis lung carcinoma cells were
seen in the liver sinusoid. This interaction was mediated by Mac-1
and ICAM-1 (67). Using two clones with different metastasis
potentials from same tumor, Park et al. showed that 4T1 cells the
clone with high metastasis potential recruited more neutrophils to
primary tumor compared to 4T07 which have less metastasis
potential. More neutrophil extracellular matrix was also found in
lungs of mice injected with 4T1 cells through tail vein. Enzymatic
digestion of NETs as well as anti-G-CSF antibody blocked
migration and invasion in vitro using three different cancer cells.
An intraperitoneal injection of DNase I-coated nanoparticles
could prevent lung metastases in mice which received an
intravenous injection of 4T1 cells (44). Neutrophils were also
found to participate in the awakening of dormant cancer cells. A
study from the same group showed that under inflamed
conditions, NETs could awaken dormant D2.0R cells and
increase metastases in mice. Neutrophil related proteases NE
and MMP9 loaded on NETs’ DNA scaffolding can sequentially
cleave the extracellular matrix protein laminin, which reveals an
epitope to trigger proliferation of dormant cancer cells through
integrin activation and FAK/ERK/YAP signaling. A blocking
antibody against remodeled laminin could prevent or reduce
inflammation induced dormant cancer cells awakening (28).
TUMOR-ASSOCIATED MACROPHAGE
(TAMS)

Differentiated from mononuclear phagocyte lineage, macrophages
are a tissue-resident cell type that play a vital role in regulating
immune response to maintain tissue homeostasis and organ
development. Macrophages are found as key components of the
infiltrating leukocytes in various types of tumors, which are
considered as wounds that never heal. TAMs have been reported
to actively participate in almost every step of tumor progression
including tumor angiogenesis, invasion, migration, colonization at
secondary organs as well as immune suppression (Table 3). The
association between their frequency and expression patterns and
poor clinical outcomes has been reported in most of the studies
focusing on the clinical implications of TAMs. Bingle et al. showed
in a meta-analysis that increased macrophage infiltration frequency
in primary tumors was associated with poor prognosis in most of
the breast cancer cases (90). Studies from Beck and Campbell linked
proliferating macrophages and their related signaling like colony-
stimulating factor 1 with high grade, malignant subtype as well as
poor clinical outcome (91, 92). However, multivariate model
analysis by Mahmoud et al. showed that overall macrophage
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number (CD68+) was not an independent prognostic marker, which
shed light on the heterogeneity and plasticity of TAMs (93).

In an oversimplified model, macrophages polarize to two
opposite states. M1 macrophages are known as classically
activated macrophages, which are activated by Th1 cytokines
like interferon-gamma, or together with bacterial components.
These M1 macrophages exert anti-microbial properties by
secreting cytotoxic molecules (e.g. reactive oxygen species and
nitrogen intermediates) and pro-inflammatory cytokines (e.g.,
IL-6, IL-12, IL-23, TNF). As alternatively activated macrophages,
M2 macrophages are activated by Th2 cytokines (e.g. IL-4, IL-10,
and IL-13), which typically attenuate inflammation, promote
wound healing, angiogenesis and tissue remodeling (94, 95).
Polarization towards M1 or M2 requires the activation of ERK,
NF-kB, and STAT1 signaling or STAT3 and STAT6 pathway,
respectively. In fact, these two polarization states serve as the
boundaries for a spectrum of activation states which reflects the
complex tissue microenvironment that can induce simultaneous
activation of different signaling pathways.

There are two sources for tumor associated macrophages. One
source is from circulating Ly6C+ CCR2+ monocytes that enter
tissues through the adherence of activated integrins (96). The other
source is from tissue resident macrophages that originated from
CXC3CR1+ Kit+ erythromyeloid progenitors from yolk sac or
murine fetal liver independent of bone marrow (97, 98). Tumor
associated macrophages tend to exhibit an M2-polarized state with
impaired antigen presentation and tumoricidal capacity and high
expression of angiogenic factors, tissue remodeling
metalloproteases, and cathepsins. The polarization of TAM is not
only regulated by intrinsic signaling, but also shaped by the complex
immune and stromal cells in tumor microenvironment as well as
the cancer cells. This complex interaction makes the polarization of
Frontiers in Immunology | www.frontiersin.org 6188
TAM change over the dynamic evolution of microenvironment
milieu. High production of inflammatory molecules from M1
macrophages may support neoplastic transformation in the early
stage of tumorigenesis. However when a tumor was established, M2
macrophages can suppress immune surveillance and remodel tissue
matrix to promote tumor progression (99). Besides the temporal
change in the polarization status, macrophages phenotypes differs
even within different areas of the same tumor. Two distinct tumor
microenvironments were found in the same orthotopic mammary
tumor. Perivascular TAMs showed stronger migration compared to
those in avascular regions. Large number of perivascular
macrophages at mouse mammary tumor margins could interact
with cancer cells and migrate together (100). Macrophages within
the tumor mass express less M2 markers compared with
macrophages in the peri-tumor areas (101, 102). The temporal
and spatial heterogeneity of TAM implies its high plasticity that can
be utilized for therapeutic purposes by re-polarization strategies.
THE IMPACT OF TAMS IN HUMAN
CANCERS

Like TANs, the clinical impact of TAMs has not been completely
elucidated (Table4).Most clinical studies have linked thedensity and
molecular signatures of TAMs with poor clinical outcomes (113–
115). A meta-analysis of literatures by Zhang et al. found that the
density of TAMs was associated with poor overall survival (OS) in
patientswithgastric, urogenital andheadandneckcancerswith some
exceptions in patients with colorectal cancer (113). More recently,
deconvolution algorithms were developed to deduce frequencies
of different immune cells in bulk tumors, which provided another
way to examine potential impact of immune microenvironment
TABLE 3 | The role of tumor-associated macrophages in cancer.

Function Identification Markers Tumor model Experimental system Reference

Tumor initiation F4/80+ Mdr2−/− spontaneous model Mouse, in vivo (68)
CD11b+ F4/80+ Stat3-IKO spontaneous model Mouse, in vivo (69)

Angiogenesis CD68+ Breast carcinoma samples Human, patient samples (70)
F4/80+ MMTV-PyMT/LysMCre+/VEGFf/f spontaneous model Mouse, in vivo (71)

Breast tumor samples Human, patient samples (72)
CD11b+ F4/80+ E0771, LLC Mouse, in vivo (73)
CD68+ K14-HPV16 spontaneous model Mouse, in vivo (74)
F4/80+ Tie2+ PyMT Mouse, in vivo (75)

Migration and invasion CD11b+/Gr1mid/low MC38, LLC Mouse, in vitro (76)
F4/80+ MMTV-PyMT Mouse, in vivo (77)
CD68+ CD163+ THP-1, patient samples Human, patient samples,

human, in vitro
(78)

CD11b+Gr1-F4/80+ MMTV-PyMT Mouse, in vivo (79)
CD68+ CCL18+ MDA-MB-231 Human, in vitro (80)
CD68+;
CD68+ CD163+, CD206+

SKBR3, MDA-MB-231; SW48 Human, in vitro
Human, in vitro

(81, 82)

Intravasation BAC1.2F5 macrophage cell line MDA-MB-231 Human, in vitro (83)
Intravasation MRC1+/CD11b+/F4/80+/CD11c– MMTV-PyMT Mouse, in vivo (84)
Extravasation, metastasis CD11b+ F4/80+ Met-1 Mouse, ex vivo;

Mouse, in vivo
(85, 86)

Metastasis CD11b+ F4/80+ E0771-LG, Met-1, Mouse, in vivo (87)
EMT, metastasis CD68+, CD206+, HLA-DR MCF-7, Human, in vitro;

Humanized mouse model, in vivo
(88)

Anti-metastasis Ly6C+ MT/ret+/− spontaneous model Mouse, in vivo (89)
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(6, 116,117).According toa fewalgorithms, subpopulationsofTAMs
(e.g., M1 vs M2) can be distinguished, and M2 falls into the poor-
prognosis category among other immune cells (118). However,
single-cell RNA-seq data in human patients suggested that M1-
andM2-like features may co-vary at a single cell level, and therefore,
the separation between the anti- and pro-tumor TAMs is
indistinctive (119). Furthermore, some generic macrophage
signatures are highly correlative with T cell and B cell signatures,
which are in turn associatedwith good prognosis (120). Thus, similar
to situationofTANs, simple analysis to characterize clinical impact of
TAMs as an entirety is confounded by the heterogeneity, plasticity
and context-dependency of TAM functions. The simple M1-M2 bi-
polarization model, which is derived in vitro, is insufficient to fully
recapitulate these characteristics in vivo (121). Instead,more granular
classification and functional characterizationmay be required before
the exact clinical impact of TAMs can be determined in specific
clinical contexts.
TUMOR-ASSOCIATED MACROPHAGES IN
TUMOR INITIATION

It has been well noted that inflammatory conditions are positively
correlated with carcinogenesis (95, 122). Since macrophages are
one of the major participants in regulating the inflammation
network, its role in tumor initiation has been widely reported.
Cytokines IL-23 and IL-17 derived from CD11b+ F4/80+ are
responsible for colorectal cancer initiation and growth (123).
Selective ablation of IL-6 in monocytes and Kupffer cells
resulted in inhibition of STAT3 signaling and delayed the
tumorigenesis in a Mdr2-defecient spontaneous hepatocellular
carcinoma model (68). Depletion of Stat3 in CSF1R expressing
cells in mice resulted in drastic inflammatory response of the
intestine and malignant tumor formation (69). These studies
indicate that TAMs play an essential role in tumor initiation.
TUMOR-ASSOCIATED MACROPHAGES IN
ANGIOGENESIS

Angiogenesis is crucial to maintain the fast growth of a tumor,
especially after it reaches a certain size. Among many supporting
Frontiers in Immunology | www.frontiersin.org 7189
factors contributing to angiogenesis in tumors, macrophages
play an indispensable role. TAMs produce epidermal growth
factor (EGF), fibroblast growth factor (FGF) (124), VEGF (125),
transforming growth factor-a and -b (126, 127), Il-1b (128), IL-
6, IL-8 (129), platelet-activating factor (130), platelet-derived
growth factor (PDGF), thrombospondin-1 (131), MMPs, and
other molecules that promote and stabilize the intratumoral
blood vessels formation (114). The number of infiltrated
macrophages correlates with the vessel density in invasive
breast carcinoma (70). Overexpression of CSF-1 and its
receptor correlates with poor prognosis in human breast
carcinoma (132). CSF-1 was also found to direct macrophage
recruitment before malignant initiation and produce VEGF to
promote angiogenesis (133). Ablation of VEGFA in myeloid cells
could inhibit the angiogenic switch (71). Macrophages can be
recruited to hypoxic region of tumor by CCL-2, where
upregulated HIF1a/HIF2a orchestrates the transcription of
many angiogenesis related genes including VEGF, CXCR4,
CCL2, and endothelins which reciprocally enhanced the
recruitment of macrophage (72, 134). Genetic deletion of
REDD1 under hypoxia can enhance glycolysis in TAMs, which
raises the competition of glucose between TAMs and endothelial
cells. This prevents the formation of an abnormal vascular
network and reduces metastasis (73). Besides producing VEGF,
macrophage can also free VEGF by degrading extracellular
compartments through MMP9 expressed. Targeting MMP9 of
tumor infiltrating macrophages by a bisphosphonate, zoledronic
acid, inhibited the angiogenesis in a cervical carcinoma model
(74). Tie2+ macrophage is one well-characterized subset in
primary tumor stroma that regulates the angiogenic switch
(135). Forget et al. showed that CSF-1 could increase the Tie2+

expressing macrophages and angiogenesis in PyMT mammary
tumor bearing mice. They also uncovered that Tie2+ expressing
macrophages could also augment chemotactic response to
endothelial cells expressed angiopoietin-2 (75).
TAMS IN METASTASIS

Tumor associated macrophages can direct tumor migration and
invasion through regulating genes related to metastasis. CD11b+/
Gr1mid/low tumor infiltrating monocytes/macrophages can induce
TABLE 4 | The clinical relevance of TAMs in human cancers.

Type of Cancer Marker Correlation Reference

Breast cancer CD68+, CD11c+, or CD163+ CD163+ correlated with reduced OS and DFS; CD11c+ in stroma correlated with
higher OS and DFS

(103)

Invasive breast cancer CD68+ High tumor grade, negative estrogen receptor (104)
Bladder cancer CD68+ Invasive subtype, reduced 5-year survival (105)
Hodgkin’s lymphoma CD68+ Shortened patient survival (106)
Hepatocellular Carcinoma CSF-1R Increased intrahepatic metastasis, tumor recurrence, reduced patient survival (107)
Advanced thyroid cancer CD68+ Advanced histological grade, tumor invasiveness and mortality (108)
Non-small cell lung cancer CD68+ in tumor islet and stroma Increased survival (109)
Follicular lymphoma CD68+ Reduced OS (110)
Colon cancer stage II CD68+ and CD206+ CD206/CD68 ratio associated with poor DFS and OS (111)
Head and neck squamous cell
carcinoma

Meta-analysis of TAMs and M2
macrophages

Both correlated with poor clinicopathologic markers (112)
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the expression of S100A8 and S100A9 in MC38 and Lewis lung
carcinoma cells. Ablation of their expression significantly
diminished the migration and invasion in vitro culture as well as
reduced liver metastasis and invasion to adjacent tissues without
affecting the subcutaneous tumor growth (76). Sometimes the
regulation is not uni-direction but rather a paracrine loop. CSF-1
synthesized by tumor cells and EGF derived from macrophages
paracrine loop in MMTV-PyMTmodel were reported byWyckoff
et al. to cause tumor cells to migrate into surrounding connective
tissue. The migration effect of both cell types was abrogated by
blocking either CSF-1 or EGF signaling (77). CD163+ TAMs
derived IL-6 regulated EMT to enhance CRC cells migration
and invasion. IL-6 activated JAK2/STAT3 pathway to upregulate
FoxQ1 expression, which in turn increased the production of
CCL2 to promote macrophage recruitment. This reciprocal loop
can be blocked by inhibition of CCL2 or IL6 with reduced
macrophage migration and metastasis of CTC (78). TAMs in
breast patient samples were activated to an M2-like phenotype.
DeNardo et al. reported that CD4+ T lymphocytes skew the
phenotype and effector function of CD11b+ Gr1- F4/80+ tumor
associated macrophages to promote the invasion and metastasis in
MMTV-PyMT mammary carcinoma model by stimulating the
EGF signaling (79). The TAMs secreted CCL18 to promote
mesenchymal breast cancer cells invasion and migration
through their receptor PITPNM3 mediated extracellular matrix
adherence (80). Another way TAMs promote tumor migration
and invasion is through secreting exosomes, which promotes
metastasis related signaling (81). Lan et al. showed that miR-21-
5p and miR-155-5p encapsulated in the exosomes derived from
M2 macrophages downregulate the expression of BRG1 by
binding to its coding sequence to enhance the migration
invasion and lung metastasis of colorectal cancer (82).

Although the underlying mechanisms of intravasation are still
poorly understood, TAMs were reported to participate in this key
step of metastasis. Direct contact enabled macrophages to induce
invadopodium formation of breast cancer cells through activating
RhoA signaling. This invadopodium facilitated transendothelial
migration of MDA-MB-231 cells and patient derived triple
negative breast cancer cells TN1 in vitro (83). Using intravital
real-time imaging, macrophage-mediated vascular permeability
and the dissemination of tumor cells into the blood stream was
visualized in vivo. This permeability and intravasation, was
transient and localized where macrophages were present, and
was regulated by VEGFA signaling from Tie2+ macrophages (84).

Having escaped from the primary site, disseminated tumor
cells must survive harsh conditions when infiltrating to and
colonizing distant organs. Macrophages are a vital player in
preparing the metastasis soils, aiding extravasation, maintaining
survival, and stimulating growth of the disseminated tumor cells
(86, 136, 137). Kaplan et al. discovered that VEGFR1 expressing
bone marrow-derived hematopoietic progenitor cells home to
pre-metastatic sites before arrival of disseminated tumor cells
through the interaction of VLA-4 and its ligand fibronectin in
the resident fibroblasts. Blockade of VEGFR1 or depletion of
VEGFR1+ cells from bone marrow could abrogate the formation
of pre-metastatic niche and prevent metastasis of Lewis Lung
Frontiers in Immunology | www.frontiersin.org 8190
carcinoma (136). CYP4A+ TAMs infiltration was positively
correlated with formation and metastasis. Inhibition of CYP4A
showed decreased VEGFR1+ myeloid cell recruitment and pro-
metastatic protein expression in lung pre-metastatic niche,
accompanied by skewing from M2 to M1 polarization in the
4T1 spontaneous metastasis breast cancer model and the B16F10
melanoma model (138). Deletion of S1P receptor 1 (S1pr1) in
CD11b+ CD206+ TAMs reduced the NLRP3 expression and IL-
1b production, and thus prevented pulmonary metastasis and
tumor lymphangiogenesis in breast tumors (139). Qian et al.
showed that tumor cells in contact with macrophages had a
higher rate of extravasation. Depletion of macrophages using L-
clodronate significantly reduce the extravasation of tumor cells
(85). Gr1+ monocyte-derived VEGF promoted the extravasation
of breast tumor cells. These monocytes also recruited to
pulmonary metastases driven by CCL2 to promote the seeding
of PyMT breast cancer cells (86). Kitamura et al. found that
CCL2-CCR2 signaling promoted the secretion of CCL3 from
metastasis associated macrophages (MAM), which increased the
retention of MAM to promote lung metastasis in breast tumor
models (87). Su et al. elucidated that mesenchymal breast cancer
cells activated macrophages in the vicinity to skew towards a
TAM-like phenotype through GM-CSF. The activated TAMs
secreted CCL18 could reciprocally induce cancer cell EMT both
in vitro and in vivo. Blockade of either GM-CSF or CCL18 can
break this positive feedback loop, and thus reduced metastasis
(88). Another study featuring the antitumor effect of TAMs
revealed in a mouse model of spontaneous melanoma expressing
human RET oncogene that reactive oxygen species was an
essential mechanism underlying the tumor proliferation
inhibition of CD11b+ Ly6C+ monocytes. Regulatory CD4+ T
cell derived IL-10 facilitated tumor progression through
inhibiting the recruitment or differentiation of inflammatory
monocytes in skin (89). Taken together, numerous lines of
evidence support the pivotal roles of TAMs in metastasis, and
the underlying molecular mechanisms appear to be diverse and
complicated. Therefore, it will be crucial to identify targetable
molecules that are key in each specific biological context.
CLINICAL RELEVANCE OF TAMS AND
TANS

Multiple strategies are being pursued to target TAMs. One
category of clinical trials is to target the CCR2-CCL2 axis, the
major chemokine axis responsible for monocyte recruitment.
Several clinical trials targeted CCL2 transiently (NCT00992186,
NCT01204996, NCT00537368) with Carlumab, and showed
acceptable tolerance and preliminary antitumor response in
some solid tumors. In combination with chemotherapeutic
agent Folfirinox, a CCR2 inhibitor PF-04136309 exhibited
benefit in patients with pancreatic cancer (NCT01413022).
Depletion of macrophages is another strategy used by many
clinical trials. The colony stimulation factor CSF1R signaling is
important in regulating macrophage proliferation and survival as
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well as macrophage recruitment and polarization. Various
CSF1R inhibitors were developed and used alone or in
combination with other agents for different type of cancers
(140). The caveat of macrophage depletion is toxicity,
especially for liver cells (141), which highlights the need for
more precise targeting of TAMs instead of normal macrophages.
Since many studies showed that TAMs resemble the alternative
activated M2 phenotypes that favor tumor progression, another
strategy is to reprogram M2 to pro-inflammatory M1
macrophage. For instance, CD40 monoclonal antibody was
reported to increase the pro-inflammatory factors (M1-
promoting) and regulate innate and adaptive immune response
(142). As a human immunoglobulin (IgG2) anti-CD40
monoclonal antibody, CP-870893 can specifically target the
non-ligand binding site of CD40 and enhance the secretion of
IL-12, IL-23, and IL-8. In combination with gemcitabine, CD40
was associated with antitumor activity in PDA patients (143).
SEA-CD40 is an agonistic non-fucosylated humanized IgG1
CD40 antibody with enhanced FcgRIIIa binding. It showed
superior effect over other CD40 antibodies. The phase I clinical
trial in patients with relapsed or refractory metastatic solid
tumors are ongoing (NCT02376699). Inhibition of PI3Kg has
been shown to induce proinflammatory gene expression in TAMs
without affecting their accumulation in tumors. Suppression of
tumors has been shown in some preclinical studies (144). In
combination with nivolumab, the PI3Kg inhibitor is undergoing
Phase 1b clinical trial for solid tumors (NCT02637531) with
the repolarization of macrophages will be assessed. Ibrutinib,
with its inhibition on BTK downstream of PI3Kg, can induce
proinflammatory polarization of macrophages as well as CD8+

T cells infiltration. It is in clinical trials in combination with several
chemotherapeutic agents to treat pancreatic adenocarcinoma
relapsed or refractory solid tumors (NCT02599324,
NCT02436668, NCT02303271). Because TLRs polarize
macrophages towards more proinflammatory phenotype, their
agonists can be used to induce immune response against tumors.
Several TLR agonists (TLR4, 7/8, 9) are in clinical trials in
combination with different immune checkpoint blockade (140).
Another unneglectable strategy is to unleash the phagocytosis of
macrophages that was compromised in tumors. CD47 is a receptor
for thrombospondin on human myeloid and endothelial cells. It
protects the host cells from destruction by macrophages through
binding to SIRP1a on macrophages. Targeting CD47 by antibody
or other agents can stimulate phagocytosis of tumor cells in many
mice models. Hu5F9-G4, a human monoclonal antibody that
targets CD47 is under clinical trial against solid tumors
(NCT02216409, NCT02953782). Another new agent TTI-621, a
SIRPa-Fc fusion protein, is being tested for solid tumors in Phase I
clinical trials (NCT02890368).

Despite the increasing recognition of importance of TANs,
clinical trials that specifically focus on neutrophils are only in
their fetal stage. Several drugs currently tested may have potential
impact on TANs. For instance, some neutrophil elastase
inhibitors, PDE5 inhibitors and COX2 inhibitors, were
reported to inhibit the pro-tumor activity of neutrophils
(NCT01170845, NCT02544880, NCT00752115). In addition,
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TGF-b was reported to skew neutrophils to a more protumor
phenotype (20), and TGF-b inhibitors may stimulate neutrophil
to antitumor phenotype (13). Other drugs are being tested to
reduce TAN recruitment or induce TAN apoptosis. Several
chemotaxis inhibitors, such as those targeting CXCR2 and
CCR5, are under investigation to hinder the recruitment of
neutrophils to the TME (NCT02370238, NCT02001974,
NCT03274804, NCT01736813). Trail receptor expressed by
neutrophils can be agonized to induce their apoptosis
(NCT01088347, NCT00508625, NCT00092924). CD47-SIRPa
inhibitors and CD40 monoclonal antibody that regulate TAMs
could also limit the migration of neutrophils to tumor or deplete
neutrophils (NCT02216409, NCT03717103, NCT02367196,
NCT01103635). The clinical outcome of these above agents
will provide invaluable insights into the roles of TANs in
human tumors.
THE RELATIONSHIP BETWEEN TANS,
TAMS, AND MYELOID-DERIVED
SUPPRESSOR CELLS (MDSCS)

By definition, MDSCs are immunosuppressive and can blunt T
cell cytotoxicity to create a favorable microenvironment for
tumor growth. Blocking the immunosuppression of MDSCs
will benefit antitumor response and improve the efficacy of the
immunotherapies. Two different subgroups of MDSCs were
identified in both mice and human: polymorphonuclear
MDSCs (PMN-MDSCs) and monocyte MDSCs (M-MDSCs).
The PMN-MDSCs resemble neutrophils in morphology and
phenotypes and are defined as CD11b+ Ly6G+ Ly6Clow in mice
and CD11b+ or CD3+, CD15+ or CD66b+, and CD14- in human.
The M-MDSCs resemble monocytes and are identified as
CD11b+Ly6G-Ly6Chigh in mice and CD11b+ or CD33+, CD14+,
and HLA-DRlow in human (145). They use different mechanisms
for immunosuppression with M-MDSCsmore potent than PMN-
MDSCs per cell but PMN-MDSCs typically outnumbering
M-MDSCs. The major immunosuppressive molecules involved
in their activities are ARG1, NO, ROS, prostaglandin E2, which
are similar to those used by M2 macrophages or N2 neutrophils
to promote tumor progression (145, 146). Thus, the major
question is if and how MDSCs differ from TANs and TAMs.

While TAMs and TANs usually refer to macrophages and
neutrophils infiltrating tumors, MDSCs are systemically
accumulated in tumor-bearing hosts. They are derived from
the bone marrow under the remote influence of tumors, and
can be found in peripheral blood and spleen, in addition to the
tumor microenvironment.

PMN-MDSCs are recognized using the same set of markers
for neutrophils both in mice and human, although in some
circumstances PMN-MDSCs can express unique markers
distinct from normal neutrophils (147). As TANs are a
heterogenous population that may have anti-tumor or pro-
tumor functions, PMN-MDSCs are more likely the pro-tumor
subset of TANs (145). It is worth noting that PMN-MDSCs and
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neutrophils can be distinguished in human peripheral blood
since the former are enriched in low density Ficoll gradient
fraction while the latter are in the high density fraction
(145, 148).

The markers used to identify M-MDSCs in mice are different
with TAMs in that M-MDSCs has high expression of Ly6C while
TAMs are recognized as high expression of F4/80, intermedium
to low expression of Ly6C, and undetectable expression of
S100A9. Unlike normal monocytes, M-MDSCs do not express
or have low expression of HLA-DR (149).

MDSCs also exhibited considerable plasticity in TME. M-
MDSCs had the potential to differentiate into PMN-MDSCs as
reported by Youn et al, where the pathway for monocyte
differentiation was dysregulated to preferentially generate G-
MDSCs (150). MDSCs can also generate M2 TAMs and N2
TANs. Kuma et al. reported that STAT3 regulated the
differentiation of MDSCs into immunosuppressive TAMs in
hypoxic conditions (151). TGF-b secreted by MDSCs and
other tumor stromal cells can deviate neutrophils into N2
TANs, which in turn recruit Treg cells through CCL17
secretion (20). The plasticity of MDSCs is also reflected by
their ability to trans-differentiate into myeloid cells in different
lineages. In a study by Corzo et al, MDSCs from spleen could
differentiate into both macrophages and dendritic cells (DCs)
while MDSCs from tumor only differentiated into macrophages.
MDSCs from these two sites also differed in their T cells
suppression ability. The spleen MDSCs suppressed only CD8+

T cells while the tumor MDSCs suppress both antigen specific
and antigen non-specific T cells (152). Thus, increased plasticity
and potency for differentiation may be a general feature of
MDSCs as compared to TAMs and TANs.

It is still premature to draw a concrete conclusion on the
relationship between MDSCs and TANs and TAMs. However,
profiling these cells at genomic and proteomic levels will
facilitate solving the myth of MDSCs (153–155). Clear
description of the context and markers used to study these
populations is the best practice for current researches in the
field of oncoimmunology (148, 156).
INTERACTIONS BETWEEN TANS, TAMS,
AND TUMOR-INFILTRATING
LYMPHOCYTES

TAMs and TANs extensively interact with tumor infiltrating
lymphocytes, and have pleotropic effects. Several examples are
provided below with a common theme that both TAMs and
TANs use multiple overlapping pathways to crosstalk with T
cells, including engagement of immune checkpoints and
secretion of cytokines.

ROS and arginase I released by TANs inhibited T cell activation
and proliferation (7, 20, 157). Arginase I produced by TANs blunt T
cell response in human renal cancer carcinoma and non-small cell
lung cancer (158, 159). TANs also induced apoptosis of non-
activated CD8+ T cells through NO and TNF-a (160). Immune
checkpoints can be activated on T cells by their ligands expressed
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on TANs. High level of PD-L1 was expressed on TANs in patients
with gastric cancer induced by tumor secreted G-CSF. These
activated PD-L1+ neutrophils suppressed the T cells function in
vitro and is correlated with disease progression and patient
mortality (161). PD-L1+ neutrophils were also found in
peritumor site of patient samples of hepatocellular carcinoma and
was associated with poor disease free patient survival (162). Other
than the immunosuppressive effect, Ponzetta et al. reported that
neutrophils drove the polarization of a subset of unconventional
CD4- CD8- ab T cells in a IFN-g dependent way to resist 3-
methycholantrene induced murine sarcomas in mice (163).

TAMs exert immunosuppressive effect through several
mechanisms (8). Arginase I and iNOS expression by TAMs
partially regulated their T cell suppressive activity (164).
Genetic depletion or pharmaceutical inhibition of TAMs and
CSF-1 restored the cytotoxic CD8+ T cell functions with tumor
regression in mouse mammary and cervical models (165).
Similar to TANs, T cell immune checkpoint ligands were also
found to be expressed on TAMs. Circulating monocytes and
TAMs in patients with glioblastoma expressed increased level of
B7-H1. Ex vivo stimulation monocytes with conditional medium
resulted in increased production of IL-10 which upregulated B7-
H1 expression. These stimulated monocytes induced T cells
apoptosis in co-culture (166). Tumor associated macrophages
were found to be a primary source for PD-L1 in mouse and
human cholangiocarcinoma, where inhibition TAMs and G-
MDSCs improved immune checkpoint blockade efficacy (167).
Regulatory T cells were also used by TAMs to suppress T cell
immunity. Natural regulatory cells (nTreg) were recruited by
TAMs to suppress the effector function of CD4+ and CD8+

T cells (168, 169).
INTERACTIONS BETWEEN TAMS AND
TANS

Arising from a common progenitor lineage, the multifaceted
roles of TANs and TAMs are implicated in almost every steps of
tumor growth and metastasis. However, there are still few
studies on the interactions between TANs and TAMs in the
tumor microenvironment settings (170, 171). Recently,
emerging studies began to integrate both populations to gain
a better understanding of their interactions in the varying
tumor microenvironment. Kumar et al. demonstrated in a
series of mouse tumor models a significant increase of
infiltrated PMN-MDSCs (CD11b+ Ly6C1o Ly6G+) in their
attempt to deplete TAMs by pharmaco-inhibition or antibody
neutralization of CSF1R. The infiltrated PMN-MDSCs recruited
by carcinoma associated fibroblasts failed the expected
therapeutic effect of CSF1R inhibition (172). Concomitantly,
Janiszewska et al. found that minor subclones of breast tumor
cooperated to drive breast tumor metastasis through inducing
local and systematic stimulation of pro-metastatic neutrophils
(CD11b+ Ly6C1o Ly6G+). Neutrophils were significantly higher
in blood, primary tumors and lungs induced by an IL11-
expressing minor subclone of MDA-MB-468. Although the
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percentage of macrophages in primary tumors was not shown,
it did decrease in blood and lungs (173). Using a panel of eight
mouse triple negative breast cancer models, our recently
published paper revealed that tumors did not recruit TANs or
TAMs equally. Even as the same subtype of breast cancer, they
could still be immuno-subtyped into neutrophil-enriched
subtype (NES, CD11b+ Ly6Cmid Ly6G+) or macrophage-
enriched subtype (MES, CD11b+ Ly6G- Ly6C- F4/80+)
according to their preference to recruit TANs and TAMs. A
mutual exclusion between TANs and TAMs was observed.
When one was depleted the other would be up-regulated (174).
The mechanism underlying this mutual exclusion awaits further
investigation. Yet, it shed light on a possible co-evolution
between tumor associated myeloid cells and tumors.
BREAST CANCER AND ITS
MICROENVIRONMENT

Breast cancer is the most common malignancy among women.
Breast cancer is heterogeneous with distinct molecular and
histological features that can be ascribed into luminal A-like
(ER+, PR+, HER2-), luminal B-like HER2-, luminal B-like HER2+,
HER2-enriched (non-luminal) and triple-negative (ER-, PR-,
HER2-) in current clinical practice (175). The heterogeneity of
the subtypes influences treatment decision as well as the
therapeutic outcomes. For instance, six detailed subclasses with
distinct sensitivity to therapeutic drugs have been characterized
(176). The heterogeneity exists not only across full spectrum of
breast tumors as inter-tumoral but also between different regions
of the tumor. Plus, molecular signatures evolve along the
pressure from the microenvironment during progression as
well as from the therapeutic intervention (177, 178).

Stromal cells, on the other hand, also bare heterogeneity
between different tumors or within the same tumor. Tumor
intrinsic signaling is one of the major factors that determines the
heterogeneity of microenvironment. Studies showed that
inflammatory response is downstream intrinsic oncogenic
pathways (179, 180). And local production of chemokines and
cytokines from cancer cells regulate the tumor infiltrating
immune constituents of the microenvironment. A dichotomy
of immune microenvironment was reported in different lung
cancer subtypes. Macrophages are predominantly present in
Kras adenocarcinoma models while neutrophils were mainly
recruited to the squamous cell carcinoma region by Lkb1 and
Pten inactivation but not the adjacent adenocarcinoma region
(181). Our group discovered that mTOR signaling in cancer cells
determines the MDSC accumulation through regulating G-CSF
production. This MDSC accumulation preferentially occur in
tumor models exhibiting elevated mTOR activities (182). More
recently, we further demonstrated a dichotomous myeloid cell
profiles across eight murine triple negative breast cancers; some
of the tumors are enriched with TAMs with few TANs and some
others are enriched with TANs with a minority of TAMs. We
named these tumors as macrophage-enriched and neutrophil-
enriched subtypes (MES and NES) respectively. This dichotomy
Frontiers in Immunology | www.frontiersin.org 11193
may be driven by two forces: 1) the intrinsic properties of cancer
cells, such as the mTOR activities and EMT (changing the EMT
status of the tumor cells could alter the type of myeloid being
recruited as shown in our work), and 2) the mutually negative
impact between TAMs and TANs. Interestingly, when MES
tumors that are initially sensitive to therapies acquire
resistance, a shift toward NES was observed, indicating the
plasticity of myeloid compartment during therapeutic
interventions (174).
CONCLUDING REMARKS AND OPEN
QUESTIONS

The progression of tumorigenesis and metastasis resembles the
evolution of ecosystems. On one hand, tumor cells are under
constant selective pressure skewing towards increased survival
and proliferation (183, 184). On the other hand, tumors
continuously reprogram TME systematic environment to
create an abnormal ecosystem. Extensive molecular evolution
of tumor-associated stroma during cancer progression has been
shown by gene expression analysis (185, 186). A possible co-
evolution pattern of TANs, TAMs and tumors is shown in
Figure 1.

TANs and TAMs participate in many steps of tumor
progression and metastasis. As a major part of the innate
immune system, they have drawn tremendous interest to their
roles in almost every step of tumor progression and metastasis.
Despite this knowledge, several questions remain outstanding.

First, do the frequencies and functional roles of TAMs and
TANs vary across individual tumors? As discussed in previous
sections, both TAMs and TANs can play opposite roles in different
contexts. Variable polarization status may create a continuous
spectrum between anti- and pro-tumor functionalities. The exact
positioning of TAMs and TANs in this spectrum will likely be
influenced by cancer cells and other immune cells. In our previous
studies, mTOR and EMT pathways were found to contribute to
enrichment of TANs and TAMs in different models, respectively.
Moreover, depletion of TANs led to increase of monocyte
infiltration whereas depletion of TAMs resulted in influx of
TANs. Thus, the frequencies of these myeloid cells in a
particular tumor are jointly determined by tumor-intrinsic
factors and their mutual (negative) impacts. In terms of
functions, genetic depletion of macrophages from different MES
models had opposite or highly distinct effects on tumor growth
and therapeutic responses to checkpoint blockade therapies. Thus,
additional factors seem to dictate TAM polarization independent
of recruitment. In general, models or biological contexts have not
been sufficiently considered as an important variable in
understanding the roles of TAMs and TANs, which severely
prevent the integration of our knowledge.

Second, how does intertumoral TAM and TAN variations
correlate with known subtypes of tumors? A general
classification of “hot” versus “cold” tumors has been used to
describe tumors with or without immune cell infiltration
(especially T cells). However, not all hot tumors are similar –
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the exact composition of the immune TME including TAMs and
TANs should be considered independent of lymphocytes, as they
may use totally distinct immunosuppressive mechanisms. Triple
negative breast cancers have been shown to be heterogeneous
and can be further divided into 4–6 different subtypes based on
cancer-intrinsic gene expression (176, 187). However, the
characteristics of some subtypes are clearly related to activation
and suppression of immune system. Furthermore, the correlation
between EMT and macrophages has been uncovered in a number
of studies (88, 174, 188, 189), indicating a link betweenmetaplastic
histology or “claudin-low” phenotype (190) and macrophage-
enriched TME. Taken together, these lines of evidence support
correlations between tumor-intrinsic heterogeneity and
TME heterogeneity.

Finally, how do tumor cells and immune cells co-evolve as an
integrated ecosystem? The concept of immunoediting has greatly
facilitated our understanding of interactions between tumor cells
and the immune system (191). The selective pressure exerted by
anti-tumor immunity impacts clonal evolution and ultimately
leads to escape of immunosurveillance. Moreover, cancer cells
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also gain additional selective advantages by turning immune cells
into conspirators in tumor progression (137). Thus, the crosstalk
between cancer and immune cells is bidirectional, forming the
foundation of co-evolution. It should be noted that this co-
evolution may take a distinctive path in each individual tumor,
resulting in a unique ecosystem. TAM and TAN may together
provide examples illustrating this process. For instance,
mesenchymal-like tumor cells are more likely to recruit TAMs,
which in turn reinforce mesenchymal properties. Both
mesenchymal stem cells and TAMs may repel or compete
against infiltration of TANs, thereby forming a macrophage-
enriched TME (174). The mTOR pathway, on the other hand,
stimulates systemic and local accumulation of neutrophils, which
might outcompete macrophages and drive tumor evolution
toward another direction (174, 182). More in-depth and
mechanistic studies are required to test these hypotheses.
Furthermore, the clinical implications also need to be explored
to facilitate better immunotherapies.

In conclusion, the precise influence of TAMs, TANs and
other immune cells on tumor progression and metastasis needs
FIGURE 1 | Schematic illustration of possible co-evolution among tumor cells, TANs and TAMs. Cancer cells with different genetic or epigenetic traits may
selectively recruit neutrophils or macrophages, and provide an initial milieu to influence differentiation, polarization, and survival of these myeloid cells. TAMs and
TANs in turn confer selective benefit to some clones by paracrine and direct cell-cell interactions. TAMs and TANs may also compensate each other and compete
for the same microenvironment niches. These interactions may often result in a feed-forward loop that favor an equilibrium of TAM-enriched or TAN-enriched
microenvironment, as well as specific cancer cell-intrinsic characteristics. Thus, co-evolution with TAMs and TANs may be an important force driving intra- and inter-
tumor heterogeneity. Created with Biorender.com.
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to be collectively analyzed together with tumor-intrinsic
properties to reveal molecular mechanisms underlying the
coevolution in context-dependent manners.
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et al. Tumor-associated neutrophils suppress pro-tumoral IL-17+ gd T cells
through induction of oxidative stress. PloS Biol (2018) 16:e2004990.
doi: 10.1371/journal.pbio.2004990

158. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R,
et al. Arginase I-producing myeloid-derived suppressor cells in renal cell
carcinoma are a subpopulation of activated granulocytes. Cancer Res (2009)
69:1553–60. doi: 10.1158/0008-5472.CAN-08-1921

159. Liu C-Y, Wang Y-M, Wang C-L, Feng P-H, Ko H-W, Liu Y-H, et al.
Population alterations of l-arginase- and inducible nitric oxide synthase-
expressed CD11b+/CD14–/CD15+/CD33+ myeloid-derived suppressor cells
and CD8+ T lymphocytes in patients with advanced-stage non-small cell
lung cancer. J Cancer Res Clin Oncol (2010) 136:35–45. doi: 10.1007/s00432-
009-0634-0

160. Michaeli J, Shaul ME, Mishalian I, Hovav A-H, Levy L, Zolotriov L, et al.
Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-
cells in a TNFa and NO-dependent mechanism, promoting a tumor-
supportive environment. Oncoimmunology (2017) 6:e1356965.
doi: 10.1080/2162402X.2017.1356965

161. Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, et al. Tumour-
activated neutrophils in gastric cancer foster immune suppression and
disease progression through GM-CSF-PD-L1 pathway. Gut (2017)
66:1900–11. doi: 10.1136/gutjnl-2016-313075

162. He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, et al. Peritumoural
neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1
signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res
(2015) 34:141. doi: 10.1186/s13046-015-0256-0
Frontiers in Immunology | www.frontiersin.org 17199
163. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini
C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance
against Murine Sarcomas and Selected Human Tumors. Cell (2019) 178:346–
360.e24. doi: 10.1016/j.cell.2019.05.047

164. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG,
et al. Macrophage expression of hypoxia-inducible factor-1a suppresses T-
cell function and promotes tumor progression. Cancer Res (2010) 70:7465–
75. doi: 10.1158/0008-5472.CAN-10-1439

165. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R
inhibition delays cervical and mammary tumor growth in murine models by
attenuating the turnover of tumor-associated macrophages and enhancing
infiltration by CD8+ T cells. Oncoimmunology (2013) 2:e26968. doi: 10.4161/
onci.26968

166. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas
promote immunosuppression through induction of B7-H1 expression in
tumor-associated macrophages. Clin Cancer Res (2013) 19:3165–75.
doi: 10.1158/1078-0432.CCR-12-3314

167. Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, et al. Targeting
tumor-associated macrophages and granulocytic myeloid-derived
suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin
Invest (2020) 130:5380–96. doi: 10.1172/jci137110

168. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific
recruitment of regulatory T cells in ovarian carcinoma fosters immune
privilege and predicts reduced survival. Nat Med (2004) 10:942–9.
doi: 10.1038/nm1093

169. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated
macrophages recruit CCR6+ regulatory T cells and promote the
development of colorectal cancer via enhancing CCL20 production in
mice. PLoS One (2011) 6:e19495. doi: 10.1371/journal.pone.0019495

170. Rahat MA, Coffelt SB, Granot Z, Muthana M, Amedei A. Macrophages and
Neutrophils: Regulation of the Inflammatory Microenvironment in
Autoimmunity and Cancer. Mediators Inflammation (2016) 2016:5894347.
doi: 10.1155/2016/5894347

171. Keeley T, Costanzo-Garvey DL, Cook LM. Unmasking the Many Faces of
Tumor-Associated Neutrophils and Macrophages: Considerations for
Targeting Innate Immune Cells in Cancer. Trends Cancer (2019) 5:789–98.
doi: 10.1016/j.trecan.2019.10.013

172. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso
S, et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of
CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.
Cancer Cell (2017) 32:654–68.e5. doi: 10.1016/j.ccell.2017.10.005

173. Janiszewska M, Tabassum DP, Castaño Z, Cristea S, Yamamoto KN,
Kingston NL, et al. Subclonal cooperation drives metastasis by modulating
local and systemic immune microenvironments.Nat Cell Biol (2019) 21:879–
88. doi: 10.1038/s41556-019-0346-x

174. Kim IS, Gao Y, Welte T, Wang H, Liu J, Janghorban M, et al. Immuno-
subtyping of breast cancer reveals distinct myeloid cell profiles and
immunotherapy resistance mechanisms. Nat Cell Biol (2019) 21:1113–26.
doi: 10.1038/s41556-019-0373-7

175. HarbeckN, Penault-Llorca F, Cortes J, GnantM,Houssami N, Poortmans P, et al.
Breast cancer. Nat Rev Dis Prim (2019) 5:66. doi: 10.1038/s41572-019-0111-2

176. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y,
et al. Identification of human triple-negative breast cancer subtypes and
preclinical models for selection of targeted therapies. J Clin Invest (2011)
121:2750–67. doi: 10.1172/JCI45014

177. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: A looking
glass for cancer? Nat Rev Cancer (2012) 12:323–34. doi: 10.1038/nrc3261

178. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler
KW. Cancer genome landscapes. Science (2013) 340:1546–58. doi: 10.1126/
science.1235122

179. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation.
Nature (2008) 454:436–44. doi: 10.1038/nature07205

180. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the
tumor microenvironment. Nat Immunol (2013) 14:1014–22. doi: 10.1038/
ni.2703

181. Xu C, Fillmore CM, Koyama S, WuH, Zhao Y, Chen Z, et al. Loss of lkb1 and
pten leads to lung squamous cell carcinoma with elevated pd-l1 expression.
Cancer Cell (2014) 25:590–604. doi: 10.1016/j.ccr.2014.03.033
December 2020 | Volume 11 | Article 553967

https://doi.org/10.1016/j.it.2016.01.004
https://doi.org/10.1189/jlb.0311177
https://doi.org/10.1189/jlb.0311177
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1038/nri3175
https://doi.org/10.1038/nri3175
https://doi.org/10.1038/ni.2526
https://doi.org/10.1016/j.immuni.2016.01.014
https://doi.org/10.1084/jem.20100587
https://doi.org/10.1084/jem.20100587
https://doi.org/10.1126/sciimmunol.aaf8943
https://doi.org/10.1371/journal.pone.0031524
https://doi.org/10.1016/j.it.2019.04.012
https://doi.org/10.1016/j.it.2019.04.012
https://doi.org/10.1371/journal.pbio.2004990
https://doi.org/10.1158/0008-5472.CAN-08-1921
https://doi.org/10.1007/s00432-009-0634-0
https://doi.org/10.1007/s00432-009-0634-0
https://doi.org/10.1080/2162402X.2017.1356965
https://doi.org/10.1136/gutjnl-2016-313075
https://doi.org/10.1186/s13046-015-0256-0
https://doi.org/10.1016/j.cell.2019.05.047
https://doi.org/10.1158/0008-5472.CAN-10-1439
https://doi.org/10.4161/onci.26968
https://doi.org/10.4161/onci.26968
https://doi.org/10.1158/1078-0432.CCR-12-3314
https://doi.org/10.1172/jci137110
https://doi.org/10.1038/nm1093
https://doi.org/10.1371/journal.pone.0019495
https://doi.org/10.1155/2016/5894347
https://doi.org/10.1016/j.trecan.2019.10.013
https://doi.org/10.1016/j.ccell.2017.10.005
https://doi.org/10.1038/s41556-019-0346-x
https://doi.org/10.1038/s41556-019-0373-7
https://doi.org/10.1038/s41572-019-0111-2
https://doi.org/10.1172/JCI45014
https://doi.org/10.1038/nrc3261
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1038/nature07205
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/ni.2703
https://doi.org/10.1016/j.ccr.2014.03.033
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu and Zhang TAM and TAN-Driven Co-Evolution
182. Welte T, Kim IS, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR
signalling recruits myeloid-derived suppressor cells to promote tumour
initiation. Nat Cell Biol (2016) 18:632–44. doi: 10.1038/ncb3355

183. Weinberg RA. Coevolution in the tumor microenvironment. Nat Genet
(2008) 40:494–5. doi: 10.1038/ng0508-494

184. Greaves M. Evolutionary determinants of cancer. Cancer Discovery (2015)
5:806–21. doi: 10.1158/2159-8290.CD-15-0439

185. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H,
et al. Molecular characterization of the tumor microenvironment in breast
cancer. Cancer Cell (2004) 6:17–32. doi: 10.1016/j.ccr.2004.06.010

186. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression
profiling of the tumor microenvironment during breast cancer progression.
Breast Cancer Res (2009) 11:R7. doi: 10.1186/bcr2222

187. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua
SAW, et al. Comprehensive genomic analysis identifies novel subtypes and
targets of triple-negative breast cancer. Clin Cancer Res (2015) 21:1688–98.
doi: 10.1158/1078-0432.CCR-14-0432

188. Hsu DSS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, et al. Acetylation
of snail modulates the cytokinome of cancer cells to enhance the recruitment
of macrophages. Cancer Cell (2014) 26:534–48. doi: 10.1016/
j.ccell.2014.09.002
Frontiers in Immunology | www.frontiersin.org 18200
189. Low-Marchelli JM, Ardi VC, Vizcarra EA, Van Rooijen N, Quigley JP, Yang
J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis.
Cancer Res (2013) 73:662–71. doi: 10.1158/0008-5472.CAN-12-0653

190. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al.
Phenotypic and molecular characterization of the claudin-low intrinsic
subtype of breast cancer. Breast Cancer Res (2010) 12:R68. doi: 10.1186/
bcr2635

191. Dunn GP, Old LJ, Schreiber RD. The Three Es of Cancer Immunoediting.
Annu Rev Immunol (2004) 22:329–60. doi: 10.1146/annurev.immunol.
22.012703.104803

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wu and Zhang. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
December 2020 | Volume 11 | Article 553967

https://doi.org/10.1038/ncb3355
https://doi.org/10.1038/ng0508-494
https://doi.org/10.1158/2159-8290.CD-15-0439
https://doi.org/10.1016/j.ccr.2004.06.010
https://doi.org/10.1186/bcr2222
https://doi.org/10.1158/1078-0432.CCR-14-0432
https://doi.org/10.1016/j.ccell.2014.09.002
https://doi.org/10.1016/j.ccell.2014.09.002
https://doi.org/10.1158/0008-5472.CAN-12-0653
https://doi.org/10.1186/bcr2635
https://doi.org/10.1186/bcr2635
https://doi.org/10.1146/annurev.immunol.22.012703.104803
https://doi.org/10.1146/annurev.immunol.22.012703.104803
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

https://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Roles of Tumor-Recruited Myeloid Cells in Immune Evasion in Cancer
	Table of Contents
	Editorial: Roles of Tumor-Recruited Myeloid Cells in Immune Evasion in Cancer
	Generation and Mobilization of MDSC in Cancer
	Myeloid Cells in the Tumor Microenvironment
	Mechanisms of Immune Suppression and Immune Resistance Mediated by MDSC
	MDSC as Biomarkers for Response to the Cancer Immunotherapy
	Targeting MDSC in Cancer
	Author Contributions
	Funding
	Acknowledgments
	References

	Myeloid Cell-Derived Arginase in Cancer Immune Response
	Introduction
	Arginine and Arginases—Basic Biochemistry
	Arginine and Arginase in Tumors
	Arginase and Tumor Prognosis

	Arginase in Tumor-Infiltrating Myeloid Cells
	Arginase in Myeloid-Derived Suppressor Cells
	Macrophages
	Neutrophils
	Dendritic Cells

	Mechanisms of Immunoregulatory Function of Arginase
	Effects on Effector Functions in T-Cells
	Role of L-arg in T-Cell Proliferation
	Role of L-arg in T-Cell Cytokine Production
	Role of L-arg in T-Cell Differentiation

	Molecular Mechanisms of Immunoregulatory Effects Associated With L-arg Metabolism
	Downregulation of the CD3ζ and Impaired Signal Transduction
	Cell Cycle Arrest
	Changes in the Immune Synapse Between APC and T-Cells
	L-arg in Metabolic Regulation of T-Cells

	B Cells and L-arg
	Myeloid Cells and L-arg
	NK Cells and L-arg
	L-arg Metabolites and Immune Response
	Ornithine
	Polyamines


	Arginase Inhibitors
	Final Remarks
	Author Contributions
	Funding
	References

	Generation of Myeloid Cells in Cancer: The Spleen Matters
	Introduction
	Sites of Myelopoiesis in Cancers
	Bone Marrow
	Primary Tumor and Pre-metastatic Sites
	Spleen
	Other Extramedullary Organs

	Mechanisms Regulating Splenic Myelopoiesis
	Stromal and Endothelial Cells
	Endogenous HSPC Signals and the HSPC-Niche Interplay
	Macrophages as Double-Edged Swords in Regulating Splenic EMH
	The Nervous System and Neural Signal-Expressing Cells
	Signals From Distant Organs

	Clinical Relevance of Splenic Myelopoiesis in Cancer
	Splenic EMH in Humans
	Impact of Splenectomy on Malignancy

	Targeting Cancer-Induced Splenic Myelopoiesis
	Concluding Remarks and Future Perspectives
	Author Contributions
	Funding
	References

	Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression
	Introduction
	Methods
	Co-culture Assay
	Flow Cytometry of Co-culture
	Flow Cytometry Patient Tumor Samples
	T Cell Suppression Assay
	Quantitative PCR
	GBM-Seq Database Mining
	MIF Inhibitor Screen
	In vivo Syngeneic Glioma Model
	Nanostring Analysis
	Immunohistochemically Analysis
	MCP-1 ELISA
	Statistical Analysis

	Results
	Development of MDSC Co-culture to Study the MIF Signaling Axis
	In vivo and in vitro Analysis Demonstrate M-MDSCs With Surface Expression of the MIF Receptor CD74
	GBM Patient Derived Specimens Show the MIF Receptor CD74 Expressed on MDSCs and Associate With Poor Prognosis
	MIF Inhibitor Screening Identified the MIF/CD74 Interaction Inhibitor Ibudilast
	Ibudilast Treatment Reduced MIF/CD74 Signaling in a Syngeneic Model

	Discussion
	Data Availability Statement
	Ethics Statement
	Author's Note
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy
	Introduction
	Rudimentary Myeloid Defense Strategies as Tumor Promoters
	Pathogen and Tissue Damage Recognition Mechanisms as Tumor Promoters
	Release of Proinflammatory Mediators as Tumor Promoters
	Respiratory Burst as Tumor Promoter
	Release of Antibacterial Peptides as Tumor Promoter
	Neutrophil Degranulation as Tumor Promoter
	Neutrophil Extracellular Trap Formation (NETosis) as Tumor Promoter
	Complement Activation as Tumor Promoter
	Complement Anaphylatoxins as Tumor Promoters
	Complement in Cancer Immunotherapy

	FcR-Mediated Killing

	Entangled Network of Innate Responses
	Author Contributions
	Funding
	Acknowledgments
	References

	microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy
	Introduction
	The Role of miRs in Cancer Therapy Resistance
	Epigenetic Regulation of Immune Cell Functions by MDSC-miRs
	MDSC-miRs and Response to Immunotherapy
	EVs as miR Shuttles and MDSC Modulators
	Translational Implications

	Conclusion
	Author Contributions
	Funding
	References

	Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade
	Introduction
	Biomarkers in ICI Therapy
	Anti-PD-1 Inhibitors
	Circulating Biomarkers
	Monocyte Lineage
	Granulocyte Lineage

	Tumor Biomarkers
	Monocyte/Macrophage Lineage
	Granulocyte Lineage


	Anti-PD-L1 Inhibitors
	Circulating Biomarkers
	Tumor Biomarkers

	Anti-CTLA-4 Inhibitors
	Circulating Biomarkers
	Monocyte Lineage
	Granulocyte Lineage

	Tumor Biomarkers
	Monocyte/Macrophage Lineage


	Binding of ICIs to Myeloid Cells: Potential Mechanisms of Action and impact on Biomarkers
	Combination Strategies for Improving ICI Therapy by Targeting Myeloid Cells: an Overview of Clinical Data
	Inhibitors of Colony-Stimulating Factor 1 Receptor (CSF-1Ri)
	Inhibitors of CD73 and Adenosine Pathway
	Anti-semaphorin 4D Antibodies
	Inhibitors of Indoleamine 2,3-Dioxygenase 1 (IDO1)
	Inhibitors of Phosphoinositide 3-Kinase γ (PI3Kγ)
	CD40 Agonists
	STING Agonists
	All-Trans Retinoic Acid (ATRA)
	Trabectedin
	Anti-angiogenic Molecules

	Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References

	The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion
	Introduction
	MAIN STRATEGIES TO THERAPEUTICALLY TARGET MDSCs IN CANCER
	MDSCs IN BREAST CANCER
	MDSCs IN COLORECTAL CANCER
	MDSCs IN MELANOMA
	MDSCs IN PROSTATE CANCER
	MDSCs IN HEPATOCELLULAR CARCINOMA
	MDSCs IN LUNG CANCER
	Conclusion
	Author Contributions
	References

	Myeloid-Derived Suppressor Cells in Colorectal Cancer
	Introduction
	Colorectal Cancer (CRC): Epidemiology and Immunity

	Myeloid-Derived Suppressor Cells (MDSCs)
	Expansion and Activation of MDSCs in CRC
	MDSC Action in CRC

	Detection of MDSCs in CRC
	Targeting MDSCs in CRC
	Conclusions
	Author Contributions
	Funding
	References

	Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment
	Introduction
	The Players: Tams and Mdscs
	Myeloid-Derived Suppressor Cells
	Tumor-Associated Macrophage

	Suppressive Mechanisms
	Suppressive Programming

	Tumor-Associated Myeloid Cell Support of Tumor Growth & Progression
	TAM/MDSC Identification Across Tumor Types
	Breast Malignancy
	Lung Malignancy
	Central Nervous System Malignancy

	Methods to Prevent Myeloid Cell Contribution to Cancer Growth
	Depletion
	Reprogramming
	Surface Targets
	Soluble Targets
	Microenvironment
	Metabolism
	Genetic Modification


	Conclusion, Questions, Limitations
	Author Contributions
	Funding
	References

	The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative
	Introduction
	MDSC Subtypes
	The Two-Stage Model of Myeloid Cells Mobilization and Function
	The Recruitment of MDSC at Tumor Sites as a Multistep Event Directed in Part by Chemokine–Chemokine Receptor Pathways
	Step I
	Step II
	Step III
	Step IV

	Post-Translational Modification (PTM) of Chemokines and Selective Migration of PMN-MDSC
	Clinical Implications in Cancer Diseases: Could Redundancy in Chemokines Be Overcome via Monotherapy?
	A Future View of the Classical Two-Stage Model in Light of Modern Technologies
	Can the Multistep Model Explain the Paradox of Redundancy in Chemokine–Chemokine Receptor Interactions and Selective Migration?
	Conclusions
	Author Contributions
	Funding
	References

	Analysis of Spatial Organization of Suppressive Myeloid Cells and Effector T Cells in Colorectal Cancer—A Potential Tool for Discovering Prognostic Biomarkers in Clinical Research
	Introduction
	Materials and Methods
	CRC Samples
	IHC Staining Protocols
	Digital Image Analysis
	Spatial Analysis
	GADnorm parameter
	Spatial Overlap Analysis

	RNA Extraction and Sequencing
	Gene Expression and Correlative Analysis
	Correlation Analysis With Distance Parameter GADnorm
	Differential Gene Expression and Pathway Analysis With Spatial Overlap Categories

	Statistical Methods

	Results
	T Cell and Myeloid Cell Subpopulations Are Distinctly Distributed Across Tumor Stromal and Tumor Epithelial Compartments
	Myeloid Cell Populations Show the Highest Density in the Invasive Margin ROI and Have Significantly Higher Density in Tumor ROI of MSI Cases
	The Average Distance Between Monocytic Myeloid Cells and Cytotoxic T Cells Is Higher in MSI Cases
	Myeloid–T Cell Overlap Allows Grouping Patients According to the Spatial Relation of Immune Suppressive and Effector Cells

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Tumor-Associated Neutrophils and Macrophages—Heterogenous but Not Chaotic
	Introduction
	Tumor-Associated Neutrophils
	The Impact of TANs in Human Cancers
	TANs in Tumor Initiation
	TANs in Tumor Proliferation
	TANs in Angiogenesis
	TANs in Metastasis
	Tumor-Associated Macrophage (TAMs)
	The Impact of TAMs in Human Cancers
	Tumor-Associated Macrophages in Tumor Initiation
	Tumor-Associated Macrophages in Angiogenesis
	TAMs in Metastasis
	Clinical Relevance of TAMs and TANs
	The Relationship Between TANs, TAMs, and Myeloid-Derived Suppressor Cells (MDSCs)
	Interactions Between TANs, TAMs, and Tumor-Infiltrating Lymphocytes
	Interactions Between TAMs and TANs
	Breast Cancer and Its Microenvironment
	Concluding Remarks and Open Questions
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




