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Complex and Real Optical Soliton
Properties of the Paraxial Non-linear
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With M-Fractional
Wei Gao 1*, Hajar F. Ismael 2,3, Sizar A. Mohammed 4, Haci Mehmet Baskonus 5 and

Hasan Bulut 3

1 School of Information Science and Technology, Yunnan Normal University, Kunming, China, 2Department of Mathematics,
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Turkey, 4Department of Mathematics, College of Basic Education, University of Duhok, Duhok, Iraq, 5Department of
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In this paper, we use the modified exponential function method in terms of Kf (x) instead

of ef (x)and the extended sinh-Gordon method to find some new family solution of

the M-fractional paraxial non-linear Schrödinger equation. The novel complex and real

optical soliton solutions are plotted in 2-D, 3-D with a contour plot. Moreover, the

dark exact solutions, singular soliton solutions, kink-type soliton solution, and periodic

dark-singular soliton solutions for M-fractional paraxial non-linear Schrödinger equation

are constructed. We guarantee that all solutions are new and verified the main equation

of the M-fractional paraxial wave equation. For existence, the constraint condition is

also added.

Keywords: paraxial wave equation, complex soliton, extended sinh-Gordon method, soliton structures, contour

surfaces

INTRODUCTION

The breaking up and moving away from ultrashort pulses of a field related to electricity-producing
magnetic fields or radiation into a medium is a multidimensional important physical phenomenon.
The interaction between different physical procedures such as breaking up/spreading out, material
breaking up or spreading out, diffraction, and non-linear response affects the pulse patterns of
relationships, movement, or sound. According to the interaction of breaking up or spreading out,
diffraction and non-linearity, a non-dispersive, and non-diffractive wave packet called soliton is
created. Solitons have many uses in optical microscopy, optical information storage, laser caused
particle increasing speed, Bose-Einstein (a liquid that forms from a gas/change from gas to liquid),
and bright and sharp signal transmission.

In the research papers, researchers have been noted several computational methods for solving
NPDEs, building separate solitons, and other alternatives for distinct types of NPDEs such as, the
Haar wavelet method [1], the homotopy perturbation method [2], the Adomian decomposition
method [3, 4], the shooting method [5–8], the sine-Gordon expansion method [9–12], the inverse
scattering method [13], the sinh-Gordon expansion method [14–16], the tan(φ (ξ) /2)-expansion
method [17, 18], the inverse mapping method [19], modified exp (−ϕ (ξ))-expansion function
method [20–23], the decomposition-Sumudu-like-integral-transform method [24], a functional
variable method [25], the Bernoulli sub-equation function method [26–28], modified exponential
function method [29], the modified auxiliary expansion method [30], the Riccati-Bernoulli sub-
ODEmethod [31], the extended trial equation method [32, 33], and tanh function method [34, 35].
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FIGURE 1 | 2-D, 3-D, and contour plot of dark soliton solution Equation (20)

when λ = 3,µ = 2,β = 0.6,α = 0.9, ε = 0.2, c = 0.3, t = 2, γ = 3 and z = 2

for 2-D.

FIGURE 2 | 2-D, 3-D, and contour plot of singular soliton solution Equation

(21) when λ = 0.3,µ = 0,β = 0.6,α = 1/3, ε = 2, c = −0.3, t = 2, γ = 3 and

z = 2 for 2-D.

Also, different methods have been used to solve fractional
differential equation such as, the finite difference method [36],
the improved Adams–Bashforth algorithm [37, 38], Adams-
Bashforth-Moulton method [39], the extended fractional sinh-
Gordon expansion method [40], the Laplace transforms [41],
the q-homotopy analysis transform method [42], local fractional
series expansion method [43], the wavelets method [44], Local
fractional homotopy perturbation method [45], and many other
techniques [46, 47].

In this paper, we will construct some new complex and real
soliton solutions of M-fractional paraxial non-linear Schrödinger
equation in Kerr media by using a modified expansion function
method as well as by the extended sinh-Gordon method. Over
the previous two centuries, the field of fractional calculus has
drawn many researchers’ attention. They are used for modeling

FIGURE 3 | 2-D, 3-D, and contour plot of dark soliton solution Equation (22)

when λ = 3,µ = 1,β = 0.1,α = 0.9, ε = 0.2, c = 0.3, t = 2, γ = 3,

a0 = 1,b0 = 2 and z = 2 for 2-D.

FIGURE 4 | 2-D, 3-D, and contour plot of singular soliton solution Equation

(23) when λ = 1,µ = 0,β = 0.6,α = 1
3 , ε = 2, c = 0.3, t = 2, γ = 0.3,

a0 = 0.1,b0 = 1 and z = 2 for 2-D.

multiple non-linear features such as biological procedures, fluid
mechanics, chemical processes, etc. Fractional order partial
differential equations serve as the generalization of partial
differential equations in the classical integer-order. The literature
contains several definitions of fractional derivatives, such as
the Hadamard derivative (1892) [48], the Weyl derivative [49],
Caputo, Riesz derivative [50], Riemann-Liouville, Grunwald-
Letnikov definitions, Atangana-Baleanu derivative in the context
of Caputo, Atangana-Baleanu fractional derivative in the
context of Riemann-Liouville [51, 52], Erdelyi-Kober [53], and
the conformable fractional derivative [54]. Atangana et al.
provided the conformable fractional derivative with some new
characteristics [55]. Sousa and Oliveira in [56] have recently been
created the new truncated M-fractional derivative.
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FIGURE 5 | 2-D, 3-D, and contour plot of periodic singular soliton solution

Equation (24) when λ = 0.1,µ = 0.3,β = 0.6,α = 0.9, ε = 0.1, c = 0.3, t =
2, γ = 0.3, a0 = 0.5,b1 = 0.2 and z = 2 for 2-D.

FIGURE 6 | 2-D, 3-D, and contour plot of periodic singular soliton solution

Equation (25) when λ = 1,µ = 1,β = 0.6,α = 0.9, ε = 0.1,c = 3, t = 2,

γ = 3a0 = 0.5,b0 = 0.2 and z = 2 for 2-D.

THE TRUNCATED M-FRACTIONAL
DERIVATIVE

In this section, we give some definitions, theorems,
and properties of the truncated M-fractional derivative
of order α.
Definition 1. If the function f : (0,∞) → R, then, the new
truncated M-fractional derivative of function of order α is
defined as,

D
α,β
M f (t)

= lim
ε→0

f
(

tǫβ

(

εt1−α
))

− f (t)

ε
, for all t > 0, 0 < α ≤ 1, β > 0,

where ǫβ (.) is a truncated Mittag-Leffler function of one
parameter [56].

FIGURE 7 | 2-D, 3-D, and contour plot of Equation (27), when t = 2, c = 3,

γ = 2,α = 0.5,β = 0.6 and z = 2 for 2-D.

FIGURE 8 | 2-D, 3-D, and contour plot of Equation (28), when t = 2, c = 3,

γ = 0.2,α = 1
3 ,β = 0.6 and z = 2 for 2-D.

Theorem 1. Let α ∈ (0, 1] , β > 0 and f = f (t), g = g (t) be
α-differentiable at a point t > 0, then:

I D
α,β
M

(

af + bg
)

=aDα,β
M f + bD

α,β
M g, for all a, b ∈ R.

II D
α,β
M (c)=0, for all c ∈ R.

III D
α,β
M

(

f .g
)

=gDα,β
M

(

f
)

+ fD
α,β
M

(

g
)

.

IV D
α,β
M

(

f
g

)

=
gD

α,β
M (f )−fD

α,β
M (g)

g2
.

Furthermore; if the function f is a differentiable function; then

D
α,β
M

(

f (t)
)

= t1−α

Ŵ(β+1)
df
dt
.
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FIGURE 9 | 2-D, 3-D, and contour plot of Equation (29), when t = 2, c = 0.3,

γ = 0.2,α = 0.5,β = 0.6 and z = 2 for 2-D.

FIGURE 10 | 2-D, 3-D, and contour plot of Equation (30), when t = 2, c = 0.3,

γ = 0.2,α = 0.5,β = 0.6 and z = 2 for 2-D.

GENERAL FORM OF METHODS

Modified Expansion Function Method
Step 1. Suppose that, we have the following non-linear partial
differential equation (NLPDE)

P
(

u,Dα,β
M,xu, u

2D
α,β
M,xu,D

α,β
M,tu,D

2α,β
M,t u, . . .

)

= 0. (1)

To find explicit exact solutions of Equation (1), we use the
following transformation

u
(

x, y, t
)

= U (ξ) , ξ =
Ŵ (β + 1)

α

(

xα − ν tα
)

, (2)

where ν is arbitrary constant and ξ is the symbol of the wave
variable. Substituting Equation (2) to Equation (1), the result is
a non-linear ordinary differential equation (NLODE) as follow

N
(

U,U2,U ′,U ′′, . . .
)

= 0. (3)

Step 2. Now the trial equation of solution for Equation (3) is
defined a

U (ξ) =

n
∑

i=1
ai
(

K−i8(ξ)
)i

m
∑

j=1
bi
(

K−8(ξ)
)j

=
a0 + a1K

−φ(ξ) + a2K
−2φ(ξ) + ...+ anK

−nφ(ξ)

b0 + b1K−φ(ξ) + b2K−2φ(ξ) + ...+ bnK−mφ(ξ)
, (4)

where ai and bi,
(

0 ≤ i ≤ n, 0 ≤ j ≤ m
)

are non-zero constants
and 8(ξ) is the auxiliary ODE given by

8′ (ξ) =
K−8(ξ) + µK8(ξ) + λ

ln (K)
, (5)

where µ, λ are constants and K > 0, K 6= 1. The auxiliary ODE
has the general solution as follows:

I When λ2 − 4µ > 0, then f (ξ) =
logK

(

−λ −
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ξ + ε)

))

.

II When λ2 − 4µ < 0, then f (ξ) =
logK

(

−λ +
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ξ + ε)

))

.

III When λ2 − 4µ > 0 and µ = 0, then f (ξ) =
logK

(

λ
−1+cosh(λ(ξ+ε))+sinh(λ(ξ+ε))

)

.

IV When λ2 − 4µ = 0, λ 6= 0 and µ 6= 0, then f (ξ) =
logK

(

−2−λ(ξ+ε)
2µ(ξ+ε)

)

.

V When λ2 − 4µ = 0, λ = 0 and µ = 0, then f (ξ) =
logK (ξ + ε).

Extended Sinh-Gordon Expansion Method
Step 1. The same structure of step 1 of MEFM is valid.
Step 2. The trial solution of Equation (3) is expressed in the
form [19],

U (w) =
n
∑

i=1

[

bi sinh (w) + ai cosh (w)
]

i

+ a0, (6)

where a0, ai, bi (i = 1, 2, · · · , n) are constants and to find it’s value
later, w is a function of ξ that satisfies the following equation

w′ = sinh (w) . (7)

The solution of Equation (7) possess the following solutions

sinh (w (ξ)) = ± csch (ξ) or sinh (w (ξ)) = ±i sech (ξ) , (8)

and

cosh (w (ξ)) = ± coth (ξ) or cosh (w (ξ)) = ± tanh (ξ) , (9)

where i =
√
−1.

Step 3. By putting Equation (7) and the derivatives of Equation
(6) into Equation (3), we obtain a polynomial equation

in w′l sinhi (w) coshj (w)
(

l = 0, 1 and i, j = 0, 1, 2, . . .
)

. As the
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result the obtained non-linear algebraic equations by equating

the coefficients of w′lsinhi (w) coshj (w) to zero, we can find
the coefficients.
Step 4. Using Equation (9) and Equation (10), we get the
following solutions of Equation (1)

U (ξ) =
n
∑

i=1

[

±bi sech (ξ) ± ai tanh (ξ)
]

i

+ a0, (10)

U (ξ) =
n
∑

i=1

[

±ibi csch (ξ) ± ai coth (ξ)
]

i

+ a0, (11)

where the value of n will finds by using the principal
homogeneous balance.

GOVERNING EQUATION AND ITS
APPLICATIONS

Application on MEFM
The paraxial NLSE in Kerr media is given by [57]

iD
α,β
M,zu+

a

2
D
2α,β
M,t u+

b

2
D
2α,β
M,y u+ γ |u|2u = 0, (12)

where u = u
(

y, z, t
)

is the complex wave envelope function. The
constants a, b and γ are the symbols of

u
(

y, z, t
)

=
ie
− i

√
λ2−4µξ√

2
(

λ2 − 4µ
)1/4

(

λ2 − 4µ + λ
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

))

23/4
√

γ
(

λ2 − 4µ
)

(

λ +
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

)) . (20)

the dispersion, diffraction, and Kerr non-linearity, respectively.
In Equation (12) if ab > 0 we get elliptic non-linear Schrödinger
equation and if ab < 0, Equation (12) becomes hyperbolic non-
linear Schrödinger equation. Now assume the following
wave transformations:

u
(

x, y, t
)

= U (ξ) eiθ , ξ =
Ŵ (β + 1)

α

(

y+ z − ct
)

,

θ =
Ŵ (β + 1)

α
κ
(

y+ z − ct
)

. (13)

Inserting Equation (13) into Equation (12), and separate the
result into the real and imaginary part, we get

−
(

c2a+ b
)

U ′′ +
(

bκ2 + aκ2c2 + 2κ
)

U − 2γU3 = 0, (14)
(

1+ bκ + aκc2
)

U ′ = 0. (15)

Now, we know that U ′ 6= 0, therefore

b =
−1− aκc2

κ
. (16)

Putting Equation (16) into Equation (14) to get the closed
solution, we get

U ′′ + κ2U − 2γU3 = 0. (17)

Finding the principal balance between U ′′ and U3, we find the
following relation between n and m

n = m+ 1. (18)

Let m = 1, then n = 2. Putting the value of m = 1 and
n = 2 into Equation (4), the Equation (4) can be written as
the following

U (ξ) =

2
∑

i=1
ai
(

K−i8(ξ)
)i

1
∑

j=1
bi
(

K−8(ξ)
)j

=
a0 + a1K

−φ(ξ) + a2K
−2φ(ξ)

b0 + b1K−φ(ξ)
. (19)

Where a0, a1,a2, b0, b1 are constants and b2 6= 0 &
a1 6= 0. Using Equation (19) and its second derivative
with Equation (17), we analyze the following cases
and solutions:

Case 1. When a0 = 0, a1 = ib1λ(λ2−4µ)
1/4

23/4
√

γ (λ2−4µ)
, a2 =

i21/4b1(λ2−4µ)
1/4

√
γ (λ2−4µ)

, κ = −
√

λ2−4µ√
2

, b0 = 0, we get the

following solutions:

Solution 1.When λ2 − 4µ > 0, λ 6= 0, µ 6= 0, then

Solution 2.When λ2 − 4µ > 0, µ = 0, then

u
(

y, z, t
)

=
ie
− i

√
λ2ξ√
2 λ

(

λ2
)1/4

coth
( 1
2λ (ǫ + ξ)

)

23/4
√

γ λ2
. (21)

Case 2. When a1 = a0

(

b1
b0

+ 2
λ

)

, a2 = 2a0b1
b0λ

, κ =
√

λ2−4µ√
2

, γ = b0
2λ2

2
√
2a02

√
λ2−4µ

, then we get the following solutions

Solution 1.When λ2 − 4µ > 0, λ 6= 0, µ 6= 0, then

u
(

y, z, t
)

=
a0e

i
√

λ2−4µξ√
2

(

λ2 − 4µ + λ
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

))

b0λ
(

λ +
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

)) .

(22)

Solution 2.When λ2 − 4µ > 0, µ = 0, then

u
(

y, z, t
)

=
a0e

i
√

λ2ξ√
2 coth

( 1
2λ (ǫ + ξ)

)

b0
. (23)
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Case 3. When a1 = a0λ
µ
, a2 = a0

µ
, b0 = b1λ

2 , κ =

−
√

−λ2 + 4µ, γ = − b1
2µ2

a02
√

−λ2+4µ
, we get the following solution

u
(

y, z, t
)

= −
2a0e−i

√
−λ2+4µξ

(

λ2 − 4µ
)

sec2
(

1
2

√

−λ2 + 4µ (ε + ξ)

)

b1

(

λ −
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) (

λ2 − 4µ − λ
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) , (24)

where λ2 − 4µ < 0.
Case 4. When a1 = a0λ

µ
, a2 = a0

µ
,

b1 = 2b0
λ
, κ = −

√

−λ2 + 4µ, γ =
− 4b0

2µ2

a02λ2
√

−λ2+4µ
we get the following solutions

u
(

y, z, t
)

= −
a0e−i

√
−λ2+4µξλ

(

λ2 − 4µ
)

sec2
(

1
2

√

−λ2 + 4µ (ε + ξ)

)

b0

(

λ −
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) (

λ2 − 4µ − λ
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) , (25)

where λ2 − 4µ < 0.

Application on Extended Sinh-Gordon
Method
In this subsection, we apply the extended sinh-Gordon method
to the M-fractional paraxial wave equation that labeled Equation
(12). Consider the Equation (17) and applying the principal
homogeneous balance between the between U ′′ and U3, we find
n = 1. Using the value of n = 1and substituting it into Equation
(6), we get

U (w) = b1 sinh (w) + a1 cosh (w) + a0 (26)

Putting Equation (26) and its derivatives into Equation (17),
we get the polynomial equation includes for

(

i, j = 0, 1, 2, ...
)

.
Equating its coefficients to zero, and using Mathematica package,
one can investigate the following cases.

Case 5. When A0 = 0,A1 = 0,B1 = (−1)1/4√
γ

, κ = −i, we get

u
(

y, z, t
)

=
(−1)3/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

sech

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(27)

or

u
(

y, z, t
)

=
(−1)1/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

csch

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

,

providing that γ > 0.
Case 6. When A0 = 0,A1 = − i

21/4
√

γ
,B1 = 0, κ = −

√
2, we get

u
(

y, z, t
)

=−
i

21/4
√

γ
e−

i
√
2(−ctα+yα+zα)Ŵ(1+β)

α

tanh

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(28)

or

u
(

y, z, t
)

=-
i

21/4
√

γ
e−

i
√
2Ŵ(1+β)(−ctα+yα+zα)

α

coth

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

providing that γ > 0.

Case 7. When A0 = 0,A1 = 0,B1 = − (−1)1/4√
γ

, κ = −i, we get

u
(

y, z, t
)

=-
(−1)3/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

sech

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(29)

or

u
(

y, z, t
)

=e
iŴ(1+β)(−ctα+yα+zα)√

2α





coth
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

23/4
√

γ

+
csch

(

Ŵ(1+β)(−ctα+yα+zα)
α

)

23/4
√

γ



 ,

providing that γ > 0.
Case 8. When A0 = 0,A1 = 1

21/4
√

γ
,B1 = 0, κ =

√
2, we get

u
(

y, z, t
)

=
e
i
√
2Ŵ(1+β)(−ctα+yα+zα)

α tanh
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

21/4
√

γ
,

u
(

y, z, t
)

=
e
i
√
2Ŵ(1+β)(−ctα+yα+zα)

α coth
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

21/4
√

γ
(30)

providing that γ > 0.

CONCLUSION

In this article, the modified exponential function method in
a new trial solution and the extended sinh-Gordon expansion
method are used to construct some new soliton solutions of M-
fractional paraxial non-linear Schrödinger equation. The new
exact solutions are included in the hyperbolic function and
trigonometric function. Figures 1, 3, 8, 10 are expressing dark
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wave solutions, Figures 2, 4 are expressing the singular wave,
Figure 7 is the kink-type soliton solution, Figure 9 is a surface
solution and Figures 5, 6 are the periodic dark-singular soliton
solutions as well as 2D, 3Dwith a contour plot of all new solutions
are plotted. We guarantee that all solutions are new and verified
the main equation of M-fractional paraxial wave equation after
it substituted to the main equation labeled Equation (6). All
our new solutions of (2+1)-dimensional M-fractional paraxial
wave equation might be useful and applicable in the optical
fiber industry.
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In this paper, we find the solution for a fractional Richards equation describing the

water transport in unsaturated porous media using the q-homotopy analysis transform

method (q-HATM). The proposed technique is to use graceful amalgamations of the

Laplace transform technique with the q-homotopy analysis scheme as well as the

fractional derivative that is defined with the Atangana-Baleanu (AB) operator. The fixed

point hypothesis is considered in order to demonstrate the existence and uniqueness

of the obtained solution for the proposed fractional order model. In order to validate

and illustrate the efficiency of the future technique, we analyze the projected model in

terms of fractional order. Meanwhile, the physical behavior of the q-HATM solutions are

captured in terms of plots for diverse fractional order and the numerical simulation is

also demonstrated. The achieved results illuminate that the future algorithm is easy to

implement, highly methodical, effective, and very accurate in its analysis of the behavior

of non-linear differential equations of fractional order that arise in the connected areas of

science and engineering.

Keywords: Laplace transform, Atangana-Baleanu derivative, Richards equation, q-homotopy analysis method,

fixed point theorem

INTRODUCTION

Fractional calculus (FC) was originated in Newton’s time, but, lately, it has fascinated and
captured the attention of many scholars. For the last 30 years, the most intriguing leaps in
scientific and engineering applications have been found within the framework of FC. The concept
of the fractional derivative has been industrialized due to the complexities associated with a
heterogeneous phenomenon. The fractional differential operators are capable of capturing the
behavior of multifaceted media as they have diffusion processes. It has been a very essential tool,
and many problems can be illustrated more conveniently and more accurately with differential
equations having an arbitrary order. Due to the swift development of mathematical techniques that
use computer software, many researchers started to work on generalized calculus to present their
viewpoints while analyzing many complex phenomena.

Numerous pioneering directions are prescribed for the diverse definitions of fractional
calculus by many senior researchers, and these have prearranged the foundation [1–6]. Calculus
with fractional order is associated with practical ventures and is extensively employed within
nanotechnology [7], optics [8], human diseases [9], chaos theory [10], and other areas [11–39]. The
numerical as well as analytical solutions for these equations illustrate that these models have an
important role in portraying the nature of non-linear problems within connected areas of science.
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In order to illustrate the importance of the novel fractional
order derivative and future scheme, we, in the present
framework, consider the Richards equation, which plays a vital
role in describing the nature of the porous medium as well
as the penetration of unsaturated regions in the soil. In 1931,
Lorenzo A. Richards was the first person to pioneer work on the
unsaturated porous material in order to model water movement.
Later, he derived an equation based on continuum mechanics,
which govern the water flow in the soil [40]. In the proposed
model for the momentum equation, the continuity equation is an
amalgam with Darcy’s law, and is defined in a one-dimensional
form as follows, with soil water diffusivity symbolized by ρ

and hydraulic conductivity by σ for unsaturated soil moisture
content u

∂u

∂t
=

∂

∂z

(

ρ
∂u

∂z
− σ

)

, (1)

where z designates the elevation above a vertical datum.
Recently, many authors employed numerical as well as analytical
techniques in order to analyze and predict the suitable models for
parameters in the equation and solve the governing equation of
unsaturated flow in soils. Meanwhile, three models are generally
applied, namely (i) the exponential model, (ii) the van Genuchten
model, and (iii) the Brook-Coreysmodel (BCM). Among these
models, BCM is extensively applied due to its well-defined
configuration and because it is associated with the largest pore
size. The following equations describe the complete wet ability of
the BC model [41, 42]:

σ (u) = σ0u
k,

ρ (u) = ρ0 (n+ 1) un, (2)

where σ0, k, ρ0, and n are constants denoting particle shape,
pore-size distribution and many other soil properties. For n
= 0 and k = 2, Equation (2) simplified it to the classic
Burgers equation [43, 44], and some particular values signify the
generalized Burgers equation, which is essential to describing the
important physical phenomena. In the present study, we consider
that BCM employed the RC equation. In this case, for the (n, 1)
order, the RC equation coincides with the Burgers equation, and
this is presented here [45, 46]:

ut + a
(

un
)

x
+ buxx = 0, a, b 6= 1, n ≥ 1. (3)

The analytical solution for the above equation is presented:

u (x, t) =
(

c

2a

(

1+ tanh

(

c (n− 1)

2b
(x− ct)

)))
1

n− 1

. (4)

In the present scenario, many important and non-linear models
are methodically and effectively analyzed with the help of
fractional calculus. There have been diverse definitions that have
been suggested by many senior research scholars like, Riemann,
Liouville, Caputo, and Fabrizio. However, these definitions have
their own limitations. The Riemann-Liouville derivative is unable
to explain the importance of the initial conditions; the Caputo

derivative has overcome this shortcoming but cannot explain the
singular kernel of the phenomena. In 2015, Caputo and Fabrizio
solved the above issues [47], and many researchers consult this
derivative in order to analyze and find the solution for diverse
classes of non-linear complex problems. Some issues, however,
were pointed out in the CF derivative; non-singular kernel
and non-local properties are very essential in describing the
physical behavior and nature of the non-linear problems. In 2016,
Atangana and Baleanu introduced and natured a novel fractional
derivative, namely the AB derivative. This novel derivative
was defined with the aid of Mittag-Leffler functions [48]. This
fractional derivative buried all the above-cited issues and helps
us to understand the natural phenomena in the systematic and
effective way.

In this framework, we consider the fractional RC equation of
the form

ABC
a Dα

t u (x, t) + a
(

un
)

x
+ buxx = 0, (5)

where α is fractional order of the system and defined with AB
fractional operator, u is the water content with depth x. The
fractional order is introduced in order to incorporate thememory
effects and hereditary consequence in the system, and these
properties aid us in capturing the essential physical properties of
the complex problems.

Recently, many mathematicians and physicists have
developed very effective and more accurate methods in
order to find and analyze solutions for complex and non-
linear problems that have arisen in science and technology. In
connection with this is the homotopy analysis method (HAM)
proposed by Chinese Mathematician Liao Shijun [49, 50]. HAM
has been profitably and effectively applied to study the behavior
of non-linear problems without perturbation or linearization.
But, for computational work, HAM requires significant time
and computer memory. To overcome this, there is a possibility
of using an amalgamation of the considered method and
well-known transformation techniques.

In the present investigation, we analyzed the nature of the
q-homotopy analysis transform method (q-HATM) solution for
the FCDG equation by applying q-HATM. The future algorithm
is the combination of q-HAM with LT [51]. The method
of the considered scheme is merging two strong methods to
solve linear and non-linear fractional differential equations both
analytically as well as numerically. The future technique has
many sturdy properties, including a non-local effect, straight
forward solution procedure, and a promising large convergence
region; moreover, it is free from any assumptions, discretization,
and perturbation. Recently, due to its reliability and efficacy,
the considered method has been exceptionally applied by many
researchers to understand physical behavior in diverse classes of
complex problems [52–60]. The novelty of the future method
is that it aids a modest algorithm to evaluate the solution, and
it is natured by the homotopy and axillary parameters, which
provide the rapid convergence of the obtained solution for a non-
linear portion of the given problem.Meanwhile, it has prodigious
generality because it plausibly contains the results obtained by
many algorithms like q-HAM, HPM, ADM and some other
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traditional techniques. The consideredmethod can preserve great
accuracy while decreasing the computational time and work in
comparison with other methods.

The considered non-linear model recently caught the
attention of researchers from different areas of science. Since
RC equation plays a significant role in portraying several
complex phenomena, many authors have found and analyzed
the solution using analytical as well as numerical schemes;
for instance, authors in [61] considered analytical techniques
and found solutions for the considered model with arbitrary
surface boundary conditions, and authors in [62] presented the
compression approximation and infiltration of the RC equation
with an analytical solution, authors in [45] applied the Adomian
decomposition scheme, and authors in [46] applied HAM in
order to find the approximated analytical solution. In this paper,
we made an attempt to find the solution for the FRC equation
using q-HATM.

PRELIMINARIES

Recently, many authors considered these derivatives to analyze
a diverse class of models in comparison with classical order
as well as other fractional derivatives, and they prove that the
AB derivative is more effective while analyzing the nature and
physical behavior of themodels [63, 64]. Here, we define the basic
notion of Atangana-Baleanu derivatives and integrals [48].

Definition 1. The fractional Atangana-Baleanu-Caputo
derivative for a function f ∈ H1

(

a, b
) (

b > a, α ∈ [0, 1]
)

is presented:

ABC
a Dα

t

(

f (t)
)

=
B [α]

1− α

∫ t

a
f ′ (ϑ)Eα

[

α
(t − ϑ)α

α − 1

]

dϑ . (6)

Definition 2. The AB derivative of fractional order for a function
f ∈ H1

(

a, b
)

, b > a, α ∈ [0, 1] in the Riemann-Liouville sense
is presented:

ABR
a Dα

t

(

f (t)
)

=
B [α]

1− α

d

dt

∫ t

a
f (ϑ)Eα

[

α
(t − ϑ)α

α − 1

]

dϑ . (7)

Definition 3. The fractional AB integral related to the non-local
kernel is defined by

AB
a Iαt

(

f (t)
)

=
1− α

B [α]
f (t)

+
α

B [α]Ŵ (α)

∫ t

a
f (ϑ) (t − ϑ)α−1 dϑ . (8)

Definition 4. The Laplace transform (LT) of AB derivative is
defined by

L
[

ABR
0 Dα

t

(

f (t)
)]

=
B [α]

1− α

sαL
[

f (t)
]

− sα−1f (0)

sα +
(

α/(1− α)
) . (9)

Theorem 1. The following Lipschitz conditions, respectively,
hold true for both Riemann-Liouville and AB derivatives defined
in Equations (6) and (7) [48],

∥

∥

ABC
a Dα

t f1 (t) −ABC
a Dα

t f2 (t)
∥

∥ < K1
∥

∥f2 (x) − f2 (x)
∥

∥ , (10)

and
∥

∥

ABC
a Dα

t f1 (t) −ABC
a Dα

t f2 (t)
∥

∥ < K2
∥

∥f1 (x) − f2 (x)
∥

∥ . (11)

Theorem 2. The time-fractional differential equation
ABC
a Dα

t f1 (t) = s (t) has a unique solution, which is defined
as [48]

f (t) = 1−
α

B [α]
s (t)

+
µ

B [α]Ŵ (α)

∫ t

a
s (ς) (t − ς)α−1 dς . (12)

FUNDAMENTAL IDEA OF THE PROPOSED
SCHEME

Here, we consider the arbitrary order differential equation in
order to demonstrate the basic solution procedure [65, 66]

ABC
a Dα

t v (x, t) + R v (x, t) +N v (x, t)

= f (x, t) , n− 1 < α ≤ n, (13)

with the initial condition

v (x, 0) = g (x) , (14)

where ABC
a Dα

t v (x, t) symbolize the AB derivative of v (x, t). On
using the LT on Equation (13), we have after simplification

L [v (x, t)]−
g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

{L [Rv (x, t)]

+ L [N v (x, t)]− L
[

f (x, t)
]}

= 0. (15)

The non-linear operator is presented as

N
[

ϕ
(

x, t; q
)]

= L
[

ϕ
(

x, t; q
)]

−
g (x)

s

+
1

B [α]

(

1− α +
α

sα

)

{

L
[

R ϕ
(

x, t; q
)]

+ L
[

Nϕ
(

x, t; q
)]

− L
[

f (x, t)
]}

. (16)

Here, ϕ(x, t; q) is the real valued function with respect to x, t and
(

q ∈
[

0, 1
n

])

. Now, we define a homotopy as follows

(

1− nq
)

L
[

ϕ
(

x, t; q
)

− v0 (x, t)
]

= ℏqN
[

ϕ
(

x, t; q
)]

, (17)

where L is signifies LT, q ∈
[

0, 1n
]

(n ≥ 1) is the embedding
parameter and ℏ 6= 0 is an auxiliary parameter. For q = 0 and
q = 1

n , the results given below are hold true

ϕ (x, t; 0) = v0 (x, t) , ϕ

(

x, t;
1

n

)

= v (x, t) . (18)

Now, by intensifying q from 0 to 1
n
, then ϕ(x, t; q) varies from

v0 (x, t) to v (x, t). By using the Taylor theorem near to q, we
define ϕ

(

x, t; q
)

in series form and then we get

ϕ
(

x, t; q
)

= v0 (x, t) +
∑∞

m=1
vm (x, t) qm, (19)

where
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vm (x, t) =
1

m!

∂mϕ(x, t; q)
∂qm

|q=0. (20)

The series (16) converges at q = 1
n
for the proper chaise of

v0 (x, t) , n and ℏ. Then

v (x, t) = v0 (x, t) +
∑∞

m=1
vm (x, t)

(

1

n

)m

. (21)

On m-times differentiating Equation (17) with q and lately
dividing bym! and then substituting q = 0, we get

L[vm (x, t) − kmvm−1 (x, t)] = ℏRm

(−→v m−1
)

, (22)

where the vectors are defined as

−→v m = {v0 (x, t) , v1 (x, t) , . . . , vm (x, t)} . (23)

On employing the inverse LT on Equation (22), we have

vm (x, t) = kmvm−1 (x, t) + ℏL−1 [

Rm

(−→v m−1
)

, (24)

where

Rm

(−→v m−1
)

= L [vm−1 (x, t)]−
(

1−
km
n

)

(

g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

L
[

f (x, t)
]

)

+
1

B [α]

(

1− α +
α

sα

)

L [Rvm−1 +Hm−1] ,

(25)

and

km =
{

0, m ≤ 1,
n, m > 1.

(26)

In Equation (25), Hm signifies a homotopy polynomial and
presented as follows

Hm =
1

m!

[

∂mϕ
(

x, t; q
)

∂qm

]

q=0

and ϕ
(

x, t; q
)

= ϕ0 + qϕ1 + q2ϕ2 + . . . . (27)

By the aid of Equations (24) and (25), one can get

vm (x, t) = (km + ℏ) vm−1 (x, t) −
(

1−
km
n

)

L−1

(

g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

L
[

f (x, t)
]

)

+ ℏL−1
{

1

B [α]

(

1− α +
α

sα

)

L [Rvm−1 +Hm−1]

}

.

(28)

Then, the terms of vm (x, t) we can obtain using the Equation
(28). The q-HATM series solution is presented as

v (x, t) =
∞
∑

m=0

vm (x, t ). (29)

SOLUTION FOR FRC EQUATION

In order to present the solution procedure and efficiency of the
future scheme, in this segment we consider the DSW equation of
fractional order with two distinct cases. Further, by the help of
obtained results we made an attempt to capture the behavior of
q-HATM solution for different fractional order. By the help of
Equation (5) for the function of cubic water content and constant,
we have

ABC
a Dα

t u (x, t) + u2ux − uxx = 0, 0 < α ≤ 1, (30)

with initial conditions

u (x, 0) = u0 (x, t ) . (31)

Taking LT on Equation (29) and then using Equation (30), we get

L [u (x, t)] =
1

s
(u0 (x, t))

+
1

B [α]

(

1− α +
α

sα

)

L
{

u2ux − uxx
}

. (32)

The non-linear operator N is presented with the help of future
algorithm as below

N
[

ϕ
(

x, t; q
)]

= L
[

ϕ
(

x, t; q
)]

−
1

s
(u0 (x, t))

+
1

B [α]

(

1− α +
α

sα

)

L

{

ϕ
(

x, t; q
) ∂ϕ

∂x

(

x, t; q
)

− ϕ
(

x, t; q
)

}

. (33)

The deformation equation ofm-th order by the help of q-HATM
atH(x, t) = 1, is given as follows

L [um (x, t) − kmum−1 (x, t)] = ℏRm

[−→u m−1
]

, (34)

where

Rm

[−→u m−1
]

= L [um−1 (x, t)]−
(

1−
km
n

) {

1

s
(u0 (x, t))

}

+
1

B [α]

(

1− α +
α

sα

)

L{
∑i

j=0

∑m−1

i=0
ujui−j

∂um−1−i

∂x
−

∂2um−1

∂x2
}.

(35)

On applying inverse LT on Equation (34), it reduces to

um (x, t) = kmum−1 (x, t) + ℏL−1 {

Rm

[−→u m−1
] }

. (36)

On simplifying the above equation systematically by using u0 (x,
t), we can evaluate the terms of the series solution

u (x, t) = u0 (x, t) +
∞
∑

m=1

um (x, t)

(

1

n

)m

. (37)
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EXISTENCE OF SOLUTIONS FOR THE
FUTURE MODEL

Here, we considered the fixed-point theorem in order to
demonstrate the existence of the solution for the proposedmodel.
Since the considered model cited in Equation (30) is non-local as
well as complex, there are no particular algorithms or methods
that exist to evaluate the exact solutions. However, under some
particular conditions, the existence of the solution is assured.
Now, Equation (30) is considered:

ABC
0 Dα

t [u (x, t)] = G (x, t, u ). (38)

The foregoing system is transformed to the Volterra integral
equation using the Theorem 2 as follows

u (x, t) − u (x, 0) =
(1− α)

B (α)
g (x, t, u)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , u) (t − ζ )α− 1 dζ.

(39)

Theorem 3. The kernel g satisfies the Lipschitz condition and
contraction if the condition 0 ≤

(

δ
(

a2 + b2 + ab
)

− δ2
)

<

1 holds.
Proof. In order to prove the required result, we consider the

two functions u and u1, then

∥

∥g (x, t, u) − g (x, t, u1)
∥

∥ =
∥

∥

∥

∥

[

u2 (x, t)
∂u (x, t)

∂x
− u2 (x, t1)

∂u (x, t1)

∂x

]

−
[

∂2u (x, t)

∂x2
−

∂2u (x, t1)

∂x2

]∥

∥

∥

∥

=
∥

∥

∥

∥

[

1

3

∂

∂x

(

u3 (x, t) − u3 (x, t1)
)

]

TABLE 1 | Numerical simulation presented for u (x, t) of FR equation consider in

Case 1 at n = 1, ℏ = −1 and α = 1.

x t
∣

∣

∣
uExact−u(3)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(4)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(5)

q−HATM

∣

∣

∣

2.5 0.25 6.50636× 10−7 1.84782× 10−8 1.01181× 10−10

0.50 5.35446× 10−6 2.97193× 10−7 3.15969× 10−9

0.75 1.85802× 10−5 1.51192× 10−6 2.33755× 10−8

1 4.52584× 10−5 4.80032× 10−6 9.57906× 10−8

5 0.25 3.86055× 10−7 8.87727× 10−10 5.42849× 10−11

0.50 3.08044× 10−6 1.50958× 10−8 1.76075× 10−9

0.75 1.03664× 10−5 8.10613× 10−8 1.35526× 10−8

1 2.44931× 10−5 2.71248× 10−7 5.78869× 10−8

7.5 0.25 2.68674× 10−7 1.50440× 10−9 2.57157× 10−12

0.50 2.16147× 10−6 2.41095× 10−8 8.01731× 10−11

0.75 7.33582× 10−6 1.22240× 10−7 5.92186× 10−10

1 1.74857× 10−5 3.86892× 10−7 2.42301× 10−9

10 0.25 1.26101× 10−7 8.43873× 10−10 4.16169× 10−12

0.50 1.01562× 10−6 1.35692× 10−8 1.33829× 10−10

0.75 3.45096× 10−6 6.90365× 10−8 1.01990× 10−9

1 8.23569× 10−6 2.19278× 10−7 4.31168× 10−9

−
[

∂2u (x, t)

∂x2
−

∂2u (x, t1)

∂x2

]∥

∥

∥

∥

≤
∥

∥δ
(

a2 + b2 + ab
)

− δ2
∥

∥

∥

∥u (x, t) − u(x, t1)

≤
(

δ
(

a2 + b2 + ab
)

− δ2
)

‖u (x, t) − u (x, t1) ‖ ,

where a = ‖u‖ and b = ‖u1‖ (since u and u1 are the bounded
functions). Putting η = δ

(

a2 + b2 + ab
)

− δ2 in the above
inequality, then we have

∥

∥g (x, t, u) − g (x, t, u1)
∥

∥ ≤ η
∥

∥u (x, t) − u(x, t1)
∥

∥ . (40)

The Lipschitz condition is thus obtained for G. Further, we can
see that if 0 ≤

(

δ
(

a2 + b2 + ab
)

− δ2
)

< 1, then it implies the
contraction. The recursive form of Equation (36) is defined as

un (x, t) =
(1− α)

B (α)
g (x, t, un−1)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , un−1) (t − ζ )α− 1 dζ.

(41)

The associated initial condition is

u (x, 0) = u0 (x, t) . (42)

The successive difference between the terms is presented as

φn (x, t) = un (x, t) − un−1 (x, t)

=
(1− α)

B (α)

(

g1 (x, t, un−1) − g (x, t, un−2)
)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , un−1) (t − ζ )α− 1 dζ (43)

Notice that

TABLE 2 | Numerical simulation presented for u (x, t) of FR equation consider in

Case 2 at n = 1, ℏ = −1 and α = 1.

x t
∣

∣

∣
uExact−u(3)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(4)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(5)

q−HATM

∣

∣

∣

2.5 0.25 3.32962× 10−7 5.38964× 10−9 1.86945× 10−11

0.50 2.70710× 10−6 8.65185× 10−8 5.83456× 10−10

0.75 9.28381× 10−6 4.39361× 10−7 4.31477× 10−9

1 2.23573× 10−5 1.39264× 10−6 1.76784× 10−8

5 0.25 9.75190× 10−8 5.33186× 10−10 1.16072× 10−11

0.50 7.75698× 10−7 8.72022× 10−9 3.74948× 10−10

0.75 2.60229× 10−6 4.51222× 10−8 2.87429× 10−9

1 6.12959× 10−6 1.45752× 10−7 1.22274× 10−8

7.5 0.25 9.03607× 10−8 2.66049× 10−10 2.09943× 10−13

0.50 7.25010× 10−7 4.25260× 10−9 7.54358× 10−12

0.75 2.45406× 10−6 2.15062× 10−8 6.08009× 10−11

1 5.83395× 10−6 6.78929× 10−8 2.69468× 10−10

10 0.25 5.17685× 10−8 1.88526× 10−10 2.13869× 10−10

0.50 4.15714× 10−7 3.07483× 10−9 3.36348× 10−9

0.75 1.40835× 10−6 1.56930× 10−8 1.69010× 10−8

1 3.35098× 10−6 4.98643× 10−8 5.31486× 10−8
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un (x, t) =
n

∑

i=1

φi (x, t ). (44)

By using Equation (39) after applying the norm on the Equation
(43), one can get

‖φn (x, t)‖ ≤
(1− α)

B (α)
η

∥

∥φ(n−1) (x, t)
∥

∥

+
α

B (α) Ŵ (α)
η

∫ t

0

∥

∥φ(n−1) (x, ζ )
∥

∥ dζ. (45)

We prove the following theorem by using the above result.
Theorem 4. The solution for the Equation (30) will exist, and

if we have specific t0, then

(1− α)

B (α)
η +

α

B (α) Ŵ (α)
η < 1.

Proof. Let us consider the bounded function u (x, t) satisfying the
Lipschitz condition. Then, by Equation (43), we have

‖φi (x, t)‖ ≤ ‖un (x, 0)‖
[

(1− α)

B (α)
η +

α

B (α) Ŵ (α)
η

]n

. (46)

Therefore, the continuity as well as existence of the obtained
solution is proved. Subsequently, in order to show the Equation
(46) is a solution for the Equation (29), we consider

u (x, t) − u (x, 0) = un (x, t) − Kn (x, t ) . (47)

In order to obtain require a result, we consider

‖Kn (x, t)‖ = ‖
(1− α)

B (α)

(

g (x, t, u) − G⇐x, t, un−1)
)

+
α

B (α) Ŵ (α)

∫ t

0
(t − ζ )µ−1 (

g (x, ζ , u) − g (x, ζ , un−1)
)

dζ‖

≤
(1− α)

B (α)

∥

∥g (x, ζ , u) − g (x, ζ , un−1)
∥

∥

+
α

B (α) Ŵ (α)

∫ t

0

∥

∥g (x, ζ , u) − g (x, ζ , un−1)
∥

∥ dζ

≤
(1− α)

B (α)
η1 ‖u− un−1‖ +

α

B (α) Ŵ (α)
η1 ‖u− un−1‖ t. (48)

Similarly, at t0 we can obtain

‖Kn (x, t) ‖ ≤
(

(1− α)

B (α)
+

αt0

B (α) Ŵ (α)

)n+1

ηn+ 1M. (49)

As n approaches to ∞, we can see that form Equation (49),
‖Kn (x, t) ‖ tends to 0.

FIGURE 1 | Surfaces of (A) uq−HATM, (B) uExact (C) uAbs. Err. =
∣

∣uExact − uq−HATM
∣

∣ for FR equation considered in Case 1 at ℏ = −1, n = 1 and α = 1.
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Next, it is a necessity to demonstrate uniqueness for the
solution of the considered model. Suppose u∗ (x, t) is the other
solution, then we have

u (x, t) − u∗ (x, t) =
(1− α)

B (α)

(

g (x, t, u) − g
(

x, t, u∗
))

+
α

B (α) Ŵ (α)

∫ t

0

(

g (x, ζ , u) − g
(

x, ζ , u∗
))

dζ.

(50)

On applying norm, the Equation (50) simplifies to

∥

∥u (x, t) − u∗ (x, t)
∥

∥ = ‖
(1− α)

B (α)

(

g (x, t, u) − g
(

x, , t, u∗
))

+
α

B (α) Ŵ (α)

∫ t

0

(

g (x, ζ , u) − g
(

x, ζ , u∗
))

dζ‖

≤
(1− α)

B (α)
η

∥

∥u (x, t) − u∗ (x, t)
∥

∥

+
α

B (α) Ŵ (α)
ηt

∥

∥u (x, t) − u∗ (x, t)
∥

∥ . (51)

FIGURE 2 | Surfaces of (A) uq−HATM, (B) uExact (C) uAbs. Err. =
∣

∣uExact − uq−HATM
∣

∣ for FR equation considered in Case 2 at ℏ = −1, n = 1 and α = 1.

FIGURE 3 | Nature of theq-HATM solution for (A) Case 1 and (B) Case 2 with distinct α at ℏ = −1, n = 1 and x = 1.
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On simplification

∥

∥u (x, t) − u∗ (x, t)
∥

∥

(

1−
(1− α)

B (α)
η −

α

B (α) Ŵ (α)
ηt

)

≤ 0.

(52)

From the above condition, it is clear that u (x, t) = u∗ (x, t), if
(

1−
(1− α)

B (α)
η −

α

B (α) Ŵ (α)
ηt

)

≥ 0. (53)

Hence, Equation (53) proves our essential result.
Theorem 5. Suppose un (x, t) and u (x, t) are defined in

the Banach space (B [0, T] , ‖·‖). The series solution defined in
Equation (29) converges to the solution of the Equation (13), if
0 < λ < 1.

Proof: Consider the sequence {Sn}, which is the partial sum
of the Equation (29), and we have to prove {Sn} is the Cauchy
sequence in (B [0, T] , ‖·‖). Now consider

‖Sn+1 (x, t) − Sn (x, t)‖ = ‖un+1 (x, t)‖
≤ λ ‖un (x, t)‖
≤ λ2 ‖un−1 (x, t)‖ ≤ . . . ≤ λn+1 ‖u0 (x, t) ‖ .

Now, we have for every n, m ∈ N (m ≤ n)

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2)

+ . . . + (Sm+1 − Sm)‖
≤ ‖Sn − Sn−1‖ + ‖Sn−1 − Sn−2‖ + . . . + ‖Sm+1 − Sm‖
≤

(

λn + λn−1 + . . . + λm+1) ‖u0‖

≤ λm+1 (

λn−m−1 + λn−m−2 + . . . + λ + 1
)

‖u0‖

≤ λm+1
(

1− λn−m

1− λ

)

‖u0‖ . (54)

But 0 < λ < 1, therefore ‖Sn − Sm‖ = 0. Hence, {Sn} is the
Cauchy sequence. This proves the required result.

NUMERICAL RESULTS AND DISCUSSION

In the present investigation, we have found the solution for
equation describing the water transport in unsaturated porous
media using q-HATM with the help of Mittag-Leffler law. Here,
we consider two distinct cases to present the effectiveness of the
proposed method.

Case 1: In this case, we consider the conductivity term as a

function of cubic water content and constant σ = u3

3 cm/h and

ρ = 1 cm2/h. At a = c = 1
3 , n = 3 and b = −1, Equation

(4) becomes

ABC
a Da

t u(x, t)+ u2ux − uxx = 0, 0 < α ≤ 1, (55)

FIGURE 4 | ℏ-curves for (A) Case 1 (B) Case 2 with distinct α at x = 1 and t = 0.01 with n = 1 and 2.
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with initial condition

u (x, 0) =
√

1

2

(

1+ tanh
(

−
x

3

))

. (56)

Case 2: In this segment, we consider the conductivity term as a

function of quadric water content and constant σ = u4

4 cm/h and

ρ = 1 cm2/h. At a = c = 1
1 , n = 1 and b = −1, the Equation

(4) becomes

ABC
a Dα

t u (x, t) + u3ux − uxx = 0, 0 < α ≤ 1, (57)

with initial condition

u (x, 0) = 3

√

1

2

(

1+ tanh

(

−
3x

8

))

. (58)

Here, we demonstrate the numerical simulation for the
considered non-linear. In Tables 1 and 2, the error analysis has
been validated. From the tables we can see that the proposed
scheme is more accurate, and we confirm that the iterations
increase the q-HATM solutions so that they get closer to the
analytical solution.

The surfaces of the obtained solution and the exact solution in
comparison with absolute error have been captured, respectively,
in Figures 1 and 2 for Case 1 and Case 2. The behavior of the
obtained solution for different orders is presented in Figure 3

for both the cases in terms of 2D plots. In order to analyze the
variations of the obtained solution for the FRC equation cited
in Case 1 and Case 2 with respect to the homotopy parameter
(ℏ), and the (ℏ) curves are drawn for diverse µ and presented
in Figure 4 with distinct n. In the plots, the horizontal line
signifies the convergence region of the q-HATM solution and
these curves aid us to adjust and handle the convergence province
of the solution. For an appropriate value of ℏ, the achieved
solution quickly tends to the exact solution. The small deviation
in the physical behavior of the complex models stimulates the
enormous new results to analyze and understand the nature in
a better and systematic manner. Moreover, from all the plots we
can see that the proposed method is more accurate and very
effective in its analysis of the considered non-linear fractional
order equations.

Since every non-linear differential equation does not have an
exact solution we look for an approximated analytical solution
thorugh which we can prove the exactness or accuracy of
the proposed scheme, as opposed to an exact solution. As we
mentioned earlier, the q-HATM is a modified algorithm of
HAM, and it thus does not require perturbation, dissertation,
linearization, or any assumptions. More importantly, the future
method generalizes many traditional techniques, such as HAM,
HPM, FRDTM, and others, because these are a special case of q-
HATM (n = 1, ℏ = 1). In connection with this, we capture the
physical behavior of q-HATM solution to illustrate the accuracy.
Further, we noticed that the considered non-linear phenomenon

is highly dependent on a fractional operator. In order to illustrate
the computational level and computational cost, the numerical
simulation has been presented. From the table, it shows that as
a number of series terms increases the solution converges to an
analytical solution.

CONCLUSION

In this paper, the q-HATM is applied profitably to find the
solution for an arbitrary order RC equation describing the
water transport in the unsaturated porous media. Since AB
derivatives and integrals having fractional order are defined
with the help of generalized Mittag-Leffler function as the
non-local kernel and non-singular, the present investigation
illuminates the effectiveness of the considered derivative.
The existence and uniqueness of the obtained solution is
demonstrated by the fixed point hypothesis. The results
obtained by the future scheme are more stimulating as
compared to results available in the literature. Further, the
proposed algorithm finds the solution of the non-linear
problem without considering any discretization, perturbation
or transformations.

The behavior of the obtained series solution has been captured
in terms of 2D and 3D plots for distinct fractional order. These
plots show that the q-HATM solution is more accurate and also
conformed with the help of numerical simulation, and this is
cited in the tables. Further, we confirm that, as the order of
the solution increases, the obtained solutions converge to the
exact solution. The present investigation illuminates how the
considered complex non-linear phenomena noticeably depend
on the time history and the time instant, which can be proficiently
analyzed by applying the concept of calculus to fractional order.
The present investigation helps the researchers to study the
behavior of non-linear problems, and this gives very interesting
and useful consequences. The proposed derivative provides non-
singular kernel and non-local properties; these properties are very
essential in describing the physical behavior and nature of the
non-linear problems, and hence researchers can consider the AB
derivative to solve many non-linear complex problems. Lastly,
we can conclude the projected method is extremely methodical,
effective and very accurate, and that it can be applied to the
analysis of the diverse classes of non-linear problems that exist
in science and technology.
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In this paper, two structure-preserving nonstandard finite difference (NSFD) operator

splitting schemes are designed for the solution of reaction diffusion epidemic models. The

proposed schemes preserve all the essential properties possessed by the continuous

systems. These schemes are applied on a diffusive SEIQV epidemic model with

a saturated incidence rate to validate the results. Furthermore, the stability of the

continuous system is proved, and the bifurcation value is evaluated. A comparison is

also made with the existing operator splitting numerical scheme. Simulations are also

performed for numerical experiments.

Keywords: splitting methods, NSFD schemes, positivity, epidemic model, stability, bifurcation value

1. INTRODUCTION

Mathematical modeling has a prominent role in describing physical phenomena in various
disciplines of mathematics, physical sciences, social sciences, engineering, life sciences, and many
more [1–6]. The transmission of infectious diseases and the control of their spread can be
studied effectively by constructing mathematical models for various strategies like vaccination and
quarantine. The word quarantine denotes forced isolation or being cut off from interactions with
others. Quarantine is an effective intervention process for restraining the spread of infection by
isolating individuals who are affected by the disease. Such isolation has been adopted to decrease the
communication of infectious diseases like dengue, measles, smallpox, cholera, leprosy, tuberculosis,
and many more.

Epidemic models, that is, mathematical models of infectious diseases, are a simplified way to
illustrate the transmission dynamics of the complicated nonlinear processes and complex behavior
of an infectious disease in individuals within a population. These are deterministic models that are
used to allocate the population to different subclasses or compartments, describing a particular
stage of the epidemic. The incidence rate, which is proportional to the number of susceptible
and infected persons, is an important parameter of compartment-based epidemic models. The
mathematical models of infectious diseases are often based on bilinear incidence rate βSI, but
a more concise approach to use the saturated incidence rate rather than the bilinear incidence
rate. In the saturated incidence rate βSI

1+αI , if number of infected individuals I becomes very large,
βSI
1+αI approaches the saturation level. The infection force is measured by βI, which describes
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the penetration of the disease into a fully susceptible population.
1

1+αI is used to measure the inhibition effect of behavioral change
of susceptible persons. Liu and Yang [7] proposed the SEIQV
epidemic model, which uses the saturated incidence rate. The
model is expressed as:

dS(t)

dt
= b−

βS(t)I(t)

1+ αI(t)
−

(

ω + µ + q3
)

S(t) (1)

dE(t)

dt
=

βS(t)I(t)

1+ αI(t)
−

(

µ + σ + q2
)

E(t) (2)

dI(t)

dt
= σE(t)−

(

µ + ǫ + γ + q1
)

I(t) (3)

dQ(t)

dt
= q3S(t)+ q2E(t)+ q1I(t)− (µ + φ)Q(t) (4)

dV(t)

dt
= ωS(t)+ φQ(t)+ γ I(t)− µV(t) (5)

The variables and parameters of the model are defined as:
S(t) = Susceptible persons at time t,
E(t) = Exposed persons at time t,
I(t) = Infected persons at time t,
Q(t) = Quarantined persons at time t,
V(t) = Vaccinated persons at time t,
b = Rate of recruitment,
β = Rate of transmission,
µ = Rate of natural death,
ǫ = Rate of death due to disease in infected compartment,
α = Parameter that measures psychological or inhibitory effects,
γ = Rate at which infected individuals are being vaccinated
infected persons,
σ = Rate at which exposed persons become infected,
ω = Rate at which infected individuals are being vaccinated
susceptible persons,
φ = Rate at which infected individuals are being vaccinated
quarantined persons,
q1, q2, q3 = Effective quarantine probabilities.

The above model (1)–(5) assumes a homogeneous population,
where the population mixes in such a way that there is no
difference between person in one place and person in another
place. However, in actual scenarios, the disease may spread faster
in one place than in another because of different circumstances
like different weather conditions, etc. Hence, it is essential for
the variables to depend on space also. Therefore, we extend
system (1)–(5) to make it a reaction-diffusion system by adding a
diffusion term.

∂S(x, t)

∂t
= b−

βS(x, t)I(x, t)

1+ αI(x, t)
−

(

ω + µ + q3
)

S(x, t)

+ d1
∂2S(x, t)

∂x2
(6)

∂E(x, t)

∂t
=

βS(x, t)I(x, t)

1+ αI(x, t)
−

(

µ + σ + q2
)

E(x, t)+ d2
∂2E(x, t)

∂x2

(7)

∂I(x, t)

∂t
= σE(x, t)−

(

µ + ǫ + γ + q1
)

I(x, t)+ d3
∂2I(x, t)

∂x2

(8)

∂Q(x, t)

∂t
= q3S(x, t)+ q2E(x, t)+ q1I(x, t)− (µ + φ)Q(x, t)

+ d4
∂2Q(x, t)

∂x2
(9)

∂V(x, t)

∂t
= ωS(x, t)+ φQ(x, t)+ γ I(x, t)− µV(x, t)

+ d5
∂2V(x, t)

∂x2
(10)

with the initial conditions:

S(x, 0) = g1(x) 0 ≤ x ≤ L (11)

E(x, 0) = g2(x) 0 ≤ x ≤ L (12)

I(x, 0) = g3(x) 0 ≤ x ≤ L (13)

Q(x, 0) = g4(x) 0 ≤ x ≤ L (14)

V(x, 0) = g5(x) 0 ≤ x ≤ L (15)

The boundary conditions are no flux,

Sx (0, t) = Sx (L, t) = 0 (16)

Ex (0, t) = Ex (L, t) = 0 (17)

Ix (0, t) = Ix (L, t) = 0 (18)

Qx (0, t) = Qx (L, t) = 0 (19)

Vx (0, t) = Vx (L, t) = 0 (20)

Epidemic models always demonstrate two equilibrium points:
the disease-free equilibrium (DFE) point and the endemic
equilibrium (EE) point. The DFE point exists if R0 < 1, where
R0 is the reproductive number, which basically measures the
occurrence of disease. The EE point exists if R0 > 1. This
implies that the SEIQV reaction-diffusion system (6–10) always
converges to the DFE point or EE point if R0 < 1 or R0 > 1,
respectively. Analytical solution of the SEIQV epidemic system
is not possible, so we have to use numerical techniques to find
its solution. Note that the numerical technique must show the
same behavior as is possessed by the continuous SEIQV reaction-
diffusion epidemic system.

In this work, we propose two operator-splitting NSFD
methods, one explicit and one implicit. These methods are used
to solve the SEIQV epidemic model with diffusion. As S, E,
I, Q, and V are population sizes and evaluated in absolute
scale, we propose NSFD methods because they give a positive
solution. Also, the convergence of the proposed NSFD operator
splitting methods toward the equilibrium points is the same
as the convergence of continuous an SEIQV reaction-diffusion
epidemic system. The proposed splitting methods are designed
with the aid of rules given by Mickens [8]. In the recent era,
positivity preserving FD methods have gained importance, as
many physical dynamical systems possess the positivity property
[9–11]. The NSFD method presented by Mickens [8, 12, 13]
has becomes an effective and important structure-preserving FD
method for solving differential equations. In epidemic models,
population dynamics and population size cannot be negative,
so the numerical technique must be a positivity-preserving
technique. Various authors have used different positivity-
preserving numerical techniques for the approximate solution of
epidemic models: see, for example [14–22].
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In this work, we also show the numerical stability of
the SEIQV epidemic model with diffusion and evaluate the
bifurcation value of the vaccination parameter ω with the aid of
the Routh-Hurwitz method.

2. EQUILIBRIUM POINTS

The model (6–10) has two equilibrium points [7], the DFE point
and EE point. The DFE point is:

DFE = (S0,E0, I0,Q0,V0)

= (
b

ω + µ + q3
, 0, 0,

q3S0

µ + φ
,
ωS0 + φQ0

µ
) (21)

and the EE point is:

EE = (S∗,E∗, I∗,Q∗,V∗) (22)

where,

S∗ =
(

µ + σ + q2
) (

µ + ǫ + γ + q1
)

(1+ αI)

γβ

E∗ =
(

µ + ǫ + γ + q1
)

I

σ

Q∗ =
q3S+ q2E+ q1I

µ + φ

V∗ =
ωS+ φQ+ γ I

µ

I∗ =
σβb−

(

ω + µ + q3
) (

µ + σ + q2
) (

µ + ǫ + γ + q1
)

(

µ + σ + q2
) (

µ + ǫ + γ + q1
) (

β + α
(

ω + µ + q3
))

Reproductive number R0 is given as:

R0 =
σβb

(

ω + µ + q3
) (

µ + σ + q2
) (

µ + ǫ + γ + q1
) ,

when, d1 = d2 = d3 = d4 = d5 = 0

R0 is the reproductive value. Now, if R0 < 1, the model acquires
a DFE point, and if R0 > 1, the model acquires an EE point.

3. NUMERICAL STABILITY OF THE SEIQV
MODEL AT EQUILIBRIUM POINT

We evaluated the small perturbation S1(x, t), E1(x, t), I1(x, t),
Q1(x, t), and V1(x, t) so that (6)–(10) is linearized at the EE point
(S∗,E∗, I∗,Q∗,V∗), as discussed in Chakrabrty et al. [23].

∂S1

∂t
= a11S1 + a12E1 + a13I1 + a14Q1 + a15V1 + d1

∂2S1

∂x2
(23)

∂E1

∂t
= a21S1 + a22E1 + a23I1 + a24Q1 + a25V1 + d2

∂2E1

∂x2
(24)

∂I1

∂t
= a31S1 + a32E1 + a33I1 + a34Q1 + a35V1 + d3

∂2I1

∂x2
(25)

∂Q1

∂t
= a41S1 + a42E1 + a43I1 + a44Q1 + a45V1 + d4

∂2Q1

∂x2
(26)

∂V1

∂t
= a51S1 + a52E1 + a53I1 + a54Q1 + a55V1 + d5

∂2V1

∂x2
(27)

Suppose a Fourier series solution is demonstrated for Equations
(23)–(27) of the form:

S1(x, t) =
∑

k

Ske
λtcos(kx) (28)

E1(x, t) =
∑

k

Eke
λtcos(kx) (29)

I1(x, t) =
∑

k

Ike
λtcos(kx) (30)

Q1(x, t) =
∑

k

Qke
λtcos(kx) (31)

V1(x, t) =
∑

k

Vke
λtcos(kx) (32)

Here, k = nπ/2, (n = 1, 2, 3, ...) exhibits the value of the wave
number for the node n. Substituting Equations (28)–(32) in the
system (23)–(27), the system is converted into:

∑

k

(a11 − d1k
2 − λ)Sk +

∑

k

a12Ek +
∑

k

a13Ik +
∑

k

a14Qk

+
∑

k

a15Vk = 0 (33)

∑

k

a21Sk +
∑

k

(a22 − d2k
2 − λ)Ek +

∑

k

a23Ik

+
∑

k

a24Qk +
∑

k

a25Vk = 0 (34)

∑

k

a31Sk +
∑

k

a32Ek +
∑

k

(a33 − d3k
2 − λ)Ik

+
∑

k

a34Qk +
∑

k

a35Vk = 0 (35)

∑

k

a41Sk +
∑

k

a42Ek +
∑

k

a43Ik

+
∑

k

(a44 − d4k
2 − λ)Qk +

∑

k

a45Vk = 0

(36)
∑

k

a51Sk +
∑

k

a52Ek +
∑

k

a53Ik +
∑

k

a54Qk

+
∑

k

(a55 − d5k
2 − λ)Vk = 0 (37)

The variational matrix V for the system (33)–(37) is:

V =













a11 − d1k
2 a12 a13 a14 a15

a21 a22 − d2k
2 a23 a24 a25

a31 a32 a33 − d3k
2 a34 a35

a41 a42 a43 a44 − d4k
2 a45

a51 a52 a53 a54 a55 − d5k
2













(38)
where,

a11 = −
βI∗

(1+ αI∗)
− (ω + µ + q3), a12 = 0, a13 = −

βS∗
(1+ αI∗)2
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TABLE 1 | Values of parameters.

Cases b µ σ β γ ω q1

1 0.7a 0.06a 0.7a 0.35a 0.15a 0.06a 0.2a

2 0.7 0.06 0.7 0.35 0.15 0.07 0.2

4 0.7 0.06 0.7 0.35 0.15 0.09 0.2

5 0.7 0.06 0.7 0.35 0.15 0.10 0.2

q2 q3 φ ǫ α

0.2a 0.1a 0.4a 0.05a 2a

0.2 0.1 0.5 0.05 2

0.2 0.1 0.6 0.05 2

0.2 0.1 0.7 0.05 2

0.2 0.1 0.8 0.05 2

aLiu et al. [7].

a14 = 0, a15 = 0, a21 =
βI∗

(1+ αI∗)
, a22 = −(σ + µ + q2)

a23 =
βS∗

(1+ αI∗)2
, a24 = 0, a25 = 0, a31 = 0, a32 = σ

a33 = −(µ + ǫ + γ + q1), a34 = 0, a35 = 0, a41 = q3, a42 = q2,

a43 = q1

a44 = −(µ + φ), a45 = 0, a51 = ω, a52 = 0, a53 = γ , a54 = φ,

a55 = −µ

The characteristics equation for matrix V is:

λ5 + ξ1λ
4 + ξ2λ

3 + ξ3λ
2 + ξ4λ + ξ5 = 0

The expressions for ξ1, ξ2, ξ3, ξ4, and ξ5 with diffusion and
without diffusion are mentioned in Islam and Haider [24].

The Routh-Hurwitz stability criterion gives:

ξ1 > 0, ξ2 > 0, ξ3 > 0, ξ4 > 0, ξ5 > 0

t1 = ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 > 0

and

t2 = (ξ1ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2

− ξ1ξ
2
5 > 0.

The Table 2 reflects the numerical stability of the equilibrium
point against the various cases, as discussed in Table 1.

4. BIFURCATION VALUE OF VACCINATION
PARAMETER ω INDEPENDENT OF
DIFFUSION

Considering the vaccination parameter ω, to find its bifurcation
value, a11, a12, are used instead of S∗,E∗, I∗,Q∗, and V∗.

a11 = −0.6893640968ω − 0.2309369724,

a13 = −1.1198107335ω − 0.3751365957

TABLE 2 | Stability of equilibrium point.

Case Point of equilibrium n ξ1 ξ2

1 (2.5707, 0.1400, 0.2131, 0.7124, 7.8528) 1 2.4122 1.8086

2 (2.5072, 0.1285, 0.1955, 0.5634, 8.1091) 1 2.5191 2.0081

3 (2.4468, 0.1175, 0.1787, 0.4605, 8.3142) 1 2.6259 2.2090

4 (2.3892, 0.1070, 0.1628, 0.3854, 8.4867) 1 2.7328 2.4112

5 (2.3343, 0.0970, 0.1475, 0.3283, 8.6366) 1 2.8397 2.6149

ξ3 ξ4 ξ5 t1 t2 Stability

0.5585 0.0715 0.0030 1.7083 0.2457 Stable

0.6450 0.0833 0.0035 2.3180 0.4095 Stable

0.7318 0.0944 0.0040 3.0585 0.6444 Stable

0.8191 0.1048 0.0043 3.9434 0.9685 Stable

0.9067 0.1146 0.0046 4.9869 1.4018 Stable

a21 = 0.0709369724− 0.3106359032ω, a22 = −0.96

a23 = 1.1198107335ω + 0.3751365957, a32 = 0.7,

a33 = −0.46, a41 = 0.1, a42 = 0.2

a43 = 0.2, a44 = −0.46, a51 = ω, a53 = 0.15, a54 = 0.4,

a55 = −0.06

a12 = a14 = a15 = a24 = a25 = a31 = a34 = a35 = a45 =
a52 = 0

The Routh-Hurwitz criterion for stability gives:

ξ1 = 0.6893640968ω + 2.1709369724 = f1(ω)

ξ2 = 0.5534988343ω + 1.3930221095 = f2(ω)

ξ3 = −0.7838675135ω2 + 0.0368505571ω

+ 0.3691384683 = f3(ω)

ξ4 = −0.4076111070ω2 − 0.0380846274ω

+ 0.0451739663 = f4(ω)

ξ5 = −0.0216347434ω2 − 0.0023071181ω

+ 0.00165507 = f5(ω)

ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 = −0.7198363952ω4 − 0.3846861900ω3

+ 0.4409094061ω2 + 0.9265604777ω

+ 0.7671683354 = f6(ω)

(ξ1ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2 − ξ1ξ

2
5

= 0.2022686014ω7 + 0.7777858386ω6 + 0.3637035355ω5

− 0.4633365077ω4 − 0.8380985505ω3 − 0.5245415951ω2

+ 0.0491674986ω + 0.0622935244 = f7(ω)

where the values of ξ1, ξ2, ξ3, ξ4, and ξ5 are obtained from the
expression of the characteristic equation (without diffusion)
given in paper [24].

f5(ω) = 0 gives the value of bifurcation for ω. This
value transfers the stability of a continuous model from
stable to unstable. f5(ω) = 0 provides the bifurcation value
ω = 0.228360507. The EE point is stable for ω less than
ω = 0.228360507.

Frontiers in Physics | www.frontiersin.org 4 January 2020 | Volume 7 | Article 22027

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ahmed et al. Numerical Analysis of SEIQV Model

5. BIFURCATION VALUE OF VACCINATION
PARAMETER ω WITH DIFFUSION

For the bifurcation value of vaccination parameter ω, the values
of S∗,E∗, I∗,Q∗, and V∗ are replaced into a11, a12, to

a11 = −0.6893640968ω − 0.2309369724,

a13 = −1.1198107335ω − 0.3751365957

a21 = 0.0709369724− 0.3106359032ω, a22 = −0.96

a23 = 1.1198107335ω + 0.3751365957, a32 = 0.7, a33 = −0.46,

a41 = 0.1

a42 = 0.2, a43 = 0.2, a44 = −0.46, a51 = ω, a53 = 0.15,

a54 = 0.4, a55 = −0.06

a14 = a12 = a15 = a24 = a25 = a31 = a34 = a35

= a45 = a52 = 0

The Routh-Hurwitz criterion for stability gives:

ξ1 = 0.6893640968ω + 2.3707964615 = f1(ω)

ξ2 = 0.60622790397ω + 1.7722067841 = f2(ω)

ξ3 = −0.7838675135ω2 − 0.0208144715ω

+ 0.5625469972 = f3(ω)

ξ4 = −0.4462934183ω2 − 0.0884716755ω

+ 0.0784487226 = f4(ω)

ξ5 = −0.0321693682ω2 − 0.0070094221ω

+ 0.0035676470 = f5(ω)

ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 = −0.7299468904ω4 − 0.6247499708ω3

+ 0.5281660018ω2 + 1.6725898825ω

+ 1.6061706299 = f6(ω)

(ξ1 ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2 − ξ1ξ

2
5

= 0.2245744816ω7 + 1.0320435772ω6 + 0.8416645931ω5

−0.5793147772ω4 − 1.7894315920ω3 − 1.3916904163ω2

+0.0896889602ω + 0.2457209648 = f7(ω)

f5(ω) = 0 gives ω = 0.24144152. The EE point is stable therefore
for any value less than ω = 0.24144152.

It can be seen that the value of bifurcation of ω for the system
with diffusion is greater than value of bifurcation of ω for the
system without diffusion.

6. NUMERICAL METHODS

In this section, we apply two proposed and classical splitting
methods to the SEIQV reaction-diffusion epidemic model with
diffusion. Operator-splitting techniques very effectively handle
the nonlinearity and complexity of reaction-diffusion equations.
Therefore, these techniques are used frequently by several
researchers for the solution of nonlinear differential equations
[23, 25–33]. The SEIQV epidemic model with diffusion is split in

two ways. The nonlinear reaction equations are split in the first
step as,

1

2

∂S

∂t
= b−

βSI

1+ αI
−

(

ω + µ + q3
)

S (39)

1

2

∂E

∂t
=

βSI

1+ αI
−

(

µ + σ + q2
)

E (40)

1

2

∂I

∂t
= σE−

(

µ + ǫ + γ + q1
)

I (41)

1

2

∂Q

∂t
= q3S+ q2E+ q1I − (µ + φ)Q (42)

1

2

∂V

∂t
= ωS+ φQ+ γ I − µV (43)

and the diffusion equations are split in the second step as:

1

2

∂S

∂t
= d1

∂2S

∂x2
(44)

1

2

∂E

∂t
= d2

∂2E

∂x2
(45)

1

2

∂I

∂t
= d3

∂2I

∂x2
(46)

1

2

∂Q

∂t
= d4

∂2Q

∂x2
(47)

1

2

∂V

∂t
= d5

∂2V

∂x2
(48)

Now, we apply forward and backward Euler methods with
operator splitting on the system (6)–(7).

S
m+ 1

2
i = Smi + τ

(

b−
βSmi I

m
i

1+ αImi
−

(

ω + µ + q3
)

Smi

)

(49)

E
m+ 1

2
i = Emi + τ

(

βSmi I
m
i

1+ αImi
−

(

µ + σ + q2
)

Emi

)

(50)

I
m+ 1

2
i = Imi + τ

(

σEmi −
(

µ + ǫ + γ + q1
)

Imi
)

(51)

Q
m+ 1

2
i = Qm

i + τ
(

q3S
m
i + q2E

m
i + q1I

m
i − (µ + φ)Qm

i

)

(52)

V
m+ 1

2
i = Vm

i + τ
(

ωSmi + φQm
i + γ Imi − µVm

i

)

(53)

where Smi ,E
m
i , I

m
i ,Q

m
i and Vm

i at mτ ,m = 0, 1, ... and 0 + ih, i =
0, 1, ... reflects difference approximations of S,E, I,Q, and V . The

values of S
m+ 1

2
i , E

m+ 1
2

i , I
m+ 1

2
i , Q

m+ 1
2

i , and V
m+ 1

2
i are the values

at the half time step. Both forward and backward Euler methods
have same process at first step, but, at the second half step of time,
they have different procedures. Since the forward Euler operator
splitting method is explicit, we use:

Sm+1
i = S

m+ 1
2

i + λ1

(

S
m+ 1

2
i−1 − 2S

m+ 1
2

i + S
m+ 1

2
i+1

)

(54)

Em+1
i = E

m+ 1
2

i + λ2

(

E
m+ 1

2
i−1 − 2E

m+ 1
2

i + E
m+ 1

2
i+1

)

(55)

Im+1
i = I

m+ 1
2

i + λ3

(

I
m+ 1

2
i−1 − 2I

m+ 1
2

i + I
m+ 1

2
i+1

)

(56)
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Qm+1
i = Q

m+ 1
2

i + λ4

(

Q
m+ 1

2
i−1 − 2Q

m+ 1
2

i + Q
m+ 1

2
i+1

)

(57)

Vm+1
i = V

m+ 1
2

i + λ5

(

V
m+ 1

2
i−1 − 2V

m+ 1
2

i + V
m+ 1

2
i+1

)

(58)

For the backward Euler method, we use:

− λ1S
m+1
i−1 + (1+ 2λ1) S

m+1
i − λ1S

m+1
i−1 = S

m+ 1
2

i (59)

−λ2E
m+1
i−1 + (1+ 2λ2)E

m+1
i − λ2E

m+1
i−1 = E

m+ 1
2

i (60)

−λ3I
m+1
i−1 + (1+ 2λ3) I

m+1
i − λ3I

m+1
i−1 = I

m+ 1
2

i (61)

−λ4Q
m+1
i−1 + (1+ 2λ4)Q

m+1
i − λ4Q

m+1
i−1 = Q

m+ 1
2

i (62)

−λ5V
m+1
i−1 + (1+ 2λ5)V

m+1
i − λ5V

m+1
i−1 = V

m+ 1
2

i (63)

For the proposed NSFD operator splitting methods, we
implement the rules constructed by Mickens [8]. The technique
for both explicit and implicit schemes is similar at the first half
time step:

S
m+ 1

2
i =

Smi + τb

1+ τβImi
1+αImi

+ τ
(

ω + µ + q3
)

(64)

E
m+ 1

2
i =

Emi + τβSmi I
m
i

1+αImi

1+ τ (µ + σ + q2)
(65)

I
m+ 1

2
i =

Imi + τσEmi
1+ τ (µ + ǫ + γ + q1)

(66)

Q
m+ 1

2
i =

Qm
i + τ (q3S

m
i + q2E

m
i + q1I

m
i )

1+ τ (µ + φ)
(67)

V
m+ 1

2
i =

Vm
i + τ (ωSmi + φQm

i + γ Imi )

1+ τµ
(68)

A positive solution desires that if:

Smi ≥ 0,Emi ≥ 0, Imi ≥ 0,Qm
i ≥ 0,Vm

i ≥ 0

H⇒ S
m+ 1

2
i ≥ 0,E

m+ 1
2

i ≥ 0, I
m+ 1

2
i ≥ 0,Q

m+ 1
2

i ≥ 0,V
m+ 1

2
i ≥ 0

(69)

The techniques for the implicit and explicit NSFD schemes are
not similar for the second half of the time step. The procedure for
the explicit NSFD scheme is as follows:

Sm+1
i = (1− 2λ1) S

m+ 1
2

i + λ1

(

S
m+ 1

2
i−1 + S

m+ 1
2

i+1

)

(70)

Em+1
i = (1− 2λ2)E

m+ 1
2

i + λ2

(

E
m+ 1

2
i−1 + E

m+ 1
2

i+1

)

(71)

Im+1
i = (1− 2λ3) I

m+ 1
2

i + λ3

(

I
m+ 1

2
i−1 + I

m+ 1
2

i+1

)

(72)

Qm+1
i = (1− 2λ4)Q

m+ 1
2

i + λ4

(

Q
m+ 1

2
i−1 + Q

m+ 1
2

i+1

)

(73)

Vm+1
i = (1− 2λ5)V

m+ 1
2

i + λ5

(

V
m+ 1

2
i−1 + V

m+ 1
2

i+1

)

(74)

We use an implicit procedure for the second NSFDmethod at the
second half of the time step:

−λ1S
m+1
i−1 + (1+ 2λ1) S

m+1
i − λ1S

m+1
i−1 = S

m+ 1
2

i (75)

−λ2E
m+1
i−1 + (1+ 2λ2)E

m+1
i − λ2E

m+1
i−1 = E

m+ 1
2

i (76)

−λ3I
m+1
i−1 + (1+ 2λ3) I

m+1
i − λ3I

m+1
i−1 = I

m+ 1
2

i (77)

−λ4Q
m+1
i−1 + (1+ 2λ4)Q

m+1
i − λ4I

m+1
i−1 = Q

m+ 1
2

i (78)

−λ5V
m+1
i−1 + (1+ 2λ5)V

m+1
i − λ5V

m+1
i−1 = V

m+ 1
2

i (79)

where,

λ1 = d1
τ

h2
, λ2 = d2

τ

h2
, λ3 = d3

τ

h2
, λ4 = d4

τ

h2
, λ5 = d5

τ

h2

6.1. Stability and Accuracy of Splitting
Schemes
In finite difference operator splitting techniques, the step
involving the reaction term is unconditionally stable because it
is solved exactly [25, 26]. On the other hand, the step involving
the diffusion term has different stability in different techniques.
The explicit procedure has conditional stability in the region:

λi ≤
1

2
, (i = 1, 2, 3, 4, 5). (80)

while the implicit procedure has unconditionally stability [25,
26]. The accuracy of both schemes is O(τ ) and O(h2) for all the
methods under study.

6.2. Positivity of Proposed Schemes
Equations (64)–(65) in the reaction step of both proposed
methods preserve the property of positivity depicted by the
continuous SEIQV model, as there is no negative term involved
in (64)–(65).

As far as the diffusion step is concerned, the proposed explicit
scheme (70)–(74) demonstrates the positivity of the solution if:

1− 2λi ≥ 0, i = 1, 2, 3, 4, 5

so,

λi ≤
1

2
, (i = 1, 2, 3, 4, 5)

which is the condition of stability for the explicit operator-
splitting NSFD scheme (70)–(74). This verifies that the explicit
NSFD scheme retains the positive solution in the region of
stability. M matrix theory has been used for the verification of
the positivity of the implicit NSFD method (75)–(79). For more
details [34] is referred.

6.2.1. Theorem [21, 22]

For any positive τ and h, the system described by (75)–(79) is
also positive, i.e., Sm > 0,Em > 0,Qm > 0 and Vm > 0,
∀m = 0, 1, 2...
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Proof
Equations (75)–(79) can be written as:

ASm+1 = Sm (81)

BEm+1 = Em (82)

CIm+1 = Im (83)

DQm+1 = Qm (84)

GVm+1 = Vm (85)

In Equations (81)–(85), the letters A, B, C, D, and G represent the
square matrices. Where,

A =







































a3 a1 0 · · · · · · · · · · · · 0

a2 a3 a2
. . .

...

0 a2 a3 a2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . a2 a3 a2 0
...

. . . a2 a3 a2
0 · · · · · · · · · · · · 0 a1 a3







































(86)

B =







































b3 b1 0 · · · · · · · · · · · · 0

b2 b3 b2
. . .

...

0 b2 b3 b2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . b2 b3 b2 0
...

. . . b2 b3 b2
0 · · · · · · · · · · · · 0 b1 b3







































(87)

C =







































c3 c1 0 · · · · · · · · · · · · 0

c2 c3 c2
. . .

...

0 c2 c3 c2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . c2 c3 c2 0
...

. . . c2 c3 c2
0 · · · · · · · · · · · · 0 c1 c3







































(88)

D =







































d3 d1 0 · · · · · · · · · · · · 0

d2 d3 d2
. . .

...

0 d2 d3 d2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . d2 d3 d2 0
...

. . . d2 d3 d2
0 · · · · · · · · · · · · 0 d1 d3







































(89)

G =







































g3 g1 0 · · · · · · · · · · · · 0

g2 g3 g2
. . .

...

0 g2 g3 g2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . g2 g3 g2 0
...

. . . g2 g3 g2
0 · · · · · · · · · · · · 0 g1 g3







































(90)

The off-diagonal entries of A are a1 = −2λ1, a2 = −λ1, and the
diagonal entries are a3 = 1 + 2λ1. The entries of B in the off-
diagonal are b1 = −2λ1, b2 = −λ1, and the diagonal entries are
b3 = 1+ 2λ2. The entries of C in the off-diagonal are c1 = −2λ3,
c2 = −λ3, and the diagonal entries are c3 = 1 + 2λ3. The off-
diagonal entries of D are d1 = −2λ4, d2 = −λ4, and the diagonal
entries are d3 = 1 + 2λ4. The off-diagonal entries of G are
g1 = −2λ5, g2 = −λ5, and the diagonal entries are g3 = 1+ 2λ5.
Thus, A, B, C, D, and G are M-matrices, and Equations (81), (82),
(83), (84), and (85) are:

Sm+1 = A−1Sm (91)

Em+1 = B−1Em (92)

Im+1 = C−1Im (93)

Qm+1 = D−1Im (94)

Vm+1 = G−1Im (95)

If we consider that Sm > 0, Em > 0, Im > 0,Qm > 0, and
Vm > 0, then the M-matrix along with (60) implies that the
values of all of the state variables, i.e., Sm+1, Em+1, Im+1,Qm+10,
and Vm+1 are positive. Hence, the theorem is done by using the
principle of mathematical induction.

This theorem is applied for drawing the conclusion that the
proposed scheme, which is implicit in nature, guarantees the
positive solution unconditionally.

7. NUMERICAL EXPERIMENT AND
SIMULATIONS

A numerical test is performed on both the points of
equilibrium for all the schemes under consideration.
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The set of parametric values considered for the
test problem at disease-free equilibrium point [7] is
given as:

b = 0.7,µ = 0.06, σ = 0.7,β = 0.35, γ = 0.15,ω =
0.3, q1 = 0.2, q2 = 0.2, q3 = 0.1,φ = 0.4, ǫ = 0.05,α = 2, d1 =
0.05, d2 = 0.01, d3 = 0.001, d4 = 0.01, d5 = 0.01.

For the endemic equilibrium point, the following parametric
values are used:

b = 0.7,µ = 0.06, σ = 0.7,β = 0.35, γ = 0.15,ω =
0.06, q1 = 0.2, q2 = 0.2,
q3 = 0.1,φ = 0.4, ǫ = 0.05,α = 2, d1 = 0.05, d2 = 0.01, d3 =
0.001, d4 = 0.01, d5 = 0.01.

FIGURE 1 | The explicit operator splitting NSFD scheme is used to simulate the graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D)

Mesh graph of Q; (E) Mesh graph of V.
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The initial condition for the model (6)–(10) is:

S(x, 0) =

{

0.7x if x ∈ [0, 0.5)

0.7 (10− x) if x ∈ [0.5, 1]
(96)

E(x, 0) =

{

0.5x if x ∈ [0, 0.5)

0.5 (10− x) if x ∈ [0.5, 1]
(97)

I(x, 0) =

{

0.3x if x ∈ [0, 0.5)

0.3 (10− x) if x ∈ [0.5, 1]
(98)

FIGURE 2 | The implicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D) Mesh

graph of Q; (E) Mesh graph of V.
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FIGURE 3 | (A) The forward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

backward Euler FD operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.3. (C) The forward Euler FD

operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (D) The backward Euler FD operator splitting

method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.

FIGURE 4 | (A) The explicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

implicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.
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FIGURE 5 | (A) The explicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D)

Mesh graph of Q; (E) Mesh graph of V.

Q(x, 0) =

{

0.1x if x ∈ [0, 0.5)

0.1 (10− x) if x ∈ [0.5, 1]
(99) V(x, 0) =

{

0.1x if x ∈ [0, 0.5)

0.1 (10− x) if x ∈ [0.5, 1]
(100)
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FIGURE 6 | The implicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D) Mesh

graph of Q; (E) Mesh graph of V.

7.1. Disease-Free Equilibrium Point
In this section, graphs of all the state variables against
time are presented (for DFE) to illustrate the behavior of
the schemes. In Figures 1, 2, we consider h = 0.5,

λ1 = 0.3, λ2 = 0.06, λ3 = 0.006, λ4 = 0.06,
and λ5 = 0.06.

Figures 1, 2 validate the preservation of the positivity property
in both of the proposed operator splitting NSFD schemes. Also,
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FIGURE 7 | (A) The forward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

backward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (C) The forward Euler FD

operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (D) The backward Euler FD operator splitting

method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.

FIGURE 8 | (A) The explicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (B) The

implicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.
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all the graphs in Figures 1, 2 show that both proposed NSFD
schemes achieve convergence to the DFE point. Next, we examine
the behavior of forward Euler and backward Euler splitting
schemes at different values of h and τ .

In parts (a) and (b) of Figure 3, we take the same
values of h and τ as in Figures 1, 2 for the graphs of
forward Euler operator splitting scheme and backward Euler
operator splitting scheme. The graphs clearly show the failure
of the positivity property of both classic schemes. In parts
(c) and (d) of Figure 3, both existing splitting schemes
converge to the false DFE equilibrium point for susceptible
individuals.

In parts (a) and (b) of Figure 4, we take the same
values of h and τ as given in parts (c) and (d) of
Figure 3 for the explicit and implicit NSFD operator splitting
schemes, respectively. The graphs clearly show that both
of the proposed NSFD schemes not only preserve the
positivity property but also achieve convergence to the true
equilibrium point.

7.2. Endemic Equilibrium Point
In this section, we present simulations of the SEIQV epidemic
model at the EE point using all of the operator splitting
FD schemes. In Figures 5, 6, we consider h = 0.5,
λ1 = 0.3, λ2 = 0.06, λ3 = 0.006, λ4 = 0.06,
and λ5 = 0.06.

Figures 5, 6 depict the graphs of susceptible, exposed,
infected, quarantined, and vaccinated individuals for
the EE point using the explicit operator splitting NSFD
scheme and implicit operator splitting NSFD scheme,
respectively. All the graphs in Figures 5, 6 demonstrate
that both of the proposed operator splitting NSFD
schemes preserve the property of positivity. These graphs
also show that both proposed schemes converge to the
EE point.

Again, both the forward and backward Euler FD schemes fail
to preserve the positivity property and converge to the false EE
point, as shown in Figure 7.

Figure 8 shows that the proposed NSFD
operator splitting methods are consistent with the
continuous reaction-diffusion system as they not
only preserve the positivity property but converge to
the EE point.

8. CONCLUSION

In this work, we consider the SEIQV reaction-diffusion epidemic
model. The stability of the SEIQV model is guaranteed
numerically by using criteria defined by Routh-Hurwitz. We
also find the bifurcation value of the important vaccination
parameter ω of SEIQV epidemic systems with diffusion and
without diffusion. We design two novel and efficient operator
splitting NSFD schemes for the SEIQV reaction-diffusion system.
The NSFD schemes put forth, which are technically operator
splitting schemes, possess the same behavior as is possessed
by the SEIQV epidemic system. To conclude regarding the
designed methods, we present two novel numerical schemes,
one of which is explicit and the other of which is implicit in
nature. The explicit scheme is more computationally efficient
than the implicit scheme, but it has conditional stability while the
implicit scheme is stable unconditionally. Both schemes employ
structural splitting, due to which they deal adroitly with the
nonlinearity of the reaction-diffusion system. These schemes
avoid the false chaos that is a part of many existing methods.
The positive solution of the SEIQV model is sustained by both
schemes. Also, the nature of the stability of equilibria is preserved
effectively by the proposed NSFD schemes. It is also shown that
classical schemes, in parallel to our proposed schemes, produce
chaos, leading to inconsistencies and instabilities numerically.
The currently designed schemes are a valuable contribution for
finding the solutions of nonlinear dynamical systems comprising
differential equations. These NSFD schemes will become very
efficient for the solution of one- and multi-dimensional reaction-
diffusion population models, auto-catalytic chemical reaction
models, and many more.
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Time-dependent magnetohydrodynamic (MHD) motion of a generalized Burgers’ fluid

(GBF) is investigated in this article. GBF is a highly complicated non-Newtonian fluid and

is of highest degree in the class of rate type fluids. GBF is taken electrically conducting

by using the restriction of small magnetic Reynolds number. Darcy’s law has been used

here in its generalized form using the GBF constitutive relation; hence, the medium is

made porous. The impulsive motion in the fluid is induced due to sudden jerk of the

plate. Exact expressions for velocity as well as for shear stress fields are obtained using

the Laplace transform method. The solutions for hydrodynamic fluid (absence of MHD)

in a non-porous medium as well as those for a Newtonian fluid (NF) executing a similar

motion are also recovered. Results are sketched in terms of several plots and discussed

for embedded parameters. It is found that the Hartmann number and porosity of the

medium have strong influence on the velocity and shear stress fields.

Keywords: time-dependent flow, MHD, generalized Burgers’ fluid, generalized Darcy’s law, Laplace transform

INTRODUCTION

Most of the fluid problems (published literature), or fluid problems with heat transfer or heat and
mass transfer together, are computed numerically due to the difficult nature of these problems.
Indeed, the exact solutions for these problems are either not possible or quite difficult to obtain.
These difficulties further increase if one is interested to solve such a problem using the integral
transform techniques such as Laplace transform, Fourier transform, etc. In the Laplace transform,
particularly the most difficult job is how to take the inversion. Therefore, some of the researchers
are then using numerical inversion to somehow solve the inversion problem. However, such
solutions are then not the so-called pure exact solutions. Among the interesting studies on exact
solutions and, of course, the pioneering work includes the work of Rajagopal [1], where he studied
non-Newtonian second-grade fluid for different flow motions and obtained exact solutions for
each flow case. The flow was unsteady unidirectional and one-dimensional. Eight different flow
cases were discussed. This work was then extended in 2007 by Hayat et al. [2] for the case of
MHD flow and porous medium. More exactly, the fluid was taken electrically conducted and
passing through a porous medium. They discussed seven different flow situations and obtained
exact solution either by perturbation method or Fourier transform method. Other interesting
studies on exact solutions include the work of Erdogan [3], Erdogan and Imrak [4], and Tan and
Masuoka [5, 6]. Hayat et al. [7, 8] established for rotating flows exact analytic solutions for two
different types of non-Newtonian fluids, namely, the second-grade fluid and the Maxwell fluid.
They considered transient problems in both cases with combined effects of MHD and porosity.
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The obtained exact solutions were discussed for various
embedded parameters and concluded. Fetecau et al. [9] in a
short note investigated analytically the Stokes’ second problem
(SSP) for Newtonian fluids (NF) flow. Fetecau and Fetecau [10]
considered an unsteady problem of a Maxwell fluid (MF, non-
Newtonian) over a rigid plate moved due to a sudden jerk. In
another paper, Fetecau and Fetecau [11] extended the idea of
MF to an Oldroyd-B fluid (OBF, non-Newtonian) and examined
exact solutions for the first problem of Stokes’. Vieru et al. [12]
also determined exact solution for the flow situation of an OBF
over an infinite rigid plate.

In the group of viscoelastic fluids, Burgers’ fluids and the
corresponding generalized Burgers’ fluids (GBFs) are less studied
in the literature compared to other fluids in that group. Indeed,
the resulting equations based on their complicated constitutive
relations are not easy to handle. The exact solutions for these
fluids problems are not possible unless we impose several
assumptions. Even then, the exact solutions for these fluid
problems are limited to certain well-known problems. Some
famous fluid problems for Burgers or GBFs have been studied
in Ravindran et al. [13], Hayat et al. [14], Khan et al. [15], Tong
and Shan [16], Xue and Nie [17], Hayat et al. [18], Vieru et al.
[19], Khan et al. [20–22], Fetecau et al. [23] and related references
therein. However, for several other problems, such solutions
are either too much complicated or even not possible. Such a
complication even increases if the problem under consideration
is composed of fractional differential equations, such as the
problem considered in these articles on different aspects of
sciences and engineering [24–36]. Some other related studies
regarding fluid dynamics problems can be seen in Waqas et al.
[37], Marin et al. [38], Jamil [39], and Jamil et al. [40, 41]. Roberts
and Kaufman [42] is used for some of the Laplace inversion
formulas needed for this work.

The main purpose of the present article is to study the time-
dependent flow of GBF (incompressible) over an infinite (in
horizontal-direction) rigid plate given sudden jerk. Simultaneous
effects of MHD and porosity are also taken into consideration.

Exact analytic solutions are obtained for the dimensionless
fluid velocity and non-trivial shear stress exerted by the fluid
on the plate. Laplace transform is indeed a suitable method
to solve this problem. Clearly, these solutions satisfy the given
imposed conditions [initial and boundary conditions (IBCs)]
and can produce other exact analytic solutions for other non-
Newtonian fluids problems such as Burgers’ fluids, OBFs, and
Maxwell fluids performing a similar type of motion. Exact
solutions for Newtonian fluids performing the same motion
can also be obtained as a special case by vanishing all other
non-Newtonian parameters. Graphical results are plotted and
discussed for embedded parameters. Solutions for other fluids
(generalized Burger fluids without MHD and porosity effects,
Newtonian fluids) in limiting sense are also recovered.

PROBLEM FORMULATION AND INTEGRAL
TRANSFORM SOLUTION

The problem formulation states that an incompressible
flow strongly depends on time (unsteady flow) of a highly

non-Newtonian fluid known as GBF lies in a semi-infinite
porous space y > 0 ; i.e., the fluid is over a rigid plate kept at
y = 0. The axes (x−axis and y−axis) are taken perpendicular
to each other; i.e., the x−axis is taken in the flow direction
while the y−axis is chosen normal to the direction of the flow.
MHD effect is considered under which the fluid behaves like
an electrically conducting liquid under the influence of an
applied magnetic field such that the induced magnetic field is
v (0, t) = V , v

(

y, t
)

→ 0 as y → ∞; t > 0, neglected
assuming that magnetic Reynolds number is too small. GBF
is initially taken at rest (for time t = 0); however, for time
t > 0, the plate is give a sudden jerk (impulsive motion
of the plate) and the fluid starts with the same impulsive
motion. The scenario stated above is formulated in the form
of partial differential equation with physical boundary and
initial conditions as given below (for detailed analysis of the
governing equation, one may refer to Xue and Nie [17] and
Hayat et al. [18]):

ρ

(

1+ λ
∂

∂t
+ γ

∂2

∂t2

)

∂v

∂t
= µ

(

1+ λr
∂

∂t
+ γ1

∂2

∂t2

)

∂2v

∂y2

−δB20

(

1+λ
∂

∂t
+γ

∂2

∂t2

)

v

−
µϕ

k

(

1+λr
∂

∂t
+γ1

∂2

∂t2

)

v, (1)

(

1+ λ
∂

∂t
+ γ

∂2

∂t2

)

T(y, t) = µ

(

1+ λr
∂

∂t
+ γ1

∂2

∂t2

)

∂v(y, t)

∂y
,

(2)

v (0, t) = V , v
(

y, t
)

→ 0 as y → ∞; t > 0, (3)

v
(

y, 0
)

=
∂v
(

y, 0
)

∂t
=

∂2v
(

y, 0
)

∂t2
= 0; y > 0. (4)

in which v is the velocity component in x− direction, ρ is the
fluid density, µ is the dynamic viscosity, δ is the finite electrical
conductivity of the fluid, ϕ (0 < ϕ < 1) is the porosity, k > 0
is the permeability of the porous medium, λ and λr (< λ) are
respectively the relaxation and retardation times, γ and γ1
are the material constants having the dimensions as the square
of time, and V denotes the reference velocity.

The problem described by Equations (1)–(3),
after using non-dimensional quantities, takes the
following form:

(

1+
∂

∂τ
+ β

∂2

∂τ2

)

∂u (ξ , τ)

∂τ

=





(

1+α ∂
∂τ

+β1
∂2

∂τ2

)

∂2u(ξ , τ)

∂ξ2
−M2

(

1+ ∂
∂τ

+ β ∂2

∂τ2

)

u (ξ , τ)

− 1
K

(

1+ α ∂
∂τ

+ β1
∂2

∂τ2

)

u (ξ , τ) , ξ , τ > 0,



 (5)

(

1+
∂

∂τ
+ β

∂2

∂τ 2

)

s =
(

1+ α
∂

∂τ
+ β1

∂2

∂τ 2

)

∂u

∂τ
, ξ , τ > 0,

(6)

u (0, τ) = 1, u (ξ , τ) → 0 as ξ → ∞ τ > 0, (7)
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u (ξ , 0) =
∂u (ξ , 0)

∂τ
=

∂2u (ξ , 0)

∂τ 2
= 0, ξ > 0, (8)

where

τ =
t

λ
, ξ =

y

cλ
, u =

v

V
, s =

T

ρcV
, c =

√

µ

ρλ
, (9)

α =
λr

λ
, β =

γ

λ2
, β1 =

γ1

λ2
, M2 =

δB20λ

ρ
,

1

K
=

µϕλ

ρk
. (10)

In the transformed q−plane, Equations (5)–(8) give

d2u
(

ξ , q
)

dξ 2
−

βq3 + a0q
2 + b0q+ c0

β1q2 + αq+ 1
u
(

ξ , q
)

= 0, (11)

u
(

0, q
)

=
1

q
, u

(

ξ , q
)

→ 0 as ξ → ∞, (12)

in which q is a Laplace transform parameter and

a0 = M2β +
β1

K
+ 1, b0 = 1+M2 +

α

K
, c0 = M2 +

1

K
,

(13)

u
(

ξ , q
)

= L−1 {u (ξ , τ)} =
∞
∫

0

e−qτu (ξ , τ) dτ .

The transformed solution of Equation (11) under the boundary
conditions (12) gives

u
(

ξ , q
)

=
1

q
exp



−ξ

√

βq3 + a0q
2 + b0q+ c0

β1q2 + αq+ 1



 . (14)

In obtaining u (ξ , τ) = L−1{u
(

ξ , q
)

}, we write Equation (14) as

u
(

ξ , q
)

= u1
(

q
)

u2
(

ξ , q
)

, (15)

with

u1
(

q
)

=
1

q
, (16)

u2
(

ξ , q
)

= exp

(

−ξ

√

w
(

q
)

)

;

w
(

q
)

=
βq3 + a0q

2 + b0q+ c0

β1q2 + αq+ 1
. (17)

Expressing u1 (τ ) = L−1{u1
(

q
)

}, u2 (ξ , τ) = L−1{u2
(

ξ , q
)

},
Equation (16) after Laplace inversion gives

u1 (τ ) = 1. (18)

To find u2 (ξ , τ) = L−1{u2
(

ξ , q
)

}, using the inversion formula
for compound functions

L−1{F
[

w
(

q
)]

} =
∞
∫

0

f (u) g (u, τ) du, (19)

where f (τ ) = L−1{F
(

q
)

} and g (u, τ) = L−1{e−uw(q)}.
Choosing f

(

ξ , q
)

= e−ξ
√
q, then

f (ξ , τ) = L−1{e−ξ
√
q} =

ξ

2τ
√

πτ
exp

(

−ξ 2

4τ

)

; ξ > 0 (20)

and

u2 (ξ , τ) = L−1{u2
(

ξ , q
)

} =
∞
∫

0

f (ξ , u) g (u, τ) du

=
ξ

2
√

π

∞
∫

0

1

u
√
u
exp

(

−ξ 2

4u

)

g (u, τ) du. (21)

In order to find g (u, τ) = L−1{e−uw(q)}, we express w
(

q
)

as follows

w
(

q
)

= b1 + a1q+
η1

q− q1
+

η2

q− q2
, (22)

a1 =
β

β1
, b1 =

(

a0 −
αβ

β1

)

1

β1
, c1 = b0 −

β

β1

−
α

β1

(

a0 −
αβ

β1

)

,

d1 = c0 +
(

a0 −
αβ

β1

)

1

β1
, η1 =

c1q1 + d1

q1 − q2
,

η2 = −
c1q2 + d1

q1 − q2
, (23)

where q1 and q2 are the roots of the equation β1q
2 + αq+ 1 =

0. Thus,

g (u, τ) = e−uη0L−1
{

exp
(

−
ua

d
q
)

[

1−H1
(

q
)

−H2
(

q
)

+H1
(

q
)

H2
(

q
)]}

,

with

H1
(

q
)

= 1− exp

(

−
uη1

q− q1

)

and

H2
(

q
)

= 1− exp

(

−
uη2

q− q2

)

.

Let us denote

h1 (τ ) = L−1{H1
(

q
)

} =
√

η1u

τ
eq1τ J1

(

2
√

η1uτ
)

, (24)
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and

h2 (τ ) = L−1{H2
(

q
)

} =
√

η2u

τ
eq2τ J1

(

2
√

η2uτ
)

, (25)

where J1 (·) denotes the Bessel function of first kind of order one
and then finally one has

g (u, τ) = δ (τ − ua1) e
−ub1

−√
η1u

τ
∫

0

δ (s− ua1)√
τ − s

eq1(τ−s)J1
(

2
√

η1u (τ − s)
)

ds

−√
η2u

τ
∫

0

δ (s− ua1)√
τ − s

eq2(τ−s)J1
(

2
√

η2u (τ − s)
)

ds

+u
√

η1η2

τ
∫

0

s
∫

0

×
δ (τ − s− ua1)√

σ (s− σ)
eq1σ+q2(s−σ)J1

(

2
√

η1uσ
)

J1
(

2
√

η2u (s− σ)
)

ds dσ

(26)

and L−1{e−αq} = δ (τ − α) . Here δ (·) indicates the Dirac
delta function.

Insertion of Equation (26) into Equation (21) leads to the
following result:

u2 (ξ , τ) =
ξ

2
√

π

∞
∫

0

δ (τ − ua1)

u
√
u

exp

(

−ξ 2

4u
− b1u

)

du

−
√

η1ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√

τ − s

× exp

(

−ξ 2

4u
+ q1 (τ − s) − b1u

)

J1
(

2
√

η1u (τ − s)
)

du ds

−
√

η2ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√

(τ − s)

exp

(

−ξ 2

4u
+ q2 (τ − s) − b1u

)

J1
(

2
√

η2u (τ − s)
)

du ds

+
√

η1η2ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (τ − s− ua1)√
uσ (s− σ)

exp

(

−ξ 2

4u
+ q1σ + q2 (s− σ) − b1u

)

×J1
(

2
√

η1uσ
)

J1
(

2
√

η2u (s− σ)
)

du ds dσ .

(27)

Taking into consideration Equations (27) and (18), one obtains

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√
u

exp

(

−ξ 2

4u
− b1u

)

du ds

−
√

η1ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (σ − ua1)

u
√
s− σ

exp

(

−ξ 2

4u
+ q1 (s− σ) − b1u

)

J1
(

2
√

η1u (s− σ)
)

du ds dσ

−
√

η2ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (σ − ua1)

u
√
s− σ

J1
(

2
√

η2u (s− σ)
)

(28)

exp

(

−ξ 2

4u
+ q2 (s− σ) − b1u

)

du ds dσ

+
√

η1η2ξ

2
√

π

τ
∫

0

s
∫

0

σ
∫

0

∞
∫

0

δ (s− σ − ua1)√
uη (σ − η)

J1
(

2
√

η1uη
)

J1
(

2
√

η2u (σ − η)
)

× exp

(

−ξ 2

4u
+ q1η + q2 (σ − η) − b1u

)

du ds dσ dη.

Setting u = dv/a into Equation (28) and using the
following property:

b
∫

a

f (x) δ (x− x0) dx =
{

f (x0) for x ∈
[

a, b
)

,
0 for x /∈

[

a, b
) (29)

we arrive at the following result:

u (ξ , τ) =
ξ
√
a1

2
√

π

τ
∫

0

1

s
√
s
exp

(

−a1ξ
2

4s
−

b1s

a1

)

ds

−
√

η1ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

exp

(

−a1ξ
2

4σ
+ q1 (s− σ) −

b1σ

a1

)

×J1

(

2

√

η1

a1
σ (s− σ)

)

ds dσ

−
√

η2ξ

2
√

π

τ
∫

0

s
∫

0

exp

(

−a1ξ
2

4σ +q2 (s− σ)− b1σ
a1

)

σ
√
s− σ

×J1

(

2

√

η2

a1
σ (s− σ)

)

ds dσ

+
√

η1η2ξ

2
√
a1π

τ
∫

0

s
∫

0

σ
∫

0

J1

(

2
√

η1
a1

η (s− σ)

)

√
η (s− σ) (σ − η)

× exp

(

−a1ξ
2

4 (s− σ)
+ q1η + q2 (σ − η) −

b1

a1
(s− σ)

)

J1

(

2

√

η2

a1
(s− σ) (σ − η)

)

ds dσ dη.

(30)

Now, the expression for the shear stress can be easily found from
Equation (6) and hence finally we get.

s (ξ , τ) =
√

a1

πτ
exp

(

−a1ξ
2

4τ
−

b1τ

a1

)

−
√

η1

a1
√

π

τ
∫

0

1
√

τ − s
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FIGURE 1 | Velocity plots showing variations in K.

exp

(

−a1ξ
2

4s
+ q1 (τ − s) −

b1s

a1

)

J1

(

2

√

η1

a1
s (τ − s)

)

ds

−
√

η2

a1
√

π

τ
∫

0

1
√

τ − s
exp

(

−a1ξ
2

4s
+ q2 (τ − s) −

b1s

a1

)

J1

(

2

√

η2

a1
s (τ − s)

)

ds

+
√

η1η2

a1
√
a1π

τ
∫

0

s
∫

0

√
τ − s

√
σ (s− σ)

exp

(

−a1ξ
2

4 (τ − s)
+ q1σ + q2 (s− σ) −

b1

a1
(τ − s)

)

×J1

(

2

√

η1

a1
σ (τ − s)

)

J1

(

2

√

η2

a1
(τ − s) (s− σ)

)

ds dσ .

(31)

LIMITING CASES

Absence of MHD and Porosity
In limiting sense, when the magnetic effect is absent (M = 0 )
and the medium is non-porous, then the above solutions take the
following forms:

u (ξ , τ) =
ξ
√

β

2
√

β1π

τ
∫

0

1

s
√
s
exp

(

−βξ 2

4β1s
−
(

1

β
−

α

β1

)

s

)

ds

−
√

η3ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

exp

(

−βξ 2

4β1σ
+ q1 (s− σ) −

(

1

β
−

α

β1

)

σ

)

×J1

(

2

√

β1η3

β
σ (s− σ)

)

ds dσ

−
√

η4ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

J1

(

2

√

β1η4

β
σ (s− σ)

)

× exp

(

−βξ 2

4β1σ
+q2 (s− σ)−

(

1

β
−

α

β1

)

σ

)

dsdσ

FIGURE 2 | Velocity plots showing variations in M.

FIGURE 3 | Shear stress plots showing variations in K .

FIGURE 4 | Shear stress plots showing variations in M .
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+
√

β1η3η4ξ

2
√

βπ

τ
∫

0

s
∫

0

σ
∫

0

exp
(

−βξ2

4β1(s−σ)
+ q1η + q2 (σ − η)

−
(

1
β
− α

β1

)

(s− σ)

)

√
η (s− σ) (σ − η)

×J1

(

2

√

β1η3

β
η (s− σ)

)

J1

(

2

√

β1η4

β
(s− σ) (σ − η)

)

ds dσ dη.

(32)

s (ξ , τ) =
√

β

β1πτ
exp

(

−βξ 2

4β1τ
−
(

1

β
−

α

β1

)

τ

)

−
β1
√

η3

β
√

π

τ
∫

0

1
√

τ − s
exp

(

−βξ 2

4β1s
+ q1 (τ − s)

−
(

1

β
−

α

β1

)

s

)

×J1

(

2

√

β1η3

β
s (τ − s)

)

ds

−
β1
√

η4

β
√

π

τ
∫

0

1
√

τ − s
J1

(

2

√

β1η4

β
s (τ − s)

)

ds

× exp

(

−βξ 2

4β1s
+ q2 (τ − s) −

(

1

β
−

α

β1

)

s

)

+
β1
√

β1η3η4

β
√

βπ

τ
∫

0

s
∫

0

√
τ − s

√
σ (s− σ)

× exp

(

−βξ 2

4β1 (τ − s)
+ q1σ + q2 (s− σ)

−
(

1

β
−

α

β1

)

(τ − s)

)

J1

(

2

√

β1η3

β
σ (τ − s)

)

J1

(

2

√

β1η4

β
(τ − s) (s− σ)

)

ds dσ ,

(33)

with the following expressions for η3 and η4 :

η3 =

(

1− β
β1

− α
β1

+ α2β

β2
1

)

q1 + αβ

β2
1
− 1

β1

q1 − q2
,

η4 = −

(

1− β
β1

− α
β1

+ α2β

β2
1

)

q2 + αβ

β2
1
− 1

β1

q1 − q2
. (34)

It is important to note that if we put M = 1
K = 0 into the

governing Equation (6) and solve along with Equation (7) with
the prescribed boundary and initial conditions, we get the same
expressions for velocity and shear stress as given above.

Newtonian Fluid
For Newtonian fluid, we make λ, λr , γ , and γ1 equal to zero or
equivalently λ = λr = γ = γ1, then the solutions (30) and (31)
reduce to

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

1

s
√
s
exp

(

−ξ 2

4s
−
(

M2 +
1

K

)

s

)

ds, (35)

FIGURE 5 | Velocity plots showing variations in K (Newtonian fluid).

FIGURE 6 | Velocity plots showing variations in M (Newtonian fluid).

s (ξ , τ) =
1

√
πτ

exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

τ

)

. (36)

Now, taking λ = λr = γ = γ1 in the governing Equation (6)
and solving the resulting equations with the given boundary and
initial conditions, we get

u
(

ξ , q
)

=
1

q
exp

(

−ξ
√
q
)

= u1
(

q
)

u2
(

ξ , q
)

(37)

where

u1
(

q
)

=
1

q
and u2

(

ξ , q
)

= exp

(

−ξ

√

q+M2 +
1

K

)

. (38)
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FIGURE 7 | Shear stress plots showing variations in K (Newtonian fluid).

FIGURE 8 | Shear stress plots showing variations in M (Newtonian fluid).

Taking the Laplace inverse of Equation (38), we get

u1 (τ ) = 1, u2 (ξ , τ)=
ξ

2τ
√

πτ
exp

(

−ξ 2

4τ
−
(

M2+
1

K

))

. (39)

The convolution product of u1 (τ ) = 1 and u2 (ξ , τ) gives

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

1

s
√
s
exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

s

)

ds. (40)

The corresponding shear stress can be easily found by using
Equation (6); i.e.,

s
(

ξ , q
)

= −
exp

(

−ξ

√

w
(

q
)

)

√

w
(

q
)

; w
(

q
)

= q+M2 +
1

K
. (41)

Using a similar method as in the case of velocity, the final
expression for the shear stress is given as follows:

s (ξ , τ) =
1

√
πτ

exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

τ

)

. (42)

Here, we noted that in both cases, i.e., from the final solutions
given by Equations (30) and (31) and from the governing
Equations (5) and (6), we obtained the same exact results for
velocity and shear stress given by Equations (35), (36), (40),
and (42), respectively. Indeed, this provides a useful check
of correctness.

NUMERICAL RESULTS AND DISCUSSION

Figure 1 is plotted for K = 0.2, 0.4, 0.6, 0.8 when M =
0.2, α = 0.9, β1 = 0.5, β = 0.8 and τ = 0.5, whereas
Figures 2, 4 are sketched for M = 0, 1, 2, 3 when K =
2, α = 0.9, β1 = 0.5, β = 0.8, and τ = 0.5. Figures 1–4
have been displayed to see the influence of Hartmann number
M and porosity parameters K on the fluid velocity and the
corresponding shear stress of a GBF. To check the effects of
M and K on the fluid velocity and related shear stress for
a Newtonian fluid, Figures 5–8 are sketched. Figures 5, 7 are
plotted for different values of K when M = 0.2 and τ = 0.5,
whereas Figures 6, 8 are prepared for various values of M when
K = 2 and τ = 0.5. Note that Figures 1–8 provide a comparison
of velocity field and the related shear stress for the case of GBF
with that of a Newtonian fluid. Figure 1 shows the influence of
K on the Burgers’ fluid velocity; it can be noticed that velocity
increases with the increasing values of K, due to the decrease in
opposing forces. In Figure 2, the impact of M is shown on fluid
velocity; from this figure, it is noticed that velocity is a decreasing
function of M. This is because the greater values of M enhance
the Lorentz forces, which are the opposing forces. The same
behavior is noticed in Figures 5, 6 for Newtonian fluid. Figure 3
is plotted in order to show the effect ofK on shear stress; the shear
stress decreases with the increasing values of K. The behavior of
shear stress is noticed for different values of M in Figure 4. It is
observed that the shear stress increases with the increasing values
ofM. Figures 7, 8 also show the same behavior of shear stress for
Newtonian fluid.
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NOMENCLATURE

v (m/s) Velocity component in the x−direction

λ (s) Relaxation time

ρ (kg/m3) Fluid density

λr (< λ) (s) Retardation time

µ (kg/m s) Dynamic viscosity

γ (s2) and γ1 (s2) Material constants having the dimensions as the square of time

δ (s3A2/kgm3) Finite electrical conductivity

V (m/s) Reference velocity

ϕ (0 < ϕ < 1) Porosity

B0 (kg/s
2A) Applied magnetic field

k > 0 (m2) The permeability of the porous medium

v (y, t) (m/s) Fluid velocity

T (y, t) (kg/s2m) Shear tress

u (ξ , τ) (m/s) ands (ξ , τ) (Pa) Dimensionless fluid velocity and shear stress
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Lump-Type and Bell-Shaped Soliton
Solutions of the Time-Dependent
Coefficient Kadomtsev-Petviashvili
Equation
Aliyu Isa Aliyu 1*, Yongjin Li 1*, Liu Qi 1, Mustafa Inc 2, Dumitru Baleanu 3,4 and

Ali S. Alshomrani 5
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Romania, 5Department Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

In this article, the lump-type solutions of the new integrable time-dependent coefficient

(2+1)-dimensional Kadomtsev-Petviashvili equation are investigated by applying the

Hirota bilinear technique and a suitable ansatz. The equation is applied in the modeling

of propagation of small-amplitude surface waves in large channels or straits of

slowly varying width, depth and non-vanishing vorticity. Applying the Bell’s polynomials

approach, we successfully acquire the bilinear form of the equation. We firstly find a

general form of quadratic function solution of the bilinear form and then expand it as

the sums of squares of linear functions satisfying some conditions. Most importantly,

we acquire two lump-type and a bell-shaped soliton solutions of the equation. To

our knowledge, the lump type solutions of the equation are reported for the first

time in this paper. The physical interpretation of the results are discussed and

represented graphically.

Keywords: Bell’s polynomials, Hirota bilinear form, bell-type solutions, lump-type solutions, (2+1)-dimensional

Kadomtsev-Petviashvili equation

1. INTRODUCTION

Nonlinear equations (NLEs) have been the subject of concentrate in different parts of
numerical physical sciences, for example, material science, science, and so forth. The explanatory
arrangements of such conditions are of essential significance since a great deal of scientific physical
models are depicted by NLEs [1]. Among the conceivable answers for NLEs, certain unique frame
arrangements may depend just on a solitary blend of factors, for example, solitons. In soliton
theory [2], optical solitons, painleve analysis, investigation of integrability of systems of equations,
Hamiltonian structure, Bell’s polynomials, Backlaund transformations, etc. are the hot topics in
recent time. Lump solutions are important models to used to describe certain complicated physical
phenomena in science [3]. Lump solution is a kind of special rational function solutions localized
along all directions in the space. Lump solitons have been intensively studied and some of the results
have been reported in [4–6]. The be integrable time-dependent coefficient (2+1)-dimensional
Kadomtsev-Petviashvili model that will be studied in this work is given by Wazwaz [7]:

(ψt + ψψx + ψxxx)x + 3ψyy + g(t)ψxx = 0, (1)
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where ψ(x, t, y) is a function of the temporal variable t and
two scaled spatial variables x and y. g(t) is a functions of t.
The equation is applied in the modeling of propagation of
small-amplitude surface waves in large channels or straits of
slowly varying width, depth and non-vanishing vorticity. (1) was
proposed by WazWaz in [7] where the integrability property
of the equation were explicitly demonstrated and the multiple
complex and multiple real soliton solutions of the equation
were reported. Variable-coefficients KP equations have been
investigated thoroughly in the literature [8–11].

To our knowledge, the lump soliton solutions to (1) have not
been studied using the Hirota Bilinear methods. In this article,
by applying the concept of Bell polynomials [3, 4] and Hirota
Bilinear approach [12–14], the lump soliton solutions of (1) will
be derived. In addition, a Bell-shaped soliton solution will also be
derived using an efficient ansatz [15].

2. BELL POLYNOMIAL

In this part, we recall some important terminologies about the
Bell polynomials [12–14].

Let f = f (y1, y2, ..., yn) be a C
∞ function, the multi-

dimensional Bell polynomials are defined by the following:

Yn1y1 ,...,mryr (f ) ≡ Ym1,...,mr (fl1y1 , ..., flryr ) = e−f ∂m1
y1

...∂mr
yr

ef , (2)

where (fl1y1 , ..., flryr ) = ∂
l1
y1 ...∂

lr
yr (0 ≤ li ≤ mi, i = 1, 2, ...r).

Takingm = 1, Bell polynomials is given by:

Ymy(f ) ≡ Ym(f1, ..., fm)
∑ m!

s1!...sm!(1!)s1 ...(m!)sm
f s11 ...f smn ,

m =
m
∑

k = 1

ksk. (3)

The multi-dimensional Bell polynomials can be represented by
Gilson et al. [14]:

Ym1y1 ,...mryr (v,w) = Ym1,...,mr (f )|fl1y1 ,...,flr yr

=

{

vl1y1 , ..., flryr , l1 + ...lr is odd

wl1y1 , ..., flryr , l1 + ...lr is even
(4)

Yy = vy, Y2y(v,w) = v2x + w2y, Yy,t(v,w) = vyvt + wyt ,

Y3y(v,w) = v3y + 3vyw2y + v2y , ... (5)

The conjunction between Y-polynomials and the Hirota bilinear
operator are related by the following identity:

Ym1y1 ,...,mryr

(

v = lnF/G, w = lnFG

)

.

(

FG

)−1

Dm1
y1
...Dmr

yr
F.G,

(6)

where F andG are functions of y and t. Setting F = G, the identity
(6) becomes:

F−2Dm1
y1
...Dmr

yr
F.F = Y(0, 2lnF)

=











0, m1 + ...mr is odd

Ym1y1 ,...mryr (q), m1 + ...mr is even.

(7)

The first fewP-polynomials can be represented by the following:

P2y(q) = q2y, Pyt(q) = qyt , P4y(q) = q4y + 3q22y,

P6y(q) = q6y + 15q2yq4y + 15q32y, ... (8)

The Bell polynomials Ym1y1 ,...mryr (v,w) can be separated into
certain polynomials and Y -polynomials:

(FG)−1Dm1
y1
...Dmr

yr
F.G = Ym1y1 ,...mryr (v,w)|v=lnF/G,w=lnFG)

=
∑

m1+...+mr=even

m1
∑

l1 = 0

...
mr
∑

lr = 0

r
∏

i = 0

(

mi

li

)

Pl1y1 ,...,lryr (q)Y(mr−lr)yr (v).

(9)

The main property of the Bell polynomials:

Ym1y1 ,...nryr (v)|v = ln ψ = ψm1y1,...,mryr /ψ (10)

means that the binary Bell polynomials Ym1y1 ,...mryr (v,w) can be
linearized by applying the Hopf-Cole transformation v = lnψ ,
that is ψ = F/G

Theorem 1. By applying the transformation,

ψ = 12(lnf )xx, (11)

(1) bilinearized into

(D4
x + g(t)D2

x + DtDx + 3D2
y).f .f = 0, (12)

where f = f (x, t, y).
Proof: Introducing the potential field variable q on setting

ψ = h(t)qxx, (13)

where h = h(t) is a function of t. Substituting (13), we can obtain

1

2
h(t)q2xx + g(t)qxx + 3qyy + qxxxx + qxt = 0. (14)

Integrating (14) with respect to x, setting h(t) = 6 and by
means of formula (8), (14) can be converted to P-polynomials
represented by:

3P2y(q)+ g(t)P2x(q)+ P4x(q)+ Pxt(q) = 0. (15)

By applying (10), we obtain:

ψ = 2lnf ⇐⇒ ψ = h(t)qxx = 12(lnf )xx. (16)
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3. LUMP-TYPE SOLITONS TO (1)

TheHirota bilinear form (12) of (1) is equivalent to the following:

3ffyy−2g(t)fx
2+2fg(t)fxx+6f 2xx−8fxfxxx+2ffxxxx−2fxft+2ffxt = 0.

(17)
To derive the lump-type soliton of (1), we consider f in the
following form [3]

f = XTBX + f0, (18)

where B = (aij)4×4 is a symmetric matrix, X = (1, x, y, t)T , aij
and f0 are constants. (18) can be expanded as:

f = a22x
2 + a44t

2 + a33y
2 + 2a12x+ 2a13y+ 2a14t + a23xy

+2a24tx+ 2a34ty+ a11 + f0. (19)

Putting (19) into (12) and performing all the necessary algebraic
calculations by symbolic computations, we acquire the following
system of algebraic expressions:

6f0a33 + 6a11a33 − 8a12a14 + 24a222 + 4g(t)(−2a212

+ (f0 + a11)a22)+ 4f0a24 + 4a11a24 = 0, (20)

−2 a22(2g(t)a22 + 2a24 − 3a33) = 0, (21)

(−8g(t)a12a22 − 8a14a22 + 12a12a33) = 0, (22)

(−4a14a23 + 8g(t)(a13a22 − a12a23)

+ 8a13a24 + 12a13a33 − 8a12a34) = 0, (23)

(−4g(t)a22a23 + 6a23a33 − 8a22a34) = 0, (24)

(4a24a33 + 6a233 − 2g(t)(a223 − 2a22a33)− 4a23a34) = 0, (25)

4 (2g(t)(a14a22 − 2a12a24)+ 3a14a33 − 2a12a44) = 0, (26)

(−8g(t)a22a24 + 12a24a33 − 8a22a44) = 0, (27)

(12a33a34 + g(t)(−8a23a24 + 8a22a34)− 4a23a44) = 0, (28)

(2(−2a24 + 3a33)a44 + g(t)(−8a224 + 4a22a44)) = 0. (29)

Solving (20) to (29), we acquire the following soliton parameters:























































































































































a22 =
a224a33

a234
,

a13 =
a14a33

a34
,

a12 =
a14a24a33

a234
,

a44 =
a234
a33

,

a23 =
2a24a33
a34

,

g(t) = −
(

2a24a33 − 3a233
)

a234

2a224a
2
33

,

f0 = −a11 +
a33

(

−2a424 + a214a
2
34

)

a434
.

(30)

where a33 6= 0, a24 6= 0, a34 6= 0 are necessary and sufficient
conditions which must be satisfied for the solution to exist. From
(30), we obtain the following solution of f under the general
quadratic function:

f =
1

a434

{

− 2a424a33 + a224a33a
2
34x

2

+ 2a24a
2
34(a14a33x+ a34(a33y+ ta34))

+
a234(a14a33 + a34(a33y+ a34t))2

a33

}

. (31)

Using (30), under the transformation (11), we acquire the
following lump-type solution of (1).

ψ(x, t, y) =
12(ffxx − f 2x )

f 2

=
12

f 2a634

{

2a224(2a
4
24a

2
33 + x2a224a

2
33a

2
34

+ 2xa24a33a
2
34(a14a33 + a34(ya33 + ta34))

+ a234(a14a33 + a34(ya33 + ta34))
2)

}

. (32)

It should be noted that the positiveness of f cannot be guaranteed.
To tackle this problem, we expand (18) as the sums of squares of
linear function f and introduce the following theorem:

Theorem 2. (Cholesky Decomposition Theorem [3]). Let B =
(aij) be a real symmetric positive matrix, then it can be simplified
into the following:

B = RRT , (33)

where R = (rij) is a triangular matrix. The relationship between
elements in B and elements in R is given below:

rij =































(aii −
∑i−1

k = 1 r
2
ik
)2, (i = j),

1
rii
(aii −

∑i−1
k = 1 rikrjk), (i > j),

0, (i < j).

(34)

In accordance with Theorem 2, (18) can be rewritten as:

f = XTRRTX + f0 = (RTX)T(RTX)+ f0 =

(r11 + r12x+ r13y+ r14t)
2 + (r22x+ r23y+ r24t)

2

+(r33y+ r34t)
2 + r244t

2 + f0.

(35)

(35) guarantees the positive definiteness of f . Putting (35)
into (12) and solving the result, we obtain the following
soliton coefficients:
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r23 = 0,

r22 = 0,

r33 = 0,

r31 = 0,

r24 =
√

−r234 − r244,

g(t) = 3r213−2r12r14
2r212

,

f0 = − 2r412
r213

.

(36)

Where r23 6= 0, r22 6= 0 are necessary and sufficient conditions
which must be satisfied for the solutions to exist. From (36), we
obtain the solution of f as:

f = −
2r412
r213

t2 +
(

r11 + r12x+ r13y+ r14t
) 2

+r234t
2 + t2r244 +

(

−r234 − r244
)

.

(37)

Putting (36) into (35) using (11), we acquire the following
lump-type solution of (1) under positive quadratic function:

ψ(x, t, y) =
12(ffxx − f 2x )

f 2
= 12

{

−
4r212(r11 + xr12 + yr13 + tr14)2

(− 2r412
r213

+ (r11 + xr12 + yr13 + tr14)2 + t2r234 + t2r244 + t2(−r234 − r244))
2
+

2r212

− 2r412
r213

+ (r11 + xr12 + yr13 + tr14)2 + t2r234 + t2r244 + t2(−r234 − r244)

}

.

(38)

4. LUMP SOLITONS TO (1)

4.1. Lump Solitons to (1) Using (32)
Setting the following soliton parameters a24 = 1, a33 = 2, a14 =
1, a34 = 3 in (32), we obtain the following lump solution to (1):

ψ(x, t, y)

= −
864

(

8+ 36x2 + 36x(2+ 3(3t + 2y))+ 9(2+ 3(3t + 2y))2
)

(

−8+ 36x2 + 36x(2+ 3(3t + 2y))+ 9(2+ 3(3t + 2y))2
)2

.

(39)

4.2. Lump Solitons to (1) Using (38)
Setting the following soliton parameters: r11 = 1, r12 = 2, r13 =
−1, r44 = 1, r34 = 3, r14 = 1 in (38), we acquire the following
lump solution to (1)

ψ(x, t, y)

= 12

{

8

−32+ (1+ t + 2x− y)2
−

16(1+ t + 2x− y)2

(−32+ (1+ t + 2x− y)2)2

}

.

(40)

5. BELL-SHAPED SOLITON TO (1)

The bell-shaped soliton solution of (1) may be derived using:

ψ(x, t, y) = ρsechpσ , (41)

where σ = η(x+ y− vt). Putting (41) into (1) yields:

pvη2ρsech(σ )p − pη4ρsech(σ )p + 2p(1+ p)η4ρsech(σ )p −
p(1+ p)vη2ρsech(σ )2+p sinh(σ )2 + p(1+ p)η4ρsech(σ )2+p

sinh(σ )2 − 2p(1+ p)2η4ρsech(σ )2+p sinh(σ )2

+p2η2ρ2sech(σ )2+2p sinh(σ )2 + 3(−pη2ρsech(σ )p

+p(1+ p)η2ρsech(σ )2+p sinh(σ )2)+ g(t)(−pη2ρsech(σ )p

+p(1+ p)η2ρsech(σ )2+p sinh(σ )2)+ ρsech(σ )p

(−pη2ρsech(σ )p + p(1+ p)η2ρsech(σ )2+p sinh(σ )2)− pη2ρ cosh(σ )

(−(1+ p)η2sech(σ )1+p + (1+ p)(2+ p)η2sech(σ )3+p sinh(σ )2)

−pηρ sinh(σ )(−(1+ p)η3sech(σ )2+p sinh(σ )

+2(1+ p)(2+ p)η3sech(σ )2+p sinh(σ )

−(1+ p)ηsinh(σ )(−(2+ p)η2sch(σ )2+p

+(2+ p)(3+ p)η2sech(σ )4+p sinh(σ )2) = 0.

(42)

Equating the exponents 4+p = 2+2p, we obtain p = 1. Plugging
the obtained value of p into (42) yields:

2η2ρ(−3+ v+ 8η2 − ρ − g(t))sech(σ )2

+6η2ρ(3− v− 20η2 + 2ρ + g(t))sech(σ )2 tanh(σ )2

+10η2(12η2 − ρ)ρsech(σ )2 tanh(σ )4 = 0.

(43)

Equating the coefficients of linearly independent terms in (43) to
zero, we get:

2η2ρ(−3+ v+ 8η2 − ρ − g(t)) = 0,

6η2ρ(3− v− 20η2 + 2ρ + g(t)) = 0,

10η2(12η2 − ρ)ρ = 0.

(44)

Solving (44) yields:

η =
1

2

√

ρ

3
, g(t) =

1

3
(−9+ 3v− ρ). (45)

The bell-shaped soliton is represented by:

ψ(x, t, y) = ρsech2
[

1

2

√

ρ

3
(x+ y− vt)

]

. (46)
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FIGURE 1 | Perspective view of the lump soliton (39) at t = 0. (A) 3D plot (B) Density plot.

FIGURE 2 | Perspective view of the lump soliton (40) at t = 0. (A) 3D plot (B) Density plot.

FIGURE 3 | Perspective view of the bell-shaped soliton (46) at t = 0. (A) 3D plot (B) Density plot.

Specifically, for the soliton (46) to exist, the condition ρ > 0
must hold.

6. PHYSICAL INTERPRETATION OF
RESULTS

It is worth to mention that at for every t, the solution
ψ = 12(lnf )xx will approach 0 whenever (x, y) approach

infinity in both solutions. The 3D and the density plot for
the lump soliton (39) for t = 0 is shown in Figure 1.
The 3D and the density plot for the lump soliton (40) for
t = 0 is shown in Figure 2. The lump solitons (39) and
(40) admits a pattern with one high peak and a deep hole
hidden beneath the plane wave. Finally, the 3D and the density
plot for the bell-shaped soliton (46) for t = 0 is shown in
Figure 3.
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7. CONCLUDING REMARKS

In this paper, with the aid of the Bell-polynomials approach,
we have successfully derived the bilinear forms of an integrable
time-dependent coefficient (2+1)-dimensional Kadomtsev-
Petviashvili. We also studied the positive quadratic function
solution to the model. Several constraint conditions that
are necessary for the existence of the polynomial solutions
were reported. Upon expanding the polynomials as sums
of squares of linear functions, we acquire a lump-type
solution possessing some arbitrary constraints. With the
choice of different solution parameters, we have reported
two forms of lump soliton solutions. We also utilized a
suitable ansatz approach to derive a one soliton bell-shaped

solution. To our knowledge, the results reported in this
paper are new and introduced for the first time in the
literature. Figures were given to describe the dynamics of
the obtained results.
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This research paper studies the semi-analytical and numerical solutions of the non-linear

long-short wave interaction system. This represents an optical field that does not change

through multiplication due to a sensitive balance being struck between linear and

non-linear impacts in an elastic medium, defined as a medium that can adjust its shape

as a consequence of deforming stress and return to its original form when the force is

eliminated. In this medium, a wave is produced by vibrations that are a consequence of

acoustic power, known as a sound wave or acoustic wave. The Adomian decomposition

method and the cubic and septic B-spline methods are applied to the suggested system

to obtain distinct types of solutions that are used to explain the novel physical properties

of this system. These novel features are described by different types of figures that

show more of the physical properties of this model. Also, the convergence between

the obtained solutions is discussed through tables that show the values of absolute error

between them.

Keywords: nonlinear long-short wave interaction system, adomian decomposition method, cubic B-spline

method, septic B-spline method, semi-analytical and numerical solutions

1. INTRODUCTION

Optical study is considered as one of the most important methodologies in this age due to its
different and important applications in several fields. To develop a deeper understanding of
this type of study, mathematicians have derived many analytical, semi-analytical, and numerical
schemes to obtain distinct types of solutions that are used to characterize the physical properties
of optical soliton waves. The optical soliton constitutes an optical field that does not alter through
multiplication due to a sensitive balance being struck between linear and non-linear impacts in the
medium [1–5]. Optical soliton can be of two types:

• Spatial solitons: the non-linear influence balances the diffraction. The electromagnetic field can
alter the refraction index of the medium while propagating, thus establishing an architecture
identical to a graded-index fiber [6–10].

• Temporal solitons: if the electromagnetic field is already spatially restricted, it is feasible to
transmit pulses that will not alter their form, as the non-linear impacts will be in equilibrium
with the dispersion [11–15].
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The non-linear long-short wave interaction system describes the
interaction between one short transverse wave and one long
longitudinal wave propagating in a generalized elastic medium.
This system has the following form:

{

i8t + 8x x − 89 = 0,
9t + 9x +

(

|8|2
)

x
.

(1)

where 8(x, t) represents the slowly varying envelope of the short
transverse wave,9(x, t) discriminates the long longitudinal wave,
(x) is the locational harmonization, and (t) is the time. Waves
in plasmas are defined as an interrelated set of particles and
fields that disseminate in a periodically duplicating fashion. A
plasma is a quasi-neutral, electrically conductive fluid. Plasma
waves have an EM character of two types, electrostatic and
electromagnetic. Electrostatic and electromagnetic waves have
oscillating species in electrons and ions. Some examples of the
dispersion relationships of plasma waves in electrostatic and
electromagnetic terms are as follows:

• Plasma oscillation: rapid oscillations of the electron intensity
in conducting media such as plasmas or metals in the
ultraviolet zone

• Upper hybrid oscillation: a form of oscillation of magnetized
plasma

• Ion acoustic wave: one kind of longitudinal oscillation of the
ions and electrons in a plasma

• Electrostatic ion cyclotron wave: a longitudinal wobble of
the ions in a magnetized plasma, with dissemination nearly
perpendicular to the magnetic field

• Langmuir wave
• Lower hybrid oscillation: a longitudinal fluctuation of ions and

electrons in a magnetized plasma
• Light wave: a wave made of oscillating magnetic and electric

fields; comprises radio waves, microwaves, ultraviolet, visible
light, infrared, gamma rays, and X-rays

• O wave
• X wave
• R wave (whistler-mode)
• L wave
• Alfvén wave: a kind of magnetohydrodynamic wave in which

ions oscillate in response to a restoration strength presented
by an effective tension on the magnetic field lines; this kind of
wave was named after Hannes Alfvén

• Magnetosonic wave: a longitudinal wave of ions in a
magnetized plasma disseminating perpendicular to the
stationary magnetic field.

All of the properties and abilities of the non-linear
partial differential equations are used to describe these
natural phenomena. According to these properties, many
mathematicians have developed methods and are still trying to
find new general methods to obtain exact and single traveling
wave solutions for these models. For more details about these
methods, please see [16–36].

The rest of this paper is arranged as follows. In section 2,
the Adomian decomposition method [37–40] and Cubic and

septic B-spline method [41–50] are used to obtain approximate
solutions of the non-linear long-short wave interaction system.
In section 4, the conclusion is given.

2. APPLICATION

This section applies the Adomian decomposition method as
the semi-analytical scheme and the cubic & septic B–spline
methods as numerical schemes to the non-linear long-short wave
interaction system [51–55] that is given by:

{

i8t + 8x x − 89 = 0,
9t + 9x +

(

|8|2
)

x
.

(2)

Using the wave transformation 8(x, t) = ei η 3(ε), 9(x, t) =
ϕ(ε) where η = (ρ x + c t), ε = (a x + b t) transforms the non-
linear partial differential equation (2) into the following ordinary
differential equation:

{
(

b+ 2 a ρ
)

i3 −
(

ρ2 + c
)

3 + a2 3′′ − 3ϕ = 0,

(a+ b)ϕ′ + a
(

32
)′ = 0.

(3)

Equating the complex term to zero leads to

b = −2 a ρ. (4)

Integrating the second equation of the system (3) with zero
constant of integration yields:

ϕ =
−a

a+ b
32. (5)

Substituting (4) and (5) into the first equation in the
system (3) yields:

a2 3′′ −
(

ρ2 + c
)

3 +
1

1− 2 ρ
33 = 0. (6)

According to the analytical solutions obtained in Raghda et al.
[Submitted], the exact solution of Equation (6) takes the
following formula

3(ε) = 8 tanh
(ε

2

)

. (7)

2.1. Semi-analytical Solution
This section applies the Adomian decomposition method
to Equation (6) by using its exact solution (6) with the
following conditions:

3(0) = 0, 3′(0) = 4,

where

[

σ = 6, a = 4, α = 1, β = 5, ρ = 4.5

]

. Implementation

of the Adomian decomposition method on Equation (6) yields

30 = 4 ε, (8)
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31 = 0.025 ε5 − 1.17708 ε3, (9)

32 = 0.000416667 ε10 − 0.031529 ε8 − 0.00105097 ε7

+0.103914 ε5, (10)

βi(ε) =
1

6 h3























(ε − εi−2)3, ε ∈ [εi−2, εi−1],
−3 (ε − εi−1)3 + 3 h (ε − εi−1)2 + 3 h2 (ε − εi−1)+ h3, ε ∈ [εi−1, εi],
−3 (εi+1 − ε)3 + 3 h (εi+1 − ε)2 + 3 h2 (εi+1 − ε)+ h3, ε ∈ [εi, εi+1],

(εi+2 − ε)3, ε ∈ [εi+1, εi+2],
0, otherwise,

(14)

33 = 0.000618538 ε10 + 0.00196005 ε9 − 0.0148781 ε7

−0.0000501598 ε11 − 5.5733112373737385× 10−6 ε12

+3.7560096153846164× 10−7 ε13, (11)

According to (8–11), we get

3Semi–analytical = 3.7560096153846164 × 10−7 ε13

−5.5733112373737385 × 10−6 ε12

−0.0000501598 ε11 + 0.0010352 ε10

+0.00196005 ε9 − 0.031529 ε8 − 0.0159291 ε7

+0.128914 ε5 − 1.17708 ε3 + 4 ε + . . . (12)

2.2. Numerical Solutions
This section studies the numerical solutions of the modified BBM
equation by applying the cubic and septic B-spline techniques,
which are considered as the most accurate numerical tools for
getting this type of solution.

2.2.1. Cubic-Spline

According to the cubic B–spline, the numerical solution of the
modified BBM equation (6) is given by

3(ε) =
n+1
∑

i=−1

λi βi, (13)

TABLE 1 | Computational, semi-analytical, and absolute error values obtained by

using the Adomian decomposition method.

Value of ε Analytical

value

Semi-analytical

value

Value of absolute

error

0.000 0.000 0.000 0.0000000000

0.001 0.004 0.004 8.4375 × 10−10

0.002 0.008 0.008 6.75 × 10−9

0.003 0.012 0.012 2.27812 × 10−8

0.004 0.0160000 0.0159999 5.39999 × 10−8

0.005 0.0200000 0.0199999 1.05468 × 10−7

0.006 0.0239999 0.0239997 1.82249 × 10−7

0.007 0.0279999 0.0279996 2.89405 × 10−7

0.008 0.0319998 0.0319994 4.31997 × 10−7

0.009 0.0359998 0.0359991 6.15088 × 10−7

0.010 0.0399997 0.0399988 8.4374 × 10−7

where λi, βi fulfill the conditions:

L3(ε) = ∅(εi,3(εi)) where (i = 0, 1, ..., n)

and

where i ∈ [−2, n + 2], so that the numerical formula of the
solution is given as

3i(ε) = λi−1 + 4 λi + λi+1. (15)

Substituting Equation (15) into (6), leads to a system of equations.
Solving this system of equations gives the value of λi. Replacing
the values of λi, βi into Equation (13) gives the data shown
in Table 2.

TABLE 2 | Computational, numerical, and absolute error values obtained by using

the cubic B–spline scheme.

Value of ε Val. Com. Val. Nu. Value of abs. error

0.000 0.0000000 0.0000000000 0.0000000000

0.001 0.004 0.0040001 8.35327× 10−8

0.002 0.008 0.0080002 1.62003× 10−7

0.003 0.012 0.0120002 2.30348× 10−7

0.004 0.0160000 0.0160003 2.83505× 10−7

0.005 0.0200000 0.0200003 3.16411× 10−7

0.006 0.0239999 0.0240003 3.24004× 10−7

0.007 0.0279999 0.0280002 3.01222× 10−7

0.008 0.0319998 0.0320001 2.43003× 10−7

0.009 0.0359998 0.0359999 1.44283× 10−7

0.010 0.0399997 0.0399997 6.93889 × 10−18

TABLE 3 | Computational, numerical, and absolute error value obtained by using

the septic B–spline scheme.

Value of ε Val. Com. Val. Nu. Value of abs. error

0.000 0.0000000 0.0000000000 0.0000000000

0.001 0.0040000 0.0040001 7.5153×10−8

0.002 0.0080000 0.0080002 1.70905× 10−7

0.003 0.0120000 0.0120002 2.31487× 10−7

0.004 0.0160000 0.0160003 2.88889× 10−7

0.005 0.0200000 0.0200003 3.19377× 10−7

0.006 0.0239999 0.0240003 3.3083×10−7

0.007 0.0279999 0.0280002 3.01294× 10−7

0.008 0.0319998 0.0320001 2.59145× 10−7

0.009 0.0359998 0.0359999 1.26976× 10−7

0.010 0.0399997 0.0399997 6.93889× 10−18
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2.2.2. Septic-Spline

Based on the septic B-spline, the suggested solution of the
ordinary differential form of the modified BBM equation (6) is
given as follows:

3(ε) =
n+1
∑

i=−1

λi βi, (16)

where λi, βi satisfies the conditions

L3(ε) = ∅(εi,3(xi)) where (i = 0, 1, ..., n)

and

FIGURE 1 | Three, two-dimensional, and contour plots of Equation (12), respectively.

FIGURE 2 | Combined, separated, and radar plots of analytical (7) and semi-analytical solutions (12) of Equation (6), respectively.

FIGURE 3 | Combined, bar, and contour plots of the computational, numerical, and absolute error values.
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βi(ε) =
1

h5























































(ε − εi−4)7, ε ∈ [εi−4, εi−3],
(ε − εi−4)7 − 8(ε − εi−3)7, ε ∈ [εi−3, εi−2],

(ε − εi−4)7 − 8(ε − εi−3)7 + 28ε(ε − εi−2)7, ε ∈ [εi−2, εi−1],
(ε − εi−4)7 − 8(ε − εi−3)7 + 28(ε − εi−2)7 + 56(ε − εi−1)7, ε ∈ [εi−1, εi],
(εi+4 − ε)7 − 8(εi+3 − ε)7 + 28(εi+2 − ε)7 + 56(εi+1 − ε)7, ε ∈ [εi, εi+1],

(εi+4 − ε)7 − 8(εi+3 − ε)7 + 28(εi+2 − ε)7, ε ∈ [εi+1, εi+2],
(εi+4 − ε)7 − 8(εi+3 − ε)7, ε ∈ [εi+2, εi+3],

(εi+4 − ε)7, ε ∈ [εi+3, εi+4],
0, otherwise,

(17)

where i ∈ [−3, n + 3]. Thus, the approximate solution is
given by:

vi(ε) = λi−3 + 120 λi−2 + 1191 λi−1 + 2416 λi + 1191 λi+1

+120 λi+2 + λi+3. (18)

Substituting Equation (18) into Equation (6) produces a
system of equations. Solving this system gives the data shown
in Table 3.

3. RESULTS AND DISCUSSION

This section details a comparison between the
numerical solutions obtained in our paper

to determine which one of them is the
more accurate.

The comparison between the numerical solutions depends
on showing which one of the schemes obtains the smallest
value of the absolute value of error. To find these values, the
obtained values of the total value of error in each method
used are plotted in Figure 5, which shows that all the methods
used are accurate and have almost the same amount of
absolute failure.

4. CONCLUSION

This research paper succeeded in the application of the Adomian
decomposition method and the cubic and septic B–spline

FIGURE 4 | Combined and scattering matrix plots of the computational, numerical, and absolute error values.

FIGURE 5 | Combined, radar, and contour plots of the absolute value of error for the Adomian, cubic, and septic schemes.
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method to the non-linear long-short wave interaction system
and in obtaining semi-analytical and numerical solutions for
this system. Moreover, a comparison between the distinct
types of solutions obtained is detailed, and the absolute
values of error between them are shown in Tables 1–3
and Figures 1–5. Both semi–computational and numerical
schemes are shown to be powerful, effective, and able
to be applied to many and various forms of non-linear
evolution equations.
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In this paper, we present the shape-preserving properties of the four-point ternary

non-stationary interpolating subdivision scheme (the four-point scheme). This scheme

involves a tension parameter. We derive the conditions on the tension parameter and

initial control polygon that permit the creation of positivity- and monotonicity-preserving

curves after a finite number of subdivision steps. In addition, the outcomes are

generalized to determine conditions for positivity- and monotonicity-preservation of the

limit curves. Convexity-preservation of the limit curve of the four-point scheme is also

analyzed. The shape-preserving behavior of the four-point scheme is also shown through

several numerical examples.

Keywords: interpolating, non-stationary, shape-preservation, subdivision scheme, ternary

1. INTRODUCTION

Subdivision Schemes (SS) are iterative algorithms for constructing smooth curves/surfaces from a
given control polygon/mesh. The advantages of such schemes are that they are easy to use, simple to
investigate, and highly flexible. The popularity of SS is increasing in various applications such as in
computer-aided geometric design, computer graphics, computer animation, signal processing, and
commercial industry due to their attractive properties. Shape-preservation of the subdivision curve
has significant importance in geometric shape design. Shape-preserving SS are extensively used in
the design of curves to manage and predict their shape according to the shape of initial control
points. Differential equations are used for mathematical modeling of many phenomena. Different
techniques are being used to solve boundary value problems [1] and non-linear problems [2]. In
the same way, SS can also be used to solve fractional differential equations such as [3–7].

Rham [8] was the first to present an SS with C0 continuity to attain a smooth
curve. Afterward, Chaikin [9] introduced a corner-cutting approximating scheme with C1

continuity. Dyn et al. [10] developed a four-point binary interpolating scheme that is
capable of generating a C1-continuous limit curve. Dyn et al. [11] formulated the convexity-
preserving property of the famous four-point interpolatory scheme [10] by taking into account
that the initial control points are convex. Kuijt and Damme [12] presented a series of
local non-linear interpolating schemes that preserve monotonicity. With time, the research
community started taking an interest in ternary SS because, by increasing arity from binary
to ternary, one can improve the order of continuity of the limit curve without significantly
increasing support width [see Beccari et al. [13]]. Hassan et al. [14] constructed a four-
point ternary interpolatory scheme with a tension parameter. Cai [15] derived conditions
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on this parameter to ensure convexity preservation of the limit
curve. Pitolli [16] examined the shape-preserving properties of a
ternary scheme with bell-shaped masks.

Most of the SS offered in literature are stationary, but this
limits the application of the schemes. To reproduce conics,
spirals, and polynomial curves, one has to opt for non-stationary
schemes. Beccari et al. [17] presented a C1 four-point binary
non-stationary interpolating scheme. Akram et al. [18] analyzed
the shape-preserving properties of this scheme [17]. Beccari
et al. [19] also offered a four-point ternary non-stationary
interpolatory scheme with a tension parameter. They showed
that the proposed scheme can generate a variety of curves within
the C2-continuous range of its tension parameter. Ghaffar et al.
[20, 21] introduced odd and even point non-stationary binary SS
with a shape parameter for curve design. Ghaffar et al. [22] also
presented a new class of 2m−point non-stationary SS with some
attractive properties such as torsion, continuity, monotonicity,
curvature, and convexity preservation.

This research aims to completely explore the shape-preserving
properties of the four-point ternary non-stationary interpolatory
scheme [19] (the four-point scheme).We formulate the necessary
conditions on the tension parameter of the scheme and
initial control points that permit the creation of positivity-
and monotonicity-preserving curves after finite iteration levels.
Beccari et al. [19] visually demonstrated that, for an initial
convex control polygon, the four-point scheme did not generate
convex curves. In this regard, we establish the conditions on the
tension parameter that prove that the four-point scheme does not
generate convexity-preserving limit curves.

The rest of the paper is designed as follows. In section 2, we
present the four-point scheme and recall some of its important
results. The positivity-preserving and monotonicity-preserving
properties of the four-point scheme are proved in sections 3 and
4, respectively. In section 5, the convexity-preserving property
of the four-point scheme is discussed. Some numerical examples
are given in section 6 to analyze and demonstrate the shape-
preserving properties of the four-point scheme. Conclusions are
drawn in the last section.

2. THE FOUR-POINT SCHEME

Beccari et al. [19] presented a four-point scheme involving a
tension parameter. For given initial control polygon {(x0i , p

0
i ) ∈

R}i∈Z and for the set of control points at the jth refinement level

{(xji, p
j
i)}i∈Z, j ∈ N0 : = N∪ {0}, the control points at the (j+ 1)th

refinement level can be obtained by the rules:



























p
j+1
3i = p

j
i,

p
j+1
3i+1 =

1
60 ((−90γ

j+1
i − 1)p

j
i−1 + (90γ

j+1
i + 43)p

j
i

+(90γ
j+1
i + 17)p

j
i+1 + (−90γ

j+1
i + 1)p

j
i+2),

p
j+1
3i+2 =

1
60 ((−90γ

j+1
i + 1)p

j
i−1 + (90γ

j+1
i + 17)p

j
i

+(90γ
j+1
i + 43)p

j
i+1 + (−90γ

j+1
i − 1)p

j
i+2),

(1)

where,

γ
j+1
i = −

1

3(1− (β j+1)2)(1+ β j+1)
, (2)

and,

β j+1 =
√

2+ β j,β j ≥ −2 (β j 6= −1)∀j ∈ N0. (3)

The four-point scheme (1) generates C2-continuous limit
curves for any choice of the initial tension parameter β0

in the interval [−2,+∞[\{−1}. For the initial parameter
β0 ∈ [−2,+∞[\{−1}, the recurrence relation in (3) satisfies
the property:

lim
j→+∞

β j = 2. (4)

Proposition 1.

Given the initial parameter β0 ∈ [−2,+∞[\{−1}, the parameter

γ
j+1
i given in (2) satisfies the property:

lim
j→+∞

γ
j+1
i =

1

27
. (5)

3. POSITIVITY PRESERVATION

In this section, we discuss the positivity-preserving property of

the four-point scheme (1), which can be obtained by taking f
j
i =

p
j
i+1

p
j
i

and Fj = maxi{f
j
i ,

1

f
j
i

}, j ∈ N0.

Lemma 2.

Let the initial control points {(x0i , p
0
i ) : i ∈ Z} be positive, i.e.,

p0i > 0, i ∈ Z, for any j ∈ N0, such that:

F0 <
1

γ
j+1
i

= αj (6)

then p
j
i > 0, Fj < αj, j ∈ N0, i ∈ Z, i.e., the control points

generated by the four-point scheme (1) at the jth refinement level
are also positive.
Proof.

As γ
j+1
i ∈ (1,∞)∀j ∈ N0, we have:

αj =
1

γ
j+1
i

> 0.

The proof of Lemma 2 is obtained by induction on j.

• By hypothesis, the holds for j = 0, i.e., p0i > 0, F0 < αj, i ∈ Z.

• Suppose, by induction hypothesis p
j
i > 0 and Fj < αj, i ∈ Z

and for some j ∈ N. Now, we prove that p
j+1
i > 0 and

Fj+1 < αj.
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Obviously, 1
αj < f

j
i < αj and 1

αj < 1

f
j
i

< αj.

By the definition of the four-point scheme (1), we have:

p
j+1
3i > 0. (7)

Consider

p
j+1
3i+1 =

1

60
((−90γ

j+1
i − 1)p

j
i−1 + (90γ

j+1
i + 43)p

j
i

+(90γ
j+1
i + 17)p

j
i+1 + (−90γ
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i + 1)p

j
i+2)

=
p
j
i

60

(
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1

f
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+ 90γ
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i − 90γ
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i f
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j
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)
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(
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i + 43+ (90γ
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i
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i αj)

1
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+
(

17+
1
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)

1
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)

=
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−
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60γ
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(

91(γ
j+1
i )3 + 17(γ

j+1
i )2 − 47γ

j+1
i − 1

)

,

As we know that p
j
i > 0, it is also clear that 1

60γ
j+1
i

[91(γ
j+1
i )3 +

17(γ
j+1
i )2 − 47γ

j+1
i − 1] > 0, for γ

j+1
i > 0. This implies that:

p
j+1
3i+1 > 0. (8)

In the same way, we can get p
j+1
3i+2 > 0, so we have p

j+1
i > 0.

In order to prove Fj+1 < αj, we show that f
j+1
i < αj and

1

f
j+1
i

< αj. For this, consider:

f
j+1
3i =

p
j+1
3i+1

p
j+1
3i

=
1

60
(−(90γ

j+1
i + 1)

1

f
j
i−1

+ 90γ
j+1
i + 43

+(90γ
j+1
i − 90γ

j+1
i f

j
i+1)f

j
i + (17+ f

j
i+1)f

j
i ).

So, we have:

f
j+1
3i − αj =

1

60

(

−(90γ
j+1
i + 1)

1

f
j
i−1

+ 90γ
j+1
i + 43

+(90γ
j+1
i − 90γ

j+1
i f

j
i+1)f

j
i + (17

+f
j
i+1)f

j
i − 60αj

)

<
1
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(

−(90γ
j+1
i + 1)

1

αj
+ 90γ

j+1
i + 43

+

(

90γ
j+1
i −

90γ
j+1
i

αj

)

αj + (17

+αj)αj − 60αj
)

=
1

60αj
(−90γ

j+1
i − 1+ 90γ

j+1
i αj + 43αj

+90γ
j+1
i (αj)2 − 90γ

j+1
i αj + 17(αj)2

+(αj)3 − 60(αj)2)

=
1

60(γ
j+1
i )2

(−90(γ
j+1
i )4 − (γ

j+1
i )3

+133(γ
j+1
i )2 − 43γ

j+1
i + 1).

Since 1

60(γ
j+1
i )2

> 0, it is also clear that [−90(γ
j+1
i )4 − (γ

j+1
i )3 +

133(γ
j+1
i )2 − 43γ

j+1
i + 1] < 0, for αj = 1

γ
j+1
i

and γ
j+1
i > 0. This

implies that f
j+1
3i − αj < 0. Thus, we have:

f
j+1
3i < αj. (9)

Similarly, we can have f
j+1
3i+1 < αj and f

j+1
3i+2 < αj. Thus, it

shows that f
j+1
i < αj. In the same way, it can be shown that

1

f
j+1
i

< αj when 1

f
j+1
3i

< αj, 1

f
j+1
3i+1

< αj and 1

f
j+1
3i+2

< αj. Since,

Fj+1 = maxi{f
j+1
i , 1

f
j+1
i

}, so Fj+1 < αj.

Lemma 2 examines the positivity-preservation of the four-
point scheme (1) for the finite number of j subdivision steps.
Henceforth, Theorem 3 is given to build up the positivity-
preserving condition in the limiting case, as j → ∞. It

can be observed that the parameter γ
j+1
i given in (2) fulfills

limj→∞ γ
j+1
i = 1

27 . Thus, limj→∞ αj = 27 in Theorem 3, and
the proof can be followed from Lemma 2 easily.
Theorem 3.

Suppose that the initial control points {(x0i , p
0
i ) : i ∈ Z} are

positive, with the end goal that:

F0 < 27,

at that point, the limit curves generated by the four-point scheme
(1) are positive.

4. MONOTONICITY PRESERVATION

The monotonicity-preservation property of the four-point
scheme (1) which can be obtained by defining the first-order

divided difference by D
j
i = p

j
i+1 − p

j
i and taking q

j
i =

D
j
i+1

D
j
i

,Qj =

max{qji,
1

q
j
i

}, j ∈ N0, i ∈ Z examined in this section.
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The next lemma is given to build the monotonicity-preserving
condition for the finite number of j subdivision steps.
Lemma 4.

For j ∈ N, suppose that the initial control points {(x0i , p
0
i ) : i ∈

Z} are strictly monotonically increasing, i.e., D0
i > 0, i ∈ Z,

such that:

Q0 ≤
1

γ
j+1
i

= ηj. (10)

Then D
j
i > 0,Qj ≤ ηj, i ∈ Z, j ∈ N, i.e., the control points

generated by the four-point scheme (1) at the jth subdivision step
are still strictly monotonically increasing.
Proof.

First-order divided differences for the four-point scheme (1) can
be obtained as:

D
j+1
3i =

(

3

2
γ
j+1
i +

1

60

)

D
j
i +

3

10
D
j
i+1

+
(
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D
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10
D
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+
(

3

2
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)

D
j
i+2.

As γ
j+1
i ∈ (1,∞), ∀j ∈ Z+, so it gives

ηj =
1

γ
j+1
i

> 0.

The proof of Lemma 4 proceeds by induction on j.

• By hypothesis, the assertion holds for j = 0, i.e., D0
i > 0,Q0 ≤

ηj, i ∈ Z.

• Suppose by induction hypothesis D
j
i > 0 and Qj ≤ ηj, i ∈ Z

and for some j ∈ N. Now we prove that D
j+1
i > 0 and

Qj+1 ≤ ηj.

To prove D
j+1
i > 0, we show that:

D
j+1
3i > 0, D

j+1
3i+1 > 0 and D

j+1
3i+2 > 0.

For this consider,
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As we know that D
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i > 0, and it is also clear that 1
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i + 1] > 0, for ηj = 1

γ
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i

and γ
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i > 0. This implies that,

D
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3i > 0. (11)

In the same way, it can be proved that D
j+1
3i+1 > 0 and D

j+1
3i+2 > 0.

This implies that we have D
j+1
i > 0. Moreover, to verify Qj+1 ≤

ηj, we show that q
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i ≤ ηj and 1
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≤ ηj. For this, consider:

q
j+1
3i =

D
j+1
3i+1

D
j+1
3i

=
−2+ 24q

j
i − 2q

j
iq
j
i+1

90γ
j+1
i + 1+ 18q

j
i − 90γ

j+1
i q

j
iq
j
i+1 + q

j
iq
j
i+1

,

thus,

q
j+1
3i − ηj =

−2+ 24q
j
i − 2q

j
iq
j
i+1

90γ
j+1
i + 1+ 18q

j
i − 90γ

j+1
i q

j
iq
j
i+1 + q

j
iq
j
i+1

−ηj,

q
j+1
3i − ηj =

Nm1

Dm1

. (12)

Using (11), asDm1 = 90γ
j+1
i +1+18q

j
i−90γ

j+1
i q

j
iq
j
i+1+q

j
i+1q

j
i >

0. Further, Nm1 of (12) fulfills

Nm1 = −2+ 24q
j
i − 2q

j
iq
j
i+1 − 90γ

j+1
i ηj − ηj − 18q

j
iη

j

+90γ
j+1
i q

j
iq
j
i+1η

j − q
j
iq
j
i+1η

j

≤ −2+ ηj
(

24−
2

ηj

)

− 90γ
j+1
i ηj − ηj −

18ηj

ηj

+ηj
(

90γ
j+1
i (ηj)2 −

ηj

ηj

)

= 90γ
j+1
i (ηj)3 − 90γ

j+1
i ηj + 22ηj − 22

=
90γ

j+1
i

(γ
j+1
i )3

−
90γ

j+1
i

γ
j+1
i

+
22

γ
j+1
i

− 22

=
1

(γ
j+1
i )2

(−112(γ
j+1
i )2 + 22γ

j+1
i + 90),

Frontiers in Physics | www.frontiersin.org 4 January 2020 | Volume 7 | Article 24164

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ashraf et al. Shape-Preservation of Ternary Scheme

FIGURE 1 | The convexity-preserving limit curves generated by the proposed scheme with the control polygon.
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Since 1

(γ
j+1
i )2

> 0, and it is clear that (−112(γ
j+1
i )2 + 22γ

j+1
i +

90) < 0, for ηj = 1

γ
j+1
i

and γ
j+1
i > 0. Thus, from (12), we have

q
j+1
3i − ηj ≤ 0. This implies that:

q
j+1
3i ≤ ηj. (13)

Similarly, it is easy to show that q
j+1
3i+1 ≤ ηj and q

j+1
3i+2 ≤ ηj, which

leads to q
j+1
i ≤ ηj.

In the same way, it can be proved that 1

q
j+1
i

≤ ηj by showing

that 1

q
j+1
3i

≤ ηj, 1

q
j+1
3i+1

≤ ηj and 1

q
j+1
3i+2

≤ ηj. Since Qj+1 =

maxi{q
j+1
i , 1

q
j+1
i

}, thus Qj+1 ≤ ηj. So, by induction D
j
i > 0 and

Qj ≤ ηj, i ∈ Z, for some j ∈ N.
Lemma 4 examines the monotonicity preservation of the four-
point scheme (1) for the finite number of j subdivision steps.
Henceforth, Theorem 5 is given to build up the monotonicity-
preserving condition in the limiting case, as j → ∞. It

can be observed that the parameter γ
j+1
i given in (2) fulfills

limj→∞ γ
j+1
i = 1

27 . Thus, limj→∞ ηj = 27 in Theorem 5 and
note that the proof can be followed from Lemma 4.
Theorem 5.

Assume that the initial control points {(x0i , p
0
i ) : i ∈ Z} are strictly

TABLE 1 | Wind data (positive data) [23].

i 0 1 2 3 4 5 6

xi 0 0.25 0.5 1 1.2 1.8 2

fi 2 0.8 0.5 0.1 1 0.5 1

monotonicallly increasing, with the end goal that

Q0 ≤ 27,

at that point, the limit curves generated by the four-point scheme
(1) are strictly monotonically increasing.

5. CONVEXITY PRESERVATION

In this section, we examine the convexity-preserving property
of the four-point scheme (1). Basically, a subdivision scheme
satisfies the convexity-preserving property if, for an initial convex
control polygon, the limit curves generated by the scheme
preserve the convexity of the initial data. For a subdivision
scheme, the convexity-preserving property is attained if, at each
refinement level, the second-order divided differences of the
scheme are all positive. Specifically, for a given jth-level sequence

of real values {pji, i ∈ Z} located at regularly spaced parameter

values {xji = i
3j
, i ∈ Z}, the second-order divided difference of

TABLE 2 | Positive data from Sarfraz et al. [24].

i 0 1 2 3 4 5 6

xi 2 3 7 8 9 13 14

fi 10 2 3 7 2 3 10

TABLE 3 | Positive data from Butt and Brodlie [25].

i 0 1 2 3 4 5 6

xi 0 2 4 10 28 30 32

fi 20.8 8.8 4.2 0.5 3.9 6.3 9.6

FIGURE 2 | The positivity-preserving curves generated by the four-point scheme (1) for positive initial data.
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FIGURE 3 | The positivity-preserving curves generated by the four-point scheme (1) for positive initial data.

TABLE 4 | Positive data from Hussain and Ali [26].

i 0 1 2 3 4 5 6

xi 2 3 7 8 9 13 14

fi 10 2 3 7 2 3 10

TABLE 5 | Monotonic data.

i 0 1 2 3 4 5 6

xi –5.89 –4.56 –3.39 –2.47 –1.66 0 0.898

fi 2.62 2.36 2.10 1.86 1.63 1 0.33

the scheme is defined by d
j
i = 32j

2 (p
j
i−1 − 2p

j
i + p

j
i+1) and, for

convexity preservation, {dji > 0, i ∈ Z, j ∈ N0} holds.
Beccari et al. [19] showed that, for an initial convex control

polygon, the four-point scheme (1) fails to generate a convex
limit curve when choosing different values of the initial tension
parameter β0 in the interval [−2,+∞[\{−1}. In Figures 1A–D,
dotted lines show the initial convex polygon and solid lines
represent curves generated by the four-point scheme (1) after one
iteration level. It is clear from the figure that the scheme does not
preserve convexity.

Now, we check whether the condition {dji > 0, i ∈ Z, j ∈ N0}
is satisfied by the four-point scheme (1) or not. By taking y

j
i =

d
j
i+1

d
j
i

,Y j = max{yji,
1

y
j
i

}, j ∈ N0, i ∈ Z, we establish the following

result.
Proposition 6.

For j ∈ N, suppose that the initial control points {(x0i , p
0
i ) : i ∈ Z}

are strictly convex, i.e., d0i > 0, i ∈ Z, such that

Y0 ≤
1

γ
j+1
i

= δj (14)

then d
j
i ≤ 0, i.e., the points generated by the four-point scheme

(1) at the jth subdivision step are not strictly convex.
Proof.

The second-order divided difference of the four-point scheme (1)
can be obtained as:































d
j+1
3i =

(

3
2γ

j+1
i + 1

20

)

d
j
i +

(

3
2γ

j+1
i − 1

20

)

d
j
i+1,

d
j+1
3i+1 =

(

3
2γ

j+1
i − 1

20

)

d
j
i +

(

3
2γ

j+1
i + 1

20

)

d
j
i+1,

d
j+1
3i+2 =

(

− 3
2γ

j+1
i + 1

60

)

d
j
i +

(

−3γ
j+1
i + 3

10

)

d
j
i+1

+
(

− 3
2γ

j+1
i + 1

60

)

d
j
i+2.

As γ
j+1
i ∈ (1,∞), ∀j ∈ N, so it gives δj = 1

γ
j+1
i

> 0. The proof of

Proposition 6 proceeds by induction on j.

• By hypothesis, the assertion holds for j = 0, i.e., d0i > 0,Y0 ≤
δj, i ∈ Z.

• Suppose by induction hypothesis d
j
i > 0 and Y j ≤ δj, i ∈ Z

and for some j ∈ N. Now we show that d
j+1
i > 0. Also, simply,

we have 1
δj
≤ y

j
i ≤ δj and 1

δj
≤ 1

y
j
i

≤ δj.

To prove d
j+1
i > 0, it is sufficient to show that:

d
j+1
3i > 0, d

j+1
3i+1 > 0 and d

j+1
3i+2 > 0.

From (15), we have:

d
j+1
3i =

3

2
γ
j+1
i d

j
i +

1

20
d
j
i +

3

2
γ
j+1
i y

j
id

j
i −

1

20
y
j
id

j
i

>
d
j
i

60
[90γ

j+1
i + 3+ 90γ

j+1
i

1

δj
− 3δj]
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FIGURE 4 | The monotonicity-preserving curves generated by the four-point scheme (1) with monotonic initial data.

TABLE 6 | Monotonic data.

i 0 1 2 3 4 5 6

xi –3.89 –2.56 –1.39 0 1.47 2.66 3.89

fi -58.86 –16.78 -2.56 0 3.18 18.82 58.86

=
d
j
i

60γ
j+1
i

[90(γ
j+1
i )3 + 90(γ

j+1
i )2 + 3(γ

j+1
i )− 3].

As we know that d
j
i > 0, and it is also clear that

1

60γ
j+1
i

[90(γ
j+1
i )3 + 90(γ

j+1
i )2 + 3(γ

j+1
i ) − 3] > 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. So, we have:

d
j+1
3i > 0. (15)

Now consider from (15)

d
j+1
3i+1 =

(

3

2
γ
j+1
i −

1

20

)

d
j
i +

(

3

2
γ
j+1
i +

1
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)

y
j
id

j
i

>
d
j
i

60

(
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i
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δj
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=
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j
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i

60

(

90−
3

γ
j+1
i

+ 90γ
j+1
i + 3

)

=
d
j
i

60
(90(γ

j+1
i )2 + 93γ

j+1
i − 3).

As we know that d
j
i > 0, and it is clear that 1

60 [90(γ
j+1
i )2 +

93γ
j+1
i − 3] > 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. This implies

that:

d
j+1
3i+1 > 0. (16)

Now consider,

d
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3i+2 =
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−
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2
γ
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60

)

d
j
i +

(

−3γ
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d
j
iy
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+
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(

−180γ
j+1
i +

1

δj

)

1

δj

+(18− 90γ
j+1
i δj)

1

δj

)

=
d
j
i

60
(−179(γ

j+1
i )2 − 162γ

j+1
i + 1),

As we know that d
j
i > 0, and it is also clear that

d
j
i

60 [−179(γ
j+1
i )2−

162γ
j+1
i + 1] < 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. This implies that:

d
j+1
3i+2 < 0. (17)

By combining (15), (16), and (17), we have d
j+1
i ≤ 0, which

shows that the four-point scheme (1) does not preserve
strict convexity. Some numerical examples are presented to
verify and examine the conditions of shape preserving for the
4-point ternary scheme (1). In Examples 1 − 4, the initial set of
values is displayed by dotted line segments while the limit curves
are marked by solid lines, such that the limit curves generated by
the four-point scheme (1) satisfy the shape-preserving condition.

Example 1.

There are several important meteorological data parameters that
scientists use for dealing with different climate challenges. Wind
velocity data (WVD) is one of them. These data always have a
positive value, and the minimum value is ∼0. In this example,
we choose WVD from Wu et al. [23], as given in Table 1.
We use these WVD to demonstrate the positivity-preserving
property of the four-point scheme (1). In Figure 2A, the dotted
line represents WVD (which is positive) and the solid curve is
generated by the four-point scheme (1), which is also positive.
Example 2.

In this example, we consider experimental data that are quoted
from Sarfraz et al. [24]. The proposed data are positive and
represent the volume of NaOH vs. HCl in a beaker, as stated in the
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experimental procedures. These experimental data are presented
in Table 2. Figure 2B presents the positivity preservation of the
curve generated by the four-point scheme (1). In this figure,
the dotted line represents the positive data (which are given
in Table 2) and the solid curve is generated by the four-point
scheme (1). It is clear that the curve generated by the scheme is
also positive.
Example 3.

The data given in Table 3 are also experimental data. These data
represent the oxygen level from an experiment conducted in the
laboratory and are quoted from Butt and Brodlie [25]. We use
the proposed data in Figure 3A. In this figure, we find that, by
imposing the condition of positivity on the initial data, the four-
point scheme (1) is capable of producing a positive curve.
Example 4.

The data in Table 4 are obtained from Hussain and Ali [26].
These data represent the depreciation of the valuation of the
market price of computers installed at City Computer Center.
The x-coordinate corresponds to the time in years, and the y-
coordinate corresponds to the computer price in Rs. 10,000.
Figure 3B generated by the four-point scheme (1) indicates the
positivity preservation of the curve generated by the scheme.
Example 5.

The data given in Table 5 represents monotonic data that are
obtained from a monotonic function. From Figure 4A we find
that by imposing the condition of monotonicity on the initial
data, the four-point scheme (1) is capable of producing a
monotonically increasing curve.
Example 6.

In this example, we again consider monotonic data from
a monotonic function. These data are presented in Table 6.

Figure 4B displays the curve generated by the four-point scheme
(1). It is clear from the figure that, for an initial monotonic
dataset, the scheme produces a monotonic curve.

6. CONCLUSION

In this paper, we have presented the shape-preserving properties
of the four-point scheme (1). We have derived the necessary
conditions on the initial control points and tension parameter
of the scheme to show that the four-point scheme (1) generates
positivity- and monotonicity-preserving curves after a finite
number of subdivision steps. We have also shown that, for
initial convex data, the proposed scheme does not generate
a convex curve. Further, we have generalized these results
for the positivity- and monotonicity-preservation of the limit
curves. Finally, the discussion is followed by several numerical
examples. By using this technique, one can analyze the shape-
preserving properties of higher arity interpolation and also
approximating schemes.
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This article studies the propagation of rogue waves with a nonautonomous NLSE in

the presence of external potential. This model is considered to be an important model

for many physical phenomena in quantum mechanics and optical fiber. The obtained

waves are of first and second order and are investigated using similarity transformation.

The nonlinear dynamic behavior of these waves is also demonstrated with different

parameter values for the magnetic and gravity fields. The results show the influence of

these fields over density, width, and peak heights. Moreover, the modulation instability is

also discussed.

Keywords: rogue wave solutions, modulation instability, similarity transformation, NLSE, harmonic potential

1. INTRODUCTION

One of the interesting known models with a time-dependent coefficient is the nonautonomous
NLSE with a harmonic potential. This is expressed as:

iqt +
α(t)

2
qxx +

(

− iγ (t)+
ω(t)r2

2
+ β(t)|q|2

)

q = 0. (1)

The function q is a wave profile in a homogeneous nonlinear medium, α(t) is the dispersion
coefficient, β(t) is the measure of the Kerr nonlinearity, γ (t) is considered as the distributed
gain/loss coefficient, and the harmonic potential is given by ω(t)r2/2. This model describes many
physical phenomena in nonlinear sciences.

This article studies the first- and second-order rogue wave solutions. It is a single giant wave
whose amplitude is two to three times higher than those of the surrounding waves. The interesting
fact regarding this wave is that it appears from nowhere and disappears without a trace. The
similarity transformation (ST) is utilized to construct the solutions. These waves are also found
in deep and shallow water and, beyond oceanic expanses, in optical fibers [1–8], super fluids, and
so on [9–18]. In recent times, the theoretical study of these kinds of waves has become an interesting
part of the field of nonlinear sciences [19–34]. The following section deals with the extraction of
wave solutions with ST.

2. ROGUE WAVE SOLUTIONS

The envelope field q is considered in the following form [33]:

q = (qR + iqI)e
iφ , (2)
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where qR, qI , q, and φ are all dependent functions of x and t, while
the intensity is defined by:

|q|2 = |qR|2 + |qI |2. (3)

The use of Equations (2)–(3) in (1) yields an equation with
variable coefficients. After solving and simplification, we can split
this equation into its real and imaginary equations. For the real
functions qR, qI , and φ, which depend on x and t, the variables
ξ (x, t) and τ (t) are introduced. Thus, the new transformations
for qR, qI , and φ are constructed in this manner: qR = A(t) +
B(t)P(ξ (x, t), τ (t)), qI = C(t) + D(t)Q(ξ (x, t), τ (t)), and φ =
ζ (x, t) + λ τ (t), where λ is a constant. Substituting this new
transformation into the real and imaginary part equations, the
following equations are obtained:

−2(A+ BP)(ζt + λτt)− 2(Ct + DtQ+ DQξ ξt + DQτ τt)

−α(t)(C + DQ)ζxx − α(t)(A+ BP)ζ 2
x − 2α(t)DQξ ξxζx

+α(t)(BPξξ ξ
2
x + BPξ ξxx)+ 2β(t)((A+ BP)2

+(C + DQ)2)(A+ BP)+ 2γ (t)(C + DQ)

+ω(t)x2(A+ BP) = 0, (4)

−2(C + DQ)(ζt + λτt)+ 2(At + BtP + BPξ ξt + BPτ τt)

+α(t)(A+ BP)ζxx − α(t)(C + DQ)ζ 2
x + 2α(t)BPξ ξxζx

+α(t)(DQξξ ξ
2
x + DQξ ξxx)+ 2β(t)((A+ BP)2

+(C + DQ)2)(C + DQ)− 2γ (t)(A+ BP)

+ω(t)x2(C + DQ) = 0. (5)

Simplifying the above equations, we perform the similarity
reduction in the following way.

ξxx = 0, (6)

ξt + α(t)ξxζx = 0, (7)

ω(t)x2 − 2ζt − α(t)ζ 2
x = 0, (8)

2σt + (α(t)ζxx − 2γ (t))σ = 0, for (σ = A,B,C,D), (9)

−2(A+ BP)λτt − 2DQτ τt + α(t)BPξξ ξ
2
x

+2β(t)(A+ BP)(|A+ BP|2 + |C + DQ|2) = 0, (10)

−2(C + DQ)λτt + 2BPτ τt + α(t)DQξξ ξ
2
x

+2β(t)(C + DQ)(|A+ BP|2 + |C + DQ|2) = 0. (11)

where ξ (x, t), ζ (x, t),A(t),B(t),C(t),D(t), P(ξ , τ ), and Q(ξ , τ ) are
different functions and are determined later. After algebraic
computation, the above equations produce the following results.

ξ = δ(t)x+ δ0(t), (12)

ω =
2ζt + α(t)ζ 2

x

x2
, (13)

ζ(x,t) = −
1

α(t)

(

δ(t)t
2δ(t)

x2 +
δ0(t)

δ(t)
x

)

, (14)

A(t) = a0 exp

[

1

2

∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

,

B(t) = bA, D(t) = dA, (15)

where a0, b, and d are constants, and C = 0. The variables τ (t)
and β(t) are given by

τ (t) =
1

2

∫ t

0
α(k)δ2(k)dk, (16)

β(t) =
α(t)δ2

2A2
. (17)

To further reduce to Equations (4) and (5) to the partial
differential equations, we require

−2(1+ bP)λ − 2dQτ + α(t)bPξξ

+2β(t)(1+ bP)(|1+ bP|2 + |1+ dQ|2) = 0, (18)

−2(c+ dQ)λ + 2bPτ + α(t)dQξξ

+2β(t)(c+ dQ)(|1+ bP|2 + |1+ dQ|2) = 0. (19)

According to the direct method, we obtain the first-order
rational solution

P(ξ , τ ) = −
4

R1(ξ , τ )b
, Q(ξ , τ ) = −

8τ

R1(ξ , τ )d
, (20)

where R1 = 1+ 2ξ 2 + 4τ 2. Moreover, the second-order solution
is obtained as

P(ξ , τ ) =
P1(ξ , τ )

R2(ξ , τ )b
, Q(ξ , τ ) =

Q1(ξ , τ )τ

R2(ξ , τ )d
, (21)

P1(ξ , τ ) =
3

8
− 9τ 2 −

3ξ 2

2
− 6ξ 2τ 2 − 10τ 4 −

ξ 4

2
, (22)

Q1(ξ , τ ) = −
15

4
+ 2τ 2 − 3ξ 2 + 4ξ 2τ 2 + 4τ 4 + ξ 4, (23)

R2 =
3

32
+

33

8
τ 2 +

9ξ 2

16
−

3ξ 2τ 2

2
+

9τ 4

2
+

ξ 4

8
2ξ 6

3
+ ξ 2τ 6 +

ξ 4τ 2

2
+

ξ 6

12
. (24)

The direct reduction solution is considered in the following form:

q = A(1+ bP + idQ)ei(ζ+τ ), (25)

where ξ (x, t), ζ (x, t),A(t), τ (t), P(ξ , τ ), and Q(ξ , τ ) are expressed
by the relations given in Equations (12), (14)–(16), and
(20), respectively.

The rogue wave solution of first order to Equation (1) can be
obtained using Equations (20) and (25); thus, after simplification,
we may have the following form:

q = a0

(

−3+ 2ξ 2 + 4τ 2 − 8iτ

1+ 2ξ 2 + 4τ 2

)

× exp

[

1

2

∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

ei(ζ ,τ ), (26)

whose amplitude can be written as

|q|2 = a20
[−3+ 2(δ(t)x+ δ0(t))

2 + 4τ 2]2 + 64τ 2(t)

[1+ 2(δ(t)x+ δ0(t))
2 + 4τ 2(t)]2
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× exp

[ ∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

. (27)

The rogue wave (rational-like) solution of second order
to Equation (1) can be obtained using Equations (21) and
(25); thus, after simplification, we may have the following form:

q = a0

(

1−
4(−3+ 4ξ 4 + 72τ 2 + 80τ 4 + 12ξ 2(1+ 4τ 2))

3+ 18ξ 2 + 4ξ 4 + 24ξ 6 + 4(33+ 4ξ 2(−3+ ξ 2))τ 2 + 144τ 4 + 32ξ 2τ 6

+i
8τ (4ξ 2(−3+ ξ 2 + 4τ 2)+ (−5+ 8t2))

3+ 18ξ 2 + 4ξ 4 + 24ξ 6 + 4(33+ 4ξ 2(−3+ ξ 2))τ 2 + 144τ 4 + 32ξ 2τ 6

)

× exp

[

1

2

∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

ei(ζ+τ ), (28)

whose intensity is written as

|q|2 = a20

[(

1−
(

4(−3+ 4ξ4 + 72τ2 + 80τ4 + 12ξ2(1+ 4τ2))/(3+ 18ξ2

+4ξ4 + 24ξ6 + 4(33+ 4ξ2(−3+ ξ2))τ2 + 144τ4 + 32ξ2τ6
))2

+
(

8τ (4ξ2(−3+ ξ2 + 4τ2)+ (−5+ 8t2))/(3+ 18ξ2 + 4ξ4

+24ξ6 + 4(33+ 4ξ2(−3+ ξ2))τ2 + 144τ4 + 32ξτ6
)2]

× exp

[ ∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

, (29)

The following section discusses the dynamical behavior of waves.

3. DYNAMICAL BEHAVIOR OF WAVES

The behavior of constructed waves is demonstrated using the
relation δ(t) = b+ l cos(ωt). The first term on the right-hand side

FIGURE 1 | 3D graphical representations of first-order rogue waves. (A) b = 0.5 and δ0(t) = 0.5, (B) b = 0.79 and δ0(t) = 0.61, (C) δ0(t) = 0.5t2 and

δ(t) = 0.7+ 0.9 cos(0.1t), (D) δ0(t) = 0.35t2 and δ(t) = 0.86+ 1.2 cos(0.1t), and (E) δ0 (t) = 0.35t2, δ(t) = 0.1+ 1.2 cos(0.1t), and δ0 (t) = 0.35t2.
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represents the gravity field (GF) b = δmg with the real parameter
δ, and the second term on the same side is the external magnetic
field (EMF) and is given by l cos(ωt).

There are two possibilities for the occurrence of the waves in
the presence of GF. The first is that when the GF (i.e., b 6= 0 and
l = 0) is acting, and the second is that when both the GF and
EMF are present (i.e., b 6= 0 and l 6= 0).

Now, we discuss the first possibility for nonlinear dynamical
behavior, when there is only the GF. Say δ(t) = b, and
the amplitude (corresponding to l = 0) is given by the
following relation:

|q|2 = a20
[−3+ 2(bx+ δ0(t))

2 + 4τ 2]2 + 64τ 2(t)

[1+ 2(bx+ δ0(t))
2 + 4τ 2(t)]2

× exp

[ ∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

. (30)

The behavior of the second-order rogue wave is considered when
there is only the GF. Then, the value of δ(t) = b, so the amplitude

(corresponding to l = 0) is given by

|q|2 = a20

[(

1−
(

4(−3+ 4(bx+ δ0(t))
4 + 72τ 2 + 80τ 4

+12(bx+ δ0(t))
2(1+ 4τ 2))/(3+ 18(bx+ δ0(t))

2

+4(bx+ δ0(t))
4 + 24(bx+ δ0(t))

6 + 4(33+ 4(bx

+δ0(t))
2(−3+ (bx+ δ0(t))

2))τ 2 + 144τ 4 + 32(bx

+δ0(t))
2τ 6

))2

+
(

8τ (4(bx+ δ0(t))
2(−3+ (bx

+δ0(t))
2 + 4τ 2)+ (−5+ 8t2))/(3+ 18(bx+ δ0(t))

2

+4(bx+ δ0(t))
4 + 24(bx+ δ0(t))

6

+4(33+ 4(bx+ δ0(t))
2(−3+ (bx+ δ0(t))

2))τ 2 + 144τ 4

+32(bx+ δ0(t))τ
6
)2]

× exp

[ ∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

. (31)

FIGURE 2 | 3D graphical representations of second-order waves. (A) δ(t) = 0.5 and δ0(t) = 0.1, (B) δ(t) = 0.4 and δ0(t) = 0.1, (C) δ(t) = 0.7 and

δ0(t) = 0.2 exp(sech(0.2t)), (D) δ(t) = 0.5sech(0.2t) and δ0(t) = 0.5 exp(sech(0.2t)), (E) δ(t) = 0.5+ 1.2 cos(0.005t) and δ0(t) = 0.35t2, and (F) δ(t) = 0.1+ 1.2 cos(0.1t)

and δ0(t) = 0.35t2.
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4. ANALYSIS OF MODULATION
INSTABILITY

In this section, we study the modulation instability (MI). The
linear stability analysis technique [34] has been applied, and we
suppose that Equation (1) has the perturbed steady-state (PSS)
solution in the following form:

q(x, t) = {
√
P + χ(x, t)} × e(iϕNL), ϕNL = βPx, (32)

where χ << P, P is the incident optical power, and ϕNL is the
phase component. The perturbation χ(x, t) is examined by using
linear stability analysis. Now, we substitute Equation (32) into
Equation (1) and, after linearizing it, we obtain

i
∂χ

∂t
+

1

2
α(t)

∂2χ

∂x2
+ β(t)P(χ + χ∗)

+
(

− iγ (t)+
ω(t)x2

2

)

χ = 0, (33)

where “∗” denotes a complex conjugate. Consider that the
solution of Equation (33) has of the form

χ(x, t) = η1e
i(kx−νt) + η2e

−i(kx−νt), (34)

where ν and k are the frequency of perturbation and normalized
wave number, respectively. After putting Equation (34) into

Equation (33) and by separating the obtained equation into its
real and imaginary parts, we get the dispersion relation:

−ν2 + ανk2 − 2iγ ν −
α2

4
k4 + iαγ k2

+βPωr2 + γ 2 +
ω2r4

4
= 0. (35)

The dispersion relation given in Equation (35) has the following
solutions in terms of frequency ν after taking the modulus of the
above equation. We have

ν =
1

2
αk2 ±

1

2
√

−4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2.(36)

The above dispersion relation determines the PSS stability,
and that depends on the harmonic potential or distributed
gain (loss) coefficient of the model. If the frequency ν

has an imaginary part, the PSS solution is unstable since
the perturbations grow exponentially. On the other hand,
if ν is real, then the PSS solution is stable against small

FIGURE 3 | 3D graphical representations of first-order rogue waves. The figures correspond with (A) b = 1.3, δ0(t) = exp(0.5+ 0.5 cos t) and α = tan2(0.02t), (B)

b = 1.5, δ0(t) = exp(0.05+ 0.5 cos t) and α = tan2(0.02t), (C) δ(t) = 1.4+ 0.05 cos t, δ0(t) = exp(0.002+ 0.4 cos t) and α = tan2(0.02t), and (D)

δ(t) = 1.3+ 0.01 cos t, δ0 (t) = exp(0.05+ 0.5 cos t), and α = tan2(0.02t).
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perturbations. The necessary condition for the existence
of MI is

γ 2ωr2(ωr2 + 4βP) > 0, (37)

or

(

− 4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2

)

< 0.

(38)

The MI gain spectrum is given as

g(ν) = 2Im(ν)

=
√

−4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2.

(39)

The MI is significantly affected by P. If P is increased, the growth
rate of MI will appear to disperse.

5. GRAPHICAL RESULTS AND
DISCUSSION

The graphical representation of the amplitude defined by
Equation (30) considering a0 = 1,α = t, and γ (t) = sin3(0.005t)
is depicted in Figures 1A,B, with the values of only GF b (0.5

and 0.79) and δ0 (0.5 and 0.61). The graph with the maximum
peak can be obtained at b = 0.5 and δ0 = 0.5. For the
second possibility, when the GF and the EMF are both present,
we discuss the graphical behavior of the solutions. For this, let
us consider δ(t) = 0.7 + 0.9 cos(0.1t), δ0(t) = 0.5t2, δ(t) =
0.86 + 1.2 cos(0.1t), δ0(t) = 0.35t2 and δ0(t) = 0.35t2, and
δ(t) = 0.1 + 1.2 cos(0.1t) and δ0(t) = 0.35t2. The graphical
representations are demonstrated in Figures 1C–E, respectively.

The results show that there are no different effects of GF on
first- and second-order rogue waves. Graphical representations
of the amplitude given by Equation (31) at a0 = 1 and γ (t) =
sin3(0.005t) with different values of GF and δ0(t) is depicted
in Figures 2A–C. Six small peaks appear around the one high
peak of the second-order solution. Graphical representations of
second-order rogue waves with both GF and EMF are also shown
in Figures 2D–F.

Graphical representations of the amplitudes given by equation
(30) at a0 = 1 and γ (t) = t are depicted in Figures 3A–D

with the different parameter values. The curves in Figures 3A,B

are formed under the GF, and those in Figures 3C,D are formed
when both the GF and EMF are present.

Graphical representations of the amplitude given by Equation
(31) at a0 = 1 and γ (t) = t with different values of GF and
δ0(t) are depicted in Figures 4A,B. Small lumps appear in the
graph of the second-order solution. Graphical demonstrations
of second-order rogue waves with both GF and EMF are shown
in Figures 4C,D.

FIGURE 4 | 3D graphical representations of second-order rogue waves. These are constructed with (A) b = 0.9, δ0(t) = 0.001t and α = 5 tan2(0.05t), (B)

b = 0.9, δ0(t) = 0.001t and α = 5 tan2(0.05t), (C) δ(t) = 1.5+ 0.4 cos t, δ0(t) = 0.001t and α = 25 tan2(0.05t), and (D) δ(t) = 1.5+ 0.001 cos t, δ0(t) = 0.001t and

α = 35 tan2(0.05t).
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6. CONCLUSION

This article studies the construction of rogue waves in NLSE
with a variable coefficient in the presence of harmonic potential.
The graphical demonstration shows that the dynamical behavior
of waves under the influence of gravity and magnetic fields
in linear potential. It is observed that in the presence of GF,
the density remains constant, while peak height and width
remain invariant. The obtained solutions are of first and second

order and are constructed using the ST approach. Moreover,
the MI is calculated and is significantly affected by incident
optical power.
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The generalized fractional integrations of the generalized Mittag-Leffler type function

(GMLTF) are established in this paper. The results derived in this paper generalize many

results available in the literature and are capable of generating several applications in

the theory of special functions. The solutions of a generalized fractional kinetic equation

using the Sumudu transform is also derived and studied as an application of the GMLTF.
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1. INTRODUCTION

The Pochhammer symbol (̟ )n is defined by (for ̟ ∈ C)[see ([1], p. 2 and p. 5)]:

(̟ )n : =

{

1 (n = 0)

̟ (̟ + 1) . . . (̟ + n− 1) (n ∈ N)

=
Ŵ(̟ + n)

Ŵ(̟ )
(̟ ∈ C \ Z−

0 ).

(1)

The familiar generalized hypergeometric function pFq is defined as follows (see [2]):

pFq

[ (

̟p

)

;
(

χq

)

; x
]

=
∞
∑

n= 0

5
p
j= 1

(

̟j

)

n

5
q
j= 1

(

χj

)

n

xn

n!
, (2)

(p ≤ q, x ∈ C; p = q+ 1, |x| < 1),

where (̟j)n and (χj)n given in (1) and χi can not be a negative integer or zero. Here p or q or
both are permitted to be zero. For all finite x, the series (2) is absolutely convergent if p ≤ q and
for |x| < 1 if p = q + 1. When p > q + 1, then the series diverge for x 6= 0 and the series does
not terminate.

In particular, if p = 2 and q = 1, (2) reduces to the Gaussian hypergeometric function

2F1(̟1,̟2;̟3; x) =
∞
∑

k= 0

(̟1)n(̟2)n
(̟3)n

xn

n!
. (3)
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The function r9s(z) is the generalized Wright hypergeometric
series which is given by

r9s(z) = r9s

[

(ai,̟i)1,r
(bj,χj)1,s

∣

∣

∣

∣

z

]

=
∞
∑

k= 0

∏r
i= 1 Ŵ(ai + ̟ik)

∏s
j= 1 Ŵ(bj + χjk)

zk

k!
, (4)

where ai, bj ∈ C, and real ̟i,χj ∈ R (i = 1, 2, . . . , r; j =
1, 2, . . . , s). The asymptotic behavior of (4) for large values of
argument of z ∈ C were mentioned in [3, 4] (also, see [5, 6]).

To proceed our study, we need the definitions of the Mittag-
Leffler functions (MLF) denoted by E̟ (z) (see [7]) and E̟ ,χ (x)
[8], respectively:

E̟ (x) =
∞
∑

n= 0

xn

Ŵ (̟n+ 1)
(x,̟ ∈ C; |x| < 0,ℜ (̟) > 0) .

(5)

E̟ ,χ (x) =
∞
∑

n= 0

xn

Ŵ (̟n+ χ)
(x,̟ ,χ ∈ C;

ℜ (̟) > 0,ℜ (χ) > 0) . (6)

Many more generalizations and extensions of MLF widely
studied recently [9, 10]. Also, the MLF performs an important
role in physics and engineering problems. The derivations of
physical problems of exponential nature could be governed by
the physical laws through the MLF (power-law) [11–13].

Very recently, Nisar [14] defined a generalized Mittag-Leffler
type function which is defined as follows

For ρ, σ , ς ∈ C,ℜ(κ) > 0, δ 6= 0,−1,−2, · · · , (κ)s and (ω)s
denotes the Pochammer symbol.

pE
ρ,σ ;ς
q;δ (z) = pE

ρ,σ ,ς
q,δ

(

κ1, κ2, · · · , κp;ω1,ω2, · · · ,ωq; z
)

=
∞
∑

s= 0

(κ1)s (κ2)s · · ·
(

κp
)

s

(ω1)s (ω2)s · · ·
(

ωq

)

s

(ς)s z
s

(δ)s Ŵ (ρs+ σ)
. (7)

By assuming particular values for various parameters in (7), we
get many of the popular functions in the literature. For example,

pE
ρ,σ ;ς
q;1 (z) gives the K− function [15] and 0E

ρ,σ ;ς
0;1 (z) turns

to E
ς
ρ,σ (z) [16]. Also, 0E

ρ,σ ;ς
0;δ (z) reduces to E

ς ,δ
ρ,σ (z) [17] and

0E
ρ,σ ;1
0;1 (z) gives the Mittag-Leffler function Eρ,σ (z) [8]. Similar

way, 0E
ρ,1;1
0;1 (z) turns to the Mittag-Leffler functions Eρ (z) [7].

For more details one can be referred to Nisar [14].

2. GENERALIZED FRACTIONAL
INTEGRATION OF GMLTF

Fractional calculus is one of the prominent branch of applied
mathematics that deals with non-integer order derivatives and
integrals (including complex orders), and their applications
in almost all disciplines of science and engineering [18–22].
In this line, the use of special functions in connection with
fractional calculus also studied widely [23–27]. For the basics of
fractional calculus and its related literature, interesting readers

can be referred to as Kiryakova [28], Miller and Ross [29], and
Srivastava et al. [30]. In this paper, we studied the generalized
fractional calculus of more generalized function given in (7).
The generalized fractional integral operators (FIOs) involving the
Appell functions F3 are given for ̟ , ̟ ′, τ , τ ′, ǫ ∈ C with
ℜ(ǫ) > 0 and x ∈ R

+as follows:

(

I̟ ,̟ ′ ,τ ,τ ′ ,ǫ
0+ f

)

(x) =
x−̟

Ŵ(ǫ)

∫ x

0
(x− t)ǫ−1t−̟ ′

F3

(

̟ ,̟ ′, τ , τ ′; ǫ; 1−
t

x
, 1−

x

t

)

f (t) dt (8)

and

(

I̟ ,̟ ′ ,τ ,τ ′ ,ǫ
− f

)

(x) =
x−̟ ′

Ŵ(ǫ)

∫ ∞

x
(t − x)ǫ−1t−̟

F3

(

̟ ,̟ ′, τ , τ ′; ǫ; 1−
t

x
, 1−

x

t

)

f (t) dt. (9)

The integral operators of the types (8) and (9) have been
introduced by Marichev [31] and later extended and studied by
Saigo and Maeda [32]. Recently, many researchers (see [33–35])
have studied the image formulas forMSM FIOs involving various
special functions.

The corresponding fractional differential operators (FDOs)
have their respective forms:

(

D̟ ,̟ ′,τ ,τ ′ ,ǫ
0+ f

)

(x) =
(

d

dx

)[ℜ(ǫ)]+1

(

I
−̟ ′ ,−̟ ,−τ ′+[ℜ(ǫ)]+1,−τ ,−ǫ+[ℜ(ǫ)]+1
0+ f

)

(x) (10)

and

(

D̟ ,̟ ′,τ ,τ ′ ,ǫ
− f

)

(x) =
(

−
d

dx

)[ℜ(ǫ)]+1

(

I
−̟ ′ ,−̟ ,−τ ′ ,−τ+[ℜ(ǫ)]+1,−ǫ+[ℜ(ǫ)]+1
− f

)

(x) . (11)

Here, we recall the following results (see [32, 36]).

LEMMA 2.1. Let ̟ ,̟ ′, τ , τ ′, ǫ, σ ∈ C be such that
ℜ(ǫ) > 0 and

ℜ(σ ) > max{0,ℜ(̟ + ̟ ′ + τ − ǫ),ℜ(̟ ′ − τ ′)}.

Then there exists the relation

(

I̟ ,̟ ′,τ ,τ ′ ,ǫ
0+ tσ−1

)

(x)

=

Ŵ (σ) Ŵ
(

σ + ǫ − ̟ − ̟ ′ − τ
)

Ŵ
(

σ + τ ′ − ̟ ′)

Ŵ
(

σ + τ ′
)

Ŵ
(

σ + ǫ − ̟ − ̟ ′)

Ŵ
(

σ + ǫ − ̟ ′ − τ
)

xσ−̟−̟ ′+ǫ−1. (12)

LEMMA 2.2. Let ̟ , ̟ ′, τ , τ ′,ǫ, σ ∈ C such that ℜ(ǫ) > 0 and

ℜ(σ ) > max{ℜ(τ ), ℜ(−̟ − ̟ ′ + ǫ), ℜ(−̟ − τ ′ + ǫ)}.
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Then

(

I̟ ,̟ ′,τ ,τ ′ ,ǫ
− t−σ

)

(x)

=

Ŵ (−τ + σ) Ŵ
(

̟ + ̟ ′ − ǫ + σ
)

Ŵ
(

̟ + τ ′ − ǫ + σ
)

Ŵ (σ) Ŵ (̟ − τ + σ)

Ŵ
(

̟ + ̟ ′ + τ
′
− ǫ + σ

)

x−̟−̟ ′+ǫ−σ , (13)

The main aim of this paper is to apply the generalized operators
of fractional calculus for the GMLTF in order to get certain new
image formulas.

2.1. Sumudu Transform
The Sumudu transform is widely used to solve various type
of problems in science and engineering and it is introduced
by Watugala (see [37, 38]). The details of Sumudu transforms,
properties, and its applications the interesting readers can be refer
to Asiru [39], Belgacem et al. [40], and Bulut et al. [41].

The Sumudu transform over the set functions

A =
{

f (t)
∣

∣

∣
∃M, τ1, τ2 > 0,

∣

∣f (t)
∣

∣ < Me|t|/τj , if t ∈ (−1)j × [0,∞)
}

,

is defined by

G (u) = S
[

f (t) ; u
]

=
∫ ∞

0
f (ut) e−tdt, u ∈ (−τ1, τ2) . (14)

The main aim of this study is to establish the generalized
fractional calculus operators and the generalized FKEs
involving GMLTF.

Theorem 2.1. Let η, η′,χ ,χ ′, ǫ, τ ,̟ , λ, γ ∈ C,ℜ(κ) > 0, δ 6=
0,−1,−2, · · · , such thatℜ(τ ) > max{0,ℜ(η+η′−χ−ǫ),ℜ(η′−
χ ′)}. Then
(

I
η,η′ ,χ ,χ ′ ,ǫ
0+

tτ−1
pE

̟ ,λ;γ
q;δ (t)

)

(x)

=
Ŵ(δ)

∏q
j= 1 Ŵ(ωj)

Ŵ(γ )
∏p

i= 1 Ŵ(κi)
xτ−η−η′+ǫ−1 × p+59q+5









(κi, 1)1,p, (γ , 1), (τ , 1), (τ + ǫ − η − η′ − χ , 1),
(τ + χ ′ − η′, 1), (1, 1)

(ωj, 1)1,q, (δ, 1), (γ ,̟ ), (τ + χ ′, 1), (τ + ǫ − η − η′, 1),
(τ + ǫ − η′ − χ , 1)

∣

∣

∣

∣

x









.

Proof: Applying the definition (7) on the left hand side (l.h.s) of
Theorem 2.1,

I1 =
(

I
η,η′ ,χ ,χ ′ ,ǫ
0+

tτ−1
pE

̟ ,λ;γ
q;δ (t)

)

(x)

=

(

I
η,η′ ,χ ,χ ′ ,ǫ
0+

tτ−1
∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · · ,
(

ωq

)

r

(γ )r t
r

(δ)r Ŵ(̟ r + λ)

)

(x)

Changing the order of integration and summation gives

I1 =
∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · ·
(

ωq

)

r

(γ )r

(δ)r Ŵ(̟ r + λ)

(

I
η,η′ ,χ ,χ ′ ,ǫ
0+

tτ+r−1
)

(x)

Applying Lemma 2.1, we get

I1 =
∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · ·
(

ωq
)

r

(γ )r

(δ)r Ŵ(̟ r + λ)

×

Ŵ(τ + r)
Ŵ(τ + r + ǫ − η − η′ − χ)Ŵ(τ + r + χ ′ − η′)

(Ŵ(τ + r + χ ′)Ŵ(τ + r + ǫ − η − η′)
Ŵ(τ + r + ǫ − η′ − χ)

xτ+r−η−η′+ǫ−1.

Using Ŵ(x+ κ) = (x)kŴ(x), we have

I1 = xτ−η−η′+ǫ−1
Ŵ(δ)

∏q
j= 1 Ŵ(ωj)

Ŵ(γ )
∏p

i= 1 Ŵ(κi)

∞
∑

r= 0

∏p
i= 1 Ŵ(κi + r)

∏q
j= 1 Ŵ(ωj + r)

× xr

Ŵ(γ + r)Ŵ(τ + r)Ŵ(τ + r + ǫ − η − η′ − χ)
Ŵ(τ + r + χ ′ − η′)Ŵ(1+ r)

Ŵ(1+ r)Ŵ(δ + r)Ŵ(̟ r + λ)Ŵ(τ + χ ′ + r)
Ŵ(τ + ǫ + r − η − η′)
Ŵ(τ + ǫ + r − η′ − χ)

In view of (4), we reached the required result.

Theorem 2.2. Let η, η′,χ ,χ ′, ǫ, τ ,̟ , λ, γ ∈ C,ℜ(κ) > 0, δ 6=
0,−1,−2, · · · , such that ℜ(τ ) > max{ℜ(χ),ℜ(−η − η′ +
ǫ),ℜ(−η − χ ′ + ǫ)}. Then

(

I
η,η′,χ ,χ ′,ǫ
− t−τ

pE
̟ ,λ;γ
q;δ (

1

t
)

)

(x)

=
Ŵ(δ)

∏q
j= 1 Ŵ(ωj)

Ŵ(γ )
∏p

i= 1 Ŵ(κi)
x−η−η′+ǫ−τ

×p+59q+5









(κi, 1)1,p, (γ , 1), (−χ + τ , 1),
(η + η′ − ǫ + τ , 1), (η + χ ′ − ǫ + τ , 1), (1, 1)

(ωj, 1)1,q, (δ, 1), (λ,̟ ), (τ , 1),
(η − χ + τ , 1), (η + η′ + χ ′ − ǫ + τ , 1)

∣

∣

∣

∣

x









.

Proof: Applying the definition (7) on the left hand side (l.h.s) of
Theorem 2.2,

I2 =
(

I
η,η′ ,χ ,χ ′ ,ǫ
− t−τ

pE
̟ ,λ;γ
q;δ (

1

t
)

)

(x)

=

(

I
η,η′ ,χ ,χ ′ ,ǫ
− t−τ

∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · ·
(

ωq

)

r

(γ )r t
r

(δ)r Ŵ(̟ r + λ)

)

(x)

Changing the order of integration and summation gives

I2 =
∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · ·
(

ωq

)

r

(γ )r

(δ)r Ŵ(̟ r + λ)

(

I
η,η′ ,χ ,χ ′ ,ǫ
− t−τ−r

)

(x)
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Applying Lemma 2.2, we get

I2 =
∞
∑

r= 0

(κ1)r (κ2)r · · ·
(

κp
)

r

(ω1)r (ω2)r · · ·
(

ωq

)

r

(γ )r

(δ)r Ŵ(̟ r + λ)

×

Ŵ(−χ + τ + r)Ŵ(η + η′ − ǫ + τ + r)
Ŵ(η + χ ′ − ǫ + τ + r)

Ŵ(τ + r)Ŵ(η − χ + τ + r)
Ŵ(η + η′ + χ ′ − ǫ + τ + r)

x−η−η′+ǫ−τ−r .

Using Ŵ(x+ r) = (x)rŴ(x), we have

I2 = x−η−η′+ǫ−τ
Ŵ(δ)

∏q
j= 1 Ŵ(ωj)

Ŵ(γ )
∏p

i= 1 Ŵ(κi)

∞
∑

r= 0

∏p
i= 1 Ŵ(κi + r)

∏q
j= 1 Ŵ(ωj + r)

× xr

Ŵ(γ + r)Ŵ(−χ + τ + r)Ŵ(η + η′ − ǫ + τ + r)
Ŵ(η + χ ′ − ǫ + τ + r)

Ŵ(δ + r)Ŵ(̟ r + λ)Ŵ(τ + r)Ŵ(η − χ + τ + r)
Ŵ(η + η′ + χ ′ − ǫ + τ + r)

In view of (4), we reached the required result.

The following corollaries can derive immediately from Theorems
2.1 and 2.2 with the help of Pochhammer symbol

Corollary 2.1. Let δ = λ = 1 in Theorem 2.1, we get

(

I
η,η′ ,χ ,χ ′ ,ǫ
0+

tτ−1
pE

̟ ,λ;γ
q;δ (t)

)

(x)

=
Ŵ(τ )Ŵ(τ + ǫ − η − η′ − χ)Ŵ(τ + χ ′ − η′)

Ŵ(τ + χ ′)Ŵ(τ + ǫ − η − η′)
Ŵ(τ + ǫ − η′ − χ)Ŵ(γ )

xτ−η−η′+ǫ−1

×p+4Fq+4









(κi, 1)1,p, ν, τ , τ + ǫ − η − η′ − χ ,
τ + χ ′ − η′;

(ωj, 1)1,q, λ, τ + χ ′, τ + ǫ − η − η′,
τ + ǫ − η′ − χ;

∣

∣

∣

∣

x









.

Corollary 2.2. If δ = λ = 1 in Theorem 2.2, then

(

I
η,η′ ,χ ,χ ′ ,ǫ
− tτ−1

pE
̟ ,λ;γ
q;δ (

1

t
)

)

(x)

=

Ŵ(τ − χ)Ŵ(η + η′ − ǫ + τ )
Ŵ(η + χ ′ − ǫ + τ )

Ŵ(τ )Ŵ(η − χ + τ )Ŵ(η + η′ + χ − ǫ + τ )
Ŵ(γ )

x−τ−η−η′+ǫ−1

×p+4Fq+4









(κi, 1)1,p, γ , τ − χ , η + η′ − ǫ + τ , η + χ ′

−ǫ + τ ;
(ωj, 1)1,q, λ, τ , η − χ + τ , η + η′

−ǫ + τ ;

∣

∣

∣

∣

x









.

In the next section, we derived the generalized FKEs and
we consider the Sumudu transform methodology to achieve
the results.

3. GENERALIZED FRACTIONAL KINETIC
EQUATIONS INVOLVING GMLTF

The generalized fractional kinetic equations (FKEs) involving
the GMLTF with the Sumudu transform is derived
in this section. The FKEs are studied widely in many
papers [42–45].

Let K = (Kt) be the arbitrary reaction defined by a time-
dependent quantity. The destruction d and production p depend
on the quantity K itself: d = d(K) or p = p(K) [see [42]]. The
fractional differential equation can be expressed by

dK

dt
= −d (Kt) + p (Kt) , (15)

where Kt described by Kt (t
∗) = K (t − t∗) , t∗ > 0 (see, [42]). A

special case of (15) is

dKi

dt
= −ciKi (t) , (16)

with Ki (t = 0) = K0, ci > 0 and the solution of (16) is

Ki (t) = K0e
−cit . (17)

Performing the integration of (16) leads to

K (t) − K0 = −c 0D
−1
t K (t) , (18)

where 0D
−1
t is the particular case of Riemann–Liouville (R-L)

integral operator and c is a constant. The fractional form of (18)
is (see [42])

K (t) − K0 = −cµ 0D
−µ
t K (t) , (19)

where 0D
−µ
t is given by

0D
−µ
t f (t) =

1

Ŵ (µ)

t
∫

0

(t − s)µ−1 f (s) ds,ℜ (µ) > 0. (20)

Theorem 3.1. For ̟ , λ, γ ∈ C, δ 6= 0,−1,−2, · · · , d > 0, ǫ > 0
then the solution of

K(t)− K0 pE
̟ ,λ;γ
q;δ (t) = −dǫ

0D
−ǫ
t K(t) (21)

is given by

K(t) = K0

∞
∑

n= 0

(κ1)n...(κp)n
(ω1)n...(ωq)n

(γ )nn!

(δ)nŴ(̟n+ λ)
tn−1Eǫ,n(−dǫ tǫ)

(22)

Proof: The Sumudu transform (ST) of the R-L fractional
operator is

S
{

0D
ǫ
t g (t) ; u

}

= uǫG (u) (23)

where G (u) is defined in (14). Now, applying the ST on the both
sides of (21) and using (7) and (23), we have

S{K(t); u} − K0S{pE
̟ ,λ;γ
q;δ (t) ; u} = S{−dǫ

0D
−ǫ
t K(t); u}, (24)
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which gives

K
∗(u) = K0

(

∫ ∞

0
e−t

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n (ut)
n

(δ)r Ŵ (̟n+ λ)
dt
)

−dǫuǫ
K∗(u), (25)

which implies that

K∗(u)[1+ dǫuǫ] (26)

= K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n (u)
n

(δ)n Ŵ (̟n+ λ)
∫ ∞

0
e−ttndt.

After some simple calculation, we get

K∗(u) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(27)

(γ )n

(δ)n Ŵ (̟n+ λ) (un)n!
Ŵ(n+ 1)

×
{

∞
∑

s= 0

[(−du)ǫ]s
}

.

The inverse ST of (27) and using the formula S−1{uǫ; t} = tǫ−1

Ŵ(ǫ) ,

ℜ(ǫ) > 0 gives

K(t) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n

(δ)n Ŵ (̟n+ λ)
Ŵ(n+ 1)

×
∞
∑

s= 0

(−1)sdǫs tǫs+n−1

Ŵ(ǫs+ n)
. (28)

In view of the Mittag-Leffler function definition, we arrived the
needful result.

Theorem 3.2. For ̟ , λ, γ ∈ C, δ 6= 0,−1,−2, · · · , d > 0, ǫ > 0
then the equation

K(t)− K0pE
̟ ,λ;γ
q;δ

(

dǫ tǫ
)

= −dǫ
0D

−ǫ
t K(t) (29)

have the following solution

K(t) = K0

∞
∑

n= 0

(κ1)n...(κp)n
(ω1)n...(ωq)n

(γ )nŴ(ǫn+ 1)

(δ)nŴ(̟n+ λ)
(d)ǫntn−1Eǫ,n(−dǫ tǫ)

(30)

Proof: Applying the Sumudu transform on the both sides of (29)

S{K(t); u} − K0S{pE
̟ ,λ;γ
q;δ

(

dǫ tǫ
)

; u} = S{−dǫ
0D

−ǫ
t K(t); u},

(31)
and using (7) and (23), we get

K∗(u) = K0

(

∫ ∞

0
e−t

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n (ud
ǫ tǫ)n

(δ)n Ŵ (̟n+ λ)
dt
)

− dǫuǫK(u), (32)

which gives

K(u)[1+ dǫuǫ]

= K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n u
ndǫn

(δ)n Ŵ (̟n+ λ)
∫ ∞

0
e−ttǫndt, (33)

which can be simplified as

K(u) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n d
ǫn

(δ)n Ŵ (̟n+ λ)
Ŵ(ǫn+ 1)

×
{

undǫn
∞
∑

s=0

[(−du)ǫ]s
}

. (34)

Taking the Sumudu inverse of (34) and using S−1{uϑ ; t} = tϑ−1

Ŵ(ϑ) ,
we get

K(t) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n d
ǫntn−1

(δ)n Ŵ (̟n+ λ)
Ŵ(ǫn+ 1)

×
∞
∑

s= 0

(−1)sdǫs tǫs

Ŵ(ǫs+ 1)
. (35)

In view of the definition of the Mittag-Leffler function, we get the
required result.

Theorem 3.3. For ̟ , λ, γ ∈ C, δ 6= 0,−1,−2, · · · , d > 0, ǫ > 0
and a 6= d then the equation

K(t)− K0pE
̟ ,λ;γ
q;δ

(

dǫ tǫ
)

= −aǫ
0D

−ǫ
t K(t) (36)

have the following solution

K(t) = K0

∞
∑

n= 0

(κ1)n...(κp)n
(ω1)n...(ωq)n

(γ )nŴ(ǫn+ 1)

(δ)nŴ(̟n+ λ)
(d)ǫntn−1Eǫ,n(−aǫ tǫ)

(37)

Proof: Applying the Sumudu transform on the both sides of (36)

S{K(t); u} − K0S{pE
̟ ,λ;γ
q;δ

(

dǫ tǫ
)

; u} = S{−aǫ
0D

−ǫ
t K(t); u},

(38)
and using (7) and (23), we get

K∗(u) (39)

= K0

(

∫ ∞

0
e−t

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n (ud
ǫ tǫ)n

(δ)n Ŵ (̟n+ λ)
dt
)

− aǫuǫK(u),

which gives

K(ρ)[1+ aǫuǫ]
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= K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n u
ndǫn

(δ)n Ŵ (̟n+ λ)
∫ ∞

0
e−ttǫndt, (40)

which can be simplified as

K(u) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq
)

n

(γ )n d
ǫn

(δ)n Ŵ (̟n+ λ)
Ŵ(ǫn+ 1)

×
{

undǫn
∞
∑

s= 0

[(−au)ǫ]s
}

. (41)

Taking the Sumudu inverse of (41) and using S−1{uϑ ; t} = tϑ−1

Ŵ(ϑ) ,
we get

K(t) = K0

∞
∑

n= 0

(κ1)n (κ2)n · · ·
(

κp
)

n

(ω1)n (ω2)n · · ·
(

ωq

)

n

(γ )n d
ǫntn−1

(δ)n Ŵ (̟n+ λ)
Ŵ(ǫn+ 1)

×
∞
∑

s= 0

(−1)saǫs tǫs

Ŵ(ǫs+ 1)
. (42)

In view of the definition of the Mittag-Leffler function, we get the
required result.

If we take δ = 1 in Theorem 3.1, we get the generalized FKE
involving K− function as follows:

Corollary 3.1. For ̟ , λ, γ ∈ C, δ 6= 0,−1,−2, · · · , d > 0,
ǫ > 0 then

K(t)− K0 pE
̟ ,λ;γ
q;1 (t) = −dǫ

0D
−ǫ
t K(t) (43)

is given by

K(t) = K0

∞
∑

n= 0

(κ1)n...(κp)n
(ω1)n...(ωq)n

(γ )n
Ŵ(̟n+ λ)

tn−1Eǫ,n(−dǫ tǫ) (44)

If we take δ = 1, p = q = 0 in Theorem 3.1, we have the
generalized FKE involving the Prabhakar function:

Corollary 3.2. For ̟ , λ, γ ∈ C, δ 6= 0,−1,−2, · · · , d > 0,
ǫ > 0 then

K(t)− K0 0E
̟ ,λ;γ
0;1 (t) = −dǫ

0D
−ǫ
t K(t) (45)

is given by

K(t) = K0

∞
∑

n= 0

(γ )n
Ŵ(̟n+ λ)

tn−1Eǫ,n(−dǫ tǫ) (46)

If we choose δ = 1, p = q = 0 and γ = 1 in Theorem 3.1, then
the generalized FKE involving the Wiman function:

Corollary 3.3. For ̟ , λ ∈ C, δ 6= 0,−1,−2, · · · , d > 0,
ǫ > 0 then

K(t)− K0 0E
̟ ,λ;1
0;1 (t) = −dǫ

0D
−ǫ
t K(t) (47)

is given by

K(t) = K0

∞
∑

n= 0

1

Ŵ(̟n+ λ)
tn−1Eǫ,n(−dǫ tǫ) (48)

If we choose δ = 1, p = q = 0 and γ = 1 in Theorem 3.1, then
we get the generalized FKE involving the Mittag-Leffler function:

Corollary 3.4. For ̟ ∈ C, δ 6= 0,−1,−2, · · · , d > 0, ǫ > 0 then

K(t)− K0 0E
̟ ,1;1
0;1 (t) = −dǫ

0D
−ǫ
t K(t) (49)

is given by

K(t) = K0

∞
∑

n= 0

1

Ŵ(̟n+ 1)
tn−1Eǫ,n(−dǫ tǫ) (50)

Remark 3.1. By choosing the suitable parameters in Theorems
3.2 and 3.3, one can derive the generalized FKEs of GMLTF as
similar as above corollaries.

4. CONCLUSION

The generalized fractional integrations of the generalized Mittag-
Leffler type function is studied in this paper. The obtained results
are expressed in terms of the generalized Wright hypergeometric
function and generalized hypergeometric functions. To show
the potential application of GMLTF, the solutions of fractional
kinetic equations are derived with the help of Sumudu transform.
The results obtained in this study have significant importance as
the solution of the equations are general and can derive many
new and known solutions of FKEs involving various type of
special functions.
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The main objective of this paper is to develop a novel framework to study a new fractional

operator depending on a parameterK > 0, known as the generalizedK-fractional integral

operator. To ensure appropriate selection and with the discussion of special cases, it

is shown that the generalized K-fractional integral operator generates other operators.

Meanwhile, we derived notable generalizations of the reverse Minkowski inequality and

some associated variants by utilizing generalized K-fractional integrals. Moreover, two

novel results correlate with this inequality, and other variants associated with generalized

K-fractional integrals are established. Additionally, this newly defined integral operator

has the ability to be utilized for the evaluation of many numerical problems.

Keywords: Minkowski inequality, fractional integral inequality, generalized K-fractional integrals, holder

inequalitiy, generalized Riemann-Liouville fractional integral
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1. INTRODUCTION

Fractional calculus is truly considered to be a real-world framework, for example, a correspondence
framework that comprises extravagant interfacing, has reliant parts that are utilized to achieve a
bound-together objective of transmitting and getting signals, and can be portrayed by utilizing
complex system models (see [1–8]). This framework is considered to be a mind-boggling system,
and the units that create the whole framework are viewed as the hubs of the intricate system.
An attractive characteristic of this field is that there are numerous fractional operators, and this
permits researchers to choose the most appropriate operator for the sake of modeling the problem
under investigation (see [9–13]). Besides, because of its simplicity in application, researchers have
been paying greater interest to recently introduced fractional operators without singular kernels
[2, 14, 15], after which many articles considering these kinds of fractional operators have been
presented. These techniques had been developed by numerous mathematicians with a barely
specific formulation, for instance, the Riemann-Liouville (RL), theWeyl, Erdelyi-Kober, Hadamard
integrals, and the Liouville and Katugampola fractional operators (see [16–18]). On the other hand,
there are numerous approaches to acquiring a generalization of classical fractional integrals. Many
authors have introduced new fractional operators generated from general classical local derivatives
(see [9, 19, 20]) and the references therein. Other authors have introduced a parameter and
enunciated a generalization for fractional integrals on a selected space. These are called generalized
K-fractional integrals. For such operators, we refer to Mubeen and Habibullah [21] and Singh
et al. [22] and the works cited in them. Inspired by these developments, future research can
bring revolutionary thinking to provide novelties and produce variants concerning such fractional
operators. Fractional integral inequalities are an appropriate device for enhancing the qualitative
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and quantitative properties of differential equations. There
has been a continuous growth of interest in several areas
of science: mathematics, physics, engineering, amongst others,
and particularly, initial value problems, linear transformation
stability, integral-differential equations, and impulse equations
[23–30].

The well-known integral inequality, as perceived in Dahmani
[31], is referred to as the reverse Minkowski inequality. In Nisar
et al. [32, 33], the authors investigated numerous variants of
extended gamma and confluent hypergeometricK-functions and
also established Gronwall inequalities involving the generalized
Riemann-Liouville and Hadamard K-fractional derivatives with
applications. In Dahmani [25], Dahmani explored variants on
intervals that are known as generalized (K, s)-fractional integral
operators for positive continuously decreasing functions for a
certain family of n(n ∈ N). In Chinchane and Pachpatte
[34], the authors obtained Minkowski variants and other
associated inequalities by employing Katugampola fractional
integral operators. Recently, some generalizations of the reverse
Minkowski and associated inequalities have been established
via generalized K fractional conformable integrals by Mubeen
et al. in [35]. Additionally, Hardy-type and reverse Minkowski
inequalities are supplied by Bougoffa [36]. Aldhaifallah et al.
[37], explored several variants by employing the (K, s)-fractional
integral operator.

In the present paper, the authors introduce a parameter
and enunciate a generalization for fractional integrals on a
selected space, which we name generalizedK-fractional integrals.
Taking into account the novel ideas, we provide a new
version for reverse Minkowski inequality in the frame of the
generalizedK-fractional integral operators and also provide some
of its consequences that are advantageous to current research.
New outcomes are introduced, and new theorems relating to
generalized K-fractional integrals are derived that correlate with
the earlier results.

The article is composed as follows. In the second section, we
demonstrate the notations and primary definitions of our newly
described generalizedK-fractional integrals. Also, we present the
results concerning reverse Minkowski inequality. In the third
section, we advocate essential consequences such as the reverse
Minkowski inequality via the generalized K-fractional integral.
In the fourth section, we show the associated variants using this
fractional integral.

2. PRELUDE

In this section, we demonstrate some important concepts from
fractional calculus that play a major role in proving the results of
the present paper. The essential points of interest are exhibited in
the monograph by Kilbas et al. [20].

Definition 2.1. ([9, 20]) A function Q1(τ ) is said to be in
Lp,u[0,∞] space if

Lp,u[0,∞) =
{

Q1 : ‖Q1‖Lp,u[0,∞)

=





υ2
∫

υ1

|Q1(η)|pξudη





1
p

< ∞, 1 ≤ p < ∞, u ≥ 0
}

.

For r = 0,

Lp[0,∞) =
{

Q1 : ‖Q1‖Lp[0,∞)

=





υ2
∫

υ1

|Q1(η)|pdη





1
p

< ∞, 1 ≤ p < ∞
}

.

Definition 2.2. ([38]) “LetQ1 ∈ L1[0,∞) and9 be an increasing
and positive monotone function on [0,∞) and also derivative 9 ′

be continuous on [0,∞) and9(0) = 0. The space χ
p
9 (0,∞) (1 ≤

p < ∞) of those real-valued Lebesgue measureable functionsQ1

on [0,∞) for which

‖Q1‖χ
p
9
=

(

∞
∫

0

|Q1(η)|p9 ′(η)dη
)

1
p

< ∞, 1 ≤ p < ∞

and for the case p = ∞

‖Q1‖χ∞
9

= ess sup
0≤η<∞

[

9 ′(η)Q1(η)
]

”.

In particular, when 9(λ) = λ (1 ≤ p < ∞), the space
χ
p
9 (0,∞) matches with the Lp[0,∞)-space and, furthermore, if

we take9(λ) = ln λ (1 ≤ p < ∞), the space χ
p
9 (0,∞) concurs

with Lp,u[1,∞)-space.

Now, we present a new fractional operator that is known as
the generalizedK-fractional integral operator of a function in the
sense of another function 9 .

Definition 2.3. Let Q1 ∈ χ
q
9 (0,∞), and let 9 be an increasing

positive monotone function defined on [0,∞), containing
continuous derivative 9 ′(λ) on [0,∞) with 9(0) = 0. Then, the
left- and right-sided generalized K-fractional integral operators
of a functionQ1 in the sense of another function9 of order η > 0
are stated as:

( 9T
ρ,K

υ+
1 ,τ

Q1)(λ) =
1

KŴK(ρ)

λ
∫

υ1

9 ′(η)(9(λ)

−9(η))
ρ
K
−1Q1(η)dη, υ1 < λ (2.1)

and

( 9T
ρ,K

υ−
2 ,τ

Q1)(λ) =
1

KŴK(ρ)

υ2
∫

λ

9 ′(η)(9(η)

−9(λ))
ρ
K
−1Q1(η)dη, λ < υ2, (2.2)

where ρ ∈ C,ℜ(ρ) > 0, and ŴK(λ) =
∞
∫

0
ηλ−1e−

ηK

K dη, ℜ(λ) > 0 is the K-Gamma function

introduced by Daiz and Pariguan [39].
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Remark 2.1. Several existing fractional operators are just special
cases of (2.1) and (2.2).
(1) Choosing K = 1, it turns into the both sided generalized RL-
fractional integral operator [20].
(2) Choosing 9(λ) = λ, it turns into the both-sided K-fractional
integral operator [21].
(3) Choosing 9(λ) = λ along with K = 1, it turns into the both-
sided RL-fractional integral operators.
(4) Choosing 9(λ) = log λ along with K = 1, it turns into the
both-sided Hadamard fractional integral operators [9, 20].

(5) Choosing 9(λ) = λβ

β
,β > 0, along with K = 1, it turns into

the both-sided Katugampola fractional integral operators [17].

(6) Choosing 9(λ) = (λ−a)β

β
,β > 0 along with K = 1, it turns

into the both-sided conformable fractional integral operators
defined by Jarad et al. [2].

(7) Choosing 9(λ) = λu+v

u+v along with K = 1, it turns into the
both-sided generalized conformable fractional integrals defined
by Khan et al. [40].

Definition 2.4. Let Q1 ∈ χ
q
9 (0,∞), and let 9 be an increasing

positive monotone function defined on [0,∞), containing
continuous derivative 9 ′(λ) in [0,∞) with 9(0) = 0. Then, the
one-sided generalizedK-fractional integral operator of a function
Q1 in the sense of another function 9 of order η > 0 is stated as:

( 9T
ρ,K
0+ ,λQ1)(λ) =

1

KŴK(ρ)

λ
∫

0

9 ′(η)(9(λ)

−9(η))
ρ
K
−1Q1(η)dη, η > 0, (2.3)

where ŴK is the K-Gamma function.

In Set et al. [41] proved the Hermite-Hadamard and reverse
Minkowski inequalities for an RL-fractional integral. The
subsequent consequences concerning the reverse Minkowski
inequalities are the motivation of work finished to date
concerning the classical integrals.

Theorem 2.5. Set et al. [41] For s ≥ 1, letQ1,Q2 be two positive

functions on [0,∞). If 0 < ς ≤ Q1(η)
Q2(η)

≤ �, λ ∈ [υ1, υ2], then

(

υ2
∫

υ1

Qs
1(λ)dλ

)
1
s +

(

υ2
∫

υ1

Qs
2(λ)dλ

)
1
s

≤
1+ �(ς + 2)

(ς + 1)(� + 1)

(

υ2
∫

υ1

(

Q1 +Q2
)s
(λ)dλ

)
1
s
.

Theorem 2.6. Set et al. [41] For s ≥ 1, letQ1,Q2 be two positive

functions on [0,∞). If 0 < ς ≤ Q1(η)
Q2(η)

≤ �, λ ∈ [υ1, υ2], then

(

υ2
∫

υ1

Qs
1(λ)dλ

)
2
s +

(

υ2
∫

υ1

Qs
2(λ)dλ

)
2
s

≥
(

(1+ �)(ς + 1)

�
− 2

)

(

υ2
∫

υ1

Qs
1(λ)dλ

)
1
s

(

υ2
∫

υ1

Qs
2(λ)dλ

)
1
s .

In Dahmani [31], introduced the subsequent reverse Minkowski
inequalities involving the RLFI operators.

Theorem 2.7. Dahmani [31] For ρ ∈ C, ℜ(ρ) > 0, s ≥ 1, and
let Q1,Q2 be two positive functions on [0,∞) such that, for all

λ > 0, T
ρ

υ+
1
Qs

1(λ) < ∞, T
ρ

υ+
1
Qs

2(λ) < ∞. If 0 < ς ≤ Q1(λ)
Q2(λ)

≤
�, η ∈ [υ1, λ], then

(

T
ρ

υ+
1
Qs

1(λ)
)

1
s +

(

T
ρ

υ+
1
Qs

2(λ)
)

1
s

≤
1+ �(ς + 2)

(ς + 1)(� + 1)

(

T
ρ

υ+
1

(

Q1 +Q2
)s
(λ)

)
1
s
.

Theorem 2.8. Dahmani [31] For ρ ∈ C, ℜ(ρ) > 0, s ≥ 1, and
let Q1,Q2 be two positive functions on [0,∞) such that, for all

λ > 0, T
ρ

υ+
1
Qs

1(λ) < ∞, T
ρ

υ+
1
Qs

2(λ) < ∞. If 0 < ς ≤ Q1(λ)
Q2(λ)

≤
�, η ∈ [υ1, λ], then

(

T
ρ

υ+
1
Qs

1(λ)
)

2
s +

(

T
ρ

υ+
1
Qs

2(λ)
)

2
s

≥
(

(1+ �)(ς + 2)

�
− 2

)

(

T
ρ

υ+
1
Qs

1(λ)
)

1
s
(

T
ρ

υ+
1
Qs

2(λ)
)

1
s
.

3. REVERSE MINKOWSKI INEQUALITY VIA
GENERALIZED K-FRACTIONAL
INTEGRALS

Throughout the paper, it is supposed that all functions are
integrable in the Riemann sense. Also, this segment incorporates
the essential contribution for obtaining the proof of the reverse
Minkowski inequality via the newly described generalized K-
fractional integrals defined in section (2.4).

Theorem 3.1. For K > 0, ρ ∈ C,ℜ(ρ) > 0 and s ≥ 1, and let
two positive functionsQ1,Q2 be defined on [0,∞). Assume that
9 is an increasing positive monotone function on [0,∞) having
derivative 9 ′ and is continuous on [0,∞) with 9(0) = 0 such
that, for all λ > 0, 9T

ρ,K
0+ ,λQ

s
1(λ) < ∞ and 9T

ρ,K
0+ ,λQ

s
2(λ) < ∞.

If 0 < ς ≤ Q1(η)
Q2(η)

≤ � for ς ,� ∈ R
+ and for all η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

≤ θ1

(

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ)

)
1
s

(3.1)

with θ1 = �(ς+1)+(�+1)
(ς+1)(�+1) .

Proof: Under the given conditions Q1(η)
Q2(η)

≤ �, 0 ≤ η ≤ λ, it can
written as

Q1(η) ≤ �
(

Q1(η)+Q2(η)
)

− �Q1(η),

which implies that

(� + 1)sQs
1(η) ≤ �s

(

Q1(η)+Q2(η)
)s
. (3.2)
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If we multiply both sides of (3.2) by 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], one obtains

(� + 1)s

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Qs
1(η)dη

≤
�s

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1(

Q1(η)

+Q2(η)
)s
dη. (3.3)

Accordingly, it can be written as

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s ≤

�

� + 1

(

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ)

)
1
s
. (3.4)

In contrast, as ςQ2(λ) ≤ Q1(λ), it follows

(

1+
1

ς

)s
Qs

2(η) ≤
( 1

ς

)s
(

Q1(η)+Q2(η)
)s
. (3.5)

Again, taking the product of both sides of (3.5) with
1

KŴK(ρ)9
′(η)

(

9(λ) − 9(η)
)

ρ
K
−1

and integrating w.r.t η over

[0, λ], we obtain

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s ≤

1

ς + 1

(

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ)

)
1
s
. (3.6)

The desired inequality (3.1) can be obtained from 3.4 and 3.6.

Inequality (3.1) is referred to as the reverse Minkowski
inequality related to the generalized K-fractional integral.

Theorem 3.2. For K > 0, ρ ∈ C,ℜ(ρ) > 0 and s ≥ 1, let two
positive functions Q1,Q2 be defined on [0,∞). Assume that 9

is an increasing positive monotone function on [0,∞) having
derivative 9 ′ and is continuous on [0,∞) with 9(0) = 0 such
that, for all λ > 0, 9T

ρ,K
0+ ,λQ

s
1(λ) < ∞ and 9T

ρ,K
0+ ,λQ

s
2(λ) < ∞.

If 0 < ς ≤ Q1(η)
Q2(η)

≤ � for ς ,� ∈ R
+ and for all η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
2
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
2
s

≥ θ2

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s
(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

(3.7)

with θ2 = (ς+1)(�+1)
�

− 2.

Proof: Multiplying 3.4 and 3.6 results in

(ς + 1)(� + 1)

�

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s
(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

≤
(

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ)

)
2
s
. (3.8)

Involving the Minkowski inequality, on the right side of (3.8),
we get

(ς + 1)(� + 1)

�

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s
(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

≤
(

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

)2

. (3.9)

From 3.9, we conclude that

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
2
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
2
s

≥
(

(ς + 1)(� + 1)

�
− 2

)

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s
(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s
.

4. CERTAIN ASSOCIATED INEQUALITIES
VIA THE GENERALIZED K-FRACTIONAL
INTEGRAL OPERATOR

Theorem 4.1. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s, r ≥ 1, 1s +
1
r =

1 and let two positive functions Q1,Q2 be defined on [0,∞).
Assume that 9 is an increasing, positive monotone function on
[0,∞) having derivative 9 ′ and is continuous on [0,∞) with

9(0) = 0 such that, for all λ > 0, 9T
η,K
0+ ,τQ

s
1(λ) < ∞ and

9T
ρ,K
0+ ,λQ

s
2(λ) < ∞. If 0 < ς ≤ Q1(η)

Q2(η)
≤ � for ς ,� ∈ R

+

and for all η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ1(λ)

)
1
s
(

9T
ρ,K
0+ ,λQ2(λ)

)
1
r

≤
(�

ς

)
1
sr
((

9T
ρ,K
0+ ,λQ

1
s
1 (λ)Q

1
r
2 (λ)

)

. (4.1)

Proof: Under the given condition Q1(η)
Q2(η)

≤ �, 0 ≤ η ≤ λ, it can

be expressed as

Q1(η) ≤ �Q2(η),

which implies that

Q
1
r
2 (η) ≥ �− 1

r Q
1
r
1 (η). (4.2)

Taking the product of both sides of (4.2) byQ
1
s
1 (η), we are able to

rewrite it as follows:

Q
1
s
1 (η)Q

1
r
2 (η) ≥ �− 1

r Q1(η). (4.3)

Multiplying both sides of (4.3) with 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrating w.r.t η over [0, λ], one obtains

�− 1
r

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Q1(η)dη
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≥
1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)

−9(η)
)

ρ
K
−1

Q
1
s
1 (η)Q

1
r
2 (η)dη. (4.4)

As a consequence, we can rewrite as follows

�
−1
sr

(

9T
ρ,K
0+ ,λQ1(λ)

)
1
s ≤

(

9T
ρ,K
0+ ,λQ

1
s
1 (λ)Q

1
r
1 (λ)

)
1
s . (4.5)

Similarly, as ςQ2(η) ≤ Q1(η), it follows that

ς
1
s Q

1
s
2 (η) ≤ Q

1
s
1 (η). (4.6)

Again, taking the product of both sides of (4.6) by Q
1
s
2 (η) and

using the relation 1
s +

1
r = 1 gives

ς
1
s Q2(η) ≤ Q

1
s
1 (η)Q

1
s
2 (η). (4.7)

If we multiply both sides of (4.7) by 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], we obtain

ς
1
sr

(

9T
ρ,K
0+ ,λQ2(λ)

)
1
r ≤

(

9T
ρ,K
0+ ,λQ

1
s
1 (λ)Q

1
r
1 (λ)

)
1
r . (4.8)

Finding the product between (4.5) and (4.8) and using the
relation 1

s +
1
r = 1, we get the desired inequality (4.1).

Theorem 4.2. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s, r ≥ 1, 1s +
1
r =

1, and let two positive functions Q1,Q2 be defined on [0,∞).
Assume that 9 is an increasing, positive monotone function on
[0,∞) having derivative 9 ′ and is continuous on [0,∞) with

9(0) = 0 such that, for all λ > 0, 9T
η,K
0+ ,τQ

s
1(λ) < ∞ and

9T
ρ,K
0+ ,λQ

s
2(λ) < ∞. If 0 < ς ≤ Q1(η)

Q2(η)
≤ � for ς ,� ∈ R

+

and for all η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ1(λ)Q1(λ)

)

≤ θ3

(

9T
ρ,K
0+ ,λ

(

Qs
1 +Qs

2

)

(λ)
)

+ θ4

(

9T
ρ,K
0+ ,λ

(

Qr
1 +Qr

2

)

(λ)
)

(4.9)

with θ3 = 2s−1�s

s(�+1)s and θ4 = 2r−1

r(ς+1)r .

Proof: Under the assumptions, we have the subsequent identity:

(� + 1)sQs
1(η) ≤ �s(Q1 +Q2)

s(η). (4.10)

Multiplying both sides of (4.10) by 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrating w.r.t η over [0, λ], one obtains

(� + 1)s

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Qs
1(η)dη

≤
�s

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)

−9(η)
)

ρ
K
−1

(Q1 +Q2)
s(η)dη. (4.11)

Accordingly, it can be written as

9T
ρ,K
0+ ,λQ

s
1(λ) ≤

�s

(� + 1)s
9T

ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ). (4.12)

In contrast, as 0 < ς
Q1(η)
Q2(η)

, 0 < η < λ, it follows

(ς + 1)rQr
2(η) ≤ (Q1 +Q2)

r(η). (4.13)

Again, taking the product of both sides of (4.13) with
1

KŴK(ρ)9
′(η)

(

9(λ) − 9(η)
)

ρ
K
−1

and integrating w.r.t η over

[0, λ], one obtains

9T
ρ,K
0+ ,λQ

r
2(λ) ≤

1

(ς + 1)r
9T

ρ,K
0+ ,λ

(

Q1 +Q2
)r
(λ). (4.14)

Considering Young’s inequality,

Q1(η)Q2(η) ≤
Qs

1(η)

s
+

Qr
2(η)

r
. (4.15)

If we multiply both sides of (4.15) with 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], we obtain

9T
ρ,K
0+ ,λ

(

Q1Q2
)

(λ) ≤
9T

ρ,K
0+ ,λQ

s
1(λ)

s
+

9T
ρ,K
0+ ,λQ

r
2(λ)

r
. (4.16)

Invoking (4.12) and (4.14) into (4.16), we obtain

9T
ρ,K
0+ ,λ

(

Q1Q2
)

(λ)

≤
9T

ρ,K
0+ ,λQ

s
1(λ)

s
+

9T
ρ,K
0+ ,λQ

r
2(λ)

r

≤
�s

(� + 1)s
9T

ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ)

+
1

(ς + 1)r
9T

ρ,K
0+ ,λ

(

Q1 +Q2
)r
(λ). (4.17)

Using the inequality (µ+ ν)z ≤ 2z−1(µz + νz), z > 1, µ, ν > 0,
one obtains

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)s
(λ) ≤ 2s−1 9T

ρ,K
0+ ,λ

(

Qs
1 +Qs

2

)

(λ) (4.18)

and

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)r
(λ) ≤ 2r−1 9T

ρ,K
0+ ,λ

(

Qr
1 +Qr

2

)

(λ). (4.19)

The desired (4.9) can be established from (4.17), (4.18) and
(4.19) jointly.

Theorem 4.3. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s, r ≥ 1, 1s +
1
r =

1 and let two positive functions Q1,Q2 be defined on [0,∞).
Assume that 9 is an increasing positive monotone function on
[0,∞) having derivative 9 ′ and is continuous on [0,∞) with

9(0) = 0 such that, for all λ > 0, 9T
η,K
0+ ,τQ

s
1(λ) < ∞ and
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9T
ρ,K
0+ ,λQ

s
2(λ) < ∞. If 0 < ζ < ς ≤ Q1(η)

Q2(η)
≤ � for ς ,� ∈ R

+

and for all η ∈ [0, λ], then

� + 1

� − ζ

(

J
λ
9

(

Q1(λ)−Q2(λ)
)

)

≤
(

J
λ
9Q1(λ)

)
1
s +

(

J
λ
9Q2(λ)

)
1
s

≤
ς + 1

ς − ζ

(

J
λ
9

(

Q1(λ)−Q2(λ)
)

)
1
s
. (4.20)

Proof: Using the hypothesis 0 < ζ < ς ≤ �, we get

ςζ ≤ �ζ ⇒ ςζ + ς ≤ ςζ + � ≤ �ζ + �

⇒ (� + 1)(ς − ζ ) ≤ (ς + 1)(� − ζ ).

It can be concluded that

� + 1

� − ζ
≤

ς + 1

ς − ζ
.

Further, we have that

ς − ζ ≤
Q1(η)− ζQ2(η)

Q2(η)
≤ � − ζ

implies that

(

Q1(η)− ζQ2(η)
)s

(� − ζ )s
≤ Qs

2(η) ≤
(

Q1(η)− ζQ2(η)
)s

(ς − ζ )s
. (4.21)

Again, we have that

1

�
≤

Q2(η)

Q1(η)
≤

1

ς
⇒

ς − ζ

ζς
≤

Q1(η)− ζQ2(η)

ζQ1(η)
≤

� − ζ

ζ�

implies that

( �

� − ζ

)s
(

Q1(η)− ζQ2(η)
)s ≤ Qs

1(η)

≤
( ς

ς − ζ

)s
(

Q1(η)− ζQ2(η)
)s
. (4.22)

If we multiply both sides of (4.21) with 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], we obtain

1

KŴK(ρ)(� − ζ )s

λ
∫

0

9 ′(η)
(

9(λ)

− 9(η)
)

ρ
K
−1(

Q1(η)− ζQ2(η)
)s
dη

≤
1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Qs
2(η)dη

≤
1

KŴK(ρ)(ς − ζ )s

λ
∫

0

9 ′(η)
(

9(λ)

− 9(η)
)

ρ
K
−1(

Q1(η)− ζQ2(η)
)s
dη.

Accordingly, it can be written as

1

� − ζ

(

9T
ρ,K
0+ ,λ

(

Q1(λ)− ζQ2(λ)
)s

)
1
s

≤
(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s

≤
1

ς − ζ

(

J
λ
9

(

Q1(λ)− ζQ2(λ)
)s

)
1
s
. (4.23)

In a similar way with (4.22), one obtains

�

� − ζ

(

9T
ρ,K
0+ ,λ

(

Q1(λ)− ζQ2(λ)
)s

)
1
s

≤
(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s

≤
ς

ς − ζ

(

9T
ρ,K
0+ ,λ

(

Q1(λ)− ζQ2(λ)
)s

)
1
s
. (4.24)

The desired inequality (4.20) can be established by adding (4.23)
and (4.24).

Theorem 4.4. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s, r ≥ 1, 1s +
1
r =

1 and let two positive functions Q1,Q2 be defined on [0,∞).
Assume that 9 is an increasing positive monotone function on
[0,∞) having derivative 9 ′ and is continuous on [0,∞) with

9(0) = 0 such that, for all λ > 0, 9T
η,K
0+ ,τQ

s
1(λ) < ∞ and

9T
ρ,K
0+ ,λQ

s
2(λ) < ∞. If 0 ≤ d ≤ Q1(η) ≤ D and 0 ≤ f ≤ Q2(η) ≤

F for ς ,� ∈ R
+ and for all η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

≤ θ5

(

J
λ
9 (Q1 +Q2)

s(λ)
)

1
s

(4.25)

with θ5 = D(d+F)+F(D+f )
(D+f )(d+F) .

Proof: Under the assumptions, it pursues that

1

F
≤

1

Q2(λ)
≤

1

f
. (4.26)

Taking the product between (4.26) and 0 ≤ d ≤ Q1(η) ≤ D, we
have

d

F
≤

Q1(λ)

Q2(λ)
≤

D

f
. (4.27)

From (4.27), we get

Qs
2(η) ≤

( F

d + F

)s
(

Q1(η)+Q2(η)
)s

(4.28)

and

Qs
1(η) ≤

( D

f +D

)s
(

Q1(η)+Q2(η)
)s
. (4.29)
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If we multiply both sides of (4.28) with 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], we obtain

1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Qs
2(η)dη

≤
F s

(d + F)sKŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)

− 9(η)
)

ρ
K
−1(

Q1(η)+Q2(η)
)s
dη.

Likewise, it can be composed as

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s ≤

F

d + F

(

9T
ρ,K
0+ ,λ(Q1 +Q2)

s(λ)
)

1
s
. (4.30)

In the same way with (4.29), we have

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s ≤

D

f +D

(

9T
ρ,K
0+ ,λ(Q1 +Q2)

s(λ)
)

1
s
. (4.31)

The desired inequality (4.25) can be established by adding (4.30)
and (4.31).

Theorem 4.5. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s ≥ 1, and let
two positive functionsQ1,Q2 be defined on [0,∞). Assume that
9 is an increasing positive monotone function on [0,∞) having
derivative 9 ′ and is continuous on [0,∞) with 9(0) = 0 such
that, for all λ > 0, 9T

η,K
0+ ,τQ

s
1(λ) < ∞ and 9T

ρ,K
0+ ,λQ

s
2(λ) < ∞.

If 0 < θ < ς ≤ Q1(η)
Q2(η)

≤ � for ς ,� ∈ R
+ and for all

η ∈ [0, λ], then

1

�

(

9T
ρ,K
0+ ,λQ1(λ)Q2(λ)

)

≤
1

(ς + 1)(� + 1)

(

9T
ρ,K
0+ ,λ

(

Q1 +Q2
)2
(λ)

)

≤
1

ς

(

9T
ρ,K
0+ ,λQ1(λ)Q2(λ)

)

. (4.32)

Proof: Using 0 < ς ≤ Q1(η)
Q2(η)

≤ �, it follows that

(ς + 1)Q2(η) ≤ Q1(η)+Q2(η) ≤ Q2(η)(� + 1). (4.33)

Also, it follows that 1
�
≤ Q2(η)

Q1(η)
≤ 1

ς
, which yields

Q1(η)
(� + 1

�

)

≤ Q1(η)+Q2(η) ≤ Q1(η)
(ς + 1

ς

)

. (4.34)

Finding the product between (4.33) and (4.34), we have

Q1(η)Q2(η)

�
≤

(Q1(η)+Q2(η))2

(ς + 1)(� + 1)
≤

Q1(η)Q2(η)

ς
. (4.35)

If we multiply both sides of (4.28) with 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrate w.r.t η over [0, λ], we obtain

1

�KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Q1(η)Q2(η)dη

≤ θ6
1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

(Q1(η)

+Q2(η))
2dη

≤
1

ςKŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Q1(η)Q2(η)dη

with θ6 = 1
(ς+1)(�+1) .

Likewise, the required outcome (4.32) can be finished up.

Theorem 4.6. For K > 0, ρ ∈ C,ℜ(ρ) > 0, s ≥ 1, and let
two positive functionsQ1,Q2 be defined on [0,∞). Assume that
9 is an increasing positive monotone function on [0,∞) having
derivative 9 ′ and is continuous on [0,∞) with 9(0) = 0 such
that, for all λ > 0, 9T

η,K
0+ ,τQ

s
1(λ) < ∞ and 9T

ρ,K
0+ ,λQ

s
2(λ) < ∞.

If 0 < θ < ς ≤ Q1(η)
Q2(η)

≤ � for ς ,� ∈ R
+ and for all

η ∈ [0, λ], then

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s +

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s

≤ 2
(

9T
ρ,K
0+ ,λH

s
(

Q1(λ),Q2(λ)
)

)
1
s
, (4.36)

where H
(

Q1(η),Q2(η)
)

= max
{

�
(

�
ς

+ 1
)

Q1(λ) −

�Q2(λ),
(ς+�)Q2(λ)−Q1(λ)

ς

}

.

Proof: Under the given conditions 0 < ς ≤ Q1(η)
Q2(η)

≤ �, 0 ≤
η ≤ λ, can be written as

0 < ς ≤ � + ς −
Q1(η)

Q2(η)
, (4.37)

and
� + ς −

Q1(η)

Q2(η)
≤ �. (4.38)

From (4.35) and (4.38), we obtain

Q2(η) <
(� + ς)Q2(η)−Q1(η)

ς
≤ H

(

Q1(η),Q2(η)
)

,(4.39)

where H
(

Q1(η),Q2(η)
)

= max
{

�
(

�
ς

+ 1
)

Q1(λ) −

�Q2(λ),
(ς+�)Q2(λ)−Q1(λ)

ς

}

.

From hypothesis, it also follows that 0 < 1
�
≤ Q2(η)

Q1(η)
≤ 1

ς
implies

that

1

�
≤

1

�
+

1

ς
−

Q2(η)

Q1(η)
(4.40)
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and

1

�
+

1

ς
−

Q2(η)

Q1(η)
≤

1

ς
. (4.41)

From (4.40) and (4.41), we obtain

1

�
≤

( 1
�
+ 1

ς

)

Q1(η)−Q2(η)

Q1(η)
≤

1

ς
, (4.42)

which can be composed as

Q1(η) ≤ �
( 1

�
+

1

ς

)

Q1(η)− �Q2(η)

=
�(� + ς)Q1(η)− �2ςQ2(η)

ς�

=
(�

ς
+ 1

)

Q1(η)− �Q2(η)

≤ �
[(�

ς
+ 1

)

Q1(η)− �Q2(η)
]

≤ H
(

Q1(η),Q2(η)
)

. (4.43)

We can compose from (4.40) and (4.43)

Qs
1(η) ≤ Hs

(

Q1(η),Q2(η)
)

, (4.44)

Qs
2(η) ≤ Hs

(

Q1(η),Q2(η)
)

. (4.45)

Multiplying both sides of (4.44) by 1
KŴK(ρ)9

′(η)
(

9(λ) −

9(η)
)

ρ
K
−1

and integrating w.r.t η over [0, λ], one obtains

1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Qs
1(η)dη

≤
1

KŴK(ρ)

λ
∫

0

9 ′(η)
(

9(λ)− 9(η)
)

ρ
K
−1

Hs
(

Q1(η),Q2(η)
)

dη.

Likewise, it can be composed as

(

9T
ρ,K
0+ ,λQ

s
1(λ)

)
1
s ≤

(

9T
ρ,K
0+ ,λH

s
(

Q1(λ),Q2(λ)
)

)
1
s
. (4.46)

Repeating the same procedure as above, for (4.45), we have

(

9T
ρ,K
0+ ,λQ

s
2(λ)

)
1
s ≤

(

9T
ρ,K
0+ ,λH

s
(

Q1(λ),Q2(λ)
)

)
1
s
. (4.47)

The desired inequality (4.36) is obtained from (4.46)
and (4.47).

5. CONCLUSION

This article succinctly expresses the newly defined fractional
integral operator. We characterize the strategy of generalized
K-fractional integral operators for the generalization of reverse
Minkowski inequalities. The outcomes presented in section 3 are
the generalization of the existing work done by Dahmani [31]
for the RL-fractional integral operator. Also, the consequences
in section 3 under certain conditions are reduced to the special
cases proved in Set al. [41]. The variants built in section 4 are the
generalizations of the existing results derived in Sulaiman [42].
Additionally, our consequences will reduce to the classical results
established by Sroysang [43]. Our consequences with this new
integral operator have the capacities to be used for the assessment
of numerous scientific issues as utilizations of the work, which
incorporates existence and constancy for the fractional-order
differential equations.
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The research paper aims to investigate the space-time fractional cubic-quartic non-linear

Schrödinger equation in the appearance of the third, and fourth-order dispersion

impacts without both group velocity dispersion, and disturbance with parabolic law

media by utilizing the extended sinh-Gordon expansion method. This method is one

of the strongest methods to find the exact solutions to the non-linear partial differential

equations. In order to confirm the existing solutions, the constraint conditions are

used. We successfully construct various exact solitary wave solutions to the governing

equation, for example, singular, and dark-bright solutions. Moreover, the 2D, 3D, and

contour surfaces of all obtained solutions are also plotted. The finding solutions have

justified the efficiency of the proposed method.

Keywords: the non-linear cubic-quartic Schrödinger equation, conformable derivative, analytical solutions, the

extended sinh-Gordon expansion method, solitary wave solutions

1. INTRODUCTION AND MOTIVATION

Non-linear partial differential equations have different types of equations, one of them is the
non-linear Schrödinger equation (NLSE) that relevant to the classical and quantum mechanics.
The non-linear Schrödinger equation is a generalized (1+1)-dimensional version of the Ginzburg-
Landau equation presented in 1950 in their study on supraconductivity and has been specifically
reported by Chiao et al. [1] in their research of optical beams. In the past several years, various
methods have been proposed to obtain the exact optical soliton solutions of the non-linear
Schrödinger equation [2–12]. Dispersion and non-linearity are two of the essential components
for the distribution of solitons across inter-continental regions. Usually, group velocity dispersion
(GVD) level with self-phase modulation in a sensible manner allows these solitons to sustain tall
range travel. In fact it might happen that the GVD is tiny and thus totally ignored, in this case
the dispersion effect is determined by third and fourth order dispersion effects. Subsequently,
this equation has been studied in a variety of ways, such as the Lie symmetry [13], both the
(

m+ G′

G

)

-improved expansion, and the exp (−ϕ (ξ))−expansion methods [14], and the semi-

inverse variation principle method [4]. In this study, the extended sinh-Gordon expansion method
(ShGEM) is applied to the non-linear cubic-quartic Schrödinger equations with the Parabolic law
of fractional order, which is given by

iDαt u+ iβD3α
x
u+ γD4α

x
u+ cF

(

|u|2
)

u = 0, (1)
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where u (x, t) is the complex valued wave function. The operator
Dα of order α, where α ∈ (0, 1] is the fractional derivative,
the parameters γ and β are real constants, a real-valued algebraic
function F

(

|u|2
)

is p-times continuously differentiable, then

F
(

|u|2
)

∈
∞
⋃

m, n=1

Cp
(

(−n, n)× (−m,m) :R2
)

. (2)

By using the relation of

F (u) = c1u+ c2u
2,

on Equation (1), we obtain the fractional non-linear Schrödinger
equations with Parabolic law as follows:

iDαt u+ iβD3α
x
u+ γD4α

x
u+

(

c1|u|2 + c2|u|4
)

u = 0. (3)

The extended sinh-Gordon expansion method is intended to a
generalization of the sine-Gordon expansion equation because
it is based on an auxiliary equation namely the sine-Gordon
equation (see previous studies [15, 16] for details). Moreover,
different computational and numerical methods have been
utilized to constructed new solutions to the non-linear partial
differential equations, such as the variable separated method
[17], the auxiliary parameters and residual power series method
[18], the Bernoulli sub-equation method [19, 20], the modified
auxiliary expansion method [21], the homotopy analysis
transform method [22–26], the homotopy perturbation sumudu
transform method [27], the shooting method with the explicit
Runge-Kutta scheme [28, 29], and the Adomian decomposition
method [30]. Recently, several fractional operators have been
applied to the mathematical models in order to seek their exact
solutions, such as the Laplace transform [31, 32], the Nabla
operator [33–35].

The outline of paper are organize the paper as follows: A
short review of the conformable derivative is presented in section
2. Section 3 deals with the analysis of the ShGEM. In section
4, the method is applied to solve the non-linear Schrödinger
equation involving the fractional derivatives with the parabolic
law. Eventually, in section 5, we presented our conclusion of
this paper.

2. BASIC DEFINITIONS

The basic definitions of the conformable derivative of order α are
given as follows [36–41]:

Definition 2.1. Assume the function h : (0,∞) → R then, the
conformable derivative of h of order α is defined as Dαt h (t) =
lim
ε→0

h(t+εt1−α)−h(t)
ε

, ∀t > 0, and 0 < α ≤ 1.

Definition 2.2. Assume that c ≥ 0 and t ≥ c, let h be a function
defined on (c, t] as well as α ∈ R. Then, the α-fractional integral
of h is given by

tI
α
c h (t) =

α
∫

c

h (x)

x1−α
dx, (4)

FIGURE 1 | 3D, 2D, and contour surfaces of Equation (26) where

ω = 0.1, c2 = 0.1, κ = 2, α = 0.8.

FIGURE 2 | 3D, 2D, and contour surfaces of Equation (28) where

γ = 0.5, c2 = 0.2, κ = 0.4, α = 0.7.

if the Riemann improper integral exists.

Theorem 2.1. Let α ∈ (0, 1] , and h = h (t), g = g (t) be
α-conformable differentiable at a point t > 0, then:

Dαt
(

ah+ bg
)

= aDαt h+ bDαt g, forall(a, b /∈ R).

Dαt
(

tλ
)

= λtλ−α , forall(λ ∈ R).

Dαt
(

hg
)

= gDαt
(

h
)

+ hDαt
(

g
)

.

Dαt

(

h

g

)

=
gDαt

(

h
)

− hDαt
(

g
)

g2
. (5)

Furthermore, if function h is differentiable, then Dαt
(

h (t)
)

=
t1−α dh

dt
.
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FIGURE 3 | 3D, 2D, and contour surfaces of Equation (30) where

γ = 0.5, c1 = 0.7, α = 0.9.

FIGURE 4 | 3D, 2D, and contour surfaces of Equation (32) where

γ = 5, c1 = 7, α = 0.7.

Theorem 2.2. (see for details pervious research [40]): Let h be a
differentiable function and α is order of the conformable derivative.
Let g be a differentiable function defined in the range of h, then

Dαt
(

fog
)

(t) = t1−αg(t)α−1g′ (t)Dαt
(

f (t)
)

t=g(t)
, (6)

here “prime” is the classical derivatives with respect to t.

3. THE EXTENDED ShGEM

In the current section, we presented the main steps of the e
ShGEM (see previous study [42, 43]).

Consider the following fractional non-linear PDE:

W
(

Dσx p, p
2D2σ

x p, Dυt p, D
υ
t D

σ
x p, . . .

)

= 0, (7)

FIGURE 5 | 3D, 2D, and contour surfaces of Equation (34) where

c1 = 0.2, κ = 0.4, ω = 6, α = 0.4.

FIGURE 6 | 3D, 2D, and contour surfaces of Equation (36) where

c2 = 0.2, A1 = 0.3, α = 0.7.

where p = p (x, t).
Consider the wave transformation

p (x, t) = ψ(ζ ), ζ =
xσ

σ
− c

tυ

υ
, (8)

by substitute relation Equation (8) into Equation (7), we obtain
the following non-linear ODE:

P
(

ψ , ψ ′ , ψ ,′′ ψ2ψ ′ , . . .
)

= 0. (9)

Consider the trial solution of Equation (9) of the form

ψ (θ) =
k
∑

j=1

[

Aj sinh (θ)+ Bj cosh (θ)
]j + A0. (10)
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FIGURE 7 | 3D, 2D, and contour surfaces of Equation (38) where

α = 0.3, c1 = 0.5, c2 = 0.2, κ = 0.4.

The parameters Aj, Bj, for (j = 1, 2, . . . , k) and A0 are real
constants, and θ is a function of η that hold the following ODE:

θ ′ = sinh(θ). (11)

The homogeneous balance principle is applied on Equation (9)
to find the value of k. From the space-time fractional the sinh-
Gordon equation, we have (see previous study [15, 16]).

Dt
νDx

σ p = λsinh(p). (12)

The exact solutions of Equation (12) may be given as

sinh ( θ) = ± csch (ζ ) or sinh ( θ) = ± isech (ζ ) , (13)

and

cosh (θ ) = ± coth (ζ ) or cosh (θ ) = ± tanh (ζ ) . (14)

Letting solutions of Equation (10) along with Equations (13) and
(14) as the form

ψ (ζ ) =
k
∑

j=1

[

±iAj sech (ζ )± Bj tanh (ζ )
]j+A0, (15)

ψ (ζ ) =
k
∑

j=1

[

±Aj csch (ζ )± Bj coth (ζ )
]j + A0. (16)

Finding the value of k and then inserting Equations (10) and (12)
into Equation (9), we get a system of terms of:

sinhi (θ ) coshj ( θ) , (17)

we gather a group of over-defined non-linear algebraic equations
in A0, Aj, Bj, putting the coefficients of sinhi (θ ) coshj ( θ) to

zero, and finding the solutions of acquired system, we gain
the values of A0, Aj, Bj, c1, c2, κ , and ω. Putting the values of
A0, Aj, Bj, c1, c2, κ , and ω into Equations (15) and (16), we can
find the solutions of Equation (7).

4. IMPLEMENT OF THE EXTENDED
ShGEM

The implementation of the extended ShGEM to the cubic-quartic
non-linear Schrödinger equation with conformable derivative is
provided in this section.

Consider the wave transformation

u (x, t) = U(ξ )e
i θ
, ξ =

xα

α
− ν

tα

α
, θ = −

κ xα

α
+
ω tα

α
. (18)

In Equation (18), θ (x, t) represents the phase component of
the soliton. The ω, κ , ν are the wave number, the soliton
frequency, and the soliton velocity, respectively. Substituting
wave transformation into Equation (2) and splitting the outcomes
equation into real and imaginary parts, we gain

−
(

βκ3 − γ κ4 + ω
)

U + c1U
3 + c2U

5 + 3βκU ′′

−6γ κ2U ′′ + γU(4) = 0, (19)

−
(

3βκ2 − 4γ κ3 + ν
)

U ′ + βU(3) − 4γ κU(3) = 0. (20)

Multiply both sides of Equation (19) by U ′ and integrate it,
we obtain

γ

(

−
(

U ′′)2

2
+ U ′′′ U ′

)

+
c1U

4

4
+

c2U
6

6
+ 3γ κ2

(

U ′)2

+
1

2
U2 (−4γ κ4 + γ κ4 − ω

)

= 0. (21)

From Equation (20), we get constraint conditions ν = 4γ κ3 −
3βκ2 and β = 4γ κ . Balancing the terms U ′′′ U ′ and U6 yields
κ = 1. With κ = 1, Equations (10), (16), and (17) change to

ψ (θ) =
[

A1 sinh (θ)+ B1 cosh (θ)
]

+ A0, (22)

ψ (ζ ) =
[

±iA1 sech (ζ )± B1 tanh (ζ )
]

+A0, (23)

and

ψ (ζ ) =
[

±m1 csch (ζ )± n1 coth (ζ )
]

+ n0, (24)

respectively.
Inserting Equation (22) along with Equation (12) into

Equation (21), and using constraint conditions provides a
non-linear algebraic system. Equaling each coefficient of
sinhi (θ ) coshj ( θ) with the same power to zero, and finding the
obtained system of algebraic equations, we gain the values of the
parameters. Putting the obtained values of the parameters into
Equations (23) and (24), give the solutions of Equation (3).
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Set 1

B1 =
23/431/4ω1/4

(

c2
(

−1− 6κ2 + 3κ4
))1/4

, c1 =

√

2
3 c2

(

5+ 3κ2
)√

ω
√

c2
(

−1− 6κ2 + 3κ4
)

,

A0 = 0, γ =
ω

1+ 6κ2 − 3κ4
, A1 = 0, (25)

we get

u1 (x, t) =
23/431/4ω1/4

(

c2
(

−1− 6κ2 + 3κ4
))1/4

csch

(

xα

α
+

8tακ3ω

α
(

1+ 6κ2 − 3κ4
)

)

e
i
(

− xακ
α

+ tαω
α

)

. (26)

Set 2

B1 =
(1+ i) 61/4γ 1/4

c21/4
, ω = γ

(

1+ 6κ2 − 3κ4
)

,

c1 = i

√

2

3

√
γ
√
c2
(

5+ 3κ2
)

, A1 = 0, A0 = 0, (27)

we get

u2 (x, t) =
(1+ i) 61/4a1/42

c21/4

csch

(

xα

α
+

8a2tακ3

α

)

e
i

(

− xακ
α

+
a2tα(1+6κ2−3κ4)

α

)

. (28)

Set 3

A0 = 0, A1 =
4
√
2
√
γ

√
c1

, B1 = 0, c2 = −
3c12

128γ
,

κ = −
√

2

3
,ω =

20γ

3
, (29)

we get

u3 (x, t) = −
4
√
2
√
γ

√
c1

coth





16
√

2
3γ t

α

3α
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xα

α



 e
i

(
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√

2
3 x
α

α

)

.

(30)

Set 4

A0 = 0, A1 = −
√
2
√
γ

√
c1

,B1 =
√
2
√
γ

√
c1

, c2 = −
3c12

8γ
,

κ = −
1
√
6
,ω =

5γ

12
, (31)

we get

u4 (x, t) = −
√
2
√
γ

√
c1



coth





2
√

2
3γ t

α

3α
−

xα

α





+csch





2
√

2
3γ t

α

3α
−

xα
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× e
i
(

5a2tα

12α + xα√
6α

)

. (32)

Set 5

B1 = −
2
√

(

5+ 3κ2
)

ω
√

c1
(

−1− 6κ2 + 3κ4
)

, A1 = 0, A0 = 0,

c2 =
3c12

(

−1− 6κ2 + 3κ4
)

2
(

5+ 3κ2
)2
ω

, γ =
ω

1+ 6κ2 − 3κ4
,

(33)

we obtain

u5 (x, t) =
2
√

(

5+ 3κ2
)

ω
√

c1
(

−1− 6κ2 + 3κ4
)

csch

(

xα

α
+

8tακ3ω

α
(

1+ 6κ2 − 3κ4
)

)

e
i
(

− xακ
α

+ tαω
α

)

. (34)

Set 6

B1 = A1, A0 = 0, c1 = −
4A1

2c2

3
, γ = −

2A1
4c2

3
,

ω = −
5A1

4c2

18
, κ =

1
√
6
, (35)

we get

u6 (x, t) =



−A1 coth





4
√

2
3A1
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−
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√
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. (36)

Set 7

B1 =
√
6
√
c1

√

c2
(

5+ 3κ2
)

, γ = −
3c12

2c2
(

5+ 3κ2
)2 ,

ω =
3c12

(

−1− 6κ2 + 3κ4
)

2c2
(

5+ 3κ2
)2 , A1 = 0, A0 = 0,

(37)

we get

u7 (x, t) =
√
6
√
c1

√

c2
(

5+ 3κ2
)

csch

(

xα

α
−

12c12tακ3

c2α
(

5+ 3κ2
)2

)

e
i

(

− xακ
α

+
3c1

2tα(−1−6κ2+3κ4)
2c2α(5+3κ2)

2

)

. (38)

5. CONCLUSION

In this article, we have successfully used the extended sinh-
Gordon expansion method to solve the problem for the
non-linear cubic-quartic Schrödinger equations involving
fractional derivatives with the Parabolic law. A traveling wave
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transforms in the sense of the comfortable derivative has
been used to convert the governing equation into a NODE.
The various optical solutions of the studied model have been
constructed, for example, the singular soliton solutions as shown
in Figures 1–6, and the dark-bright soliton solution as seen in
Figure 7. Comparing our solutions to the results obtained in
references [16–18], our findings solutions are new and different.
To better analyze the dynamic attitude, and the characteristics of
these solutions, the 2D, 3D and counter-surface of all obtained
solutions are plotted. The study shows that this method is the
effective and appropriate technique for finding the exact solution
of the model considered in the paper.
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In this article, we study the fully non-linear third-order partial differential equation, namely

the Gilson-Pickering equation. The
(

1/G′)-expansion method, and the generalized

exponential rational function method are used to construct various exact solitary wave

solutions for a given equation. These methods are based on a homogeneous balance

technique that provides an order for the estimation of a polynomial-type solution. In

order to convert the governing equation into a nonlinear ordinary differential equation, a

traveling wave transformation has been implemented. As a result, we have constructed

a variety of solitary wave solutions, such as singular solutions, compound singular

solutions, complex solutions, and topological and non-topological solutions. Besides,

the 2D, 3D, and contour surfaces are plotted for all obtained solutions by choosing

appropriate parameter values.

Keywords: the Gilson-Pickering equation, the
(

1/G′
)

-expansion method, the generalized exponential rational

function method, analytic methods, exact solutions

1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) are used to represent a variety of nonlinear
physical phenomena in different areas of applied sciences like fluid dynamics, plasma physics,
optical fibers, and biology. Among the most profitable strategies for examining such nonlinear
physical phenomena is to seek for the exact solutions of NLPDEs [1–5]. In recent years, a variety
of effective methods have been implemented to investigate the exact solutions of nonlinear partial
differential equations, such as Hirota’s bilinear method [6], the Adomian decomposition method
[7], the exp(−8(ξ ))-expansion method [8], the sine-Gordon expansion method [9], the Bernoulli
sub-equation method [10, 11], the shooting method with the fourth-order Runge-Kutta scheme
[12, 13], the generalized exponential rational function method [14–18], the modified exponential
function method [19], the modified auxiliary expansion method [20], the homotopy perturbation
Sumudu transform method [21], the homotopy perturbation transform method [22, 23], and the
fractional homotopy analysis transform method [24].

The third-order nonlinear partial differential equation (NLPDE) was introduced in [25] by
Gilson and Pickering as

ut − ǫuxxt + 2kux − uuxxx − αuux − βuxuxx = 0, (1)

where ε,α, κ , and β are non-zero real numbers. Recently, the Gilson-Pickering equation has been
investigated using a variety of methods, such as the (G′/G)-expansion method [26], the anstaz
method [27], the (G′/G)-expansion method to tanh, the coth, cot, and the logical forms under
certain conditions [28], the Bernoulli sub-equation model [29], a not a knot meshless method [30],
and the symmetry method [31].
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The core of this paper is to investigate the Gilson-Pickering
equation using the (1/G′)-expansion method and the generalized
exponential rational function method (GERF).

2. APPLICATIONS OF THE GILSON
PICKERING EQUATION

This section presents specific instances of the Gilson Pickering
equation and their applications. When ε = 1,α = −3, and
β = 2, Equation (1) gives the Fuchssteiner-Fokas-Camassa-
Holm equation, which is a completely integrable nonlinear
partial differential equation that arises at different levels of
approximation in shallow water theory [32, 33]. When ε =
0,α = 1, κ = 0, and β = 3, Equation (1) reduces to the
Rosenau-Hyman equation (RH), which arises in the study of the
influence of nonlinear dispersion on the structure of patterns
in liquid drops [34]. When ε = 1,α = −1, κ = 0.5, and
β = 3, Equation (1) gives the Fronberg-Whitham (FW), which
was developed to analyze the qualitative characteristics of wave
breakage and admits a wave of the highest height [35–37].

3. THE BASIC CONCEPTS OF THE
(1/G′)-EXPANSION METHOD

In this section, the fundamental steps of the (1/G′)-expansion
method are presented [38, 39]:

Step 1. Let us consider the general form of a two-variable
nonlinear partial differential equation (NPDE) as follows:

Q(p, pt , px, pxx, ...) = 0, (2)

where p = p(x, t), and Q is a partial differential equation.
Step 2. To convert Equation (2) to a nonlinear ordinary
differential equation (NODE), we employ the following
wave transformation

p(x, t) = P (η) , η = (x− ht), (3)

where h is a scalar. After some procedures, Equation (2)
reduces to the following NODE:

W(P
′
, P

′′
, P

′′′
, ...) = 0, (4)

whereW is an ordinary differential equation.
Step 3. Assume that Equation (4) has a solution of the form

P (η) =
m

∑

i=0

ai

(

1

G′

)i

, (5)

where a0, a1, a2, ..., am are scalars to be determined, m is a
balance term, and G = G(η) satisfies the following second-
order linear ODE:

G′′ + λG′ + µ = 0, (6)

where λ and µ are scalars.

The solution of Equation (6) is given by

G(η) = a0 + a1

(

1

−µ/λ + be−λη

)

. (7)

If we convert the algebraic expression given by Equation (7) to
a trigonometric function, we can write it as the following:

G (η) = a0 +
a1

−µ
λ
+ b cosh (λη) − b sinh (λη)

. (8)

Inserting Equation (6) and its necessary derivatives along with

Equation (5) into Equation (4) returns the polynomial of
( 1
G′

)i
.

Summing the
( 1
G′

)i
coefficients with the same power and then

setting every summation to zero, we get a system of algebraic
equations for ai, i ≥ 0. Eventually, solving this system simply
gives the value of the variables. Putting these values of variables
with the value of the balance termm into Equation (4), we can
get solutions for Equation (2).

4. THE BASIC CONCEPTS OF THE GERF

In this section, the basic steps of the GERF are presented.

Step1. Let us consider that the general form of a nonlinear
partial differential equation is given by:

Q
(

p, px, pt , pxx, ...
)

= 0, (9)

where Q is a partial differential equation.
Suppose that the wave transformation takes the form:

p (x, t) = P(η), η = x− ht, (10)

where h is a scalar.
Using Equation (10) in Equation (9), we get the nonlinear

ordinary differential equation

W
(

P, P′, P′′, ...
)

= 0, (11)

whereW is an ordinary differential equation.
Step 2. Suppose that the solitary wave solutions of Equation
(11) are given by:

P(η) = A0 +
m

∑

K=1

AKϕ(η)K +
m

∑

K=1

BKϕ(η)−K , (12)

where

ϕ (η) =
r1e

s1η + r2e
s2η

r3es3η + r4es4η
, (13)

where rm, sm (1 ≤ n ≤ 4) are real/complex constants,
A0, AK , BK are constants to be determined, and m will be
determined by the balance principle.
Step 3. Substituting Equation (12) into Equation (11), we
get the polynomials that are dependent on Equation (12). By
equating the same order terms, we obtain an algebraic system
of equations. With the help of computational programs such
as Mathematica, Matlab, and Maple, we solve this system and
determine the values of A0, AK , BK . Finally one can easily
obtain the nontrivial exact solutions of Equation (11).
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5. MATHEMATICAL CALCULATION

In this section, the mathematical calculation of the Gilson-
Pickering equation is presented.

Consider the Gilson-Pickering equation (Equation 1) stated in
section 1. Inserting the wave transformation

u = P (η) , η = x− ht, (14)

into Equation (1), the following NODE can be obtained

(

2k− h
)

P′ + ǫhP′′′ − PP′ − βP′P′ − αPP′ = 0, (15)

where ǫ,β ,α, h, and k are non-zero real numbers.
Integrating Equation (15) once with respect to η and assuming
that the integration constant is zero, we have.

(

2k− h
)

P +
(

ǫh− P
)

P′′ +
1− β

2

(

P′
)2 −

α

2
P
2
= 0. (16)

6. IMPLEMENTATION OF THE
(1/G′)-EXPANSION METHOD

In this section, the application of the (1/G′)-expansion method
to the Gilson-Pickering equation is presented.

Applying the balance principle, by taking the nonlinear term
P2 and the highest derivative P′′ in Equation (16) gives m = 2.
Withm = 2, Equation (5) takes the form

P (η) = a0 + a1

(

1

G′

)

+ a2

(

1

G′

)2

. (17)

Inserting Equation (17) and its necessary derivatives into

Equation (16), returns the polynomial of
( 1
G′

)i
. Summing

the
( 1
G′

)i
coefficients with the likely power and then setting

every summation to zero, we get a system of algebraic
equations. Solving this system simply gives the following families
of solutions:

Family 1.When

a0 = −
2
(

h− 2k
)

α
,

a1 = −
12

√

−
(

h− 2k
)

α
(

−4k+ h (2+ αǫ)
)3/2

µ

α2
(

−6k+ h (3+ αǫ)
) ,

a2 =
12

(

−4k+ h (2+ αǫ)
)2

µ2

α2
(

−6k+ h (3+ αǫ)
) , λ = −

√

−
(

h− 2k
)

α
√
2h− 4k+ hαǫ

,

β = −2,

(18)

we get

u1(x, t) =
12

(

−4k+ h (2+ αǫ)
)2

µ2

α2
(

−6k+ h (3+ αǫ)
)

(

− Lµ
M + C1 cosh

(

Mξ
L

)

− C1 sinh
(

Mξ
L

))2

+
12M

(

−4k+ h (2+ αǫ)
)3/2

µ

α2
(

−6k+ h (3+ αǫ)
)

(

− Lµ
M + C1 cosh

(

Mξ
L

)

− C1 sinh
(

Mξ
L

))

−
2
(

h− 2k
)

α
,

(19)

whereM =
√

(

−h+ 2k
)

α, L =
√
2h− 4k+ hαǫ.

Family 2.When

a0 = 0, a1 =
12h3/2

√
h− 2kǫ3/2µ

2k+ h (−1+ αǫ)
, a2 =

12h2ǫ2µ2

2k+ h (−1+ αǫ)
,

λ =
√
h− 2k
√
h
√

ǫ
,β = −2,

(20)

we get

u2 (x, t) =
12h2ǫ2µ2

(

2k+ h (−1+ αǫ)
)

(

−
√
h
√

ǫµ√
h−2k

+ C1 cosh (S) − C1 sinh (S)

)2

+
12h3/2

√
h− 2kǫ3/2µ

(

2k+ h (−1+ αǫ)
)

(

−
√
h
√

ǫµ√
h−2k

+ C1 cosh (S) − C1 sinh (S)

) ,

(21)

where S =
√
h−2kξ√
h
√

ǫ
.

Family 3.When

FIGURE 1 | The 3D, 2D, and contour surfaces of Equation (19) when

h = 2, k = 2.5, α = 2.6, µ = 0.2, ǫ = 3.5, and C1 = 0.6.
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a0 =
4kǫλ2

α + (2+ αǫ) λ2
, a2 =

(

α − λ2
) (

α + (2+ αǫ) λ2
)

a21
24kαǫλ2

,

µ =
(

α − λ2
) (

α + (2+ αǫ) λ2
)

a1

24kαǫλ
,β = −2,

h =
2k

(

α + 2λ2
)

α + (2+ αǫ) λ2
,

(22)

gives

u3 (x, t) =
a1

C1 cosh (λξ) − C1 sinh (λξ) − (α−λ2)(α+(2+αǫ)λ2)a1
24kαǫλ2

+
(

α − λ2
) (

α + (2+ αǫ) λ2
)

a21

24kαǫλ2
(

C1 cosh (λξ) − C1 sinh (λξ) − (α−λ2)(α+(2+αǫ)λ2)a1
24kαǫλ2

)2

+
4kǫλ2

α + (2+ αǫ) λ2
.

(23)

Family 4.When

a0 =
4kǫ

1+ αǫ
, a2 = 0, β = −3, µ =

i
√

α (1+ αǫ) a1

4kǫ
,

h =
2k

1+ αǫ
, λ = i

√
α,

(24)

we get

u4 (x, t) =
4kǫ

1+ αǫ
+

a1

C1 cos
(√

αξ
)

− iC1 sin
(√

αξ
)

− (1+αǫ)a1
4kǫ

.

(25)

Family 5.When

FIGURE 2 | The 3D, 2D, and contour surfaces of Equation (21) using

h = 4, k = 0.5, α = 2.6, µ = 0.2, ǫ = 4, and C1 = 3.

a0 =
i
√

αa1

µ
, a2 = 0, β = −3, h =

i
√

αa1

2ǫµ
,

k =
i
√

α (1+ αǫ) a1

4ǫµ
, λ = i

√
α,

(26)

we get

u5 (x, t) =
i
√

αa1

µ
+

a1
iµ√
α
+ C1 cos

(√
αξ

)

− iC1 sin
(√

αξ
)
.

(27)

Family 6.When

a0 =
12hǫµ + 3λa1 −

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

24µ
, a2 =

µa1

λ
,

α =
λ

(

12hǫµ − λa1 +
√
3
√

48h2ǫ2µ2 + λa1
(

−8hǫµ + 3λa1
)

)

2a1
,

k =
24hµ + 12hǫλ2µ − 3λ3a1 + λ2

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

48µ
,

β = −2,

(28)

we have

u6 (x, t) =
µa1

λ
(

−µ
λ
+ C1 cosh (λξ) − C1 sinh (λξ)

)2

+
a1

−µ
λ
+ C1 cosh (λξ) − C1 sinh (λξ)

+
12hǫµ + 3λa1 −

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

24µ
.

(29)

FIGURE 3 | The 3D, 2D, and contour surfaces of Equation (23) using

k = 2, α = 5, λ = 1.2, ǫ = 6.6, C1 = 2, and a1 = 2.8.
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7. IMPLEMENTATION OF THE GERF
METHOD

In this section, the application of the GERF method to the
Gilson-Pickering equation is presented.

Applying the balance principle, by taking the nonlinear term
P2 and the highest derivative P′′ in Equation (16) gives m = 2.
Withm = 2, Equation (12) takes the form

P (η) = A0 + A1ϕ (η) +
B1

ϕ (η)
+ A2ϕ(η)2 +

B2

ϕ(η)2
, (30)

where ϕ (η) is given by Equation (13). Following the
methodology described above in section 4, we obtain the
following nontrivial solutions of Equation (1):

Family 1.When ri = {−2,−1, 1, 1} , si = {0, 1, 0, 1} , we get

ϕ (η) =
−2− eη

1+ eη
, (31)

FIGURE 4 | The 3D, 2D, and contour surfaces of Equation (25), using

k = 4.5, α = 0.4, ǫ = 0.3, C1 = 0.2, and a1 = 0.8.

Case 1.

A0 =
A1 (−1+ 13α)

18α
, B1 = 0, A2 =

A1

3
, B2 = 0, β = −2,

h =
A1

(

−2+ α + α2
)

36αǫ
, k =

A1 (−1+ α) (2+ α + αǫ)

72αǫ
,

(32)

we get

u7 (x, t) =
A1

(

−2− ex−
A1t(−2+α+α2)

36αǫ

)2

3

(

1+ ex−
A1t(−2+α+α2)

36αǫ

)2

+
A1

(

−2− ex−
A1t(−2+α+α2)

36αǫ

)

1+ ex−
A1t(−2+α+α2)

36αǫ

+
A1 (−1+ 13α)

18α
,

(33)

FIGURE 5 | The 3D, 2D, and contour surfaces of Equation (27), using

µ = 0.4, α = 0.1, ǫ = 0.5, C1 = 2, and a1 = 1.5.
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Case 2.When

A0 = −
2
(

h− 2k
)

(−1+ 13α)

(−1+ α) α
, A1 = 0, B1 = −

72
(

h− 2k
)

−1+ α
,

A2 = 0, B2 = −
48

(

h− 2k
)

−1+ α
, ǫ −

(

h− 2k
)

(2+ α)

hα
, β = −2,

(34)

we get

u8 (x, t) = −
72

(

1+ e−ht+x
)

(

h− 2k
)

(

−2− e−ht+x
)

(−1+ α)

−
48

(

1+ e−ht+x
)2

(

h− 2k
)

(

−2− e−ht+x
)2

(−1+ α)
−
2
(

h− 2k
)

(−1+ 13α)

(−1+ α) α
.

(35)

FIGURE 6 | The 3D, 2D, and contour surfaces of Equation (29) using

µ = 1.5, α = 0.4, ǫ = 0.1, C1 = 2, a1 = 0.4, h = −1, and λ = 0.5.

FIGURE 7 | The 3D, 2D, and contour surfaces of Equation (33) using

A1 = 0.2, α = 0.9, and ǫ = 0.6.

Family 2. When ri = {−2− i, 2− i,−1, 1} , si = {i,−i, i,−i}
we get

ϕ (η) =
cos (η) + 2 sin (η)

sin (η)
, (36)

Case 1.When

A0 =
B1 (8− 13α)

60α
, A1 = 0, A2 = 0, B2 = −

5B1
4

, β = −2,

h = −
B1 (−8+ α) (4+ α)

240αǫ
, k =

B1 (4+ α) (8+ α (−1+ 4ǫ))

480αǫ
,

(37)

we get

u9 (x, t) =
B1 (8− 13α)

60α
−

5B1 sin (D)2

4(cos (D) + 2 sin (D))2

+
B1 sin (D)

cos (D) + 2 sin (D)
, (38)

where D = x+ B1t(−8+α)(4+α)
240αǫ

.

Case 2.

A0 =
A1 (8− 13α)

12α
, B1 = 0, A2 = −

A1

4
, B2 = 0, β = −2,

ǫ −
A1 (−8+ α) (4+ α)

48hα
, k =

1

24

(

12h+ A1 (4+ α)
)

,

(39)

we get

u10 (x, t) =
A1 (8− 13α)

12α
− A1 csc

(

ht − x
) (

cos
(

ht − x
)

− 2 sin
(

ht − x
))

−
1

4
A1 csc

(

ht − x
)2(

cos
(

ht − x
)

− 2 sin
(

ht − x
))2

. (40)

FIGURE 8 | The 3D, 2D, and contour surfaces of Equation (35) using

k = 0.5, α = 25, and h = 2.
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Family 3.When ri = {2, 0, 1, 1} , si = {−1, 0, 1,−1}

ϕ (η) =
(

cosh (η) − sinh (η)
)

cosh (η)
, (41)

Case 1.When

A0 = −
A1 (−4+ α)

3α
, B1 = 0, A2 = −

A1

2
, B2 = 0, β = −2,

h = −
A1 (−4+ α) (8+ α)

24αǫ
, k = −

A1 (−4+ α) (8+ α + 4αǫ)

48αǫ
,

(42)

we have

u11 (x, t) = A1Sech (D)
(

cosh (D) − sinh (D)
) 1

2
A1Sech(D)2

(

cosh (D)

FIGURE 9 | The 3D, 2D, and contour surfaces of Equation (38) using

B1 = 0.5, α = 4, and ǫ = 2.

FIGURE 10 | The 3D, 2D, and contour surfaces of Equation (40) using

A1 = 5, α = 4, and ǫ = 2.

− sinh (D)
)2 −

A1 (−4+ α)

3α
, (43)

where D = x+ A1t(−4+α)(8+α)
24αǫ

.
Case 2.

A0 = −

(

h− 2k
)

(

−4+
√

(−4+ α)2 + α
)

(−4+ α) α
, B2 = 0, β = −2,

ǫ = −

(

h− 2k
)

(

4
(

−4+
√

(−4+ α)2
)

+ α2
)

4h
√

(−4+ α)2α
, B1 = 0,

A1 =
6
(

h− 2k
)

√

(−4+ α)2
,A2 = −

3
(

h− 2k
)

√

(−4+ α)2
,

(44)

we get

u12 (x, t) =
6
(

h− 2k
)

sech
(

ht − x
) (

cosh
(

ht − x
)

+ sinh
(

ht − x
))

√

(−4+ α)2

−
3
(

h− 2k
)

sech
(

ht − x
)2(

cosh
(

ht − x
)

+ sinh
(

ht − x
))2

√

(−4+ α)2

−

(

h− 2k
)

(

−4+
√

(−4+ α)2 + α
)

(−4+ α) α
.

(45)

8. RESULT AND DISCUSSION

The powerful methods, namely the (1/G′) expansion method
and the generalized exponential rational function method,
are used to construct various analytical solutions for the
Gilson-Pickering equation. Some results of the Gilson-Pickering
equation have already been reported in the literature. Fan et al.

FIGURE 11 | The 3D, 2D, and contour surfaces of Equation (43) using

A1 = 5, α = 4, and ǫ = 2.
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FIGURE 12 | The 3D, 2D, and contour surfaces of Equation (45) using

k = 3, α = 5, and h = 2.

[28] used (G
′
/G) and the ansatz method and found the solitary

wave solutions to Equation (1). Baskonus [29] investigated the
Gilson-Pickering equation by using the first integral method.
Zabihi and Saffarian [30] implemented the simplified (G

′
/G)

expansion method to reveal the hyperbolic, trigonometric
function, and rational function solutions. Singla and Gupta [31]
reported some new complex soliton solutions to Equation (1)
with the aid of the Bernoulli sub-equation function method.
Camsssa et al. [32] used a not a knot meshless method to obtain
numerical solutions to Equation (1). Fuchssteiner and Fokas
[33] performed Lie symmetry analysis and found conservation
laws for the space-time fractional Gilson-Pickering equation.
In this article, we obtained the singular, compound singular,
complex, topological, and non-topological wave solutions to the
studied equation. It is known that non-topological solutions
detect waves with an intensity lower than the background,
topological solutions with such a maximum intensity higher
than the background, and singular solutions that are waves with
discontinuous derivatives.

9. CONCLUSION

In this study, we have successfully applied the (1/G′) expansion
method and the generalized exponential rational function
method to find new exact solutions for the Gilson-Pickering
equation. In order to convert the governing equation into a
NODE, a traveling wave transformation has been implemented.
Various analytical solutions of the proposed model have
been constructed such as singular solutions, as shown in
Figures 1, 2, 3, compound singular solution, as seen in Figure 4,
complex solution, as seen in Figure 5, as well as a singular
solution, can be shown in Figure 6. The non-topological
solution, as shown in Figure 7, topological solutions, as shown
in Figure 8, and compound singular solutions, as seen in
Figures 9, 10. Also, topological solution and non-topological
solution as seen in Figures 11, 12, respectively. Compared
with the results reported in Fan et al. [28], Baskonus [29],
Zabihi and Saffarian [30], Singla and Gupta [31], Camsssa
et al. [32], and Fuchssteiner and Fokas [33], the solutions
obtained are novel. Both methods are efficient for solving
complex nonlinear partial differential equations, but, by using
the generalized exponential rational function method, we can
get more solutions than with the (1/G′) expansion method.
Furthermore, the 2D, 3D, and contour surfaces are plotted
for all obtained solutions by selecting suitable values for
the parameters.
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In this article, the fractional (3+1)-dimensional nonlinear Shrödinger equation is analyzed

with kerr law nonlinearity. The extended direct algebraic method (EDAM) is applied to

obtain the optical solitons of this equation with the aid of the conformable derivative.

Optical solitons are investigated for this equation with the aid of the EDAM after the

nonlinear Shrödinger equation transforms an ordinary differential equation using the wave

variables transformation.

Keywords: optical solitons, nonlinear Shrödinger equation, conformable derivative, Kerr law nonlinearity, the

extended direct algebraic method

INTRODUCTION

Over the past few decades, there have been many studies on optical solitons [1–10]. The nonlinear
wave process can be viewed in several scientific fields, such as optical fiber, quantum theory,
plasma physics, fluid dynamics [11, 12], etc. Solitons are one pulse forms which are created due
to the proportion between nonlinearity and wave stage speed dispersal impacts in the system. The
envelope soliton, which holds both fast and slow vibrations, performs for nonlinearity proportions
with the wave group dispersal impacts in the physical systems. The envelope soliton is controlled by
a small field adjusted wave package whose dynamics are controlled via the nonlinear Schrödinger
equation (NSE) [1–12]. The analytical solutions of these NPDEs plays a significant part in the
analysis of nonlinear phenomena. Over the past few decades, numerous methods were developed
to obtain analytical solutions of NPDEs such as the inverse scattering method [13], the Sine—
cosine function method [14], the tanh-expansion method, and the Kudryashov-expansion method
[15], etc.

There has also been considerable interest and significant theoretical improvements in fractional
calculus, applied in many fields, and in fractional differential equations and its applications [16–
25]. Nonlinear fractional partial differential equations (FPDEs) are a special type of NPDEs.
Several studies have discussed these equations. Additionally, FPDEs are significant in several
analyses because of the iterative reporting and the probability explanation process in water wave
hypothesis, nonlinear optics, fluid dynamics, plasma physics, optical fiber, quantum mechanics,
signal processing, and so on. Several researchers have investigated the wave solutions of NPDEs
with the aid of somemathematical algorithms. Besides, one advantage of the conformable fractional
derivative is that it is easy to apply [26–34].
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The conformable derivative of order α ∈ (0, 1) is defined as
the following expression [28]

tD
α f (t) = lim

ϑ→0

f (t + ϑt1−α)− f (t)

ϑ
, f :(0,∞) → R.

A few properties for the conformable derivative are given by
[28, 31].

a)tD
αtη = ηtα−η, ∀α ∈ R,

b)tD
α(fg) = ftD

αg + gtD
α f ,

c)tD
α(fog) = t1−αg′(t)f ′(g(t)),

d)tD
α(

f

g
) =

gtD
α f − ftD

αg

g2
.

Recently, there have been about the conformable model of
fractional computations [25–33].

The (3+1)-dimensional dependent NLSE is given by:

iqt +∇2q+ λF(
∣

∣q
∣

∣

2
)q = 0. (1.1)

in [10–12], there are analyzed symmetry reductions for the
(3+ 1)-dimensional NLSE.

Then, Equation (1.1) can be scripted for fractional (3+1)-
dimensional NLSE with conformable derivatives as:

iDα
t q+∇2q+ λF(

∣

∣q
∣

∣

2
)q = 0, t > 0, 0 < α ≤ 1. (1.2)

where F is a real-valued function and has the fluency of the

complex function F(
∣

∣q
∣

∣

2
)q :C → C. When the F(

∣

∣q
∣

∣

2
)q is k

times continuously differentiable, the following situation can
be written,

F(
∣

∣q
∣

∣

2
)q ∈

∞
∪

m,n=1
Ck((− n, n)× (−m,m);R2).

For Kerr law nonlinearity, Equation (1.2) is converted to

iDα
t q+∇2q+ λ

∣

∣q
∣

∣

2
q = 0, t > 0, 0 < α ≤ 1. (1.3)

In (1.3), the first expression describes the evolution condition,
the second expression, describes the dispersal in x, y, and z
directions while the third expression describes nonlinearity.
Solitons are the consequence of an attentive adjust between
dispersal and nonlinearity.

In this work, we analyze the fractional (3+1)-dimensional
nonlinear Shrödinger’s equation with the aid of a conformable
derivative operator to find solitons using the extended direct
algebraic method (EDAM) [8, 26].

This method is a powerful in solving nonlinear evolution
equations and it can be applied to solve the above mentioned
equations. This has led to the innovation of many modern
techniques to solve these equations. There are several advantages
and disadvantages of this modern method. Although a
closed type soliton solution can be found with the aid of
this process, the disadvantage of this method is that this
technique cannot calculate the conserved quantities of nonlinear
evolution equations.

DESCRIPTION FOR THE EXTENDED
DIRECT ALGEBRAIC METHOD

Suppose the general nonlinear partial differential equation,

U(q, q(α)t , qx, qy, qz , q
(2α)
t , qxx, , ...) = 0. (2.1)

where q = q(x, y, z), U is a polynomial in q = q(x, y, z, t) and the
x, y, z, t define the partial fractional derivatives.

• Assume the traveling wave transformation:

q(x, y, z, t) = v(φ), φ = x cos ξ + y cos κ + z cosχ +Q
tα

α
,

(2.2)
where cos2 ξ + cos2 κ + cos2 χ = 1.

With the aid of (2.2) wave transformation, Equation (2.1) is
changed into an ordinary differential equation for v(φ) :

B(v, vφ , vφφ , vφφφ , ...) = 0. (2.3)

where the sub-indices define the ordinary derivatives with
respect to φ.

• Suppose the solution of Equation (2.3),

v(φ) =
M

∑

j=0

ajG
j(φ), (2.4)

where aM 6= 0 and G(φ) can be satisfied as follows:

G′(φ) = ln(E)(f G2(φ)+ gG(φ)+ h), E 6= 0, 1, (2.5)

where f , g, h are arbitrary constants.
• M is obtained by balancing between the highest order

derivatives and the nonlinear terms in Equation (2.3).
• First, Equation (2.4) and Equation (2.5) are placed into

Equation (2.3). Then each coefficient of the polynomials
are synchronized to zero ve algebraic equations of aj (j =
1, 2, ...,M), Q and f , g, h are obtained.

• The obtained system is solved and parameters aj (j =
1, 2, ...,M) and Q are found. Thus, solutions of Equation (2.3)
are found.

Where a few specific solutions of Equation (2.3) are given by;

1) When 9 = g2 − 4hf < 0 and f 6= 0,

G1(φ) = − g
2f +

√
−9
2f tanE(

√
−9
2 φ),

G2(φ) = − g
2f +

√
−9
2f cotE(

√
−9
2 φ),

2) When 9 = g2 − 4hf > 0 and f 6= 0,

G3(φ) = −
g

2f
+

√
9

2f
(− tanhE(

√
9φ)± i

√
1� sec hE(

√
9φ)),

G4(φ) = −
g

2f
+

√
9

2f
(− cothE(

√
9φ)±

√
1� csc hE(

√
9φ)),
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3) When fh > 0 and g = 0,

G5(φ) =
√

h
f
(tanE(2

√

hfφ)±
√

1� secE(2
√

hfφ)),

G6(φ) =
√

h
f
(− cotE(2

√

hfφ)±
√

1� cscE(2
√

hfφ)),

4) When fh < 0 and g = 0,

G7(φ) = −
√

− h
f
tanhE(

√

−hfφ),

G8(φ) = −
√

− h
f
cothE(

√

−hfφ),

5) When g = 0 and f = h,

G9(φ) =
1

2
(tanE(

h

2
φ)− cotE(

h

2
φ)).

6) When g = 0 and f = −h,

G10(φ) = −
1

2
(tanhE(

h

2
φ)+ cothE(

h

2
φ)).

7) When g2 = 4hf ,

G11(φ) = −2h
gφ ln(E)+ 2

g2φ ln(E)
.

8) When g 6= 0 and h = 0,

G12(φ) = −
1g

f (coshE(gφ)− sinhE(gφ)+ 1)
,

Remark. The generalized trigonometric and hyperbolic
functions are defined as Ghosh and Nandy [13];

sinE(φ) = 1Eiφ−�E−iφ

2i , cosE(φ) = 1Eiφ+�E−iφ

2 ,

tanE(φ) = −i1Eiφ−�E−iφ

1Eiφ+�E−iφ , cotE(φ) = i1Eiφ+�E−iφ

1Eiφ−�E−iφ ,

secE(φ) = 2
1Eiφ+�E−iφ , cscE(φ) = 2i

1Eiφ−�E−iφ

sinhE(φ) = 1Eφ−�E−φ

2 , coshE(φ) = 1Eφ+�E−φ

2 ,

tanhE(φ) = 1Eφ−�E−φ

1Eφ+�E−φ , cothE(φ) = 1Eφ+�E−φ

1Eφ−�E−φ ,

sec hE(φ) = 2
1Eφ+�E−φ , csc hE(φ) = 2

1Eφ−�E−φ .

where φ is an independent variable, 1 6= 0 and � 6= 0 are called
deformation parameters.

SOLUTIONS OF TIME FRACTIONAL
(3+1)-DIMENSIONAL NLSE WITH KERR
LAW NONLINEARITY USING
CONFORMABLE DERIVATIVES

Now, suppose the wave variable transform:

q(x, y, z, t) = ei(a(x cos ξ+y cos κ+z cosχ)+w tα

α
)v(φ),

φ = x cos ξ + y cos κ + z cosχ + Q tα

α
,

(3.1)

By placing Equation (3.1) into Equation (1.3) and taking
the properties of conformable time fractional derivatives into
account, the following nonlinear equation is obtained,

v′′(φ)+ λv(φ)3 − (a2 + w)v(φ) = 0, (3.2)

with Q = −2a.
Suppose the solution of Equation (3.2) is expressed as a finite

series. We can write this solution as follows,

v(φ) = M

k=0
akG

k(φ) (3.3)

where G(φ) satisfies Equation (2.5), φ = x cos ξ + y cos κ +
z cosχ + Q tα

α
and ak for k = 1,M are values to be described.

With the aid of balance v′′(φ) with v(φ)3 in Equation (3.3), is
foundM = 1.

We can write the solution of Equation (3.3) in the
following form:

v(φ) = a0 + a1G(φ), (3.4)

First, Equation (3.4) and Equation (2.5) are placed into the
Equation (3.2). Then each coefficient of the G(φ) synchronized
to zero ve from algebraic equations and the following values
are found:

a0 = ig ln(E)√
2λ

, a1 = i
√
2f ln(E)√

λ
,

w = −a2 − 1
2 (g

2 − 4fh) ln2(E).
(3.5)

The solutions of Equation (1.3) are found as follows; (ϒ =
ei(a(x cos ξ+y cos κ+z cosχ)−(a2+ 1

2 (g
2−4fh) ln2(E)) t

α

α
) and 9 = g2 −

4hf )

1) When 9 < 0 and f 6= 0, the singular periodic solutions are
obtained as follows

q1 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(− g

2f +
√
−9
2f tanE(

√
−9
2 φ))),

q2 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(− g

2f +
√
−9
2f cotE(

√
−9
2 φ))),

2) When 9 > 0 and f 6= 0, the singular soliton solutions are
obtained as follows

q3 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(− tanhE(

√
9φ)

±i
√

1� sec hE(
√

9φ))),

q4 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(− cothE(

√
9φ)

±
√

1� csc hE(
√

9φ))),

3) When g = 0 and fh > 0, the singular periodic solutions are
obtained as follows

q5 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(
√

h
f
(tanE(2

√

hfφ)

±
√

1� secE(2
√

hfφ)))),

q6 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(
√

h
f
(− cotE(2

√

hfφ)

±
√

1� cscE(2
√

hfφ)))),
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4) When g = 0 and fh < 0, the singular and dark soliton
solutions are obtained as follows

q7 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(−

√

− h
f
tanhE(

√

−hfφ))),

q8 = ϒ( ig ln(E)√
2λ

+ i
√
2f ln(E)√

λ
(−

√

− h
f
cothE(

√

−hfφ))),

5) When g = 0 and f = h, the singular periodic solution is
obtained as follows

q9 = ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(
1

2
(tanE(

h

2
φ)− cotE(

h

2
φ)))),

6) When g = 0 and f = −h, the combined soliton solution is
obtained as follows

q10=ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(−

1

2
(tanhE(

h

2
φ)+cothE(

h

2
φ)))),

7) When g2 = 4hf , the rational solution is obtained as follows

q11 = ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(−2h

φ ln(E)g + 2

g2φ ln(E)
)),

8) When h = 0 and g 6= 0, the singular soliton is obtained
as follows

q12 = ϒ(
ig ln(E)
√
2λ

+

i
√
2f ln(E)
√

λ
(−

1g

f (coshE(gφ)− sinhE(gφ)+ 1)
)),

GRAPHICAL EXPRESSION OF THE
SOLUTIONS

In this section we draw 2D and 3D graphics for some of the
solutions obtained in the previous section. We obtained these

graphics using Matlab. In Figures 1, 2, we show some numerical
models and q1 and q4. 3D plots are drawn for −10 ≤ x ≤ 10,
−10 ≤ t ≤ 10. 2D plots are drawn for x = 0.1.

The above graphics were drawn for h = 1, f = 2, g = 1,E =
2.7, a = 0.5, λ = 2, ξ = κ = π

2 ,α = 0.8,1 = � = 1 in (a) and
for h = 1, f = −1, g = 0,E = 2.7, a = 0.5, λ = 2, ξ = κ =
π
2 ,α = 0.8,1 = � = 1 in (b).

We obtained the sum of solutions found for the fractional
(3+1)-dimensional NLSE with kerr law nonlinearities via the
conformable fractional derivative operator. In addition, we
presented some graphics of solutions in Figures 1, 2.

CONCLUSION

In this article, the EDAM is applied to find new soliton
solutions for the (3+1)-dimensional NLSE with kerr law

FIGURE 2 | The 2D graphic of the (3+1)-dimensional NLSE with kerr law

non-linearities for a different value of α.

FIGURE 1 | The surface and 2D graphic for the (A) |q1|2, (B) |q7|2.
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nonlinearities, with the aid of the conformable fractional
derivative operator. The dark, bright, and combined optical
solitons are obtained. There are 12 different situations in
these solutions. The existence of solutions obtained from
these functions are all stipulated through limitation states
that are also listed in addition to the solutions. Some
interesting figures are also presented in Figures 1, 2. The
method applied in this article is appropriate to investigate
several problems that are face in the fields of engineering
and science.
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This paper is devoted to establishing some criteria for the existence of non-trivial

solutions for a class of fractional q-difference equations involving the p-Laplace operator,

which is nowadays known as Lyapunov’s inequality. The method employed for it is

based on a construction of a Green’s function and its maximum value. Parallel to this

result, it is worth mentioning that the Hartman-Wintner inequality for the q-fractional

p-Laplace boundary value problem is also provided. It covers all previous results known

in the literature on the fractional case as well as that on the classical ordinary case. The

non-existence of non-trivial solutions to the q-difference fractional p-Laplace equation

subject to the Riemann-Liouville mixed boundary conditions will obey such integral

inequalities. The tools mainly rely on an integral form of the solution construction of a

Green function corresponding to the considered problem and its properties as well as its

maximum value in consideration where the kernel is the Green’s function. The example

that we consider here for applying this result is an eigenvalue fractional problem. To be

more specific, we provide an interval where an appropriate Mittag-Leffler function to the

given eigenvalue fractional boundary problem has no real zeros.

2010 Mathematics Subject Classification: 34A08, 34A40, 26D10, 33E12

Keywords: Lyapunov’s inequality, q-fractional integral, Green’s function, p-Laplacian, mixed boundary conditions

1. INTRODUCTION

The field of fractional calculus and its applications to the class of partial differential equations,
as well as ordinary equations, gained a rapid development. Interesting fractional results turn, in
general, on the existence and non-existence of solutions. Such kinds of fractional equations come
from different disciplines in sciences, covering medical and engineering matters. Techniques used
in this kind of work recourse mainly to the use of Green’s function and its correspondingmaximum
values, which is not always an easy approach. The fractional differential equations with the p-
Laplacian operator involves this mathematical tool. However, to overcome this kind of difficulty,
another approach can be taken, namely the use of the Cauchy-Schwarz inequality and related
inequalities as holders. Different aspects have been considered by many different researchers in
this respect. They have treated the existence of either a single or multiple solutions for linearity, but
there have been few cases for non-linearity. In addition to this, the manner to extend these results
to a general case with more a general operator seems non-evident and requires a thorough analysis
of the maximum value of Green’s functions. This paper is devoted to tackling this problem with the
p-Laplace operator using the Green’s function method for the non-linearity case.

117

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2020.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2020.00007&domain=pdf&date_stamp=2020-04-22
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:radhkla@hotmail.com
https://doi.org/10.3389/fams.2020.00007
https://www.frontiersin.org/articles/10.3389/fams.2020.00007/full
http://loop.frontiersin.org/people/835826/overview


Ragoub et al. Criteria of Existence for a Fractional p-Laplacian Problem

Some results focusing on the existence of positive solutions
of boundary value problems for a class of fractional differential
equations with the p-Laplacian operator have been raised in
previous papers (see [1–22] and the references therein). Ren and
Chen [15] and Su et al. [17] established the existence of positive
solutions to four-point boundary value problems for non-linear
fractional differential equations with the p-Laplacian operator.
However, for papers on this line concerning the q-difference
type of fractional problems, we refer the reader to references
[1–4, 8–12, 15, 18, 19, 19–33].

It is worthy of notice that the q-fractional calculus was
introduced by Jackson [30, 31], as the reader may observe in
consulting the article of Ernst [28], where he attributed the work
to Jackson.

Accordingly, we mention the recent developments related to
this subject (see [5, 12, 13, 32, 34–46]) and the references therein.

For multiple solutions for the non-linear case, we refer to the
work done by El-Shahed and Al-Askar [47], whereas Graef et al.
[48] deal with positive solutions by applying different methods.

The first result came from Liapunov [6], in the second
ordinary differential equation. It was shown that if u is a non-
trivial solution of

{

u′′(t)+ q(t)u(t) = 0, a < t < b
u(a) = u(b) = 0,

where a < b, a and b are two real constants, and the function
q ∈ C([a, b];R), then the function q must satisfy the following
integral inequality:

∫ b

a
|q(t)| dt >

4

b− a
. (1)

After this result, several extensions are derived from this one,
and consequently, analogous inequalities are obtained for a class
of fractional differential equations subject to different kind of
boundary conditions (see [5, 12–14, 29, 32, 34–36, 39–41, 44,
45, 49, 50]). However, concerning the fractional q-difference
boundary value problem, it was shown in Jleli and Samet [42]
that a non-trivial solution of

{

aD
α
qu(t) + Q(t)(t)u(t) = 0, t ∈ (a, b), q ∈ [0, 1), 1 < α ≤ 2,

u(a) = 0, u(b) = 0,

(2)

where aD
α
q denotes the fractional q-derivative of Riemann-

Liouville type [43, 51], and Q :[a, b] → R is a continuous
function, exists if the following integral inequality

∫ b

a
(s− a)α−1(b− (qs+ (1− q)a)a

(α−1) |Q(s)| adqs

≥ Ŵ(α)(b− a)α−1 (3)

is satisfied.
In the opinion of the authors, there are no articles dealing with

these types of inequalities for the study of non-trivial solutions

for the p-Laplacian operator involving the q-fractional case. We
therefore fill the gap in the literature with this paper.

Our result generalizes that one investigated in Jleli and
Samet [42].

In this work, we aim to investigate the following q-fractional
boundary value problem with the p Laplace operator











aD
β
q (φp( aDα

qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ξ ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(4)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, 0 < ξ , δ < 1,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
We prove that the necessary condition of the existence of

non-trivial solutions of (4) is the following:

1 ≤

(

∫ b

a
G̃q(s) adqs

)(

∫ b

a
H̃q(s) adqs

)

, (5)

where G̃q(s) and H̃q(s) are defined respectively by

G̃q(s) :=
1

Ŵq(α)

q(s− a)(α−1)

(b− a)α−1

(

b− (qs+ (1− q)a
)(α−1)
a

(6)

+
Ag(ξ , (qs+ (1− q)a)(b− a)α−1

γ
,

H̃q(s) :=
1

Ŵq(β)

q(s− a)(β−1)

(b− a)β−1

(

b− (qs+ (1− q)a
)(β−1)
a

(7)

+
Ah(ξ , (qs+ (1− q)a)(b− a)β−1

γ̄
,

where

γ := (b− a)α−1 − A (ξ − a)α−1,

and

γ̄ := (b− a)β−1 − b(δ − a)β−1.

Besides, we show that from this inequality derive several existing
previous results in the literature as well as the standard Lyapunov
inequality (1): those of Hartman and Wintner [52], Ferreira [39],
and so on.

2. DEFINITIONS AND LEMMAS

In this section, we adopt the main tools that will be needed in
the subsequent sections; these belong to q fractional calculus.
Notations, definitions and lemmas are recalled in order to cover
the goal of this paper, whereas, for consistency, we conserve the
same notations for q fractional material as adopted in Jleli and
Samet [42].
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Let q ∈ (0, 1), N0 = {0, 1, 2, . . . }, and define

[a]q =
qa − 1

q− 1
, a ∈ R.

The similar q formula to the power (a− b)n with n ∈ N0 is

(a− b)0 = 1, (a− b)n =
n−1
∏

k= 0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)α = aα

∞
∏

n= 0

a− bqn

a− bqα+n
.

For the particular case when b = 0, we note a(α) = aα . Also, the
similar q formula to the power function

(x− y)n, with n ∈ N0 is

(x− y)(0)a = 1, (x− y)(k)a

=
k−1
∏

i= 0

(

(x− a)− (y− a)qi
)

, k ∈ N, (x, y) ∈ R
2.

For the general case, when γ ∈ R, then

(x− y)(γ )a = (x− a)γ
k−1
∏

i= 0

(

(x− a)− (y− a)qi

(x− a)− (y− a)qγ+i

)

, (8)

= (x− a)γ
k−1
∏

i= 0





1− qi
(y−a)
(x−a)

1− qγ+i (y−a)
(x−a)





= (x− a)γ
(

1− q
(y− a)

(x− a)

)

.

It has the following properties

• (t − s)(β+γ )
q = (t − s)(β)q (t − qs)(γ )q

• (at − as)(β)q = aβ (t − s)(β)q .

When derivatives are involved, it holds:

• (t − a)α ≥ (t − b)α , for a ≤ b ≤ t, and α > 0.

We define the q-Gamma function by

Ŵq(x) =
(1− q)(x−1)

0

(1− q)x−1 , x ∈ R\{0,−1,−2,−3, . . . }.

In particular one has

Ŵq(x+ 1) = [x]qŴq(x), ∀x > 0, Ŵq(1) = 1.

Here and further, we recall some properties of the q-fractional
derivative of a function f defined on [a, b], a < b, to R.

The q-fractional derivative of a function f :[a, b] → R, is
defined by

(aDqf )(t) =
f (t)− f (qt + (1− q)a)

(1− q)(t − a)
, t 6= a,

and

(aDqf )(a) = lim
t→a

(aDqf )(t).

Remark:

By using the following changes:

q :=
x− a

y− a
,

it is easy to conclude that if (aDq f )(t) ≤ 0 (respectively,
(aDq f )(t) ≥ 0) then f is decreasing (respectively, f
is increasing).
Remark:

If f is differentiable in (a, b) then

lim
q→1−

(aDqf )(t) = f ′(t).

The q-fractional derivative of a function f :[a, b] → R of higher
order is defined by

(aD
0
qf )(t) = f (t), and (aD

n
q f )(t) = (aDq((aD

n−1
q f )(t)), n ∈ N.

The q-derivative of a product and a quotient of functions f and g
defined on [a, b] follows as

(

aDq fg
)

(t) = f (t)(aDqg)(t)+ g(qt + (1− q)a)(aDqf )(t),

and

(aDq
f

g
)(t) =

(aDqf )(t)g(t)− (aDqg)(t)f (t)

g(t)g(qt + (1− q)a)
.

Lemma 2.1. [44] For t, s ∈ [a, b], the following formulas hold:

t(aDq(t − s)(γ )a ) = [γ ]q(t − s)(γ−1)
a ,

and

s(aDq(t − s)γa ) = −[γ ]q(t − (qs+ (1− q)a))γ−1
a ,

where i(aDq) denotes the q-derivative with respect to the variable i.

Remark :

If γ > 0, a ≤ b ≤ t, then

(t − a)(γ )0 ≥ (t − b)(γ )0 .

Next, we recall the q-integral of a function f defined on [a, b],
a < b, to R and its properties.

The q-integral of a function f :[a, b] → R is defined by

(aI
0
q f )(t) =

∫ t

a
f (s) adqs = (1− q)(t − a)6∞

i= 0 q
if (qit

+ (1− q)a), t ∈ [a, b].

One may see that the above series is convergent if f is continuous.
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If a < c < b, then the following integral equality is satisfied

∫ t

c
f (s) adqs+

∫ t

a
f (s) adqs =

∫ c

a
f (s) adqs, t ∈ [a, b].

The following two relations are also satisfied

(aI
0
q f )(t) = f (t), and (aI

n
q f )(t) =a Iq(aI

n−1
q f )(t), n ∈ N.

An essential and important theorem that is known for the
classical ordinary case is also valid for the fractional one; it is the
fundamental theorem of calculus. Once applied to the fractional
operator, we get

(aDq aIqf )(t) = f (t)− f (a)

if the continuity of the function f is provided. When the
continuity of f is avoided, we obtain

(aDq aIqf )(t) = f (t).

Another crucial integration that is very useful in dealing with
non-existence of solutions for a class of fractional boundary value
problems is the integration by parts. It follows as

∫ b

a
f (s)(aDqg)(s) adqs = [f (t)g(t)]t= b

t= a

−
∫ b

a
g(qs+ (1− q)a)(aDqf )(s) adqs.

The rule of q-integration by parts is also expressed by (see [24])

∫ a

0
g(t)Dqf (t) dqt = fg(a)− lim

n→+∞
fg(aqn)−

∫ a

0
Dqg(t)f (qt) dqt.

(9)
If and g are q-regular at zero, then the limit on the right-
hand-side of (9) can be replaced by (fg )̇(0). (For more details,
see [24]).

In what follows, we define the q-fractional Riemann-Liouville
integral of a function f defined on [a, b] as follows

(aI
0
q f )(t) = f (t).

Let us assume that f and g are two functions defined on [a, b] such
that f ≤ g, then the following properties are satisfied

∫ b

a
f (s)adqs ≤

∫ b

a
g(s)adqs,

and

∫ b

a
f (s)adqs ≤

∫ b

a
|f |(s)adqs.

As auxiliary results, we need to use the following two lemmas.
The reader may consult [23, 30, 31] for more details.

Lemma 2.2. [30, 50] Let f :[a, b] → R be a continuous
function. Then

(i) aD
α
q (aI

α
q f )(t) = f (t), α > 0, t ∈ [a, b],

(ii) aI
α
q aI

β
q f (t) =a I

α+β
q f (t), α,β > 0, t ∈ [a, b].

Lemma 2.3. [30, 50] Let α > p − 1 and p be a positive integer.
The following then holds:

(aI
α
q ) aD

p
qf (x) = (aD

p
q)aI

α
q f (x)

−6
p−1
k= 0

(t − a)α−p+k

Ŵq(α + k− p+ 1)
a

Dk
qf (a).

2.1. Results and Consequences
The method that we would like to apply here consists of getting
an equivalent integral representation of the non-trivial solution
of the considered fractional boundary value problem. It therefore
necessitates an appropriate construction of the Green function,
which plays a crucial role in getting Lyapunov’s inequalities.

In order to reduce the q fractional boundary value problem (4)
to an equivalent integral equation, an auxiliary result is needed.
It is formulated in the following Lemma.

Lemma 2.4. Let u ∈ AC([a, b]). The unique non-trivial solution
of the q fractional boundary value problem

{

aD
α
qu(t) + Q(t)z(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

where 1 < α < 2, a < ǫ < b, and 0 ≤ A ≤ 1, is then given by

u(t) =
∫ b

a
G(t,

(

qs+ (1− q)a
)

z(s)Q(s) adqs, (10)

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1 , (11)

where

Ŵq(α)g(t, s) =























(t−a)α−1

(b−a)α−1 (b− a)α−1(b− s)α−1 − (t − s)α−1,

a ≤ s ≤ t,

(t−a)α−1

(b−a)α−1 (b− s)α−1, t ≤ s ≤ b.

(12)

Proof. We apply Lemma 2.3 in order to reduce the fractional
boundary value problem (4) to an equivalent integral one

u(t) = −aI
α
q u(t)+ c1(t − a)α−1 + c2(t − a)α−2, (13)

where c1, c2 are real constants.
From u(a) = 0 and (4), we get c2 = 0. Therefore, the general

solution of (4) is given by

u(t) = −aI
α
q u(t)+ c1(t − a)α−1
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= −
∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+c1(t − a)α−1.

From (14), we deduce that

u(b) = −
∫ b

a

(b−
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+ c1(b− a)α−1, (14)

and

u(ǫ) = −
∫ ǫ

a

(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs,

+ c1(ǫ − a)α−1. (15)

Now, the boundary condition u(b) = Au(ǫ) yields

c1 =
∫ b

a

(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)u(s)adqs (16)

(17)

−
∫ ǫ

a

A(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)u(s)adqs,

where

γ := (b− a)α−1 − A(ǫ − a)α−1.

Thus, the non-trivial solution of (4) is uniquely given by

u(t) = −
∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs (18)

+
∫ b

a

(t − a)α−1(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

−
∫ ǫ

a

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

= −
∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+
∫ b

a

(t − a)α−1(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs,

+
∫ b

a

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

−
∫ ǫ

b

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

=
∫ b

a
G(t, s)Q(s)z(s)adqs,

where the Green function G is defined in (11) and (12), and the
proof is finished.

Lemma 2.5. Let u ∈ AC[a, b]. The q fractional boundary value
problem











aD
β
q (φp( aDα

qu(t)) + Q(t)z(t) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ), ,

(19)

1 < α, β < 2, , a < ǫ < b, and 0 ≤ A, B ≤ 1,
then admits a non-trivial unique solution defined by

u(t) =
∫ b

a
G(t,

(

qs+ (1− q)a
)

)φr (20)

(

∫ b

a
H(s,

(

qτ + (1− q)a
)

)z(τ )Q(τ )dqτ

)

dqs,

where G(t, s) is defined in (11), (12) and

H(t, s) := h(t, s)+
(B)p−1h(δ, s)(t − a)α−1

(b− a)β−1 − (δ − a)β−1
, (21)

where

Ŵq(α)h(t, s) =















(t−a)β−1

(b−a)β−1 (b− s)β−1 − (t − s)β−1, a ≤ s ≤ t,

(t−a)β−1

(b−a)β−1 (b− s)β−1, t ≤ s ≤ b.

(22)

Proof. We use Lemma 2.4 in order to reduce the fractional
differential Equation (4) to an equivalent integral one

φp( aD
α
qu(t)) = (aD

β
q u(t))+ c3(t − a)β−1 + c4(t − a)β−2. (23)

In view of the boundary condition aDqu(a) = 0 and (23), we
obtain c4 = 0. Hence the non-trivial solution of the fractional
boundary value (4) is given by

φp( aD
α
qu(t)) = (aD

β
q u(t))+ c3(t − a)β−1 (24)

=
∫ t

a

(t −
(

qs+ (1− q)a
)

a
)(β−1)

Ŵq(β)
Q(s)z(s) adqs

+ c3(t − a)β−1.

Now in light of (24), we get

φp( aD
α
qu(b)) =

∫ b

a

(b−
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

+ c3(b− a)β−1, (25)

φp( aD
α
qu(δ)) =

∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

+ c3(δ − a)β−1. (26)

By the boundary condition aD
α
qu(b) = B aD

α
qu(δ) yields

c3 =
∫ b

a

(b−
(

qs+ (1− q)a
)

a
)(β−1)

(

(b− a)β−1 − bp−1(δ − a)β−1
)

Ŵq(β)
Q(s)z(s) adqs
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−
∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

(

(b− a)β−1 − bp−1(δ − a)β−1
)

Ŵq(β)
Q(s)z(s) adqs.

=
1

γ̄

(

∫ b

a

(b−
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

)

−
1

γ̄

(

∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

)

, (27)

where

γ̄ :=
(

(b− a)β−1 − bp−1(δ − a)β−1) .

One may observe that, in a similar way to Lemma 2.4, we get

φp( aD
α
qu(t) = −

∫ b

a
H(t,

(

qs+ (1− q)a
)

)aQ(s)z(s) adqs. (28)

Thus, the given fractional boundary value problem (4) may be
re-written equivalently as

( aD
α
qu(t) + φr

(

∫ b

a
H(t,

(

qs+ (1− q)a
)

)aQ(s)u(s) adqs

)

= 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(δ).

Again by Lemma 2.4, the non-trivial solution of (4) is uniquely
given by

u(t) =
∫ b

a
G(t,

(

qs+ (1− q)a
)

)φr

(

∫ b

a
H(s, qτ )z(τ )Q(τ )adqτ

)

adqs. (29)

The proof of the desired result is achieved.
Next we shall focus on finding the properties of the Green

functions as well as their maximum principle. In order to do so,
we express this fact in the following lemma.

Lemma 2.6. Let u ∈ C[a, b]. The Green functions G and H
defined respectively in (11), (12) and (21), (22) are then continuous
and satisfy

(a) G(t,
(

qs+ (1− q)a
)

) ≥ 0, and H(t,
(

qs+ (1− q)a
)

a
) ≥ 0,

∀ (t, s) ∈ [a, b]× [a, b], (30)

(b) G(t, qs+ (1− q)a) ≤ G(s, (qs+ (1− q)a)), and (31)

H(t, qs+ (1− q)a)) ≤ H((qs+ (1− q)a), (qs+ (1− q)a))

∀ (t, s) ∈ [a, b]× [a, b],

1 < α, β < 2, a < ǫ < b, and 0 ≤ A, B ≤ 1.

Proof. Before starting the proof of Lemma 2.6, let us mention that
γ and γ̄ are positive, since a < ǫ, δ < b, and 0 ≤ A, B ≤ 1.

We consider

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1 . (32)

Let us differentiate g(t, s) defined in (12) with respect to t, for
s ≤ t, by

Ŵq(α)g(t, s) =















(t−a)α−1

(b−a)α−1 (b− s)α−1 − (t − s)α−1, a ≤ s ≤ t,

(t−a)α−1

(b−a)α−1 (b− s)α−1, t ≤ s ≤ b.

(33)

t( aDqg(t, s) = t( aDq((t − a)α−1)
(b− s)(α−1)

a

(b− a)α−1

−t( aDq((t − s)(α−1)
a ,

=
[α − 1]q
Ŵq(α)

(

(b− s)(α−1)
a (t − a)α−2

)

−(t − s)(α−2)
a

(

(t − a)α−2)

=
[α − 1]q
Ŵq(α)

(t − a)α−2
(

(1−
s− a

b− a
)α−1
0

)

−(t − a)α−2
(

(1−
s− a

t − a
)α−2
0

)

≤
[α − 1]q
Ŵq(α)

(t − a)α−2
(

(1−
s− a

b− a
)α−1
0

)

−
(

(1−
s− a

b− a
)α−2
0

)

, (34)

which is non-positive, since a < s < t < b.
Therefore, the function g is decreasing in its argument t, and the
following inequality is satisfied

0 = g(b, qs+ (1− q)a) (35)

≤ g(t, qs+ (1− q)a)

≤ g(qs+ (1− q)a), qs+ (1− q)a).

To this end, one may conclude that the right-hand-side of (35)
may be expressed as

g(qs+ (1− q)a), qs+ (1− q)a) =
1

Ŵq(α)
(
q(s− a)

b− a
)α−1

(

b− ((qs+ (1− q)a)a
)(α−1)
a

.(36)

Thus, G(t, ((qs+ (1− q)a))a) is non-negative and satisfies

G(t, ((qs+ (1− q)a))a) ≤ max
a≤t≤b

G(t, (qs+ (1− q)a))

= max
a≤t≤b

(g(t, (qs+ (1− q)a))

+
Ag(ǫ, (qs+ (1− q)a)(t − a)α−1

γ
)

≤
1

Ŵq(α)

q(s− a)(α−1)

(b− a)α−1

(

b− ((qs+ (1− q)a)
)(α−1)
a

+
Ag(ǫ, (qs+ (1− q)a)a(b− a)α−1

γ
:= G̃q(s). (37)

For t ≤ s, G is defined by

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1 , (38)
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where

Ŵq(α)g(t, s) =
(t − a)α−1

(b− a)α−1
(b− s)α−1. (39)

Similarly to above, we make differentiation with respect to t, and
then we get

t(aDqg(t, s)) =
[α − 1]q
Ŵq(α)

(

(

1−
s− a

b− a

)α−1

a

(t − a)α−2

)

, (40)

which is non-negative, and consequently the function g is non-
decreasing in its argument t. We have

0 = g(a, qs+ (1− q)a) (41)

≤ g(t, qs+ (1− q)a)

≤ g(s, qs+ (1− q)a),

where g(s, qs + (1 − q)a) =
(q(s−a))(α−1)

(b−a)α−1

(

b− ((qs+ (1− q)a)
)(α−1)
a

.

Now, to prove the inequality involving H, we consider H(t, s)
defined in (21)− (22) by

H(t, s) := h(t, s)+
(B)p−1h(δ, s)(t − a)β−1

(b− a)β−1 − (B)p−1(δ − a)β−1
, (42)

Ŵq(α)h(t, s) =



















(t−a)β−1

(b−a)β−1 (b− s)β−1 − (t − s)β−1, a ≤ s ≤ t,

(t−a)β−1

(b−a)β−1 (b− s)β−1, t ≤ s ≤ b.

(43)

For t ≤ s, we have

Ŵq(α)h(t, (qs+ (1− q)a)a =
(t − a)β−1

(b− a)β−1
(b− (qs+ (1− q)a))(β−1)

a

≤
(s− a)(β−1)

(b− a)β−1
(b− (qs+ (1− q)a))a

(β−1)

:= Ŵq(α) h(s, (qs+ ((1− q)a)). (44)

For t ≥ s, we consider

Ŵq(α)h(t, (qs+ (1− q)a)a) =
(t − a)β−1

(b− a)β−1
(b− (qs+ (1− q)a))a

(β−1)

− (t − (qs+ (1− q)a))a
(β−1). (45)

We claim that h(t, (qs + (1 − q)a)a) is non-negative too. It is
sufficient to replace α − 1 by β − 1 in all the steps of the proof
of Lemma 2.6 (b), and we get the same result. So the proof is
omitted, since it is similar to that of Lemma 2.6. Therefore

0 = h(a, (qs+ (1− q)a))

≤ h(t, (qs+ (1− q)a))

≤ h(s, (qs+ (1− q)a)).

Likely, one may conclude that the right-hand-side h(s, (qs+ (1−
q)a)) appearing in the previous inequality may be expressed as

h(s, (qs+ (1− q)a)) =
1

Ŵq(β)
(
q(s− a)

b− a
)β−1

(

b− (qs+ (1− q)a
)(β−1)
a

. (46)

Thus, H(t, (qs+ (1− q)a)) is non-negative and satisfies

H(t, (qs+ (1− q)a)) ≤ max
a≤t≤b

H(t, (qs+ (1− q)a))

= max
a≤t≤b

(

h(t, (qs+ (1− q)a))

+
Ah(δ, (qs+ (1− q)a)a(t − a)β−1

γ̄

)

≤
1

Ŵq(β)

q(s− a)(β−1)

(b− a)β−1

(

b− ((qs+ (1− q)a)
)(β−1)
a

(47)

+
Ah(δ, (qs+ (1− q)a)a(b− a)β−1

γ̄

:= H̃q(s).

The main result of this paper, which is a Lyapunov’s inequality
for a q- fractional difference p-Laplacian boundary value problem
(4), will be formulated in the next theorem. We state and prove it
in light of the previous lemmas.

Theorem 2.1. Assume that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aDα

qφp(u(t))) + Q(t)φp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(48)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a
G̃q(s) adqs

)(

∫ b

a
H̃q(s) |Q(s)| adqs

)r−1

, (49)

where G̃q(s), and H̃q(s) are defined in (37) and (49), respectively.

Proof. Let us define the norm of u, where u is a non-trivial
solution of the q-fractional difference boundary value problem
(4) by

||u|| := max
t∈[a,b]

|u(t)|.

Then, in view of Lemma 2.5, the non-trivial solution u ∈
AC([a, b],R) may be re-written for all t ∈ [a, b] as follows

u(t) =
∫ b

a
G(t, qs+ (1− q)a)φq (50)
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(

∫ b

a
H(s, q σ )+ (1− q)a)Q(σ )φp(u(σ )) adqσ

)

adqs.

We then deduce

|u(t)| ≤
∫ b

a
|G(t, qs+ (1− q)a))| |φq

(

∫ b

a
H(s, σ )Q(σ )φp(u(σ )) adqσ

)

| adqs

=
∫ b

a
|G(t, qs+ (1− q)a))| (51)

|

(

∫ b

a
H(s, q σ )+ (1− q)a)Q(σ )φp(u(σ )) adqσ

)

|r−1
adqs

=
∫ b

a
|G(t, qs+ (1− q)a))|

|

(

∫ b

a
|H(s, q σ )+ (1− q)a)Q(σ )| ||u||p−1

a dqσ

)

|r−1
adqs

=
∫ b

a
|G(t, s)|||u||

p−1
r−1

(

∫ b

a
|H(s, q σ )+ (1− q)a)| |Q(σ )| adqσ

)r−1

adqs.

Based on the non-triviality of the solution u and the fact that p
and r are conjugates, one may observe that

1 ≤
∫ b

a
|G(t, qs+ (1− q)a)| adqs

(

∫ b

a
|H(s, q σ )+ (1− q)a)| |Q(σ )| adqσ

)r−1

.

Due to Lemma 2.5 and Lemma 2.6, it holds that

1 ≤
∫ b

a
G̃q(s) adqs

(

∫ b

a
H̃q(s) |Q(σ )| adqσ

)r−1

.

To this end, it is worth noticing that, by letting q to 1−, we retrieve
the following integral inequality due to Hartman and Wintner
(see [52])

∫ b

a
(s− a)(b− s)|Q(s)| ds ≥ (b− a).

Due to this fact, the obtained integral inequality (49) may
be viewed as the q-fractional integral Hartman and Wintner
inequality for the p-Laplacian case. However, it is easy for the
reader to get an analogous result to this fundamental inequality
by considering p = 2,α = 2, and q → 1−.

Several types of Lyapunov’s inequality were derived from
Theorem 2.1. Hereafter, we formulate and express all of them
in the following corollaries. We shall focus on covering both
cases, ordinary differential equations and fractional differential
equations. In addition, we illustrate this Theorem by giving an
example. It consists of getting the interval of non-zeros of an
appropriate eigenvalue fractional boundary value problem.

Let us start with the first result derived from Theorem 2.1.

Corollary 2.1. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aDα

qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ), ,

(52)

where aD
α
q , aD

β
q are the fractional q-derivative of Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤
1

Ŵq(α)

A

γ
(ǫ − a)(α−1) 1

Ŵq(β)

Bp−1

γ̄
(δ − a)β−1(b− a)

(

∫ b

a
|Q(s)| adqs

)r−1

. (53)

Proof. It is sufficient to let q → 0+ and consider two cases: t ≤ s
and s ≤ t. In the first case, G̃q(t, s) and H̃q(t, s) defined in (37) and
(47) tend to zero. In the second case, they take the following form

G̃q(t, s) :=
A(ǫ − a)α−1

γ
and H̃q(t, s) : :=

Bp−1(δ − a)β−1

γ̄
,

and we get the result of this corollary.

Corollary 2.2. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aDα

qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(54)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a

1

Ŵq(α)
(
s− a

b− a
)α−1(b− s)α−1

adqs

+
∫ b

a

A

γ
g(ǫ, s)(b− a)α−1

adqs

)

(

∫ b

a

1

Ŵq(β)
(
s− a

b− a
)β−1(b− s)β−1 |Q(s)| adqs

+
∫ b

a

Bp−1

γ̄
h(δ, s)(b− a)β−1 |Q(s)| adqs

)r−1

.

Proof. The result is achieved by letting q → 1−

in (49).
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Remarks:

• The result of this corollary (Corollary 2.2) represents a
Hartman-Wintner inequality for the q-fractional difference p-
Laplacian boundary value problem (54). For the particular case
when A = B = 0 and α = β , we obtain

∫ b

a
(s− a)α−1(b− s)α−1Q(s)ds ≥ Ŵ(α)(

4

b− a
)α−1.

• When α = β = 2, we retrieve the necessary condition of
existence of non-trivial solutions investigated by Lyapunov
for the second ordinary differential equation subject to
the Dirichlet boundary conditions, and therefore one may
conclude that if the non-trivial solution corresponding to this
problem exists, then the non-trivial solution of (54) exists too,
and vice-versa.

Indeed, in that case, for α = β = 2, we find:

4

b− a
≤
∫ b

a
(s− a)(b− s) |Q(s)| ds.

Now we focus on a second mixed-order differential inequality
by taking α = β = 2. For the next derived result from
Theorem 2.1, we provide an important inequality that is very
useful. This is the arithmetic-geometric-harmonic inequality.
It says that:

(s− a)(b− s) ≤
(b− a)2

4
.

Corollary 2.3. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aDα

qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(55)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a

1

Ŵ(α)

(b− a)2(α−1)

4α−1
ds+

∫ b

a

A

γ
g(ǫ, s)(b− a)α−1 ds

)

(

∫ b

a

1

Ŵ(β)
(
(b− a)2(β−1)

4β−1
|Q(s)| ds

+
∫ b

a

Bp−1

γ̄
h(δ, s)(b− a)β−1 |Q(s)| ds

)r−1

.

Proof. We use the result of Corollary 2.2 by considering
the arithmetic-geometric-harmonic inequality, and we get the
desired result. Nowwe focus on a secondmixed-order differential
inequality by taking α = β = 2, p = 2 and therefore r = 2, since
p and r are conjugates.

Corollary 2.4. Suppose that u is a non-trivial solution of the
fractional q-difference boundary value problem







aD
′′( aD′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
′′(a) = 0, aD

′′u(b) = B aD
′′u(δ),

(56)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b, and
Q :[a, b] → R is a continuous function on [a, b].

The following integral inequality is then satisfied

1 ≤

(

∫ b

a
(
s− a

b− a
)(b− s) ds+

∫ b

a

A

γ
g(ǫ, s)(b− a) ds

)

(

∫ b

a
(
s− a

b− a
)(b− s) |Q(s)| ds+

∫ b

a

B

γ̄
h(δ, s)(b− a) |Q(s)| ds

)

,

where g and h are defined in (12) and (22), respectively (with
α = β = 2), and γ and γ̄ are defined by

γ := (b− a)− A(ǫ − a), and γ̄ := (b− a)− Bp−1(δ − a).

Proof. We set α = β = 2, p = r = 2, and we let q → 1− in
Corollary 2.2, and the desired result is therefore established.
Remark:

The result obtained in Corollary 2.4 is more general than
the Hartman Wintner inequality. For the particular case when
A = B = 0, we get the classical Hartman-Wintner inequality.

Corollary 2.5. Suppose that u is a non-trivial solution of the
fractional boundary value problem







aD
′′( aD′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = 0,

aD
′′u(a) = 0, aD

′′u(b) = 0,
(57)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, and Q :[a, b] → R is a continuous
function on [a, b].

The following integral inequality is then satisfied

4

b− a
≤
∫ b

a
(s− a)(b− s)|Q(s)| ds. (58)

Proof. It is sufficient to use the arithmetic-geometric-harmonic
inequality to the conclusion of Corollary 2.4 and set A = B = 0,
and the result will follow.

Corollary 2.6. Suppose that u is a non-trivial solution of the
fractional boundary value problem







aD
′′( aD′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = 0,

aD
′′(a) = 0, aD

′′u(b) = 0,
(59)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, and Q :[a, b] → R is a continuous
function on [a, b].

The following integral inequality is then satisfied
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(

4

b− a

)2

≤
∫ b

a
|Q(s)|ds. (60)

Proof. Similarly to the above, we apply two times the arithmetic-
geometric-harmonic inequality to the result of Corollary 2.4, and
the desired result is achieved.

3. ON AN INTERVAL OF REAL ZEROS OF
THE MITTAG-LEFFLER FUNCTION

In this section, we are interested in getting the interval of real
zeros of the following Mittag-Leffler function [43]:

Eα(λ) = 6∞
k= 0

λk

Ŵ(kα + β)
, λ, β ∈ C, and Re(α) > 0,

where C denotes the set of complex numbers, and R(α) is the
real part of α. The key tool in proving this result consists of
an appropriate integral inequality of the following fractional
boundary value problem.

Theorem 3.1. Let u be a non-trivial solution of

0D
α(0D

α(u(t)))+ λu(t) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u(1) = 0,

0D
αu(0) = 0, 0D

αu(1) = 0, (61)

then |λ| ≥ (Ŵ(α)4α−1)2.

Proof. We apply Corollary 2.3 with A = B = 0, α = β ,
p = 2, r = 2, and a = 0, b = 1. We obtain

|λ| ≥ (Ŵ(α)4α−1)2,

and the proof is completed.
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In this paper, we investigated the non-linear Schrödinger equation (NLS) to extract

optical soliton solutions by implementing the extended Sinh–Gordon equation expansion

method (ShGEEM). Optical soliton solutions included bright, dark, combined bright-dark,

singular soliton combined singular soliton solutions, and singular periodic wave solutions.

Our new results have been compared to these in the literature. Also, graphical

analysis was presented with 3D and contour graphs to understand the physics of

obtained solutions.

Keywords: extended Sinh-Gordon equation expansion method (ShGEEM), optical soliton, non-linear Schrödinger

equation, exact solutions, singular soliton solution

INTRODUCTION

In recent years, soliton propagation in non-linear optical fiber has become the most extensive topic
of research in the field of non-linear sciences. In non-linear optical fiber, the study of the non-linear
Schrödinger equation (NLS) plays an important role in order to understand the dynamical behavior
of optical soliton. NLS helps to provide exact soliton solutions in non-linear fiber optics. During the
last few years, in the study of optical solitons, many new research developments have taken place,
which is a great achievement in the field of soliton [1–15]. However, there are a lot of problems that
need to be solved.

Many new methods have been developed to tackle complicated problems in a very smooth
manner and provide exact soliton solutions of these problems such as the modified simple equation

method [16, 17], the extended trial equation method [18, 19], the tan(φ(ξ)
2 )-expansion method

[20, 21], and many others.
In this paper, our main focus is the study of NLS [22]. This equation has large physical

importance in non-linear optics.

iVt − Vxx + 2 |V|2V − 2σ 2V = 0, i =
√
−1, (1)

where V (x, t) is a complex function and σ is a constant. It should also be noted that, for σ = 0,
Equation (1) reduces to the non-Kerr law non-linearity as

Vt − Vxx + 2 |V|2V = 0, i =
√
−1 (2)
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To study Equation (1), we consider the following
wave transformation:

V (x, t) = p (ξ) eiφ(x,t), ξ = ρx− υt, ϕ = −kx+ ̟ t + θ (3)

where ϕ (x, t) is the phase component, and k, ̟ , θ , and υ

represent the frequency, wave number, phase constant, and
velocity of the soliton. By substituting Equation (3) into Equation
(1), we obtain the following real and imaginary equations:

(

d2

dξ 2
ϕ (ξ)

)

ρ2 + φ (ξ)
(

k2 − 2σ 2 − ̟
)

− 2 (φ (ξ))3 = 0, (4)

ν = 2kρ, (5)

ALGORITHM OF EXTENDED ShGEEM

To describe the mechanism of the extended Sinh–Gordon
equation method (SGEM) for differential equations, we consider
the equation [23]

ϒxt = ̺ sinh (ϒ) , (6)

where ϒ = ϒ (x, t) and ̺ is a nonzero constant.
Applying the traveling wave transformation ϒ (x, t) =

8(ζ) , ζ = λ(x − µt), to Equation (6), we acquire the following
form of non-linear ODE:

8
′′
= −

̺

λ2µ
sinh (8) , (7)

where8 = 8(ζ), λ is a wave number, andµ is the velocity of the
traveling wave. By applying the integration procedure, Equation
(7) can be found in a simplified form:





(

8
′
)

2





2

= −
̺

λ2µ
sinh2

(

8

2

)

+ r, (8)

where r is the constant of integration. Setting v (ζ ) = 8
2 , and

θ = − ̺

λ2µ
, into Equation (8) yields

v
′
(ζ ) =

√

θ sinh2 (v) + r, (9)

Equation (9) has the following set of solutions, by substituting
different values for given parameters θ and r.
Set I:

If we substitute r = 0, θ = 1 in Equation (9), we obtain

v′ (ζ ) = sin h (v), (10)

Simplifying Equation (10), we acquire the following solutions:

sin h (v (ζ )) = ±csch (ζ ) , or sin h (v (ζ )) = ±isech (ζ ) ,

(11)

and

cos h (v (ζ )) = ±coth (ζ ) , or cos h (v (ζ )) = ±tanh (ζ )!, (12)

where i =
√
− 1.

Set II:
If we substitute r = 1, θ = 1 in Equation (9), we have the

following equation:

v′ (ζ ) = cos h (v), (13)

After simplification in Equation (13), we have the
following solutions:

sin h (v (ζ )) = tan (ζ ) , or sin h (v (ζ )) = −cot (ζ ) , (14)

and

cos h (v (ζ )) = ±sec (ζ ) , or cos h (v (ζ )) = ±tan (ζ ) , (15)

To obtain the different wave solutions of non-linear partial
differential equations (NPDEs), we consider the equation in the
following form:

∁ (ϒ ,ϒt , ϒx, ϒxx, ϒxt , ϒtt , . . .) = 0, (16)

Step I: By using wave transformation ϒ (x, t) = 8(ζ) , ζ =
λ (x− µt) , we first transform Equation (16) into the
following NODE:

H
(

8,8
′
, 8

′′
, 828′, . . .

)

= 0, (17)

Step II: We suppose that Equation (17) has a new ansatz solution
in the following form:

8(v) =
∑

κ = 1

[

Bκ sinh (v (ζ )) + Aκcosh (v (ζ ))
]κ + Å0, (18)

where Å0, Åκ , Bκ , (κ = 1, . . . , n) are constants to be determined
later. The value of can be determined by balancing the highest
order dispersive term with the non-linear term in Equation (17).

Step III: We substitute Equation (18) for the fixed value of
in Equation (17) to obtain a polynomial form of equation in
v
′f sinhg (v) coshι (v) ,

(

f = 0, 1 and g, ι = 0, 1, 2 . . . . . .
)

. We get
the system of algebraic equations by equating the coefficients
of v

′f sinhg (v) coshι (v) to be all zero. We extract the values of
coefficients Å0, Åκ , Bκ , λ, µ by solving the system of algebraic
equations with the help of MAPLE 2016.

Step IV: Substituting the values of Å0, Åκ , Bκ , µ in Equations
(19)–(22), we obtain the following wave solutions to the non-
linear Equation (16):

8(ζ) =
N
∑

κ=1

[

±Bκ isech (ζ ) ± Åκ tanh (ζ )
]κ + Å0, (19)

8(ζ) =
N
∑

κ=1

[

±Bκcsch (ζ ) ± Bκ coth (ζ )
]κ + Å0, (20)

8(ζ) =
N
∑

κ=1

[

Bκ sec (ζ ) + Åκ tan (ζ )
]κ + Å0, (21)
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and

8(ζ) =
N
∑

κ=1

[

Bκ csc (ζ ) − Åκ cot (ζ )
]κ + Å0, (22)

APPLICATION OF EXTENDED ShGEEM TO
EQUATION (1)

In this section, Extended ShGEEM [24–29] is implemented to
Equation (1).

Considering a homogeneous balance between 8′′ and 83 in
Equation (4) yields N = 1. And setting the value of N in
Equations (18)–(22), we obtain

8(v) = B1sinh (v (ζ )) + Å1cosh (v (ζ )) + Å0, (23)

8(ζ) = ±B1isech (ζ ) ± Å1tanh (ζ ) + Å0, (24)

8(ζ) = ±B1csch (ζ ) ± Å1coth (ζ ) + Å0, (25)

8(ζ) = ±B1sec (ζ ) + Å1tan (ζ ) + Å0, (26)

8(ζ) = ±B1csc (ζ ) − Å1cot (ζ ) + Å0, (27)

Substituting Equation (23) together with its derivatives
in Equation (4), we get a polynomial equation in
v
′f sinhg (v) coshι (v) ,

(

f = 0, 1 and g, ι = 0, 1, 2 . . . . . .
)

. Using
some hyperbolic identities, we acquire a system of algebraic
equations by setting the coefficients of v

′f sinhg (v) coshι (v)
equal to zero. After simplifying the system of equations, we
obtain the values of Å0, Åκ , Bκ , ρ, k, λ with the help of Maple
16. Subsisting all the values of Å0, Åκ , Bκ , ρ, k, λ in any of
Equations (24)–(27), we found numerous different types of
soliton solutions of Equation (1).
Result I:

Å0 = 0, Å1 = ±
1

2
ρ,B1 = ±

1

2
ρ,̟ = k2 +

1

2
ρ2 − 2σ 2, (28)

Result II:

Å0 = 0, Å1 = 0, B1 = ±ρ, ̟ = k2 − ρ2 − 2σ 2, (29)

Result III:

σ 2Å0 = 0, Å1 = ±ρ, B1 = 0, ̟ = k2+2ρ2 − 2σ 2, (30)

Result IV:

Å0 = 0, Å1 = 0 , B1 = ±ρ, ρ =
√

k2 − 2σ 2 − ̟ , (31)

Result V:

Å0 = 0, Å1 = ρ ,B1 = 0, ρ =
1

2

√

−2k2 + 4σ 2 + 2̟ , (32)

Result VI:

Å0 = 0, Å1 =
1

2
ρ,B1 =

1

2
ρ, ρ =

√

−2k2 + 4σ 2 + 2̟ , (33)

Result VII:

Å0 = 0, Å1 = ∓
1

2
ρ,B1 = ±

1

2
ρ,̟ = k2 −

1

2
ρ2 − 2σ 2, (34)

Result VIII:

Å0 = 0, Å1 =
1

2
ρ, B1 =

1

2
ρ, ρ =

√

2k2 − 4σ 2 − 2̟ , (35)

Substituting the values of the above given results in Equations
(24)–(27), we get the following solutions.

Case I: Bright Optical Solitons
Substituting the values of the parameters given in Results II and
IV into Equation (24):

V1 (x, t) = ±iρsech
(

ρx− 2tkρ
)

ei(−kx+t(k2−ρ2−2σ 2)+θ), (36)

V2 (x, t) = ±i
√

k2 − 2σ 2 − ̟ sech
(

−2tk
√

k2 − 2σ 2 − ̟

+
√

k2 − 2σ 2 − ̟x
)

× ei(−kx+t̟+θ) (37)

where
(

k2 − 2σ 2 − ̟
)

> 0, for valid solutions.

FIGURE 1 | (A) Bright soliton Equation (36). (B) Contour plot.
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Case II: Dark Optical Solitons
Substituting the values of the parameters given in Results III and
V into Equation (24):

V3 (x, t) = ±ρ tanh
(

−2tkρ + ρx
)

ei(−kx+t(k2+2ρ2−2σ 2)+θ), (38)

V4 (x, t) =

(

1
2

√
−2k2 + 4σ 2 + 2̟

tanh
(

−tk
√
−2k2 + 4σ 2 + 2̟ + 1

2
√
−2k2+4σ 2+2̟x

)

)

ei(−kx+t̟+θ) (39)

where
(

−2k2 + 4σ 2 + 2̟
)

> 0, for valid solutions.

Case III: Combined Dark-Bright Optical
Soliton Solutions
Using the values of the parameters given in Results I and VI into
Equation (24):

V5 (x, t) = ±
1

2
ρ
(

isech
(

ρx− 2tkρ
)

+ tanh
(

ρx− 2tkρ
))

ei
(

−kx+t
(

k2+ 1
2 ρ2−2σ 2

)

+θ
)

, (40)

V6 (x, t) =

(

i
2

√
2̟ − 2k2 + 4σ 2

sech
(

−2tk
√
2̟ − 2k2 + 4σ 2 +

√
2̟ − 2k2 + 4σ 2x

)

)

+
( 1

2

√
2̟ − 2k2 + 4σ 2

tanh(−2tk
√
2̟ − 2k2 + 4σ 2 +

√
2̟ − 2k2 + 4σ 2x)

)

×ei(−kx+t̟+θ). (41)

where
(

2̟ − 2k2 + 4σ 2
)

> 0, for valid solutions.

Case IV: Singular Soliton Solutions
Using the values of the parameters given in Results II, III, IV, and
V into Equation (25):

V7 (x, t) = ±ρcsch(−2tkρ + ρx)ei(−kx+t(k2−ρ2−2σ 2)+θ), (42)

V8 (x, t) = ±ρ coth(−2tkρ + ρx)ei(−kx+t(k2+2ρ2−2σ 2)+θ)(43)

V9 (x, t) = ±
√

k2 − 2σ 2 − ̟ csch(−2tk
√

k2 − 2σ 2 − ̟

FIGURE 2 | (A) Dark soliton solution Equation (38). (B) Contour plot.

FIGURE 3 | (A) Singular solution Equation (43). (B) Contour plot.
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+
√

k2 − 2σ 2 − ̟x) × ei(−kx+t̟+θ) (44)

where
(

k2 − 2σ 2 − ̟
)

> 0, for valid solutions.

V10 (x, t) =

(

1
2

√
2̟ − 2k2 + 4σ 2

coth
(

−tk
√
2̟ − 2k2 + 4σ 2 + 1

2

√
2̟ − 2k2 + 4σ 2x

)

)

×ei(−kx+t̟+θ), (45)

where
(

2̟ − 2k2 + 4σ 2
)

> 0, for valid solutions.

Case V: Combined Singular Solitons
Substituting the values of the parameters given in Results I and
VI into Equation (25):

V11 (x, t) = ±
(

1

2
ρcsch

(

−2tkρ + ρx
)

−
1

2
ρ coth

(

−2tkρ + ρx
)

)

×ei(−kx+t(k2+ 1
2 ρ2−2σ 2)+θ), (46)

V12 (x, t) =













1
2

√
−2k2 + 4σ 2 + 2̟

×csch
(

−2tk
√
−2k2 + 4σ 2 + 2̟ +

√
−2k2 + 4σ 2 + 2̟x

)

+ 1
2

√
−2k2 + 4σ 2 + 2̟

× coth
(

−2tk
√
−2k2 + 4σ 2 + 2̟ +

√
−2k2 + 4σ 2 + 2̟x

)













×ei(−kx+t̟+θ), (47)

where
(

−2k2 + 4σ 2 + 2̟
)

> 0, for valid solutions.

Case VI: Singular Periodic Wave Solitons
Substituting the values of the parameters given in Result VII into
Equations (26), (27):

V13 (x, t) =
1

2
ρ
(

± sec
(

−2tkρ + ρx
)

∓ tan
(

−2tkρ + ρx
))

ei(−kx+t(k2− 1
2 ρ2−2σ 2)+θ), (48)

FIGURE 4 | (A) Combined singular solution Equation (47). (B) Contour plot.

FIGURE 5 | (A) Singular periodic soliton Equation (50). (B) Contour plot.
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V14 (x, t) =

























1
2

√
2k2 − 4σ 2 − 2̟

× sec
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

+ 1
2

√
2k2 − 4σ 2 − 2̟

× tan
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

























×ei(−kx+t̟+θ), (49)

where
(

2k2 − 4σ 2 − 2̟
)

> 0, for valid solutions.
Substituting the values of the parameters given in Result VIII

into Equations (26), (27):

V15 (x, t) =
1

2

(

±ρ csc
(

−2tkρ + ρx
)

± ρ cot
(

−2tkρ + ρx
))

ei(−kx+t(k2− 1
2 ρ2−2σ 2)+θ), (50)

V16 (x, t) =











1
2

√
2k2 − 4σ 2 − 2̟

csc
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

− 1
2

√
2k2 − 4σ 2 − 2̟

cot(−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x)











×ei(−kx+t̟+θ), (51)

where
(

2k2 − 4σ 2 − 2̟
)

> 0, for valid solutions.

GRAPHS AND DISCUSSIONS

In this section, we presented some of our obtained solutions in
the following figures.

Solutions V1, V2 of Equation (1) depict the bright optical
soliton solutions. Figure 1 represents the 3D surface of the bright
soliton solution of Equation (36) with a contour plot for given
parametric values ρ = 0.5, θ = 0.5, σ = 0.5, k = 0.5.

Solutions V3, V4 of Equation (1) show the dark optical soliton
solutions. Figure 2 represents the 3D surface of the dark optical
soliton solution of Equation (38) with a contour plot for given
parametric values ρ = 0.5, θ = 0.5, σ = 0.5, k = 0.5.

Figures 3, 4 represent the singular and combined singular
soliton solutions of Equation (1), obtained from solutions of
V8 and V12[Equations (38), (47)] for ρ = 0.065, θ = 1, σ =
0.09, k = 0.095 and ̟ = 0.05, θ = 5, σ = 0.05, k = 0.09.

Solutions V13, V14, V15, V16 of Equation (1) represent the
singular periodic wave solutions. Figure 5 illustrates the 3D
surface of the singular periodic wave solution of Equation (50)
with a contour plot for given parametric values ρ = 2.5, θ =
0.2, σ = 0.2, k = 7.5. For convenience, some other figures are
not reported.

COMPARISONS

In Cheemaa and Younis [22], Nadia Cheema and Muhammad
Younis investigated the traveling wave solutions of NLSE

by applying the extended Fan sub-equation method. The
obtained solutions V3, V4,V8, V10,V11, V12, V15, V16 in this
paper are equivalent to the solutions q1, q2, q6, q15, q16.
found in Cheemaa and Younis [22] for non-linear
Schrödinger’s equation. The extended Sinh–Gordon equation
expansion method provides a large variety of optical soliton
solutions [24–29]. By means of the extended Sinh–Gordon
equation expansion method, we found some new more
generalized exact solutions. Therefore, these new exact
solutions are not reported before for this equation in
the literature.

CONCLUSIONS

We have implemented the extended Sinh–Gordon equation
expansion method to solve the non-linear Schrodinger equation
for exact optical soliton solutions. The types of solutions
we reported include singular periodic wave solutions, bright,
dark, combined bright-dark, singular, and combined singular
soliton solutions. The non-linear Schrodinger equation is one
of the very major equations arising in the field of optic
fibers. Its new solutions are expected to help engineers and
scientists working in the field. It is worth mentioning that
the solutions obtained by us are more generalized. That is,
we have recovered not only many already existing solutions
but also many unreported solutions. These new solutions are
expected to help scientists working in the fields of optic fiber
to understand the phenomenon governed by the non-linear
Schrodinger equation. All the solutions have been verified for
their exactness. Wherever the reported solutions have been
recovered, they have been compared with their counterparts in
the literature.
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In this work, we examine time-fractional fourth-order parabolic partial differential

equations with the aid of the optimal homotopy asymptotic method (OHAM). The 2nd

order approximate results obtained by using the suggested scheme are compared with

the exact solution. It has been noted that the results achieved via OHAM have a large

convergence rate for the problems. The solutions are graphically analyzed, and the

relative errors are presented in tabular form.

Keywords: approximate solutions, fractional calculus, TFPPDE, OHAM, convergence

INTRODUCTION

The physical behaviors of fractional order differential and integral equations have been studied
in fractional calculus (FC). Fractional calculus deals with more general behavior than classical
calculus. However, in the present era FC has got more attention for its vast applications in many
fields such as science and engineering. Spanier and Oldham [1], Podlubny [2], and Miller and
Rose [3], have studied this subject in detail and developed the theoretical explanation of the
subject. During the last few decades, a large number of researchers have noted that the role of
fractional differential or integral operators are unavoidable in representing the characteristics of
physical phenomena like traffic flow, viscoelasticity, fluid flow, signal processing, etc., [4–10]. Many
processes and equipment have been efficiently explained by FC. Furthermore, comparative studies
have been done for fractional and total differential models. In conclusion, the fractional models are
more effective than classical models. Fourth ordered linear PDE

∂2t v (s, t) + µ ∂4s v (s, t) = h (s, t) , (1)

is very important in engineering and modern science. Bridge slabs, floor systems etc. are examples
of fourth order PDEs. Where v is the beam transversal displacement, µ the is ratio of flexural
stiffness to mass per unit length, t is the time, s is the space variable and h is the dynamic deriving
force acting on unit mass.

In this study, the problem of undamped transverse vibrations of a flexible straight beam is
considered. The support of the beam does not contribute to the strain energy of the system.
The mathematical model of the problem is expressed in the form of the following time-fractional
fourth-order parabolic partial differential equation as

∂α
t v (s, t) + µ ∂4s v (s, t) = f (s, t) , s ∈ [0, 1], t > 0, 1 < α ≤ 2, (2)
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where ∂t and ∂s represents the partial derivatives with respect to t
and s, respectively. The initial and boundary conditions are

v (s; 0) = g0, vt (s; 0) = g1, (3)

v (0; t) = f0, vt (s; 0) = f1,

vss (0; t) = p0, vss (1; t) = p1,

where ∂α
t denotes the fractional order derivative operator, v(s, t)

is the displacement of the beam in s direction, µ is the ratio of
flexural stiffness to mass per unit length, t the is time, s is the
space variable and f (s, t) is the dynamic deriving force acting
on per unit mass, and g0(s), g1(s), f0(t), f1(t), p0(t) and p1(t) are
continuous functions.

The concept of homotopy has been merged with perturbation
in order to solve non-linear problems. Liao [11] conducted
the basic work by utilizing the homotopy analysis method
(HAM). He [12] presented the homotopy perturbation method
and its applications. Marinca et al. [13–15] developed a
novel computational scheme known as OHAM. The OHAM
established a convergence criteria similar to HAM, but OHAM is
more flexible. In various research papers Iqbal et al. [16–18] and
Sarwar et al. [19, 20] have demonstrated the usefulness extension
and trust of this technique and have achieved trustworthy
solutions. In this paper, the Idea of OHAM has been explained.
It gives logical, trustworthy solutions to linear and non-linear
mathematical model fractional orders.

Very recently, some new definitions of fractional derivatives
have been introduced and many physical medical problems have
been modeled based on fractional derivatives, e.g., the SIRS-SI
model describes the transmission of malaria disease [21]. The
fractional extension of partial differential equations occurring in
physical sciences was studied by Dubey et al. [22]. Other real-life
problems with fractional calculus can be seen in a recent work by
Gao et al. [23].

The homotopy asymptotic method (HAM) is also effective
in solving a differential equation. Some result work comprises
linear and nonlinear fractional differential equations considering
different constraints without a singular kernel [24, 25]. The
model shows that OHAM/HAM guarantee good approximation
and better convergence rate than other numerical techniques.

The paper is structured as follows: The basic definition of
fractional calculus is given in Section Basic Definitions. The
method is described in Section Solution Procedure of OHAM.
Section Solutions of Fractional Models of Parabolic PDEs gives
the model problems and detailed results. Section Discussion of
Results provides a discussion of the results. The conclusion is
outlined in Section Conclusions.

BASIC DEFINITIONS

Let g (t) , t > 0 is a function of real value considered to be in
space cλ, λ ∈ R, which is very useful for the study in FC. If
there exists, p > λ is a real number such that g (t) = tpg1 (t) ,
where g1 (t) ∈ c (0,∞) , supposed to be in space cmλ if and only
if gm ∈ cλ,m ∈ N.
Definition 2.1. Riemann-Liouville form of integral operator of a
function g ∈ cλ, of fractional order β > 0,λ ≥ −1 is expressed as

RLD
−β

a,t g (t) = 1
Ŵ(β)

∫ t
a (t − λ)β−1 g (λ) dλ, t > 0,β > 0,

k− 1 < β < k, k ∈ Z+ (4)

Definition 2.2. Riemann-Liouville form of integral operator of a
functiong(t) of fractional order β > 0 is given as

RLD
β

a,tg (t) = 1
Γ (n−β)

dk

dtk

∫ t
a (t − λ)k−β−1g (λ) dλ, t>0,β >0,

k− 1 < β < k, k ∈ Z+. (5)

Definition 2.3. The Caputo fractional derivative of order β > 0
is expressed as

CD
β

a,tg (t) = 1
Γ (n−β)

∫ t
a (t − λ)k−β−1 g(k) (λ) dλ, t>0,β >0,

k− 1 < β < k, k ∈ Z+. (6)

If j− 1 < β < j, and g ∈ cmλ , λ ≥ −1, then

RLD
−β
a,t

(

CD
β
a,tg (t)

)

= g (t) −
j−1
∑

i=0

gi (a)
(t − a)j

Γ (i+ 1)
, t > 0. (7)

SOLUTION PROCEDURE OF OHAM

Based on the OHAM scheme [18, 19], we will extend
this approach for time-fractional parabolic partial differential
equations (TFPPDE) in the subsequent steps.

Step I. Write the governing time fractional order parabolic
equation in the subsequent way

Q(v(s, t))− f (s, t) = 0; s ∈ [0, 1], t > 0. (8)

� is domain. Equation (8) is bifurcated in to Q(v) = J(v) +
T(v). In this expression J is a fractional component and T is a

non-fractional component. Ji = ∂α8i(s,t)
∂tα , i ≥ 0, Ti = ∂4ϕ

∂s4
, i ≥ 0.

Step II. Develop an optimal homotopy for time-fractional
partial deferential equation (TFPDE), ϕ(s, t; p) :� × [0, 1] → R
which satisfies

(1− p)(J(v)− f (s, t))−H(s, p; c)(Q(v)− f (s, t)) = 0. (9)

In Equation (9) p ∈ [0, 1] and s ∈ � is a parameter,
for p 6= 0,H

(

s, p; c
)

is a non-zero auxiliary function and
H(0, p; c) = 0 when p increases in the interval [0, 1] the solution
ϕ (s, t) guarantees the rapidly convergent to the exact solution.

H
(

s, p; c
)

= pj1 (s, ci) + p2j2 (s, ci) + p3j3(s, ci)+ . . .

+ pmjm (s, ci) , (10)

Where the auxiliary convergence control parameters are ci, i =
0, 1, 2, 3, ...,m and Ji(s), i = 0, 1, 2, 3, ...,m can be a function on the
variables. The Jm(s, ci) may be selected in the form of polynomial,
exponential and so on. It is very important to note that the crucial
step is to select an appropriate function as the convergence rate
depends on the initial guess of the solutions.
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Step III. Expand ϕ(s, t; p, c) in Taylor’s series for p to develop
an approximate result as

ϕ(s, t; p, ci) = v0(s, t)+
m
∑

j=1

vk (s, t; ci) pj, 1 ≤ i ≤ m. (11)

It has been clarified that the rate of convergence of the (11)
depends upon auxiliary constants ci. If the Equation (11), at p
= 1 is convergent, then one has:

ṽ(s, t; p, ci) = v0(s, t)+
m
∑

j=1

vk(s, t; ci). (12)

Step IV. Compare the coefficients of identical powers p after
substituting Equations (11) in (9), we can get 0th, 1st, 2nd and
higher order problems if needed.

p0 : J0 − f (s, t) = 0. (13)

p1 : J0 − J1 + f (s, t)− c1(J0 + T1 − f (s, t)) = 0. (14)

p2 : J2 − J1 − c1(J1 + T0)− c2(T0 − f (s, t)) = 0. (15)

p3 : J3 − J2 − c1(J2 + T2)− c2(J1 + T1)− c3(J0

+ T0 − f (s, t)) = 0. (16)

And so on
Step V. Substitute Equations (12) in (8), the outcome will

be residual.
Create the δ(ci)

δ (ci) =
∫ t

0

∫

�

R2 (s, t; ci)dsdt.

Residual of Problem Is R
Convergence auxiliary control (ci) constants can be acquired
as follows.

∂δ

∂c1
=

∂δ

∂c2
= . . . =

∂δ

∂cm
= 0. (17)

If R(s; ji) = 0 then v(s; ji) = 0 must be exact solution of the
TFPDE. Normally it does not happen for non-linear problems.
Step VI. Using the convergence auxiliary control constants in
Equation (12), we can develop an approximate solution.

Step VII. Accuracy of the technique is presented as
Error norm L2

∥

∥vexact − vn
∥

∥ =

√

√

√

√

b− a

n

N
∑

i=0

∣

∣vexact − vn
∣

∣

2
. (18)

Error normL∞

∥

∥vexact − vn
∥

∥ =
∣

∣vi
exact − (vn)i

∣

∣ . (19)

SOLUTIONS OF FRACTIONAL MODELS OF
PARABOLIC PDES

In the current section, we take the two examples and solve them
with the aid of OHAM and demonstrate the accuracy, validity,
and suitability of the suggested computational scheme.

Example 1
Let us take the fourth order TFPPDE of the form

∂αv (s, t)

∂tα
+

∂4v (s, t)

∂s4
=
(

π4 − 1
)

sinπs cos t.

s ∈ [0, 1] , t > 0, µ = 1, 1 < α ≤ 2. (20)

Initial conditions (ICs)

v (s, 0) = sinπs, vt (s, 0) = 0.

Boundary conditions (BCs)

v (0, t) = 0, vss (0, t) = 0.
v (1, t) = 0, vss (1, t) = 0.

Exact solution of problem is

v(s, t) = cos t sinπs (21)

Compare the coefficients of equal powers of embedding
parameter p, after substituting φ

(

s, p
)

in to optimal homotopy
equation to get zero-order, 1st-order, and 2nd-order and higher-
order series problems.

p0 :

∂αv0(s, t)

∂tα
= 0, (22)

p1 :

(

cos (t) sin (πs) + π4 cos (t) sin (πs) −
∂4v0 (s, t)

∂s4

−
∂αv0(s, t)

∂tα

)

c1 −
∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα
= 0,

p2 :

(

− cos (t) sin (πs) + π4 sin (πs) cos(t)−
∂4v0 (s, t)

∂s4

−
∂αv0(s, t)

∂tα

)

c2 (23)

− c1

(

∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα

)

−
∂αv1(s, t)

∂tα

+
∂αv2(s, t)

∂tα
= 0. (24)

After implementing the step-5 of sec-3 on Equations (22–24), we
get following zero-order, 1st-order and 2nd-order results:

v0 (s, t) = sin (πs) , (25)

v1 (s, t) =
c1(π4 −

1

4
(1+ π4)(−t2)) sin(πs)tα

Γ (α + 1)
, (26)

v2 (s, t) =
((1+ π4)c1(c1 + 1)+ (π4 − 1)c2) sin(πs)tα+2

4Γ (α + 1)

+
π8c21 sin(πs)t

2α +
π4(1+ π4)(α + 2)c21 sin(πs)t

2α+2

8(2α + 1)
Γ (2α + 1)

+
π4c1(c1 + 1) sin(πs)tα

Γ (α + 1)
+

π4c2 sin(πs)tα

Γ (α + 1)
. (27)
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After using Equations (25–27), we get the second order solution
as follows

v (s, t) =
1

8
sin (πs)

(

π4c21
(

(α + 2) t2 + π4
(

16α + (α + 2) t2 + 8
))

t2α

Γ (2α + 2)

+
2
(

c1 (c1 + 2)
(

t2 + π4
(

t2 + 4
))

+ c2
(

π4
(

t2 + 4
)

− t2
))

tα

Γ (α + 1)
+ 8

)

. (28)

Example 2
We take the 4rth-order TFPPDE of the form

∂αv(s, t)
∂tα + ∂4v(s, t)

∂s4
=
(

π4 − 1
)

etsinπs,
s ∈ [0, 1] , t > 0, µ = 1, 1 < α ≤ 2.

(29)

Initial conditions

v (s, 0) = sin (πs) , vt (s, 0) = sin (πs ) .

Boundary conditions

v (0, t) = 0, vss (0, t) = 0,

v (1, t) = 0, vss (1, t) = 0.

Exact solution is
v (s, t) = et sin (πs) . (30)

Compare the coefficients of like powers of embedding parameter
p, after substituting φ

(

s, p
)

in to optimal homotopy equation to
get zero-order, 1st-order, 2nd-order and higher-order (if needed)
deformed problems as under:

p0 :

∂αv0(s, t)

∂tα
= 0, (31)

p1 :

(

et sin (πs) + etπ4 sin (πs) −
∂4v0 (s, t)

∂s4
−

∂αv0(s, t)

∂tα

)

c1 −
∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα
= 0, (32)

p2 :

(

et sin (πs) + π4 sin (πs) cos(t)−
∂4v0 (s, t)

∂s4
−

∂αv0(s, t)

∂tα

)

c2

− c1

(

∂4v1(s, t)

∂s4
+

∂αv1(s, t)

∂tα

)

−
∂αv1(s, t)

∂tα
+

∂αv2(s, t)

∂tα
= 0.

(33)

After implementing the step-5 of sec-3 on Equations
(31–33), we develop the following zero-order, 1st-order
and 2nd-order results.

v0
(

s, t
)

= t sin
(

πs
)

+ sin
(

πs
)

, (34)

v1
(

s, t
)

=
√

πc1t
α sin

(

πs
)(

2π
7
2
(

α + t + 1
)

−
(

1+ π4
)

2−α
( 2t2

4 + t2t
4

)

Γ
(

α + 2
))

2Γ
(

α + 2
) , (35)

v2
(

s, t
)

=
1

8
tα sin

(

πs
)

(

8π8c21t
α+1

Γ
(

2α + 2
)

−
π

9
2
(

1+ π4
)

21−αc21 Γ
(

α + 3
)

tα+2

Γ
(

2α + 3
) −

π
9
2
(

1+ π4
)

2−αc21 Γ
(

α + 4
)

tα+3

Γ
(

2α + 4
)

+
8π8c21t

α

Γ
(

2α + 1
) +

8
(

c21 + c1 + c2
)(π4

(

α+t+1
)

− 1
4

(

1+π4
)

t3

α+1 − 1
4

(

1+ π4
)

t2
)

Γ
(

α + 1
)

)

. (36)

After using Equations (34–36), we get the second order solution
as follows:

v
(

s, t
)

=
1

8
sin
(

πs
)

(

−

2−αc1t
α
(

2α+1
(

t2 + π4
(

t2 − 8
))(

α + t + 1
)

+
(

1+ π4
)√

π
(

t + 2
)

t2 Γ
(

α + 2
))

Γ
(

α + 2
)

−
2c2
(

t2 + π4
(

t2 − 4
))(

α + t + 1
)

tα

Γ
(

α + 2
)

+ c21t
α

(

−
π

9
2
(

1+ π4
)

2−α Γ
(

α + 3
)(

4α +
(

α + 3
)

t + 6
)

tα+2

Γ
(

2α + 4
)

+
8π8

(

2α + t + 1
)

tα

Γ
(

2α + 2
)

−
2
(

t2 + π4
(

t2 − 4
))(

α + t + 1
)

Γ
(

α + 2
)

)

+ 8t + 8

)

. (37)

DISCUSSION OF RESULTS

In the last section, a detailed algorithm for OHAM is presented
for parabolic equations of arbitrary fractional order, and a
description is designed for the examples in the above section
which gives remarkably valid results for the TFPPDEs without
domain discretization. OHAM does not require any higher order
solutions to initiate the process.

In the Tables 1A, 2A for examples 1 and 2 represent the values
of auxiliary constants c1 and c2 for distinct values of α,α =
1.5, 1.75, and 2. Tables 1B, 2B for examples 1 and 2 represent the
approximate and exact solutions with absolute error for distinct
values of α at fixed time t = 0.01, and also error norms of
example 1 are L2 = 2.48306 × 10−5, L∞ = 1.11348 × 10−5

and error norms of example 2 are L2 = 3.76272 × 10−7, L∞ =
1.68732× 10−7, which demonstrates the validity and accuracy of
the suggested scheme.

Figures 1, 2, 4 for example 1 represent the exact solution,
approximate result and absolute error for fixed value α = 2.
Figure 3 for example 1 represents the 2D results for different
values of α, α = 1.5, 1.75 and 2 at fixed value of t =
0.01. Figures 5, 6, 8 for example 2 represent the exact solution,
approximate result and absolute error for fixed value α = 2.
Figure 7 for example 2 represents the 2D results for different
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TABLE 1A | Shows the order of solution of problem-1 with α.

α c1 c2

1.5 −0.00023970059767714635 −0.004433615478664607

1.75 −0.00036010106878677054 −0.005492424284324476

2.0 −0.0005420552371218715 −0.006893703812240392

TABLE 2A | Shows the order of solution of problem-2 with α.

α c1 c2

1.5 −0.0008721941975312075 0.009452825526087602

1.75 −0.0007319603747448314 0.01166646474774557

2.0 0.00034649675001248057 0.01303912473486976

TABLE 1B | Shows the solutions and absolute error of problem-1 for various

values of α.

S α = 1.5 α = 1.75 α = 2 Exact Abs. Error

0 0 0 0 0 0

π
10 0.834054 0.834255 0.834322 0.834313 9.29844 × 10−6

π
5 0.919509 0.91973 0.919804 0.919794 1.02511× 10−5

3π
10 0.179665 0.179708 0.179722 0.17972 2.00299 × 10−6

2π
5 −0.721436 −0.72161 −0.721668 −0.72166 8.04292 × 10−6

π
2 −0.975017 −0.975252 −0.97533 −0.975319 1.087 × 10−5

3π
5 −0.353478 −0.353563 −0.353592 −0.353588 3.94074 × 10−6

7π
10 −0.585323 0.585646 0.585511 0.58550 6.52546 × 10−6

4π
5 0.998771 0.999012 0.999092 0.58550 1.11348 × 10−5

9π
10 0.515779 0.515904 0.515945 0.515939 5.75016 × 10−6

π −0.430146 −0.43025 −0.430284 −0.43028 4.79548 × 10−6

FIGURE 1 | Surface of Exact solution for TFPPDE (20) with α = 2.

values of α, α = 1.5, 1.75 and 2 at fixed value of
t = 0.01. All the above figures indicate the accuracy,
suitability and effectiveness of the suggested algorithm. It
is clear that as we proceed along the domain, we obtain

TABLE 2B | Shows the solution and absolute error of problem-2 for distinct

values of α.

S α = 1.5 α = 1.75 α = 2 Exact Abs. Error

0 0 0 0 0 0

π
10 0.835204 0.835192 0.835189 0.835189 1.40905 × 10−7

π
5 0.920776 0.920763 0.92076 0.92076 1.55341 × 10−7

3π
10 0.179912 0.17991 0.179909 0.179909 3.03524 × 10−8

2π
5 −0.72243 −0.72242 −0.722418 −0.722418 1.21879 × 10−7

π
2 −0.976361 −0.976347 −0.976344 −0.976344 1.64719 × 10−7

3π
5 −0.353965 −0.35396 −0.353959 −0.353959 5.97163 × 10−8

7π
10 0.586129 0.586121 0.586119 0.586119 9.8884 × 10−8

4π
5 1.00015 1.00013 1.00013 1.00013 1.68732 × 10−7

9π
10 0.51649 0.516483 0.516481 0.516481 8.71354 × 10−8

π −0.430739 −0.430733 −0.430732 −0.430732 7.26686 × 10−8

FIGURE 2 | Surface of Approximate solution for TFPPDE (20) with α = 2.

FIGURE 3 | Approximate solutions for TFPPDE (20) for distinct values of α =
1.5, 1.75, 2.

consistent validity. In the above discussion (Tables 1B, 2B)
show an excellent agreement between the approximate and
exact solutions.
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FIGURE 4 | Absolute error for TFPPDE (20) at α = 2.

FIGURE 5 | Surface of Exact solution for TFPPDE (29) with α = 2.

CONCLUSIONS

In this work, the TFPDE are examined by a semi-analytical
scheme. The problems in hand are solved by OHAM. OHAM
is incredibly effective for fractional order parabolic partial
differential equations. The solutions obtained from OHAM are
smooth enough to be compared with the exact solutions. The
graphical reviews show the smoothness of the solutions. The
error estimations with the exact solutions are of order 10−6.
The tabular and graphical reviews of the solutions and errors
are presented for different values of 1 < α ≤ 2 which are
convergent. L2 error and L∞ error norms are calculated which
show the error bounds. The error bound is of order 10−7. This is
incredibly excellent.

This article focuses on the approximate solution of the
parabolic equation which has many applications in engineering
and physical sciences. The contribution of this article is 3-fold:
first, we briefly defined the concept of fractional derivative,
then developed the mathematical model. In the last step we
implemented OHAM to find the solution of the model. The
results are graphically represented and shown in tabular form

FIGURE 6 | Surface of Approximate solution for TFPPDE (29) with α = 2.

FIGURE 7 | Approximate solutions of TFPPDE (29) for distinct values of α =
1.5, 1.75, 2.

FIGURE 8 | Absolute error for TFPPDE (29) at α = 2.

to show the novelty and credibility of our method. In the
future, we are interested in implementing OHAM on the system
of fractional order partial differential equations in a more
general way.
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New plasma wave solutions of the modified Kadomtsev Petviashvili (MKP) equation are

presented. These solutions are written in terms of some elementary functions, including

trigonometric, rational, hyperbolic, periodic, and explosive functions. The computational

results indicate that these solutions are consistent with the MKP equation, and the

numerical solutions indicate that new periodic, shock, and explosive forms may be

applicable in layers of the Earth’s magnetotail plasma. The method employed in this

paper is influential and robust for application to plasma fluids. In order to depict the

propagating soliton profiles in a plasma medium, the MKP equation must be solved at

critical densities. In order to achieve this, the Riccati-Bernoulli sub-ODE technique has

been utilized in solutions. The research findings indicate that a number of MKP solutions

may be applicable to electron acoustics appearing in the magnetotail.
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1. INTRODUCTION

The existence of electron acoustic solitary excitations (EAs) in plasmas has been noticed
in laboratories [1, 2]. Different observations in space have confirmed propagations of EAs
in magnetospheres, auroral zones, broadband electrostatic noise (BEN), heliospheric shock,
and geomagnetic tails [3–10]. The concept of EAs was generated by Fried and Gould [11].
It is principally an acoustic-type of wave with inertia given by the mass of cold electrons
and restoring force expressed by hot electron thermal pressure [12]. Abdelwahed et al. [10]
inspected the modulation of characteristics of EAs in non-isothermal electron plasmas [13]
using a time-fractional modified non-linear equation. Pakzad studied [14] cylindrical EAs by hot
non-extensive electrons, and found through numerical simulations that the spherical amplitude
is greater than the cylindrical in EAs. Non-thermal critical geometrical EA plasmas were studied
using a Gardner-type equation in Shuchy et al. [15]. Contributions of solitons to science have been
discussed in many research works, some of which may be listed as [16–23]. The observed BEN
emission bursts in auroras and the Earth’s magnetotail regions indicate small and large amplitude
electric fields with some explosive and rational domains at critical density. These wave structures
appear to be prevalent in some parts of these regions [16, 17]. Therefore, we aim to obtain the
solutions that confirm the existence of the electrostatic field in our model.
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Let us consider the non-linear partial differential equation

H(ϕ,ϕx,ϕt ,ϕxx,ϕxt ,ϕtt , ...) = 0, (1.1)

where ϕ(x, t) is an unknown function. Using the
wave transformation

ϕ(x, t) = ϕ(ξ ), ξ = kx− ct, (1.2)

Equation (1.1) is converted to an ODE:

E(ϕ,ϕ′,ϕ′′,ϕ′′′, ...) = 0. (1.3)

Many models in physics, fluid mechanics, and engineering are
written in the form of (1.1), and this form may be transformed
into the ODE:

α1ϕ
′′ + α2ϕ

3 + α3ϕ = 0, (1.4)

(see for instance [24–35], and so on). Equation (1.3) is quite
significant and useful in our computations, and we employ a
robust and unified method known as the Riccatti-Bernoulli (RB)
sub-ODE method [36]. The RB sub-ODE method has been used
as a box solver for many systems of equations arising in applied
science and physics. There are other powerful analytical methods
that solve such ODEs; an important example is the Lie algebra
method (see [37, 38]).

Next, we describe the RB sub-ODE method briefly.

2. THE RB SUB-ODE METHOD

According to the RB sub-ODE method [36], the solution of
Equation (1.3) is

ϕ′ = aϕ2−m + bϕ + cϕm, (2.1)

where a, b, c, and n are constants that will be determined later.
From Equation (2.1), we get

ϕ′′ = ab(3−m)ϕ2−m + a2(2−m)ϕ3−2m +mc2ϕ2m−1

+bc(m+ 1)ϕm + (2ac+ b2)ϕ, (2.2)

ϕ′′′ = ϕ
′
[ab(3−m)(2−m)ϕ1−m + a2(2−m)(3− 2m)ϕ2−2m

+m(2m− 1)c2ϕ2m−2 + bcn(m+ 1)ϕm−1 + (2ac+ b2)].
(2.3)

The solitary solutions ϕi(ξ ) of Equation (2.1) are given by

1. Atm = 1

ϕ(ξ ) = ςe(a+b+c)ξ . (2.4)

2. Atm 6= 1, b = 0, and c = 0

ϕ(ξ ) =
(

a(m− 1)(ξ + ς)
)

1
m−1 . (2.5)

3. Atm 6= 1, b 6= 0, and c = 0

ϕ(ξ ) =
(

−a

b
+ ςeb(m−1)ξ

)
1

m−1

. (2.6)

4. Atm 6= 1,a 6= 0, and b2 − 4ac < 0

ϕ(ξ ) =

(

−b

2a
+

√
4ac− b2

2a
tan

(

(1−m)
√
4ac− b2

2
(ξ + ς)

))
1

1−m

(2.7)
and

ϕ(ξ ) =

(

−b

2a
−

√
4ac− b2

2a
cot

(

(1−m)
√
4ac− b2

2
(ξ + ς)

))
1

1−m

.

(2.8)
5. Atm 6= 1,a 6= 0, and b2 − 4ac > 0

ϕ(ξ ) =

(

−b

2a
−

√
b2 − 4ac

2a
coth

(

(1−m)
√
b2 − 4ac

2
(ξ + ς)

))
1

1−m

(2.9)
and

ϕ(ξ ) =

(

−b

2a
−

√
b2 − 4ac

2a
tanh

(

(1−m)
√
b2 − 4ac

2
(ξ + ς)

))
1

1−m

.

(2.10)
6. Atm 6= 1, a 6= 0, and b2 − 4ac = 0

ϕ(ξ ) =
(

1

a(m− 1)(ξ + ς)
−

b

2a

)
1

1−m

. (2.11)

2.0.1. Bäcklund Transformation

If ϕr−1(ξ ) and ϕr(ξ )(ϕr(ξ ) = ϕr(ϕr−1(ξ ))) are the solutions of
Equation (2.1), we have

dϕr(ξ )

dξ
=

dϕr(ξ )

dϕr−1(ξ )

dϕr−1(ξ )

dξ

=
dϕr(ξ )

dϕr−1(ξ )
(aϕ2−m

r−1 + bϕr−1 + cϕm
r−1),

namely

dϕr(ξ )

aϕ2−m
r + bϕr + cϕm

r

=
dϕr−1(ξ )

aϕ2−m
r−1 + bϕr−1 + cϕm

r−1

. (2.12)

Integrating Equation (2.12) once with respect to ξ , we get the
Bäcklund transformation of Equation (2.1) as follows:

ϕr(ξ ) =

(

−cL1 + aL2
(

ϕr−1(ξ )
)1−m

bL1 + aL2 + aL1
(

ϕr−1(ξ )
)1−m

)
1

1−m

, (2.13)

where L1 and L2 are arbitrary constants. Equation (2.13) gives the
infinite solutions of Equations (2.1) and (1.1).

3. UNIFIED SOLVER

In this section, we will describe the practical implementation of
the concept of a unified solver.

α1ϕ
′′ + α2ϕ

3 + α3ϕ = 0 , (3.1)
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Substituting Equation (2.2) into Equation (3.1), we obtain

α1
(

ab(3−m)ϕ2−m + a2(2−m)ϕ3−2m +mc2ϕ2m−1

+ bc(m+ 1)ϕm + (2ac+ b2)ϕ
)

+ α2ϕ
3 + α3ϕ = 0 . (3.2)

Makingm = 0, Equation (3.2) is reduced to

α1(3abu
2+ 2a2ϕ3+ bc+ (2ac+ b2)ϕ)+α2ϕ

3+α3ϕ = 0. (3.3)

Setting each coefficient of ϕi(i = 0, 1, 2, 3) to zero, we get

α1bc = 0, (3.4)

α1(2ac+ b2)+ α3 = 0, (3.5)

3α1ab = 0, (3.6)

2α1a
2 + α2 = 0. (3.7)

Solving Equations (3.4)–(3.7) yields

b = 0 , (3.8)

c = ∓
α3√

−2α1α2
, (3.9)

a = ±
√

−α2

2α1
. (3.10)

Hence, we present the following possible cases for solutions of
Equations (3.1) and (1.1).

1. When b = 0 and c = 0 (α3 = 0), the solution of Equation
(3.1) is

ϕ1(x, t) =
(

∓
√

−α2

2α1
(ξ + ς)

)−1

, (3.11)

where ς is an arbitrary constant.
2. When α3

α1
< 0, substituting Equations (3.8)–(3.10) and (1.2)

into Equations (2.7) and (2.8), the trigonometric function
solutions of Equation (1.1) are then given by

ϕ2,3(x, t) = ±
√

α3

α2
tan

(
√

−α3

2α1
(ξ + ς)

)

(3.12)

ϕ4,5(x, t) = ±
√

α3

α2
cot

(
√

−α3

2α1
(ξ + ς)

)

, (3.13)

where ς is an arbitrary constant.
3. When α3

α1
> 0, substituting Equations (3.8)–(3.10) and

(1.2) into Equations (2.9) and (2.10), the hyperbolic function
solutions of Equation (1.1) are,

ϕ6,7(x, t) = ±
√

−α3

α2
tanh

(√

α3

2α1
(ξ + ς)

)

(3.14)

and

ϕ8,9(x, t) = ±
√

−α3

α2
coth

(√

α3

2α1
(ξ + ς)

)

, (3.15)

where ς is an arbitrary constant.

4. MATHEMATICAL MODEL

We use stretched τ = ǫ3t, ξ = ǫ(x− λt), η = ǫ2y, where ǫ is an
arbitrarily small number and λ is the speed of EA. Elwakil et al.
[17] examined two-dimensional propagation of EAs in plasma
with cold fluid of electrons and two different ion temperatures
within the framework of Poisson equations:

∂2φ

∂x2
+

∂2φ

∂y2
= (ne − nil − nih), (4.1)

nil = µ exp(
− φ

νβ + µ
), nih = γ exp(

− β φ

νβ + µ
). (4.2)

where Tl is the low ion temperature at equilibrium density µ,
Th is the high ion temperature at equilibrium density γ , and

β = Tl
Th
. The computational results indicate that the system

reaches critical density µc which makes non-linearity vanish. At
µ = µc, the modified KP equation was given:

∂

∂ξ

(

∂

∂τ
φ + Gφ2 ∂

∂ξ
φ + R

∂3

∂ξ 3
φ

)

+ Q
∂2

∂η2
φ = 0

with

µc =
β2λ4 − λ4 ± (β − 1)λ2

√

β2λ4 + 2βλ4 + λ4 − 12β − 6β2 + 6β

2
(

−3β2 + 6β − 3
) ,

(4.3)

G =
1

2
λ(−

3νβ2

2(µ + βν)2
−

3µ

2(µ + βν)2
−

3

λ4
), (4.4)

R =
λ3

2
,Q =

λ

2
.

We use a similarity transformation in the form:

χ = Lξ +Mη − τ (υ1 + υ2), (4.5)

φ(χ) = φ(x, y, t) (4.6)

τ = t, (4.7)

where L andM are directional cosines of x and y axes.

The MKP equation transformed to the ODE form is:

− 3(v− s)φ + δ φ3 + 3 σ
d2φ

dχ2
= 0. (4.8)

Equation (4.8) gives a stationary soliton in the form of

φc =
√

6(
v− S

δ
)sech





√

v−S
δ

√

σ
δ

χ



 , (4.9)

S =
M2Q

L
− u, (4.10)

δ = GL, σ = RL3, (4.11)

where u and v are traveling speeds in both directions.
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FIGURE 1 | Variation of φc against χ ,β for u = 0.01, v = 0.01, L = 0.95.

FIGURE 2 | Variation of rational φc against χ ,β for u = 0.01, v = 0.01,

L = 0.95.

FIGURE 3 | Variation of periodic φc against χ for β = 0.05, u = 0.02, v = 0.5,

L = 0.92.

5. RESULTS AND DISCUSSION

Comparing Equation (4.8) with the general form (3.1) gives α1 =
3σ , α2 = δ, and α3 = −3(υ − s). According to the unified

FIGURE 4 | Variation of shock φc against χ for β = 0.02, u = 0.02, v = 0.5,

L = 0.5.

FIGURE 5 | Variation of explosive shock φc against χ for β = 0.02, u = 0.02,

v = 0.5, L = 0.5.

solver given in section 3, solutions of Equation (4.8) are expressed
as follows.

5.1. Rational Function Solutions: (When
υ = s)
The rational solutions of Equation (4.8) are.

φ1,2(x, t) =

(

∓
√

−δ

6σ
(χ + ς)

)−1

. (5.1)

5.2. Trigonometric Function Solution:
(When υ−s

σ
> 0)

The trigonometric solutions of Equation (4.8) are

φ3,4(x, t) = ±
√

−3(υ − s)

δ
tan

(

√

υ − s

2σ
(χ + ς)

)

(5.2)
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and

φ5,6(x, t) = ±
√

−3(υ − s)

δ
cot

(

√

υ − s

2σ
(χ + ς)

)

. (5.3)

5.3. Hyperbolic Function Solution: (When
υ−s
σ

< 0)
The hyperbolic solutions of Equation (4.8) are.

φ7,8(x, t) = ±
√

3(υ − s)

δ
tanh

(
√

s− υ)

2σ
(χ + ς)

)

(5.4)

and

φ9,10(x, t) = ±
√

3(υ − s)

δ
coth

(

√

s− υ

2σ
(χ + ς)

)

. (5.5)

Two-dimensional propagation of solitary non-linear EAs has
been examined in a plasma mode using parameters related to
sheet layers of plasmas of the Earth’s magnetotail [16, 17]. At a
certain ion density value called the criticality value, the equation
obtained cannot describe the mode. Hence, the new stretching
produced by the MKP equation describes the critical system
under investigation. Equation (4.9) represents a soliton with
stationary behavior, as shown in Figure 1. At the critical point,
many solitary forms are concerned with the behavior of EAs
using the Riccati-Bernoulli solver for the MKP equation.

Solution (5.1) is a solitary wave type called explosive type,
which has rapidly increasing amplitude, as depicted in Figure 2.
Solution (5.2) has a blow-up periodic shape, as shown in Figure 3.
Dissipative behaviors are also produced in Figures 4, 5. In the
solution of (5.4), the shock wave is propagated in the medium, as
shown in Figure 4. Finally, the explosive shock profile is obtained
for solution (5.5), as shown in Figure 5.

6. CONCLUSIONS

We have devoted major effort to examining the adequate
description of the new type solutions at critical density in
plasma layers of the Earth’s magnetotail. The application of
perturbation theory leads to the modified MKP equation.
An RB sub-ODE solver gives new solitary excitations for
the MKP equation, including periodic, explosive, and shock
types. The new explosive shocks represent the wave motion
of plasma solitons. Moreover, these new exact solitonic and
other solutions to the MKP equation supply guidelines for the
classification of the new types of waves according to the model
parameters and can introduce the following types: (a) solitary
and hyperbolic solutions, (b) periodic solutions, (c) explosive
solutions, (d) rational solutions, (e) shock waves, and (f)
explosive shocks. The application of this model could be used in
the verification of the broadband and observations ofmagnetotail
electrostatic waves.
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This paper extends the existing Fisher’s equation by adding the source term and

generalizing the degree β of the non-linear part. A numerical solution of a modified

Fisher’s equation for different values of β using the cubic B-spline collocation scheme is

also investigated. The fractional derivative in a time dimension is discretized in Caputo’s

form based on the L1 formula, while cubic B-spline basis functions are used to interpolate

the spatial derivative. The non-linear part in the model is linearized by the modified

formula. The efficiency of the proposed scheme is examined by simulating four test

examples with different initial and boundary conditions. The effect of different parameters

is discussed and presented in tables and graphics form. Moreover, by using the Von

Neumann stability formula, the proposed scheme is shown to be unconditionally stable.

The results of error norms reflect that the present scheme is suitable for non-linear time

fractional differential equations.

Keywords: cubic B-spline (CBS) collocation scheme, time fractional modified Fisher equation, Caputo derivative,

stability analysis, error norms

1. INTRODUCTION

Fractional calculus-based models have been used in different fields of engineering and science. In
the last few years, fractional differential equations have been widely used. The main advantage of
using fractional order differential equation is its non-local property in mathematical modeling.
During the twentieth century, the authors [1–3] added a significant amount of research in the area
of fractional calculus. The applications can be seen in different branches of science and engineering,
such as finance [4], nano-technology [5], electrodynamics [6], and visco-elasticity. Fisher’s equation
is commonly used in epidemics and bacteria, branching Brownian motion, neolithic transitions
and chemical kinetics [7–9]. The spatial and temporal propagation of a virile gene in an infinite
medium has been explained by Fisher [10]. Several numerical methods for differential equations
with Riemann-Liouville and Caputo sense fractional order derivatives have been applied and
analyzed [11–13].

The time-fractional Fisher’s equation used in Baranwal et al. [14] has been modified in this
paper in two different ways: (1) by introducing the source term or (2) by generalizing the
non-linear power.
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The modified form of time fractional Fisher’s equation is:

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Zβ (r, t))

= f (r, t), a ≤ r ≤ b, 0 < α ≤ 1, t ≥ 0, (1.1)

with the initial condition

Z(r, 0) = ψ(r), a ≤ r ≤ b, (1.2)

and the boundary conditions

Z(a, t) = ψ1(t), Z(b, t) = ψ2(t), t ≥ 0, (1.3)

where ν is a parameter of viscosity.
The Caputo and Riemann-Liouville fractional derivatives have a
wide range of applications [15–17]. The Caputo derivative is used
in this work:

∂αZ(r, t)

∂tα
=

{ 1
Ŵ(q−a)

∫ t
0
∂qZ(r,s)
∂tq (t − s)q−α−1ds, q− 1 < α < q,

∂qZ(r,t)
∂tq , q = α.

The Caputo derivative is discretized by the L1 formula [18]:

∂αh

∂tα

∣

∣

∣

∣

tn =
1

(1t)αŴ(2− α)

n−1
∑

k=0

λαk [h(tn−k)− h(tn−k−1)]+O(1t),

(1.4)
where λk = (k+ 1)1−α − k1−α .

In this paper, we generalized the linearization formula used
in [19]:

(Zβ )n+1
j = βZn+1

j (Zβ−1)nj − (β − 1)(Zβ )nj , (1.5)

where β is a positive integer.
The numerical and analytical solution of fractional order

PDEs play an important role in explaining the characteristics of
non-linear problems that arise in everyday life. In the literature,
researchers applied various techniques for the numerical
solutions of Fisher’s equation. Baranwal et al. [14] introduced
an analytic algorithm for solving non-linear time-fractional
reaction diffusion equations based on the variational iteration
method (VIM) and Adomian decomposition method (ADM).
Wazwaz and Gorguis [20] implemented ADM for the analytic
study of Fisher’s equation. Homotopy perturbation sumudu
transform method has been applied for solving fractional non-
linear dispersive equations by Abedle-Rady et al. [21]. Gupta and
Saha Ray [22] implemented two methods. Haar wavelet method
and the optimal homotopy asymptotic method (OHAM) for the
numerical solutions of arbitrary order PDE, such as Burger-
Fisher’s and generalized Fisher’s equations. Cherif et al. [23]
solved space-fractional Fisher’s equation using classical HPM.
Khader and Saad [24] proposed a numerical solution for solving
the space-fractional Fisher’s equation using Chebyshev spectral
collocation technique. Rawashdeh [25] introduced the fractional
natural decomposition method (FNDM) to find the analytical
and approximate solutions of the non-linear time-fractional

Harry Dym equation and the non-linear time-fractional Fisher’s
equation. Singh [26] introduced an efficient computational
method for the approximate solution of a non-linear Lane-
Emden-type equation. The numerical solution of fractional
vibration equation of large membrane has been investigated in
Singh [27] by Jacobi polynomial. The authors in [28] employed
the cubic B-spline method for the numerical simulations of
time fractional Burgers’ and Fisher’s equation. Singh et al. [29]
constructed a q-homotopy analysis transformmethod for solving
time and space-fractional coupled Burgers’ equation. Najeeb et al.
[30] used HPM for the analytical solution of time-fractional
reaction-diffusion equation. Majeed et al. [28] used B-spline at
non-uniform for the construction of craniofacial fractures.

In this paper, we have presented a cubic B-spline (CBS)
algorithm for numerical simulation of the time-fractional
generalized Fisher’s equation. Caputo’s time fractional derivative
based on the L1 scheme has been discretized by finite difference
formula, whereas spatial derivatives are discretized by CBS
functions. The present approach is novel for the numerical results
of fractional order PDEs and, to the best of our knowledge,
any spline solution of the time-fractional generalized Fisher’s
equation has never yet been studied. Moreover, this scheme
is equally effective for homogeneous and non-homogeneous
boundary conditions.

This article has been presented in the following manner.
Section 2 evolves a brief description of temporal discretization,
cubic B-spline functions and spatial discretization. In section 4,
the stability of the proposed algorithm has been discussed. The
discussion on numerical results of four test problems has been
reported in section 5. Concluding remarks of this work are given
in section 6.

2. DESCRIPTION OF THE METHOD

Let us consider the interval [a, b] is sub divided into N finite
elements of equal spacing h determined by the knots rj, j =
0, 1, 2, 3.......,N such that a = r0 < r1 < r2 . . . < rN−1 < rN = b.
The cubic B-spline basis function at the grid points is defined as

φj(r) =
1

6h3







































(r − rj)
3, if r ∈ [rj, rj+1),

h3 + 3h2(r − rj+1)
+3h(r − rj+1)

2 − 3(r − rj+1)
3, if r ∈ [rj+1, rj+2],

h3 + 3h2(rj+3 − r)
+3h(rj+3 − r)2 − 3(rj+3 − r)3, if r ∈ [rj+2, rj+3],
(rj+4 − r)3, if r ∈ [rj+3, rj+4).

(2.1)

From the above basis, the approximation solution ZN(r, t) can
be written in terms of linear combination of cubic B-spline base
function as follows

ZN(r, t) =
N+1
∑

j=−1

ϒj(t)φj(r), (2.2)

where ϒj(t)′s are the unknowns to be determined. Four
consecutive cubic B-splines are used to construct each element
[rj, rj+1]. The values of cubic B-splines and its derivatives at the
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TABLE 1 | Coefficients of CBS and its derivative at the nodes rj .

ZN(r, t) ϒj−1 ϒj ϒj+1

Zj = Z(rj )
1
6

4
6

1
6

Z′
j = Z′(rj )

−1
2h 0 1

2h

Z′′
j = Z′′(rj )

1
h2

−2
h2

1
h2

nodal points are given in Table 1. The variation of ZN(r, t) over
the typical component [rj, rj+1] is given by

ZN(rj, tn) =
j+1
∑

m=j−1

ϒm(t)φm(rm). (2.3)

By plugging the approximation values given in Table 1 into
Equation (2.3) at (rj, tn), The Equation (1.1) yields the following
set of fractional order ordinary differential equations.

[(ϒ•
j−1(t)+ 4ϒ•

j (t)+ ϒ
•
j+1(t))/6]−

ν

h2
[ϒj−1 − 2ϒj + ϒj+1]

−[(ϒj−1 + 4ϒj + ϒj+1)/6][1− ((ϒj−1 + 4ϒj + ϒj+1)/6)
β ]

= f (rj, tn). (2.4)

Here, • represents αth order fractional derivative with respect
to time. After some simplification, a recurrence relation for
Equation (1.1) with β = 3 can be written as

ϒn+1
j−1

[

γ

6
−

1

2h2
−

1

12
+

2

1296
(Tm)

3
]

+ϒn+1
j

[

4γ

6
+

1

h2
−

1

3
+

8

1296
(Tm)

3
]

+ϒn+1
j+1

[

γ

6
−

1

2h2
−

1

12
+

2

1296
(Tm)

3
]

= ϒn
j−1

[

γ

6
+

1

2h2
+

1

12

]

+ ϒn
j

[

4γ

6
−

1

h2
+

1

3

]

+ϒn
j+1

[

γ

6
+

1

2h2
+

1

12

]

−
1

1296
(Tm)

4 + f (rj, tn)

−

(

γ

n−1
∑

k=0

λk[((ϒ
n−k−1
j−1 − ϒn−k

j−1 )+ 4(ϒn−k−1
j − ϒn−k

j )

+(ϒn−k−1
j+1 − ϒn−k

j+1 ))/6]+ ρ
n+1
1t

)

, (2.5)

where λk = [(k + 1)1−α − k1−α], Tm = ϒn
j−1 + 4ϒn

j + ϒn
j+1,

γ = (1t)−α

Ŵ(2−α) . Moreover, the truncation error ρn+1
1t is bounded as

|ρn+1
1t | ≤ ̟ (1t)2−α , (2.6)

where̟ is a real constant.

Lemma 2.1. The coefficients λk in (2.5) possess the following
characteristics [31]:

• λk > 0 and λ0 = 1, k = 1 : 1 : n,
• λ0 > λ1 > λ2 > ... > λk, λk → 0 as k → ∞,

•
∑n

k=0(λk − λk+1)+ λn+1 = (1− λ1)+
∑n−1

k=1(λk − λk+1)
+ λn = 1.

Equation (2.5) is modified as

ϒn+1
j−1 α0 + ϒn+1

j α1 + ϒn+1
j+1 α0 = ϒn

j−1(n1)+ ϒ
n
j (n2)

+ ϒn
j+1(n1)−

1

1296
(Tm)

4 + f (rj, tn)

−

(

γ

n−1
∑

k=1

λk[((ϒ
n−k−1
j−1 − ϒn−k

j−1 )+ 4(ϒn−k−1
j − ϒn−k

j )

+ (ϒn−k−1
j+1 −ϒn−k

j+1 ))/6]+ ρ
n+1
1t

)

, (2.7)

where α0 = γ
6 − 1

2h2
− 1

12 + 2
1296 (Tm)3, α1 = 4γ

6 + 1
h2

− 1
3 +

8
1296 (Tm)3, n1 = γ

6 + 1
2h2

+ 1
12 and

n2 = 4γ
6 − 1

h2
+ 1

3
From (2.7), the system of N + 1 linear equation with N + 3
unknown parameters (ϒ−1,ϒ0,ϒ1, . . . ,ϒN+1)T can be obtained.
To acquire unique solution of the system, two extra equations are
needed. For this purpose, given boundary conditions are used.
Thus, the system of linear equations for expression (2.7) becomes

PYn+1 = QYn. (2.8)

Yn = (ϒn
−1,ϒ

n
0 ,ϒ

n
1 , . . . ,ϒ

n
N+1)

T .

where

P =















1
6

4
6

1
6 0 · · · 0 0 0

α0 α1 α0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · α0 α1 α0
0 0 0 0 · · · 1

6
4
6

1
6















. (2.9)

3. INITIAL VECTOR

For the initial vector, the initial and boundary conditions of the
problem under consideration will help to compute the initial
vector Y0 = (ϒ0

−1,ϒ
0
0 ,ϒ

0
1 , . . . ,ϒ

0
N+1)

T . The approximation
(2.2) therefore becomes

ZN(r, 0) =
N+1
∑

j=−1

ϒj(0)φj(r).

To determine ϒ0, the approximation for the derivatives of the
initial and boundary conditions is as follows [32]:

• (Zr)
k
j = g′(rj) for j = 0, N

• (Z)0j = g(rj) for j = 0, 1, 2, ...,N

This gives the following (N + 3)× (N + 3) matrix system:















−1
2h 0 1

2h 0 · · · 0 0 0
1
6

4
6

1
6 0 · · · 0 0 0

...
...

...
...
. . .

...
...

...
0 0 0 0 · · · 1

6
4
6

1
6

0 0 0 0 · · · −1
2h 0 1

2h

























ϒ0
−1
ϒ0
0
...

ϒ0
N+1











=















g′(r0)
g(r0)
...

g(rN)
g′(rN)
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4. STABILITY ANALYSIS

The von Neumann analysis is frequently used to determine the
requirements of stability, as it is usually simple to apply in a
simple way. The solution in single Fourier mode is defined as

ϒn
j = ϒkeiηjh, (4.1)

where i =
√
−1. The approximation solution of generalized

Fisher’s equation (2.7) can be written as

ϒn+1
j−1 (α0) + ϒn+1

j (α1)+ ϒn+1
j+1 (α0) = ϒn

j−1(n1)+ ϒ
n
j (n2)

+ ϒn
j+1(n3)−

1

1296
(Tm)

4

+ f (rj, tn)− γ
n−1
∑

k=1

λαk [((ϒ
n−k+1
j−1 − ϒn−k

j−1 )

+ 4(ϒn−k+1
j − ϒn−k

j )+ (ϒn−k+1
j+1 − ϒn−k

j+1 ))/6].

(4.2)

where n1 =
γ

6
+

1

2h2
+

1

12
, n2 =

4γ

6
−

1

h2
+

1

3
, n3 =

γ

6

+
1

2h2
+

1

12
, Tm = ϒn

i−1 + 4ϒn
i + ϒn

i+1.

Substituting (4.1) into (4.2), we get

ϒk+1eiη(j−1)h(α0)+ ϒk+1eiη(j)h(α1)+ ϒk+1eiη(j+1)h(α0)

= ϒkeiη(j−1)h(n1)

+ϒkeiη(j)h(n2)+ ϒkeiη(j+1)h(n3)−
1

1296
(Tm)

4 + f (r, t)

−
n−1
∑

k=1

λαk [((ϒ
n−k+1eiη(j−1)h

−ϒn−keiη(j−1)h)+ 4(ϒn−k+1eiη(j)h − ϒn−keiη(j)h)

+(ϒn−k+1eiη(j+1)h − ϒn−keiη(j+1)h))/6].

ϒk+1[eiη(j−1)h(α0)+ eiη(j)h(α1)+ eiη(j+1)h(α0)]

= ϒk[eiη(j−1)h(n1)+ eiη(j)h(n2)

+eiη(j+1)h(n3)]−
1

1296
(Tm)

4 + f (r, t)

−
n−1
∑

k=1

λαk [(ϒ
n−k+1eiη(j−1)h − ϒn−keiη(j−1)h

+4ϒn−k+1eiη(j)h − 4ϒn−keiη(j)h + ϒn−k+1eiη(j+1)h

−ϒn−keiη(j+1)h)/6].

ϒk+1 =
ϒkeiη(j)h[e−iηh(n1)+ n2 + eiηh(n3)]− 1

1296 (Tm)4e−iηjh + f (r, t)e−iηjh

eiη(j)h[e−iηh(α0)+ α1 + eiηh(α0)]

−
∑n−1

k=1 λ
α
k
[ϒn−k+1eiηjh(e−iηh + 4+ eiηh)− ϒn−ke−iηjh(e−iηh + 4+ eiηh)]

eiη(j)h[e−iηh(α0)+ α1 + eiηh(α0)]
.

By inserting values of α0, α1 and n1, n2, n3 in above expression,
we have

ϒk+1 =
ϒk[ γ3 (cos ηh+ 3)+ 1

6h2
(cos ηh− 6)+ 1

6 (cos ηh+ 2)]− 1
1296 (Tm)4e−iηjh

γ
3 (cos ηh+ 3)− 1

6h2
(cos ηh− 6)− 1

6 (cos ηh+ 2)+ 3
216 (Tm)2(cos ηh+ 3)

+
f (r, t)e−iηjh −

∑n−1
k=1 λ

α
k
[2 cos ηh+ 4(ϒn−k+1 − ϒn−k)]

γ
3 (cos ηh+ 3)− 1

6h2
(cos ηh− 6)− 1

6 (cos ηh+ 2)+ 3
216 (Tm)2(cos ηh+ 3)

.

The applied scheme is stable if augment factor |ϒk+1| ≤ 1,
and, from the above expression, we can observe that value of
numerator is lesser than denominator for the values of γ , η, h.
The scheme become unstable as the approximations grows
in magnitude.

ϒk+1 ≤ ϒk,

ϒk+1 ≤ 1.

The above result thus reflects that scheme is
unconditionally stable.

5. APPLICATIONS AND DISCUSSION

This section presents some examples with different initial
and boundary conditions. The numerical results are presented
graphically and numerically in figures and tables. The error
norms L2 and L∞ are computed to analyze the precision of the
suggested technique as

L2 =‖ Zexact − Zapprox ‖2≃

√

√

√

√h

n
∑

j=0

| (Zj)exact − (Zj)approx |2,

L∞ =‖ Zexact − Zapprox ‖∞≃ maxj | (Zj)exact − (Zj)approx | .

In this manuscript we used, MATLAB 2015b on IntelRCORETMi5
CPU with 8GB RAM and 64-bit operating system (window 7) for
numerical simulations.

Example 5.1. Consider the fractional order Fisher’s equation
(1.1) for β = 3 subject to

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z3(r, t)) = f (r, t). (5.1)

IC : Z(r, 0) = 0, 0 ≤ r ≤ 1.

BCs : Z(0, t) = t2α , Z(1, t) = 0, t ≥ 0.

and the source term

f (r, t) = exp(2r)(1− r2)tα
Ŵ(2α + 1)

Ŵ(1+ α)
− 2νt2α(1− 4r − 2r2) exp(2r)

−[t2α(1− r2) exp(2r)][1− (t2α(1− r2) exp(2r))3].
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FIGURE 1 | Approximate results of Example 5.1 at different time levels for α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01. (A) For t = 0.25. (B) For t = 0.5, 0.75, and 1.

The approximate solution (2.3) can be written in piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ ϒj−2φ3,j−2(r)

+ ϒj−1φ3,j−1(r)+ ϒjφ3,j(r), r ∈ [rj, rj+1). (5.2)

ZN (r, 1) =



















































































































r3 − 0.64r2 − 0.805r + 0.99997, r ∈ [0, 0.1),

0.56667r3 − 0.51r2 − 0.818r + 1.0004, r ∈ [0.1, 0.2),

16.75r3 − 10.22r2 + 1.124r + 0.87093, r ∈ [0.2, 0.3),

0.11667r3 − 0.195r2 − 0.8945r + 1.0068, r ∈ [0.3, 0.4),

−0.033333r3 − 0.015r2 − 0.9665r + 1.0165, r ∈ [0.4, 0.5),

−0.066667r3 + 0.035r2 − 0.9915r + 1.0206, r ∈ [0.5, 0.6),

−0.05r3 + 0.005r2 − 0.9735r + 1.017, r ∈ [0.6, 0.7),

−0.033333r3 − 0.03r2 − 0.949r + 1.0113, r ∈ [0.7, 0.8),

−3546.6r3 + 8511.7r2 − 6810.3r + 1816.8, r ∈ [0.8, 0.9),

10640.0r3 − 29793.0r2 + 27664.0r − 8525.4, r ∈ [0.9, 1).

(5.3)

The exact solution of (5.1) is Z(r, t) = t2α(1− r2) exp(2r).
Figures 1, 2 explores the comparison of CBS solution

with exact solution for Example 5.1 for different parameters.
Figure 1A shows the 2-dimensional preview of approximate and
exact results for t = 0.25 with α = 0.95, h = 0.01, 1t = 0.0003
and ν = 1. The graph illustrates that exact and approximate
outcomes are indiscriminately similar to each other. Figure 1B
cites the action of solution obtained for Equation (5.1) with α =
0.95, h = 0.01, ν = 1 and for various time steps t = 0.5, 0.75,
and 1 with 1t = 0.0003. It is clear from the graph that both
solutions are overlapping. Three dimensional preview has been
given in Figure 2. While the influence of α has been discussed
for distinct Brownian motion, i.e, α = 0.25, 0.5, and 0.98 in
Figure 3. It can be observed that as the value of α increases, the

FIGURE 2 | 3D image of numerical solution of Example 5.1 for t ǫ [0, 1],

α = 0.25, ν = 1, 1t = 0.0003, and h = 0.01.

solution profile decreases and as α → 1, the numerical solution
tends to overlap the exact solution. The comparison of numerical
and exact outcomes is expressed in Table 2, which shows that
both results are consistent with each other and are accurate up
to 5 decimal places. The numerical results for α variation is
presented in Table 3. It is clear from tabular data that both results
strongly agree with each other, and the accuracy of the scheme is
examined by the error norms as shown in Table 4.

Example 5.2. The fractional order Fisher’s equation (1.1) for β =
3 can be written as:

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z3(r, t)) = f (r, t). (5.4)
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FIGURE 3 | Numerical solution of Example 5.1 for various values of

α = 0.25, 0.5, and 0.98, ν = 1, 1t = 0.0003, and h = 0.01.

TABLE 2 | The comparison of results for Example 5.1 at different time level.

t = 0.5 t = 0.75 t = 1

Exact Approximate Exact Approximate Exact Approximate

0.5 0.5 0.750 0.750 1 1

0.5937599 0.5937573 0.89063992 0.8906763 1.1875199 1.1875187

0.7047480 0.7047441 1.05712208 1.0571243 1.409496 1.4094943

0.8179162 0.8179136 1.22687444 1.2268714 1.635832 1.6358312

0.9248351 0.9248321 1.38725275 1.3872564 1.849670 1.8496765

1.0123601 1.0123537 1.51854022 1.5185531 2.024720 2.0247276

1.0607632 1.0607532 1.59114490 1.5911456 2.121526 2.1215213

1.0412254 1.0412256 1.56183822 1.5618331 2.082450 2.0824589

0.9124889 0.9124764 1.36873341 1.3687335 1.824977 1.8249795

0.6164085 0.6164432 0.92461286 0.92461257 1.2328171 1.2328141

0 0 0 0 0 0

with

IC : Z(r, 0) = r2 exp(2r), 0 ≤ r ≤ 1.

BCs : Z(0, t) = 0, Z(1, t) = exp(2)(1+ t2), t ≥ 0.

source term is

f (r, t) =
2r2t2−α exp(2r)

Ŵ(3− α)
− 2ν(1+ t2)(1+ 4r + 2r2) exp(2r)

−[(1+ t2)r2 exp(2r)][1− ((1+ t2)r2 exp(2r))3].

The Exact solution of Example 5.2 is Z(r, t) = (1+ t2)r2 exp(2r).
Figures 4, 5 plot the 2D and 3D preview of exact and approximate
solutions of Example 5.2. The graph shown in Figure 4A

demonstrates that the approximate solution at t = 0.25, α =

TABLE 3 | The comparison of results for Example 5.1 at different values of α and

t = 0.5.

α = 0.25 α = 0.5 α = 0.98

Exact Approximate Exact Approximate Exact Approximate

0.7071067 0.7071043 0.5 0.5 0.25 0.25

0.8397033 0.8397012 0.5937599 0.5937568 0.2968799 0.2968754

0.9966642 0.9966601 0.7047480 0.7047454 0.3523740 0.3523721

1.1567083 1.1567231 0.8179163 0.8179164 0.4089581 0.4089512

1.3079144 1.3079221 0.9248351 0.9248123 0.4624175 0.4624121

1.4316934 1.4316932 1.0123601 1.0123342 0.5061800 0.5061321

1.5001458 1.5001456 1.0607632 1.0607612 0.5303816 0.5303802

1.4725151 1.4725148 1.0412254 1.0412245 0.5206127 0.52061012

1.2904542 1.2904532 0.9124889 0.9124893 0.4562444 0.4562432

0.8717333 0.8717312 0.6164085 0.6164123 0.3082042 0.3082011

0 0 0 0 0 0

TABLE 4 | Computation of error norms for Example 5.1.

t L2 norm L∞ norm CPU time

0.5 3.923× 10−6 3.470× 10−5 0.0821

0.75 2.900× 10−3 3.638× 10−5 0.1201

1 1.489× 10−6 8.900× 10−6 0.1601

0.95, h = 0.01, 1t = 0.0003, and ν = 1 is compatible with
exact solution. Figure 4B shows the effect of various time steps
t = 0.5, 0.75, and 1 on the solution profile. It is clear from
the graphics that exact and numerical solutions have identical
behavior for fixed value of α = 0.95. The comparison of exact
and approximate results is presented in Table 5, which clearly
shows that both solutions are very close to each other and
have negligible errors. Figure 5 give 3D preview of approximate
solution. To examine the accuracy of the present technique, error
norms are computed and shown in Table 6.

The approximate solution (2.3) can be written in
piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ϒj−2φ3,j−2(r)+ ϒj−1φ3,j−1(r)

+ϒjφ3,j(r), r ∈ [rj, rj+1). (5.5)

ZN (r, 1) =



















































































































−5.4667r3 + 0.9700r2 + 14.08r + 0.000033333, r ∈ [0, 0.1),

−4.2667r3 + 0.61r2 + 14.116r − 0.0011667, r ∈ [0.1, 0.2),

−221.05r3 + 130.68r2 − 11.898r + 1.7331, r ∈ [0.2, 0.3),

−1.4667r3 − 1.395r2 + 14.614r − 0.04415, r ∈ [0.3, 0.4),

5.35r3 − 9.575r2 + 17.887r − 0.48042, r ∈ [0.4, 0.5),

−1.6333r3 + 0.9r2 + 12.649r + 0.3925, r ∈ [0.5, 0.6),

56.233r3 − 103.26r2 + 75.145r − 12.107, r ∈ [0.6, 0.7),

−104.25r3 + 233.76r2 − 160.77r + 42.939, r ∈ [0.7, 0.8),

587.43r3 − 1426.3r2 + 1167.3r − 311.2, r ∈ [0.8, 0.9),

−1846.6r3 + 5145.5r2 − 4747.4r + 1463.2, r ∈ [0.9, 1).

(5.6)
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FIGURE 4 | Approximate results of Example 5.2 at different time levels for α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01. (A) For t = 0.25. (B) For t = 0.5, 0.75, and 1.

FIGURE 5 | 3D preview of numerical solution of Example 5.2 for t ǫ [0, 1],

α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01.

Example 5.3. For β = 2, the time fractional Fisher’s
equation becomes

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z2(r, t)) = f (r, t). (5.7)

IC : Z(r, 0) = 0, 0 < r < 1,

BCs : Z(0, t) = 0, Z(1, t) = 0, t ≥ 0.

TABLE 5 | Numerical results for Example 5.2.

t = 0.5 t = 0.75 t = 1

Exact Approximate Exact Approximate Exact Approximate

0 0 0 0 0 0

0.0121218 0.0121321 0.0151522 0.0151433 0.0193949 0.0193932

0.0659855 0.0659843 0.0824819 0.0824654 0.1055769 0.1055759

0.1877572 0.1877576 0.2346966 0.2346753 0.3004116 0.3004116

0.4147524 0.4147527 0.5184405 0.5184425 0.6636038 0.6636021

0.7996699 0.7996642 0.9995874 0.9995841 1.2794718 1.2794717

1.4160595 1.4160543 1.7700744 1.7700722 2.2656953 2.2656943

2.3655633 2.3655421 2.9569541 2.9569543 3.7849013 3.7849021

3.7874724 3.7874722 4.7343405 4.7343421 6.0599558 6.0599533

5.8712990 5.8712976 7.3391238 7.3391242 9.3940785 9.3940752

9.2363201 9.2363212 11.545400 11.545410 14.778112 14.7781113

TABLE 6 | Error norms for Example 5.2.

t L2 norm L∞ norm CPU time

0.5 2.49× 10−6 2.12× 10−5 0.0842

0.75 3.05× 10−6 2.13× 10−5 0.1252

1 5.105× 10−7 3.3× 10−6 0.1665

The source term

f (r, t) =
24t4−α

Ŵ(5− α)
sin(2πr)

+4π2t4 sin(2πr)− (t4 sin(2πr))(1− t4 sin(2πr)).

Exact solution for above conditions is

Z(r, t) = t4 sin(2πr).
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FIGURE 6 | Numerical solution of Example 5.3 for variation in time at α = 0.96, ν = 1, h = 0.01, 1t = 0.0001, and β = 1. (A) For t = 0.25. (B) For t = 0, 0.5, 0.75,

and 1.

TABLE 7 | Comparison of exact and numerical findings of Example 5.3 at various

time stages.

t = 0.6 t = 0.8 t = 1

Exact Approximate Exact Approximate Exact Approximate

0 0 0 0 0 0

0.06925 0.06925 0.21951 0.21952 0.5358 0.5358

0.12044 0.12043 0.38072 0.387087 0.92972 0.92974

0.12556 0.12543 0.39661 0.39665 0.9687 0.96854

0.08257 0.08258 0.26105 0.26126 0.63743 0.63782

0.008124 0.008321 0.02577 0.02573 0.06254 0.06258

-0.069443 -0.069432 -0.21942 -0.21946 -0.53582 -0.53543

-0.120415 -0.120325 -0.38083 -0.38072 -0.92982 -0.92984

-0.125432 -0.125412 -0.39662 -0.39663 -0.96841 -0.96872

-0.082581 -.082573 -0.26149 -0.26144 -0.63723 -0.63712

0 0 0 0 0 0

TABLE 8 | Comparison of error norms of Example 5.3.

t L2 norm L∞ norm CPU time

0.6 2.541× 10−5 1.97× 10−4 0.0930

0.8 6.371× 10−4 6.366× 10−3 0.1203

1 5.383× 10−5 3.9× 10−4 0.1561

Thus, the approximate solution (2.3) can be written in
piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ ϒj−2φ3,j−2(r)

+ϒj−1φ3,j−1(r)+ ϒjφ3,j(r), r ∈ [rj, rj+1). (5.8)

FIGURE 7 | 3D image of approximate results of Example 5.3 for t ǫ [0, 1],

α = 0.96, step size h = 0.01, 1t = 0.0001, and ν = 1.

ZN (r, 1) =



















































































































−17815.0r3 + 3562.9r2 + 0.008r − 23.753, r ∈ [0, 0.1),

5938.2r3 − 3562.9r2 + 712.59r − 47.506, r ∈ [0.1, 0.2),

0.033333r3 − 0.045r2 + 0.0195r − 0.00085, r ∈ [0.2, 0.3),

−0.025r2 + 0.0155r − 0.00058333, r ∈ [0.3, 0.4),

1490.3r3 − 1788.4r2 + 715.36r − 95.38, r ∈ [0.4, 0.5),

−4470.7r3 + 7153.2r2 − 3755.4r + 649.75, r ∈ [0.5, 0.6),

4470.8r3 − 8941.7r2 + 5901.5r − 1281.6, r ∈ [0.6, 0.7),

−1490.1r3 + 3576.4r2 − 2861.1r + 762.98, r ∈ [0.7, 0.8),

0.016667r3 + 0.005r2 − 0.0425r + 0.020917, r ∈ [0.8, 0.9),

−0.033333r3 + 0.14r2 − 0.164r + 0.057367, r ∈ [0.9, 1).

(5.9)
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Figure 6A, displays the numerical and exact solution of
Example 5.3 for t = 0.4, α = 0.96, h = 0.01 and
1t = 0.0001. The graphics illustrate that numerical and
exact solutions are obviously shown to be indiscriminately
comparable to one another. The effect of time concentrations
t = 0.6, 0.8, and 1 is studied and presented in Figure 6B

keeping other parameters constant. It can be seen from
graphics that both solutions have symmetrical conduct
and their corresponding numerical data are presented
in Table 7, which demonstrates that both results are
accurate and have negligible error. Figure 7 plots
three-dimensional solution and results of error norms is
given in Table 8.

FIGURE 8 | Approximate results of Example 5.3 for α = 0.5, 0.75 and 0.95,

h = 0.01, 1t = 0.0001, and ν = 1.

The influence of Brownian motion, i.e, α = 0.25, 0.75,
on solution curve is displayed in Figure 8. The identical
behavior of solution curves demonstrates that for smaller
values of α, the solution profile is away from the exact result
and as α → 1, the approximate and exact solution tends
to overlap.

Example 5.4. Fisher’s equation with fractional order for β = 1
with f (r, t) = 0, is

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z(r, t)) = f (r, t). (5.10)

with IC : Z(r, 0) = σ ∗, 0 ≤ r ≤ 1.

The exact solution of the model for α = 1 is,

Z(r, t) =
exp(t)σ ∗

1− σ ∗ + σ ∗ exp(t)
.

The graphical illustration of exact and numerical solutions
for Example 5.4 are shown in Figure 9. Figure 9A shows
compatibility of exact and numerical results for h =
0.01, 1t = 0.02, α = 1, and σ ∗ = 0.25. The
multiple curves for exact and numerical solutions for various
values of σ ∗ = 0.5, 0.7, and 0.9 are shown in Figure 9B.
The comparison of exact and approximate solutions acquired
by the proposed scheme is expressed in Table 9. The tabular
data demonstrate that both solutions are compatible with each
other for various values of σ ∗. Table 10 demonstrates the
error norms.

6. CONCLUDING REMARKS

In this study, cubic B-spline (CBS) scheme has been
successfully implemented to acquire numerical solution of

FIGURE 9 | Numerical results of Example 5.4 for various values of σ ∗ and α = 1, 1t = 0.02, and h = 0.01. (A) For σ ∗ = 0.25. (B) For σ ∗ = 0.5, 0.7, and 0.9.
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TABLE 9 | Exact and numerical results of Example 5.4 at different values of σ ∗.

σ ∗
= 0.5 σ ∗

= 0.7 σ ∗
= 0.9

Exact Approximate Exact Approximate Exact Approximate

0.5 0.5 0.7 0.7 0.9 0.9

0.5224848 0.5224743 0.7185535 0.7185432 0.9078134 0.9078432

0.5473576 0.5473321 0.7383282 0.7383321 0.9158479 0.9158980

0.5719961 0.5719883 0.7571831 0.7571743 0.9232413 0.9232421

0.5962826 0.5961235 0.7750933 0.7750653 0.9300348 0.9300343

0.6201064 0.6201432 0.7920452 0.7920876 0.9362685 0.9362651

0.6433651 0.6433321 0.8080358 0.8080213 0.9419815 0.9419821

0.6659669 0.6659442 0.8230715 0.8230342 0.9472112 0.9472131

0.6878313 0.6878321 0.8371669 0.8371321 0.9519936 0.9519527

0.7088901 0.7088870 0.8503435 0.8503876 0.9563626 0.9563984

0.7310585 0.7310572 0.8638095 0.8638451 0.9607296 0.9607481

TABLE 10 | Comparison of error norms.

σ ∗ L2 norm L∞ norm CPU time

0.5 1.706× 10−5 1.591× 10−4 0.0811

0.75 9.38× 10−6 4.4× 10−5 0.1209

1 8.192× 10−6 5.01× 10−5 0.1606

a time-fractional modified Fisher’s equation for β = 2 and
3. The temporal derivative is discretized in the Caputo’s
sense by means of L1 formula, whereas CBS functions
have been used for spatial derivative. The results acquired

by the proposed scheme are presented in the form of
tables and graphics. Following are the main outcomes of
this study.

1. The existing Fisher’s model has been modified by
adding source term and by increasing integer power of
non-linear term.

2. The influence of α parameter has been studied for different
values and observed that, as the value of α increases gradually,
the solution profile Z(r, t) tends toward exact solution. The
numerical solution overlaps the exact solution as α approaches
1 as shown in figures.

3. The numerical behavior of the proposed model with different
initial and boundary conditions has been observed at different
time levels.

4. The comparison of exact and numerical results displayed in
graphics reveals that both results show symmetrical behavior
and their corresponding numerical data presented in tables
clearly elaborate consistency of the results.

5. The results of the study regarding stability of the presented
scheme show that proposed scheme is unconditionally stable.

Moreover, the accuracy and efficiency of the proposed scheme is
quantified by computing error norms and the numerical results
reflect that the proposed scheme is applicable for non-linear time
fractional generalized Fisher’s equation.
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