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Editorial on the Research Topic

Interfacing Humans and Machines for Rehabilitation and Assistive Devices

INTRODUCTION

Currently, around 10% of the world’s population, or roughly 650 million people, live with some
type of disability. In countries with life expectancies over 70 + years, people spend on average
about 8 years, or 11.5 percent of their lifetime, living with disabilities (Disabled World (2021).
Di, 2021).

In response to this need scientists from different fields, together with engineers and clinicians have
been working on developing robotic solutions for a wide variety of rehabilitation and assistive
scenarios. Robotic exoskeletons are now commonly found tools used at neurorehabilitation centers,
treating stroke and spinal cord injury survivors. Occupational exoskeletons are now alleviating a big
part of the harmful body loading, responsible for widely commonmusculoskeletal disorders found in
industrial settings. Bionic prostheses are now making their way through the markets and getting
attention by the social security systems around the world and will most likely become widely adopted
in the near future. All the aforementioned technologies require interfacing humans and robots to
assure a safe and efficient cognitive and physical interaction. Here, the interface refers to any
hardware or software link that connects two dissimilar systems: humans and robots.

The topic “Interfacing Humans and Machines for Rehabilitation and Assistive Devices” was
opened to gather professionals and researchers from various backgrounds and discuss the pertinence
and feasibility of new human-robot interfaces in the field of rehabilitation and assistance. The
community’s outstanding response to the call led to 18 contributions by 97 different authors that
address the requirements and challenges of implementing and deploying rehabilitation and assistive
robotics (see Figure 1). The contributions proposed new control and modeling strategies for orthotic
and prosthetic devices (for both upper and lower limbs), explored methodologies to detect human
intention, and assess quantitative and qualitative measurements of the behavior and outcomes when
interfacing humans and machines.

The research topic comprises promising state-of-the-art developments in a broad spectrum of
devices. There are many ways to address and classify rehabilitation and assistive devices, not
forgetting the differences between them. A rough categorization could be whether 1) they are worn or
integrated on the body, or 2) they are external tools either handled by the user or by the therapist. The
first group can then be subdivided into whether 1) they replace (or add) a body structure, what are
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known as prostheses, or 2) they support body functions by
supporting existing body structures, known as orthoses.

Prosthetics can derive from different technological sources.
One that has gained significant attention is innovations in
desktop 3D printers and open-source designs that lead to
creating body-powered, 3D printed prosthetic hands. Based on
the additive deposition of material in a layer-by-layer manner to
construct parts from a 3D computer-aided design (CAD) model,
these devices have disrupted the field of rehabilitation and
assistive devices and are every day more available to be
implemented as functional low-cost alternatives. However,
there are fundamental interfacing issues that need to be
addressed for long-term usage. In this case, Cabibihan et al.
evaluated them to benefit children with congenital missing limbs
and the war-wounded.

On the other side, there are more advanced electro-mechanical
prostheses, also called bionic arms or hands. These devices have
been designed to approximate the natural limb in both form and
function. They have continuously achieved a better range of
functional grip, power, and precision. However, they do not
match the dexterity of natural hands yet, and several
challenges arise from the human-machine interaction (HMI)
comprising sensing, control, and actuation. Accurate and
efficient interaction includes the implementation of biological
signals such as EMG recordings from the residual limb and EEG
and various clever control strategies (Brinton et al.); (Frolov
et al.).

In the field of orthoses, which are mechanical structures that
correct, support, restore and enhance the function of a part of the
body instead of replacing it, the contributions here presented
focused on their robotic counterparts: the robotic exoskeletons. In
this case, exoskeletons for different parts of the body and varying
configurations of material are studied.

Upper limb exoskeletons are commonly used in the industry
by workers during long-hour tasks and in robotic-assisted
rehabilitation therapies, in both cases to support repetitive
movements. The use of soft technology has gained significant
attention in upper limbs as compliant interaction with the subject
favors its purpose. The detection of the human intention of
motion is fundamental to controlling these robotic devices to
assist humans according to their needs. Similar to strategies
presented with orthotic devices, novel approaches for detecting
handmotion intention and controlling the exoskeletons are based
on EMG signals (Islam and Bai). In addition to the development
of robotic kinematics and control, the study of proper methods to
design physical HMI plays a fundamental role in the comfort and
usability of the device, as presented by Perry et al. Just like some
upper limb exoskeletons, occupational back-support exoskeletons
are every day, more commonly used to mitigate work-related
pain. Poliero et al. evaluated the impact of carrying activities on
lower-back loading than lifting to select different assistive
strategies.

The exoskeletons that have been more intensely studied are,
without a doubt, lower limb exoskeletons. The actuation system
implemented in them is one of the essential factors in their design
as it generally determines the performance, efficiency, and
portability. There are mainly three types of actuators used in

modern exoskeletons: 1) electrical motors, 2) pneumatic
actuators, and 3) hydraulic actuators. Even though some
researchers choose pneumatic or hydraulic actuators due to
their higher power/weight ratio or better compliance, most
exoskeletons use electric motors due to their precision and
ease of control. Therefore, the analysis of components as
gearboxes, elastic elements, and transmission systems is critical
in developing lower limb exoskeletons (García et al.). There are
many commercially available examples with various technologies
implemented in the market. However, researchers are constantly
in the quest for new, more natural ways of controlling these
devices. From bio-inspired controllers 1) based on motor
primitives (Nunes et al.) or 2) developed to allow dynamic
standing balance (Fasola et al.) to approaches that naturally
decodes a neuromuscular surrogate (Karunakaran et al.),
contributions explore the development of strategies to match a
healthy gait pattern better. (Laschowski et al.), for example,
introduced an environment recognition system to improve the
control of robotic lower-limb exoskeletons and prostheses during
human locomotion.

As the new exoskeletons are developed and tested in the
market and the research centers, the need for standardized
assessment measures and characterization increases. Methods
such as analyzing the dynamic margins of stability during
robot-assisted gait are a way to robustly and objectively
measure such devices’ performance (Ramanujam et al.).
However, other more clinically related parameters that could
help to assess the impact of their use could be 1) to determine the
number of training sessions necessary to achieve adequate
exoskeletal-assisted walking skills and velocity milestones
(through the implementation of well-known walking tests as
presented by Hong et al. or 2) to keep track of adverse events
and associated risks when performing robot-assisted gait training
(Bessler et al.). Since there is a wide range of possibilities to
correctly assesses lower limb exoskeletons, a benchmarking
framework becomes more and more necessary. Benchmarking
wearable robots is then a vital task to quantify both the technical
performance of the devices and the physical impact they have on
the users (Torricelli et al.).

Additionally, somewhere between prostheses and orthoses are
the Supernumerary Robotic Limbs (SRL), also called extra theses.
They consist of additional robotic body parts (e.g., limbs and
fingers) to augment the user’s abilities. SRL function together
with an intact musculoskeletal system, but add an utterly
functional body structure, not a replacement, but still as a
structure and not as a support of an existing structure.

They have been initially proposed for industrial purposes and
differ from exoskeletons, as they do not request any joint-to-joint
alignment. The analysis of compensatory movements performed
by this SRL determines the future usability of this type of system
moving forward into assistive applications, as presented by
Rossero et al.

Even though this first big group of devices worn or integrated
on the body is the most renowned device in the field,
rehabilitation, and assistive technology, either handled by the
user or by the therapist, offer patients with disabilities other
opportunities.
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To this second group belong devices for functional gait
compensation such as crutches, walkers, and wheelchairs, and
each of them represents a whole area of research and
development. Among them, canes are the devices more
commonly used to increase gait stability. A simple single-point
cane may prevent or reduce falls in patients with imbalance.
Similar to orthosis, robotic counterparts for each of the devices
mentioned above exist. Smart walkers, robotic wheelchairs, and
robotic cane embrace the same challenge of interfacing with
humans for optimal performance (Trujillo-León et al.).

Other rehabilitation robots, not necessarily in the field of
orthosis, are also used in training setups. End-effector-based
systems are robotic systems that are only attached to the distal
segments of the limbs and belong to this group. They include, for
example, cable-driven motion support robots. Compared to

exoskeletons, these systems require more minor adjustments to
each patient. However, they need the motion of all adjacent
segments to be inferred using mechanical models or additional
sensors, such as inertial units presented by Passon et al.

Interfacing humans and machines for rehabilitation and
assistive devices evidently encompasses many possible devices
and design choices that directly affect the living conditions of
people who have suffered from motor impairments or
amputations. In pursuit of practical functionality, these
solutions require robust interfaces that allow natural and
compliant control. Possibilities are endless, and the
contributions gathered in this topic invite professionals and
researchers from various backgrounds to collaborate and share
promising developments where humans and machines are
interfaced in rehabilitation or assistive environments. The
editors and authors of this affluent and evolving research topic
believe that this space, with all its different rehabilitation and
assistive devices, can mutually inspire developers in their quest
for a better quality of life.
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FIGURE 1 | Interfacing humans and machines for rehabilitation and
assistive devices.
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EEG Activity in Motor Imagery
Brain–Computer Interface
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Yaroslav Kerechanin 1,2, Dmitry Bobrov 1 and Alexander Lekin 1
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In this study, the sources of EEG activity in motor imagery brain–computer interface

(BCI) control experiments were investigated. Sixteen linear decomposition methods

for EEG source separation were compared according to different criteria. The criteria

were mutual information reduction between the source activities and physiological

plausibility. The latter was tested by estimating the dipolarity of the source topographic

maps, i.e., the accuracy of approximating the map by potential distribution from a

single current dipole, as well as by the specificity of the source activity for different

motor imagery tasks. The decomposition methods were also compared according

to the number of shared components found. The results indicate that most of the

dipolar components are found by the Independent Component Analysis Methods

AMICA and PWCICA, which also provided the highest information reduction. These

two methods also found the most task-specific EEG patterns of the blind source

separation algorithms used. They are outperformed only by non-blind Common Spatial

Pattern methods in terms of pattern specificity. The components found by all of the

methods were clustered using the Attractor Neural Network with Increasing Activity.

The results of the cluster analysis revealed the most frequent patterns of electrical

activity occurring in the experiments. The patterns reflect blinking, eye movements,

sensorimotor rhythm suppression during the motor imagery, and activations in the

precuneus, supplementary motor area, and premotor areas of both hemispheres.

Overall, multi-method decomposition with subsequent clustering and task-specificity

estimation is a viable and informative procedure for processing the recordings of

electrophysiological experiments.

Keywords: brain–computer interface, motor imagery, blind source separation, independent component analysis,

common spatial patterns, cluster analysis, EEG pattern extraction
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INTRODUCTION

A brain–computer interface (BCI) is a system for controlling
a device using registered brain activity. To control the device,
the BCI operator is usually required to perform different mental
tasks and does not need to use any muscles. In practice, BCI
systems are intended to create new means of communication
between the operator and his/her environment, which is essential
for the paralyzed. Recently, BCI technology has been used not
to create a new communication channel but rather to enhance
the resting one lost due to stroke or trauma. BCI rehabilitation
applications are a growing field, with more clinical data reported
every year (Ang et al., 2011, 2015; Ramos-Murguialday et al.,
2013; Ono et al., 2014; Frolov et al., 2017b; Mane et al., 2019; Bai
et al., 2020). Aside from in the clinic, these systems can be used
in fundamental research. The feedback provided by BCI system
operation makes its user highly concentrated on performing
the tasks required to control it. The user has to produce stable
and repeatable patterns of the brain activity recorded, greatly
facilitating the investigation of the task-specific patterns of brain
activity (Frolov et al., 2012).

Although there are numerous BCI classifiers, i.e., algorithms
for brain activity pattern classification, these algorithms typically
do not provide pattern features that have clear physiological
interpretation. In this work, we have decided to investigate the
EEG recordings of our BCI experiments with different source
separation methods. Methods such as Principal and Independent
Component Analysis (ICA, Hyvärinen et al., 2004), as well
as other Blind Source Separation (BSS, Cichocki and Amari,
2002) techniques and non-blind Common Spatial Patterns (CSP,
Bashashati et al., 2007), are widely used in EEG research both
in the BCI and non-BCI fields. As will be described later, all of
the methods considered decompose the signal into the sum of
sources, or components, each characterized by its topographic
map of weights and temporal activity.

Our experiments are mainly focused on the investigation
of the performance of different motor imagery tasks while
controlling the BCI (Frolov et al., 2012, 2017a,b). Earlier, we
showed that ICA can be effectively used to find the sources
of task-related sensorimotor mu-rhythm desynchronization
(Frolov et al., 2012) as well as to extract the patterns of activity
of three other brain areas involved in motor imagery (Frolov
et al., 2017a). However, these results were obtained using a single
ICA method. In this paper, we investigate the results of the
application of several source separation methods for processing
our records. The methods are compared in terms of how many
shared components they provide as well as the task specificity
of EEG patterns they find. We are mainly focused on studying
sources that have clear physiological interpretations.

In Delorme et al. (2012), it was shown that physiologically
meaningful components are dipolar. Results were obtained
by using several ICA methods to decompose EEG recordings
corresponding to visual memory tasks performed. A component
being dipolar means that its topographic weight map, which can
be looked upon as a scalp potential distribution, is adequately
approximated by the distribution resulting from a single current
dipole. Note that EEG being a result of the superposition of

multiple dipolar source potentials at a time is an accepted model
of the EEG origin (Niedermeyer andDa Silva, 2005). The fact that
a component is dipolar implies that it results from well-localized
changes of electric activity in the brain, allowing it to be attributed
to a certain brain area activation or deactivation.

Although the areas the activity of which results in the
appearance of dipolar components are typically rather small
(about several millimeters in diameter), they significantly impact
the EEG signal recorded by all of the electrodes. That is why
the main task of the decomposition method is to unmix the
signal components. The unmixing done by the ICA and other
BSS methods is often based on reducing the mutual information
between the components (Hyvärinen et al., 2004). That is why
mutual information reduction (MIR) is another criterion of
method comparison.

Another indication of a component’s relevance is the
repeatability of its occurrence among all the subjects and records.
The components reflecting common or task-specific EEG
phenomena are expected to be found in most of the recordings.
That is why a cluster analysis was applied to the topographic
maps and power spectral densities of the components found.
The results allow the evaluation of the rate at which a certain
phenomenon can be discovered by the methods tested.

The paper is organized as follows. The next section provides
information on the dataset and participants, as well as details
of the 16 blind and non-blind signal decomposition methods
used in this work. The measures of both similarity between
the methods and similarity of the extracted components are
described. The algorithms for estimating the task-specificity of
the components and for cluster analysis are given. The results
of the method comparison are then represented, and clusters of
themost frequently encountered components are shown together
with the cluster statistics. The results obtained are discussed, and
possible physiological interpretation of the extracted components
is given.

METHODS

We used the data from the BCI experiments carried out at the
Institute for the Higher Nervous Activity and Neurophysiology
of the Russian Academy of Science. The study was approved by
the Institute’s ethical committee.

Participants
Twenty-three volunteers (7 females and 16 males) aged from 21
to 36 (26 ± 4) participated in the experiments. The volunteers
were right-handed according to the Edinburgh Handedness
Inventory and had no reported neurological or other disorders.
All of them gave written informed consent.

None of the participants had an experience of controlling a
BCI. The ability of the participants to perform motor imagery
was not assessed prior to the experiments.

Experimental Procedure
The original EEG dataset for the work was obtained using the
same procedure as described in earlier works (Frolov et al., 2012,
2017a). Each subject had to sit relaxed, looking at the center of
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the screen or had to imagine flexion of either his left or right hand
according to visual cue presented on the screen. Each task had to
be performed for 10 s, with a 2 s preparation period. There were
20 cue presentations for each handmotor image, which were split
into blocks containing 2 cues for each hand. In each block, the
cues were given in a random order. Each motor imagery task was
preceded by the relaxation period.

There were from 10 to 20 experimental days (14± 3) for each
subject, with 1–3 day gaps possible between the sessions.

The EEG data were recorded using the NVX52 acquisition
device (Medical Computer Systems, Russia) with 32 electrodes
placed according to the 10–10 system. The data were band-pass
filtered with a 5–30Hz Butterworth filter as well as a 50Hz notch
filter to suppress power line interference.

EEG Classification
The EEG data were classified with a Bayesian classifier under
the assumption that the signal has a multivariate Gaussian
distribution with a zero mean and a different covariance matrix
for each task classified:

P (x|i) =
1

√
2π detCi

exp

(

−
xTC−1

i x

2

)

, (1)

where Ci is a covariance matrix of the EEG corresponding to the
ith task, and x is an EEG sample. According to the Bayes rule,
the probability that a given sample will correspond to the ith
class is proportional to P (x|i)P(i), where P(i) is the probability
of the ith task being cued. Thus, for a signal epoch logarithm
of the probability of all its samples to correspond to the ith
class is proportional to 1

nt

(

−6tx
T
t C

−1
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)

− ln detCi + ln P (i)+
const, where summation is performed over all the epoch samples,
nt is the epoch length in samples, and the constant term is
independent of both the signal and the class number. Since
1
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(

−6tx
T
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−1
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)

can be substituted with trace
(

cov(X)C−1
i

)

,
where cov(X) is the epoch covariance estimate under the
assumption of a zero mean, the class number is

iclass(X) = argmax
i

(

ln P(i)− trace
(

cov (X)C−1
i

)

− ln detCi

)

(2)

We used a window of 1 s length sliding with a 100ms shift to
present the feedback during the sessions. The probabilities P (i)
were estimated based on the cue durations. The classifier was
updated after each block of cues, with no feedback during the
first block.

Signal Decomposition
All of the blind and non-blind source separation methods used
can be, in general, represented in the form of multivariate linear
decomposition with an optional noise term.

X = a1ξ 1 + . . . + anξn +N = A4 +N, (3)

whereX is the decomposed signal inmatrix form, ai, i = 1, . . . , n,
are columns of A that define the source (component) weights
representing the source topographic maps, ξ i, i = 1, . . . , n, are

row vectors of the source activities, n is the number of EEG
channels, and is the optional noise term. Matrix A is called the
mixing matrix, and its inverse,W, is called the unmixing matrix.
The invertibility of A is based on the assumptions that there are
as many components as there are signal channels and that the
signal correlation matrix has full rank. These assumptions are in
general not required but are common for linear source separation
methods (Cichocki and Amari, 2002; Hyvärinen et al., 2004), and
all of the decomposition methods used in the paper were derived
under these assumptions.

Usually, the signal is whitened before searching for
decomposition (3) so that the covariance matrix of X becomes
an identity matrix. Also, it is well-known that the component
activity variances are not defined, thus requiring the application
of some constraints when the decomposition is computed. That
is why we shall further consider the decomposed signal to be
whitened, i.e.

X = VZ, (4)

whereV is amatrix such thatVcov (X)VT = I. If we also suppose
that all ξ i, i = 1, . . . , n, have unit variance, then the mixing
matrix for Z is orthogonal, Z = U4, UUT = I, and the EEG
mixing matrix is A equals VU.

We used 16 source separation methods to obtain the
decomposition (3).

PCA, or Principle Component Analysis, is a classic example of
a technique for obtaining the decomposition (3). It uses Singular
Value Decomposition to diagonalize the signal covariancematrix.
Usually, the components with too much or too little variance are
discarded. If one rather chooses to keep all of the components
under the constraints that their variances are equal to 1, this will
become signal whitening. In this case, U = I, and the unmixing
matrix is not orthonormal.

KURT is an ICA method based on maximizing the difference
of the component distributions from normal. The difference is
measured by the absolute value of the component excess kurtosis,
which serves as a cost function for iterative component search
(Delfosse and Loubaton, 1995; Hyvärinen et al., 2004), i.e., the
columns of unmixing matrix W are estimated sequentially by
maximizing the excess kurtosis for wT

i Z under the assumption
thatW is orthogonal.

CUMUL is an ICAmethod using the signal non-stationarity as
the criterion of statistical independence (Hyvarinen, 2001). The
non-stationarity is measured by the fourth-order cumulant:

cum4 (x) = E
{

x2 (t) x2 (t − τ)
}

− E
{

x2 (t)
}

E
{

x2 (t − τ)
}

− 2E
{

x(t)x(t − τ )
}2
. (5)

The decomposition seeks to maximize the sum of the source
cumulants. The proof of non-stationarity maximization being a
criterion of component independence can be found in Hyvärinen
et al. (2004), chapter 18. The time lag τ serves as the method
parameter. In our experiment, it was set to 100ms to extract the
components with dominant alpha-band frequencies.

FastICA is an ICA method in which mutual information
reduction between the components serves as the statistical
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independence criterion. The mutual information between the
components ξ i, i = 1, . . . , n, is defined as

I
(

ξ 1, . . . , ξn
)

=
∑

i

H(ξ i)−H(4), (6)

where H(·) denotes entropy. The entropy of linear
transformation is H (WZ) = H (Z) +

∣

∣det(W)
∣

∣. Under the
assumption of Z being whitened and the components having
unit variance, W is orthogonal, which implies that det (W) = 1
and H (WZ) does not depend on det (W). As a result, H

(

wT
i Z
)

can be used as a cost function for sequential search of the
unmixing matrix columns wi.

Since computing the entropy requires knowledge on the
signal distribution, different parametric approximations are used.
FastICA uses approximation in the form

H (x) ∝ const −
[

E
{

g (x)
}

− E
{

g (v)
}]2

, (7)

where g (x) is a non-linear function and v is a random normally
distributed variable with unit variance. FastICA can be computed
using different non-linearities (Bingham and Hyvärinen, 2000;
Hyvärinen et al., 2004). In this work, we used two functions,
namely, tanh(x) and x exp (−x2/2). The corresponding methods
are denoted as FastICAT and FastICAG.

RunICA, or extended infomax, is an ICA method that is
similar to FastICA. The method takes into account both super-
and sub-Gaussian distributions by applying two different non-
linearities, g+ (x) = −2 log cosh (x) and g− (x) = log cosh (x) −
x2/2, and switching between them. Originally, the infomax
algorithm was introduced by Bell and Sejnowski (1995) based on
a neural network approach to maximize the entropy of the neural
network output. It was later reformulated in terms of parametric
non-linearities for source entropy estimation (Lee et al., 1999).

AMICA, which stands for Adaptive Mixture Independent
Component Analysis, is an ICA method based on the
assumption that all EEG components have generalized Gaussian
mixture distributions

p (ξi) =
∑

j=1,...,k

αijq(ξi, ρij,µij,βij), (8)

q (ξ , ρ,µ,β) =
ρ

2βŴ(1/ρ)
exp

(

−
∣

∣

∣

∣

ξ − µ

β

∣

∣

∣

∣

ρ)

. (9)

AMICA can also segment the signal into several parts
corresponding to different models (8) when the number
of the models is set to higher than 1. All distribution
parameters, unmixing matrix coefficients, and model scores (in
the case of several models) are estimated using the expectation-
maximization algorithm (Palmer et al., 2006, 2008, 2012). In our
work, we compared AMICA with the default settings (2 models,
2 distributions in mixture) to AMICA with two models and
Gaussian distributions with means fixed to zero (2 models, 2
distributions in mixture, ρ l

i,j = 2, µl
i,j = 0, where l indicates the

model, l = 1, 2, and i = 1, . . . , n, j = 1, 2), and to AMICA
with a single model and Gaussian distributions with means fixed

to zero (1 model, 2 distributions in mixture, ρij = 2, µij = 0,
i = 1, . . . , n, j = 1, 2). The two latter cases will be denoted as
AMICA1 and AMICA2, respectively.

PWCICA is an ICA method mapping the signal into a
complex domain using the first derivative (rate) of the signal
as its imaginary part. The algorithm is described in Ball et al.
(2016). It uses the complex variant of FastICA in order to
find decomposition (3) in the complex domain (Bingham and
Hyvärinen, 2000). After that, the real-valued unmixing matrix is
computed using the algorithm provided in Ball et al. (2016).

SOBI, or Second Order Blind Identification, is a blind source
separation method that uses joint diagonalization to remove
signal cross-covariance for a set of defined time lags (Belouchrani
et al., 1997). Particularly, a set of time lags δk is specified, and
corresponding cross-covariance matrices are estimated:

Ck = E
(

X (t) ,X(t − δk)
)

, (10)

Next, the unmixing matrixW is found by joint diagonalization of
the estimated cross-covariance matrices:

W = argmin
M

(

6k

∥

∥

∥
MCkM

T
∥

∥

∥

off

)

(11)

where ‖·‖off denotes the Euclidean norm of the off-diagonal
part of a matrix. The norm of the unmixing matrix column is
constrained to be equal to 1. There exist several algorithms for
solving the problem (11). We used one proposed in Ziehe et al.
(2004) to obtain the solution.

CSP, or Common Spatial Patterns (Ramoser et al., 2000;
Bashashati et al., 2007, 2015), is a non-blind decomposition
method, in contrast to the source separation techniques
described above. This method utilizes the information on signal
segmentation with respect to the experimental tasks in order
to find the decomposition (3). The method is used for feature
extraction in two-class separation problems. The decomposition
is sought that maximizes the component variance ratio for the
states classified under the assumption that total component
variance is fixed. This is equivalent to finding matrixW such that

{

WC1W
T = D1

W(C1 + C2)WT = I

}

, (12)

where Ci is the i-th class covariance matrix and D1 is a diagonal
matrix. The equations (12) have an explicit solution where
W and D1 result from singular-value decomposition (SVD) of
the matrix D−1/2 UTC1UD

−1/2 with orthogonal matrix U and
diagonal matrix D given by SVD of C1 + C2. We used several
CSP decompositions in this work, namely, CSP12 comparing
relaxation and left hand motor imagery, CSP13 comparing
relaxation and right hand motor imagery, CSP23 comparing left
with right handmotor imagery, andCSP1X comparing relaxation
and both left and right hand motor imagery. Although equations
(12) are solved using signal epochs corresponding to the selected
tasks only, the unmixing matrix was used to estimate the activity
of the components at all other time moments.

MCSP is a generalization of the CSP method for multiple-
class problems. There are several methods of generalization
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(Lee et al., 2005; Bashashati et al., 2015). The most frequent
approaches are to either compute all pairwise CSP and combine
the corresponding components into a new signal to be classified
or to use classifier voting or a tree of some sort when only
two classes are compared at each step (e.g., relaxation vs. motor
imagery with subsequent discrimination between the hands if
the motor imagery was recognized). However, these techniques
would not give us any additional information in terms of sources,
as we have already considered all pairwise CSP decompositions
for our experimental tasks, as well as the CSP1X comparing
relaxation and motor imagery. That is why we have decided to
use a different approach. Problem (12) was generalized so as to
findW such that







WC1W
T = D1

WC2W
T = D2

W(C1 + C2 + C3)WT = I

The equations are written for the case of three tasks, but the
generalization for the case of an arbitrary number of classes is
straightforward. The problem in general has no explicit solution
and can be solved numerically using any joint diagonalization
technique. The joint diagonalization algorithm was the same as
was used to perform the SOBI decomposition (Ziehe et al., 2004).
It should be noted that unlike the two-class CSP, component
variance ratio maximization (or minimization) for different
classes is not guaranteed, but if any component has high (small)
variance for a certain class, it will have small (high) variance for
other classes.

Mutual Information Reduction
The mutual information reduction (MIR) provided by the
decomposition methods is defined as

MIR = I (x1, . . . xn) − I(ξ1, . . . , ξn), (13)

where the mutual signal information I is given by equation (6).
Using (6), we get

MIR = 6iH (xi) −H (X) − 6iH (ξi) +H(4) (14)

Since X = A4,

H (X) = H (4) + log
∣

∣detA
∣

∣ (15)

and thus

MIR = 6iH (xi) − 6iH (ξi) + log
∣

∣detA
∣

∣ (16)

The entropy of each individual channel and component was
estimated and bias-corrected as in Delorme et al. (2012).

Dipolar Component Selection
The decomposition (3) shows that the contribution of each
component to the signal registered by the EEG electrodes is
given by the weight vector, which can be treated as potential
distribution over the scalp surface. This allows the source of
electrical activity represented by the component to be localized.

As has been shown for the case of visual memory tasks, the
physiologically meaningful components tend to have dipolar
distributions of their weights, i.e., the distributions that could
be adequately approximated by a single current dipole inside a
head model (Delorme et al., 2012). We had neither anatomical
magnetic resonance imagery (MRI) scans nor digitized electrode
positions for most of our subjects. This is why a standardized
head model based on the ICBM MNI atlas (Fonov et al., 2009,
2011) was used for estimating the dipolarity of the component
weights. The dipolarity was computed as a residual variance of
the best single dipole fit for the corresponding distribution. The
fit was considered acceptable if the residual variance did not
exceed 10%.

Shared Components
The number of the same components found by different
decomposition methods can be used as a measure of similarity
between the methods. On the other hand, the more methods
reveal the component, the less likely it is that the component is
an artifact of a certain mathematical procedure underlying the
decomposition algorithm. That is why we focused our attention
on the components found by different methods.

Two component similarity measures were used to determine
which components were shared between the methods. The first
measure was the absolute value of the cosine between normalized
component weight vectors given by the corresponding mixing
matrix columns. The second one was the absolute value of
the Pearson correlation between the component activities. Two
thresholds were chosen for the measures. The components
were considered the same when both measures exceeded the
corresponding thresholds. We have chosen 0.9 as the threshold
for the topographic map similarity and 0.8 as the threshold for
activity correlation.

When the number of shared components is obtained,
the similarity between the decomposition methods can be
measured as

simij =
ns

ni + nj − ns
, (17)

where ns is the number of shared components, and ni and nj
are the numbers of components obtained by the i-th and j-
th methods, respectively. The similarity measure varies from 0,
when there are no shared components, to 1, when the methods
have provided identical decomposition. Also, only the dipolar
components can be considered when the similarity (17) is
calculated, allowing non-dipolar components that are unlikely
to have physiological meaning to be discarded. The number of
methods that found a component minus one will be called the
component rank. The component rank equals 0 when it is found
by only one method and 15 when it is found by all of the 16
methods considered.

Classification Accuracy and the
Component Specificity
Given a set of the EEG components, their activity can be
used for estimating the accuracy of discriminating between the
experimental tasks. This estimate can serve as a measure of
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components’ specificity for the performed tasks, allowing the
task-specific EEG patterns to be extracted and both artifacts and
irrelevant EEG activity to be removed.

We used a greedy algorithm to find the task-specific
components as follows. Only the dipolar components were
considered. At the first step, classification accuracy was estimated
for each set containing one or two components. The best set
was then selected. The remaining components were added to
the set one by one so that the new set would provide the
highest classification accuracy. The components from the set
for which the classification accuracy was maximal (over all of
the steps) were considered as the task-specific components. The
classification was tested by 120 trials of cross-validation where 7
blocks were chosen for the training set and the 3 remaining blocks
were used as the testing set.

The accuracy of task classification was measured by Cohen’s
kappa index, κ (Vieira et al., 2010), which was calculated from
the elements of the confusion matrix

(

gij
)

resulting from the
cross-validation. The element gij counts how many times the i-
th task was recognized by the classifier under the condition that
the classified EEG epoch corresponded to the j-th cue. Given gij,
the κ index is

κ =
g0
∑

i gii −
∑

j g
2
j

g20 −
∑

j g
2
j

, (18)

where g0 is the sum of all of the elements of the confusion matrix,
∑

i gii is the sum of all diagonal elements of the confusion matrix,
and gj is the sum of all of the elements of the j-th column of
the confusion matrix. The index varies from −1 to 1 (perfect
classification) and equals 0 in case of random classification.

Component Clustering
The decomposition (3) gives at least as many components as
there are electrodes for each of the methods used. Consequently,
the number of components computed for all experimental
recordings is too high to check the components manually.
In order to investigate EEG patterns most typical for our
experimental tasks, we used cluster analysis to group the
components according to their similarity. The clustering was
performed using the Attractor Neural Network with Increasing
Activity (ANNIA), which was originally proposed for Boolean
factor analysis (Frolov et al., 2007). Adaptation of the technique
for cluster analysis is described in Bobrov et al. (2014). When
the ANNIA is used for clustering, the strength of synaptic
connections between the neurons of the network is determined
by the similarity between the corresponding elements rather
than by Hebbian learning. The stopping criterion is based
on a threshold that specifies the minimal average similarity
between the elements of a cluster. In Bobrov et al. (2014),
the ANNIA was used to group the components with respect
to their topographic map similarity. In this paper, we have
also accounted for the component activity similarity using the
correlation coefficient between the components’ activity power
spectral densities estimated for each of the experimental tasks.
Spectral analysis was used since the components obtained
from different recordings were compared, in contrast with the

TABLE 1 | Percentage of dipolar components found and the method MIR.

Method % of dipolar components MIR, bits/(sec·chan)

PCA 4.35 [2.17; 7.50] 63.56 [51.89; 77.34]

KURT 15.39 [6.98; 27.50] 70.15 [58.97; 83.69]

CUMUL 12.77 [6.38; 22.61] 70.96 [59.21; 84.81]

FastICAT 15.63 [8.51; 27.50] 68.24 [57.28; 82.96]

FastICAG 15.22 [8.33; 27.33] 67.58 [56.60; 83.75]

RunICA 10.87 [3.54; 25.00] 74.92 [65.21; 86.47]

AMICA 25.53 [11.11; 38.96] 68.98 [57.47; 83.99]

AMICA1 21.74 [12.50; 32.55] 69.23 [58.11; 83.95]

AMICA2 27.50 [15.38; 40.00] 66.74 [55.88; 80.30]

PWCICA 19.57 [6.38; 31.25] 67.42 [56.00; 81.38]

SOBI 15.22 [6.67; 26.67] 71.52 [58.80; 84.88]

CSP12 4.26 [1.37; 13.68] 62.99 [50.11; 78.13]

CSP13 4.17 [2.08; 12.74] 63.24 [48.94; 77.74]

CSP1X 4.26 [1.91; 14.97] 63.72 [50.34; 77.87]

CSP23 2.22 [1.23; 10.00] 63.18 [48.82; 78.13]

MCSP 6.90 [2.17; 17.95] 63.89 [51.40; 77.78]

shared components search described earlier. Both the component
similarity measures considered vary from 0 to 1, and their mean
was taken as the similarity measure for ANNIA.

RESULTS

Comparison of the Decomposition
Methods
The methods were compared according to the criteria described
in the previous section. The percentage of dipolar components
found by each method is presented in Table 1 (median values
and quartiles are presented). The table also contains average
values of mutual information reduction values for each of the
methods. The p-values resulting from pairwise comparison of the
percentage of the dipolar components found are presented in the
upper diagonal part of Table 2. The values were obtained using a
Wilcoxon test of the values pooled from all of the participants
and sessions with subsequent Benjamini-Hochberg correction
(initial significance level: 0.05; resulting critical value: 0.0429).
The results indicate that the PWCICA and AMICA methods
provide more dipolar components than the other methods. The
difference is significant for the AMICAmethods and insignificant
when PWCICA is compared to other BSSmethods. The PCA and
CSP methods extracted significantly fewer dipolar components
than the other methods.

Pairwise Wilcoxon comparison of the MIR values with
Benjamini-Hochberg correction (initial significance level: 0.05;
resulting critical value: 0.0275) shows that the ICA methods
provide significantly higher mutual information reduction than
the PCA and CSP methods. The difference between ICA and
other methods in terms of MIR was insignificant, as was the
difference between the PCA and CSP methods.

The method similarity was estimated by the fraction of shared
components according to (17), providing a method similarity
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TABLE 2 | The p-values of pairwise Wilcoxon testing of the percentage of the dipolar components found (upper triangle part) and the pattern classification accuracy

(lower triangle part).

MCSP CSP23 CSP12 CSP1X CSP13 AMICA1 AMICA AMICA2 PWCICA SOBI FastICAT KURT FastICAG CUMUL RunICA PCA

MCSP <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0053 <1e-4

CSP23 0.0463 0.0312 0.0053 0.0045 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0037

CSP12 0.1150 0.6045 0.5743 0.5525 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.8583

CSP1X 0.0352 0.9696 0.5822 0.9963 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.3943

CSP13 0.0094 0.6366 0.3041 0.6029 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.5076

AMICA1 <1e-4 0.0231 0.0056 0.0175 0.0628 0.0323 <1e-4 0.0004 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4

AMICA <1e-4 0.0056 0.0015 0.0046 0.0181 0.6061 0.0673 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4

AMICA2 0.0682 0.7721 0.5554 0.8452 0.8395 0.0940 0.0457 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4

PWCICA <1e-4 0.0007 <1e-4 0.0005 0.0027 0.2870 0.6421 0.0076 0.0937 0.5838 0.1890 0.2345 0.0008 <1e-4 <1e-4

SOBI <1e-4 0.0006 <1e-4 0.0003 0.0016 0.2197 0.5266 0.0055 0.8586 0.2654 0.7172 0.6611 0.0350 0.0003 <1e-4

FastICAT <1e-4 <1e-4 <1e-4 <1e-4 0.0002 0.0825 0.2646 0.0012 0.4937 0.6218 0.4582 0.5342 0.0013 <1e-4 <1e-4

KURT <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0758 0.2594 0.0009 0.4703 0.5728 0.9670 0.9049 0.0158 <1e-4 <1e-4

FastICAG <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0515 0.2027 0.0007 0.3798 0.5108 0.8375 0.9007 0.0094 <1e-4 <1e-4

CUMUL <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0145 0.0839 <1e-4 0.1834 0.2308 0.5076 0.5392 0.6238 0.0526 <1e-4

RunICA <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0024 0.0202 <1e-4 0.0391 0.0659 0.1537 0.1792 0.2098 0.4488 <1e-4

PCA <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0002 0.0100

On-line <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4

The values indicating insignificant difference are in bold.

FIGURE 1 | The results of multidimensional scaling according to method similarity. The mapping on the left panel is obtained for the case where all the components

were considered. The mapping on the right panel is obtained for the case where only the dipolar components were considered. The PCA point is omitted from the left

panel due to its remoteness from all other points.

matrix. The similarity matrices for the cases when either all
or only dipolar components were considered were used for
mapping the method onto a 2D plane with a multidimensional
scaling technique. The results of the mapping are shown in
Figure 1. Apparently, the methods tend to group according
to the decomposition criteria, one group containing the ICA
methods except PWCICA, and another group containing the CSP
methods. SOBI and PWCICA are distant from both groups, while
the PCA is as an outlier.

The results for classification accuracy, obtained after searching
for the task-specific components, are shown in Figure 2. Mean
κ values are shown for each subject and each method. The
methods are sorted according to the κ value averaged over

all the subjects. The subjects are sorted according to the κ

value averaged over all the methods. The lower diagonal
part of Table 2 contains p-values resulting from the pairwise
comparison of the κ values for different methods. The values
were obtained using Wilcoxon test of the values pooled from
all of the participants and sessions with Benjamini-Hochberg
correction (initial significance level: 0.05; resulting critical
value: 0.320). The CSP methods provide patterns that are
significantly better classified than those found by the other
methods. The PCA patterns are significantly worse-classified
than the patterns found by the other methods. The task-
specific component search yielded accuracy values significantly
exceeding those obtained during on-line BCI operation,
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FIGURE 2 | Average accuracy of the experimental task classification for all subjects and methods. The bottom row marked “all” contains the values averaged over all

the methods except on-line. The rightmost column marked “all” contains the values averaged over all the subjects. The bottom right value is obtained by averaging

over all subjects and methods.

which is likely due to discarding irrelevant, artifact, and
noisy components.

Component Clustering
The clusters obtained using the ANNIA were sorted according
to their component occurrence, i.e., the percentage of the
experimental session in which the components of the cluster
were found. Figure 3 shows topographic maps and activity power
spectral densities (PSD) for the components of the first 12
clusters. The maps and PSDs were obtained by averaging over
all of the cluster components regardless of the subject or session.
Table 3 presents the occurrence, average dipolarity, average rank,
and specificity of the components of each cluster. As stated above,
the component dipolarity was measured by the residual variance
of the topographic map fit with a potential distribution resulting
from a single current dipole, and the component rank is the

number of methods that found the component minus one. The
specificity was calculated as the percentage of cases when the
component was included in the best set of components (the set
search is described in theMethods section) among the cases when
the component was found.

It should be mentioned that AMICA restricted to only
Gaussian distributions in mixtures performed as well as AMICA
with the generalized super-Gaussian mixtures, suggesting that
dipolar components obtained from band-pass filtered EEG
signal have activity the distribution of which can be adequately
approximated with a mixture of two Gaussians.

DISCUSSION

In the EEG\MEG field, and, particularly, in BCI research, ICA
methods are mostly used for artifact removal during signal
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FIGURE 3 | Average topographic maps and power spectral densities of the first 12 component clusters. The PSDs are plotted in the 5–30Hz range. Blue lines

correspond to relaxation, green lines correspond to left hand motor imagery, and red lines correspond to right hand motor imagery.
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TABLE 3 | The cluster statistics.

Cluster 1 2 3 4 5 6 7 8 9 10 11 12

Occurrence, % 71 70 61 52 52 48 39 38 35 30 26 22

Dipolarity, % 2 9 8 8 4 3 2 3 9 8 3 4

Rank 3.74 2.24 1.78 1.62 3.53 2.83 2.66 1.48 1.06 1.78 1.92 2.23

Specificity, % 21 10 8 24 59 61 34 10 16 18 26 41

preprocessing or epoch classification. They are applied for
eliminating ocular (Höller et al., 2013; Dharmaprani et al., 2016;
Sarin et al., 2020), motion (Zhou et al., 2016; Kobler et al.,
2019), and muscle (Höller et al., 2013; Dharmaprani et al.,
2016) artifacts. The most popular method used for artifact
suppression is RunICA (extended infomax), likely due to its
incorporation into EEGLAB (Delorme and Makeig, 2004) and
BrainStorm (Tadel et al., 2011) software. The ICA methods are
also believed to provide effective spatial filters for BCI feature
selection (Kachenoura et al., 2007; Lotte et al., 2018; Xiaopei
et al., 2019). The main limitation to using the methods is
that they require a substantial amount of data to converge to
meaningful decomposition, and many of the algorithms have
high computational costs to implement on-line. These issues, as
well as the nature of the algorithm used to automatically select
the most specific components, limit the on-line implementation
of the procedure proposed in this paper. The procedure is rather
intended for assessing the overall task-specificity of the EEG
signal and adequately arranging experimental recordings and
subjects with respect to the BCI control efficiency. Performing
the cluster analysis allows the most frequent and typical EEG
patterns in the processed recordings to be extracted with no
need to choose a single decomposition method. The best
method may differ when different criteria are applied, such
as the number of the dipolar components found, the mutual
information reduction, or the accuracy of classification of the
extracted patterns.

The method comparison shows that ICA methods provide
results similar to each other despite the difference in the
independence criteria underlying the algorithms. These methods
find significantly more dipolar components and provide
significantly higher MIR than CSP or PCA, with the best results
being for AMICA and PWCICA. PCA also has the lowest number
of components shared with the other methods, as indicated by
the results of multidimensional scaling. The maximal similarity
between the PCA and other methods, estimated according to
(17), was five times less than the minimal similarity between
the other methods when all of the components were considered
and two times less when only the dipolar components were
considered. On the other hand, our results indicate that non-
blind CSP methods find more of the separable activity patterns,
much like in Xiaopei et al. (2019), where three ICAmethods were
compared to CSP in terms of providing the best spatial filters for a
BCI classifier. However, unlike our case, no significant difference
between RunICA and CSP was observed in Xiaopei et al. (2019).
CSP outperformed the ICAmethods, likely due to accounting for
the signal segmentation with respect to the experimental tasks.

Thus, CSP decomposition is likely to find the dipolar components
with task-specific activity, while it is poor at extracting other
task-irrelevant dipolar sources. However, finding irrelevant but
physiologically plausible sources may be useful for proving that
BCI works based on the activity of the targeted brain areas. E.g.,
it may be important to establish that motor imagery BCI used for
post-stroke rehabilitation worked because of the activity of the
motor areas and not just due to eye movements or differences in
concentration level.

The results of cluster analysis agree with those obtained
earlier for fewer healthy subjects and patients with subcortical
lesions (Frolov et al., 2017a). In previous work, the components
relevant to controlling a hand exoskeleton via BCI were found to
correspond to the sources of sensorimotor mu-rhythm located at
the bottom of the central sulci of the left (SIL) and right (SIR)
hemispheres, alpha-rhythmic activity in the precuneus (Prc),
and alpha- and beta- activity in both the supplementary motor
area (SMA) and in the premotor cortex of the left hemisphere
(PrmL). These sources correspond to clusters 5 (SIL), 6 (SIR),
3 (Prc), 11 (SMA), and 8 (PrmL). We have also found clusters
corresponding to blinking (1) and eye movements (7), which
sometimes exhibited task-relevant activity, e.g., the subjects often
blinked more frequently during relaxation. Clusters 2 and 3
correspond to the occipital alpha rhythm, which has low task-
specificity. Interestingly, the source symmetrical to PrmR was
more frequent compared to the earlier results (Frolov et al.,
2017a). Source 12 exhibited activity similar to the mu-rhythm,
but unfortunately, the subjects for whom it was observed had
no individual anatomical MRI scans, so the source could not be
reliably localized. However, the SIL source was found for more
than half of the recordings for which source 12 was extracted.
Also, sources SIL and 12 were found together by the samemethod
in 35% cases. These findings suggest that source 12 might have
localization different from that of the SIL sources.

The average PSDs of the clustered component activities
reflect the specificity presented in Table 2. The most specific
components of the 5-th, 6-th, and 12-th clusters exhibit
prominent rhythm desynchronization during the motor imagery.
Notably, there is no evident lateralization in the average
level of desynchronization between the hemispheres. There are
different results on the mu-rhythm behavior in the ipsilateral
hemisphere during the hand motor imagery. Our results agree
with those obtained in Vasilyev et al. (2016), where ipsilateral
rhythm suppression was observed. However, ipsilateral rhythm
synchronization was observed in Nam et al. (2011). We suppose
that the reason for the result disagreement lies in the BCI
protocol. It seems that active motor imagery, when maintained
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for a long time (from 10 s in these experiments to 20 s in our
earlier NIRS study (Bobrov et al., 2016), involves activation
of both hemispheres, either due to high concentration and
the complexity of the task or due to the person’s intention
to “check” whether the requested hand movement has been
imagined. The first explanation is supported by the results of
Nam et al. (2011), where the ipsilateral rhythm synchronization
was observed mainly in the end phase of brief motor imagery
(1 s) trials, suggesting that brief and prolonged motor imagery
may require different strategies. The latter explanation comes
from some of the participants reporting that they had sometimes
switched attention to the other hand to “make sure it isn’t
moving”. Note, that both phenomena (different strategy and
attention switch) may be present during prolonged motor
imagery and underlie the absence of the asymmetry of
rhythm suppression.

Unlike the SIL, SIR, and 12th sources, other sources do
not exhibit such prominent rhythm desynchronization or
synchronization during the motor imagery. However, the Prm,
SMA, and Prc sources are often marked as being task-specific.
These areas are often reported to be relevant to motor planning,
execution, and imagery. The Prm sources are likely to reflect
mirror neuron system activation when the image of the motion
to be executed or imagined is generated to be compared to the
incoming sensory information (Rizzolatti et al., 2014). The SMA
source is likely to correspond to the supplementary motor area
activation. This area is considered to be involved in the motion
timing, motion sequence generation, or motion suppression
(Rizzolatti et al., 2014). It was reported to be more active during
the motor imagery than during real motion execution, suggesting
that its main role is to suppress the actual movement whenmotor
imagery is performed (Guillot et al., 2014). The occurrence of the
Prm and SMA sources is not as high as that of the Prc and SI
sources. Nevertheless, we believe that these areas are activated
in all of the participants but that the activations are not often
prominent in the electroencephalogram and thus are harder to
find, even when using advanced techniques. This supposition

is supported by the results of numerous fMRI studies (Hétu
et al., 2013) that report up to 34 areas being active during
motor imagery.

In conclusion, we suggest the use of multi-method
decomposition with subsequent component specificity
estimation and clustering, focusing on the shared components.
The primary methods to be used are PWCICA, AMICA, and
MCSP, but utilizing other algorithms to support the findings
seems to be reasonable.
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Background: Clinical exoskeletal-assisted walking (EAW) programs for individuals with

spinal cord injury (SCI) have been established, but many unknown variables remain.

These include addressing staffing needs, determining the number of sessions needed to

achieve a successful walking velocity milestone for ambulation, distinguishing potential

achievement goals according to level of injury, and deciding the number of sessions

participants need to perform in order to meet the Food and Drug Administration (FDA)

criteria for personal use prescription in the home and community. The primary aim of

this study was to determine the number of sessions necessary to achieve adequate

EAW skills and velocity milestones, and the percentage of participants able to achieve

these skills by 12 sessions and to determine the skill progression over the course of

36 sessions.

Methods: A randomized clinical trial (RCT) was conducted across three sites, in

persons with chronic (≥6 months) non-ambulatory SCI. Eligible participants were

randomized (within site) to either the EAW arm first (Group 1), three times per week

for 36 sessions, striving to be completed in 12 weeks or the usual activity arm

(UA) first (Group 2), followed by a crossover to the other arm for both groups. The

10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the

Timed-Up-and-Go (s) (TUG) were performed at 12, 24, and 36 sessions. To test walking

performance in the exoskeletal devices, nominal velocities and distance milestones

were chosen prior to study initiation, and were used for the 10MWT (≤40s), 6MWT

(≥80m), and TUG (≤90s). All walking tests were performed with the exoskeletons.
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Results: A total of 50 participants completed 36 sessions of EAW training. At 12

sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the 10MWT, 6MWT,

and TUG milestones, respectively. By 36 sessions, 40 (80%), 41 (82%), and 42 (84%)

achieved the 10MWT, 6MWT, and TUG criteria, respectively.

Conclusions: It is feasible to train chronic non-ambulatory individuals with SCI in

performance of EAW sufficiently to achieve reasonable mobility skill outcome milestones.

Keywords: exoskeletal-assisted walking, mobility walking tests, 10MWT, 6MWT, TUG, Food and Drug

Administration

INTRODUCTION

Paralysis resulting from spinal cord injury (SCI) often leads to a
reduction in mobility and an associated decrease in daily physical
activity. In addition, SCI also leads to other secondary adverse
consequences related to body composition (Wilmet et al., 1995;
Spungen et al., 1999, 2000), cardiovascular function (Wahman
et al., 2010; LaVela et al., 2012), autonomic integrity (Wecht
et al., 2000, 2001), and bowel function (Glickman and Kamm,
1996; Stiens et al., 1997; Korsten et al., 2004). The combination
of reduced mobility and secondary consequences of SCI leads to
a reduced quality of life (Costa et al., 2001; Tate et al., 2002; Jensen
et al., 2007; Wilson et al., 2011; Munce et al., 2013).

Devices classified by the Food and Drug Administration
(FDA) as “powered exoskeletons” (Product Classification U. S.
Food Drug Administration, 2019) have become commercially
available and enable individuals with motor paralysis to stand
and walk over ground. These devices employ use of a ridged
external frame for bracing the lower extremities and trunk.
Rechargeable battery powered motors are then used to power
movement of the hip and knee joints. Just as able bodied walking
requires the ability to maintain balance and perform weight
shifting (Tapio, 2016), powered exoskeleton assisted ambulation
requires the same. These movements are measured by sensors
in the device that trigger motors to power movement at the hip
and knee joints. Consecutive weight shifting must be completed
by actively maintaining balance on the stance leg so that the
swing leg can clear the floor appropriately. Subsequent weight
shift onto the contralateral side continues to trigger the device
to take steps. Over ground balance maintenance and weight
shifting are assisted through use of crutches or a walker. The
execution of this exoskeletal-assisted walking (EAW) movement
places demands on the neuromuscular and sensory systems of
the user, increasing oxygen consumption when compared to able
bodied ambulation (Asselin et al., 2015; Evans et al., 2015). The
additional metabolic activity required to ambulate with these
devices has the potential to provide a cardiovascular exercise
challenge and thereby improve cardiovascular health (Escalona
et al., 2018). However, since this technology remains relatively
new, many aspects of its use by persons with SCI have yet to
be determined.

Due to limitations with current available systems, not all
persons with SCI are able to successfully achieve EAW (walking
velocity of ≥0.40 m/s over 10 meters and 6-min walk distance
≥110mwithminimal assistance or less). Some usersmaymanage

to take steps but require a significant amount of assistance to
accomplish this. Therefore, identification of basic skills during
early sessions in order to predict who would be potential
responders, that is successful and independent users of the device
in the home and community after completing a training program,
would be important. The purpose of this study was to document
the number of sessions necessary to achieve adequate EAW
skills and velocity milestones, to document the proportion of
participants who achieved successful EAW skills by 12 sessions,
and to determine the skill progression over the course of
36 sessions.

METHOD

Recruitment
This study was approved by the Institutional Review Boards
(IRB) of the three collaborating clinical sites, namely the James
J. Peters VA Medical Center (JJPVAMC), Bronx, NY, Kessler
Institute for Rehabilitation/Kessler Foundation (KIR/KF), West
Orange, NJ, and the University of Maryland, Baltimore IRB
for the University of Maryland Rehabilitation and Orthopedic
Institute (UM Rehab and Ortho), Baltimore, MD). In addition,
the Department of Defense Congressionally Directed Medical
Research Program (DOD CDMRP) IRB approved the total
study. Several recruitment strategies were employed. The study
physicians at each site were the primary source of identifying
potential participants. In-services at each site were provided
to educate other staff physicians about this study for referrals.
Additionally, at each site IRB-approved flyers and brochures
were distributed. Physician-referred potential participants, as
well as those responding to IRB approved advertisements or the
clinicaltrials.gov website listing (NCT02314221), were informed
about the details and eligibility for the study. The targeted study
population included persons with chronic SCI (≥6 months)
who were non-ambulatory and therefore used wheelchairs for
mobility. The inclusion/exclusion criteria of this study are
described below (Table 1).

Protocol
Participants were screened for eligibility after signing the
informed consent form. Screening tests for eligibility included
a complete history and physical examination incorporating
the following: the International Standards for Neurological
Classification of SCI (ISNCSCI) examination to determine level
and completeness of injury, range of motion at the hips, knees
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TABLE 1 | Enrollment criteria.

Enrollment criteria

Inclusion criteria:

1. Males and females, between 18 and 65 years old;

2. Traumatic or non-traumatic tetraplegia or paraplegia >6 months in duration;

3. Unable to ambulate faster than 0.17 m/s on level ground with or without an

assistive device and are wheelchair-dependent for mobility;

4. Height 160 to 190 cm (63–75 in or 5’3” to 6’3” ft)

5. Weight <100 kg (<220 lb)

6. Able to hold the Lofstrand crutches or wheeled walker; and

7. Able to sign informed consent.

Exclusion criteria:

1. Diagnosis of neurological injury other than SCI including:

a Multiple sclerosis, Stroke, Cerebral Palsy, Amyotrophic lateral sclerosis,

Traumatic Brain injury, Spina bifida, Parkinson’s disease, or

b Other neurological condition that the study physician considers in his/her

clinical judgment to be exclusionary;

2. Severe concurrent medical disease, illness or condition;

3. Lower extremity fracture within the past 2 years;

4. Dual Energy X-ray Absorptiometry (DXA) results indicating a t-score below−3.5

at the femoral neck or the total proximal femur bone and knee bone mineral

density (BMD) <0.60 gm/cm2;

5. Diagnosis of heterotopic ossification of the lower extremities which affect range

of motion or proper BMD measurements;

6. Significant contractures defined as flexion contracture limited to 35◦ at the hip

and 20◦ at the knee;

7. Untreated hypertension (SBP>140, DBP>90 mmHg);

8. Symptomatic orthostatic hypotension during standing that does not resolve

after attempts at upright posture that were made over several days, and

standing by the participant is deemed to pose a health risk, as determined

by a physician, because of symptomatic orthostatic hypotension;

9. Systemic or peripheral infection;

10. A medical diagnosis in the patient chart of atherosclerosis, congestive heart

failure, or history of myocardial infarction;

11. Trunk and/or lower extremity pressure ulcers;

12. Severe spasticity (defined by an Ashworth score of 4.0 across a lower

extremity joint or clinical impression of the study physician or physical

therapist);

13. Significant contractures defined as flexion contracture limited to 25◦ at the hip

and knee;

14. Diagnosis of heterotopic ossification of the lower extremities which affect

range of motion or proper measurement of BMD measurements;

15. Psychopathology documentation in the medical record or history of that may

conflict with study objectives;

16. Pregnancy and/or lactating females.

17. Brain injury with score on mini-mental status examination <26

18. Diagnosis of coronary artery disease that precludes moderate to intense

exercise;

19. Deep vein thromboses in lower extremities of <6 months duration;

20. Other illness that the study physician considers in his/her clinical judgment

to be exclusionary.

and ankles bilaterally, Ashworth spasticity examination in the
lower extremities, standing orthostatic tolerance test, and bone
mineral density (BMD) scanning of bilateral knees (proximal
tibia and distal femur) and hips (femoral neck and total hip) by
Dual Energy X-ray Absorptiometry (DXA). Exclusion criteria for
the BMDmeasurements have been described (Table 1).

Eligible participants were randomized within site to one of two
groups for 12 weeks (3 months): Group 1 received EAW first for
12 weeks then crossover to usual activity (UA) for a second 12
weeks; Group 2 received UA first for 12 weeks then crossover

FIGURE 1 | Exoskeletons used in this study: (A) ReWalk (ReWalk Robotics,

Inc. Marlborough, MA, USA) and (B) Ekso GT (Ekso Bionics, Richmond, CA,

USA).

to EAW for 12 weeks of training. The EAW arm consisted of
EAW training, three sessions per week (4–6 h/week) for 36
sessions. TheUA arm consisted of identification of usual activities
for each participant and encouragement to continue with these
activities throughout the 12-week UA arm. This study employed
a randomized, crossover design with an EAW intervention arm
and an UA arm which was designed to serve as a control arm
for the secondary outcomes of the clinical/medical variables.
The results of the medical variables are beyond the scope of
the present manuscript and will be presented in a future work.
As such, the UA arm was not intended to be used as a control
comparison for the mobility outcome measures.

Two powered exoskeleton devices (Figure 1) were used in this
study, namely the ReWalkTM (ReWalk Robotics, Marlborough,
MA)1 and the EksoTM (Ekso Bionics, Richmond, CA)2. These
powered exoskeletons were chosen because they were the only
devices commercially available and FDA approved for use
within rehabilitation centers at the time of study development.
In addition, the ReWalk has been FDA approved for home
and community use based on certain user characteristics and
achievements within a supervised rehabilitation center (spinal
injury level T7 to L5, walking velocity of ≥0.4 m/s over 10
meters and 6min walk distance ≥110m) (Hoffmann, 2016).
Both devices have functional similarities, such as the required
concurrent use of Lofstrand crutches or a wheeled walker in
the case of the Ekso, and the need for the user to shift their
weight in order to trigger sensors that in turn motorized the hip.
However, there are some notable differences in the specifications
of the devices such as the stepping pattern and the design such as
the footplate in the Ekso. The maximum documented velocities
for the devices are 0.80 m/s for the ReWalk1 and 0.45 m/s
for the Ekso2. The Ekso device has a rigid back that provides

1ReWalk. Available online at: https://rewalk.com/.
2Ekso Bionics. Available online at: https://eksobionics.com/eksohealth/.
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thoracic support to accommodate participants who have less
trunk stability such as those with a low cervical (C) or high
thoracic (T) level of injury. The footplate of Ekso has a sensor
to detect weight shifts and assist with triggering the hip motors.
The foot trajectory of the Ekso follows a semi-elliptical trajectory
with a higher step height for foot clearance, leading to a marching
style gait pattern. In the Ekso, depending on the functional
abilities of the user, the level of device assist could be selected
from the adaptive, maximal or fixed mode. In response to the
participants’ functional abilities, variable assistance constantly
adapts motor output or a fixed level of assistance could be
set for participants. The ReWalk gait paradigm is more of a
swing pattern minimizing the step height but requiring more
controlled balance to successfully achieve reciprocal stepping
(Asselin et al., 2016). Thus, the ReWalk powered exoskeleton was
chosen primarily for participants with injury levels at T3 and
below who could perform weight shifting and clear each foot
during stepping. Those with higher cord lesions and less trunk
stability were better able to utilize the Ekso powered exoskeleton.
Although choice of which device was commonly distributed
based on level and completeness of injury, device selection was
somewhat variable depending on the participant’s preference and
the clinical judgment of the study team. Both devices were used
at JJPVAMC and Kessler, and the ReWalk was only used at UM
Rehab and Ortho. Study-related serious adverse event (SAE) and
adverse event (AE) tracking occurred throughout the study.

Training Sessions
Generally, within the first two sessions, standing balance skills
were practiced and achieved prior to progression to walking
skills. Walking skills began with unloading the right foot (both
devices use the right leg to take the first step). Shifting weight
onto the right foot and unweighing the left foot was the next step
in the progression of walking. Continuous walking resulted from
serial performance of the anterior-lateral diagonal shift onto the
contralateral limb. Because this was an entirely new skill for the
participants, mobility outcomes were not measurable at time 0
(baseline). It was important to determine how many participants
could achieve successful EAW skills by 12 sessions to prove
or disprove clinical relevance and to project progression by 36
sessions. Participants were asked to perform EAW sessions three
times/week for 12 weeks. During each session, heart rate (HR),
blood pressure (BP), total steps and rating of perceived exertion
(RPE, by the Borg scale: from 6 to 20) (Escalona et al., 2018)3

were monitored. Additional details of the training program were
presented previously (Asselin et al., 2016; Baunsgaard et al.,
2018). Missed sessions (due to transportation, weather, etc.) were
added on to the length of the training period when possible in
order to achieve a total of 36 sessions. A modified Functional
Independence Measure (FIM) was used to assess how much
physical assistance from the trainer was provided to participants
in order to complete mobility skills. The FIM scale (7: Complete
Independence, 6: Modified Independence, 5: Supervision, 4:

3Perceived Exertion (Borg Rating of Perceived Exertion Scale): Centers for Disease
Control and Prevention. Available online at: https://www.cdc.gov/physicalactivity/
basics/measuring/exertion.htm.

Minimal Assist, 3: Moderate Assist, 2: Maximal Assist, 1: Total
Assist, 0: Activity does not occur) (Dodds et al., 1993; FIM, 2019)
for level of assistance during EAWwas used and ranged from 0 to
6. While a score of 7, complete independence, is a part of the FIM
scale, it is not applicable for this study as all participants required
the use of the exoskeleton, thus negating the ability of complete
independence (Dodds et al., 1993; FIM, 2019).

Outcome Measures
A variety of walking assessments were employed to assess
an individual’s functional independence (Shinkai et al., 2000;
Middleton et al., 2015). The 10-meter walk test (10MWT), which
measures the time in seconds (s) taken to walk 10 meters,
is a short distance performance measurement to determine
functional mobility and vestibular function (Van Hedel et al.,
2008)4. The 6min walk test (6MWT) is a submaximal exercise
test that measures the distance inmeters (m) traversed over 6min
and provides cardiopulmonary and musculoskeletal functional
capacity information (Van Hedel et al., 2008; Bittner and Singh,
2017). The timed-up-and-go (TUG) is the time from the starting
in a seated position to stand-up, walk ten feet, turn around, walk
back ten feet, and sit down. This measurement was performed
to assess fall risk and ability to balance and maneuver the device
during the sit-to-stand and stand-to-sit procedures (Podsiadlo
and Richardson, 1991; Van Hedel et al., 2008). During all walking
tests, level of assistance, balance maintenance, weight shifts,
reciprocal stepping and functional mobility were observed and
recorded. The three walking test measurements were performed
during the 12th, 24th, and 36th sessions.

Data Analysis
All statistical tests were set a priori at alpha = 0.05. Descriptive
statistics and frequency distributions were used to describe the
demographic data. All statistical analyses were completed using
SPSS 23.00 or higher. The continuous variables were reported
in mean plus or minus standard deviation. Total steps over
36 sessions and average of steps were calculated to determine
participants’ overall performance during this study. Because
of differences in characteristics of devices, number of steps
and velocity were categorized by devices. With each walking
outcome (10MWT, 6MWT, and TUG), achievement of the
hypothesized goals during the EAW intervention were reported
as categorical data and presented as percent occurrence. The
hypotheses for significant positive changes at session 12 verses
session 36 for the EAW walking tests were as follows: at session
12, 10% of participants would complete the 10MWT in ≤40 s
and 20% of the participants would complete the 6MWT of
≥80m and TUG in ≤90 s; at session 36, 70% of participants
would complete the 10MWT in ≤40 s and 6MWT of ≥80m
and 60% of participants would perform the TUG in ≤90 s.
Additional analyses were performed according to skill level of
completing the 10MWT, 6MWT and TUG categorized by slow,
medium, and fast velocity sub-groups. The velocity sub-groups
were defined post hoc after the review of data starting with using

410 Meter Walking Test: Physiopedia. Available online at: https://www.physio-
pedia.com/10_Metre_Walk_Test.
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TABLE 2 | Exoskeletal-assisted walking velocity categories for each of the walking

tests.

EAW category 10MWT 6MWT TUG

Slow <0.25 m/s <80m ≥120 s

Medium ≥0.25 and <0.40 m/s ≥80 and <110m ≥90 and <120 s

Fast ≥0.40 m/s ≥110m <90 s

10MWT, 10-minute walk test; 6MWT, six-meter walk test; TUG, timed up and go; m/s,

meters per second; m, meters; s, seconds.

the FDA criteria as the minimum velocity for “fast” and thus
representing those with the greatest skill level in the devices.
The “medium” velocity was defined as those who could walk at
speed and distance ranges that demonstrated some proficiency
with the devices, and “slow” were those who were minimally
able to use the devices. The velocities and distances by category
for each walking test are provided (Table 2). To determine
significant main effects, the mobility skills were evaluated for
the three different time points using a repeated measure analysis
of variance (ANOVA). Post hoc analysis were performed using
paired t-tests to determine significance between sessions 12 and
36 for progression of participant performances on the mobility
outcomes. Additionally, the TUG criterion was analyzed further
and compared to the established FDA criteria for the 10MWT
(speed ≥0.40 m/s) and 6MWT (distance ≥110 m).

Due to differences in characteristics of level of injury
with residual muscle function, participants were sub-grouped
according to the International Standards for Neurological
Classification of Spinal Cord Injury (ISNCSCI): motor complete
tetraplegia (C1-C8; American Spinal Injury Association
impairment scale (AIS) A&B); motor incomplete tetraplegia
(C1-C8; AIS C&D); motor complete paraplegia (T1-T12; AIS
A&B); and motor incomplete paraplegia (T1-T12; AIS C&D). A
mixed model ANOVA was performed to determine significant
main and interaction effects for the neurological classifications
with respect to time (12, 24, and 36 sessions) and number of
steps per session block by mobility test (10MWT, 6MWT, and
TUG). Post hoc analyses were performed using a paired t-test
to compare performances of walking assessments from 12 to 36
sessions within the level and completeness sub-groups.

RESULTS

Participants
A total of 50 individuals (average age 39± 14 years) completed 36
sessions of EAW training. Demographic information for gender,
height, weight, duration of injury, level of injury, ISNCSCI
classification, and device used are summarized (Table 3).

The proportion of males (76%) and females included in this
study corresponds with reported proportion of males (about
78%) and females in the United States SCI population (NSCISC,
2019). More individuals with paraplegia participated in this study
mainly due to the need of arm and hand function in order
to safely use crutches or a walker to maintain balance. Most

participants with injury level of T3 or lower used the ReWalk
and participants with injury level higher than T3 used the Ekso.
However, there were some participants that were thought to be
better suited for the other device. This resulted in a total of 28
participants that trained in the ReWalk and 22 that trained with
the Ekso (Table 3).

There were no “probably study-related” SAEs, but there
were four “possibly study-related” SAEs. There were 49 total
study-related AEs which included 39 skin abrasions/bruising,
eight musculoskeletal/edema, and two falls. All study-related
skin abrasions and musculoskeletal AEs were resolved, and
participants continued in study. There were two falls during
EAW, but no injuries occurred. Participants had appropriate HR
and BP responses throughout the training sessions. RPE’s during
training ranged from very, very light to very hard (Tapio, 2016).
There were no HR or BP-related AEs during EAW.

Total Steps Results
There were no order effects for Group 1 (immediate) vs. Group
2 (delayed therapy) for total steps and for any of the walking
test results. Descriptive statistics were used to determine mean
and standard deviation for the cumulative total number of steps
for all sessions. The average number of steps per session by
session 36 for all participants (N = 50) regardless of the device
were 51,065 ± 17,836 and the average steps per session were
1,420 ± 491. The cumulative total number of steps taken across
all sessions for all participants split by device is presented in
relation to the fastest walking velocity achieved by 36 sessions
(Figure 2A). The number of steps taken per session increased
overall sessions for both devices. Participants who used the
ReWalk took significantly less steps per session during the first 12
sessions than participants who used the Ekso. However, during
the last 12 sessions (sessions 25–36) participants who used the
ReWalk were able to take more steps per session than those who
used the Ekso. Ultimately, participants who used the Ekso took
more total overall steps than those who used the ReWalk. The
first 6 sessions were pilot sessions where the participants were
introduced to the device and had the actual training. The linear
regressions of ReWalk (r2 = 0.0956, y = 27.90x + 931.24) and
Ekso (r2 = 0.082, y = 16.62x + 1267.96) were performed with
steps only on sessions 7–36 (Figure 2B, Table 4).

10 Meter Walk Test (10MWT) Results
At session 12, 92% of the participants performed the 10MWT in
≤60 s (≥0.17m/s). Participants were able to perform the 10MWT
with an average of 38.6 ± 14.8 s by 12 sessions. The fastest
10MWT at 12 sessions was 20.0 s and the slowest was 83.4 s. By 36
sessions, 82% of the participants (compared with 62% at session
12) were able to perform the 10MWT in ≤40 s (≥0.25 m/s).
The average 10MWT across all participants was 36.3 ± 14.6 s
by 24 sessions and 32.1 ± 12.6 by 36 sessions. With 36 sessions
of EAW training, 17 of 50 participants (34%) fulfilled the FDA
10MWT requirement (≥0.40 m/s) for personal use prescription
(Tables 5, 6).
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TABLE 3 | Demographic and spinal cord injury characteristics of the total study group.

Count (N)

and percent

(%)

Demographic characteristics SCI characteristics

Age Height Weight Body mass index Duration of injury Motor

complete

Motor

incomplete

(AIS A/B) (AIS C/D)

Category N % Years cm kg kg/m2 Years n % n %

All 50 100 38.68 ± 14.15 174.14 ± 10.33 72.80 ± 13.44 23.94 ± 3.65 4.69 ± 5.18 31 62 19 38

Males 38 76 39.87 ± 14.78 178.00 ± 8.52 76.80 ± 11.67 24.24 ± 3.44 5.37 ± 5.63 26 52 12 24

Females 12 24 34.9 ± 11.68 161.93 ± 4.07 60.14 ± 10.80 22.97 ± 4.25 2.55 ± 2.46 5 10 7 14

Para 36 72 37.44 ± 12.68 173.85 ± 10.08 72.16 ± 13.40 23.83 ± 3.80 4.99 ± 5.78 27 54 9 18

Tetra 14 28 41.86 ± 17.50 174.90 ± 11.31 74.45 ± 13.93 24.22 ± 3.36 3.93 ± 3.22 4 8 10 20

Males-Para 28 56 39.21 ± 13.31 177.53 ± 8.04 74.92 ± 12.53 23.74 ± 3.58 5.77 ± 6.27 22 44 6 12

Males-Tetra 10 20 41.70 ± 19.01 179.32 ± 10.10 82.06 ± 6.88 25.64 ± 2.72 4.25 ± 3.31 4 8 6 12

Female-Para 8 16 31.25 ± 8.01 160.97 ± 3.83 62.48 ± 12.41 24.12 ± 4.75 2.26 ± 2.16 5 10 3 6

Females-Tetra 4 8 42.25 ± 15.59 163.83 ± 4.40 55.45 ± 4.93 20.66 ± 1.74 3.12 ± 3.28 0 0 4 8

DOI > 2 years 26 52 38.15 ± 13.39 174.97 ± 8.60 74.79 ± 12.98 24.37 ± 3.67 7.85 ± 5.55 16 32 10 20

DOI ≤ 2 years 24 48 39.25 ± 15.20 173.25 ± 12.05 70.65 ± 13.87 23.47 ± 3.65 1.28 ± 0.54 15 30 9 18

ReWalk para 27 54 35.63 ± 11.07 174.32 ± 9.77 72.59 ± 13.38 23.88 ± 4.04 5.73 ± 6.43 20 4 7 14

ReWalk tetra 1 2 31 188.96 84.37 23.88 5.00 0 0 1 2

Ekso para 9 18 42.89 ± 16.15 172.44 ± 11.46 70.86 ± 14.16 23.67 ± 3.14 2.79 ± 2.14 7 14 2 4

Ekso tetra 13 26 42.69 ± 17.92 173.89 ± 11.10 73.69 ± 14.19 24.24 ± 3.49 3.85 ± 3.33 4 8 9 18

Values represent means and (standard deviations); SCI, spinal cord injury; AIS, American Spinal Injury Association Impairment Scale; cm, centimeters; kg, kilograms; m, meters;

G1, Group 1; G2, Group 2; Para, paraplegia; and Tetra, tetraplegia; EAW, exoskeletal-assisted walking; UA, usual activities; DOI, duration of SCI; ReWalk or Ekso user for the study

as indicated.

FIGURE 2 | Results of average steps per session block (A) and by session (B) split by device. Both those using the ReWalk (r2 = 0.0956, y = 27.90x+931.24) and

Ekso (r2 = 0.082, y = 16.62x+1267.96) took more steps during later sessions. Since the first 6 sessions were pilot sessions where the participants were introduced

to the device, the linear regression models were performed with data from sessions 7 to 36. The Ekso users increased the number of steps per session by 6 to 12

sessions then plateaued, whereas, the ReWalk users initially had less steps per session, but progressively increased by 36 sessions.

Six Minute Walk (6MWT) Test Results
Thirty-five participants (70%) were able to walk a distance
≥80 meters for the 6MWT by 12 sessions. Twenty-six
participants (52%) achieved successful EAW training with
or without minimal assistance by 12 sessions. Forty-eight
participants (96%) were able to walk more than 50 meters
(≥0.14 m/s) in the 6MWT and the average 6MWT was 99.8

± 35.1m at 12 sessions. By 24 sessions, about half of the
participants (24 participants, 48%) were able to meet FDA
requirements for the 6MWT (≥110m). By 36 sessions, 41
(82%) participants accomplished a 6MWT of ≥80m (≥0.22
m/s). The average 6MWT was 111.9 ± 42.6m by 24 sessions
and 125.3 ± 40.4m by 36 sessions. At 36 sessions of
EAW training, 33 of 50 participants (66%) fulfilled the FDA
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TABLE 4 | Walking test results by devices (ReWalk and Ekso).

Walking test Unit Session 12 Session 24 Session 36

ReWalk Ekso ReWalk Ekso ReWalk Ekso

10MWT Mean ± SD (s) 29.51 ± 7.80 50.08 ± 13.59 26.89 ± 7.53 48.37 ± 12.41 25.61 ± 7.89 40.02 ± 12.87

Min–Max (s) 19.98–46.17 29.90–83.43 17.80–46.60 24.70–70.58 16.58–47.50 21.03–63.68

Mean ± SD (m/s) 0.36 ± 0.09 0.21 ± 0.06 0.40 ± 0.10 0.22 ± 0.06 0.42 ± 0.11 0.27 ± 0.08

6MWT Mean ± SD (m) 119.50 ± 32.68 74.78 ± 18.01 136.85 ± 38.50 80.05 ± 20.93 148.44 ± 32.99 96.79 ± 28.94

Min–Max (m) 59.70–168.40 43.75–112.70 40.70–196.40 46.53–141.80 65.40–206.60 54.60–162.00

Mean ± SD (m/s) 0.33 ± 0.09 0.21 ± 0.05 0.38 ± 0.11 0.22 ± 0.06 0.41 ± 0.09 0.27 ± 0.08

FIM 1 to 3 (n, %) 10 (38%) 9 (47%) 8 (30%) 4 (18%) 2 (7%) 2 (9%)

FIM 4 to 5 (n, %) 14 (54%) 10 (53%) 14 (52%) 18 (82%) 15 (56%) 19 (86%)

FIM 6 (n, %) 2 (8%) – 5 (18%) – 10 (37%) 1 (5%)

TUG Mean ± SD (s) 67.17 ± 15.25 90.33 ± 18.33 69.69 ± 33.82 81.95 ± 24.11 53.41 ± 11.24 72.22 ± 20.47

Min–Max (s) 43.72–108.78 64.90–134.37 34.59–155.24 39.05–144.60 35.15–81.50 42.61–103.38

FIM 1 to 3 (n, %) 12 (52%) 17 (89%) 14 (58%) 12 (54%) 7 (27%) 7 (33%)

FIM 4 to 5 (n, %) 10 (43%) 2 (11%) 8 (33%) 10 (46%) 12 (46%) 13 (62%)

FIM 6 (n, %) 1 (5%) – 2 (9%) – 7 (27%) 1 (5%)

Total Steps by Sessions Mean ± SD (#) 11,789 ± 5,421 14,357 ± 5,186 28,788 ± 12,441 32,760 ± 9,892 50,475 ± 19,393 53,685 ± 13,645

Min–Max (#) 3,620–21,459 4,963–21,516 8,925–47,493 13,163–48,352 21,005–85,125 22,633–74,772

Grouped Total Stepsa Mean ± SD (#) 11,789 ± 5,421 14,357 ± 5,186 16,999 ± 7,455 18,403 ± 5,078 209,52 ± 8,246 20,925 ± 4,544

Min–Max (#) 3,620–21,459 4,963–21,516 5,025–28,820 8,200–28,431 9,338–38,677 9,470–27,767

Steps within Session Mean ± SD (#) 1,173 ± 594 1,256 ± 345 1,426 ± 593 1,538 ± 430 1,718 ± 731 1,601 ± 349

Min–Max (#) 210–2,300 423–1,835 427–2,511 389–2,556 143–3,689 745–2,108

10MWT, ten meter walk test in meters (m); 6MWT, six-minute walk test in seconds (s); TUG, timed up and go in seconds (s); SD, standard deviation; m/s, meters per second; Min,

minimum values achieved; Max, maximum value achieved; n, number and %, percent of participants who achieved the criteria; Com, motor complete; Tetra, tetraplegia; Inc, motor

incomplete; Para, paraplegia; FDA, Food and Drug Administration; and FIM, Functional Independence Measure. Shaded areas indicate the FIM scores (FIM definitions are reported in

Table 5 legend) for 6MWT and TUG walking tests at 12, 24, and 36 sessions. Not all participants had a FIM score recorded during Sessions 12, 24, and 36.
aGrouped Total Steps were defined as grouped sessions: 1–12, 13–24, and 25–36.

requirement for the 6MWT (110m) for personal use prescription
(Tables 5, 6).

Timed Up and Go (TUG) Test Results
At session 12, 46 participants (92%) performed the TUG in 120 s
and 36 participants (72%) performed the TUG in <90 s. By
Session 36, 84% of the participants were able to perform the TUG
in <90 s (Tables 5, 6).

Combined Walking Test Result Reporting
The number and percent of participants who were categorized
by slow, medium, and fast walkers, their progression into the
more skillful category over the three timepoints (sessions 12,
24, and 36) and number of participants who met FDA velocity
criteria, stratified by level of injury are presented (Table 5). With
36 sessions of EAW training, 15 of 50 participants (30%) who
used the ReWalk succeeded in achieving both of FDA speed
requirements for personal use prescription (10MWT within 25 s
or ≥0.40 m/s and 6MWT ≥110m or ≥0.31 m/s). Those fifteen
participants met the FDA requirement by 24 sessions (Table 5).

The overall performance results from the different walking
assessments at the three time points, the change in performance
with additional training sessions and the range of speeds
achieved, respectively, are presented (Table 6). A repeated
measures ANOVA with a Greenhouse-Geisser correction

determined that the mean of 10MWT, 6MWT, and TUG differed
statistically between time points (10MWT: (F(1.841, 88.372) =
13.921, p < 0.0005), 6MWT (F(1.849, 88.734) = 34.830, p <

0.0005), and TUG (F(1.597, 68.665) = 13.749, p < 0.0005)). Paired-
sample t-tests were conducted to compare the performance of
tasks with the number of sessions. There were no significant
differences in the 10MWT and the TUG from 12 to 24
sessions. However, there were significant differences in all
mobility assessments, 10MWT, 6MWT, and TUG from 24 to
36 sessions. There were also significant differences from 12
to 36 sessions. The mean values for the 10MWT (s), 6MWT
(m), and TUG (s) walking assessments are presented (Table 6).
The average results of all participants’ walking velocities and
distances from 12 to 36 sessions were significantly improved
(Table 6).

Using the walking velocity, participants were divided into
three sub-groups: slow, medium, and fast. The results of the
TUG showed most of participants (82%) falling into the medium
and fast velocity sub-groups at session 12. This improved with
further training, as 86% of participants fell in the fast category
at session 36. It was hypothesized that 20% of participants
at 12 sessions and 60% of participants at 36 sessions would
be able to perform the TUG in ≤90 s. However, more than
two thirds of participants (72%) accomplished TUG criterion
at session 12 and 90% of participants did at session 36 in
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TABLE 5 | Number and percent of participants by walking velocity categories.

Outcomes Velocity and distance

categories

12 sessions

n (%)

24 sessions

n (%)

36 sessions

n (%)

10MWT Primary ≥0.17 m/s 46 (92%)

Primary ≥0.25 m/s 31 (62%) 41 (82%)

Slow: <0.25 m/s 21 (42%) 16 (32%) 10 (20%)

Medium: ≥0.25 to <0.40 m/s 16 (32%) 18 (36%) 22 (44%)

Fast: ≥0.40 m/s 13 (26%) 16 (32%) 17 (34%)

ReWalk (only) users who met FDA

velocity and distance criteria

(10MWT: ≥ 0.40 m/s and 6MWT: ≥110m)

Total (n = 28) 9 (32%) 15 (54%) 15 (54%)

Com Tetra (n = 0) n/a n/a n/a

Inc Tetra (n = 1) 1 (100%) 1 (100%) 1 (100%)

Com Para (n = 20) 6 (30%) 11 (55%) 11 (55%)

Inc Para (n = 7) 2 (29%) 3 (43%) 3 (43%)

6MWT Primary ≥50m 48 (96%)

Primary ≥80m 35 (70%) 41 (82%)

Slow: <80m 16 (32%) 14 (28%) 8 (16%)

Medium: ≥80 to <110m 18 (36%) 12 (24%) 8 (16%)

Fast: ≥110m 16 (32%) 24 (48%) 33 (66%)

FIM ≥4 26 (52%) 37 (74%) 45 (90%)

TUG Primary ≤120 s 48 (96%)

Primary ≤90 s 36 (72%) 45 (90%)

Slow: ≥120 s 1 (2%) 5 (10%) 0 (0%)

Medium: ≥90 to <120 s 10 (20%) 5 (10%) 5 (10%)

Fast: <90 s 36 (72%) 38 (76%) 43 (86%)

FIM ≥4 13 (26%) 20 (40%) 33 (66%)

10MWT, ten meter walk test in meters (m); 6MWT, six-minute walk test in seconds (s); TUG, timed up and go in seconds (s); SD, standard deviation; m/s, meters per second; Min,

minimum values achieved; Max, maximum value achieved; n, number and %, percent of participants who achieved the criteria; Com, motor complete; Tetra, tetraplegia; Inc, motor

incomplete; Para, paraplegia; and FDA, Food and Drug Administration. slow, medium, and fast velocity sub-groups. The velocity sub-groups were defined post hoc after the review

of data.

Shaded areas indicate the Primary outcome results for each of the walking tests at 12 and 36 sessions. The FDA criteria was applied only to the ReWalk users because the Ekso is not

indicated for personal use.

Modified Functional Independence Measurement (FIM) Scoring Key:.

1, Total Assist (performs <25% of task); 2, Maximal Assist (performs 25 to 49% of task); 3, Moderate Assist (performs 50–74% of task); 4, Minimal Assist (performs 75% or more of

task); 5, Supervision (cuing, coaxing, prompting); 6, Modified Independence (no assistance, user may require extra time); 7, Complete Independence (timely, safely, no assistance, no

devices), albeit, not applicable in this study.

TABLE 6 | Walking test assessment results.

Sessions 12 24 36

10MWT Mean ± SD (s) 38.56 ± 14.80 36.34 ± 14.60 32.08 ± 12.59 UT

Mean ± SD (m/s) 0.30 ± 0.11 0.32 ± 0.12 0.36 ± 0.12 UT

Min–Max (s) 20.0–83.4 17.8–70.6 16.6–63.7

6MWT Mean ± SD (s) 99.83 ± 35.07 111.86 ± 42.61* 125.25 ± 40.37 U
◦

Mean ± SD (m/s) 0.28 ± 0.10 0.31 ± 0.12* 0.35 ± 0.11 U
◦

Min–Max (s) 43.8–168.4 40.7–196.4 54.6–206.6

TUG Mean ± SD (s) 78.01 ± 20.28 75.31 ± 30.10 62.03 ± 18.55 U
◦

Min–Max (s) 43.72–134.37 34.59–155.24 35.15–103.38

SD, standard deviation; m, meters; WT, walk test; min, minutes; TUG, timed up and go; sec, seconds; and m/s, meters per second. Sessions 12 vs. 24: *p < 0.0001; Sessions 12 vs.

36: Up < 0.0001; and Sessions 24 vs. 36: Tp = 0.0008, ◦p < 0.0001.

≤90 s. Using the walking velocity from the 10MWT, the average
TUG was calculated for the three velocity sub-groups and
presented (Table 7).

Comparison Between Devices
Due to the different characteristics between the ReWalk and
Ekso, the results from the 10MWT, 6MWT, and TUG were
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TABLE 7 | Average TUG by velocity sub-groups of 10MWT speed.

TUG

Session 12 Session 24 Session 36

N Mean ± SD N Mean ± SD N Mean ± SD

10 MWT ≤0.25 m/s Slow 20 89.61 ± 19.75 16 87.84 ± 24.43 10 83.25 ± 16.76

0.25≤Speed≤0.4 Medium 15 74.93 ± 18.40 17 76.24 ± 32.01 23 59.48 ± 16.43

≥0.4 m/s Fast 12 62.53 ± 9.84 15 60.88 ± 28.77 15 51.80 ± 10.32

10MWT, ten-meter walk test in meters; TUG, timed up and go in seconds; SD, standard deviation; m/s, meters per second.

TUG was defined/calculated by the velocity sub-groups of 10MWT at 12, 24, and 36 sessions.

significantly different by device. By session 36, the fastest
participant in the ReWalk performed the 10MWT in 16.6 s and
slowest in 47.5 s, whereas in the Ekso the fastest was 21.0 s and
the slowest was 63.7 s (Table 4, Figure 3A).

Effect of Neurological Deficit
Change in walking test performance was independent of
neurological deficit. As mentioned previously, participants were
divided by four neurological deficit sub-groups: motor complete
tetraplegia (n = 4); motor incomplete tetraplegia (n = 10);
motor complete paraplegia (n = 27); and motor incomplete
paraplegia (n = 9). There were no significant differences
between groups in terms of improvements from 12 to 36
sessions on the 10MWT [one-way ANOVA (F(3, 45) = 2.555,
p = 0.067)], 6MWT[one-way ANOVA (F(3, 45) = 1.150, p =
0.339)], and TUG [one-way ANOVA (F(3, 41) = 1.115, p =
0.354)]. Within level and completeness sub-groups, paired t-
tests were used to compare the performance of tasks from 12
to 36 sessions. Overall, those with complete tetraplegia walked
shorter distances in the 6MWT and took more time for the
10MWT and TUG at session 12. Participants with complete
paraplegia performed the best among the sub-groups for 10MWT
and 6MWT at session 12. From sessions 12 to 36, those
with complete tetraplegia demonstrated no significant change
in the 10MWT and 6MWT, however, there was significant
improvement on TUG (p = 0.019). All walking assessments
were significantly improved from 12 to 36 sessions in the sub-
groups of incomplete tetraplegia (10MWT: p = 0.020, 6MWT:
p = 0.011, TUG: 0.046) and complete paraplegia (10MWT: p
= 0.001, 6MWT: p < 0.000, TUG: p = 0.002). Both those with
incomplete tetraplegia and complete paraplegia demonstrated
improvement in the TUG (p = 0.015). Each sub-group’s results
of the walking tests are reported at 12, 24, and 36 sessions
(Figure 3B).

Using the average of the highest achieved number of steps
per session block (between 1 and 12, 13 and 24, 25 and 36)
split by tetraplegia/paraplegia and device, a repeated measures
ANOVA with a Greenhouse-Geisser correction determined that
the number of steps differed statistically between session blocks
(F(1.336, 66.477) = 39.868, p < 0.0001). However, there were no
significant differences among sub-groups (tetraplegia/paraplegia
and device) in terms of number of steps from session block
1–12 [one-way ANOVA (F(3, 46) = 0.507, p = 0.679)], session
block 13-24 [one-way ANOVA (F(3, 46) = 0.364, p = 0.779)],

and session block 25-36 [one-way ANOVA (F(3, 46) = 0.437,
p= 0.728)] (Figure 4).

Regardless of device there was a positive relationship between
the total cumulative number of steps taken during the 36 sessions
and the maximum 10MWT velocity achieved. ReWalk users had
a stronger relationship than those who used the Ekso (p= 0.0028
vs. p= 0.093, respectively) (Figure 5).

DISCUSSION

More than half of the participants succeeded in achieving
hypothesized milestones of ≤40 s for the 10MWT, ≥80m for
the 6MWT and ≤90 s for TUG using EAW by session 12 and
more than 80% of the participants achieved them by session
36. The rate of improvement in the walking tests was unrelated
to the level, completeness, or duration of SCI. These findings
indicate that improving the skill level of using these devices
as measured by walking velocity and distance is achievable
across a broad spectrum of SCI level and completeness. Among
neurological sub-groups, there were no significant differences
in improvements on walking assessments. Participants with
complete paraplegia performed better than participants with
complete tetraplegia for all walking assessments (10MWT,
6MWT, and TUG) during all time points, but there were
no differences between incomplete tetraplegia and incomplete
paraplegia by session 36. This was expected, as those with lower
levels of injury retain more residual motor control over their
body, allowing them to control thoracic movements in the
device, and translating into a better ability to perform exoskeletal
ambulation. All participants in the complete tetraplegia sub-
group used the Ekso for this study. Participants with lower
level injury more often were placed in the ReWalk group. The
study was not designed to determine differences in the mobility
test outcomes between the Ekso and ReWalk groups. However,
the faster walking velocities in the ReWalk may have been due
to differences in level and completeness of injury as well as
differences between the devices’ engineering characteristics.

It may not be practical for clinicians to provide 36 sessions of
EAW training due to limitations in payment for physical therapy
visits, especially for personal prescription (i.e., use in the home
and community). However, participants who met FDA criteria
(10MWT: speed ≥0.40 m/s and 6MWT: distance ≥110m)
mastered weight shifting while standing and clearing the foot for
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FIGURE 3 | Results of Walking Tests across 12, 24, and 36 sessions by (A) device and (B) neurological deficit. Neurological deficit: Com Tetra (Motor Complete

Tetraplegia); Inc Tetra (Motor Incomplete Tetraplegia); Com Para (Motor Complete Paraplegia); and Inc Para (Motor Incomplete Paraplegia). The main effects for

neurological deficit (ANOVA: 10MWT (F (3, 46) = 2.568, p = 0.658), 6MWT (F (3, 46) = 2.267, p = 0.0933), TUG (F (3, 46) = 0.946, p = 0.4263)) were not significantly

different, but the main effects for sessions and device (10MWT: p < 0.0001, 6MWT: p < 0.0001, TUG-12: p = 0.0006, TUG-24: p = 0.1299, TUG-36: p < 0.0001)

were statistically significant for each walk test as shown.

stepping within 24 sessions. Nine participants achieved this by
session 12, and 15 achieved it by session 24, and continued to
meet these criteria at session 36. Future investigations focused
on the different characteristics of the participants that would
eventually obtain the skill needed to pass the FDA criteria should
be explored. This could then be used to formulate a basic
screening test to identify participants most likely to achieve the
skills needed to pass the FDA criteria. Although the number of

covered physical therapy visits vary depending on insurance, in
general there is a cap at about 20 visits forMedicare andMedicaid
patients. Our data suggest that the “sweet spot” for achieving
the FDA criteria for most individuals falls between 12 and 24
visits, and is in alignment with current Center for Medicare and
Medicaid Services (CMS) reimbursement guidelines.

There was high variability in the total number of steps taken
in both devices. This may be accounted for by participant
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FIGURE 4 | The average best number of total steps in a session block by level of SCI by device. The mean ± standard error of the best number of total

steps/sessions achieved during each 12-session block by Tetra (Tetraplegia), Para (Paraplegia) and by device (ReWalk, Ekso) are reported. The overall best number of

steps in a single session is reported for 1–36. The number of steps significantly increased by session block, but no significant effects were found for combination of

Tetra/Para and Device.

FIGURE 5 | Relationship between the total steps and 10MWT velocity at 36

session by Device. At 36 sessions, participants using either device showed

that with more steps taken there was an associated increase in 10MWT

velocity. A significant relationship was noted for those who used the ReWalk

(r2 = 0.296, p = 0.0028) and a trend for those who used the Ekso (r2 =
0.131; p = 0.0983).

motivation, confidence in the device, stamina, and/or total time
attended per session. All participants walked more steps with
the progression of sessions. On average, Ekso users took more
total cumulative steps than ReWalk users. However, the average
number of steps during later sessions and within session 36 for
ReWalk users were higher than those for Ekso users. Overall,
the ReWalk users were faster than the Ekso users. While the
participants who used the ReWalk were generally able to walk
faster, this device was limited to those individuals with a greater
amount of trunk stability (based on ISNCSCI level) and strong
enough hand grasp to use crutches without any type of assistance.
Greater trunk stability and strength likely improved balance and

made the performance of weight shifting easier. Our findings
suggest that the Ekso is easier to learn to use than the ReWalk
initially, but once learned, the ReWalk user has more flexibility
to control velocity and achieve faster walking speeds. The Ekso
users increased the number of steps per session early in training
with many reaching near their peak steps by session 12, and then
they plateaued. On the other hand, the ReWalk users initially
had less steps per session, but progressively increased by 36
sessions. This is likely a design feature, since the Ekso can provide
more hip and knee flexion assistance than the ReWalk, making it
easier to learn to use the device. Ekso users were able to achieve
higher number of steps early and continue to steadily increase
stepping throughout session progression. ReWalk use required
more trunk control over the device to successfully take steps and
has a higher initial learning curve to achieve proper posture,
weight shifting and stepping for many participants.

Even with the limitation of the device characteristics, there
were two Ekso users in the sub-group of incomplete tetraplegia
who met the fast walking velocity criteria. While these two
Ekso users were daily power wheelchair users and had cervical
levels of SCI, they were functionally able to take a few steps
without the exoskeleton but with an assistive device such as
a walker and with physical assistance from another person.
Remarkably, these two Ekso users met all hypothesized criteria
of nominal velocity and distance by session 12. Although the
ReWalk requires trunk stability and strong enough hand grip
to use the crutches, in the incomplete tetraplegia sub-group,
there was one person who used the ReWalk and met the fast
walking criteria (i.e., the FDA personal use criteria). In contrast,
only three of the nine participants with low paraplegia made
the FDA criteria in the sub-group of incomplete paraplegia who
used the ReWalk. One participant with low paraplegia who used
the ReWalk was partially able to meet FDA criteria (6MWT:
distance ≥110m), although the person had performed all
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hypothesized study criteria of nominal velocity and distance by
session 12.

In summary, most participants who were unable to meet the
fast walking velocity criteria were individuals with high level
paraplegia or were Ekso users. Unexpectedly, three participants
with tetraplegia achieved the FDA criteria even with the severity
of their neurological deficit. Based on these results, selection of
the proper device should not solely be defined by neurological
deficit, but other factors such as user preference, comfort and
fit, and skill ability as determined by a short trial of devices.
Although it is recognized that the number of sessions during
training may be limited to policies of third-party payers or
government insurance coverage, when possible, the duration and
number of individualized EAWmobility training sessions should
be determined by participants’ stamina, motivation, residual
function, and strength, and not just the level or completeness of
the SCI.

Tominimize trainer support and help the user gain reasonable
independence, it is important to establish appropriate goal
setting and time management for EAW mobility training. When
personal prescription is the goal, an efficient EAWmobility skills
training should be implemented. Following guidelines already
established by our group, an effective exoskeleton training
program necessitates all components of appropriate candidate
selection, proper fitting of the device, a steady skill progression
plan, and provision of participant assistance on areas of the body
with intact sensation (Asselin et al., 2016). As was the case in a
previous report, we used these guidelines for this study. For the
effective training program, sufficient education of the elements of
EAWmust be included. Upon completion of a training program,
the user should be able to identify the safe environments for
device use and operate the device in simulated or actual use
environments representative of indicated environments and use5

One of the most important elements is using the devices in
actual environments such as noisy or crowded hallways, door
navigation, and in spaces where turning is required. The EAW
walking tests have been previously reported as reliable for testing
achievements in mobility during the walking sessions and were
accurate predictors of functional independence in the home and
community (Louie et al., 2015). Our data confirm the reliability
of these tests. There are no specific FDA criteria for the TUG
although it is important to measure. The TUG is an essential
skill because users must be proficient at standing up, walking,
turning and sitting down. Our hypothesized minimal criteria for
TUG success were ≤120 s by session 12 and ≤90 s by session 36
sessions. These criteria were easy to achieve compared to 10MWT
and 6MWT. According to our average TUG data set of 10MWT,
the TUG criterion to ≤75 s by session 12 and ≤60 s by session 36
sessions would be more discriminative. Thus, TUG ≤60 s would
be suggested as a benchmark for skill proficiency. This more
stringent TUG criterion could be used to support a skill level
needed to take the device home, as it encompasses additional
skills and is not solely focused on walking speed.

5Electronic Code of Federal Regulations. Available online at: https://www.
ecfr.gov/cgi-bin/text-idx?SID=9b627fd1822b8fcd87ad660db602de1candmc=
trueandnode=pt21.8.890andrgn=div5%E2%80%9D%5Cl%E2%80%9Cse21.8.
890_13480#se21.8.890_13480.

CONCLUSIONS

EAW training was demonstrated to be safe, feasible, and
effective within a 36-session training timeline. Most participants
improved their walking velocity and distances with the
progression of sessions. The observed combination of how
the Ekso triggers stepping and higher step clearance allowed
participants to walk more successfully during the earlier sessions.
Whereas, ReWalk users usually needed more sessions to learn
appropriate weight shifting to better trigger stepping and to
clear the foot during the swing phase, but once they learned
this skill, they walked at faster velocities. More than half of the
ReWalk users were able tomeet FDA velocity criteria for personal
prescription. Our data suggests that clinical programs can expect
success rates of 58% by 12 sessions, 68% by 24 sessions and
78% by 36 session to achieve walking velocity medium and fast
milestones of ≥0.25 m/s and ≥0.40 m/s, respectively, regardless
of level and completeness of injury or device used. The results
from this study provide guidelines for estimating the potential of
individuals with SCI to achieve proficient and safe EAWmobility
skills for institutional and personal use of these devices.
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Research on robotic assistance devices tries to minimize the risk of falls due to misuse of

non-actuated canes. This paper contributes to this research effort by presenting a novel

control strategy of a robotic cane that adapts automatically to its user gait characteristics.

We verified the proposed control law on a robotic cane sharing the main shape features

of a non-actuated cane. It consists of a motorized telescopic shaft mounted on the top

of two actuated wheels driven by the same motor. Cane control relies on two Inertial

Measurement Units (IMU). One is attached to the cane and the other to the thigh of

its user impaired leg. During the swing phase of this leg, the motor of the wheels is

controlled to enable the tracking of the impaired leg thigh angle by the cane orientation.

The wheels are immobilized during the stance phase to provide motionless mechanical

support to the user. The shaft length is continuously adjusted to keep a constant height

of the cane handle. The primary goal of this work is to show the feasibility of the cane

motion synchronization with its user gait. The control strategy looks promising after

several experiments. After further investigations and experiments with end-users, the

proposed control law could pave the road toward its use in robotic canes used either as

permanent assistance or during rehabilitation.

Keywords: assistive devices, robotic cane, gait cycle, synchronization, mobility

1. INTRODUCTION

Falls are a major health, societal and economic problem, resulting in 424,000 annual fatalities
around the world (World Health Organization, 2012). When they are not fatal, they cause high
traumas and morbidity. Indeed, falling may result in damages ranging from minor bruises to more
serious brain injuries and hip fractures (Sterling et al., 2001). In Europe, falls related costs are
estimated at 25 billion euros each year (European Public Health Association, 2015).

Themost common response to falls is the use of assistive devices. Even though they are perceived
positively by the patients (Tyson and Rogerson, 2009), the improper use of these devices is among
the extrinsic causes leading to falls (Liu et al., 2011).

In the last two decades, many lines of research have been dedicated to improving the assistance
provided by assistive devices. Mainly, instrumented and robotic devices have been developed.
For instance, instrumented canes, which consist in canes equipped with strain gauges, inertial
measurement units (IMUs), embedded computers and other equipment have been designed to
enable an unobtrusive monitoring of cane use (Au et al., 2008; Mercado et al., 2014; Trujillo-
León et al., 2015; Wade et al., 2018). Normally, the cane orientation and the forces applied to it
are measured and collected to enable their later analysis by the medical staff.
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Robotic canes, on the other hand, aim to provide additional
assistive functionalities and they generally share the same
mechanical architecture. They consist in a basic cane mounted
on the top of a statically stable wheeled mobile robot.
The additional functions provided by robotic canes include
navigation assistance, user intention detection or fall prevention.
In Spenko et al. (2006), navigation assistance functions are
provided. The mobile platform consists of two driving and one
castor wheels. It encloses a camera and a sonar array used
for localization purposes. The cane mounted on the top of
this platform is equipped with a force and torque sensor that
measures the load applied by the user. In the first navigation
mode, the robotic cane, using its localization system, moves
autonomously to guide the user toward a desired position. In
the second mode, a shared control is implemented, i.e., the user
moves the robotic cane but the latter can correct his deviations
from a pre-planned path.

Robotic canes come with extra weight resulting mainly from
the integrated batteries and structure. Some robotic canes detect
the walking direction and move accordingly, thus alleviating
the user muscular effort. In Wakita et al. (2013), a cane
enclosing a force and torque sensor is mounted on the top of
an omnidirectional mobile platform. The device is controlled
through an on-line estimation of the Intentional Direction (ITD).
The ITD is estimated using the direction of the horizontal force
applied to the cane by its user. In order to secure the user gait, the
cane controller is tuned to make it move easily along the detected
direction and to be difficult to maneuver in the other directions.

To prevent falls, robotic canes adapt their motion to their
user balance. In Suzuki et al. (2009), a cane is mounted on a
mobile base that consists of two wheels with servo brakes and two
castor wheels. The platform is equipped with laser range finders.
Indeed, the brake control is adapted to the distance between the
user feet position and the robotic cane. In Di et al. (2016), a
robotic cane is controlled in a way that avoids its users tipping
over when holding it. A recent work is presented in Phi and
Fujimoto (2019); an innovative robotic cane incorporating an
omnidirectional motorized wheel has been proposed.

In previous works (Ady et al., 2013, 2014), we proposed a
prototype of robotic cane that avoided the common bulky and
cumbersome structure of robotics canes and walkers, and that
shared the compactness and longitudinal shape that characterize
the conventional ones. In this paper, we focus on the control
strategy using a revisited version of the robotic cane. The control
law is aimed at providing safe and proper support in the very
instants it is required. For that purpose, the cane motion is
automatically synchronized with its user gait, without requiring
any specific intervention.

1.1. Synchronization of a Cane With the
Gait Cycle
People use their arm to synchronize their basic cane motion
with their gait cycle during straight forward walking. This
synchronization can be analyzed in the sagittal plane. Only one
stride is required since walking straight forward is cyclic. As
depicted in Figure 1 top, starting from a standing position (a),

the weak leg (grayed in the figure) leaves the ground and starts its
swing phase (b), the cane is lifted and moved forward in synergy
with the leg motion. The cane tip is put on the ground a step
further and synchronously with the impaired leg heel strike (c).
The maximum tangential forces applied to the cane occur during
the heel-strike (c) and the push off (e) of the impaired leg. The
maximum normal force applied to the cane occurs during the
phase (d) (Chen et al., 2001).

The robotic cane, which design is detailed in the next section,
is aimed at making this synchronization automatic, i.e., the user
no longer needs to lift the cane at each step. Instead, it should
adapt automatically its motion to the gait cycle. To provide the
same assistance of a conventional cane, its wheels should move
forward during the impaired leg swing phase and stop when the
latter touches the ground. At the same time, the shaft length
should vary continuously to keep a constant height of the cane
handle in order to avoid pushing or pulling the user hand. The
intended synchronization scheme of the robotic cane is depicted
in Figure 1 bottom.

1.2. Synchronization of the Cane Wheels
With the Impaired Leg Motion
If the step size and its duration are learned offline, the motion
of the wheels can be achieved in open loop, i.e., a predefined
trajectory could be programmed. In this case, the cane motion
cannot adapt to changes of the gait parameters. However, the
objective here is to enable the cane adapting to its user’s gait
characteristics.

An alternative choice, consisting in a closed loop control
of the displacements of the wheels based on motion synergies,
is preferred. Motion synergies have already been used in
rehabilitation robotics to generate reference trajectories for
exoskeletons. For instance, the authors of Vallery et al. (2009)
took advantage from the existing synergy between lower limb
joints to provide reference trajectories to an exoskeleton assisting
an impaired limb based on the motion of the sound leg.
Synchronizing robotic motion with respect to a cane assisted
gait cycle has been studied in Hassan et al. (2012), Hassan
et al. (2018). In their study, the authors used the existing
cane-lower limbs synergy to control a single leg version of
the HAL exoskeleton. Firstly, they assessed the existence of
a coordination between the lower limb joints trajectories and
the cane angle (the cane rotation in the sagittal plane). Then,
they implemented a limb motion estimation method, i.e., the
cane angle and that of the sound leg joints were used to
generate the reference motion of the exoskeleton assisting the
impaired leg.

In our work, the aim is to control the robotic cane motion
based on the impaired leg motion. Moreover, unlike the setup
used in Hassan et al. (2012), we would like to reduce the required
components by equipping the user with only one IMU.

The paper is organized as follows. In section 2, the current
prototype is presented. The synchronization strategy is presented
and supported by experimental results in section 3. In section
4, the control law of the cane is derived. In section 5, the
experimental results, obtained using the prototype and its
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A B C D E

A B C D E

FIGURE 1 | (Top) Sequential representation of contralateral cane assisted walk (weakest leg grayed). (A) Person standing. (B) Weakest leg and cane forward swing.

(C) Weakest leg and cane stance beginning. (D) Weight support performed by the weakest leg and the cane. (E) Beginning of the sound leg stance. (Bottom) Robotic

cane synchronization desired during the gait (weakest leg grayed). In (C), coinciding with the impaired leg heel strike, the wheels stop. In (E), the cane starts moving

again with the same leg push off.

associated control law, are discussed. A conclusion ends the paper
by giving some future research directions.

2. ROBOTIC CANE PRESENTATION

In this section, the design objectives of the robotic cane are given.
Its mechanical architecture, as well as its embedded electronics,
are then presented.

2.1. Design Objectives
From a mechanical point of view, the goal is providing a
lightweight compact cane able to follow the pace of people with
balance troubles. The prototype, presented hereafter, is based on
requirements expressed in terms of the cane forward velocity and
support forces.

In Chen et al. (2001), the mean pace of 20 post-stroke
hemiplegic patients has been reported to vary between 0.04 and
0.35m/s. As the gait cycle includes double support phases, where
both feet are touching the ground, the speed of one leg during
its swing phase may be greater than the mean walking pace.
To take this fact into account, the cane forward speed has been

designed to be equal to 1m/s, which is approximately twice the
pace reported in Peel et al. (2012). In Murray et al. (1969), the
authors collected data from 53 disabled people, and analyzed
the load they were applying along the axis of their canes. They
reported a mean vertical force of 147N. In Chen et al. (2001),
a decomposition of the load applied to canes by post-stroke
hemiplegic patients has been achieved. The results show that the
cane bears∼13% of the body weight in the vertical direction and
<1% in the posterior-anterior and lateral directions. For a weight
of 70 kg, this corresponds to 91 and 1 N, respectively. This gives
an idea about the cane design needs in terms of forward velocity
and payload.

2.2. Mechanical Architecture
The cane is shown in Figure 2. It is composed of a telescopic shaft
and two wheels; all of them are actuated. Its base consists in a
10 cm square, and the shape becomes thinner while approaching
the handle. Its height is adjustable and can vary between 0.85 and
1m. The shaft translation is ensured by a 100W EC-i40 Maxon
driving a 2.5mm ball screw mechanism. This ensures nominal
velocity and force of 0.16m/s and 82N, respectively. The wheels,
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of 10 cm diameter each, are located at the tip of the cane and
are driven together. They are actuated by a 50W Maxon EC-
45 flat motor associated with GP42C gear-head. This gives rise
to a nominal velocity and a nominal torque of 1.15m/s and 40
Nm, respectively. Note that the velocity and force at the cane tip
are dependent on the normal force applied to the cane and the
friction between the wheels and the ground.

The whole cane prototype weights 5.7 kg. Thus, it is lighter
than common robotic walking aid devices or even other stick-like
robotic canes, such as that in Phi and Fujimoto (2019). Besides,
the batteries, which are the heaviest components, are placed in
the lower part. This way, the center of mass of the structure is
near the floor allowing to operate the cane from the handle in a
light and comfortable way. Note as well that the cane is not lifted
from the ground during its operation.

The telescopic shaft is designed based on a reversible ball-
screw mechanism. As explained above, the force supported by
the latter is 82 N, and thus not sufficient to bear the maximal
vertical load applied by a user when leaning on the cane, which
approximately equals to 91 N (see previous subsection). Thus,
the arching mechanism (see Figure 2 left) is crucial to ensure
gait safety. If the user applies a force on the handle, the resulting
moment yields friction and prevents any downward motion
of the shaft. The arching mechanism makes the upper part
of the cane irreversible, without adding any additional weight
or bulkiness.

2.3. Control Electronics and Sensors
The control architecture is implemented as follows: the cane
control is carried out by a BeagleBone board with a sampling
frequency of 50Hz. It communicates via WIFI with two IMUs
from X-IO Technologies. One is attached to the cane and

provides its angle. The other is attached to the participant
impaired leg, providing both its angle and angular velocity. The
IMUs provide angles in an Euler representation. Using serial
communication, the board acquires the positions of the shaft and
the wheels. It then computes and sends the reference velocities
to the servo drives. The latter are Solo-Whistle from Elmo.
The whole system is powered thanks to two LIPO batteries of
a 18.5V, 7Ah and a 22.2V, 4.2 Ah, respectively. They allow a
operating time from 1 to 2 days, depending on the frequency
of the cane usage. However, the batteries of the IMUs can not
withstand more than half a day. This issue is simple to fix. The
IMU attached to the cane can be powered by the cane batteries.
The one worn by participants can be powered by an external
USB charger.

3. SYNCHRONIZATION STRATEGY

Our synchronization strategy is based on the slaving of the cane
angle on the impaired leg during its swing, and on the cane
immobilization during the stance phase. First, a simple method
to detect online the gait phases is provided. Then, experimental
evidence is given about the soundness of the method and about
the coupling between of the impaired thigh and a conventional
cane angle.

3.1. Gait Phase Detection Algorithm
When the detection of the gait phase is needed, motion capture
and force platforms are appealing solutions if the gait takes
place in clinical laboratories. When outdoor motion capture is
required, affordable sensors, like accelerometers and gyroscopes,
are often used (Mayagoitia et al., 2002). For example, a 3-axis
accelerometer held against the sacrum has been used in Evans
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FIGURE 2 | Mechanical structure of the robotic cane. With the arching mechanism (left), a force f on the handle results in a torque, inducing friction between the black

and the blue pieces. The black piece is arched and the handle can not move downwards.

Frontiers in Robotics and AI | www.frontiersin.org 4 August 2020 | Volume 7 | Article 10537

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Trujillo-León et al. Gait-Adapted Robotic Cane

et al. (1991) to detect heel strikes. In Willemsen et al. (1990), 3-
axis accelerometers have been attached to the shank of hemiplegic
individuals’ impaired legs in order to detect swing phases. The
authors of Dai et al. (1996) use tilt sensors in the lower leg to
detect the swing phase and deliver electric stimulation. Moreover,
in Maqbool et al. (2017) the authors present an approach to real-
time detection of mid-swing phase, toe off and initial contact
using peaks in the shank angular speed with a wireless gyroscope.
In Hwang et al. (2018), the authors propose a method for
real-time gait analysis based on a head-worn IMU. The user
head vertical acceleration is processed to peak detection since
the impact of the foot on the ground at heel strike, and the
upward motion during toe off, are transmitted to the head along
the body axis. In Martinez-Hernandez et al. (2018), swing and
stance phases are detected with a method based on simultaneous
Bayesian recognition. The authors use three IMUs attached to the
thigh, the shank and the foot, respectively.

In our case, the distinction between the stance and swing
phase is accomplished with the gyroscope included in the wireless
IMU placed on the assisted leg thigh. The angular velocity sign
allows to detect whether the leg is in a stance or in a swing phase.
The thigh performs an anti-clockwise rotation during the swing
phase, and a clockwise rotation during the stance phase. Hence,
a threshold on the thigh angle angular velocity in the sagittal
plane allows a distinction between them. The detection scheme
is showed in Figure 3 left. Once the angular speed has exceeded
the threshold during three consecutive samples, a swing phase
is detected. Otherwise, the phase is considered to be stance. The
number of samples exceeding the threshold to identify the change
of phase has been experimentally determined and the measure is
aimed to avoid false positives due to noise peaks.

3.2. Experimental Validation
The experiments involved six healthy individuals, three males
and three females, aged in average 27.7 years old. The study was

carried out in conformity with the Declaration of Helsinki of the
World Medical Association, and all the participants gave their
informed consent. Their gait was altered with a hands free crutch
aimed to immobilize injured legs. The impaired leg was simulated
by equipping the crutch. They were asked to use a conventional
cane in a contralateral way. The participants were equipped
with a set of optical markers, so that the motion of their limbs
was captured by an OptiTrack system. The cane position and
orientation were also captured through the use of extra markers.
The experiments began after a 5 min familiarization period. The
experiments were composed of series of 3.5-m forward assisted-
gait, corresponding to slow, normal, and fast walking paces. The
volunteers undergone three tests at each speed.

The mean values (±standard deviations) of these speeds
across all the trials and the subjects were respectively 0.23m/s
(±0.06), 0.36m/s (±0.08), and 0.52m/s (±0.12).

3.2.1. Validation of the Coupling Between the

Impaired Leg Thigh and the Cane Orientation
For each trial, Pearson correlation between the angles of the
simulated impaired leg and the cane was computed. For each
walking pace, the average of the correlation coefficients across
all the trials and participants was computed. The obtained values
were r = 0.92 (±0.04), r = 0.91 (±0.03), and r = 0.9 (±0.07) for
respectively the slow, normal and fast paces. This shows that the
cane angle is strongly correlated with the thigh orientation of the
impaired leg.

3.2.2. Validation of the Gait Detection Phases
For each trial, the heel strike and the toe-off ground-truth instants
were extracted thanks to the capture motion markers attached to
the participants feet. At the same time, the detection technique
showed in Figure 3 was used to determine if the impaired leg
was in its stance or swing phase. The impaired leg angular speed
was obtained by deriving the angle acquired by the motion
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FIGURE 3 | (Left) Flowchart of the gait phase detection method. ω denotes the thigh angular velocity, while n stands for the sample time. (Right) Impaired leg phase

detection using the method for an average experiment volunteer.
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capture system. The results show that both the heel strike and
toe off are detected with reasonable accuracy with respect to
the considered ground-truth instants. Thus, the user balance is
not threatened (the worst reported difference was in the order
of 0.2 s). The method gives good results but can still be tuned
more specifically (e.g., by varying the detection threshold) for
each user and walking pace to improve the accuracy. Figure 3
right shows an example of the gait phase detection for an average
experiment participant.

4. CONTROL IMPLEMENTATION

As previously mentioned, the robotic cane should be controlled
in order to maintain a constant height of its handle during
the whole gait cycle. Moreover, during the assisted leg swing
phase, the cane angle should track this leg thigh orientation. In
the sequel, the kinematic model of the device is given. Then,
the control laws associated to the height and angle servoing
are detailed.

4.1. Robotic Cane Kinematic Model
A sagittal plane kinematic representation of the robotic cane
is given in Figure 4. Three coordinate frames are attached to
the three bodies composing the cane. ℜR = {OR, ExR, EyR, EzR}
is attached to the wheel. ℜC = {OC, ExC, EyC, EzC} and ℜH =
{OH , ExH , EyH , EzH} are attached, respectively to the lower and
upper parts of the chassis. OR and OH represent the centers of,
respectively, the cane wheels and handle. OC is a point belonging
to the lower part of the chassis. The length l of the chassis is made
variable thanks to the motorized axis. The cane orientation in the
sagittal plane is defined by the angle θ representing the rotation of
ℜH with respect to the world frame ℜ0 = {O0, Ex0, Ey0, Ez0} around
Ey0. The radius of the wheels and the handle center height are
denoted, respectively r and h.

The cane is assumed to remain in contact with the ground and
the wheels to roll without slipping. These two assumptions give
rise to mechanical constraints that allow establishing kinematic
relationships between the velocity of OH , the cane orientation θ

and the wheel rotation speed ω. To establish these relationships,
the velocity of OH is first derived:

EVOH∈ℜH/ℜ0 = EVOH∈ℜH/ℜC
+ EVOH∈ℜC/ℜ0 (1)

Since the upper part of the chassis is translating with respect to
the lower part, the following equation holds:

EVOH∈ℜH/ℜC
= l̇ EzC = l̇ sin θ Ex0 + l̇ cos θ Ez0 (2)

Moreover, it can be written that:

EVOH∈ℜC/ℜ0 = EVOR∈ℜC/ℜ0 +
−−−→
OHOR ∧ E�ℜC/ℜ0

= EVOR∈ℜC/ℜ0 − l EzH ∧ θ̇ Ey0
= EVOR∈ℜC/ℜ0 + lθ̇ cos θ Ex0 − lθ̇ sin θ Ez0

(3)

As the wheels are rolling without slipping, it comes that:

EVOR∈ℜC/ℜ0 = r(−ω + θ̇) Ex0 (4)
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FIGURE 4 | Robotic cane model, ℜ0 inertial frame, ℜR the wheel frame, ℜC

chassis frame, ℜH handle frame.

Putting together equations (1), (2), (3), and (4) gives:

EVOH∈ℜH/ℜ0 = (l̇ sin θ + r(−ω + θ̇)+ lθ̇ cos θ)
︸ ︷︷ ︸

ẋOH

Ex0+

(l̇ cos θ − lθ̇ sin θ)
︸ ︷︷ ︸

żOH

Ez0
(5)

Equation (5) shows that, as expected, any variation the telescopic
shaft length and any rotation of the cane wheels give rise to a
displacement of the cane handle.

The control law, that will be given in the sequel, will ensure
that żOH and ẋOH are equal to zero in order to avoid moving the
subject hand and threatening balance.

4.2. Control Law Structure
To provide the necessary assistance, the cane controller has to
fulfill twomains tasks: zeroing the tracking angular error between
the cane and the impaired leg while keeping an almost constant
height of the handle. The cane kinematics are governed by
Equation (5). Thus, this equation constrains the control law.

The controller is composed of two loops: an inner loop aiming
at keeping a constant height, and an outer loop dedicated to the
tracking of the impaired leg angle. The inner loop should have a
shorter response time. This structure allows an easy tuning while
respecting the cane kinematics governing law.

The two components of the control law are described below.

4.2.1. Cane Handle Height Control
The cane telescopic axis is controlled to maintain a constant
height of the cane handle during the assisted gait. The axis length
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variation should verify the following equation (żOH = 0):

żOH =
d

dt
(l cos θ + r) = l̇ cos θ − lθ̇ sin θ = 0 (6)

Let us assume that, at the beginning of the gait, the cane handle
height is defined by zOH0 in the ℜ0 frame.

At the beginning to the experiment, the cane is held vertically.
zOH0 is then equal to l0+r in the considered cane orientation. This
way, l0 = zOH0 − r , where l0 is the initial telescopic axis length,
at the vertical cane orientation, and r the radius of the wheels.

To maintain a constant height regardless of the cane
orientation θ , and considering a motionless contact point of the
cane, the telescopic axis length must satisfy:

ld =
zOH0 − r

cos θ
(7)

where ld is a varying set point.
To maintain a constant height, the following control law

is implemented:

˜̇l = Ka(
zOH0 − r

cos θ
︸ ︷︷ ︸

ld

−l) (8)

where ˜̇l is the reference velocity sent to the servo drive of
the linear axis. Ka is a proportional gain. If θ /∈ {−π

2 , π
2 },

the continuous-time asymptotic convergence of the height
adjustment is ensured if Ka is strictly >0. Two Ka values could be
assigned depending on the weak leg phase in the gait cycle. The
gain is small during the weak leg stance phase in order to limit the
linear axis motion and provide a safe support. Moreover, if the
force applied by the user is sufficient, the axis may be arched. The
gain is higher during the swing phase in order to comply more
efficiently with the user hand motion. Hereafter, Ka was chosen
equal 3 and 5 s−1 during the stance and swing phase, respectively.

4.2.2. Cane Orientation Control
The control of the cane orientation is achieved through the
modulation of the velocity of the wheels. Their rotation
influences the velocity of the handle as can be seen in Equation
(5). To cancel this influence, the velocity of the wheels should
satisfy ẋOH :

ω =
(r + l cos θ)

r
θ̇ +

sin θ

r
l̇ (9)

Since zOH = l cos θ + r, and żH = 0 (this is the objective of the
telescopic axis control), it comes that:

l̇ =
l sin θ

cos θ
θ̇

Equation (9) writes:

ω =
(r + l cos θ)

r
θ̇ +

l sin2 θ

r cos θ
θ̇

=
(r cos θ + l)

r cos θ
θ̇

(10)

The control law of the wheels established to reduce the motion of
the cane handle is:

ω̃ = Kr
(r cos θ + l)

r cos θ
(θd − θ) (11)

with ω̃ representing the speed input sent to the servo-drive
driving the cane wheels and θd the assisted limb thigh orientation
to be followed. Assuming a correct estimation of the wheels
radius, and θ /∈ {−π

2 , π
2 }, the continuous-time asymptotic

stability is ensured by choosing Kr strictly positive. During our
experiments, Kr was equal to 3.8 s−1.

5. EXPERIMENTAL RESULTS

In this section, an experimental evaluation of the cane adaptive
motion with the gait cycle is carried out. In subsections 5.1
and 5.2, the different tests were performed by a member of the
team. In subsection 5.3, the robotic cane was evaluated by a group
of volunteers. The experimental context is shown in Figure 5.
The participant left leg (that to be assisted) and the cane were
equipped with wireless IMUs, so the latter was synchronized
with the gait cycle based on the leg motion. The rear and the
front of the base of the hands free crutch attached to the left
leg were equipped with optical markers. It emulated the foot of
the impaired leg. The right hand and the cane tip were as well-
equipped with markers. The data recorded by the BeagleBone
board were the left thigh orientation and its angular speed, the
cane orientation, the velocity of the wheels, the telescopic shaft
velocity and the detected gait phase. The cane synchronization
with the gait has been assessed using the experimental data

Cane
IMU

Subject
IMU

Base127.5mm

Hands free
crutch

FIGURE 5 | Subject holding the robotic cane. There is a wireless IMU on the

user thigh and another on the cane.
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obtained thanks to the Optitrack motion capture system in
addition to the data logged into cane board memory.

5.1. Assessment of the Support Provided
by the Robotic Cane
In order to assess the ability of the arching mechanism and the
wheels’ motor to withstand the forces applied on it, the cane
was placed on a force platform and the participant was asked
to lean on it. The force platform allowed the monitoring of
the forces along the axis of the cane frame (see Figure 6). The
wheels’ motor velocity was set to zero, which is the case when
a stance phase of the impaired leg is detected. The shaft motor
reference velocity was also set to zero. This setting is the most
challenging and corresponds to the phase (d) of Figure 1 bottom.
The cane is vertical so the shaft velocity is supposed to be equal

0º
15º

Force
platform

Faxis
Faxis

FIGURE 6 | Experimental testing of the forces that the robotic cane can

withstand. The cane is placed on a force platform in a vertical position (left),

and then inclined by 15◦ (right). Both motors’ velocities were set to zero.

to zero while the user is exerting the highest vertical load. The
participant applied forces on the cane which was put in two
directions corresponding to the vertical 0◦ and one of 15◦ (see
Figure 7). Note that these forces were artificially high since the
purpose of this exercise was to test the cane support performance.
One can see that the maximum vertical applied force to the cane
was around 180N, whereas the tangential force varied between 10
and 50N for the vertical and 15◦ inclination, respectively. This is
in accordance with the design objectives of section 2.1.

5.2. Cane Performance Assessment
5.2.1. Metrics for Tracking Performances
Here, the error parameters used to quantify the active cane
performance are explained. On the one hand, the cane capacity
to track the impaired leg motion is assessed by the Root Mean
Square Error (RMSE). It provides insight into the control law
tracking performance. On the other hand, the second parameter
has been called Mean Distance-to-the-Foot Error (MDFE) and it
is a measure of how successful the cane is fulfilling its assistive
task, by stopping in the suitable area and providing proper
support to the user.

• Angle Root Mean Square Error
The Angle RMSE provides a measurement of the difference
between the angles of the active cane and the impaired leg
during the assisted walk. It is computed for the swing phases
of this leg since it is in these phases when the tracking is active.

Angle RMSE =

[

N
∑

i=1

(

θILi − θACi

)2
/N

]1/2

(12)

where θIL and θAC are the impaired leg and active cane angles,
respectively, and N is the number of samples acquired in the
impaired leg swing phases of the test for which the parameter
is computed.

• Mean Distance-to-the-Foot Error
The Mean Distance-to-the-Foot Error (MDFE) aims to
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FIGURE 7 | Forces applied on the cane axis with a constant cane length of 0.88 m, an angle of 0◦ (left) and an angle of 15◦ (right).
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quantify how good the support given by the cane is when users
lean on it. Thus, from the assistance standpoint, this parameter
tries to answer to the question: is the cane well-placed during
the impaired leg stance phases? The MDFE is useful to check
if the cane tip is properly located in the walking direction axis
with respect to the position of the impaired leg foot.

Note that, as explained at the beginning of section 5, in
the experiments the impaired leg is simulated with a hands
free crutch (see Figure 5), so that this leg foot corresponds to
the crutch distal base. The MDFE is computed as the mean

FIGURE 8 | Performance of a single step: angular speed captured by the IMU

attached to the impaired leg (top). Gait phase detected using the angle

acquired by the motion capture and the method in Figure 3 (center). Cane

height (bottom).

FIGURE 9 | Impaired leg and cane tip angles during a step (top). Position of

the crutch base boundaries and the cane tip along the walking direction during

a step (bottom).

Algorithm 1: Mean Distance-to-the-Foot Error
computation.

Data: Arrays yCtip, yCBfront, and yCBrear
Result:MDFE
MDFE=0;
for (i=1; i≤ N; i++) do

if (yCtip(i)>yCBfront(i)) then

MDFE=MDFE+(yCtip(i)-yCBfront(i));
else

if (yCBrear(i)>yCtip(i)) then
MDFE=MDFE+(yCBrear(i)-yCtip(i));

MDFE=MDFE/N;

distance from the cane tip to the boundaries of this base. That
is to say, for each test sample if the cane tip remains inside
the crutch distal base boundaries, the error is zero. On the
contrary, if the cane tip stops above or behind the coordinates
of the base boundaries, the error is the distance between the
cane tip and the base front or the base rear, respectively.
Algorithm 1 helps clarify how this parameter is calculated. Let
us consider y as the axis in the walking direction. yCtip, yCBfront ,
and yCBrear are the arrays with coordinates of the cane tip, the
crutch base front, and the crutch base rear. N is the number of
samples acquired in the impaired leg stance phases.

5.2.2. Cane Behavior During a Single Step
The results presented hereafter show the cane behavior during a
step beginning the gait. The subject at rest, performed a 0.25m
step with its impaired leg. Figure 8 compares the phase detection
performed thanks to the angular speed provided by gyroscope
of the impaired leg IMU with the detection obtained with the
motion capture system (ground truth). The comparison indicates
good performances of the proposed method. The stance to swing
transition (t = 1.77 s) is obtained by monitoring the angular
speed given by the gyroscope which is multiplied by 100 to

1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

[º
/s
]

Speed of the wheels

1 1.5 2 2.5 3 3.5 4 4.5 5
time[s]

-0.05

-0.025

0

0.025

0.05

v
[m

/s
]

Shaft speed

FIGURE 10 | Speed of the wheels (top) and the telescopic shaft (bottom)

observed during a step.
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make its observation easier. The swing is detected when the
threshold indicated in dashed line is crossed as explained in
Figure 3. During the swing phase (between t = 1.77 s and t =
2.58 s), the motion of the wheels is enabled. Figure 9 represents
the impaired leg following performed by the cane. The cane
tip remains most of the time between the crutch base front
and back boundaries. As the angular velocity given by the
gyroscope becomes negative, the stance phase is detected as
shown in Figure 8. During the whole stance phase, the shaft
control maintains the cane handle height practically to its initial
value of 0.93 m (Figure 8 bottom) and the motion of the
wheels is disabled so as to offer an immobile support point.

FIGURE 11 | Impaired leg and cane tip angles (top), and positions of the

crutch base boundaries and the cane tip along the walking direction (bottom)

for a speed of 0.18 m/s.

The evolution of the speeds of the wheels and the shaft is given
in Figure 10.

5.2.3. Robotic Cane-Assisted Gait for a Walking

Speed of 0.18 m/s
We observed the cane behavior for a slow walking speed of
0.18m/s. The results of the left thigh following performed by the
cane are presented in Figure 11 top. As the wheels’ motion occurs
during the swing phase, this is the time span in which the error
must be computed. The Angle RMSE is 7.81◦. Note that the cane
angle has a small lag. It is due to the fact that three consecutive
samples have to exceed the swing phase detection threshold
(see Figure 3) before the tracking starts. The latter accounts for
the Angle RMSE increase. Despite the error during the cane
following, we noticed that the cane tip remained near the front
and back boundaries of the crutch distal base during the stance
phases (see Figure 11 bottom). It suggests that, despite starting
moving later, the cane quickly shortens the angle difference with
the weakest leg and stops at a point where proper support is given.
The latter is backed by a little MDFE of 0.0061m.

The cane handle height was almost maintained at a constant
value (Figure 12 left bottom). The wheel and shaft speeds
provided in Figure 12 left top and center remained between the
speed boundaries implemented in the software. During the stance
phase, the cane wheels remained still and the shaft speeds were
reduced thanks to a lower gain.

5.2.4. Effect of an Increase of the Walking Pace on

the Cane Performances
We compared the results presented above with an assisted gait
performed with a higher walking speed of 0.35m/s. During the
latter, the impaired leg following performance (Figure 13 top)
was slightly lower than that obtained for a walking speed of
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FIGURE 12 | Speed of the wheels and the cane shaft, and cane height for a walking speed of 0.18 m/s (left). The same parameters for a walking speed of

0.35 m/s (right).
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FIGURE 13 | Impaired leg and cane tip angles (top), and positions of the

crutch base boundaries and the cane tip along the walking direction (bottom)

for a speed of 0.35 m/s.

FIGURE 14 | The cane is located ahead of the foot at the start of the walking.

Left thigh and cane angles during the test (top). Positions of the crutch base

and the cane tip along the walking direction (bottom).

0.18m/s, with an Angle RMSE of 8.57◦. Nevertheless, the cane
tip position remains inside the crutch distal base boundaries
(Figure 13 bottom) with a MDFE of 0.0001m. Note that this
value is lower than that computed for the 0.18m/s test. It may
seem contradictory but it may be due to the fact that the user
has felt more comfortable at a higher speed. The accumulated
experience in the use of the cane may also affect improving
the performance.

In comparison with the walk at 0.18m/s, a higher request
of the shaft was observed in order to maintain the cane handle
height near its initial value (Figure 12 right center and bottom).
Besides, a light increase of the maximum speed of the wheels was
noticed (Figure 12 right top).

5.2.5. How to Manage a Voluntary Hand Motion?
The synchronization strategy assumed the immobility of the
hand holding the cane. This is hardly met since the user
is not focused on his hand position while walking. Here
we illustrate the issue by starting the walk with the cane
placed 0.43m ahead of its user. We show that, if the user
brings back his hand toward his body, the synchronization
works well. This is depicted in Figure 14. At the bottom, one
can see the wrong positioning of the cane at the beginning
of the walk, and how the normal functioning has been
recovered afterwards.

5.3. Assessment of the Cane With Several
Participants
The performance of the cane was also assessed through an
experiment with six healthy participants, three males and
three females (27.5 years old avg.), in conformity with the
conditions already specified in the section 3.2 of this article.
Although people with real mobility issues are the target
population of the active cane, at this stage simulated walking
impairment is enough to show the feasibility of the proposal.
This way, the participants were equipped with a hands free
crutch (see Figure 5) with the purpose of immobilizing their
left leg and altering their gait (the crutch distal base is
again considered as the impaired leg foot). They used the
robotic cane in a contralateral way while equipping optical
markers for motion capture. They were allowed to use the
robotic cane for 5 min before starting the experiment. The
experiment consisted of three tests of 3.5-m forward assisted-
gait at their preferred speed. They did not receive any specific
instruction on how the cane should be used. Once the tests
were carried out, participants were asked informally about
their impression after using the cane and none reported
comfort issues.

The orientation angle of the robotic cane and the impaired leg
were captured. The trajectories of the cane tip and the crutch base
were as well-collected. The RMSEwas computed for the impaired
leg and cane angles during the swing phases, as explained in
subsection 5.2.1. In the same way, the MDFE was also calculated.
Both parameters, together with the test speed and the number
of strides of each test, are listed in Table 1. As can be observed,
there is some variability in the values of the Angle RSME, with
a minimum of 6.42◦ and a maximum of 12.31◦. The mean,
considering all the subjects, is 8.93◦, what is not far from that
obtained for the tests of subsections 5.2.3 and 5.2.4. The MDFE
shows a range that goes from zero (the cane tip remained inside
the crutch distal base boundaries in the stance phases) to 0.028m.
The mean MDFE is 0.008m, what would assure a good support
for the user. The speeds are quite different from participant to
participant. On the one hand, we find the case of Subject 1, that
presents both the higher speeds and the slowest MDFE. On the
other, we have the results of Subject 2, generally with much lower
speeds and the highestMDFE. That supports the idea that, as with
a conventional cane, users perform better with the active cane at
their preferred pace so a higher speed does not mean necessarily
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TABLE 1 | Results for the participants involved in the experiments.

Participant Active cane–Imp. leg

Angle RMSE (◦)

(swing phases)

Cane tip–Crutch base

MDFE (m)

(stance phases)

Speed

(m/s)

N◦ of

strides

1

10.06 0.000 0.21 5

9.08 0.001 0.22 5

9.95 0.001 0.21 5

2

7.28 0.015 0.13 7

7.38 0.028 0.13 7

6.98 0.023 0.17 6

3

6.44 0.005 0.13 9

7.08 0.000 0.14 7

6.42 0.022 0.12 8

4

10.75 0.000 0.19 8

7.72 0.004 0.16 7

9.58 0.013 0.16 8

5

12.31 0.000 0.21 7

10.35 0.004 0.18 8

8.79 0.012 0.16 8

6

11.03 0.008 0.12 9

10.38 0.000 0.12 8

9.17 0.009 0.10 8

All Subjects

Mean

8.93 0.008

The parameters in the columns, from left to right, are: subject identifier, Angle Root Mean

Square Error (between the cane and the impaired leg), Mean Distance-to-the-Foot Error,

test speed, and number of strides per test.

worse walking assistance. This is in line with that observed in
subsection 5.2.4.

6. CONCLUSION

In this paper, a control scheme of a robotic cane, which relies on
the synchronization of the device motion with the gait cycle, is
presented. Its main advantage is its ability to adapt to its user gait
parameters. If the step length or the pace change, the cane can
automatically adapt its behavior.

The provided control scheme allows robotic canes to
provide better assistance than conventional and non-actuated
canes. Indeed, the working scheme is planned as follows:
during the swing phase of the impaired leg, the robotic
cane follows automatically this leg orientation; during
the stance phase the cane tip is immobile and provides
proper support to the user. Since the robotic cane is not
supposed to be lifted during use, all the stumbling risks are
eliminated. Besides, the cane handle height keeps as constant
as possible to avoid pushing and pulling the user hand during

the cane motion. The control strategy feasibility has been
shown experimentally.

A short term improvement is to make turning during walking
feasible by just rotating the cane, held vertically, around its axis
and continuing walking. Detecting a vertical rotation intention
will make this improvement possible.

Future work will include the reduction of the robotic cane
weight and the improvement of the control law, mainly by
reducing the cane angle lag. Moreover, the cane usage time
may be extended by using low consumption IMUs instead of
the current ones. To improve ergonomics, smartphones can be
used to provide the angular information instead of a wearable
IMU. Note that smartphones already incorporate an IMU and,
normally, people carry theirs with them. One can also think of
integrating some new sensors in the cane that enable obstacle
detection and other high order functionalities.

Although the proposed concept has been validated through
this work, tests with the target population are necessary to
confirm its efficacy. They will be planned in the next stage.
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On the eve of Human-Robot-Interaction (HRI) becoming customary in our lives,

the performance of HRI robotic devices remains strongly conditioned by their

gearboxes. In most industrial robots, two relatively unconventional transmission

technologies—Harmonic Drives© and Cycloid Drives—are usually found, which are not

so broadly used in other industries. Understanding the origin of this singularity provides

valuable insights in the search for suitable, future robotic transmission technologies.

In this paper we propose an assessment framework strongly conditioned by HRI

applications, and we use it to review the performance of conventional and emerging

robotic gearbox technologies, for which the design criterion is strongly shifted toward

aspects like weight and efficiency. The framework proposes to use virtual power

as a suitable way to assess the inherent limitations of a gearbox technologies to

achieve high efficiencies. This paper complements the existing research dealing with

the complex interaction between gearbox technologies and the actuators, with a new

gearbox-centered perspective particularly focused on HRI applications.

Keywords: transmissions, gearboxes, HRI, efficiency, virtual power, harmonic drive, cycloid drives

INTRODUCTION

Industrial robots represent the backbone of several large-scale, traditional manufacturing industries
including automotive or electronics. Today, many regions in the world see a realistic opportunity
to bring back manufacturing industry introducing robots in Small and Medium size Enterprises
(SMEs) and in assistive services, typically in healthcare (SPARC, 2015).

For large-scale, highly automated industrial environments, the advantage of robotic solutions
compared to human operators mainly lies in (i) larger availability and (ii) the ability to
move—typically large—payloads with extreme positioning accuracy and at high speed. These
aspects are of pivotal importance when designing and selecting suitable technologies for an
industrial robot, particularly for the prime movers and transmissions providing movement to
these devices.

Applications in SME manufacturing and personal assistance challenge this traditional robotics
paradigm. The key to success in these new applications lies in a very high degree of flexibility,
required to enable a safe and efficient, direct cooperation with humans in order to achieve shared
goals. This objective requires robots to first develop the ability to interact safely with humans, in a
discipline usually referred to as pHRI—physical Human-Robot Interaction.

pHRI has a wide-ranging impact on robotic actuation. The experience accumulated during the
past decades, mainly in healthcare robotics, indicates that for safe and efficient interaction with
humans, robots need basically to move like humans, hence sacrificing some of their traditional
advantages in terms of payload, accuracy, and speed. This situation has led to profuse research in
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the past years covering the optimal selection of primemovers and
transmissions for HRI actuation (Zinn et al., 2004; Ham et al.,
2009; Iqbal et al., 2011; Veale and Xie, 2016; Verstraten et al.,
2016; Groothuis et al., 2018; Saerens et al., 2019).

Those works belong in a broader field of research studying
the optimization of the coupling between prime mover and
gearbox for a given task in automatic machines. A quick review
of the main developments in this field provides useful insights
to understand the impact of the gearbox on the overall system
performance. Pasch and Seering (1983) identified the importance
of inertia in actuation and proposed the use of a gear ratio to
match the inertia of the motor and that of the reflected load as
a means to minimize energy consumption for a purely inertial
load. Chen and Tsai (1993) applied this idea to the field of
robotics and identified the resulting acceleration capacity of the
end-effector as a determining parameter. Van de Straete et al.
(1998) separated motor and load characteristics to extend this
approach to a general load and provided a method to identify
suitable transmission ratios from a discrete set of motors and
gearboxes. Roos et al. (2006) studied optimal actuator selection
for electrical-vehicle powertrains adding the contribution of the
gearbox efficiency. Giberti et al. (2010) confirm rotor inertia,
transmission ratio, gearbox efficiency, and gearbox inertia as the
most relevant parameters for actuation selection and propose
a graphical method to optimize that selection for a dynamic
task. Pettersson and Ölvander (2009) focused again on industrial
robots and present a method which models the gearbox with
a strong focus on mass, inertia, and friction. Rezazadeh and
Hurst (2014) use a very accurate motor model and incorporate a
fundamental bandwidth selection criterion, on addition to energy
minimization. Dresscher et al. (2016) investigate the contribution
of friction for a planetary gearbox in which Coulomb friction is
the dominant friction mechanism and demonstrate how gearbox
efficiency typically becomes dominant over motor efficiency at
high transmission ratios.

From the initial gearbox models used in these works,
where gearboxes are modelized as ideal transmission ratios, the
complexity of the models increased progressively. Nevertheless,
important—and unrealistic—simplifications need to be made to
obtain good practicability in these methods. Important effects
like those of torsional stiffness and lost motion are thus not
incorporated, while gearbox inertia and efficiency models are
strongly oversimplified. This is a justifiable approach for multiple
applications, where simplified methods can help engineers select
suitable transmissions. In HRI however, these properties are too
pivotal for the suitability of the gearbox and they cannot be so
strongly simplified.

A different approach is therefore required to provide useful
guidance for gearbox selection in HRI, avoiding the excessive
complexity of optimization tasks in this field. Providing detailed
insight on the operational properties and performances of
different gearbox technologies, to guide educated selection is
another option, following the tradition of works like Schempf and
Yoerger (1993) or Rosenbauer (1995). Following this approach,
Siciliano et al. (2010), Li (2014), Scheinman et al. (2016),
and Pham and Ahn (2018) provide interesting overviews on

high precision gearboxes for modern robotics. However, the
technologies are not analyzed in sufficient detail to gain a good
understanding of the complex mechanisms in which they affect
the performance of the robotic task.

The main objective of this review is consequently to
complement these works with a detailed analysis of the
underlying principles, strengths, and limitations of available
technologies. Apart from enabling a forecast of the future of
gearbox technologies in robotics, this approach can help gearbox
non-specialists identify suitable compact gearbox technologies
for the highly multi-factorial requirements of new robotic
applications (López-García et al., 2018). For gearbox specialists
from other domains, this analysis can help them gain useful
insight in the particular needs of HRI applications.

This study begins with a brief description of the main
requirements for future robotic transmissions, to introduce
then an assessment framework designed to assess the suitability
and potential of a particular gearbox technology for this field.
This framework incorporates a strong pHRI perspective and
incorporates a new parameter—Latent Power Ratio—to evaluate
the inherent efficiency of a certain gearbox topology. This
new framework is used in first instance to review traditional
gearbox technologies used in industrial robots and of emerging
transmission technologies which are currently in the process of
finding their way into the market. Finally, a summary of the
findings resulting from this review, together with our conclusions
and recommendations, is given at the end of the paper.

AN HRI-ENHANCED, ASSESSMENT
FRAMEWORK FOR ROBOTIC
TRANSMISSIONS

Control
The control of robotic devices is a very broad and complex topic,
and the subject of extensive research literature. In this section we
restrict ourselves to introducing the basic principles of Linearity
and Reflected Inertia, which are basic to understand the gearbox
influence on control.

Although in general speed and precision are conflicting
requirements, conventional robotic devices excel in achieving
high positioning accuracy at high speed thanks to the use of
stiff actuators with very linear behaviors (Cetinkunt, 1991).
The incorporation of a robotic transmission influences control
complexity mainly in two ways: introducing additional non-
linearities and strongly impacting the reflected inertias.

The non-linearities introduced by the incorporation of a
transmission take basically the form of backlash and/or friction
and reduce the system’s bandwidth, creating important control
challenges (Schempf, 1990). The statement gears introduce
backlash, friction, and (unwanted) compliance, which make
accurate control difficult (Hunter et al., 1991) is today just as valid
as almost 30 years ago. For some technologies, large kinematic
transmission errors and particularly non-linear friction behaviors
can also induce considerable non-linearities.
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Transmissions strongly impact a system’s reflected inertias
as well. In a robotic device, the inertia of the prime mover is
typically several orders of magnitude smaller than that of the
payload, a situation tending to make a system unstable and
introducing strong control challenges. Adding a transmission
strongly reduces the inertia of the payload seen by—reflected to—
the prime mover by a factor equal to the squared reduction-ratio
of the transmission. Thus, a careful selection of the transmission
can result in more balanced inertias on both transmission’s
sides, contributing to minimize energy consumption and to more
robust, stable, and precise system (Pasch and Seering, 1983).

Reflected inertias are particularly important when the end-
effectors undergo rapid and frequent changes in speed and/or
torque, a very common situation in automation and robotic
tasks. In these cases, a bandwidth perspective is introduced
to confirm the ability of the system to follow these changes
(Sensinger, 2010; Rezazadeh and Hurst, 2014). This underlies the
principle of backdrivability, the ability of a system to show low
mechanical impedance when it is driven from its natural output
(back-driven). This is particularly important in the frequent
bidirectional energy exchange happening between a robot and its
user, typical for rehabilitation devices or exoskeletons. As Wang
and Kim (2015) demonstrate, a gearbox’s backdrivability includes
the combined effect of reflected inertia, reflected damping and
Coulomb friction, and it is therefore strongly linked with the
efficiency of the gearbox.

This highlights the importance in order to assess the control
impact of a certain gearbox technology of both its transmission
ratio capabilities and the non-linearities (backlash, friction) that
it introduces.

Safety
Industrial robots are traditionally placed behind fences, in highly
structured environments where they can take advantage of their
fast and accurate robotic movements without endangering the
integrity of human operators.

A safe pHRI incorporating the ability to move safely in
an unstructured/unknown environment is necessarily strongly
linked to controllability. The current strategy used by roboticists
to achieve this objective consists of shaping the mechanical
impedance (Calanca et al., 2015), that is, letting a compliance-
controller manage the complex dynamical relation between robot
position/velocity and external forces (Hogan, 1984).

The principle is simple: to grant a good adaptation to an
uncertain environment, as well as the integrity of the human
operator/user during an interaction with a robotic device,
the latter must move in a compliant, human-like manner
(Karayiannidis et al., 2015). This underlines the importance of
impedance and intrinsic compliance (De Santis et al., 2008) and
explains the apparition of a new type of intrinsically flexible
actuators for pHRI (Ham et al., 2009), where high compliance
becomes desirable (Haddadin and Croft, 2016).

From a control perspective, the payload inertia reflected to the
prime mover is reduced by a factor corresponding to the square
of the gear ratio. In the same way, the typically small rotor inertia
of the primemover is amplified by this same factor when reflected
to the payload side, which must be added to the inertia resulting

from the movement of the robotic device and the load for safety
considerations, further restricting the operating speeds.

Although most pHRI actuators today use high-ratio
gearboxes, some reputed roboticists Seok et al. (2014), Sensinger
et al. (2011) see a high potential for robotics in the use of high-
torque (out-runner) motors requiring very small transmission
ratios. New manufacturers of robotic solutions like Genesis
Robotics from Canada, or Halodi Robotics AS from Norway,
propose actuators for robotics based on these principles.
According to them, increasing the motor’s inertia and reducing
the gear ratio should result in lower motor inertias reflected
to the end-effector, thus enabling higher operational speeds
and/or payloads without compromising the operator’s integrity.
Low ratios also have an additional bandwidth advantage:
they have lower friction and backlash, reducing the non-
linearities contribution from the gearbox. On the other hand, a
moderate gear-ratio cannot compensate the non-linear coupling
terms—typically cogging torque (Siciliano et al., 2010).

A closer look at the specifications of these new motors
raises some questions in terms of attainable efficiency, weight or
compactness, and on the hardware implications resulting from
an extreme thirst for high electrical currents (HALODI Robotics,
2018; GENESIS Robotics, 2020).

Summarizing, there is no full agreement on how to best
approach safe actuation for robotics. Yet, the strong natural ties
between safety and controllability are as certain as the pivotal
importance of the transmission’s ratio and its non-linearities.

Weight and Compactness
A lightweight design is of paramount importance to make
safety and good performance compatible in the new robotics’
applications (Albu-Schäffer et al., 2008). The latest Collaborative
Robots (cobots) like KUKA‘s Lightweight-Robot, developed in
collaboration with the Institute of Robotics and Mechatronics
at the German Aerospace Center (DLR), live upon this
principle and hence look very different to the heavy and bulky
traditional industrial robots. Thanks to lower inertias, lightweight
cobots enable higher productivities—higher speeds—without
compromising user safety.

This advantageous aspect of a lightweight design has
further advantages. For mobile robotic systems, lower weight
means larger autonomies. In wearable, assistive robotic devices
including prosthesis and exoskeletons, a lightweight design is also
a key aspect to improve comfort (Toxiri et al., 2019).

High compactness is another characteristic shared by
these new robotic devices: from cobots to assistive devices,
being compact brings advantages in maneuverability and
interaction comfort.

In robotic applications involving close cooperation with
humans or the provision of mobile services, positions are
inherently highly uncertain. Lightweight and compact designs
are particularly advantageous (Loughlin et al., 2007) for these
applications, with 2 fold consequences: prime movers and
transmissions—typically the heaviest elements in a robotic
device—need to be light and compact, but lightweight designs
tend to demand lower torques.
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In contrast to the weight of the gearbox, identifying a
suitable criterion for assessing a gearbox’s contribution to system
compactness is more challenging. Physical volume definitely
plays a role, but our experience demonstrates that the actual
shape of the gearbox tends to have a larger impact. Another
aspect worth mentioning here is the availability in some gearbox
configurations of free space to allocate material or moving parts
like electric motors or output bearings can also be of particular
interest. We have therefore chosen to include in our evaluation
framework the approximate shape (diameter × length) of the
selected gearbox, while the availability of extra space can be
directly assessed with help of the provided figures of each of
the configurations.

Efficiency and Virtual Power
Efficiency
In fields like automotive or wind turbines, gearbox efficiency has
long been under strong focus. In robotics on the other hand,
efficiency has not until very recently become a key decision
parameter for the selection of a suitable gearbox (Arigoni et al.,
2010; Dresscher et al., 2016).

Higher efficiencies—lower losses—enable lower energy
consumptions and have a direct, positive contribution to both
operation costs and to the environmental-footprint of a machine
or device. For mobile and wearable robotic devices, better
efficiencies help as well reduce the weight of the system—
smaller batteries are required—and ultimately result in larger
autonomies and better usability (Kashiri et al., 2018).

In gearboxes, there is one additional gain in going for lower
losses: most mechanical transmissions used in robotics are form-
closed and use some kind of teeth contact to transfer torque and
movement between the primemover and the end-effector. Owing
to that, the kinematic ratio between input ωIn and output speeds
ωOut is locked by the number of teeth and defines its transmission
ratio iK . In a gearbox with no losses, the torque ratio iτ between
output and input torques τ corresponds precisely to the inverse
of kinematic transmission ratio, with opposed sign. But in a real
gearbox, the presence of losses alters this equality, and because
the kinematic transmission ratio is locked by the number of
teeth, that the absolute value of the torque ratio must decrease
proportionally with the losses:

ωIn

ωOut
= iK = − η iτ = −η

τOut

τIn
;where η represents

the system efficiency.

Consequently, high gearbox losses mean that less torque is
available for the end-effector and larger transmission ratios are
required to achieve the same torque amplification.

Gearboxes are subject to several types of losses. To classify
them, we adopt the criteria proposed by Talbot and Kahraman
(2014) and separate them into load-dependent (mechanical)
power losses—originated by sliding and rolling of contact
surfaces, both in the gear contacts and in the bearings—and
load-independent (spin) power losses—originated through the
interaction of rotating components with air, oil or a mixture of
the two.

Virtual Power
The term Virtual Power was—to the best knowledge of the
authors—originally coined by Chen and Angeles (2006), but this
phenomenon explaining the anomalous high losses present in
some planetary topologies has been known for long time under
different names including Blindleistung (Wolf, 1958; Mueller,
1998) and latent or futile power (Macmillan and Davies, 1965;
Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del
Castillo, 2002).

Owing to its operating principle, a gearbox always includes a
high-speed, low-torque side and a high-torque, low-speed side.
Its internal gear meshings are hence typically subject to either
high-torque and low-speed or to high-speed and low-torque
conditions. In some gearboxes though, owing to their specific
topology, some gear meshings may encounter simultaneously
high-speed and high-torque. Gear meshings can easily reach
efficiencies above 98%, but because the generated losses are
approximately proportional to the product of the relative speed of
the two geared elements and the torque being transferred through
the meshing (Niemann et al., 1975), unexpectedly large losses
appear on those highly-loaded meshings. Virtual Power provides
a framework to evaluate the contribution of this phenomenon,
which we will hereafter refer to as the Topological Efficiency of
a gearbox.

Several of the aforementioned authors propose methods to
assess the topological efficiency of a given configuration and
to derive its impact on overall system efficiency. In Chen and
Angeles (2006) framework, virtual power is defined as the
power measured in a moving—non-inertial—frame of reference.
The latent power as introduced by Yu and Beachley (1985)
corresponds accordingly to the virtual power when reference
frame is the carrier element of the gearbox, while virtual power
ratio is the ratio between the virtual power and the power
generated by an external torque applied at a link. Using these
elements, we define the Latent Power Ratio of a gearbox topology
as the ratio between the sum of the latent powers in on all
meshings, to the power input to the gearbox. A large latent
power ratio therefore corresponds to low topological efficiency
and indicates a strong tendency to generate large meshing losses.

In order to facilitate the understanding of the practical impact
on overall efficiency of the topological efficiency—characterized
by its Latent Power Ratio—of a given gearbox configuration, we
use at this stage the equations proposed byMacmillan and Davies
(1965) to calculate a simplified example.

A complete robotics’ gearbox typically involves several
meshing contacts, each with different operating conditions and
parameters therefore resulting in different individual meshing
efficiencies. These efficiencies are very high in optimized geared
meshings—frequently above 99%—and allow us to simplify our
calculations considering a generic, unique meshing efficiency of
ηm = 99% in all the meshing contacts in our gearbox.

First, a reference gearbox, ideal in terms of topological
efficiency, would have just one single meshing and a latent power
ratio L = 1. The power losses inside this reference gearbox can
therefore be easily calculated as a function of the input power as:

Ploss = PIN ∗ (1− ηm)
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And the total meshing efficiency of the complete gearbox
therefore corresponds to that of the single meshing contact:

ηsys,ideal =
PIN − PLoss

PIN
= ηm = 99%;

A non-ideal gearbox with the same generic ηm in all its meshings,
and with a Latent Power Ratio L characterizing its topological
efficiency, indicates that the total losses in the gearbox can be
approximated in first instance by:

Ploss, L ≈ PIN∗ L ∗(1− ηm)

And the total meshing efficiency of the complete gearbox
becomes now:

ηsys,L =
PIN − PLoss,L

PIN
≈ L ∗ ηm + (1− L)

Which for ηm = 99% and for a value of L = 50 results in:

ηsys,L ≈ 50%

This result should be partially relativized because the
accumulated losses in the first meshings engaged along the
different internal power flows in a gearbox make that less virtual
power as predicted by these equations will flow through the
subsequent meshings. The effect of this is that the efficiencies
will normally drop slightly less rapidly with Latent Power Ratio,
and a more realistic value for the previous calculation would
normally be between 55 and 60%.

To partially compensate this large impact of the topologic
efficiency on the overall efficiency, configurations with large
Latent Power Ratio therefore require extremely high meshing
efficiencies: to achieve a system efficiency >70%, a system with
L = 100 needs average meshing efficiencies above 99.5%.

In our further analysis we will therefore focus only in assessing
the contribution of topological efficiency to the efficiency of a
gearbox. This allows us to use a simplified method to calculate
the latent power ratio which neglects in first instance the effect
on the losses caused by the torque reduction. The corresponding
calculations used to determine the latent power ratio of the
different gearbox configurations analyzed in this work are
included in Annex I.

Summarizing, in order to characterize the important effect
of gearbox efficiency we will assess the order of magnitude
of three parameters: (i) load-dependent losses, (ii) no-load
starting torque, and (iii) latent power ratio. Although it is
additionally affected by static friction and not only by Coulomb
and viscous friction, we have selected the no-load starting
torque (relative to the nominal torque) as a practical way
to characterize load-independent losses. Our exchanges with
gearbox manufacturers indicate that this is a common practice,
it does not depend on the input power, and it is readily available
in manufacturer’s datasheet.

Productivity
Compared to special-purpose and automatic-assemblymachines,
industrial robots cannot achieve the same standards of precision
and speed. Both aspects had to be compromised to enable a
larger degree of flexibility and mobility, and of the workspace
(Rosenbauer, 1995). Seen from this perspective, HRI is just a
further step in the same direction: in order to comply with further
needs of flexibility and mobility in an unstructured environment,
additional compromises are needed in terms of precision and
speed. This transition is reflected in Figure 1.

Accuracy and Repeatability
Multiple aspects of a gearbox contribute to the resulting overall
precision of a complete robotic device. These aspects have
long been the focus of traditional robotics and are today well-
understood, with works like those of Mayr (1989), Schempf
and Yoerger (1993) or Rosenbauer (1995) providing very good
references to understand these complex influences. Those studies
identify the particularly important role played by lost motion and
torsional rigidity.

Lost Motion is a further development of the principle
of backlash which describes the total rotational displacement
generated by the application of±3% of the nominal input torque.

Torsional Rigidity characterizes the torsional compliance of
all the elements in a gearbox involved along the complete force
flow, under the influence of an external torque. It is established
by means of blocking the gearbox input and progressively
increasing the torque applied at the output, while changes in
torsional stiffness—resulting in deviations from an ideally linear
behavior—are registered.

Inherently precise—low lost motion and linear, high torsional
rigidity—gearboxes simplify the control task and enable high
precision ability, being ideally suited for position control, while
less precise gearboxes put higher challenges to position control
and can be used for more compliant actuation. In gearbox
technologies where the speed has a strong influence on losses or
with particularly non-linear friction behaviors, the contribution
of this elements to accuracy must also be considered.

To characterize precision capabilities, our framework
incorporates lost motion and torsional rigidity, together with
a subjective assessment of the change in efficiency caused by
speed/torque changes.

Speed and Payload
Industrial robots can handle large payloads at the cost of large
inertias. For cobots on the other side, safety considerations
imply that they are not expected to handle such large payloads,
but thanks to lighter designs, they can actually achieve larger
payload-to-weight ratios.

Safety considerations restrict also the extent to which thismass
reduction can be exploited to increase the operational speeds
(Haddadin et al., 2009). Yet, the lower torques promote the use of
lighter and faster electrical motors, demanding in principle larger
speed reduction ratios for these applications.

A criterion for characterizing a gearbox’s contribution to
speed and payload performance must reflect these aspects
and motivates us to use in our framework (i) maximum
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FIGURE 1 | A graphical description of the transition of the main task objectives from machines through industrial robots and Cobots, up to human operators.

FIGURE 2 | Internal arrangement of a Neugart gearhead indicating its main elements, adapted from Neugart (2020) with permission of © Neugart GmbH. It includes

also a schema of its underlying topology.

input speed, (ii) maximum repeatable output torque—termed
acceleration torque—and nominal torque, (iii) transmission
ratio, and (iv) torque-to-weight ratios for both the nominal- and
the acceleration torques.

Summary
Characterizing robotic gearboxes is a challenging task: the high
versatility of these devices, and their complex interactions with
the prime movers and control systems, make a direct comparison
of their performance particularly complex.

The transmission ratio has a demonstrated strong influence on
the performance of a robotic system. This explains its preferent
role in the literature dedicated to robotic actuation optimization,
and the growing interest of roboticists in the possibilities to use
variable transmissions (Kim et al., 2002; Carbone et al., 2004;
Stramigioli et al., 2008; Girard and Asada, 2017). Although we
are convinced that variable transmissions are very promising and
will certainly contribute to shape the future robotics landscape,
we have restricted our analysis here to constant-ratio compact
gearboxes. At this point we believe that we are best served
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with this limited scope, which can actually contribute also to
identify potential areas of applications and suitable technologies
for variable-ratio transmissions.

Based on this analysis, we propose an assessment framework
of future robotic gearboxes based on the following parameters:

• Transmission Ratio
• Acceleration- and nominal output torques
• Weight
• Shape: Diameter× Length
• Acceleration- and nominal torques-to-weight
• Efficiency: peak value and subjective dependency on speed and

torque conditions
• Topological Efficiency: latent power ratio
• No-Load forward and backdriving starting torques in % of the

nominal input torque
• Load-independent losses
• Lost Motion
• Maximal input speed
• Torsional rigidity

Our framework incorporates also a benchmark use case,
representative for multiple pHRI tasks according to our own
experience: acceleration torques above 100Nm and gear ratios
above 1:100, for which weight, compactness, and efficiency shall
be optimized.

REVIEW OF TRANSMISSION
TECHNOLOGIES CURRENTLY USED IN
INDUSTRIAL ROBOTS

Electrical motors equipped with mechanical transmissions have
typically been selected as actuators in robotics (Rosenbauer,
1995; Scheinman et al., 2016) also in industrial robots. These
mechanical transmissions are almost inevitably based on some
kind of gear technology (Sensinger, 2013).

Thanks to their larger ability to reduce the overall weight,
and because electrical motors tend to have better efficiencies at
high operating speeds, another characteristic of industrial robotic
transmissions is the use of relatively large transmission gains
(gear ratios), typically above 1:40 (Rosenbauer, 1995).

Planetary Gearheads: an Extremely
Versatile Platform
Planetary Gear Trains (PGTs) are compact, highly versatile
devices broadly used in power trains. Due to their
characteristic coaxial configuration and good power density,
they are particularly suited for rotative prime movers like
electrical motors.

PGTs can use two differentiated strategies to achieve high
gains: (i) adding several stages of conventional, highly-efficiency
PGTs—here termed gearheads and presented in Figure 2—or (ii)
using particularly compact PGT configurations with the ability to
produce high gear ratios.

While using several stages of gearheads makes best usage of
the high gear meshing efficiencies and leads to highly efficient
gearboxes, it typically results in heavy and bulky solutions.

Compact PGT configurations on the other side can achieve
high gear ratios in very compact shapes, but they suffer from
surprisingly high losses derived from high virtual powers (Crispel
et al., 2018).

A particularly compact PGT configuration for high ratios
was first invented by Wolfrom (1912) and was used in the
RE series gearboxes of the company ZF Friedrichshafen AG
(ZF) aimed at industrial robotic applications (Looman, 1996).
This configuration—shown on Figure 3—is strongly affected by
Virtual Power and ZF’s represents the only known commercial
application of PGT configurations other than conventional
gearheads. Although the manufacture of the RE series was
discontinued in the 90’s, Wolfrom PGT’s are recently enjoying
growing interest of the robotics research community, as we have
summarized in a previous paper of the authors (López-García
et al., 2019a).

Table 1 presents the PGT’s assessment. Although over-
dimensioned for our benchmark, we have used ZF’s RG350
Wolfrom PGT to try to assess the potential of high-ratio PGT
configurations, based on existing evidence of its suitability to
achieve high-ratios (Arnaudov and Karaivanov, 2005; Mulzer,
2010; Kapelevich and AKGears LLC, 2013). For the gearheads
we have selected—supported by the manufacturers—suitable
solutions from the portfolios of Wittenstein and Neugart. Worth
noting is the important role played by the maximum gear
ratio per stage in a gearhead: while Wittenstein is closer to
the feasibility maximum—given by contact avoidance between
neighboring planets—Neugart selects in their PLE series (the
PLFE series can reach 1:100 ratios in only two stages) a more
restrictive approach and consequently needs three stages instead
of two for Wittenstein, to achieve a total 1:100 gain. This leads
to less compact solutions and lower efficiencies for a 1:100
application, but it allows Neugart to achieve higher gains—
up to 1:512—without fundamental changes in weight, size,
or efficiency.

Gearheads show weights around 4 kg, which cannot be
directly compared to the over-dimensioned RG350. The RG350
shows a shape with larger diameters and shorter lengths than the
gearheads. In terms of torque-to-weight ratios, the values of both
solutions appear to be relatively close.

Gearheads have a strong advantage in their good efficiencies
(above 90%), which are less sensitive as well to changes in
operating conditions, and the no-load starting torques are very
low. High-ratio configurations show how a strong limitation
in topological efficiency, resulting in lower efficiencies. This
probably explains the why gearheads are today the dominant
PGT- technology in robotics.

PGTs show the highest input speeds (up to 8,500 rpm),
but their lost motion are also the largest (4–6 Arcmin) in
conventional gearboxes. In robotics, PGTs were broadly
used in the first industrial robots, while in the last decades
their use has declined strongly mainly as a consequence of
their limitations to reduce backlash. Although mechanisms
exist to limit the inherently larger backlash of PGTs,
those are practically based on the introduction of a
certain pre-loading, negatively affecting their efficiencies
(Schempf, 1990).
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FIGURE 3 | Internal arrangement of a ZF’s RG Series Wolfrom PGT for robotic applications adapted from Looman (1996) with permission of © 1998 Springer-Verlag

Berlin Heidelberg. It includes also a schema of its underlying topology.

Harmonic Drives: A Zero-Backlash,
Lightweight Strain Wave Gearbox
The Strain Wave gearbox was invented by Musser (1955) and
found broad application in the 70’s, originally in aerospace. Its
major space application was as the mechanical transmission
element in the lunar rover vehicle on the Apollo 15, in 1971
(Schafer et al., 2005).

Its name results from the characteristic deformation of its
Flexspline, a non-rigid, thin cylindrical cup with teeth that serves
as output. The Flexspline engages with a fixed solid circular
ring with internal gear teeth, the Circular Spline, while it is
deformed by a rotating elliptical plug—theWave Generator, as it
can observed in Figure 4. This type of gearbox is most commonly

referred to as Harmonic Drive© (HD), owing to a very effective
IP protection strategy.

For our benchmark analysis we have selected two suitable
Harmonic Drive gearboxes, a CSD-25-2A meant for integration
in a robotic joint to provide adequate structural boundary
conditions, and an ultralight gear unit CSG-25-LW representing
a structurally sufficient solution, which can be more directly
compared to other technologies. Very recently SUMITOMO
presented the new E-CYCLO gearbox, based as well of the strain
wave principle of operation. SUMITOMO gave us access to its
very recent catalog (SUMITOMO, 2020), enabling us to include
it in our benchmark (Table 2). Another interesting Strain Wave,
very similar to the Harmonic Drive, has recently been introduced

as well by GAM to its robotics gearbox series, which includes as
well planetary gear trains and cycloid drives (GAM, 2020).

The selected CSG model has a substantially larger torque
capacity than targeted in our benchmark. The shape is
characterized by larger diameters than lengths, while the weights
are substantially lower than for other technologies and result
in the best torque-to-weight ratios of the analyzed technologies.
Indeed, the characteristic multiple tooth-engagement allows for
larger torque resistance than in PGTs, making this technology a
very good suit for the joints closer to the end-effector, where they
are frequently found in today’s industrial robots.

Peak efficiencies are lower than for gearheads and closer to
the RG350, and efficiency is particularly sensitive to operating
conditions. Strain Wave trains show large load-independent
losses and no-load starting torques—particularly in back-driving
conditions, which become particularly critical for high speeds
and/or low torques (Harmonic Drive, 2014). For HRI robotic
devices, subject to frequent speed and payload changes in
combination with energy exchange between the robotic device
and the user, this means that average efficiencies rapidly drop
below 40–50% (López-García et al., 2019b). Worth noticing
is also their large latent power ratio, indicating simultaneous
presence of high torques and speeds in the teeth engagements,
which helps also explain the relatively low efficiencies.

Thanks again to the multiple teeth engagement, lost motions
below 1 arcmin can be reached and provide this gearbox
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TABLE 1 | Assessment framework for planetary gear train solutions.

PGTs WITTENSTEIN

(2020)—Alpha SP+075MF

Neugart (2020)—PLE 080 Looman (1996) ZF—RG350

Transmission ratio 1:100 (2x stages) 1:100 (3x stages) 1:−76 (2x stages)

Acceleration/nominal torques 105/84Nm 192/120Nm 500*/350 Nm

Weight 3 kg 3.1 kg 6.4 kg

Shape 895 × L120mm 880 × L168mm 8160 × L90 mm

Torque-to-weight ratios 35/28 Nm/kg 62/39 Nm/kg 78/55 Nm/kg

Efficiency and subjective dependency

on operating conditions

94%—low (speed and torque) 92%, low (speed and torque) 84%, low (speed and torque)

Latent power ratio (section/-s of

Annex I including the calculations)

3.6 (GH, SGH) 4.7 (GH, SGH) 36.8 (WG)

No-load starting torque 0.5%* 0.7%* 1.5%*

Load-independent losses 5.5% 7.5% 14.5%

Lost motion 4–6 Arcmin <11 Arcmin ()

Maximum input speed 8,500 rpm 7,000 rpm 5,000 rpm

Torsional rigidity 10 Nm/arcmin 8 Nm/arcmin ()

*Values extrapolated and/or approximated, see further detail on Annex I.

FIGURE 4 | Internal configuration of a Harmonic Drive CSG gearbox (left), adapted from Harmonic Drive (2014) with permission of © 2019 Harmonic Drive SE, and a

E-Cyclo gearbox (right) adapted from SUMITOMO (2020) with permission of © 2020 Sumitomo Drive Germany GmbH. The schema of their underlying KHV topology,

used to develop its Latent Power Ratio calculations in Annex I, is also included.

with a strong advantage which helping Harmonic Drives find
broad applications in industrial robots. They were able to
displace PGTs from many applications, particularly after a major
improvement of the performance resulting from a new teeth
geometry introduced by this company in the 90’s—which also
improved its stiffness linearity (Slatter, 2000).

Maximal input speed used to be a strong limitation for the
use of HD gearboxes in the past (Schempf, 1990), but new
advances and design improvements allow them now to reach up
to 7,500 rpm.

Cycloid Drives: for High Robustness and
Torsional Stiffness
Since their invention by Lorenz Braren in 1927 (Li, 2014), cycloid
drives have found application mainly in boats, cranes, and some

large equipment as steel strip rolling trains or CNC machines.
In cycloid drives, an eccentric input motion creates a wobbly
cycloidal motion of a single, large planet wheel, which is then
converted back in a rotation of the output shaft and results in
a high reduction capacity (Gorla et al., 2008), see Figure 5.

Table 3 includes the market leader (NABTESCO RV) in this
segment and the main challengers (SPINEA and SUMITOMO).
The RV from NABTESCO and the Fine-Cyclo T-series of
SUMITOMO include a pre-gearing, conventional PGT stage. The
payload capability of these devices is larger than required for our
benchmark and results in large weights. This provides already
a valuable insight: more compact solutions are not available in
the market and are—according to the information provided by
some of the manufacturers—less interesting because they would
need extreme manufacturing precision and ultimately result in
high costs.
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TABLE 2 | Assessment framework for strain wave solutions.

Strain wave Harmonic Drive

(2014)—CSD-25-160-2A

Harmonic Drive (2014)—

CSG-25-160-2UJ-LW

SUMITOMO (2020)

E—CYCLO

Transmission ratio 1:100 1:100 1:100

Acceleration/nominal torques 123/47Nm 204/87Nm 157/67 Nm

Weight (0.24 kg)a 1.1 kg 1.6 kg

Shape (885 × L20mm)a 8107 × L52mm 895 × L58 mm

Torque-to-weight ratios (500/195 Nm/kg)a 208/79 Nm/kg 98/42 Nm/kg

Efficiency and subjective dependency

on operating conditions

75%, high (speed and torque) 84%, high (speed and torque) 70%, high (speed and torque)

Latent power ratio 101 (SW) 101 (SW) 101 (PC)

No-load starting torque (forward and

reverse direction)

17/20% 10/13% 45%/()

Load-independent losses 22% @ 500 rpm, nom. torque 18% @ 500 rpm, nom. torque 30% @ 500 rpm, nom. torque

Lost motion <1 Arcmin <1 Arcmin <1 Arcmin

Maximum input speed 7,500 rpm 7,500 rpm 6,500 rpm

Torsional rigidity 9–17 Nm/arcmin 9–17 Nm/arcmin 11–16 Nm/arcmin

*Values extrapolated and/or approximated, see further detail on Annex I.

()a–this values refer to a unit not suitable as a standalone gearbox which requires additional structural support—directly impacting the identified characteristics—to be provided by the

robotic device in which it is incorporated.

Shapes are similar to those of strain wave gearboxes, while
weights are larger and closer to those of the PGTs, for the
aforementioned reasons. Torque-to-weight ratios are larger than
those of PGTs but slightly lower than for strain wave gearboxes.
The main advantage of cycloid drives lies precisely in their ability
to withstand large loads and particularly impact loads, and in the
little maintenance required.

Peak efficiencies are larger than for strain wave gearboxes and
closer to those of PGTs, but efficiency is highly dependent on
operating conditions (Mihailidis et al., 2014) and both the no-
load start torques and the latent power ratio are high, both similar
to strain wave gearboxes.

Although they tend to present some backlash, such if often
compensated for in their design to reach levels comparable to
those of the strain wave gearboxes, probably at the cost of slightly
higher frictions. Their torsional rigidity is the largest of the
analyzed gearbox technologies.

Cycloid drives have an inherent limitation to cope with
high input speeds, caused by the presence of a large and
relatively heavy planet (cam) wheel resulting in large inertias
and imbalances. This motivates the use of typically two planet
wheels, arranged in series and shifted 180 degrees to each other,
to cancel out imbalance, reduce vibrations and enable larger
input speeds. This explains how, by means of combining cycloid
drives with pre-gearing stages consisting of conventional PGTs
stages enabled cycloid drives to achieve their current broad
acceptance in robotics. This arrangement improves efficiency,
reduces sensitivity to high input speeds and provides for easy
adaption of their gear ratios. In the 90’s Harmonic Drives
dominated the robotic gearbox market, but the improvements
in cycloid technology enabled cycloid drives to start gaining
terrain, first in Japan and then elsewhere (Rosenbauer, 1995).
Nowadays manufacturers like NABTESCO, SUMITOMO or
NIDEC propose cycloid hybrids integrating a PGT pre-gearing

cover over 60% of the robotic gearbox market, and have therefore
become the new dominant technology, particularly for proximal
joints subject to higher loads and lower weight restrictions
(WinterGreen Research, 2018).

Finally, the presence of a relatively large torque-ripple which
introducing non-linearities and complicating their control is also
worth mentioning. This torque ripple is linked to the necessity of
using cycloid tooth profiles to avoid teeth interference between
the large planet wheel/-s and the ring gearwheel, making these
devices extremely sensitive to the center-distance variations
produced by even small manufacturing errors. Several attempts
to improve this situation exist, using involute teeth—less sensitive
to center-distance variations—with reduced pressure angles
and/or contact ratios to minimize radial forces and improve
efficiency (Morozumi, 1970), as well as using other forms of
non-involute teeth (Koriakov-Savoysky et al., 1996; Hlebanja and
Kulovec, 2015).

REVIEW OF EMERGING TRANSMISSION
TECHNOLOGIES FOR ROBOTICS

The REFLEX Torque Amplifier
Genesis Robotics has drawn a lot of attention in the robotics
community with the arrival of their direct-drive motor, the

LiveDrive©. According to Genesis, the LiveDrive in the
two available topologies—radial and axial fluxes—provides
benchmarking performance in Torque-to-Weight ratio. The axial
flux motor can achieve up to 15 Nm/kg, while the radial flux up
is limited to maximum 10 Nm/kg.

To enlarge its application spectrum, Genesis Robotics
introduced a compatible gearbox termed Reflex, which is shown
in Figure 6. This injection-molded, ultralight plastic gearbox
is targeted at lightweight robots and although it was initially
designed to work together with the LiveDrive and is therefore
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FIGURE 5 | Internal configuration of a SUMITOMO Fine Cyclo F2C-A15 and a Fine Cyclo F2C-T155 cycloid drives identifying its main elements, adapted from

SUMITOMO (2017) with permission of © 2017 Sumitomo Cyclo Drive Germany GmbH. It includes also a schema of its underlying topologies.

targeted at gear ratios below 1:30, it is also capable of providing
larger gear ratios up to 1:400 (GENESIS, 2018).

The underlying topology is that of Wolfrom PGT with
multiple, smaller planets (Klassen, 2019), in which the
reaction (stationary) ring gearwheel is split into two for
balancing purposes, following a design originally proposed
by Rossman (1934) and used as well in the Hi-Red gear of
Tomcyk (2000).

In the Reflex gearbox, the output ring is also split to facilitate
the assembly with helical teeth. Another interesting aspect of this
design is the taped shape of the planets, which the authors suspect
to be linked to the possibility of preloading the system in order to
achieve the zero–backlash that Genesis claims is possible with this
gearbox. The flexibility of the plastic planet wheels also provides

an advantage for the reduction of the backlash, according to
the company.

Unfortunately, independent tests are not available yet to
confirm the given performances and no official data particularly
on efficiency is for now available from Genesis, which is why
Table 4 includes only the Latent Power Ratio value resulting from
its topology.

In summary, although the underlying Wolfrom topology
indicates that efficiency will certainly be a complex challenge
to solve, this innovative gearbox illustrates the large potential
available for rethinking existing technologies and adapting those
to the future needs in robotics. Genesis Robotics has recently
entered an interesting partnership with established industrial
companies as Koch Industries Inc. and Demaurex AG.
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TABLE 3 | Assessment framework for cycloid drive solutions.

CYCLOID drives NABTESCO

(2018)—RV-25N

SPINEA

(2017)—TwinSpin

TS110

SUMITOMO

(2017)—Fine CYCLO

F2C-T155

SUMITOMO (2017)

Fine CYCLO F2C-A15

Transmission ratio 1:108 1:119 1:118 1:89

Acceleration/nominal torques 612/245Nm 244/122Nm 417/167Nm 335/111 Nm

Weight 3.8 kg 3.8 kg 4.8 kg 2.7 kg

Shape 8133 × L62mm 8110 × L62mm 8126 × L68mm 8126 × L60 mm

Torque-to-weight ratios 161/64 Nm/kg 64/32 Nm/kg 87/29 Nm/kg 124/41 Nm/kg

Efficiency and subjective

dependency on operating

conditions

87%, high (speed and

torque)

74%, high (speed and

torque)

87%, high (speed),

medium (torque)

87%, high (speed and

torque)

Latent power ratio 33.8* (CG) 120 (PC) 29.2* (CG) 90 (PG)

No-load starting torque 16% (@ 500 rpm) 19/27% 23% (@ 500 rpm) 64/67%

Load-independent losses 13% 25% 13% 13%

Lost motion 1 Arcmin <1 Arcmin <0.75 Arcmin <1 Arcmin

Maximum input speed () 4,500 rpm 8,500 rpm 5,600 rpm

Torsional rigidity 61 Nm/arcmin >22 Nm/arcmin 25–41 Nm/arcmin 15–28 Nm/arcmin

*Values extrapolated and/or approximated, see further detail on Annex I.

FIGURE 6 | Internal configuration and main elements of a Reflex gearbox adapted from GENESIS Robotics (2020) with permission of © 2019 Genesis Robotics. It

includes also a schema of its underlying topology.

The Archimedes Drive
IMSystems from the Netherlands is a spin-off of the Delft
University of Technology, created in 2016 to exploit the invention
of the Archimedes Drive (Schorsch, 2014).

The Archimedes Drive follows again the topology of a
Wolfrom gearbox (also with a split reaction ring gear in some

of its designs) but incorporates a breakthrough innovation
in the use of rollers instead of gearwheels, to replace teeth
contacts with rolling contacts, see Figure 7. The controlled
deformation of the roller-planets enables the transmission of the
torque between the planets, in a similar way as the wheels of
a vehicle.
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TABLE 4 | Assessment framework for emerging gearbox technologies.

Emerging technologies GENESIS—reflex torque

amplifier

IMSystems—archimedes

drive

FUJILAB—bilateral drive

Achievable transmission ratios 1:30 (up to 1:400) 1:100 (up to 1:500) 1:96 ()

Acceleration/nominal torques 87/44Nm 125/100Nm 120/() Nm

Weight 0.76 kg 1.1 kg (embedded solution) 1.3 kg

Shape 8160 × L54mm 81500 × L80mm 894 × L62 mm

Torque-to-weight ratios 115/58 Nm/kg 113/91 Nm/kg 92/() Nm/kg

Efficiency and subjective dependency on

operating conditions

() () 90%, low (torque and speed)

Latent power ratio 22 (80 for 1:100) (WG) 80 (WG) 21 (WG)

No-load starting torque (forward and

reverse direction)

() () <0.1%

Load-independent losses () () 1%*

*Values extrapolated and/or approximated, see further detail on Annex I.

FIGURE 7 | Internal configuration of the Archimedes Drive with a detail showing its Flexroller planets adapted from IMSystems (2019) with permission of © 2019

Innovative Mechatronic Systems B.V., with a schema of its underlying topology.

The performance shown in Table 4, extracted from the
company’s brochure (IMSystems, 2019) and available on
demand, shows that the use of a Wolfrom topology provides
this device with the ability to reach very high gear ratios in a
compact shape, but it also results in low topological efficiency.
According to IMSystems, the replacement of gear-teeth contact
with rolling contact contributes to the minimization of the

contact losses, which particularly in the torque transfer between
the planet and the ring rollers should compensate for the high
Latent Power Ratio, and result in maximum efficiencies around
80% (IMSystems, 2019). No data is provided in terms of starting
torques or load-independent losses.

To enable a high torque transfer without slip, the deformation
of the planet rollers as well as the manufacturing tolerances of
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FIGURE 8 | Internal configuration of a two-stage NuGear gearbox for the version with opposed planet contacts adapted from CAxMan (2020) with permission of ©

Stam S.r.l. It includes also a schema of its underlying topology.

the gearbox must be tightly controlled. This represents one of the
main technological challenges, and it is the core of the innovation
introduced by this technology (Schorsch, 2014).

The NuGear
STAM s.r.l. is a private engineering company based in
Genova which helped develop a robotic joint for the I-
Cub humanoid robot. Their NuGear is a nutating gearbox
which was originally conceived (Barbagelata and Corsini, 2000)
targeting space applications, but could develop its potential
for robotics as well through the exploration of alternative
manufacturing means.

No information is yet publicly available about the
performance characteristics of this gearbox, which means
that we can only provide here a preliminary analysis of
its topology and the resulting performances which can be
expected based upon the limited information available basically
from the Caxman EU project (CAxMan, 2020) for which
the NuGear was a use case, and from the available patents
(Barbagelata et al., 2016).

In Figure 8 the internal structure of the NuGear is presented
using an equivalent PGT configuration—abstracting the nutating
aspect to ease the understanding. By doing so it becomes clear
that a NuGear resembles twoWolfromPGTs for which the carrier
is used as the input, connected in series and where each of them

corresponds to one of the two stages defined in Barbagelata et al.
(2016). This indicates again that a relatively high Latent Power
Ratios will be present in this gearbox. For a gear ratio of 1:100
and assuming a balanced gain of 1:10 on each of the two stages,
as proposed in Barbagelata et al. (2016), we obtain using the
equations derived inAnnex I a latent power ratio of 32 indicating
similar topological efficiency to that of a Wolfrom PGT.

It remains to be confirmed to which extent the use of Additive
Manufacturing methods can help STAM s.r.l. reduce the large
manufacturing cost of the bevel gears, and whether the nutating
operation can achieve sufficient reliability and a more compact
shape, which could open the door to its usage in the field of
robotics (CAxMan, 2020).

The Bilateral Drive
The FUJILAB in Yokohama proposed in Fujimoto (2015)
a highly backdrivable gearbox for robotics, which would be
particularly suited for operation without need for a torque sensor
(Kanai and Fujimoto, 2018).

As it can be observed in Figure 9, the configuration of this
device is again that of a Wolfrom PGT. With this topology,
Fujimoto et al. were able to reach, for a 1:102 gear ratio, forward
efficiencies of 89.9% and backdriving efficiencies of 89.2%. The
No-Load Starting torque in backdriving direction amounted to
0.016Nm in a gearbox with an outer diameter of ∼ 850mm
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FIGURE 9 | Internal configuration of a Bilateral Drive, a highly efficient gearbox capable of achieving 1:102 gear ratios using a Wolfrom topology, courtesy of

© Yasutaka Fujimoto.

FIGURE 10 | Internal configuration of the Gear Bearing Drive, including the embedded brushless motor adapted from Brassitos and Jalili (2017) with permission of ©

2017 American Society of Mechanical Engineers ASME. On the right the underlying Wolfrom topology with a split reaction ring is also shown.

(Kanai and Fujimoto, 2018). The strategy followed to reach
such high efficiencies with a Wolfrom topology consists on
the optimization of the profile-shift coefficients (Fujimoto and
Kobuse, 2017).

These promising results—see Table 4—indicate that
equalizing the approach and recess ratios through optimization
of the profile-shift coefficients can lead to extremely high
meshing efficiencies. To the best of the authors’ knowledge, this
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strategy was originally proposed by Hori and Hayashi (1994) and
is particularly interesting in a Wolfrom topology, where it could
ultimately enable efficiencies above 90% in combination with
high-gear ratios and compact topologies.

The Gear Bearing Drive
Following the pioneering work in this field of John M. Vranish
from NASA, which resulted in the invention of a carrier-less
planetary gear in Vranish (1995) and of the partial tooth gear
bearings (Vranish, 2006), theNASAGoddard Space Flight Center
presented its concept of a new Gear Bearing Drive in Weinberg
et al. (2008).

The Northeastern University in Boston continued the
development of this new actuator for applications in robotic
joints. As it can be observed in Figure 10, it incorporates a
Wolfrom gearbox adapted to include Vranish’s carrier-less design
and gear bearings. The gear bearings are rolling contacts which
are provided for each pair of meshings gears corresponding to
their pitch diameter and reduce the load on the gearbox bearings
(Brassitos et al., 2013). This topology enables a convenient
integration of an electromotor, which is therefore embedded
in the hollow area provided inside a large sun gearwheel in a
configuration particularly aimed at space applications (Brassitos
and Jalili, 2017).

In Brassitos and Jalili (2018) a metal prototype of a Gear
Bearing Drive with a gear ratio of 1:40 is characterized in terms
of stiffness, friction and kinematic error. The measurements are
very in line with those of the FUJILAB and confirm the low
no-load starting torque of this configuration (0.0165Nm for an
outer gearbox diameter of ∼8100mm). After experimentally
measuring the stiffness, friction and kinematic error of their
drive, (Brassitos and Jalili, 2018) integrated those values into
a dynamic model which was then simulated and compared
to the open loop velocity response of the system under free
sinusoidal motion, showing good correlation, and suggesting a
very convenient high linearity in the transmission.

Preliminary measurements indicated good combined
efficiencies for the motor and the Wolfrom gearbox with a gear
ratio of 1:264 (Brassitos et al., 2013), which do not correlate very
well with a calculated Latent Power Ratio of 196. Efficiency has
not been again in the focus of the recent papers of the authors
and we have unfortunately not been able at this point to confirm
the final efficiency levels that the newer prototypes can reach.

In any case, the Gear Bearing drive brings in very interesting
propositions to exploit the potential of the Wolfrom topology in
robotics. The possibility to eliminate the carrier and embed an
electric motor inside the gearbox, in a shared housing, results
in impressively compact designs. The possibility of using gear
bearing pitch-rollers to reduce radial loading on the bearings is
as well a promising option for improving compactness, and to
increase efficiency (Brassitos et al., 2019).

The Galaxie Drive
Schreiber and Schmidt (2015) protects the main innovations
included in the Galaxie Drive, a gearbox which WITTENSTEIN
is currently bringing into the precision gearbox market through
its start-up Wittenstein Galaxie GmbH, created in April 2020.

Although datasheet and detailed information are not yet
available, the principle of operation and expected gains
have also been disclosed. The Galaxie Drive introduces a
new kinematic approach based on a linear guidance of the
singular tooth in a Teeth Carrier, but according to these
authors its topology resembles that of a Strain Wave Gear,
see Figure 11. The flexspline is replaced by a Teeth Carrier
including two rows of individual teeth, arranged to move
radially and engage with the circular spline as a rotating Poligon
Shaft makes the role of a wave generator with polygonal
perimeter (Schreiber and Röthlingshöfer, 2017). Multiple,
individual teeth are consequently engaged simultaneously with
the circular spline—just as in a Harmonic Drive. This,
together with the highly torque-resistant two-point contact
between each single tooth and the Teeth Carrier, provide
this device with a characteristic zero-backlash, high torsional
stiffness and a benchmark torque-to-weight ability, according to
the manufacturer.

In a direct exchange, Wittenstein’s representatives confirmed
that the apparent issue of friction between the individual teeth
and their guiding Circular Ring is solved and the Galaxie can
reach peak efficiencies above 90%. Owed to its underlying KHV
configuration, large Latent Power Ratios are expected, but it
is not possible yet to gain further insights on the meshing
efficiency that will result from the radial movement of the
teeth, which incorporates a new logarithmic spiral tooth flank
(Michel, 2015).

Originally the Galaxie Drive is targeted at precision
machinery, where the high rigidity and torque resistance
can help increase the speed and improve the productivity.
In the future, we will certainly be able to assess the
potential of this innovative technology as well for
robotic applications.

DISCUSSION

A new generation of robotic devices is changing priorities in the
selection of adequate gearboxes. Instead of extreme precision at
high speeds, these devices impose stronger requirements in terms
of lightweight and very efficient mechanical gain devices.

The ultralight strain wave drives (HD, E-cyclo) are certainly
in a very good position to serve these needs, a fact confirmed by
its current dominance in the field of cobots. When considering
a strain wave drive for a pHRI robotic task, operation at low
torques and speeds shall be reduced to a minimum if efficiency
is to be maximized. Although their optimized teeth geometry
contributes to a more linear torsional stiffness, friction remains
highly non-linear and direction-dependent, inducing as well
certain usage limitations. Ratcheting as a consequence of impact
loading is a further limitation to consider for this type of gearbox,
which the E-Cyclo should not present (SUMITOMO, 2020).

Cycloid Drives have come a long way to ultimately become the
dominant technology in industrial robots. Through technological
advances to improve their backlash and input speed limitations,
they can now provide good accuracy with acceptable efficiency—
despite of high Latent Power Ratios, resulting from an underlying
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FIGURE 11 | Detail of the teeth engagement of a Galaxy (R) DF gearbox adapted from Schreiber (2015) with permission of © 2020 Wittenstein Galaxie GmbH. It

includes a schema of the underlying KHV topology.

KHV topology equivalent to that of the strain wave drives. The
use of a pre-gearing stage provides an important contribution
as well to this objective by means of improving underlying
topological efficiency. Ultralight designs like that of SPINEA
show interesting potential, but eventually more disruptive
approaches like plastic materials will be required to suit the needs
of lighter gearboxes and larger gear ratios needed for HRI. Until
this is possible, Cycloid Drives can only be considered for large
payloads, where their larger weight and resulting inertias are
not critical to function. When extreme accuracy is not needed,
backlash compensation measures can be avoided in favor of
better efficiencies and lower start-up torques. Care shall in any
case be taken to adequately manage torque ripple, and the pre-
gearing stage will probably need to stay in order to enable high
input motor speeds.

The impossibility of Planetary Gearboxes to reduce backlash
maintaining good performance and limitations in torsional
stiffness has limited their use in industrial robotics. Yet, PGT’s are
extremely versatile, as their extensive usage in multiple modern
industrial devices demonstrates. And they are inherently efficient,
reliable, and relatively easy—cheap—to manufacture. This may
explain the recent interest of roboticists in PGTs, and why five
of the six highly innovative gearboxes studied here are based
on a high-ratio, PGT configuration: the Wolfrom topology. A
better topological efficiency combined with improvements on
meshing efficiency with profile modifications or going even one
step further to replace teeth with rolling contacts are promising
features. In combination with the possibilities opened up by their
hollow topology, these elements could potentially drive a PGT
come-back in robotics.

Our research indicates that the large versatility of the gearbox
technologies involved in robotics represent a major challenge

for a direct comparison of their performances. As the examples
of backlash and maximum input speed show, adequate design
modifications can suitably compensate most of the original weak
points of a certain technology, at the cost of making compromises
in other aspects typically including efficiency, size, weight, and
cost. In the same way, large Latent Power Ratios indicate a
significant topological disadvantage in terms of efficiency, but
such can also be—at least partially—compensated for with
adequate modifications. A learning effect of this is therefore
that the selection of a suitable gearbox technology for a certain
pHRI application is an extremely complex process demanding
for a deep understanding of the fundamental weaknesses,
improvement potentials, and derived compromises of each
technology. Our initial research objective to contribute with a
simple selection table capable of guiding unexperienced robotic
engineers in the selection of suitable gearbox technologies for
their robotic devices could consequently not be achieved. Instead,
this paper collects and explains the main selection parameters
and their related challenges in each of the available technologies,
aiming at helping pHRI robotic engineers to develop the required
skills necessary for an educated choice of a suitable, individually-
optimized gearbox.

Two important aspects of robotic gearboxes for pHRI could
unfortunately not be adequately assessed in our research at this
stage: noise and cost. As robotic devices get closer to humans,
noise is receiving more and more attention from roboticists.
Gearboxes certainly represent an important source of noise
(airborne and structure borne), but unfortunately two main
limitations recommended to exclude noise from our analysis at
this stage. First, most gearbox manufacturers do not provide yet
quantitative noise performance evaluations and when they do,
those tend to follow different testing methods which are also not
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particularly suited for the operating conditions in pHRI. Second,
current gearbox technologies still have to undergo a pending
noise optimisation process.

Cost is as well an important parameter to make pHRI
technologies more available and becomes therefore essential for
the selection of suitable gearboxes for future robotic technologies.
Unfortunately, here again insufficient background information
is available to the scientific community in order to enable a
systematic a fair assessment of the large-scale cost potential of a
certain gearbox technology. Before a suitable framework to assess
this potential can be defined, a large amount of research work is
required which clearly exceeded the scope of our investigation.

These two limitations outline the main recommendations of
the authors for interesting future lines of research. Defining
standardized testing conditions for airborne and structure
borne noise in gearboxes, particularly adapted to typical
operating conditions and need in pHRI, could enable a direct
comparison of different technologies and contribute to their
noise optimization. Additionally, compiling available cost models
for the manufacturing processes involved in the manufacture of
gearboxes, and adapting those to the specificities of the particular
technologies used in robotics, would enable putting together a
framework to evaluate the large-scale cost potential (and barriers)
of the different technologies.

AUTHOR CONTRIBUTIONS

All authors have been involved in the preliminary work related
to this research topic and contributed to the conceptualization
of the framework presented in the manuscript. PG worked on
the derivation of a suitable assessment framework to perform

the gearbox analysis and took the lead in writing the manuscript
and shaping it into its current form. PG and ES contributed
equally to identify potentially suitable technologies, and on their
analysis with the aid of the framework. All authors proof read and
contributed to the final version of the paper.

FUNDING

SC, ES (SB Ph.D.) and TV (SB Postdoctoral) are Fellows at the
Research Foundation Flanders—Fonds voor Wetenschappelijk
Onderzoek (FWO). This work has been partially funded
by the European Union’s Horizon 2020 Research and
Innovation Programme, under Grant Agreement No.
687662—SPEXOR project.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Yasutaka Fujimoto, of the
YokohamaNational University, as well as the companies Neugart
GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH,
Genesis Robotics, Innovative Mechatronic Systems B.V., Stam
s.r.l. and Wittenstein Galaxy GmbH for the kind support and
explanations received, and for giving us permission to use the
included images of their devices.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2020.00103/full#supplementary-material

REFERENCES

Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock,
T., et al. (2008). Soft robotics. IEEE Robot. Autom. Mag. 15, 20–30.
doi: 10.1109/MRA.2008.927979

Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). “Planetary
speed reducers: efficiency, backlash, stiffness” in VDI International Conference

on Gears (Munich).
Arnaudov, K., and Karaivanov, D. (2005). “Higher compound planetary gear

trains” in VDI International Conference on Gears, Vol. 1904 (Munich: VDI-
Bericht), 327–344.

Barbagelata, A., Corsini, R. (2000). Riduttore Ingranaggi Conici Basculanti. Italian
Patent No. IT SV20000049A1. Rome: Ufficio Italiano Brevetti e Marchi.

Barbagelata, A., Ellero, S., Lando, R. (2016). Planetary Gearbox. European Patent
No. EP2975296A2. Munich: European Patent Office.

Brassitos, E., and Jalili, N. (2017). Design and development of a compact high-
torque robotic actuator for space mechanisms. J. Mech. Robot. 9, 061002-1–
061002-11. doi: 10.1115/1.4037567

Brassitos, E., and Jalili, N. (2018). “Identifying stiffness, friction, and kinematic
error signature in gear bearing drive transmissions,” in ASME 2018

International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (Quebec: American Society
of Mechanical Engineers Digital Collection). doi: 10.1115/DETC2018-
85647

Brassitos, E., Mavroidis, C., and Weinberg, B. (2013). “The gear bearing drive:
a novel compact actuator for robotic joints,” in ASME 2013 International

Design Engineering Technical Conferences and Computers and Information

in Engineering Conference (Portland, OR: American Society of Mechanical
Engineers Digital Collection). doi: 10.1115/DETC2013-13461

Brassitos, E., Weinberg, B., Qingchao, K., Mavroidis, C. (2019). Curved Bearing

Contact System. U.S. Patent No. US10174810B2. Washington, DC: U.S. Patent
and Trademark Office.

Calanca, A., Muradore, R., and Fiorini, P. (2015). A review of algorithms for
compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans.

Mech. 21, 613–624. doi: 10.1109/TMECH.2015.2465849
Carbone, G., Mangialardi, L., and Mantriota, G. (2004). A comparison of the

performances of full and half toroidal traction drives. Mech. Mach. Theory 39,
921–942. doi: 10.1016/j.mechmachtheory.2004.04.003

CAxMan (2020). H2020 project 680448 of the European Union. Presentation of the

Use Case 1: NuGear. Available online at: https://www.caxman.eu/en/use-cases/
nugear/ (accessed April 30, 2020).

Cetinkunt, S. (1991). Optimal design issues in high-speed high-precision motion
servo systems.Mechatronics 1, 187–201. doi: 10.1016/0957-4158(91)90043-A

Chen, C., and Angeles, J. (2006). Virtual-power flow and mechanical gear-mesh
power losses of epicyclic gear trains. ASME J. Mech. Des. 129, 107–113.
doi: 10.1115/1.2359473

Chen, D. Z., and Tsai, L. W. (1993). Kinematic and dynamic synthesis of
geared robotic mechanisms. J. Mech. Des. 115, 241–246. doi: 10.1115/1.2
919183

Crispel, S., López-García, P., Verstraten, T., Convens, B., Saerens, E.,
Vanderborght, B., and Lefeber, D. (2018). “Introducing compound planetary
gears (C-PGTs): a compact way to achieve high gear ratios for wearable
robots,” in International Symposium on Wearable Robotics (Pisa), 485–489.
doi: 10.1007/978-3-030-01887-0_94

Frontiers in Robotics and AI | www.frontiersin.org 18 August 2020 | Volume 7 | Article 10364

https://www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material
https://doi.org/10.1109/MRA.2008.927979
https://doi.org/10.1115/1.4037567
https://doi.org/10.1115/DETC2018-85647
https://doi.org/10.1115/DETC2013-13461
https://doi.org/10.1109/TMECH.2015.2465849
https://doi.org/10.1016/j.mechmachtheory.2004.04.003
https://www.caxman.eu/en/use-cases/nugear/
https://www.caxman.eu/en/use-cases/nugear/
https://doi.org/10.1016/0957-4158(91)90043-A
https://doi.org/10.1115/1.2359473
https://doi.org/10.1115/1.2919183
https://doi.org/10.1007/978-3-030-01887-0_94
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


García et al. Compact Gearboxes for Modern Robotics

De Santis, A., Siciliano, B., De Luca, A., and Bicchi, A. (2008). An atlas
of physical human–robot interaction. Mech. Mach. Theory 43, 253–270.
doi: 10.1016/j.mechmachtheory.2007.03.003

Del Castillo, J. M. (2002). The analytical expression of the efficiency
of planetary gear trains. Mech. Mach. Theory 37, 197–214.
doi: 10.1016/S0094-114X(01)00077-5

Dresscher, D., de Vries, T. J., and Stramigioli, S. (2016). “Motor-gearbox
selection for energy efficiency,” in 2016 IEEE International Conference

on Advanced Intelligent Mechatronics (AIM) (Banff, AB: IEEE), 669–675.
doi: 10.1109/AIM.2016.7576845

Fujimoto, Y. (2015). An Epicyclic Gear Drive and a Designing Method for the Same.
Japanese Patent No. JP2015164100. Tokyo: Japanese Patent Office.

Fujimoto, Y., and Kobuse, D. (2017). “Highly backdrivable robotic actuators,”
in IEEJ International Workshop on Sensing, Actuation, Motion Control, and
Optimization (SAMCON) (Nagaoka), IS2–1.

GAM (2020). GSL Strain Wave Gearbox. Catalogue.
GENESIS (2018). Reflex Torque Amplifier—Powering the Future of Motion. Tech

Update Communicate.
GENESIS Robotics (2020). LiveDrive R© Radial MOTOR [Brochure]. Available

online at: https://genesisrobotics.com/products/livedrive-radial-motor/
(accessed April 30, 2020).

Giberti, H., Cinquemani, S., and Legnani, G. (2010). Effects of transmission
mechanical characteristics on the choice of a motor-reducer. Mechatronics 20,
604–610. doi: 10.1016/j.mechatronics.2010.06.006

Girard, A., and Asada, H. H. (2017). Leveraging natural load dynamics
with variable gear-ratio actuators. IEEE Robot. Autom. Lett. 2, 741–748.
doi: 10.1109/LRA.2017.2651946

Gorla, C., Davoli, P., Rosa, F., Longoni, C., Chiozzi, F., and Samarani, A. (2008).
Theoretical and experimental analysis of a cycloid speed reducer. J. Mech. Des.

130:112604. doi: 10.1115/1.2978342
Groothuis, S. S., Folkertsma, G. A., and Stramigioli, S. (2018). A general approach

to achieving stability and safe behavior in distributed robotic architectures.
Front. Robot. AI 5:108. doi: 10.3389/frobt.2018.00108

Haddadin, S., Albu-Schäffer, A., and Hirzinger, G. (2009). Requirements for
safe robots: measurements, analysis and new insights. Int. J. Robot. Res, 28,
1507–1527. doi: 10.1177/0278364909343970

Haddadin, S., and Croft, E. (2016). “Physical human–robot interaction,”
in Springer Handbook of Robotics (Cham: Springer), 1835–1874.
doi: 10.1007/978-3-319-32552-1_69

HALODI Robotics (2018). Revo1TM Direct Drive MOTOR [Brochure], Moss.
Available online at: https://www.halodi.com/revo1 (accessed April 30, 2020).

Ham, R. V., Sugar, T. G., Vanderborght, B., Hollander, K. W., and Lefeber, D.
(2009). Compliant actuator designs. IEEE Robot. Autom. Mag. 16, 81–94.
doi: 10.1109/MRA.2009.933629

Harmonic Drive A. G. (2014) Engineering Data CSD-2A Component

Sets. Catalogue.
Hlebanja, G., and Kulovec, S. (2015). “Development of a planocentric gear

box based on S-gear geometry,” in 11. Kolloquium Getriebetechnik (Munich),
205–216.

Hogan, N. (1984). “Impedance control: an approach to manipulation,” in
1984 American Control Conference (San Diego, CA: IEEE), 304–313.
doi: 10.23919/ACC.1984.4788393

Hori, K., and Hayashi, I. (1994). Maximum efficiencies of conventional mechanical
paradox planetary gears for reduction drive. Trans. Jpn. Soc. Mech. Eng. 60,
3940–3947. doi: 10.1299/kikaic.60.3940

Hunter, I. W., Hollerbach, J. M., and Ballantyne, J. (1991). A comparative analysis
of actuator technologies for robotics. Robot. Rev. 2, 299–342.

IMSystems (2019). Archimedes Drive. IMSystems—Drive Innovation [Brochure],
Delft.

Iqbal, J., Tsagarakis, N. G., and Caldwell, D. G. (2011). “Design of a wearable
direct-driven optimized hand exoskeleton device,” in International Conference

on Advances in Computer-Human Interactions (ACHI) (Gosier).
Kanai, Y., and Fujimoto, Y. (2018). “Torque-sensorless control for a powered

exoskeleton using highly back-drivable actuators,” in IECON 2018−44th

Annual Conference of the IEEE Industrial Electronics Society (Washington, DC:
IEEE), 5116–5121. doi: 10.1109/IECON.2018.8591255

Kapelevich, A., and AKGears LLC (2013). High gear ratio epicyclic drives analysis.
Ratio 3, 10.

Karayiannidis, Y., Droukas, L., Papageorgiou, D., and Doulgeri, Z. (2015). Robot
control for task performance and enhanced safety under impact. Front. Robot.
AI 2:34. doi: 10.3389/frobt.2015.00034

Kashiri, N., Abate, A., Abram, S. J., Albu-Schaffer, A., Clary, P. J., Daley, M., et al.
(2018). An overview on principles for energy efficient robot locomotion. Front.
Robot. AI 5:129. doi: 10.3389/frobt.2018.00129

Kim, J., Park, F. C., Park, Y., and Shizuo, M. (2002). Design and analysis of
a spherical continuously variable transmission. J. Mech. Des. 124, 21–29.
doi: 10.1115/1.1436487

Klassen, J. B. (2019). Differential Planetary Gearbox. International Patent
No. WO2019/051614A1. Geneva: World Intellectual Property Organization,
International Bureau.

Koriakov-Savoysky, B., Aleksahin, I., Vlasov, I. P. (1996). Gear System. U.S. Patent
No. US5505668A. Washington, DC: U.S. Patent and Trademark Office.

Li, S. (2014). “The latest design technologies for gear devices with great
transmission ratios,” in Proceedings of International Gear Conference (Lyon),
427–436. doi: 10.1533/9781782421955.427

Looman, J. (1996). Zahnradgetriebe (Gear Mechanisms). Berlin: Springer-Verlag.
doi: 10.1007/978-3-540-89460-5

López-García, P., Crispel, S., Verstraten, T., Saerens, E., Convens, B.,
Vanderborght, B., and Lefeber, D. (2018). “Failure mode and effect
analysis (FMEA)-driven design of a planetary gearbox for active wearable
robotics,” in International Symposium on Wearable Robotics (Pisa), 460–464.
doi: 10.1007/978-3-030-01887-0_89

López-García, P., Crispel, S., Verstraten, T., Saerens, E., Vanderborght, B.,
Lefeber, D. (2019a). “Wolfrom gearboxes for lightweight, human-centered
robotics,” in Proceedings of the International Conference on Gears 2019 (Munich:
VDI), 753–764.

López-García, P., Crispel, S., Verstraten, T., Saerens, E., Vanderborght, B., and
Lefeber, D. (2019b). “Customizing planetary gear trains for human limb
assistance and replication,” in MATEC Web of Conferences (Varna: EDP
Sciences), 01014. doi: 10.1051/matecconf/201928701014

Loughlin, C., Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck,
T., and Hirzinger, G. (2007). The DLR lightweight robot: design and control
concepts for robots in human environments. Ind. Robot. Int. J. 34, 376–385.
doi: 10.1108/01439910710774386

Macmillan, R. H., and Davies, P. B. (1965). Analytical study of systems
for bifurcated power transmission. J. Mech. Eng. Sci. 7, 40–47.
doi: 10.1243/JMES_JOUR_1965_007_009_02

Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und

Anwendungsbeispiele. Landsberg: Verlag Moderne Industrie.
Michel, S. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt Nr.

18, 40–42.
Mihailidis, A., Athanasopoulos, E., and Okkas, E. (2014). “Efficiency of a cycloid

reducer,” in International Gear Conference (Lyon Villeurbanne), 794–803.
doi: 10.1533/9781782421955.794

Morozumi, M. (1970). Profile Shifted Involute Internal Gearing. U.S. Patent No.
US3546972A. Washington, DC: U.S. Patent and Trademark Office.

Mueller, H. W. (1998). Die Umlaufgetriebe: Auslegung und

vielseitige Anwendungen. Berlin; Heidelberg: Springer-Verlag.
doi: 10.1007/978-3-642-58725-2

Mulzer, F. (2010). Systematik hoch übersetzender koaxialer getriebe (Doctoral
dissertation). Technische Universität München, Munich, Germany.

Musser, C. W. (1955). Strain Wave Gearing. U.S. Patent No. US2906143A.
Washington, DC: U.S. Patent and Trademark Office.

NABTESCO (2018). Precision Reduction Gear RV—N Series.
CAT.180410. Catalogue.

Neugart, A. G. (2020). PLE Economy Line. Catalogue.
Niemann, G., Winter, H., and Höhn, B. R. (1975). Maschinenelemente, Vol. 1.

Berlin; Heidelberg; New York, NY: Springer.
Pasch, K. A., and Seering, W. P. (1983). “On the drive systems for high-

performance machines,” in Mechanical Engineering (New York, NY: ASME-
AMER Society Mechanical Engineering), 107–107.

Pennestri, E., and Freudenstein, F. (1993). The mechanical efficiency of epicyclic
gear trains. ASME J. Mech. Des. 115, 645–651. doi: 10.1115/1.2919239

Pettersson, M., and Ölvander, J. (2009). Drive train optimization for industrial
robots. IEEE Trans. Robot. 25, 1419–1424. doi: 10.1109/TRO.2009.20
28764

Frontiers in Robotics and AI | www.frontiersin.org 19 August 2020 | Volume 7 | Article 10365

https://doi.org/10.1016/j.mechmachtheory.2007.03.003
https://doi.org/10.1016/S0094-114X(01)00077-5
https://doi.org/10.1109/AIM.2016.7576845
https://genesisrobotics.com/products/livedrive-radial-motor/
https://doi.org/10.1016/j.mechatronics.2010.06.006
https://doi.org/10.1109/LRA.2017.2651946
https://doi.org/10.1115/1.2978342
https://doi.org/10.3389/frobt.2018.00108
https://doi.org/10.1177/0278364909343970
https://doi.org/10.1007/978-3-319-32552-1_69
https://www.halodi.com/revo1
https://doi.org/10.1109/MRA.2009.933629
https://doi.org/10.23919/ACC.1984.4788393
https://doi.org/10.1299/kikaic.60.3940
https://doi.org/10.1109/IECON.2018.8591255
https://doi.org/10.3389/frobt.2015.00034
https://doi.org/10.3389/frobt.2018.00129
https://doi.org/10.1115/1.1436487
https://doi.org/10.1533/9781782421955.427
https://doi.org/10.1007/978-3-540-89460-5
https://doi.org/10.1007/978-3-030-01887-0_89
https://doi.org/10.1051/matecconf/201928701014
https://doi.org/10.1108/01439910710774386
https://doi.org/10.1243/JMES_JOUR_1965_007_009_02
https://doi.org/10.1533/9781782421955.794
https://doi.org/10.1007/978-3-642-58725-2
https://doi.org/10.1115/1.2919239
https://doi.org/10.1109/TRO.2009.2028764
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


García et al. Compact Gearboxes for Modern Robotics

Pham, A. D., and Ahn, H. J. (2018). High precision reducers for industrial robots
driving 4th industrial revolution: state of arts, analysis, design, performance
evaluation and perspective. Int. J. Precis. Eng. Manuf. Green Technol. 5,
519–533. doi: 10.1007/s40684-018-0058-x

Rezazadeh, S., and Hurst, J. W. (2014). “On the optimal selection of motors and
transmissions for electromechanical and robotic systems,” in 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems (Chicago, IL: IEEE),
4605–4611. doi: 10.1109/IROS.2014.6943215

Roos, F., Johansson, H., and Wikander, J. (2006). Optimal selection of
motor and gearhead in mechatronic applications. Mechatronics 16, 63–72.
doi: 10.1016/j.mechatronics.2005.08.001

Rosenbauer, T. (1995). Getriebe für Industrieroboter: Beurteilungskriterien.
Kenndaten, Einsatzhinweise: Shaker.

Rossman, A. M. (1934). Mechanical Movement. U.S. Patent No. US1970251.
Washington, DC: U.S. Patent and Trademark Office.

Saerens, E., Crispel, S., García, P. L., Verstraten, T., Ducastel, V., Vanderborght,
B., and Lefeber, D. (2019). Scaling laws for robotic transmissions.Mech. Mach.

Theory 140, 601–621. doi: 10.1016/j.mechmachtheory.2019.06.027
Schafer, I., Bourlier, P., Hantschack, F., Roberts, E. W., Lewis, S. D., Forster, D.

J., and John, C. (2005). “Space lubrication and performance of harmonic drive
gears,” in 11th European Space Mechanisms and Tribology Symposium, ESMATS

2005 (Lucerne), 65–72.
Scheinman, V., McCarthy, J. M., and Song, J. B. (2016). “Mechanism and

actuation,” in Springer Handbook of Robotics (Cham: Springer), 67–90.
doi: 10.1007/978-3-319-32552-1_4

Schempf, H. (1990). Comparative design, modeling, and control analysis

of robotic transmissions (Ph.D. thesis). No. WHOI-90-43. Department
of Mechanical Engineering, and Woods Hole Oceanographic Institute,
Massachusetts Institute of Technology, Cambridge, MA, United States.
doi: 10.1575/1912/5431

Schempf, H., and Yoerger, D. R. (1993). Study of dominant performance
characteristics in robot transmissions. ASME J. Mech. Des. 115, 472–482.
doi: 10.1115/1.2919214

Schorsch, J. F. (2014). Compound Planetary Friction Drive. Dutch Patent No.
2013496. De Haag: Octrooicentrum Nederland.

Schreiber, H. (2015). “Revolutionäres getriebeprinzip durch neuinterpretation
von maschinenelementen—Die WITTENSTEIN Galaxie R©-Kinematik,” in
Dresdner Maschinenelemente Kolloquium, DMK (Dresden), 2015.S.

Schreiber, H., and Röthlingshöfer, T. (2017). “Kinematic classification of a gearbox
comprising separate thrusted teeth and its advantages regarding existing
approaches,” in International Conference on Gears, ICG (Munich).

Schreiber, H., and Schmidt, M. (2015). Getriebe. Deutsche Patent No. DE 10 2015
105 525 A1. Munich: Deutsches Patent- und Markenamt.

Sensinger, J. W. (2010). “Selecting motors for robots using biomimetic trajectories:
optimum benchmarks, windings, and other considerations,” in 2010 IEEE

International Conference on Robotics and Automation (Anchorage, AK: IEEE),
4175–4181. doi: 10.1109/ROBOT.2010.5509620

Sensinger, J. W. (2013). Efficiency of high-sensitivity gear trains, such as cycloid
drives. ASME J. Mech. Des. 135, 071006-1–071006-9. doi: 10.1115/1.4024370

Sensinger, J. W., Clark, S. D., and Schorsch, J. F. (2011). “Exterior vs.
interior rotors in robotic brushless motors,” in 2011 IEEE International

Conference on Robotics and Automation (Montreal, QC: IEEE), 2764–2770.
doi: 10.1109/ICRA.2011.5979940

Seok, S., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M.,
et al. (2014). Design principles for energy-efficient legged locomotion and
implementation on the MIT cheetah robot. IEEE/ASME Trans. Mech. 20,
1117–1129. doi: 10.1109/TMECH.2014.2339013

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics: Modelling,

Planning and Control. London: Springer Science and Business Media.
doi: 10.1007/978-1-84628-642-1

Slatter, R. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik. St.
Leonard: Antriebstechnik.

SPARC (2015). Robotics 2020 Multi-Annual Roadmap for Robotics in Europe

Horizon 2020 Call ICT-2017. Available online at: https://www.eu-robotics.net/
sparc/about/roadmap/index.html (accessed April 30, 2020).

SPINEA (2017). TwinSpin—High Precision Reduction Gears—

Präzisionsgetriebe. Katalog.
Stramigioli, S., van Oort, G., and Dertien, E. (2008). “A concept for

a new energy efficient actuator,” in 2008 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (Xi’an: IEEE), 671–675.
doi: 10.1109/AIM.2008.4601740

SUMITOMO (2017). Fine Cyclo R© Spielfreie Präzisionsgetriebe. Katalog 991311
DE 02/2017.

SUMITOMO (2020). E-Cyclo R©Motion Control Drives. Katalog F10001E-1.
Talbot, D., and Kahraman, A. (2014). “A methodology to predict power losses

of planetary gear sets,” in International Gear Conference (Lyon-Villeurbanne),
26–28. doi: 10.1533/9781782421955.625

Tomcyk, H. (2000). Adjusting Device with Planetary Gears. European Patent No.
EP1244880B1. Munich: European Patent Office.

Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T.,
et al. (2019). “Back-support exoskeletons for occupational use: an overview of
technological advances and trends,” in IISE Trans. Occup. Ergon. Hum. Factors

7, 3–4, 237–249. doi: 10.1080/24725838.2019.1626303
Van de Straete, H. J., Degezelle, P., De Schutter, J., and Belmans, R. J. (1998). Servo

motor selection criterion for mechatronic applications. IEEE/ASME Trans.

Mech. 3, 43–50. doi: 10.1109/3516.662867
Veale, A. J., and Xie, S. Q. (2016). Towards compliant and wearable robotic

orthoses: a review of current and emerging actuator technologies. Med. Eng.

Phys. 38, 317–325. doi: 10.1016/j.medengphy.2016.01.010
Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D.

(2016). “Energy consumption of geared DC motors in dynamic applications:
comparing modeling approaches,” in IEEE Robot. Autom. Lett. 1, 524–530.
doi: 10.1109/LRA.2016.2517820

Vranish, J. M. (1995). Carrier-Less, Anti-Backlash Planetary Drive System. U.S.
Patent No. US5409431. Washington, DC: U.S. Patent and Trademark Office.

Vranish, J. M. (2006). Partial Tooth Gear Bearings. U.S. Patent No.
US2006/0219039A1. Washington, DC: U.S. Patent and Trademark Office.

Wang, A., and Kim, S. (2015). “Directional efficiency in geared transmissions:
characterization of backdrivability towards improved proprioceptive control,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA)

(Seattle, WA: IEEE), 1055–1062. doi: 10.1109/ICRA.2015.7139307
Weinberg, B., Mavroidis, C., Vranish, J. M. (2008). Gear Bearing Drive. U.S. Patent

No. US2008/0045374A1. Washington, DC: U.S. Patent and Trademark Office.
WinterGreen Research (2018). Precision Strain Wave Reducer Gearboxes and RV

and RD Reducers: Market Shares, Strategy, and Forecasts, Worldwide, 2018 to

2024. WIN0418002.
WITTENSTEIN AG (2020). Technische Broschüre SP+ und TP+

Getrieben. Katalog.
Wolf, A. (1958). Die Grundgesetze der Umlaufgetriebe. Braunschweig: Friedr.

Vieweg and Sohn.
Wolfrom, U. (1912). Der Wirkungsgrad von Planetenrädergetrieben.

Werkstattstechnik 6, 615–617.
Yu, D., and Beachley, N. (1985). On the mechanical efficiency of differential

gearing. ASME J. Mech. Trans. Autom. 107, 61–67. doi: 10.1115/1.325
8696

Zinn, M., Roth, B., Khatib, O., and Salisbury, J. K. (2004). A new actuation
approach for human friendly robot design. Int. J. Robot. Res. 23, 379–398.
doi: 10.1177/0278364904042193

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 García, Crispel, Saerens, Verstraten and Lefeber. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 20 August 2020 | Volume 7 | Article 10366

https://doi.org/10.1007/s40684-018-0058-x
https://doi.org/10.1109/IROS.2014.6943215
https://doi.org/10.1016/j.mechatronics.2005.08.001
https://doi.org/10.1016/j.mechmachtheory.2019.06.027
https://doi.org/10.1007/978-3-319-32552-1_4
https://doi.org/10.1575/1912/5431
https://doi.org/10.1115/1.2919214
https://doi.org/10.1109/ROBOT.2010.5509620
https://doi.org/10.1115/1.4024370
https://doi.org/10.1109/ICRA.2011.5979940
https://doi.org/10.1109/TMECH.2014.2339013
https://doi.org/10.1007/978-1-84628-642-1
https://www.eu-robotics.net/sparc/about/roadmap/index.html
https://www.eu-robotics.net/sparc/about/roadmap/index.html
https://doi.org/10.1109/AIM.2008.4601740
https://doi.org/10.1533/9781782421955.625
https://doi.org/10.1080/24725838.2019.1626303
https://doi.org/10.1109/3516.662867
https://doi.org/10.1016/j.medengphy.2016.01.010
https://doi.org/10.1109/LRA.2016.2517820
https://doi.org/10.1109/ICRA.2015.7139307
https://doi.org/10.1115/1.3258696
https://doi.org/10.1177/0278364904042193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 08 September 2020
doi: 10.3389/frobt.2020.00108

Frontiers in Robotics and AI | www.frontiersin.org 1 September 2020 | Volume 7 | Article 108

Edited by:

Carlos A. Cifuentes,

Escuela Colombiana de Ingenieria

Julio Garavito, Colombia

Reviewed by:

Guillermo Asín-Prieto,

Consejo Superior de Investigaciones

Científicas (CSIC), Spain

Camilla Pierella,

École Polytechnique Fédérale de

Lausanne, Switzerland

*Correspondence:

Kiran K. Karunakaran

kkk7@njit.edu

Specialty section:

This article was submitted to

Biomedical Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 01 May 2020

Accepted: 13 July 2020

Published: 08 September 2020

Citation:

Karunakaran KK, Abbruzzese K,

Androwis G and Foulds RA (2020) A

Novel User Control for Lower

Extremity Rehabilitation Exoskeletons.

Front. Robot. AI 7:108.

doi: 10.3389/frobt.2020.00108

A Novel User Control for Lower
Extremity Rehabilitation
Exoskeletons
Kiran K. Karunakaran 1,2*, Kevin Abbruzzese 2,3, Ghaith Androwis 1,2 and Richard A. Foulds 2,4

1 Kessler Foundation, West Orange, NJ, United States, 2Department of Biomedical Engineering, New Jersey Institute of

Technology, Newark, NJ, United States, 3 Stryker Corporation, Mahwah, NJ, United States, 4 Really Useful Robots, LLC,

Langhorne, PA, United States

Lower extremity exoskeletons offer the potential to restore ambulation to individuals with

paraplegia due to spinal cord injury. However, they often rely on preprogrammed gait,

initiated by switches, sensors, and/or EEG triggers. Users can exercise only limited

independent control over the trajectory of the feet, the speed of walking, and the

placement of feet to avoid obstacles. In this paper, we introduce and evaluate a novel

approach that naturally decodes a neuromuscular surrogate for a user’s neutrally planned

foot control, uses the exoskeleton’s motors to move the user’s legs in real-time, and

provides sensory feedback to the user allowing real-time sensation and path correction

resulting in gait similar to biological ambulation. Users express their desired gait by

applying Cartesian forces via their hands to rigid trekking poles that are connected to the

exoskeleton feet through multi-axis force sensors. Using admittance control, the forces

applied by the hands are converted into desired foot positions, every 10 milliseconds

(ms), to which the exoskeleton is moved by its motors. As the trekking poles reflect the

resulting foot movement, users receive sensory feedback of foot kinematics and ground

contact that allows on-the-fly force corrections to maintain the desired foot behavior. We

present preliminary results showing that our novel control can allow users to produce

biologically similar exoskeleton gait.

Keywords: lower extremity exoskeletons, gait, spinal cord injury, rehabilitation robotics, robot control systems

INTRODUCTION

Individuals with complete paraplegia due to spinal cord injury (SCI) have impaired motor control
and sensory feedback that limits their ability to walk (Shepherd Center). While wheelchairs provide
alternative mobility to individuals with paraplegia, they are not a complete substitute for natural
ambulation. Current research has addressed this issue with wearable lower extremity exoskeletons
(Dollar and Herr, 2008; Contreras-Vidal et al., 2016). The past decade has witnessed a dramatic
growth in the study and implementation of such technology, not only for those with paraplegia
due to SCI, but also for individuals with cerebral palsy, stroke, traumatic brain injury and multiple
sclerosis (Canela et al., 2013; Murray et al., 2015; Kozlowski et al., 2017; Lerner et al., 2017; Patané
et al., 2017; Androwis et al., 2019; Karunakaran et al., 2019). These exoskeletons are mechanically
similar, consisting of a set of linkages that parallel the wearer’s thighs, calves, and feet, and
augmented with actuators to provide alternatives to muscle torque at the joints. Unlike devices
developed for military and industrial tasks, most rehabilitation exoskeletons rely on the subject’s
use of crutches or canes to provide balance, as the devices lack sensory feedback and balance
compensation (Contreras-Vidal et al., 2016).
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Where current rehabilitation exoskeletons differ significantly
is in their detection of user initiation of gait patterns (Dellon and
Matsuoka, 2007; Strickland, 2012)1,2. The Ekso (Ekso Bionics)
has motors at the hip and knee, with passive springs at the ankles
to provide gait only in the sagittal plane (Strickland, 2012)1. The
Ekso has two options to initiate the gait cycle. (1) The first allows
a clinician to control gait by means of an external switch pad
for training and therapy. (2) For independent control, sensors
embedded in the device detect changes in the hip position1. A
step can be initiated by the user moving the hip forward and
laterally or by changing tilt angle and making ground contact
with sensors on the crutches1. Goldfarb et al. developed what
has been commercialized as the Indego (Parker Hannifin) (Farris,
2012; Farris et al., 2012; Quintero et al., 2012). It also has powered
degrees of freedom (DOF) at the hip and knee, and passive
ankle support in the sagittal plane. It uses Hall effect sensors,
potentiometers, and accelerometers to detect the user’s center of
pressure (COP) (Farris, 2012; Quintero et al., 2012). When the
user leans forward with both crutches touching the ground, the
COP shifts in the direction of movement, and the exoskeleton
initiates swing of the most rearward leg (Farris, 2012; Quintero
et al., 2012). The Rewalk (Rewalk Robotics) also has two active
DOFs with the ankle consisting of a simple orthotic joint with
limited motion and spring assisted dorsiflexion (Esquenazi et al.,
2012). The control system includes a tilt sensor to determine
changes in trunk motion and center of gravity. Shifts in the
center of gravity initiate the preprogrammed hip and knee
displacement in the appropriate leg (Esquenazi et al., 2012). The
HAL (Cyberdyne) employs a combination of EMG gait initiation
detection with an accelerometer and gyroscope to sense body
posture (Lee and Sankai, 2002, 2003; Hayashi et al., 2005). In
contrast to the above exoskeletons that have two active degrees of
freedom, the REX (REX Bionics) has 5 motors per leg and is the
only available assistive exoskeleton to provide movement in the
coronal as well as sagittal planes, and to be self-balancing (i.e.,
no crutches2). It is controlled by a joystick that signals one of 8
discrete directions of ambulation, and has button selection for
sitting and rising2.

Electrophysiological signals have also been employed to
initiate exoskeleton gait (Kilicarslan et al., 2013; Kwak et al.,
2015; Lebedev and Nicolelis, 2017). Contreras-Vidal et al.
have demonstrated the use of EEG triggers to select various
REX exoskeleton’s discrete control commands (Farris et al.,
2012). Similarly, other investigators have focused on detecting
gait initiation and termination events using EEG, EOG,
evoked potentials, and other bioelectric signals (Nicolelis, 2003;
Kilicarslan et al., 2013; Kwak et al., 2015).

Beyond the triggering of preplanned gait patterns, extensive
research has been pursued on control methods that allow users
to plan and execute novel gait patterns similar to those of
individuals with no disability. Gancet et al. have tried to interpret
EEG signals from the motor cortex to calculate the kinematics
of the gait cycle. A dynamic recurrent neural network was used
to train the network to detect the gait patterns in the EEG

1Ekso Bionics. Available online at: https://eksobionics.com/
2RexBionics. Available online at: https://www.rexbionics.com/

signal (Gancet et al., 2012). Lebedev and Nicolelis (2017) has also
attempted to use BCI to communicate the user’s desired gait cycle
kinematics. Unfortunately, both groups have reported numerous
challenges such as difficulty in identifying the user intention of
each joint, removal of mechanical artifacts caused by relative
movement of the EEG cap, and physiological artifacts due to
muscle activity in the vicinity of the cap. Even with extensive
signal processing, they were not able to completely isolate the
relevant signals at all time periods. López-Larraz et al. (2016)
have concluded that the current state of the art of non-invasive
BCI knowledge is insufficient for precise decoding of neutrally
intended leg kinematics.

Similar to our intention of redirecting controllable
neuromuscular activities to define real-time novel gait patterns,
Durandau et al. (2019) have explored the use of residual muscle
force activity by using detecting EMG signals. These investigators
explain that no other exoskeleton has the ability to amplify weak
user muscle strength. Another group (Ferris and Lewis, 2009)
have considered the use of proportional EMG signals to activate
pneumatic muscles that power a lower extremity exoskeleton. Yet
another group has recognized the contralateral synchronization
of the arms and legs in unimpaired walking and has used the
shoulder angles to define unique sets of hip, knee, and ankle
angles that are provide to the exoskeleton (Fang et al., 2017).

Similar to those efforts, the long-term objective of our work is
to allow users to intuitively express their desired gait kinematics
and dynamics using their arms and hands as sensory and motor
alternatives to their legs and feet. Our prior lower extremity
research (Karunakaran et al., 2014, 2017) evaluated the feedback
conditions required by the hand to produce gait kinematics. That
study included 18 subjects controlling virtual feet using hand
movements to produce gait trajectories in a virtual environment.
Our results indicated that users, provided with haptic through
a physical link, and visual feedback (both sensations felt by the
hands and visual observation), produced hand and virtual foot
trajectories similar to biological gait trajectories (Karunakaran
et al., 2014, 2017). We showed that for this to be a viable
exoskeleton control method, the hands must be haptically
connected either contralaterally or ipsilaterally to the feet. This
ensures that the hands and feet move in precise time synchrony,
and that hands sense themovement of the feet in order to provide
the central nervous system with both position and force feedback
from the feet (Karunakaran et al., 2014, 2017). This study as well
as our other prior work has shown that neural control of arm and
finger walking-like movements generates kinematics very similar
to biologically intact neurally determined leg movements and
foot placement (DeMarco and Foulds, 2002; Birmingham et al.,
2003; Karunakaran et al., 2014, 2017).

The goal of this work was to develop and user test an intuitive
control mechanism that independently controls both legs,
while producing symmetrical gait kinematics using trajectories
generated by hand movements in real time. Balance and co-
ordination are being addressed in the later phase of the work, and
will be presented in a subsequent paper.

We have chosen to allow the user to control movement of each
foot with movements of the ipsilateral hand and arm. This may
appear counter intuitive since the arms swing contralaterally with
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respect to leg movements during normal walking. However, we
believe that ipsilateral control presents little if any physiological
impediment to a successful user/exoskeleton interface, while its
advantages are significant.

Although contralateral arm swing is commonly observed, its
function in human gait is not entirely understood. Recent studies
(Meesen et al., 2006; Meyns et al., 2013) agree there may be
an enhancement in balance and stability, however, they also
note that walkers can carry objects and make purposeful arm
movements without compromising balance.

Contralateral arm movement is the preferred pattern at
walking speeds above 0.8 m/s, yet at speeds below 0.8
m/s, individuals will often adopt an ipsilateral pattern or
not swing the arms at all (Ford et al., 2007). In studies
of walking with constrained or impaired arm movements
(Meesen et al., 2006; Ford et al., 2007) there were only
minor reductions in walking speed, that could be voluntarily
corrected by participants. Studies of ladder climbing (Armstrong
et al., 2009) show a preference for ipsilateral hand and
arm coordination. Most importantly, in Meesen et al. (2006)
subjects were asked to make four types of simultaneous arm/leg
movements: ipsilateral same direction movements (e.g., right
arm and right leg raised up and down, or adducted/abducted),
opposite direction ipsilateral movements (e.g., right arm up
while right leg down, or right arm adducted and right
leg abducted), contralateral same direction movements and
contralateral opposite direction movements. When examining
the quality to interlimb coordination, the investigators found
that the ipsilateral, same direction movements were modestly
more accurate in absolute position/angle and phase than both
contralateral conditions (Meesen et al., 2006). Thus, we are
confident that we could employ either ipsilateral or contralateral
arm/hand control method.

For our purposes, ipsilateral control of foot movement has
several significant advantages. Admittance control requires the
user to apply forces to the foot of the exoskeleton. This is most
easily accomplished via a rigid trekking pole on the same side as
the foot. A pole on the same side of the body facilitates directing
the foot to move vertically and horizontally in the sagittal plane
as well as controlling ab/adduction in coronal plane. Also, the
poles allow the user’s to feel the impact of the ground reaction
through the ipsilateral hands. This quality of sensory feedback is
unavailable in any proposed exoskeleton control method, and has
been shown in our earlier work (Karunakaran et al., 2017) to be
of vital importance to controlling the movement of the feet.

MATERIALS AND METHODS

Apparatus
A 1/2 scale biped robot representing a lower extremity
exoskeleton was built to test our control method. Each leg has 2
links, from hip to knee, and from knee to ankle, and a foot scaled
to the anthropometry of the human leg.

Each robot leg has 5 DOF (Figure 1). The hip has 2
DOF for flexion/extension and abduction/adduction, the knee
has 1 DOF for flexion/extension, and the ankle has 2 DOF
for plantarflexion/dorsiflexion and inversion/eversion. Using
previously published data (Hamill et al., 2013), maximum thigh
angular velocities and angular accelerations were found to be
28 radians/second (rad/s) and 35 radians/second2, respectively.
Using this angular acceleration with an estimate of the robot leg
moment of inertia relative to the hip, the motor torque required
to achieve the maximum acceleration was computed to be 4.2
Newton-meter (N-m). The similarly computed maximum knee
motor torque is smaller due to the smaller moment of inertia.
We selected the Dynamixel MX-106 smart servomotor (Robotis,

FIGURE 1 | (A) Mount to attach the foot to ankle motors. (B) Foot of the biped with extrusion to mount (1) Optoforce. (C) Front view of 10 DOF biped robot designed

based on anthropometric data. L1 is the link length between hip and knee, L2 is link length between knee and foot. (C) The coordinate system X, Y, and Z used for

robot’s movement on treadmill.
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FIGURE 2 | The Admittance Control algorithm for control of biped gait in the sagittal plane. θ1 is hip angle, θ2 is knee angle, and θ3 is the ankle angle computed

based on Equations (1-3), respectively. Velocities in X and Y are represented by vx and vy, respectively. Acceleration in X and Y are represented by ax, and ay,

respectively. Position in X and Y are represented by px and py, respectively.

USA)3 as the actuator for all joints, since both its angular velocity,
42 rad/s, resolution of 0.088 degrees and maximum torque, 8.5
N-m, allow the robot to match the physiological leg segment
velocities and accelerations.

Dynamixel servos employ Maxon motors supported by 32-bit
internal microcontrollers providing proportional/integrative/der
ivative (PID) control at 1,000Hz. All motors are daisy chained by
a 3-wire bus on which they are group addressed from MATLAB
software at 1 Mbits/second so that the motors are activated
simultaneously. A 3 DOF Optoforce sensor4 detects the forces
exerted by the user on carbon-fiber trekking poles that are rigidly
attached to the sensor.

User Control Algorithm
The control algorithm consists of an outer admittance loop
running at 100Hz and an inner impedance loop running at
1,000Hz. The Dynamixel motor’s internal PID controller serves
as the inner loop. Our admittance loop receives the Cartesian
forces applied to the trekking poles by the user’s hands and
generates desired Cartesian kinematics for the end-effectors of
the robot every 10 milliseconds (ms). Admittance control offers
a very intuitive control mechanism; where the robot end-effector
will be directed to move in the Cartesian directions proportional
to the force applied by the user (Van Der Linde et al., 2002). The
force can be scaled to accommodate the user’s needs. It is safe and

3Robotis. Available online at: http://www.robotis.com/xe/dynamixel_en
4https://www.universal-robots.com/

easy for human interaction (VanDer Linde et al., 2002; Haidegger
et al., 2009).

Custom inverse kinematics algorithms transform the
Cartesian positions generated by the admittance loop into joint
angles used to command the motors. Algorithms are written
in MATLAB, with time-dependent functions coded in C to
maintain a 100Hz update rate.

Sagittal Plane Control
Robot control in the sagittal plane is shown in Figure 2. User
forces applied in the X and Y-direction are read at 1,000Hz from
two axes of the 3 DOF Optoforce force sensor, and averaged to
provide 100 samples/second. For every cycle of the admittance
loop these forces, virtual mass, virtual damping, as well as the
foot’s Cartesian position and velocity are passed to custom-
written ordinary differential equation (ODE) that is implemented
using the C source code Variable ordinary differential equation
(CVode) solver and compiled for use in MATLAB (Van Riel,
2012). The ODE is shown in Figure 2 as a double integration
that provides the desired positions and velocities in X and Y
to be achieved in the next 10ms. The value assigned to the
mass allows scaling of the forces to meet the capabilities of the
user’s hands. The ODE also incorporates the admittance loop’s
damping that maintains stability of the system. No admittance
stiffness is included in this version of the software, but can be
added if required in future situations. The ODE function is coded
to solve the second-order differential equation shown below:

X′′ (t) =
F (X)

M
−

B ∗ X′ (t)

M
(1)
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where, F(X) = force (Newton), M = virtual mass (kilogram),
B = virtual damping (Newton-second/meter), X

′
(t) =velocity

(meter/second), X
′′
(t)= acceleration (meter/second2).

Inverse Kinematics
Since the robot has revolute joints, inverse kinematics converts
the X-Y position of the foot to angles of the hip and knee in the
sagittal plane. For simplicity, the angle of the ankle is computed
to keep the foot parallel to the floor. The angles are calculated
using the law of cosines (Equations 2–4). The joint angles are in
turn converted to hip, knee and ankle motor units in the sagittal
plane. These values are in turn fed to the correspondingmotors to
generate the required torque to perform the movement intended
by the user.

θ2 = −2tan−1

√

(L1+ L2)2 − (X1+ Y1)2

(X1+ Y2)2 − (L1+ L2)2
(2)

θ1 = tan

(

L2sinθ2

L1+ L2cosθ2

)

− tan

(

Y1

X1

)

(3)

θ3 = θ2− tan

(

Y1

X1

)

+ tan

(

L2sinθ2

L1+ L2cosθ2

)

(4)

where, X1, Y1 is the desired end-effector position, L1 is the link
length between hip and knee, L2 is link length between knee and
ankle, θ1 is hip angle, θ2 is knee angle, and θ3 is the ankle angle.

The Dynamixel motors have sufficiently fast mechanical and
electrical response times (∼4ms) to relocate the robot end-
effector to the desired location within the 10ms loop period3.
The new position is read at the beginning of the next admittance
cycle and serves as the initial conditions for theODE. As the user’s
hand is rigidly connected to the robot foot, the user receives real-
time sensation of foot movement. The user can modulate his/her
forces to alter the speed of foot movement independently in X

and Y, and also in response to external forces that may impede
the foot.

Singularity Check
The algorithm verifies that the predicted X-Y position is within
reach of the robot. If this check fails, the next position is set to a
location on the boundary of the robot’s range on a line between
the former and predicted position. This maintains stability and
smoothness at the singularity. The robot reaches singularity when
the estimated position is outside the range of motion of the robot.

Coronal Plane Control
Force applied by the user to a trekking pole in the z-direction is
similarly converted to rotation of the hip in the coronal plane
as shown in Figure 3. The user input is treated as an applied
torque, so the ODE implements the following rotational equation
of motion:

θ ′′ (t) =
T (θ)

I
−

B*θ ′ (t)

I
(5)

θ4 =
∫

θ ′ (t) (6)

θ5 = 180− θ4 (7)

where, T(θ) = user applied torque (Newton-meter), I =
virtual moment of inertia (kilogram-meter2), B = rotational
damping (Newton-second/meter), θ ′ (t) = angular velocity
(meter/second), θ

′′
(t) = angular acceleration (meter/second2).

θ4 is hip angle, and θ5 is the ankle angle in the coronal plane.
The ab/adduction angle is executed by the second hip motor,

with the new angle serving as the initial condition for the next
admittance cycle, and the movement of the robot leg provides a
haptic sensation to the user’s hand. Similar to the sagittal plane,
the inversion/eversion angle of the foot is computed to keep the
foot parallel to the floor.

FIGURE 3 | The Admittance Control algorithm for trekking pole control of coronal plane movement of the robot leg. θ4 is hip angle, and θ5 is the ankle angle and is

computed using Equations (6) and (7). Angular velocity and angular acceleration is denoted by vz and az, respectively.
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Biped Control Strategy for Users
Our biped control strategy allows the user to execute the swing
and the stance phases of each robot leg independently by applying
ipsilateral hand forces at the top of the trekking poles, as shown in
Figure 4. The user forces are converted to desired foot positions
by the admittance control software, with servomotor response
occurring within 10 ms.

Forward progression in gait requires activation of both legs.
The swing leg proceeds from ground contact (toe-off) to swing
and ultimately to a subsequent heel contact in a new forward
position on the ground. At the same time, the stance foot remains
in the same position on the ground, with rotation of ankle and
hip of the stance leg allowing forward progression of the torso
(i.e., shifting the robot’s center of gravity forward).

The swing foot movement is controlled by the user applying
a time-varying upward hand force to define the Y-axis trajectory
and a forward force to signify the desired X-axis foot trajectory.
Simultaneously, the stance side hand applies a rearward force
only in the negative X direction. As this foot remains in contact
with the ground (while the swing foot is in the air), the
admittance software controls the ankle, knee, and hip motors of
the stance leg for forward progression.

Haptic feedback is provided through the physical link
(trekking pole) between the hands and the feet. During the swing,
as the user force is converted to foot movement, the trekking
pole follows the foot, allowing the hand to move synchronously
with the trekking poles to walk the biped. Near the end of
swing, the user applies downward force to the trekking pole to
bring the foot to heel strike. At heel strike, the ground precludes
further downward movement, and the user’s hand feels the
ground reaction.

FIGURE 4 | User controlling the biped by holding the trekking poles on the

ipsilateral side using hands. Constant force springs connect the robot to the

overhead frame to maintain balance.

Evaluation of the Accuracy of the Control
A slow gait-like movement was performed by one healthy female
participant (who was a member of the research team) for a period
of 60 s in the air to evaluate the accuracy of the admittance control
and inverse kinematics algorithms, and the time delay. This work
was approved by the New Jersey Institute of Technology’s (NJIT)
institutional review board (IRB).

The accuracy of the control algorithm for the sagittal and
coronal plane was assessed by comparing the desired and the
actual Cartesian position of the feet in X, Y, and Z direction.
The “desired position” is the position of the foot computed by
the algorithm based on user input, and the “actual position”
is the position reached by the foot of the biped. The accuracy
of the Dymanixel’s internal impedance control was evaluated
by comparing the desired and actual joint angle. The accuracy
of the hip and knee angles in the sagittal plane was evaluated
while the participant performed the gait using the hand. The
accuracy of the joint angle of the hip in the coronal plane was
evaluated while the participant performed adduction/abduction.
The “desired joint angles” are the angles computed by the
algorithm, and the “actual angles” are the angles reached
by each joint motor. The motor angles at the end of each
iteration from each motor were converted to joint angles of
the hip and knee. These joint angles were compared to the
desired joint angles at every given time point. The accuracy
in sagittal plane was evaluated using a forward kinematics
algorithm developed to obtain the X and Y positions of the
foot. This position was in turn compared with the desired
X and Y positions (X and Y position computed using the
admittance control) to evaluate the accuracy of the inverse
kinematics algorithm.

A Pearson’s r correlation was performed to quantify
the similarity between the actual and desired joint angles
(hip flexion/extension, knee flexion/extension, and hip
adduction/abduction) and Cartesian positions (X, Y, and
Z positions).

The average time delay was computed as the iteration time
(time required to move all the joints by the motor from the time
the forces were applied by the user).

Evaluation of Gait Using the Control
Mechanism
After validating the accuracy of the experimental apparatus,
data were collected for an extended study evaluating the control
mechanism using seven naïve participants who controlled the
gait of the biped on a treadmill using control mechanism.

Participants
The study included seven naïve participants (2 male and 5
female) for biped walking and one reference participant (control)
from whom we collected data on human gait. All participants
were between ages 18 and 35, with fully functional upper and
lower extremities. Exclusion criteria included any disability to the
upper or lower extremities or inability to perform normal gait.
The study was approved by the NJIT IRB and the experiment was
performed with the participants’ consent.
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Experimental Setup
The experimental setup included a Pro-form J6 treadmill around
which a custom frame was built using 80–20 aluminum to
support the biped. The frame allowed the users to have complete
view of the treadmill and the robot. An Optitrack Trio motion
capture system was used to record the biped gait as well as
the reference participant gait. As the treadmill was designed for
human use, its lowest speed would not accommodate the small-
sized robot, thus its speed was reduced when used for biped
walking by adding a power resistor in series with the motor.
Optitrackmarkers were placed on the hip, knee, and ankle of both
the legs to track the biped gait and the reference participant gait.

Biped Walking
The biped was placed on the treadmill and each participant
was seated in a comfortable chair behind the treadmill. The
participants were instructed to control the gait of the biped
during each trial by applying small forces to the pole extending
from the sensor on each leg in the direction of the intended
movement. The study consisted of eight trials. Each trial lasted
1min, followed by a 30 s rest. The speed of the treadmill during
each trial was varied as shown in Table 1. The speed variations
for the biped were 0.1 (low), 0.2 (medium), and 0.3 (high) mph.

The participants performed familiarization sessions before the
start of the actual session and those data were not included
in the analysis. The first familiarization session was performed
without the treadmill for 1min, where the participants controlled
the leg of robot in the air to get accustomed to kinematics of
the leg. The second familiarization session included eight trials,
where each trail lasted 1min and was performed on the treadmill
with the lowest speed. The third familiarization session included
controlling the biped at different speeds for a minute each, as
shown in Table 1.

The participant from whom the reference gait data were
collected for one trial used the same treadmill at a self-selected
speed for comfortable walking.

Data Analysis
Horizontal and vertical trajectories collected at 120Hz of the
ankle, hip and knee were filtered using a 4th order, zero-lag
Butterworth low-pass filter. The filtered data were used for
further analysis. The data were further divided into gait cycles.

Spatial and temporal symmetry
The foot trajectories in the sagittal plane by 7 participants and
1 reference participant were evaluated for the effectiveness of
the control using hand trajectories using temporal and spatial
symmetry outcomes.

The swing and stance time of each foot during each gait cycle
was computed, and equation 8 was used to compute the temporal

TABLE 1 | Speed of treadmill for each trial.

Trial 1 2 3 4 5 6 7 8

Speed Medium Medium High Low Medium High Low Medium

symmetry (Patterson et al., 2008). Similarly step length and step
height of each foot were computed for each gait cycle, and
equation 9 and 10 were used to compute spatial and step height
symmetry (Patterson et al., 2008). The average temporal, spatial,
and step height symmetries were computed for all participants in
each trial.

Statistical analysis was performed on all trials across the seven
participants. Shapiro-Wilk test (p > 0.05) of normality showed
that data were normal for spatial and temporal symmetry.
Repeatedmeasures analysis of variance (ANOVA)was performed
on the spatial and temporal symmetry, respectively to determine
the effect of change in speed on the spatial and temporal
symmetry, respectively. Further, a Greenhouse- Geisser test was
performed, since the data showed significance withMauchly’s test
for sphericity. Shapiro-Wilk test (p < 0.05) of normality showed
that data were not normal for step height symmetry. Hence,
Friedman Test was used to determine the difference between
different trials.

Temporal swing stance symmetry = (swing time)/(stance time)

Overall temporal symmetry (8a)

=
(

Right temporal swing stance symmetry

Left temporal swing stance symmetry

)

(8b)

Spatial symmetry =
(

Right step length

Left step length

)

(9)

Step Height symmetry =
(

Right step height

Left step height

)

(10)

Duty cycle
The percentage of stance and swing phase for each gait cycle was
calculated using equations 11, 12, and 13. The average duty cycle
of all gait cycles was computed for all participants in each trial
and for the reference participant.

Statistical Analysis was performed on all trials across the
seven participants. Shapiro-Wilk test (p > 0.05) of normality
showed that data were normal. Mixed design analysis of variance
(ANOVA) was performed on the stance and swing duty cycle,
respectively to determine the effect of change in speed as well
difference between left and right leg on the stance and swing duty
cycle, respectively. The Greenhouse-Geisser test was used, since
the data showed significance with Mauchly’s test for sphericity to
determine the effect of change in speed.

Duty cycle = Stance Phase+ Swing Phase (11)

Stance Phase% = 100 ∗ Stance phase/Duty Cycle (12)

Swing Phase% = 100 ∗ Swing phase/Duty Cycle (13)

Joint angles
The joint angles of hip and knee of both the legs of the biped
robot walking for all participants were computed from the
filtered Cartesian position from the Optitrack data using inverse
kinematics. The joint angles were also computed for the gait of
the single reference participant.

We statistically compared the similarity of the hip and knee
angles of all seven participants with those of the reference
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participant by computing their Pearson’s r correlation after
the data had been time-warped to allow a direct comparison
(Kianimajd et al., 2017). We followed the method described in
La Scaleia et al. (2014).

User feedback
Subjective user feedback was obtained from all 7 participants
after completing the study. The following questions elicited user
experience of the control technique and the responses to each
were averaged across all participants.

1. Was it easy, moderate or difficult to use hand movements as
control? 0 being easy and 10 being difficult.

2. How tired were your hands after each session? 0 being not
tired at all and 10 being very tired.

3. Was using hands to the control the leg intuitive? 0 being least
intuitive and 10 being very intuitive.

4. How much force was required to move the leg in the direction
intended? 0 being least force and 10 being great force.

5. Did you feel the haptic feedback every time foot made contact
with the floor? Yes or No.

RESULTS

Accuracy of the Foot Positions and Joint
Angles
Figures 5A–C show the actual and desired Cartesian positions
of X, Y (sagittal plane), and Z (coronal plane), respectively,
for a single evaluator of the control mechanism of the robot.
The results exhibit minimal positional lag. This is quantitatively
shown in Table 2, where the mean positional lag (difference
between actual and desired position) is <1 cm in the X, Y, and Z-
directions, with Pearson’s r showing high correlation between the
desired and the actual Cartesian positions in X (right r = 0.9954,
p < 0.05, left r = 0.9972, p < 0.05), Y (left r = 0.9995, p < 0.05,
right r = 0.9986, p < 0.05), and Z (left r = 0.9979, p < 0.05). This
shows the accuracy of the control algorithm.

FIGURE 5 | Cartesian values of the desired and actual foot position of (A) X, (B) Y, and (C) Z positions vs. time for the left foot. Desired angles generated by the

inverse kinematics and actual angles achieved by the motors of (D) hip in sagittal, (E) knee in sagittal, and (F) hip in coronal plane vs. time for left leg. The flat regions

in the knee plot indicate the stance phase of gait. The red lines denote the actual position/angle reached by the robot and the blue lines denote the desired

position/angle computed by the algorithm.
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TABLE 2 | The table shows Mean ± Std.

ERROR IN ANGLE

Right—hip flexion/extension (degrees) 1.02 ± 0.006

Left—hip flexion/extension (degrees) 0.81 ± 0.006

Right—knee flexion/extension (degrees) 0.91 ± 0.011

Left—knee flexion/extension (degrees) 1.021 ± 0.011

Left—hip abduction/adduction (degrees) 0.55 ± 0.003

ERROR IN POSITION

Right—X position (cm) 0.68 ± 0.005

Left—X position (cm) 0.54 ± 0.004

Right—Y position (cm) 0.10 ± 0.0008

Left—Y position (cm) 0.13 ± 0.001

Left—Z position (cm) 0.23 ± 0.002

Time delay (s) 0.008 ± 0.0002

Error of the (a) difference between actual and desired position (error in position) in the left

and right foot in X and Y direction and in the left foot in Z direction, (b) difference between

actual and desired hip and knee angle in sagittal plane for right and left leg and hip angle

in coronal plane for left leg (error in angle), and (c) time delay (time for each iteration of the

loop) to reach the actual position based on user input force.

Figures 5D–F show the accuracy of the impedance control of
the hip, knee (in the sagittal plane), and the hip (in the coronal
plane), respectively. The actual joint angles follow the desired
joint angles with minimal angular lag. This is quantitatively
shown in Table 2, where the angular lag (difference between
actual and desired angles) in the hip and knee (sagittal plane),
and the hip (coronal plane) is <1◦, and Pearson’s r showed that
correlation was high between desired and actual joint angles in
hip flexion/extension (right = 0.9985, p < 0.05, left = 0.9984, p
< 0.05), knee flexion/extension (left = 0.9983, p < 0.05, right =
0.9978, p < 0.05), and hip abduction/adduction (left = 0.9982, p
< 0.05). This shows the accuracy of the impedance control.

Taken together, the results show that the biped’s foot position
reaches the desired position of the user with minimal lag. The
time delay or control loop time (time required to move all the
joints by the motor from the time the forces were applied by the
user) was <10ms (Table 2). Studies have shown that a control
loop frequency of 100Hz is sufficient for human operators to feel
smooth, nearly passive, movements of a robot (Van Der Linde
et al., 2002). The maximum error in the Cartesian position is
<1 cm, and the error in joint angles is <1◦ (Table 2). These
results validate that our experimental control method and robot
are appropriate for the multi-participant experiments.

Spatial and Temporal Symmetry
Figures 6A–C show the overall temporal, spatial and step
height symmetry, respectively, for 7 participants and 1 reference
participant. All symmetries are close to 1, irrespective of speed
variations, indicating that the users were controlling the biped
with a bilaterally symmetrical gait. Repeated measures ANOVA
shows no significant difference between trials, indicating that
speed did not affect the spatial (p> 0.05, F= 0.796) and temporal
(p > 0.05, F = 0.424) symmetry. In addition, Cohen’s d effect
size shows a low effect for both spatial (effect size = 0.21) and
temporal (effect size = 0.27) symmetry, again signifying that

FIGURE 6 | Mean ± std. error of (A) spatial symmetry, (B) temporal symmetry,

and (C) step height symmetry, for trials 1 through 8 for biped walking by 7

participants and for 1 trial by the reference participant. (D) X and Y positions of

one biped foot for one naïve subject walking the biped on the treadmill at

medium speed.

difference between trials is very low. Friedman’s test shows no
significant difference between trials, indicating that speed did
not affect the step height symmetry (p > 0.05, chi-square =
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8.095). Kendall’s W effect size shows a low effect for step height
symmetry (effect size = 0.165), again signifying that difference
between trials is very low.

Duty Cycle
Figure 7 shows the average percentage of swing and stance phase
in the gait cycle of all 7 participants for trials 1 through 8. In
human gait, typical swing phase is∼40% and stance phase is 60%
of the gait cycle (Winter, 2009). Our robot gait cycle across all
trials was slightly over 40% swing and slightly below 60% stance.
Mixed design ANOVA shows no significant difference between

either trials or legs. This indicates that speed did not affect swing
(p > 0.05, between trials F = 1.177) or stance (p > 0.05, between
trials F = 1.177), and that swing (p > 0.05, between legs F =
0.022) and stance (p > 0.05, between legs F = 0.022) were similar
in both the legs.

Comparison of Biped and Human Gait
Trajectories in the Sagittal Plane
Figure 8 shows a visual comparison of the hip and knee angles
of a reference participant and the corresponding biped angles.
The visual appearance of biped and reference participant hip

FIGURE 7 | Mean ± std. error of duty cycle in (A) right leg and (B) left leg of 7 participants for trials 1 through 8, and of 1 reference participant (C) during 1 trial.

Stance phase is red and swing phase is blue.

FIGURE 8 | Right knee angle of multiple strides of the (A) user-controlled biped, and (B) reference participant, walking on the treadmill. Right hip angle of multiple

strides of the (C) user-controlled biped, and (D) reference participant, walking on the treadmill.
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and knee angles in Figure 8 is quite similar, with the human
knee slightly flexing during stance. We attribute this to the
knee accommodation of foot angle changes at toe-off by the
human walker, while the biped maintained the foot parallel to
the ground. We observe significant high positive correlations
between the joint angles of the biped (for 7 participants) and the
reference participant: For the knee, Pearson’s mean r = 0.7770,
std ± 0.0953, with p < 0.005. For the hip, Pearson’s mean r =
0.9968, std ± 0.0926, with p < 0.005. This confirms that biped
walking produces human-like knee and hip joint trajectories.

User Feedback
Participant responses show that hand control was quite easy and
intuitive (Table 3). The participants required little force and did
not get tired from using the control method (Table 3). Six out of
the seven participants responded that they felt the ground impact
with their hands.

DISCUSSION

Lower extremity exoskeletons show potential for restoring
ambulation in individuals with paraplegia due to spinal cord
injury. Currently, many lower extremity exoskeletons produce
a preprogrammed gait that can be initiated by the user, but
not completely controlled by the user. Thus, users have limited
control over their gait (i.e., step length, width, and speed),
and little feedback of foot placement and ground contact. In
this paper, we proposed a novel control mechanism for lower
extremity exoskeletons to address these shortcomings; allowing
the users to control their gait in real-time, as well as receiving
haptic feedback. The accuracy and efficacy of the control
mechanismwas evaluated using the following outcomemeasures:
accuracy of the foot position and joint angles; time delay between
user-desired and actual robot kinematics; temporal, spatial, and
step height symmetry; duty cycle of stance and swing phases; and
similarity of biped hip and knee angles to those of human gait.

Our results demonstrate the effectiveness of the control
mechanism, which allows the user to interactively control both
legs of a ½ scale robot to produce a gait trajectory closely
resembling human gait. As required for smooth real-time
human-robot interaction (Van Der Linde et al., 2002), the time
delay of the control mechanism is below 10ms; ensuring smooth
and stable movement. The difference between user-desired and
actual robot Cartesian position and joint angles were <1 cm and
1◦, respectively; showing that real-time accurate trajectories can
be obtained over time by our system.

Admittance control provides the user with the following
advantages: one-to-one correspondence between hand and foot

movement; force amplification; intuitive control (as the user
applies desired force in the intended direction of movement);
and accurate time-varying trajectory control (the leg moves in
the direction of the force) (Glosser and Newman, 2002; Van Der
Linde et al., 2002). Research has shown that admittance control
is an effective strategy for human-robot interaction, and that it
requires a minimum of 100Hz for acceptable human interaction
(Glosser and Newman, 2002; Van Der Linde et al., 2002); which
we have achieved.

Human gait is a rhythmic movement that is symmetrical
but out-of-phase between the two legs. Hence, an effective
exoskeleton control strategy should be able to reproduce the
same pattern of movement over a period of time, as well as
coordinate inter-limb movement (Vaughan et al., 1999; Pearson,
2003). Inter-limb coordination or symmetry is the ability to
maintain temporal and spatial symmetry, which results in healthy
gait (Patterson et al., 2008). Temporal and spatial symmetry close
to “1,” signifies that both limbs are performing a symmetrical
movement (Patterson et al., 2008). Our analysis shows that the
participants controlling the biped were able to maintain inter-
limb temporal, spatial, and step height symmetry close to 1
across all trials; irrespective of speed variations, and similar to
that observed in human gait. Studies have shown that there
is a correlation between large deviations in temporal & spatial
symmetry away from 1 and falls & reduced walking speed
(Balasubramanian et al., 2007; Patterson et al., 2008). Thus, we
can conclude that our biped control mechanism will promote
stable and safe human-exoskeleton walking. Our robot gait cycle
has an average swing phase of just over 40% and a stance phase
of just under 60%, as shown in Figure 7, across all trials. The
deviation from the normal human gait cycle is small and likely
due to the biped performing a flat-footed gait, as the foot is
constrained to remain parallel to the ground, resulting in a
shorter stance period. In addition, the percentage of time spent in
stance and swing phase was the same between both legs, further
indicating consistent temporal characteristics.

The results show that the joint angles produced by the biped
(Figures 5D–F) are within the range of healthy biological gait in
the sagittal plane (Winter, 2009), and that the joint angles of the
reference participant and the biped are similar.

The relative horizontal and vertical excursions of biped
walking were consistent with our earlier work on the benefits of
haptic feedback to the hands for controlling the position of virtual
feet (Karunakaran et al., 2017). More importantly, they have the
same appearance as similar measures captured from unimpaired
biological gait. Figure 6D shows that the right foot data from the
biped (plotted as X and Y positions) bears a strong resemblance
to unimpaired human foot data (Meesen et al., 2006). The user

TABLE 3 | The table shows the mean ± std. error for user feedback questionnaire.

Question Ease of using hand

to control biped

Tiredness Intuitiveness of hand

control

Force required to

move hands

Haptic feedback every time

foot made contact to ground

Options 0—easy to 10—difficult 0—not tired to

10—very tired

0—least intuitive to

10—very intuitive

0—least force to

10—large force

Yes or no

Participant

responses

3.29 ± 0.52 1.14 ± 0.59 7.43 ± 1.19 1.86 ± 0.59 6 participants answered yes and

1 participant answered no
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feedback questionnaire indicated that biped control was easy,
intuitive, and required only minimal force.

Current commercial exoskeletons are generally slow, with
small step lengths and step heights (Kozlowski et al., 2015).
They usually rely on control mechanisms that initiate each step
separately, which results in a delay between steps (Dellon and
Matsuoka, 2007; Strickland, 2012)1,2 and hence a prolonged
stance phase (Esquenazi et al., 2012)1. Our control method, on
the other hand, provides continuous gait (smooth transition from
swing to stance) with no delay between steps. It also provides the
user with the ability to vary step length and height, based on the
required speed. Thus, it produces a more natural gait in terms of
temporal & spatial characteristics.

This preliminary work shows the feasibility of our algorithm
to control exoskeleton kinematics and produce symmetrical
gait patterns, using hands as a controller. However, there are
several limitations that will need to be addressed in future work.
This paper does not address balance, which will be addressed
in a separate future publication. We also acknowledge that
the benefits of our control mechanism must be thoroughly
evaluated with participants walking independently in a full-scale
exoskeleton. A wearable exoskeleton is under development for
this purpose (Al Rashdan, 2016; Androwis et al., 2017).

While our work has focused on a specific SCI population
of users, we are excited about expansion of the technique to
individuals with other disabling conditions, such as people with
diplegic cerebral palsy who have sufficient arm control to operate
our trekking poles. We also see potential for the application of
variations of our control mechanism in individuals with stroke
and traumatic brain injury (both for assistance with ambulation,
as well as for gait therapy), and multiple sclerosis.

CONCLUSIONS

We have developed and tested an admittance-control-based
user-robot control strategy that allows the user to control foot
trajectories with hand-generated forces and hand-sensed foot

kinematics, and thus gait in real-time. This new approach has the
potential to be used with a wearable rehabilitation exoskeleton,
as a control mechanism that provides users with lower leg
disability complete control over gait. When implemented with
wearable exoskeletons, our method has the potential to greatly
improve community ambulation in individuals with lower
extremity paralysis.
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and Gregory A. Clark 1
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This paper describes a portable, prosthetic control system and the first at-home use

of a multi-degree-of-freedom, proportionally controlled bionic arm. The system uses a

modified Kalman filter to provide 6 degree-of-freedom, real-time, proportional control.

We describe (a) how the system trains motor control algorithms for use with an advanced

bionic arm, and (b) the system’s ability to record an unprecedented and comprehensive

dataset of EMG, hand positions and force sensor values. Intact participants and

a transradial amputee used the system to perform activities-of-daily-living, including

bi-manual tasks, in the lab and at home. This technology enables at-home

dexterous bionic arm use, and provides a high-temporal resolution description of daily

use—essential information to determine clinical relevance and improve future research

for advanced bionic arms.

Keywords: bionic arm, myoelectric prostheses, proportional control, Kalman filter, take-home

INTRODUCTION

Electromyography (EMG) from the residual forearm has been used to control commercially
available and research-grade prosthetic arms (Kuiken et al., 2016; Hargrove et al., 2017; Ottobock,
2017; Touch Bionics Inc, 2017; Wendelken et al., 2017; George et al., 2018; Page et al., 2018; Perry
et al., 2018; Mobius Bionics, 2020). Although research has demonstrated proportional control of
multiple, independent degrees of freedom (DOFs) (Davis et al., 2016; George et al., 2018; Page et al.,
2018), commercially available prostheses still suffer from a variety of limitations (Biddiss and Chau,
2007), including limited number of pre-determined grips (Touch Bionics Inc, 2017), temporal delay
due to sequential inputs used to select grips (Ottobock, 2017; Mobius Bionics, 2020), fixed output
force (e.g., from traditional classifier algorithms) (Resnik et al., 2018a), extensive training that lasts
days to weeks (Resnik et al., 2017, 2018a, 2019), and non-intuitive methods of control [e.g., inertial
measurement units (IMUs) on residual limb or feet] (Resnik et al., 2018b; Mobius Bionics, 2020).

Dexterous control of multiple DOFs, and the training associated with them, are not always
amenable to deployment on portable systems with limited computational power, and as a result
only a few pattern-recognition (i.e., classifiers) (Kuiken et al., 2016; Resnik et al., 2017; Mastinu
et al., 2018; Simon et al., 2019) or direct control algorithms have been studied at home (Pasquina
et al., 2015; Simon et al., 2019). A Kalman filter (Wu et al., 2006), modified with non-linear, ad-hoc
adjustments (George et al., 2019a; Nieveen et al., in review) can provide a computationally efficient
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approach (George et al., 2020c) to study proportionally
and independently controlled multi-DOF prostheses at home.
Proportional control algorithms enable realistic and life-like
prosthetic control and can induce device embodiment in
transradial amputees (Page et al., 2018).

High temporal resolution of the position and forces applied
to the prosthesis is necessary to describe the interactive and
refined movements made possible with proportionally controlled
prostheses. These data are also necessary to describe key
aspects of actual prosthesis use: revealing when objects were
manipulated; whethermovements were performed unilaterally or
bilaterally (for bilateral amputees); which grasps were preferred;
how often each DOF was used; and when new inter-digit
collaborative movements were employed.

Preliminary at-home use of this portable, prosthetic control
system, capable of providing six-DOF, real-time, proportional
control was published previously (George et al., 2019a). Here we
describe the portable system and the tasks completed at home
in greater detail, including how the modified Kalman filter is
trained and implemented on the portable system, as well as the
system’s ability to record an unprecedented dataset of EMG, hand
positions, and force sensor values. This technology constitutes an
important step toward the commercialization of dexterous bionic
arms by demonstrating at-home use and the ability to record
prosthesis use with high temporal resolution.

MATERIALS AND METHODS

Design Considerations
A portable take-home system designed to research advanced
bionic arms should meet several criteria for optimal performance
and data collection: (a) the systemmust accurately and efficiently
control the prosthesis; (b) training of the control algorithm must
not be too long or burdensome to prevent its daily use—and thus
should include the ability to quickly load a previously trained
control algorithm; (c) high-temporal-resolution data should be
stored automatically so that researchers can study at-home use
without influencing the users with in-person observation; and
(d) the system must be easy to use and allow the user to adjust
control preferences.

Accurate and Efficient Control
For accurate and efficient control, the system must be able to
record EMG from the residual forearm, predict new kinematic
positions, and send those positions to the prosthesis quickly with
minimal or no perceived delay between the intention tomove and
the movement itself. Previous work in our lab has demonstrated
responsive control of prostheses at update cycles of 33ms (30Hz)
using a modified Kalman filter (Wendelken et al., 2017; George
et al., 2018; Page et al., 2018; Kluger et al., 2019). The goal of this
work was to implement these algorithms on a portable computer
and provide position updates with minimal delay between the
user intent (muscle activation) and the prosthesis movement. We
have shown that updates at 33ms provide responsive control and
lead to embodiment of the physical prosthesis (Page et al., 2018).
Updates at this speed are also within the optimal controller delay
for prosthesis control (Farrell and Weir, 2007).

Fast Training for Daily Use
For daily use, training of the control algorithm should be intuitive
and fast. The time required to train a control algorithm includes
data collection while the participant mimics preprogrammed
movements of the prosthesis (George et al., 2020d), and training
of the control algorithm itself (e.g., training the modified Kalman
filter matrices). When training, or retraining, is required, it
should be as fast as possible to minimize the setup time prior to
use. Lengthy setup and training could make advanced prostheses
burdensome to incorporate into daily life and prevent their
acceptance among amputees. The system should also allow
reloading of a previously trained control algorithm on demand.

Comprehensive Record of Unsupervised Arm Use
A common approach to measure prosthesis use is to place
IMUs on the prosthesis and record movement acceleration and
angular velocity (Hargrove et al., 2017; Resnik et al., 2017, 2018b;
Graczyk et al., 2018). However, this approach fails to discriminate
between gross movements from the residual limb and actual
movement of the prosthesis’s hand and wrist. Video collection
via body cameras can be used to record actual prosthesis use
and other metrics (such as compensation strategies), but require
storage of large video files and time-intensive post-hoc analyses
(Spiers et al., 2017). Furthermore, the presence of a video camera
reminds study participants they are being watched even though
lab personnel are not physically present. However, with a portable
system, prosthesis use at home can be studied by recording
every movement for each DOF. By also recording the force
applied to DOFs, interactive prosthesis use can be discerned
from passive arm movements, such as those that might occur
during walking or exploratory hand movements that are not
functionally directed. Beyond describing total prosthesis use,
this rich dataset can reveal detailed, refined movements and
collaborative interactions between DOFs—including the force
applied with each movement.

User-Friendly Control Adjustments
Finally, a prosthetic control system should be easy to use and
allow adjustments to fit unique preferences. This includes a quick
and simple approach to turn the system on, train the control
algorithm and load a previously trained control algorithm.
Control adjustments could also include flexibility to lock a DOF
during dexterous tasks to prevent unwanted movements—for
example locking the thumb and solely using the index finger
could provide a more stable pinch. In addition, feedback from
participants in our lab suggest the system should also provide
users flexibility to operate specific DOFs (e.g., wrist) in a velocity-
control mode (Kluger, 2019).

Hardware and Signal Acquisition
The components of the portable system are shown in
Figure 1. The DEKA LUKE Arm (DEKA; Manchester NH,
USA) has 6 DOFs including thumb (D1) adduction/abduction;
D1 flexion/extension; index (D2) flexion/extension; coupled
middle, ring, and pinky (D3–D5) flexion/extension; wrist
flexion/extension, which also includes a slight radial and ulnar
deviation, respectively; and wrist pronation/supination. It also
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FIGURE 1 | Portable take-home system for dexterous prosthetic control. The Ripple front-end acquires, filters, and amplifies EMG (at 1 kHz) to estimate motor intent

using a modified Kalman filter with the battery powered Nomad neural interface processor. Communication occurs using a CAN protocol with the DEKA LUKE Arm to

send commanded movements to the arm (at 30Hz) and receive back the actual kinematic positions for six DOFs and the forces from 13 sensors (nine torque sensors,

four pressure sensors at 30Hz).

has 19 sensors: six that report the position of each DOF and 13
that report the forces on each digit—including four directions on
D1, two on the D2, and one on each of D3, D4, and D5—and
on the lateral, dorsal, and palmar (distal and proximal) aspects of
the hand. The prosthesis itself records the aggregated use (i.e.,
time) within bins of movement velocity and electrical current
draw for each DOF. It also records the total time each sensor
experienced various forces (ten bins from zero to amax of 25.5N)
and the total time each DOF spent in various positions (ten bins
across range of motion, which varies by DOF). We designed a
custom python socket so that our compiled algorithms could
communicate with and store data from the DEKA LUKE Arm’s
CAN-BUS interface (at 30 Hz).

For the prosthetic control algorithm and data storage we used
the Nomad neural interface processor (Ripple Neuro; Salt Lake
City, UT, USA) for several reasons: an external, exchangeable
battery provides up to 4 h of power; wireless communication to
external devices; 500 GB of hard disk storage; and up to 512
channels for data acquisition and stimulation. We modified the
Ripple firmware provided with the Nomad so that our compiled
control algorithms could directly: acquire, filter and store EMG
(1 kHz); start and stop via external buttons; and communicate
over WiFi with external devices (TCP socket). Using a front-
end amplifier (Figure 1; Ripple Neuro, Salt Lake City, UT, USA)
we filtered (15 to 375Hz bandpass; 60/120/180Hz notch) the
implanted EMG (iEMG) or surface EMG (sEMG, both were
sampled at 1 kHz). sEMG in intact participants was recorded
with a Micro + Stim front-end (Ripple Neuro, Salt Lake City,
UT, USA), and iEMG in the amputee participant was recorded

with an active gator front end (Ripple Neuro, Salt Lake City,
UT, USA). The Nomad runs Linux 8 (jessie) environment with
an Intel R© CeleronTM processor (CPU N2930) at 1.83 GHz with
2-GB RAM. Control algorithms were converted to C using
MATLAB R© Coder and compiled for stand-alone use on the
portable Nomad.

EMG Feature Calculation and Decoding of
Motor Intent
Training the prosthetic control algorithm [i.e., modified Kalman
filter (George et al., 2019a)] first requires the user to mimic
preprogrammedmovements of the prosthesis as it cycles through
several movement trials for each DOF (Figure 2C; George
et al., 2020d). Features were then calculated for each differential
EMG pair (496 total pairs from 32 single-ended electrodes,
Figure 2D) by taking the mean-absolute value of a moving
300-ms window (Figure 2E). Using the kinematic positions and
the EMG features, the portable computer chose 48 optimal
features using the Gram-Schmidt forward-selection algorithm
(Efron et al., 2004; Hwang et al., 2014; Nieveen et al., 2017) and
computed the Kalman filter matrices (Wu et al., 2006). Forty-
eight channels were used because, anecdotally, that number
had consistently provided good control for in-lab experiments
using our desktop system. Nieveen et al. suggests that a small
improvement in performance could be achieved with a few more
channels (e.g., 55), although this number will vary by participant
and training session (Nieveen et al., 2017). Increasing the number
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FIGURE 2 | (A) X-ray of the elbow and residual forearm of a transradial amputee implanted with implanted three Utah Slanted Electrode Arrays (USEAs) and (B) 32

single-ended EMG leads (iEMG) and reference and ground. (C) The amputee mimics preprogrammed movements of the prosthesis (kinematics) while the portable

Nomad system records iEMG voltage signals. (D) A representative iEMG channel that is active primarily during extension of the index finger. (E) A representative

feature [mean absolute value of the iEMG channel in (D)] that is used to train the prosthetic control algorithm. Implanted Utah Slanted Electrode Arrays (USEAs) were

not used with the portable system, but could be incorporated in future versions.

of channels will also increase the control algorithm training and
prediction times.

The Kalman filter presented by Wu et al. (2006) was modified
to improve stability and reduce the effort required to sustain
grasping movements by using an ad-hoc latching filter (Nieveen
et al., in review). External, ad-hoc thresholds were also then
applied as follows and as previously described in George et al.
(2020a):

x̂mod=
{ x̂new·G−T

1−T when x̂new≥ T

0 when x̂new< T
(1)

where x̂new is the output from the Kalman filter (defined to exist
between −1 and +1), x̂mod is the output with the modifications
applied, G is the gain (set to 1), and T is the threshold (set to 0.2
for all DOFs). This equation is for the positive direction of each
DOF (e.g., flexion, abduction, pronation); a similar equation that
preserves the sign and directionality for the negative direction
was applied accordingly. Note that the non-modified output
(x̂new) is fed recursively back to the Kalman filter to preserve
stability while the modified output is only used to control
prosthetic arm. In equation (1), x̂mod is normalized to 0 to +1
(or−1, if in the negative direction) using the ′1− T′ divisor.

Human Subjects
In this manuscript, one amputee and two intact participants used
the portable system. All participants used the system in the lab,

but only the amputee and one of the intact participants used the
system, under supervision, at home.

Transradial Amputee
For the amputee, eight iEMG leads (Ripple Neuro; Salt Lake
City, Utah, USA) with four electrodes each, and a ninth lead
with an electrical reference and ground, were implanted in
lower-arm extensor and flexor muscles as described previously
(George et al., 2019a; Figures 2A,B). The electrode connector
exited through a percutaneous incision and mated with an active
gator connector (Figure 2A; Ripple Neuro; Salt Lake City, Utah,
USA). This participant also had Utah Slanted Electrode Arrays
implanted in the median and ulnar nerves but these devices were
not used with the portable system. Surgical details have been
previously described (Wendelken et al., 2017; George et al., 2018,
2019a; Page et al., 2018).

Intact Participants
Intact individuals were able to use the portable system with a 3D
printed, custom-made bypass socket (Paskett et al., 2019) and a
custom-made neoprene sleeve with 32 sEMG electrodes, plus one
reference and one ground (George et al., 2020b). Inexpensive,
stainless steel-coated, marine grade, brass snaps were crimped
into the neoprene to serve as dry electrodes and soldered to
flexible wire for easy connection via a SAMTEC connector. The
electrodes were roughly evenly spaced over flexor and extensor
forearm muscles, about half on the flexors, and half on the
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extensors (covering about 8 inches distal to the elbow). Precise
placement was not a concern as we relied on the Gram–Schmidt
forward selection algorithm to choose the 48 most informative
bipolar pairs for the motor decode algorithm (see section EMG
feature calculation and decoding of motor intent).

As described previously (Paskett et al., 2019), the bypass
socket is an open source device which suspends a prosthetic arm
beneath the intact arm of the healthy volunteer and provides
adequate range-of-motion so that the healthy volunteer can
perform activities of daily living with an upper-limb prosthesis.
The bypass socket was designed so that the electrode sleeve
could be pulled up onto the forearm, locating the 32 recording
electrodes over the extrinsic flexor and extensor hand muscles
and the reference and ground electrodes over the ulna, about
2 cm distal to the elbow.

All experiments and procedures were performed with
approval from the University of Utah Institutional Review Board.

RESULTS

EMG Recordings Are Consistent Across
Desktop and Portable Systems
To ensure that the EMG was stored correctly on the Nomad,
we concurrently recorded EMG with the portable system and
a laboratory desktop system in one intact participant while
the participant completed a training session (394 s in length).
The correlation coefficient was calculated after concatenating
the sEMG data from all 32 recorded channels. As expected,
concurrent recordings of sEMG on the portable and desktop
systems were highly correlated (ρ = 0.95; p < 0.001) and the
sEMG features (mean-absolute value sEMG data with a 300-
ms window) were nearly identical between the two systems (ρ
= 0.99; p < 0.001). Due to slight variation in clock speeds,

a temporal delay was observed (about 100 ps/sample) which
reduced the correlation coefficient. However, the correlation of
the sEMG features suggests functional equivalency between the
two recording systems.

Portable System Offers a Simple User
Interface and Customizable Control
Options
Three external buttons were employed to create a simple user-
friendly interface. Pressing the first button initiated a new
training session, which automatically granted control of the
prosthesis to the user once training was complete (Figure 3A,
see also Supplementary Video 1). The second button initiated a
previously trained and compiled control algorithm (if available),
so that the user could have on-demand control of the prosthesis.
Finally, sequential inputs on a third button was used to toggle
between position or velocity control modes or to freeze a DOF at
a desired position.

Portable System Can Be Trained Rapidly
Using Steady-State Modified Kalman Filter
The system was trained in 7.5 min—including the time needed
to collect the training data (4.2min) and the subsequent channel
selection and computation of the modified Kalman filter matrices
(about 3.3min) (Table 1). Timing data for Table 1 were recorded
during training and testing with one intact participant in the
lab. Because training data and the corresponding Kalman filter
matrices have the same dimensions regardless of the user, the
times listed in Table 1 are universal. Loop speeds were calculated
as the average over a 16.5 second window (500 samples) while
the user actively controlled the prosthesis. Training data included
four trials of flexion and extension for D1, D2, D3/D4/D5,
and the wrist; D1 adduction and abduction; wrist pronation

FIGURE 3 | Training the prosthetic control algorithm with the portable system. (A) The user [shown here as an intact subject using a bypass socket (Paskett et al.,

2019) to support the LUKE Arm] presses a button on the Nomad to start the training sequence, and then mimics the prosthesis while the Nomad cycles through each

of six DOFs—(B,C) show D1 adduction and D2 flexion, respectively.
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TABLE 1 | Computational times required for training and testing (running) the

steady-state, modified Kalman filter on the portable system.

Process Computation time

Training

Data collection 252 s

Channel selection 198 s

Train steady state Kalman filter 0.7 s

Total Time 7.5 min

Testing

Update positions 0.7 ms

and supination; and grasping and extending all digits together
(Figures 3B,C, see also Supplementary Video 1). The trained
modified Kalman filter was automatically saved to a log file
and could be recompiled onto the Nomad as a stand-alone
application for on-demand use (e.g., the second external button).
This was accomplished over the Nomad’s wireless network using
a laptop and required <30 s.

Prior to use, the steady-state modified Kalman gain matrix
(K) was calculated by iteratively running the filter until the
fluctuations in each value of the gain matrix were <1 × 10−6,
reaching steady state after about 25ms. With the gain (K), the
observation (H) and the state-transition (A) matrices, a steady
state matrix (Ŵ) was then calculated:

Ŵ = A− K∗H∗A (2)

Thus, new position predictions (x̂new) were calculated with
only two matrix multiplications involving the previous positions
(x̂previous) and 48 EMG features (z):

x̂new= Ŵ∗x̂previous+K∗z (3)

This simplification avoided a computationally expensive matrix
inversion required by the recursive algorithm. Consequently, the
time required to predict new positions and update the prosthesis
was on average <1ms, far below the update loop speed of 33ms
(Table 1). If the user desires, a velocity control mode for any
DOF can also be provided using the position output from the
Kalman filter (x̂new):

x̂velocity= x̂velocity+x̂new
∗1t∗γ (4)

where 1t is the loop speed (33ms) and γ a dampening factor
(set to 0.95). In our previous experiments, some amputee subjects
have preferred specific DOFs, such as wrist rotation or wrist
flexion, to operate in velocity mode (Kluger, 2019).

Portable System Can Be Used at Home to
Complete Various Activities of Daily Living
The portable system was used by both intact participants to
perform arm dexterity tests and activities of daily living in the

FIGURE 4 | After the motor control algorithm was trained, intact participants

used the portable system with a bypass socket in the lab to perform (A) an

arm dexterity test and activities of daily living: (B) opening a jar; (C) pouring

motion; and (D) using a smart phone.

lab (Figure 4), as well as by one intact participant to perform
two-handed tasks at home (Figure 5). One transradial amputee
used the system at home, under staff supervision, to perform
tasks of his choosing, some of which were not possible with his
commercial prosthesis (Table 2 and Figure 6).Table 2 shows that
the most common movements used were grasp (D1–D5 flexion)
and pinch (D1 and D2 flexion) in combination with the wrist
movements. Several successfully completed tasks were not listed
in Table 2 because of similarity to other tasks (e.g., picking up
another dog toy, pill bottle, TV remote, or a potato from the
pantry; or turning on exterior faucet).

Rich Dataset From Portable System
Reveals Novel Information About
Prosthesis Use
EMG (sampled at 1 kHz), kinematic positions and forces applied
to the prosthesis (both sampled at 30Hz) were stored on the
Nomad while a transradial amputee grasped, held and released
an orange (Figure 7; see also Supplementary Video 4). Three
phases of movement were clearly identified: preparing to grasp
(when the index finger is near full extension); grasping (where
the algorithm predicted the finger to be near full flexion but the
orange restricted the actual position to about the rest position,
which resulted in a dramatic increase in force); and releasing the
orange (where the finger extended toward near full extension).

Data are saved at a rate of 250 MB/h in an ‘.hd5’ format. As
a result, the 500 GB capacity of the Nomad can record nearly
2,000 h of arm use.

DISCUSSION

We have described a portable, prosthetic control system
and the first at-home use of a multi-degree-of-freedom,
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FIGURE 5 | Two-handed activities of daily living at home using a bypass socket and the portable system: (A) using scissors; (B) donning a sock; and (C) folding a

towel.

TABLE 2 | List of tasks chosen by the amputee to attempt at home using the portable system.

Task Completion time Detailed description

Successful

Lock front door (dead-bolt)† 13 s Used grasp (D1–D5 flexion) to grab and pull the door toward him so the bolt lined up and could be locked using

intact arm

Open front door 7 s Used grasp to pull down on the handle and to pull door open

Open refrigerator and retrieve

water bottle

25 s Used grasp and wrist flexion/extension to open refrigerator, grasp water bottle, and transfer to intact arm

Open oven door 16 s Used grasp and wrist flexion/extension to grab the handle, open, and then shut the door

Turn on bathroom faucet 29 s Used both grasp and pinch (D1 and D2 flexion) while turning faucet with gross arm movement

Open cabinet doors 22 s Used precise pinch and wrist flexion/extension to grab small handles and pull doors open (2 doors)

Pick up dog toy 8 s Used grasp and wrist flexion/extension to pick up a dog toy, and hold it for dog to bite

Put on shoe
†

22 s Used grasp and wrist flexion to hold shoe tongue while donning shoe held with the intact arm. Included a release

and readjustment of the grip on the shoe tongue

Move garbage can 9 s Used grasp and wrist flexion/extension to grasp the garbage can handle and move it about 10 feet

Check for mail at box 8 s Used pinch and wrist extend to open mail box (as if he were to put/take mail) and then close with intact arm

Failed

Input garage code on key pad NA This task required a pointed finger position (D2 extended; D1, D3, D4, and D5 flexed) which, was not included in

the training. The amputee could make the motion; however, it was not stable enough to successfully complete task

Turn on push button oven light NA This task required a pointed finger position (D2 extended; D1, D3, D4, and D5 flexed) which was not included in

the training. Amputee could make the motion; however, it was not stable enough to successfully complete task

†Denotes a task where amputee used the prosthesis and their intact hand simultaneously.

proportionally controlled bionic arm. The system uses a
modified Kalman filter to provide real-time, proportional
control—including independent, and simultaneous movement—
across 6 DOFs. We have shown that the modified Kalman
filter can be trained in 7.5min using the Nomad, a
portable electrophysiological recording system equipped
with an ordinary processor. In addition, the time needed
to acquire EMG and compute and update the prosthetic
arm positions was <1ms on average—far below the 33ms
update cycle—and provided real-time movement updates for
the users.

The portable system also stores EMG, position and force data
with unprecedented temporal resolution. This comprehensive
dataset will be crucial for fully understanding how proportional
control algorithms are used during unsupervised at-home use.
Because of the Nomad’s large storage capacity and USB and
Bluetooth connections it could also be configured to collect and
store other types of data (e.g., video, bilateral arm use with IMUs).

To study at-home prosthetic use, previous take-home systems
have stored limited usage data, including the time the device
was turned on (Graczyk et al., 2018; Simon et al., 2019),
aggregated hand movement (Simon et al., 2019), how often
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FIGURE 6 | Transradial amputee performed supervised activities of daily living,

of his own choice, at home using the portable take-home system. Images

show the participant (A) turning faucet in the bathroom; (B) locking the

dead-bolt on the front door; a bi-manual task not possible with his commercial

prosthesis; (C) opening the mail box; and (D) retrieving water from the

refrigerator.

specific predefined grasps were used (Kuiken et al., 2016;
Hargrove et al., 2017; Simon et al., 2019) or force applied to a
limited number of sensors on the hand (Graczyk et al., 2018).
Although these approaches may be sufficient for less refined
control algorithms, to fully understand how proportional control
is used, both high-temporal-resolution kinematic and force data
for each DOF are necessary.

The example in Figure 7 highlights how the comprehensive
data recorded reveals complex interactions between the various
DOFs with proportional control. The stable D2 kinematics
implies that the amputee held the orange with a fixed grasp from
pick up to release; however, the force data revealed a dip in
force during this same period. Close inspection of the kinematics
from the opposing D1 also shows that a subtle readjustment
occurred to improve the grasp stability (this can be seen in

Supplementary Video 4). These refined movements are possible
because of proportional control algorithms. Because DOFs are
coupled together during object manipulation, the connection
between each DOF must be considered.

Rich datasets like this will help researchers and clinicians
study at-home, unsupervised use; improve prosthetic control
algorithms, and training paradigms (George et al., 2018) by
understanding the types of grasps and DOFs commonly used;
understand when mastery of prosthesis control occurs and when
interventions might be applied or lifted; better describe noise
encountered in real-world environments and design features
and algorithms that reduce its influence on motor performance;
and address many other unanswered questions about at-home
use of advanced upper-limb prostheses. These rich datasets will
also enable future at-home trials to study the benefits and use
of high-resolution sensory feedback from intraneural electrical
stimulation—a feature soon to be added to the portable system.

In contrast, previous data collection during at-home
prosthetic use has relied on subjective surveys, usage logs,
IMUs, and the amount of time the device is turned on to
describe prosthetic use (Hargrove et al., 2017; Resnik et al., 2017,
2018b; Graczyk et al., 2018). However, these approaches only
approximate actual prosthesis use and could be misinterpreted.
Some pattern recognition studies have recorded kinematic
output and use of predefined grasps (Kuiken et al., 2016; Simon
et al., 2019).

Two of the tasks successfully completed by the amputee at
home required use of the intact arm along with the prosthesis—
donning a shoe and locking the front door (Table 2). However,
other tasks on the list could also be two-handed, such as using
the intact hand to remove mail from the box or food from
the refrigerator or oven while holding the door open with the
prosthesis. The two tasks where the amputee was unsuccessful
required a pointed finger position (D2 extended while D1,
D3, D4, and D5 were flexed). Even though this combination
was not included in the training sequence the amputee was
able to position the digits appropriately; however, the positions
were not stable enough to complete the task. Both of these
tasks also required the amputee to lift and hold the heavy
prosthesis vertically, which could have also added instability to
the control.

The most common arm movements used in the at-home
setting where opening and closing the hand, or pinching the
thumb and index finger, in combination with wrist movements.
Combination movements can be performed simultaneously
because the Kalman filter algorithm assumes independent DOFs.
To simplify control, the participant controlled the wrist with
a velocity mode (while the digits were in position control)—
allowing the user to first set a wrist position prior to completing
the grasp or pinch, if desired.

Because combination movements involving wrist were
so prevalent during at-home use, we recently studied
the benefits of training the modified Kalman filter with
combination movements involving the wrist, in addition to
single DOF movements (Paskett et al., in review). We found
that combination training sequences provide the user with
improved, intuitive wrist position control during simultaneous
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FIGURE 7 | (A) Transradial amputee picking up an orange using implanted EMG electrodes and the portable system. During this task, the portable system recorded

and stored (B) differential EMG (at 1 kHz), (C) kinematic output of the modified Kalman filter and actual kinematics of the prosthesis (at 30Hz) and (D) prosthesis

sensor values (at 30Hz). For simplicity, only one differential EMG channel (of 48 total) and only one sensor (D1 pressure sensor; out of 13 total pressure and torque

sensors and six DOFs) are shown.

movements. As a result, our future studies will also include wrist
combination movements.

An important aspect of the portable system is the fast
computation of position updates using a steady-state Kalman
filter. We initially implemented the full recursive Kalman filter
within each update cycle. However, the time required to complete
the update was near and often exceeded our 33-ms update
loop speed. Updating movement positions with the steady-
state Kalman filter was quick (less than our loop time) and
straightforward to implement. Malik et al. performed a rigorous
comparison of the steady-state and full recursive Kalman filter
using neural spike data and concluded that after steady-state
convergence the two predictions are essentially identical (Malik
et al., 2011). Our fast position update speeds will allow additional
features to be added, including high-resolution, biomimetic,
sensory feedback from intraneural (Wendelken et al., 2017;
George et al., 2019b) or electrocutaneous (George et al.,
2020a) stimulation.

The most computationally demanding aspect of training
was performing Gram-Schmidt forward selection to choose
the 48 most useful features out of the 496 differential pairs.
Despite taking considerable time up front, this down-selection
method has several advantages (Nieveen et al., 2017). First,
choosing the features up-front enables fast loop speeds (below
33ms) by eliminating the need to calculate complex features
(e.g., principal components) or even all 496 differential EMG
features during each update cycle. Second, forward selection
recursively selects features that are maximally correlated with the
training kinematics and minimally correlated with each other
by orthogonalizing the remaining channels after each channel

is selected. This ensures that each selected feature describes
kinematics and not uncorrelated noise. Refined movements, the
hallmark of proportional control algorithms, account for little
variance and could be inadvertently discarded using techniques
agnostic to the training kinematics. Finally, orthogonalization
in the forward selection algorithm avoids redundant features
and singularities.

It was possible to avoid the need for down-selection and only
use the original 32 single-ended features. However, by calculating
all possible differential pairs, signal from a specific muscle might
be better isolated from unwanted signal or noise and identified
by the forward selection algorithm. Indeed, when we allow the
forward selection algorithm to choose from among both the
32 monopolar and 496 bipolar pairs—which is the case in our
lab desktop system but not the portable system—the monopolar
channels are rarely selected.

Importantly, within 8min of powering the system on, the user
can have real-time proportional control of six DOFs. The amount
of time required to both collect training data by mimicking
preprogrammed movements and to train the prosthetic control
algorithm are related to the number of trials for each mimicked
movement. In this work, and published elsewhere (George et al.,
2019a), an amputee familiar with the training process trained
with only four trials on each DOF and a grasp and extension of
all digits. With this training, he was able to control the prosthesis
in the lab and perform tasks not possible with his commercial
prosthesis at home (George et al., 2019a). A less experienced user
may require training with more trials; however, even if a naïve
user requires twice as many trials, the total training time is still
under 15 min.
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An important question we have yet to fully explore is
how often will retraining be required? The amputee in this
study successfully used a trained algorithm the following
day, suggesting daily training may not be necessary. It is
also reasonable to believe that training with data collected
across multiple days could provide better control (George
et al., 2020b), especially considering that iEMG leads are
relatively stationary when implanted into residual musculature.
However, training daily provides new users with the best
control algorithm given the EMG features collected on that
day and our experience suggests that over time they will
become more stereotyped and thus have improved control.
From the start, our training requires less time than pattern
recognition algorithms which can require 14–40 h of upfront, in-
lab training with experienced professionals (Resnik et al., 2017,
2018a).

Currently, to use a previously trained control algorithm,
the modified Kalman filter’s parameters must be recompiled
into a stand-alone application on the Nomad. Although this
process is very fast (<30 sec) and wireless, it currently
requires an external computer running MATLAB R©. Planned
future work includes the ability to directly load trained
parameters from a local file stored on the Nomad for on-
demand use.

Ultimately, the ability to communicate with an application
running on the Nomad was limited to one button (the other
two could only start and stop a compiled application). Thus,
we implemented sequential button pressing to selectively lock
an individual DOF. The amputee used this feature to lock wrist
rotation when using the system at home. For this amputee,
poor wrist control was not uncommon and was likely due
to dystonic muscle activity, common among those afflicted
with complex regional pain syndrome and multi-year arm
disuse prior to amputation (George et al., 2018). However,
despite the amputee’s having low-amplitude EMG signals (e.g.,
Figure 7B), the modified Kalman filter algorithm provided
control for five degrees of freedoms. Intact users did not
lock any DOFs and had all six, independent, proportionally
controlled DOFs.

Near the end of Supplementary Video 4, the amputee
displays difficulty releasing the orange. Release is normally an
easy task, requiring only muscle relaxation for the position
control algorithm to move the digits into an open resting
position. However, delayed object release in this case was
due to the participant’s dystonia—he could not relax muscle
easily for the hand to open. This did not occur often,
but dystonia was more prevalent during some lab visits
than others.

Future improvements will include wireless communication
to a tablet or phone app where control selections can be easily
made, communicated and saved locally on the Nomad. This
will enable real-time adjustments including setting specific DOFs
to velocity mode; adjusting the ad-hoc gains and thresholds
of the modified Kalman filter on a DOF-by-DOF basis; and
reloading a previous training or retraining the prosthesis
with a modified training protocol if the first training was
not satisfactory.

In its current form, the portable system is programmed
to communicate only with the DEKA LUKE Arm.
However, other custom communication sockets could
be designed to communicate through the micro D-sub,
USB or Bluetooth connections available to Nomad for
proportional control of and data logging from other
prosthetic limbs.

The current system also has significant cabling that
connect the DEKA LUKE Arm to its battery and the
Nomad to the DEKA LUKE Arm and the Ripple front-
end amplifier. Upcoming, at-home, unsupervised studies
will likely require a supportive partner/care-taker to assist
the amputee when donning the equipment and to aid in
securing the cables. The take-home study will begin with an
acclimation phase where the amputee (and partner/care-
taker) receive in-lab and at-home supervised training
prior to unsupervised use. We also envision a hip or
back-pack where the Nomad, batteries and excess cable
length can be organized and housed. In the future, wireless
communication between the Nomad, implanted electrodes and
prosthesis could eliminate cables and provide amputees with
greater independence.

The importance of reliability in a take-home system
cannot be understated—software and hardware must function
as intended in the everyday environment. To fully test
reliability, the system must be used at home, over many
days and for many uses. To date, the system has been
used on numerous occasions on campus and in the lab,
but only at home by our laboratory staff and by one
transradial amputee under staff observation (George et al.,
2019a). Ultimately, this system will be used in upcoming
take-home clinical trials to record high-resolution data and
study advanced, proportional control algorithms for upper-limb
prosthesis use.
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Wearable robots (WRs) are increasingly moving out of the labs toward real-world

applications. In order for WRs to be effectively and widely adopted by end-users, a

common benchmarking framework needs to be established. In this article, we outline

the perspectives that in our opinion are the main determinants of this endeavor, and

exemplify the complex landscape into three areas. The first perspective is related to

quantifying the technical performance of the device and the physical impact of the

device on the user. The second one refers to the understanding of the user’s perceptual,

emotional, and cognitive experience of (and with) the technology. The third one proposes

a strategic path for a global benchmarking methodology, composed by reproducible

experimental procedures representing real-life conditions. We hope that this paper can

enable developers, researchers, clinicians and end-users to efficiently identify the most

promising directions for validating their technology and drive future research efforts in the

short and medium term.

Keywords: benchmarking, wearable robots, function, user experience, methodology

1. INTRODUCTION

Performance evaluation is becoming an urgent issue in wearable robotics. The community strongly
needs reliable and replicable testing methods to verify and compare the performance of the
numerous and diverse exoskeletal and prosthetic solutions available (Windrich et al., 2016; Price
et al., 2019; Torricelli and Pons, 2019). Without clear and quantitative benchmarks, this rapidly
expanding market runs the risk of spreading chaotically, losing sight of real users’ needs. This
situation is aggravated by the fact that the application domains are now rapidly expanding from
the healthcare scenario toward industrial and logistic settings, characterized by a multitude of
new functional goals and safety constraints (Gopura et al., 2016; Bogue, 2018). This multifaceted
picture calls for a multidimensional approach that can guide not only developers in identifying
the most efficient path to market introduction and survival, but also users in identifying the

93

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.561774
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.561774&domain=pdf&date_stamp=2020-11-13
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:philipp.beckerle@tu-dortmund.de
https://doi.org/10.3389/frobt.2020.561774
https://www.frontiersin.org/articles/10.3389/frobt.2020.561774/full


Torricelli et al. Benchmarking Wearable Robots

FIGURE 1 | Wearable robot benchmarking should be pushed from several perspectives. We advocate taking a look at functional performance, user experience and

methodological aspects. To this end, we consider the sub-aspects and questions to outline research directions.

best solution according to their unique abilities, desires,
expectations, and needs. Fortunately, the scientific community
has already addressed some of these issues in the past two
decades: hundreds of studies have explored the biomechanical,
physiological, and psychological implications of the interaction
between humans and wearable robots (WRs) (Beckerle et al.,
2017b, 2019; Pinto-Fernandez and Torricelli, 2020). This has
been a multidisciplinary endeavor, which has resulted not only
in scientific evidence and better robotic prototypes, but also in a
plethora of potentially useful evaluation methods and protocols
(Ghillebert et al., 2019; Ármannsdóttir et al., 2020; Davis et al.,
2020). If well-organized and appropriately conveyed to the
relevant users, a careful selection of these methods can become
the foundation of a unified and standardized benchmarking
ecosystem for WRs. Different international consortia are now
targeting this ambitious goal, such as the COST Action for
Wearable Robots1, the EUROBENCH project (Torricelli and
Pons, 2019), the COVR project (Bessler et al., 2018), and
the Exskallerate project2, as well as the ASTM-driven Exo
Technology Center of Excellence3, to mention a few.

With the support of some of these projects, we gathered
several experts into a workshop titled “Benchmarking Wearable
Robots: from key enabling technologies, experimental methods
to final applications,” held during the 2019 edition of the

1https://www.researchgate.net/project/COST-Action-CA16116-Wearable-
Robots-for-Augmentation-Assistance-or-Substitution-of-Human-Motor-
Functions
2https://northsearegion.eu/exskallerate/
3https://www.etcoe.org/

ExoBerlin conference4. The main goal was to promote the
discussion across researchers and stakeholders from different
perspectives, to identify the key aspects that should be addressed
in the near future in the field of performance evaluation.
We identified three areas in which intensive research and
scientific discourse appears necessary (see Figure 1). The first one
addresses the functional performance, i.e., how the WR interacts
with and affects the user’s physical functions. Depending on
the specific application, performance may be related to different
desired outcomes, such as promoting a more physiological and
efficient movement pattern, reducing the user’s physical fatigue
or improving balance. The second one focuses on considering
and assessing the user’s experience, i.e., the perceptual, emotional,
and cognitive processes involved in the use of a WR. The third
area highlights the importance of standardizing the experimental
procedures, data collection and processing algorithms, in order
to ensure a wide adoption of the same testing methods
worldwide, fostering discussion and comparison among the
different stakeholders in the field.

This perspective paper aims to provide a concise
description of each of these three areas and thereby
promote a common understanding of the meaning and
relevance of WRs benchmarking. Such an effort may enable
developers, researchers, clinicians, end-users, and any other
relevant stakeholder to focus their efforts toward the most
promising directions that should be addressed in the short and
medium term.

4https://www.exo-berlin.de/
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2. FUNCTIONAL PERFORMANCE
PERSPECTIVE

WRs have an intrinsic, circular causal relationship with the
human user, in which the actions of the robot are determinant
for the behavior of the human and vice versa. Therefore,
performance should be characterized on technological,
biomechanical and physiological levels, within the context
of specific functional tasks.

Technological indicators describe the physical capabilities of
a WR. These indicators are obtained independently from a
specific user, but are essential to evaluate the applicability of
a WR for a specific target application with human users. One
important aspect is the kinematic compatibility, which describes
the ability of the robotic structure to follow the 3D kinematic
trajectories of the human limbs. Kinematic compatibility is one
of the main determinants of relative motion between the human
limbs and the device (Näf et al., 2018a), which has direct effects
on functionality, comfort and safety. On the kinetic side, the
evaluation of torque/force control behavior and the mechanical
impedance/admittance characteristics of the actuators is crucial.
Unfortunately, most of the existing benchmarking techniques
are realized under static assumptions, which result in unrealistic
reported actuation characteristics. Recent works are pointing
toward dynamic characterization procedures (Moltedo et al.,
2019), which in our opinion are essential to measure the potential
of a WR to interact safely and efficiently with the human in daily
activity tasks.

Biomechanical and physiological indicators relate
to the assessment of the physical human-robot interaction.
Given the complex nature of the systems under evaluation,
i.e., the WR, the user and their physical coupling—the choice
of the set of metrics and experimental methods is not trivial.
Several biomechanical and physiological metrics have been used
in human-in-the-loop studies to assess the effects of a WR on
the user’s physical capabilities. Among all, kinematics-related
metrics have been extensively reported in several works (Pinto-
Fernandez and Torricelli, 2020). Comparing joint kinematic
profiles in WR-assisted conditions with normative data is
a widely used method to assess whether a WR influences
the movement pattern of a user (Näf et al., 2018b). In the
majority of state-of-the-art papers on lower-limb WRs and
gait rehabilitation, gait speed, joint range of motion and
spatiotemporal parameters, such as cadence, step width, and
stride length, are the most recurring kinematics metrics (Lee
et al., 2019). However, given the high diversity of subject
conditions, other indicators could be highly relevant to assess
the effects of a WR. For instance, assessing the joint torque
profiles can provide useful information about the quality of the
movement pattern and may guide the interpretation of other
outcomes, such as those related to electromyographic (EMG)
measurements or metabolic efficiency. EMG measurements have
become extremely popular as a way to measure the internal
joint dynamics, thus to assess the physiological effects of the
human-machine interaction. The technological maturity of
commercial systems have made EMG one of the key metrics to
evaluate a WR’s efficacy in several application scenarios, from
rehabilitation, assistance (Collins et al., 2015), and industrial

(Pacifico et al., 2020) scenarios, particularly in out-of-the-lab
contexts, given that most of the EMG system are wireless and
portable. Energy expenditure is currently one of the most
adopted metrics to assess the effectiveness of a WR. Reduced
metabolic cost has been widely considered as valuable evidence
of effective human-robot interaction, with several recent studies
proving that such results can be achieved in several contexts,
ranging from walking and running (Kim et al., 2019), elderly
gait training (Martini et al., 2019), and to repetitive upper-limb
assistance of workers (Maurice et al., 2019; Baltrusch et al., 2020;
Koopman et al., 2020). Currently, to the author’s knowledge, no
studies have provided evidence that metabolic cost reductions
could be reliably assessed in out-the-lab conditions, but
worldwide many research teams are investigating this issue.

Lastly, estimating the interaction forces between the user and
the robot is particularly relevant for two main reasons. From
a design perspective the assessment of shear and compressive
components of the interaction forces can provide useful data
to design more comfortable and ergonomic physical interfaces
(Langlois et al., 2018), with reduced undesired parasitic forces
on the user’s musculoskeletal system, wide areas to distribute
pressure and tailored coupling with the user’s soft tissues. From
a functional perspective, the assessment of interaction forces
could provide information about the effectiveness and quality
of the WR assistance. Despite their great importance, assessing
interaction forces may be limited by technological constraints, as
either the WR needs to integrate ad-hoc force/torque sensors or
the experimental set-up should be designed to include sensory
systems at the human-robot interface (Donati et al., 2013).
Currently, techniques, both accurate and practical, for dynamic
in-the-loop pressure measurements are still lacking. Human-
machine interaction is one area in which kinetics are of utmost
importance. Nevertheless, interaction forces between the user
and the machine are likely underestimated and rarely reported
in the literature (del Carmen Sanchez-Villamañan et al., 2019).

Considering the complexity and intrinsic variability of
measuring human/robot performance indicators for WRs, it is
important to further explore the use of models, both software
simulations of human robot interaction as well as advanced
testing dummies that simulate the human on all relevant aspects.
Once such models can be validated for their ability to represent
a certain population, and are approved by the community,
important gains in efficiency may be reached. Thereby, the
wide range of WR application scenarios needs to be taken into
account, e.g., medical WRs call for specific biomechanical and/or
physiological metrics and exhibit very strict requirements.

3. USER EXPERIENCE PERSPECTIVE

Due to their tight connection with human users, the adequacy of
WRs strongly depends on the experience of and the interaction
with their users. When assessing the user outcomes of a WR
application, experiences will likely reflect the benefits perceived
in terms of physical function, but perceptual, emotional, and
cognitive aspects also need to be considered. Recent research has
explored how to measure, understand, and consider the users’
views. For systematic consideration, existing human-oriented
design approaches evaluate user experience and integrate it into
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design processes, e.g., ISO 9241 (Jokela et al., 2003) or human-
machine-centered design (Beckerle et al., 2017a). ISO 9241
defines user experience as perception and reactions of a person
resulting from the use of a system, i.e., including aesthetic aspects
(Hassenzahl and Tractinsky, 2006) or effects of neural plasticity
through co-adaptation (Beckerle et al., 2019). Considering user
experience early on could help to improve designs already during
their development and experience measures could be meshed in
the process of co-adaptation. In design, for instance, experience
might directly be assessed for particular components, e.g., the
intuitivity of a control algorithm, and serve as a predictor of
device acceptance and efficacy (Beckerle et al., 2017b), which also
relates the users’ attitudes and predispositions (Gauthier-Gagnon
et al., 1999; Gallagher, 2005; Kammers et al., 2006).

To quantitatively assess and understand users’ views and
needs in the first place, studies of human factors influencing the
experience of the technical system and, in the long term, validated
assessment methods are required. To this end, theoretical models
of human factors are helpful (Karwowski, 2006; Wilson and
Sharples, 2015), but might require customization regarding the
specific application: Gauthier-Gagnon et al. (1999), for example,
have proposed a model of human factors regarding lower limb
prostheses. The model distinguishes between enabling factors,
which might be altered by design, as well as predisposing and
psychosocial factors. From an engineering point of view, the
latter two might appear less important, but on the contrary,
the model explains how technical design might not be able to
meet a user’s needs since unforeseen psychological effects might
alter the resulting cybernetic performance, e.g., when the user’s
perceived security is compromised by the device (Legro et al.,
1998; Gallagher and MacLachlan, 2000; Beckerle et al., 2017a).
The literature provides extensive information about potentially
relevant psychological concepts that influence acceptance and
performance of WRs. For some devices, for example, the
subjective sense of embodiment (Rognini and Blanke, 2016;
Beckerle et al., 2019), the sense of agency over the device (Caspar
et al., 2015; Endo et al., 2020), or the subjective cognitive effort
(Beckerle et al., 2017a) have been suggested to be crucial.

Human-in-the-loop experiments that get users in touch
with prototypal components or system implementations
appear promising and may provide useful information about
how variations of the technical system modulate the users’
experiences (Beckerle et al., 2017b, 2019). Assuming device
embodiment, agency, and cognitive effort are promising
measures in WR benchmarking: nevertheless, accepted
standardized testing procedures are still missing. These might
include psychometric tools to evaluate subjective experience
(Hart and Staveland, 1988; Longo et al., 2008; Caspar et al.,
2015) as well as more objective behavioral measures, e.g.,
proprioceptive drift for embodiment (Christ and Reiner,
2014), intentional binding techniques for agency (Caspar
et al., 2015; Endo et al., 2020), or physiological measures,
such as heart rate (Ikehara and Crosby, 2005), electrodermal
activity, or neurophysiological measures (Christ and Reiner,
2014). Such systematic measures might not only be used
to consider user experience in WR design, but could also
be a means to implement adaptive control schemes that

coordinate control behavior to improve user experience, e.g.,
predicting embodiment outcome to foster it by appropriately
adjusted control (Schürmann et al., 2019). While physiological
measurements and electrical stimulation might support this
by exploiting neuroplastic effects, deeper investigation of brain
plasticity is subject to ongoing research (McGie et al., 2015;
Makin et al., 2017). Future human-machine interfaces might
be able to mediate affective signals, and thereby, also forward
emotional and social information to the users (Beckerle et al.,
2018).

4. METHODOLOGICAL PERSPECTIVE

Turning the existing metrics, protocols, and algorithms into one
harmonized benchmarking ecosystem is an important challenge
that needs to be addressed for benchmarking to be converted
into common practice. This process has to consider several
perspectives (see Figure 1) and faces the challenge of finding new
and common terminology.

First, benchmarking should allow reproducibility of results,
defined as “the obtention of comparable results by different
teams, measuring systems, and locations” (Plesser, 2018). The
development of a reproducible experiment should clearly
consider at least the following four aspects: the physical testbed
and environment, the experimental procedure, the data format,
and the performance metrics (Torricelli et al., 2015). The
concept of reproducibility claims that a range of variations
in these elements may not affect the comparability of results,
while it greatly improves the chance to be adopted by many
users. The main question in this respect is “how different
can two testbeds, protocols, measurement systems be to still
allow for a truthful comparison?” Currently, there are no
guidelines available to help researchers answer this question
and to provide a clear description of these components in
a standardized way. Fortunately, some editorial initiatives
are currently encouraging this direction, e.g., the “R-articles”
initiative proposed by (Bonsignorio, 2017). Reproducibility in
WRs experiments can be particularly complicated, because the
results may be influenced by variables related to human-related
aspects that can be hardly controlled or classified, such as the
neurological and physical conditions of the user, the amount
and type of familiarization with the device, the tuning procedure
of the control system, as well as several environmental, i.e.,
non-technical, factors.

The second aspect is the transferability of results, i.e., the
ability of predicting how a system would behave in the real
world, by means of experiments conducted in a controlled
(typical laboratory) environment. This problem is now becoming
more and more relevant due to the increasing number of
applications of exoskeletons in diverse contexts. Performing
the experiments in a real setting may be either not possible
(e.g., in industrial settings) or too complex, due to the
multiple variations in the environment, which would imply
the execution of an excessive number of experiments. Two
promising approaches are the use of complex mechatronic
simulators, e.g., the CAREN system from MOTEK, or the
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decomposition of the complex tasks into basic environmental
conditions and motor skills (Torricelli and Pons, 2019). The
problem of transferability is particularly complex when it refers
to user experience, due to the difficulty to generalize across
multiple potential users with variable needs. This may explain
why these methods appear to be scarcely applied in the field of
WRs up to now (Beckerle et al., 2017b). Moreover, qualitative
data can provide very rich information for development
processes, but still not very easy to be considered as a hard
benchmark.

The third aspect is related to understandability. Benchmarks
should not only serve developers and researchers to perform
deep technical analysis on their systems, but also to the end-
users, to help them compare the different (but apparently
similar) solutions available in the market and make the right
choice. This can be done only if the user can grasp the main
features of the system clearly and quickly. Thus, conveying
the benchmarking results using non-technical terminology is of
utmost importance. Language should also consider that a single
term may have different meanings depending on the user, e.g.,
medical doctor, industrial stakeholder, generic user, etc., and
the related application domain. Last but not least: shareability.
Let’s consider the hypothetical case in which benchmarking is
adopted massively by theWR community worldwide. Where will
all those data generated by the different laboratories be stored?
Benchmarking, by definition, should allow the comparison with
a point of reference. How can such a reference be calculated?
How can we derive comparisons? Standards may help in this
process by establishing fixed reference values to categorize
performance into discrete levels but, in this evolving field,
it is more than likely that the performance references will
also evolve over time. This calls for a centralized software
platform that can gather both data and algorithms, and allow
comparisons between the scores obtained by one system with
all those already tested. However, there are currently two main
barriers that can be identified. First, the availability of researchers
and developers to provide access to data obtained on their
WRs. In this respect, some questions emerge: at what level of
detail need data be shared? To what extent can benchmarking
and confidentiality matters coexist? The second potential
roadblock is the compliance with privacy regulation, e.g., GDPR,
which applies to any experiment generating human sensible
data. Overcoming these barriers would considerably increase
the probability of benchmarking to be used worldwide, and
being converted into the de-facto methodology for evaluation
of performance.

5. CONCLUSIONS

Benchmarking is more than measuring or assessing. It is a
methodology that allows the entire innovation chain to be
monitored and potentially predicted. Without benchmarks,
development efforts risk to reach only a small portion of
the market, instead of favoring a global shift of the society
toward the inclusion of wearable robotic technologies in daily

life. The close interaction between a human and a WR
poses special challenges to researchers willing to quantify
the different aspects of the symbiotic performance. Several
international initiatives are paving the way for a standardized
benchmarking ecosystem, which has the ambitious goal of
facilitating the matching between user demands and product
capabilities.

In this article, we outline the research directions that in
our opinion are the main determinants of this endeavor and
exemplify the complex landscape into the three main areas here
described. In the following, we highlight a number of research
questions that, in our opinion, will be key to drive future efforts
in the field.

Since functional performance and user experience are
in reality highly intertwined to each other, we should ask
ourselves: would it be possible to predict the user’s view from
objective physiological, psychophysiological or biomechanical
measurements? If we could do so, this would significantly
contribute to speed up testing-development iterations and
improve individualizing WRs.

The human and the machine are two intelligent counterparts
that should learn to interact with each other to achieve
a given goal (Beckerle et al., 2017b, 2019). The particular
contributions of both agents to the joint task are not fully
understood. Establishing the cause-effect relationship between
the internal processes and the achievement of the goals is
one of the main challenges in benchmarking research, with
tremendous potential benefits. Due to the unavoidable presence
of the human in the loop, technology providers may encounter
difficulties in demonstrating a certain level of performance
for their device. In other words: how can the contribution
of the human be excluded when comparing different systems’
performances? This problem, clearly evident, e.g., in Cybathlon
competition—where the performance strongly relies on the
pilot’s skills, is an open issue that should be urgently considered
(Makin et al., 2017).

Finally, a good measured variable does not mean a useful
measure of performance. A typical example is kinematics:
having a joint profile closer to human healthy reference, e.g.,
Winter’s data, may not tell anything about stability, efficiency,
or safety of the device. Additionally, time profiles are usually
difficult to grasp for non-technical users. How can we convert
these variables into useful indicators of performance? We
advocate that WR research and development should strive for
finding the optimal balance between measurable, well-defined,
and relatively easy-to-administer benchmarks to improve
users’ outcomes.
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Robot-assisted gait training (RAGT) devices are used in rehabilitation to improve patients’

walking function. While there are some reports on the adverse events (AEs) and

associated risks in overground exoskeletons, the risks of stationary gait trainers cannot

be accurately assessed. We therefore aimed to collect information on AEs occurring

during the use of stationary gait robots and identify associated risks, as well as gaps

and needs, for safe use of these devices. We searched both bibliographic and full-text

literature databases for peer-reviewed articles describing the outcomes of stationary

RAGT and specifically mentioning AEs. We then compiled information on the occurrence

and types of AEs and on the quality of AE reporting. Based on this, we analyzed

the risks of RAGT in stationary gait robots. We included 50 studies involving 985

subjects and found reports of AEs in 18 of those studies. Many of the AE reports were

incomplete or did not include sufficient detail on different aspects, such as severity

or patient characteristics, which hinders the precise counts of AE-related information.

Over 169 device-related AEs experienced by between 79 and 124 patients were

reported. Soft tissue-related AEs occurred most frequently and were mostly reported

in end-effector-type devices. Musculoskeletal AEs had the second highest prevalence

and occurred mainly in exoskeleton-type devices. We further identified physiological

AEs including blood pressure changes that occurred in both exoskeleton-type and

end-effector-type devices. Training in stationary gait robots can cause injuries or

discomfort to the skin, underlying tissue, and musculoskeletal system, as well as

unwanted blood pressure changes. The underlying risks for the most prevalent injury

types include excessive pressure and shear at the interface between robot and human

(cuffs/harness), as well as increased moments and forces applied to the musculoskeletal

system likely caused by misalignments (between joint axes of robot and human). There

is a need for more structured and complete recording and dissemination of AEs related

to robotic gait training to increase knowledge on risks. With this information, appropriate

mitigation strategies can and should be developed and implemented in RAGT devices

to increase their safety.

Keywords: robot-assisted gait training, adverse event (AE), safety, physical human-robot interaction (pHRI),

injuries (MeSH), stationary gait robots, rehabilitation robotics
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INTRODUCTION

Robot-assisted gait training (RAGT) is frequently used in
rehabilitation to promote walking function in individuals with
various disabilities, such as stroke, spinal cord injury (SCI),
or cerebral palsy. The rates of disability, e.g., as a result of
chronic stroke, are rising due to population aging. According to
the World Health Organization, the proportion of the world’s
population aged over 60 years will increase drastically from 12%
in 2015 to 22% in 2050 (World Health Organization, 2018).
This leads to an increasing amount of persons with chronic
walking disabilities that will in turn lead to a lack of skilled
physical therapists.

Robotic gait trainers can be used for various patient groups to
provide them with high-intensity gait training. While traditional
gait training on a treadmill is associated with high physical
strain on the therapists and a need for two to three therapists
per patient, robotic gait trainers have the advantage of reducing
the time and effort required from the therapist. As a result,
they potentially allow for longer or more frequent sessions of
high-intensity gait training for the patient (Hesse et al., 2003).

There are different types of robotic gait trainers. Overground
gait trainers include ambulatory exoskeletons, such as the
ReWalk (ArgoMedical Technologies Ltd., Israel), Ekso GT (Ekso
Bionics, USA), HAL (Cyberdyne, Japan), REX (Rex Bionics, New
Zealand), and Indego (Parker Hannifin Corp., USA). Stationary
gait trainers can be divided into two subcategories: exoskeleton-
type devices and end-effector-type devices. Exoskeleton-type
devices usually consist of a treadmill, an overhead harness for
body-weight support (BWS), and a lower limb exoskeleton
fixed to a frame. Examples of exoskeleton-type devices are the
Lokomat (Hocoma, Switzerland), AutoAmbulator (Motorika,
USA), RoboGait (Bama Technology, Turkey), Walkbot
(P&S Mechanics, South Korea), and NX-A3 (Guangzhou
YiKing Medical Equipment Industrial, China). End-effector-
type devices, such as the G-EO system (Reha-Technology,
Switzerland), LokoHelp (Woodway, Germany), Gait Trainer
GT II (Reha Stim Medtec, Germany), and THERA-Trainer Lyra
(medica Medizintechnik, Germany), consist of an overhead BWS
and robotic end-effectors that are attached to the patient’s feet
and are moved along reference trajectories of normal walking.

The advantages of RAGT with regard to time and physical
effort required by the therapist are obvious (Mehrholz et al.,
2017). However, the mechanical power of the robots in
combination with the close physical connection with the patient
inevitably introduces safety issues. The robot is attached to
the patient’s limbs, which can lead to dangerous interaction
forces. Safe ranges of normal and shear forces that can be
applied to a patient during training with a robot are yet to
be defined. While recent research has focused on safe limit
values in collision situations of physical human–robot interaction
(pHRI) (Haddadin et al., 2007; Behrens and Elkmann, 2014),
situations of continuous contact are challenging to assess. This is
mostly due to a lack of reliable measurement methods, especially
concerning shear forces. Much effort has recently been put
into the development of those measurement methods (Lenzi
et al., 2011; Sugiura et al., 2012; Makino et al., 2013; Castellini

and Ravindra, 2014; Ito et al., 2014; Tamez-Duque et al., 2015;
Wilkening et al., 2016; Alavi et al., 2017; Sadarangani et al.,
2017). A method that can be considered as the gold standard
for measuring normal and tangential forces is the load cell.
However, these sensors are rather bulky and expensive, which
are possible reasons why many studies implement force sensitive
resistors to assess the interaction between a human and a robotic,
orthotic or load-carrying device (Castellini and Ravindra, 2014;
Tamez-Duque et al., 2015; Sadarangani et al., 2017). Drawbacks
of force sensitive resistors include a typically non-linear transfer
function, as well as sensitivity to changes of humidity and surface
curvature (Castellini and Ravindra, 2014; Wettenschwiler et al.,
2015), which are highly relevant during the measurement of
prolonged human–robot interaction (HRI) between skin and
cuff. A number of studies have focused on developing and
implementing alternative sensing devices, such as optical sensors
(Lenzi et al., 2011; Sugiura et al., 2012; Makino et al., 2013),
vision-based tactile sensors (Ito et al., 2014), and pneumatic
padding (Wilkening et al., 2016; Alavi et al., 2017); however, these
methods are still in the research state.

Besides the much needed safe limit values for continuous HRI,
simplifying the safety evaluation process is another contributor
to improving safety in collaborative and rehabilitation robotics.
This is, for example, done in the COVR project (www.
safearoundrobots.com) by providing various structured tools for
robot developers, including establishing the best practices for
safety-related measurements and promoting the development
and application of unified safety testing procedures. As a
first step in this, specifically regarding rehabilitation robots,
risks, and needs covering all aspects of continuous patient–
robot interaction should be assessed in a structured way,
which in turn should inform the development of relevant
measurement methods. Therefore, adverse events (AEs) of
existing rehabilitation robots need to be taken into account and
associated risks need to be identified. A recent review assessed
the aspects of risk management and the occurrence of AEs
in overground exoskeletons (He et al., 2017). Both the FDA
(Food and Drug Administration of the United States) database
MAUDE (Manufacturer and User Facility Device Experience)
and peer-reviewed publications including any of the overground
exoskeleton device names mentioned above were searched for
AEs during the usage of exoskeletons. The review found, among
other AEs, a number of device malfunctions, skin and tissue
damages, and two incidences of bone fractures. Both incidences
of bone fractures were attributed to misalignment of the device
causing a discrepancy between human joint axis and robot joint
axis. This is an indication for the need for extensive post-market
surveillance and appropriate testing methods for safety of robotic
gait rehabilitation devices.

A recent Cochrane review assessing the clinical effects
of electromechanical-assisted training for walking after stroke
(Mehrholz et al., 2017) also collected information on any AEs
reported in those studies. The most frequently documented
adverse effects and reasons for dropout were pain and skin
breakdown. In light of obvious differences between stationary
RAGT and overground exoskeletons, such as the use of BWS
in stationary RAGT compared with crutches in overground
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exoskeletons to decrease the risk of falls, and professional
supervision compared with oversight by a trained family
member, it seems straightforward to assume that AEs in
stationary RAGT are less frequent and less severe than those
in overground exoskeletons due to its controlled environment.
However, there is insufficient structured information available
on the occurrence of AEs in stationary RAGT. Moreover, there
currently is no European equivalent to the US MAUDE database
in operation, and other parts of the world have in turn different
processes (Mishra, 2017), which makes it difficult to find reliable
worldwide information on the frequency and severity of AEs.

Therefore, this paper presents a systematic literature review
of AEs that occurred during training with stationary robotic
gait trainers. We hypothesized that there are incidences of
skin breakdown and bone fractures in RAGT and further
expected that the reporting of these events is lacking detail. We
searched both bibliographic and full-text literature databases for
peer-reviewed articles describing the outcomes of RAGT and
specifically mentioning AEs. From this, we extracted information
about AEs and their reporting, with the objective to get an
overview of the occurrence and type of AEs in stationary robotic
gait trainers and identify particular risks involved.

METHODS

Search Strategy and Data Sources
We conducted an electronic database search in relevant
bibliographic (PubMed, Scopus, Web of Science) and full-
text databases (IEEE Xplore Digital Library, SpringerLink,
ScienceDirect, SAGE Publications, AHA Journals) from
inception to mid-June 2019. We used the following search terms
for all databases:

- Electro-mechanical, electromechanical, robotics,
robot-assisted, robotics-assisted

- Exercise therapy, rehabilitation, training
- Gait, walk, walking, step, stepping, locomotor, locomotion
- Bodyweight-supported treadmill training, locomotor training,
Lokomat, Gangtrainer (GT), G-EO, WALKBOT, LokoHelp

- Adverse, skin breakdown, skin lesion, skin sore, pressure sore,
discomfort, abrasion.

The complete search strategy used in PubMed can be found
in the Appendix (Supplementary Material). This search was
adapted to suit the other databases, and we searched full text
(where available), title, abstract, and keywords. Reference lists of
included articles were scanned for potentially relevant additions.

Study Selection
The criteria that were applied for study selection can be found
in Table 1. We did not apply criteria in terms of study design,
population, or comparators as we aimed to find all available
information on AEs in stationary robotic gait training with
humans. After exclusion of duplicate entries, the titles were
screened by two reviewers independently (GP and JB). Following
that, the abstracts of the remaining studies were screened by
EP and JB, and in the third step, the full texts were screened

by RS and JB. A third reviewer could be consulted in case of
a disagreement between the two respective reviewers (EP for
title screening and GP for abstract and full-text screening). Title
and abstract screening were performed using a web-based tool
(Ouzzani et al., 2016).

Data Extraction and Analysis
As this systematic review’s main aim was to collect and analyze
AEs in RAGT, we did not perform a methodological quality
judgment. We employed the PRISMA reporting guidelines
(Moher et al., 2009) as far as they were applicable to this
review. Restrictions of their applicability were due to the fact
that this review does not focus on the clinical effects of an
intervention. For collecting relevant data from all included
studies, we developed a structured table. The data categories that
the studies were screened for are:

1. Subject characteristics
2. Training device
3. Study design
4. Description of AEs and dropouts.

We collected information on the number of subjects performing
gait training, age, diagnoses, time since onset, and severity.
Since the diagnoses varied strongly, no overarching measure for
disease severity or disease stage could be defined to describe the
functional level or chronicity. The study design type as well as
the number and duration of sessions were noted. Device types
(exoskeleton-type, end-effector-type, soft exosuit) and names
were collected. Moreover, we screened for information on the
amount of BWS and the type of HRI. Types of HRI, such as active,
passive, and assistive, were based on the review by Basteris et al.
(2014).

Regarding AEs, we collected the number of studies reporting
the presence of AEs, number of affected study participants,
methods used to detect AEs, as well as numbers and types of AEs.
Where it became apparent that several studies reported on the
same trial (same intervention and same patients), we excluded
any double reports to avoid bias. The description of AEs was
assessed for completeness. An AE description was considered as
complete whenever it included (1) a description of the AE itself
including the number of occurrence, (2) the number of subjects
affected, and (3) the intervention during which the AE occurred.
A statement that no AE occurred was rated as incomplete if it
contained contradictory information or was lacking information
[e.g., only part of the intervention considered, only referring
to serious adverse events (SAEs)]. We only collected AEs that
were related to RAGT. When an event was described by the
authors as unrelated to the intervention, it was not included in
the data for this review. We did, however, include events with
unspecified causes.

For better comparison between studies, AE type and severity
were categorized as follows. For the type of AEs, we used
the categories soft tissue-related (e.g., skin reddening, lesions,
bruises, discomfort from harness), musculoskeletal (e.g., joint
pain, muscle pain, bone fractures), and physiological (e.g.,
blood pressure changes). Events that matched neither of these
categories (e.g., headache, fear) were classified as other. Severity
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TABLE 1 | Inclusion and exclusion criteria.

Criteria Inclusion criteria Exclusion criteria

1 Articles must be peer-reviewed (full) papers Conference abstracts and other non-peer-reviewed articles

were excluded

2 Articles must be trials with human subjects All articles that were not trials including human subjects (e.g.,

literature reviews, study protocols, animal studies) were

excluded

3 Articles must address robotic-assisted stationary gait training

• Either exoskeleton-type or end-effector-type

• Person standing upright, doing stepping movements

• Being attached to the lower extremity

• Stationary

Articles addressing other technologies (e.g., surgical robots,

overground exoskeletons, upper-limb robots) were excluded

4 Articles must include a specific statement about AE (this can

also be a statement saying that no AE occurred)

Articles not including any statement about AE related to the

robotic gait training were excluded

5 Articles must be available in the English language Articles written in other languages were excluded

of AEs was classified as mild, moderate, or severe (adapted
from Borggraefe et al., 2010; U.S. Department of Health Human
Services, 2017):

• Mild: event is noticeable but easily tolerable. No medical
intervention is needed, and treatment does not have to
be interrupted or only for a short rest (e.g., minor
discomfort, reddening)

• Moderate: event interferes with activities or treatment but can
be managed by simple measures. No long-term effects (e.g.,
skin lesions without complications)

• Severe: event is incapacitating and requires medical
attention/treatment, and normal treatment cannot
be continued (e.g., bone fractures, skin lesions
with complications)

If there was no description of an interruption of training or any
other indication of a more severe event, the AE was assumed
to be mild. Where there was no description of the AE that
allowed us to conclude the severity, it was counted as unknown.
Note that a severe AE as classified in this study does not
automatically constitute an SAE according to the definition of
the Medical Device Regulation (Regulation (EU) 2017/745 of the
European Parliament of the Council of 5 April 2017 on medical
devices, amending Directive 2001/83/EC, Regulation (EC) No
178/2002 and Regulation (EC) No 1223/2009 and repealing
Council Directives 90/385/EEC and 93/42/EE, 2017). However,
any SAE would be counted as severe in this review. To compare
the severity of different AE types and between different devices
or device types, we rated mild AEs with a severity of 1, moderate
AEs with a severity of 4, and severe AEs with a severity of 10
and calculated the overall severity per device and per AE type
as follows:

severityoverall =
1 · nmild + 4 · nmoderate + 10 · nsevere

ntotal − nunknown
,

where nmild is the number of mild AEs, nmoderate is the number
of moderate AEs, nsevere is the number of severe AEs, ntotal is the

total number of reported AEs, and nunknown is the number of AEs
with unknown severity level.

The classes of AE severity and their ratings (1 for mild, 4 for
moderate, and 10 for severe) are chosen arbitrarily based on the
authors’ experience and judgment. They are not validated and are
used solely to get a rough estimate of severities for comparisons
between device types or AE types.

We performed Pearson’s chi-squared tests of independence
(MATLAB R©, version 2019b, MathWorks, Natick, Massachusetts,
USA) to investigate whether (1) devices (e.g., Lokomat, GT)
are associated with AE types (e.g., soft tissue-related AEs,
musculoskeletal AE), (2) device types (e.g., exoskeleton-type,
end-effector-type) are associated with AE types, (3) AE types are
associated with severity level (i.e., mild, moderate, severe), (4)
devices are associated with severity level, and (5) device types are
associated with severity level. We employed a significance level
of 5%.

RESULTS

Study Selection
We identified 1,081 unique records through database searching
and one addition through reference searching (Figure 1). Of
those, 139 records remained after title and abstract screening,
of which 50 met the inclusion criteria and were analyzed
(Husemann et al., 2007; Mayr et al., 2007; Freivogel et al., 2008,
2009; Lo and Triche, 2008; Ng et al., 2008; Hesse and Werner,
2009; Borggraefe et al., 2010; Chin et al., 2010; Lo et al., 2010;
Geroin et al., 2011; Morone et al., 2011; Turiel et al., 2011; Benito-
Penalva et al., 2012; Carda et al., 2012; Gizzi et al., 2012; Picelli
et al., 2012, 2015; Vaney et al., 2012; Geigle et al., 2013; Kelley
et al., 2013a,b; Aach et al., 2014; Labruyère and van Hedel, 2014;
Nilsson et al., 2014; Stoller et al., 2014, 2015; Asbeck et al., 2015;
Filippo et al., 2015; Ochi et al., 2015; Schoenrath et al., 2015a,b;
Sczesny-Kaiser et al., 2015, 2017; Wu et al., 2015; Chua et al.,
2016; Forrester et al., 2016; Ikumi et al., 2016; Kumru et al.,
2016a,b; Aurich-Schuler et al., 2017; Bae et al., 2017; Chisholm
et al., 2017; Esquenazi et al., 2017; Grasmücke et al., 2017; Jansen
et al., 2017, 2018; Kim et al., 2019; Straudi et al., 2019; Tanaka
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FIGURE 1 | Flow diagram study identification based on Moher et al. (2009).

et al., 2019). We identified some studies with overlap in patients
(Kelley et al., 2013a,b; Aach et al., 2014; Stoller et al., 2014,
2015; Sczesny-Kaiser et al., 2015; Jansen et al., 2017, 2018) and
excluded double reports in the analysis of subject numbers and
AE numbers.

Patients and Devices
The included studies described RAGT in 985 subjects of which 14
were healthy individuals, 341 SCI patients, 326 stroke patients,
42 traumatic brain injury patients, 67 cerebral palsy patients,

74 Parkinson’s disease patients, 76 multiple sclerosis patients, 15
cardiac patients, and 30 patients with other diagnoses. Two of the
included studies focused on children and adolescents (Borggraefe
et al., 2010; Aurich-Schuler et al., 2017). The identified studies
reported on gait training in 10 different devices: Lokomat (489
subjects in 27 studies), Gait Trainer GT (301 subjects in 8 studies;
244 subjects trained in GT II, 24 in GT I, and for 33 subjects
the model was not specified), HAL (108 subjects in 9 studies),
MorningWalk (25 subjects in 1 study), LokoHelp (22 subjects
in 2 studies), Anklebot (14 subjects in 1 study), Gait-Assistance
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TABLE 2 | Overview of studies with adverse events vs. studies without adverse events.

Studies that reported adverse events Studies that reported no adverse events

Number of studies 18 32

Completeness of AE description

(complete/incomplete)

14/4 28/4

Number of subjects performing RAGT 291 694

Dropouts 19 dropouts in 6 studies, 0 lost to follow-up, 1 not

stated

47 dropouts in 8 studies, 6 lost to follow-up in 4 studies,

3 not stated

Diagnosis SCI, TBI, CP, stroke, PD, MS, other SCI, TBI, CP, stroke, PD, MS, cardiac, other, healthy

Age (mean [SD of means]) 42 (19) 53 (12)

Months since onset (range) [0;276] [1;420]

Level of severity Mild to severe (FAC 0–4, ASIA A–D) Mild to severe (FAC 0–5, ASIA A–D)

Study design type 7 RCT (2 pilot), 3 longitudinal uncontrolled, 2

longitudinal repeated measure (1 randomized, 1

controlled), 1 retrospective review of data, 4 case

reports, 1 case series

16 RCT (2 pilot, 3 repeated measures), 9 longitudinal

uncontrolled (2 pilot), 4 cross-sectional repeated

measure (1 pilot), 2 longitudinal controlled, 1 longitudinal

repeated measure

Number of studies per device 12 Lokomata, 3 HALb, 2 LokoHelpc, 1 GTd, 1 G-EOe 15 Lokomatf, 6 HALg, 7 GTh, 1 soft exosuiti, 1 Anklebotj,

1 Morning Walkk, 1 GARl, 1 PH-EXOSm

Number of sessions per participant (range) [4;60] [1;179]

Training duration per session (range) [min] [6;60] [0.5;45]

Total duration of training period (range)

(days)

[8;84] [1;365]

BWS (range) (0% body weight; 100% body weight) [0% body weight; 50% body weight]

Device types 15 exoskeleton, 4 end-effector 24 exoskeleton, 8 end-effector, 1 exosuit

Types of HRI Assistive, active, passive Assistive, active, passive, path guidance, resistive

SCI, spinal cord injury; TBI, traumatic brain injury; CP, cerebral palsy; PD, Parkinson’s disease; MS, multiple sclerosis; SD, standard deviation; FAC, functional ambulation category;

ASIA, American Spinal Injury Association; RCT, randomized controlled trial.
aHusemann et al. (2007), Borggraefe et al. (2010), Chin et al. (2010), Carda et al. (2012), Vaney et al. (2012), Geigle et al. (2013), Kelley et al. (2013a,b), Stoller et al. (2014, 2015),

Filippo et al. (2015), and Esquenazi et al. (2017).
bNilsson et al. (2014), Ikumi et al. (2016), and Jansen et al. (2018).
cFreivogel et al. (2008, 2009).
dMorone et al. (2011).
eEsquenazi et al. (2017).
fMayr et al. (2007), Lo and Triche (2008), Lo et al. (2010), Turiel et al. (2011), Benito-Penalva et al. (2012), Gizzi et al. (2012), Labruyère and van Hedel (2014), Schoenrath et al. (2015a,b),

Kumru et al. (2016a,b), Aurich-Schuler et al. (2017), Bae et al. (2017), Chisholm et al. (2017), and Straudi et al. (2019).
gAach et al. (2014), Sczesny-Kaiser et al. (2015, 2017), Grasmücke et al. (2017), Jansen et al. (2017), and Tanaka et al. (2019).
hNg et al. (2008), Hesse and Werner (2009), Geroin et al. (2011), Benito-Penalva et al. (2012), Picelli et al. (2012, 2015), and Chua et al. (2016).
iAsbeck et al. (2015).
jForrester et al. (2016).
kKim et al. (2019).
lOchi et al. (2015).
mWu et al. (2015).

Robot GAR (13 subjects in 1 study), G-EO (7 subjects in 1 study),
a soft exosuit (5 subjects in 1 study), and PH-EXOS (1 subject in
1 study). One study reported the use of both Lokomat and G-EO,
and one study reported the use of both Lokomat and GT.

Adverse Events
Of the 50 included studies, 18 reported AEs, and 32 reported
that there were no AEs (Table 2). The information on AEs
was rated as incomplete in 8 (16%) of the 50 studies. In the
studies with reported AEs, 78% of the AE descriptions were
complete, whereas in the studies without reported AEs, 88% of
the descriptions were complete. The dropout rate was 7% of the
participants in both groups. Studies with AEs had 16 participants
on average, and studies without AEs had 22 participants on
average. Apart from the fact that none of the studies with healthy
participants reported AEs, there were no striking differences in

subject characteristics. Both age and diagnoses were comparable.
Studies with AEs were less frequently randomized controlled
trials (39 compared with 50% of studies without AEs) and were
more likely to be case reports or case series, some of which
were focused on reporting AEs (Geigle et al., 2013; Kelley et al.,
2013b; Filippo et al., 2015). Concerning devices involved, 44%
of the Lokomat studies, 33% of the HAL studies, and 13% of
the GT studies reported AEs. There were no AEs reported for
MorningWalk, Anklebot, Gait-Assistance Robot GAR, the soft
exosuit, or PH-EXOS. The range of BWS in studies reporting AEs
was between 0 and 100% of body weight, whereas it was between
0 and 50% of body weight in the studies reporting no AEs.

The AE descriptions from the 18 studies that did report
AEs are collected in Table 3. The most frequently reported
AEs were changes to the skin or soft tissue (more than 47
occurrences in 40 subjects) including skin reddening, skin
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TABLE 3 | Adverse events detailed.

References Device Adverse event description AE

occurrence

Severity Category AE Caused by Caused dropouts

Borggraefe et al. (2010) Lokomat Muscle pain 16 Mild Musculoskeletal Not stated No

Joint pain 14 Mild (12),

moderate (2)

Musculoskeletal Not stated Yes (2)

Skin erythema 12 Mild Soft tissue-related Cuffs No

Open skin lesions 4 Mild (2),

moderate (1),

severe (1)

Soft tissue-related Cuffs Yes (2)

Tendinopathy 1 Severe Musculoskeletal Not stated Yes

Carda et al. (2012) Lokomat Mild discomfort 3 Mild Soft tissue-related Harness No

Chin et al. (2010) Lokomat Discomfort and redness in groin

area

A few Mild Soft tissue-related Harness No

Skin abrasions 3 Moderate Soft tissue-related Cuffs No

Giddiness 1 Mild Physiological Not stated No

Lower limb bruises 1 Moderate Soft tissue-related Cuffs Yes

Fear of gait trainer 1 Moderate Other Not stated Yes

Esquenazi et al. (2017) Not stated

(Lokomat or G-EO)

Skin irritation and pain 4 Unknown Soft

tissue-related/other

Not stated No

Filippo et al. (2015) Lokomat Proximal tibia fracture 1 Severe Musculoskeletal Not stated Not applicable

Freivogel et al. (2008) LokoHelp Discomfort in groin or armpit 11 Mild Soft tissue-related Harness No

Discomfort in right hip 1 Mild Musculoskeletal Not stated No

Lower back pain 1 Mild Musculoskeletal Not stated No

Headache 3 (1)a Mild Other Not stated No

Menstrual cramps 1 Mild Other Not stated No

Knee pain 1 Moderate Musculoskeletal Not stated No

Not described 5 Unknown Unknown Not stated No

Freivogel et al. (2009) LokoHelp Discomfort 33 Unknown Soft tissue-related Mostly harness No

Knee pain 1 Unknown Musculoskeletal Not stated No

Geigle et al. (2013) Lokomat Atypical autonomic dysreflexia 4 (1)a Moderate Physiological Exercise (did not

occur during pure

suspension)

Yes (dropped out

due to elevated BP)

Knee pain 1 Minor Musculoskeletal Not stated

Discomfort 1 Minor Soft tissue-related Harness

Husemann et al. (2007) Lokomat Skin lesions 2 Moderate Soft tissue-related Not stated Yes

Ikumi et al. (2016) HAL Transient blood pressure change 6 (1)a Moderate Physiological Not stated No

Jansen et al. (2018) HAL Skin reddening 4 Mild Soft tissue-related EMG electrodes,

leg cuffs, shoes

No

Kelley et al. (2013a,b) Lokomat Skin changes (redness or broken

skin)

12 (5)a Moderate Soft tissue-related Straps/cuffs No

Morone et al. (2011) GT Severe symptomatic

hypotension

8 (3)a Moderate Physiological Not stated Not stated

Knee pain 1 Moderate Musculoskeletal Not stated Not stated

Nilsson et al. (2014) HAL Knee/malleolus pain 2 Moderate Musculoskeletal Cuff pressure No

Discomfort (feeling of being

trapped)

1 Moderate Other Straps No

Discomfort (shoulders) 2 Mild Soft tissue-related Straps No

Sense of suit being heavy over

lower back

1 Mild Other Weight of suit No

Skin irritation 1 Mild Soft tissue-related EMG electrodes No

Groin pain, chafing 1 Moderate Soft tissue-related Harness No

Stoller et al. (2014,

2015)

Lokomat Tibia skin lesion 1 Moderate Soft tissue-related Cuffs (padding) Yes

Groin pain 1 Moderate Soft tissue-related Harness Yes

High blood pressure 2 (1)a Moderate Physiological Not stated No

Vaney et al. (2012) Lokomat Minor bruising Some Mild Soft tissue-related Straps No

aWhen AE occurrence is presented as X (Y), X is the number of events, and Y is the number of subjects.
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lesions, skin abrasions, a blood blister, chafing, skin irritation due
to electromyography (EMG) electrodes, and bruises (Husemann
et al., 2007; Borggraefe et al., 2010; Vaney et al., 2012; Kelley
et al., 2013a,b; Nilsson et al., 2014; Stoller et al., 2014; Esquenazi
et al., 2017; Jansen et al., 2018). The most severe AE reported
was one bone fracture in the context of Lokomat training
(Filippo et al., 2015). The fracture to the proximal anterior
and medial part of the tibia occurred in a patient with T12
incomplete paraplegia. The authors did not report any unusual
event causing the injury. The patient had trained 18 sessions
in the Lokomat (30min per session, 5 times per week, 50%
BWS, guiding force between 75 and 100%) and complained of
pain in the anterior region of the knee at the beginning of
session 19 (Filippo et al., 2015). Bone densitometry performed
after the event revealed low bone mineral density. The result of
this did not classify as severe osteoporosis, which would have
constituted a contraindication for Lokomat training. The two
other severe AEs were an open skin lesion and a tendinopathy
during Lokomat training (Borggraefe et al., 2010). Mild or
moderate joint pain was reported 21 times and occurred mostly
in the knee (Freivogel et al., 2008, 2009; Borggraefe et al., 2010;
Morone et al., 2011; Geigle et al., 2013; Nilsson et al., 2014).
Other musculoskeletal AEs included muscle pain, tendinopathy,
and low back pain (Freivogel et al., 2008; Borggraefe et al., 2010),
totaling 40 occurrences. There were 21 physiological AEs in 7
subjects including giddiness (mild) (Chin et al., 2010), and blood
pressure changes (both hypotension and hypertension) (Morone
et al., 2011; Geigle et al., 2013; Stoller et al., 2014; Ikumi et al.,
2016) that were all classified as moderate (Figure 2). Another
frequent AE (more than 17 occurrences) was discomfort related
to the harness (e.g., to the groin, armpit, or shoulders) that was
mostly classified as mild (Freivogel et al., 2008, 2009; Chin et al.,
2010; Carda et al., 2012; Geigle et al., 2013; Nilsson et al., 2014;
Stoller et al., 2014). Other AEs identified in this review with seven
occurrences were pain (not specified) (Esquenazi et al., 2017),
fear of the gait robot (Chin et al., 2010), headache, menstrual
cramps (Freivogel et al., 2008), the feeling of being trapped, and
the sense of the gait robot being heavy over the lower back
(Nilsson et al., 2014).

There was limited information available on the duration of
gait training before an AE occurred. Chin et al. (2010) stated
that the dropouts due to bruises and fear of the Lokomat system
occurred after 2–5 training sessions of 15–45 min each, and the
tibia fracture (Filippo et al., 2015) occurred after 18 sessions of
30 min each. Knee pain in LokoHelp (Freivogel et al., 2008)
occurred after 4 sessions of 30min. Autonomic dysreflexia during
Lokomat training (Geigle et al., 2013) occurred 20 min into the
10th training session after having completed 9 40-min sessions,
and transient blood pressure change in HAL training (Ikumi
et al., 2016) was observed 6 times in 10 sessions of 60 min
including preparation time. In a case report on the management
of skin injuries during Lokomat training (Kelley et al., 2013b),
it is reported that the subject walked a total of 2 h in 5 sessions
in the Lokomat before the first injury was observed. Borggraefe
et al. (2010) found no correlation between AE incidence and age,
duration of RAGT, number of sessions, or total distance walked.
They did, however, report that both obese children included in

the study developed soft tissue-related AEs (skin erythema, open
skin lesion) and that in two cases, skin lesions developed next to
skin areas covered by diapers.

Methods used to detect AEs included documentation of
patient feedback or complaints (Freivogel et al., 2008, 2009;
Borggraefe et al., 2010; Geigle et al., 2013; Nilsson et al.,
2014; Stoller et al., 2014, 2015; Filippo et al., 2015), patient
questionnaires (Borggraefe et al., 2010), MRI for the detection
of a fracture (Filippo et al., 2015), blood pressure monitoring
(Geigle et al., 2013; Stoller et al., 2014, 2015; Ikumi et al., 2016),
and medical screening before, after, and when needed during
each training session (Kelley et al., 2013a,b).

Table 4 summarizes the frequencies of injury types, severities,
and causes in the different devices. More than 169 AEs were
reported in more than 79 subjects. Exact numbers cannot be
stated as the description of AEs was incomplete in four studies
(Freivogel et al., 2009; Chin et al., 2010; Vaney et al., 2012;
Esquenazi et al., 2017). Therefore, the occurrences are displayed
as ranges in this table. In graphical representations and further
analysis of this data, the minimum numbers will be used and
presented. In total, between 8 and 13% of the participants
experienced AEs. For the Lokomat users, this was between 12 and
18%, for the LokoHelp users between 18 and 90%, for the HAL
users 9%, for the GT users 1%, and for the G-EO users between 0
and 57%.

The chi-squared tests indicated that there is no independence
of variables in all tested combinations: devices and reported AE
types (χ2 = 88.05, p < 0.01), device types and reported AE types
(χ2 = 15.88, p < 0.01), AE types and severity level (χ2 = 75.70,
p < 0.01), devices and severity level (χ2 = 115.05, p < 0.01), and
device types and severity level (χ2 = 70.80, p < 0.01). We can
therefore conclude that there are relationships between devices,
device types, AE types, and severity levels of AEs. In other words,
the occurrence of AE types differs between device types and
between devices, as does the severity between devices, device
types, and AE types. Articles that did not state absolute numbers
(Chin et al., 2010; Vaney et al., 2012; Esquenazi et al., 2017) were
excluded from this analysis.

Relations of AE severity and AE types with device types
and devices are detailed in Figure 3. Relative to the total
number of subjects that trained in each of the devices, on
average, 16.6 AE occurrences per 100 subjects were reported
for Lokomat training, 259 occurrences per 100 subjects for
LokoHelp training, 16.7 occurrences per 100 subjects for HAL
training, and 3 occurrences in 100 subjects for GT training.
While there were no physiological AEs reported in LokoHelp
and only physiological AEs in GT, subjects training in the
two exoskeleton-type devices Lokomat and HAL were reported
to have experienced soft tissue-related, musculoskeletal, and
physiological AEs (Figure 3A). The overall severity of AEs
in GT was the highest (4.00) with all AEs being moderate,
followed by HAL (2.67), Lokomat (2.44), and LokoHelp (1.17)
with the majority of AEs being mild (Figure 3B). Regarding
AE types, physiological AEs had the highest overall severity
(3.86), followed by soft tissue-related AEs (2.27) and other
AEs (1.86). Musculoskeletal AEs had the lowest overall severity
of 1.92.
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FIGURE 2 | Occurrences of adverse event severities per adverse event types.

DISCUSSION

In this systematic literature review, we extracted and analyzed
information on AEs in RAGT from 50 included studies,
involving 985 subjects in total. AEs occurred in 36% of the
included studies and in 8–13% of the subjects. The findings
show that skin injuries and a bone fracture occurred in
RAGT, supporting our hypothesis. Moreover, a substantial
amount of reports of joint pain, blood pressure change,
and discomfort caused by the harness indicates that injuries
associated with RAGT are broader than skin damage and
bone fractures.

The most frequently reported AEs (>96 occurrences,
constituting more than half of all AEs) were injuries or
discomfort to the skin or underlying tissue (Husemann et al.,
2007; Borggraefe et al., 2010; Vaney et al., 2012; Kelley et al.,
2013a,b; Nilsson et al., 2014; Stoller et al., 2014, 2015; Esquenazi
et al., 2017; Jansen et al., 2018), joint pain (21 occurrences)
(Freivogel et al., 2008, 2009; Borggraefe et al., 2010; Morone et al.,
2011; Geigle et al., 2013; Nilsson et al., 2014), blood pressure
change (20 occurrences) (Morone et al., 2011; Geigle et al., 2013;
Stoller et al., 2014, 2015; Ikumi et al., 2016), and discomfort
related to the harness (more than 20 occurrences) (Freivogel
et al., 2008, 2009; Chin et al., 2010; Carda et al., 2012; Geigle et al.,
2013; Nilsson et al., 2014; Stoller et al., 2014, 2015). Next to a
tendinopathy and an open skin lesion (Borggraefe et al., 2010)
classified as severe AEs, the most severe AE (and only SAE) was a
tibia fracture (Filippo et al., 2015).

Occurrence and Severity of AEs
The overall severity of physiological AEs was the highest (3.86),
which is related to the fact that training is usually interrupted
when a sudden blood pressure change occurs. While one might
expect that musculoskeletal AEs are generally more severe than
soft tissue-related AEs, the overall severity of musculoskeletal
AEs (1.92) was slightly lower than that of soft tissue-related AEs
(2.27). Mild musculoskeletal AEs were minor pain or discomfort
to the joints or muscles. There were 22 moderate and 1 severe
soft tissue-related AEs that included open skin lesions (one of
which was severe), bruises, and groin pain. For 37 soft tissue-
related events, no severity could be inferred from the reported
information that might have an influence on the overall severity.
It can, however, be concluded that not only physiological and
musculoskeletal but also soft tissue-related AEs can require
interrupting the RAGT or even medical attention. Specifically
in subjects with restricted blood flow or reduced sensation,
complications can arise from smaller skin or soft tissue injuries,
and healing can be impaired (Bader et al., 2019), which can
explain the relatively high overall severity of soft tissue-related
AEs. Remarkably, in studies that included healthy subjects, no
AEs were experienced, which supports the notion that disturbed
physiological and/or sensory function in patients could be a
relevant factor. This implies that risks for soft tissue-related AEs
should be taken just as seriously as risks for musculoskeletal AEs.

Regarding the devices, the largest absolute number of AEs
was reported for training in Lokomat (more than 81 events in
57–90 subjects). However, one has to keep in mind that the 50
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TABLE 4 | Adverse events classified per device.

Total Lokomat LokoHelp HAL GT G-EO

Event types

Soft tissue-related >96a,b,c,d >40a,b,d 44c 8 – ≤4b

Musculoskeletal 40 33 4 2 1 –

Physiological 21 7 – 6 8 –

Other 7 1 4 2 – –

Not specified 5 – 5 – – –

Event severity

Mild >73a,d >48a,b,d 17 8 – –

Moderate 50 30 1 10 9 –

Severe 3 3 – – – –

Unknown 43C ≤4b 39c – – ≤4b

Part of device causing AE

Cuffs/straps >42d >33d – 9 – –

Harness >50a >5a ≤44c 1 – –

Total no. of events >169a,d >81a,b,d 57 18 9 ≤4b

Total no. of subjects 79<n≤124a,b,d 57<n≤90a,b,d 4<n≤20d 10 4 ≤4b

a“A few patients experienced discomfort and developed redness in their groin area”; unknown how many patients/events (Chin et al., 2010).
b“4 reported adverse events that were study related due to skin irritation and pain”; unknown whether adverse events occurred in Lokomat or G-EO training, and how many subjects

were affected (Esquenazi et al., 2017).
c34 complaints, unclear by how many of the 16 subjects; “mostly” related to the harness (soft tissue) (Freivogel et al., 2009).
d“Some minor bruising from the straps”; number of affected subjects/events not stated (Vaney et al., 2012).

FIGURE 3 | Distributions of adverse event types and severities per devices. (A) Occurrences of adverse event types relative to the total number of subjects trained in

each device. (B) Occurrences of adverse event severities relative to the total number of subjects trained in each device.

included articles included 27 Lokomat studies with 489 subjects.
So, per 100 subjects, an average of 16.6 AEs was reported in
Lokomat training. This is comparable with 18 AEs in 108 subjects
performing RAGT with HAL resulting in an average of 16.7 AEs

per 100 subjects. For GT, an average of 3.0 AEs per 100 subjects
was reported (9 AEs in 301 subjects) and for G-EO between
0 and 57.1 events per 100 subjects. By far, the highest relative
AE occurrence was reported for LokoHelp training, where the
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reports (57 AEs in 22 subjects) result in an average of 259 AEs
per 100 subjects. Interestingly, while LokoHelp training resulted
in the highest relative number of AEs, it also resulted in the lowest
overall severity (1.17). Lokomat and HAL are comparable not
only in occurrence but also in overall severity of AEs (2.44 and
2.67, respectively). All AEs reported in relation with GT training
were moderate (overall severity 4).

Risk Factors
The results of the analyses suggest that AEs do occur in RAGT,
independent of the subjects’ age and diagnosis. There were no
striking differences in the level of severity or time since onset of
the disease. We did, however, observe that there were no reports
of AEs in healthy participants. This could be due to a number of
reasons. Firstly, only 14 out of 985 subjects (1.4%) were healthy
individuals. Secondly, RAGT with healthy individuals was only
performed during 1 day in each of the studies (Gizzi et al., 2012;
Asbeck et al., 2015; Wu et al., 2015), as they are not the targeted
population for a training program to improve walking. Both of
these aspects decrease the chance of suffering an injury. Thirdly,
the characteristics of certain patient groups, such as restricted
blood flow, reduced sensation, uncontrolled muscle activities,
or reduced bone mineral density, might increase the risk of
sustaining injuries in RAGT, in contrast to healthy individuals.
The current findings allow us to identify which risk factors
are most likely involved in the various AEs reported during
stationary RAGT in patients.

Soft Tissue-Related Adverse Events
According to the results, skin, and other soft tissue injuries are
the most frequent AEs related to RAGT. They are mostly caused
by either the cuffs/straps (Borggraefe et al., 2010; Chin et al.,
2010; Vaney et al., 2012; Kelley et al., 2013a,b; Nilsson et al.,
2014; Stoller et al., 2014, 2015; Jansen et al., 2018) or the harness
(Freivogel et al., 2008, 2009; Chin et al., 2010; Carda et al.,
2012; Geigle et al., 2013; Nilsson et al., 2014; Stoller et al., 2014,
2015) and occurred in both device types, although slightly more
frequently in end-effector-type devices (13.5 occurrences per 100
subjects) than in exoskeleton-type devices (7.7 occurrences per
100 subjects on average). Both the cuffs/straps and the harness
are mentioned as causes for soft tissue injuries in seven unique
studies, respectively. In addition to that, one article mentions
diapers as well as obesity as possible risk factors for skin injuries
(Borggraefe et al., 2010). Remarkably, issues related specifically
to cuffs or straps have only been reported in exoskeleton-type
devices (Lokomat and HAL). End-effector-type devices are only
attached to the foot and sometimes to the shank, which decreases
the number of contact interfaces between human (skin) and
robot, reducing the chances for skin irritation at the cuffs and
straps in end-effector-type devices. In contrast, exoskeletons have
a risk of misalignment between joint axes, which can lead to
displacements of the cuff relative to the human limb, resulting in
increased shear and pressure in the interface between cuff or strap
and skin, which can contribute to soft tissue injuries (Rocon et al.,
2008; Akiyama et al., 2015; Mao et al., 2015).

The harness has been stated to be the cause of AEs in Lokomat
(>5 AEs) (Chin et al., 2010; Carda et al., 2012), HAL (1 AE)

(Nilsson et al., 2014), and LokoHelp (44 AEs) (Freivogel et al.,
2008, 2009) with 88% of the events related to the end-effector-
type device LokoHelp. The affected body regions included the
groin area (Freivogel et al., 2008; Chin et al., 2010; Nilsson et al.,
2014; Stoller et al., 2014) and armpits (Freivogel et al., 2008). One
might assume that higher percentages of BWS lead to a higher
risk of discomfort or injuries related to the harness because the
pressure in the interface harness–skin is increased. The range
of documented BWS in end-effector-type devices was between 0
and 50% and in exoskeleton-type devices between 0 and 100%. It
is striking that all studies with BWS above 50% of body weight
reported AEs. In the studies reporting discomfort due to the
harness, the maximum BWS ranged between 30 and 100% of
body weight. All studies reporting BWS above 55% also reported
discomfort related to the harness, with the exception of one case
report (Kelley et al., 2013b) where only the first session was
started at 100% BWS but as of the end of session 1, BWS was
always <50%. Nevertheless, the large number of harness-related
AEs in LokoHelp training was reported in two studies with BWS
under 30% (Freivogel et al., 2008, 2009). Therefore, lower BWS
might decrease but not completely avoid the risk of discomfort
related to the harness. Other possible factors might be the design,
fitting, or material of the harness as well as the clothes worn by
the subjects (Rocon et al., 2008; Kelley et al., 2013b).

Overall, the susceptibility to soft tissue-related AEs could
be influenced by harness or cuff design and fit, subject
characteristics, and materials involved in the cuff–skin interface.
One study analyzed this aspect and reported that there was no
correlation between the incidence of AEs and age (Borggraefe
et al., 2010), but that both obese children included in the study
developed a soft tissue-related AEs. Moreover, they observed
two open skin lesions adjacent to the area where diapers were
worn. Another study reported that wrapping the legs of a subject
presenting with thin and flaky skin with viscoelastic polymer
sheets and elastic bandages helpedmanage soft tissue-related AEs
(Kelley et al., 2013b). Therefore, in addition to the fit of cuffs and
harness, both the subjects’ weight and/or body composition and
materials present in the interface between skin and robot cuffs or
the harness might alter the risk for soft tissue-related AEs.

Musculoskeletal Adverse Events
The findings of this review show that RAGT can lead to
musculoskeletal injuries, such as a bone fracture and joint
pain. Musculoskeletal AEs were reported in relation to training
in Lokomat, LokoHelp, GT, and HAL and therefore in
both exoskeleton-type devices and end-effector-type devices.
However, 88% of the reported musculoskeletal AEs occurred
in an exoskeleton-type device (on average 5.6 musculoskeletal
AEs per 100 subjects in exoskeleton-type devices compared with
1.4 musculoskeletal AEs per 100 subjects in end-effector-type
devices). This leads to the assumption that the risk of sustaining a
musculoskeletal injury is higher during exoskeleton-type RAGT.
However, it is possible that this is influenced by a single study
reporting many occurrences of musculoskeletal AEs (31) in one
exoskeleton-type device (Borggraefe et al., 2010). The only SAE
(bone fracture) reported in the included articles occurred in an
exoskeleton-type device. To the best of our knowledge, there are

Frontiers in Robotics and AI | www.frontiersin.org 11 November 2020 | Volume 7 | Article 557606110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bessler et al. Adverse Events in Robotic Gait Training

no reports of bone fractures in end-effector-type devices. While
this was the only occurrence of a bone fracture in RAGT found
through this review, there are several reports of bone fractures
in overground exoskeletons (He et al., 2017; van Herpen et al.,
2019). Misalignment is frequently mentioned as the assumed
cause for bone fractures in overground exoskeleton devices (He
et al., 2017; van Herpen et al., 2019), but this has not been
discussed as a possible cause in the case report of the tibia
fracture sustained during Lokomat training (Filippo et al., 2015).
The authors of this case report discussed low bone mineral
density as a possible influencing factor but did not report any
details of the relevant training session or discussed other possible
reasons. Due to the oversimplification of exoskeleton joints
compared with anatomical joints, misalignments are unavoidable
(Rocon et al., 2008; Akiyama et al., 2012). This might lead
to the assumption that end-effector-type devices are inherently
safer than exoskeleton-type devices. However, end-effector-type
devices provide less guidance of the movements and could
therefore create movements in arbitrary directions and excessive
moments that can cause considerable harm (Rocon et al., 2008).
In end-effector-type gait trainers, this risk could be mitigated by
providing appropriate BWS. However, in all end-effector-type
gait trainer studies included in this review, BWS was reported
to be 50% or lower, whereas exoskeleton-type studies reported
BWS up to 100%. This is not related to less severely affected
subjects being involved in end-effector-type RAGT studies. The
subjects in studies with both types of gait trainers varied strongly
in disease severity and walking ability.

Physiological Adverse Events
Giddiness and changes in blood pressure were reported in
relation to Lokomat, HAL, and GT training (Chin et al., 2010;
Morone et al., 2011; Geigle et al., 2013; Stoller et al., 2014, 2015;
Ikumi et al., 2016). There were 13 occurrences in 4 subjects
reported in exoskeleton-type devices and 8 occurrences in 3
subjects reported in end-effector-type devices. It is striking that
all reported blood pressure changes occurred in more severely
affected subjects with SCI [American Spinal Injury Association
(ASIA) A and C] or subacute stroke [functional ambulation
category (FAC) <3]. This indicated that the risk for blood
pressure changes in RAGT might be increased in subjects who
do not ambulate independently. It is also worth noting that
hypertension in SCI as a result of autonomic dysreflexia seems
to be linked to the stepping movements in combination with the
upright position and did not occur during pure suspension in the
harness (Geigle et al., 2013). A close blood pressure monitoring
of patients with a history of blood pressure changes or high risks
of orthostatic hypotension or autonomic dysreflexia could help
mitigate the risk of physiological AEs.

Documentation of Adverse Events
The documentation of AEs lacks detail in most studies. A
significant amount of included articles (36%) did not provide a
complete description of AEs, even though the requirements for
regarding AE documentation as complete were relatively low:
description of events, the number of affected subjects, and the
associated device. The assumed cause of the event was only

stated in about half of the reports. Moreover, there is a need for
documentation on how different types of AEs can be managed or
avoided (Kelley et al., 2013b).

Although we did not consider this as critical for documenting
AEs, it is striking that most reports did not include any
information on the duration of training before the AEs occurred
or the characteristics of the affected subjects. Training time before
the occurrence of an AE was often not stated. Based on the
literature, one could assume that skin-related AEs are more likely
to occur in the first training sessions as the skin can habituate to
the stress (Sanders et al., 1995; Yandell et al., 2020). In the two
studies stating the durations of training before the soft tissue-
related AEs, they occurred between session 2 and 5 (Chin et al.,
2010; Kelley et al., 2013b). A more detailed analysis of this aspect
is not possible as there is not enough information available on
whether the complaints occurred in the beginning or end of the
sessions and due to the fact that most studies did not report on
training time before AE onset. Subject characteristics related to
AEs were only analyzed in detail in one of the included studies
(Borggraefe et al., 2010). In order to establish more generalizable
relations between subject or training characteristics and risk
factors, more detailed reports of those aspects in relation to AEs
are needed.

Structural documentation of AEs related to RAGT (or any
medical device for that matter) is currently not optimally
supported or facilitated by regulatory bodies. In other words, AE
reporting is not sufficiently obligatory and public. Although some
information on safety is shared through the reporting system
of the FDA in the US, reporting is only mandatory if it is an
SAE and only for manufacturers and healthcare institutions,
but not for individual healthcare professionals and consumers
(Maak and Wylie, 2016). In the EU, there is currently no central
reporting system. There are obligations for the manufacturers
to report AEs to the competent authorities on a national level,
but this information is currently not shared with the public. In
relation to the current transition from the EU Medical Device
Directive to Medical Device Regulation, the reporting system
EUDAMED is expected to be (re-)launched in May 2022, with
more firm rules for reporting. Information on SAEs, device
deficiencies, vigilance, and post-market surveillance is intended
to be submitted through this platform, which will be partly
open to the public. Dissemination will include information on
device safety and issued certificates, vigilance, and post-market
surveillance (European Commission, 2019), although the exact
extent to which information will be accessible to whom is
currently unknown. Based on the outcomes of the current review,
such facilities are needed to allow and stimulate a more structural
reporting of and access to AEs (and not only SAEs). This cannot
only inform the end user of risks associated with a certain
device but also encourage new, safety-related developments, and
ultimately improve safety of RAGT.

Limitations
The findings of this systematic literature review need to be
interpreted with care for several reasons. The primary outcome
of the study is AEs reported in RAGT, which is why terms related
to AEs and injuries were included in the search query. However,
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most bibliographic databases search for the entered search terms
in titles, keywords, and abstracts of articles. During this process,
we found that information on AEs is frequently not contained
in those elements but in the body of the text, complicating the
search for relevant articles. Therefore, we also searched full-text
databases, but we cannot be sure that we identified all relevant
articles with that method.

Another limitation of this review is a potential overlap of
studies. We excluded double reports as much as possible, but we
cannot rule out that some articles contained information on the
same participants in the same experiment without stating this
(e.g., data from a case report on a specific AE might be part of a
clinical trial too). Furthermore, some of the relationships between
AE occurrence and device type could be biased by few studies
stating many AEs for one specific device (Freivogel et al., 2008,
2009; Borggraefe et al., 2010) or including vague statements, such
as only reporting on (the absence of) SAE or not specifying AE
occurrence for each of the interventions involved (Chin et al.,
2010; Wu et al., 2015; Esquenazi et al., 2017).

Other limitations are related to an expected
underrepresentation and incomplete documentation of AEs.
It is possible that many other studies where no AEs occurred
were published but not included in this article, if they did
not contain a statement about AE occurrence. Moreover, we
noticed strong variations in the level of detail in which AEs
are recorded during a study and reported in articles: while
some articles only include more obvious or severe AEs, others
may mention all cases of slight discomfort and have asked
participants specifically about their experience. The high
relative occurrence of AEs in LokoHelp, but with the lowest
overall severity, is a likely example of this. This hampered a
reliable comparison of AE occurrence and severities between
device types or devices. More detailed descriptions of AEs
and their effects with regard to the interruption of training
or the needed medical attention would allow for a more
accurate and detailed severity rating, thereby enabling more
valid comparisons. We therefore suggest that editors focus on
a correct and complete statement on AEs in scientific reports
on medical devices. A statement saying that there were no
AEs is just as important as a detailed description on occurred
AEs to learn about the risks associated with a device. The
extension to the CONSORT statement (Schulz et al., 2010) for
reporting of harms in randomized controlled trials (Ioannidis
et al., 2004) could serve as a guideline for this. While the
CONSORT statement is specifically designed for improving
reporting in randomized controlled trials, we suggest that the
checklist for reporting of harms is also relevant for other study
types. Based on the experiences collected in the process of this
systematic literature review, we would like to encourage a focus
on the following aspects when reporting on AEs in medical
device trials:

• Collection of AE information: how were numbers of AEs
obtained? Who reported them and were any questionnaires or
procedures involved?

• Documentation of AE information: are all AEs reported or
only a specific subset? Report both number of affected subjects

and number of occurrences per subject. If no AE occurred, this
should be stated clearly.

• AE descriptions: describe the observed AE concisely including
the location. Describe unusual events or subject characteristics
that might be related to the AE and discuss possible reasons.

• AE consequences: did the intervention have to be interrupted?
For how long? Was medical attention required? Did the AE
cause a dropout and who made that decision? Preferably use
standardized definitions of severity levels.

Implications for the Use of Rehabilitation
Robots
The aim of this review is to raise awareness of the safety of
rehabilitation robots, and while it focuses on the risks and needs
of rehabilitation robots, it is not intended to discourage their
use. Although AEs do occur in RAGT, it has positive effects
on gait and has potential to decrease the burden on healthcare
professionals (Freivogel et al., 2009; Hesse and Werner, 2009;
Mehrholz et al., 2017). Therefore, a proper balancing of risks and
benefits is needed, but in order to do this, proper information
about AEs is needed as part of ethical and regulatory decisions
to allow the use of rehabilitation robots in clinical practice. In
order to do this well, correct and sufficient information about
AEs is needed. Moreover, AEs should not only be documented
but also be disseminated to raise awareness of risks. The need
for information flow goes both ways: manufacturers should
make their risk/benefit weighting more transparent to allow for
healthcare professionals ideally to make an informed decision
on the use of robotic devices in therapy, in-/exclusion criteria,
associated risks, and possible measures. In return, healthcare
professionals and researchers should report on AEs and their
management, where applicable, in a structured and systematic
way to inform developers of rehabilitation robots about ways to
improve safety of their devices.

Conclusions
In the present systematic literature review on AEs during the
use of stationary robotic gait trainers, including 50 studies
and 985 subjects, we found that a total of 169 AEs occurred
in 36% of the studies, affecting between 8 and 13% of the
subjects. The most frequent types of AEs were soft tissue-
related AEs and musculoskeletal AEs, whereas physiological
AEs had the highest overall severity, followed by soft tissue-
related AEs. Soft tissue-related AEs occurred slightly more
frequently in end-effector-type devices than in exoskeleton-
type devices and were often associated with the cuffs or straps
(only mentioned in relation to exoskeleton-type devices) or with
the harness (mostly mentioned in relation to end-effector-type
devices). Musculoskeletal AEs were reported more frequently in
exoskeleton-type devices than in end-effector-type devices. We
have identified two main risk factors: forces in the skin–robot
interface causing skin injuries and forces on the musculoskeletal
level causing pain or injuries to the musculoskeletal system.
On a more detailed level, hazards are most likely related to
an incorrect model fit, insufficient compliance at the points of
force transmission from robot to human, materials present at
the human–robot interface, misalignments of rotation axes, or
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subject characteristics, such as uncontrolled muscle activities
or susceptibility to injuries due to overall health status. We
additionally identified a lack of completeness of AE reporting
in RAGT studies and would like to stress the need for accurate
and complete documentation and dissemination of AEs for
the identification of hazards and possible mitigation measures.
Therefore, AE documentation should receive more attention,
and researchers, relevant authorities, as well as journal editors
should ensure the appropriate documentation and dissemination
of RAGT-related AEs.

The present findings suggest that future developments in
RAGT should focus on the subjects’ safety, especially mitigating
risks associated with pressure and shear applied to the subject’s
skin, as well as forces applied to the musculoskeletal system that
can be harmful due to misalignments. To further investigate
the effects of these hazards, appropriate measurement methods
and experiments are needed. Further, the investigation of forces
present in the human–robot interface as well as investigations
on acceptable limit values for comfort and safety could help to
establish best practices for safe use of rehabilitation robots.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JBu, GP-L, LS, and JBe contributed to conception and design of
the study. EP, GP-L, RS, and JBe contributed to the literature
screening process. JBe performed the data analysis and wrote
the first draft of the manuscript. GP-L wrote sections of the
manuscript. All authors contributed tomanuscript revision, read,
and approved the submitted version.

FUNDING

This work as part of the COVR project has received funding from
the European Union’s Horizon 2020 research and innovation
program under Grant Agreement No. 779966.

REFERENCES

Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R. C., Tegenthoff,
M., et al. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation
in chronic spinal cord injury: a pilot study. Spine J. 14, 2847–2853.
doi: 10.1016/j.spinee.2014.03.042

Akiyama, Y., Yamada, Y., Ito, K., Oda, S., Okamoto, S., and Hara, S. (2012).
“Test method for contact safety assessment of a wearable robot -analysis of
load caused by a misalignment of the knee joint,” in 2012 IEEE RO-MAN:

The 21st IEEE International Symposium on Robot and Human Interactive

Communication (Paris: IEEE) 539–544. doi: 10.1109/ROMAN.2012.6343807
Akiyama, Y., Yamada, Y., and Okamoto, S. (2015). Interaction forces beneath cuffs

of physical assistant robots and their motion-based estimation. Adv. Robot. 29,
1315–1329. doi: 10.1080/01691864.2015.1055799

Alavi, N., Zampierin, S., Komeili, M., Cocuzza, S., Debei, S., andMenon, C. (2017).
A preliminary investigation into the design of pressure cushions and their
potential applications for forearm robotic orthoses. Biomed. Eng. Online 16,
1–20. doi: 10.1186/s12938-017-0345-8

Asbeck, A. T., De Rossi, S.M.M., Holt, K. G., andWalsh, C. J. (2015). A biologically
inspired soft exosuit for walking assistance. Int. J. Rob. Res. 34, 744–762.
doi: 10.1177/0278364914562476

Aurich-Schuler, T., Grob, F., van Hedel, H. J. A., and Labruyère, R. (2017). Can
Lokomat therapy with children and adolescents be improved? An adaptive

clinical pilot trial comparing guidance force, path control, and freeD. J. Neuroeng.

Rehabil. 14:76. doi: 10.1186/s12984-017-0287-1
Bader, D. L., Worsley, P. R., and Gefen, A. (2019). Bioengineering considerations

in the prevention of medical device-related pressure ulcers. Clin. Biomech. 67,
70–77. doi: 10.1016/j.clinbiomech.2019.04.018

Bae, Y.-H., Lee, S. M., and Ko, M. (2017). Comparison of the effects on
dynamic balance and aerobic capacity between objective and subjective
methods of high-intensity robot-assisted gait training in chronic stroke
patients: a randomized controlled trial. Top. Stroke Rehabil. 24, 309–313.
doi: 10.1080/10749357.2016.1275304

Basteris, A., Nijenhuis, S. M., Stienen, A. H. A., Buurke, J. H., Prange, G. B., and
Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb
rehabilitation in stroke: a framework for classification based on a systematic
review. J. Neuroeng. Rehabil. 11, 1–15. doi: 10.1186/1743-0003-11-111

Behrens, R., and Elkmann, N. (2014). “Study onmeaningful and verified thresholds
for minimizing the consequences of human-robot collisions,” in 2014 IEEE

International Conference on Robotics and Automation (ICRA) (Hong Kong:
IEEE) 3378–3383. doi: 10.1109/ICRA.2014.6907345

Benito-Penalva, J., Edwards, D. J., Opisso, E., Cortes, M., Lopez-Blazquez, R.,
Murillo, N., et al. (2012). Gait training in human spinal cord injury using
electromechanical systems: effect of device type and patient characteristics.
Arch. Phys. Med. Rehabil. 93, 404–412. doi: 10.1016/j.apmr.2011.
08.028

Borggraefe, I., Klaiber, M., Schuler, T., Warken, B., Schroeder, S. A., Heinen,
F., et al. (2010). Safety of robotic-assisted treadmill therapy in children and
adolescents with gait impairment: a bi-centre survey. Dev. Neurorehabil. 13,
114–119. doi: 10.3109/17518420903321767

Carda, S., Invernizzi, M., Baricich, A., Comi, C., Croquelois, A., and Cisari, C.
(2012). Robotic gait training is not superior to conventional treadmill training
in parkinson disease: a single-blind randomized controlled trial. Neurorehabil.
Neural Repair. 26, 1027–1034. doi: 10.1177/1545968312446753

Castellini, C., and Ravindra, V. (2014). “A wearable low-cost device based upon
force-sensing resistors to detect single-finger forces,” in Proceedings of 2014 5th

IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics (São Paulo: IEEE),
199–203. doi: 10.1109/BIOROB.2014.6913776

Chin, L. F., Lim, W. S., and Kong, K. H. (2010). Evaluation of robotic-assisted
locomotor training outcomes at a rehabilitation centre in Singapore. Singapore
Med. J. 51, 709–15.

Chisholm, A. E., Alamro, R. A., Williams, A. M. M., and Lam, T. (2017).
Overground vs. treadmill-based robotic gait training to improve seated balance

in people with motor-complete spinal cord injury: a case report. J. Neuroeng.

Rehabil. 14:27. doi: 10.1186/s12984-017-0236-z
Chua, J., Culpan, J., and Menon, E. (2016). Efficacy of an electromechanical gait

trainer poststroke in Singapore: a randomized controlled trial. Arch. Phys. Med.

Rehabil. 97, 683–690. doi: 10.1016/j.apmr.2015.12.025
Esquenazi, A., Lee, S., Wikoff, A., Packel, A., Toczylowski, T., and Feeley, J. (2017).

A comparison of locomotor therapy interventions: partial-body weight–
supported treadmill, lokomat, and G-EO training in people with traumatic
brain injury. PM&R 9, 839–846. doi: 10.1016/j.pmrj.2016.12.010

European Commission (2019). Draft Functional Specifications for the European

Database on Medical Devices (Eudamed) - First Release to be Audited, 1–91.
Available online at: https://ec.europa.eu/docsroom/documents/34304 (accessed
April 27, 2020).

Filippo, T. R. M., De Carvalho, M. C. L., Carvalho, L. B., de Souza, D. R., Imamura,
M., and Battistella, L. R. (2015). Proximal tibia fracture in a patient with
incomplete spinal cord injury associated with robotic treadmill training. Spinal
Cord 53, 875–876. doi: 10.1038/sc.2015.27

Forrester, L. W., Roy, A., Hafer-Macko, C., Krebs, H. I., and Macko,
R. F. (2016). Task-specific ankle robotics gait training after stroke: a

Frontiers in Robotics and AI | www.frontiersin.org 14 November 2020 | Volume 7 | Article 557606113

https://doi.org/10.1016/j.spinee.2014.03.042
https://doi.org/10.1109/ROMAN.2012.6343807
https://doi.org/10.1080/01691864.2015.1055799
https://doi.org/10.1186/s12938-017-0345-8
https://doi.org/10.1177/0278364914562476
https://doi.org/10.1186/s12984-017-0287-1
https://doi.org/10.1016/j.clinbiomech.2019.04.018
https://doi.org/10.1080/10749357.2016.1275304
https://doi.org/10.1186/1743-0003-11-111
https://doi.org/10.1109/ICRA.2014.6907345
https://doi.org/10.1016/j.apmr.2011.08.028
https://doi.org/10.3109/17518420903321767
https://doi.org/10.1177/1545968312446753
https://doi.org/10.1109/BIOROB.2014.6913776
https://doi.org/10.1186/s12984-017-0236-z
https://doi.org/10.1016/j.apmr.2015.12.025
https://doi.org/10.1016/j.pmrj.2016.12.010
https://ec.europa.eu/docsroom/documents/34304
https://doi.org/10.1038/sc.2015.27
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bessler et al. Adverse Events in Robotic Gait Training

randomized pilot study. J. Neuroeng. Rehabil. 13:51. doi: 10.1186/s12984-016-
0158-1

Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., and Schmalohr, D. (2008). Gait
training with the newly developed ‘LokoHelp’-system is feasible for non-
ambulatory patients after stroke, spinal cord and brain injury. A feasibility

study. Brain Inj. 22, 625–632. doi: 10.1080/02699050801941771
Freivogel, S., Schmalohr, D., and Mehrholz, J. (2009). Improved walking ability

and reduced therapeutic stress with an electromechanical gait device. J. Rehabil.
Med. 41, 734–739. doi: 10.2340/16501977-0422

Geigle, P. R., Frye, S. K., Perreault, J., Scott, W. H., and Gorman, P. H. (2013).
Atypical autonomic dysreflexia during robotic-assisted body weight supported
treadmill training in an individual with motor incomplete spinal cord injury. J.
Spinal Cord Med. 36, 153–156. doi: 10.1179/2045772312Y.0000000033

Geroin, C., Picelli, A., Munari, D., Waldner, A., Tomelleri, C., and Smania, N.
(2011). Combined transcranial direct current stimulation and robot-assisted
gait training in patients with chronic stroke: a preliminary comparison. Clin.
Rehabil. 25, 537–548. doi: 10.1177/0269215510389497

Gizzi, L., Nielsen, J., Felici, F., Moreno, J. C., Pons, J. L., and Farina, D.
(2012). Motor modules in robot-aided walking. J. Neuroeng. Rehabil. 9:76.
doi: 10.1186/1743-0003-9-76

Grasmücke, D., Cruciger, O., Meindl, R. C., Schildhauer, T. A., and Aach, M.
(2017). “Experiences in four years of HAL exoskeleton SCI rehabilitation,”
in Converging Clinical and Engineering Research on Neurorehabilitation II

Biosystems & Biorobotics, eds J. Ibáñez, J. González-Vargas, J. M. Azorín, M.

Akay, and J. L. Pons (Cham: Springer International Publishing), 1235–1238.
doi: 10.1007/978-3-319-46669-9_201

Haddadin, S., Albu-Schaeffer, A., and Hirzinger, G. (2007). “Safety evaluation of
physical human-robot interaction via crash-testing,” in Proceedings of Robotics:

Science and Systems, eds W. Burgard, O. Brock, and C. Stachniss (Atlanta, GA:
MIT Press), 217–224. doi: 10.15607/RSS.2007.III.028

He, Y., Eguren, D., Luu, T. P., and Contreras-Vidal, J. L. (2017). Risk management
and regulations for lower limb medical exoskeletons : a review. Med. Devices

Evid. Res. 10, 89–107. doi: 10.2147/MDER.S107134
Hesse, S., Schmidt, H., Werner, C., and Bardeleben, A. (2003). Upper and lower

extremity robotic devices for rehabilitation and for studying motor control.
Curr. Opin. Neurol. 16, 705–10. doi: 10.1097/00019052-200312000-00010

Hesse, S., and Werner, C. (2009). Connecting research to the needs of patients and
clinicians. Brain Res. Bull. 78, 26–34. doi: 10.1016/j.brainresbull.2008.06.004

Husemann, B., Müller, F., Krewer, C., Heller, S., and Koenig, E. (2007).
Effects of locomotion training with assistance of a robot-driven gait
orthosis in hemiparetic patients after stroke. Stroke 38, 349–354.
doi: 10.1161/01.STR.0000254607.48765.cb

Ikumi, A., Kubota, S., Shimizu, Y., Kadone, H., Marushima, A., Ueno, T., et al.
(2016). Decrease of spasticity after hybrid assistive limb R© training for a patient
with C4 quadriplegia due to chronic SCI. J. Spinal Cord Med. 40, 573–578.
doi: 10.1080/10790268.2016.1225913

Ioannidis, J. P. A., Evans, S. J. W., Gøtzsche, P. C., O’Neill, R. T., Altman, D.
G., Schulz, K., et al. (2004). Better reporting of harms in randomized trials:
an extension of the CONSORT statement. Ann. Intern. Med. 141, 781–788.
doi: 10.7326/0003-4819-141-10-200411160-00009

Ito, Y., Kim, Y., and Obinata, G. (2014). Acquisition of contact force and slippage
using a vision-based tactile sensor with a fluid-type touchpad for the dexterous
handling of robots.Adv. Robot. Autom. 3, 1–9. doi: 10.4172/2168-9695.1000116

Jansen, O., Grasmuecke, D., Meindl, R. C., Tegenthoff, M., Schwenkreis, P.,
Sczesny-Kaiser, M., et al. (2018). Hybrid assistive limb exoskeleton HAL in the
rehabilitation of chronic spinal cord injury: proof of concept; the results in 21
patients.World Neurosurg. 110, e73–e78. doi: 10.1016/j.wneu.2017.10.080

Jansen, O., Schildhauer, T. A., Meindl, R. C., Tegenthoff, M., Schwenkreis, P.,
Sczesny-Kaiser, M., et al. (2017). Functional outcome of neurologic-controlled
HAL-exoskeletal neurorehabilitation in chronic spinal cord injury: a pilot with
one year treatment and variable treatment frequency. Glob. Spine J. 7, 735–743.
doi: 10.1177/2192568217713754

Kelley, C. P., Childress, J., Boake, C., and Noser, E. A. (2013a). Over-ground
and robotic-assisted locomotor training in adults with chronic stroke: a
blinded randomized clinical trial. Disabil. Rehabil. Assist. Technol. 8, 161–168.
doi: 10.3109/17483107.2012.714052

Kelley, C. P., Childress, J., and Noser, E. A. (2013b). Management of skin-related
adverse events during locomotor training with robotic-assisted body weight

supported treadmill: a case report. Physiother. Theory Pract. 29, 309–318.
doi: 10.3109/09593985.2012.731139

Kim, J., Kim, D. Y., Chun, M. H., Kim, S. W., Jeon, H. R., Hwang, C. H.,
et al. (2019). Effects of robot-(morning walk R©) assisted gait training for
patients after stroke: a randomized controlled trial. Clin. Rehabil. 33, 516–523.
doi: 10.1177/0269215518806563

Kumru, H., Benito-Penalva, J., Valls-Sole, J., Murillo, N., Tormos, J. M., Flores, C.,
et al. (2016a). Placebo-controlled study of rTMS combined with lokomat R© gait
training for treatment in subjects with motor incomplete spinal cord injury.
Exp. Brain Res. 234, 3447–3455. doi: 10.1007/s00221-016-4739-9

Kumru, H., Murillo, N., Benito-Penalva, J., Tormos, J. M., and Vidal, J.
(2016b). Transcranial direct current stimulation is not effective in the
motor strength and gait recovery following motor incomplete spinal
cord injury during lokomat R© gait training. Neurosci. Lett. 620, 143–147.
doi: 10.1016/j.neulet.2016.03.056

Labruyère, R., and van Hedel, H. J. A. (2014). Strength training versus robot-
assisted gait training after incomplete spinal cord injury: a randomized pilot
study in patients depending on walking assistance. J. Neuroeng. Rehabil. 11:4.
doi: 10.1186/1743-0003-11-4

Lenzi, T., Vitiello, N., Rossi, S. M. M., De Persichetti, A., Giovacchini, F.,
Roccella, S., et al. (2011). Mechatronics measuring human – robot interaction
on wearable robots: a distributed approach. Mechatronics 21, 1123–1131.
doi: 10.1016/j.mechatronics.2011.04.003

Lo, A. C., Chang, V. C., Gianfrancesco, M. A., Friedman, J. H., Patterson, T. S., and
Benedicto, D. F. (2010). Reduction of freezing of gait in Parkinson’s disease by
repetitive robot-assisted treadmill training: a pilot study. J. Neuroeng. Rehabil.
7:51. doi: 10.1186/1743-0003-7-51

Lo, A. C., and Triche, E. W. (2008). Improving gait in multiple sclerosis using
robot-assisted, body weight supported treadmill training. Neurorehabil. Neural
Repair. 22, 661–671. doi: 10.1177/1545968308318473

Maak, T. G., and Wylie, J. D. (2016). Medical device regulation. J. Am. Acad.

Orthop. Surg. 24, 537–543. doi: 10.5435/JAAOS-D-15-00403
Makino, Y., Sugiura, Y., Ogata, M., and Inami, M. (2013). “Tangential force sensing

system on forearm,” in Proceedings of the 4th Augmented Human International

Conference (Stuttgart), 29–34. doi: 10.1145/2459236.2459242
Mao, X., Yamada, Y., Akiyama, Y., Okamoto, S., and Yoshida, K. (2015).

“Development of a novel test method for skin safety verification
of physical assistant robots,” in 2015 IEEE International Conference
on Rehabilitation Robotics (ICORR) (Singapore: IEEE), 319–324.
doi: 10.1109/ICORR.2015.7281219

Mayr, A., Kofler, M., Quirbach, E., Matzak, H., Fröhlich, K., and Saltuari, L.
(2007). Prospective, blinded, randomized crossover study of gait rehabilitation
in stroke patients using the lokomat gait orthosis. Neurorehabil. Neural Repair.
21, 307–314. doi: 10.1177/1545968307300697

Mehrholz, J., Thomas, S., Werner, C., Kugler, J., Pohl, M., and Elsner, B.
(2017). Electromechanical-assisted training for walking after stroke. Cochrane
Database Syst. Rev. 5:CD006185. doi: 10.1002/14651858.CD006185.pub4

Mishra, S. (2017). FDA, CE mark or something else?—thinking fast and slow.
Indian Heart J. 69, 1–5. doi: 10.1016/j.ihj.2016.11.327

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA statement. PLoS
Med. 6:e1000097. doi: 10.1371/journal.pmed.1000097

Morone, G., Bragoni, M., Iosa, M., De Angelis, D., Venturiero, V., Coiro, P., et al.
(2011). Who may benefit from robotic-assisted gait training? A randomized

clinical trial in patients with subacute stroke. Neurorehabil. Neural Repair. 25,
636–644. doi: 10.1177/1545968311401034

Ng, M. F. W., Tong, R. K. Y., and Li, L. S. W. (2008). A pilot study of randomized
clinical controlled trial of gait training in subacute stroke patients with partial
body-weight support electromechanical gait trainer and functional electrical
stimulation. Stroke 39, 154–160. doi: 10.1161/STROKEAHA.107.495705

Nilsson, A., Vreede, K., Häglund, V., Kawamoto, H., Sankai, Y., and Borg, J.
(2014). Gait training early after stroke with a new exoskeleton – the hybrid
assistive limb: a study of safety and feasibility. J. Neuroeng. Rehabil. 11:92.
doi: 10.1186/1743-0003-11-92

Ochi, M., Wada, F., Saeki, S., and Hachisuka, K. (2015). Gait training in subacute
non-ambulatory stroke patients using a full weight-bearing gait-assistance
robot: a prospective, randomized, open, blinded-endpoint trial. J. Neurol. Sci.
353, 130–136. doi: 10.1016/j.jns.2015.04.033

Frontiers in Robotics and AI | www.frontiersin.org 15 November 2020 | Volume 7 | Article 557606114

https://doi.org/10.1186/s12984-016-0158-1
https://doi.org/10.1080/02699050801941771
https://doi.org/10.2340/16501977-0422
https://doi.org/10.1179/2045772312Y.0000000033
https://doi.org/10.1177/0269215510389497
https://doi.org/10.1186/1743-0003-9-76
https://doi.org/10.1007/978-3-319-46669-9_201
https://doi.org/10.15607/RSS.2007.III.028
https://doi.org/10.2147/MDER.S107134
https://doi.org/10.1097/00019052-200312000-00010
https://doi.org/10.1016/j.brainresbull.2008.06.004
https://doi.org/10.1161/01.STR.0000254607.48765.cb
https://doi.org/10.1080/10790268.2016.1225913
https://doi.org/10.7326/0003-4819-141-10-200411160-00009
https://doi.org/10.4172/2168-9695.1000116
https://doi.org/10.1016/j.wneu.2017.10.080
https://doi.org/10.1177/2192568217713754
https://doi.org/10.3109/17483107.2012.714052
https://doi.org/10.3109/09593985.2012.731139
https://doi.org/10.1177/0269215518806563
https://doi.org/10.1007/s00221-016-4739-9
https://doi.org/10.1016/j.neulet.2016.03.056
https://doi.org/10.1186/1743-0003-11-4
https://doi.org/10.1016/j.mechatronics.2011.04.003
https://doi.org/10.1186/1743-0003-7-51
https://doi.org/10.1177/1545968308318473
https://doi.org/10.5435/JAAOS-D-15-00403
https://doi.org/10.1145/2459236.2459242
https://doi.org/10.1109/ICORR.2015.7281219
https://doi.org/10.1177/1545968307300697
https://doi.org/10.1002/14651858.CD006185.pub4
https://doi.org/10.1016/j.ihj.2016.11.327
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1177/1545968311401034
https://doi.org/10.1161/STROKEAHA.107.495705
https://doi.org/10.1186/1743-0003-11-92
https://doi.org/10.1016/j.jns.2015.04.033
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bessler et al. Adverse Events in Robotic Gait Training

Ouzzani, M., Hammady, H., Fedorowicz, Z., and Elmagarmid, A. (2016).
Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5:210.
doi: 10.1186/s13643-016-0384-4

Picelli, A., Melotti, C., Origano, F., Neri, R., Verzè, E., Gandolfi, M., et al.
(2015). Robot-assisted gait training is not superior to balance training for
improving postural instability in patients with mild to moderate Parkinson’s
disease: a single-blind randomized controlled trial. Clin. Rehabil. 29, 339–347.
doi: 10.1177/0269215514544041

Picelli, A., Melotti, C., Origano, F., Waldner, A., Fiaschi, A., Santilli, V.,
et al. (2012). Robot-assisted gait training in patients with parkinson disease:
a randomized controlled trial. Neurorehabil. Neural Repair. 26, 353–361.
doi: 10.1177/1545968311424417

Regulation (EU) 2017/745 of the European Parliament and of the Council of 5
April 2017 on medical devices, amending Directive 2001/83/EC, Regulation
(EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council
Directives 90/385/EEC and 93/42/EE (2017). Official Journal of the European

Union 60, 2–175. Available online at: http://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN (accessed April 27, 2020).

Rocon, E., Ruiz, A. F., Raya, R., Schiele, A., Pons, J. L., Belda-Lois, J. M.,
et al. (2008). “Human–robot physical interaction,” in Wearable Robots:

Biomechatronic Exoskeletons, ed J. L. Pons (Chichester: John Wiley and Sons),
127–163. doi: 10.1002/9780470987667.ch5

Sadarangani, G. P., Jiang, X., Simpson, L. S., Eng, J. J., and Menon, C.
(2017). Force myography for Monitoring grasping in individuals with
stroke with Mild to moderate upper-extremity impairments : a Preliminary
investigation in a controlled environment. Front. Bioeng. Biotechnol. 5:42.
doi: 10.3389/fbioe.2017.00042

Sanders, J. E., Goldstein, B. S., and Leotta, D. F. (1995). Skin response tomechanical
stress: adaptation rather than breakdown - a review of the literature. J. Rehabil.
Res. Dev. 32, 214–26.

Schoenrath, F., Markendorf, S., Brauchlin, A. E., Frank, M., Wilhelm, M. J., Saleh,
L., et al. (2015a). Robot-assisted training for heart failure patients - a small pilot
study. Acta Cardiol. 70, 665–671. doi: 10.1080/AC.70.6.3120178

Schoenrath, F., Markendorf, S., Brauchlin, A. E., Seifert, B., Wilhelm, M. J., Czerny,
M., et al. (2015b). Robot-assisted training early after cardiac surgery. J. Card.
Surg. 30, 574–580. doi: 10.1111/jocs.12576

Schulz, K. F., Altman, D. G., and Moher, D. (2010). CONSORT 2010 statement:
updated guidelines for reporting parallel group randomised trials. BMJ 340,
c332. doi: 10.1136/bmj.c332

Sczesny-Kaiser, M., Höffken, O., Aach, M., Cruciger, O., Grasmücke, D., Meindl,
R., et al. (2015). HAL R© exoskeleton training improves walking parameters
and normalizes cortical excitability in primary somatosensory cortex in spinal
cord injury patients. J. Neuroeng. Rehabil. 12:68. doi: 10.1186/s12984-015-
0058-9

Sczesny-Kaiser, M., Kowalewski, R., Schildhauer, T. A., Aach, M., Jansen, O.,
Grasmücke, D., et al. (2017). Treadmill training with HAL exoskeleton—
a novel approach for symptomatic therapy in patients with limb-girdle
muscular dystrophy—preliminary study. Front. Neurosci. 11:449.
doi: 10.3389/fnins.2017.00449

Stoller, O., de Bruin, E. D., Schindelholz, M., Schuster-Amft, C., de Bie, R.
A., and Hunt, K. J. (2014). Cardiopulmonary exercise testing early after
stroke using feedback-controlled robotics-assisted treadmill exercise: test-retest
reliability and repeatability. J. Neuroeng. Rehabil. 11:145. doi: 10.1186/1743-000
3-11-145

Stoller, O., de Bruin, E. D., Schindelholz, M., Schuster-Amft, C., de Bie,
R. A., and Hunt, K. J. (2015). Efficacy of feedback-controlled robotics-
assisted treadmill exercise to improve cardiovascular fitness early after stroke:
a randomized controlled pilot trial. J. Neurol. Phys. Ther. 39, 156–165.
doi: 10.1097/NPT.0000000000000095

Straudi, S., Manfredini, F., Lamberti, N., Martinuzzi, C., Maietti, E., and
Basaglia, N. (2019). Robot-assisted gait training is not superior to intensive
overground walking in multiple sclerosis with severe disability (the
RAGTIME study): a randomized controlled trial. Mult. Scler. J. 26, 716–24.
doi: 10.1177/1352458519833901

Sugiura, Y., Inami, M., and Igarashi, T. (2012). “A thin stretchable interface
for tangential force measurement,” in Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology (Cambridge, MA),
529–535. doi: 10.1145/2380116.2380182

Tamez-Duque, J., Cobian-Ugalde, R., Kilicarslan, A., Venkatakrishnan, A., Soto,
R., and Contreras-Vidal, J. L. (2015). Real-time strap pressure sensor system for
powered exoskeletons. Sensors 15, 4550–4563. doi: 10.3390/s150204550

Tanaka, H., Nankaku, M., Nishikawa, T., Hosoe, T., Yonezawa, H., Mori, H., et al.
(2019). Spatiotemporal gait characteristic changes with gait training using the
hybrid assistive limb for chronic stroke patients. Gait Posture 71, 205–210.
doi: 10.1016/j.gaitpost.2019.05.003

Turiel, M., Sitia, S., Cicala, S., Magagnin, V., Bo, I., Porta, A., et al. (2011).
Robotic treadmill training improves cardiovascular function in spinal cord
injury patients. Int. J. Cardiol. 149, 323–329. doi: 10.1016/j.ijcard.2010.02.010

U.S. Department of Health and Human Services (2017). Common Terminology

Criteria for Adverse Events (CTCAE) Version 5.0. Available online at: https://
ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_

Quick_Reference_8.5x11.pdf (accessed April 29, 2020).
van Herpen, F. H. M., van Dijsseldonk, R. B., Rijken, H., Keijsers, N. L. W.,

Louwerens, J. W. K., and van Nes, I. J. W. (2019). Case report: description of
two fractures during the use of a powered exoskeleton. Spinal Cord Ser. Cases

5:99. doi: 10.1038/s41394-019-0244-2
Vaney, C., Gattlen, B., Lugon-Moulin, V., Meichtry, A., Hausammann, R., Foinant,

D., et al. (2012). Robotic-assisted step training (Lokomat) not superior to
equal intensity of over-ground rehabilitation in patients with multiple sclerosis.
Neurorehabil. Neural Repair. 26, 212–221. doi: 10.1177/1545968311425923

Wettenschwiler, P. D., Stämpfli, R., Lorenzetti, S., Ferguson, S. J., Rossi, R. M., and
Annaheim, S. (2015). How reliable are pressure measurements with tekscan
sensors on the body surface of human subjects wearing load carriage systems?
Int. J. Ind. Ergon. 49, 60–67. doi: 10.1016/j.ergon.2015.06.003

Wilkening, A., Puleva, N., and Ivlev, O. (2016). Estimation of physical human-
robot interaction. Robotics 5:17. doi: 10.3390/robotics5030017

World Health Organization (2018). Ageing and Health. Available online at: https://
www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed May 7,
2019).

Wu, Q., Wang, X., Du, F., and Zhang, X. (2015). Design and control of a
powered hip exoskeleton for walking assistance. Int. J. Adv. Robot. Syst. 12:18.
doi: 10.5772/59757

Yandell, M. B., Ziemnicki, D. M., McDonald, K. A., and Zelik, K. E. (2020).
Characterizing the comfort limits of forces applied to the shoulders,
thigh and shank to inform exosuit design. PLoS ONE 15:e0228536.
doi: 10.1371/journal.pone.0228536

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bessler, Prange-Lasonder, Schulte, Schaake, Prinsen and Buurke.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 16 November 2020 | Volume 7 | Article 557606115

https://doi.org/10.1186/s13643-016-0384-4
https://doi.org/10.1177/0269215514544041
https://doi.org/10.1177/1545968311424417
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN
https://doi.org/10.1002/9780470987667.ch5
https://doi.org/10.3389/fbioe.2017.00042
https://doi.org/10.1080/AC.70.6.3120178
https://doi.org/10.1111/jocs.12576
https://doi.org/10.1136/bmj.c332
https://doi.org/10.1186/s12984-015-0058-9
https://doi.org/10.3389/fnins.2017.00449
https://doi.org/10.1186/1743-0003-11-145
https://doi.org/10.1097/NPT.0000000000000095
https://doi.org/10.1177/1352458519833901
https://doi.org/10.1145/2380116.2380182
https://doi.org/10.3390/s150204550
https://doi.org/10.1016/j.gaitpost.2019.05.003
https://doi.org/10.1016/j.ijcard.2010.02.010
https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
https://doi.org/10.1038/s41394-019-0244-2
https://doi.org/10.1177/1545968311425923
https://doi.org/10.1016/j.ergon.2015.06.003
https://doi.org/10.3390/robotics5030017
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://doi.org/10.5772/59757
https://doi.org/10.1371/journal.pone.0228536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bessler et al. Adverse Events in Robotic Gait Training

APPENDIX

Search Strategy PubMed
#1 robotics [MeSH] OR robot-assisted OR robotics-assisted OR

electromechanical OR electro-mechanical

#2 exercise therapy [MeSH] OR rehabilitation OR training

#3 gait OR walk OR walking OR step OR stepping OR
locomotor OR locomotion

#4 #1 AND #2 AND #3

#5 “body weight support” OR “body weight supported”

#6 #5 AND “treadmill training”

#7 #4 OR #6 OR “locomotor training” OR Lokomat OR
Gangtrainer OR G-EO ORWALKBOT OR LokoHelp

#8 adverse OR “skin breakdown” OR “skin lesion” OR “skin
sore” OR “pressure sore” or discomfort OR abrasion

#9 #7 AND #8
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Several lower-limb exoskeletons enable overcoming obstacles that would impair daily

activities of wheelchair users, such as going upstairs. Still, as most of the currently

commercialized exoskeletons require the use of crutches, they prevent the user from

interacting efficiently with the environment. In a previous study, a bio-inspired controller

was developed to allow dynamic standing balance for such exoskeletons. It was however

only tested on the device without any user. This work describes and evaluates a

new controller that extends this previous one with an online model compensation,

and the contribution of the hip joint against strong perturbations. In addition, both

controllers are tested with the exoskeleton TWIICE One, worn by a complete spinal

cord injury pilot. Their performances are compared by the mean of three tasks: standing

quietly, resisting external perturbations, and lifting barbells of increasing weight. The

new controller exhibits a similar performance for quiet standing, longer recovery time for

dynamic perturbations but better ability to sustain prolonged perturbations, and higher

weightlifting capability.

Keywords: balance, posture, controller, exoskeleton, position-control, standing, paraplegic

INTRODUCTION

Lower-limb exoskeletons have gained much interest in the last decade. This growing interest
is mainly driven by the aim of enhancing human performance and improving neuromotor
rehabilitation. Therefore, developing novel features to improve user safety, mobility and autonomy
is a constant research challenge. In the field of wearable robotic systems for complete spinal
cord injured (SCI) patients, walking is the main function targeted by the majority of lower-limb
exoskeletons. Balance management while walking and standing is generally performed by the user
with the help of crutches, and thus impairing the use of their hands for other activities. Very few
full-mobilization exoskeletons are able to self-stabilize (Donati et al., 2016; Gurriet et al., 2018; Rex
Bionics, 2020), and thus, allow to free the user’s hands. This comes at the cost of low walking speed
and an important overall weight. In addition, none of them can climb stairs for example. Standing
and walking balance are essential functions to promote exoskeleton usage during daily activities,
that however should not come to the detriment of other features. In daily-life activities, manual
tasks and environmental interactions happen mainly while standing (e.g., shaking hands, grabbing
an object, drinking) rather than walking. Therefore, a valuable trade-off would be to enable the
usage of the hands during standing for exoskeletons actuated only in the sagittal plane. While the
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fore-aft balance could be actively regulated, the lateral stability
can be maintained passively if the space between the feet is large
enough, thanks to the wider base of support (BoS).

Humans are constantly adjusting their posture to act against
gravity and are capable to resist to moderate internally generated
or environmental perturbations using body coordination only
(i.e., without stepping). To counteract these perturbations,
proactive and reactive forms of postural movements are
generated by the sensorimotor system to keep the center of mass
(CoM) within the BoS (Rogers and Mille, 2018). Thus, coping
with unexpected and self-generated perturbations requires a
robust postural controller. As of today, there is no full-
mobilization exoskeleton, position-controlled, actuated only in
the sagittal plane capable of maintaining a standing posture with
users that do not have any control of their lower limbs. Therefore,
our goal is to develop a postural controller for TWIICE One, a
lower-limb exoskeleton for complete SCI users.

Several research groups work on partial assistance during
stance in the goal to improve the balance of people with
incomplete SCI. Most of these control strategies are using
torque control (Rajasekaran et al., 2015; Emmens et al., 2018;
Farkhatdinov et al., 2019; van Asseldonk et al., 2019). These
studies mimic the most common postural strategies highlighted
by Winter (1995): the ankle, the hip, and their combined
strategies. However, the limited number of degrees of freedom
of TWIICE One, especially its locked ankles, does not allow
to directly adopt these control strategies. For that reason,
a bioinspired approach was adopted to identify and then
implement the elicited postural strategies on TWIICE One. From
this approach, two postural controllers have been developed. This
case study aims to present and characterize the performance of
these two postural controllers enabling a complete SCI user to
stand without crutches.

These controllers are potentially useful for the current
generation of full-mobilization exoskeletons, because they do not
need torque control in the joints, or load cells in the feet. The
hardware can then be kept minimal, so the device can be simpler,
less expensive and more robust.

BIOINSPIRED APPROACH: LEARN FROM
A PASSIVE EXOSKELETON

In a previous study, we observed how young healthy participants
adapted their postural control strategies when wearing a passive
exoskeleton (Fasola et al., 2019). This device, called INSPIIRE
(see Figure 1A), has the same kinematic constraints as TWIICE
One, and fully curved foot soles, see Figure 1F. It has been
found that healthy adults mainly manage their postural balance
by flexing and extending their knees to move the contact
point along the anteroposterior axis while standing quietly
inside a passive locked-ankle exoskeleton (Figure 1B). Based
on segmental analysis, this strategy is referred to as a vertical
strategy, meaning that the trunk and the shank orientations move
in phase and thus the whole body moves along the vertical axis
(Nashner and McCollum, 1985). In case of more consequent
perturbations, the hip strategy was used to maintain balance.

During the hip strategy, the shank rotation is not sufficient to
keep the CoM over the base of support; therefore, the trunk
rotates in the opposite direction to compensate and reposition
the CoM.

Drawing inspiration from this human sensorimotor
adaptation, a novel postural position controller has been
implemented and tested on TWIICE with no user (Baud et al.,
2019). This controller regulated the balance with a proportional-
derivative (PD) controller, acting on the angle of the knee,
and fed with the estimated CoM position (Figure 1C). This
“knee controller” was able to manage the balance of TWIICE
autonomously and resist to short perturbations.

In this article, the controller developed by Baud in 2019
is tested with a complete SCI user. In addition, an extended
version of this knee controller is described and compared to
the baseline knee controller. It is designed to resist stronger
long-term perturbations.

POSTURAL CONTROL FRAMEWORK

Lower Limb Exoskeleton “TWIICE ONE”
The two postural controllers have been implemented on the
lower limb exoskeleton TWIICE One 2018, Figure 1D. This
exoskeleton is similar to the version of 2016 introduced in (Vouga
et al., 2017). The mechanical design and the control framework
are the same, while the actuators are more compact and more
powerful (Billet et al., 2019). TWIICE One provides two active
DoFs per leg for the flexion/extension of the hip and knee joints
in the sagittal plane. The ankle joints are locked at 90◦. To
match the experimental conditions of the passive exoskeleton
(Fasola et al., 2019), the foot soles profile has been modified.
It is then fully curved (no flat part in the middle) to prevent
passive postural stability (Figure 1E). Its 0.65m radius is the
same as the previous study, which is smaller than the height of
the CoM of the test-pilot, so passive equilibrium is not possible.
The sole is 227mm long, which corresponds to amaximum range
of movement of 242mm for the contact point, when the sole is
rolling on the floor. The top part of the exoskeleton foot is tilted
forward by 5◦, so when the middle of the foot is in contact with
the floor, the shank axis has a 5◦ angle with respect to the vertical
axis (Baud et al., 2019). The soles are covered with a rubber layer,
to prevent slippage when standing.

The width of the BoS is 244mm, measured between the two
outer faces of the sole skates.

The elevation angle on the sagittal plane (also called “pitch
angle”) of the exoskeleton’s foot is estimated from the inertial
measurement unit (IMU) data with a simple complementary
filter algorithm similar to Gui et al. (2015). Since the IMU is
aligned with the exoskeleton, only a single gyroscope axis, and
two accelerometer axes are required. The elevation angle of the
thigh and trunk segments are computed from the estimated
foot elevation angle and the joints encoders angles. Instead of
using the trunk IMU as in Baud et al. (2019), the IMU located
in the left foot is used instead. It is expected to increase the
performance for two reasons. First, when swinging fore-aft the
whole body, the foot is the location with the lowest linear
acceleration, which makes the state estimation more accurate.
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FIGURE 1 | (A) Healthy participant standing while being constrained by INSPIIRE, a passive exoskeleton. (B) Identified relation between the knee angle and the CoMx for a typical young healthy participant in the

eyes closed condition from Fasola et al. (2019). (C) Overview of the controller block diagram. CoMx−E is the estimated projection of the center of mass, Rx represents the foot angle with respect to the ground line,

while θH and θK are the hip and knee angles, respectively. (D) TWIICE running with the knee controller (BKC) and a complete SCI user. (E) Overview of the experimental setup, with the experimenter in the back, and

the spotter in front. The experimenter interacts with the exoskeleton through the instrumented stick. (F) Close-up view on the TWIICE foot, with the rounded sole and the 5◦ wedge. The red cross is the position of

the CoP, at the middle of the foot in this case. This is considered as the “horizontal” position of the foot.
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Second, there is more vibration in the trunk, that is less rigid
and in a cantilever configuration, which can generate closed-loop
self-sustained uncontrolled oscillations.

The embedded computer of TWIICE collects at 1 kHz
the data from the inertial measurement unit (IMU) and the
joints encoders.

TWIICE is not a certified commercial device, but it is deemed
safe, so it is very unlikely that the pilot could be harmed in this
experiment. Its hardware and operation are fully documented,
and a failure mode and effects analysis (FMEA) was performed.
It was also inspected and approved by the organizers of the
CYBATHLON (Riener, 2016), as a prerequisite to participate in
this event.

Proposed Postural Controllers
Baseline Knee Controller
The “Baseline Knee Controller” (BKC) regulates the balance with
a proportional-derivative (PD) controller, setting the angle of the
knee, and fed with the CoM position (Figure 2). This “Baseline
Knee Controller” was described, simulated and experimentally
tested (Baud et al., 2019). The knees are flexed proportionally
to the estimated position of the CoM. This makes the foot sole
rotate forward and backward, and move the point of contact with
the floor. Since the sole is only in contact with the ground at
one point, this point corresponds also to the center of pressure,
xCoP, on the anteroposterior axis. CoMx is the position of the
projection on the ground of the CoM, on the anteroposterior axis.
Its origin is defined at the middle of the foot when it is in contact
with the ground. In this BKC controller, the CoMx estimation is
computed using a simple 2Dmodel consisting of 3 segments (foot
to knee, knee to hip, trunk including the head). The trunk length
was measured on the user, while the shank and thigh lengths
were obtained from the 3Dmodel of the exoskeleton. The masses
were obtained by summing the pilot’s and exoskeleton’s segments.
The masses of the user segments were estimated from the full
bodyweight using the mass repartition from Fang et al. (2017),
considering the data corresponding to “chronic SCI ≥ 3 years”
and “BMI < 25.” Finally, an offset, CoMx−off, is added to the
estimation of CoMx to obtain CoMx−E, which is called CoMx−E1

in the BKC case. This offset is necessary because the model is
not accurate.

CoMx−E is first filtered by a low-pass filter with a cut-off
frequency fc1, then fed into a proportional-derivative controller
(PD) with the parameters KpK (proportional part gain) and KdK
(derivative part gain). Before differentiation, the signal is filtered
by a stronger low-pass filter with a cut-off frequency fc2. This
gives a knee flexion angle, which is offset by θK−off to increase
the flexion, and thus avoids hyperextension of the knee when the
output of the BKC controller is negative. For safety, the value is
finally clamped to the range [2 to 40◦]. The hip joint is fixed at
the angle θH−off.

A pilot study with the BKC controller has demonstrated its
ability to make a complete SCI user stand dynamically with
TWIICE. However, it was performing poorly for the task of
grabbing heavy objects (several kilograms), unless they were close
to the body. The first reason is that the CoMx−E1 computation is
not accurate since it does not consider the added mass. The other

reason is that the controller is managing the balance by moving
the position of the CoP along the foot length, but this does not
work in the case the added weight shifts the CoMbeyond the span
of the feet.

Extended Knee Controller
The extended knee controller (EKC) is based on the BKC, but
with two additions to overcome the two aforementioned issues
(Figure 2, blue boxes). The first change is the extension of the
CoMx estimator, to adapt the model online when a constant
perturbation (addedmass or horizontal force) arises. This is done
with a gain (GCC) and an integrator of the Rx value, Rx being
the foot angle with respect to the ground line (or the elevation
angle of the foot, minus 90◦). The output of this integrator
is added as a variable offset to the CoMx−E calculation, called
CoMx−E2 for this controller (Figure 2, CoMx, blue boxes). The
idea is that in case of a permanent perturbation, the CoP will
move durably, closer to an end of the foot, which decreases the
robustness against perturbations in this direction. Continuously
increasing the CoMx−E offset will increase the correction of the
PD controller, until the sole starts to roll in the other direction.
This means that if a steady-state exists, the center part of the
foot will be in contact with the floor. Adding an integrator to
the regulator to make a PID controller instead would not have
the same results. This will not be proved analytically here, but
intuitively, in case of constant perturbation with BKC and a PID,
the steady-state will be reached when the CoMx−E1 reaches zero,
but the CoP will probably not be in the middle of the foot, so the
robustness would be lower in one direction.

The second change is the addition of the hip contribution
when the knee reached the full extension. In case the knee reaches
the full extension, an integrator with a gain KiH will gradually
increase the hip flexion angle, to bring the trunk forward, and
thus shift the CoM toward the front (Figure 2, Hip controller,
blue boxes). This flexion angle is limited to 60◦ for safety. If the
knee angle is not saturating, the integrator value is reset to zero
smoothly at a 2◦/s rate. This conservative low value was selected
to make sure it does not interfere the with the knee control and
avoid oscillations.

Simulations have been performed with the same Simulink
simulation environment described in Baud et al. (2019). The goal
of this model is to check the proper operation of the controller,
i.e., keeping the body standing without falling. The stability is
assessed from the values of CoMx−E and the foot elevation angle,
which should remain close to 90◦. This model contains a three
weighted segments model, lumping together the user body and
the exoskeleton, the feet rolling on the floor with no slippage. It is
subject to a horizontal perturbation force, applied at the hip joint
axis, with a square profile: 0N, then 20N forward for 8 s, then 0N
again. The parameters have been set as follows: KpK = 340◦/m,
KdK = 170◦/(m/s), no filtering. For BKC, KiK = 340◦/(m.s) and
Gcc = 0 m/(◦.s). KiK is the integral coefficient if the knee PD
controller is replaced by a PID. It is not required and will not
be used on the actual device, but it allows a clearer comparison
between the results obtained with BKC and EKC, thanks to the
eventual cancellation of the CoMx−E steady-state error (it will
show that the effect of the integral component of EKC is not
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FIGURE 2 | Block diagram of the two controllers. BKC is made of the CoMx estimator and the knee controller (white blocks). EKC is made of the improved CoMx

estimator, the knee controller, and the hip controller (all the blocks). The blue boxes are thus the additions of EKC. CoMx−E corresponds to CoMx−E1 for BKC, and

CoMx−E2 for EKC. CoMx−off represents the offset added to the estimated projection of the CoM in the sagittal axis. θK−off and θH−off are, respectively, the baseline

offsets of the knee and the hip angles.

equivalent as using a PID with BKC). For EKC, KiK = 0◦/(m.s)
and Gcc = 0.000002 m/(◦.s).

The results are exposed in Figure 3. It can be noticed that both
BKC and EKC both maintained the standing balance despite the
perturbation. Both the foot elevation angle and CoMx−E exhibit
minimal oscillations. With BKC, the system is stable during the

FIGURE 3 | Simulation results comparing BKC (with PID) and EKC when

subject to a constant horizontal perturbation force. The horizontal pushing

perturbation starts at t = 5 s, stops at t = 13 s, has an intensity of 20N and a

ramping time of 0.5 s.

perturbation, but the foot is not horizontal at steady-state (2.6◦),
which leaves less control leeway for further pushes. In fact, the
CoP reaches the end of the foot when |Rx|>10◦. With EKC, Rx

also reaches approximately 6◦ when the perturbation is applied
but then returns slowly to 0◦ (CoP at the middle of the foot),
which results in having the same room for maneuver in both
directions again. While returning to the horizontal position, Rx

follows an exponential function with a time constant of 2.4 s
(R2 = 0.997). This means that a stronger long-term perturbation
should rise slowly, not quicker than a few seconds, otherwise the
integral action of EKC will not compensate fast enough to avoid
the fall.

The general behavior of the two controllers at steady-state
can be seen in Figure 4. In the BKC case, the system statically
resists the perturbation by keeping the CoP more in the front
(Figure 4B) or in the rear of the foot (Figure 4C). In the EKC
case, the system resists statically by keeping the CoM toward the
back (Figure 4D) or toward the front (Figure 4E), such that the
CoP is at the middle of the foot. In the last case (Figure 4F), the
pulling force is stronger, and the knee reached the full extension
and cannot extend more. The hip then flexes to move the CoM
even more in front.

METHODS

Test-Pilot
Both postural controllers were tested with one chronic (10 years
post-injury) and functionally complete SCI participants (ASIA
A) with a lesion at the T10 level. She is 158 cm tall and weighs
45 kg. She has no contraindications for the use of an exoskeleton
(strong spasms, contractures, low bone density, or cognitive
deficiency) and uses regularly a passive verticalization device.
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FIGURE 4 | Stick-figures showing the behavior of both controllers, at steady-state. (A) The stick-figure represents the initial rest position. (B,C) The stick-figures show

the CoP displacement (xCoP) and the behavior of the knees during push and pull perturbations, respectively, for BKC. (D–F) The stick-figures represent the behavior of

EKC by showing how the position of the CoP is kept at the center of the foot thanks to the torso compensation for moderate push and pull perturbations, as well for

strong pull perturbation. The arrows indicate the direction of the perturbation while their size is proportional to the perturbation amplitude. The red crosses represent

the position of the point of contact with the ground, which is equivalent to the CoP in the sagittal axis (xCoP). The gray stick figures in background are the initial

equilibrium position, same as in (A).

She will be called “test-pilot” of the lower limb exoskeleton.
She had a previous experience with the standing balance with
two preliminary sessions, the exoskeleton running a provisional
controller, similar to the current implementation of BKC. She
gave informed consent to participate in the test sessions.

Only one participant was involved because this experiment
aims assessing the performance of the device, not the user. The
guidelines on assistive devices by the Swiss Ethics Committees
on research involving humans (Swissethics, 2018) specify that
exploratory works (evaluating “beta prototypes,” their overall
operation, the function or robustness of the sensors and
actuators, etc.) are not subject to the swiss law about research
on humans.

Protocol
The tuning of the controller parameters occurred during a
dedicated session, 10 days before the actual experiment.

The experiment was composed of four tasks: quiet standing,
pulse and static perturbations, and object lifting perturbation.
The test-pilot was instructed to keep her arms crossed and look
straight at a cross on the wall in front of her during the whole
experiment. The floor is made of hard linoleum floor, with
virtually no rolling resistance.

At all times, there were one spotter in front and one behind the
pilot to catch her in case of loss of balance, since the controllers
will not trigger a step when the stability margin is exceeded.
The spotters’ hands were very close to the exoskeleton handles
or the pilot’s body to ensure quick grabbing in case of loss of

balance. Contact only occurs in case of loss of balance. The usual
harness, cable and support frame could not be used because the
cable would disturb the balance, probably positively and biasing
the results.

Tuning Session
The regulator gains were first set to zero to disable the closed-loop
control. θK−off was fixed arbitrarily, then CoMx−off, θH−off and
were obtained by hand-tuning such that CoMx−E1 is zero when
the exoskeleton stands still in the unstable equilibrium position,
while the middle of the sole in contact with the ground. This
procedure was repeated several times, to maximize θK−off under
the condition that the posture is comfortable for the test-pilot.

Then, the low-pass filters and the PD parameters were tuned
to maximize the disturbance rejection performance while no self-
sustained oscillations or vibrations can be observed. Finally, KiH
and GCC were tuned to the highest value that does not generate
self-sustained oscillations.

Quiet Standing
For both controllers, 1min of quiet standing was performed in
order to compare the sway amplitude without any perturbation.

Pulse Perturbations
The goal of the second task of the experiment consists in
evaluating the responsiveness and stability of both controllers,
when the exoskeleton is subject to short and high-intensity
horizontal perturbations. The back part of the exoskeleton
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was pushed and pulled horizontally at the pelvic height
(960mm above the ground level) with a stick operated by an
experimenter behind the pilot, so that she cannot expect the
pulses (Figure 1E).

As in Emmens et al. (2018), the perturbation amplitude is
defined by the push/pull force multiplied by the perturbation
duration. The experimenter keeps the duration of the pulses short
and as constant as possible. As long as the user is swinging,
the LED on the backpack is red, and the experimenter will
not interfere with the movement. When the sway velocity of
the trunk (computed by time-derivation of the trunk elevation
angle, obtained with the foot IMU and the joints encoders)
remains below 0.015 rad/s (0.86◦/s) for more than 2 s, the LED
on the backpack turns green again, and a new perturbation
can be applied. The perturbations are applied randomly by the
experimenter. The supervision laptop counts the perturbations
and sorts them into the weak/medium/strong categories for
both directions, to help the experimenter applying all types
of perturbations.

The stick is instrumented with a load cell, mounted with
a stiff string such that it can push (posterior perturbation)
and pull (anterior perturbation) the exoskeleton, or apply
virtually no force when the pusher is not in contact and
the string is loose. A custom amplifier and sampling board
is also mounted on the stick, based on the ADS1146
chip (Texas Instruments, United States). It is wired to the
exoskeleton embedded computer with four loose thin wires
(0.129 mm2 copper section) to apply only minimal parasitic
force on the exoskeleton. This allows the exoskeleton to
log the load cell signal with the same time base as the
exoskeleton data, to avoid the manual synchronization step after
the experiment.

Static Pull and Push Forces
To assess the performance of both controllers during prolonged
perturbations, the maximum horizontal force that is sustainable
before losing balance was measured in both directions. The
experimenter pushes with the instrumented stick, increasing
slowly, and monotonically the force, until static equilibrium is
lost. This procedure was repeated 3 times, and then was reiterated
also 3 times by pulling the test-pilot backward. The user is caught
and brought back to the vertical position by the experimenter at
the end of each trial, so the recovery cannot be evaluated.

Object Lifting Perturbation
Finally, to define the anterior static margin of stability in a
situation close to an actual use case, the test-pilot was asked to lift
a barbell in front of her, and raise it gently at the shoulder height
with the arms straight forward, then lower it down. Raising starts
with the barbell at the lowest possible height, in contact with the
legs. The mass of the barbell was changed from 0 kg (i.e., weight
of the arms only) to 6 kg with increments of 2 kg. Each mass was
lifted once. The task was failed if the spotters had to catch the test-
pilot to prevent the fall, or if the test-pilot is unable to complete
the task in <1min. Unlike the previous test, the recovery back
to the vertical position with no load is part of the task. The
pilot then has no assistance at all from the experimenters while

TABLE 1 | Controller parameters values.

Parameter BKC-value EKC-value

CoMx−off 0.04 m

fc1 20 Hz

fc2 5 Hz

θK−off 8◦

θH−off 0◦

KpK 420◦/m

KdK 110◦/(m/s)

KiH 0◦/(◦.s) 0.3◦/(◦.s)

Gcc 0 m/(◦.s) 0.000002 m/(◦.s)

lifting, hovering and lowering. As opposed to the previous tasks,
the participant has to use her arms for a simulated activity. This
is the main reason why a manikin could not replace an actual
participant in this protocol.

Data Analysis
The analysis of the stability is performed using the CoMx−E1

metric, because there was no extra instrumentation that could
measure the actual CoMx, and CoMx−E2 would be irrelevant
when considering the static pull and push perturbations.

For quiet standing, a high-pass filter was applied to CoMx−E1

to discard potential position shift due to the slow headmovement
of the test-pilot. Then, the root mean square (RMS) of the
CoMx−E1 was used to evaluate the amplitude of body sway for
both controllers. For the pull and push task, perturbations with
a duration deviating more than 0.1 s from the median duration
were excluded. Thus, for each controller, only responses with
similar perturbation duration were analyzed. Then, the pull and
push perturbations were sorted each in three categories based on
the distribution of the perturbation magnitude. These categories
were the same for the two controllers.

The main assessment metrics were the recovery time and the
maximal perturbation magnitude that the controllers can handle
in both directions. The recovery time was defined as the time
needed after a perturbation for the CoMx−E1 velocity to fall below
a threshold set to 0.005 m/s. This threshold value was selected
because it was the highest that still considered the oscillations
due to the perturbations of the first category. A moving average
filter with a span of 10% of the total number of data points
was applied to the CoMx−E1 derivative. The maximal sustainable
pulse perturbation amplitude in both directions was defined by
the maximum perturbation amplitude that does not result in a
loss of balance.

For the maximum sustainable pull and push force, the average
of the 3 peak forces in each direction was computed.

RESULTS

The results of the parameters tuning session are shown inTable 1.

Quiet Standing
The oscillation frequency is similar in both cases: 0.60Hz for BKC
and 0.63Hz for EKC. It was computed by finding the frequency of
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FIGURE 5 | Pulse perturbation results and controllers’ outputs. (A) The perturbations of similar magnitude are grouped in 3 categories for each direction. The

thresholds of each category are represented by the vertical dotted lines. Underneath the histograms, perturbations that led to a fall are presented by a triangle. (B)

Individual perturbation force profiles are shown by category. In addition, the average and standard deviation of the maximum perturbation forces are shown with error

bars. (C) Controllers’ performance is evaluated with the recovery time. (D) average system response of the two controllers subject to the 3 categories of perturbation

Magnitudes. Solid lines represent posterior perturbations, while dotted lines denote anterior ones. Overall, the colors correspond to the controllers (orange for BKC

and blue for EKC).

the highest peak in the Fourier transform of the CoMx−E1 signal.
The RMS of the body sway is also similar (0.31mm for BKC and
0.38mm for EKC).

Pulse Perturbations
For BKC, 74 perturbations were applied, resulting in 4 fall
initiations and 1 exclusion. For EKC, the test-pilot underwent
63 perturbations, including 7 fall initiations and 1 exclusion. The
distribution of the perturbations’ magnitudes and perturbations’
forces by category are shown in Figures 5A,B. The average
perturbation duration was 0.18 ± 0.006 s and 0.19 ± 0.006 s for
BKC and EKC, respectively.

To characterize the robustness of the controllers, we
determined the maximum anterior (pull) and posterior (push)
perturbation amplitude the controllers can bear before a fall
starts. For BKC, the maximal anterior perturbation magnitude
that can be sustained is about 2N.s. Beyond that threshold, 3
backward falls were recorded (see Figure 5A, orange triangles).
The threshold for posterior perturbations is between 2 and

4N.s, as a push with a magnitude of 4N.s triggered a frontal
fall. For EKC, the maximal anterior perturbation magnitude
is also around 2N.s. Two perturbations above this threshold
triggered a backward fall. The maximal threshold for posterior
perturbations is between 1.2 and 1.6N.s. Indeed, 4 falls were
observed when the perturbation magnitude was above this
threshold (see Figure 5A, blue triangles). It is important to
note that the falls were in the backward direction although the
perturbations were posterior (pushes). In summary, BKC is more
robust than EKC for posterior perturbations, while they perform
similarly for anterior perturbations.

To assess the performance of the controllers, the average
recovery time has been extracted and plotted on Figure 5C.
BKC recovered faster in all conditions [mean 2.95 s,
95% CIs (2.55, 3.34)] than EKC [mean 5.49 s, 95% CIs
(4.65, 6.34)].

The average system response is shown on Figure 5D. For the
first and second perturbation categories, the response is similar,
although the oscillations last longer with EKC. There are more
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differences for the third category. The pulling perturbations for
EKC are producing a larger deviation of the CoM (∼4 cm instead
of ∼2 cm for the other conditions), because the full extension of
the knee was reached, and lowered the control capability. This is
only the case for EKC, because initially, the knee was less flexed
(the steady-state was not exactly the same), so there is less margin
before the full extension is reached. It is also noticeable that even
for the pushing perturbation, the hip contribution is used. This is
because the oscillations have a high amplitude and low damping,
this is why the system also reaches the backward position and
result in saturating the knee angle in full extension and starts
using the hip contribution.

Maximum Static Push and Pull Forces
The maximum pushing force that can be sustained is higher for
EKC [mean 75.07N, 95% CIs (66.25, 83.90)] than for BKC [mean
13.69N, 95% CIs (5.29, 22.09)]. The maximum pulling force
is also higher for EKC [mean 27.92N, 95% CIs (11.86, 43.97)]
than for BKC [mean 13.26N, 95% CIs (10.39, 16.13)]. EKC can
endure higher static forces when the test-pilot is pushed forward
than pulled backward (unpaired t-test p < 0.001), while there
is no effect of perturbation direction for BKC (unpaired t-test
p= 0.84).

Object Lifting Perturbations
The results of this test are visible in Figure 6. With BKC, the
test-pilot could lift her arms but failed to lift the 2 kg barbells

because she started falling forward before reaching the shoulder
height, even though the ascent was slow. With EKC, the test-pilot
could successfully lift the 2, 4, and 6 kg barbells. The time for the
pilot to perform each movement (lifting and lowering) is shown
in Table 2.

DISCUSSION

The goal of this study was to test and compare two postural
controllers with a low-actuator count exoskeleton and a complete
SCI pilot. Both controllers were able to manage quiet standing
with almost no body sway and to cope with anterior-posterior
perturbations. In that respect, postural adaptation strategies
observed in healthy participants with a passive exoskeleton have
been successfully transferred onto an active full-mobilization

TABLE 2 | Time required to perform raising and lowering, for the barbell test.

Condition Raising time [s] Lowering time [s]

BKC, 0 kg 18 19

BKC, 2 kg 4* N/A

EKC, 2 kg 15 17

EKC, 4 kg 17 21

EKC, 6 kg 16 21

*The starred value denotes failure (fall initiation) before completion.

FIGURE 6 | Object lifting perturbation results. Foot contact point position (xCoP) along the curved soles during object lifting perturbations. For BKC, the xCoP of one

successful arm lift and one failed barbell lift is shown. When the toe tip has been reached, the pilot fell forward, was caught by the spotters and therefore the xCoP
quickly returned close to zero. The barbell was then removed, and the system stabilization is highlighted by the xCoP returning to the target position. For EKC, the xCoP
of 3 successful barbell lifts with increasing weights is represented, as well as the CoM compensation.
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exoskeleton. This results in the first exoskeleton with only two
degrees of freedom per leg able to balance during standing with
a complete SCI user. Overall, the EKC controller was more
performant, although the recovery time is slightly slower.

For pulse perturbations, EKC damps the oscillations more
slowly due to its integrative behavior, and thus has higher
recovery times. Moreover, the falling direction was not always the
same as the perturbation direction. Since the knees can flex more
than they can extend in the actual configuration, it would possible
to increase the posterior margin of stability by increasing the
knee offset angle (θK−off). However, this would imply that the hip
flexion angle should also be increased to remain balanced, which
results in an unnatural crouch standing. This also causes more
load on the interfaces and in particular the trunk belt, which was
reported to be an uncomfortable posture by the test-pilot during
the tuning session. Overall, since the arms do not help to support
the trunk through the crutches, the upper belt of the exoskeleton
maintaining the torso should be sufficient and comfortable.

For static perturbations, EKC sustained higher pushing forces
thanks to the torso adjustment and repositioning of the CoM,
while there was no significant difference when pulling. It is
important to note that EKC could resist even higher pulling
forces, just by increasing the value of the maximum flexion of
the hip, and if these forces change slowly. This would however be
even more difficult to recover from.

The main motivation for the curved sole is to walk by rolling
the foot on the floor, to compensate for the lack of a mobile ankle
joint. However, it also enables the use of these balance controllers,
which could give more stability than passive balance with a flat
sole of the same length. In practice, this ability was limited by the
clamping on the knee and hip angles. The theoretical maximum
force that the system could resist without falling in the same
conditions with flat feet can be computed by the simple static
equilibrium model depicted in Figure 7. At equilibrium:

∑

τA = 0

⇒
lfoot

2
mg= Feqhp

⇔Feq =
lfoot
2 mg

hp
= 70.2 N

where, τA is the torque at the pivot point A, lfoot is the length
of the foot, m is the mass, g is the gravity, Feq is the equivalent
force applied and hp is the height of the perturbation application.
So, the EKC can resist a higher pushing force (75.07N) than the
passive balance with a flat foot (70.2N, see equation), but this
is not the case with the pulling force (27.91N). This limitation
comes from the fact the knee cannot overextend, and that the hip
joint was limited to 60◦ of flexion.

The static perturbations assessment gives us some functional
insights on how much the pilot, while standing in the
exoskeleton, could pull and push an object during daily activities
such as opening a door, reaching for a pack of water on a
supermarket shelf or closing a car trunk. The current EKC
controllers could make this kind of activities possible without the
need for crutches.

FIGURE 7 | Equivalent system for the static balance calculation with flat feet.

Another functional assessment was the object lifting task.
With the EKC controller, the user is able to manipulate a heavy
object far from his body, but again, this is only possible if
the movements are slow, otherwise the point of contact with
the ground may reach one end of the foot, and the user will
start falling. Nevertheless, the EKC controller would for example
enable to drink from a 1L bottle without worrying about balance
management. To facilitate the user to apprehend the ability of the
exoskeleton to manage balance, acoustic or haptic feedback could
be given when the CoP is close to the limits, so the user could, for
example, decelerate the movement. Sensory feedback, in addition
to being warning signals could also promote embodiment, and
thus facilitate acceptation of the device (Pazzaglia and Molinari,
2016; Beckerle et al., 2018). More extensive training with the
device and the controller is necessary to further improve the
performance and to apprehend the behavior the exoskeleton
should follow in case of risk of fall. The main limitations of this
study are that these controllers have been tested with only one
test-pilot and in a controlled environment. It would be interesting
to observe how the performance varies as function of the ground
texture and inclination, as well as with different users.

The main limitation of EKC is that the compensator adapts
slowly to a permanent disturbance. Increasing the gain Gcc is not
possible since it leads to an oscillatory behavior. An alternative
would be to reuse the three segments model and associate it to
a Kalman filter. This would allow to estimate the CoMx offset
quicker without inducing increasingly large oscillations.

For an actual use with the ADLs, the safety is of the
utmost importance. The major concern is that there is no
stable position, so in case of failure, the user would fall and
cannot use the crutches to recover. Two safety approaches
could be implemented. First, following special design rules and
manufacturing processes, it is possible to ensure the system keeps
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operating despite a failure, which is also called fault-tolerant
approach (IEC, 2011). An example of similar device using
this approach is the Segway Personal Transporter (Segway Inc,
United States), which has redundant sensors, control electronics,
andmotor windings (Segway Switzerlan, 2020). Another solution
is to deploy an airbag to protect the user in case a fall is detected,
as suggested by a ReWalk patent (Goffer and Tivon, 2014).

CONCLUSION

A major result of this study was that postural adaptation
strategies observed in healthy participants and elicited by
standing in a passive exoskeleton could be ported onto an
active exoskeleton with equivalent mobility. This conducted to
the first full-mobilization exoskeleton able to balance during
standing with only two degrees of freedom per leg. This could
have important implications for the independence of individuals
with paraplegia, their inclusion in social activities and their
potential inclination to use an exoskeleton on a daily basis for
the associated health benefits.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article, further inquiries can be directed to the
corresponding author.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation
and institutional requirements. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

JF conceived the idea and concept, designed the
experiment, collected, analyzed and interpreted the
data, and drafted the manuscript. RB and TV helped
in conceiving the idea and concept. RB implemented
the experiment, designed the controllers, participated in
data acquisition, analysis and interpretation, and took
part to the redaction. TV predominantly developed the
two exoskeletons used in this study. AI and MB helped
in drafting the manuscript and critically revising it.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

The authors wish to thank the test-pilot who volunteered to part
in the experiment, as well as the company Sonceboz SA that
partially funded this study.

REFERENCES

Baud, R., Fasola, J., Vouga, T., Ijspeert, A., and Bouri, M. (2019). “Bio-inspired
standing balance controller for a full-mobilization exoskeleton.” in 2019 IEEE

16th International Conference on Rehabilitation Robotics (ICORR) (Toronto,
ON), 849–854.

Beckerle, P., Kõiva, R., Kirchner, E. A., Bekrater-Bodmann, R., Dosen, S., Christ,
O., et al. (2018). Feel-good robotics: requirements on touch for embodiment in
assistive robotics. Front. Neurorobot. 12:84. doi: 10.3389/fnbot.2018.00084

Billet, L., Delbaere, M., and Pinel, T. (2019). Compact mechatronic drive for
robotic applications. Robot. Tom. 28. Available online at: https://www.
roboticstomorrow.com/article/2019/05/compact-mechatronic-drive-for-
robotic-applications/13676

Donati, A. R., Shokur, S., Morya, E., Campos, D. S., Moioli, R. C., Augusto, P.
B., et al. (2016). Long-term training with a brain-machine interface-based gait
protocol induces partial neurological recovery in paraplegic patients. Sci. Rep.
6:30383. doi: 10.1038/srep30383

Emmens, A., van Asseldonk, E., Masciullo, M., Arquilla, M., Pisotta, I.,
Tagliamonte, N. L., et al. (2018). “Improving the standing balance of paraplegics
through the use of a wearable exoskeleton,” in 2018 7th IEEE International

Conference on Biomedical Robotics and Biomechatronics (Biorob) (Enschede),
707–712.

Fang, Y., Morse, L. R., Nguyen, N., Tsantes, N. G., and Troy, K. L.
(2017). Anthropometric and biomechanical characteristics of body
segments in persons with spinal cord injury. J. Biomech. 55, 11–17.
doi: 10.1016/j.jbiomech.2017.01.036

Farkhatdinov, I., Ebert, J., vanOort, G., Vlutters,M., van Asseldonk, E., and Burdet,
E. (2019). Assisting human balance in standing with a robotic exoskeleton. IEEE
Robot. Automat. Lett. 4, 414–21. doi: 10.1109/LRA.2018.2890671

Fasola, J., Vouga, T., Baud, R., Bleuler, H., and Bouri, M. (2019). “Balance control
strategies during standing in a locked-ankle passive exoskeleton,” 2019 IEEE

16th International Conference on Rehabilitation Robotics (ICORR) (Toronto,
ON), 593–98. doi: 10.1109/ICORR.2019.8779500

Goffer, A., and Tivon, K. (2014). Airbag For Exoskeleton Device.

US20140005577A1. Available online at: https://patents.google.com/patent/
US20140005577A1/en (accessed January 30, 2020).

Gui, P., Tang, L., and Mukhopadhyay, S. (2015). “MEMS based IMU for tilting
measurement: comparison of complementary and kalman filter based data
fusion.” in 2015 IEEE 10th Conference on Industrial Electronics and Applications
(ICIEA), (Auckland: IEEE), 2004–9.

Gurriet, T., Finet, S., Boeris, G., Duburcq, A., Hereid, A., Harib, O., et al. (2018).
“Towards restoring locomotion for paraplegics: realizing dynamically stable
walking on exoskeletons.” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), (Brisbane, QLD: IEEE), 2804–2811.
IEC (2011). Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-Related Systems. CEI/IEC 61508. Geneva: International Electrotechnical
Commission (IEC).

Nashner, L. M., and McCollum, G. (1985). The organization of human postural
movements: a formal basis and experimental synthesis. Behav. Brain Sci. 8,
135–150. doi: 10.1017/S0140525X00020008

Pazzaglia, M., and Molinari,. M (2016). The embodiment of assistive
devices-from wheelchair to exoskeleton. Phys. Life Rev. 16, 163–75.
doi: 10.1016/j.plrev.2015.11.006

Rajasekaran, V. A. J., Casals, A., and Pons, J. L. (2015). An adaptive control strategy
for postural stability using a wearable robot. Robot. Auton. Syst. 73, 16–23.
doi: 10.1016/j.robot.2014.11.014

Rex Bionics. (2020). Rex Bionics - Reimagining Rehabilitation. Rex Bionics.
Available online at: https://www.rexbionics.com/ (accessed September 26,
2019).

Riener, R. (2016). The cybathlon promotes the development of assistive
technology for people with physical disabilities. J. NeuroEng. Rehabil. 13:49.
doi: 10.1186/s12984-016-0157-2

Rogers, M.W., andMille, M. L. (2018). Balance perturbations. Handb. Clin. Neurol.
159, 85–105. doi: 10.1016/B978-0-444-63916-5.00005-7

Segway Switzerland. (2020). Technology – SEGWAY. Available online at: http://
www.segway.ch/en/infos/technologie.php (accessed February 4, 2020).

Frontiers in Robotics and AI | www.frontiersin.org 11 November 2020 | Volume 7 | Article 553828127

https://doi.org/10.3389/fnbot.2018.00084
https://www.roboticstomorrow.com/article/2019/05/compact-mechatronic-drive-for-robotic-applications/13676
https://www.roboticstomorrow.com/article/2019/05/compact-mechatronic-drive-for-robotic-applications/13676
https://www.roboticstomorrow.com/article/2019/05/compact-mechatronic-drive-for-robotic-applications/13676
https://doi.org/10.1038/srep30383
https://doi.org/10.1016/j.jbiomech.2017.01.036
https://doi.org/10.1109/LRA.2018.2890671
https://doi.org/10.1109/ICORR.2019.8779500
https://patents.google.com/patent/US20140005577A1/en
https://patents.google.com/patent/US20140005577A1/en
https://doi.org/10.1017/S0140525X00020008
https://doi.org/10.1016/j.plrev.2015.11.006
https://doi.org/10.1016/j.robot.2014.11.014
https://www.rexbionics.com/
https://doi.org/10.1186/s12984-016-0157-2
https://doi.org/10.1016/B978-0-444-63916-5.00005-7
http://www.segway.ch/en/infos/technologie.php
http://www.segway.ch/en/infos/technologie.php
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Fasola et al. Bio-Inspired Exoskeleton Standing Balance

Swissethics (2018). Lignes Directrices Dispositifs d’assistance Technique – Dispositifs
Médicaux. Commissions D’éthique Suisses Relative à la Recherche sur l’être

Humain (Swissethics). Available online at: https://swissethics.ch/assets/pos_
papiere_leitfaden/leitfaden_technische_assistenzsysteme_final_f.pdf (accessed
June 01, 2020).

van Asseldonk, E. H. F., Emmens, A., Brug, T. J. H., Pisotta, I., Arquilla,
M., Tamburella, F., et al. (2019). “Training balance recovery in people
with incomplete SCI wearing a wearable exoskeleton.” in Wearable Robotics:

Challenges and Trends, Biosystems & Biorobotics, eds M. C. Carrozza,
S. Micera, and L. José Pons (Cham: Springer International Publishing),
334–338.

Vouga, T., Baud, R., Fasola, J., Bouri, M., and Bleuler, H. (2017). “TWIICE—A
lightweight lower-limb exoskeleton for complete paraplegics,” in Rehabilitation

Robotics (ICORR), 2017 International Conference On, (London: IEEE),
1639–1645.

Winter, D. A. (1995). Human balance and posture control during standing and
walking. Gait Posture 3, 193–214. doi: 10.1016/0966-6362(96)82849-9

Conflict of Interest: The authors declare that this study received funding from
Sonceboz SA. The funder was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision to submit it
for publication.

Copyright © 2020 Fasola, Baud, Vouga, Ijspeert and Bouri. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 12 November 2020 | Volume 7 | Article 553828128

https://swissethics.ch/assets/pos_papiere_leitfaden/leitfaden_technische_assistenzsysteme_final_f.pdf
https://swissethics.ch/assets/pos_papiere_leitfaden/leitfaden_technische_assistenzsysteme_final_f.pdf
https://doi.org/10.1016/0966-6362(96)82849-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 16 November 2020

doi: 10.3389/frobt.2020.567491

Frontiers in Robotics and AI | www.frontiersin.org 1 November 2020 | Volume 7 | Article 567491

Edited by:

Carlos A. Cifuentes,

Escuela Colombiana de Ingenieria

Julio Garavito, Colombia

Reviewed by:

Dongming Gan,

Purdue University, United States

Chaoyang Song,

Southern University of Science and

Technology, China

*Correspondence:

Shaoping Bai

shb@mp.aau.dk

Specialty section:

This article was submitted to

Biomedical Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 02 June 2020

Accepted: 04 September 2020

Published: 16 November 2020

Citation:

Islam MRU and Bai S (2020) Effective

Multi-Mode Grasping Assistance

Control of a Soft Hand Exoskeleton

Using Force Myography.

Front. Robot. AI 7:567491.

doi: 10.3389/frobt.2020.567491

Effective Multi-Mode Grasping
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Human intention detection is fundamental to the control of robotic devices in order

to assist humans according to their needs. This paper presents a novel approach for

detecting hand motion intention, i.e., rest, open, close, and grasp, and grasping force

estimation using force myography (FMG). The output is further used to control a soft hand

exoskeleton called an SEM Glove. In this method, two sensor bands constructed using

force sensing resistor (FSR) sensors are utilized to detect hand motion states and muscle

activities. Upon placing both bands on an arm, the sensors can measure normal forces

caused by muscle contraction/relaxation. Afterwards, the sensor data is processed,

and hand motions are identified through a threshold-based classification method. The

developed method has been tested on human subjects for object-grasping tasks. The

results show that the developed method can detect hand motions accurately and to

provide assistance w.r.t to the task requirement.

Keywords: human intention detection, FSR sensor band, exoskeleton control, grasping assistance, soft hand

exoskeletons

1. INTRODUCTION

Grasping tasks are performed repeatedly in both the home and in workplaces. Studies have shown
that a human in a work/home environment performs grasp and transition between different grasps
approximately 4,700 times within a 7.45 h window (Zheng et al., 2011; Bullock et al., 2013).
Performing these tasks repeatedly over a longer period of time can cause fatigue and injuries. Hand
exoskeletons (Gull et al., 2020) have the capability to assist in these tasks, which can reduce human
effort and the risk of getting injured/fatigued.

Proper control of the exoskeleton depends mainly on accurate human intention detection.
Several methods to determine human intention that are based on electromyography (EMG) (Anam
et al., 2017; Meng et al., 2017; Pinzón-Arenas et al., 2019; Qi et al., 2019; Zhang et al., 2019;
Asif et al., 2020) and force myography (FMG) (Islam and Bai, 2019; Xiao and Menon, 2019,
2020) have been proposed. Leonardis et al. (2015) used EMG to control a hand exoskeleton for
bilateral rehabilitation. Here, a paretic hand was provided with grasping assistance by estimating
the grasping force of the non-paretic hand. In another work (Lu et al., 2019), pattern-recognition-
based hand exoskeleton control was proposed for spinal cord injury patients. An FMG-based hand
gesture classification method was proposed to control a hand prosthetic device in Cho et al. (2016).
In total, 10 hand grips were classified using a linear discriminant analysis technique. A high-density
force myography-based hand and wrist gesture classification approach was proposed by Radmand
et al. (2016). It was shown that for static hand postures 0.33% RMSE is achieved. While variation
in upper limb position reduces the accuracy, better performance can be achieved by introducing
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limb position variation in training protocol. Several other
works on force estimation and pattern-recognition-based hand
exoskeleton control have also been reported (Wege and
Zimmermann, 2007; Rasouli et al., 2016; Ferigo et al., 2017;
Secciani et al., 2019; Arteaga et al., 2020).

In all of the reported works, methods to control a hand
exoskeleton are limited to either pattern recognition or force
estimation. Furthermore, in these methods machine learning and
deep leaning techniques are used that requires large training
datasets to achieve good classification/estimation accuracy.

In this work we develop a new sensing method for both
pattern recognition and force estimation using FMG. A multi-
mode task detection approach, i.e., motion classification and
grasp force estimation, is proposed for controlling a hand
exoskeleton. In this method, four hand motion states are
classified i.e., rest, open, close, and grasp. The classification
algorithm is based on threshold approach and requires a small
training dataset. Once the grasp is detected, the control mode
is switched to grasp assistance. This is achieved by virtue of two
sensor bands built with FSRs, which can detect muscle activities
conveniently and effectively. In terms of its sensingmethod, FMG
has exhibited a better performance than EMG in classification
and estimation tasks considering accuracy, repeatability, and cost
(Ravindra and Castellini, 2014; Jiang et al., 2017). Moreover,
unlike EMG, FMG is not affected by skin conditions and has a
simple electronics interface.

This paper is organized as follows. The design and
implementation of the sensor band and exoskeleton control
strategy are described in section 2. Section 3 presents the
data processing and algorithm design for grasp detection and
assistance. Experimental setup and testing results are described
in section 4. Discussion on the developed method is presented in
section 5. The work is concluded in section 6.

2. MATERIALS AND METHODS

In this section, a methodology to detect hand motions i.e.,
rest, open, close, and grasp is described. Sensor bands, a hand
exoskeleton, and control methods are also presented.

2.1. Methodology
In this work, four handmotion states are classified, i.e., rest, open,
close, and grasp. The last three motion states are classified as
dynamic states, whereas rest is identified as a static hand state in
any posture, e.g., keeping the hand fully opened/closed or holding
an object in a fixed posture.

In object grasping, fingers have to be flexed. During flexion,
the muscle belly shortens in length and contracts toward the
side of the elbow joint, which is referred as isotonic muscle
contraction. As the object comes into contact with the hand,
muscle shortening stops, and an isometric contraction state
is initiated. In this state the muscle belly along the forearm
contracts as long as the force applied to hold an object reaches
the steady state.

In this work contraction states and the transition between
them, i.e., isotonic and isometric, are measured through FMG,
using sensor bands built with FSR sensors. In this method,

normal forces caused by muscle contraction and applied to the
sensor band, hereafter called muscle contraction-induced (MCI)
force, are measured. Flexor digitorum profundus and flexor
digitorum superficialis are the prime muscles that govern fingers
flexion to close the hand. During hand closing movement, the
length of these muscle shortens and they contract toward elbow
joint. MCI force near the elbow will therefore increase, while it
will decrease near the wrist joint. As soon as the object is grasped,
muscles stop shortening and isometric contraction takes over. In
this case, MCI forces over the muscle belly will increase. This
principle can be expanded further to explain hand opening task.
In hand opening the object is ungrasped, MCI force on both
ends of the forearm will decrease. On the other hand, as the
object is released and the fingers are further extended, MCI force
measured near the elbow will decrease, while the force measured
near wrist will increase. From these changes of MCI force, hand
motion states can be determined with certain algorithms.

2.2. Sensor Band
The aforementioned hand motion detection relies on an effective
and convenient method to detect MCI forces. To this end, two
sensor bands are constructed at Aalborg University exoskeleton
lab, as shown in Figure 1A.

The sensor bands are designed to be placed on the forearm,
as shown in Figure 1B. One is placed near the elbow joint. This
band, referred to as SBe, is comprised of eight FSR sensors. The
other band is placed near wrist joint, referred to as SBw, which
has an array of four FSR sensors embedded. The placements of
FSR sensors inside the sensor bands are shown in Figure 1A. All
FSR sensors are FSR-402, developed by Interlink electronics, and
have the capability of measuring 0.1–10 N. More information on
the construction of sensor bands can be found in Islam and Bai
(2019).

2.3. SEM Glove
In this work a soft hand exoskeleton SEM Glove (Nilsson et al.,
2012; Hashida et al., 2019) is used to provide physical grasping
assistance, as shown in Figure 1B. The SEM Glove is equipped
with FSR sensors placed at the middle and index fingertips and
at the thumb. The assistance provided by the exoskeleton can
be measured by these sensors. Moreover, in the SEM Glove’s
own control unit, the assistance level is also controlled using the
same sensor data. The tighter the object is grasped the higher the
assistance level will be. In this work, the assistance level provided
by SEM Glove is controlled through MCI force measured by the
sensor band placed near elbow joint instead of using the SEM
Glove’s own sensors.

2.4. Sensing Data
The sensor bands allow us to collect handmotion data effectively.
An example of a dataset of rest, open, close, and grasp, labeled as
“R,” “O,” “C,” and “G,” respectively, is shown in Figure 2. Isotonic
contraction during opening and closing of hand can be seen in
Figure 2A. Figure 2B shows the data of an object being grasped
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FIGURE 1 | (A) FSR sensors placement inside sensor bands SBw and SBe and (B) SEM Glove and sensor bands placement on forearm.

FIGURE 2 | Net output voltage measured from sensor bands for opening and closing of hand (A) without grasping and (B) grasping an object.

when isometric contraction occurs. The state when the object is
grasped is labeled as “G.”

In the hand opening task, shown in Figure 2B, it can be
seen the sensor amplitude first goes down. This muscle activity
represents loosening of grip on the object. Afterwards, increase in
muscle activity at SBw and decrease in muscle activity at SBe are
observed, which represents fingers extension to open the hand.
In the implementation phase, loosening of grip is treated as a
steady state.

2.5. Multi-Mode Control
In this work, a multi-mode control approach is used to assist in
grasping, which is shown in Figure 3.

The control strategy is divided into two stages i.e., motion
classification and grasp force assistance. Motion classification is
based on a threshold approach. Out of four actions, i.e., rest,
open, close, and grasp, once the algorithm identifies grasp action,
the control mode is shifted to grasp force assistance. In this mode
a proportional control is implemented, where the assistance force
is determined using MCI force measured through SBe.

3. DATA PROCESSING

3.1. Sensor Calibration
The FSR sensors in the two sensor bands are interfaced with a
non-inverting amplifier. The output voltage of the amplifier is
thus given by the following equation:

Vout = (1+
Rref

Rfsr
)Vin (1)

FIGURE 3 | Flow chart of multi-mode control method.

Here, Vout is the output voltage of the amplifier, Vin is the input
voltage applied to positive terminal of the amplifier, Rref is the
reference resistance, and Rfsr represents the FSR resistance, which
varies with force applied on it.

With the amplifier designed, it is possible to change the range
of force measured by FSR. This is done either by changing the
reference resistance Rref or input voltage Vin. In our design, the
reference resistance is fixed to 100 kohm. We therefore adjust the
input voltage Vin through a DAC port from micro-controller for
this purpose, which is a task of sensor calibration.
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FIGURE 4 | Gestures used in calibration and training stage. (A) open hand gesture to calibrate SBw, (B) close hand gesture to calibrate SBe, and (C) rest state

gesture to collect data for threshold determination.

FIGURE 5 | FSR data for hand closing gesture (A) before and (B) after calibration.

In the calibration stage, input voltage Vin is adjusted so that
at least three of the FSR sensors from both SBe and SBw have
reached the maximum voltage limit. In this way, the sensor bands
can have high resolution in all detections.

During calibration of SBw, the subject is asked to keep the
hand open, as shown in Figure 4A. This posture initiates the
calibration procedure. An automated program checks the sensors
outputs above threshold level. If the number is less than three,
input voltage Vin is increased gradually until the condition is
fulfilled, i.e., at least three sensors are above threshold limit.
Similar procedure is followed for the calibration of SBe but for
the close hand gesture, as shown in Figure 4B, to complete the
calibration. In the current setup it is set to 1.5 V.

An example dataset of the calibration stage is shown in
Figure 5. This dataset represents the task of hand closing
from fully opened state. Figure 5A is the dataset collected
before calibration and Figure 5B is the dataset collected
after calibration.

The improvement in signal resolution, ν, is computed by
taking the ratio of change in signal amplitude, from open to close
hand gesture, to the standard deviation of signal value during the
steady state condition. Mathematically it is given as,

ν =
|µ(VO)− µ(VC)|
max(σ (VO), σ (VC))

(2)

Here, VO and VC represent the net voltage measured from the
sensor bands for open hand and close hand gestures respectively,

TABLE 1 | Resolution measured before and after calibration.

Sensor band
Resolution ν

% increase

Without calibration With calibration

SBw 27.88 60.13 221

SBe 27.94 61.74 222

and µ and σ are the mean and standard deviation respectively.
The results obtained through aforementioned equation are
provided in Table 1. The results clearly show that the resolution
of both sensor bands is increased significantly, more than two
times, after calibration.

3.2. Features Selection
While grasping an object, sensor readings highly depend on the
shape and weight of the object. Moreover, donning and doffing
of the sensor band also affects the sensor response. Developing a
threshold- or machine-learning-based task-detection algorithm
will require a large amount of data if the signal amplitude or it’s
RMS value is used as the input feature. It is noted that when a
user takes off the sensor band and puts it back on, it is desirable
that the sensor band has to be placed exactly at the same place
and with the same tightness, but this is very challenging. All these
factors will affect the classification performance.

With experiments, it is observed that the feature that gives
consistent results with less deviation is slope. This feature
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represents the change in signal amplitude w.r.t time. An example
dataset of grasping different shape and weight objects is shown
in Figure 6. A grasping dataset for each object is represented in
3s windows. From time 0 to 3, 3 to 6, and 6 to 9 s objects A, B,
and C are grasped sequentially, as shown in Figure 8. From 9 to
18 s a dumbbell bar is grasped three times with different weight
hanged on the sides of it. The weights of the dumbbells, applied
from t = 9 to 12, 12 to 15, and 15 to 18 s were 1.2, 2.3, and
3.4 kg, respectively. Data sessions from 0 to 9 and from 9 to 18
s were recorded separately. It can be seen from Figure 6A that
there is big variation in FSR reading, as it depends on the shape
and weight of the object. However, if we look at the slope feature
in Figure 6B, a similar pattern but with different peaks can be
observed. Initially, fingers are flexed therefore we see opposite
slopes for the FSR sensors placed near elbow and wrist joint. As
soon as an object is grasped, positive slopes for both sensor bands
are observed. By carefully selecting the threshold value, grasp
action can be detected very effectively. In this work we therefore
selected slope feature for detection of hand motion.

3.3. Features Extraction
Two features are extracted from raw sensor data, i.e., root mean
square (RMS) and slopes. RMS from raw sensor data is obtained
using a 150 ms window in which 100 ms is non-overlapping and
50 ms is overlapping from previous window. After calculating
RMS values for each FSR sensor, slopes are obtained using the
following equation:

κ =
Ri − Ri−1

tws
(3)

Here, κ represents the slope feature, Ri represents the newest
sample of RMS data, and tws is the window time to
extract features.

3.4. Threshold Determination
In this method each state, i.e., rest, open, close, and grasp, is
identified using a threshold-based classification approach. To
determine the threshold limits, subject is asked to hold rest state,
as shown in Figure 4C, for 5 s. Raw data obtained in this task
is post processed to obtain slopes, which are further used to
determine threshold limits.

After the computation of slope feature, the minimum and
maximum slope value for each FSR was computed:

ξmax
w = max(1w), ξmin

w = min(1w) (4)

ξmax
e = max(1e), ξmin

e = min(1e) (5)

with

1w = [κ1
w ... κN

w ], 1e = [κ1
e ... κM

e ] (6)

Here, N andM are the numbers of FSR sensors embedded inside
the sensor bands SBw and SBe, respectively. ξmin

w and ξmax
w are row

matrices of order 1 × N and contain minimum and maximum
slope values of SBw sensor band data computed for rest state.
ξmin
e and ξmax

e are also row matrices of order 1 ×M and contain

minimum and maximum slope values of SBe sensor band data.
1w is a I × N matrix, where I is the number of slope feature
samples computed from rest gesture data, and 1e is also a matrix
but of I ×M dimension.

Using (4) and (5), threshold conditions to detect each task are
given as

HR = 1r
w <= kξmax

w & 1r
e <= kξmax

e (7)

HO = 1r
w > kξmax

w & 1r
e < kξmin

e (8)

HC = 1r
w < kξmin

w & 1r
e > kξmax

e (9)

HG = 1r
w > kξmax

w & 1r
e > kξmax

e (10)

Here, HR, HO, HC, and HG are the thresholds for rest, open,
close, and grasp task detection. 1r

w and 1r
e are row matrices that

are computed during real-time testing. The information in these
matrices is in same order as in 1w and 1e.

3.5. Grasp Force Estimation
During the motion classification stage, if grasp action is detected,
the control method is switched to grasp assistance. In this mode,
we need to determine and control the grasp assistance provided
by the SEM Glove. In this work, it is determined using the
following equation:

u = (SBrms
e − LBe)K (11)

Here, u is the control input relayed to the SEM Glove, K is the
proportional gain and SBrms

e is the net FSR output measured from
the sensor band SBe. LBe is the net FSR output measured at the
time of grasp detection and is given by following equation:

LBe = mean(Rie,R
i−1
e ) (12)

Here, i is the sample when grasp action was detected, and i − 1
represents the sample before.

3.6. Performance Analysis
The performance of the task detection technique is analyzed with
a group of four parameters, namely, precision, recall, F1-score,
and accuracy (Powers, 2011). Mathematically, these parameters
are calculated by

Ppre =
NTP

NTP + NFP
(13)

Prec =
NTP

NTP + NFN
(14)

PF1 = 2 ·
Ppre · Prec
Ppre + Prec

(15)

Pacc =
NTP + NTN

NTP + NTN + NFP + NFN
(16)
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FIGURE 6 | FSR feature dataset for grasping objects of different sizes and weights. (A) RMS and (B) slope.

FIGURE 7 | Classification of TP, TN, FP, and FN samples.

Here, NTP, NTN, NFP, and NFN represent number of samples that
are true positive, true negative, false positive, and false negative,
respectively, as illustrated in Figure 7. Ppre, Prec, PF1, and Pacc are
the performance measures that represents precision, recall, F1-
score, and accuracy, respectively. Of these measures, precision,
recall, and F1-score are defined in the range of 0–1, whereas,
accuracy is expressed in percentage.

Using these four parameters we can evaluate the classification
performance comprehensively and in an unbiased manner. From
mathematical representations, we can see that the fundamental
difference between accuracy and other parameters is TN samples.
In our designed experiment the number of samples in each class is
not consistent. In such cases precision and recall can also provide
very useful insight into classification performance. Taking the
example of rest task, precision calculates from the total number
of samples that are classified as rest how many were actually
rest. Meanwhile, recall calculates, from the number of times a
user was instructed to keep rest state, how many samples were
correctly identified as rest state. Finally, the F1-score tells the
balance between precision and recall.

4. EXPERIMENTS AND RESULTS

With the developed method, three experiments are performed,
i.e., task identification, influence of sensor placement, and
grasping assistance. Details and results of each task are provided
in forthcoming sections.

4.1. Task Identification
Six subjects participated in this experiment. All of them were
healthy, right-handed, and aged between 25 and 35 years. Ethical

FIGURE 8 | Objects of different shape and weight that are grasped during

task identification experiment, (A) empty cup, (B) aluminum bar, and (C) solid

metal cylinder.

approval for these experiments was obtained from an ethical
committee, Region Nordjylland, Denmark.

In this experiment, performance measures, i.e., precision,
recall, F1-score, and accuracy, are computed to evaluate the
classification performance. For this purpose, an experiment was
designed where a subject performs hand opening and closing,
first without any object and afterwards with three objects, as
shown in Figure 8, of different attributes.

The protocol of the experiment is as follows: the subject
is instructed to sit in a chair with their hands resting on the
table beside the objects. The first task the subject performs is
calibration, as explained in section 3.1, which is followed by a
rest state gesture, as shown in Figure 4C, which is held for 5 s
to determine the threshold limits. Afterwards, real-time testing
tasks are performed in which, for open and close tasks, the subject
lifts his/her hand from the table and keeps it in open state, as
shown in Figure 4A. The subject closes his/her hand when the
instruction is shown on the screen and opens it up when the
instruction to open is shown on the screen again. The subject
is instructed that an open hand posture should be maintained
throughout the experiment. For the grasp task, hand is lifted
from the table and kept open, as shown in Figure 4A. When
the grasp instruction is shown on the screen, subject grasps the
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FIGURE 9 | Tasks performed during (A) the whole span of time, (B) opening and closing of the hand, and (C) grasping object B.

object and slightly lifts it from the table with a small clearance of
approximately 1.0 cm.

The results of the experiment are shown in Figures 9–12
and summarized in Table 2. Figure 9 shows the experimental
results for one of the subjects. Figure 9A shows the reference
and predicted tasks. In the first 80 s of the experiment, the
subject is instructed to perform the rest, open, and close
tasks. From t = 80 to 155, t = 155 to 220, and t = 220
to 285 s, the subject is instructed to grasp objects A, B,
and C sequentially. In this figure, the solid blue line shows
the task to be performed and the dotted red line the result
predicted by a classifier when a subject performs that particular
task. A zoomed-in view of open and close tasks is shown
in Figure 9B and of grasping task for object B is shown in
Figure 9C.

Single instances of abovementioned tasks are shown in
Figure 10. Figure 10A is the result of an open and close task.
The results show that, initially, the hand was in the close state;
as the subject opens the hand, a drop in signal amplitude near the
elbow and an increase in signal amplitude near the wrist joint is
observed. The classifier is able to detect that the hand is opened
as the movement is performed. Afterwards, when the hand is
closed, the inverse muscle activity pattern can be seen, and, as

the movement is performed, the classifier is again able to detect
that the hand is closed.

The instances of grasping object A, B, and C are shown in
Figures 10B–D, respectively. Data is presented in the same order
as represented for Figure 10A. Initially, the subject is holding the
object. As the hand is opened, it is seen from the FSR readings
that their associated muscle contraction near the wrist increases,
and contraction near elbow is decreased. From the opened hand
state when the subject is instructed to grasp the object, it can be
seen that classifier first detects that the hand is closing. It can also
be seen from the FSR readings that it is increasing near the elbow
and decreasing near the wrist, indicating hand closing. As the
object is grasped, an increase in readings on both sensor bands
is seen, and the classifier correctly detects that an object is being
grasped. These results show that the threshold-based classifier is
able to distinguish between all four motion states, i.e., rest/steady,
open, close, and grasp, accurately.

Results in terms of precision, recall, F1-score, and accuracy are
shown in Figures 11, 12 and Table 2. In the figures, the error bar
represents the performance deviation within the tasks, i.e., rest,
open, close, and grasp.

The average performance values w.r.t each task are shown
in Figure 12. Considering the rest state, it can be seen that
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FIGURE 10 | Results of single instances (A) open/close, grasping objects (B) A, (C) B, and (D) C, shown in Figure 8.

average recall value is 0.98, which reveals that only 2% of the
rest states were not detected. It is to be noted that rest state
was held in all postures, i.e., open hand, close hand, and grasp.

In the context of real-time operation, this result is very critical.
Any miss-classification can cause undesirable movement/action,
especially if subject is holding an object. The results show that the
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FIGURE 11 | Results calculated for each subject individually (A) precision, (B) recall, (C) F1-score, and (D) accuracy.

FIGURE 12 | Average results of each performance measure w.r.t each task. Accuracy plot is shown normalized between 0 and 1.

algorithm is highly accurate in detecting the rest state. Precision
for detecting rest state is equal to 0.96, which shows that in only
few cases where subject was performing another task (open, close,
or grasp), classifier detected it as rest state.

For open and close tasks, it can be seen that recall and
precision scores are very similar. For grasp, we can see that
precision (0.97) is higher than recall (0.94). From precision,
we can deduce that, of all the tasks that were classified as
grasp, only 3% of them were miss-classifications. Meanwhile,
the recall result tells us that 6% of the times when a subject
grasped an object, the classifier did not detect it as grasp. To
improve precision, the threshold level should be raised, but this

will affect the performance of recall. Raising the threshold will
have the opposite impact on other performances. It will improve
the recall but might reduce the precision. With the current
setup, classification performance of the algorithm depends on
the trade-off between recall and precision. Depending on the
applications, threshold levels can be tuned to get better results.
The performance can be improved by incorporating more FSR
sensors or by using more features for threshold determination.

4.2. Influence of Sensor Placement
In this experiment, the effect of sensor placement on
motion detection is studied. To achieve this objective
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sensor bands are placed over the forearm in three different
orientations/placements, as shown in Figure 13. In placement
A, FSR1 from sensor bands SBe and SBw is aligned with
brachioradialis and near insertion of brachioradialis. In
placement B, it is aligned with brachioradialis and flexor carpi
ulnaris muscles. Finally, in placement C, it is aligned with
palmaris longus and near the insertion of brachioradialis.

Tasks performed for each placement of sensor bands are
as follows:

• Open and close of hand without grasping any object
• Grasping object C as shown in Figure 8.

Each task is performed 10 times under same conditions as
explained in section 4.1. The results of each experiment are
shown in Figure 14, where Figures 14A–C are the results of
placement A, B, and C, respectively, by sensor band orientation.
In each sub-figure of Figure 14, the first figure is the FSR sensors
data from the sensor band placed near the wrist, and the second
is the data of FSR sensors placed near the elbow, and the third
figure displays the reference and predicted tasks.

Even though the raw data is not similar for each sensor
placement, the developed method is able to detect all four hand
gestures accurately. The performance of task detection is less
affected. As seen from predicted results, rest state, hand opening,
closing, and grasping achieved the average accuracies of 98.15,
99.24, 100, and 98.16% for all three placements.

4.3. Grasping Assistance
In this work, grasping assistance is provided using SEM
Glove where the desired assistance level is regulated by
implementing a proportional control scheme. The block

TABLE 2 | Average results of performance measures calculated for each subject.

Performance

measures

Precision Recall F1-score Accuracy %

Subject 1 0.98 ± 0.013 0.99 ± 0.012 0.99 ± 0.010 99 ± 0.5

Subject 2 0.98 ± 0.019 0.97 ± 0.029 0.97 ± 0.011 99 ± 0.9

Subject 3 0.99 ± 0.012 0.98 ± 0.030 0.99 ± 0.014 99 ± 0.6

Subject 4 0.99 ± 0.029 0.96 ± 0.044 0.97 ± 0.019 99 ± 1.0

Subject 5 0.91 ± 0.063 0.92 ± 0.030 0.92 ± 0.032 96 ± 1.6

Subject 6 0.97 ± 0.024 0.98 ± 0.007 0.97 ± 0.013 99 ± 0.7

Average 0.97 ± 0.029 0.97 ± 0.024 0.97 ± 0.027 98 ± 1.3

diagram of the control scheme is shown in Figure 15.
Referring to Equation (11), the input of the proportional
control is the average MCI force measured by the sensor
band placed near the elbow, and the output u is then
relayed to the exoskeleton. Moreover, grasping assistance
provided by SEM Glove is further validated by measuring the
grasping force through force sensors embedded inside SEM
Glove exoskeleton.

In this experiment the sensor bands are worn on
right forearm and exoskeleton is worn on the left hand.
Furthermore, three different payloads, i.e., 1.2, 2.3, and
3.4 kg, applied from t = 0 to 20, t = 20 to 40, and t
= 40 to 60 s, respectively, are being grasped for three
times each. The results of the experiment are shown in
Figure 16.

Figure 16A shows the task predicted by the classifier. Net
MCI force measured by the SBe sensor band is shown in
Figure 16B. The resulting grasping force measured from SEM
Glove sensors is shown in Figure 16C. Whereas, the single
instance of grasp task is shown in Figure 17. With the detection
of a grasping task and MCI force, assistance is provided by the
exoskeleton, which is evident from the sensor reading of the
SEM Glove.

If we look closely at Figures 16B,C, we can see that the
MCI forces are increasing with the payload grasped by the
subject. It is also seen that the forces read by the sensors
placed at the middle finger and thumb are increasing with
the payload. These are the grasping forces that are caused
by the physical interaction between fingertips and the object.
When assistance provided by the exoskeleton is increased, the
exoskeleton will help to grasp the object tightly and in turn
grasping force measured the sensors, placed in finger tips, will
increase. This validates that with the increase in MCI force,
shown in Figure 16B, exoskeleton is able to provide the grasping
assistance accordingly.

5. DISCUSSION

In this work a novel method is developed for hand motion
detection and for the provision of assistance in carrying out an
object grasping task. We also addressed the challenge of data
collection for training and proposed an alternative solution for it.

The new method is advantageous in reducing the complexity
and increasing the usability of the system for a longer period.
In an AI-based pattern recognition method, obtaining a correct

FIGURE 13 | Three placements of sensor bands, (A) two FSR1 from SBe and SBw are aligned with brachioradialis and near insertion of brachioradialis, (B) aligned

with brachioradialis and flexor carpi ulnaris, (C) aligned with palmaris longus and near insertion of brachioradialis.
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FIGURE 14 | Hand motion detection with three placements of the sensor bands, (A) with placement A, (B) with placement B, (C) with placement C.

and sufficient training dataset is one of the major challenges.
Moreover, even if the training data is obtained correctly there
still exists another challenge of reusing it from time to time. The
reason is due to the placement of sensor at the exact location and
change in muscle activity levels. The method proposed in this

work effectively addresses these challenges. The method requires
sensor calibration and rest state data of the hand. Afterwards, the
system can detect the hand motions based on change in activity
level. Additionally, the requirement on placing sensor band at
exact location is mitigated. Moreover, the calibration procedure
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FIGURE 15 | Block diagram of the exoskeleton control.

FIGURE 16 | Hand exoskeleton control results: (A) task identified, (B) MCI force measured from sensor band placed near elbow joint, and (C) assistance force

provided by SEM Glove.

increases the sensor’s sensitivity and solves the problem of sensor
resolution if the band tightness is changed from one day to
the next.

Another advantage of this method is the dual working modes
of the sensor band. Besides motion recognition, the sensor band
is also used to control assistance level in grasping an object, which
is proportional to the MCI force measured.

The results in this work are significant for physical assistance
in workplaces. For a workplace environment, it is critical for
any solution that it be accurate, robust, involving less training,
and is not sensitive to environmental conditions. With these
requirements in mind, comparing our method to other detection
methods like sEMG, which is highly prone to noise that is
caused by sensor placement, orientation, and skin conditions, our
method is less affected by skin condition and can be worn without
very exact orientation and placement. Moreover, our developed
method has the advantage of using small training datasets. In
Arteaga et al. (2020) and Pinzón-Arenas et al. (2019), each gesture
was repeated for more than 10 times. Whereas, in our method
beside calibration, rest data is recorded for only one time. By
this advantage the user can take off the device and put it back
on conveniently without worrying about its performance.

This novel method using FSR sensor bands offers a robust
and accurate alternative for human-robot interaction. The
works presented in this paper and in previous studies (Islam
et al., 2018; Islam and Bai, 2019) have shown that FSR-based
sensor bands can be applied for control of upper-body assistive
exoskeletons in different ways. Beside these, sensor bands can
be applied for other types of applications of upper-limb and
lower-limb exoskeletons. Moreover, this method can be used to
assess the muscle activities for medical purposes and design of
control strategies.

Besides these advantages, some limitations of the method are
noted. External contact with the sensor band can change the
sensor readings, which can result in incorrect motion detection.
Hand motion speed is also a factor that can lead to miss-
classification. If the motion is performed at slow speed, the
algorithm might not be able to detect the task. These challenges
can be addressed by either placing the FSR array outside of
the sensor band or by implementing robust AI techniques for
fault detection. Movement speed challenge can be addressed
by increasing the window size during features extraction stage.
However, increasing the window size can introduce delay in
exoskeleton response.
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FIGURE 17 | History of task performed, average MCI forces, and grasping forces measured by SEM Glove.

6. CONCLUSIONS

This work is aimed at developing an effective and convenient
method to detect hand motions, i.e., rest, open, close, and grasp,
using FSR-based sensor bands, which is further used to control
hand exoskeleton and provide assistance in grasping task. The
objectives are achieved by developing a threshold-based task
detection algorithm to determine the hand motion, which is
based on the change in MCI forces. Moreover, with the detection
of grasping task a proportional force control is also implemented
to provide assistance through a soft hand exoskeleton.

The contribution of this work is to experimentally validate
whether the sensor bands can be used to detect hand motion
and to implement proportional assistance control. Detection of
hand motion with the requirement of minimal training data
and its validation with testing on multiple subjects are other
contributions of this work. The results showed that the developed
method can detect each task with high precision, recall, and
accuracy. Furthermore, experimental verification of proportional
assistance control with SEM Glove in a grasping task is another
contribution of this work. The results have shown that the
developed method can be used with soft exoskeleton to assist
workers in grasping tasks.

In this work, experiments were performed in a controlled
environment. In order to test the method for daily routine
activities, our future work will focus on sensor fusion techniques
to improve robustness against disturbances, which can be caused
by other limb movements. Furthermore, the method can be
extended to detect other hand gestures and elbow and lower
extremity motions.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions will be made available
by the lead author on reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by ethical committee, Region Nordjylland, Denmark.
The participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

MI and SB defined and developed this research work. MI
developed the initial protocol draft, collected data, performed the
analysis, and wrote the first draft of the manuscript. SB finalized
the protocol, reviewed the manuscript, and approved the final
version. Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by Innovation Fund Denmark for
project EXO-AIDER (https://www.exo-aider.dk).

ACKNOWLEDGMENTS

The authors would like to thank participants for their time
contributed to this study.

Frontiers in Robotics and AI | www.frontiersin.org 13 November 2020 | Volume 7 | Article 567491141

https://www.exo-aider.dk
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Islam and Bai FMG-Based Hand Exoskeleton Control

REFERENCES

Anam, K., Rosyadi, A. A., Sujanarko, B., and Al-Jumaily, A. (2017). “Myoelectric
control systems for hand rehabilitation device: a review,” in 2017 4th

International Conference on Electrical Engineering, Computer Science and

Informatics (EECSI), 1–6. doi: 10.1109/EECSI.2017.8239091
Arteaga, M. V., Castiblanco, J. C., Mondragon, I. F., Colorado, J. D., and

Alvarado-Rojas, C. (2020). EMG-driven hand model based on the classification
of individual finger movements. Biomed. Signal Process. Control 58:101834.
doi: 10.1016/j.bspc.2019.101834

Asif, A. R., Waris, A., Gilani, S. O., Jamil, M., Ashraf, H., Shafique, M., et al. (2020).
Performance evaluation of convolutional neural network for hand gesture
recognition using EMG. Sensors 20:1642. doi: 10.3390/s20061642

Bullock, I. M., Zheng, J. Z., De La Rosa, S., Guertler, C., and Dollar, A. M. (2013).
Grasp frequency and usage in daily household and machine shop tasks. IEEE
Trans. Hapt. 6, 296–308. doi: 10.1109/TOH.2013.6

Cho, E., Chen, R., Merhi, L.-K., Xiao, Z., Pousett, B., and Menon, C. (2016). Force
myography to control robotic upper extremity prostheses: a feasibility study.
Front. Bioeng. Biotechnol. 4:18. doi: 10.3389/fbioe.2016.00018

Ferigo, D., Merhi, L.-K., Pousett, B., Xiao, Z. G., and Menon, C. (2017). A case
study of a force-myography controlled bionic hand mitigating limb position
effect. J. Bion. Eng. 14, 692–705. doi: 10.1016/S1672-6529(16)60435-3

Gull, M. A., Bai, S., and Bak, T. (2020). A review on design of upper limb
exoskeletons. Robotics 9:16. doi: 10.3390/robotics9010016

Hashida, R., Matsuse, H., Bekki, M., Omoto, M., Morimoto, S., Hino, T., et al.
(2019). Evaluation of motor-assisted gloves (SEM Glove) for patients with
functional finger disorders: a clinical pilot study. Kurume Med. J. 64, 1–18.
doi: 10.2739/kurumemedj.MS652007

Islam, M. R., Xu, K., and Bai, S. (2018). “Position sensing and control with FMG
sensors for exoskeleton physical assistance,” in International Symposium on

Wearable Robotics (Pisa: Springer), 3–7. doi: 10.1007/978-3-030-01887-0_1
Islam, M. R. U., and Bai, S. (2019). Payload estimation using forcemyography

sensors for control of upper-body exoskeleton in load carrying assistance.
Model. Identif. Control 40, 189–198. doi: 10.4173/mic.2019.4.1

Jiang, X., Merhi, L.-K., Xiao, Z. G., and Menon, C. (2017). Exploration of force
myography and surface electromyography in hand gesture classification. Med.

Eng. Phys. 41, 63–73. doi: 10.1016/j.medengphy.2017.01.015
Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti,

C., et al. (2015). An EMG-controlled robotic hand exoskeleton for bilateral
rehabilitation. IEEE Trans. Hapt. 8, 140–151. doi: 10.1109/TOH.2015.2417570

Lu, Z., Stampas, A., Francisco, G. E., and Zhou, P. (2019). Offline and
online myoelectric pattern recognition analysis and real-time control
of a robotic hand after spinal cord injury. J. Neural Eng. 16:036018.
doi: 10.1088/1741-2552/ab0cf0

Meng, Q., Meng, Q., Yu, H., and Wei, X. (2017). “A survey on sEMG control
strategies of wearable hand exoskeleton for rehabilitation,” in 2017 2nd Asia-

Pacific Conference on Intelligent Robot Systems (ACIRS) (Wuhan), 165–169.
doi: 10.1109/ACIRS.2017.7986086

Nilsson, M., Ingvast, J., Wikander, J., and von Holst, H. (2012). “The soft
extra muscle system for improving the grasping capability in neurological
rehabilitation,” in 2012 IEEE-EMBS Conference on Biomedical Engineering and

Sciences (Langkawi), 412–417. doi: 10.1109/IECBES.2012.6498090

Pinzón-Arenas, J. O., Jiménez-Moreno, R., and Herrera-Benavides, J. E. (2019).
“Convolutional neural network for hand gesture recognition using 8 different
EMG signals,” in 2019 XXII Symposium on Image, Signal Processing and

Artificial Vision (STSIVA) (Bucaramanga), 1–5. doi: 10.1109/STSIVA.2019.87
30272

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J. Mach. Learn. 2, 37–63.

Qi, J., Jiang, G., Li, G., Sun, Y., and Tao, B. (2019). Intelligent human-
computer interaction based on surface EMG gesture recognition. IEEE Access

7, 61378–61387. doi: 10.1109/ACCESS.2019.2914728
Radmand, A., Scheme, E., and Englehart, K. (2016). High-density force

myography: a possible alternative for upper-limb prosthetic control. J. Rehabil.
Res. Dev. 53, 443–456. doi: 10.1682/JRRD.2015.03.0041

Rasouli, M., Chellamuthu, K., Cabibihan, J.-J., and Kukreja, S. L.
(2016). “Towards enhanced control of upper prosthetic limbs:
a force-myographic approach,” in 2016 6th IEEE International

Conference on Biomedical Robotics and Biomechatronics (BioRob)

(University Town), 232–236. doi: 10.1109/BIOROB.2016.75
23629

Ravindra, V., and Castellini, C. (2014). A comparative analysis of three non-
invasive human-machine interfaces for the disabled. Front. Neurorobot. 8:24.
doi: 10.3389/fnbot.2014.00024

Secciani, N., Bianchi, M., Meli, E., Volpe, Y., and Ridolfi, A. (2019). A novel
application of a surface electromyography-based control strategy for a hand
exoskeleton system: a single-case study. Int. J. Adv. Robot. Syst. 16, 1–13.
doi: 10.1177/1729881419828197

Wege, A., and Zimmermann, A. (2007). “Electromyography sensor based control
for a hand exoskeleton,” in 2007 IEEE International Conference on Robotics and

Biomimetics (ROBIO) (Sanya), 1470–1475. doi: 10.1109/ROBIO.2007.4522381
Xiao, Z. G., and Menon, C. (2019). A review of force myography research and

development. Sensors 19:4557. doi: 10.3390/s19204557
Xiao, Z. G., and Menon, C. (2020). Towards the investigation on the effect of the

forearm rotation on the wrist FMG signal pattern using a high-density FMG
sensing matrix. Cogent Eng. 7:1795051. doi: 10.1080/23311916.2020.1795051

Zhang, Z., Yang, K., Qian, J., and Zhang, L. (2019). Real-time surface EMG pattern
recognition for hand gestures based on an artificial neural network. Sensors
19:3170. doi: 10.3390/s19143170

Zheng, J. Z., De La Rosa, S., and Dollar, A. M. (2011). “An investigation of grasp
type and frequency in daily household and machine shop tasks,” in 2011 IEEE

International Conference on Robotics and Automation (Shanghai), 4169–4175.
doi: 10.1109/ICRA.2011.5980366

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Islam and Bai. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 14 November 2020 | Volume 7 | Article 567491142

https://doi.org/10.1109/EECSI.2017.8239091
https://doi.org/10.1016/j.bspc.2019.101834
https://doi.org/10.3390/s20061642
https://doi.org/10.1109/TOH.2013.6
https://doi.org/10.3389/fbioe.2016.00018
https://doi.org/10.1016/S1672-6529(16)60435-3
https://doi.org/10.3390/robotics9010016
https://doi.org/10.2739/kurumemedj.MS652007
https://doi.org/10.1007/978-3-030-01887-0_1
https://doi.org/10.4173/mic.2019.4.1
https://doi.org/10.1016/j.medengphy.2017.01.015
https://doi.org/10.1109/TOH.2015.2417570
https://doi.org/10.1088/1741-2552/ab0cf0
https://doi.org/10.1109/ACIRS.2017.7986086
https://doi.org/10.1109/IECBES.2012.6498090
https://doi.org/10.1109/STSIVA.2019.8730272
https://doi.org/10.1109/ACCESS.2019.2914728
https://doi.org/10.1682/JRRD.2015.03.0041
https://doi.org/10.1109/BIOROB.2016.7523629
https://doi.org/10.3389/fnbot.2014.00024
https://doi.org/10.1177/1729881419828197
https://doi.org/10.1109/ROBIO.2007.4522381
https://doi.org/10.3390/s19204557
https://doi.org/10.1080/23311916.2020.1795051
https://doi.org/10.3390/s19143170
https://doi.org/10.1109/ICRA.2011.5980366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 27 November 2020

doi: 10.3389/frobt.2020.554639

Frontiers in Robotics and AI | www.frontiersin.org 1 November 2020 | Volume 7 | Article 554639

Edited by:

Jan Veneman,

Hocoma, Switzerland

Reviewed by:

Joan Lobo Prat,

ABLE Human Motion, Spain

Alejandro Melendez-Calderon,

The University of Queensland,

Australia

*Correspondence:

Arne Passon

passon@control.tu-berlin.de

Specialty section:

This article was submitted to

Biomedical Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 22 April 2020

Accepted: 12 October 2020

Published: 27 November 2020

Citation:

Passon A, Schauer T and Seel T

(2020) Inertial-Robotic Motion Tracking

in End-Effector-Based Rehabilitation

Robots. Front. Robot. AI 7:554639.

doi: 10.3389/frobt.2020.554639

Inertial-Robotic Motion Tracking in
End-Effector-Based Rehabilitation
Robots
Arne Passon*, Thomas Schauer and Thomas Seel

Control Systems Group, Technische Universität Berlin, Berlin, Germany

End-effector-based robotic systems provide easy-to-set-up motion support in

rehabilitation of stroke and spinal-cord-injured patients. However, measurement

information is obtained only about the motion of the limb segments to which the

systems are attached and not about the adjacent limb segments. We demonstrate in

one particular experimental setup that this limitation can be overcome by augmenting an

end-effector-based robot with a wearable inertial sensor. Most existing inertial motion

tracking approaches rely on a homogeneous magnetic field and thus fail in indoor

environments and near ferromagnetic materials and electronic devices. In contrast,

we propose a magnetometer-free sensor fusion method. It uses a quaternion-based

algorithm to track the heading of a limb segment in real time by combining the

gyroscope and accelerometer readings with position measurements of one point along

that segment. We apply this method to an upper-limb rehabilitation robotics use case

in which the orientation and position of the forearm and elbow are known, and the

orientation and position of the upper arm and shoulder are estimated by the proposed

method using an inertial sensor worn on the upper arm. Experimental data from five

healthy subjects who performed 282 proper executions of a typical rehabilitation motion

and 163 executions with compensation motion are evaluated. Using a camera-based

system as a ground truth, we demonstrate that the shoulder position and the elbow angle

are tracked with median errors around 4 cm and 4◦, respectively; and that undesirable

compensatory shoulder movements, which were defined as shoulder displacements

greater ±10 cm for more than 20% of a motion cycle, are detected and classified 100%

correctly across all 445 performed motions. The results indicate that wearable inertial

sensors and end-effector-based robots can be combined to provide means for effective

rehabilitation therapy with likewise detailed and accurate motion tracking for performance

assessment, real-time biofeedback and feedback control of robotic and neuroprosthetic

motion support.

Keywords: end-effector-based robots, inertial measurement units, sensor fusion, posture biofeedback, real-time

tracking, rehabilitation robots, compensation motion detection, upper-limb rehabilitation
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1. INTRODUCTION

1.1. Motivation and Background
Spinal cord injury or stroke can lead to movement disorders like
a paresis of the upper limb (Gowland et al., 1992; Popovic and
Sinkjaer, 2000). As a result, patients are often gravely impaired
in activities of daily living for the rest of their lives. Primary
objectives during rehabilitation training are the enhancement
of patients’ health situation and self-sufficiency. Stroke patients
can often additionally benefit from regained motor functions
due to the therapy. Robot-assisted rehabilitation and Functional
Electrical Stimulation (FES) are well-known technologies and
popular means for enhancement of the physical therapy in
modern rehabilitation settings (Oujamaa et al., 2009; McCabe
et al., 2015). These systems actively support patients during
motions that they cannot perform sufficiently well or not often
enough without support.

The role of sensor systems in such rehabilitation systems is
3-fold:

1. Feedback control is commonly used to adjust the motion
support to the individual patient in real time and thereby
enable the execution of accurate movements (Marchal-
Crespo and Reinkensmeyer, 2009; Schauer, 2017). This
requires sufficiently precise sensor systems that yield real-time
measurements of the currently conducted motion.

2. At the same time, such sensor systems facilitate objective
recording and assessment of the patients’ motor performance,
such as speed of execution, completion of tasks and reaction
times (Oña et al., 2018).

3. A third major advantage of motion tracking in rehabilitation
systems is that it enables biofeedback that informs the patients
about their ownmotion and positive or negative aspects of that
motion and their performance (Zhi et al., 2018), for example
in a virtual reality environment. While such a biofeedback
facilitates gamification of the rehabilitation tasks (Novak et al.,
2014), it is also of crucial importance when the patients
perform undesired compensatory motions, which means they
compensate weakness of the to-be-trained joint or muscle
by exaggerated or unphysiological motions of other joints or
muscles (Ma et al., 2019).

In upper limb motion, for example, a decreased range of motion
of the shoulder and/or elbow joint is often compensated by
movement (flexion, inclination, translation) of the upper body
or, with the upper body fixed, by movement of the shoulder
girdle (Liu et al., 2013; Grimm et al., 2016; Levin et al.,
2016). Both movements are possible, both facilitate the desired
movement in an undesirable way. The trunk is, for example,
moved forward to reach an object instead of extending the arm
(Robertson and Roby-Brami, 2011). Preventing compensation
during rehabilitation training improves the therapy outcome
and decreases long-term problems, such as pain, orthopedic
illnesses and learned non-use (Levin et al., 2009). In reaching
tasks, moderately to severely impaired patients exhibit mean
shoulder displacements of 14 cm, while these displacements are
only around 4 cm in healthy subjects (Cirstea and Levin, 2000).
An automatic biofeedback that prevents compensatory motion

requires a real-time motion tracking solution that is sufficiently
precise to distinguish these levels of shoulder displacement due
to upper-body or shoulder girdle movements.

1.2. Motion Tracking in Exoskeletons vs.
End-Effector-Based Robots
In robot-assisted rehabilitation training of the upper limb, a range
of different rehabilitation systems with different motion tracking
solutions are available or have been proposed (Vito et al., 2014).
They can be subdivided into two main groups: (1) exoskeleton-
based systems and (2) end-effector-based systems (Maciejasz
et al., 2014). The amount of inherently available measurement
information decreases from exoskeletons to end-effectors, as
illustrated in Figure 1 and detailed in the following.

Exoskeletons reproduce the kinematic structure of the limb
they are attached to. The joints of the human limb are assisted and
moved by the corresponding joints of the exoskeleton, which also
provide measurement information by means of built-in sensors.
Major drawbacks of exoskeletons are that they are quite obtrusive
and must be adjusted precisely to the individual segment lengths
and joint axes, which can be time-consuming (Maciejasz et al.,
2014). A misalignment can even cause unwanted pain and in
the worst case long-term damage (Sicuri et al., 2014; Bertomeu-
Motos et al., 2018). Besides that, the estimation of the human arm
joint angles from the exoskeleton ones is often non-trivial if their
kinematic structures differ (Nordin et al., 2014). Therefore, rather
complex solutions have been proposed, such as extended inverse
kinematics posture estimation (EIKPE) models (Wu et al., 2015;
Cortés et al., 2016). Some exoskeletons even self-align the robot’s
active rotational axes to the user’s joint axes by means of passive
rotational joints, which further increases kinematic complexity
(Trigili et al., 2019). If the exoskeleton is well-adjusted to the
subject and a transformation of its kinematics to the anatomical
frames is available, good measurements of the subject’s arm pose
and joint angles can be obtained (Nordin et al., 2014).

End-effector-based systems are robotic systems that are only
attached to the distal segments of the limbs, which is typically
realized by a handle for the hand, a forearm brace, or a footplate.
A subgroup of end-effector-based systems are cable-driven
motion support robots, which use ropes to provide gravitation-
compensating and motion-promoting forces to a distal limb
segment. Compared to exoskeletons, end-effector-based systems
require far less adjustment to individual patients (Burgar et al.,
2000; Lum et al., 2002). However, as a direct consequence of
the reduced contact between human and robotic system, only
the motion of one body segment is measured by the robot,
and the motion of all adjacent segments must be inferred using
mechanical models (Nordin et al., 2014) or additional sensors.
For end-effector-based upper limb rehabilitation systems, which
yield direct measurement of a distal segment, the motion of the
upper arm is commonly inferred using the simple assumption of
a fixed shoulder position (Dipietro et al., 2007; Rosati et al., 2007).

Figure 1 summarizes the general observation that an easier
setup and positioning of the patient comes at the cost of reduced
measurement information and accuracy. This drawback can
be compensated if end-effector-based systems are combined
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FIGURE 1 | Trade-off between the amount of arm motion measurement information and system complexity in rehabilitation robots. The easier setup of

end-effector-based robotic systems comes at the cost of reduced measurement information. The proposed hybrid solution (right) combines both advantages.

with wearable sensor technology that ideally requires only little
setup effort.

The conventional gold standard for human motion
assessment are multi-camera systems that track a set of reflective
or active markers that are worn on anatomical landmarks.
However, these systems are expensive, and they require a
complex marker and camera setup as well as a clear line-of-sight
between each marker and at least two cameras at all times (Kirk
et al., 2005; Zhou and Hu, 2008). Other optical systems, such as
depth cameras (e.g., Microsoft Kinect) or single cameras have
not reached comparable accuracy due to occlusion, jitter, low
and varying sampling frequency or viewing-angle-dependent
performance deterioration (Yahya et al., 2019).

Body-worn goniometers overcome the line-of-sight
restrictions and can yield root-mean-squared error values
(RMSE) around 2◦ (Tognetti et al., 2015). However, they are
obtrusive in the sense that they span across joints, and they only
measure joint angles but neither orientations nor velocities nor
positions (Tognetti et al., 2015).

Inertial measurement units (IMUs) are wearable sensors that
provide all this informationwithout requiring cables or clear lines
of sight between the sensors (Held et al., 2018). However, IMUs
require, in general, more complex sensor fusion algorithms to
address magnetic disturbances, integration drift, and sensor-to-
segment misalignment. Each IMU is composed of three types
of sensors (gyroscopes, accelerometers, and magnetometers)
and measures the three-dimensional angular rate, acceleration,
and magnetic field vector in its intrinsic coordinate system.
IMUs are small and lightweight enough to be considered
completely unobtrusive and assure zero influence on the motion
performance. Recent advances in inertial motion tracking have
helped to overcome long-standing challenges, such as sensor-to-
segment calibration (Taetz et al., 2016; Nowka et al., 2019; Olsson
et al., 2019) or the requirement of a homogeneous magnetic field
(Laidig et al., 2017b; Laidig et al., 2019; Seel and Ruppin, 2017)
and to provide a similar accuracy as optical systems (Seel et al.,
2015; Filippeschi et al., 2017; Salchow-Hömmen et al., 2019).

1.3. State of the Art in Sensor Systems for
End-Effector-Based Upper Limb Therapy
Since the application-related focus of the present work lies
on upper-limb rehabilitation robots, we also briefly review
existing systems and solutions for this specific application
domain. A comprehensive survey of upper-limb rehabilitation
systems is given in Maciejasz et al. (2014) and Mekki et al.
(2018). We focus more specifically on systems and methods
that combine end-effector-based motion support systems with
wearable or optical motion tracking solutions to compensate
the lack of measurement information of the former by
means of the latter. Below we provide an overview of
existing combinations and of their solutions for compensatory
motion detection.

For end-effector-based rehabilitation robots, two main sensor
setups have been proposed: on the one hand the combination
with a depth camera and on the other hand combinations with
inertial sensors or solely accelerometers.

Regarding camera-based solutions, Brokaw et al. (2013)
combined a wrist brace robot with a Kinect (Microsoft, USA)
sensor to calculate the trunk and arm joint angles during reaching
motions and demonstrated that these angles can be used to
prevent compensatory movements. However, they reported large
tracking errors of the Kinect due to occlusion and problems
to distinguish between the subject’s arm and the robot. In a
similar work, Zhi et al. (2018) recently published results on
compensatory motion classification based on Kinect’s skeletal
tracking information. Occlusion occurred, and a solution for
posture biofeedback was not presented. Another approach using
a Kinect and two end-effectors for each arm was evaluated by
Valdés and der Loos (2017). They detected trunk compensation
by measuring motions of the shoulder-spine joint using the
Kinect. Two biofeedback strategies were compared, both of which
were shown to reduce compensatory movements. However, yet
again a continuous clear line-of-sight is required, which is
especially a problem if the therapist has for any reason to act on
the patient.
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Mihelj (2006) presented the combination of a hand-attached
robot with two accelerometers at the upper arm. This approach
yields accurate upper-limb joint angles. However, the inverse-
kinematics algorithm requires shoulder joint fixation, for
example by binding the trunk to a chair with belts, which leads
to additional setup effort. Bertomeu-Motos et al. (2015b) further
improved the method by Mihelji proposing only the use of one
accelerometer at the upper arm, but also for this method the
shoulder position must be known and fixed during the therapy.
A similar yet even more restrictive approach, which uses a
forearm cuff that prevented forearm pronation-supination and
wrist movements, is found in Papaleo et al. (2015) and is also used
by Scotto di Luzio et al. (2018).

To our best knowledge, the only combination of an end-
effector-based robot with inertial sensors that does not require
shoulder fixation was proposed by Bertomeu-Motos et al. (2015a)
and validated in stroke patients (Bertomeu-Motos et al., 2018).
The elbow angle and shoulder position are estimated using
inertial sensors on the upper arm (only accelerometer) and
on the outer edge of the shoulder, with accuracies below
6◦ and 5 cm, respectively. However, the proposed algorithms
require two sensor units, and they rely on magnetometer
readings, which implies that they are unreliable if the earth-
magnetic field is disturbed, such as in indoor environments,
near ferromagnetic material or electronic devices, i.e., practically
in all realistic clinical settings (de Vries et al., 2009; Le Grand
and Thrun, 2012; Subbu et al., 2013; Shu et al., 2015;
Salchow-Hömmen et al., 2019). Furthermore, compensatory
motion detection or biofeedback has not been considered in
that article.

In a previous work, we combined a cable-driven end-effector-
based robot with magnetometer-free inertial sensors worn on the
forearm and upper arm (Passon et al., 2018). We demonstrated
that fusing cuff position measurements of the robotic system
with inertial sensor readings is advantageous and enables
magnetometer-free tracking of the complete forearm orientation
and position. For temporary compensatory displacements of the
trunk or shoulder (less than a half minute), we were able to
estimate the upper arm heading and the true shoulder position
accurately. However, the approach failed to provide long-time
stable estimates under longer lasting compensation movements
or static compensatory postures.

In summary, depth-camera-based solutions can lead to
reliable compensation motion detection but only under
continuous line-of-sight restrictions. These restrictions can be
overcome by means of wearable inertial sensors, but there is a
lack of practical solutions that provide long-time stable motion
tracking of the entire upper limb in realistic environments
with inhomogeneous magnetic fields. To date there is no
inertial sensor-based solution that yields all of the following
desirable features:

(1) Accurate measurement information of the complete
orientation of the upper arm independent of the local
magnetic field;

(2) Reliable long-time stable real-time detection of shoulder
displacements and associated compensatory motion.

FIGURE 2 | Example setup: the cable-based rehabilitation robot Diego

(Tyromotion GmbH, Austria) is augmented by one wearable inertial sensor at

the upper arm to enable tracking of the upper arm and shoulder motion.

1.4. Contributions of the Paper
In order to address the aforementioned challenges, we propose
new methods that leverage the full potential of combining
end-effector-based rehabilitation robots with wearable inertial
sensors. We will demonstrate in one particular experimental
setup that the measurement limitations of an end-effector-based
robot can be overcome by exploiting inertial measurements.
Simultaneously, fundamental limitations of inertial motion
tracking are overcome by a novel magnetometer-free
sensor fusion method that exploits the end-effector-based
measurements. In brief, the main contributions of this
paper are:

1. We introduce sensor fusion methods that combine robotic
measurements from one segment and inertial measurements
of an adjacent segment to determine long-time stable
measurements of the full orientation and the endpoint of that
adjacent segment in the robotic measurement frame while

• using nomagnetometer readings at all,
• allowing the adjacent segment to move freely,
• and requiring no initial heading alignment or

position calibration.

2. We apply the proposed methods to augment the cable-based
forearm-attached robot shown in Figure 2 with a wearable
IMU and determine long-time stable measurements of the
upper arm orientation and shoulder position in real time.

3. We perform an experimental validation with five subjects
and a camera-based ground truth measurement, and we

Frontiers in Robotics and AI | www.frontiersin.org 4 November 2020 | Volume 7 | Article 554639146

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Passon et al. Inertial-Robotic Motion Tracking

demonstrate that the achieved measurement accuracy is
around 4◦ and 4 cm, respectively.

4. We propose a method that detects compensatory motions
with shoulder displacements greater±10 cm that last for more
than 20% of a motion cycle, and we demonstrate that typical
rehabilitationmotions conducted by healthy subjects with and
without compensatory motion are 100% correctly classified by
this method.

The remaining paper is structured as follows. The general
hardware setup and problem statement are presented in
Section 2. The developed methods for sensor fusion, shoulder
position estimation and detection of compensation movements
are introduced in Section 3. The experimental procedure
including a description of the rehabilitation robot that is
considered for validation and the analysis of conducted
experiments with five healthy subjects is given in Section 4.
Finally, a discussion of the results is presented in Section 5, and
conclusions follow in Section 6.

2. KINEMATIC MODEL AND SENSOR
FUSION TASK

Before defining the sensor fusion task, we describe the general
properties and assumptions of the kinematic system and possible
example realizations. Consider a kinematic chain consisting of
two rigid segments, and let both be connected by a joint with up
to three rotational degrees of freedom.

(i) Assume that one of both segments is in contact with a robotic
system, and call this segment the connected segment and the
other one the adjacent segment.

(ii) The robot is assumed to yield real-time information of the
position of the joint between both segments in a fixed robotic
coordinate system.

(iii) The robot, however, yields no information on the
orientation of the adjacent segment, and we also refrain from
assuming that any point along that segment remains fixed
in space.

Two examples are given to illustrate the relevance of this general
kinematic system and the meaning of the assumptions. In the
first example, the connected and adjacent segments are the shank
and thigh, respectively. A cable-based robotic system with above-
ankle and below-knee cuffs measures the cuff positions and
determines the knee position by extrapolating the line between
both cuffs. The orientation of the thigh, however, cannot be
determined if we refrain from assuming a fixed hip position.
In the second example, a robotic system connects to the upper
extremity via a forearm brace, which enables measurements of
the orientation and position of the forearm and elbow but not
the motion of upper arm and the unconstrained shoulder. In
both examples, the adjacent segment is the proximal one of both
segments, whichmakes sense in the context of end-effector-based
robots. However, it should be noted that neither the kinematic
model nor the methods we will propose are limited to that case.

To obtain complete measurement information of the motion
of both segments, a wireless wearable IMU is attached to the

FIGURE 3 | Kinematic model of the upper extremity with definitions of the

robotic frame R, the intrinsic IMU frame A, the inertial reference frame I, and

the joints E and S.

adjacent segment. Figure 3 shows one specific example of such
a hybrid inertial-robotic measurement system for the upper
extremity. We assume that the distance of the sensor to the joint
is approximately known. We further assume that the relative
orientation between the inertial sensor and the segment is known
either by careful sensor-to-segment attachment or by employing
methods that automatically determine this information from
almost arbitrary movements of the kinematic system (Müller
et al., 2016; Laidig et al., 2017a; Olsson et al., 2019).

The IMU yields three-dimensional measurements of the
acceleration, the angular rate and the magnetic field vector in its
own intrinsic coordinate system. Since these measurements are
obtained from micro-electro-mechanical systems (MEMS), they
are prone to considerable bias and noise errors. Nevertheless,
the orientation of the sensor can be determined with respect
to an inertial frame of reference with a vertical axis and a
horizontally northbound axis. This is a standard problem in
inertial sensor fusion, and several suitable orientation estimation
algorithms exists.

However, two issues arise: Firstly, the inertial reference
is not aligned with the robotic coordinate system—only the
vertical axes of both frames coincide. Secondly, IMU-based
orientation estimation requires a homogeneous magnetic field
and therefore fails in indoor environments and in the proximity
of ferromagnetic material and electronic devices. In the realistic
case of a disturbed and inhomogeneous magnetic field, only
the inclination but not the heading of the sensor can be
determined reliably.

We conclude that neither the robotic system nor the inertial
sensor yields the desired orientation and position information of
the adjacent segment. Only the inclination of the segment and
the position of one of its ends can be determined. The task that
should be addressed in the following is to determine the full
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orientation and position of the segment by fusing the robotic and
inertial measurements.

For the specific example application of a forearm-connected
robotic system, we deduce accuracy requirements for the
hybrid system to detect the shoulder displacements that
are characteristic for compensatory motions in upper-limb
rehabilitation of neurological patients: to reliably distinguish
between the aforementioned physiological and compensatory
shoulder displacement amplitudes [4 vs. 14 cm (Cirstea and
Levin, 2000)] during one motion, a method should ideally
be able to track the shoulder position with a tracking
error of at most 5 cm in average over the course of
that motion.

3. PROPOSED METHODS

The novel methods are presented in three steps: First we will
propose methods that solve the given sensor fusion task for the
general kinematic system and determine the orientation of the
adjacent segment. We will then demonstrate how the joint angle
and the adjacent segment’s endpoint position can be calculated
from the estimated segment orientation. Finally, we will consider
the specific application of upper-limb rehabilitation and propose
methods for distinguishing proper motions from motion with
undesirable shoulder displacements.

3.1. Coordinate Systems and Notation
Let the right-handed robotic workspace coordinate system
{xR, yR, zR} be defined by the y-axis yR pointing horizontally
forward and the z-axis zR straight up, as illustrated in
Figure 3. The adjacent segment’s coordinate system {xA, yA, zA},
in which the inertial measurements are taken, is defined with
the x-axis xA being parallel to the longitudinal axis of the
segment and pointing toward the joint with the connected
segment. The inertial reference coordinate system of the
orientation estimates is denoted {xI, yI, zI}. The reference frame
I has a vertical z-axis but horizontal x- and y-axes with
an arbitrary, slowly drifting heading, as will be explained
later on.

While the lower right index is used to denote to which
coordinate system a vector is attached, the lower left index is
used to describe in which coordinate systems it is expressed. For
example, xA denotes the x-axis of the coordinate system A;

A
xA

denotes the coordinates of that x-axis in the very same frame,
which trivially and constantly is [1, 0, 0]⊺; finally,

R
xA denotes

the coordinates of that x-axis in the robotic workspace frame
R. For quaternions, the upper and lower left indices are defined
such that A

R
q is the quaternion that fulfills [0,

R
v⊺]⊺ = A

R
q ⊗

[0,
A
v⊺]⊺ ⊗ R

A
q for any vector v ∈ R

3. Note that the abbreviated
notation

R
v = A

R
q ⊗

A
v ⊗ R

A
q is used in the further course

of this work, i.e., we assume that the quaternion multiplication
operator ⊗ regards three-dimensional vectors automatically as
their pure quaternion counterpart. Finally, we define the operator
[·]normalize that maps any vector to a vector with the same
direction but Euclidean norm one.

3.2. Estimation of the Adjacent Segment’s
Orientation
We estimate the orientation of the adjacent segment with respect
to an inertial reference frame by employing a quaternion-based
sensor fusion algorithm that uses strapdown integration of the
angular rates and geodetic accelerometer-based corrections (Seel
and Ruppin, 2017). Note that, while the algorithm is capable
of also performing magnetometer-based corrections, we refrain
from using the magnetometer readings and only fuse gyroscope
and accelerometer measurements.

Denote the raw accelerometer readings of the IMU by AãA
and the raw gyroscope readings by

A
ωA in the coordinate system

of the adjacent segment. Here, ã is the specific force (Titterton
et al., 2004), which is the sum of the linear acceleration a due to
velocity changes and gravitational acceleration. At each sampling
instant t, the sensor fusion algorithm takes AãA(t), AωA(t) and
provides the quaternion A

I
q that describes the orientation of the

segment frameA with respect to the reference frame I .
This orientation estimate has reliable and accurate inclination

components, but the heading is unknown in the following sense:
The reference frame has a vertical z-axis but an arbitrary heading
that depends on the initial orientation of the IMU and the initial
values of the orientation estimation filter. Moreover, that heading
of the reference frame is drifting slowly due to gyroscope bias
and integration drift, which implies that there is an unknown and
slowly drifting heading offset δ between the frames I andR.

In the present contribution, we demonstrate that this missing
heading information can be inferred if the position

R
pE of the

joint in the robotic frame is known. We will estimate the heading
of the adjacent segment by exploiting the kinematic relation
between the acceleration measured by the inertial sensor and the
numerically determined second time derivative of

R
pE.

3.2.1. Joint Acceleration Disagreement
We use the approximately known distance

A
pE between the

IMU and the joint to determine an IMU-based estimate of the
joint acceleration aE in the inertial reference frame. For this
purpose, we first determine the specific force ãE in the A-frame
by accounting for the radial and tangential acceleration due to
rotation around the joint:

AãE = AãA +
(

[AωA]×
)2

ApE + [Aω̇A]× ApE , (1)

where [·]× denotes the cross product matrix, and the time
derivative Aω̇A is determined by numerical differentiation of
the low-pass filtered angular rate (5th-order Butterworth filter
with a cutoff frequency of 2.5Hz). We then use the orientation
quaternion A

I
q to transform the specific force into the inertial

reference frame and to remove the gravitational acceleration to
obtain the acceleration of the joint:

IaE = A
Iq ⊗ AãE ⊗ I

Aq− [0, 0, 9.81]⊺ . (2)

Ideally,
I
aE and the second time derivative

R
p̈E are the same

quantity expressed in different frames (I and R), which only
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differ in their heading. In practice, however, when transforming
both signals into the same frame, we find high frequency
deviations caused by noise and soft-tissue motion. Thus, the best
we can ask for is that they are similar in the sense of a small sum
of squared differences of the low-pass filtered signals (5th-order
Butterworth filter with a cutoff frequency of 0.5Hz).

Denote the unknown heading offset between the framesR and
I by δ(t) ∈ [0, 2π) and recall that it is an unknown but only
slowly drifting angle. For any given value of δ and any moment
in time, we can determine the disagreement d(δ) :[0, 2π) → R

between a given value of
I
aE and a given value of

R
p̈E by

d(δ, IaE,Rp̈E) : =









cos( δ
2 )

0
0

sin( δ
2 )









⊗ IaE ⊗









cos( δ
2 )

0
0

− sin( δ
2 )









− Rp̈E.

(3)

Let the cost function c(δ, t) :[0, 2π)×R
+ → R be the sum of the

squares of this disagreement over a moving window:

c(δ, t) : =
m

∑

k=1

d(δ, IaE(t − kTs),Rp̈E(t − kTs))
2, (4)

where m is the width of the moving window. Finally, define
a grid-based optimization function optdelta(1, t) that takes a
given moment t > mTs and a given set 1 of heading offset
values and returns the value from the grid-set that minimizes the
disagreement over the time window [t −mTs, t]:

optdelta(1, t) = argmin
δ∈1

(

c(δ, t)
)

. (5)

3.2.2. Relative-Heading Estimation
The slowly drifting relative heading δ, and thus the heading
of the adjacent segment in the robotic workspace frame R, is
determined by the following algorithm.

Every 5 s, a time window containing the last 20 s of data is
considered, and that time window is split into five sub-windows
(see Figure 4). For each sub-window, we say that there is no

FIGURE 4 | Example case with five delta updates (blue verticals).

Sub-windows are filled green if enough considerable motion is contained.

Each time window with at least three green sub-windows is marked by a blue

(otherwise red) arrow.

considerable motion if the elbow position
R
pE remains within

a sphere of ten-centimeters diameter throughout the 4 s. If at
least three sub-windows of the considered time window contain
considerable motion, then the entire window is said to contain
enough considerable motion.

Initially, the estimated heading offset δ̂ is undefined. At each
of the first five time windows that contain enough considerable
motion, the estimate is updated by the following two-steps:

δ̃ = optdelta
({

0◦, 5◦, . . . , 355◦
}

, t
)

, (6)

δ̂ = optdelta
({

δ̃ − 5◦, δ̃ − 4◦, . . . , δ̃ + 5◦
}

, t
)

. (7)

At all subsequent time windows that contain enough
considerable motion, the algorithm checks whether the last
five estimates each change by at most 5◦ from one estimate to the
next. As soon as this condition is fulfilled, the algorithm is said
to have converged, and all following estimates are determined in
a one-step update on a reduced grid that is centered around the
estimate δ̂− of the previous time window:

δ̂ = optdelta
({

δ̂− − 5◦, δ̂− − 4◦, . . . , δ̂− + 4◦, δ̂− + 5◦
}

, t
)

.

(8)

Obviously, we could likewise use the two-step update for all
time windows with enough considerable motion or we could
switch back to that two-step update whenever consecutive
results of the one-step update are five degrees apart. However,
the experimental results in Section 4.3 will demonstrate that
such extensions would be useless in the sense that they are
never triggered.

The proposed periodic updates provide new estimates of the
heading offset δ̂ every 5 s as long as the adjacent segment moves.
When there is almost no motion, the estimate remains constant.
Note that the method’s accuracy level is directly determined
by the user. With the proposed parametrization, the highest
accuracy that the algorithm can achieve is 1◦, which is more than
sufficient for the present application.

3.3. Estimation of the Joint Angle and
Segment Endpoint Position
We use the estimated heading offset δ̂ between the framesR and
I to determine the orientation A

R
q of the adjacent segment in the

robotic workspace frameR:

I
Rq =











cos( δ̂
2 )

0
0

sin( δ̂
2 )











, (9)

A
Rq = I

Rq⊗ A
Iq . (10)

By assumption, the longitudinal axis xC of the connected segment
is known in the robotic workspace frame R. The joint angle can
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thus be determined as the angle between the longitudinal axes of
both segments:

ϑE,hyb = ∢

(

RxC,
A
Rq⊗ AxA ⊗ R

Aq
)

. (11)

The orientation A
R
q is further used to calculate the position

R
pS

of the endpoint of the adjacent segment from the joint position

R
pE and the segment length lA:

RpS = RpE − A
Rq⊗ AxAlA ⊗ R

Aq . (12)

For segment lengths of up to half a meter, orientation errors
of 1◦ cause endpoint position errors below 1 cm. Therefore, if
position errors in the range of 1 cm are negligible, then a heading
estimation accuracy level of 1◦ is sufficient.

3.4. Detection of Compensatory Motions
for Biofeedback
In upper-limb rehabilitation, compensatory shoulder motions
lead to an inefficient rehabilitation training and can even have a
harmful effect for the user. The methods proposed above enable
upper arm and shoulder motion tracking by combining end-
effector-based robots that connect to the forearm and a wearable
IMU on the upper arm.

We propose a method that detects whether the user
compensates weakness of affected muscles or joints by trunk or
shoulder girdle motions. Without loss of generality, we consider
a scenario with periodic arm rehabilitation motions, and we aim
at distinguishing the following two cases:

• The proper movement (prop.mov.) in which most of the
motion is realized by shoulder joint and elbow joint motions
and only minor shoulder displacements around a mean of
4 cm occur (cf. Cirstea and Levin, 2000),

• The compensatory movement (comp.mov.) in which the
shoulder and elbow joint remain rather stiff and large portions
of the motion are realized by shoulder girdle or trunkmotions,
which leads to shoulder displacements around amean of 14 cm
(cf. Cirstea and Levin, 2000).

The estimated shoulder position
R
pS is monitored in real-time

whether it leaves a tolerated range. An acceptable region of
±10 cm around the therapeutically desired shoulder position
covers typical variations during proper arm motions (see
Section 4.3). Even healthy subjects sometimes temporarily
exceed this limit. In order to tolerate for such short-time
deviations, we allowed shoulder displacements of more than
±10 cm for up to 20% of an iteration during repetitive
movement training. In applications where such a violation is
unacceptable or undesired, these values could of course be
lowered. Each iteration is examined when it is completed and
detected shoulder displacements are then directly signalized.
Whenever such compensatory motions are detected, the user
is instructed to move back to the nominal shoulder position
and to redo or resume the therapy task. Figure 5 shows
one potential implementation of a visual biofeedback. The
indicator in the lower right corner of the rehabilitation game

FIGURE 5 | Potential realization of a visual biofeedback: (A) rehabilitation

game with an indicator that shows a green circle inside the gray tolerance area

when the movement is proper. (B) Blue circle outside the gray area indicating a

large shoulder displacement. (C) Orange background indicating a large

shoulder displacement for longer than the maximum tolerated duration.

shows the tolerated shoulder position region as a gray circle
in the center. The estimated current shoulder position is
indicated by a smaller circle, which is green during proper
movements and turns blue when it is outside the gray tolerance
area, i.e., when the shoulder displacement is larger than the
preset threshold. If that condition is fulfilled for longer than
a short user-defined duration, which might be chosen as
a percentage of the current cycle duration, the indicator’s
background is highlighted in orange to provide a strong
warning feedback.

4. EXPERIMENTAL VALIDATION

The proposed methods are validated experimentally in a specific
application example of robot-assisted upper-limb rehabilitation.
We first describe the robotic system, then the experimental
procedure, and finally the results.

4.1. The Cable-Based Rehabilitation Robot
We consider the cable-based rehabilitation robot Diego
(Tyromotion GmbH, Austria), which is an active arm weight
compensation and motion support system (Jakob et al., 2018). It
facilitates three-dimensional arm therapies that would otherwise
be impossible for patients with paretic upper limbs or would
require continuous manual support by a therapist. Such motion
support can reduce physical fatigue of the patient and therapist
and can thereby enable longer therapy sessions. The therapy
focus can be on different movements like reaching or lifting or
even on the motion of specific joints. The robot is equipped with
a virtual game environment to further motivate the patient, even
during frequent repetitions of the same movement.

Two retractable ropes are connected to the forearm using
one cuff around the wrist and another cuff close to the elbow,
as depicted in Figure 2. The rope forces are controlled by
independent drives, which also provide measurements of the
length of the ropes. Near the outlet of each rope, a low-
friction spherical shell moves along with the rope and provides
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FIGURE 6 | Illustration of the performed motion with and without compensation movements (comp.mov. and prop.mov.). The optically tracked paths of the three

markers [shoulder (solid), elbow (dashed), hand (dotted)] are highlighted in blue (prop.mov.) and red (comp.mov.). The desired (nominal) shoulder position is depicted

by the green cross. The time labels above the single frames specify the elapsed time since the beginning of the motion cycle.

two-dimensional measurement of the rope deflection angle.
Combining the length and angle measurements yields estimates
of the rope end points, i.e., the forearm cuff positions

R
pW at the

wrist and
R
pP of the proximal cuff, in a robot-fixed coordinate

system. The elbow position in the robotic workspace frame is
calculated by extrapolating the line between both cuff positions
into the elbow joint:

RpE = lp
[

RpP − RpW
]

normalize + RpP , (13)

where lp is the known approximate distance between the
proximal cuff attachment point and the elbow.

It is important to note that these robotic position
measurements are drift-free but provided at a sampling
rate of only 25Hz and susceptible to disturbances by rope
oscillations. These disturbances are significant, since the ropes
are not always taut—especially when the direction of motion
changes suddenly—and small changes of the aforementioned
deflection angles have large effects on the estimated endpoint
position. In previous research, we have demonstrated that
these shortcomings can be overcome by augmenting the robot
with a wearable IMU on the forearm, and highly accurate
measurements of the forearm position and orientation can
be achieved (Passon et al., 2018). In the present work, we
build on this previous result and use the improved forearm
measurements. However, the methods proposed in Section 3

can likewise be applied when direct measurements of the Diego
system or another robotic system are used.

While the Diego system can measure the wrist and elbow
position, it has no means for determining the shoulder position.
Instead the system requires that the nominal shoulder position

R
pnomS is defined at the beginning of each trial. For this purpose,

the therapist positions the patient into the desired upper-body
posture and briefly holds the end of one of the ropes onto
the shoulder joint. Throughout the trial, the robotic system
estimates the upper arm motion using the assumption that the
shoulder remains fixed at the nominal position, as proposed in
previous literature (Dipietro et al., 2007; Rosati et al., 2007).
This implies that the elbow angle is determined according
to (11) but with

R
xA being the normalized vector between

the elbow position and the nominal shoulder position. It is
assumed that the therapist restraints the trunk or shoulder such
that the shoulder position remains constant throughout the
session or that the patient follows the instruction to perform
the exercise without compensatory motion. In the following, we
will compare the results of the conventional literature method
of the non-augmented system with the results of the proposed
hybrid method of the inertial-robotic augmented system. We
will generally consider the case of a proper movement in which
the aforementioned assumptions are fulfilled and the case of
a compensatory movement in which either the fixation is not
accomplished correctly or the patient does not follow the
instruction, i.e., in both cases the shoulder deviates from its
nominal position.

4.2. Experimental Setting and Procedure
The proposed methods for hybrid motion tracking and posture
biofeedback are evaluated in experiments with five healthy
subjects (age of 25–35 years, two female and three male),
hereinafter also termed S1–S5. The performed trials involving
human participants were reviewed and approved by the ethics
committee of the Berlin Chamber of Physicians (Eth-40/15). The
chosen subjects cover a large range of body height (160–192 cm)
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FIGURE 7 | Exemplary data from one complete trial of one subject with colored vertical bands highlighting the time periods of exemplary trials (cf. Figures 8, 9).

(Top/Middle) Distance of the hand (dH0
) and shoulder (dS0

) from their respective initial positions at t = 0, as measured by the optical reference (opt.ref.). While hand

motion is similar, the proper and compensatory movements exhibit clearly different amounts of shoulder motion. (Bottom) The upper arm heading offset (δ) drifts by

more than 180◦ within the 8-min trial.

and upper arm length (28–33 cm). During the trials, each subject
sits on a chair with the right arm connected to the Diego
system as shown in Figure 2. Both ropes of the robotic system

Diego are attached at the forearm and the IMU (MTx
TM

, Xsens,
Netherlands) is fixed on the lateral aspect of the upper arm
(approximately midway along the longitudinal axis). The weight
relief of both ropes is adjusted to 6N to assure tightly stretched
ropes, whichminimizes positionmeasurement errors. A standard
PC (Intelr,CoreTM i5 with four cores) running Linux (Ubuntu
18.04) was utilized to run the software and connect to the devices.
The control algorithms and device interfaces were implemented
in Matlab/Simulink (MATLAB R2017b; MathWorks, USA) and
C/C++ using a modified Linux real-time target to generate
an executable (Sojka and Píša, 2014). Using this setup, the
methods are found to be highly real-time-capable. The real-time-
critical magnetometer-free orientation estimation algorithm part
is definitely able to run at the sampling rate of the sensor (here
100Hz), even on-board the sensor. The most time-consuming
part of the methods is the heading estimation including the joint
acceleration disagreement. This non-real-time-critical procedure
requires about half a second of computation time and must be
executed every 5 s in parallel to the real-time-critical part.

A box-shaped object (suitcase) is placed on a table in
front of the subject at such height that its top surface is
slightly lower than the shoulder. The outer edge of that
surface marks a rectangular path that the right hand should
follow in counterclockwise cyclic motions, as illustrated in
Figure 6. Note that the path is dimensioned and positioned
such that the subject can comfortably perform the motion
by shoulder joint and elbow joint motions, i.e., without
bending the trunk and without considerable displacements
of the shoulder. This ensures that each subject can conduct

both the proper and the compensatory movements as defined
in Section 3.4.

The subjects are asked to perform each of both movements
for time periods of at least two and up to 5min. In the transition
phase between both time periods, the subjects are instructed to
slowly increase the level of compensatory movements and to
accustom themselves to the unnatural motion performance. Both
time periods and the transition phase are indicated in Figure 7,
while the difference between proper and compensatory motion is
illustrated in Figure 6.

A camera (Canon EOS 600D) is positioned above the subject
to obtain reference measurements of positions and angles in the
horizontal plane of the motion. The trials are recorded with a
frame rate of 50 frames per second and a resolution of 1,280 ×
720 pixels. Three adhesive labels (blue filled circle on a bigger
white circle, cf. Figure 6) are affixed on the subject’s arm—one
on the center of the back of the hand, another one on the skin
above the center of the shoulder joint, and a third one close to the
elbow joint but with sufficient distance to the proximal forearm
cuff to assure visibility of the marker from above.

After each trial, the trajectories of the markers are
reconstructed from the recorded video by means of the
open source software Kinovea (https://www.kinovea.org),
and the elbow angle as well as the heading of the upper arm
are calculated using standard vector algebra. This yields an
approximate ground truth, which is hereafter termed optical
reference (opt.ref.).

The robotic workspace coordinate system and the one of the
opt.ref. were initially calibrated and aligned with each other. For
this purpose, the length and width of the suitcase were measured.
The robot’s coordinate systemwas calibrated bymeasurements of
each cable while they were subsequently pulled to all four edges of
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FIGURE 8 | Shoulder motion during a cycle with compensation motion (Compensatory Mov.) and a cycle without this undesired motion (Proper Mov.); (Left):

horizontal-plane trajectories; (Right): x/y-position and measurement error. The proposed method (Hyb.) agrees better with the optical reference (Opt.Ref.) than the

conventional method (Conv.), which assumes a fixed shoulder. The gray band and circle indicate the shoulder position range that is used for compensatory motion

detection.

TABLE 1 | Estimated shoulder position deviations (Euclidean distance) from

opt.ref., medians over all subjects in centimeter.

Type Method Median Probability/Correlation

Proper mov.
Conv. 3.9

}

p = 0.106, r= 0.003
Hyb. 3.7

Compensatory mov.
Conv. 20.1

}

p < 0.001, r= 0.845
Hyb. 4.1

A Welch’s T-test (probability p and Pearson correlation coefficient r) between Conv. and

Hyb. yields no significant effect for prop.mov., but a large effect for comp.mov.

the suitcase. For the opt.ref., the length and width of the suitcase
were adjusted in the software Kinovea. The nominal shoulder
position

R
pnomS of the robot alone, as explained in Section 4.1,

was initially determined by one rope pulled to the shoulder joint
just before each trial. This nominal shoulder position was set as
the origin of both the rob. and opt.ref. coordinate systems.

4.3. Experimental Results
The proposed method for hybrid motion tracking is validated on
recorded data of experimental trials with five subjects as outlined
above. On average they performed prop.mov. for around 4:15min
[3:13 (S2)–5:00 (S4)min] and comp.mov. for around 2:47min
[2:04 (S4)–4:09 (S1)min]. This resulted in an average of 57 [45
(S2)–69 (S1)] prop.mov. cycles and in an average of 33 [16 (S4)–
48 (S1)] comp.mov. cycles. The average cycle time of all five
subjects is 4.6 s for the prop.mov. and 5.4 s for the comp.mov.

The validation results of all five subjects are given in
Figures 10–12 as well as in Tables 1–3. Detailed insights are

provided by plots of exemplary data from S2 shown in Figures 7–
9 as well as in Figure 6.

Figure 7 presents the motion of the hand and shoulder with
respect to the initial position that is defined at time 0. The
figure also depicts the heading offset δ for the entire duration
of the experiment for S2. The hand moved along the same
path throughout the experiment. However, while the shoulder
displacements are mostly below 10 cm for prop.mov., the
shoulder deviates between 10 and 30 cm during the comp.mov.
from the nominal shoulder position. The colored vertical bands
in Figure 7 highlight the time periods of exemplary trials, for
which detailed data is presented in Figures 8, 9. In Figure 6, for
both highlighted time periods, four still images of the camera
system are superimposed, and trajectories of the hand, elbow and
shoulder markers are indicated.

The plot at the bottom of Figure 7 shows that the heading
offset of the magnetometer-free inertial orientation estimation
is drifting at ∼0.5 deg/s during the entire experiment due
to integration of gyroscope bias. This observation is in
good agreement with a-posteriori analysis of the gyroscope
readings during rest, which revealed bias magnitudes of
0.1–0.76 deg/s (average of 0.34 deg/s) for the utilized IMU.
Note that the proposed method does not require initial
rest phases or static gyroscope calibration and that the
aforementioned bias values were only determined for validation
purposes but not removed from the gyroscope readings at
any point.

4.3.1. Shoulder Position Results
The shoulder position is estimated using the upper arm
orientation and the elbow position (see Section 3.4). For one
exemplary trial of both movement types, Figure 8 depicts the
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FIGURE 9 | Elbow angle from a trial with compensatory movement (Compensatory Mov., red) and another without (Proper Mov., blue). The result of the hybrid

method (Hyb.) agrees well with the optical reference (Opt.Ref.), while the conventional method (Conv.) that assumes a constant shoulder position yields clearly larger

errors, especially in the case of comp.mov.

TABLE 2 | Estimated elbow angle errors with respect to opt.ref., median values

over all subjects in degree.

Type Method Median Probability/Correlation

Proper mov.
Conv. 9.3

}

p < 0.001, r= 0.706
Hyb. 2.3

Compensatory mov.
Conv. 16.3

}

p < 0.001, r= 0.724
Hyb. 3.6

A Welch’s T-test (probability p and Pearson correlation coefficient r) between Conv. and

Hyb. yields large effects for both, prop. and comp.mov.

motion in the horizontal plane. The deviation from the opt.ref. is
calculated using the Euclidean norm. The hyb. estimates shown
in Figure 8 agree well with the opt.ref., with median values below
4 cm. The conv.method assumes a fixed shoulder position, which
works adequately for prop.mov. but yields errors above 20 cm
during the depicted comp.mov. cycle. Here, the robot does not
measure any shoulder motion and the resulting conv. errors
reproduce the actually conducted shoulder motion as measured
by the opt.ref. The presented exemplary results are consistent
with the medians over all subjects (see Table 1), which are all
close to 4 cm except for the median of 20.1 cm of the conv.method
during comp.mov.

Figure 10 shows the distributions of the deviations from
the opt.ref. for conventional (conv.) measurements and for the
results of the proposed hybrid (hyb.) methods. The upper whisker
represent the 95th percentile and the lower one the 5th percentile
of all values over time. The inner boxes themselves depict the
quartiles, i.e., the 25th percentile, the median and the 75th
percentile. All time-based medians of the proposed hyb.method
are near or below 5 cm, and all corresponding upper whiskers

stay below 10 cm. The results of the conventional (conv.) method
are comparable for the prop.mov., but reach significantly higher
time-based medians of up to 23.5 cm (S3) and upper-whisker
values up to 32.3 cm (S4) for the comp.mov.Welch’s T-test states
a large effect for comp.mov. (probability p< 0.001 and Pearson
correlation coefficient r = 0.845). No significant effect is stated
for prop.mov. with p = 0.106 and r = 0.003.

4.3.2. Elbow Angle Results
The elbow angles of exemplary motion cycles are shown in
Figure 9. The results, as presented in that figure, of the proposed
hyb.method resemble the opt.ref. signals even during comp.mov.,
and medians below 3◦ are achieved. In contrast, deviations of up
to 20◦ occur with the conv.method even in the prop.mov. cycle,
and the median during the comp.mov. cycle reaches almost 15◦.
These results are consistent with the results over all subjects,
as presented in Table 2 and Figure 11. All time-based median
deviations between the hyb. measurement and the opt.ref. are
near or below 4◦, and the 95th percentiles mostly stay below
10◦. The conv.measurements yield significantly larger time-based
medians in the range of 5.9–18.4◦ and upper whiskers with up
to 48.2◦. Welch’s T-test states large effects for both, prop. and
comp.mov., with p< 0.001 and r > 0.7.

4.3.3. Parameter Sensitivity Analysis
The distance

A
pE of the IMU to the elbow joint, the length

lA of the adjacent segment (here upper arm) and the cutoff
frequency for the determination of the time derivative Aω̇A have
to be manually determined or chosen. We perform a parameter
sensitivity analysis to investigate their impact on the estimated
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FIGURE 10 | Time-based violin plot of estimated shoulder position deviations (Euclidean distance) from the opt.ref., with upper/lower whiskers of the inner box plots

at the 95th/5th percentile of all values over time. Horizontal red lines indicate median values over all subjects.

FIGURE 11 | Time-based violin plot of estimated elbow angle deviations from the opt.ref., with upper/lower whiskers of the inner box plots at the 95th/5th percentile

of all values over time. Horizontal red lines indicate median values over all subjects.

shoulder position and elbow angle. None of these parameters is
particularly sensitive.

The distance
A
pE was chosen as 15 cm, which is

approximately half the average upper arm length of humans;
e.g., Chaffin et al. (2006) recommend 28.1 and 29.8 cm for the
upper arm length of female and male humans, respectively. We
now consider the case in which the assumed and the actual
IMU-to-elbow distance differ by 7.5 cm, and we investigate how
the measurement errors reported in Sections 4.3.1 and 4.3.2 are
affected by this parameter change. The median measurement
deviations increase by 0.06 cm (shoulder position) and 0.21◦

(elbow angle) on average over all subjects. This corresponds
to relative changes of <2% in the median shoulder position
error and <8% in the median elbow angle error. The 95th
percentile errors increase by 0.17 cm and 0.41◦ on average
over all subjects, respectively. This corresponds to relative
changes of <3% in the 95th percentile shoulder position
error and <6% in the 95th percentile elbow angle error. The
corresponding intra-subject changes are reported in detail
in Supplementary Tables 1, 2.

The length lA of the upper arm was measured manually.
We now consider the case in which the measured upper length
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FIGURE 12 | Cycle-based data (medians) from the complete trials of all subjects. (Top) The estimated upper arm heading offset (δ̂) agrees well with the true offset δ

between the upper arm headings of the optical reference and of the uncorrected orientation estimate by the IMU (all as medians of each trial iteration). (Bottom)

Errors of the shoulder position with respect to the opt.ref. as medians of each trial iteration. In the clear majority (91%) of all trials of all subjects, the median error of

the proposed method is smaller than five centimeters, while the conventional method (Conv.) fails to determine adequate shoulder positions during comp.mov. and in

the transition phase. (Right) Corresponding violin plots of the plots on the left excluding the transition phase. Upper/lower whiskers of the inner box plots show the

95th/5th percentiles. Horizontal red lines indicate median values over all subjects.

differ by ±2.5 cm, and we investigate how the measurement
errors are affected by these parameter variations. They have no
impact on the accuracy of the elbow angle results but on the
shoulder position error. We call that this error is defined as
the difference between the hybrid and the opt.ref. displacements
of the shoulder with respect to the nominal position. Since the
considered parameter change also affects the nominal shoulder
position of the hybrid measurement, it does not lead to a direct
offset in the shoulder displacement but has a more indirect
effect. The median measurement errors of the shoulder position
change by 0.05 cm (lA + 2.5 cm) and 0.07 cm (lA − 2.5 cm) on
average over all subjects. This corresponds to relative changes
of <2% in the median shoulder position error. The 95th
percentile errors change by 0.58 and −0.36 cm on average over
all subjects, respectively. This corresponds to relative changes
of <8% in the 95th percentile shoulder position errors. The
corresponding intra-subject changes are reported in detail in
Supplementary Table 3.

The cutoff frequency for the determination of the time
derivativeAω̇A was chosen as 2.5Hz.We now consider variations
of ±1Hz, and we investigate how the measurement errors are
affected by these parameter changes. The median measurement
deviations change by <0.005 cm (cutoff frequency + 1Hz)
and by −0.01 cm (cutoff frequency − 1Hz) for the shoulder
position, and by<0.005◦ (cutoff frequency ± 1Hz) for the elbow
angle on average over all subjects. This corresponds to relative
changes of <1% in the median shoulder position error and <1%
in the median elbow angle error. The 95th percentile errors
change by <0.005 cm and <0.005◦ (cutoff frequency ± 1Hz)

on average over all subjects, respectively. This corresponds to
relative changes of <1% in the 95th percentile shoulder position
errors and <1% in the 95th percentile elbow angle errors. The
corresponding intra-subject changes are reported in detail in
Supplementary Tables 4, 5.

4.3.4. Long-Time Stability Analysis
The cycle-based medians of the shoulder position errors of the
hybrid method and the conventional method with respect to
the opt.ref. are shown in Figure 12. It is evident that the results
of the proposed hyb.method constantly remain around 3–5 cm
and no linear long-time trend is present. This is in line with
the results presented in the violin plot on the bottom right
of Figure 12: the median cycle-based errors between the hyb.
measurement and the opt.ref. stay below 5 cm for all subjects
(95th percentiles between 3.7 and 7.4 cm) and around 4 cm
over all subjects. The conv. measurements yield significantly
larger medians up to 22.6 cm (20.5 cm over all subjects) and
upper whiskers with up to 27.3 cm in the case of comp.mov..
The estimated upper arm heading offset δ̂ is also depicted as
cycle-based medians over all trials of all subjects and reveals
long-time stable estimates of the heading offset with absolute
errors remaining under 5◦ for 90% of the measurements. This
is in line with the results shown in the violin plot on the top
right of Figure 12: the median absolute errors of the estimated
upper arm heading offset stay below 4◦ for all subjects (95th
percentiles between 1.7 and 12.0◦) and the median absolute
errors over all subjects are 1.4 and 2.7◦ for prop.mov. and
comp.mov., respectively.
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TABLE 3 | Table of confusion for real-time detection of compensatory motion from

data of a single motion cycle.

Predicted type

Subject Actual type Prop. Comp.

S1
Prop. 69 0

Comp. 0 48

S2
Prop. 45 0

Comp. 0 40

S3
Prop. 61 0

Comp. 0 31

S4
Prop. 47 0

Comp. 0 16

S5
Prop. 62 0

Comp. 0 28

4.3.5. Compensatory Motion Detection Results
The estimated shoulder position is utilized to detect
compensatory movements, for which biofeedback can be
provided as described in Section 3.4. A tolerated compensatory
shoulder motion range of ±10 cm is shown in the exemplary
plots of Figure 8. The detection algorithm identifies comp.mov.,
i.e., displacements of the shoulder which might be due to a not
correctly fixated patient’s shoulder or that the patient does not
follow the instruction to move with a fixed shoulder position,
when the tolerated shoulder range of ±10 cm is exceeded for
more than 20% of the duration of a trial. Table 3 demonstrates
that all 284 prop.mov. cycles are correctly recognized as proper
and that all 163 comp.mov. cycles are likewise correctly classified,
i.e., all 447 cycles out of 447 cycles are correctly classified.

5. DISCUSSION

The proposed augmentation of end-effector-based robotic
systems leads to considerable improvements in the considered
application scenario of the cable-based upper-limb rehabilitation
robot. It provides accurate shoulder motion measurements in
real time with time-based median measurement errors around
4 cm (all 95th percentiles below 10 cm) as well as real-time elbow
angle measurements with time-based median errors below 4◦

(95th percentiles mostly below 10◦). This is, particularly during
compensatory movements, a significant improvement compared
to the conventional approach of assuming a fixed shoulder
position during end-effector-based therapy (Dipietro et al., 2007;
Rosati et al., 2007). In Section 4.3.4, it is shown that the cycle-
based medians of the shoulder position errors of the proposed
method constantly remain around 3–5 cm (91% are smaller than
5 cm). Thus, the accuracy over one course of the conducted
motion is within the range, which meets the requirements we
defined toward the end of Section 2.

This accuracy is comparable to the results presented by
Bertomeu-Motos et al. (2015a), which uses a magnetometer-
based approach that was shown to depend on unrealistic
or restrictive homogeneity properties of the magnetic field

(Madgwick et al., 2011; Seel and Ruppin, 2017; Salchow-
Hömmen et al., 2019). Such an assumption is known to be
violated if robot components, nearby furniture or objects that
are handled by the subjects contain iron or other ferromagnetic
materials or electronic components. In fact, magnetic fields
inside buildings are so inhomogeneous that their patterns can
be analyzed for indoor localization and mapping (Le Grand and
Thrun, 2012; Subbu et al., 2013; Shu et al., 2015). For this reason
magnetometers do not provide reliable heading information for
robust motion tracking in indoor environments. The fact that
the methods proposed in Section 3 are magnetometer-free makes
them highly suitable for indoor applications and realistic robotic
environments. Long-time stability of the estimated positions and
orientations is achieved, and the proposed methods are highly
real-time-capable as described above. The combination of these
properties defines the novelty of the current approach with
respect to previous methods. One previous method (Wittmann
et al., 2019) exploits the patterns of the magnetic field in
indoor environments and only relies on IMUs. It provides
accurate estimates of the arm motion, however it requires the
user to rest in-between the therapy session to re-correct the
magnetometer-based drift. In contrast, the proposed method
is magnetometer-free and does not need that the user rests at
any time. Additionally, applied rehabilitation robots modify the
magnetic field due to their ferromagnetic materials, which will
influence the accuracy of the method by Wittmann et al. (2019).
Furthermore, the proposed approach provides the shoulder joint
position in the robotic coordinate system, which cannot be
provided by algorithms that do not include measurements of the
robot. This is also the case for other methods providing accurate
estimates of the arm orientation solely based on IMUs (Kok
et al., 2014). The latter approach by Kok et al. (2014) is even
magnetometer-free, however it cannot directly be implemented
in real-time. The proposed method of the current article is novel
in the sense that it provides long-time stable, magnetometer-free,
and real-time estimates of the orientation of the adjacent segment
and the endpoint of that segment, e.g., shoulder position, in the
robotic coordinate frame.

Although all motions are performed in a horizontal plane,
the two-dimensional optical motion tracking yields only an
approximate ground truth. In preliminary trials, we investigated
the variance of the distance between the elbow and shoulder
marker. This distance, which should ideally be constant, has been
found to have standard deviations between at least 0.7 cm (S2)
and at most 1.2 cm (S3) around their mean value. We conclude
that this approximate ground truth is sufficiently precise for the
desired proof of concept.

Limitations of the validation are that healthy subjects
performed the motions and that the accuracy of the approximate
optical ground truth does not achieve the same level as
the golden standard of marker-based stereophotogrammetric
tracking systems, which is mainly due to the horizontal
projection, distortions by the camera lens symmetry, and
marker displacement caused by skin and muscle motion. As
mentioned above, the resulting inaccuracies of the camera-
based reference measurements are below 5 cm, which is small
enough for the present proof-of-concept study but not small
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enough to decide whether the proposed method yields accuracies
below state-of-the-art results. Furthermore, a limitation of the
proposed methods is the number of parameters and that their
ideal choice is not yet clear. However, first investigations, as
described in Section 4.3.3, revealed that their sensitivity against
changes is not severe. Variations of the cutoff frequency of
±1Hz cause only negligible changes in the range of 1% in
the measurement accuracy. The sensitivity of the measurement
errors to displacements of the IMU seems acceptable in practice
if the user places the sensor within a 15 cm (±7.5 cm) wide area
around the middle of the upper arm; even a distance of 7.5 cm
between assumed and actual position causes error increases
below 8% of the original error. To interpret the sensitivity of the
proposed methods against inexact upper-arm lengths, consider a
1.50 and a 1.90m tall subject with average upper-arm lengths of
27.9 and 35.3 cm, respectively Winter (2005). Even if one simply
uses the proposed 30 cm for both subjects, themeasurement error
increase can be expected to stay below 5% in both cases. In
sum, the proposed methods are not very sensitive against these
parameters and they can be used with the proposed values in
practice without jeopardizing the measurement accuracy.

It is worth noting that the proposed methods can be
extended to cases in which the motion of more segments
than only the directly adjacent body segment is of interest.
For example, if the foot is connected to an end-effector-based
robotic system, then we might want to track the motion of
the shin and the thigh. In such a case, the proposed method
can be used with an IMU on the shin to track the knee
position. This knee position estimate might then be used
to apply the method again with an IMU on the thigh and
determine the hip joint position. While the feasibility of such
a cascaded approach follows directly from the properties of
the proposed methods, further research is needed to investigate
which levels of accuracy can be achieved in practice and also
which performance is achieved by the proposed methods in other
application scenarios.

As mentioned in Section 1, preventing compensation during
rehabilitation training improves the therapy outcome and
decreases long-term problems, such as pain, orthopedic illnesses
and learned non-use (Levin et al., 2009). One possibility to avoid
compensation are trunk and shoulder girdle restraints. Their
effects are discussed diversely in the literature. For example, 5 of 8
studies named by Greisberger et al. (2016) showed improvements
of arm motion recovery, whereas one of the included studies
states auditory feedback as more effective on movement patterns
directly after training, and the other two studies did not reveal
any effect. In conclusion, Greisberger et al. (2016) considered
the magnitude of change of the observed improvements as
not consistently clinically relevant. Indisputably there is an
additional donning and doffing effort, as well as a restriction
of natural trunk and shoulder girdle motion, which can also
be seen in healthy people performing arm movements. These
disadvantages can be avoided by using real-time biofeedback.
In contrast to trunk and shoulder restraint, biofeedback can
be adapted to the needs of the individual, e.g., in the case of
progress (Valdés and der Loos, 2017). Furthermore, indications
suggest that improvements are rather maintained after feedback
that is only provided when it is needed than after training

with concurrent physical guidance (Schmidt and Lee, 2014).
One possibility to detect compensation motion would be the
additional use of more IMUs as, e.g., on the torso. However,
the tracking of the trunk or shoulder position is severely limited
due to the occurring position drift. It is, of course, possible to
detect inclination changes, but translational motion of the trunk
without bending the torso would not be detectable nor drift-free
estimable. To detect motions of the shoulder girdle, even more
IMUs and thus more donning and doffing would be required.
Using only one IMU and the already available measurements
of the robot, as proposed here, reduces the hardware effort
and provides a drift-free and accurate tracking of the shoulder
position, that can be utilized to detect compensation motion of
the trunk and shoulder. In sum, the natural trunk and shoulder
motion is not restricted with the proposed solution, while still
the full monitoring of compensatory movements is possible
facilitating biofeedback when needed. Cirstea and Levin (2000)
found mean shoulder displacements of 14 cm for moderate to
severe impaired stroke subjects and around 4 cm for healthy
participants. Valdés and der Loos (2017) stated 3 cm of shoulder-
spine motion as physiological movements. The experimental
results in Section 4.3 show that the proposed method can
reliably distinguish between small shoulder displacements and
shoulder displacements of more than 10 cm that are performed
to compensate reduced motion in other joints. The proposed
and applied toleration of range violations for up to 20% of the
trial duration can of course be replaced by a tolerated time
period in case of non-repetitive motions. In our case, the 20%
of the trial duration equated to a time period of one second,
which would have leaded to the same perfect classification results.
It is, of course, necessary to determine the appropriate degree
of compensatory motion detection in clinical use, individually
for the desired therapy application and setting, i.e., when is a
biofeedback helpful and not useless or annoying.

6. CONCLUSIONS

End-effector-based rehabilitation robots offer motion support
with fast and easy robot-to-patient setup and adjustment. This
advantage is, however, achieved at the cost of a reduced
amount and accuracy of motion measurement information. A
conventional solution is to rely on a fixed shoulder position
assumption (Dipietro et al., 2007; Rosati et al., 2007). We
demonstrated that these limitations can be overcome by a hybrid
system design that uses wearable inertial sensors and real-time
sensor fusion methods without requiring a clear line-of-sight
and thus overcomes a major restriction in depth-camera-based
designs. The proposed approach accurately tracks the motion
of a body segment that is adjacent to the robot-connected body
segment. It assures long-time stability and complete immunity
to magnetic disturbances, which are common in indoor
applications and robotic environments. The generalizability and
the transfer of the proposed method’s benefits to other kinematic
chains and application scenarios are expected but cannot be
guaranteed from the investigated particular setup. Consequently,
this has to be investigated and demonstrated in future work.

We demonstrated that the method can be used to infer
real-time estimates of the complete orientation of the upper
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arm and the shoulder position in the robotic frame. This
enables the detection of undesirable compensatory trunk and
shoulder motions in upper-limb rehabilitation training and thus
facilitates real-time biofeedback, which is expected to improve
active involvement and therapy outcome (Levin et al., 2009).
Clinical validation in neurological patients will be subject of
future research. Simultaneously, it will be investigated if the
hybrid system can be utilized for feedback-controlled Functional
Electrical Stimulation (FES) and what its impact on such
solutions is.

Beyond the proposed methods, we believe that the general
approach of augmenting easy to setup end-effector-based robotic
systems with wearable sensors is promising and might provide
additional advantages over existing solutions in a range of
application scenarios, in which accurate real-time motion
tracking is required to realize feedback control, objective motion
assessment or biofeedback.
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INTRODUCTION

Hundreds of millions of individuals worldwide have mobility impairments resulting from
degenerative aging and/or neuro-musculoskeletal disorders (Grimmer et al., 2019). Fortunately,
robotic lower-limb exoskeletons and prostheses can allow otherwise wheelchair-bound seniors
and rehabilitation patients to perform movements that involve net positive mechanical work (e.g.,
climbing stairs and standing from a seated position) using onboard actuators and intelligent control
systems (Tucker et al., 2015; Young and Ferris, 2017; Laschowski and Andrysek, 2018; Krausz
and Hargrove, 2019; Zhang et al., 2019a). Generally speaking, the high-level controller recognizes
the patient’s locomotion mode (intention) by analyzing real-time measurements from wearable
sensors usingmachine learning algorithms. Themid-level controller then translates the locomotion
intentions into mode-specific reference trajectories. This control level typically comprises a finite
state machine, which implements a discrete parametrized control law (e.g., joint position or
mechanical impedance control) for each locomotion mode. Finally, the low-level controller tracks
the reference trajectories and minimizes the signal error by modulating the device actuators using
feedforward and feedback control loops (Tucker et al., 2015; Young and Ferris, 2017; Laschowski
and Andrysek, 2018; Krausz and Hargrove, 2019; Zhang et al., 2019a).

Accurate transitions between different locomotion modes is important since even
rare misclassifications can cause loss-of-balance and injury. In many commercial devices
like the ReWalk and Indego lower-limb exoskeletons, the patient acts as the high-level
controller by performing volitional movements to manually switch between locomotion
modes (Tucker et al., 2015; Young and Ferris, 2017). These human-controlled methods can
be time-consuming, inconvenient, and cognitively demanding. Researchers have recently
developed automated locomotion mode recognition systems using wearable sensors like
inertial measurement units (IMUs) and surface electromyography (EMG) to automatically
switch between different locomotion modes (Tucker et al., 2015; Young and Ferris, 2017;
Laschowski and Andrysek, 2018; Krausz and Hargrove, 2019; Zhang et al., 2019a). Whereas
mechanical and inertial sensors respond to the patient’s movements, the electrical potentials
of biological muscles, as recorded using surface EMG, precede movement initiation and thus
could (marginally) predict locomotion mode transitions. Several researchers have combined
mechanical sensors with surface EMG for automated locomotion mode recognition. Such
neuromuscular-mechanical data fusion has improved the locomotion mode recognition
accuracies and decision times compared to implementing either system individually
(Huang et al., 2011; Du et al., 2012; Wang et al., 2013; Liu et al., 2016). However, these
measurements are still patient-dependent, and surface EMG are susceptible to fatigue, changes
in electrode-skin conductivity, and crosstalk from adjacent muscles (Tucker et al., 2015).
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Supplementing neuromuscular-mechanical data with
information about the upcoming walking environment could
improve the high-level control performance. Similar to the
human visual system, environment sensing would precede
modulation of the patient’s muscle activations and/or walking
biomechanics, therein enabling more accurate and real-time
locomotion mode transitions. Environment sensing could
also be used to adapt low-level reference trajectories (e.g.,
changing toe clearance corresponding to an obstacle height)
(Zhang et al., 2020) and optimal path planning (e.g., identifying
opportunities for energy regeneration) (Laschowski et al., 2019a,
2020a). Preliminary research has shown that supplementing
an automated locomotion mode recognition system with
environment information can improve the classification
accuracies and decision times compared to excluding terrain
information (Huang et al., 2011; Wang et al., 2013; Liu et al.,
2016). Several researchers have explored using radar detectors
(Kleiner et al., 2018) and laser rangefinders (Zhang et al., 2011;
Wang et al., 2013; Liu et al., 2016) for environment sensing.
However, vision-based systems can provide more detailed
information about the field-of-view and detect physical obstacles
in peripheral locations. Most environment recognition systems
have included either RGB cameras (Krausz and Hargrove, 2015;
Diaz et al., 2018; Khademi and Simon, 2019; Laschowski et al.,
2019b; Novo-Torres et al., 2019; Da Silva et al., 2020; Zhong
et al., 2020) or 3D depth cameras (Krausz et al., 2015, 2019; Varol
and Massalin, 2016; Hu et al., 2018; Massalin et al., 2018; Zhang
et al., 2019b,c,d).

For image classification, researchers have used learning-based
algorithms like support vector machines (Varol and Massalin,
2016; Massalin et al., 2018) and deep convolutional neural
networks (Rai and Rombokas, 2018; Khademi and Simon, 2019;
Laschowski et al., 2019b; Novo-Torres et al., 2019; Zhang et al.,
2019b,c,d; Zhong et al., 2020). Although convolutional neural
networks typically outperform support vector machines for

FIGURE 1 | Development of the ExoNet database, including (A) photograph of the wearable camera system used for large-scale data collection; (B) examples of the

high-resolution RGB images (1,280 × 720) of human walking environments; and (C) schematic of the 12-class hierarchical labeling architecture.

image classification (LeCun et al., 2015), deep learning requires
significant and diverse training images to prevent overfitting
and promote generalization. Deep learning has become pervasive
ever since AlexNet (Krizhevsky et al., 2012) popularized
convolutional neural networks by winning the 2012 ImageNet
challenge. ImageNet is an open-source dataset containing ∼15
million labeled images and 22,000 different classes (Deng et al.,
2009). The lack of an open-source, large-scale dataset of human
locomotion environment images has impeded the development
of environment-aware control systems for robotic lower-limb
exoskeletons and prostheses. Until now, researchers have been
required to individually collect training images to develop their
classification algorithms. These repetitive measurements are
time-consuming and inefficient, and individual private datasets
have prevented comparisons between classification algorithms
from different researchers (Laschowski et al., 2020b). Drawing
inspiration from ImageNet, we developed ExoNet–the first
open-source, large-scale hierarchical database of high-resolution
wearable camera images of human walking environments.
In accordance with the Frontiers submission guidelines, this
article provides a detailed description of the research dataset.
Benchmark performance and analyses of the ExoNet database for
human locomotion environment classification will be presented
in future work.

MATERIALS AND METHODS

Large-Scale Data Collection
One subject was instrumented with a lightweight wearable
smartphone camera system (iPhone XSMax); photograph shown
in Figure 1A. Unlike limb-mounted systems (Zhang et al.,
2011, 2019b,c; Varol and Massalin, 2016; Diaz et al., 2018; Hu
et al., 2018; Kleiner et al., 2018; Massalin et al., 2018; Rai and
Rombokas, 2018; Da Silva et al., 2020), chest-mounting can
provide more stable video recording and allow users to wear
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pants and long dresses without obstructing the sampled field-
of-view. The chest-mount height was ∼1.3m from the ground
when the participant stood upright. The smartphone contains
two 12-megapixel RGB rear-facing cameras and one 7-megapixel
front-facing camera. The front and rear cameras provide 1,920
× 1,080 and 1,280 × 720 video recording at 30 frames/s,
respectively. The smartphone weighs ∼0.21 kg, and features an
onboard rechargeable lithium-ion battery, 512-GB of memory
storage, and a 64-bit ARM-based integrated circuit (Apple A12
Bionic) with six-core CPU and four-core GPU. These hardware
specifications can support onboard machine learning for real-
time environment classification. The relatively lightweight and
unobtrusive nature of the wearable camera system allowed for
unimpeded human walking biomechanics. Ethical review and
approval were not required for this research in accordance with
the University of Waterloo Office of Research Ethics.

While most environment recognition systems have been
limited to controlled indoor environments and/or prearranged
walking circuits (Zhang et al., 2011, 2019b,c,d; Du et al., 2012;
Wang et al., 2013; Krausz et al., 2015, 2019; Liu et al., 2016; Hu
et al., 2018; Kleiner et al., 2018; Khademi and Simon, 2019),
our subject walked around unknown outdoor and indoor real-
world environments while collecting images with occlusions,
signal noise, and intraclass variations. Data were collected
at various times throughout the day to incorporate different
lighting conditions. Similar to human gaze fixation during
walking (Li et al., 2019), the sampled field-of-view was ∼1–5
meters ahead of the participant, thereby showing upcoming
walking environments rather than the ground underneath
the subject’s feet. The camera’s pitch angle slightly differed
between data collection sessions. Images were sampled at 30Hz
with 1,280 × 720 resolution. More than 52 h of video were
recorded, amounting to ∼5.6 million images (examples shown
in Figure 1B). The same environment was never sampled twice
to maximize diversity among the ExoNet images. Data were
collected throughout the summer, fall, and winter seasons
to incorporate different weathered surfaces like snow, grass,
and multicolored leaves. In accordance with the Frontiers
submission guidelines, the ExoNet database was deposited in a
public repository (IEEE DataPort) and is available for download
at https://ieee-dataport.org/open-access/exonet-database-
wearable-camera-images-human-locomotion-environments.
The file size of the uncompressed videos is∼140 GB.

Hierarchical Image Labeling
Given the subject’s preferred walking speed, there were
minimal differences between consecutive images sampled at
30Hz. The labeled images were therefore downsampled to
5 frames/s to minimize the demands of manual annotation
and increase the diversity in image appearances. However,
for real-time environment classification and control of
robotic lower-limb exoskeletons and prostheses, higher
sampling rates would be more advantageous for accurate
locomotion mode recognition and transitioning. Similar
to ImageNet (Deng et al., 2009), the ExoNet database was
human-annotated using a hierarchical labeling architecture
(see Figure 1C). Images were labeled according to exoskeleton

and prosthesis control functionality, rather than a purely
computer vision perspective. For instance, images of level-
ground environments showing either pavement or grass were
not differentiated since both surfaces would use the same
level-ground walking state controller. In contrast, computer
vision researchers might label these different surface textures as
separate classes.

Approximately 923,000 images in ExoNet were manually
labeled and organized into 12 classes using the following
descriptions, which also include the number of labeled
images/class: {IS-T-DW = 31,628} shows incline stairs with
a door and/or wall; {IS-T-LG = 11,040} shows incline stairs
with level-ground thereafter; {IS-S = 17,358} shows only incline
stairs; {DS-T-LG = 28,677} shows decline stairs with level-
ground thereafter; {DW-T-O = 19,150} shows a door and/or
wall with other (e.g., hand or window); {DW-S = 36,710}
shows only a door and/or wall; {LG-T-DW = 379,199} shows
level-ground with a door and/or wall; {LG-T-O = 153,263}
shows level-ground with other (e.g., humans, cars, bicycles, or
garbage cans); {LG-T-IS = 26,067} shows level-ground with
incline stairs thereafter; {LG-T-DS = 22,607} shows level-
ground with decline stairs thereafter; {LG-T-SE = 119,515}
shows level-ground with seats (e.g., couches, chairs, or benches);
and {LG-S = 77,576} shows only level-ground. These classes
were selected to encompass the different walking environments
encountered during the data collection sessions. We included
the other class to improve image classification performance
when confronted with non-terrain related features like humans
or bicycles.

Inspired by previous work (Huang et al., 2011; Du et al.,
2012; Wang et al., 2013; Liu et al., 2016; Khademi and Simon,
2019), the hierarchical labeling architecture included both steady
(S) and transition (T) states. A steady state describes an
environment where an exoskeleton or prosthesis user would
continuously perform the same locomotion mode (e.g., only
level-ground terrain). In contrast, a transition state describes
an environment where the exoskeleton or prosthesis high-level
controller might switch between different locomotion modes
(e.g., level-ground and incline stairs). Manually labeling the
transition states was relatively subjective. For example, an
image showing level-ground terrain was labeled level-ground-
transition-incline stairs (LG-T-IS) when an incline staircase was
approximately within the sampled field-of-view and forward-
facing. Similar labeling principles were applied to transitions
to other conditions. The Python code used for labeling the
ExoNet database was uploaded to GitHub and is publicly
available for download at https://github.com/BrockLaschowski2/
ExoNet.

DISCUSSION

Environment recognition systems can improve the control
of robotic lower-limb exoskeletons and prostheses during
human locomotion. However, small-scale and private training
datasets have impeded the widespread development and
dissemination of image classification algorithms for human
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TABLE 1 | Comparison of the ExoNet database with previous environment recognition systems for robotic lower-limb prostheses and exoskeletons.

Reference Sensor Position Dataset Resolution Classes

Da Silva et al. (2020) RGB camera Lower-limb 3,992 Images 512 × 512 6

Diaz et al. (2018) RGB camera Lower-limb 3,992 Images 1,080 × 1,920 6

Khademi and Simon (2019) RGB camera Waist 7,284 Images 224 ×224 3

Krausz and Hargrove (2015) RGB camera Head 5 Images 928 × 620 2

Krausz et al. (2015) Depth camera Chest 170 Images 80 × 60 2

Krausz et al. (2019) Depth camera Waist 4,000 Images 171 × 224 5

Laschowski et al. (2019b) RGB camera Chest 34,254 Images 224 × 224 3

Massalin et al. (2018) Depth camera Lower-limb 402,403 Images 320 × 240 5

Novo-Torres et al. (2019) RGB camera Head 40,743 Images 128 × 128 2

Varol and Massalin (2016) Depth camera Lower-limb 22,932 Images 320 × 240 5

Zhang et al. (2019b,c) Depth camera Lower-limb 7,500 Images 224 × 171 5

Zhang et al. (2019d) Depth camera Waist 4,016 Images 2,048 Point Cloud 3

Zhang et al. (2020) Depth camera Lower-limb 7,500 Images 100 × 100 5

Zhong et al. (2020) RGB camera Head and lower-limb 327,000 Images 1,240 × 1,080 6

ExoNet database RGB camera Chest 922,790 Images 1,280 × 720 12

locomotion environment recognition. Motivated by these
limitations, we developed ExoNet–the first open-source,
large-scale hierarchical database of high-resolution wearable
camera images of human walking environments. Using a
lightweight wearable camera system, we collected over 5.6
million RGB images of different indoor and outdoor real-
world walking environments, of which ∼923,000 images
were human-annotated using a 12-class hierarchical labeling
architecture. Available publicly through IEEE DataPort,
ExoNet provides researchers an unprecedented communal
platform to develop and compare next-generation image
classification algorithms for human locomotion environment
recognition. Although ExoNet was originally designed for
environment-aware control systems for lower-limb exoskeletons
and prostheses, applications could extend to humanoids and
autonomous legged robots (Park et al., 2015; Villarreal et al.,
2020). Users of the ExoNet database are requested to reference
this dataset report.

Aside from being the only open-source image database of
human locomotion environments, the large scale and diversity
of ExoNet significantly distinguishes itself from previous
environment recognition systems, as illustrated in Table 1.
ExoNet contains ∼923,000 individually labeled images. In
comparison, the previous largest dataset contained ∼402,000
images (Massalin et al., 2018). While most environment
recognition systems have included fewer than six classes
(Krausz and Hargrove, 2015; Krausz et al., 2015, 2019;
Varol and Massalin, 2016; Massalin et al., 2018; Khademi
and Simon, 2019; Laschowski et al., 2019b; Novo-Torres
et al., 2019; Zhang et al., 2019b,c,d; Zhang et al., 2020),
the ExoNet database features a 12-class hierarchical labeling
architecture. These differences have real-world implications
given that learning-based algorithms like convolutional neural
networks require significant and diverse training images (LeCun
et al., 2015). The spatial resolution of the ExoNet images

(1,280× 720) is considerably higher than previous efforts (e.g.,
224 × 224 and 320 × 240). Poor image resolution has
been attributed to decreased classification accuracy of human
walking environments (Novo-Torres et al., 2019). Although
higher resolution images can increase the computational and
memory storage requirements, that being unfavorable for real-
time mobile computing, researchers have been moving toward
the development of efficient convolutional neural networks
that require fewer operations (Tan and Le, 2020), therein
enabling the processing of larger images for relatively similar
computational power. Here we assume mobile computing for
the exoskeleton and prosthesis control (i.e., untethered and
no wireless communication to cloud computing). Nevertheless,
an exoskeleton or prosthesis controller may not always benefit
from additional information provided by higher resolution
images, particularly when interacting with single surface textures
(i.e., only pavement or grass). With ongoing research and
development in computer vision and artificial intelligence, larger
and more challenging training datasets are needed to develop
better image classification algorithms for environment-aware
locomotor control systems.

A potential limitation of the ExoNet database is the two-
dimensional nature of the environment information. Whereas
RGB cameras measure light intensity information, depth cameras
also provide distance measurements (Krausz et al., 2015, 2019;
Varol and Massalin, 2016; Hu et al., 2018; Massalin et al.,
2018; Zhang et al., 2019b,c,d). Depth cameras work by emitting
infrared light and calculate distances by measuring the light
time-of-flight between the camera and physical environment
(Varol and Massalin, 2016). Depth measurement accuracies
typically degrade in outdoor lighting conditions (e.g., sunlight)
and with increasing measurement distance. Consequently, most
environment recognition systems using depth cameras have
been tested in indoor environments (Krausz et al., 2015,
2019; Varol and Massalin, 2016; Hu et al., 2018; Massalin
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et al., 2018) and have had limited capture volumes (i.e.,
between 1 and 2m of maximum range imaging) (Krausz
et al., 2015; Varol and Massalin, 2016; Massalin et al.,
2018). Assuming mobile computing, the application of depth
cameras for environment sensing would also require robotic
lower-limb exoskeletons and prostheses to have embedded
microcontrollers with significant computing power and minimal
power consumption, the specifications of which are not
supported by existing untethered systems (Massalin et al.,
2018). These practical limitations motivated our decision to use
RGB images.

Our camera images could be fused with the smartphone
IMU measurements to improve high-level control performance.
For example, if an exoskeleton or prosthesis user unexpectedly
stops while walking toward an incline staircase, the acceleration
measurements would indicate static standing rather than
stair ascent, despite the staircase being accurately detected
in the field-of-view. Since environment information does
not explicitly represent the locomotor intent, environment
recognition systems should supplement, rather than replace,
the automated locomotion mode recognition systems based
on patient-dependant measurements like mechanical and
inertial sensors. The smartphone IMU measurements could
also be used for sampling rate control (Zhang et al., 2011;
Diaz et al., 2018; Khademi and Simon, 2019; Da Silva
et al., 2020). Faster walking speeds would likely benefit
from higher sampling rates for continuous classification.
In contrast, static standing does not necessarily require
environment information and therefore the smartphone camera
could be powered down, or the sampling rate decreased, to
minimize the computational and memory storage requirements.
However, the optimal method for fusing the smartphone camera
images with the onboard IMU measurements remains to
be determined.
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Background: Gait analysis studies during robot-assisted walking have been

predominantly focused on lower limb biomechanics. During robot-assisted walking,

the users’ interaction with the robot and their adaptations translate into altered gait

mechanics. Hence, robust and objective metrics for quantifying walking performance

during robot-assisted gait are especially relevant as it relates to dynamic stability.

In this study, we assessed bi-planar dynamic stability margins for healthy adults

during robot-assisted walking using EksoGTTM, ReWalkTM, and Indego® compared to

independent overground walking at slow, self-selected, and fast speeds. Further, we

examined the use of forearm crutches and its influence on dynamic gait stability margins.

Methods: Kinematic data were collected at 60Hz under several walking conditions with

and without the robotic exoskeleton for six healthy controls. Outcomemeasures included

(i) whole-body center of mass (CoM) and extrapolated CoM (XCoM), (ii) base of support

(BoS), (iii) margin of stability (MoS) with respect to both feet and bilateral crutches.

Results: Stability outcomes during exoskeleton-assisted walking at self-selected,

comfortable walking speeds were significantly (p < 0.05) different compared to

overground walking at self-selected speeds. Unlike overground walking, the control

mechanisms for stability using these exoskeletons were not related to walking speed.

MoSs were lower during the single support phase of gait, especially in the medial–lateral

direction for all devices. MoSs relative to feet were significantly (p < 0.05) lower than

those relative to crutches. The spatial location of crutches during exoskeleton-assisted

walking pushed the whole-body CoM, during single support, beyond the lateral boundary

of the lead foot, increasing the risk for falls if crutch slippage were to occur.

Conclusion: Careful consideration of crutch placement is critical to ensuring that the

margins of stability are always within the limits of the BoS to control stability and decrease

fall risk.

Keywords: robotic exoskeleton, stability, kinematics, gait, center of mass
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INTRODUCTION

Commercially available exoskeletons, such as the EksoGTTM

(Ekso Bionics, Richmond, CA), ReWalkTM (ReWalk Robotics,
Inc., Marlborough, MA), and Indego R© (Parker Hannifin Corp,
Cleveland, OH), are suggested rehabilitative modalities for
overground (OG) walking among individuals with movement
limitations (U.S. Food Drug Administration, 2014, 2016a,b,
2017). Walking using these exoskeletons requires assistive
devices like bilateral canes, forearm crutches, or a walker;
however, these assistive devices can inhibit dynamic stability
(Bateni and Maki, 2005; Saunders et al., 2013). Additionally,
slipping or sliding of bilateral cane and crutch tips due to the
material used or different walking surfaces (e.g., wet pavements,
snow, ice) can lead to further injuries (Kennaway, 1970; Bennett
and Murphy, 1977). Therefore, understanding the posture and
balance control strategies during robotic exoskeleton (RE) gait
compared to independent OG walking is crucial in ensuring
the safety of these individuals and preventing falls. Although
researchers have studied the kinematic, spatiotemporal, cardio-
pulmonary, cognitive, neuromuscular, and safety outcomes
associated with RE training (Nozaki et al., 2005; Sayenko
et al., 2015; Miller et al., 2016; Ramanujam et al., 2017, 2018,
2019a; Saleh et al., 2017; Gordon et al., 2018; Tefertiller et al.,
2018; Forrest et al., 2019; Guanziroli et al., 2019; Khan et al.,
2019; Luger et al., 2019; Momeni et al., 2019; Wang et al.,
2019; Yildirim et al., 2019; McIntosh et al., 2020), a thorough
assessment of dynamic stability during RE walking is important
to understanding the mechanics of human–machine interactions
during exoskeleton-assisted gait and the potential to lower
fall risk.

Research studies involving gait analysis during RE-
assisted gait have been predominantly focused on lower
limb biomechanics (Sylos-Labini et al., 2014; Louie et al.,
2015; Ramanujam et al., 2017, 2018, 2019a,b; Husain et al.,
2018; Forrest et al., 2019). With the advances in research and
development of powered lower limb exoskeletons (Jiménez-
Fabián and Verlinden, 2012; Molteni et al., 2018), optimal
exoskeleton choice depends on a variety of factors including
the design and control of the device, user’s ability, task,
and environment. During RE-assisted walking, the users’
interaction with the RE and their adaptation to the subtle
differences between the devices translate into altered gait
mechanics (Ramanujam et al., 2018, 2019a). As a result, robust
and objective metrics for quantifying walking performance
during RE-assisted gait are especially relevant as it relates to
dynamic stability.

Whole-body center of mass (CoM) is a key determinant for
balance control mechanisms in the quantification of dynamic gait
stability (Kaya et al., 1998; Lee and Chou, 2006). Several authors
have used CoM to describe postural sway, symmetry, and stability
(Kaya et al., 1998; Lee and Chou, 2006; McAndrew Young et al.,
2012; Ramanujam et al., 2019a,b). The instantaneous position
and velocity of the whole-body CoM in relation to the base of
support (BoS) has been used previously to calculate margins of
stability (MoSs) (Hof et al., 2005) and evaluate the step-to-step
changes in MoS during walking.

Our group has recently published articles to assess the
posture and balance of individuals with spinal cord injury (SCI)
and able-bodied (AB) controls during RE-assisted gait with
forearm crutches in the EksoGTTM and ReWalkTM by examining
their instantaneous three-dimensional CoM excursions (whole
body, trunk, and lower extremity) with respect to the BoS
(Ramanujam et al., 2019a,b). As an extension to our already-
published work, in this study, we used the instantaneous CoM
measures to further compute the dynamic stability margins for
healthy adults during RE walking using EksoGTTM, ReWalkTM,
and Indego R© at self-selected, comfortable, and safe walking
speeds to test our hypothesis that the MoS measures during
RE-assisted walking will differ based on the device and assist
mode, compared to independent OG walking at a self-selected
speed. Additionally, we assessed fast and slow walking speeds
during OG walking to evaluate the effect of speed on stability
outcomes. Further, we examined the control of stability during
the different phases of a gait cycle and the influence of forearm
crutches in conjunction with RE walking on dynamic gait
stability margins.

METHODS

Participant Demographics
Six male AB individuals (age: 29.50± 4.97 years, weight: 82.57±
13.23 kg, height: 1.80 ± 0.07m) completed an informed consent
form, approved by the Kessler Foundation and James J. Peters
Veterans Affairs Medical Center Institutional Review Boards, to
participate in the study. The inclusion and exclusion criteria have
been previously reported (Ramanujam et al., 2019a).

Data Collection
AB individuals were first trained, under the guidance of a
physical therapist, to walk independently with each RE under
minimal supervision using bilateral forearm crutches before the
scheduled data collection session. Individuals were asked to walk
across a 10m walkway multiple times under several walking
conditions (Table 1) with and without the RE as previously
reported (Ramanujam et al., 2019a). Kinematic data (Motion
Analysis Corporation, Santa Rosa, CA) were collected at 60Hz,
and data from at least 10 gait cycles per condition were used for
further analysis.

Exoskeleton Settings and Training Modes
Individuals were fitted with the RE devices per anthropometric
measurements and by adjusting segments of the exoskeleton.
The settings and operating principle for all RE devices tested
are listed in Table 2 (EksoGTTM Operating Manual Copyright
© 2013 Ekso GT Bionics, Inc Part Number 103299 REV B1).
OG walking conditions, without the RE, included walking at
FAST, self-selected (SS), and SLOW speeds. Individuals were
given a few practice walks at these three speeds (SLOW, SS, and
FAST) and instructed to walk at their own safe and comfortable
pace before kinematic data were collected. All walking trials
with the REs were collected with the use of forearm crutches
at their self-selected, comfortable, and safe walking speeds. The
RE training modes (Table 2), with the addition of Indego R© as
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TABLE 1A | Demographics and testing conditions.

AB AB AB AB AB AB

1 2 3 4 5 6

Age (years) 38 30 26 26 25 32

Weight (Kg) 86.4 104.5 81.8 84.1 65.9 72.7

Height (m) 1.83 1.78 1.90 1.80 1.70 1.80

TABLE 1B | Walking conditions.

1 Walking with Indego® exoskeleton

2 Walking with ReWalkTM exoskeleton

3 Walking with EksoGTTM exoskeleton in 2Free mode

4 Walking with EksoGTTM exoskeleton in Fixed-Assist mode

5 Walking with EksoGTTM exoskeleton in Max-Assist mode

6 Overground walking at FAST speed

7 Overground walking at self-selected (SS) speed

8 Overground walking at SLOW speed

TABLE 1C | List of abbreviations.

SCI - Spinal Cord Injury

RE - Robotic Exoskeleton

CoM - Center of Mass

XCoM - Extrapolated CoM

BoS - Base of Support

MoS - Margin of Stability

OG - Overground

AP - Anterior-posterior

ML - Medial-lateral

AB - Able-Bodied

SS - Self-Selected

F - Foot

C - Crutch

RMSD - Root Mean Squared Difference

IDS - Initial Double Support

SLS - Single Limb Support

TDS - Terminal Double Support

SW - Swing

an additional device, were selected based on our previous work
(Ramanujam et al., 2019b) on individuals with SCI and AB
controls and on the individual’s ability to walk independently
with minimal supervision.

Training and testing with the EksoGTTM was performed
under multiple conditions and swing assist modes, which
provide adaptive assistance during the swing phase of the
gait. These modes include “Max-Assist,” “Fixed-Assist,” and
“2Free.” The Max-Assist mode provides a constant, maximum
amount of motor power (100%) to move a user’s leg through
the trajectory-controlled swing phase. The Fixed-Assist mode
provides assistance throughout the trajectory-controlled swing
phase up to a predetermined value that is set as a percentage of the
maximum amount of motor power (100–0%). In other words, if

users complete the swing phase with their own strength, without
using the power of the motors, the value set on the Fixed-Assist
mode would make no difference in the process. For instance, at
35% Fixed-Assist, the individual may use up to, or less than, 35%
of the maximum motor power to complete the swing phase with
a predetermined trajectory. Similarly, 0% Fixed-Assist requires
individuals to utilize their own effort to finish the swing phase
without using any amount of motor power; if they fail to do so, a
safety feature will initiate to complete the swing phase. The 2Free
mode allows users to freelymove their leg with their own strength
without being constrained to a predetermined swing trajectory.

In this study, to cover the entire range of available Fixed-
Assist levels (100–0%) and also match the assist levels used
while training individuals with SCI (depending on their ability
and the therapist’s recommendations) (Ramanujam et al.,
2019b), we chose 0, 35, and 60% as the levels at which
the device was tested for every individual. In Fixed-Assist
mode, the goal is to encourage the participant to provide
maximal effort in order to complete the swing phase while
receiving up to a ceiling amount of motor power in assistance.
We collected three to five trials (at least 10 complete gait
cycles) at 0, 35, and 60% fixed assistance levels as a low,
moderate, and high level of assistance, respectively, and
calculated average profiles across these conditions for the
Fixed-Assist mode.

Data Analysis
Kinematic data were filtered, time-normalized, and averaged
across multiple gait cycles to create mean kinematic profiles
(Ramanujam et al., 2019a). The outcome measures calculated
from kinematics using custom written programs in MATLAB
(MathWorks R©, Natick, MA) include: (i) whole-body CoM and
the velocity-adjusted extrapolated CoM (XCoM), (ii) margin of
stability (MoS) in the anterior–posterior (AP) and medial–lateral
(ML) directions with respect to both feet (MoSF) and bilateral
crutches (MoSC), and (iii) walking speed; see Figure 1.

MoS parameters (Figure 1) were computed using the
instantaneous CoM and XCoM values (Hof, 2008). The coefficient
of correlation (R) was calculated to examine relationships
between MoS outcomes and walking speed and categorized into
weak (|R| ≤ 0.40), moderate (0.40 < |R| ≤ 0.60), strong (0.60 <

|R| ≤ 0.80), and very strong (0.80 < |R| ≤ 1) correlations (Evans,
1996). First-return plots (McAndrew Young et al., 2012) to assess
stride-to-stride variability in MoS outcomes were generated
(MoSi vs. MoSi−1), and root mean squared differences (RMSD)
were computed to compare the variance from the 45◦ line of
symmetry. MoS outcomes were computed at the point of heel-
strike (bilaterally). Also, the least stable point (lowest MoS value
and its associated T) during each phase of a gait cycle (i.e., initial
double support, IDS: ipsilateral foot strike to contralateral foot
off; single limb support, SLS: contralateral foot off to contralateral
foot strike; terminal double support, TDS: contralateral foot
strike to ipsilateral foot off; and swing, SW: ipsilateral foot off to
subsequent ipsilateral foot strike) was identified and represented
as a stability matrix.
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TABLE 2 | Robotic exoskeleton operating principle and settings.

Device operating principle Device settings

EksoGTTM Lateral weight shift onto one foto complete the stepping on the

contralateral foot combined with moving the contralateral crutch

forward

Max-Assist (100%): Max-Assist provides the maximum amount of motor assistance

to the user at all times where the leg moves consistently through swing and is less

susceptible to the user’s interaction.

Fixed-Assist (100–0%): Fixed-Assist is when the forward motor assistance is set to a

fixed maximum value provided throughout the swing phase. In this study, the

Fixed-Assist modes chosen were 0, 35, and 60%.

2Free: 2Free mode signals that the leg is not being controlled by motors and

programming and is free to move under the user’s control.

ReWalkTM Initiates a step by tilting the trunk anteriorly and moving both

crutches forward simultaneously

Hip angle = 25◦, knee angle = 37◦, velocity/swing time = 600ms, tilt = 7◦

Indego® Postural cues with predefined step trajectory to trigger all

transitions (e.g., to walk forward, the user just leans forward)

Motion+ mode (assist = 20%, speed = medium, length = long, step height =
medium)

Margins of Stability
As shown in Figure 1, the instantaneous location of the whole-
body CoM and the XCoM were calculated from kinematics.

XCoM = c + ċ/ω0 (1)

ω0 =
√

g/l (2)

The CoM position and velocity components are denoted as c and
ċ respectively, “g” = 9.81 m/s2 (gravitational constant) with an
oscillation frequency of “0,” and “l” (equivalent pendulum length)
was the mean distance from the heel marker to the CoM at heel-
strike. The XCoM was then projected onto the floor (transverse
plane) to establish its relationship with respect to the boundaries
of BoS, bilaterally. BoS was defined as the linear distance between
the boundaries (AP and ML) of the farthest support points in
contact with the ground. In this study, BoS was calculated with
respect to bilateral feet as well as crutches. The lateral boundary of
BoS (left or right, foot or crutch) for MoS calculations was chosen
so as to match the directionality of CoM velocity.

Different combinations of dynamic MoS were then calculated
in the AP and ML directions with respect to (i) BoS between the
feet (MoSF) and (ii) BoS defined by the bilateral crutches (MoSC)
as follows:

MoSij = XCoMj−BoSij (3)

where

i= F or C (4)

j= AP or ML (5)

A higher positive value for MoS is associated with greater
stability. Negative MoS values are considered unstable. Further,
the MoS values were normalized to CoM velocity to calculate a
temporal index (T) indicative of stability as defined below.

Ti
j =MoSij/ċj (6)

T values represent the temporal deviation (in seconds) from the
limits of BoS. Similar to the sign convention for MoS, a positive
T value indicates the time available until the point of instability,

while T < 0 is indicative of the time elapsed beyond the point of
instability. Hence, higher positive or negative T values represent
greater stability or instability, respectively.

Statistical Analysis
A multivariate analysis of variance (ANOVA), to compare RE
and OG walking conditions, was performed for all outcome
variables using Bonferroni correction. Tukey post hoc tested for
all possible two-way comparisons. Paired-sample t-tests were
used to compare the means across devices and modes, as well as
OG walking conditions (p < 0.05).

RESULTS

MoS Outcomes During OG vs. RE Walking
At heel-strike during RE walking across all tested devices and
conditions, the overall mean MoSs calculated using the BoS
defined by the bilateral crutches (MoSML = 0.56 ± 0.09m;
MoSAP = 0.31 ± 0.08m) were significantly (p < 0.05) greater
than OG walking (MoSML = 0.11 ± 0.03m; MoSAP = 0.06 ±
0.17m) across all speeds in both directions (Figure 2A).

For RE walking, a weak negative correlation was observed for
MoSML (R = −0.39) vs. walking speed (R = −0.07 for MoSAP).
During OGwalking, the correlation betweenMoSML and walking
speed was weak (R=−0.27); however, the correlation for MoSAP
was significantly (p < 0.05) strong and negative (R = −0.98,
Figures 2B,C).

First-return plots (Figures 2D,E) showed that overall RMSD
values were significantly (p < 0.05) greater for RE walking
compared to OG walking in both AP (RMSDRE−AP = 0.03 ±
0.02m; RMSDOG−AP = 0.02 ± 0.02m) and ML (RMSDRE−ML

= 0.04± 0.03m; RMSDOG−ML = 0.01± 0.01m) directions.

Effect of Device Settings and Speed on
MoS
A significantmoderate negative correlation (R=−0.48, p< 0.05)
was observed for MoSML with walking speed for the Indego R©.
For EksoGTTM in theMax-Assist mode, the correlation was weak
(R = −0.37) for MoSML with speed, while it was moderate (R
= −0.42, p < 0.05) for MoSAP (Figures 3A,B and Table 3). In
the Fixed-Assistmode, the correlations were relatively weaker (|R|

Frontiers in Robotics and AI | www.frontiersin.org 4 December 2020 | Volume 7 | Article 574365171

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ramanujam et al. Stability Margins During Robot-Assisted Gait

FIGURE 1 | Center of mass (CoM) representation and definitions for the

margins of stability (MoSs) with respect to the feet and bilateral crutches.

< 0.36) and significantly negative (p < 0.05) in both directions
during EksoGTTM walking. For OG walking, the correlations for
MoSML and walking speeds were moderately negative (−0.51 <

R < −0.42, p<0.05); however, they were significantly very strong
for MoSAP (−0.98 < R < −0.89, p < 0.05).

First-return plots (Figures 3C,D) showed that RMSD values
across AP and ML directions were the lowest for OG walking
across all speeds compared to all RE walking and settings
(Table 3). For OG walking, faster speeds produced greater
RMSDAP values. Walking in the EksoGTTM under the Max-
Assist and Fixed-Assist modes was associated with greater RMSD
values in the ML direction, while walking in the EksoGTTM

(2Freemode), Indego R©, and ReWalkTM produced greater RMSD

values in the AP direction (Figures 3C,D and Table 3). In both
directions, RMSD values for the RE devices were significantly (p
< 0.05) greater than OG walking, except for EksoGTTM (2Free
mode). Correlations between MoSML and MoSAP (Figure 3E)
were moderate (0.40 < R < 0.59) and significantly positive (p
< 0.05) for OG walking across all speeds. For RE walking, only
ReWalkTM produced positive correlations for these measures (R
= 0.52, p < 0.05).

MoS Representation Referenced to Feet
vs. Crutches
MoS outcomes calculated relative to bilateral foot were
significantly lower (MoSF < 0.13m, p < 0.05) compared to those
relative to bilateral crutches (MoSC > 0.48m). MoSF values for
Indego R© (0.11m) and EksoGTTM (2Freemode, 0.12m) were not
significantly different from OG walking in the ML direction,
while it was the highest for ReWalkTM (0.18m, p < 0.05). In
the AP direction, although less than MoSC (>0.29m), MoSF

values (<0.26m) were still significantly (p < 0.05) greater than
OG walking at all speeds. For Indego R©, MoSAP outcomes when
referenced to bilateral crutches (MoSC) were the highest amongst
all RE devices; however, it was the lowest when referenced to the
feet (MoSF).

Stability Matrix
In addition to MoS outcomes computed at the point of heel-
strike, the least stable point (MoSmin) during each phase of a gait
cycle (IDS, SLS, TDS, and SW) was also determined (Figure 4).
Medial–laterally, MoSC and MoSF stayed positive (0.05m <

MoSML < 0.11m) during IDS and TDS. With RE walking,
MoSML was highest with the ReWalkTM during IDS and TDS
(> 0.10m). Conversely, MoS values were negative during SS and
SW. In the AP direction, during RE walking, MoSC was positive
during the entire gait cycle except for EksoGTTM in the 2Free
mode that experienced negative values (<-0.16m) during SS and
SW, while MoSF was found to be negative (<-0.11m) during
the SS and SW. Between OG and RE walking, MoSAP values
were consistently lower during OG walking across all speeds
(especially faster speeds) and gait phases (especially SS).

Figure 4B shows the velocity-normalized representation of
MoS (referred to as “T,” temporal stability), which was calculated
by dividing the MoS values in Figure 4A by the mean directional
CoM velocity during the corresponding phase of the gait cycle
(see Equation 4). During OG and RE walking, bidirectional TF

was negative (−3.11 s < TF < −0.39 s) during SS and SW, while
it was close to or greater than zero (0.02 s < TF < 0.94 s) during
IDS and TDS, except for TAP during OG walking at FAST and SS
speeds. Between OG and RE walking, unlike MoSAP outcomes,
TAP values were relatively similar.

DISCUSSION

Previously, walking performance involving RE-assisted gait has
included clinical measures, functional measures, and gait analysis
studies focused primarily on spatiotemporal and lower limb
kinematic outcomes during quadrupedal gait using inverse
dynamic techniques (Sylos-Labini et al., 2014; Ramanujam et al.,
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FIGURE 2 | MoS outcomes in anterior–posterior (AP) and medial–lateral (ML) directions grouped by overground (OG) and robotic exoskeleton (RE) walking for

able-bodied individuals at heel-strike. Correlations for (A) MoSAP vs. MoSML, (B) MoSML, and (C) MoSAP vs. walking speed and first-return plots for (D) MoSML and

(E) MoSAP.

FIGURE 3 | MoS outcomes per condition: correlations for walking speed with MoS outcomes in the (A) ML and (B) AP directions. Stride-to-stride variability shown

using first-return plots for MoS in the ML (C) and AP (D) directions. (E) MoSAP vs. MoSML correlations for OG walking at self-selected (SS) speed and RE walking.

MoS outcomes shown for conditions 1–5 are with respect to bilateral crutches, while OG walking conditions (6–8) occurred without crutches.

2017, 2018, 2019a,b; Husain et al., 2018; Forrest et al., 2019;Wang
et al., 2019). Moreover, our group has not only published articles
on upper and lower extremity kinematics but also studied the

posture and balance of individuals (both SCI and AB controls)
during RE-assisted gait with forearm crutches by examining
their instantaneous CoM excursions (whole body, trunk, and
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TABLE 3 | Margin of stability (MoS) outcomes across robotic exoskeleton (RE) devices and overground (OG) walk conditions at heel-strike.

RE walking conditions OG walking conditions**

1 2 3 4 5 6 7 8

MoSF
ML (m) 0.11

± 0.02

0.18

± 0.01

0.12

± 0.02

0.13

± 0.02

0.13

± 0.03

0.11

± 0.02

0.11

± 0.02

0.11

± 0.04

MoSC
ML (m) 0.48

± 0.09

0.57

± 0.06

0.52

± 0.09

0.58

± 0.09

0.58

± 0.09

- Walking without crutch -

MoSF
AP (m) 0.22

± 0.03

0.24

± 0.02

0.23

± 0.03

0.26

± 0.04

0.26

± 0.03

−0.16

± 0.15

0.09

± 0.08

0.18

± 0.06

MoSC
AP (m) 0.36

± 0.12

0.33

± 0.11

0.29

± 0.07

0.30

± 0.05

0.30

± 0.06

- Walking without crutch -

MoSC
ML vs. Walking speed R −0.48* −0.23 0.36 −0.36* −0.37* −0.51* −0.42* −0.49*

MoSC
AP vs. Walking speed R −0.20 −0.02 0.09 −0.18* −0.42* −0.98* −0.96* −0.89*

MoSC
AP vs. MoSC

ML R −0.24 0.52* −0.45 −0.03 0.01 0.48* 0.40* 0.59*

MoSC
ML(i) vs. MoSC

ML(i−1) RMSD (m) 0.03

± 0.02

0.03

± 0.02

0.02

± 0.02

0.04

± 0.03

0.04

± 0.03

0.01

± 0.01

0.01

± 0.01

0.01

± 0.01

MoSC
AP(i) vs. MoSC

AP(i−1) RMSD (m) 0.04

± 0.05

0.06

± 0.06

0.04

± 0.04

0.03

± 0.03

0.02

± 0.02

0.03

± 0.03

0.01

± 0.01

0.01

± 0.01

Walking Speed (m/s) 0.47

± 0.13

0.48

± 0.06

0.61

± 0.17

0.37

± 0.08

0.31

± 0.09

2.10

± 0.49

1.24

± 0.32

0.84

± 0.26

Walking conditions 1 to 8 are as described previously; **OG walking occurred without the use of crutches; values are presented as mean ± SD or number; *p < 0.05.

lower extremity) in relation to the BoS (Ramanujam et al.,
2019a,b). For this manuscript, we have combined all of these
parameters to determine the instantaneous MoS for investigating
stability control using different RE devices. To date, there is
limited research to evaluate balance control using different
powered RE devices. In this study, human–machine interaction
for computed dynamic margins of stability were quantified for
walking performance during RE-assisted walking compared to
independent OG walking for healthy adults.

MoS Outcomes vs. Speed During OG and
RE Walking
MoS outcomes were negatively correlated (p < 0.05, Table 3)
to walking speed during OG walking. Therefore, with an
increase in walking speed, instability increased in both AP and
ML directions. By comparison, 80% (8/10 correlations) of RE
conditions showed weak (|R| < 0.37) correlations for either
direction. Therefore, control mechanisms for stability using REs
were not related to changes in walking speed. The exceptions
were the Indego R© (p < 0.05) medial–laterally and EksoGTTM

(Max-Assist mode; p < 0.05) in the AP direction.
For many REs, device parameters such as the assist modes

or motor assistance levels determined the human–machine
interactions affecting walking speed. The greater stance time
required to meet the forward and lateral targets for step initiation
translated to slower walking speeds (Sylos-Labini et al., 2014;
Ramanujam et al., 2017), whereas faster speed required rapid
and spatially extensive weight shifts (predominantly by the trunk
and pelvis) onto the lead limb for a quicker step initiation
with the trail limb during stance to increase CoM velocity and
negatively affect the margins of stability. This is especially true
while walking with the EksoGTTM (assist modes) and ReWalkTM

since they operate on the principle of lateral and anterior weight

shifts, respectively, on to the lead limb, to initiate the next
step. This delay in weight acceptance can affect overall walking
speed. By comparison, for OG walking, dynamic stability can be
controlled by lower extremity foot placement, especially lateral
foot placement (Hof, 2008). These progressive step changes in
foot placement are essential to walking stability in the prevention
of disturbances such as slips and falls (Kennaway, 1970; Bennett
and Murphy, 1977; Bateni and Maki, 2005; Saunders et al., 2013).

Crutches for quadrupedal gait increase the BoS to improve
balance (Bateni and Maki, 2005; Saunders et al., 2013). However,
assistive devices have been associated with an increased risk of
falling and injuries during the expected or unexpected transition
(crutch lift or slippage) from quadrupedal to bipedal gait during
non-exoskeleton gait (Bateni and Maki, 2005). Lifting or slippage
of the assistive device is similar to lifting the foot, causing the
CoM to fall toward the unsupported side during unassisted
gait, creating a state of imbalance where the CoM lies outside
the limits of BoS (Bateni and Maki, 2005). During RE walking
(especially, EksoGTTM), the devices’ limitation toward choosing
the desired lateral foot placement puts more emphasis on crutch
location outside the leading limb to provide a stable BoS,
resulting in reduced ML control of stability. The location of this
crutch may also be influenced by the different surfaces (e.g.,
carpet, pavement) (Wang et al., 2019).

Device Operation and its Effect on Stability
In addition to moderate-to-strong relationships between MoS
outcomes and walking speed, for OG gait, MoSAP was
significantly positive and moderately correlated (p < 0.05)
to MoSML. Therefore, during OG gait, the mechanisms for
controlling dynamic stability were multi-planar and changed
based on gait speed. For RE devices, there were very weak and
non-significant relationships between MoSAP and MoSML except
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FIGURE 4 | (A) Stability matrix showing the lowest stability values (MoSmin ) in

both AP and ML directions during each phase of gait cycle [initial double

support (IDS), single support (SS), terminal double support (TDS), and SWING]

across RE and OG walking. (B) MoS normalized to CoM velocity (referred to

as “temporal stability”—?) within each phase of the gait cycle.

for ReWalkTM and EksoGTTM (2Free), which exhibited positive
and negative relationships for MoSAP and MoSML, respectively.
Therefore, gains in stability were bi-planar only in the ReWalkTM.

The inherent differences in the design and control
mechanisms of these devices altered the way users maintain
balance and control their dynamic stability. As found earlier, the
control of MoS was not necessarily related to speed during RE
walking. The changes in MoS during RE walking were governed
more by the positional aspect of the CoM due to the necessary
ML and/or AP weight shifts for step initiation rather than its
velocity component. For instance, the EksoGTTM operates on
the principle of lateral weight shift onto one foot to complete
the stepping on the contralateral foot combined with moving
the contralateral crutch forward, while the ReWalkTM uses a
“tilt” action that initiates a step by tilting the trunk anteriorly
and moving both crutches forward simultaneously. This increase
in trunk lean angle at heel-strike and greater AP excursion of
CoM while walking with the ReWalkTM, as previously reported
in our earlier study (Ramanujam et al., 2019a), translated into a
more anterior location of the CoM, resulting in lower stability
values (for MoSF) in the AP direction compared to EksoGTTM

(Max-Assist and Fixed-Assist). Similar is the case with AP
stability in the Indego R© that uses postural cues to trigger all
transitions (e.g., to walk forward, the user just leans forward) and
EksoGTTM (2Free mode) where the user is free to move in any
direction while stepping and not restricted to ML weight shifts.

It should also be noted that each standard deviation associated
with the meanMoS (ML or AP) for Fixed-Assist modes (Table 3)
is low, indicating that the difference in levels of assistance in
the Fixed-Assist mode (60, 35, 0%) had a minimal effect on
MoS values.

Effect of Crutch Placement on
Stride-to-Stride Control
Stride-to-stride variability in MoS outcomes is indicative of the
control of stability during consecutive steps. The dispersion
of points on the first-return plots determines step-to-step
adaptations during gait. For OG walking, as expected, the stride-
to-stride variability was significantly low except for FAST speeds
in the AP direction compared to RE devices. One of the major
determinants of faster walking speed is increased step and stride
lengths. The variability in terms of anterior foot placements
across strides and individuals, to increase step lengths and
achieve faster speeds, translated into higher RMSDAP values.
During RE walking, the foot placements are, for the most
part, governed and limited by the device settings and hence
quite similar from one step to another. However, the placement
of bilateral crutches varies stride to stride, across individuals
and devices/modes. The precise location of crutch placement
is based on individual preferences. Therefore, variability in
crutch placement translates into higher dispersion of stride-to-
stride stability measures and, hence, reduced control of stability
especially during the transition to a bipedal gait.

For RE walking, RMSDML values were found to be
significantly greater (p < 0.05) with EksoGTTM for the Max-
Assist and Fixed-Assist modes, while RMSDAP values were
significantly greater with the Indego R© and ReWalkTM. During
Max-Assist (EksoGTTM), individuals tend to load onto their
leading limb to achieve the required lateral weight shift for step
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initiation with the trailing limb. Hof (2008) found in their study
that stability might be maintained or controlled by the lateral
foot placement during walking. However, during RE walking
(especially EksoGTTM), the extent of lateral foot placement is
restricted by the device design and setting. Consequently, the
crutch is more lateral to the leading limb to provide a stable
BoS, resulting in higher RMSDML values and reducedML control
of stability. This is especially relevant to the Fixed-Assist mode.
Conversely, with the ReWalkTM and Indego R©, the emphasis is on
forward trunk lean for step initiation and hence a more anterior
location of crutches. This results in greater AP stride-to-stride
variability in MoS and a reduced AP control of stability.

Control of Stability During a Gait Cycle
As noted earlier, for quadrupedal RE gait, the majority of postural
adaptations and weight transfer within each device occur during
the phases of SS just prior to step initiation. As a result, all stability
outcome measures are lower during these phases.

Dynamic margins of stability in the ML direction were found
to be stable during the double support phases of OG walking
at all speeds as well as RE walking across the tested devices.
Anterior–posteriorly, all three devices were most stable for both
the crutch (MoSC) and foot (MoSF) margins of stability during
double support. However, instability was observed during SS
(MoSF only). In the EksoGTTM, although the Max-Assist and
Fixed-Assist modes necessitate users to shift their weight laterally
to complete the stepping motion, the 2Free mode provides more
freedom to translate or step anteriorly. This is supported by
lower values of MoSAP in the 2Free mode of EksoGTTM walking
during SS. Similar observations were seen while walking in the
ReWalkTM and Indego R©, which requires users to lean forward
with their trunk for step initiation.

Since the analyses for MoS outcomes for RE were not
related to speed and there were large device differences for
walking speeds compared to OG walking, MoS outcomes were
normalized relative to speed for each phase of a gait cycle, defined
as the temporal stability margin (T). TF in the AP direction
during RE walking was similar to OG walking at SLOW and SS
speeds. Therefore, the RE gait stability based on MoS parameters
normalized to speed was like OG gait. Therefore, despite the
assistance and postural support offered by the RE, it did not
necessarily alter the AP stability measures compared to OG
walking. Of note, while walking with EksoGTTM in the 2Free
mode, the temporal AP stability with respect to feet (TF) as well
as crutches (TC) was much lower compared to other RE devices
and modes during SS.

Significance of MoS Referenced to Feet
Since RE walking occurred exclusively with the use of bilateral
forearm crutches and at relatively low speeds (<0.6 m/s), the
mean MoS outcomes (MoSC) were significantly greater than
those experienced during independent OG walking across all
speeds (>0.8 m/s). The wider BoS provided by the crutches
compared to just the feet (OG walking) increased the overall
dynamic stability for a quadrupedal gait for all RE devices tested.
However, although the margins of stability were high with crutch
usage, it is still important to examine and evaluate the postural

orientation of the whole-body CoM relative to feet (bipedal
gait). In the event of crutch slippage caused by a variety of
reasons, the feet will act as a bipedal BoS for individuals during
RE walking. To further examine this, MoS outcomes were also
computed relative to feet as the BoS (MoSF), which were found
to be considerably lower compared to those calculated relative to
crutches (MoSC).

Bilateral stability outcomes relative to feet, both MoSF and
TF (Figure 4), are considerably lower throughout the gait cycle
compared to those calculated relative to crutches (MoSC and
TC). During the SS phases of RE walking, majority of postural
adjustments and ML weight transfers occur to initiate stepping
with the trail limb. Using the crutch during REwalking is not only
precautionary to provide support, but individuals tend to lean
on the crutches during these phases, especially medial–laterally
(for EksoGTTM) and anterior–posteriorly (for, ReWalkTM and
Indego R©), in order to propel themselves forward. As a result, all
the stability outcome measures are lower during these phases.

Assistive devices can inhibit balance during gait to increase
fall risk (Kennaway, 1970; Phonthee et al., 2013). Crutch slippage
due to the material used or different walking surfaces (e.g., wet
pavements, snow, ice, etc.) can lead to injuries (Kennaway, 1970;
Bennett and Murphy, 1977). MoS data and analyses indicate
that the reliance on crutches during RE walking moves the CoM
laterally and in some cases beyond the BoS defined by the feet,
thereby increasing postural instability and fall risk if the crutch
were to slip.

Limitations
While the results provided significant insight into human–
robotic interaction for stability during RE gait and directly
addressed the hypothesis to show significant differences
in the MoS measures during RE-assisted walking based
on device, compared to independent OG walking for all
speeds, these results are preliminary. A greater number of
trials for all conditions and number of training sessions
per individual are needed to further analyze stability.
The mechanical measures determined the dynamic
MoS without consideration given to the difference in
neuromuscular strategies, for recovery of gait and balance.
Research in these areas is required for community and
rehabilitation devices.

Conclusion and Future Works
For healthy adults, stability outcomes alone and their relationship
to walking speed during RE walking compared to independent
OG walking were significantly different. Due to exoskeleton
design, margins of stability or control mechanisms for stability
during RE walking were not related to walking speed. Despite
the dissimilarities in the design and operation of these RE
devices, the dynamic margins of stability for these individuals
were found to be lower during SS, especially in the ML
direction across all devices. Further, the reliance on crutches
and their spatial location during RE walking pushed the
CoM, during SS, beyond the lateral boundary of the lead
foot, thereby placing the individuals at risk for falls if crutch
slippage was to occur, especially relevant when individuals
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cannot recover from an unbalanced posture. Consideration
of crutch placement is therefore relevant to stride-to-stride
postural control and margins of stability within the limits
of bipedal BoS for dynamic stability. Understanding the
interactions between humans, RE devices, and assistive devices
(if used) combined with training adaptions is relevant to the
advancements in the field of exoskeleton technology, both
in research and in the clinic. Future research will include
a more comprehensive analysis of the different assist modes
within each exoskeleton and the possible use of the Monte
Carlo statistical technique to further evaluate the associated
outcome measures.
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Occupational back-support exoskeletons are becoming a more and more common

solution to mitigate work-related lower-back pain associated with lifting activities. In

addition to lifting, there are many other tasks performed by workers, such as carrying,

pushing, and pulling, that might benefit from the use of an exoskeleton. In this work,

the impact that carrying has on lower-back loading compared to lifting and the need

to select different assistive strategies based on the performed task are presented. This

latter need is studied by using a control strategy that commands for constant torques.

The results of the experimental campaign conducted on 9 subjects suggest that such

a control strategy is beneficial for the back muscles (up to 12% reduction in overall

lumbar activity), but constrains the legs (around 10% reduction in hip and knee ranges

of motion). Task recognition and the design of specific controllers can be exploited by

active and, partially, passive exoskeletons to enhance their versatility, i.e., the ability to

adapt to different requirements.

Keywords: exoskeleton, occupational exoskeleton, versatility, lifting, carrying, task recognition, human activity

recognition

1. INTRODUCTION

In the 1970s, the scientific community began addressing the relationship between musculoskeletal
disorders (MSDs) and work ergonomics. Since then, many studies have been published regarding
this topic (Bernard and Putz-Anderson, 1997; Cohen, 1997; Fujishiro et al., 2005; Hamberg-van
Reenen et al., 2008). Yet, in the most recent EU-OSHA report de Kok et al. (2019), MSDs are still
cited as the most common work-related health problem in the EU. Indeed, 60% of workers still
experience such disorders, in the majority of the cases due to back pain. MSDs affect not only
the workers, but also the enterprises that, in turn, have to cope with absenteeism and productivity
losses. To have an idea of the economic impact, in 2012, the total annual cost related to MSDs to
the European Community represented 2% of the GDP (Bevan, 2012).

Workers performing manual material handling (MMH) activities (e.g., package loading and
unloading in a warehouse or luggage handling in airports) are among the most exposed to risks
and injuries. To try to reduce MSDs associated with MMH, NIOSH has developed a method for
the ergonomic assessment of a task, defining whether or not it is classified as risky (Waters et al.,
1993). Potentially harmful tasks should be mitigated via adoption of different solutions such as the
introduction of limits for handled masses, frequencies, and task duration. Additionally, companies
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have tried to mitigate MSDs by re-designing the workplace
according to the newer ergonomic guidelines or by resorting
to plant automation and to the introduction of industrial
manipulators. However, the cost associated with these solutions
and the lack of adoption of external tools by the users prevents
the problem of MSDs from being completely solved.

1.1. Back-Support Exoskeletons and Lifting
The ability of back-support exoskeletons to reduce the physical
loading on the lumbar spine while performing lifting tasks
suggests that they may present a possible novel solution to
back pain-related MSDs. Indeed, a 2016 review on occupational
exoskeletons reported that usage of back-support exoskeletons
yielded a 10–40% reduction in back muscle activity during
repetitive lifting and static holding tasks (de Looze et al.,
2016). The primary consequence of muscle activity reduction
is the de-compression of the lumbar spine. Such results are
confirmed by a more recent review (Theurel and Desbrosses,
2019) that stresses the clear potential of exoskeletons in limiting
muscular demand. However, this report also warns that there is
insufficient current knowledge to justify an unreserved adoption
of this technology. Fox et al. (2019) elaborate on these devices
to improve manufacturing processes. Moreover, focusing on
three aspects, namely (a) actuators, (b) structures and physical
attachments, and (c) control strategies employed, Toxiri et al.
(2019) report on the technical development of back-support
exoskeletons meant for occupational use. According to the
actuator choice, an exoskeleton can be defined as active or
passive. A passive exoskeleton exploits its wearer’s movements
to store and then release energy. Energy storage is achieved by
means of passive elements such as gas/coil springs, flexible beams
or elastic bands (Abdoli-e et al., 2006; Lamers et al., 2017; Näf
et al., 2018). In contrast to passive exoskeletons, active devices
have the ability to deliver additional energy to the user exploiting
electrical motors or pneumatic actuators. Such active elements,
rather than relying onto the users’ movement, are powered by
batteries or external supplies. Properly controlling the active
actuators allows designers to tune the assistance being provided
based on different control strategies. As an example, in Toxiri
et al. (2018) and Tan et al. (2019) sEMG signals are used to
modulate the assistive torque, while in Lazzaroni et al. (2020),
Chen et al. (2018), Ko et al. (2018), Zhang and Huang (2018),
and Yu et al. (2015) the control relies on kinematics.

1.2. Manual Material Handling: Is There
Only Lifting?
As reported in Grazi et al. (2019), a consensus on the methods
and metrics for the evaluation of back-support exoskeletons is
still lacking. Indeed, the analyzed signals, the testing conditions,
and the performance metric vary across the many available
studies. However, all these studies have in common that
the exoskeleton evaluation only considers static bending and
symmetric lifting tasks. Yet, risk of overload for workers arises
not only from lifting: workers may find themselves performing
many different activities in the same workplace. As an example,
in logistics, it is possible to imagine a quite simple task where

a worker walks to the shelf, picks the required object, carries
it back to the cargo area, and, eventually, lowers it in the
appropriate container. A similar scenario can be pictured in
other contexts where MMH is involved. In such conditions,
the International Standard ISO 11228 establishes ergonomic
guidelines not only for lifting but also carrying, pushing, and
pulling. Therefore, the analysis of the exoskeleton usage effects
should not be limited to lifting tasks, but importantly should
also tackle other activities such as carrying, pushing, pulling, and
walking. This extension can capture the complexity of out-of-the-
lab environments more reliably. As an example, an interesting
study presented in Baltrusch et al. (2019) focuses on the versatility
of a passive exoskeleton, studying its performance not only
related to lifting but also walking. As might be expected, it
emerges that passive exoskeletons provide benefits during lifting
and do restrict the movement during walking. From this point of
view, active exoskeletons, even if more complex and heavier, are
expected to perform better, because of the possibility of tuning
and customizing the assistance according to the task.

1.3. Contribution of This Study
Recent works on exoskeletons have discussed about the
opportunity of exploiting human activity recognition to
discriminate between different tasks such as lifting, walking,
carrying, or sitting (Chen et al., 2018, 2019; Poliero et al., 2019a;
Jamšek et al., 2020). For passive exoskeletons, this implies that,
by using clutches for the engagement and disengagement of
passive elements, as in Endo et al. (2006), Walsh et al. (2007),
Ortiz et al. (2018), Jamšek et al. (2020), and Di Natali et al.
(2020a), it is possible to assist only when needed, i.e., deactivate
the passive elements when they create a restriction such as in the
walking case. Active exoskeletons, on the other hand, thanks to
their actuators versatility, could implement specific controllers
for any of the previous tasks.

In the study presented hereafter, the investigation focuses on
carrying activities, given their relevance to MMH and to the ISO
11228-1 standard. In particular, the authors want to elaborate
more on (i) the impact that a non-lifting activity might have
on lower-back loading and on (ii) the need to select different
controllers based on the performed task.

First, a comparison is made between the spinal loading during
lifting and carrying activities to investigate the impact of the task
on this latter parameter. In particular, spinal loading, which is
closely associated with risk of injuries, is caused by the activation
of deep back muscles—related to back extension—generating
compression on lumbar discs. When a worker is carrying a load,
back extensors activate to keep the trunk stable and straight, thus,
this situation also presents risks to the user.

Second, to better understand the need of different controllers
according to the task, it might be useful to report a consideration.
To date, the vast majority of available occupational back-support
exoskeletons are designed and programmed to provide assistive
torques that contribute simultaneously to the extension of the
back and both hips, regardless of their actuation principles
and control strategies. This assistance principle is derived
from and replicates the typical movements observed during
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FIGURE 1 | Example of luggage handling in an airport performed with the usage of XoTrunk. Written informed consent was obtained from the individual pictured in the

figure.

symmetric lifting activities. Indeed, in this situation, every
time there is back flexion or back extension, there is also a
corresponding flexion or extension of the hips, respectively.
Therefore, the presented assistance principle seems appropriate.
In this study, the soundness of applying this strategy in
carrying activities is investigated. Indeed, the inclusion of
gait shows a different situation with respect to symmetric
lifting. In particular, during carrying, contributing to back
extension is appropriate, but simultaneously pushing both hips
toward extension might interfere with their natural movement.
More specifically, the support could be beneficial during
hip extension (associated with the leg in stance phase), but
may result in restriction of the hip flexion (forward swing,
characteristic of the leg not in contact with the ground). Hence,
to understand the need of different controllers according to
the task, the effects that assisting with carrying—adopting an
assistance principle derived from observation of symmetric
lifting activities—has on the users are studied. The effects will
be assessed in terms of muscle activity, gait kinematics, and
subjective perceptions.

In the following, details on how the experimental testing was
devised are reported in Section 2. Section 3 presents the results
that are then discussed in Section 4. Finally, Section 5 summarizes
and concludes this work.

2. MATERIALS AND METHODS

We devised an experiment, approved by the Ethics Committee
of Liguria1, that is detailed following the description of
XoTrunk, the active back-support exoskeleton used in this study.
Finally, information on data processing and outcome measures
are reported.

2.1. XoTrunk: An Active Back-Support
Exoskeleton
XoTrunk (see Figure 1) is a 6kg improved version of the Robo-
Mate prototype, presented in Toxiri et al. (2018). Its aluminum
frame houses the control and electronics box, the actuation units,
and the anchoring points. These points are situated close to
the thighs and the shoulders, allowing the device to transmit
the torques—produced by its two brushless DC motors—to the
wearer. These torques are used to help the user perform lifting,
by partially contributing to hip and back extension. Additional
anchoring on the waist provides more stability and comfort.
More details on the actuators and low level control can be found
in Di Natali et al. (2020b), whereas kinematics and physical
attachments are reported in Sposito et al. (2020).

1protocol reference number: CER Liguria 001/2019.
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The versatility provided by its two electrical motors allows
to test and study different control strategies. In particular, in
Toxiri et al. (2018), three control strategies are presented to
modulate the torque proportionally to (a) the torso inclination
angle, (b) the forearm muscle activity, and (c) a combination of
torso inclination and forearm muscle activity. Regardless of the
selected control strategy, the motors always provided assistive
torques that contribute simultaneously to the extension of the
back and both hips. The backwards push on the back is the
combination of the assistance provided by the left and right sides.
As introduced in Section 1.3, this assistance principle is inspired
by observation of symmetric lifting movements. This study
concerns whether or not this assistance principle can be beneficial
also for assisting carrying. The control strategy selected here was
based on a constant extension torque provision. Indeed, for the
sake of simplicity, during carrying the torso inclination can be
neglected, whereas the forearm muscle activity can be assumed
to be constant during load handling. Such simplifications were
introduced to facilitate the analysis of the effects that assistance
during carrying has on the users. In the following, this control
mode is referred to as the Exoskeleton On (Exo-on) condition.
Each motor generates a constant torque of 10 Nm, resulting in an
overall assistance of 20 Nm.

2.2. Experimental Set-Up and Protocol
Nine healthy male subjects (N = 9, 1.78 ± 0.04 m, 76.55 ± 8.22
kg, 31 ± 3.46 years old) were asked to wear sporting clothes and
informed they would have to perform the following tasks:

• Lifting: The sequence of: standing upright, reaching for a box
lying 0.30 m from the ground, grasping and lifting it, reaching
upright posture again, then putting the box back down on the
ground and returning to the upright posture. Each sequence
was repeated three times at a self-selected speed and with a
freestyle lifting technique, meaning no specific instructions on
lifting motion were given (Burgess-Limerick, 2003).

• Carrying: Straight level walking for 7.5m, while holding a box
close to the trunk at self-selected speed.

Each test subject performed lifting with the box (1.2 kg) housing
three different payloads, namely 0, 7, and 15 kg. In the following,
the different weights are referred to as light (L),medium (M), and
heavy (H). All the conditions were repeated three times for a total
of 9 tests per subject. Carrying tasks were performed not only
varying the loads (light, medium and heavy, as for lifting), but
also the supplied assistance. In particular, two conditions were
tested:

a) No Exoskeleton (No-exo): carrying without the exoskeleton;
b) Exoskeleton On (Exo-on): carrying while wearing the

exoskeleton in the on-mode. The exoskeleton provides an
angle independent constant torque of 20 Nm to provide
support for the extension of the back and of both hips (see
Section 2.1).

Each load and assistance condition was repeated three times for
a total of 18 tests per subject. The task execution order, the
handled weights, and the supplied assistance were randomized
between subjects.

TABLE 1 | Overview of the testing protocol and the selected metrics.

Tasks Lifting; Carrying

Loads Light 1.2 kg (L), Medium 8.2 kg (M), Heavy 16.2 kg (H)

Conditions Without exoskeleton (No-exo); with exoskeleton (Exo-on)

Repetitions 3x

Metrics M, P, RoMh, RoMk , δ

Statistical analysis for each ρx , α, iqr, and γ were analyzed (x being any of the

above metrics)

At the end of the experimental protocol, the subjects were
asked to fill in a simplified version of an RPE (Rate of Perceived
Exertion) questionnaire to rate the differences between carrying
in the No-exo and in the Exo-On condition (Huysamen et al.,
2018).

Table 1 summarizes the protocol and its independent
variables.

2.3. Measurements and Data Processing
To collect muscular activity data, the subjects were asked to
wear surface EMG (sEMG) electrodes (BTS FREEEMG, BTS
Bioengineering, Italy). These latter were placed, according to
SENIAM guidelines, to measure the bilateral activation of the
muscles responsible for trunk extension, namely the Erector
Spinae Longissimus Lumborum (LL) and the Erector Spinae
Iliocostalis (IL). Additionally, due to the symmetry of the
task, only the subjects’ right leg was instrumented to measure
the activation of two muscles responsible for hip flexion and
extension, i.e., the rectus femoris (RF) and the semitendinosus
(ST). Back and leg muscles were chosen based not only on
their relevance when performing lifting activities but also on
the number of studies that analyze them in order to allow
comparisons of findings across different protocols (Grazi et al.,
2019). Figure 2 illustrates the locations of the chosen muscles.
Prior to attaching the electrodes onto the skin, the site was
cleaned with alcohol, as suggested in Stegeman and Hermens
(2007). Muscular activity information was acquired at a sampling
frequency of 1 kHz. Extraction of metrics from the sEMG signals
requires data post-processing. The common approach reported
in Pons (2008) consists of filtering the amplified raw sEMG
signals (BTS FREEEMG output), rectifying the output, and,
eventually, computing the linear envelope (low-pass frequency
filter at 2.5 Hz, Potvin et al., 1996). EMG data were normalized
to maximum voluntary contractions (MVC) (McGill, 1991).
Overall, lumbar extensor activity (averaged IL and LL muscle
activity, right and left side) was computed prior to performing
deep-back muscles analysis as in Koopman et al. (2019).

To collect motion data, the subjects were also equipped
with a 3D motion tracking system (MTw Awinda, Xsens, The
Netherlands). 7 Xsens IMUs were attached to the feet, shanks,
thighs, and pelvis in order to reconstruct lower limb kinematics
and gait phase events. The Xsens software can reconstructmotion
data at a 60Hz sampling frequency. Using IMU trackers and
biomechanical models, the software also provides gait phase
information that can be used to perform data segmentation
(Di Natali et al., 2020a). Two consecutive heel strike events
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FIGURE 2 | Schematic representation of electrodes placement. For greater

clarity, only the right side electrodes are displayed for the back. It is possible to

identify the Erector Spinae Longissimus Lumborum (LL), the Erector Spinae

Iliocostalis (IL), the rectus femoris, and the semitendinosus.

generated by the same foot are used to identify the start and finish
of the stride.

Before data recording, Xsens calibration andMVC acquisition
routines were performed for each subject (Vera-Garcia et al.,
2010; Halaki and Ginn, 2012).

2.4. Outcome Metrics and Analysis
In the following, the metrics used for the assessment of the effects
of assisting with carrying are reported along with the metrics
used for comparing carrying and lifting tasks. This section also

introduces how the statistical analysis was performed. Table 1
summarizes what presented hereafter.

2.4.1. The Effects of Assistance During Carrying
As previously introduced in Section 1.3, it is hypothesized
that the exoskeleton will positively influence the back and hips
extension, whereas the hip flexion would be hindered. To explore
the effects of assisting with carrying, this task was analyzed
in the No-exo condition (control group) and in the Exo-on
state (test group). To be consistent with studies focusing on
lifting, the effect of the exoskeleton on the back is analyzed
in terms of muscle activation. For the lower limbs, on the
other hand, gait inclusion suggests also adding gait kinematics
analysis to themuscle activation. In the following, first themuscle
analysis metrics are presented and, then, the gait kinematics
are considered.

Muscle fatigue may be experienced as symptoms or signs of
reduced motor control such as localized discomfort or decreased
strength. Generally, physical exertions can cause fatigue that
lasts for just a few hours. If fatigue persists, it may cause tissue
damage and yield MSDs (ACGIH, 2008). In Jonsson (1982),
the 50th percentile/median of the muscle activity distribution
(M) is selected to reflect how the muscle has been working
during the whole recording period. Based on this reasoning, in
this work, M was chosen to monitor the risk associated with
repetitive/cumulative fatigue both for the back and the lower limb
muscles. Additionally, ergonomic guidelines for industry define
the maximum allowed spinal compression. If this threshold is
exceeded, traumatic damages in the inter-vertebral discs may
result (Moore and Garg, 1995). Biomechanical models can be
used to show how this compressive force is directly linked to
muscle activity (Chaffin, 1969; Toxiri et al., 2015). In Jonsson
(1982), the 90th percentile of muscle activity distribution (P)
is indicated as being more informative than the maximum
muscle activity. For such reasons, in this work, P was chosen to
monitor the risk associated with traumatic damages in the inter-
vertebral discs. P was analyzed also for the lower limb muscles,
even though there is no clear traumatic damage associated with
those sites.

The gait kinematics is focused on the hip and knee ranges
of motion (RoMh and RoMk, respectively) that are defined as
the difference between the 90th and the 10th percentile of the
lower limbs trajectory distribution during carrying. Since users
were instructed to walk at a self-selected speed, an analysis on the
average stride time (δ) per condition is conducted. δ is defined as
in Equation (1)

δ =
1

S− 1

S−1
∑

k=1

Hk+1 −Hk, for k =1,2,...,S-1 (1)

where S represents the number of strides in a test andH is a vector
collecting all the right heel strike time events.

2.4.2. Comparing Carrying and Lifting Tasks
To report on the impact that carrying has on spinal loading
compared to lifting, a simple comparison of lifting in the No-
exo condition (control group) and carrying in the No-exo one
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FIGURE 3 | Boxplot representations for ρM and ρP considering the overall lumbar muscle activity performing lifting and carrying in No-exo condition. (A) The 50th

percentile of muscle activation (ρM ). (B) The 90th percentile (ρP ). L, M, and H refer to the light, medium, or heavy loading condition. A gray line identifies where ρ = 1

(i.e., where carrying and lifting are equivalent according to the selected metric). Numeric values at the bottom of each box report the value of γ .

(test group) is presented. This analysis was focused on the overall
lumbar extensor activity and on the same metrics presented in
Section 2.4.1.

2.4.3. Statistical Analysis
Kinematic data were analyzed applying a standard one-way
analysis of variance (ANOVA) with significance level set at
p < 0.05. Such analysis was performed for both hip and knee
angles. Initially, the same approach was meant to be adopted
also for the stride duration examination and the muscle activity
one. However, due to large variability in inter-subject walking
speed and muscle activation signals (even after normalization
with respect to the MVC), the choice was made to center
the analysis around intra-subject variability. Indeed, big data
variability implies that standard statistical analysis would not
be very informative. For this reason, ratios between the test
and control conditions (specified in Sections 2.4.1, 2.4.2) were
adopted as an alternative form of intra-subject normalization,
prior to comparison with the results obtained by other subjects.
In the following, we define ρx

i as the ratio computed considering
metric x (either M, P, RoMh, RoMk, or δ) in the control and test
condition for a subject i.

ρx
i =

Xcontrol
i

Xtest
i

(2)

The vector collecting ρx
i for all the nine healthy subjects is

referred to as ρx. To deepen the analysis of ρx, and to better
highlight trends in the data, the following values are taken into
account for each ρx distribution:

• the median value (α);
• the inter-quartile range (iqr), defined as the difference between

the 75th and the 25th percentile of the ρx distribution;

• the number of subjects for which ρx
i < 1 (γ ).

2.4.4. Subjective Evaluation
The subjective evaluation forms, filled in by each subject at the
end of the experimental protocol, allow a comparison to be made
on whether or not the perceived effect is consistent with the
objective data. Based on their relevance in this study, only the
answers referring to back, waist, and legs are analyzed.

3. RESULTS

In the following, results referring to spinal loading during
carrying are presented, followed by those associated with the
effects of the assistance during carrying. In particular, these latter
results are split into muscle analysis and gait kinematics.

3.1. Spinal Loading During Carrying
Figures 3A,B present the boxplot of the distribution of ρM and
ρP when comparing the overall lumbar muscle activity during
carrying and lifting activities.

Lower-back muscle activation is in the same order of
magnitude, but generally lower during carrying compared to
lifting, according to the reported measurements. This is true in
all cases for ρP, whereas ρM shows a few subjects for which
ρM
i > 1, meaning that the lumbar muscle median activation

(50th percentile) was higher in carrying than lifting. In the heavy
load test, one of the subjects is considered an outlier (represented
by a red cross). For light loads, considering both ρM and ρP, the
median (α) is around 0.40, while this number increases to around
0.60 for heavier loads, showing an overall trend. It is worth
highlighting that γ is always quite close to N = 9, indicating a
shared trend among all the subjects.
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FIGURE 4 | Boxplot representations for ρM and ρP considering the overall lumbar muscle activity performing carrying in the No-exo condition and in the Exo-on one.

(A) The 50th percentile of muscle activation (ρM ). (B) The 90th percentile (ρP ). L, M, and H refer to the light, medium, or heavy loading condition. Green-shaded areas

identify the regions where ρx
i < 1 (i.e., the exoskeleton reduces the muscle activity). Note that in (A) the top whisker for the light loading condition extends up to 2.3.

Numeric values at the bottom of each box report the value of γ .

3.2. Effects of Assistance During Carrying
The results are reported focusing first on the muscle activation
and, then, on the gait kinematics.

3.2.1. Muscle Activation
Figure 4 reports the boxplot associated with ρM and ρP for
the overall activation of the lumbar muscles when comparing
carrying activities with and without the exoskeleton. Overall, the
population distributions are around the unit value and the iqr
range is quite large (up to 0.62). However, the iqr has a trend to
reduce as the payload increases, both for mean and peak. Indeed,
the variability in the heavy load condition is about one-third of
that recorded for the lighter loads.

Light and heavy load tests display opposite behaviors, with the
first (light load) belonging almost entirely to the ρx > 1 region
(i.e., the exoskeleton produced an increase of the metric) and the
second (heavy load) to the ρx < 1 region (i.e., the exoskeleton
produced a reduction of the metric). This is more evident for
ρM rather than ρP. An additional interesting observation is
that for both metrics the lowest value is for the intermediate
weight. For both ρM and ρP, γ indicates that the majority of the
subjects experienced a reduction of muscle activation in the Exo-
on condition, with respect to the control case. Moreover, as the
payload increases, the value of γ increases as well.

Figure 5 refers to the lower limb muscles activation analysis.
Similarly to above, the distributions are centered around the unit
value. The iqr still displays large variability (up to 0.71) and there
is no longer a clearly narrowing trend as the payload increases.
Indeed, in the case of the RF, the iqr is smaller for the intermediate
loads than it is for heavier loading condition. Red crosses identify
outliers in the ST ρM , and in the RF and ST ρP. Also in this
case, it is possible to identify an increasing trend for γ as the
payload increases.

3.2.2. Gait Kinematics
How the RoM changed between the two conditions is reported
in Figure 6, revealing a clear trend for both the hip and the
knee joints. Indeed, for both hip and knee RoM it almost
always holds that ρRoMk < 1 and ρRoMh < 1 (see also γ

values). On average, the median values (α) are around 0.90
indicating that there is a reduction in the RoMs of about 10%
due to the exoskeleton action. The iqr values are much lower
than in the muscle analysis (maximum iqr is 0.12 with respect
to 0.71).

Significance levels obtained comparing the Exo-on and the
No-exo condition are reported in Table 2. Bold values indicate
where significance was reached (p < 0.05). In each condition, at
least one joint had a significant RoM reduction between the test
and control condition.

Moreover, by inspection of Figure 7, it is possible to see
how the Exo-on condition yielded an increase of stride duration

(δ), as all the distributions lie in the ρδ > 1 region. The
trend indicates a median increase in cycle time duration of
about 6%. Outliers can be identified in the light and medium
load conditions. The values of γ indicate a clear effect for all
the subjects.

3.2.3. Subjective Perception
Finally, Figure 8 summarizes, for each body region
under analysis, how many users reported a benefit or
hindrance/discomfort when comparing the Exo-on and
the No-exo conditions. The majority of the subjects
(8 out of 9) experienced a positive exoskeleton effect
on the back/trunk region, whereas 7 out of 9 subjects
felt hindered in the lower limbs. Interestingly, 3 users
reported benefit also on the waist, where the exoskeleton
is anchored. As the users were instructed to report benefit
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FIGURE 5 | (A) Boxplot of ρM considering the rectus femoris activity performing carrying in Exo-on and No-exo condition. (B) Boxplot of ρP considering the rectus

femoris activity performing carrying in Exo-on and No-exo condition. (C) Boxplot of ρM considering the semitendinosus activity performing carrying in Exo-on and

No-exo condition. (D) Boxplot of ρP considering the semitendinosus activity performing carrying in Exo-on and No-exo condition. L, M, and H refer to the light,

medium, or heavy loading condition. Green-shaded areas identify the regions where ρx
i < 1 (i.e., the exoskeleton reduces the muscle activity). Numeric values at the

bottom of each box report the value of γ .

or hindrance only if actually perceived, for a given body
region, the sum of hindrance and benefit does not have
to be N = 9.

4. DISCUSSION

In the following, the discussion is presented starting from the
analysis of the carrying impact on spinal loading compared
to the lifting case. The authors’ assumption was that such
loading would be comparable between the two activities. This
supports and validates the assertion that an occupational back-
support exoskeleton is needed/valuable in providing assistance
during carrying. Therefore, the first assessment is followed by an
evaluation of the effects of an exoskeleton assisting with carrying
while applying a constant extension torque provision. A control
strategy of this type is a simplification of what happens if an
exoskeleton, programmed to assist lifting, is also used during

carrying. Here, the authors’ hypothesis was that for carrying
this strategy would turn out to be sub-optimal, namely being
beneficial for the back but hindering the lower limbs. As a
consequence, Section 4.3 focuses on the need to implement
back-support exoskeleton versatility. Finally, the limitations of
this study are discussed in Section 4.4.

4.1. The Impact on Spinal Loading
The results summarized in Figure 3 confirm that—from an
ergonomic viewpoint—carrying activities can be associated with
risk. Indeed, compared to lifting, muscle activity, although less
during carrying, is in the same order of magnitude. In particular,
as the handled payload increases, the differences between lifting
and carrying are reduced and become less pronounced. This
trend is particularly evident if the 50th percentile of the muscle
activity distribution is considered. Generally, this value can be
associated with repetitive/cumulative fatigue, whereas the 90th
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FIGURE 6 | Boxplots representations for ρRoMh and ρRoMk considering carrying in Exo-on and No-exo condition. Two different joints are analyzed: (A) Hip and (B)

knee. L, M, and H refer to the light, medium, or heavy loading condition. Green-shaded areas identify the regions where ρx
i < 1 (i.e., the exoskeleton reduces the

RoMs). Numeric values at the bottom of each box report the value of γ .

TABLE 2 | Gait kinematics—Statistical significance for the considered loading

conditions.

L M H

Hip 0.0534 0.0970 0.0396

Knee 0.0040 0.0441 0.1582

The table reports the p-values obtained from the one-way ANOVA test. Bold values

indicate where statistical significance was met (p< 0.05).

percentile is related to traumatic damages of the inter-vertebral
discs. Despite traumatic damage is seen as more concerning, it is
clear that damage can occur in both lifting and carrying and, thus,
should be prevented/limited. The results found in section 3.1
are consistent with the ISO 11228-1 standard that establishes
ergonomic guidelines for performing both lifting and carrying,
identifying the latter activity as equally worthy of attention.

Therefore, it makes sense to try to assist also the carrying
activities by means of an active occupational exoskeleton.

4.2. The Effects of Assistance During
Carrying
The analyzed assistance principle implies that the delivered
torques simultaneously support the extension of back and both
hips. It was assumed that such assistance would be beneficial for
the back, whereas it might hinder the natural movement of the
hips, particularly in the swing phase.

The following discussion is separated according to the two
body regions under analysis.

4.2.1. The Lower Back
The experimental results do not indicate a clear polarity on the
data and, thus, it is not possible to confidently conclude that,
with respect to the conditions of this study, the exoskeleton is

FIGURE 7 | Boxplot representation for ρδ considering carrying in Exo-on and

No-exo condition. L, M, and H refer to the light, medium, or heavy loading

condition. Green-shaded areas identify the regions where ρδ < 1 (i.e., the

exoskeleton reduces the stride duration). Numeric values at the bottom of

each box report the value of γ .

providing a reduction in the activation and work intensity of
the lower-back muscles. Nevertheless, it is worth highlighting
how the data variability shows a general trend to reduce as the
payload increases and that the heavy load condition has a much
clearer trend toward the ρM , ρP < 1 region, i.e., where the
exoskeleton has a benefit on the muscle activation. This suggests
that conclusions drawn for this condition are more reliable than
those drawn for lighter loads. In particular, for the heavier load
condition, α values for ρM and ρP suggest that the exoskeleton
effect is beneficial, reducing the overall lumbar activity by 12.08
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FIGURE 8 | Subjective perceptions of the 9 users. For each of the considered

body regions, it is reported how many users felt a benefit and how many

experienced hindrance.

and 7.99%, respectively. It is also important and encouraging
that the exoskeleton is seen to have the greatest effect with the
heaviest loading, as this is the circumstance that is most in need
of assistance. Also, a comparison of objective and subjective
data confirm the beneficial effect of the exoskeleton. Indeed, as
outlined in Figure 8, 8 out of 9 users reported benefit on the
back and only 1 out of 9 reported discomfort or hindrance on
the same body segment. On the other hand, a part from the light
load condition, lower-back muscle analysis showed that, out of 9,
5–6 subjects (according to the analyzed metric) had a reduction
of muscle activation (see γ values in Figure 4). These values are
not so far from those reported by the subjective evaluation forms.
Therefore, the consistency between objective and subjective data
suggest that, considering spinal loading, there is some evidence
that the exoskeleton effect is somehow beneficial for most of
the population.

Contrary to the authors’ expectations, for the medium and
high payload handling, the overall lumbar activity reduction
is not in line with the potential of the device used in the
assessment. In particular (Toxiri et al., 2018), the experiment
showed significant back muscle activation reduction (around
30%), whereas a clear reduction was not obtained in this
study, even though sound bio-mechanical models supported the
authors’ hypothesis. This, along with the negative exoskeleton
effect for the light load condition, suggests that there is room for
improving the constant torque strategy used in this study.

One upgrade is to modulate the delivered torque according
both to the handled payload and to the user’s body mass.
In particular, the analysis of both α and γ supports the
need to modulate the assistance according to the handled
payload. Indeed, considering the lightest loading condition, the
exoskeleton does not clearly reduce spinal loading, as highlighted
by α. On the other hand, as the handled weight increases, the

exoskeleton assistance results in reductions of α values both
for ρM and ρP (α < 1). To this extent, it is interesting
to note that, even if very slightly, the intermediate condition
seems to be a minimum and might indicate that the amount of
assistance provided is best around that payload range. Moreover,
the number of subjects that show a benefit from the additional
torque provided by the exoskeleton increased as the weight
of the carried load increased (see Figure 4). For the light
payload test, the muscle activity increase may be interpreted by
subjects adopting abdominal and back-extensors co-contraction,
stiffening the upper body to counteract the backwards push of
the exoskeleton and to regain stability. Further experimentation
could help clarifying this phenomenon and if modulating the
torque according to the payload would, as expected, reduce it.
Finally, the large variability in the results further suggests the
possibility of modulating the delivered torque not only according
to the payload, but also to the subjects’ bodymass. Indeed, despite
bodymasses variability (76.55±8.22 kg), the delivered torque was
kept constant, and so, it is possible that subjects with different
body mass experience and react differently to the same amount
of assistance.

4.2.2. The Lower Limbs
The exoskeleton assistance on the lower limbs resulted in
hindrance clearly affecting the gait kinematics of all the users.
This hindrance is evident both as subjective perception of the
users (7 out of 9 users felt hindered on the legs) and from the
kinematic analysis. Indeed, hip and knee RoMs were reduced by
up to 12%. Stride speed was also reduced due to a corresponding
increase in stride duration (between 6 and 8%). In addition, a
study conducted on the effects of load carriage on energy cost
of walking (Abe et al., 2004) showed no significant differences in
the energy cost associated with walking for values between the
control condition (empty backpack) and the test one (backpack
with a 6 kg load). This suggests that the differences noted in this
study are relatedmore to the exoskeleton torque provision, rather
than the exoskeleton weight itself (6 kg). These elements suggest
that simultaneously pushing both hips toward extension appears
not to be the best assistive strategy.

Furthermore, although the kinematic analysis and the
subjective perceptions are clearly polarized, this does not happen
in the muscle analysis. There may be two main reasons that
explain this lack of a clear trend.

The first reason being the non-ideal choice of the muscles.
Indeed, partially due to the exoskeleton fitting and partially due
to the difficulty in assessing via sEMG the hip flexor activity,
in the proposed protocol it was not possible to measure the
muscle activity of the Iliopsoas (hip flexor) and of the Gluteus
Maximus (hip extensor) (Byrne et al., 2010). For these reasons,
the activities of the RF and ST were chosen as representative of
hip flexion/extension muscle activation. Problems in assessing
the proper flexors and extensor are reported also in Baltrusch
et al. (2019), where muscle activity did not show any significant
differences between conditions.

The second reason why no trend emerges in the selected
muscles might be related to the changes in the gait trajectory, as
reported above. Analyzing both hip and knee joints, for each load
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condition, the exoskeleton assistance resulted in a reduced RoM.
Indeed, almost all of the population lies in the ρRoMh , ρRoMk < 1
region. It is interesting to note the little data variability (iqr),
suggesting its reliability.

Moreover, the one-way ANOVA test, significance level = 0.05,
conducted to compare the Exo-on and the No-exo condition,
found statistically significant differences at least for one joint in
all of the conditions (see Table 2). In the case of the hip joint, the
RoM reduction is due both to smaller flexion angles, hindered
by the constant torque, and to smaller extension angles, possibly
due to a compensation for the unwanted/unexpected backwards
push of the exoskeleton. Differences in the knee trajectory can
be explained as a consequence of the hip changes. Delving a bit
more into the kinematic analysis, Figure 7 shows that the Exo-on
condition caused a speed reduction in the users walking speed:

all the population, apart from an outlier, lies within the ρδ > 1
region. Therefore, reduced RoMs and slower stride durations
show an evident hindrance confirming the authors’ expectations.

4.3. On (the Need of) Back-Support
Exoskeleton Versatility
To fully exploit back-support exoskeleton versatility, the
standard control strategies can be expanded by including task
awareness. This implies that, at first, the activity being performed
by the user is recognized (high level), then, in accordance with the
task the appropriate assistive strategy is selected (mid-level) and,
finally, actuators are controlled to ensure that the provided torque
is properly delivered (low-level). Such a distinction of control
levels was presented in Tucker et al. (2015).

Now that data have been presented and discussed, there are
more elements to debate on the need to recognize different
tasks and the opportunity of selecting the controller according to
the one being performed. Passive exoskeletons, generally lighter,
simpler, and cheaper than active ones, can avoid the lower limb
hindrance found in walking activities (Baltrusch et al., 2019).
This is achieved by resorting to manual clutches, spring offsets,
and automatic engage or dis-engage of passive elements, like
in the commercial products by Laevo2 and Ottobock3, or in
research prototypes (Jamšek et al., 2020). On the other hand, due
to mechanical design limitations, passive devices cannot provide
support in carrying activities. This means that there is no need to
discriminate among walking or carrying.

Unlike passive devices, active exoskeletons are more versatile
and, so, are able to exploit the functionality and flexibility of
their actuators to create assistance profiles that can be tailored
to the demands of the assistive task, like carrying in this case.
Not all the active exoskeletons, however, have the same “degree
of versatility.” As an example, the H-WEX exoskeleton presented
in Ko et al. (2018) cannot provide support differently from the
approach presented in this study. This is due to the choice of
a single motor for the actuation, resulting in a more compact,
efficient, and lightweight exoskeleton. However, the single motor
can only modulate the delivered amount of torque and cannot
assist the legs independently, according to gait phase. Instead,

2http://en.laevo.nl/
3https://paexo.com/paexo-back/?lang=en

as an example, the APO exoskeleton (Chen et al., 2018) and the
XoTrunk exoskeleton used in this study have two motors, one
on each side. This design choice can be exploited to develop new
assistance strategies, more appropriate for carrying. Indeed, in
the previous sections, it has been discussed how a better strategy
could improve the effectiveness of the exoskeleton for the back
region and reduce the hindrance in the lower limbs (as seen
in the data analysis). Hence, considering active exoskeletons,
distinguishing among walking, carrying, and lifting is supported
both by the relevance of carrying activities and by the need to
switch between different controllers.

As a final comment, it is useful to note that in Poliero
et al. (2019b) the distinction between lifting and walking
only takes into account kinematic variables, whereas specific
sources of information (like forearm muscle activity, sensorized
gloves/insoles, or vision) are used to discriminate among walking
and carrying. This final consideration highlights that not only
mechanical choices but also control ones can affect the versatility
of back-support exoskeletons.

4.4. Limitations
In the designed testing protocol, MVC calibration was performed
adopting a single posture. However, this procedure is more
prone to variability in the MVC normalization as subjects might
exhibit differences in the posture to obtain maximum muscle
activity (McGill, 1991). The large inter-subject variability did not
allow us to always apply standard statistical analysis such as the
analysis of variance. For this reason, the authors have decided
to perform intra-subject normalization between the control and
test conditions. As a consequence, the results are discussed
taking into consideration trends. The proposed testing protocol
was carried out in a lab setting. This might present substantial
differences to the conditions found in a workplace where users
may be required to walk on undulating or sloped surfaces in
addition to level ground. Therefore, our findings cannot be
directly generalized to out-of-the-lab scenarios. Additionally, the
indication to perform the carrying task at a self-selected speed
might be a further simplification of actual working conditions.
Indeed, for given tasks, the workers could be required to walk as
fast as possible so as not to limit productivity. Also, the relatively
short duration of the activities performed during the testing
protocol does not allow us to observe fatigue effects, or the effects
of prolonged exoskeleton usage.

5. CONCLUSION

In the context of manual material handling and, more specifically
regarding the ISO 11228-1 standard, carrying can have an
impact on the spinal loading comparable to lifting. Back-support
exoskeletons are generally used to assist lifting and, thus, mitigate
the ergonomic risks associated with this activity. The applicability
of these devices to other activities, such as carrying, is still an
open issue.

This paper investigates first the effects of carrying on spinal
loading and, then, the effects of assisting carrying with an
exoskeleton designed for lifting tasks support. An experimental
campaign involving 9 users and three different payloads (1.2, 8.2,
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and 16.2 kg) was designed to assess the relevance of carrying and
the benefits arising from providing assistance for this task, in
the same way it is done for symmetric lifting, i.e., synchronously
supporting back and both hips extension.

The findings indicate that carrying, from an ergonomic
viewpoint, is a relevant activity because the corresponding spinal
loading is comparable to lifting.

Contrary to the expected outcome, the experimental results
do not provide clear evidence on the effectiveness of the
analyzed strategy in supporting the lower-back. However, the
overall lumbar activity shows a promising trend when carrying
heavy objects as for muscle activation is reduced by up to
12%. Large data variability invites caution when interpreting
it. In agreement with the expectations, the strategy yielded
hindrance for the lower limbs. This is supported by reduction
in hip and knee RoMs (around 10%) and an increase of
stride duration (between 6 and 8%). Due to changes in gait
kinematics and difficulties in assessing the proper hip flexor and
extensor, muscular analysis for the lower limbs did not provide
significant findings.

Finally, there has been a discussion on how a better control
strategy could improve the effectiveness of the exoskeleton. As
control strategies for back-support exoskeletons start addressing
tasks differing from lifting, the capability of recognizing
which activity is being performed and, thus, triggering the
appropriate controller, becomes a relevant feature, promoting
active exoskeletons versatility.
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In order to assist after-stroke individuals to rehabilitate their movements, research

centers have developed lower limbs exoskeletons and control strategies for them.

Robot-assisted therapy can help not only by providing support, accuracy, and precision

while performing exercises, but also by being able to adapt to different patient needs,

according to their impairments. As a consequence, different control strategies have

been employed and evaluated, although with limited effectiveness. This work presents a

bio-inspired controller, based on the concept of motor primitives. The proposed approach

was evaluated on a lower limbs exoskeleton, in which the knee joint was driven by a series

elastic actuator. First, to extract the motor primitives, the user torques were estimated

by means of a generalized momentum-based disturbance observer combined with an

extended Kalman filter. These data were provided to the control algorithm, which, at

every swing phase, assisted the subject to perform the desired movement, based on

the analysis of his previous step. Tests are performed in order to evaluate the controller

performance for a subject walking actively, passively, and at a combination of these two

conditions. Results suggest that the robot assistance is capable of compensating the

motor primitive weight deficiency when the subject exerts less torque than expected.

Furthermore, though only the knee joint was actuated, the motor primitive weights with

respect to the hip joint were influenced by the robot torque applied at the knee. The

robot also generated torque to compensate for eventual asynchronous movements of

the subject, and adapted to a change in the gait characteristics within three to four steps.

Keywords: rehabilitation robotics, motor primitives, exoskeleton, lower limbs, biomechatronics

1. INTRODUCTION

According to the World Health Organization (WHO), population aging is a fact and by 2050
the number of people aged 60 and over will reach 2 billion (World Health Organization, 2015)
representing one fifth of the planet’s population (Castles et al., 2013). The incidence of gait disorders
can reach a prevalence of 35 and 60% in people over 70 and 80 years old, respectively, and the most
common disorder among these people is stroke. Worldwide, stroke is the second leading cause of
death and the third biggest cause of long-term disability, with approximately 33 million surviving
individuals (Lozano et al., 2012; Murray et al., 2015). Among the various anomalies caused by
it, stroke can originate severe sequelae to the neural areas that control upper and lower limbs
movements, since it leads to a lack or an excess of blood supply in the brain, which affects about
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50% of survivors (Mackay et al., 2004). As a consequence, most
post-stroke individuals do not have a balance and support phase
defined as in the gait of a normal individual, leading to a greater
risk of falls, as movements are uncontrolled, and balance and
proprioception are impaired (Sommerfeld et al., 2004).

To improve the quality of life of these individuals is only
possible because the cerebral cortex is formed by a set of
interconnected neuronal cells, which, in response to changes in
the environment, are able to adapt. This adaptation occurs due
to the fundamental property of the nervous tissues that form
the basis of learning (or relearning), called neuroplasticity. This
depends exclusively on repetitive experiences that will contribute
to motor recovery after stroke or any other injury to the central
nervous system (CNS) (Wieloch and Nikolich, 2006; Pekna et al.,
2012). CNS neuroplasticity contributes to the development of
motor primitives (muscle activity pattern), which combine with
flexibility to produce motor behaviors (d’Avella et al., 2003; Ting
and McKay, 2007; Bizzi et al., 2008; Tresch and Jarc, 2009; Bizzi
and Cheung, 2013).

In view of the difficulties faced by these individuals after the
stroke and with the objective of recovering lost or impaired
movements, thus improving the quality of life of these people,
several studies on rehabilitation have been carried out by
researchers in the field of robotics, which aim to develop new
strategies to recover gait symmetry with the aid of adaptive robots
(Krebs et al., 2008; Contreras-Vidal et al., 2016; Zadravec et al.,
2017). In a recent study with post-stroke individuals using a lower
limbs exoskeleton, it was possible to observe an increase in lateral
symmetry of muscle synergies during walking and a significant
evolution in gait kinematics after 3 weeks of training (Tan et al.,
2018).

In the rehabilitation process, one of the most important
tasks has been to accurately determine the levels of assistance
that will act on human joints during gait and a recent study
published by Fricke et al. (2020) showed apparent advantages
of automatic adjustment over manual adjustment performed by
therapists during clinical practice. Therefore, it is possible to
develop an adaptive control strategy based on the knowledge
of the user’s kinetic characteristics, so that the exoskeleton can
react intuitively to the movement intended by the user, providing
coherent, collaborative and effective assistance, which has been
the objective of several recent researches (Diaz et al., 2011; Yan
et al., 2015; Alibeji et al., 2018; Bayon et al., 2018; Maggioni et al.,
2018).

The use of motor primitives, as depicted in Figure 1, can
significantly reduce the computational load duringmotor control
over the CNS, since, with a basic set of primitives, it is
possible to reconstruct different conditions and tasks related
to a movement, just by defining when and how much to
recruit from each primitive within the movement segment of
each individual (Ruckert and d’Avella, 2013). The movement
of the musculoskeletal system is influenced by the neural and
biomechanical systems of the body and their interaction with
the environment. Controlling this system is a complex task
due to the abundance of degrees of freedom, with which the
central nervous system is not in a position to deal initially
(Bernstein, 1967).

Neuroplasticity is the neurobiological basis of the ability
to adapt and learn in a manner dependent on experience,
through repetitions (Wieloch and Nikolich, 2006), generating
new movement patterns and new motor primitives (Bizzi et al.,
2008). Such primitives have been associated with biomechanical
functions necessary for walking, producing in response a specific
motor output with specific patterns of muscle activity that restore
previously lost functions. There is no correct or ideal motor
pattern for each type of movement. The ability to choose between
different solutions is implicit in the adaptability and robustness of
biological systems, that is, different primitives can perform, in an
equivalent way, the same type of motor task (Netune et al., 2009;
Chvatal et al., 2011; Allen and Netuno, 2012).

The kinematic primitives were called sub-movements in
studies carried out by Rohrer et al. (2002) about changes in
the smoothness of movements in the recovery of post-stroke
patients. In the same study, robotic therapy devices were used to
analyze five measures of smoothness of hemiparetic movement
in 31 patients recovering from stroke. The kinematic and
dynamic adaptability to variations in precision, strength, and
speed of movement under different conditions were analyzed
in Grinyagin et al. (2005). In this last study, the kinematic
variables were used to calculate the inverse dynamics, in order
to obtain the torques between the articulations. To quantify
the contributions of the joints individually in dynamic and
kinematic primitives, the joint angles and torques were calculated
by Principal Component Analysis (PCA).

In Garate et al. (2016), the concept of assistance based on
primitives using an assistive exoskeleton was explored using
two different approaches. In the first approach, to produce the
desired assistive torque profiles, a combination of the primitives
with the weights was made, and in the second approach, the
motor primitives are identified to be inserted as neural stimuli
in a virtual model of the musculoskeletal system. Kinematic
variables of hip, knee, and ankle joint positions were used
in the processing of data obtained with Inertial Measurement
Units (IMU) in Nunes et al. (2018). Using the inverse dynamics
of OpenSim, kinetic data (hip, knee, and ankle torques) were
calculated to assess the influence of the exoskeleton structure
on kinetic and muscle characteristics, using the relationships
between motor primitives and their respective weights for the
different conditions of use of the exoskeleton.

Herein, a bio-inspired controller for locomotion of wearable
robots based on the concept of motor primitives is presented.
The robot torque is calculated considering the particular kinetic
motor primitives of a user, generating a force at the user’s joint.
A modular lower limb exoskeleton, presented in dos Santos
et al. (2017a), was used to evaluate the control proposal. The
device was configured to provide partial support during gait, in
knee flexion and extension, applying precise torques calculated
automatically by the control algorithm. As the torque of the
exoskeleton is based on the primitives, it will always assist
in order to compensate for the primitives with less weight,
i.e., the ones which reflect some sort of lack of strength at
the joint. The robot torque was applied to healthy subjects
wearing the right leg of lower limbs exoskeleton, while walking
on a treadmill. The healthy subjects walked actively, following
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FIGURE 1 | Joint torques are constructed through a weighted sum of motor primitives by the CNS. Drawing based on Ting et al. (2015).

the treadmill speed, and, in order to simulate a gait with a
lack of torque, the subjects were later instructed to walk at
a slower pace. The user’s joint torques are provided by an
estimation algorithm based on a generalized momentum-based
disturbance observer (DOB) approach along with an extended
Kalman filter, as described in dos Santos and Siqueira (2019).
The hip and ankle joints are not actuated whereas the knee
joint, which comprises a rotary series elastic actuator (rSEA),
is actuated.

This work is organized as follows: the next section provides
more details with respect to the equipment and control
algorithm. In sequel, section 3 refers to the test procedure, which
is followed by the test results in section 4. Section 5 discusses the
results and is followed by the conclusion.

2. METHODS

2.1. Lower Limbs Exoskeleton
The exoskeleton utilized in this work is the ExoTao (dos Santos
et al., 2019). This robotic device comprises six rotary, one-degree-
of-freedom joints, which can track the hip, knee, and ankle
joint movement on the sagittal plane, with the aid of magnetic
encoders. For the time being, only the right leg of the robot
is considered. The only active joint is the knee, whereas the
hip and the ankle work passively. The knee joint consists of a
module with a rotary Series Elastic Actuator (SEA), as presented
in dos Santos et al. (2017a), which can be configured to work in
impedance and force control modes. Its motor is connected to
an EPOS controller board, which communicates with the control
algorithm running on a desktop computer via Controller Area
Network (CAN) ports. In order to prevent the subject from
slipping while walking, and to compensate for part of weight of
the exoskeleton, a mechanical structure was installed as depicted
in Figure 2.

The joints were designed to attend different ranges of motion
with respect to different tasks. However, they can be limited by
adjustable end-stops to prevent hyperextension of the joints. The
exoskeleton contains Velcro R©straps and telescopic links, which
make it adjustable to different body heights from 1.60 to 1.90
m, in order to align the exoskeleton and the subject joints (dos
Santos et al., 2017b).

2.2. Reference Values Extraction
To extract the primitives and analyze the data, aiming at the
reduction of dimensionality and elimination of unnecessary
characteristics, the Principal Component Analysis (Person, 1901)
was employed. The PCA was chosen because it proved to be an
accurate estimate to obtain a linear combination of primitives
and their respective weights, in order to minimize the difference
between the original and reconstructed signals (Nunes et al.,
2020).

In the literature, primitives are usually calculated as the sum
of the product between them, p = [p1, p2, . . . , pn] where p ∈
R
t×n, and their respective weights, w = [w1,w2, . . . ,wn] where

w ∈ R
n×n as in Equation (1) (Cheung et al., 2009; Bizzi and

Cheung, 2013; Berger and d’Avella, 2014; Roh et al., 2015). This
calculation extracts a linear combination between primitives and
their corresponding weights to minimize the difference between
the original and reconstructed signals, which, in this case, are
torque profiles τ ∈ R

n×t :

τ = p · w (1)

The motor primitives of four healthy subjects (1 female, 3 male,
30± 6 years, 73± 6 kg, 1.78± 0.04 m) were extracted in order to
be further used by the control algorithm as reference. To extract
these motor primitives, the subjects walked on a treadmill using
the right leg of the exoskeleton for 2 min at 1.0 km/h. The knee
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FIGURE 2 | Test setup with healthy subject wearing the right leg of the lower

limbs exoskeleton ExoTao. The red box delimits the rotary SEA at the knee

joint. The blue boxes depict the hip and ankle joints, which are not actuated.

The robot is suspended by a mechanical structure in order to compensate for

part of its weight, which leads to a more comfortable walk on the treadmill.

joint of the robot was adjusted to impedance mode, thus, the
knee of the subjects followed a desired pre-recorded trajectory,
according to the control law:

τr,imp = Kv(θ
d − θ), (2)

where Kv is the virtual stiffness of the impedance controller
(set to 20 N.m/rad), τr,imp is the torque of the robot, while

θd and θ are the desired trajectory and the knee joint
measurement, respectively. An inner Proportional-Integral (PI)
torque controller ensures that the robot torque is exerted at
the joint.

The torque exerted by the subject’s hip and ankle joints is
estimated by means of an estimation algorithm that employs
a generalized momentum-based disturbance observer (DOB)
approach along with an Extended Kalman Filter. The Kalman
Filter returns a time-varying gain at the end of every iteration,
which ensures robustness with regards to the time-varying
characteristics of the patient-exoskeleton model, as described by

dos Santos and Siqueira (2019). The knee torque is obtained
directly from the SEA.

This procedure yields the motor primitives, ph, and their
respective weights, wh, with respect to each joint. Further
auxiliary data that is also considered by the control algorithm are
also generated, such as maximum primitive torque, τh,max, and
constant torque offset values, τh,dc. The subscript h denotes the
word healthy.

2.3. Control Algorithm
In summary, at the end of every step, the control algorithm
computes the subject’s motor primitive weights, based on the
primitive torques extracted beforehand and on the joint torque
measurements during the last swing phase. The subject’s weights
that are below the reference value are identified and, during the
next swing phase, the robot actuates in order to compensate for
the lack of weight. The following paragraphs explain in details the
calculations performed by the control algorithm.

The algorithm is provided with the data from the procedure
described in section 2.2, i.e., the reference or healthy values. After
the right leg of the subject has performed the kth swing, his
torque curves, τpat , with respect to the hip, knee, and ankle joints
are obtained by the estimation algorithm and the SEA. These
torque curves are treated before being employed to compute the
subject motor primitive weights. First, their constant offset value,
τpat,dc, is subtracted. Afterward, they are divided by the extreme
torque value obtained from the reference, τmax,h, resulting in
a normalized torque profile, τpat,n. This extreme value is the
maximum value within each torque curve, and among torque
curves. Due to the characteristic of the torque curves during the
swing phase, it is known beforehand that this value is positive
and related to the hip joint. However, in case other gait phases
or tasks are analyzed, the algorithm handles the circumstance in
which this value is a global minimum instead.

The aforementioned manipulations are summarized by the
following equation:

τ k
pat,n =

(

1

τh,max

)

(τ k
pat − τ k

pat,dc ). (3)

Therefore, the motor primitive weights of the subject, wpat, are
extracted as in:

w k
pat = ph

†τ k
pat,n , (4)

where p
†
h
denotes the Moore-Penrose inverse of the motor

primitives extracted from the gait used as reference.
The subject weights, wpat , are compared with the reference

weights, wh, element-by-element. The relative error between
these weights provides ameasurement of how distant the subject’s
gait is from the reference gait. This disparity, 1w, should be
addressed by the robotic device during the next swing phase and
is denoted simply as:

1w k = wh − w k
pat (5)

The difference between the constant offset values is also
addressed by the robot. Thus, the torque to be exerted by the
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robot in the swing phase of the next stride of the right leg, τ k+1
r ,

in given by:

τ k+1
r = τh,maxph1w k +

(

τh,dc − τ k
pat,dc

)

(6)

All quantities related to the subject are denoted by the subscript
pat, which refers to the word patient. Though no patient was
subjected to the test, the variables were named after this word
to illustrate the purpose of the control algorithm, which is
aimed at people with some sort of motor impairment, e.g.,
stroke survivors.

To avoid abrupt oscillations, the effective torque to be exerted
by the robot, τr,e, considers the weight deficiency from the last
step and the step before the last one. This approach leads to
the computation of an exponentially weighted moving average
(EWMA). A diagonal matrix, α, composed of αi factors, i =
1, 2, 3 weights the robot torque as in:

τ k+1
r,e = ατ k+1

r + (I− α)τ kr . (7)

During the first step, no robot torque is applied, as there is no
previous step. During the second step onward, the robot torque
is applied. Exceptionally during the second swing, α is set to unit.
Afterward, α, is set to 0.15, a value found empirically.

This robot torque is exerted at the robot joint with the aid of
an inner PI torque controller, whose gains were set to kp = 370
and ki = 3.5 based on previous works with the robotic device.
The robot only acts during the swing phase. During the stance
phase transparency is aimed, so the robot torque is set to zero
and only the inner torque control loop takes place. The phase
detection is hard-coded within the control algorithm and is based
on pre-recorded trajectories.

All operations are shown in matrix notation because the
control algorithm is proposed to work on three joints of each leg.
However, because only the knee joint is actuated, here only this
component of the robot torque is used.

The robot exerts torque only when the subject weights are not
greater than the reference weights. Otherwise, the robot would
restrain the subject’s movement, applying an opposing torque.
This would lead to a control strategy focused on replicating a
reference torque curve, which is not the aim of this work. The
same is true for the constant component of the torques when they
are greater than the reference values.

However, when the subject exerts more torque than necessary,
but in the opposing direction, which in practice results in
opposed-sign weights of greater magnitude than the reference,
the robot does act in order to correct the gait. Figure 3

shows the complete block diagram of the proposed adaptive
control algorithm.

3. TEST PROTOCOL

Two tests were performed with 5 healthy subjects (1 female, 4
male, 30 ± 6 years, 73 ± 6 kg, 1.77 ± 0.05 m) in order to
evaluate the control algorithm and the motor primitive weights
behavior, and one test was performed with one healthy subject

(male, 25 years old, 71 kg and 1.76 m) to evaluate the algorithm
convergence and adaptability to changes in the mode of walk.

In the first test, the subjects were instructed to walk at 1.5 km/h
on a treadmill for 2 min. This yields data for approximately 50
steps. In this test, the subjects walk in an active manner, as if
they were without the exoskeleton. The expected robot torque is
small, as the subjects produce all the necessary torque to perform
the walk, dispensing further assistance. The joints trajectories
and torques are expected to match, to a certain extent, the
ones obtained during the procedure to extract motor primitives.
Further, the behavior of all weights are analyzed.

In the second test, the subjects walked at 1.0 km/h on a
treadmill for 2min. This time, they were instructed to walk slower
and also to keep the right leg passive during the swing phase, i.e.,
to offer no resistance in case the robot tried to move it. Hence, the
motor primitive weights relative to the knee joint are expected
to result in values lower than the reference, causing the robot
to exert an assistive torque over the swing phase. Further, the
behavior of all weights are analyzed.

The third test consisted of a combination of the first and the
second test and was performed with one healthy subject. He was
instructed to walk actively for 30 s at 1.0 km/h, and passively for
30 s at the same speed, completing 1 min of walk. This yields data
for 25 steps. Therefore, it could be evaluated whether the control
algorithm would adapt to different patient behaviors in real time.

During all tests, the joint displacements, torques, and
the motor primitive weights of the subjects were stored for
further analysis. The extracted weights of the subject were
divided into three categories. The weights could be considered
healthy weights, which comprised weights with equal or greater
magnitude and same direction as the reference weights. In this
case, the robot did not actuate. The weights could also be
considered deficient, which comprised weights below the absolute
reference value, regardless of their direction. These weights and
their behavior over the first two tests is analyzed. In this case,
the robot produced torque during the next swing, in order
to assist the subject. Last, the weights could be considered
asynchronous, which comprised weights with greater magnitude
as the reference, but with opposing sign. Although the robot
exerted torque in order to correct the subject’s gait, these
weights are not considered deficient, as their occurrence is rather
consequence of a lack of synchrony between the actual gait phase
and the phase of the control algorithm, than the consequence of
an impaired walk, in which there is a lack of weight to perform
the movement.

The primitive extraction procedure and the analysis of data
yielded from all tests are processed by means of routines
programmed in MATLAB R©software (2015a, The MathWorks,
Inc., Natick, Massachusetts, United States).

4. RESULTS

Herein the experimental results obtained from the motor
primitive extraction procedure are shown. These data are further
used as reference values within the control algorithm. In the
sequence, the results of a set of simulated patient conditions as
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FIGURE 3 | Control diagram. The patient hip (red), knee (blue), and ankle (green) torques are estimated. Further, the motor primitive weights are extracted according

to Equation (4). These weights are compared with reference weights, and then Equation (6) computes the assistive robot torque. The robot will exert an exponentially

weighted moving average of the computed torque during the next swing phase.

defined in the previous section are presented (active, passive, and
a combination of these two).

4.1. Reference Primitive Torques and
Weights
Figure 4A shows the averagemeasured joint displacements (solid
lines) during the swing phase. Figure 4B shows the average
estimated joint torque profiles (solid lines). The shaded region
denotes the standard deviation of the measurements.

Figure 5 shows the average primitive torque profiles from
the extraction method described in section 2.2 along with
the respective weight regarding each joint. The shaded region
denotes the standard deviation of the measurements.

The reference weights employed as reference for the control
law are described by the following matrix:

wh =





wh,hip

wh,knee
wh,ankle



 =





0.8784 -0.4750 -0.0539
0.4768 0.8786 0.0282
0.0340 -0.0505 0.9981





±





0.0097 0.0142 0.0044
0.0140 0.0087 0.0574
0.0284 0.0498 0.0015



 .

If one multiplies each primitive curve by the respective joint
weight and sum all the three components, the average profile
torque can be reconstructed for all joints. It is important to notice
that each primitive is strictly related to a specific joint. The first
primitive, for instance, is tight to the hip joint, which can be noted

by the fact that the hip weight of this primitive (0.8784) is greater
when compared with the other two weights (0.4768 and 0.0340).

These weights ponder the influence of each primitive on the
torque observed at each joint. A negative weight means that
the primitive torque must have its direction changed before
being multiplied by the weight and being summed to the other
primitives that compose the joint torque. The control algorithm
will not provide assistance in the case the subject’s weights are at
least equal to the reference ones. If his weights are greater than
the reference, the subject is exerting more torque than necessary.
If the weights are greater in magnitude but with an opposing
sign, the subject is exerting more torque than necessary and in
the wrong direction. In this case, the subject is not considered
necessarily in need of assistance to perform the movement, as
he is capable of exerting torque of greater or same magnitude as
the reference.

It can be noted that during the swing phase the ankle joint
exerts almost no torque. This is due the fact that the exoskeleton
shoe is rigid to a certain extent, in order to aid post-stroke
patients with foot-drop to perform the walk properly. Therefore,
the ankle joint can be left out for this application. Hence, the
reference weights matrix is further simplified as

wh =
[

wh,hip

wh,knee

]

=
[

0.8784 -0.4750
0.4768 0.8786

]

±
[

0.0097 0.0142
0.0140 0.0087

]

The data extraction also provides an average of the maximum
torque, which is the maximum hip torque:
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FIGURE 4 | (A) Average measured joint displacements (solid lines) during the swing phase. (B) Average estimated joint torque profiles (solid lines). The shaded region

denotes the standard deviation of the measurements.

FIGURE 5 | Motor primitives extracted through the PCA method and the motor primitive weights regarding each joint. The joint torques can be reconstructed by

making a weighted sum of each primitive with regards to each joint.

τh,max = 25.8798 Nm.

The constant component regarding the average torque of each
joint is given by

τdc =
[

τdc,hip τdc,knee
]

=
[

12.4015 4.2152
]

±
[

9.7966 1.2715
]

Nm.

It can be noted that there is considerable variation among the
torque offset values. This is due to the nuances in the gait pattern
of the individuals, as well as their characteristics, such as body
mass and leg length.

The constant components of the knee and ankle torques are
small when compared with the hip component. Moreover, a
steadier robot behavior was achieved when these constant values
were not considered, since the robot would abruptly raise its
torque to this constant value as soon as the swing phase started.
Thus, they were not considered for this test, in order to obtain a
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FIGURE 6 | Average torque exerted by the subjects (red) and by the robot (blue) for an (A) active walk and a (B) passive walk. Shaded regions denote the standard

deviation of the measurements.

FIGURE 7 | Average torque exerted by the subjects (red) and average torque value used to compute the reference (blue) for an (A) active walk and a (B) passive walk.

Shaded regions denote the standard deviation of the measurements.

smoother robot assistance and steadier gait. To extract the patient
weights,wpat , and compare with the reference ones, the algorithm

must receive the pseudo-inverse of the primitive torques, p†
h
.

To reduce computation time, the pseudo-inverse is calculated
beforehand and provided to the algorithm. Once the healthy
parameters were set, the tests were performed.

4.2. Test Results
Though there is not an explicit torque reference value to be
tracked by the control algorithm, it is expected that, for the first
test, in which the subjects walked actively, the robot exerts less
torque than the subject, when compared with the second test, in
which the subjects walked passively. In the first case, Figure 6A
(active), the robot produces a torque with a RMS value of 2.5
Nm, whereas the user produces a torque with a RMS value of 7.3
Nm, equal to the reference value of 7.3 Nm RMS. In the second
case, Figure 6B (passive), the robot produces more torque (RMS
= 3.5 Nm) since the user is producing less torque at the knee joint
(RMS = 5.6 Nm). It must be noted that it is not possible to prevent
the user from exerting torque at the knee joint. When the results
of each subject are considered rather than the average among
them, for the active walk the minimum RMS torque produced

by the robot was 1.2 Nm RMS, when the user was producing a
torque of 10.5 Nm RMS. With respect to the passive walk, the
maximum torque of the robot was 4 Nm RMS and the subject,
4.4 Nm RMS.

When the subject and the robot torque are compared with the
reference, it can be noted that for both scenarios the two torques
sum up in order to get closer to the reference torque as depicted
by Figure 7A (active) and Figure 7B (passive).

Figure 8 shows a comparison between the hip joint positions
of the subject during the primitive extraction procedure (blue)
and during the tests (red). Despite an offset value, which is due
to the position of the exoskeleton around the subject’s hip, the
trajectories are similar among all subjects, and they relate to the
reference profile, though, in the active walk, the amplitude of the
movement is greater.

Figure 9 shows a comparison between the knee joint positions
of the subject during the primitive extraction procedure (blue)
and during the tests (red). The trajectories are similar among all
subjects, and they relate to the reference profile, regardless of the
mode of walk, since there is robot actuation at the knee joint. It
can be noted that the knee joint is closer to the reference during
the passive mode of walk.
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FIGURE 8 | Average hip joint displacement of the subjects (red) and average hip joint displacement during the procedure to compute the reference values (blue) for an

(A) active walk and a (B) passive walk. Shaded regions denote the standard deviation of the measurements.

FIGURE 9 | Average knee joint displacement of the subjects (red) and average hip joint displacement during the procedure to compute the reference values (blue) for

an (A) active walk and a (B) passive walk. Shaded regions denote the standard deviation of the measurements.

With respect to the motor primitive weights, only the weights
that were below the reference value, regardless of their signal,
were analyzed, in order to evaluate the influence of the robot
actuation between the two modes of walk. To simplify this
analysis, these weights were summarized in a boxplot and
compared with the other subjects, as depicted in Figure 10.

The third test evaluated the algorithm performance during
gait with oscillating characteristic. Hence, the user walked
actively for 30 s and passively for more 30 s. Results are depicted
in Figure 11.

5. DISCUSSION

As seen in Figure 6, the robot produces less torque during an
active mode of walk when compared with the passive mode of
walk. However, the robot torque is still present because even
though the subjects produce torque when they walk actively,
not always their torques have the exact primitive weights as the
reference ones. A better clarification on why the robot acted as
such is given further through an analysis of the patient weights in
Figure 10. Therefore, the robot torque is present so that the sum

of the subject and the robot torque gets closer to the reference
torque value, as in Figure 7.

The hip joint trajectory is depicted in Figure 8 for an active
and passive mode of walk. The trajectory is not tracked so
accurately when compared to the knee joint, due to the lack of
actuation on this joint. This will reflect on deficient weights with
respect to the hip joint and the first motor primitive.

With respect to the knee joint trajectory, it can be noted in
Figure 9 that for both modes of walk the trajectory is close to
the reference. In fact, for the passive mode of walk, the trajectory
is closer when compared with the active mode of walk, due to
the fact that most of the movement is performed by the robot.
During the active walk, the user walks at a faster pace and the
robot, sensing that the knee joint torque of the subject is sufficient
or greater to perform the movement, does not oppose to the
user movement. This is expected since the robot is supposed to
only provide assistance rather than make the user follow strictly
a pre-recorded trajectory.

One can notice that no explicity trajectory or torque tracking
is included in the control algorithm. Still, torque and trajectory
could still be tracked, indirectly, to a certain extent, so that it
matched the reference values.
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FIGURE 10 | Boxplot of the absolute value of the deficient weights of five subjects performing two modes of walk: active (A,C,E,G) and passive (B,D,F,H). It can be

noted that the weights with respect to the first primitive are more affected than the weights related to the second primitive, due to the knee actuation and the absence

of actuation at the hip joint.
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FIGURE 11 | Subject torque (red dashed lines) and robot torque (solid blue line) in the third test. During the first stage (blue region), the user was instructed to walk

passively, i.e., the treadmill slowed down, and the subject prevented from moving more than necessary the knee joint of the right leg. During the second stage (red

region), the user walked actively, i.e., as if he were not wearing the robot exoskeleton; thus, the robot produced considerably less torque.

As the hip joint was not actuated, most hip weights were
expected to fall within the range of deficiency. However, due to
the knee actuation, the weights of the hip regarding the second
primitive were kept at steady values of magnitude during most of
the walk.

During the active and passive mode of walk, 58% of the hip
weights relative to the first primitive were deficient. With respect
to the hip weight relative to the second primitive, during the
active walk they were deficient 45% of the test, and, in the passive
case, 51%. The knee weights with respect to the first primitive
were deficient over 40% of the active walk, as 51% for the passive
walk. The knee weights with respect to the second primitive were
deficient 53% of the active walk, and 63% of the passive walk.
Even though the weights with respect to the knee joint were
deficient, the trajectory and torque tracking were ensured by the
algorithm. The same is not true with respect to the hip joint, as it
was not actuated.

Figure 10 shows the behavior of these weights considered
deficient. It is important to analyze the deficient weights
with more detail because anything below the threshold value
established by the reference value is considered deficient.
However, due to the antropomorphic characteristics of each
person, if the primitive torques are considered to be the same, the
weights must vary in order to account for the gait particularities
of each person. It can be noted thatmost weights during the active
phase are located above the median (particularly truth for most
subjects in Figures 10A,C,E,G) whereas, for the passive walk,
most weights are located below the median (Figure 10B) or the
median values are lower when compared to the Figure beside it
(Figures 10D,F,H).

In the third test the algorithm acted in a way that replicated
what was observed in the first and second tests separately. During
the transitions, i.e., the white regions of Figure 11, the robot
torque is prone to oscillations, as the subject behavior was

changing from a passive mode of walk to an active one. Over
three to four steps, the robot converges to the expected behavior.
During the passive stage (blue region), the robot torque (solid
blue line) complements the subject’s torque (dashed red line),
whereas during the active stage (red region), the robot exerts
almost no torque, since the subject is capable of producing the
necessary torque by himself.

The hip weights with regards to the first primitives,
Figures 10A,B, presented a behavior similar to the weights of
the knee joints regarding the same primitive (Figures 10E,F).
Likewise, there was similarity between the behavior of the
hip and knee weights with relation to the second primitive
(Figures 10C,D,G,H). This shows that the joint weights share
characteristics with other joint weights with respect to the same
primitives rather than with the weights of the same joint. As a
consequence, it can be inferred that the first primitive relates to
the hip joint the same way the second primitive relates to the
knee joint. Therefore, at the same time it seems rather convenient
that the actuation over one joint is capable of propagating its
effects over the other joints, which could imply that a smaller
number of actuators could be used, the results also suggest that
the sole actuation of one joint is not capable of compensating for
all weight deficiencies pertaining the actuated joint itself.

The results also show that the sole actuation of the knee could
guarantee indirectly, through motor primitive analysis, that the
reference joint trajectory was tracked to a certain extent. On the
other hand, a position control strategy may not guarantee that
the motor primitive weights are close to a reference, though it
still may result in functional patient trajectories.

Regarding the convergence and adaptability experiment, the
results suggest that the algorithm converges within three to four
steps to a steady behavior, once the gait characteristics of the
subject are analyzed in terms of primitive weights. The robot
ceases to actuate once the user produces enough torque, thus
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sufficient weights, automatically. This ability to adapt guarantees
a more comfortable and safe walk, and prevents the scenario
in which the subject produces less torque because the robot
produces all the necessary torque instead.

The current setup shall be improved in order to extend
the results for different modes of walk and before doing tests
with impaired individuals. For instance, the actuation of the
hip joint is crucial to compensate for weight deficiencies not
only at the hip joint, but also at other joints, as concluded
with the results exposed here. Extending the number of healthy
subjects is important for comparing different motor primitive
curves to be used as reference values. The analysis of motor
primitives of impaired subjects is also a subject of study, in
order to evaluate over therapy how the robotic device assistance
affects their primitives. Moreover, a better comprehension of
the motor primitives of an impaired subject may lead to better
clues on how to approach the weight deficiency problem. Finally,
extensive testing with a greater number of healthy subjects
is fundamental to later pursue the validation of the control
algorithmwith impaired subjects, affected either by stroke, SCI or
other types of motor impairments which compromise the lower
limbs movement.

6. CONCLUSION

This work presents a bio-inspired control algorithm based on
motor primitives for a modular lower limbs exoskeleton, in order
to aid the rehabilitation of individuals with motor impairment,
especially post-stroke victims. First, the motor primitives along
with their weights were extracted from healthy subjects. To
perform this task, a torque estimation algorithm together with
the Principal Component Analysis were employed. Thereafter,
tests with healthy subjects wearing the right leg of the exoskeleton
were executed to evaluate the controller performance in three
scenarios: when the subject walks actively; when the subject
shows some torque deficiency, by walking slower than expected;
and when there is a combination of these two cases. In all
cases, the algorithm evaluates the motor primitive weights of the
current subject comparing them with the weights of a healthy
subject. When deficiency is observed, the robot properly exerts
a complementary torque during the swing phase, to assist the
subject to perform this movement. It could be noted a relation
between weights of different joints with regards to the same

primitive. This shows that even though the sole actuation of one
joint has influence on the weights of other joints, it is unable
to compensate for all the weight deficiencies of the same joint.
Moreover, the results suggest that the knee joint trajectory could
be tracked indirectly at some extent solely based on the primitive
weights analysis. These results are part of the ongoing effort to
develop adaptive control strategies for rehabilitation robots taken
into account the specific characteristics and current conditions of
a patient. To perform tests with more healthy subjects and with
a greater number of actuated joints of the exoskeleton are two
crucial steps in order to refine the control algorithm, in order to
later perform tests with impaired subjects.
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Recently, extratheses, aka Supernumerary Robotic Limbs (SRLs), are emerging as a

new trend in the field of assistive and rehabilitation devices. We proposed the SoftHand

X, a system composed of an anthropomorphic soft hand extrathesis, with a gravity

support boom and a control interface for the patient. In preliminary tests, the system

exhibited a positive outlook toward assisting impaired people during daily life activities

and fighting learned-non-use of the impaired arm. However, similar to many robot-aided

therapies, the use of the system may induce side effects that can be detrimental and

worsen patients’ conditions. One of the most common is the onset of alternative grasping

strategies and compensatory movements, which clinicians absolutely need to counter in

physical therapy. Before embarking in systematic experimentation with the SoftHand X

on patients, it is essential that the system is demonstrated not to lead to an increase of

compensation habits. This paper provides a detailed description of the compensatory

movements performed by healthy subjects using the SoftHand X. Eleven right-handed

healthy subjects were involved within an experimental protocol in which kinematic data

of the upper body and EMG signals of the arm were acquired. Each subject executed

tasks with and without the robotic system, considering this last situation as reference of

optimal behavior. A comparison between two different configurations of the robotic hand

was performed to understand if this aspect may affect the compensatory movements.

Results demonstrated that the use of the apparatus reduces the range of motion of the

wrist, elbow and shoulder, while it increases the range of the trunk and head movements.

On the other hand, EMG analysis indicated that muscle activation was very similar among

all the conditions. Results obtained suggest that the system may be used as assistive

device without causing an over-use of the arm joints, and opens the way to clinical trials

with patients.

Keywords: compensatory movements, kinematic analysis, soft robotics, supernumerary robotic limbs, robotic

assistance
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1. INTRODUCTION

One of the main symptoms of neuro-muscular diseases consists
of partial or total loss of motor functions, such as walking or
manipulating objects (Wade, 1992; Mozaffarian et al., 2015).
Considering the upper extremities, the functional reduction of
the hand-arm may drastically compromise the independence of
the subject, hampering the ability in performing many Activities
of Daily Living (ADL) (Mondiale de la Santé and Organization,
2001). In the last decades, to flank standard medical therapy,
many robotic devices have been proposed in an attempt to
counteract these issues and promote motor recovery (Maciejasz
et al., 2014). Recently, a new trend is emerging in the robotic
field: Supernumerary Robotics Limbs (SRLs). Initially developed
to improve the user’s ergonomics and capacity in industrial
applications (Llorens-Bonilla et al., 2012; Parietti and Asada,
2017; Ciullo et al., 2018a), they consist of additional artificial
limbs that can perform tasks in close coordination with the
subject wearing them. Their clinical use was pioneered by
Hussain et al. (2016) where an additional robotic finger (the
Sixth finger) was used for compensating hand missing abilities
in chronic stroke subjects. Another device for clinical application
can be found in Ciullo et al. (2020) where the SoftHand X
(SHX) system is described and tested with ten post-stroke chronic
subjects. It consists of an anthropomorphic artificial hand, a
passive gravity compensator and an input interface used by the
subject to control the device. Results showed that this system
significantly improved the performances of the patients in the
proposed tasks and, more in general, their autonomy in ADL.
Nine out of ten patients were able to perform the whole task
proposed and asserted that they would use the system in their
daily life. However, it must be noted that the use of such devices
may induce some side effects that can be harmful, limiting
the recovery of normal movement patterns or even promoting
pathological conditions, such as spasticity (Ada et al., 1994). In
Ciullo et al. (2020), spasticity before and after use was measured
by the Modified Ashworth Scale (MAS). Seven patients exhibited
a reduction of the MAS (no statistical relevance was proven,
however). Another issue can be the onset of some compensatory
movements in which alternative muscles and motor strategies
are used to complete a task (Levin et al., 2009). Due to the
impairment, most of the patients are used to run into these
strategies, so it is essential that robotic systems do not worsen
this situation. In literature, some discussions and analysis have
been already proposed to evaluate compensatory movements in
post-stroke subjects (Cirstea and Levin, 2000; Roby-Brami et al.,
2003; Michaelsen et al., 2004). These compensatory strategies
most prominently involve the use of the trunk, the shoulder or
proximal residual muscles capabilities to perform the requested
tasks (Metzger et al., 2012; Hussaini et al., 2017). Similar
investigations have been conducted also for upper limb prosthesis
users (Carey et al., 2008; Metzger et al., 2012; Major et al., 2014).
In Carey et al. (2008) the compensatorymovements of transradial
prosthesis users without wrist motion have been compared
to that of non-amputees under an unrestricted and restricted
forearm rotation conditions. In tasks requiring a larger forearm
rotation and wrist flexion, persons with transradial amputation

FIGURE 1 | Example of head and trunk compensatory movements performed

by a subject during the execution of a task of the ARAT test (pouring task).

compensated predominantly with movements of the torso side
bending toward the affected side and with elbow flexion. In tasks
not requiring as much forearm rotation, such as drinking from
a cup, the location of compensation was not determined. This
study has been extended including transhumeral prosthesis and
body-powered devices users (Metzger et al., 2012) confirming the
presence of compensatory movement for the trunk and proximal
upper limb.

SRLs, due to their encumbrance and position with respect to
the natural limbs, may have a higher predisposition to induce
compensatory movements. No work has been conducted to
analyze this compensation but it is important to quantify them
before approaching clinical trials. This work aims at providing
a detailed description of these compensatory movements (see
an example in Figure 1) arising while using the SHX system
to assist upper limb motion during the execution of some
exemplary tasks.

Inspired by the methodologies adopted in the previous
investigations cited, this work compares the performance of
eleven right-handed healthy subjects executing grasping tasks
with and without the robotic system. During the experiment,
kinematic data of the upper body and EMG signals of the arm
have been acquired. Results show a reduction on the arm joints
Ranges of Motion, compensated by trunk and head movements.
This suggests the possibility of using the SHX to assist impaired
subject without over-stressing the impaired arm. However, the
increase in the use of trunk and head can be harmful in the
long term so a new version of the human arm interface will be
developed to counteract these effects.

2. MATERIALS AND METHODS

Eleven right-handed healthy subjects (five males, six females,
mean age 27) were involved within an experimental procedure
approved by the Institutional Review Board of the University
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of Pisa, in accordance with the Declaration of Helsinki.
Each subject signed the inform consent before starting the
experimental session.

2.1. Experimental Setup
Kinematic data of the upper body and EMG signals of the arm
were acquired during tasks1 using two acquisition systems, as
shown in Figure 2A.

The Xsens MVN system, composed of 17 IMU sensors placed
on the subject body (as shown in Figure 2B), was used to obtain
kinematic data recorded with a sampling frequency of 60 Hz.
For each body segment, the data acquired were the position, the
orientation, the velocity, and the acceleration.Moreover, the joint
angles of the shoulder, the elbow, the wrist, the trunk, and the
neck were measured by the system.

A Trigno Delsys wireless system was used to record
the electromyographic signal (sampling frequency 2 kHz) of
the following muscles of the right arm: trapezius, lateral
deltoid, biceps, triceps lateral head, ulnar flexor and extensor.
Additionally, the commanded and the real pose of the robotic
hand were registered. To obtain a time consistent description of
the movements, all the data were synchronized with a unique
custom C++ interface.

The SHX system used (shown in Figure 3A) is a modular
robotic system for the upper limb support with anthropomorphic
characteristics and inspired by neuroscientific theories of motor
control (Santello et al., 1998; Della Santina et al., 2017). It is
designed to be used for clinical investigation, either for the
rehabilitation and for the assistance of patients with neuro-
muscular diseases (e.g., stroke patient) or of elder people with
weak muscles in the upper limb. It is composed of single
separated sub-parts that are conveniently assembled for the user’s
needs. In particular, it consists of an end effector that is a Pisa/IIT
SoftHand implementing the function of the human hand and
a passive gravity compensator. These two parts are integrated
by a human-arm interface with a wrist-like structure designed
as additional component with the basic function of connecting
them and allowing the robotic hand to be used as an extra thesis
[from which the name SoftHand eXtrathesis (SoftHand X)]. An
input interface, connected to the SHX thanks to a workstation, is
used by the subject to control the robotic hand. In this study, the
robotic hand is activated with a hand-held handle controlled by
the right natural hand of the subject. This could be considered as
a limitation for the supernumerary system since the natural hand
is not free to move. However, the system is thought to be used
by impaired subject that can use the additional hand to recover
the lost hand functions and at the same time train the movement
of the natural one. Moreover, other input interfaces have been
designed to control the opening and closing of the SoftHand
with feet and facial muscles to leave all the hand free to be used
(Ciullo et al., 2020). To investigate if the position of the robotic
hand could influence the compensatory movements exploited
by the subjects, two different configurations have been tested.
Such configurations are the result of a previous optimization
study, where the manipulability and workspace of the system

1All raw data acquired are accessible on the open access repository, Hand Corpus.

where analyzed (Ciullo et al., 2018b). The first configuration has
the robotic hand in front of the natural one, aligned with the
user’s arm (Dorsal Distal Central, DDC), while the second has
the robotic hand below the natural one (Palmar Middle Central,
PMC) (Figure 3B). In the PMC configuration, the misalignment
of the robotic hand introduces an additional gravity torque that
may lead to annoying rotations of the human arm and a major
force requested to the subject. The same happens for the DDC
configuration due to the distance of the robotic hand with respect
to the natural one. Another aspect that is worth considering is
that the robotic hand in the PMC configuration can hide the
object to grasp forcing the user to move head and trunk to better
see the item.

2.2. Experimental Tasks
Subjects were asked to perform a modified version of the
Action Research Arm Test (mARAT). This test (Lyle, 1981) is
traditionally used in clinic to assess upper extremity performance
in post-stroke patients. It involves the manipulation of objects
differing in size, weight and shape (as shown in Figure 4A)
starting from the same predefined position [(2) in Figure 4B].
For this study, the test has been modified with respect to the
standard version. The gross movements (e.g., place hand behind
head or to mouth) were not executed due to the encumbrance of
the system. In addition, some items and activities were removed
(e.g., the biggest wood cube, the washer and the ball bearing),
since not compatible with the dimension and grasping capacity
of the robotic hand. In details, the executed tasks, in order of
execution, were the following:

• Lifting objects from a starting position [(2) in Figure 4B]
to a higher one: in order 3 wood cubes (2.5, 5, 7.5 cm3), a
sharpening stone (10 × 2.5 × 1 cm), a ball (7.5 cm diameter),
and a marble (1.5 cm diameter);

• Moving two metal tubes (2.25× 11.5 and 1.0× 16.0 cm) from
a hole [(7) in Figure 4B] to a peg [(8) in Figure 4B];

• Pouring the content of a glass [positioned in (9) in Figure 4B]
into another one [positioned in (10) in Figure 4B].

Photo sequences showing some of the task executions
are reported in Figure 5. The single task was considered
accomplished when the object reached the target and the right
hand came back to the starting position [(1) in Figure 4B].
In order to explore the whole reachable workspace, both
the ipsilateral and the contralateral side with respect to the
robotic system placement were explored. The objects were
first moved from the starting position to the ipsilateral target
(see Figures 5A,B,E) and then to the contralateral target (see
Figures 5B,D,F. Each task was repeated three times in a row,
positioning every time the object at the starting point.

2.3. Experimental Procedure
First, the experiment was introduced to the subject, describing
him/her both the SHX system, including the data acquiring
systems, and the aim of the study. Then, all the sensors were
placed on the subject’s body, as shown in Figure 2B. IMU
sensors placements were done as suggested by the Xsens User’s
Manual. Muscles for the EMG electrodes, instead, were manually
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FIGURE 2 | (A) Shows a view of the experimental setup where (1) shows the data acquisition systems, (2) shows the ARAT test and (3) shows the SHX system. (B)

Shows the positioning of the Xsens sensors (in orange) and of the EMG electrodes on the right arm (in green).

FIGURE 3 | (A) Shows the SoftHand X system used by the subjects during the experiments. (B) Shows the two configuration tested. The first has the robotic hand in

front of the natural one, aligned with the user’s arm (Dorsal Distal Central, DDC), while the second has the robotic hand below the natural one (Palmar Middle Central,

PMC).

FIGURE 4 | (A) Shows the kit of items for the Action Research Arm Test, while (B) the ARAT case. In particular, (1) is the hand starting position; (2) is the object

starting position; the target position for the contralateral side is in (3) while for the ipsilateral side in (4); (5) and (6) are the target positions for the ball and the marble in

the contralateral side and ipsilateral side, respectively; (7) and (8) are the starting hole and the ending peg for the tube tasks; (9) and (10) are the positions of the

glasses for the pouring task.

identified by the experimenter. In addition, body measurements
of the subjects (e.g., legs and arms length) were inserted into
the Xsens software to reconstruct the virtual body model and
estimate the joint movements. A phase of calibration was then
executed. To calibrate the Xsens system, he/she was asked to
stay still in a stand position called N-pose (Figure 6A). He/she
had to stand upright, feet parallel, back straight, arm straight
alongside the body (vertically), thumbs and face forwards. To
assess the starting position (shown in Figure 6B), the height

of the chair was set so that the subject could touch the table
with his/her fingers, with the elbow flexed at 90◦, while the
distance from the table had to allow the subject touching the
high back of the ARAT case. During the execution of the test
with the SHX system, the robotic hand was positioned at the
same starting position of the right natural hand and both the
height and the distance were re-setted to fit the new configuration
adopted. These calibration procedures were conducted before
each experimental condition tested (natural hand, DDC, and
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FIGURE 5 | Photo sequences of the tasks. (A) Shows the lifting of the sharpening stone in the ipsilateral side, (B) the lifting of the sharpening stone in the contralateral

side, (C) the lifting of the ball in the ipsilateral side, (D) the lifting of the ball in the contralateral side, (E) the moving of the tube in the ipsilateral side, (F) the moving of

the tube in the contralateral side, and (G) the pouring of the content of a glass into another.
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FIGURE 6 | (A) Shows the N-pose for the Xsens calibration while (B) shows the starting position of the experiment.

PMC). The subject executed the tasks first with his/her own hand,
then using the SHX system in the two configurations cited. We
asked them to keep the left arm at rest during execution since
no bimanual tasks needed to be performed. Before starting the
experiment, all the subjects had some minutes of training and
during configuration changes they were given a few minutes to
rest and the calibrations were repeated. In these experiments, we
did not ask the subject to execute the tasks as fast as possible
to avoid the rush to influence movements. We decided not to
evaluate the performances of execution since this aspect has been
already investigated in Ciullo et al. (2018b) obtaining that the
execution with the DDC configuration resulted longer in most
of the tasks.

2.4. Data Analysis
To quantitatively evaluate compensatory movements, a
comparison between the tasks execution with the natural
hand and the execution with the SHX system was performed,
considering the first as reference of optimal behavior. Moreover,
a comparison between the two different configurations of the
SHX system was performed. After the acquisition, the kinematic
data and the EMG signals obtained were exported in Matlab
2018b and different indices were computed (see Table 1). Taking
inspiration from literature (Carey et al., 2008; Metzger et al.,
2012; Hussaini et al., 2017), the Range of Motion (RoM) of the
joints was calculated as the difference between the maximum
and the minimum measured angles (Equation 1).

RoM = max(angle)−min(angle) (1)

The movements considered are the abduction/adduction, the
flexion/extension and the rotation of the right shoulder, head
and trunk, the pronation/supination of the wrist and the
flexion/extension of the right elbow. For the wrist, the other
degrees of freedom were not considered since they were limited
by the human-arm interface of the SHX system.

TABLE 1 | Variables calculated to evaluate the compensatory movement

performed by the subject.

Abduction/adduction

RoM of the shoulder Rotation

Flexion/extension

RoM of the elbow Flexion/extension

RoM of the wrist pronation/supination

Abduction/adduction

RoM of the trunk Rotation

Flexion/extension

Abduction/adduction

RoM of the head Rotation

Flexion/extension

Accuracy index
Intra-subject accuracy

Inter-subject accuracy

Efficiency index
Intra-subject efficiency

Inter-subject efficiency

RMS value of the EMG signals

An accuracy index and an efficiency index were computed, as
described in de los Reyes-Guzmán et al. (2017), to give a measure
of the differences between the natural hand trajectory and the
hand path length exploited by the subjects during the tasks
execution with and without the robotic system. In particular, two
different comparisons were conducted: inter-subjects and intra-
subjects. The main difference consists of the way evaluating the
reference hand trajectory (sref ) (see Equations 2, 3):

sinterref =
N

∑

i=1

si

N
(2)

where N is the number of subjects, and si represents the single
subject trajectory obtained during the execution of the test with
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the natural hand. For intra-subject comparison:

sintraref = argmin
sj

|sj − smean| (3)

where j = 1,2,3 is the number of the trial and smean is the mean
hand trajectory among the three repetitions obtained during
the execution of the test with the natural hand. Trajectories
of different lengths have been resampled with the Matlab
function interp1 (Matlab 2018b) with a linear interpolation to
allow comparisons.

Then, the accuracy index (A) was defined as the product of
three different terms (Equation 4) and then normalized (Anorm

in Equation 5).

A = α · ρ · BN (4)

Anorm =
A

Aref
· 100 (5)

The term α is a sigmoid function (see de los Reyes-Guzmán et al.,
2017) depending on the mean distance between the reference
hand trajectory (inter or intra) and the analyzed one, the term ρ is
the Pearson correlation coefficient between these two trajectories
and, lastly, the term BN was defined as the percentage of the
analyzed trajectory within a dispersion band around the reference
hand trajectory considered acceptable. This dispersion band for
the inter-subject comparison (DBinter) was calculated as:

DBinter = sinterref ± 2 · std (6)

where std is the standard deviation around the reference
trajectory. For the intra-subject comparison, the dispersion band
(DBintra) was:

DBintra = sintraref ± 2 ·
3

∑

i=1

sintra
ref

− si

3
(7)

The constant (c = 2) multiplying the standard deviation was
chosen following the same procedure of de los Reyes-Guzmán
et al. (2017). In particular, the dipersion band DB was calculated
using c = 1 and c = 1.5 obtaining very low values of the
accuracy and efficiency indices (<10) and using c = 2.5 and c
= 3 obtaining too high values (in some cases >100). So the good
solution was to choose the intermediate value that was c= 2.

The efficiency index (Enorm) was defined by normalizing the
hand path length p with respect to the reference one pref (inter
or intra):

Enorm =
p

pref
· 100 (8)

In de los Reyes-Guzmán et al. (2017), authors inverted the
equation (see Equation 9) because the hand path length of
patients was always longer than the healthy one.

Enorm =
pref

p
· 100 (9)

In our case, the hand path length without the SHX systemwas not
always shorter than the one with the system so both Equations (8)
and (9) were used.

For each robotic configuration we considered themean values,
over the three trials, of the accuracy and efficiency indices. These
indices were computed also for the natural hand in order to
evaluate both how much the single subject behavior was different
from the mean of all the subjects and how different were the
trajectories during the three repetitions of the task.

EMG signals were exported in Matlab 2018b and band-pass
filtered (10–500 Hz; Buttherworth 9th order), note that this
has also the effect of removing the signal mean value. The
signals obtained were rectified and normalized. In literature, the
normalization is often performed on the maximum contraction
level. Since our task caused a really small effort, it was not
convenient to normalize in this way, so the maximum value
obtained all the tasks was used. Finally the envelope was extracted
by filtering the signal with a Butterworth low-pass filter of the
5th order with a cut-off frequency of 10 Hz. To evaluate the
muscles activation, the RMS value was calculated for each subject
and for each task as the mean value between the ones obtained
for the three repetitions in the interval in which the muscle
was activated.

For the statistical analysis, a one-sample Kolmogorov-
Smirnov test was performed to assess if the data came from
a standard normal distribution. This hypothesis was rejected
so a non-parametric version of classical one-way ANOVA was
necessary. Kruskal-Wallis test was used to statistically compared
the configurations with the hand and between each other. The
significance level for all statistical comparisons was set at p <

0.05. The comparison was performed, for all the variables and for
each task, between the three different configurations considering
the values obtained from the 11 subjects.

In the end, to simplify the comparison, the tasks executed
were divided in five functional groups, as shown in Table 2. This
division was done since it was noticed that, due to the similarity
of movement, tasks of the same group showed similar values for
the variables extracted. Then for each task, the median value of
all the variables and indices was obtained among the values of all
the subjects.

3. RESULTS

3.1. Kinematic Analysis
Figure 7 shows the median values of the Ranges of Motion
obtained from the execution with and without the robotic hand.

3.1.1. RoM of the Wrist
For the pronation/supination, statistically significant differences
have been obtained in tasks 1, 2, 7, 8, 9, 10, 12, 13, 14, 15, 16,
17 (more than 10◦ lower), 3, 4, 5, 6, and 11 (<10◦ lower) for the
DDC configuration with respect to the free execution, in none
of the tasks for the PMC configuration with respect to the free
execution and in tasks 2, 3, 4, 5, 12, and 13 (<10◦ lower) for the
DDC configuration with respect to the PMC configuration.
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TABLE 2 | Functional division of the tasks.

Group 1—Contralateral lifting tasks

Task 1 Lifting of the ball

Task 3 Lifting of the smaller cube

Task 5 Lifting of the middle cube

Task 7 Lifting of the bigger cube

Task 9 Lifting of the marble

Task 11 Lifting of the sharpening stone

Group 2—Ipsilateral lifting tasks

Task 2 Lifting of the ball

Task 4 Lifting of the smaller cube

Task 6 Lifting of the middle cube

Task 8 Lifting of the bigger cube

Task 10 Lifting of the marble

Task 12 Lifting of the sharpening stone

Pouring task

Task 13 Pouring the content of a glass

Group 4—Contralateral tube tasks

Task 14 Lifting of the bigger tube

Task 16 Lifting of the smaller tube

Group 5—Ipsilateral tube tasks

Task 15 Lifting of the bigger tube

Task 17 Lifting of the smaller tube

3.1.2. RoM of the Elbow
For the flexion/extension, statistically significant differences have
been obtained in tasks 1, 2, 4, 10, 11, 14, 15, 16 (more than 10◦

lower), 3, 9 (more than 20◦ lower), 12, 17 (more than 5◦ lower),
and 13 (more than 5◦ higher) for the DDC configuration with
respect to the free execution, in tasks 9, 16, 17 (more than 10◦

lower), 10, 14, 15, (more than 20◦ lower), and 13 (more than
5◦ higher) for the PMC configuration with respect to the free
execution and in none of the tasks for the DDC configuration
with respect to the PMC configuration.

3.1.3. RoM of the Shoulder
For the abduction/adduction, statistically significant differences
have been obtained in tasks 13, 14, 16, 17 (more than 10◦ higher),
and 15 (more than 20◦ higher) for the DDC configuration with
respect to the free execution, in tasks 6, 12 (<10◦ higher), 13, 14,
15, 16, and 17 (more than 10◦ higher) for the PMC configuration
with respect to the free execution and in tasks 2 (more than 10◦

higher), 6, 8, and 12 (<10◦ higher) for the DDC configuration
with respect to the PMC configuration. For the flexion/extension,
no statistically significant differences have been obtained. For the
rotation, statistically significant differences have been obtained
only in task 13 (more than 20◦ higher) for the DDC configuration
with respect to the free execution, in tasks 9, 14, 15 (more
than 10◦ lower), 13 (more than 20◦ higher), and 17 (more than
5◦ lower) for the PMC configuration with respect to the free
execution and in none of the tasks for the DDC configuration
with respect to the PMC configuration.

3.1.4. RoM of the Trunk
For the abduction/adduction, statistically significant differences
have been obtained in tasks 8, 10, 11, 12, 13, 14, 15, 16, and 17
(<10◦ higher) for the DDC configuration with respect to the
free execution, in tasks 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, and 17 (<10◦ higher) for the PMC configuration with
respect to the free execution and only in task 2 (<10◦ lower) for
the DDC configuration with respect to the PMC configuration.
For the flexion/extension, statistically significant differences have
been obtained in tasks 10, 13, 14, 15, 16, and 17 (<10◦ higher)
for the DDC configuration with respect to the free execution,
in tasks 2, 4, 5, 9, 10, 12, 13, 15, 16, and 17 (<10◦ higher) for
the PMC configuration with respect to the free execution and
in none of the tasks for the DDC configuration with respect to
the PMC configuration. For the rotation, statistically significant
differences have been obtained in tasks 4, 6, 8, 10, 11, 12, 13, 14,
15 and 17 (<10◦ higher) for the DDC configuration with respect
to the free execution, in tasks 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16,
and 17 (<10◦ higher) for the PMC configuration with respect to
the free execution and only in task 2 (<10◦ higher) for the DDC
configuration with respect to the PMC configuration.

3.1.5. RoM of the Head
For the abduction/adduction, statistically significant differences
have been obtained in tasks 10, 12, 13, 14, 15, and 17 (<10◦

higher) for the DDC configuration with respect to the free
execution, in tasks 10, 12, 13, and 17 (<10◦ higher) for the PMC
configuration with respect to the free execution and in none of
the tasks for the DDC configuration with respect to the PMC
configuration. For the flexion/extension, statistically significant
differences have been obtained in tasks 4, 10, 13, 14, 15, 16, and
17 (<10◦ higher) for the DDC configuration with respect to the
free execution, in tasks 2, 5, 9, 10, 11, 12, 13, 14, 15, 16, and 17
(<10◦ higher) for the PMC configuration with respect to the free
execution and in none of the tasks for the DDC configuration
with respect to the PMC configuration. For the rotation, no
statistically significant differences have been obtained.

3.1.6. Accuracy Index
Figure 8 shows the median values of the (A) intra-subject and
(B) inter-subjects accuracy index obtained from the execution
with and without the robotic hand. For the intra-subject index,
statistically significant differences have been obtained in tasks 2,
4, 9, 10, 12, 13, 14, 15, 16, and 17 for the DDC configuration with
respect to the free execution, in tasks 1, 2, 4, 9, 10, 12, 13, 14,
15, 16, and 17 for the PMC configuration with respect to the free
execution and in none of the tasks for the DDC configuration
with respect to the PMC configuration. For the execution with
the natural hand the values are in the range 73–81%, for the DDC
configuration the values are lower than 50% in six tasks and lower
than 75% for the other tasks while for the PMC configuration the
values are lower than 50% in seven tasks and lower than 70% for
the other tasks. For the inter-subject index, statistically significant
differences have been obtained in tasks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 15, 16, and 17 for the DDC configuration with respect
to the free execution, in tasks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 15, and 17 for the PMC configuration with respect to the free
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FIGURE 7 | Bar plots showing the median values and the standard deviations upon all the subjects of the RoM obtained during the execution of the tasks in the three

configurations tested. S1, Shoulder abduction/adduction; S2, Shoulder flexion/extension; S3, Shoulder rotation; E, Elbow flexion/extension; W, Wrist

pronation/supination; T1, Trunk abduction/adduction; T2, Trunk flexion/extension; T3, Trunk rotation; H1, Head abduction/adduction; H2, Head flexion/extension; H3,

Head rotation. *p < 0.05, **p < 0.01.
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FIGURE 8 | Bar plots showing the median values and the standard deviations

upon all the subjects of the (A) intra-subject accuracy and (B) inter-subjects

accuracy indices obtained during the execution of the tasks in the three

configurations tested. *p < 0.05, **p < 0.01.

execution and in none of the tasks for the DDC configuration
with respect to the PMC configuration. For the free execution
the values are in the range 60–86%, for the DDC configuration
the values are lower than 50% in eight tasks and lower than 72%
for the other tasks while for the PMC configuration the values
are lower than 50% in seven tasks and lower than 66% for the
other tasks.

3.1.7. Efficiency Index
Figure 9 shows the median values of the (A) intra-subject and
(B) inter-subjects efficiency index obtained from the execution
with and without the robotic hand. For the intra-subject index,
statistically significant differences have been obtained in all
the tasks for the DDC configuration with respect to the free
execution, in all the tasks for the PMC configuration with respect
to the free execution and in none of the tasks for the DDC
configuration with respect to the PMC configuration. For the
free execution the values are in the range 93–99%, for the DDC
configuration the values are in the range 53–93% while for the
PMC configuration the values are in the range 60–95%. For
the inter-subject index, statistically significant differences have
been obtained only in task 13 for the DDC configuration with
respect to the free execution, in none of the tasks for the PMC
configuration with respect to the free execution and in none of
the tasks for the DDC configuration with respect to the PMC
configuration. For the free execution the values are lower than

FIGURE 9 | Bar plots showing the median values and the standard deviations

upon all the subjects of the (A) intra-subject efficiency and (B) inter-subjects

efficiency indices obtained during the execution of the tasks in the three

configurations tested. *p < 0.05 **p < 0.01.

50% in three tasks and lower than 95% for the other tasks, for
the DDC configuration the values are lower than 50% in three
tasks and lower than 84% for the other tasks while for the PMC
configuration the values are lower than 50% in four tasks and
lower than 89% for the other tasks.

3.2. EMG Signal Analysis
The execution of the tasks with the robotic system was always
longer than the one with the natural hand, resulting in a longer
activation period of the muscles. However, the values of the
RMS resulted very similar between the three executions of
the tasks. For the clarity of the results, only the RMS values
of the deltoid, the trapezius and the triceps were reported
in Supplementary Table S6 since only for this muscles some
statistical differences have been found. In particular, they have
been found for the deltoid between the natural hand and the
DDC configuration in tasks 10 and 13, between the natural hand
and the PMC configuration in tasks 1, 2, 3, 4, 10, 11, 12, 13, 15,
and between the two configurations in tasks 1, 2, for the trapezius
between the natural hand and the PMC configuration in task
6 and for the triceps between the natural hand and the DDC
configuration in task 13. It is also interesting to analyse the fact
that the muscle activity resulting from the natural hand shows
always a relaxing period between the different repetitions when
the hand came back to the starting position while during the
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FIGURE 10 | Example of hand trajectory exploited (up) and of the consequent SHX position (down) during the lifting of the marble in the contralateral side. In the third

repetition the subject needed more attempts to accomplish the task, thus resulting in a more irregular trajectory.

FIGURE 11 | Example of EMG envelope signal of the wrist flexor. In the red circle, it can be noticed the presence of muscle activity also during the relaxing period

between trial during the execution with robotic system.

execution with the SHX system the muscle activity is higher also
in this phase (example in Figure 11).

4. DISCUSSION

Most of the supernumerary robotic systems presented in
literature have been specifically designed for augmenting
workers’ abilities in industrial applications (Llorens-Bonilla et al.,
2012; Ciullo et al., 2018a). Most recently, the use of this
technology has been also proposed for impaired assistance
(Hussain et al., 2016). This can be an interesting opportunity
for subjects with a permanent disability due to neuromuscular
diseases, like post-stroke subjects, or injuries. In this scenario,
the use of a supernumerary robotic hand can compensate for
the missing functionalities by acting in charge of the natural
impaired one (Ciullo et al., 2020). However, some considerations

and analyses need to be done for safety in using this novel
robot-assisted approach. Differently from other assistive robotic
systems (Wu et al., 2013; Nordin et al., 2014; Grimm et al.,
2016), where variations on movement patterns are mainly
due to the subject’s impairments, in supernumerary robotic
hand such alteration can be introduced by the encumbrance
of the additional robotic hand itself. To verify the presence
and estimate the size of these compensatory movements, with
this work a quantitative analysis has been conducted involving
healthy subjects.

According to the kinematic results, we observed that the use
of the apparatus reduces the range of motion of the wrist, elbow
and shoulder, while it increases the range of the trunk and head
movements. Regarding the shoulder joint, for the tasks of groups
1 and 2 (12 tasks in total), statistically significant differences have
been found only for the abduction/adduction in 3/12 tasks for the
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DDC configuration and in 2/12 tasks for the PMC configuration.
This shows that, for these tasks involving only grasping of objects,
the shoulder movements were similar during the execution with
and without the robotic system. However, a different situation
can be seen in the pouring task (task 13) and in the lifting of the
tubes (task 13, 14, 15, 16, and 17, so 5 in total) which required
a major precision, forcing the subject to use more this joint.
Indeed, for these tasks, statistically significant differences have
been found for the abduction/adduction in 5/5 tasks for the DDC
configuration and in 5/5 tasks for the PMC configuration, while
for the flexion/extension in 3/5 tasks for the DDC configuration
and in 1/5 tasks for the PMC configuration. Regarding the
elbow joint, the RoM obtained during the execution with the
robotic hand resulted lower with respect to the natural execution
for all the tasks. This can be attributed to the presence of
the gravity compensator helping the subject to move the arm
without exploiting the elbow movement. The only task in which
the RoM of the elbow was higher was task 13 (pouring). This
is in line with the fact that, as previously said, this task also
required a larger movement of the shoulder. Concerning the
wrist pronation/supination, the RoM during the execution with
the natural hand was higher for all the tasks. This was due to
the fact that using the robotic system, the natural hand was
fixed for grasping the handle controller, thus limiting the wrist
movements. However, statistically significant differences have
been obtained only for the DDC configuration. This aspect
may prove that the execution with the PMC configuration was
very similar to the execution with the natural hand. In this
configuration, the robotic hand is below the natural one. This
reduce the visual feedback, since the object is hidden by the
robotic hand, requesting a major wrist pronation/supination.
The RoM obtained from the trunk and the head movements
are higher during the execution with the robotic hand, thus
indicating that subjects used these movements to compensate
the reduced exploitation of the arm joints. Also for trunk and
head joints, the biggest differences are shown for the pouring
task, the lifting of the marble and the smaller tube. This could be
due both to the fact that these tasks required more dexterity, and
because of the occlusion of the robotic hand pushing the subject
to move the head and the trunk to better look at the object (Ciullo
et al., 2018b). This was more evident with the PMC configuration
for which, as already said, most of the subjects asserted that the
object was hidden by the system. To solve this problem, a haptic
feedback system could be added as proposed by Schofield et al.
(2014) and Svensson et al. (2017).

Considering the accuracy and efficiency indices, the values
were lower in the tasks requiring more dexterity (e.g., lifting
of the marble and of the smallest tube). Moreover, in some
cases, subjects needed more attempts to accomplish these tasks,
thus resulting in more irregular hand trajectories (example in
Figure 10). Nevertheless, also the values obtained during the
executions with the natural hand were low (average 79.11%
for the inter-subject accuracy and 67.79% for the inter-subject
efficiency), reflecting an high variability between the subjects to
accomplish the same task. This variability can explain the very
low values (average 46.59% for the inter-subject accuracy in the
DDC configuration, 50.76% for the inter-subject accuracy in the

PMC configuration, 59.04% for the inter-subject efficiency in the
DDC configuration, and 61.18% for the inter-subject efficiency
in the PMC configuration) obtained for the two configurations of
the SHX. In fact, it can be caused not only by the encumbrance of
the robotic system but also by the difference in the strategy and
trajectory used by different subjects.

For what concerns the muscles activity, the values of the
RMS resulted similar between the three conditions and few
statistically significant differences have been found. This could
be justified by the fact that all the tasks proposed were quite
short and easy to be executed for healthy subjects, and all
the items had a light weight (the heaviest was <250 g). None
of the subjects experienced evident level of fatigue and no
evident differences among the natural hand and the robotic
configurations were found. However, the execution with the
robotic system was always longer than the one with the
natural hand, resulting in a longer activation period of the
muscles. Moreover, the muscle activity resulting from the
natural hand shows always a relaxing period between the
three repetitions of the tasks, when the hand come back to
the starting position. During the execution with the SHX
system the muscle activity was present also in this phase (see
Figure 11). This was more evident for the wrist muscles in
the DDC configuration. Two main reasons could justify this
evidence: first the subject contracted the wrist muscles to
maintain the position and hold the handle. The other reason
is that, as already said, even if the subject is helped by the
gravity compensator, during the use of the robotic system, the
misalignment and the distance of the robotic hand, with respect
to the subject’s arm, introduces an additional gravity torque. This
situation leads to annoying rotations of the human arm and a
major force requested to the subject. The same problem was
highlighted by stroke patients, using this human-arm interface
during previous pilot studies. To counteract these effects, a
new prototype of the human-harm interface may be developed
with reduced weight and encumbrance and with the addition
of a counter-mass.

For what concerns the comparison between the two robotic
configurations no relevant differences have been obtained in
the values of the indices considered so they can be selected
in accordance to the subjects’ preference or need. However, it
was noticed that, as said in section 2.1, the annoying rotations
caused by the misalignment and the distance of the robotic hand
requested higher movements exploited to accomplish the task.
This was true mostly for the DDC configuration. In particular, in
the tube tasks in which the object were closer to the subjects trunk
RoM resulted higher with respect to the other two executions.
Also the problem of occlusion caused by the position of the
hand in the PMC configuration was reported by subjects. Larger
movement of the head have been reported during the execution
with this configuration, in particular in tasks of group 1 and 2
involving the grasping of sobjects.

Although the absence of impaired subjects may represent a
limit for this work, the normal condition of the involved ones
ensures that any movement variations is mainly related to the
system design. Another subject-related factor that may alter
the movement execution, inducing compensation with trunk
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and head movements, can be the muscular fatigue. However,
data analysis on the EMG signals have reported no differences
on muscle activities during the whole experimental procedure,
excluding in this way the fatigue as possible cause for movement
compensations. For this reason, we did not consider muscle
synergies even though they can provide interesting outcomes.
Due to the ease of the tasks, very low variance among the
different synergies would have been obtained. Another limit of
this study could be the lack of a metric considering all the joints
together, such as kinematic synergies. The huge amount of data
acquired and the selected indices provide enough information
for our analysis but future works will be designed to analyze
the correlation between joints and include additional and more
general indices.

5. CONCLUSION

This work provides a detailed description of the compensatory
movements exploited by subjects using a supernumerary robotic
hand for upper limb assistance. No relevant differences have
been found between the two configurations tested so they can
be selected in accordance to the subjects preference or need. By
comparing the joints movement during the use of the robotic
system with respect to the free execution, it has also been
demonstrated that, the SHX system can be useful to reduce
the stress on the wrist, elbow and shoulder joints, since the
RoM exploited was very similar or decreased in the majority
of the tasks. However, the use of the trunk and of the head
increased. Moreover, from the EMG signals analysis, the muscles
activity resulted very similar during the use of the system, thus
demonstrating that this device is not detrimental from the point
of view of the muscular fatigue. This work suggest that the system
may be used as assistive device without causing an over-use of the
arm joints and also opens the way to clinical trials with patients.
Results may help to upgrade the system with a more comfortable
and suitable human-arm interface to avoid occlusion of objects
and larger movements of trunk and head. Future work will be
oriented to the evaluation of the compensatory movements also
with post-stroke patients.
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The field of rehabilitation and assistive devices is being disrupted by innovations in

desktop 3D printers and open-source designs. For upper limb prosthetics, those

technologies have demonstrated a strong potential to aid those with missing hands.

However, there are basic interfacing issues that need to be addressed for long term

usage. The functionality, durability, and the price need to be considered especially

for those in difficult living conditions. We evaluated the most popular designs of

body-powered, 3D printed prosthetic hands. We selected a representative sample and

evaluated its suitability for its grasping postures, durability, and cost. The prosthetic hand

can perform three grasping postures out of the 33 grasps that a human hand can do.

This corresponds to grasping objects similar to a coin, a golf ball, and a credit card.

Results showed that the material used in the hand and the cables can withstand a 22 N

normal grasping force, which is acceptable based on standards for accessibility design.

The cost model showed that a 3D printed hand could be produced for as low as $19.

For the benefit of children with congenital missing limbs and for the war-wounded, the

results can serve as a baseline study to advance the development of prosthetic hands

that are functional yet low-cost.

Keywords: prosthetics, assistive technologies, war-wounded, 3D printing, grasping

1. INTRODUCTION

The loss of upper limbs has significant impact on the functional activities and social interactions
of a person. The loss of upper limbs can be classified according to congenital limb loss or acquired
limb loss. There is a 2:1 incidence ratio of congenital limb loss to acquired limb loss (Masada et al.,
1986; Vannah et al., 1999; Vasluian et al., 2013). Congenital limb loss is attributed to malformations
that have structural abnormalities of prenatal origin (Czeizel, 2005). The prevalence of upper
limb loss is twice that of the lower limbs (Hirons et al., 1991). Acquired limb loss can be due to
various reasons, including diseases or traumatic amputations frommachinery, vehicular accidents,
electrical injuries, or weaponry (Krebs et al., 1991).

In recent years, the acquired loss of the upper limbs have further increased due to warfare.
Children are the most vulnerable victims of wars. Like other civilians, they can suffer a range of
war-related injuries. Improvised explosive devices (IEDs), landmines, mortars, and air strikes are
more likely to kill or permanently impair a child due to their inclination for outdoor activities.
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In 2017 alone, the United Nations General Assembly Security
Council (2018) reported that there were around 9,624 children
who were killed or maimed in armed conflicts worldwide
(Table 1).

In the Syrian Civil War (2011-present), Handicap
International (Bevington, 2015) estimated that one million
people were injured and around 8% of them require prosthesis
or orthosis. That translates to a latent demand of around 80,000
individuals who need such devices in one country alone. The
vulnerability of the war-wounded is usually worsened by the
collapse of the healthcare system. The Physicians for Human
Rights (2015) have documented the systematic attacks on
healthcare providers in Syria. To compensate for the lack of
healthcare services, Qatar Red Crescent Society (a member of the
Red Cross Red Crescent Societies), the International Committee
of the Red Cross, Humanity and Inclusion (formerly Handicap
International), and Médecins Sans Frontières (MSF) have come
to the forefront of humanitarian assistance. For them, however,
the provision of prosthetic limbs has become problematic
because of the prohibitive prices in the context of international
donor fatigue.

The price of commercially-available body-powered prostheses
ranges from $4,000 to $10,000 (Resnik et al., 2012; ten Kate et al.,
2017) while the electrically-powered ones cost between $25,000
and 75,000 (Resnik et al., 2012; van der Riet et al., 2013; ten
Kate et al., 2017). For government-compliant upper extremity
prosthesis, the American Orthotic and Prosthetic Association
(2015) estimated that the price was between $1,500 and 5,000. All
these amounts render the purchase of a prosthesis unaffordable
for most of those who live in difficult living conditions, such
as in the war zones, refugee camps, or low-income countries.
The statistics in Table 1 are miniscule as compared to the

TABLE 1 | Number of children affected worldwide by armed conflicts in 2017

(Adapted from United Nations General Assembly Security Council, 2018).

Country Killed Maimed Total

Afghanistan 861 2,318 3,179

Central African Republic 61 43 104

Columbia 18 35 53

Democratic Republic of Congo 156 178 334

Iraq 279 438 717

Israel and State of Palestine 15 1,165 1,180

Lebanon 8 12 20

Libya 40 38 78

Mali 19 15 34

Myanmar 196 24 220

Somalia* – – 931

South Sudan 36 57 93

Sudan 19 75 94

Syrian Arab Republic 910 361 1,271

Yemen 552 764 1,316

Total 3,170 5,523 9,624

*Data for killed or maimed were not provided.

demand for mass-produced consumer goods like mobile phones
or athletic shoes. Due to the various levels of limb loss or
amputations among the patients and the various preferences for
functionality or other features (Korkmaz et al., 2012), a mass
production approach for prosthetics is not feasible. There is
patient-specificity for each prosthetic device.

An emerging technology for the fast production of low-cost
prosthetics is three-dimensional (3D) printing (Cabibihan et al.,
2015; Cabibihan et al., 2018; Alhaddad et al., 2017; Alturkistani
et al., 2020). The 3D printing process is the additive deposition of
material in a layer-by-layer manner to construct parts from a 3D
computer-aided design (CAD) model (Hull, 1986). Consumer-
grade desktop 3D printers, cost between $250 and 2,500. There
are advantages of using 3D printing for prosthesis fabrication.
First, the process does not need the numerous constraints
imposed by changing the tools and switching manufacturing
processes for each part. Secondly, 3D printing allows free-form
shape, which can replicate the contours of human limbs. It allows
the fabrication of prosthesis that is specific to the shape and
size of each patient. Lastly, because the fabrication of parts is at
low volume, the inventory of parts is minimized, thus, further
minimizing the production costs.

In this paper, we ask whether the openly accessible, body-
powered 3D printed prosthetic hands are suitable for the use of
children (i.e., under 18 years old) with missing hands in low-
resource settings. First, we evaluated all the published designs of
openly accessible 3D printed prosthetic hands for their suitability
to those with congenital loss of hands or war-related amputation.
Next, we investigated the grasping postures of a representative
design of a prosthetic hand. There were a few available designs
but their cable-driven mechanisms and the materials used for 3D
printing were similar. Third, we investigated the probable design
aspects where failure can occur: the cables could break and the
grasp could become compromised, the material in the fingers
could break due to the high stresses from the cables that were
under tensile forces, or the fingers’ joints could fail due to the
cyclic loads during the grasping and carrying of objects. Fourth,
we developed a cost model to approximate the minimum price
of each 3D printed hand. Lastly, we discussed the implications
of this work for children with congenital limb loss and the
war-wounded.

2. OPENLY ACCESSIBLE 3D PRINTED
PROSTHETIC HANDS

As a baseline study, we investigated the body-powered 3D
printed hands that were available online. Prosthetic hands that
were controlled using pattern recognition of electromyographic
(EMG) signals and other sensory feedback strategies were
excluded in the investigation (Kuiken et al., 2016; Resnik et al.,
2019).

Some of the available designs are shown in Table 2. These
hands are anthropomorphic consisting of five fingers, each
featuring two or three phalanges. One joint links the wrist to
the harness, which is mounted to the stump of the amputated
part of the arm. These types of mechanisms are considered
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as underactuated because the number of degrees of actuation
is lower than the degrees of freedom (DOFs) on the whole
mechanism (Birglen et al., 2008). For the hands in Table 2,
there are at least 10 DOFs and a single mode of actuation,
which is the flexing of the joint between the wrist and
the harness.

The fingers are actuated by the cables that are connected to
the wrist. To control the body-powered prosthetic limb, cables
are used to transfer the movements exerted from the body part to
the prosthesis. This movement could be from the chest, shoulder,
elbow, or wrist depending on the level of amputation. The
flexion of the fingers depends on the tension force of the non-
elastic cables, while the extension of the fingers depends on the
restorative effect of the elastic cord that has a certain amount
of flexibility, which then allows the return of the fingers to their
natural pose (Alkhatib et al., 2019b).

Among these designs, the Raptor Reloaded Hand (Figure 1)
from the e-NABLE community has proven to be popular
and is currently being used by more than 1,500 amputees
from 40 countries because of its simple assembly and fairly
acceptable appearance (Owen, 2017). This design has been
reported in previous works (Arabian et al., 2016; Burn et al.,
2016; Greene et al., 2016; Sullivan et al., 2017; ten Kate
et al., 2017; Vujaklija and Farina, 2018). Further studies are
needed to evaluate the technical integrity and functionality of
this hand. We used this design to evaluate the movement,
grasping forces, failure modes, and associated costs to produce
a prosthetic hand for those with congenital limb loss or for the
war-wounded.

3. MATERIALS AND METHODS

3.1. Grasping Poses
The human hand is capable of various grasp types. It is capable for
full-hand grasping (i.e., power grasps) or for dexterous grasping
(i.e., precision grasps) of various objects. There are 15 joints
and 20 DOFs in the human hand (Jones and Lederman, 2006;
Kapandji, 2016). The human hand has been shown to perform
33 grasp postures (Feix et al., 2013; Feix et al., 2016). In that
study, the 33 grasps were achieved using 17 objects. Among those
objects were a ball, a coin, cylinders of various diameters, and
others that are representative of objects in daily life. The full list
of grasp postures can be found at the link.

3.1.1. Materials
The Raptor Reloaded 3D design was downloaded and was used
at the default scale of the original file (e-NABLE Community,
2014; Alkhatib et al., 2019a). The CAD file was 3D printed using
Polylactic Acid (PLA; MakerBot, USA) filament on a desktop 3D
Printer (Replicator 5th Generation, MakerBot Industries LLC,
Brooklyn, NY, USA; build table: 29.5×19.5×16.5 cm3). The
following settings were used: 215◦C printing temperature, 0.2
mm layers, 2 shells, 35% infill, and the cooling fan was set to active
mode. The printing was completed after 17 h. To complete the
assembly, non-elastic and elastic cords were needed for the grasp
and release mechanism. The non-elastic cables (super Dyneema
strong braided fishing line, SeaKnight, China) were required to
flex the fingers. Elastic cords (3 mm dia, Polypropylene Shock
Cord, Sgt. Knots Supply Co, NC, USA) were used to return the

TABLE 2 | Openly accessible 3D printed prosthetic hands: structural material and the types of cables for flexion and extension.

Prosthetic hand Design Joints Material Flexion Extension

Cyborg Beast (Zuniga, 2015) 10 ABSa or PLAb Non-elastic cables Elastic cords

Falcon Hand (Arabian, 2014) 11 ABS Non-elastic cables Orthodontic rubber bands

FlexyHand (Wood, 2014) 14 PLA or Filaflex Non-elastic cables Flexible joints

K1 Hand (Keuster, 2015) 14 ABS or PLA Non-elastic cables Elastic cords

Phoenix Hand (Bryant, 2016) 10 ABS or PLA Non-elastic cables Elastic cords

Raptor Reloaded (e-NABLE Community, 2014) 10 PLA Non-elastic cables Elastic cords

aAcrylonitrile butadiene styrene.
bPolylactic acid.
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fingers to their default pose. A knotting technique, known as
the improved clinch knot, was used to firmly secure the cables
and cords.

3.1.2. Selection of Grasp Poses
The prosthetic hand is a transcarpal prosthetic hand. As such, a
user dons the prosthetic hand and has to flex the wrist so that
the grasping can be done. The protocol to find the grasping set
was conducted as follows. First, a healthy child (8 years old) wore
the transcarpal prosthetic hand through straps. The straps within
the prosthetic hand simulated the grasping of a child amputee.
Second, the images of the 33 grasps (Feix et al., 2016) were
displayed on the screen, which the child repeated. In accordance
to the procedure in Deimel and Brock (2016), the last step was to
judge the quality of the grasp bymoving the grasped object. Three
consecutive trials were done for repeatability.We then shortlisted
the grasp poses that the prosthetic hand was capable of.

3.2. Grasping Range of Motion
For an underactuated hand, all fingers wrap around the surface of
an object. In cases where an object is smaller than the enclosing
volume of the fingers, the fingers that are not touching the object
will continue to flex until the structural limits are reached. For
the representative sample (i.e., the Raptor Reloaded Hand), we
investigated the limits imposed by the structural constraints. In
this section, we asked whether the range of motion of the fingers
was similar to that of the human hand. Additionally, we wanted
to know how much flexion force on the wrist was required to
achieve the prosthetic hand’s range of motion.

3.2.1. Data Analysis
The positions of the fingertip were determined according to its X
and Y coordinates. A geometrical scheme was then developed to
understand the grasping relationship between the finger’s joints

and links with its geometry. Forward kinematics was carried
out by determining the Denavit-Hartenberg (D-H) parameters
(Corke, 2017).

Figure 2A shows the link frame of the index finger. The two-
dimensional Cartesian coordinates system (x,y) defines the origin
point (0,0) at the wrist joint where θ1 = 0. The D-H convention
was used to create the transformation matrices based on four
parameters, which can be obtained from the link frame of the
prosthetic hand. These parameters are the link lengths, ai, link
twists, αi, link offsets, di, and joint angles, θi (Table 3). The
transformation matrices are shown in Equations (1)–(4).

0
T1 =









cos θ1 − sin θ1 0 L1 cos θ1
sin θ1 cos θ1 0 L1 sin θ1
0 0 1 0
0 0 0 1









(1)

1
T2 =









cos θ2 − sin θ2 0 L2 cos θ2
sin θ2 cos θ2 0 L2 sin θ2
0 0 1 0
0 0 0 1









(2)

2
T3 =









cos θ3 − sin θ3 0 L3 cos θ3
sin θ3 cos θ3 0 L3 sin θ3
0 0 1 0
0 0 0 1









(3)

0
T3 = 0

T1
1
T2

2
T3 (4)

The fingertip’s posture can be expressed as position and
orientation quantities, [X,Y ,φ]T . The X and Y positions
of the fingertip with respect to the wrist joint angle (θ1),

FIGURE 1 | An amputee with a cosmetic prosthetic hand in one of our field interviews. (A) The non-affected hand. (B) A cosmetic hand with a darkened complexion

due to the aging of the silicone material and smudging from dark clothes. (C) The Raptor Reloaded 3D printed prosthetic hand as a representative design of openly

accessible 3D printed hands.
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FIGURE 2 | Schematic illustrations, meshed model, and materials characterization. (A) The three links of the index finger showing the three local coordinates and the

variables. (B) The geometrical representation of the finger mechanism showing all the variables to calculate the final position of the fingertip. (C) The finite element

model of the index finger. The model included two finger phalanges and the pin at the PIP joint. The non-elastic cables and elastic cords were embedded within the

structure. (D) The experimental and numerical stress-strain curves of the ABS and PLA filament materials that were obtained from the tensile tests that we conducted.

The yield stresses were marked for the two materials.

TABLE 3 | Denavit-Hartenberg parameters of the 3D printed prosthetic index

finger.

Link number, Li Link length, ai Link twist, αi Link offset, di Joint angle, θi

1 L1 0 0 θ1

2 L2 0 0 θ2

3 L3 0 0 θ3

metacarpophalangeal (MCP) joint angle (θ2) and the proximal
interphalangeal (PIP) joint angle (θ3) were calculated by the
following forward kinematics equations (Equations 5 and 6). The
finger’s orientation, φ, can be represented as the sum of the joint
angles, θ1, θ2, and θ3 (Equation 7).

X = L1 cos θ1 + L2 cos(θ1 + θ2)+ L3 cos(θ1 + θ2 + θ3) (5)

Y = L1 sin θ1 + L2 sin(θ1 + θ2)+ L3 sin(θ1 + θ2 + θ3) (6)

φ = θ1 + θ2 + θ3 (7)

A mathematical relationship between the fingertip position
and the applied grasping force was developed to calculate
the X and Y positions of the fingertip. The geometry of the
prosthetic index finger is shown in Figure 2B. The finger’s

grasping motion (flexion) was actuated by the tension of the
cables, while the return motion (extension) was actuated by the
elastic cords.

The flexion and extension resulted into changes in the MCP
joint angle (θ2) and PIP joint angle (θ3). The Raptor Reloaded
hand simplified the design by combining the DIP joint to the
PIP joint. Henceforth, the DIP joint will not be mentioned. The
value of these angles depended on the cable length, lCable, which
is in contact with the pulleys, the length of the cable along the
phalanges, and the length until the fixed pin joint where the cable
is attached (Equation 8). In other words, the more tension force
is applied to the cable, the shorter the cable length will become.
Consequently, more flexion will be achieved by the fingers. The
cable’s length has a maximum value at the natural pose (θ1 =
θ2 = θ3 = 0◦) and it has the minimum length at the full tension
(θ1 = 0◦; θ2 = θ3 = 90◦). It is worth to mention that θ3 will
never be zero in the actual design. The minimum value of θ3 can
be assumed to be zero for simplification and this will not affect
the finger analysis.

The cable length (lCable) and the tension force applied on the
cable (Ftension) has a proportional relationship. This relationship
was experimentally obtained by applying tension forces on the
finger and measuring the values. A force gauge (DFS50, Nextech
Global Company Limited, Thailand) was used for measuring
the tension force and a Vernier caliper (part 530-118, Mitutoyo,
Japan) was used for taking the length measurements.
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The relationship between the cable’s length and the MCP joint
angle, θ2, and PIP joint angle, θ3 = 0◦, can be calculated from
Equations (9) to (12).

lCable = l1 + l2 + lc (8)

l1 = r
(π

2
− θ2

)

(9)

l2 =
√

C2
1 + C2

2 − 2C1C2 cos(90◦ − θ3) (10)

C1 =
√

C2
3 + C2

4 (11)

C2 =
√

C2
5 + C2

6 (12)

where lc is a constant, while l1 and l2 are calculated from
Equations (9) and (10), respectively. C1 and C2 can be obtained
from actual measurements by using Equations (11) and (12). The
variables lc,C3,C4,C5,C6, and r are constant lengths that can be
measured directly from the design (Table 4). These constants will
only be applicable if the downloaded design is not subjected to the
scaling of the default dimensions.

3.3. Finite Element Modeling
Non-linear finite element (FE) analysis was implemented using
the software LS-DYNA (mmps R8.1.1, Livermore Software
Technology Corporation, USA) to predict the maximum load
applied on the prosthetic index finger before failure or breakage.
The FE method divides the system into smaller parts (i.e., finite
elements) and uses algorithms to solve the partial differential
equations (PDEs). This numerical method approximates the
system solution under the given initial and boundary conditions
(Biddis et al., 2004; Mollica and Ambrosio, 2009). The FE
method was earlier used in the analysis of prosthetic fingers
and structures (Cabibihan et al., 2006a,b, 2014). In the current
work, the locations with potentially high stress concentration
were predicted to be at the distal finger phalange, proximal finger
phalange, and at the pin. An FE model was created to determine
the stresses at the critical components of the prosthetic hand. The
various conditions and assumptions are described henceforth.

3.3.1. Geometry
The open-source CAD files were downloaded from e-NABLE
Community (2014), and the original design was modeled as it
is. The model included the proximal phalange, the combined
intermediate and distal phalanges, the non-elastic cable, the
elastic cord, and the pin at the PIP joint (Figure 2C). For the

TABLE 4 | Design constants of the geometry as measured from the Raptor

Reloaded Hand (dimensions in mm).

lc C3 C4 C5 C6 r

15.75 6.00 7.25 6.00 20.00 2.25

purpose of saving computational time, the wrist, palm, and
the pin at the MCP joint were not modeled since the direct
contact with the objects comes from the distal and proximal
finger phalanges.

3.3.2. Geometry Meshing
To create the FE model, the finger geometry was subdivided into
small 3D quadratic tetrahedron solid elements. Each element has
four nodes and one nodal rotation to eliminate the probability
of rotational deformation. For the non-elastic cable, the beam
elements were used to model the cable because it has constant
cross-sectional properties, its length is larger than its width, and
it handles a load, which is distributed along its length. The beam
elements consisted of three nodes in three-dimensional space.
Two nodes were used for the identification of the geometry and
the third node was for the orientation of the beam element. To
model the elastic cords, one discrete element was used with one
degree of freedom and two nodes. This discrete element has a
spring behavior to simulate the elasticity of the elastic cord. A
spring constant of 1,000 N/m was assumed, based on the elastic
linear relationship between the force applied and displacement
created (Hooke’s law). In our study the applied force did not
exceed 25 N and the extended displacements were relatively
small (measured in mm), thus the spring constant was assumed
on average.

H-refinement test was used to conduct the convergence study.
With this process, the number of elements were increased in the
model by reducing the element size. The initial mesh size ranged
between 2.0 and 2.4 mm. The maximum value of von Mises
stress was selected with respect to the number of elements. For
computational time savings and because themaximum vonMises
stress was almost constant after having 53,198 elements, we used
the current model, with the element size ranging between 1.2 and
1.8 mm.

3.3.3. Materials
Two types of filament materials were evaluated in the analysis:
Acrylonitrile Butadiene Styrene (ABS; MakerBot ABS) and
Polylactic Acid (PLA; MakerBot PLA). Both materials were
compatible with the 3D printer (MakerBot Industries LLC, NY,
USA). The piecewise linear plasticity material model (MAT_024)
(Hallquist, 1993) from LS-DYNA material library was used to
model the ABS and PLA distal finger phalange, the combined
intermediate and proximal finger phalange, and the pin. The
modeled non-elastic cable was a braided fishing line cable (super
Dyneema strong braided fishing line, SeaKnight, China). The
plastic kinematic material model (MAT_003) was used to model
the non-elastic cable with very low strain rate because the cable
was assumed to have no deformation with respect to time.

3.3.4. Materials Verification
To verify the selected material model MAT_024, experimental
tensile tests for ABS and PLA filaments were simulated
numerically using LS-DYNA. The experimental tensile tests
were performed using a universal testing machine (5969 Series
Universal Testing Systems, Instron, USA). The loading rate for
the tensile test was set to 5 mm/min. The samples of ABS and
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PLA materials were printed according to ASTM D638 standard
(ASTM D638-14, 2014) and the same printer and printing
conditions were used as described in section 3.1.1. Table 5 shows
the obtained material properties of the two filament materials
from our experimental test.

Elasto-plastic materials were defined as materials that achieve
their elastic and plastic behaviors after reaching the yield
stress of the material. On the contrary, metals undergo plastic
deformation after reaching their yield stresses. The resulting
stress-strain curves from the experimental tests were used to
define the effective plastic strain of the material. The effective
plastic strain is a value that increases whenever the material is
actively yielding. This value was calculated incrementally over a
period of time to characterize the plastic deformation. Figure 2D
showed good agreement in the stress-strain curves between the
experimental and numerical results. The yield stresses obtained
from the experimental tensile tests for the ABS and PLAmaterials
were 16.59 and 50.69 MPa, respectively.

3.3.5. Boundary Conditions
Three important conditions were taken into account in modeling
the prosthetic finger. First, the hole at the proximal phalange
was supported in all directions (i.e., in translation and rotation),
with the exception of the rotational movement around the x-
axis. Second, the pin was fully supported in all directions (i.e.,
all the degrees of freedom of the pin nodes were constrained).
Third, no support was applied on the intermediate phalange,
which means that it was free to move in any direction. To
constrain the intermediate phalange, a frictional contact between
the pin nodes and intermediate phalange node was applied with
a friction constant of 0.3. The same contact was applied between
the proximal phalange and the intermediate phalange.

3.3.6. Loading
Tension force was applied on one node of the cable. The ABS
finger model was subjected to 5 and 15 N, while the PLA finger
model was subjected to 5, 15, and 25 N. These values were close to
the 22.2 N maximum force limit to single-handedly grasp, pinch,
or twist objects (Standards for Accessible Design; United States
Department of Justice, 2010; std. no. 309.4).

3.4. Production Cost Analysis
In evaluating the cost for each 3D printed hand, the following
components were considered: the equipment cost (i.e., 3D
printer), material cost (i.e., filament, cables, and elastic cords),
labor cost of the technician, the cost of maintaining the 3D
printer, and the energy cost (Table 6). The equipment, filament,

TABLE 5 | Mechanical properties obtained experimentally from the tested 3D

printed ABS and PLA samples.

Material Mass density

(g/cm3)

Young’s modulus

(GPa)

Ult. tensile

stress (MPa)

Failure

strain (%)

ABS 1.10 1.40 32.00 1.05

PLA 1.30 3.90 54.00 2.20

and maintenance costs were obtained from the manufacturer
of the 3D printer (Replicator+, MakerBot Industries LLC, NY,
USA). The cable (super Dyneema strong braided fishing line,
SeaKnight, China) and elastic cord Polypropylene Shock Cord,
Sgt. Knots Supply Co, NC, USA) were sourced from industrial
suppliers. The labor and energy costs were based on local costs in
Doha, Qatar.

The life expectancy of the 3D printer was estimated to be
10,000 h or around 3.5 years. The extruder was approximated to
be replaced at the half life expectancy of the 3D printer. The labor
cost came from the university’s salary guidelines and the energy
cost was based on the electricity consumption of the machine
where the unit price was based on the data provided by the local
energy supplier.

The total cost to produce one 3D printed hand consisted of the
following cost components:

C = CEQ + CRM + CLA + CMA + CEN (13)

where CEQ is the equipment cost per hour, CRM is the raw
material cost per hand, CLA is the labor cost per hour, CMA is the
maintenance cost per hour, and CEN is the energy cost per hour.

The equipment cost per hour was calculated as: CEQ =
(2, 800/10, 000) = $0.28/hour, which was based on the life
expectancy of the 3D printer of 10,000 h and the initial equipment
cost. The raw material cost for every printed hand was calculated
as the sum of the filament ($5.59), non-elastic cable ($0.019),
and elastic cord ($0.09) for a total of $5.70. The labor cost was
calculated from the time to assemble the various parts of the
printed hand. The assembly was around 1 h for each hand. The
labor cost, CLA, is equal to:

CLA =
1, 000( $

month
)

8( hours
day

)× 5( days
week

)× 4( weeks
month

)
=

$6.25

hour
(14)

Themaintenance cost per hour,CMA, was calculated based on a 2-
year maintenance cost over the life expectancy of the 3D printer:
CMA = 400/10, 000 = $0.04/hour. The energy cost,CEN , is equal
to $0.078 per hour. The total time to complete 3D printing of

TABLE 6 | Elements and prices for the cost model calculations.

Cost model

element

Item Unit cost Note

Equipment

cost

3D Printer $2,800/unit 10,000 h life

expectancy (approx.)

Material cost PLA Filament $43/kg 130 g/hand

Cables $15/spool of 500 m 0.625 m/hand

Elastic cords $9/spool of 50 m 0.5 m/hand

Labor cost Technician’s

Salary

$1,000/month Monthly part-time

salary

Maintenance

cost

3D Printer

Extruder

$200/unit 5,000 h life expectancy

(approx.)

Energy cost Power $0.47/kWh 167 W; 17 h

printing/hand
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one hand was 17 h. The cost equation for producing one hand is
as follows:

C = (0.28× 17)+ 5.70+ 6.25+ (0.04× 17)+ (0.078× 17) (15)

4. RESULTS

4.1. Limited Grasping Poses
From the 33 total grasps that a human hand can do (cf. section
3.1), there were only three grasping postures that can be achieved
using the 3D printed hand that was considered in this study (i.e.,
the Raptor Reloaded Hand). Figures 3A–C shows the grasp poses
and representative objects: palmar pinch of a coin (7.7 g), lateral
grasp of a credit card (10 g), and an inferior pincer grasp of a golf
ball (46.4 g).

4.2. Cable Tension Analysis
The range of motion of the finger with respect to θ1, θ2, and θ3
are shown in Figure 3D. From the initial conditions, the joints θ2
and θ3 flexed to 22.5◦ when the cable applied a force of 4.4 N. The
variable cable length, lVC, was only 1.2 mm (lVC = lCable,experimental

- 41.45, where 41.45 mm was the total cable length measured
experimentally when θ1 = θ2 = θ3 = 0◦). When a force of 8.9 N
was applied, the joints θ2 and θ3 flexed to 45◦ and the variable
cable length recorded was 5.7 mm. It took more tensile force
to achieve a higher flexion angle. To flex both joints to 67.5◦, a
force of 17.8 N was required. The variable cable length to achieve
that was 14 mm. The full flexion angle of 90◦ required that a
user needs to exert a force of 22.2 N and an engagement of the
cable to 15 mm in length. Table 7 compares the experimental
total cable length from the theoretical total cable length calculated
in Equation (8) and the experimental tests described earlier. The
errors were calculated to be from 1.75 to 7.61%.

4.3. Failure Analysis
The yield stresses of the ABS and PLA materials were defined
(Figure 2D). The yield point indicates the end of the elastic
behavior and the start of plastic behavior of the materials (i.e.,
the finger will deform and fail beyond this value). Two different
loads were applied on the ABS finger, and three loads on the
PLA finger for investigating thematerial failure. Figure 4A shows

FIGURE 3 | Grasping movements that can be achieved by the representative body-powered 3D printed prosthetic hand. (A) Palmar pinch. (B) Inferior pincer grasp.

(C) Lateral grasp. (D) The positions of the index finger of the 3D printed prosthetic hand in the X and Y axes with respect to the MCP and PIP joint angles.
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TABLE 7 | Relationships between the grasping posture angles, forces, total cable lengths, errors, and the variable cable length.

Angle, θ2 = θ3

(deg)

Cable tension force

(N)

Total cable length,

theoretical, (mm)

Total cable length,

experimental, (mm)

Error (%) Variable cable length

(mm)

0 0 42.19 41.45 1.75 0

22.5 4.2 37.74 40.45 7.17 1.2

45 8.9 33.22 35.75 7.61 5.7

67.5 17.8 29.34 27.45 6.44 14.0

90 22.2 27.22 26.45 2.83 15.0

FIGURE 4 | Analysis results. (A) Finite Element Analysis results showing the locations with the highest von Mises stress under applied loading from the cables being

pulled. The maximum von Mises stresses were found at the top and bottom hinges and near the pin hole. These results are for the PLA finger model subjected 15 N

loading. (B) Numerical results of the obtained von Mises stresses vs. applied load. (C) The endurance limit for ABS and PLA materials (Adapted from Caliskan et al.,

2016; Ezeh and Susmel, 2019).

the contour plots for the von Mises stresses of the PLA finger
under 15 N loading (also see animations). It can be seen from
the figure and animations that the highest stress concentration
areas can be found at the hinges and at the pin holes in both
the proximal and distal finger phalanges. From these results, it
can be concluded that the initial failure can occur at these high
stresses regions.

From the numerical results, the maximum stresses achieved at
10N load for the ABS and at 25N load for the PLAwere 12.04 and
44.76 MPa, respectively. Figure 4B shows the von Mises stresses
of the ABS and PLA with respect to the applied forces. The ABS
material registered a maximum von Mises stress of 6.02 and
12.04 MPa when loaded with a 5 and 10 N forces, respectively.
In comparison, the PLA material has higher maximum stresses

as compared with the ABS material. The PLA have maximum
stresses of 8.95, 26.85, and 44.76 MPa when loaded with forces of
5, 15, and 25 N, respectively. The von Mises criterion was used to
determine whether the material will yield or fracture. If the value
of the vonMises stress is equal or greater than the material’s yield
stress then the material will yield. As seen from Figure 4B, the
stresses have increased linearly with the increase in the applied
force. The estimated failure stresses were 13.75 N for the ABS
material and 28.3 N for the PLA material.

When a 10N loadwas applied to the PLA finger, themaximum
stress obtained from the numerical analysis was 17.90 MPa (cf.
Figure 4B). If we assume that the finger will have 50 cyclic
movements per day, the finger will experience 18,250 cycles per
year. Using the endurance limit for the PLAmaterial (Figure 4C),
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this finger can withstand 3 × 105 cycles before failure, which is
equivalent to 16 years (Table 8).

In the FE modeling, the tension force was applied to the
non-elastic cable. Numerical results showed that the maximum
stress obtained on the non-elastic cable was 100 MPa at 28 N of
tension loading. The other stresses obtained at each load were
tabulated in Table 9. However, from the product’s specification
sheet, the cable can hold up to 1,570 MPa at 440 N of tension
loading. It can be concluded that no failure will occur at
the cable unless there are other external conditions, such as
tearing from the friction developed between the cable and the
plastic material.

4.4. Production Cost
The total cost for producing one unit of a 3D printed hand was
calculated to be $18.72. The three major contributors to the total
cost were the equipment cost per hour (CEQ), raw material cost
per hand (CRM), and labor cost per hour (CLA). The maintenance
cost per hour (CMA) and energy cost per hour (CEN) have
minimal contribution to the overall cost. The CEQ can be reduced
by producing multiple hands at the same time (cf. Rickenbacher
et al., 2013; Piili et al., 2015). The CRM cost can be decreased by
ordering large quantities directly from key suppliers.

5. DISCUSSION AND CONCLUSION

5.1. The Importance of 3D Printing for
Prosthesis
The absence of limbs from congenital reasons or from warfare
can have devastating physical, psychological and socio-economic
consequences (Mckechnie and John, 2014; Griffet, 2016). For
the war-wounded children, the consequences go beyond their
impaired capacity to play, perform chores, and to care for
oneself. Their loss of limbs can leave them with various social
issues as well as mental disorders: post-traumatic stress disorders,
generalized anxiety disorder, depression, and cognitive disorders
(Betancourt et al., 2011; Hemmati et al., 2015). The thousands
of children maimed by war each year have limited access to
prosthesis services and it may take up to 10 years before a
prosthetic limb can be fitted (Santa Barbara, 2006).

TABLE 8 | The life cycle of the ABS and PLA prosthetic fingers with respect to the

load.

Material 5 N 10 N 15 N 20 N 25 N

ABS 1× 106

(no failure)

7× 104

(4 yrs)

Fail Fail Fail

PLA 5× 106

(no failure)

3× 105

(16 yrs)

7× 104

(4 yrs)

2× 104

(1 yr)

7.5×103

(0.5 yr)

TABLE 9 | Axial stresses from the applied load on the cable.

Applied load (N) 5 10 15 20 25 28

Axial stress (MPa) 17.8 35.7 53.6 71.4 89.3 100.0

The emergence of 3D printing has openedmany opportunities
for artificial hands for assistive purposes (Tian et al., 2017;
Negrello et al., 2020). This paper endeavored to answer whether
the openly accessible designs of body-powered 3D printed
prosthetic hands are suitable and affordable for the harsh
environmental conditions of the war-wounded. There were four
aspects that were evaluated: grasping poses, the range of motion
of the grasps and the analysis of the corresponding cable lengths,
the failure analysis in the various critical components of the 3D
printed hand, and the cost of production.

5.2. Human vs. Prosthetic Hand:
Differences in Grasping Movements
The human hand can perform 33 grasp types due to the
various combination of movements that it can do (Figure 5). The
human hand is capable of the adduction/abduction of the five
fingers with the radial adduction/abduction of the thumb, the
flexion/extension of the five fingers with adduction/abduction of
the palm, and the retroposition/opposition of the thumb with the
bending/flattening of the palm. On the contrary, the fingers of
the 3D printed hand are only capable of flexion and extension
on a flat palm design. It is noteworthy to mention that the
four fingers of the 3D printed hand can achieve the flexion and
extension angles of up to 90◦ in both of the PIP and MCP
joints, which are similar to the human hand (cf. Figure 3D).
While the thumb can perform extension and flexion, the thumb
is unable to perform retroposition/opposition in addition to the
palm’s inability to flex. The current 3D printed hand and similar
prosthetic hand designs were limited to perform only 3 out of 33
grasps (i.e., palmar pinch, inferior pincer grasp and lateral grasp).
The grasping postures of the investigated 3D printed hand were
severely limited by the hand’s structural design.

However, it may not be necessary to aim for a complete
replication of the 33 grasps due to the cost constraints. An
increase in the degrees of freedom and functionality has an
implication on the increased complexity of the prosthetic hand. A
complicated prosthetic hand can lead to an increase in the non-
usage rate. In a future work, we can ask children with missing
upper limbs on the priority of tasks that they wish they can
do, a matter so far poorly taken care of in the literature. Thus,
a balance for optimal design and affordable cost needs to be
further investigated.

5.3. Robustness of 3D Printed Hands for
Environments With Limited Resources
Amechanical apparatus that serves as a user’s interface to various
objects in the environment on a daily basis will tend to fail. A
failure analysis of this interface (i.e., a prosthetic hand) becomes
more relevant when the filament materials used for the 3D
printing process are polymers. Ideally, prosthetic hands should
be able to perform the basic grasping activities of daily living
without failure.

Based on our results, the average life expectancy was found
to be 4 years under light daily activities. Small, lightweight items
like paper, ball, and cards are within the expected loading cycles
(Table 8). Usually, such prostheses are designed for children who
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FIGURE 5 | Various movements of the fingers. (A) The radial abduction/adduction of the thumb and the relative abduction/adduction of the remaining fingers. (B) The

palmar abduction/adduction of the thumb and the flexion/extension of the remaining fingers. (C) The flexion/extension of the remaining thumb joints. (D) The

opposition/retroposition of the thumb and the bending/flattening of the palm. The blue/purple and red/green arrows indicate the positive and negative directions,

respectively.

are still in the development stage and a continuous size upgrade
is needed. Thus, the durability of these hands may not be crucial.
Our results showed that the PLA material cannot be subjected to
heavy loads (i.e., more than 28 N).

From a consumer psychology perspective, it can be argued
that the repeated replacement of a device might decrease the
trust in a device’s functionality and reliability. To mitigate this
issue, we anticipate to use a better structural materials, which
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can last longer and require less replacement. New materials with
high strength (e.g., thermoplastic elastomers, nylon, polyvinyl
alcohol) are expected to boost the confidence in this device.
With improved designs of 3D printing extruders to process new
materials, more improvements can be added to enhance the load
capacity, grasping ability, and the appearance of this type of
prosthetic hand.

The non-elastic cable’s load capacity is high and is unlikely
to fail (Table 9). On the other hand, the elastic cables are more
likely to lose their elasticity with time, which makes the return
motion slower or unreachable. The periodic replacement of these
low-cost cables can solve this issue. The condition on the failure
of the cables due to friction was not conducted. Simulating
this condition will depend on the surface finish of the printed
hand (i.e., related to the 3D printer’s quality) and this cannot
be considered it in our analysis because we would not be able to
predict which 3D printer will be used by those in the war zones.
Spare cables and elastic cords can be provided to the users so they
can make the replacements when necessary.

5.4. Cost Considerations for Low-Resource
Countries and Host Countries for Refugees
The design characteristics of conventional upper limb prosthesis
are incompatible to the design requirements in locations where
there is a lack of power supply, scarce resources, and zero options
for warranties. The on-site production of prosthesis parts would
significantly reduce the cost and time of shipping and delivery,
and provide a higher level of accuracy.

The emergence of 3D scanning and printing is minimizing
the dependence on highly-trained prosthetists in conflict zones.
In the traditional prosthesis fabrication process, which rely on
molding and casting, there needs to be some adjustments on
fitting the resulting prosthesis to the amputee. The reason for
that additional process was that the procedure to obtain the
measurements was already flawed at the start. In the conventional
process, the amputee would be asked to submerge the stump in
gypsum plaster (plaster of Paris) or alginate. The stump, due to
its compliant tissue, has already been deformed in the process
(Cabibihan, 2011; Cabibihan et al., 2011). The ideal procedure is
a non-contact way to obtain the data (i.e., 3D scanning). The 3D
scanning approach is compatible with the 3D printing procedure.

In developed countries, the cost for conventional upper limb
prostheses is from $1,500 to as high as $75,000. For such amount,
there is the risk that the materials used in the prosthesis can
be repurposed or bartered in case they are provided freely in
conflict zones. With a basic 3D printed prosthetic hand costing
as low as $19, prosthesis providers in developing countries and
in those countries hosting refugees could find such options to
be attractive.

5.5. Limitations and Future Work
The primary use of an upper limb prosthetic device is to let
the user live without stigma. Both the prosthesis user and the
people around the user give importance to the appearance of the
prosthesis (Scotland and Galway, 1983). The current paper did
not address the appearance of the prosthesis. Amidst a healthcare
sector that is facing economic difficulties due to donor fatigue

after almost a decade of conflict in areas like in Syria, the focus
of the paper was in the technical evaluation of the benefits and
limitations of the current 3D printed prosthetic hand designs.
The current designs were intended to be affordable alternatives
to the more expensive, traditional methods of manufacturing.
Future work can address the fitting of a glove and its coloration.

In war-affected and low-resources countries, the main
advantages of 3D printed prosthetic hands are in the portability
of the 3D printers, the cost-effectiveness of the material, the
possibility of on-site production, the amputee-specific design,
and the low maintenance cost. These prosthetic hands are still
not satisfactory for functional tasks for a user’s daily activities and
are not replacements for other improved and advanced designs.
This type of prosthetic design and production technique must
not be media-hyped because the users might expect too much.
This is a temporary solution, but 3D printed prosthetics can
still help the users in their basic daily activities and improve
their self-confidence. With the exception of the motors, some
of the elements we investigated here are also present in other
mechatronic prosthetic hands. If resources are available and
if the users so desire, further enhancements can be done by
the inclusion of robotic elements in the prosthetic hand. The
results presented herein serve as a baseline study to advance the
development of prosthetic hands that are functional yet low-cost.
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3D Scanning of the Forearm for
Orthosis and HMI Applications
Joel C. Perry*, Jacob R. Brower, Robert H. R. Carne and Melissa A. Bogert

Department of Mechanical Engineering, University of Idaho, Moscow, ID, United States

The rise of rehabilitation robotics has ignited a global investigation into the human

machine interface (HMI) between device and user. Previous research on wearable

robotics has primarily focused on robotic kinematics and controls but rarely on the

actual design of the physical HMI (pHMI). This paper presents a data-driven statistical

forearm surface model for designing a forearm orthosis in exoskeleton applications.

The forearms of 6 subjects were 3D scanned in a custom-built jig to capture data in

extreme pronation and supination poses, creating 3D point clouds of the forearm surface.

Resulting data was characterized into a series of ellipses from 20 to 100% of the forearm

length. Key ellipse parameters in the model include: normalized major and minor axis

length, normalized center point location, tilt angle, and circularity ratio. Single-subject (SS)

ellipse parameters were normalized with respect to forearm radiale-stylion (RS) length

and circumference and then averaged over the 6 subjects. Averaged parameter profiles

were fit with 3rd-order polynomials to create combined-subjects (CS) elliptical models

of the forearm. CS models were created in the jig as-is (CS1) and after alignment to

ellipse centers at 20 and 100% of the forearm length (CS2). Normalized curve fits of

ellipse major and minor axes in model CS2 achieve R2 values ranging from 0.898 to

0.980 indicating a high degree of correlation between cross-sectional size and position

along the forearm. Most other parameters showed poor correlation with forearm position

(0.005 < R2 < 0.391) with the exception of tilt angle in pronation (0.877) and circularity

in supination (0.657). Normalized RMSE of the CS2 ellipse-fit model ranged from 0.21

to 0.64% of forearm circumference and 0.22 to 0.46% of forearm length. The average

and peak surface deviation between the scaled CS2 model and individual scans along

the forearm varied from 0.56 to 2.86mm (subject averages) and 3.86 to 7.16 (subject

maximums), with the peak deviation occurring between 45 and 50% RS length. The

developed equations allow reconstruction of a scalable 3Dmodel that can be sized based

on two user measures, RS length and forearm circumference, or based on generic arm

measurements taken from existing anthropometric databases.

Keywords: 3D arm scanning, standardized orthosis design, physical human–machine interface, ellipse-fit forearm

model, 3D point cloud, exoskeleton robotic interface

INTRODUCTION

The prevalence of robotic devices in upper extremity stroke rehabilitation has risen significantly
in the last decade. Devices include end-effector designs where a patient is connected to a robot
at the hand and/or forearm, and exoskeleton designs where the robot may connect to the user at
multiple points along the arm and hand. Exoskeletons mimic the length and structure of human
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limb segments in order to move synchronously with the
segments during tasks. This requires an intimate human-to-
robot connection, also known as a physical human–machine
interface (pHMI), in order to distribute loading safely to adjacent
biological tissues.

The main goal of a pHMI is to ensure synchronous
movementbetween the user and robot through a comfortable
and safe connection. Misalignment between a user and robot
are potential comfort and safety issues that can increase the risk
of injury (Amigo et al., 2011; Gopura et al., 2016) and lower
system performance. Furthermore, misalignment from an offset
or improperly sized pHMI can induce high concentrations of
load on the skin, resulting in localized oxygen deprivation or
cell death. In addition to safety concerns, prolonged discomfort
from the physical connection to a robotic device can reduce
motivation to train, and impair range of motion as well as robot
tracking accuracy, all of which can degrade the performance and
effectiveness of the device.

Despite the importance of pHMI design on device function,
the methods and specifications associated with developing pHMI
components have been largely ignored in published literature.
An extensive review reveals that details on the pHMI tend to
fall into one of three categories: (a) authors refer to an orthosis
but the design is either not described or only briefly described in
terms of appearance (Perry et al., 2007; Jarrassé et al., 2008; Klein
et al., 2008; Pylatiuk et al., 2009; Gmerek, 2012; Ohnishi et al.,
2013; Rohm et al., 2013; Vaca Benitez et al., 2013; Herrnstadt
and Menon, 2016; Sangha et al., 2016); (b) authors describe a
generic orthosis design with added compliance to mitigate forces
due to misalignment or dissimilarities in anthropometric shape,
in which case the design elements focus on kinematics (Jarrassé
and Morel, 2012); or (c) authors explain human interface details
but do not report on the shape of their orthosis design (Jackson
et al., 2007; Rocon et al., 2007; Gupta et al., 2008; Vanderniepen
et al., 2009; Ragonesi et al., 2010; Vitiello et al., 2013; Alavi et al.,
2017; Ates et al., 2017). In other words, most papers present
the mechanical design and/or controller design, but very little
content, if any, is focused on the design of the physical interface
with the user. In many cases, the design of the pHMI connection
to the robot is addressed as an afterthought in comparison to
the extensive effort that goes into the kinematic, mechanical,
and control system design. However, inadequate attention to
the interface components can greatly hamper effectiveness and
usability of a wearable or collaborative robot design.

A well-designed pHMI for the forearm should safely and
comfortably support the arm throughout the desired range of
motion, minimize tracking error, be easy to don and doff, and
have reasonable manufacturability. In the traditional approach
to orthosis design, an individual’s arm is cast and the cast
orthosis is then modified to improve comfort in vulnerable
regions (Jacobs and Austin, 2014; Coppard and Lohman, 2015;
Webster and Murphy, 2018). Although the process achieves an
intimate fit with arm geometry, it requires the user’s arm during
casting, produces a model that may not fit comfortably on other
individuals, and takes skilled time to develop. In contrast, a
standardized orthosis approach requires an intimate knowledge
of the anthropomorphic topology and variations within the target

population. Ideally, a single orthosis that performs well with all
users would simplify design, reduce cost, and improve alignment
consistency. However, a single standardized orthosis means that
some level of fit (e.g., tightness and coverage) must be sacrificed
in order to accommodate a wider range of individuals.

In order to develop a design tool to assist in the development
of standardized orthoses, knowledge of arm shape, deformation,
and movement patterns throughout the desired range of motion
are needed. Existing data on forearm shape, including effects of
pronation and supination movements, were not found in the
literature. Therefore, a set of experiments were designed and
conducted as outlined in Section Materials and Methods. The
aim of the experiments was to gather scanned point cloud data
of the forearm with the arm in two poses: (1) a nearly extreme
supination pose, and (2) a nearly extreme pronation pose. Point
cloud data was normalized, curve-fit with an elliptical model,
combined, and used to generate a model of the human forearm
for orthosis design purposes. The normalized results, presented
in Section Results, characterize the general shape of the forearm
and develop a nondimensionalized, thus scalable, model of the
human arm.

MATERIALS AND METHODS

The protocol followed in this study has been approved by
the University of Idaho Institutional Review Board (IRB#:19-
087). The study involves digital and analog collection of
anthropometric forearm data from human subjects (N = 6)
that represent a convenience sample of the population. The
approach taken to quantify arm geometry is based on white-
light scanning and ellipse-fit modeling of the human forearm.
A commercial white-light scanner was used to capture arm
geometry from 6 healthy participants while their upper arm,
forearm, and hands were supported in a desired posture using a
custom testing apparatus. To evaluate the error of the 3D scanner,
an easily measurable base object, a coffee cup, was chosen to have
measurements taken by both 3D scanning methods and using
Vernier calipers for comparison. Two forearm poses, pronation
and supination, were examined with participants attached to
the apparatus. The scanned data measurements were fit with
ellipses using a least-squares ellipse-fitting code and compared to
anthropometer measurement databases.

Testing Apparatus
The relationship between anthropometric landmarks and the
rotation axis of the forearm was not found in literature, so a
testing apparatus was constructed for this purpose. The apparatus
contains a forearm jig, consisting of a support structure and
a swiveling handle (Figure 1) that mimics the rotational axis
commonly used in upper-limb robots to support pronation and
supination. The testing structure was composed of two (upper
and lower) extruded aluminum beams extending out from a
wall. These beams were used to secure the hand and elbow
of subjects while allowing line-of-sight access around subject
forearms during scanning. The jig setup (Figure 1) consisted of
a rotational handle with the grip angled 12◦ from horizontal,
as recommend by Tilley (2001). A 12.70-mm diameter (½-inch)
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steel rod was attached to the handle, aligned vertically through
its center, and extended upward through each of two brackets
mounted to the upper extruded aluminum beam. A second
extruded aluminum beam, directly below the first, held a humeral
cradle made of a 12.70-mm (½-inch) thick piece of profile-cut
plywood covered in 6.35-mm (¼-inch) thick medical foam. The
profile of this cradle was taken from a section of scanned arm
and offset to provide clearance for larger arms. A rigid bar, that
will be referred to as a “flag,” was clamped to the vertical rod,
and two bump stops were fixed to the upper aluminum beam.
The flag contacted one stop in supination and the other stop in
pronation to provide consistent rotations between subjects. The
aluminum beam of the testing structure extended from the wall
roughly one meter to allow space to walk around the subject
during the scanning process. The interface of the aluminum
structure was designed to secure the elbow in the apparatus
while enabling wrist pronation and supination. The supination
stop was set at roughly 80◦ of supination and the pronation
stop at 40◦ of pronation representing a functional forearm ROM
(Figure 1).

Scanning Procedure
The testing apparatus and forearm was scanned using a
Go!SCAN 50, 3D scanner from Creaform. (Creaform Inc, 2015).
The object and targets are recognized by the scanner from a
coded pattern of light projected from a white light (LED) source
and target 3D locations of stickers are reported to the scanning
software to further improve accuracy of intra-scan feature
alignment (Creaform Inc, 2015). The use of positioning targets
reduces scan error by providing a rigid and accurate locating
feature. An initial scan of the apparatus marked with adhesive
targets provided a starting template to which subsequent arm
scans were located by the scanner software. This automatically
placed all scans in the same location and orientation with respect
to the setup. Targets were placed on the aluminum beams and
the scanning aid wand to assist in scan capture. The scanner
could not capture targets on both beams at the same time, so
the scanning aid wand targets gave the scanner a rigid reference
as it scanned down the arm to improve scanner registration.
These targets were first scanned without a subject and saved
as a template from which subject scans were later run. In this
template, a coordinate system was placed with the Z-direction
pointing upward through the handle pronosupination rotation
axis (defined as the axis of a cylinder made from sampled scan
points of the rod). The origin was located on the bottom side
of the upper aluminum beam, and the positive X-direction was
placed normal to the side face of the aluminum beam toward the
subject (Figure 1B).

Five males and one female between the ages of 22 and 41
participated in the arm scan study and represent a convenience
sample of the general population. During a pre-scanning
procedure, optical positioning targets were placed on the subject’s
arm at the subject’s wrist flexion and extension rotational axis,
and elbow rotational axis as estimated by the radiale and
stylion landmarks, respectively (Figure 2). These landmarks were
chosen to lie along the radial and ulnar centerlines in supination,
which have good palpable features and therefore have good

identification and repeatability. The targets were placed in the
supination pose with the subject’s arm bent to 90◦ and the palm
facing posteriorly to reduce target movement due to skin sliding
relative to bone structure between anatomical positions. Radiale-
stylion length measures were taken from these landmarks, and
forearm circumference measures were taken at the elbow crease
in this same pose. Subject anthropometric measures are reported
in Table 1. Positioning target stickers placed on the subject’s
skin in these key locations provide reference points for data
analysis. The origin of this system is located at the Z location
of the positioning sticker placed on the radiale landmark. The
positioning target placed on the stylion landmark was used to
trim the dataset. The elbow crease, as determined visually, was
also a dataset trimming location.

Each subject scan was performed with the subject’s forearm
placed in the apparatus in the desired pose. Once positioned, each
subject was instructed how to perform the desired movements
and encouraged to get comfortable in the jig and swivel between
both poses to check for comfort. The subject was also questioned
on the comfort of the rotational constraint imposed by the jig.
The wrist was left unrestrained and the subject was instructed
to try to keep their wrist angle (i.e., flexion/extension) the
same during the experiment while maintaining a consistent
elbow location between scans. The chair height was adjusted to
allow the upper arm to be horizontal and the elbow at 90◦ in
the setup (Figure 2C). In the coronal plane, the subject’s wrist
and elbow rotational centers were aligned with the rotational
axis (Figure 2D). The subject’s upper arm was placed in the
humeral cradle to help maintain elbow position. A locator bar
was adjusted to contact the subject’s anterior elbow surface,
and the subject was directed to maintain contact with the bar
during scanning.

Scanning was done in two stages to allow the operator to
completely scan the forearm. One stage swept from the left
side of the subject clockwise to the aluminum beam, and the
other stage swept from subject side of the aluminum beam to
the right side of the subject. Each stage started with scanning
setup targets to initialize the new stage and then was swept
continuously from top to bottom. Coverage from each stage
was overlapped to ensure a complete surface was captured. The
handle of the setup jig was set at a fixed value of ∼12◦, so
the orientation of the wrist deviation axis was considered to
remain constant. Subjects were scanned once in supination and
once in pronation. One subject participated in a repeated scan
study in which supination was scanned twice, then pronation
twice, and then supination and pronation were each scanned
a final time. During the repeated scan study, the subject
remained in the setup the whole time, alternating between
poses when instructed. Subjects were instructed to maintain a
pose while the scan data was visually checked for holes and
completeness and rescanned as needed before the being allowed
to move.

Scans were taken and processed using a proprietary
software for Creaform scanners (VXElements VX8). The
“semi-rigid positioning” and “use natural features” settings
within the VXElements software were selected to normalize
data point spread and improve scan registration. The
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FIGURE 1 | Experimental forearm scanning test setup: (A) Test setup components; (B) Location of origins, coordinate frames, and key landmarks; (C) Subject in

setup being scanned.

FIGURE 2 | Anatomical landmarks and rotation axes: (A) Elbow axis (dashed line) and radiale landmark (black dot); (B) Wrist flexion/extension axis (dashed line) and

stylion landmark (black dot); (C) Upper arm at horizontal with elbow at 90 degrees and handle rotation axis (dotted line) passing through the 4th metacarpophalangeal

joint; (D) Grip alignment between wrist flexion-extension axis (black dot) and handle rotation axis (dotted line). Images adapted from Neumann (2017).

“semi-rigid positioning” setting allows extra error in the
scanner registration algorithm to accommodate scanning
people because people move slightly even when trying to
remain still (Crennen, 2017). The “use natural features”
setting lets the scanner use features it scans as registration
landmarks (Creaform Inc, 2015). Scanner resolution was set
at 0.500mm. 3D mesh geometry of the object is created in
VXmodel by the software from each camera frame captured by
the scanner.

Anthropometric Measurements
Numerous anthropometric databases are available that provide
general measures of size, shape, and composition for particular
populations (National Center for Health Statistics, 2011; Gordon
et al., 2014; Fryar et al., 2016; Löffler-Wirth et al., 2016). However,
the data provided lacks the information necessary to design
for a close fit with arm topography. Bone, muscle, skin, and
subcutaneous tissue are the main components that make up the
resulting peripheral shape. As the arm and underlying bones
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TABLE 1 | The anthropometric data collected from the six subjects in the study.

Subject no. Height (m) BMI (kg/m2) Radiale-Stylion

length (mm)

Relaxed forearm

circumference (mm)

Flexed forearm

circumference (mm)

Wrist circumference

(mm)

1 1.778 24.0 251 296 306 -

2 1.562 24.7 239 269 269 162

3 1.575 28.1 228 279 279 150

4 1.702 19.9 243 268 272 161

5 1.807 22.8 233 268 275 161

6 1.949 20.2 275 283 286 171

(i.e., radius and ulna) move, the muscles involved in their
movement change shape and location. These structures play an
integral part in determining how well a user’s arm will fit a
particular orthosis.

The present study collected basic anthropometric measures
in conjunction with 3D scan data to allow correlation with
databases like the 2011-2014 NHANES 3 study by the CDC
(Fryar et al., 2016) and the 2012 ANSUR 2 study by the US
Army (Gordon et al., 2014). Measures recorded included: age,
gender, height, weight, radiale-stylion length (Figure 3A), flexed
forearm circumference, relaxed forearm circumference, and wrist
circumference. Measures were taken following to the procedures
laid out in the ANSUR 2 manual (Gordon et al., 2014), using
a combination of a measuring tape and a set of jumbo-
sized Vernier calipers. Throughout the remainder of the paper,
radiale-stylion length, or RS length, will be used to represent
forearm length (Figure 3A), and forearm circumference will
be measured as the circumference around the forearm just
above the junction between the upper arm and the forearm
(Figure 3B). The forearm circumference measure is taken with
the upper arm extended horizontally forward, elbow flexed to
90◦, and fist clenched with palm facing the head (as outlined
in Gordon et al., 2014). All subject data was anonymized by a
subject number.

Ellipse Fitting
Scanner datasets are unorganized point clouds and therefore
make inefficient surface models. Noise and superfluous data
points in the data set have been reduced or removed through
regional downsampling and fitting elliptical profiles to the
downsampled datasets. Downsampling was achieved by moving
the ellipse center to the origin, converting to polar coordinates,
and then averaging values within 10◦ windows around the scan.
Once downsampled, elliptical profiles were fit to transverse
slices of point cloud scan data along the length of the forearm
rotation axis. The ellipse fitting method uses a least-squares
ellipse-fitting code written by Gal (2003). Ellipse parameters
from fitted ellipses convert 3D coordinates into meaningful
2D shape characteristics as illustrated in Figure 4. This 2D
approach was continued down the length of the arm modeling
thin slices of arm scan data at each of 17 forearm locations
from 20 to 100% RS length. At each interval, an ellipse was
fit to data spanning a ±1% RS length band. Together, ellipses
at normalized arm locations from each subject (Figure 4A)

FIGURE 3 | Anthropometric forearm measurements: (A) radiale-stylion length,

and (B) flexed forearm circumference.

produce a set of ellipse parameters (Figure 4B) at each slice
that can be used to recreate a 3D surface of forearm geometry
(Figure 4C). Ellipse parameters were normalized, curve-fit with
3rd-order polynomials as a function of axial distance from the
radiale landmark.

Ellipses are conics defined by a common quadratic polynomial
and appear many places in nature including planetary orbits. The
circle is a special case of an ellipse where the major and minor
axes are equal in length. Key parameters of an ellipse (Figure 4B)
are the center point location (point C), the major axis (dimension
a), the minor axis (dimension b), and the foci (points F1, F2)
(Downs, 2003). For this experiment, a tilted ellipse is considered,
so tilt angle (θ) is also included. A major characteristic not found
in Figure 4 is circularity. Circularity is defined for this study as
the ratio of minor axis length (b) to major axis length (a). A
circularity value of 1 indicates that the ellipse has equal major and
minor axes and is therefore a circle. As the circularity of the ellipse
nears 1, the ellipse tilt angles become unstable as small errors in
axis lengths can cause large angular errors.

Single-Subject vs. Combined-Subjects
Models
Ellipse-fit models were created first for individual subjects,
a single-subject (SS) model, based on individual scan data.
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FIGURE 4 | Key ellipse-fitting parameters and approach: (A) Transverse slices of forearm data for subjects 1–6 (S1–S6) and 2D ellipse-fit models. (B) General

parameters of a 2D ellipse include major diameter a, minor diameter b, angle of tilt θ , center point C, and foci F1 and F2. (C) Ellipse-fit parameters used to generate 2D

elliptical slices in increments dZ along the longitudinal axis generate a 3D forearm model.

Longitudinal slice locations and ellipse center locations for each
SS model are normalized based on subject RS length, while
ellipse major and minor axes are normalized based on forearm
circumference. At each cross-sectional slice, ellipse parameters
include: (1) normalized major axis length, (2) normalized minor
axis length, (3) normalized center point location in X, (4)
normalized center point location in Y, (5) ellipse tilt angle,
and (6) circularity ratio. The six normalized SS models were
then combined by averaging ellipse parameters into combined-
subjects (CS) models.

Two CS models were developed. A first model was based on
averaged SS models from the setup as-is (i.e., using the elbow
cradle and the self-selected wrist orientation). A second model
was developed based on averaged SS models after each SS model
had first been re-aligned to common centers near the wrist and
elbow. The first combined-subjects model (CS1) assumes the jig
rotation axis of the experimental setup represents the anatomical
pronosupination axis of each subject and averages out variations
in wrist placement to arrive at a general population model. The
second combined-subjects model (CS2) first aligns the scans
of individuals to common centers at each end of the forearm
before averaging ellipse parameters. These alignment locations
were chosen at 20 and 100% RS length, as a distance of 20% RS
length was reliably above the forearm crease, thereby avoiding
scan artifacts from the biceps.

Although the two CS models are largely similar, a significant
difference lies in the location of the ellipse center points and
their standard deviations. Standard deviations in CS1 provide
insight into the variability in self-selected arm placement within

the setup, while the overall model of CS2 provides the best overall
representation of normalized forearm shape for development of
a generalized forearm model and for use in orthosis design.

Scanning Error Evaluation
The Go!SCAN 50 takes 550,000 measurements per second at a
resolution of 0.500mm with a reported accuracy up to 0.100mm
and a volumetric accuracy of 0.300 mm/m if positioning
targets are used and the object presents adequate geometry
or color texture (Creaform Inc). Details on how this error
was evaluated were not specified, so a static rigid object of
measurable size was used to evaluate measurement error in the
scanning setup.

Scanner registration error can be largely affected by object
shape and visible positioning targets. A test was performed to
evaluate the error of the 3D scanner using a stationary object
with known dimensions. A coffee cup was chosen for this study
as it has a roughly cylindrical shape similar to a human arm.
Two scanning methods were used to create the point mesh
data of the coffee cup: (1) a traditional scanning method using
a turntable, and (2) the experimental setup (Figure 5). The
turntable (Figure 5A) represented a well-controlled traditional
scanning environment that had six positioning targets with at
least three visible to the scanner throughout the scan. The
experiment setup (Figure 5B) was less controlled and involved
the operator walking around the coffee cup to complete the
scan. This setup had obstacles that interrupted the scanner
path and limited positioning target visibility. Data points
from both studies were run through the ellipse-fitting code
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FIGURE 5 | Scanning error study using a coffee cup of known dimensions: (A) on turntable and (B) in the experimental setup. A comparison between the turntable

and experimental setup scan (C) show: (D) an X-direction bias in the center location of the ellipse, (E) increased deviations from the ellipse-fit surface for larger

diameters and higher cup heights, and (F) stable ellipse tilt angles on both setups over the first 100mm and increasing variability over the last 50mm.

to evaluate the error of the scanner in each environment.
Dimensions were also recorded manually from the coffee cup
using Vernier calipers.

RESULTS

The results are split into five sections: Error Evaluation,
Single-Subject Modeling, Combined-Subjects Modeling, Shape
Changes between Pronation and Supination, and Application
of the Ellipse-Fit Model. Section Error Evaluation provides
the expected error using our proposed method. Section Single
Subject (SS) Forearm Modeling illustrates the form of raw
data from single subjects and the presence of misalignments.
Section Combined-Subjects (CS) Forearm Modeling presents:
(a) two types of combined-subjects models, with and without
additional alignment, and (b) the primary results of this research
in the form of a set of equations that construct a scalable 3D

model of the human forearm. The fourth topic (Section Shape
Changes between Pronation and Supination) emphasizes the
variation in forearm shape during pronation and supination.
Section Application of the Ellipse Fit provides an example of
using the forearm model in analyzing the model performance
with respect to the scan data and implications on the design of
orthoses from the tabulated equations and data from the ANSUR
2 database.

Error Evaluation
Error evaluation included consideration of different scanning
approaches and inconsistencies between repeated scans. Error
introduced by different scanning methods was evaluated by
capturing a static object (a coffee cup) with two different scanning
methods, whereas error introduced by the scanner and subject
were evaluated by taking repeated scans of the same subject with
a single scanning method.
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Scanning Method Comparison
The error evaluation study compared scanning accuracy of a
plastic coffee cup using two different scanning methods: the
traditional turntable scanning method and the experimental
scanning method. In the coffee cup experiment, it was assumed
that the cup had a perfectly circular cross-section due to
perceived quality of manufacturing tolerances. This near perfect
circularity would cause unstable ellipse tilt values where small
length errors can cause large tilt angle errors. This was seen
in the datasets of all experiments as the major-to-minor axis
ratio neared 1. Ellipse center coordinates in the X direction
showed an average starting bias of 0.13mm that drifted 0.65mm
over the 150mm cup length for the turntable setup while the
experimental setup showed an average starting bias of 1.06mm
that drifted 0.55mm over the same distance (Figure 5D). Y-
direction center coordinates started with average biases of
0.05 and 0.07mm and drifted to 0.43 and 0.72mm for the
turntable and experimental setup, respectively. The maximum
mean deviation between the raw data and the fit ellipses is
<0.68mm (Figure 5E). The mean deviation of the data cloud
from ellipse-fit is minimal at the lower side of the transitional
section of the cup and maximal farthest from the base plane.
Deviation grew sharply at the transition feature. The standard
deviation of distance from raw data to ellipse fits shows a
similar pattern but stays below 0.39mm. Ellipse axis lengths of
both setups were within 2% of diameters found using calipers.
The ellipse tilt angle remained relatively stable in both setups
(0◦ for the turntable and −60◦ for the experimental setup)
over the first 100mm of the cup’s axial location and displays
a pronounced increase in variability over the last 50mm
(Figure 5F).

Error in Repeated Scans
Experimental data captured using a 3D scanner includes scanner
instrument error (precision and accuracy), scanning registration
errors from arm geometry and positioning target spacing,
and inclusion of erroneous data points captured during both
voluntary and involuntary human movement (e.g., breathing). A
repeatability check measured the error between successive scans
of the same individual in the same session (i.e., without leaving
the setup). In this check, a randomly selected subject was scanned
three times in each pronated and supinated pose to evaluate
scanner errors. The subject stayed in the setup the entire time,
while attempting to hold the pose and alternate between poses
when instructed. Subtle shifts were noticed in targets between
repeat scans down the length of the arm. Ellipse parameter data
was curve-fit with 3rd-order polynomials, and goodness-of-fit
statistics were found for the resulting curve fits to quantify data
variation. R2 values are above 0.93, and root mean square error
(RMSE) range from 0.66 to 0.97mm for distance measurements.
Tilt angle RMSE range from 2.5◦ to 4.0◦. These represent baseline
variations of the scanner experiment and ellipse-fit method. The
study has a mean deviation between raw and ellipse-fit data of
<1.5mmwith a standard deviation of<0.8mm. These values are
obtained from an SSmodel without additional data manipulation
for scan alignment.

Single Subject (SS) Forearm Modeling
The right forearms of six subjects were scanned in the testing
apparatus in 40◦ of pronation and 80◦ of supination. Raw arm
surface data including target positions for different poses and
subjects were plotted and overlaid for visual inspection. Scans
from Subject 5 show relatively large shifts in target positions near
the wrist indicating a large misalignment with the rotation axis
of the apparatus (Figure 6A). Differences are illustrated by black
lines that connect common pairs of medial and lateral scanning
targets in each pose. Similar plots of raw scan data for each subject
are available in Supplementary Figures SF1.1 through SF1.6.

Figure 6B shows a relative comparison of two arm scans for
subjects of differing stature alongside estimates of 5th percentile
female and 95th percentile male models. The shape of each
forearm scan is represented by a series of ellipses at 5mm
spacing along the length of the forearm, with each ellipse
being fit through a cross-sectional slice of forearm data points.
Ellipse parameters without normalization are compared side
by side in Supplementary Figures SF2.1–SF2.3 (pronation) and
Supplementary Figures SF3.1–SF3.3 (supination).

Heatmap plots of the deviation values of the raw data points
were plotted in Cartesian coordinates (Figure 7) to visualize
how well the SS ellipse-fit models described the actual arm scan
data. Yellow regions indicate places where the arm structure
deviates the most from the ellipse fit. Most arms show regions
of highest deviation near muscle bellies between the elbow
and mid-arm in both poses and at bony prominences near
the wrist in pronation. The subject with the most pronounced
deviations, subject 6, is shown in Figure 7. Comparisons of
single-subject models to raw data are provided for the remaining
subjects in Supplementary Figures SF4.1–SF4.6 (pronation)
and Supplementary Figures SF5.1–SF5.6 (supination).

Combined-Subjects (CS) Forearm
Modeling
Scan data from all six subjects were normalized and combined
into a combined-subjects (CS1) elliptical model for comparison.
Normalized major and minor axis lengths, tilt angle, normalized
center point coordinates, and circularity for all subjects are
illustrated in Figure 8 for supination (Figures 8A–F) and
pronation (Figures 8G–L). Average and maximum error at
each slice along the forearm are shown in Figures 8M,N. As
seen in the figure, parameters are highly consistent between
the models for all but the location of ellipse centers. Despite
having similar overall profiles, shifts in the data both at the
elbow and the wrist indicate variations in alignment between
subjects. Misalignment of ellipse centers results in average
deviations of 1–12mm and peak deviations of 8–18mm between
the CS1 model and individual subject scans. CS1 alignment,
ellipse parameters, and maximum model error are provided
in Supplementary Figures SF6, SF10, SF14 for pronation,
and Supplementary Figures SF7, SF11, SF15 for supination,
respectively. CS1 scan data, ellipse fit, and downsampled data
along the arm from 20 to 100%RS length are available in
Supplementary Figures SF18.1 through SF18.17 (pronation)
and SF19.1 through SF19.17 (supination). Average model error
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FIGURE 6 | Point clouds of arm scans and ellipse fit extrapolation modeling: (A) Pronation (magenta) and supination (cyan) point cloud poses with landmark target

locations (black points) connected by black lines for subject 5; (B) Extrapolated models of forearms constructed with ellipses evenly spaced along forearm length for

subjects 2 (green point cloud) and 6 (cyan point cloud), as well as a 5th percentile female and 95th percentile male for comparison.

for each subject is plotted in Supplementary Figure SF22

(pronation), and Supplementary Figure SF23 (supination).
A second combined-subjects model (CS2) was developed after

alignment of the forearm scan with a common vertical axis. Scans
were aligned based on the ellipse centers of slices at normalized
forearm locations of 0.2 mm/mm (i.e., 20% RS length from
the radiale) and 1 mm/mm (i.e., at the stylion). A comparison
between forearm alignment in CS1 and CS2 is shown in Figure 9

for subject 4, a subject with one of the largest misalignments to
the rotation axis of the apparatus. CS1 (Figure 9A) represents the
average of arm locations in the apparatus based on a self-selected
wrist placement. The aligned model of CS2 (Figure 9B) provides
a more accurate representation of average arm geometry. The
resulting ellipse parameters and model error for each subject
over the length of the forearm are provided for CS2 in Figure 10.
Alignment of the ellipse centers in CS2 lowered average
deviations to 1–3mm and peak deviations to 4–7mm between
the CS2 model and individual subject scans. CS2 alignment,
ellipse parameters, and maximum model error are provided in
Supplementary Figures SF8, SF12, SF16 for pronation, and SF9,
SF13, and SF17 for supination, respectively. CS2 scan data, ellipse
fit, and downsampled data along the arm from 20 to 100%RS

length are available in Supplementary Figures SF20.1–SF20.17
(pronation) and Supplementary Figures SF21.1–SF21.17
(supination). Average model error for each subject is
plotted in Supplementary Figure SF24 (pronation), and
Supplementary Figure SF25 (supination).

The statistical R2 correlations of fit and root-mean-squared
error (RMSE) between 3rd-order models and average CS2
ellipse parameters along the normalized forearm axial length
are provided in Table 2. The best-fit polynomial equations for
CS2 ellipse parameters are given in Table 3. Equations from the
table, and two inputs (forearm RS length and circumference), are
sufficient to construct a mathematical model of the forearm. The
input values can be obtained from a specific individual or from
the ANSUR 2 dataset to represent a particular percentile of the
population. Similarly, an orthosis model can be generated using
these same inputs over the desired region where the orthosis is to
be placed. For example, an individual whose RS length is 250mm
with a desired orthosis location along the forearm from 50 to
100mm from the radiale, would use values for x of 0.2 and 0.4 to
generate ellipses at either end of the orthosis. An orthosis could
then be made in a computer-aided design software by lofting a
surface between subsequent elliptical sketches. Additional model
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FIGURE 7 | Supination pose heatmap of deviation between scanned data and ellipse-fit model of subject 6, shown in ZX plane (A) and ZY plane (B). The heat map

represents mm of deviation.

resolution can be achieved by generating additional ellipses
between the two end sketches, further refining the lofted orthosis
surface. It is important to note that the equations use normalized
forearm dimensions based on radiale-stylion length and flexed
forearm circumference, as described in section Ellipse Fitting.

Shape Changes Between Pronation and
Supination
The forearm shape changes significantly between pronation and
supination poses. The size of deviations for a single subject
(subject 2) are illustrated with heatmaps in Figure 11. Blue
regions show where there is little positional change of the arm
surface between poses, while yellow regions show where the
shape changes by at least 8mm. Data was trimmed using the
origin X and Y planes to remove far side data points from view.
Each view (palmar, dorsal, ulnar, and radial) was named by hand

directions and forearm bone landmarks to indicate which surface
is shown.

Another major difference between poses can be seen in the
tilt angle, θ , of Figure 10. The angle varies substantially between
pronation and supination poses, staying relatively constant from
20 to 60% RS length around −50◦, but in pronation increases
almost linearly from 60 to 100% RS length to +50◦. Circularity
is also lower in supination indicating a more elliptical shape with
larger major axis and smaller minor axis.

Application of the Ellipse Fit
To illustrate current upper-limb rehabilitation robot practices
and the importance of pHMI fit with the user, a single
thermoplastic C-channel orthosis of a mean individual was
designed in SolidWorks. The orthosis was built using the
proposed pronation extrapolation model for use with a robotic
exoskeleton system called Blue Sabino. The orthosis attaches to
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FIGURE 8 | Ellipse-fit model parameters and model error for the combined subjects model CS1: Model parameters for individual subjects, their averages, and their

3rd-order polynomial fit for supination (A–F) and pronation (G–L) scans; Resulting modeling errors of comparing 3D models generated by the 3rd-order polynomials to

the original subject scans are shown in supination (M) and pronation (N). Legend for panels (A–L) shown above panel (G). Legend for panels (M,N) shown above

panel (M).

the robot via the inferior side of the cuff, and would secure to the
user via a set of hook-and-loop Velcro straps. The orthosis was
designedwith 165◦ of wrap on themedial side of the cuff and 120◦

on the lateral side. The large angle of wrap around the forearm
has been used to illustrate the shape provided to support the arm
under a wide array of model orientations. However, it should be
noted that a cuff of this geometry would not allow easy donning
and doffing by users, particularly if rigid. Extrapolation models
for both the smallest (i.e., 5th percentile female) and largest (i.e.,
95th percentile male) individuals were placed in the model to

visualize the geometric performance of the concept (Figure 12).
Although a medium-sized cuff has been designed based on the
ellipse-fit model, subject evaluations of fit and comfort have not
yet taken place.

DISCUSSION

Geometric analysis of the proposed forearm model
provides insight into the design of a standardized
orthosis. Forearm scans show significant change in shape
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FIGURE 9 | A comparison between the two combined-subject ellipse-fit models, CS1 (A) and CS2 (B), for a single subject (subject 4) in pronation (Pro) and

supination (Sup) at 20 and 100% radiale-stylion (RS) length from the radiale landmark.

between supination and pronation poses. The ellipse-fit
model proves useful in constructing a mathematically-
driven, scalable, generalized surface model of the
human forearm for use in sizing and developing
orthosis designs.

Scanner Error
The coffee cup experiment provides a relatively controlled
reference study to quantify the error of the scan and compare
scanner error to traditional caliper measurements. The turntable
and experiment setup scans were manually aligned to caliper
measurements which introduced small errors in dataset location,
but has no net effect on each dataset relative to itself. Both
setups produced a similar increase in error as the scanner moved
away from the turntable or experiment frame where most of the
position targets were located.

The experimental setup showed a pronounced ellipse center-
point shift in the X direction (Figure 5D) that was not present in
the Y direction nor the turntable data. This 1.06–1.61mm bias
is likely an artifact of the experimental setup and is expected to
slightly influence data collection. Turntable data aligns slightly
better with the measured data plot, which is expected from a
more controlled scan environment. The experiment setup had a
pronounced ovalization with a consistent bias to ellipse tilt angle
averaging about −60◦ for the first 100mm of the cup’s length

(Figure 5F) suggesting a consistent shape bias due to scanner
sensor readings, scanner software, and experiment procedure.
This is likely related to the X-direction shift. Such a bias was not
noticed in the turntable results, which more closely follow the
axis ratio of 1 expected from the perfectly circular cross-section
assumption. Similar or greater deviations than the discovered
0.39mm between the raw data and the ellipse-fit cup are to
be expected from forearm scans. The error of the ellipse best-
fit model in our cup study is 2–3.5 times larger than the error
found in other studies of static objects using similar scanners
(Dickinson et al., 2016; Kersten et al., 2018; Polo et al., 2019).
This is likely due to two of these studies using objects with better
fit-locking geometric features, and the third using an abundance
of positioning targets on the reference object. This identifies the
importance of having tracking stickers close to the geometries
being scanned and provides key insight into developing a forearm
scanning environment. This supports the addition of the vertical
wand with tracking stickers behind the arm that allows for
additional visual reference points as the scanner moves along the
forearm and away from tracking stickers attached to the extruded
aluminum beam.

The one-subject repeatability check highlights the presence
of variance in the data. Subtle shifts were seen between
subsequent scans of the same subject in the same session. This
phenomenon is expected due to a variety of potential causes, one
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FIGURE 10 | Ellipse-fit model parameters and model error for the aligned combined subjects model CS2: Model parameters for individual subjects, their averages,

and their 3rd-order polynomial fit for supination (A–F) and pronation (G–L) scans; Resulting modeling errors of comparing 3D models generated by the 3rd-order

polynomials to the original subject scans are shown in in supination (M) and pronation (N). Legend for panels (A–L) shown above panel (G). Legend for panels (M,N)

shown above panel (M).

being involuntary movement by the subject, such as breathing.
Placement of positioning stickers, scanner movement patterns,
and scanning speed are other potential sources that could
contribute to the observed error. Identifying the contributions
from each source would require an intensive study to isolate
their effects. Contributions from involuntary human movement
could be further reduced through immobilization of wrist
flexion/extension. However, these shifts in the CS1 model
were removed from the CS2 model through pre-alignment of
the scans.

Forearm Scans
The forearm is a highly dynamic and deformable mechanism,
making it much more complicated to obtain repeatable
measurements as compared to more traditional engineering
objects. Variability studies using 3rd-order polynomial regression
fits and statistics were used to characterize trends and indirectly
comment on the quality of the study data in addition to the
error studies previously discussed. The 3rd-order polynomial
fit with normalized and averaged ellipse parameters of model
CS2 have R-squared (R2) values that range from 0.941 to
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TABLE 2 | RMSE of CS2 3rd-order ellipse-fit model parameter with six-subject averages and R2 correlation with normalized forearm location.

Pose Variable 3rd-order fit with averaged (N = 6) ellipse

parameter profiles

R2 correlation with

normalized forearm

location (Z)
R2 RMSE (Units) Normalized w.r.t.

Pronation Normalized Major Axis 0.998 0.0041 (mm/mm) Forearm Circumference 0.898

Supination 0.995 0.0064 (mm/mm) Forearm Circumference 0.926

Pronation Normalized Minor Axis 0.999 0.0029 (mm/mm) Forearm Circumference 0.980

Supination 0.999 0.0021 (mm/mm) Forearm Circumference 0.972

Pronation Tilt Angle 0.988 0.285 (rad) n/a 0.877

Supination 0.941 0.106 (rad) n/a 0.381

Pronation Normalized X Center 0.985 0.0046 (mm/mm) RS length 0.020

Supination 0.991 0.0031 (mm/mm) RS length 0.005

Pronation Normalized Y Center 0.941 0.0028 (mm/mm) RS length 0.369

Supination 0.951 0.0022 (mm/mm) RS length 0.391

Pronation Circularity 0.983 0.0334 n/a 0.279

Supination 0.942 0.0609 n/a 0.657

Pronation fits highlighted in blue for clarity.

TABLE 3 | Forearm model equations include elliptical parameter best-fit equations from a 3rd-order polynomial fit through the CS2 ellipse parameters, Y, vs. normalized

axial location, x.

Pose Dependent variable (Y) Independent variable (x) Equation

Pronation Normalized Major Axis, anorm Normalized Forearm Location Y = 0.2536 x3 – 0.3264 x2 – 0.0004 x + 0.1808

Normalized Minor Axis, bnorm Normalized Forearm Location Y = 0.2882 x3 – 0.5210 x2 + 0.1894 x + 0.1225

Tilt Angle, theta Normalized Forearm Location Y = −4.8876 x3 + 12.8539 x2 – 7.1845 x + 0.2399

Normalized X Center, X0,norm Normalized Forearm Location Y = 0.1019 x3 – 0.3504 x2 + 0.2942 x – 0.0475

Normalized Y Center, Y0,norm Normalized Forearm Location Y = 0.1085 x3 – 0.1620 x2 + 0.0588 x – 0.0062

Circularity, b/a Normalized Forearm Location Y = 0.0977 x3 – 1.1571 x2 + 1.1395 x + 0.6501

Supination Normalized Major Axis, anorm Normalized Forearm Location Y = 0.1713 x3 – 0.1990 x2 – 0.0535 x + 0.1922

Normalized Minor Axis, bnorm Normalized Forearm Location Y = 0.3329 x3 – 0.5798 x2 + 0.2068 x + 0.1156

Tilt Angle, theta Normalized Forearm Location Y = −2.3585 x3 + 5.6793 x2 – 4.2738 x – 0.2692

Normalized X Center, X0,norm Normalized Forearm Location Y = 0.0573 x3 – 0.2607 x2 + 0.2423 x – 0.0390

Normalized Y Center, Y0,norm, Normalized Forearm Location Y = −0.1361 x3 + 0.2266 x2 – 0.1043 x + 0.0135

Circularity, b/a Normalized Forearm Location Y = 1.4204 x3 – 3.1362 x2 + 1.8798 x + 0.5104

Both Actual major axis, a Normalized major axis, anorm Y = (User Forearm Circumference in mm) · x

Actual minor axis, b Normalized minor axis, bnorm Y = (User Forearm Circumference in mm) · x

Actual X center, X0 Normalized X center, X0, norm Y = (User Radiale-Stylion Length in mm) · x

Actual Y center, Y0 Normalized Y center, Y0, norm Y = (User Radiale-Stylion Length in mm) · x

Actual forearm location Normalized forearm location Y = (User Radiale-Stylion Length in mm) · x

Circularity, b/a Circularity, bnorm/anorm Y = x

The last six equations provide parameters for both poses based on forearm measures of circumference or radiale-stylion length. Equations corresponding to pronation, supination, and

both poses are separated by blue highlight for clarity.

0.999 with a root-mean-square error (RMSE) of 0.21 to
0.64% of their respective reference measurement used for
normalization. R2 values of CS2 ellipse parameter correlations
with normalized forearm location on the other hand have a
much wider range. Ellipse axis lengths are highly correlated
with forearm location having R2 values from 0.898 to 0.980.
This suggests that forearm circumferential variability is well-
explained by location along the length of the forearm and
is likely due to a general shared arm structure among the
sample population.

In addition tomajor andminor axes, arm shape is described by
ellipse tilt angle and center location. Ellipse tilt angle elicited the
most significant difference between pronation and supination,
where the tilt angle in pronation was highly correlated with
forearm location (R2 = 0.877) while supination was not (R2 =
0.381). Not surprisingly, circularity is only moderately correlated
with forearm location (R2 = 0.657) in supination, and very poorly
in pronation (R2 = 0.279). All other ellipse parameters are very
poorly correlated with position along the forearm. Pronation
generally had a more circular shape to its cross-sections than
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FIGURE 11 | Heatmap showing supination ellipse-fit data from model CS1 compared to the raw pronation data showing evaluate volume changes between poses for

subject 2. Heatmaps shown from palmar side ZY plane (A), dorsal side ZY plane (B), ulnar side ZX plane (C), and radial side ZX plane (D) represent the amount of

deviation between pronation and supination in millimeters.

supination andwas nearly circular for two of the subjects between
45 and 65%RS length, measured from the radiale. This resulted in
significantly less data points in the scanned point cloud in these
regions due to complications in tilt angle as the axis ratios neared
1, an artifact of using ellipses to fit nearly circular objects. The
center point position RMSE varied from 0.31 to 0.46 % of RS
length in the X direction and 0.22 to 0.28% of RS length in the
Y direction. This equates to a center-to-center RMSE of 0.38–
0.54% RS length between the model and the average subject, or
1.0–1.4mm RMSE for a 50th percentile male.

The model parameters from model CS1 provide insight into
the variability in subject positioning relative to a forearm rotation
axis by an untrained technician that may be useful in estimating
alignment error encountered in upper-limb robot donning. It was
noticed that verbal direction to the subject to keep a consistent
posture between poses was not sufficient. As a result, he forearm

alignment of subjects widely varied. For this reason, the second
aligned model CS2 was developed. This second model provides
a close approximation of the average arm shape across the
subject pool. Model CS2 should be used in developing forearm
models for close-fitting orthoses. Model CS1 can be used to
see the effects of subject misalignment in a semi-constrained
environment. Adapting the handle assembly to use mechanical
indexing features to constrain the ulnar and radial epicondyles of
the wrist could be used to further reduce variability in alignment
between supination and pronation pose scans in the experimental
setup. A similar use of indexing features could be used at the
elbow to reduce alignment variability of the humeral epicondyles.

Forearm Deformation
Shape change can havemajor impacts on orthosis fit and comfort.
Modeling the human arm based on optical scanning of tracking
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FIGURE 12 | Extrapolated forearm model comparison: (A) Models in pronation and supination for 5th percentile female and 95th percentile male are compared to an

orthosis model that has been sized using the proposed method to fit scanned arm data from one of the experimental subjects (B).

stickers is complicated by movement of the bones and muscles
through pronosupination under the surface of the skin. Bones
move relative to the surface and relative to one another causing
subtle changes in location of surface markers. Skin artifacts in
axial rotation tend to cause under-rotation of the wrist flexion-
extension axis markers, as skin stretches. Mid-arm markers show
relative motion of the skin but have little to do with underlying
movements. It is also evident from scan geometry that the
forearm shortens in length from the supination pose to pronation
pose with wrist breadth changing as well. Wrist markers moved
an average of 4.84mm closer together in pronation than in
supination, which indicates that the wrist changes size during
forearm rotation. Measured distances between lateral pairs of
skin markers averaged changes of 0.49 to 5.1mm suggesting
position targets affixed to the skin should not be treated as rigid
landmarks if high accuracy is needed. For accurate deformation
data and determination of actual rotation centers, skin markers
are unsuitable with mid-arm targets especially prone to skin
effects. These events suggest two things: (1) alignment of the
anatomical rotation center to the fixture rotation axis was
accommodated by wrist joint movement, as well as global arm
movement instead of pure forearm rotation, and (2) using targets
to find the rotation center of the arm is complicated by skin
effects and bone topology.

Heatmap plots of a supinated forearm in Figure 7 identify
the portions of scan data that deviate most from the SS ellipse-
fit model. This particular subject had a low body fat percentage
which may have contributed to the larger localized deviations.
The deviation patterns in the figure suggest that, at least for
thin subjects, bony prominences, superficial tendons, and muscle
bellies may be the primary sources of model deviation. Similarly,
heatmap plots of a pronated forearm in Figure 11 illustrate
regions of largest difference between pronation and supination.
The particular subject was fairly well-aligned in the setup and
thus would produce a similar heatmap using either of alignments

CS1 or CS2. From the figure, it appears that most of the difference
near the elbow is caused by the pronator muscles, and most of
the difference near the wrist is caused by the ulna and radius.
The location of largest changes show regions where rigid orthoses
would need the most padding to accommodate misalignment.
Conversely, the regions of lowest change indicate regions where
rigid orthoses may feasibly support the forearm comfortably
during pronosupination movements. The specific regions of
high and low change depend heavily on model alignment, thus
appropriate selection of rotation axis placement is important.

Ellipse Fit Application
Skin loading has a critical design limit for user comfort and
safety. As illustrated in Figure 12A, a standardized HMI cannot
intimately fit all users. A compensation mechanism is needed to
ensure high fidelity force transmission to the robot while keeping
forces on the user within safe limits. Example compensation
mechanisms may include thermoplastic walls of the orthosis that
are deformed by tighteningVelcro straps until the orthosis fits the
user snugly, orthosis walls that linearly slide to contact the user’s
arm, or a pneumatic cuff that is inflated until adequate contact
with the user’s arm is achieved. The difference between extreme
individuals is a key design criteria that drives the requirements of
foam or skin compression to achieve a proper fit. Multiple HMI
sizes are commonly used to narrow the band of deviations that
the compensation mechanism must accommodate. However, the
accommodation bandwidth for any size can be increased by using
anHMI profile that more closelymatches the subject’s anatomical
form such as the mathematical forearm model of Table 3.

Figure 12B shows a simple concept of a thermoplastic C-
channel-shaped orthosis based off the pronation model of
Table 3. Similar designs with Velcro straps are used in other
upper limb rehabilitation robots. The figure shows extreme users
in a one-size-fits-all design based on the average model in a
pronation pose. Several design issues are immediately apparent.
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First, the smallest and largest users are not aligned to the rotation
axis because arm diameters are too small or too large for the
designed orthosis. Second, the orthosis walls must be strained in
order to contact each user. The model presented in this study
allows these deflections to be estimated and included in the
design. A third issue arises when the orthosis user rotates his/her
arm from pronation to supination, in which case the orthosis no
longer matches the user’s arm shape. In a rigid shell, this could
result in pressure concentrations, gaps, and/or arm alignment
changes with potential consequences on arm tissue loading. If
the user and robot kinematics stay aligned, this results in an
enforced displacement problem where the geometric mismatch
represents the desired design condition, and reaction forces can
be solved if component material properties are known. Foam is
commonly used in standardized orthoses to add comfort and
soften the interaction of the orthosis on the user. In an enforced
displacement scenario, a foam layer between the orthosis and the
user can be used to reduce reaction forces. While the ellipse-
fit model shows promise as a means to represent arm topology
for arms in pronation and supination, the resulting performance
of the model in terms of comfort and support in customized
applications needs further evaluation by subjects during both
static and non-static tasks.

The effectiveness of this model has yet to be evaluated
for resulting fit and comfort with subjects. This model is
purely a geometric comparison and neglects deformation and
compliance in the human-to-robot system that will likely have
impacts on comfort and tracking accuracy. Human variation
in size and shape as well as skin properties require a larger
sample size. Further refinement of the forearm rotation axis
location is also likely needed to optimize performance over a
wider range of forearm rotation. This should both improve
the exoskeleton performance and patient comfort during
rehabilitation. Although the model was implemented virtually
through CAD, a physical model in a clinical environment
will allow for feedback from patients. The patient feedback
will both validate the model and outline areas of potential
improvement. A more expansive study with a larger subject
pool would also further refine the model to better represent the
general population.

CONCLUSION

This study provides a tool for assisting in the design of
standardized orthoses for use in exoskeleton robotic applications.
It establishes a closed-form, scalable model for the interface
between the surface of the forearm and a physical human–
machine interface. It provides data on both supination and
pronation arm shapes allowing for the design of orthoses that
accommodate a full functional range of forearm rotations. It

also highlights the importance of considering the effects of
pronosupination on arm size and shape in designing orthoses
for exoskeletons. The developed model can be resized in length
and width with a few simple measurements of arm geometry to
quickly create a potential pHMI design for a user of arbitrary arm
size. This data-drivenmodel of the “average” forearm shape could
help designers fabricate orthoses that provide a reasonable fit to
a wider array of individuals and improve the generalized fit of
prototype pHMIs in rehabilitation robotics research.
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