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Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells
(ECs) and has been reported to protect against cardiac dysfunction from endotoxemia
or myocardial infarction. This study investigated the mechanisms by which endothelial
HSPA12B protects polymicrobial sepsis–induced cardiomyopathy. Wild-type (WT) and
endothelial HSPA12B knockout (HSPA12B−/−) mice were subjected to polymicrobial
sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis
accelerated mortality and caused severe cardiac dysfunction in HSPA12B−/− mice
compared with WT septic mice. The levels of adhesion molecules and the infiltrated
immune cells in the myocardium of HSPA12B−/− septic mice were markedly greater
than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion
molecules, in serum exosomes from HSPA12B−/− septic mice were significantly lower
than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B
significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-
stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by
exosomes into the myocardium of HSPA12B−/− mice significantly attenuated CLP
sepsis increased levels of adhesion molecules, and improved CLP sepsis–induced
cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced
severe cardiomyopathy via regulating miR-126 expression which targets adhesion
molecules, thus decreasing the accumulation of immune cells in the myocardium.

Keywords: endothelial HSPA12B, polymicrobial sepsis, cardiomyopathy, exosomes, microRNAs, endothelial
adhesion molecules

INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host innate
and inflammatory responses to the infection (1). In the United States, the mortality rates of
sepsis is 28.3%, which is higher than other disease in intensive care units (2). Cardiovascular
dysfunction is a major complication associated with sepsis-induced morbidity and mortality [7;9].
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Cardiomyopathy is present in >40% of sepsis patients (3, 4) and
is associated with mortality rates of up to 70% (3, 4). Despite the
severity of this condition, the mechanisms that mediate septic
cardiomyopathy remain unclear.

Endothelial cell (EC) dysfunction contributes to multiple
organ damage and high morbidity and mortality in sepsis/septic
shock (5). Increasing evidence shows that ECs actively
participate in both innate and adaptive immune responses
(6, 7) via pattern recognition receptors, including Toll-
like receptors (8). Pathogen-associated molecular patterns,
such as LPS or endogenous ligands, generated during
sepsis/septic shock stimulate EC activation. Activated
ECs have upregulated expression of chemokines and
adhesion molecules, which attract and promote immune
cell infiltration and inflammatory response, resulting in
organ injury (9). Therefore, preservation of endothelial
function is an important approach for attenuating
sepsis-induced outcomes.

HSPA12B is the newest member of the HSP70 family
of proteins (10). It is predominantly expressed in ECs (11,
12) and is essential for angiogenesis (12). Stegall et al.
have demonstrated that endothelial HSPA12B is involved in
angiogenesis through the turnover of a known angiogenesis
regulator, a kinase anchoring protein 12 (AKAP12), resulting
in upregulation of VEGF expression (12). Hu et al. (11)
reported the endothelial HSPA12B is involved in regulating
EC function. Knockdown of HSPA12B by small interfering
RNAs in human umbilical vein ECs (HUVECs) interfered
with wound healing, EC migration, and tube formation. In
contrast, overexpression of HSPA12B enhanced migration of
ECs and accelerated wound healing (11). We have reported
that transgenic mice overexpressing HSPA12B (HSPA12B Tg)
exhibit protection against myocardial ischemic injury and
attenuate LPS-induced cardiac dysfunction (13). HSPA12B has
been reported to preserve EC function (14, 15). However, the
mechanisms by which HSPA12B preserves EC function during
sepsis are still unknown.

MicroRNAs (miRs) have been identified as novel regulators
of gene expression at the posttranscriptional level by binding
to target messenger RNAs (16, 17). Recent evidence suggests
that miRs play a critical role in sepsis/septic shock–induced
innate immune and inflammatory responses (16, 17). MicroRNA-
126 (miR-126) is predominantly expressed in ECs (18) and
has been reported to regulate the progression of angiogenesis
(19) and the expression of vascular cell adhesion molecule 1
(VCAM-1) (20). MicroRNA-126 is also involved in regulation
of survival and function of plasmacytoid dendritic cells via the
VEGFR2 pathway (21), indicating that miR-126 may regulate
innate immune responses. However, the role of miR-126 in
sepsis-induced cardiomyopathy has not been investigated.

The present study has shown that endothelial-specific
HSPA12B exerts a protective effect on sepsis-induced
cardiomyopathy. We demonstrated that EC HSPA12B
could regulate miR-126 expression, which targets adhesion
molecules, resulting in decreases in the accumulation of immune
cells in the myocardium, thus attenuating sepsis-induced
cardiac dysfunction.

MATERIALS AND METHODS

Animals
Male C57BL/6 mice were obtained from Jackson Laboratory.
Endothelial cell–specific HSPA12B knockout (HSPA12B−/−)
mice were generated as described below. Wild-type (WT)
and HSPA12B−/− mice were maintained in the Division of
Laboratory Animal Resources, East Tennessee State University
(ETSU). The experiments outlined in this article conform to the
Guide for the Care and Use of Laboratory Animals published
by the National Institutes of Health (NIH Publication, eighth
edition, 2011). The animal care and experimental protocols were
approved by the ETSU Committee on Animal Care.

Generation of EC-Specific HSPA12B
Knockout Mice
The knockout targeting strategy is outlined in Supplementary
Figure S1. LoxP sites flanking exon 2 were introduced using
a recombineering-based approach for making linearized
targeting construct. The targeting construct contained PGK-
driven Neo cassette and MC1 promoter–driven HSV-TK
cassette, allowing for positive and negative selection. The right
and the left arm loxP knockin were confirmed by genomic
Southern blot with (EcoRI and probe A) and Sall digestion
of polymerase chain reaction (PCR) product by external
and internal primer (5′-TCTGTGTCTGCCTGTGTTCTGT
and 5′-TAGTCTGCATTCGGAGGCAAGT). The successful
homologous recombination clones were subsequently transfected
with pCre-Pac for excision by Cre to generate targeted alleles.

Endothelial-specific HSPA12B knockout mice were generated
by cross-breeding the conditionally targeted HSPA12B mice
with C57BL/6.Cg-Tg (Tek-cre) strain, which carries Cre
recombinase under the control of the Tek promoter. Genotypes
for the specific deletions were confirmed by PCR analysis of
floxed allele (HspA12B-cko-1: gaagcaagcatattcatctcattactattc;
HspA12B-cko-2: gcttgctcaaaagtgatggttgctc. 151 bp for
knockout and 191 bp for WT mice), HSPA12B deletion
(HspA12B-cko-1: gaagcaagcatattcatctcattactattc; HspA12B-
cko-4: taaagcctacactcagatgagagcag, 240-bp product for deletion
and > 2 kB or no product for WT control), and for Cre
gene expression. Western blot and immunohistochemistry
were also performed to identify endothelial-specific
deficiency of HSPA12B.

Immunofluorescence Staining
Immunohistochemistry was performed as described previously
(22, 23). Briefly, the heart sections were stained with primary
antibodies that are specific rabbit anti-HSPA12B and rat anti-
CD31 (PECAM-1) (1:100) overnight at 4◦C. The tissue sections
were then incubated with secondary antibody Alexa Fluor-488
goat anti-rabbit immunoglobulin G (IgG) (H + L) (green;
Thermo Fisher Scientific, Waltham, MA, United States) and
Alexa Fluor-555 goat anti-rat IgG (H + L) (red) (Thermo Fisher
Scientific) for 1 h at room temperature. The slides were examined
with a fluorescent microscope at a magnification of 40×.
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Cecal Ligation and Puncture
Polymicrobial Sepsis Model
Cecal ligation and puncture (CLP) was performed to induce
polymicrobial sepsis in mice as previously described (22, 23).
Briefly, the mice were anesthetized by isoflurane (induced by
5.0% and maintained by 1.5%). A midline incision was made on
the anterior abdomen, and the cecum was exposed and ligated
with a 4-0 suture. Two punctures were made through the cecum
with an 18-gauge needle, and feces were extruded from the holes.
The abdomen was then closed in two layers. Sham surgically
operated mice served as the surgery control group. Immediately
following surgery, a single dose of resuscitative fluid (lactated
Ringer’s solution, 50 mL/kg body weight) was administered by
subcutaneous injection (22, 23).

Echocardiography
Transthoracic two-dimensional M-mode echocardiogram was
obtained using a Toshiba Aplio 80 Imaging System (Toshiba
Medical Systems, Tochigi, Japan) equipped with a 12-MHz linear
transducer as described previously (22). M-mode tracings were
used to measure LV end-systolic diameter and LV end-diastolic
diameter. Percent fractional shortening (% FS) and ejection
fraction (EF %) were calculated as described previously (22, 24).

Accumulation of Neutrophils and
Macrophages in the Myocardium
Accumulation of immune cells in heart tissues was examined with
antineutrophil elastase antibody (Abcam, Cambridge, United
Kingdom) and antimacrophage antibody F4/80 (1:50 dilution;
Santa Cruz Biotechnology, Santa Cruz, CA, United States),
separately (22, 23). Three samples from each group were
evaluated, counterstained with hematoxylin, and examined with
bright-field microscopy. Four different areas of each section
were evaluated. The results are expressed as the numbers of
neutrophils or macrophages per field examined with bright field
microscope (40×).

Myeloperoxidase Activity Assay
Myeloperoxidase (MPO) activity was measured using an MPO
fluorometric Detection kit (Assay Designs Inc., Ann Arbor, MI,
United States) according to the manufacturers’ instructions.

Immunohistochemistry Staining
Immunohistochemistry was performed as described previously
(22, 23). Briefly, heart tissues were immersion-fixed in 4%
buffered paraformaldehyde, embedded in paraffin, and cut at
5-µm sections. The sections were stained with specific goat anti-
intercellular adhesion molecule 1 (ICAM-1, 1:50 dilution; Santa
Cruz Biotechnology) and rabbit anti-VCAM-1 (1:50 dilution,
Santa Cruz Biotechnology), respectively, and treated with the
ABC staining system (Santa Cruz Biotechnology) according to
the instructions of the manufacturer. Three slides from each
block were evaluated, counterstained with hematoxylin, and
examined with bright field microscope (40×). Four different
areas of each section were evaluated.

Electrophoretic Mobility Shift Assay
Nuclear proteins were isolated from heart samples as previously
described (22, 23). Nuclear factor κB (NF-κB) binding activity
was performed using a LightShift Chemiluminescent EMSA
(electrophoretic mobility shift assay) kit (Thermo Fisher
Scientific) as described previously (22, 25) in a 20-µL binding
reaction mixture containing 1× binding buffer, 50 ng poly dI:dC,
20 fmol of double-stranded NF-κB consensus oligonucleotide
that was end-labeled with biotin, 15 µg nuclear proteins. The
binding reaction mixture was incubated at room temperature for
20 min and analyzed by electrophoresis and then transferred to
a nylon membrane. The biotin end-labeled DNA was detected
using the streptavidin–horseradish peroxidase conjugate and the
chemiluminescent substrate (22, 25).

Enzyme-Linked Immunosorbent Assay
for Cytokine Assay
The levels of cytokines [tumor necrosis factor α (TNFα),
interleukin 6 (IL-6)] in cell-free supernatants were measured
by enzyme-linked immunosorbent assay development kits
(Peprotech, Rocky Hill, NJ, United States) according to
manufacturers’ instructions as described previously (22, 23).

Western Blot
Western blot was performed as described previously (22, 23).
Briefly, the cellular proteins were separated by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred onto
Hybond ECL membranes (Amersham Pharmacia, Piscataway,
NJ, United States). The ECL membranes were incubated with
the appropriate primary antibodies (anti–VCAM-1 and anti–
ICAM1 from Santa Cruz Biotechnology; anti-CD63, anti-CD81,
from System Biosciences, Palo Alto, CA, United States; anti-
GAPDH from Meridian Life Science, Inc., Memphis, TN,
United States, respectively. Anti-HspA12B is a kind gift from
Dr. Han Zhihua) followed by incubation with peroxidase-
conjugated secondary antibodies (Cell Signaling Technology,
Inc., Danvers, MA, United States) and analysis by the ECL system
(Amersham Pharmacia). The signals were quantified using the
G: Box gel imaging system by Syngene (Syngene, USA, Fredrick,
MD, United States).

Isolation of Exosomes
Ten hours after CLP, the blood was collected from the
experimental mice followed by centrifugation at 5,400
revolutions/min (rpm) for 15 min at 18◦C. The supernatant
was collected and added with ExoQuick exosome precipitation
solution (63 µL/250 µL plasma, ExoQ5A-1; SBI, Palo Alto, CA,
United states) according to manufacturer’s instruction.

Isolation of RNA From Exosomes
Total RNA was extracted from the exosomes using Trizol
(RN190; Molecular Research Center, Cincinnati, OH,
United States) according to manufacturer’s instructions.
Approximately 10 ng of total RNA was applied to examination of
miRNA levels as described previously (26).
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Quantitative PCR Assay of MiRNAs
MicroRNAs were isolated from heart tissues or exosomes using
the mirVana miR isolation kit (Ambion, Austin, TX, United
States) as described previously (27). MicroRNA levels were
quantified by quantitative PCR (qPCR) using specific Taqman
assays (Applied Biosystems, Foster City, CA, United States)
and specific primers (Applied Biosystems, primer identification
numbers: 002228 for hsa–miR-126-3p and 001973 for snRU6).
The levels of miRs were quantified with the 2(−11ct) relative
quantification method that was normalized to the U6 small
nucleolar RNA (snRU6).

Treatment of ECs With Exosomes
Exosomes were isolated from sham and septic mice using
ExoQuickTC exosome precipitation solution (ExoQ5A-1; SBI).
Human umbilical vein ECs were treated with exosomes
(5 µg/mL) diluted in conditional medium, which was exosome-
free medium prepared by centrifugation at 120,000 rpm for 18 h
at 4◦C. After treatment, HUVECs were collected for analysis
of adhesion molecules ICAM-1 and VCAM-1 by Western
blot (22, 23).

Transfection of MiRNA Mimics Into ECs
Human umbilical vein ECs (1 × 106) in six-well plates were
transfected with 40 nmol of miR-126 mimics (Ambion), anti–
miR-126 mimics (Exiqon) and miR-scrambled control (Exiqon),
respectively by Lipofectamine 2000 (Thermo Fisher Scientific).
Twenty-four hours after transfection, the cells were treated
with LPS (1 µg/mL) for 24 h. The cells were harvested
for analysis of adhesion molecules (VCAM-1 and ICAM-1)
by Western blot.

Preparation of Exosomal miR-126
Bone marrow stromal cells (BMSCs) were isolated from
HSPA12B−/− and WT mice as described previously (28).
Briefly, mice were euthanized, and bone marrow was isolated
by flushing the femur and tibia with Dulbecco modified Eagle
medium (DMEM) using a 25-gauge 0.5-inch needle (BD, San
Jose, CA, United States). The bone marrow was dissociated by
syringe. Cell mixture was cultured in DMEM supplemented
with 10% fetal bovine serum (FBS) (HyClone; Thermo Fisher
Scientific), glutamine (2 mM), and penicillin/streptomycin (50
U/mL and 50 mg/mL; Sigma-Aldrich, St. Louis, MO, United
States). After incubation at 37◦C with 5% CO2, non-adherent
cells were removed carefully by two washes with phosphate-
buffered saline (PBS), and fresh medium was replaced. The
medium was changed every other day. Cells at the fourth
to seventh generation were transfected with 40 nmol/L hsa–
miR-126 mimics (MC12841; Ambion), hsa–miR-126 inhibitor
(MH12841; Ambion), or Cy3 dye–labeled miR-scrambled
control (AM17010; Ambion), using Lipofectamine 2000
transfection reagent (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Twenty-four hours after transfection,
supernatants were harvested for exosome isolation using
Exoquick-TC Exosome Precipitation Solution (SBI) according to
the manufacturer’s protocol.

In vivo Delivery of Exosomal miR-126
Into Mouse Hearts
Mice were transfected with exosomes loaded with miR-126 or
exosomes loaded with miR-control through the right carotid
artery as described previously (27, 29). Briefly, mice were
intubated and mechanically ventilated. The anesthesia was
induced by 5% isoflurane and maintained by 1.5% isoflurane
driven by 100% oxygen. Body temperature was maintained at
37◦C by surface water heating. An incision was made in the
middle of the neck, and the right common carotid artery was
carefully exposed. A microcatheter was introduced into the
isolated common carotid artery and positioned into the aortic
root. Exosomes (10 µg diluted in 100 µL PBS) loaded with
miR-126 or loaded with miR-Con were injected through the
microcatheter immediately after the induction of polymicrobial
sepsis. The microcatheter was gently removed, and the common
carotid artery was tightened before the skin was closed (22, 23).

Statistical Analysis
The data are expressed as mean ± SE. Comparisons of data
between groups were made using one-way analysis of variance,
and Tukey procedure for multiple-range tests was performed.
The log-rank test was used to compare group survival trends.
Probability levels of 0.05 or smaller were used to indicate
statistical significance.

RESULTS

EC-Specific Deficiency of HSPA12B
(HSPA12B−/−) Results in Increased
Mortality in Polymicrobial Sepsis
We first examined the expression of HSPA12B in the
myocardium. As shown in Figure 1A, HSPA12B is
specifically expressed on cardiac ECs as evidenced by positive
immunofluorescent staining of HSPA12B on ECs in the
myocardium from WT mice but not from HSPA12B−/−

mice. Western blot analysis shows the high levels of myocardial
HSPA12B in WT mice but not in HSPA12B−/−mice (Figure 1B).
Figure 1C shows that EC HSPA12B deficiency accelerates
mortality of CLP septic mice. The time to 50% mortality in WT
septic mice was 56 h, and 100% occurred at 100 h after induction
of CLP-sepsis. In HSPA12B−/− septic mice, however, the time to
50% mortality was 40 h. The mortality reached to 100% was 60 h
after induction of CLP sepsis (P < 0.01). These data indicate that
EC HSPA12B plays a role in reducing the mortality associated
with polymicrobial sepsis.

Endothelial HSPA12B Deficiency Results
in Worsened Cardiac Dysfunction in
Polymicrobial Sepsis
Cardiomyopathy is a major consequence of sepsis and
contributes to mobility and mortality (30). Figures 1D,E
show that CLP sepsis markedly decreased the values of
EF% (34.3%) and % FS (42.8%) in WT septic mice and 48.2
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FIGURE 1 | Endothelial-specific deficiency of HSPA12B results in increased mortality and worsened cardiac dysfunction in polymicrobial sepsis. (A,B) HSPA12B is
expressed in the ECs of WT myocardium but not in HSPA12B−/− mice. (A) Heart tissues from WT and HSPA12B−/− mice were sectioned and subjected to
immunostaining with anti-CD31 (EC marker) and anti-HSPA12B. There is a negative staining of HSPA12B in the myocardium of HSPA12B−/− mice. The
immunofluorescent staining was examined with fluorescent microscope (40×). (B) Western blot analysis of HSPA12B expression in the myocardium of WT and
HSPA12B−/− mice. (C) Sepsis increases the mortality of HSPA12B−/− mice. Wild-type and HSPA12B−/− mice were subjected to CLP sepsis. Sham surgical
operation served as sham control. The survival rate was closely monitored up to 5 days (n = 15–16/group). (D,E) Cardiac function was examined by
echocardiography before and 6 h after CLP (n = 6–13/group). Cecal ligation and puncture sepsis markedly decreases ejection fraction (EF %) and fractional
shortening (FS %) in WT mice. However, the values of EF % and FS % in HSPA12B−/− septic mice were further decreased compared with WT septic mice. (D) (EF
%) and (E) (FS %). *P < 0.05 compared with indicated group.
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and 56.5% in HSPA12B−/− septic mice, when compared
with the respective sham controls. HSPA12B−/− septic
mice exhibited a lower EF% (20.5%) and FS% (22.8%) than
in WT septic mice. There was no significant difference
in the baseline values of EF% and %FS between WT and
HSPA12B−/− mice. These data indicate that EC HSPA12B plays
an important role in the regulation of cardiac function during
polymicrobial sepsis.

Inflammatory Cells Are Increased in the
Myocardium of HSPA12B−/− Septic Mice
Increased accumulation of inflammatory cells, including
neutrophils and macrophages, in the myocardium contributes
to septic cardiomyopathy (22). Figure 2A shows that CLP
sepsis markedly increased the numbers of neutrophils
(9.3 ± 0.66 vs. 1.8 ± 0.22) and MPO activity (89.9%) in
the myocardium of WT mice, when compared with WT
sham controls. In contrast, neutrophil accumulation in the
myocardium and myocardial MPO activity in HSPA12B−/−

septic mice was significantly 72 and 88% greater than
in WT septic mice. Cecal ligation and puncture sepsis
also significantly increased the numbers of macrophages
(15.6 ± 1.01 vs. 2.6 ± 0.0.36) in the myocardium of
WT mice compared with sham control (Figure 2B). In
HSPA12B−/− septic mice, macrophage accumulation in the
myocardium was markedly 57.9% higher than in WT septic
mice. The data indicate that EC HSPA12B could attenuate
infiltration of immune cells into the myocardium during
polymicrobial sepsis.

Increased Myocardial NF-κB Activation
and Serum Inflammatory Cytokine Levels
in HSPA12B−/− Septic Mice
Nuclear factor κB is an important transcription factor
that regulates inflammatory cytokine production (31).
Proinflammatory cytokines have been demonstrated to play
a role in cardiovascular dysfunction during sepsis/septic
shock (32). Figure 2C shows that myocardial NF-κB
binding activity was markedly increased 36.8% in WT
septic mice and 82.3% in HSPA12B−/− septic mice, when
compared with the respective sham controls. Cecal ligation
and puncture sepsis also significantly increased the serum
levels of TNFα (Figure 2D) and IL-6 (Figure 2E) in WT
septic mice. However, the levels of serum TNFα and IL-6 in
HSPA12B−/− septic mice were markedly 243 and 223% greater
than in WT septic mice (Figures 2D,E). The data indicate
that EC HSPA12B plays a role in the regulation of NF-κB
activation and proinflammatory cytokine production during
polymicrobial sepsis.

HSPA12B−/− Results in Increased
Expression of Adhesion Molecules
Following Polymicrobial Sepsis
Increased expression of adhesion molecules on ECs promotes
the infiltration of inflammatory cells into the myocardium (33).

Figures 2F,G show that CLP sepsis increased the immunostaining
of VCAM-1 (F) and ICAM-1 (G) in the myocardium of WT
mice. However, there is more positive immunostaining for
VCAM-1 and ICAM-1 in the myocardium from HSPA12B−/−

septic mice than in WT septic mice. Western blot analysis
shows that CLP sepsis markedly increased the levels of
myocardial VCAM-1 (Figure 2H) and ICAM-1 (Figure 2I) in
WT mice. The levels of myocardial VCAM-1 and ICAM-1 in
HSPA12B−/− septic mice were further increased 173 and 191%,
respectively, when compared with WT septic mice. The data
suggest that HSPA12B is involved in the regulation of adhesion
molecule expression on ECs, which ultimately facilitate the
infiltration of inflammatory cells into the myocardium following
polymicrobial sepsis.

Increased HSPA12B Levels Suppress
LPS-Induced VCAM-1 and ICAM-1
Expression in ECs
To further investigate the role HSPA12B in the regulation
of adhesion molecule expression during polymicrobial
sepsis, we performed in vitro experiments. Endothelial cells
(HUVECs) were transfected with adenovirus expressing
HSPA12B (Ad-HSPA12B) or Ad-GFP (Figure 3A). Twenty-
four hours after transfection, the cells were stimulated with
LPS (1 µg/mL) for 24 h. Confocal microscope examination
shows that LPS stimulation increased ICAM-1 expression
as evidenced by showing more immunofluorescent staining
of ICAM-1 in LPS-stimulated ECs (Figure 3B). Western
blot analysis also shows that LPS stimulation markedly
increased the expression of VCAM-1 (Figure 3C) and ICAM-
1 (Figure 3D), when compared with untreated control.
However, both immunostaining and Western blot analysis
show that increased HSPA12B expression by Ad-HSPA12B
transfection markedly suppressed LPS-stimulated expression
of VCAM-1 and ICAM-1. The data suggest that HSPA12B
may prevent upregulation of adhesion molecule expression in
ECs during sepsis.

HSPA12B Upregulates MiRNA-126
Expression in ECs
MicroRNA-126 is predominantly expressed in ECs and
suppresses adhesion molecule expression (18, 20). We
examined whether HSPA12B suppressed LPS-induced
adhesion molecule expression is mediated via upregulation
of miR-126 expression in ECs. We transfected HUVECs
with Ad-HSPA12B or Ad-GFP, which served as vector
control. Twenty-four hours after transfection, the cells
were stimulated with LPS. The levels of miR-126 were
measured by qPCR. As shown in Figure 4, LPS stimulation
increased the levels of miR-126 (A) and HSPA12B (B)
in ECs. Interestingly, LPS stimulation further increased
expression of miR-126 and HSPA12B after the cells were
transfected by Ad-HSPA12B. The data indicate that HSPA12B
is involved in the regulation of miR-126 expression in ECs
following LPS challenge.
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FIGURE 2 | Continued
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FIGURE 2 | Increased accumulation of immune cells and NF-κB binding activity in the myocardium of HSPA12B−/− septic mice. Wild-type and HSPA12B−/− mice
were subjected to CLP sepsis or sham surgical operation. Heart tissues were harvested 6 h after CLP. (A) The accumulation of neutrophils in heart tissues was
examined by immunohistochemistry with antineutrophil antibody and MPO activity (n = 6–8/group). (B) Macrophages in the heart tissues were examined by
antimacrophage antibody F4/80. The positive staining of neutrophils and macrophages are dark brown color marked with red arrows. (C) Myocardial NF-κB binding
activity in WT and HSPA12B−/− septic mice was performed with EMSA (n = 6–8/group). (D,E) Serum cytokine TNFα (D) and IL-6 (E) levels were measured by
EMSA kits (n = 4–8/group). (F–I) Increased expression of adhesion molecules in the myocardium of WT and HSPA12B−/− septic mice. Heart tissues were harvested
6 h after CLP, sectioned, and subjected to immunohistochemistry staining with anti–VCAM-1 (F) and anti–ICAM-1 (G) antibodies. (H,I) Western blot analysis of
VCAM-1 (H) and ICAM1 (I) levels in the heart tissues. n = 4–8/group. *P < 0.05 compared with indicated groups. The immunohistochemistry staining was examined
with bright field microscope (40×).

MiR-126 Suppresses LPS-Increased
Adhesion Molecule Expression in ECs
We then examined whether increased miR-126 levels will
suppress LPS-stimulated adhesion molecule expression in ECs.
We transfected ECs with miR-126 mimics or miR-control mimics
24 h before the cells were stimulated with LPS. Figure 4C shows a
high efficiency of the miRNA transfection into ECs. Transfection
of ECs with miR-126 mimics prevented LPS-stimulated the
expression of VCAM-1 (Figure 4D) and ICAM-1 (Figure 4E).
Antagomir-126 or miR-control mimics transfection did not

alter LPS-stimulated increases in the expression of adhesion
molecules. The data suggest that miR-126 targets adhesion
molecule expression in ECs.

Decreased Levels of miR-126 Levels in
Serum Exosomes From HSPA12B−/−

Septic Mice
To investigate whether increased adhesion molecule expression
in the myocardium from HSPA12B−/− septic mice will be
associated with miR-126 levels, we collected serum from WT
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FIGURE 3 | HSPA12B attenuates LPS-induced expression of adhesion molecules in ECs. Endothelial cells (HUVECs) were transfected with adenovirus-expressing
HSPA12B (Ad-HSPA12B) or Ad-GFP 24 h before the cells were stimulated with LPS. (A) Green color indicates Ad-HSPA12B transfected into the HUVECs. Western
blot shows that transfection of HUVECs with Ad-HSPA12B increased the levels of HSPA12B. (B) Confocal microscopy examination (66×) shows that Ad-HSPA12B
transfection attenuates LPS-induced ICAM-1 (red color) expression in HUVECs. Green color indicates HSPA12B; blue color indicates nucleus stained with DAPI.
(C,D) Western blot shows that Ad-HSPA12B transfection significantly suppressed LPS-induced VCAM-1 (C) and ICAM-1 (D) expression in HUVECs. n = 3/groups.
*P < 0.05; **P < 0.01; ***P < 0.001 compared with indicated groups.
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FIGURE 4 | Transfection of endothelial cells with miR-126 mimics prevented LPS-induced expression of adhesion molecule expression. Endothelial cells (HUVECs)
were transfected with 40 nmol of microRNAs (scrambled miR-control, miR-126 mimics, or anti–miR-126) by Lipofectamine 2000. Twenty-four hours after
transfection, the cells were treated with LPS (1 µg/mL) for 6 h. (A) miR-126 levels and (B) HSPA12B expression. (C) Transfection of miR-126 mimics (red color) into
endothelial cells. Transfection of miR-126 mimics suppresses LPS-induced expression of VCAM-1 (D) and ICAM1 (E) in endothelial cells. n = 3–4/group. *P < 0.05
compared with indicated groups.

Frontiers in Immunology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 56614

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00566 April 27, 2020 Time: 19:28 # 11

Zhang et al. HSPA12B Regulates Endothelial Function in Sepsis

FIGURE 5 | Serum exosomes from HSPA12B−/− septic mice increased expression of adhesion molecules in endothelial cells. Wild-type and HSPA12B−/− mice
were subjected to CLP sepsis or sham surgical operation. Ten hours after CLP, blood was collected for the isolation of serum exosomes with ExoQuick exosome
isolation kit. (A) miR-126 levels in the isolated serum exosomes were examined by qPCR. (B) Exosome markers (CD63 and CD81). (C) Endothelial cells (HUVEC)
were treated with isolated exosomes for 12 h. The cells were harvested for analysis of VCAM-1 (C) and ICAM1 (D) by Western blot (n = 4–6/group). C, control; L,
LPS; WS, WT sham; WC, WT CLP; HS, HSPA12B−/− sham; HC, HSPA12B−/− CLP; Exo, exosomes. ∗P < 0.05 compared with indicated groups.
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and HSPA12B−/− sham and septic mice, isolated exosomes, and
examined miR-126 levels with qPCR. As shown in Figure 5A,
CLP sepsis markedly increased the levels of miR-126 in exosomes
from WT mice but not from HSPA12B−/− mice. The levels
of miR-126 in HSPA12B−/− septic exosomes were significantly
lower than in WT septic exosomes. The data indicate that
lower levels of miR-126 in HSPA12B−/− septic exosomes may
be responsible for increased expression of adhesion molecules
and accumulation of immune cells in the myocardium of
HSPA12B−/− septic mice.

HSPA12B−/− Septic Exosomes Enhance
the Expression of Adhesion Molecules
on ECs
To investigate the role of HSPA12B−/− septic exosomes in
adhesion molecule expression on ECs, we collected blood and
isolated serum exosomes from WT and HSPA12B−/− mice. We
then treated ECs with the isolated exosomes and examined the
levels of adhesion molecules. Figure 5B shows exosome markers
(CD63 and CD81) in the isolated exosomes. Figures 5C,D
shows that treatment of ECs with WT septic exosomes markedly
increased 87.2% VCAM-1C and 157.3% ICAM-1D levels, when
compared with the WT sham exosome-treated group. However,
treatment of ECs with HSPA12B−/− septic exosomes resulted
in greater levels of VCAM-1 and ICAM-1, when compared
with WT septic exosome treatment. The levels of VCAM-1
and ICAM-1 in the HSPA12B−/− septic exosomes group were
75.1 and 78.9% greater than in WT septic exosome-treated
cells. The data suggest that lower levels of miR-126 in the
exosomes from HSPA12B−/− septic mice may be responsible
for increased adhesion molecule expression in the myocardium
during polymicrobial sepsis.

Delivery of miR-126 Carried by
Exosomes Suppressed Adhesion
Molecule Expression in the Myocardium
From HSPA12B−/− Septic Mice
To further investigate the role of exosomal miR-126 in the
regulation of adhesion molecule expression, we isolated BMSCs
from HSPA12B−/− mice, transfected BMSCs with miR-126
mimics or miR-control mimics, and isolated exosomes from
cultured medium. Figure 6A shows that miR-126 levels in
the exosomes were significantly greater than in the exosomes
loaded with miR-control. We delivered the exosomal miR-
126 or exosomal miR-control into the myocardium through
the right carotid artery (27, 29) immediately after induction
of CLP in HSPA12B−/− mice. Twenty-four hours after
delivery, we collected blood and measured serum levels of
miR-126 levels by qPCR. Figure 6B shows that delivery of
exosomal miR-126 markedly increased the serum miR-126
levels (178%) in HSPA12B−/− septic mice compared with
delivery of exosomal miR-control. Immunostaining shows
that delivery of exosomal miR-126 prevented sepsis-increased
expression of VCAM-1 and ICAM-1 (Figure 6C). Western
blot analysis shows that exosomal miR-126 transfection

markedly prevented sepsis-induced increases in VACM-1
(Figure 6D) and ICAM-1 (Figure 6E) levels in the myocardium.
We also analyzed the effect of delivery of exosomal miR-
126 on sepsis-induced accumulation of immune cell in the
myocardium. As shown in Figure 6F, delivery of exosomal
miR-126 significantly decreased sepsis-induced accumulation
of neutrophil (Figure 6G) and macrophage (Figure 6H)
in the myocardium from HSPA12B−/− septic mice. The
data clearly suggest that decreased miR-126 levels could be
responsible for increased expression of adhesion molecules
and immune cell accumulation in the myocardium in
HSPA12B−/− septic mice.

Delivery of Exosomal miR-126 Improved
Cardiac Function in HSPA12B−/− Septic
Mice
We then examined whether suppression of adhesion molecule
expression and reduced accumulation of immune cells in
the myocardium by exosomal miR-126 will improve cardiac
function in HSPA12B−/− septic mice. Figures 6I,J show
that delivery of exosomal miR-126 into the myocardium
of HSPA12B−/− septic mice significantly increased the
values of EF% (47.8%) and %FS (61.2%) respectively, when
compared with the exosomal miR-control group. The data
demonstrated that miR-126 plays an important role in cardiac
function by suppressing adhesion molecule expression during
polymicrobial sepsis.

DISCUSSION

The present study has shown that EC-specific HSAP12B
exerts a protective role in polymicrobial sepsis–induced
cardiomyopathy. There are several important findings in
the present study. First, deficiency of endothelial-specific
HSPA12B (HSPA12B−/−) results in severe cardiac dysfunction
and poor survival outcome following polymicrobial sepsis,
suggesting that endothelial HSP12B serves a protective role
in cardiac function in sepsis. Second, endothelial HSPA12B
deficiency promotes the increased expression of adhesion
molecules and leads to accumulation of immune cells in the
myocardium. This indicates that HSPA12B is involved in
controlling adhesion molecule expression and immune cell
infiltration into the myocardium following CLP sepsis. Third,
the serum exosomes isolated from HSPA12B−/− septic mice
contain lower levels of miR-126 when compared with the
exosomes from WT septic mice. MicroRNA-126 specifically
targets adhesion molecules (20). Therefore, it is possible that
lower levels of miR-126 may be responsible for increased
adhesion molecule expression and accumulation of immune
cells in the myocardium. Finally, we loaded miR-126 onto
exosomes derived from HSPA12B−/− BMSCs, delivered into
the myocardium of HSPA12B−/− septic mice, and observed
that transfection of miR-126 carried by exosomes significantly
improves cardiac function of HSPA12B−/− septic mice by
suppressing the expression of adhesion molecules and decreasing
the infiltration of inflammatory cells into the myocardium. The
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FIGURE 6 | MicroRNA-126 carried by exosomes derived from bone marrow stromal cells suppressed adhesion molecule expression in the myocardium of
HSPA12B−/− septic mice. Bone marrow stromal cells (BMSCs) were isolated from HSPA12B−/− mice and transfected with 40 nmol/L scrambled miR-control or
miR-126 mimics at the fourth to seventh generation. Twenty-four hours after transfection, exosomes were isolated from supernatants. (A) The levels of miR-126 in
exosomes were examined qPCR. (B) HSPA12B−/− mice were transfected with exosomes loaded with miR-126 mimic or scrambled miR-control through the right
carotid artery immediately before induction of CLP sepsis. Serum miR-126 levels were examined by qPCR 6 h after CLP. (C) VCAM-1 and ICAM1 expressions in the
heart tissues were examined by immunohistochemistry staining with anti–VCAM-1 and anti–ICAM-1 antibodies. (D,E) Western blot analysis of VCAM-1 and ICAM1
levels in the myocardium of HSP12B−/− septic mice (n = 6–9/group). (F) The accumulation of neutrophils and macrophages in the myocardium was examined by
immunohistochemistry with antineutrophil elastase antibody and antimacrophage antibody F4/80. (G,H) miR-126 carried by exosomes decreased the numbers of
neutrophils (G) and macrophages (H) in the myocardium of HSPA12B−/− septic mice. (I,J) miR-126 carried by exosomes improves cardiac function (EF %, FS %)
measured by echocardiography. n = 6–9/group for Western blot and n = 3/group for immunohistochemistry. *P < 0.05 compared with indicated groups. The
immunohistochemistry staining was examined with bright field microscope (40×).
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data suggest that endothelial miR-126 plays an important role
in HSPA12B regulation of adhesion molecule expression during
polymicrobial sepsis.

It is well known that EC dysfunction contributes to
the pathophysiology of sepsis/septic shock and multiple
organ dysfunction (34). Biomarkers of EC dysfunction
have been concentrated on ICAMs. Increased expression
of adhesion molecules, such as ICAM-1 and VCAM-1, has
been shown to recruit neutrophils and macrophages into
the myocardium, leading to cardiac dysfunction in sepsis
(35, 36). Activated macrophages also release chemokines
to attract neutrophils into the myocardium (35). We have
previously reported that polymicrobial sepsis (22) and
endotoxemia (13) significantly increased the expression of
adhesion molecules, resulting in accumulation of neutrophils
and macrophages in the myocardium. Therefore, suppression
of adhesion molecule expression could be an important
approach for the attenuation of sepsis-induced cardiomyopathy.
Indeed, we observed in our previous studies that transgenic
mice with EC-specific expression of HSPA12B show a
significant attenuation of endotoxin-increased adhesion
molecule expression and cardiac dysfunction through
activation of PI3K/Akt signaling (13). However, the precise
mechanisms by which HSPA12B is required for EC function
are still unsolved.

We observed in the present study that HSPA12B−/− septic
mice exhibit higher levels of adhesion molecules and greater
immune cell accumulation in the myocardium than in WT
septic mice. Our observation is consistent with previous
studies showing HSPA12B is essential for EC functioning
during sepsis/septic shock (13). Increased expression of ICAM-
1 and VCAM-1 facilities the recruitment of macrophages and
neutrophils into the myocardium, leading to inflammatory
response in sepsis (35, 36). We observed that myocardial
NF-κB binding activity and serum inflammatory cytokine
levels, such as TNFα and IL-6, in HSPA12B−/− septic
mice were markedly greater than in WT septic mice. This
suggests that endothelial HSPA12B may play a role in
not only regulating adhesion molecule expression but also
controlling NF-κB mediated inflammatory cytokine production
in polymicrobial sepsis.

To investigate how EC deficiency of HSPA12B increased
adhesion molecule expression and the accumulation of
immune cells in the myocardium following polymicrobial
sepsis, we examined the effects of serum exosomes isolated
from experimental mice on adhesion molecule expression
in ECs in vitro. Exosomes are membranous nanovesicles
(30–100 nm), which arise inside many cells from endosomal
compartments called multivesicular bodies (37). Recent
evidence demonstrated that exosomes play a critical role
in cell-to-cell communication and serve as a novel vehicle
for transferring proteins and/or miRs (37–39) from one
cell to another through membrane fusion with the target
cells, by binding with specific receptors at the cell surface
of target cells, or endocytotic internalization. Exosomes
are also shown to play a key role in host immunity to
pathogens during infection (40). Interestingly, we found

that treatment of ECs with exosomes that were isolated
from HSPA12B−/− septic mice significantly increased the
expression of VCAM-1 and ICAM1, when compared with
WT septic exosomes. Our observations suggest that exosomes
isolated from septic mice play a critical role in mediating EC
dysfunction during sepsis.

At present, we do not understand which cells released
exosomes into the serum in response to polymicrobial
sepsis/shock. We also do not understand which compositions
in the septic exosomes will be responsible for causing EC
dysfunction. Interestingly, we observed that the levels of miR-
126 in HSPA12B−/− septic exosomes were significantly lower
than in WT septic exosomes. MicroRNA-126 is predominately
expressed in ECs (18), targets adhesion molecules (20),
and regulates angiogenesis (19). Lower levels of miR-126 in
the exosomes may be responsible for the higher levels of
myocardial adhesion molecules of HSPA12B−/− septic mice.
To evaluate our hypothesis, we treated ECs with exosomes
that were isolated from septic mice and observed that the
levels of adhesion molecules in HSPA12B−/− septic exosome-
treated ECs were significantly greater than in the effect
of WT septic exosomes. To confirm our observation, we
transfected ECs with miR-126 mimics before the cells were
treated with LPS and observed that transfection miR-126
markedly suppresses LPS-induced increases in the expression of
adhesion molecules.

Our in vitro data indicate that suppression of adhesion
molecule expression by miR-126 mimics may decrease the
infiltration of inflammatory cells into the myocardium and
result in attenuation of cardiac function in vivo following
polymicrobial sepsis. To test this hypothesis, we isolated
BMSCs from HSPA12B−/− mice, transfected BMSCs with
miR-126 mimics and isolated exosomes derived from
BMSCs. We then delivered miR-126 carried by exosomes
into the myocardium immediately after induction of
polymicrobial sepsis. We observed that delivery of miR-
126 carried by exosomes significantly improved cardiac
function in HSPA12B−/− septic mice. Importantly, delivery of
exosomes loaded with miR-126 attenuated sepsis-induced
expression of adhesion molecules and accumulation of
macrophages and neutrophils in the myocardium of
HSPA12B−/− mice. At the moment, we do not understand
the mechanisms by which endothelial-specific deficiency
of HSPA12B results in lower levels of miR-126 in serum
exosomes. However, our data suggest that targeting adhesion
molecules is an important approach for maintenance
of EC function and attenuation of inflammatory cell
infiltration in the myocardium during polymicrobial sepsis.
Exosomes loaded with miR-126 could be a novel approach
for this purpose.
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Although antigen-specific priming of antibody responses is impaired during sepsis, there

is nevertheless a strong increase in IgM and IgG serum concentrations. Using colon

ascendens stent peritonitis (CASP), a mouse model of polymicrobial abdominal sepsis,

we observed substantial increases in IgM as well as IgG of all subclasses, starting at day 3

and peaking 2 weeks after sepsis induction. The dominant source of antibody-secreting

cells was by far the spleen, with a minor contribution of the mesenteric lymph nodes.

Remarkably, sepsis induction in splenectomized mice did not change the dynamics of

the serum IgM/IgG reaction, indicating that the marginal zone B cells, which almost

exclusively reside in the spleen, are dispensable in such a setting. Hence, in systemic

bacterial infection, the function of the spleen as dominant niche of antibody-producing

cells can be compensated by extra-splenic B cell populations as well as other lymphoid

organs. Depletion of CD4+ T cells did not affect the IgM response, while it impaired

IgG generation of all subclasses with the exception of IgG3. Taken together, our data

demonstrate that the robust class-switched antibody response in sepsis encompasses

both T cell-dependent and -independent components.

Keywords: sepsis, splenectomy, T cell, antibody-secreting cells, IgM, IgG

INTRODUCTION

Sepsis is still associated with astoundingly high morbidity and mortality despite improvements
in intensive care (1–5). A systemic hyper-inflammatory phase (systemic inflammatory response
syndrome, SIRS) is followed or accompanied by a compensatory anti-inflammatory response
(compensatory anti-inflammatory response syndrome, CARS), with the risk of lethal (secondary)
infections (6, 7). During the initial hyper-inflammatory phase, 40–50% of the T and B
cell populations as well as innate immune cells go into apoptosis (8). Antigen presentation
and T cell proliferation are impaired in the subsequent hypo-inflammatory phase, with a
concomitant increase in concentrations of stress-induced anti-inflammatory glucocorticoids. These
aforementioned effects, together with a Th2 cytokine bias, impair an effective immune response
against primary or secondary infections (9–16). This explains the fact that mortality from sepsis
mostly occurs during this later phase (17, 18).

It is well-documented that the antigen-specific B cell response in sepsis is strongly reduced
(19–22). For example, Mohr et al. have shown an impaired primary B cell response against defined
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antigens (22). However, they have also observed an unspecific
increase of serum IgM and IgG concentrations after cecal ligation
and puncture, a commonly used mouse model of sepsis (22).
However, details of the B cell response in sepsis that could explain
that discrepancy are largely unknown (21, 23).

During an antigen-driven T cell-dependent (TD)
immunoreaction against protein antigens, follicular B cells,
which belong to the group of B-2 cells, are activated via the B
cell receptor. With the help of activated T cells, they start to
differentiate and form germinal centers, where class switch and
somatic hypermutation take place. By the end of this process,
affinity-matured plasma cells have developed that continuously
secrete antibodies (24).

On the other hand, microbial components, which are
systemically disseminated during sepsis, can activate B cells in
a T cell-independent (TI) manner. For instance, TI-2 antigens
(e.g., polysaccharides) crosslink B cell receptors and initiate a
strong and long-lasting antigen-specific primary response (25).
TI-1 antigens (e.g., lipopolysaccharide, LPS and bacterial DNA,
CpG) activate B cells independent from the B cell receptor via
toll-like receptors (TLRs), thereby inducing proliferation and
antibody secretion (26, 27). In addition, TLR ligation itself can
induce class switch recombination (28–31).

Though all naive and memory B cells in the mouse
constitutively express TLRs (32–35), there are mainly two B
cell subtypes, namely B-1 and marginal zone (MZ) B cells,
which differentiate into antibody-secreting cells (ASC) soon
after TLR-activation (34). Their antibody repertoire is restricted,
polyreactive and lacking somatic hypermutation (36–38). These
antibodies are produced to bridge the time gap until the adaptive
response has sufficiently matured.

B-1 cells differ in their mode of activation, development,
specificities and locations from follicular B cells. Their main
reservoir are the pleural and peritoneal cavities, where they can
be further subdivided based on their CD5 expression into B-1a
(CD5+) and B-1b (CD5-) cells. In addition, they can be found
in small proportions in all lymphoid organs and are prone to
TI responses. They are selected during development based on a
certain strength of self-binding. In strong contrast to follicular
B cells, their BCR engagement does not lead to activation. They
are able to switch to all IgG subclasses in vitro, whereas in vivo
they produce natural antibodies mainly of the IgM, IgG3 and IgA
isotype [reviewed extensively in (24, 38, 39)].

MZ B cells are located close to the marginal sinus in the
murine spleen (40, 41), where they have direct access to blood-
borne antigens (42, 43). Although they have the capacity to
generate TD and TI responses (44–46), their main function is
the TI response against blood pathogens. They differentiate very
early into IgM- or IgG-secreting cells (43).

Follicular B cells (or B-2 cells) react only moderately or
weakly to TI-1 antigens (34, 47, 48), but are classically the main
producers of T cell-dependent, class-switched and hypermutated
antibodies, which are produced in response to an antigen-specific
TD response. They are found in peripheral lymphoid organs but
also in the peritoneal cavity (PC) (49, 50).

In the present study, we set out to examine B cell reactions
and antibody secretion in polymicrobial abdominal sepsis, with

the aim of explaining disparities in research findings. For that
purpose, we used two murine models for sepsis induction: (i)
fecal-induced peritonitis (FIP): intraperitoneal (i.p.) injection of
pooled cecal content of donor mice into recipient mice (51–
53); (ii) colon ascendens stent peritonitis (CASP): continuous
leakage of own gut content over a certain time, which mimics
the clinical setting (54, 55). Whether splenic follicular or MZ
B cells have a key role in the humoral response in sepsis was
examined by explanting the spleen parallel to sepsis induction. In
addition, CD4+ T cells were depleted before sepsis induction to
determine the portion of the T cell-dependent and -independent
humoral response.

MATERIALS AND METHODS

Animal Experiments and Ethics Statement
Female C57BL/6 wild type (WT) mice were housed in a
conventional, temperature-controlled animal facility (Central
service and Research Institute for experimental animals of
the University Medicine Greifswald) with a 12-h light and
dark cycle, and provided with food and water ad-libitum.
All animal experiments were performed in accordance with
the German Animal Welfare Act (Deutsches Tierschutzgesetz)
and the Federation of Laboratory Animal Science Associations
(FELASA). The animal research protocol was approved by
the animal ethics committee of the responsible local animal
protection authority (LALLF, State Office for Agriculture,
Food Safety and Fisheries Mecklenburg-Western Pomerania;
numbers LALLF M-V/TSD/7221.3-1.1-052/07 and LALLF M-
V/TSD/7221.3-1.2-013/09). All efforts were made to minimize
animal suffering.

Colon Ascendens Stent Peritonitis (CASP)
Colon ascendens stent peritonitis (CASP) surgery was performed
as described before (54, 56). Briefly, mice were anesthetized with
i.p. Ketamin (Ketanest, Parke-Davis GmbH, Berlin) and Xylazin
(Rompun, Bayer Health Care, Leverkusen), 100/10 µg per g
body weight, respectively. The abdomen was opened through
a small incision and a 18G stent (Ohmeda AB, Helsingborg,
Sweden) was implanted into their colon ascendens. After surgery,
all animals were carefully monitored every 6 h (h) until the end
of the experiment. Control animals received sham operations,
without stent implantation. Animals were euthanized 10 or 14
days following CASP surgery.

Fecal-Induced Peritonitis (FIP)
Sepsis was induced by introducing feces into the peritoneum
using the method described by Wang et al. (57). In brief,
littermates were anesthetized and euthanized. Fecal content (FC)
was collected by cutting the Ampulla ceci and squeezing out the
content. FC was homogenized in PBS to a final concentration of
100 mg/mL. The recipients received 7.25× 105 CFU i.p., whereas
control animals were treated with PBS instead. At certain time
points after sepsis induction (days 1, 3, 7, 14, 28, as well as at 12
weeks), animals were euthanized and the splenocytes isolated.
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Splenectomy
Following anesthesia, a midline laparotomy was performed.
The cranial-dorsal and caudal-ventral spleen blood vessels were
ligated with Mariderm 7/0, after applying yasergil-clips, and cut.
The spleen was subsequently explanted.

Antibody Assay
Mice were anesthetized, and blood was collected via the
retrobulbar venous plexus using a microhematocrit capillary.
Serum was collected after centrifugation of the coagulated
blood at 16,000 × g for 10min. Total serum IgM and IgG
concentrations in murine serum were measured with the
Milliplex R© Mouse Immunoglobulin Isotyping Immunoassay
(Millipore, MA, USA) according to the manufacturer’s
instructions. The samples were measured with the Luminex R©

200 System (Bio-Rad Laboratories, Munich). Concentrations
were calculated with the BioPlex Manager 5.0 software based on
a provided standard.

Enzyme Linked Immuno Spot Assay
(ELISpot)
On assigned days, mice were euthanized under deep anesthesia
and then spleen, mesenteric lymph nodes (MLN), femur and
omentum were harvested for the preparation of single-cell
suspensions. For spleen and MLN, 70µm cell strainers (Sigma-
Aldrich) were used. Bone marrow cells were prepared by flushing
the femur with 10mL cold PBS containing 5% fetal bovine serum
(5% FBS/PBS). Cells were washed with cold 5% FBS/PBS (250 ×
g, 6min, 4◦C), and erythrocytes were lysed with sterile filtered
ammonium chloride-buffer followed by another washing step.

A single-cell suspension of omentum was prepared by
collagenase and DNAseI digestion (Roche Diagnostics GmbH,
Mannheim, Germany). Briefly, the omentum was washed with
PBS containing 5mM EDTA for 1min to get rid of the attached
cells, followed by washing in HBSS containing 10% FBS and
0.01M HEPES. The omentum was then cut into small pieces
with a sterile scissor and incubated in 500 µL digestion buffer
(PBS, 10% FBS, 0.01M HEPES, 1.5 mg/mL collagenase D, 2
mg/mL DNAseI) for 30min at 37◦C with constant shaking (500
rpm). The resulting tissue was then mashed through a 70µm
cell strainer and washed twice in HBSS containing 10% FBS and
0.01M HEPES (500 × g, 5min, 4◦C). The last step was then
repeated with a 30µm cell strainer.

All cells were resuspended in cold culture media (RPMI1640
supplemented with 50µM 2-mercaptoethanol, 100 U/mL
penicillin/streptomycin, 2mM glutamine, 1mM sodium
pyruvate, 0.2% D-glucose, and 1% non-essential amino acids).
The numbers of DAPI-negative and CD45-positive cells were
determined as described in the flow cytometry section. The
numbers of IgM- and IgG-secreting cells were determined
using a mouse IgM and IgG ELISpotPLUS kit (Mabtech AB,
Nacka Strand, Sweden). ELISpot was performed according to
the manufacturer’s instructions for in vivo activated cells (no
additional activation required). Cells, titrated to 5,000–50,000 per
well, were seeded in triplicates and incubated at 37◦C for 16 h.

Spots were imaged using an ELISPOT plate reader
(ImmunoSpot S5 Versa, Cellular Technology Limited) and

TABLE 1 | Antibodies used for B cell characterization.

Specificity Fluorochrome Isotype Clone Provider Final conc.

[µg/mL]

B220 APC-A780 Rat IgG2a, κ RA3-6B2 eBioscience 1

CD21 FITC Rat IgG2b, κ 7G6 BD 10

CD23 PE Rat IgG2a B3B4 eBioscience 2

CD69 APC Hamster IgG1 H1.2F3 BD 2

CD73 PE Rat IgG2a, κ TY/23 BD 4

CD95 PE-Cy7 Hamster IgG2 Jo2 BD 2

GL7 Alexa647 Rat IgM, κ GL7 eBioscience 2

IgD Horizon V450 Rat IgG2a, κ 11.26c2a BD 5

IgM PE-Cy7 Rat IgG2a, κ R6-60.2 BD 10

CD45 FITC Rat IgG2b, κ 30-F11 BioLegend 10

TABLE 2 | Isotype controls.

Isotype Fluorochrome Clone Provider Final conc. [µg/mL]

Hamster IgG APC eBio299Arm eBioscience 2

Hamster IgG2 PE-Cy7 B81-3 BD 2

Rat IgM, κ Alexa647 RTK2118 BioLegend 5

Rat IgG2b FITC eBioscience 5

Rat IgG2a, κ PE R35-95 BD 4-8

TABLE 3 | Definition of B cell populations.

Population Marker References Gating

Follicular B

cells

B220+ IgM+ IgD+

CD21int CD23+

(58, 59) Supplementary Figure 1A

Marginal zone

B cells

B220+ IgMhi IgDlo

CD21+++ CD23-

(60) Supplementary Figure 1A

Germinal

center B cells

B220+GL7+ CD95hi

CD73int

(61) Supplementary Figure 1B

counted using the Immunospot 5.0.3 Professional software
(Cellular Technology Limited).

The number of ASCs per organ was calculated as follows:
cells per organ (BM only one femur) / cell number seeded ×

number of spots counted.

Flow Cytometry
B cells were characterized using specific antibodies listed in
Table 1, together with the necessary isotype controls (Table 2). B
cell subpopulations were phenotypically defined according to the
criteria listed in Table 3. Spleen cell suspensions were obtained as
described before (62). Cell numbers were determined using BD
TruCOUNTTM beads. One million cells were incubated with 2
µL Fc-Block for 15min at 4◦C. Then, 50 µL of the appropriate
antibody-cocktail was added and incubated for further 30min
at 4◦C. After washing (300 × g, 6min) with FACS-buffer
(BD FACSFlow Sheath Fluid, 2% FBS, 0.02% sodium azide),
the pellet was resuspended in FACS-buffer and analyzed on a
BD LSRII flow cytometer.
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Depletion of CD4+ T Cells
For the depletion of CD4+ T cells, 150 µg rat anti-mouse CD4
mAb (GK1.5, in-house) was injected i.p. 1 and 3 days before

CASP surgery. This efficiently depleted CD4+ cells without
affecting CD8+ T lymphocytes (Supplementary Figure 2)
as shown by FACS analysis using antibodies listed in

FIGURE 1 | Serum immunoglobulin concentrations during the course of sepsis. Sepsis was induced by CASP-operation in female C57BL/6 mice. Untreated animals

served as controls. At the indicated time points animals were anesthetized and blood was collected. Serum IgM (A) and IgG (B) concentrations, as well as the

concentrations of all IgG-subtypes (C-F), were measured by Luminex®-technology. One of two similar experiments is shown here. We used the One Way ANOVA and

Bonferroni post hoc test for selected pairs for statistical evaluation, and the mean is depicted in this figure. Significances are shown as number of symbols. one

symbol p < 0.05; two symbols p < 0.01; three symbols p < 0.001. (*) CASP D7 vs. untreated D1, (#) CASP D14 vs. untreated D14, ($) CASP D28 vs. untreated

D14; N = 5-6/group. The 95% confidence intervals of the differences of means are given in Supplementary Tables 1, 2.
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FIGURE 2 | Antibody-secreting cells in lymphoid organs after sepsis. Sepsis was induced by CASP-operation in female C57BL/6 mice. At the indicated time points

bone marrow, omentum, mesenteric lymph nodes (MLN) and spleen were harvested and cells isolated. Antibody-secreting cells (ASC, sum of IgM and IgG) per organ

were measured with an ELISpot, and the median is depicted (A). ASC/organ values below 1 × 105 for bone marrow, omentum and MLN are separately shown (B).

N = 3–5.

Supplementary Table 3. Control mice received PBS instead.
14 days after depletion, the CD4 population in depleted, non-
septic control mice had recovered to 40% compared with the
non-depleted controls (own unpublished data).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 6 for
Windows (GraphPad Software, CA, USA). Data were assessed for
significant differences using One-Way ANOVA with Bonferroni
correction (Bonferroni post-hoc test) for selected pairs. P < 0.05
were considered significant.

RESULTS

Strong Increase in Serum Immunoglobulin
Concentrations After Sepsis
During the course of sepsis, serum immunoglobulin
(Ig) concentrations increased, reflecting B cell-activation
and differentiation (Figure 1). In CASP, the IgM-serum
concentration increased from 111.5 ± 17.71µg/mL (CI 95%:
92.9–130; untreated d1) to 710.2 ± 291.1µg/mL (CI 95%: 349–
1,072) 14 days later (Figure 1A). At the same time the IgG-serum
concentrations peaked at 3,372 ± 966.8µg/mL (CI 95%: 2,171–
4,572) at 14 days, compared to levels at day 1 [untreated day 1:
1,216 ± 270.6µg/mL (CI 95%: 932–1,500)] (Figure 1B). This
increase was distributed among all IgG-subtypes (Figures 1C–F),
indicating at least partially T cell-dependent processes. These
dynamics have also been observed in two other abdominal
sepsis models (cecal ligation and puncture (CLP) and FIP, data
not shown).

The Spleen Is the Main Source of IgM- and
IgG-Secreting Cells After Sepsis
Next, the source of the strong antibody reaction to sepsis
was determined. Abdominal sepsis starts in the PC and is
characterized by the systemic dissemination of pathogens and

their products. Thus, both local and systemic immune responses
are expected to take place. Locally, the parathymic lymph nodes
are draining the PC (49, 63). They increase in size after sepsis
induction but still have a much lower cell count compared to
the spleen, ruling out a major contribution to the serum Ig
response. Furthermore, the omentum and its lymph follicle-like
structures, the so-called milky spots, have been ascribed a role in
lymphocyte migration to and from the PC (49, 64, 65), while the
mesenteric lymph nodes (MLN), an accumulation of relatively
large lymph nodes in the PC, drain the gut and are probably not
directly involved in the immune cell migration to or out of the
PC. On the other hand, a systemic immune reaction will take
place in the spleen due to the hematogenous spread of microbial
compounds. Finally, the bone marrow might be involved as a
source of immature as well as memory B cells, and a niche of
long-lived plasma cells (66–68). ELISpot analyses clearly revealed
the highest amount of ASCs in the spleen. At the peak of the
response, namely 10 days after sepsis induction, around 106 ASCs
were counted in the spleens of septic animals. In addition, the
MLNs seem to make a contribution to the antibody response,
but the means differ by more than 20-fold (Figures 2A,B). In
accordance with this, splenic follicular B cells, marginal zone B
cells as well as germinal center B cells were rapidly activated in
sepsis induced by FIP (within 24 h). The latter remained activated
over a period of 12 weeks (Supplementary Figure 3).

Spleen Cells, Including Marginal Zone B
Cells, Are Not Necessary for the
Production of Antibodies After Sepsis
Although we detected B cell activation and germinal center
formation in the spleen, together with the majority of ASCs, it
turned out that this organ was superfluous with regard to the
observed strong increase of immunoglobulins after sepsis. To
determine the input of splenic B cells to the overall humoral
response, we splenectomized mice in parallel to CASP induction.
Fourteen days later, there were no major changes in IgM or
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IgG serum concentrations as compared to the animals that
received only CASP (Figure 3). Moreover, the lack of spleen had
no effect on the induced IgG subclasses in the septic immune
response (Supplementary Figure 4). The ostensible IgG-increase
following splenectomy and CASP compared to CASP-only is due
to three animals whose IgG2b concentrations increased strongly
(Figure 3 and Supplementary Figure 4).

The Antibody-Response After Sepsis Is
Partially T Cell-Dependent
The generation of germinal centers as well as the strong increase
in serum concentrations of all IgG subclasses makes a case
for an antigen-driven TD Ig response in sepsis. Depleting
CD4+ cells with an antibody (Gk1.5) prior to sepsis induction
(Supplementary Figure 2) had no influence on IgM secretion
(Figure 4A), but led to reduced serum IgG concentrations
14 days after CASP (Figure 4B). This supports the notion of
a TD component in the B cell response. Interestingly, the
decrease in serum IgG concentrations was absolute for IgG1
(returning to background levels), intermediate for IgG2b and
IgG2c, but only in tendency for IgG3 (Figures 4C–F). Therefore,
class switch in sepsis is evidently not exclusively dependent
on T cells, but additionally driven by T cell-independent
processes/antigens.

DISCUSSION

While battling invading pathogens, the systemic immune
response causes collateral damage to the host, impairing
life-securing homeostasis. Compensatory anti-inflammatory
mechanisms and the necessary apoptotic loss of immune
effector cells lead to immunosuppression, culminating in
immunoparalysis (7, 8, 10, 12, 69, 70). It was hence assumed
that the antibody response would also be impaired (70, 71).
We have shown that serum IgM as well as IgG concentrations
start to increase three to seven days after sepsis induction. The
IgG increase was distributed among all IgG-subclasses, with
the strongest relative increase observed for IgG3. IgG1, IgG2b,
and IgG3 reached similar absolute serum concentrations of 1-2
mg/mL. The robust increase in serum Ig appears to be a general
phenomenon in sepsis. Mohr et al. observed a similar increase
10 days after CLP (22), and our group obtained analogous results
in a mouse model of FIP (data not shown). Brunner et al. have
detected increased serum IgG concentrations in septic patients as
early as 48 h after diagnosis (72).

An important role has been attributed to the spleen in
the early defense against bacterial dissemination in the blood.
Phagocytosis, endotoxin detoxification and antibody production
are the main effector mechanisms. Especially MZ B cells carry TI
responses (43, 73–75) and were deemed essential for successful
pathogen eradication (42, 76). In accordance with this, the spleen
was the main source of ASCs in our sepsis model, with a minor
contribution of the MLNs. Moreover, we have shown an early
activation of follicular andMZB cells in the spleen, corroborating
the results of other research groups (77). In accordance with what
was observed by Kelly-Scumpia et al. (77), germinal centers were

FIGURE 3 | Serum IgM and IgG concentration 14 days after sepsis and

splenectomy. Female C57BL/6 mice were CASP-operated and their spleen

was explanted in parallel. Untreated, splenectomized-only and CASP-only

animals served as controls. 14 days later animals were anesthetized and blood

was collected. IgM and IgG serum concentrations were measured by

Luminex®-technology. Shown is the mean of the collective data from two

independent experiments with a similar tendency. We used the One Way

ANOVA and Bonferroni post-hoc test for selected pairs for statistical

evaluation. * p < 0.05; N = 8–17 per group.
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FIGURE 4 | Serum Ig concentration 14 days after CASP and CD4+ cell depletion. Female C57BL/6 mice received 150 µg of a depleting anti-CD4 antibody (αCD4;

Gk1.5) i.p. three and one day before sepsis induction via CASP. Control animals remained untreated or received the depleting antibody only. Fourteen days after

CASP, animals were anesthetized and blood was collected. IgM (A) and IgG (B) serum concentrations, as well as IgG subclass concentrations (C–F), were measured

by Luminex®-technology. Shown is the mean of the collective data from two independent experiments with a similar tendency. We used the One Way ANOVA and

Bonferroni post-hoc test for selected pairs for statistical evaluation *p < 0.05. N = 6–10 per group.

formed after 3 days. Four days later, high numbers of IgM and
IgG-secreting cells were detected, especially in the spleen.

However, splenectomy did not impair the humoral immune
response, as measured by the increase in serum antibody
concentration. It seemed that splenic follicular as well as MZ
B cells, despite being rapidly activated, were redundant. This

was surprising in light of previous reports of a strongly reduced
humoral response against bacterial antigens in splenectomized
mice (78–81). In those studies, mice were infected 7–70 days
following splenectomy. In yet another study, splenectomy led
to a 75% reduction in B-1a cells after 6 days (60), which might
explain the reduced humoral response in this setting. B-1a cells
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are known to participate in anti-bacterial and anti-viral responses
(38, 82–84). We splenectomized the mice in parallel to CASP
induction; hence extra-splenic B cell populations could still
react to the multitude of antigens. Furthermore, in studies with
Borrelia hermsii, MZ B cells did not play an important role
either, because B-1 cells were the main producers of protective
serum IgM (85, 86).

The fact that splenectomy did not decrease the serum IgM
and IgG concentrations, despite the fact that we have clearly
disclosed the spleen as the main source of ASCs, strongly argues
for the hypothesis that most ASCs found in the spleen developed
from immigrating B cells. These were probably peritoneal B cells,
which – upon activation – left the peritoneum and migrated
to spleen and peripheral lymph nodes (49, 86, 87). Some of
these are obviously able to class switch to IgG. Our data also
suggest that soon after splenectomy other lymphoid organs, be it
mesenterial lymph nodes, the milky spots in the omentum and/or
the parathymic lymph nodes, can compensate for the spleen.

Several groups have shown that antigen-specific priming is
impaired after sepsis (21, 22, 88). So the question remains, what
drives the strong antibody-increase in murine serum after sepsis?
Obviously, microbial structures, such as LPS or CpG, flood the
host system during sepsis, and are able to polyclonally activate
B cells via their appropriate receptors (TLR4 or TLR9) (32, 89).
Especially MZ B cells and B-1 cells differentiate into plasma
cells (34, 35). Interestingly, LPS per se can induce class switch
to IgG2b and IgG3, but also activated NKT cells, activated DCs
and thrombocytes, all of which are abundant in sepsis, can at
least partially compensate a lack of T cell help and promote TI
antibody class switch (90–93).

On the other hand, the disseminating bacteria as well as
dying host cells also confront the adaptive immune system with
a wealth of antigens in the setting of sepsis. The pronounced
germinal center reaction, in conjunction with the increase in
all IgG subclasses support the idea that, besides polyclonal B
cell activation, there may also be a significant antigen-driven
component in the Ig response to sepsis.

Indeed, depletion of CD4+ T cells before sepsis reduced IgG-
production, leaving the IgM-response intact. Especially IgG1
did not increase over the basal level in the absence of T cells.
Although IgG2b, IgG2c, and IgG3 production was also less than
in T cell competent septic animals, there was still a measurable
increase. That shows that the IgG response to sepsis comprises
both TD and TI components. Nevertheless, the observed
significant TD IgG response seems to contradict reports of
impaired antigen priming following sepsis induction (19, 21, 22,
88, 94, 95). The contrasting findings can, however, be reconciled
by the following observations made by our research group
(88): at sepsis onset, the T cell response to a primary antigen
stimulus was not only fully intact but even enhanced, presumably
through the adjuvant effects of the abundant pathogen-associated
molecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs) (88, 96). However, later during the disease, the
T cell response to antigen priming was reduced, with a nadir 7
days after sepsis onset, where T cells in severely affected animals
did not react at all (19, 88).

Our data reveal a strong humoral immune response in animals
who survived sepsis. It is composed of T cell-dependent as well as
T cell-independent components, takes place mainly in the spleen
and probably involves the activation of all B cell populations. The
task would now be to determine the antigen specificity of this Ig
response in sepsis. This is addressed in the companion paper by
Nicolai and co-workers (Nicolai et al., under revision).

In summary, in the present study, the origin of the strong
antibody increase in sepsis was investigated, which identified the
spleen as the main source of ASCs. Explanting the spleen parallel
to sepsis induction revealed that both splenic follicular andMZ B
cells are redundant in the humoral response to sepsis. Moreover,
depletion of CD4+ T cells prior to sepsis induction highlighted
the fact that both T cell-dependent and T cell-independent
components govern the IgG response to sepsis.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by Animal
ethics committee of the local animal protection authority
(LALLF, State Office for Agriculture, Food Safety and Fisheries
Mecklenburg-Western Pomerania).

AUTHOR CONTRIBUTIONS

Conceptualization and project design: ON, CP, KS, and
BB. Methodology and performance of experiments:
ON, CP, and JL. Data evaluation: ON, CP and BB.
Interpretation of data: ON, CP, KS, MD, JL, DR, and BB.
Writing–original draft preparation: ON, MD, DR, and BB.
Writing–review and editing. All authors critically reviewed
the manuscript.

FUNDING

This research was funded by the German Research Foundation
(DFG; RTG-840) to ON, CP, and KS.

ACKNOWLEDGMENTS

We are grateful to Maria Ozsvar Kozma for excellent
technical support. We acknowledge support for the Article
Processing Charge from the DFG (German Research Foundation,
393148499) and the Open Access Publication Fund of the
University of Greifswald.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.00828/full#supplementary-material

Frontiers in Immunology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 82828

https://www.frontiersin.org/articles/10.3389/fimmu.2020.00828/full#supplementary-material
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nicolai et al. Antibody Production in Polymicrobial Sepsis

REFERENCES

1. Slade E, Tamber PS, Vincent JL. The surviving sepsis campaign: raising

awareness to reduce mortality. Crit Care. (2003) 7:1–2. doi: 10.1186/cc1876

2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer

M, et al. The third international consensus definitions for sepsis and septic

shock (sepsis-3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

3. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR,

et al. Global, regional, and national sepsis incidence and mortality, 1990–

2017: analysis for the global burden of disease study. Lancet. (2020) 395:200–

11. doi: 10.1016/S0140-6736(19)32989-7

4. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. (2013)

369:840–51. doi: 10.1056/NEJMra1208623

5. La Suarez De Rica A, Gilsanz F, Maseda E. Epidemiologic

trends of sepsis in western countries. Ann Transl Med. (2016)

4:325. doi: 10.21037/atm.2016.08.59

6. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression:

from cellular dysfunctions to immunotherapy. Nat Rev Immunol. (2013)

13:862–74. doi: 10.1038/nri3552

7. Yende S, Kellum JA, Talisa VB, Peck Palmer OM, Chang C-CH,

Filbin MR, et al. Long-term host immune response trajectories

among hospitalized patients with sepsis. JAMA Netw Open. (2019)

2:e198686. doi: 10.1001/jamanetworkopen.2019.8686

8. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, et al.

Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized

clinical trial. JCI Insight. (2018) 3:e98960. doi: 10.1172/jci.insight.98960

9. Grimminger F, Mayer K, Seeger W. [Is there a reliable immunotherapy in

infection?]. Internist. (1997) 38:541–52. doi: 10.1007/PL00002644

10. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang

KC, et al. Sepsis-induced apoptosis causes progressive profound depletion

of B and CD4+ T lymphocytes in humans. J Immunol. (2001) 166:6952–

63. doi: 10.4049/jimmunol.166.11.6952

11. Tinsley KW, Grayson MH, Swanson PE, Drewry AM, Chang KC, Karl

IE, et al. Sepsis induces apoptosis and profound depletion of splenic

interdigitating and follicular dendritic cells. J Immunol. (2003) 171:909–

14. doi: 10.4049/jimmunol.171.2.909

12. WescheDE, Lomas-Neira JL, PerlM, Chung CS, Ayala A. Leukocyte apoptosis

and its significance in sepsis and shock. J Leukoc Biol. (2005) 78:325–

37. doi: 10.1189/jlb.0105017

13. Flohe SB, Agrawal H, Schmitz D, Gertz M, Flohe S, Schade FU. Dendritic

cells during polymicrobial sepsis rapidly mature but fail to initiate a

protective Th1-type immune response. J Leukoc Biol. (2006) 79:473–

81. doi: 10.1189/jlb.0705413

14. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. The sepsis

seesaw: tilting toward immunosuppression. Nat Med. (2009) 15:496–

7. doi: 10.1038/nm0509-496

15. Cavassani KA, Carson WF, Moreira AP, Wen H, Schaller MA, Ishii M, et

al. The post sepsis-induced expansion and enhanced function of regulatory

T cells create an environment to potentiate tumor growth. Blood. (2010)

115:4403–11. doi: 10.1182/blood-2009-09-241083

16. Muenzer JT, Davis CG, Chang K, Schmidt RE, DunneWM, Coopersmith CM,

et al. Characterization and modulation of the immunosuppressive phase of

sepsis. Infect Immun. (2010) 78:1582–92. doi: 10.1128/IAI.01213-09

17. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating

cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS

continuum in sepsis and predict mortality. J Immunol. (2006)

177:1967–74. doi: 10.4049/jimmunol.177.3.1967

18. Adib-Conquy M, Cavaillon J-M. Compensatory anti-inflammatory response

syndrome. Thromb Haemost. (2009) 101:36–47. doi: 10.1160/TH08-07-0421

19. Schmoeckel K, Mrochen DM, Hühn J, Pötschke C, Bröker BM.

Polymicrobial sepsis and non-specific immunization induce adaptive

immunosuppression to a similar degree. PLoS ONE. (2018)

13:e0192197. doi: 10.1371/journal.pone.0192197

20. Pötschke C, Kessler W, Maier S, Heidecke C-D, Bröker BM.

Experimental sepsis impairs humoral memory in mice. PLoS ONE. (2013)

8:e81752. doi: 10.1371/journal.pone.0081752

21. Sjaastad FV, Condotta SA, Kotov JA, Pape KA, Dail C, Danahy DB, et

al. Polymicrobial sepsis chronic immunoparalysis is defined by diminished

Ag-specific T cell-dependent B cell responses. Front Immunol. (2018)

9:2532. doi: 10.3389/fimmu.2018.02532

22. Mohr A, Polz J, Martin EM, Griessl S, Kammler A, Potschke C, et al. Sepsis

leads to a reduced antigen-specific primary antibody response. Eur J Immunol.

(2012) 42:341–52. doi: 10.1002/eji.201141692

23. Gustave C-A, Gossez M, Demaret J, Rimmelé T, Lepape A, Malcus

C, et al. Septic shock shapes B cell response toward an exhausted-

like/Immunoregulatory profile in patients. J Immunol. (2018) 200:2418–

25. doi: 10.4049/jimmunol.1700929

24. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation

of antibody-secreting plasma cells. Nat Rev Immunol. (2015) 15:160–

71. doi: 10.1038/nri3795

25. Garcia De Vinuesa C, O’Leary P, Sze DM, Toellner KM,

MacLennan IC. T-independent type 2 antigens induce B cell

proliferation in multiple splenic sites, but exponential growth is

confined to extrafollicular foci. Eur J Immunol. (1999) 29:1314–

23. doi: 10.1002/(SICI)1521-4141(199904)29:04<1314::AID-IMMU1314>

3.0.CO;2-4

26. Coutinho A, Gronowicz E, Bullock WW, Moller G. Mechanism of

thymus-independent immunocyte triggering. Mitogenic activation of B

cells results in specific immune responses. J Exp Med. (1974) 139:74–

92. doi: 10.1084/jem.139.1.74

27. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, et al.

CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. (1995)

374:546–9. doi: 10.1038/374546a0

28. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW. Mitogen-

and IL-4-regulated expression of germ-line Ig gamma 2b transcripts:

evidence for directed heavy chain class switching. Cell. (1988) 53:177–

84. doi: 10.1016/0092-8674(88)90379-0

29. Severinson E, Fernandez C, Stavnezer J. Induction of germ-

line immunoglobulin heavy chain transcripts by mitogens and

interleukins prior to switch recombination. Eur J Immunol. (1990)

20:1079–84. doi: 10.1002/eji.1830200520

30. Mandler R, Finkelman FD, Levine AD, Snapper CM. IL-4 induction of

IgE class switching by lipopolysaccharide-activated murine B cells occurs

predominantly through sequential switching. J Immunol. (1993) 150:407–18.

31. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-

like receptors control activation of adaptive immune responses. Nat Immunol.

(2001) 2:947–50. doi: 10.1038/ni712

32. Pasare C, Medzhitov R. Control of B-cell responses by toll-like receptors.

Nature. (2005) 438:364–8. doi: 10.1038/nature04267

33. Barr TA, Brown S, Ryan G, Zhao J, Gray D. TLR-mediated stimulation of

APC: distinct cytokine responses of B cells and dendritic cells. Eur J Immunol.

(2007) 37:3040–53. doi: 10.1002/eji.200636483

34. Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. TLR

agonists selectively promote terminal plasma cell differentiation of B cell

subsets specialized in thymus-independent responses. J Immunol. (2007)

178:7779–86. doi: 10.4049/jimmunol.178.12.7779

35. Meyer-Bahlburg A, Rawlings DJ. Differential impact of toll-like receptor

signaling on distinct B cell subpopulations. Front Biosci. (2012) 17:1499–

516. doi: 10.2741/4000

36. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-

like antibody-producing lymphocytes. Nat Rev Immunol. (2013) 13:118–

32. doi: 10.1038/nri3383

37. Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. J

Immunol. (2015) 194:13–20. doi: 10.4049/jimmunol.1400844

38. Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective

effector functions. Nat Rev Immunol. (2011) 11:34–46. doi: 10.1038/nri2901

39. Savage HP, Baumgarth N. Characteristics of natural antibody-secreting cells.

Ann N Y Acad Sci. (2015) 1362:132-42. doi: 10.1111/nyas.12799

40. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol.

(2005) 5:606–16. doi: 10.1038/nri1669

41. Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annu

Rev Immunol. (2009) 27:267–85. doi: 10.1146/annurev.immunol.021908.

132607

42. Martin F, Kearney JF. B-cell subsets and the mature -preimmune repertoire.

Marginal zone and B1 B cells as part of a natural immune memory. Immunol

Rev. (2000) 175:70–9. doi: 10.1111/j.1600-065X.2000.imr017515.x

Frontiers in Immunology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 82829

https://doi.org/10.1186/cc1876
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1056/NEJMra1208623
https://doi.org/10.21037/atm.2016.08.59
https://doi.org/10.1038/nri3552
https://doi.org/10.1001/jamanetworkopen.2019.8686
https://doi.org/10.1172/jci.insight.98960
https://doi.org/10.1007/PL00002644
https://doi.org/10.4049/jimmunol.166.11.6952
https://doi.org/10.4049/jimmunol.171.2.909
https://doi.org/10.1189/jlb.0105017
https://doi.org/10.1189/jlb.0705413
https://doi.org/10.1038/nm0509-496
https://doi.org/10.1182/blood-2009-09-241083
https://doi.org/10.1128/IAI.01213-09
https://doi.org/10.4049/jimmunol.177.3.1967
https://doi.org/10.1160/TH08-07-0421
https://doi.org/10.1371/journal.pone.0192197
https://doi.org/10.1371/journal.pone.0081752
https://doi.org/10.3389/fimmu.2018.02532
https://doi.org/10.1002/eji.201141692
https://doi.org/10.4049/jimmunol.1700929
https://doi.org/10.1038/nri3795
https://doi.org/10.1002/(SICI)1521-4141(199904)29:04$<$1314::AID-IMMU1314$>$3.0.CO
https://doi.org/10.1084/jem.139.1.74
https://doi.org/10.1038/374546a0
https://doi.org/10.1016/0092-8674(88)90379-0
https://doi.org/10.1002/eji.1830200520
https://doi.org/10.1038/ni712
https://doi.org/10.1038/nature04267
https://doi.org/10.1002/eji.200636483
https://doi.org/10.4049/jimmunol.178.12.7779
https://doi.org/10.2741/4000
https://doi.org/10.1038/nri3383
https://doi.org/10.4049/jimmunol.1400844
https://doi.org/10.1038/nri2901
https://doi.org/10.1111/nyas.12799
https://doi.org/10.1038/nri1669
https://doi.org/10.1146/annurev.immunol.021908.132607
https://doi.org/10.1111/j.1600-065X.2000.imr017515.x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nicolai et al. Antibody Production in Polymicrobial Sepsis

43. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in

the early response against T-independent blood-borne particulate antigens.

Immunity. (2001) 14:617–29. doi: 10.1016/S1074-7613(01)00129-7

44. ShaWC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50

subunit of NF-kappa B leads to multifocal defects in immune responses. Cell.

(1995) 80:321–30. doi: 10.1016/0092-8674(95)90415-8

45. Cariappa A, Liou HC, Horwitz BH, Pillai S. Nuclear factor kappa B is required

for the development of marginal zone B lymphocytes. J Exp Med. (2000)

192:1175–82. doi: 10.1084/jem.192.8.1175

46. MacLennan IC, Toellner KM, Cunningham AF, Serre K, Sze DM, Zuniga

E, et al. Extrafollicular antibody responses. Immunol Rev. (2003) 194:8–

18. doi: 10.1034/j.1600-065X.2003.00058.x

47. Garcia De Vinuesa C, Gulbranson-Judge A, Khan M, O’Leary P, Cascalho

M, Wabl M, et al. Dendritic cells associated with plasmablast survival. Eur J

Immunol. (1999) 29:3712–21.

48. Fairfax KA, Corcoran LM, Pridans C, HuntingtonND, Kallies A, Nutt SL, et al.

Different kinetics of blimp-1 induction in B cell subsets revealed by reporter

gene. J Immunol. (2007) 178:4104–11. doi: 10.4049/jimmunol.178.7.4104

49. Berberich S, Dahne S, Schippers A, Peters T, Muller W, Kremmer E, et al.

Differential molecular and anatomical basis for B cell migration into the

peritoneal cavity and omental milky spots. J Immunol. (2008) 180:2196–

203. doi: 10.4049/jimmunol.180.4.2196

50. Berberich S, Förster R, Pabst O. The peritoneal micromilieu commits B cells

to home to body cavities and the small intestine. Blood. (2007) 109:4627–

34. doi: 10.1182/blood-2006-12-064345

51. Nguyen H-H, Tran B-T, Muller W, Jack RS. IL-10 acts as

a developmental switch guiding monocyte differentiation to

macrophages during a murine peritoneal infection. J Immunol. (2012)

189:3112–20. doi: 10.4049/jimmunol.1200360

52. Jacobs S, Sobki S, Morais C, Tariq M. Effect of pentaglobin

and piperacillin on survival in a rat model of faecal peritonitis:

importance of intervention timings. Acta Anaesthesiol Scand. (2000)

44:88–95. doi: 10.1034/j.1399-6576.2000.440116.x

53. ShrumB, Anantha RV, Xu SX, DonnellyM, Haeryfar SM,McCormick JK, et al.

A robust scoring system to evaluate sepsis severity in an animal model. BMC

Res Notes. (2014) 7:233. doi: 10.1186/1756-0500-7-233

54. Maier S, Traeger T, Entleutner M, Westerholt A, Kleist B, Hüser

N, et al. Cecal ligation and puncture versus colon ascendens stent

peritonitis: two distinct animal models for polymicrobial sepsis: two

distinct animal models for polymicrobial sepsis. Shock. (2004) 21:505–

11. doi: 10.1097/01.shk.0000126906.52367.dd

55. Traeger T, Koerner P, Kessler W, Cziupka K, Diedrich S, Busemann A,

et al. Colon ascendens stent peritonitis (CASP)–a standardized model for

polymicrobial abdominal sepsis. J Vis Exp. (2010) 18:2299. doi: 10.3791/2299

56. Zantl N, Uebe A, Neumann B, Wagner H, Siewert JR, Holzmann B, et

al. Essential role of gamma interferon in survival of colon ascendens stent

peritonitis, a novel murine model of abdominal sepsis. Infect Immun. (1998)

66:2300–9. doi: 10.1128/IAI.66.5.2300-2309.1998

57. Wang Z, Rui T, Yang M, Valiyeva F, Kvietys PR. Alveolar macrophages

from septic mice promote polymorphonuclear leukocyte transendothelial

migration via an endothelial cell Src kinase/NADPH oxidase pathway. J

Immunol. (2008) 181:8735–44. doi: 10.4049/jimmunol.181.12.8735

58. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. (2008)

20:149–57. doi: 10.1016/j.coi.2008.03.014

59. Madan R, Demircik F, Surianarayanan S, Allen JL, Divanovic S, Trompette

A, et al. Nonredundant roles for B cell-derived IL-10 in immune

counter-regulation. J Immunol. (2009) 183:2312–20. doi: 10.4049/jimmunol.

0900185

60. Wardemann H, Boehm T, Dear N, Carsetti R. B-1a B cells that link the innate

and adaptive immune responses are lacking in the absence of the spleen. J Exp

Med. (2002) 195:771–80. doi: 10.1084/jem.20011140

61. Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J, Storck S, et al. Multiple

layers of B cell memory with different effector functions. Nat Immunol. (2009)

10:1292–9. doi: 10.1038/ni.1814

62. Busse M, Traeger T, Potschke C, Billing A, Dummer A, Friebe E, et al.

Detrimental role for CD4+ T lymphocytes in murine diffuse peritonitis

due to inhibition of local bacterial elimination. Gut. (2008) 57:188–

95. doi: 10.1136/gut.2007.121616

63. Terasawa M, Nagata K, Kobayashi Y. Neutrophils and monocytes

transport tumor cell antigens from the peritoneal cavity to

secondary lymphoid tissues. Biochem Biophys Res Commun. (2008)

377:589–94. doi: 10.1016/j.bbrc.2008.10.011

64. Rangel-Moreno J, Moyron-Quiroz JE, Carragher DM, Kusser K, Hartson L,

Moquin A, et al. Omental milky spots develop in the absence of lymphoid

tissue-inducer cells and support B and T cell responses to peritoneal antigens.

Immunity. (2009) 30:731–43. doi: 10.1016/j.immuni.2009.03.014

65. Moon H, Lee JG, Shin SH, Kim TJ. LPS-induced migration of peritoneal

B-1 cells is associated with upregulation of CXCR4 and increased

migratory sensitivity to CXCL12. J Korean Med Sci. (2012) 27:27–

35. doi: 10.3346/jkms.2012.27.1.27

66. Manz RA, Thiel A, Radbruch A. Lifetime of plasma cells in the bone marrow.

Nature. (1997) 388:133–4. doi: 10.1038/40540

67. Chu VT, Beller A, Nguyen TT, Steinhauser G, Berek C. The

long-term survival of plasma cells. Scand J Immunol. (2011)

73:508–11. doi: 10.1111/j.1365-3083.2011.02544.x

68. Weinstein JS, Delano MJ, Xu Y, Kelly-Scumpia KM, Nacionales DC, Li Y, et

al. Maintenance of anti-Sm/RNP autoantibody production by plasma cells

residing in ectopic lymphoid tissue and bone marrow memory B cells. J

Immunol. (2013) 190:3916–27. doi: 10.4049/jimmunol.1201880

69. Cohen J. The immunopathogenesis of sepsis. Nature. (2002) 420:885–

91. doi: 10.1038/nature01326

70. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J

Med. (2003) 348:138–50. doi: 10.1056/NEJMra021333

71. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate

death and inflammation in sepsis. Nat Rev Immunol. (2006)

6:813–22. doi: 10.1038/nri1943

72. Brunner M, Krenn C, Roth G, Moser B, Dworschak M, Jensen-Jarolim

E, et al. Increased levels of soluble ST2 protein and IgG1 production

in patients with sepsis and trauma. Intensive Care Med. (2004) 30:1468–

73. doi: 10.1007/s00134-004-2184-x

73. Amlot PL, Hayes AE. Impaired human antibody response to

the thymus-independent antigen, DNP-Ficoll, after splenectomy.

Implications for post-splenectomy infections. Lancet. (1985)

1:1008–11. doi: 10.1016/S0140-6736(85)91613-7

74. Ochsenbein AF, Pinschewer DD, Odermatt B, Ciurea A, Hengartner H,

Zinkernagel RM. Correlation of T cell independence of antibody responses

with antigen dose reaching secondary lymphoid organs: implications for

splenectomized patients and vaccine design. J Immunol. (2000) 164:6296–

302. doi: 10.4049/jimmunol.164.12.6296

75. Altamura M, Caradonna L, Amati L, Pellegrino NM, Urgesi G, Miniello

S. Splenectomy and sepsis: the role of the spleen in the immune-

mediated bacterial clearance. Immunopharmacol Immunotoxicol. (2001)

23:153–61. doi: 10.1081/IPH-100103856

76. Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol. (2002) 2:323–

35. doi: 10.1038/nri799

77. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG,

Nacionales DC, et al. B cells enhance early innate immune responses during

bacterial sepsis. J Exp Med. (2011) 208:1673–82. doi: 10.1084/jem.20101715

78. Jones JM, Amsbaugh DF, Prescott B. Kinetics of the antibody response to type

III pneumococcal polysaccharide. II. Factors influencing the serum antibody

levels after immunization with an optimally immunogenic dose of antigen. J

Immunol. (1976) 116:52–64.

79. Amlot PL, Grennan D, Humphrey JH. Splenic dependence of the antibody

response to thymus-independent (TI-2) antigens. Eur J Immunol. (1985)

15:508–12. doi: 10.1002/eji.1830150516

80. Teixeira FM, Fernandes BF, Rezende AB, Machado RR, Alves CC, Perobelli

SM, et al. Staphylococcus aureus infection after splenectomy and splenic

autotransplantation in BALB/c mice. Clin Exp Immunol. (2008) 154:255–

63. doi: 10.1111/j.1365-2249.2008.03728.x

81. Fernandes BF, Rezende AB, Alves CC, Teixeira FM, Farias RE, Ferreira AP,

et al. Splenic autotransplantation restores IL-17 production and antibody

response to Streptococcus pneumoniae in splenectomized mice. Transpl

Immunol. (2010) 22:195–7. doi: 10.1016/j.trim.2009.12.002

82. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, et

al. Control of early viral and bacterial distribution and disease by natural

antibodies. Science. (1999) 286:2156–9. doi: 10.1126/science.286.5447.2156

Frontiers in Immunology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 82830

https://doi.org/10.1016/S1074-7613(01)00129-7
https://doi.org/10.1016/0092-8674(95)90415-8
https://doi.org/10.1084/jem.192.8.1175
https://doi.org/10.1034/j.1600-065X.2003.00058.x
https://doi.org/10.4049/jimmunol.178.7.4104
https://doi.org/10.4049/jimmunol.180.4.2196
https://doi.org/10.1182/blood-2006-12-064345
https://doi.org/10.4049/jimmunol.1200360
https://doi.org/10.1034/j.1399-6576.2000.440116.x
https://doi.org/10.1186/1756-0500-7-233
https://doi.org/10.1097/01.shk.0000126906.52367.dd
https://doi.org/10.3791/2299
https://doi.org/10.1128/IAI.66.5.2300-2309.1998
https://doi.org/10.4049/jimmunol.181.12.8735
https://doi.org/10.1016/j.coi.2008.03.014
https://doi.org/10.4049/jimmunol.0900185
https://doi.org/10.1084/jem.20011140
https://doi.org/10.1038/ni.1814
https://doi.org/10.1136/gut.2007.121616
https://doi.org/10.1016/j.bbrc.2008.10.011
https://doi.org/10.1016/j.immuni.2009.03.014
https://doi.org/10.3346/jkms.2012.27.1.27
https://doi.org/10.1038/40540
https://doi.org/10.1111/j.1365-3083.2011.02544.x
https://doi.org/10.4049/jimmunol.1201880
https://doi.org/10.1038/nature01326
https://doi.org/10.1056/NEJMra021333
https://doi.org/10.1038/nri1943
https://doi.org/10.1007/s00134-004-2184-x
https://doi.org/10.1016/S0140-6736(85)91613-7
https://doi.org/10.4049/jimmunol.164.12.6296
https://doi.org/10.1081/IPH-100103856
https://doi.org/10.1038/nri799
https://doi.org/10.1084/jem.20101715
https://doi.org/10.1002/eji.1830150516
https://doi.org/10.1111/j.1365-2249.2008.03728.x
https://doi.org/10.1016/j.trim.2009.12.002
https://doi.org/10.1126/science.286.5447.2156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nicolai et al. Antibody Production in Polymicrobial Sepsis

83. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J.

B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant

components of the protective response to influenza virus infection. J ExpMed.

(2000) 192:271–80. doi: 10.1084/jem.192.2.271

84. Hayakawa K, Hardy RR. Development and function of B-1 cells. Curr Opin

Immunol. (2000) 12:346–53. doi: 10.1016/S0952-7915(00)00098-4

85. Alugupalli KR, Michelson AD, Joris I, Schwan TG, Hodivala-

Dilke K, Hynes RO, et al. Spirochete-platelet attachment and

thrombocytopenia in murine relapsing fever borreliosis. Blood. (2003)

102:2843–50. doi: 10.1182/blood-2003-02-0426

86. Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, et al. Regulation of

B1 cell migration by signals through toll-like receptors. J Exp Med. (2006)

203:2541–50. doi: 10.1084/jem.20061041

87. Yang Y, Tung JW, Ghosn EE, Herzenberg LA. Division and differentiation of

natural antibody-producing cells in mouse spleen. Proc Natl Acad Sci USA.

(2007) 104:4542–6. doi: 10.1073/pnas.0700001104

88. Schmoeckel K, Traffehn S, Eger C, Potschke C, Broker BM. Full activation

of CD4+ T cells early during sepsis requires specific antigen. Shock. (2015)

43:192–200. doi: 10.1097/SHK.0000000000000267

89. Lanzavecchia A, Bernasconi N, Traggiai E, Ruprecht CR, Corti D, Sallusto

F. Understanding and making use of human memory B cells. Immunol Rev.

(2006) 211:303–9. doi: 10.1111/j.0105-2896.2006.00403.x

90. Gao N, Dang T, Yuan D. IFN-gamma-dependent and -independent initiation

of switch recombination by NK cells. J Immunol. (2001) 167:2011–

8. doi: 10.4049/jimmunol.167.4.2011

91. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, et al. DCs

induce CD40-independent immunoglobulin class switching through BLyS

and APRIL. Nat Immunol. (2002) 3:822–9. doi: 10.1038/ni829

92. Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, et al.

Platelet-mediated modulation of adaptive immunity. A communication link

between innate and adaptive immune compartments. Immunity. (2003) 19:9–

19. doi: 10.1016/S1074-7613(03)00177-8

93. Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive

immunity. Cell Immunol. (2005) 238:1–9. doi: 10.1016/j.cellimm.2005.

12.005

94. Wang F, Wang YY, Li J, You X, Qiu XH, Wang YN, et al. Increased

antigen presentation but impaired T cells priming after upregulation of

interferon-beta induced by lipopolysaccharides is mediated by upregulation of

B7H1 and GITRL. PLoS ONE. (2014) 9:e105636. doi: 10.1371/journal.pone.01

05636

95. Gurung P, Rai D, Condotta SA, Babcock JC, Badovinac VP,

Griffith TS. Immune unresponsiveness to secondary heterologous

bacterial infection after sepsis induction is TRAIL dependent.

J Immunol. (2011) 187:2148–54. doi: 10.4049/jimmunol.11

01180

96. Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a

primer. Crit Care Med. (2009) 37:291–304. doi: 10.1097/CCM.0b013e318

19267fb

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Nicolai, Pötschke, Schmoeckel, Darisipudi, van der Linde, Raafat

and Bröker. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 11 April 2020 | Volume 11 | Article 82831

https://doi.org/10.1084/jem.192.2.271
https://doi.org/10.1016/S0952-7915(00)00098-4
https://doi.org/10.1182/blood-2003-02-0426
https://doi.org/10.1084/jem.20061041
https://doi.org/10.1073/pnas.0700001104
https://doi.org/10.1097/SHK.0000000000000267
https://doi.org/10.1111/j.0105-2896.2006.00403.x
https://doi.org/10.4049/jimmunol.167.4.2011
https://doi.org/10.1038/ni829
https://doi.org/10.1016/S1074-7613(03)00177-8
https://doi.org/10.1016/j.cellimm.2005.12.005
https://doi.org/10.1371/journal.pone.0105636
https://doi.org/10.4049/jimmunol.1101180
https://doi.org/10.1097/CCM.0b013e31819267fb
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 30 April 2020

doi: 10.3389/fimmu.2020.00675

Frontiers in Immunology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 675

Edited by:

Vladimir Badovinac,

University of Iowa, United States

Reviewed by:

Philipp von Hundelshausen,

Ludwig Maximilian University of

Munich, Germany

Mathieu Paul Rodero,

UMR8601 Laboratoire de Chimie et

Biochimie Pharmacologiques et

Toxicologiques, France

*Correspondence:

Christophe Combadière

christophe.combadiere@upmc.fr

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 09 December 2019

Accepted: 25 March 2020

Published: 30 April 2020

Citation:

Baudesson de Chanville C,

Chousterman BG, Hamon P,

Laviron M, Guillou N, Loyher PL,

Meghraoui-Kheddar A, Barthelemy S,

Deterre P, Boissonnas A and

Combadière C (2020) Sepsis Triggers

a Late Expansion of Functionally

Impaired Tissue-Vascular

Inflammatory Monocytes During

Clinical Recovery.

Front. Immunol. 11:675.

doi: 10.3389/fimmu.2020.00675

Sepsis Triggers a Late Expansion of
Functionally Impaired
Tissue-Vascular Inflammatory
Monocytes During Clinical Recovery

Camille Baudesson de Chanville 1, Benjamin Glenn Chousterman 2, Pauline Hamon 1,

Marie Laviron 1, Noelline Guillou 1, Pierre Louis Loyher 1, Aida Meghraoui-Kheddar 1,

Sandrine Barthelemy 1, Philippe Deterre 1, Alexandre Boissonnas 1 and

Christophe Combadière 1*

1 Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France, 2 Inserm

UMRS 1160, Département d’Anesthésie-Réanimation, Hôpitaux Universitaires Lariboisière-Saint-Louis, Paris, France

Sepsis is characterized by a systemic inflammation that can cause an immune

dysfunction, for which the underlying mechanisms are unclear. We investigated the

impact of cecal ligature and puncture (CLP)-mediated polymicrobial sepsis on monocyte

(Mo) mobilization and functions. Our results show that CLP led to two consecutive phases

of Mo deployment. The first one occurred within the first 3 days after the induction of

the peritonitis, while the second phase was of a larger amplitude and extended up to a

month after apparent clinical recovery. The latter was associated with the expansion of

Mo in the tissue reservoirs (bone marrow and spleen), their release in the blood and

their accumulation in the vasculature of peripheral non-lymphoid tissues. It occurred

even after antibiotic treatment but relied on inflammatory-dependent pathways and

inversely correlated with increased susceptibility and severity to a secondary infection.

The intravascular lung Mo displayed limited activation capacity, impaired phagocytic

functions and failed to transfer efficient protection against a secondary infection into

monocytopenic CCR2-deficient mice. In conclusion, our work unveiled key dysfunctions

of intravascular inflammatory Mo during the recovery phase of sepsis and provided new

insights to improve patient protection against secondary infections.

Keywords: monocytes, sepsis, lung, secondary infection, phagocytosis

INTRODUCTION

Representing the major cause of admission and death in intensive care units (ICU) (1), sepsis
is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an
infection (2). Despite adequate treatments, over 20% of septic patients die within 28 days after their
admission to the ICU or within the first year after recovery, from secondary infections. Survivors
suffer from long-term chronic critical illness often associated with prolonged inflammation,
immune suppression, organ injury, and lean tissue wasting (3, 4). It is thought that dysfunctions in
both the innate and the adaptive immune system account for the poor outcome in sepsis.

Recent works have focused on understanding how the immune system dysfunctions may
contribute to long-term immunosuppression and prolonged sensitivity to secondary infections (4).
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In the early phase of sepsis, the expansion of immature myeloid
cells has attracted much attention (5). They display impaired
functions and are reminiscent of myeloid-derived suppressor
cells (MDSC) with potent immunosuppressive properties (6).
Early sepsis-impaired myeloid functions have been shown to
promote nosocomial infections (5, 7). The late phase of sepsis
is characterized by T cell exhaustion and a relative increase in
regulatory T cells (8, 9), a quantitative and qualitative defect of
dendritic cells (10), the deactivation of Mo, demonstrated by the
reduced expression of the activation marker HLA-DR (11, 12) as
well as the impaired production of cytokines (13). However, not
much is known about the kinetic of monocyte (Mo) mobilization
throughout sepsis. Two subsets of blood Mo are commonly
described in mice and humans: the classical or inflammatory
Mo, which are rapidly mobilized upon inflammation in a CC-
chemokine receptor 2 (CCR2)-dependent manner, and the non-
classical or patrolling Mo that patrols the intraluminal side of the
endothelium. In the mouse, inflammatory Mo are short lived,
express high levels of Ly6C and CCR2. They are precursors
of longer-lived patrolling Mo that lack Ly6C and CCR2 but
express higher CX3C-chemokine receptor 1 (CX3CR1) (14).
In a previous work, we showed that, soon after the induction
of a highly-lethal peritonitis, inflammatory Mo (Ly6Chigh Mo)
migrate from the bone marrow to the blood, adhere in a
CX3CR1-dependent way to the endothelium of the renal cortex
and protect the kidneys from inflammatory-triggered damages
(15). However, the model used in this study does not sufficiently
resemble the clinical setting of sepsis in humans, for which
the mortality rate is not as elevated. We thus chose to study
the distribution, the phenotype and the role of the Mo in a
sublethal murine model of peritonitis induced by cecal ligation
and puncture (CLP), during the sepsis and following a secondary
bacterial infection.

MATERIALS AND METHODS

Mice
All experiments and protocols were approved by the local
animal experimentation ethics committee validated by the
“Service Protection et Santé Animales, Environnement” with the
number APAFIS#4369-2016030218219240 v3. Specific pathogen-
free C57BL/6 mice were purchased from Janvier Labs (Le Genest,
Saint Isle, France). Ccr2−/−(#004999, JAX), Cx3cr1−/− (16),
Cx3cr1gfp/gfp (17), MacBlue or Csf1r-Gal4VP16/UAS-ECFP (18),
MacBlue x Cx3cr1gfp/+ mice were bred in our animal facility.
Age-matched mice (8–12 weeks old) were used for this study.

Polymicrobial Sepsis Induction
We used a cecal ligation and puncture model as previously
described (19). Mice were anesthetized and underwent
laparotomy. For Sham-operated mice, the cecum was
exteriorized and reinserted in the abdomen. For the CLP-
operated mice, sepsis was triggered by the ligature of one
third of the cecum and a double enterotomy with a 25-gauge
needle. A small amount of fecal material was extruded after
removing the needle and the cecum was reinserted in the
abdomen. After surgery, the animals were injected with a

saline solution and buprenorphine (Vetergesic, Oostkamp,
Belgium) for postoperative analgesia. For some experiments,
2 mg/kg of Dexamethasone (Intervet, Beaucouze, France)
or 10 mg/kg Enrofloxacine (Axience, Pantin, France) were
injected intraperitoneally 24 h after CLP and every 2 for 10 days.
Splenectomies were performed prior to CLP procedure. A small
upper-quadrant incision was made to expose the spleen. The
splenic vessels were tied up and the spleen was removed by
transecting the vessels just distal to the ligature.

Escherichia coli Lung Infection
The fluorescent Escherichia coli strain MG1655 ykgH::pTet-
dsRed (BGene Genetics, Grenoble, France) was grown overnight
in Luria-Bertani (LB) broth (Sigma-aldrich, St Louis, USA) then
transferred to fresh medium and grown for 4–5 h to mid-log
phase. The OD600 was adjusted to give the appropriate desired
inoculums, then centrifuged at 4,000 g for 15min. Bacterial
pellets were resuspended in 30 µl of sterile phosphate-buffered
saline (PBS) for each sample. To induce secondary E. coli lung
infection, 10 days after CLP, the trachea was exposed and 30
µl of a bacterial suspension (5 × 107 cfu/mouse for survival
studies, 5 × 109 cfu/mouse for adoptive transfer experiments,
or 1 × 107 cfu/mouse for all other studies) or sterile PBS were
administered intratracheally to sham- or CLP-operated mice 24
and 48 h before sacrifice. This procedure was performed under
Ketamine/Xylazine anesthesia.

Adoptive Transfer Experiments
Bone marrow cells were isolated 10 days after CLP or sham
procedure in WT mice. Mo were isolated after negative selection
removal of other cell types, with Ly6G, CD3, CD4, CD19,
NK1.1, and SiglecF-PE labeled antibodies. Marked cells were
then captured via a magnetic device for cell separation and anti-
PE magnetic beads, according to the manufacturer’s instructions
(Miltenyi Biotec, Paris, France). Thirty million monocytes
were injected intravenously in Ccr2−/− mice, and E.coli (5 ×

109 cfu/mouse) were injected intratracheally 30min later. The
proportions of Mo adoptively transferred from each condition
were controlled before transfer by flow cytometry and were
identical. Mo represented between 12 and 16% of myeloid cells
and were enriched by 70–80% after sorting. PMN population was
<1%. Mice were monitored every 12 h for survival and surviving
mice were used for quantification of protein in lung homogenates
at day 4.

Bronchoalveolar Lavage (BAL) and
Bacterial Load
BAL were performed on mice 48 h after the secondary lung
injection. The BAL performed with 3ml of sterile PBS was
diluted and plated on LB agar plates to obtain viable bacterial
counts (cfu/BAL).

Cell Isolation and Preparation
Heparinized blood samples were stained with antibodies and
erythrocytes were lysed with buffer containing 0.15M NH4Cl,
0.01mM KHCO3, and 0.1mM EDTA. Bone marrow cells
were harvested by flushing out the thighbone with PBS. Lung,
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spleen, kidney, and liver were harvested and digested in RPMI
medium (Gibco, Invitrogen, Cergy Pontoise, France) with 1
mg/ml collagenase IV (Sigma, St Quentin Fallavier, France),
0,1 mg/ml DNAse 1 (Roche, Boulogne Billancourt, France) for
30min at 37◦C and dissociated through a 40-µm-pore cell
strainer (Becton Dickinson, Rungis, France). Diluted suspension
cells were incubated with 1µg/ml purified anti-CD16/32 (clone
2.4G2, BD Biosciences) for 10min at 4◦C then surface staining
was performed with an additional 20min incubation with
appropriate dilution of the surface marker antibodies. Cell
suspensions were washed once in FACS buffer (0.5% BSA, 2mM
EDTA and PBS) and analyzed directly by flow cytometry.

Blood/Tissue Partitioning
Intravascular CD45 labeling was performed as previously
described (20, 21). Mice were injected intravenously with 2
µg of anti-CD45 (clone 30-F11, BD Biosciences). Two minutes
after injection, blood was drawn and the mice were sacrificed.
Harvested organs were bathed in a large volume of PBS. CD45
labeled cells in all tissues were considered to be intravascular
(CD45vivo+) and unlabelled cells (CD45vivo-) were considered
to be parenchymal.

Flow Cytometry
The panel of antibodies comprised: BUV395-CD11b (clone
M1/70), APC-Cy7-Ly6C (clone AL21), V450-Ly6G (clone
1A8), BV711-NK1.1 (clone PK136), BV605-CD11c (clone
HL3), BV510-I-A/I-E (cloneM5/114.15.2), BV786-SiglecF (clone
E50-2440), BUV737-CD80 (clone 16-10A1), APC-R700-CD86
(clone GL1), APC-PDL1 (clone MIH5), APC-IL6 (clone MP5-
20F3), BV421-TNFα (clone MP6-XT22), which were from BD
Biosciences, and FITC-CX3CR1 (clone SA011F11) and PE-Cy7-
CD64 (clone X54-5/7.1), which were from Biolegend. Relative
changes in cytosolic nitric oxide (NO) concentration were
monitored using the fluorescent nitric oxide probe DAF-FM
(Molecular Probes, Eugene, OR). The cells extracted from
the lungs were incubated with DAF-FM diacetate (5µM) for
30min at 37◦C. After an extensive wash, cells were stained
with fluorescent surface antibodies and NO production was
measured in monocytes by flow cytometry. For IL-6 and TNFα
staining, cells were preincubated for 3 h at 37◦C in RPMI
medium supplemented with GlutaMAX with a cell activation
cocktail containing Brefeldin A according to the manufacturer’s
instructions (BioLegend). After surface staining, the cells were
fixed in 4% paraformaldehyde for 20min, washed twice in
Perm/Wash solution (BD Biosciences), incubated for 10min
with 1µg/mL purified anti-CD16/32 in Perm/Wash at room
temperature, and incubated for 30min in Perm/Wash in the
presence of APC-anti-IL-6 (BD Pharmingen) or BV421-anti-
TNFα (BD Horizon). Flow cytometry acquisition was performed
on the flow cytometer FACS LSRFortessa X-20 R© (BD, Franklin
Lakes, NJ, USA) with DIVA R© Flow Cytometry software, and
the data was analyzed with FlowJo software (Tree Star, Inc,
Ashland, Or, USA). Absolute numbers were calculated by adding
to each vial a fixed number (10,000) of non-fluorescent 10-
µm polybead R© carbocylate microspheres (Polysciences, Niles,

IL, USA) according to the formula: No. Cells = (No. acquired
cells x 10,000)/(No. acquired beads) x dilution factor of cells.

In vitro Cell Stimulation
Lung cell suspensions (3 × 105 cells from Sham mice or 3 × 104

cells from CLP-operated mice) were plated in 96 well plates and
stimulated with either Cell Activation Cocktail PMA/Ionomycin
at 1X (Biolegend, San Diego, USA) or 2 ng/ml of LPS (Sigma-
Aldrich, St Louis, USA) in RPMI containing 10% FBS for 3 h at
37◦C with 5% CO2. Cells were recovered and washed with fresh
PBS 1X and then stained for flow cytometry analysis.

Phagocytosis Assay
For in vivo phagocytosis, a total of 1 × 107 cfu/mouse of DS-
Red fluorescent Escherichia coli were intratracheally injected 10
days after CLP surgery (as described previously). Phagocytosis
by lung cells was analyzed 24 and 48 h after infection by
flow cytometry. The fluorescence of phagocytic cells was also
observed in histological sections. Control mice were injected with
sterile PBS under the same experimental conditions. In vitro
phagocytosis was performed with lung cells suspension obtained
10 days after CLP mixed with 5 × 105 cfu of DS-Red fluorescent
Escherichia coli at a 1:5 ratio (cells/bacteria) during 4 h at 37◦

or 4◦C for the control experiment. Percentage of Ly6Chigh Mo
phagocytosis was determined by flow cytometry. In the 4◦C
control condition, phagocytosis index was <3%.

RNA Extraction and Quantitative
Real-Time PCR
Lungs were harvested 48 h after the E. coli lung infection 10
days post CLP. Cells were isolated as described above. Total
RNA was extracted using the RNeasy Mini Kit (QIAGEN, Les
ulis, France) according to the manufacturer’s instructions. RNA
concentration was determined by absorption at 260 nm. cDNA
synthesis was performed with SuperScript VILO cDNA Synthesis
Kit (Invitrogen). The polymerase chain reaction was performed
on an ABI prizm 7300 using Power SYBR Green PCRMaster Mix
(Life technologies, California, USA) and GAPDH was used as
the control gene. Primers for iNOS: F-CCAAGCCCTCACCTAC
TTCC; R-CTCTGAGGGCTGACACAAGG, IL-4: F- CCATAT
CCACGGATGCGACA; R- AAGCCCGAAAGAGTCTCTGC,
IL-10: F- GCTCTTACTGACTGGCATGAG; R- CGCAGCT
CTAGGAGCATGTG, IL-6: F- CGGCCTTCCTACTTCACAA;
R- GGTACTCCAGAAGACCAGAGGA, TGFB: F- atgctaaagag
gtcacccgc; R- GTATCAGTGGGGGTCAGCAG, CCL2: F- CCCC
ACTCACCTGCTGGTA; R- TTACGGGTCAACTTCACAT
TCAAA.

For transcript-level analysis, results were expressed as a fold
increase relative to sham condition at day 10.

Multi-Photon Imaging
Freshly explanted lungs were immobilized in an imaging
chamber perfused with oxygenated (95% O2 plus 5% CO2)
RPMI medium containing 10% FCS. The local temperature was
monitored and maintained at 37◦C. For some experiments, 10
µg of anti-CD31 (AF647; clone 390) were injected intravenously
2min before euthanasia. The Two-Photon Laser Scanning
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Microscopy (TPLSM) set-up used was a Zeiss 7MP (Carl Zeiss,
Germany) coupled to a Ti:Sapphire Crystal multiphoton laser
(Coherent ChameleonU, CA, USA) which provides 140fs pulses
of NIR light, selectively tunable between 680 and 1,050 nm
and an optical parametric oscillator (OPO-MPX, Coherent)
selectively tunable between 1,050 and 1,600 nm. The system
included a set of external non-descanned detectors in reflection
with a combination of a LP-600 nm followed by LP-462 nm and
LP-500 nm dichroic mirrors to split the light and collect the
ECFP with a 480/40 nm emission filter, EGFP with a 525/50 nm
emission filter. The excitation wavelength was 870 nm for the
NLO beam and 1,100 nm for the OPO beam.

Lung Protein Quantification
The mouse lung vasculature was gently flushed with an
intracardiac injection of PBS until complete blood clearance, then
lungs were collected and crushed in 1ml of PBS. The supernatant
of pulmonary crushed tissue was used to quantify protein level
by enzymatic assay, BCA protein assay (Pierce, Waltham, USA)
according to the manufacturer’s standard protocol.

Data Presentation and Statistical Analysis
The data are presented as mean ± standard error of the mean
(s.e.m.) of the indicated number of experiments. Groups were
compared with Prism software (Graphpad, San Diego, USA).
Statistical analyses were performed using two-tailed Student’s
t-test for two-group comparisons, or one-way and two-way
ANOVA tests with Bonferoni multiple comparison tests: ∗ for p
< 0.05; ∗∗ for p < 0.01; ∗∗∗ for p < 0.001; ∗∗∗∗ for p < 0.0001.
Kaplan-Meier survival curves were compared with a log-rank
test, where p < 0.05 was considered statistically.

RESULTS

Polymicrobial Sepsis Induces Two Distinct
Phases of Monocyte and of Neutrophil
Deployment in the Blood and Organs
We characterized the myeloid composition of the blood
and organs in a mouse model of peritonitis induced
by cecal ligation and puncture (CLP) which results in
polymicrobial sepsis and inflammation (15, 19). In the chosen
conditions, 100% of the mice suffered from severe weight
loss (Supplementary Figure 1A) and about 10% of the mice
succumbed in the first 4 days (Supplementary Figure 1B).
For surviving mice, normal weight was almost recovered
within 10 days following surgery (Supplementary Figure 1A).
Mo subsets and PMN distributions were analyzed by
flow cytometry using a conventional gating strategy
(Figure 1A) to identify classical Mo named here Ly6Chigh

Mo (defined as CD11b+/Ly6G−/CX3CR1+/Ly6Chigh),
non-classical Mo named here Ly6Clow Mo (defined as
CD11b+/Ly6G−/CX3CR1+/Ly6Clow) and PMN (defined as
CD11b+/Ly6G+/CX3CR1−). Eosinophils were excluded by
SiglecF expression, Natural Killer cells by NK1.1 and alveolar
macrophages by siglecF and CD64 (not shown). During the
acute phase, a few hours after sepsis induction (Figure 1B,
left panels), Ly6Chigh Mo numbers decreased in the bone

marrow (upper panels) and the spleen (upper middle panel)
and remained low until day 5. During this period, Ly6Clow Mo
numbers remained fairly constant in these tissues. The numbers
of blood Ly6Chigh and Ly6Clow Mo remained stable for the first
few days after sepsis (lower middle panel) whereas both Mo
subpopulations accumulated rapidly in the lungs (day 1–2; first
wave) as previously observed in the kidney (15), and returned
to baseline by day 5 (lower panel). Along with mice weight
recovery (a week after CLP induction), the numbers of Ly6Chigh

Mo increased dramatically in all tissues; bone marrow (∼2-fold),
blood (∼50-fold), spleen (∼3-fold) and lungs (∼20-fold) peaking
between day 10 and 15 and returning back to sham values only
by day 50. Again, variations in the number of Ly6Clow Mo were
modest during this time period (7–50 days) compared to that
of Ly6Chigh Mo. PMN underwent a kinetic of mobilization
similar to that of Ly6Chigh Mo in all four studied tissues
(Figure 1B, right panels). Between 4 and 10 days, the number
of alveolar macrophages dropped massively and recovered
thereafter (Supplementary Figure 1C). Strong accumulations
of both Ly6Chigh Mo and PMN were also observed during
weight recovery in the kidneys (∼5 and 10-fold, respectively)
and in the liver (∼40 and 30-fold, respectively) arguing for
a systemic accumulation of Mo and PMN in non-lymphoid
tissues (Figure 1C). Globally, polymicrobial sepsis induced two
distinct phases. The “early acute phase” is characterized by
extensive weight loss and death. This phase is associated with
a massive Mo and PMN mobilization to the lungs correlating
with a deep draining of the myeloid tissue reservoirs, the bone
marrow and the spleen. The second phase is characterized by
clinical improvements and weight recovery. This “recovery
phase” is associated with Mo and PMN expansion in the tissue
reservoirs, release in the blood and accumulation in peripheral
non-lymphoid tissues including the lungs, liver and kidneys.

Ly6Chigh Mo Deployment During the
Recovery Phase Requires Inflammatory
Pathways
We looked into characterizing what drives Mo and PMN
redistributions during weight recovery. Expanded populations of
both Mo and PMN in septic conditions are thought to originate
from bone marrow precursors (22), but in inflammatory
conditions the spleen can develop extra medullary myelopoiesis
(23). The accumulation of Ly6Chigh Mo in blood, lungs and
bone marrow were similar in mice both splenectomized
or not (Figure 2A). These data indicate that the spleen is
dispensable in CLP-elicited Mo deployment and suggest
that this phenomenon may rely solely on bone marrow.
Because both infections and inflammation are known to elicit
changes in myelopoiesis and mobilization, CLP-operated mice
were treated with antibiotics or anti-inflammatory drugs.
The broad-spectrum antibiotic treatment did not alter the
late accumulation of either Ly6Chigh Mo nor PMN in the
different tissues (Figure 2A and Supplementary Figure 2A).
Conversely, anti-inflammatory treatment with Dexamethasone
abrogated the CLP-triggered accumulation of Ly6Chigh

Mo, Ly6Clow Mo (Supplementary Figure 2B) and PMN
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FIGURE 1 | Polymicrobial sepsis induces two distinct phases of Mo and of neutrophil deployment in the blood and organs. (A) Representative flow cytometry gating

strategy for myeloid subsets in the lung: Eosinophils (Eosino), Alveolar Macrophages (AM), Polymorphonuclear Neutrophils (PMN), classical Mo (Ly6Chigh Mo),

non-classical Mo (Ly6Clow Mo). (B) Ly6Chigh, Ly6Clow Mo, and PMN numbers in the bone marrow, spleen, blood, and lungs as determined by flow cytometry at

different time points after CLP. Tissue-resident macrophages were excluded from analysis based on CD64 expression. The baseline was defined on the cell number

obtained in sham-operated mice. Each time point represents at least three independent experiments run with 6 to 12 mice. Statistical analyses compare the different

time points after CLP to baseline. (C) Numbers of Ly6Chigh Mo and PMN in the liver (left panel) and the kidneys (right panel), 10 days after sham- (white) and

CLP-operated (gray) mice. Values represent the mean and standard error of the mean (sem) of 6 mice per group from two independent experiments. Unpaired

Student’s t test was performed. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 2 | Ly6Chigh Mo deployment during the recovery phase requires inflammatory pathways. (A) Numbers of Ly6Chigh Mo in the blood, lungs and bone marrow

determined by flow cytometry in sham and septic mice, 10 days after CLP and treatments. Splenectomies were performed a few minutes before the CLP. Antibiotic or

Dexamethasone treatments were injected 24 h after CLP. Values represent the mean and standard error of the mean of 9–14 mice per group from two independent

experiments. Two-way ANOVA tests with Bonferoni multiple comparison tests compare each group (light gray) to the CLP controls (dark gray); **** for p < 0.0001. (B)

Numbers of Ly6Chigh Mo in the blood, lungs, and bone marrow determined by flow cytometry, 10 days after sham- and CLP-operated WT (n = 12), Ccr2−/− (n = 6),

and Cx3cr1−/− (n = 8) mice from at least two independent experiments. Two-way ANOVA tests with Bonferoni multiple comparison tests compare chemokine

receptor deficient mice to the WT mice, * for p < 0.05; *** for p < 0.001; **** for p < 0.0001.

(Supplementary Figure 2A) in the blood and the lungs
but had no effect on bone marrow. We next thought to
identify inflammatory chemokine receptors leading to Mo
mobilization (Figure 2B). As previously observed, Ccr2−/−

or Cx3cr1−/− sham operated mice displayed less classical Mo
in the lungs (20, 24). In septic mice, monocytosis was totally
or partially reduced in the blood and the lungs of Ccr2−/−

or Cx3cr1−/− mice, respectively. The absolute number of the
Ly6Chigh Mo in the bone marrow remained unaffected by

these chemokine receptor deficiencies (Figure 2B). CCR2 and
CX3CR1 deficiency did not affect PMN or alveolar macrophage

numbers compared toWTmice (Supplementary Figures 2C,D),
confirming the selective role of these two chemokine axes in
the regulation of Mo deployment to the lungs during the
recovery phase.

Late-Expanded Mo Display an Altered
Phenotype and Remain Intravascular in the
Lungs of Septic Mice
We next characterized the phenotype of the Mo accumulating
into the lungs during the recovery phase of sepsis. Ten days
after CLP (Figure 3A), MHC class II expression on Ly6Chigh Mo
was reduced by more than 50%, as previously reported (11, 12).
CX3CR1 expression was reduced by 20% compared to sham-
operated mice, whereas expression of the EGFP reporter from
Cx3cr1egfp/+ mice was severely reduced, as previously reported
(25, 26). Conversely, CD64 expression doubled on Ly6Chigh Mo
from CLP-operated mice and CD11b expression was modestly
increased. CD62L expression remained unchanged. In order to
further investigate the tissue localization of Mo in the lung, we
performed blood/tissue partitioning using in vivo CD45 labeling
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FIGURE 3 | Late-expanded Mo display an altered phenotype and remain intravascular in the lungs of septic mice. (A) Overlay of flow cytometric surface marker

expression gated on Ly6Chigh Mo in the lungs of sham- (black line) and CLP-operated (dotted line) mice, 10 days after CLP. Histograms represent mean fluorescence

intensity (MFI) of surface marker expression: MHC-II, CX3CR1, GFP, CD64, CD11b, and CD62L. Values represent the mean and standard error of the mean of 15

sham- and 12 CLP-operated mice from three repeated experiments. The GFP fluorescent reporter of Cx3cr1 expression was performed on 9 sham- and 9

CLP-operated Cx3cr1gfp/+ mice. Unpaired Student’s t test was performed. (B) Representative overlayed dot plots of in vivo CD45 staining (blue) gated on blood

(upper panels) and lung (lower panels) of Ly6Chigh Mo. Background staining shown in black was measured in mice not injected with the anti-CD45. (C) Representative

images of two-photon microscopy of explanted lungs from sham- or CLP-operated MacBlue x Cx3cr1gfp/+ mice. Lung vasculature is visualized using anti-CD31

staining (red), and Mo were observed using ECFP reporter. Inserts represent a 5x zoom showing a few alveolar macrophages (AM) in the alveolar lumen (black space)

in a sham-operated mouse and intravascular Mo in a CLP-operated mouse. ***p < 0.001; ****p < 0.0001.
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FIGURE 4 | Mo of the late recovery phase of sepsis display an altered phenotype and fail to protect from a secondary infection. (A) Survival of sham- or

CLP-operated Cx3cr1gfp/+ mice with intratracheal injection of Escherichia coli on day 10 after surgery (n = 8–12 per group). (B) Total lung weight of sham- and

CLP-operated C57Bl6 mice at 48 h after E. coli secondary infection. Unpaired Student’s t test was performed. (C) Bacterial colonization of bronchoalveolar lavages

(Continued)
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FIGURE 4 | (BAL) from sham- and CLP-operated C57Bl6 mice at 48 h after E. coli secondary infection. Unpaired Student’s t test was performed. (D) Survival of

sham− or CLP-operated Cx3cr1gfp/gfp (n = 12 per group) and Ccr2−/− (n = 8–10 per group) mice with intratracheal injection of Escherichia coli on day 10 after

surgery. (E) Histogram represents the percentage of death in Ccr2−/− mice after transfer of purified Mo from Sham- or CLP-operated mice at 4 days after E. coli

infection 5 × 109 cfu/mouse (n = 16 mice from three repeated experiments). p was determined using a chi-square test between the mice that received adoptive

transfer. (F) Protein quantification in lung homogenates after adoptive transfer and E.coli pulmonary infection in Ccr2−/− surviving mice. Unpaired Student’s t test was

performed. (G) Mean fluorescence intensity (MFI) of CX3CR1 surface marker of lung Ly6Chigh Mo from sham- and CLP-operated mice at day 10. Cells are stimulated

or not with LPS or PMA-Ionomycin in vitro. Values represent the mean +/– Sem of 10 mice from two repeated experiments. (H) Percent of TNFα-(left panel) or

IL-6-(right panel) producing lung Ly6Chigh Mo (left panel) from sham- and CLP-operated mice at day 10. Values represent the mean +/– Sem of 4–6 mice. One-way

ANOVA tests with Bonferoni multiple comparison tests compare Sham and CLP, respectively. (I) Percent of NO-producing lung Ly6Chigh Mo from sham- and

CLP-operated mice at day 10. Values represent the mean +/– Sem of 4–6 mice. One-way ANOVA tests with Bonferoni multiple comparison tests compare Sham and

CLP, respectively. (J) Representative dot plot (out of 8 mice from two repeated experiments) of phagocytic Ly6Chigh Mo percentage, 4 h after in vitro co-culture

between lung cells suspension and fluorescent E. coli. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

(20). All bloodMo (Figure 3B, upper panels) and more than 95%
of lung Mo (Figure 3B, lower panels) were strongly positive for
CD45 staining either in sham- or CLP-operated mice, indicating
that the Mo reside exclusively in the lung vasculature and did
not infiltrate the tissue even in septic mice. Similar results were
obtained with Ly6Clow Mo (Supplementary Figure 3A) and
PMN (Supplementary Figure 3B). In the MacBlue transgenic
mouse, the Csf1r promoter lacks the 150 bp trophoblast and
osteoclast-specific transcription start sites, driving the expression
of ECFP on classical and non-classical Mo, alveolar macrophages
with a lower intensity and a fraction of granulocytes, but
not in lung interstitial macrophages (18, 20). Imaging fresh
explanted lungs of sham- and CLP-operated MacBlue mice
using multiphoton microscope after in vivo labeling of the
vasculature using fluorescent anti-CD31 (Figure 3C), confirmed
their anatomical localization. In the lungs of sham-operated
MacBlue mice, a few small cyan round-shaped Mo (ECFP+)
were detected in the vasculature (upper left picture and 5X
magnification below) escorted by larger round-shaped ECFP+
alveolar macrophages that stayed exclusively in the alveolar
lumen. In septic mice, ECFP+ Mo strongly accumulated within
the lung capillaries (upper right picture and magnification
below) whereas alveolar macrophages were barely detectable
(Figure 3C), in accordance with the flow cytometry data
(Supplementary Figure 1). Both flow cytometry and microscopy
analyses revealed that during the recovery phase of sepsis,
inflammatory Mo with altered expression of cell activation
markers, such as MHC class II, CX3CR1 and CD64, invaded the
lungs (and probably the kidneys and liver) but remained fully
intravascular. They do not infiltrate the parenchymal and stromal
tissues, nor the alveolar space.

Mo of the Late Recovery Phase of Sepsis
Display an Altered Phenotype and Fail to
Protect From Secondary Infection
Septic patients have a higher risk of developing secondary
nosocomial infections (27). To determine whether mice are more
susceptible to pneumonia after sublethal CLP, they were infected
with E. coli by intratracheal injection (10 days post-CLP) and the
survival rates of each group were evaluated (Figure 4A). Sham-
operatedmice were fully resistant to the second infection whereas
about 20% of septic mice died during the first week following the

bacteria inoculation. This excess of mortality was associated with
an increased lung weight (Figure 4B) and bacterial lung load in
bronchoalveolar lavage (BAL) (Figure 4C). These results confirm
that sepsis triggers an increased susceptibility and severity to
secondary infections. Because Mo recruitment is associated with
disease severity in chronic inflammation (28), we used Ccr2−/−

and Cx3cr1egfp/egfp to study the impact of Mo mobilization in
response to the secondary infection. Ccr2−/− mice were more
likely to die after CLP with about 46% mortality by day 10 and
succumbed rapidly to secondary infection with 100% of death by
day 4 post-secondary infection (Figure 4D). Cx3cr1egfp/egfp mice
also displayed increased mortality in both primary (20%) and
secondary infection (40%). Susceptibility to secondary infection
was thus inversely proportional to the extent of Mo expansion
observed in CCR2- and CX3CR1-deficient mice, suggesting
a protective role of Mo in these infectious conditions. We
postulated that Mo accumulated in the vasculature of septic mice
may not be as efficient to protect from secondary infection as Mo
from control mice. Adoptive transfer in Ccr2−/− mice is a model
to evaluate the functional role of Mo (29, 30). We thus compared
the survival of Ccr2−/− mice to lethal E.coli infection after Sham-
and CLP- Mo adoptive transfer. In Ccr2−/−, E.coli infection led
to 100% of mortality after 4 days (Figure 4E). Adoptive transfer
of Mo purified from sham-operated mice rescued about 62% of
the mice, whereas only 25% were rescued after being transferred
with Mo purified from CLP-operated mice. Coincidently, protein
levels in lung homogenates of surviving mice were higher in
mice transferred with Mo purified from CLP-operated mice
compared to those of mice that received Mo purified from Sham-
operated mice (Figure 4F), possibly indicating an increased
vessel permeability due to increased microvascular lung lesions.
In order to assess endotoxin tolerance (31) that may render
cells unresponsive when re-challenged with lipopolysaccharide
(LPS) produced by fecal microbiota induced by the CLP surgery,
Mo purified from either sham- or CLP-operated mice were
challenged ex vivo with LPS (Figures 4G–I). As predicted, it
triggered a strong downmodulation of the CX3CR1 (Figure 4G)
on Mo from sham-operated mice, as shown in Figure 3A. The
chemical stimulation (PMA/ionomycine) used as an activation
that is TLR-independent also triggered a strong downmodulation
of CX3CR1. LPS triggered a strong production of TNFa and
IL-6 (Figure 4H) in Mo from both sham- and CLP-operated
mice in comparison to PMA/ionomycine stimulation. Nitric
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FIGURE 5 | Primary sepsis hampers Mo activation without altering Mo infiltration. (A) mRNA levels in lung cells measured by qPCR compared to sham-operated

mice. Unpaired Student’s t test was performed to compare Sham and CLP-operated mice in presence or absence of E. coli. (B) The left panels are representative dot

plots of lung infiltrated Ly6Chigh Mo from sham-operated mice injected with PBS or after E. coli infection. The histogram (right panels) represents the total numbers of

Ly6Chigh Mo per mg of lung from sham- or CLP-operated mice, 24 and 48 h after E. coli infection or PBS injection. Black bars represent the CD45vivo− infiltrated cells

and gray bars are CD45vivo+ vascular cells. Values represent the mean +/– sem of 10 mice per group. (C) Overlay of flow cytometric surface marker expression

gated on lung vascular (CD45vivo +) and infiltrated (CD45vivo − ) Ly6Chigh monocytes in sham- (thick black lines) and CLP- (thin black line) operated mice, 48 h post E.

coli infection. Mean fluorescence intensity (MFI) of CMH II, CD80, CD86, and PDL1 surface markers on infiltrated CD45vivo− (light gray) or vascular CD45vivo+ (dark

gray) Ly6Chigh Mo in the lungs of sham- (thick black lines) and CLP- (thin black line) operated mice 48 h after second infection. *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.
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FIGURE 6 | In septic mice, infiltrated Ly6Chigh Mo displays defective phagocytic activity. (A) Dot plot showing Ly6Chigh Mo in lung from sham- (upper panels) and

CLP- (lower panels) operated mice after PBS (left panels) or 24 h (middle panels) and 48 h (right panels) post E. coli. Quadrant 1 represents vascular non-phagocytic

cells (CD45vivo+ E. coli− ), quadrant 2 identifies infiltrated non-phagocytic cells (CD45vivo− E. coli− ) and quadrant 3 represents the infiltrated phagocytic monocytes

(CD45vivo− E. coli+ ) in lungs. (B) Numbers and proportions of lung infiltrated phagocytic Ly6Chigh Mo (quadrant 3) at 24 or 48 h post E. coli pulmonary infection in

sham- and CLP-operated mice (n = 8 mice from three repeated experiments). Unpaired Student’s t test was performed to compare Sham and CLP-operated mice in

presence of E. coli. (C) Representative overlay (left panel) and mean fluorescence intensity of FITC (right panel) for NO production of Ly6Chigh Mo 48h post E. coli

pulmonary infection in sham- (black section) and CLP-(gray section) operated mice by flow cytometry (n = 6–8 mice from two repeated experiments). FMO is

represented in the overlay by a thick gray line. Unpaired Student’s t test was performed to compare Sham and CLP-operated mice in presence of E. coli. *p < 0.05;

**p < 0.01; ***p < 0.001.

oxide (NO) production by Ly6Chigh Mo was measured using a
photo-stable fluorescent probe named DAF-FM. No additional
NO production was induced after LPS or PMA/ionomycine
stimulation. Globally, LPS stimulation onMo fromCLP-operated
mice was similar to that observed on Mo from sham-operated
mice, indicating that Mo from CLP-operated mice were still

responsive to LPS. In addition, Mo were challenged ex vivo
with E. coli fluorescently labeled for phagocytic activity that was

measured in a flow cytometry assay (Figure 4J). Again, lung Mo

from CLP-operated mice (and thus exposed to fecal E. coli) were
as efficient asMo from sham-operatedmice to phagocyte bacteria
in vitro.

Primary Sepsis Hampers Mo Activation
Without Altering Mo Infiltration
We then analyzed transcript levels of chemokines and cytokines
in the whole lung to identify potential alterations leading to
increased susceptibility and severity to secondary infections
in septic mice (Figure 5A). Ten days after surgery, only Ccl2
and Il4 transcript levels were statistically more abundant in
the lungs of CLP-operated mice compared to those of sham-
operated mice. E. coli infection triggered a massive increase in
transcript levels for Ccl2, iNos or Il6, a modest increase in Il10
transcripts but totally abrogated IL4 transcript expression in
both Sham- and CLP-operated mice. It had no effect on Tgfß
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transcripts. Ccl2 transcript levels in septic mice were unaffected
by E. coli injection. Interestingly, the lungs of septic mice had
less abundant transcripts for iNos and Il6 than sham-operated
mice. We thought that the altered cytokine environment
observed 10 days after CLP may be associated with a defect
in Mo deployment. We studied the distribution of Ly6Chigh

Mo between the lung vasculature and the parenchyma after
E. coli infection using CD45 intravascular staining (Figure 5B,
left panel). In sham-operated mice, E. coli injection triggered
a strong accumulation of vascular (CD45vivo+) Ly6Chigh Mo
and a strong tissue infiltration (CD45vivo−) at 24 h post E.
coli infection (Figure 5B, right panel). Although Mo did not
accumulate further between 24 and 48 h, the relative proportion
of Mo that infiltrated the lung increased. As previously described
in Figure 1, septic mice at day 10 post-CLP already displayed
increased numbers of Mo residing in the lung vasculature
compared to Sham-operated mice before the second infection.
Forty-eight hours after E. coli infection, no additional Mo
accumulation was detected when compared to CLP-operated
mice injected with PBS. Mo from septic mice extravasated
in the lung parenchyma (CD45vivo−) in similar proportion
than Mo from sham-operated mice, suggesting that sepsis
does not alter the capacity of Mo to infiltrate into the
lung tissue.

We thus compared the phenotype of infiltrated and vascular
Ly6Chigh Mo in lungs 48 h after secondary infection in sham-
and CLP-operated mice (Figure 5C). Representative overlays
(upper panels) and mean fluorescence intensity analysis (lower
panels) revealed that in sham- or CLP-operated mice, all
activation markers tested were more intensively expressed on
infiltrated (CD45vivo−) compared to on vascular (CD45vivo+)
Mo. However, both vascular and infiltrated Mo from septic mice
displayed severely reduced expression of MHC-II and of the co-
stimulation markers CD80, CD86, and PDL-1. Globally, these
data indicate that the increased susceptibility and severity of
septic mice to secondary infections is associated to a defective
cytokine environment and a limited Mo activation rather than
to an altered Mo infiltration.

In Septic Mice, Infiltrated Ly6Chigh Mo
Display Defective Phagocytic Activity
We next investigated the functional defect of septic Mo.
Phagocytic Ly6Chigh Mo were quantified by flow cytometry
(Figure 6A). Twenty-four hours after E. coli infection, very few
infiltrated Ly6Chigh Mo (CD45vivo−) were associated with E. coli
staining (CD45vivo− E. coli+) in sham and CLP-operated mice
(middle upper and lower panels). At 48 h (right upper and lower
panels), many more Ly6Chigh Mo were infiltrated and positive
for E. coli in both control and septic mice. Quantitative analysis
(Figure 6B) revealed that E. coli phagocytosis by Ly6Chigh Mo
was reduced, in both absolute number and proportion, in septic
mice compared to control mice. The NO production was reduced
by about 50% in septic compared to control mice (Figure 6C).
Altogether, these data indicate that both Mo phagocytic and
antibacterial activities are reduced during late sepsis.

DISCUSSION

Although initially underestimated, the onset of severe
immunosuppression in patients with sepsis is now a
well-established phenomenon (1, 32). Most patients now
survive the initial inflammatory phase thanks to the timely
administration of antibiotics and efficient life-support systems
but suffer from prolonged recurrent secondary infections
(27). Indeed, their survival is impaired by the increased
risk of recurrent infections, heart failure, and additional
debilitating conditions (33). Reasons for such deteriorations are
multifactorial but post-septic immune alterations are suspected
to have a major impact on patient health. Understanding the
kinetic of inflammatory events leading to immunosuppression
and the development of secondary infections is important for the
development of therapeutic strategies.

Here we used a sublethal polymicrobial sepsis murine model
followed by bacterial Escherichia Coli-induced pneumonia to
investigate the role of Ly6Chigh Mo cells during the recovery
phase following acute sepsis. Our study revealed a two-step Mo
deployment after CLP; the first wave was associated with early
acute clinical events (severe weight loss and death) and the
second appeared much later during the clinical recovery of the
mice, with no obvious signs of disease. Indeed, CLP triggered
an early and transitory mobilization of Mo and PMN in the
lungs. During the recovery phase, a secondary deployment of
Mo and PMN was observed in all non-lymphoid organs studied.
This secondary wave was of larger amplitude and lasted longer
than the primary wave of the acute phase. Previous works had
already demonstrated a strong mobilization of myeloid cells
CD11b+GR1+ in the blood and the bone marrow 1 week post
CLP (34). Interestingly, we demonstrated that the deployed
Mo remained exclusively localized to the vasculature of the
lungs without accumulating in the lung parenchyma. Anti-
inflammatory drugs, but not the antibiotic treatment, abrogated
Mo mobilization to the lungs, showing that this accumulation
was driven by persistent inflammatory signals independent of
the infectious state of the mice. This phenomenon was observed
in the blood and in several organs (if not all). These data and
the myeloid redistribution indicate that even though the mice
recovered from the acute infection and appeared healthy, they
were still affected at the cellular level by the primary bacterial
exposure. The reason for this recurrent chronic inflammation
that leads to a secondary, stronger wave is unclear, but it may
be associated with a systemic activation caused by organ failure
occurring as a consequence of the first infection.

Studies have shown that Ly6Chigh Mo are involved in
controlling inflammation caused by gram-negative pneumonia
and abdominal infections (35, 36). Accordingly, our previous
work uncovered that Ly6Chigh Mo in the kidney play a protective
role during the early phase of sepsis, involving anti-inflammatory
pathways such as IL1-RA (15). However, the role of Ly6Chigh

Mo in lungs during late sepsis had not been described until
now. The role of Mo margination to the vasculature of non-
lymphoid organs during the recovery phase remained unclear.
However, the genetic deletion of CCR2 blocks Mo egress from
the BM and the deletion of CX3CR1 impairs their retention
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in the lung vasculature, hence both reducing the number of
marginating Mo (37, 38) in the lungs. These deficiencies are
associated with increased death rates, which would argue in
favor of a protective role of Mo also during the later phase.
Alternatively, Mo accumulation in the lung capillaries could
reflect a bystander effect of the sepsis-induced monocytosis.
Live imaging of explanted lungs suggested that ECFP monocytes
trapped in the lung capillaries were relatively sessile either in
Sham- and CLP-operated mice, indicating no change in their
migratory behaviors during sepsis. Our results showed that the
adoptive transfer of Ly6Chigh Mo from septic mice to CCR2-
deficient mice reduced organ failure and improved survival less
efficiently than Mo from sham-operated mice, suggesting that
the protective role is impaired in Mo from CLP-surviving mice.
Several function markers on Mo are associated with their defect
to efficiently control inflammation but also to contain potential
secondary infection here caused by E. coli airway inhalation. The
immunocompromised phase in sepsis is often associated with
endotoxin tolerance (31), arguing that initial bacterial endotoxin
activation (here the exposition to the fecal microbiota induced by
the CLP surgery) renders cells unresponsive when rechallenged
with LPS. Our data showed that Ly6Chigh Mo from septic mice
were fully responsive to LPS in terms of cytokine production and
surface markers, suggesting a limited endotoxin tolerance effect.
A decrease in the expression of MHC-II and CX3CR1 has been
described and asscociated with defectiveMo activation and sepsis
severity (39, 40). The increased expression of integrin CD11b
is also consistent with a margination of cells to the vascular
endothelium (41). In our results, the cytokine profiles of the
lung environment showed an increase of Ccl2 and Il4 transcripts,
10 days after sepsis. Unsurprisingly, CCL2 is involved in Mo
mobilization and IL-4 participates in T cell polarization toward
a Th2 phenotype (34). After secondary infection, transcript
production for iNOS, IL-6, and IL-10 was increased while Il4
was strongly reduced in sham and CLP-operated mice. Previous
studies have shown a weakened lung bacterial clearance in two-
hit models of sepsis (42, 43). We observed a smaller increase
of iNos and Il6 transcripts for septic mice compared to sham-
operated mice after the secondary infection. Again, iNOS and
IL-6 are involved in the phagocytic function of cells and in
bacterial clearance (44, 45). Thus, these molecules may be linked
to the impaired Mo function and the increased susceptibility to
infection of the mice.

Wolk et al. showed that decreased expression of MHC-II
and CD86 on Mo after LPS stimulation limited their ability to
induce T-cell proliferation (46). In addition, immune tolerance
during septic shock has been associated with abnormalities
of the costimulatory pathway (47). Interestingly, we identified
a decrease in PDL1 expression on infiltrated septic Ly6Chigh

Mo compared to sham Mo, whereas we did not observe any
difference in PD1 expression on any of the cell types studied
(data not shown). Nevertheless, blocking PD1 or PDL1 inhibitory
signals are shown to be beneficial for survival in murine sepsis
models (48, 49). This can also be observed in septic patients
where the expression of PD1 and PDL1 by Mo is increased, but
more modestly in those who do not survive (50). Recent work
from Bianchini et al. shows that PDL-1 identifies non-classical

Mo (here Ly6Clow Mo) and regulates T cell survival in tertiary
lymphoid organs (51). Here we observed that PDL-1 expression
was upregulated on Ly6Chigh Mo while infiltrating the alveolar
space upon E. coli infection. It is possible that a higher expression
of PDL1 on Mo participate in an infectious context to the fine
regulation of the immune response. Whether a beneficial effect
of PDL-1 blockade is carried out by infiltrating classical or non-
classical Mo remains to be explored. Our results indicate that an
alteration of the balance between costimulatory and regulatory
pathways could participate in the dysregulation of the innate
immune response leading to the inefficient control of secondary
infections, and could also reduce its efficacy in protecting against
tissue dysfunction.

Overall, we conclude that during the recovery phase following
acute sepsis, a recurrent systemic inflammation independent of
the infectious status occurs. This inflammatory process leads to
a long-term deployment of functionally impaired inflammatory
Mo to the vasculature of non-lymphoid organs, which fail to favor
lung recovery and protection against secondary infections.
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Supplementary Figure 1 | Effect of polymicrobial sepsis on body weight,

survival, and kinetics of alveolar macrophages. (A) Percentage of body weight loss

in CLP (dotted line) and Sham-operated mice normalized to 100%. Animal weight

was measured before surgery and on day 1, 2, 3, 7, and 10. (B) Survival of sham-

or CLP- operated Cx3cr1gfp/+ mice after surgery. The survival study was carried

out on 25 mice for each group. (C) Numbers of Alveolar Macrophage (AM)

determined by flow cytometry at different time points after CLP. The time zero was

defined based on the cell number obtained in sham-operated mice. Each time

point represents at least three independent experiments run with 6 to 12 mice.

Supplementary Figure 2 | Neutrophil (PMN) and alveolar macrophage (AM)

numbers are not impacted by treatments and CX3CR1 or CCR2 deletion. (A)

Numbers of PMN in the blood, lungs, and bone marrow determined by flow

cytometry in sham and septic mice, 10 days after CLP and treatments.

Splenectomies were performed a few minutes before the CLP. Antibiotic or

Dexamethasone treatments were injected 24 h after CLP. Values represent the

mean +/– sem of 10 mice per group from two independent experiments. (B)

Numbers of Ly6Clow in the lungs determined by flow cytometry in sham and septic

mice, 10 days after CLP and antibiotic treatments. (C) Numbers of PMN and

d-AM in the blood, lung and bone marrow determined by flow cytometry, 10 days

after sham- and CLP-operated WT (n = 10), Ccr2−/− (n = 6) and Cx3cr1−/− (n =

8) mice from at least two independent experiments.

Supplementary Figure 3 | Late-expanded myeloid cells remain intravascular in

the lung of septic mice. (A,B) Proportion of Ly6Clow CD45vivo+ Mo and PMN

CD45vivo+ in lungs 10 days after sham- or CLP-operated mice.
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Introduction: The activity and regulation of inflammasome is receiving increasing
attention in septic shock. Moreover, there is a growing body of evidence suggesting
that mitochondrial DNA (mtDNA) can play a role as biomarker of disease severity and
even mortality both in adults and children in critically ill setting. However, no data are
available on the amount of circulating mtDNA and inflammasome gene expression in
multi-drug resistant (MDR) bacteria septic shock. For this reason, the aim of this study
was to determine whether plasma mtDNA levels and inflammasome gene expression in
monocytes could be related to severity in patients admitted to intensive care unit (ICU)
with septic shock due to MDR pathogens.

Materials and Methods: Peripheral blood mononuclear cells (PBMC) and plasma were
isolated from up to 20 ml of venous blood by density gradient centrifugation in patients
admitted to ICU with the diagnosis of septic shock due to MDR-bacteria. Then, CD14+
monocytes were sorted, and RNA and DNA were extracted. NLRP3, PYCARD, AIM2
and NAIP expression level was analyzed by RT-PCR. Plasma circulating mtDNA levels
were quantified by digital droplet PCR. Basal and outcome characteristics of the patients
were collected. Age-matched healthy subjects were chosen as controls.

Results: Nineteen patients with septic shock and 20 healthy subjects were enrolled
in the study. A small trend toward an increased expression of inflammasome genes
was observed in septic shock patients, who also displayed a marked tendency to
an increased expression of IL-18 and IL-1β genes. Circulating mtDNA levels were
significantly higher in septic shock patients if compared to healthy subjects, and patients
who died in ICU were characterized by higher level of mtDNA if compared to those
who were dismissed after 7 days. No correlations were found between mtDNA and
inflammasome level and other clinical variables.
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Conclusion: Despite many limitations, our data suggest that in patients with septic
shock caused by MDR pathogens the expression of main inflammasome genes was
comparable to that of healthy patients without infection. Furthermore, our data evidence
a possible role of mtDNA as a prognostic marker of severity in septic shock from MDR.

Keywords: septic shock, circulating mtDNA, multidrug resistance bacteria, inflammasome, intensive care unit

INTRODUCTION

Septic shock still represents the pathology with the highest
risk of mortality worldwide despite the knowledge and
attention dedicated to this disease over the past 20 years.
Recent investigations of the pathogenic host response to
infection have highlighted a different behavior depending
on whether there is a hyperinflammatory state or a hypo-
reactivity of the immune system (1). These new perspectives
have brought up the role of pathogen-associated molecular
patterns (PAMPs) and danger-associated molecular patterns
(DAMPs) in the initiation and propagation of the inflammatory
cascade. This “Danger Model” stipulates that when cells are
injured they release their components into the extracellular
space, which in turn drives an immune or inflammatory
response (2). Inflammasomes, such as NLRP3, PYCARD,
AIM2, and NAIP are multimeric protein complexes that
serve as important cytosolic pattern recognition receptors
required for recognizing DAMPs and PAMPs. The activation
of inflammasome signaling pathways is involved in mounting a
proinflammatory immune response by regulating the maturation
from precursors of IL-1β, IL-18, IL-33, cytokines that can
induce pyroptosis. Recently, mitochondrial DAMPs have been
identified as important mediators of the innate immune response
and implicated in various conditions such as trauma, sepsis,
and autoimmune disorders [reviewed in (3)]. Accordingly, the
ability of mitochondrial (mt) DNA to act as DAMPs in the
activation/inhibition of the inflammatory cascade has been
recently investigated (4, 5). In critically ill setting, mainly in
septic shock patients, there is a growing body of literature
suggesting that mtDNA plasma levels can probably be used as
biomarker of disease severity and even mortality both in adults
and children (6–8).

The role of inflammasome and mtDNA is a research field
that is receiving more and more attention in septic shock,
but, to our knowledge, no data exist on these two parameters
during multi drug resistant (MDR)-bacteria septic shock. For
this reason, we investigated whether plasma mtDNA levels and
inflammasome gene expression in monocytes, cells that are
crucial for innate immune response, could be related to severity
in patients admitted to intensive care unit (ICU) with septic shock
due to MDR pathogens infection.

MATERIALS AND METHODS

Patients’ Population and Selection
We performed a prospective observational study in the ICU of
the University Hospital Policlinico of Modena (Italy) between

April 2014 and December 2018. Evaluation of entry criteria and
subsequent enrollment in the study occurred during planned
routine patients visits. Inclusion criteria were: patients aged
18 years or older admitted to our ICU with septic shock
sustained by documented MDR bacteria. Definitions of septic
shock and MDR bacteria are detailed in a previous report (9).
Patients with autoimmune or hematologic disease, pregnancy,
metastatic cancer, end-stage liver disease, end-of-life decisions,
illnesses or with medications known to be toxic to mitochondria
were excluded. The type of admission, relevant pre-existing
diseases, the primary site of infection, microbiology lab results,
SOFA scores when sepsis was diagnosed were collected. Age-
matched healthy subjects without infections were chosen as
controls (CTR). Blood from patients with septic shock was
sampled from the arterial catheter within 24 h from the
diagnosis of septic shock. The study was carried out in
accordance with recommendations of the Prot. n 2630/CE
approved by the Province of Modena Ethical Committee. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Biological Sample Collection, Processing
and Storage
Peripheral blood mononuclear cells (PBMC) and plasma were
isolated from up to 20 ml of venous blood by density gradient
centrifugation, using standardized protocols and Lymphoprep
reagent from Stemcell (Cambridge, MA, United States). Plasma
was then stored at −80◦C until use (10). A minimum of 1.5
million CD14+ monocytes were sorted starting from 20 million
PBMC through immunomagnetic separation technique (Miltenyi
Biotec, Bergish Gladbach, Germany). Purity of monocyte
population was always >95%.

RNA Extraction, Reverse Transcription
RNA was extracted from CD14+ cells through Quick-RNA
Miniprep Kit (Zymo Research, Irvine, United States) and
quantified using NanoPhotometer NP80 (Implen, Munich,
Germany). Then, 20 ng/µl of RNA was reverse transcribed
with the iScript cDNA Synthesis kit (Bio-Rad, Hercules,
CA, United States).

Pre-amplification and Real-Time
Polymerase Chain Reaction (PCR) for
Gene Quantification
In order to obtain a more accurate RNA quantification,
cDNA samples were pre-amplified using Sso Advanced PreAmp
Supermix (Bio-Rad). Quantification of inflammasome genes was
performed by Real-Time PCR as previously described (11).
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Changes in genes expression between the two groups of patients
were calculated through the 11 cycle method.

DNA Extraction and Digestion
DNA was extracted from plasma samples using QIAmp DNA
Mini Kit (QIAGEN, Venlo, Netherlands) and then digested with
BamHI enzyme. The reaction mix was prepared as follows: 1 µl
BamHI enzyme, 1 µl Buffer Fast Digest, 6 µl DNA, in a total
volume of 10 µl. Samples were then incubated in C1000 Touch
Thermal Cycler (Bio-Rad) for 5 min at 37◦C followed by 5 min
at 80◦C.

Total Quantification of mtDNA
Circulating in Plasma Using Droplet
Digital PCR
Quantitative real-time PCR (qPCR) is often used for the detection
of nucleic acid in research and diagnostic, but the methodology
has several limitations, first of all the need of preparing dedicated
standard curves. Thus, we have used droplet digital PCR (ddPCR)
to quantify circulating mtDNA because there is no need of a
standard curve, and because the results are less dependent from
the efficiency of the reaction. The sample is indeed partitioned
in droplets and each of them represents an isolated end-point
PCR reaction. The frequency of positive to negative droplets in
the reaction mixture thus allows a precise quantification of the
concentration of target nucleic acids (12).

Before performing ddPCR, samples were diluted 1:10 in
order to obtain more accurate results. Two different assays
were performed in this set of experiments: ddPCR assay
EIF2C1 (UniqueAssayID: dHsaCP2500349, Bio-Rad) (HEX
fluorescence) for genomic DNA and ddPCR assay MT-ND4
for mtDNA (UniqueAssayID:dHsaCPE5043566, Bio-Rad) (FAM,
fluorescence). Droplet Digital PCR was performed as previously
described (12). Manufacturer’s thermal cycling protocol was
optimized, changing the annealing/extension step temperature
from 55 to 57◦C.

Statistical Analysis
Categorical (sex) and quantitative (age) variables were compared
between groups by χ2 and Mann–Whitney tests, respectively.
Differences between controls and septic shock patients were
explored with Mann–Whitney test. A P-value < 0.05 was
considered statistically significant. Data shown in graphs are
represented as the mean ± SEM. Statistical analyses were
performed using Prism 8.0 (GraphPad Software Inc., San Diego,
CA, United States).

RESULTS

Patients Characteristics
A total of 19 ICU patients with septic shock induced
by MDR pathogens were enrolled. Twenty healthy subjects
without infections (8 males/12 females, mean age ± SD,
60.8 ± 4.4 years), were chosen as CTR. ICU patients
had septic shock caused mainly by peritonitis and blood

TABLE 1 | Clinical characteristics of the 19 patients with septic shock.

Sex Male n = 12 (63.2%) Females n = 7 (36.8%)

Age [years, median (range)] 67 (33–81)

SOFA score [median (range)] 11 (7–21)

ICU mortality n (%) 10 (52.6%)

30-day mortality n (%) 8 (42.1%)

1-year mortality n (%) 12 (63.2%)

Sepsis focus*

Abdomen n (%) 9 (47.4%)

Lung n (%) 4 (21.1%)

Blood n (%) 9 (47.4%)

Urinary tract n (%) 1 (5.3%)

Other n (%) 2 (10.5%)

Pathogens

Gram positive n (%) 5 (26.3%)

Gram negative n (%) 14 (73.7%)

ICU, intensive care unit, SOFA, sequential organ failure assessment. *To notice that
sepsis focus was in 6 cases a mixed focus.

stream infection. While multi-resistant Gram-negative bacteria
were the most represented pathogens, of these four were
Escherichia Coli and two each Pseudomonas Aeruginosa and
Enterobacter Cloacae (Table 1). Median SOFA score at ICU
admission was 11 with mainly respiratory cardiovascular and
hematological dysfunctions. In patients with septic shock the
30-day, ICU and 1-year mortality were 42.1, 52.6, and 63.2%,
respectively (Table 1).

Inflammasome Gene Expression and
mtDNA in Septic Shock Patients and
CTR
The gene expression profile of the entire inflammasome pathway
was evaluated in isolated monocytes from septic patients. Pattern
recognition receptors involved in inflammasomes comprise
nucleotide-binding oligomerization domain and leucine-rich
repeat-containing receptors (NLR) such as NLRP3 and NAIP,
as well as absent in melanoma-2 (AIM-2). Through their
caspase activation and recruitment domain (CARD) or pyrin
domain (PYD), the inflammasome receptors interact with
the adaptor protein ASC, which then recruits pro-caspase-
1 via its CARD domain and activates the effector caspase
through proteolytic cleavage. The activated caspase-1 finally
cleaves the immature pro-inflammatory cytokines pro-IL-
1β and pro-IL-18.

The intracellular levels of main inflammasome mRNAs
was not significantly different in monocytes from patients
of controls, even if a trend toward an increased expression
of PYCARD, AIM2 and NAIP was observed in septic shock
patients (Figures 1A–D). IL-18 and IL-1β gene expression was
higher in patients with septic shock, even if the high variability
among patients did not allow to reach statistical significance
(Figures 1E,F).

Concerning mtDNA, we found that circulating mtDNA levels
were significantly higher in septic shock patients if compared to
controls (Figures 2A,B), and that patients who died in ICU were
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FIGURE 1 | Quantification of inflammasome genes by Real-Time PCR. (A) Quantification of NLRP3 in CD14+ cells on CTR and ICU septic shock patients.
(B) PYCARD, (C) AIM2, (D) NAIP, (E) IL-18, (F) IL-1β. Data are represented as mean ± SEM. Analysis was performed using Mann–Whitney test.
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FIGURE 2 | (A) Representative 2D scatter plot of a ddPCR result, corresponding to mitochondrial (mt)-ND4 of healthy subject (upper panel) and septic patient (lower
panel). The y axis shows FAM fluorescence amplitude of the mt-ND4 probe (channel 1) and the x axis shows the HEX fluorescence amplitude of the EIF2C1 probe
(channel 2). The black cluster represents the negative droplets, the green cluster represents the droplets positive for EIF2C1, the blue cluster represents the droplets
positive for mt-ND4 and the orange cluster represents the droplets that are positive for both targets. (B) Quantification of mtDNA circulating in plasma on CTR and
ICU septic shock patients by ddPCR. Data are represented as mean ± SEM. Analysis was performed using Mann–Whitney test. ***p < 0.05. CTR, controls, ICU,
intensive care unit.
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characterized by higher level of mtDNA if compared to those
patients with septic shock who were then discharged alive from
the ICU (Figures 2A,B). No correlations were found between
mtDNA and inflammasome gene expression level and other
clinical variables reported in Table 1.

DISCUSSION

The spread of bacteria resistant to many classes of antibiotics
is becoming one of the most worrying threats for the scientific
community. The search for prognostic biomarkers during septic
shock is currently the subject of great debate (13). However, few
data exist on the role of inflammatory markers in the prognosis
of septic shock caused by MDR bacteria (14) and, in particular,
no studies investigate the role of inflammasome and mtDNA
in this disease.

Sepsis clearly alters the innate and adaptive immune
responses, causing immune suppression, chronic inflammation,
and finally exhaustion of several cell defense mechanisms.
Understanding how inflammatory processes are orchestrated,
and in particular how their complex mechanisms work together
could pave the way for the identification not only of suitable
therapeutic targets, but also of predictive biomarkers. Here
we observed that patients suffering from septic shock due to
MDR bacteria, if compared to healthy subjects without infection,
are characterized by similar level of inflammasome genes, but
significantly higher level of circulating mtDNA.

Circulating cell-free mtDNA is a functional link between
cell damage, mitochondrial damage and systemic inflammation
and, indeed, mtDNA released after cell death can act as a
DAMP, being able to induce an inflammatory response through
hypomethylated CpG motifs resembling those of bacterial DNA
(15). mtDNA is thus a potent DAMP capable of causing
inflammation and propagating an immune response through its
interaction with TLR9 and inflammasomes (16).

Plasma circulating mtDNA is elevated in critically ill patients,
and increases with age, contributing to the maintenance of
the low-grade, chronic inflammation observed in elderly people
which has been defined “inflammaging” (17).

Results from clinical trials providing data on mtDNA during
sepsis are not conclusive, so it cannot be established if mtDNA is
associated with mortality or not (18). This phenomenon could be
due to several reasons, that even regard technical aspects such as:
(i) the lack of a standardized protocol for the measurements; (ii)
the use of plasma or serum (freshly isolated or frozen); (iii) the
preparation of plasma with or without the presence of platelets,
that contain mitochondria (but not nuclear DNA) and thus can
increase the number of molecules of mtDNA (17). To generate
this data we took advantage of the sophisticated ddPCR approach,
based on partitioning samples in 20,000 or more droplets,
each of them representing an isolated end-point PCR reaction.
Compared to Real-Time PCR, ddPCR provides absolute nucleic
acids quantification and results are less dependent from reaction
efficiency. Beyond technical issues, there is also the question of
the appropriate patient population. Indeed, it is possible that
the mechanism driving mtDNA release differs in patients with

cellular injury from sepsis and those with a mechanical injury, as
seen in phases like post-trauma or post-surgery. Anyway, in our
patients mtDNA was definitely higher in septic shock population,
especially in those who died in the ICU.

Concerning the levels of inflammasome gene expression in
monocytes between septic shock patients and healthy controls,
the hypothesis that MDR patients may have functionally
exhausted the inflammatory response agrees with what stated
by Hotchkiss et al. (19), who described this kind of patients
as an expression of the state of hypo-reactivity of the immune
system in the host’s response to infection. Accordingly, our
data would confirm that patients suffering from septic shock
by MDR pathogens would be in that prevailing phase in which
the inflammatory response has exhausted its thrust, returning
to the levels of a healthy person not affected by an infectious
disease. In other words, we could interpret this as an “abnormal
normality,” i.e., as the functional end of a normal inflammatory
response that should have been much higher in a clinical
situation such as sepsis.

We are aware that it would have been important to study
the inflammasome in cells that are capable of triggering various
inflammatory pathways, such as macrophages, which typically
reside in the tissues. However, we were unable to obtain tissue
samples and had to concentrate on circulating monocytes, which
are simple enough to obtain, and study gene expression rather
than protein levels due to the lack of biological material. In
addition to the inability of studying macrophages we must
also add that unfortunately, only anecdotical reports (20, 21)
have dealt with the role of inflammasomes regarding strains of
resistant bacteria, so our hypothesis of “abnormal normality” has
to be verified with a more conspicuous number of patients.

The high level of mtDNA in patients with septic shock could
also suggest that the exhaustion of inflammasome activity had
favored the progression of the sepsis, and thus allowed the onset
of further cellular damages.

Our study has two important limiting factors represented
by the small size of the sample enrolled and the rather long
period of time elapsed between the beginning and the end of
the study itself. These limiting factors are related to the difficulty
of enrolling patients with septic shock from MDR bacteria with
a microbiological tests’ confirmation obtained within 24 h from
the onset of the shock (most of our patients had bloodstream
infection or secondary or tertiary post-surgical peritonitis). So,
our interest was aimed at testing the level of inflammasome gene
expression and mtDNA at the early onset of the state of shock.

CONCLUSION

In conclusion, even considering the all limitations, our data
suggest that patients with septic shock caused by MDR pathogens
have a relatively low gene expression of inflammasomes, that
is comparable to that of healthy patients without any infection.
Furthermore, we show here that mtDNA could be considered an
early prognostic marker of severity in septic shock from MDR.
Further studies on other, more numerous cohorts are required to
confirm our observations.
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While mortality after acute sepsis has decreased, the long-term recovery for survivors

is still poor, particularly those developing persistent inflammation, immunosuppression,

and catabolism syndrome (PICS). While previously thought that activated neutrophils

responding to the acute phase of sepsis migrate to the spleen to undergo cell death and

contribute to immunosuppression, our data show a significant accumulation of distinct,

yet functional, neutrophil populations in the spleen in a murine model of PICS. The

exact role and function of neutrophils in this response is still unclear. The objective of

our study was to better define the immune function of splenic neutrophils to determine

if this could give insight into the pathogenesis of PICS. Using a murine model of

cecal ligation and puncture (CLP), which demonstrates all characteristics of PICS by

8 days, spleens were harvested, and neutrophils were identified by Ly6G and CD11b

expression via flow cytometry. Nearly all splenic neutrophils expressed CD54, but there

were distinct CD54hi and CD54lo cells, with the majority being CD54lo cells during PICS.

The CD54hi population showed traditional, proinflammatory properties, but a relatively

decreased chemotactic response, while CD54lo cells had significantly higher chemotaxis,

yet significantly decreased proinflammatory functions. Using 5-ethynyl-2
′
-deoxyuridine

(EdU) incorporation, we found that the CD54hi population on day 2 after CLP may

be participating in emergency myelopoiesis. However, the vast majority of the CD54lo

population were paused in the G1 phase at this time point and not proliferating. By day

8 after CLP, most of the CD54hi cells in the spleen were no longer proliferating, while

the CD54lo cells were, indicating that CD54lo dominate in extramedullary myelopoiesis

at later time points. Almost none of the neutrophils produced arginase or inducible

nitric oxide synthase (iNOS), indicating that these are not suppressor cells. Overall, our

data demonstrate that neutrophil accumulation in the spleen during PICS is related

to extramedullary myelopoiesis, leading to the production of immature neutrophils.

While not suppressor cells, the majority have greater chemotactic function but less

inflammatory responsiveness, which may contribute to the immunosuppression seen in

PICS. Attention to these distinct neutrophil populations after septic or other systemic

inflammatory responses is therefore critical to understanding the mechanisms of PICS.

Keywords: sepsis, PICS, neutrophils, CD54, immunosuppression

54

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00804
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00804&domain=pdf&date_stamp=2020-05-15
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nomellva@ucmail.uc.edu
https://doi.org/10.3389/fimmu.2020.00804
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00804/full
http://loop.frontiersin.org/people/280786/overview
http://loop.frontiersin.org/people/903126/overview


Sengupta et al. Splenic Neutrophil Heterogeneity in PICS

INTRODUCTION

Recent advancements in the initial diagnosis and management
of sepsis have resulted in improved overall survival. However,
the long-term recovery among sepsis survivors is still poor, often
leading to a state of chronic critical illness (1). This condition
is frequently associated with a compromised immune system,
also called persistent inflammation, immunosuppression, and
catabolism syndrome (PICS) (2). As a result, these patients suffer
from multiple complications, poor wound healing, increased
disability, and susceptibility to secondary infections leading
to prolonged hospitalizations (3). Despite extensive care and
intervention, ∼50% of chronic critically ill patients die within 6
months of ICU discharge, and for those that are able to survive
to 1 year after discharge, at least 20% show significant physical
and cognitive disabilities, with almost 10% never returning
home (3, 4). Failure of therapeutic interventions for sepsis-
associated chronic critical illness is largely due to the insufficient
information available about the immune dysfunction that occurs
after sepsis.

Neutrophils are the key responders to infection in that
activated neutrophils are recruited to the site of bacterial invasion
to fulfill their antimicrobial function (5). Historically, it was
thought that, following bacterial clearance, neutrophils mostly

migrate to the spleen to undergo cell death, while the bone
marrow undergoes emergency myelopoiesis to regenerate the

neutrophil population (6). However, our data show a significant

accumulation of distinct, yet functional, neutrophil populations
in the spleen in a murine model of PICS, suggesting a possible
role for these cells in secondary infections and/or the overall
systemic response to sepsis.

Neutrophil rolling andmigration involves the transmembrane
glycoprotein and adhesion molecule, L-selectin (CD62L) in
conjunction with β2-integrin activation and adhesion to counter-
receptors such as intracellular adhesion molecules (ICAM-
1) (CD54) (7, 8). The ectodomain shedding of CD62L from
neutrophil plasma membrane denotes neutrophil activation or
partial activation (priming), concordant with upregulation of
CD11b, a component of the macrophage-1 antigen (Mac-1)
(CD11b/CD18) β2-integrin subfamily (9). Appearance of the
surface marker, CD54, on activated neutrophils correlates with
reverse transendothelial migration, and its expression is known
to be increased by inflammatory stimuli (10, 11). Neutrophils
showing antitumorigenic phenotypes show increased CD54
expression (12), while CD54 expressing neutrophils are also
associated with chronic systemic inflammation (13). However,
the functional properties of these neutrophil subpopulations
remain elusive (14). In our study utilizing a murine PICS
model, we found that the myeloid-derived splenic neutrophils
(Ly6G+CD11b+) distinctly comprised two populations based on
the surface CD54 expression.We therefore decided to pursue this
further to characterize the CD54 subpopulations (CD54 high and
low) to help understand the immunosuppression in PICS. While
it is known that the spleen can act as a site of extramedullary
myelopoiesis, the exact role and functional properties of these
splenic neutrophils is still not clear. Therefore, the objective of
our study was to better characterize and define the immune

function of these neutrophil subpopulations to gain insight into
and better understand the pathogenesis of PICS.

MATERIALS AND METHODS

Cecal Ligation and Puncture Model
Cecal ligation and puncture was performed on 6 to 8-week-
old male CD-1 mice from the Charles River Laboratories
(Wilmington, MA, USA) as described previously (15). The
animal protocol was approved under the Institutional Animal
Care and Use Committee of the University of Cincinnati
(Protocol No. 10-05-10-01). Briefly, the animals were provided
with regular pellet diet and water ab libitum and were
allowed to acclimatize for 1–2 weeks before experiments in
standard environmental conditions. Acute polymicrobial sepsis
was induced in the mice by 33% cecal ligation with a single,
full-thickness 25-gauge needle puncture under 2.5% isoflurane
followed by 3 and 24 h post-surgery primaxin administration.
Time of surgery was kept consistent between experiments. The
mortality rate remained 25–33% for 3 days after this cecal ligation
and puncture (CLP) injury in mice, comparable to the 10–40% in
human sepsis cases as defined previously (16, 17).

Persistent Inflammation,
Immunosuppression, and Catabolism
Syndrome Model
Mice that survived 8 days after CLP injury and displayed the
syndromes including weight loss, lymphocyte depletion, increase
in circulating myeloid cells, etc. were used in experiments
as PICS mice as described previously (16). Untouched mice
were used as control, as they have near-identical levels of
systemic inflammation and coagulation parameters 8 days after
sham surgery, which includes anesthetic administration and
laparotomy without intervention.

Spleen Harvest and Cell Counts
Spleens were removed from untouched and PICS mice, weighed,
and then homogenized in Roswell Park Memorial Institute
(RPMI) medium followed by passing through a 70-µm cell
strainer (Corning, MA, USA) to obtain a uniform single cell
suspension. The total number of white blood cells (WBCs) was
enumerated with a cell counter (Beckman Coulter, CA, USA).
One to two million cells were used for further characterization
of the splenic neutrophil compartment by flow cytometry.

Flow Cytometry
Flow cytometry was performed on the Attune NxT Flow
Cytometer (Life Technologies, CA, USA). Cells were first gated
for doublet exclusion [forward scatter height (FSC-H) vs. forward
scatter area (FSC-A)] followed by side scatter height (SSC-
H) vs. FSC-H gating. Cell viability was checked by negative
gating of cells stained with “Live/Dead Fixable Aqua Dead Cell
Staining Kit” (Life Technologies, CA, USA). Neutrophils were
analyzed by detecting the surface antigens with the following
antibodies: Ly6G (clone 1A-8, BD Biosciences, CA, USA), CD11b
(clone M1/70, Biolegend, CA, USA), CD54 (clone 3E2), and
CD62L (clone MEL-14) from BD Pharmingen, CA, USA; or
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FIGURE 1 | The spleen harbors both CD54-high and CD54-low expressing neutrophils in persistent inflammation, immunosuppression, and catabolism syndrome

(PICS) mice. Spleens were harvested from untouched (Unt) mice or mice post-CLP (pCLP) and single cell suspensions were colabeled with Ly6G, CD11b, and CD54

antibodies followed by flow cytometry analysis at different time points. Scatter plots depicting (A), the total number of neutrophils (Ly6G+ CD11b+) in the spleen of

Unt and pCLP day 8 (PICS) mice and (B) the number of neutrophils expressing high CD54 (CD54hi) and low CD54 (CD54lo) in Unt and PICS spleens. Black bars

indicate the mean ± SEM values. *p < 0.05 was considered significant. (C) Histograms demonstrating CD54 expression pattern in splenic neutrophils with high (R6

gate) or low (R7 gate) expression in representative mice (Unt, left; PICS, right). Experiments were repeated at least three times. (D) Line graph showing the number of

neutrophils with CD54hi or lo expression in the spleen of Unt and CLP mice at day 2 (d2), day 4 (d4), day 6 (d6), and day 8 (d8). A three-way ANOVA analysis of the

Unt vs. pCLP, CD54hi vs. CD54lo, and time (days) rendered the data significant (p < 0.05).

total antigens (surface and intracellular) by antibodies: CXCR4
(clone L276F12) and CXCR2 (clone SA045E1) from Biolegend,
CA, USA; or by intracellular labeling with antibodies: Arg-
1 (clone A1exF5) and inducible nitric oxide synthase (iNOS)
(clone CXNFT) from Invitrogen, MA, USA. Cells were fixed
with 1% paraformaldehyde and permeabilized with Saponin
buffer [0.1% Saponin (w/v), 0.1% bovine serum albumin (BSA),
0.01M HEPES, and 0.1% sodium azide in phosphate-buffered
saline (PBS)] prior to the intracellular labeling as described
previously (18).

Functional Assays
DHR Assay

Dihydrorhodamine (DHR) 123 assay was performed to measure
the formation of oxidized rhodamine 123 from the non-
fluorescent DHR 123, thus to assess reactive oxygen species
(ROS) production. Harvested spleen cells were resuspended
in Hank’s balanced salt solution (HBSS) (Ca++Mg++) and
were incubated with DHR (Sigma, MO, USA) (final 1×) at
37◦C for 10min. The reaction was stopped in ice, and the

cells were washed twice with ice-cold fluorescence-activated cell
sorting (FACS) buffer (1×). Finally, the cells were labeled with
fluorescence-conjugated antibodies against the surface markers
of interest (Ly6G, CD11b, CD54), and flow cytometry analysis
was performed to detect the green fluorescence of rhodamine 123
as a ROS indicator as described previously (16).

pHrodo Assay

pHrodo Green Escherichia coli BioParticles Conjugate for
Phagocytosis (Invitrogen, MA, USA) were reconstituted in a
glass tube and then sonicated in a water bath sonicator for
5min. Opsonizing reagent was added (1:40) to the E. coli
BioParticles and was incubated at 37◦C for 1 h. The particles
were washed twice with PBS, and 100 µl PBS resuspension
was added to 1 million splenocytes followed by incubation in
37◦C 5% CO2 incubator for another hour. The reaction was
stopped in ice, and the cells were fixed with 1% paraformaldehyde
(PFA). After washing, the cells were labeled with antibodies
against the surface markers of interest as described above, and
finally, the phagocytosing cells were detected by measuring the
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green fluorescence uptake of the E. coli BioParticles as described
previously (19).

NETosis Assay

NETosis assay was performed as described previously (20).
Briefly, cells were resuspended in RPMI and were stimulated
with 100 nM phorbol-12-myristate-13-acetate (PMA) (Sigma,
MO, USA) for 3 h at 37◦C 5%CO2 incubator. Cells were
then washed and fixed with 1% PFA followed by further
wash, blocking, and staining with primary H3 antibody (1:300,
Abcam, MA, USA) for 30min at room temperature. Then,
the cells were incubated with the antibody cocktail of Alexa
Fluor700-conjugated secondary antibody (1:300, Invitrogen,
MA, USA) and fluorescein isothiocyanate (FITC)-conjugated
antimyeloperoxidase (1:50, Abcam, MA, USA), along with
the surface markers of interest as described above at room
temperature for 30min in the dark. Finally, the cells were washed
and resuspended in FACS buffer for flow cytometry analysis as
mentioned (20).

Chemotaxis Assay
After harvesting and cell counting, 2 million spleen WBCs
were seeded on a Transwell insert (Thermo Fisher Scientific,
MA, USA) of 3µm pore size. One hundred nanograms of
KC, as a main neutrophil chemoattractant, was added to each
of the bottom wells, and the cells were incubated at 37◦C
CO2 incubator for 3 h. Non-migrated cells from the upper
Transwell insert and migrated cells from the bottom well were
recovered to analyze further by flow cytometry. The percent of
cells migrating to the bottom was then calculated as described
previously (21).

Cell Cycle and Proliferation Assays
For cell cycle analysis, the splenocytes were labeled with
fluorescence-conjugated antibody against Ki-67 (clone 16A8,
Biolegend, CA, USA) and propidium iodide (PI) solution
(25µg/ml) followed by flow cytometry analysis as described

previously (22). For the 5-ethynyl-2
′
-deoxyuridine (EdU) assay,

mice were injected with EdU on day 7 after CLP, and
the splenocytes were harvested on post-CLP day 8. EdU
incorporation into newly synthesized DNA was measured by
analyzing the cells using iClick EdU Andy Fluor 488 Flow
Cytometry Assay Kit (ABP Biosciences, MD, USA).

Statistical Analyses
All analyses were performed using the software GraphPad
Prism 8 (La Jolla, CA, USA). Student’s t-test was performed to
compare groups, and one-, two-, or a three-way ANOVA was
performed for multiple comparisons as applicable. Data were
reported as means ± SEM values. Any p ≤ 0.05 was considered
statistically significant.

RESULTS

The Spleen Harbors Both CD54-High and
CD54-Low Expressing Neutrophils in PICS
Mice
Single-cell suspensions of spleens from untouched (Unt) mice
and mice post-CLP (cecal ligation and puncture) from different
days were labeled with neutrophil and myeloid markers (Ly6G
and CD11b, respectively) to detect mature neutrophils. Spleen-
to-body mass ratio was also quantified to confirm the gradual
increase in spleen mass in CLP mice compared to the
healthy ones (Figure S1). The total number of neutrophils was
significantly increased in PICS mice (post-CLP day 8) compared
to the Unt mice (Figure 1A). Furthermore, the neutrophils in
PICS spleens were analyzed based on CD54 surface marker
expression. While most of the splenic neutrophils expressed
CD54, there were distinct CD54-high (CD54hi) and CD54-
low (CD54lo) expressing cells, with the majority being CD54lo

cells during PICS (Figure 1B). In Unt spleens, however, the
CD54-expressing cells were markedly less in number with no
distinct separation or difference in the number of CD54lo

cells compared to the CD54hi cells (Figure 1B). The percent
population comprising CD54lo cells mostly formed a distinct
peak from the CD54hi population in PICS spleen unlike the Unt
cells as shown in the representative FACS image (Figure 1C).
Interestingly, when we compared the neutrophil populations of
CD54hi vs. CD54lo in PICS spleens from post-CLP day 2–8, we
found that the CD54hi population was significantly higher in the
acute phase after infection, but gradually over time, the CD54lo

population became the dominant phenotype. By the time all mice
develop PICS, the ratio was reversed, and the CD54lo neutrophils
were significantly higher than the CD54hi population, unlike in
the Unt mice (Figure 1D). The totalWBC counts ranged from 86
to 174million in the control Untmice and 87 to amuch increased
number of 552 million in CLP mice starting from day 2 through
day 8 post-CLP. Together, these results indicate the appearance
of two distinct neutrophil populations in the PICS spleen.

CD54hi Neutrophils Show Proinflammatory
Properties While CD54lo Neutrophils Show
Chemotactic and Homing Properties
In order to explore the function of the CD54hi and CD54lo

cells specifically during PICS, we then evaluated their ability
to produce ROS, undergo phagocytosis, and form neutrophil
extracellular traps (NETs). A DHR assay was performed to assess
ROS production by measuring the oxidation of DHR. CD54lo

cells showed significantly decreased ROS production compared
to the CD54hi cells as depicted by the mean fluorescence intensity
(MFI) in Figure 2A. Moreover, CD54lo cells had significantly
decreased phagocytosis and NETosis, compared to CD54hi

neutrophils (Figures 2B, C).
While these studies indicate that CD54lo cells may be less

proinflammatory in nature, this population exhibited greater
chemotactic ability compared to CD54hi cells (Figure 3A). To
evaluate this further, the expressions of surface and total CXCR4
and CXCR2 were examined in both populations. The majority
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FIGURE 2 | CD54hi neutrophils demonstrate proinflammatory properties. Spleen cells from persistent inflammation, immunosuppression, and catabolism syndrome

(PICS) mice were labeled with Ly6G, CD11b, and CD54 and functional assays such as dihydrorhodamine (DHR) to measure reactive oxygen species (ROS), pHrodo

(phagocytosis), and NETosis were separately performed using flow cytometry. Scatter plots showing (A) ROS mean fluorescence intensity (MFI) of DHR, (B) percent

pHrodo+ cells, and (C) percent MPO+H3+ cells (NETosis) in total, and CD54hi or CD54lo expressing splenic neutrophils. Experiments were repeated at least three

times. Black bars in scatter plots indicate the mean ± SEM values. *p < 0.05 was considered significant.

of CXCR4 expression on neutrophils in the spleen during PICS
was intracellular, as evidenced by significantly more total CXCR4
relative to surface CXCR4 (mean total MFI value, 13,854 ±

4,849 vs. mean surface MFI, 3,034 ± 684). However, CD54lo

neutrophils had greatly reduced surface as well as total CXCR4
expression, compared with CD54hi cells (Figures 3B,D). For
CXCR2, the majority of expression was on the surface, as
evidenced by almost similar total and surface levels of CXCR2
(mean total MFI value, 1,537 ± 444 vs. mean surface MFI,
1,321 ± 826). While both CD54hi and lo cells had equivalent
surface expression of CXCR2, the total levels were decreased in
CD54lo cells, indicating a lower availability of CXCR2 receptors
to recycle back to the surface after stimulation (Figures 3C,
E). Altogether, these results indicated a higher chemotactic and
homing ability but less inflammatory function of CD54lo cells,
whereas CD54hi cells have greater inflammatory function with
decreased chemotactic responses during PICS.

CD54hi Cells Are the First Proliferative
Population While CD54lo Cells Engage in
Late Cycling
Next, we investigated the proliferation and cell cycle distribution
of the CD54 high and low populations to assess whether they
could differentially contribute to emergency myelopoiesis. To
examine the cell cycle status of proliferating neutrophils, we
analyzed the cells for the proliferation-specific marker, Ki-67, as
well as for DNA content by propidium iodide (PI) staining using
flow cytometry (22). The Ki-67+ population included the active
cell cycle phases (G1, S, and G2/M), while the quiescent or resting
(G0) cells were negative in Ki-67. PI vs. Ki-67 gating was used
to identify the distribution of CD54hi and CD54lo cells in sub-
G1 (apoptotic cells with fragmented DNA), G1, S, G2/M, and G0

phases from mouse spleens post-CLP days 2–8 (Figure S2). No
G0 event was detected in either of the cell populations, indicating

that all neutrophils had entered the active cell cycle phases
following infection (Figure S2). CD54hi cells were found cycling
until post-CLP day 6, when the majority of the cells were found
in G2/M, with some in S phase, but the least in G1 phase. By day
8, both S and G1 events were further decreased, the lowest being
in G1, while the maximum (>80%) were in G2/M (Figure 4A).
This suggests that all the cycling cells gradually reached G2/M
with no further recycling or entry of new cells into G1 by day
8 after CLP. On the other hand, CD54lo neutrophils showed an
almost opposite pattern of cell cycle kinetics from post-CLP days
2–8. The majority of events (>80%) was paused in the G1 phase
during post-CLP days 2–4 until around post-CLP day 6, when
the CD54lo population started progressing from G1 to S phase
(Figure 4B). The transition of CD54lo cells further continued
through G1-S–G2/M phases post-CLP day 8 (Figure 4B).

We also used the EdU incorporation method to detect and
quantify the proliferating cells in CD54hi and CD54lo populations
during PICS. Mice were injected with EdU on day 7 after
CLP, and cells were harvested for analysis after 24 h on post-
CLP day 8. Both populations had cells that finished maximum
incorporation of EdU (EdU high) after a full S phase (Figure 4C),
CD54hi being slightly higher (∼4%) than CD54lo cells but not
statistically significant. Interestingly, cells that did not finish
the S phase yet (ongoing S) and incorporated comparatively
lesser EdU (EdU low) by post-CLP day 8 were significantly
higher (∼10%) in CD54lo compared to the CD54hi population
(Figure 4D). This result also supported our previous cell cycle
data showing that the CD54hi population gradually completed
the S phase and progressed to the next phase (G2/M) of the
cycle, while the CD54lo population started actively cycling post-
CLP days 6–8 (Figures 4A, B). Taken together, these data suggest
that immediately after CLP, CD54hi cells may be participating
in emergency myelopoiesis, as they were proliferating more in
the acute phase of infection (post-CLP days 2–4). On the other
hand, CD54lo cells, which started cycling at day 6 post-CLP, may
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FIGURE 3 | CD54lo neutrophils demonstrate increased chemotactic properties. Spleen cells isolated from persistent inflammation, immunosuppression, and

catabolism syndrome (PICS) mice were subjected to either chemotaxis assays and then collected for labeling with Ly6G, CD11b, CD54, or were directly colabeled

with CXCR4 and CXCR2 along with Ly6G, CD11b, and CD54 followed by flow cytometry analysis. (A) Percent chemotaxis of neutrophils from the spleen of PICS

mice were plotted to quantify the chemotaxis in total, as well as in CD54hi, and CD54lo cells. Scatter plots showing (B) surface expression (MFI) of CXCR4 and (C)

CXCR2, and (D) total expression (MFI) of CXCR4 and (E) CXCR2 on CD54hi and CD54lo splenic neutrophils from PICS mice. Experiments were repeated at least

twice. Black bars in scatter plots indicate the mean ± SEM values. *p < 0.05 was considered significant.

be involved in extramedullary myelopoiesis at later time points
(post-CLP days 6–8). This again supported our finding that
CD54lo cells comprised the majority of neutrophils by day 8 post-
CLP (Figure 1D) compared to the CD54hi cells that gradually
decreased over time.

CD54lo Neutrophils Are Not Suppressor
Cells in PICS
As indicated above, CD62L expression may help determine the
level of maturity of neutrophils. In addition, it has been reported
that a subset of CD62Ldim neutrophils can serve as myeloid-
derived suppressor cells (MDSCs) of granulocytic origin and
can lead to immunosuppression via a Mac-1 (CD11b/CD18) or
ROS-dependent manner (23). When we evaluated the CD54hi

and CD54lo neutrophil subsets based on their CD62L expression
in PICS mice, we found that CD54loCD62Llo subset was
significantly highest among all other subsets (Figure 5A). On
the other hand, CD54hiCD62Llo neutrophils were significantly

less and possibly comprised the minor population of CD54hi-
activated neutrophils that already shed the ectodomain of
CD62L. In concordance, this population also showed the greatest
CD11b expression (data not shown), indicating that these are
more mature neutrophils. However, the other CD62LloCD54lo

cells showed significantly less CD11b expression compared to the
CD54hiCD62Llo cells. As expected, all CD62Lhi subsets showed
comparatively less CD11b expression than the CD62Llo cells,
again signifying that CD62L can help identify the maturation
phase of neutrophils.

As some studies have indicated, emergency myelopoiesis may
lead to the excessive release of MDSCs from the bone marrow,
which may contribute to the immunosuppression seen in later
phases after sepsis (24, 25). Therefore, we further examined
other MDSC markers, such as intracellular arginase-1 (Arg-1)
and iNOS (26, 27). However, our data indicated that <1% of
neutrophils in the spleen of PICS mice express Arg-1 or iNOS
(Figures 5B,C). While both subsets of CD54lo neutrophils had
significantly decreased Arg-1 and iNOS expression, the total
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FIGURE 4 | CD54hi cells are the first proliferative population while CD54lo cells engage in late cycling. Spleen cells from mice at days 2, 4, 6, and 8 (d2, d4, d6, and

d8, respectively) after CLP were colabeled with Ki-67 and PI along with Ly6G, CD11b, and CD54 to quantify the cell cycle phases by Ki-67 vs. PI gating using flow

cytometry. Bar diagrams depicting percent events of sub-G1 G1, S, and G2/M phases in (A) CD54hi and (B) CD54lo neutrophils from post-CLP mice. Each bar

represents the mean ± SEM of percent events of each cell cycle phase at respective post-CLP day from mouse spleen after CLP (n = 5–8). 5-Ethynyl-2
′
-deoxyuridine

(EdU) assays on neutrophils from the spleens of persistent inflammation, immunosuppression, and catabolism syndrome (PICS) mice were then performed as

described earlier. Scatter plots showing (C) percent neutrophils with high EdU incorporation (EdU high) after completion of S phase, and (D) low EdU incorporation

(EdU low) with an ongoing S phase in total vs. CD54hi and CD54lo splenic cells in PICS mice. Experiments were repeated at least twice. Black bars in scatter plots

indicate the mean ± SEM values. *p < 0.05 was considered significant. ns, non-significant.

numbers of each of these cell types are negligible and likely not
clinically significant (Figures 5B,C). Taken together, our results
indicated that the comparatively immature CD54lo neutrophils
are not MDSCs but do have decreased overall immune functions.

DISCUSSION

This study intended to better characterize the immune
function of the splenic neutrophil populations temporally after
CLP to enhance the knowledge and understanding of the
pathogenesis of PICS. Using our PICS murine model, we
found two discrete neutrophil populations in the spleen. One
population being the mature CD54hi cells with traditional
proinflammatory features that decreased significantly after
CLP, and the other being CD54lo cells that were less
mature, had decreased inflammatory properties and dominated
during the PICS phase. CD54lo neutrophils were also more
chemotactic and were actively proliferating, whereas the

CD54hi cells stopped reentering the cell cycle for further
proliferation during PICS. None of these neutrophils showed
any suppressor activity but were less functional with reduced
inflammatory responsiveness. Our current study has identified a
unique extramedullary CD54lo neutrophil population in spleen
characterized by reduced immune function during PICS that
may explain the pathophysiology in sepsis-induced chronic
critical illness.

Neutrophil heterogeneity can be phenotypic or functional
and is pronounced at different levels of their life cycle, either
in homeostatic or disease conditions (13, 28). Infectious
inflammation can induce rapid changes in neutrophil variants
as a function of maturity or activation state (11, 28). While the
innate immune response is the initial responders to infection,
the other cellular response are also important. It turns out that
neutrophils, being the primary defenders of innate response,
also interact with other cell types (particularly T cells) and
can really shape the ensuing responses, both acutely and
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FIGURE 5 | CD54lo neutrophils are not suppressor cells. Neutrophils with high or low CD54 expression (CD54hi and CD54lo) from the spleen of persistent

inflammation, immunosuppression, and catabolism syndrome (PICS) mice were further characterized based on the adhesion marker, CD62L, and the intracellular

expression levels of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS) as markers for myeloid-derived suppressor cells using flow cytometry analysis.

Scatter plots showing (A) percent neutrophils of each subtype, (B) percent neutrophils with arginase-1, and (C) iNOS expression in CD62L vs. CD54 subpopulations

in PICS. Experiments were repeated three times. Black bars in scatter plots indicate the mean ± SEM values. *p < 0.05 was considered significant.

over time. In addition, it is known that the myeloid-derived
suppressor cells (MDSCs), which are typically considered
immature, may also comprise the neutrophil population
(11, 29). In our PICS murine model, the early proliferation
of CD54hi cells immediately after acute infection suggested
an emergency myelopoiesis, while the late onset of cell
cycle in the gradually dominating CD54lo phenotype in the
spleen suggested an ongoing extramedullary myelopoiesis.
However, the contribution of these differential neutrophil
populations to the immunosuppression seen in the later stages
of sepsis is not known. Earlier studies have indicated that
the immunosuppression in septic patients might result from
the expansion of persistent MDSCs immediately after the
emergency myelopoiesis, which may result in chronic critical
illness [reviewed in (30)]. However, in our study, we found a
newly emerging population in PICS spleen—the population of
CD54lo neutrophils with decreased immune function. It has
been shown that, in CLP mice 7 days post-sepsis, up to 95%
BM cells are myeloid cells mostly immature and function like
MDSCs, which gradually evolve with time to become more
immunosuppressive and infiltrate the spleen, lymph nodes,
lung, liver, skeletal muscle, and brain (2). MDSCs are generally
granulocytic (CD11b+ Ly6G+) andmonocytic (CD11b+ Ly6G–
Ly6C+) cells. We chose to evaluate the granulocytes in spleen to
gain a better sense of the changes in immune cells peripherally,
than just simply measuring peripheral blood neutrophils
and monocytes, which would not necessarily describe the
happenings within remote tissues systemically. MDSCs have
been so far mostly implicated in immunosuppression in
sepsis while they can also be proinflammatory potentially
damaging to parenchymal cells. Interestingly, in our study, we
found that the proinflammatory granulocytic cells (CD11b+
Ly6G+ CD54hi) were immunoresponsive but more mature
and less in number, while the dominant population comprised

the newly proliferating chemotactic granulocytes (CD11b+
Ly6G+ CD54lo) lacking immune responsiveness. These CD54lo

cells also included the major subpopulation CD54loCD62Llo,
which had comparatively lower CD11b expression than
the functional CD54hiCD62Llo cells and did not express
intracellular Arg-1 or iNOS, indicating that these cells were
not part of the MDSC community. Previously, other reports
suggested a distinct human neutrophil phenotype in the
blood during acute inflammation, characterized by CD54bright

cells (CD62Ldim/CD16bright/CD11bbright/CD54bright) showing
immune suppression capacity via T cell suppression (23). The
effect of CD54hi and CD54lo cells on T cell function in our study,
however, is not yet known.

Neutrophils capable of migration from the bone marrow after
granulopoiesis or of reverse transmigration to the bone marrow
for further homing are known to have down-regulated CXCR4
expression through decreased CXCR4/CXCL12 signaling (5).
While decreased CXCR2 is associated with neutrophil adhesion
(31), neutrophils lacking both CXCR4 and CXCR2 are known
to display constitutive mobilization, with CXCR4 playing the
dominating role in neutrophil trafficking (32). In our study, the
CD54 populations showed overall decreased CXCR2 expression.
It is well-known that the recruitment of mature and immature
neutrophils from the bone marrow occurs to establish a niche
in the spleen (33). However, the CD54lo cells significantly lacked
CXCR4 expression, which may indicate a greater transmigration
or homing ability of this population.

This current study is only limited to a mouse model of PICS.
Therefore, it is necessary to expand this study to patients with
chronic critical illness. In addition, we do not yet know the
role of these differential populations of splenic neutrophils in
the setting of a secondary infection. Therefore, although the
CD54lo cells have decreased inflammatory functions, further
studies are required to determine if they contribute to the
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immunosuppression that occurs in PICS. Ongoing studies in our
lab will reveal more information about the status and function
of circulating neutrophils in both the early and later stages of
sepsis and help determine the exact role of splenic neutrophils
in the development of chronic critical illness after sepsis.
Furthermore, focused studies will be interesting to investigate
the role of any similar or other population of neutrophils
and/or other innate immune cells in tissues other than spleen
in PICS.

In conclusion, the comparatively immature, actively
proliferating neutrophils arising in spleen have significantly
less proinflammatory function, yet preserved chemotactic
ability during PICS, which may act as a contributing factor
of immunosuppression as seen after sepsis. Therapeutic
strategies to target these neutrophils might benefit critically
ill sepsis survivors and improve overall outcomes for this
patient population.
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Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary

infections during hospitalization and after hospital discharge. Studies show that the

mitochondrial function and oxidative metabolism of monocytes and macrophages are

impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such

as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with

toll-like receptors and other pattern recognition receptors on leukocytes induces

a state of innate immune memory that confers broad-spectrum resistance to

infection with common hospital-acquired pathogens. Priming of macrophages with

MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage

metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative

metabolism in parallel with increased glycolysis, cell size and granularity, augmented

phagocytosis, heightened respiratory burst functions, and more effective killing of

microbes. The mitochondrion is a bioenergetic organelle that not only contributes to

energy supply, biosynthesis, and cellular redox functions but serves as a platform

for regulating innate immunological functions such as production of reactive oxygen

species (ROS) and regulatory intermediates. This review will define current knowledge

of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further

discuss therapeutic strategies that target leukocyte mitochondrial function and might

have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.

Keywords: sepsis, infection, trauma, trained immunity, mitochondria, metabolic reprogramming

INTRODUCTION

Serious infection is a major threat to critically ill patients and frequently precipitates sepsis, a
complex disease spectrum that includes systemic inflammation and organ dysfunction. As such,
sepsis is the leading cause of death in non-cardiac intensive care units (ICU) and accounts
for 40% of ICU expenditures (1). Early investigators postulated that systemic inflammation
was the underlying factor driving the pathogenesis of sepsis and septic shock (2–4). High
concentrations of pro-inflammatory mediators such as tumor necrosis factor, IL-1, and platelet
activating factor were present in plasma and fluids of septic animals and humans (3, 5). Blockade
of pro-inflammatory mediators in experimental animals attenuated or prevented the development
of septic shock (6, 7). Those observations prompted clinical trials aimed at blocking cytokine and

64

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01043
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01043&domain=pdf&date_stamp=2020-05-29
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:naeem.patil@vumc.org
https://doi.org/10.3389/fimmu.2020.01043
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01043/full
http://loop.frontiersin.org/people/948290/overview
http://loop.frontiersin.org/people/934179/overview
http://loop.frontiersin.org/people/982150/overview
http://loop.frontiersin.org/people/947621/overview
http://loop.frontiersin.org/people/888646/overview


McBride et al. Sepsis and Mitochondrial Metabolism

non-cytokine mediators of inflammation, which were not
successful at improving survival in patients with severe
sepsis or septic shock (8). Specifically, a trial of anakinra,
a recombinant IL-1 receptor antagonist, was not found to
be effective in improving mortality in sepsis (9). However, a
subgroup analysis found that the use of anakinra improved
survival in patients with concurrent hepatobiliary dysfunction
and disseminated intravascular coagulation, which are specific
features of macrophage activation syndrome (10). Therefore,
subgroup analysis of diverse sepsis patients for underlying
conditions needs to be considered in studies evaluating different
sepsis treatments to better understand the therapeutic benefit in
different sub-populations of sepsis patients. Later investigations
showed that septic patients had impaired innate and adaptive
antimicrobial immunity, which resulted in their inability to
control primary and secondary infections. Likewise, patients
that survive sepsis and severe trauma have long-term physical
and cognitive disabilities and frequently require readmission
to the hospital due to recurrent infections (11). Research
indicates that the septic or severely injured host responds to
severe inflammation by activating anti-inflammatory pathways
to mitigate further inflammatory injury. Among those pathways
are increased production of anti-inflammatory cytokines such
as IL-10 and transforming growth factor-β (TGFβ) and
upregulation of checkpoint inhibitors such as PD-1, CTLA-4,
BTLA, and PDL1 by leukocytes (12, 13). Other investigators have
shown large-scale apoptosis and dysfunction of lymphocytes and
the proliferation of myeloid-derived suppressor cells, which act
to suppress innate and adaptive antimicrobial responses (14, 15).
Most recently, the concept of metabolic dysfunction has emerged
as a factor underlying impaired function of the innate and
adaptive immune systems of septic and severely injured patients.
This paper will review current knowledge of leukocyte metabolic
dysfunction in the setting of sepsis and severe injury and discuss
interventions to improve leukocyte metabolism and function.

OVERVIEW OF SEPSIS-INDUCED
MITOCHONDRIAL DYSFUNCTION

Glycolysis and mitochondrial oxidative phosphorylation form
the backbone of cellular metabolism. Glucose is primarily
metabolized to pyruvate through glycolysis, along with a net
generation of two ATP molecules. Cells transport pyruvate
into mitochondria where it is metabolized to acetyl-CoA via
the enzymatic action of the pyruvate dehydrogenase complex
(PDH). Acetyl- CoA is metabolized through a series of enzymatic
reactions in the mitochondrial tricarboxylic acid (TCA) cycle to
produce reducing intermediates including NADH and FADH2,
which feed electrons into the TCA cycle-linked electron transport
chain (ETC). Optimal flow of electrons through ETC complexes
(I-IV) is required for maintenance of mitochondrial membrane
potential and proton gradient, which ultimately facilitate ATP
generation (16). Recent studies show that mitochondria not only
generate adenosine triphosphate (ATP), but also are intricately
involved in cellular signaling pathways that regulate calcium
homeostasis, reactive oxygen species (ROS) generation, redox

signaling, and maintenance of immune cell competence, all of
which are critical for our survival (17–19).

The 3rd International Consensus Conference defined sepsis
as organ dysfunction caused by a dysregulated host response to
infection (20). Evidence indicates that mitochondrial dysfunction
is a key player in induction and propagation of sepsis-induced
organ injury, which is demonstrated in both animal and
human studies (21, 22). Brealey et al., were among the first to
demonstrate that sepsis leads to significant impairment of skeletal
muscle mitochondrial ETC activity (specifically complex I),
which correlates with the severity of septic shock in humans (23).
Furthermore, decreased skeletal muscle ATP concentrations were
predictive of increasedmortality among sepsis patients. A clinical
study by Matkovich et al., showed a striking 43% decline in
levels of mRNA that encode proteins involved in mitochondrial
TCA cycle and ETC complexes in the hearts of septic patients
(24). Numerous animal studies also demonstrate a role for
mitochondrial dysfunction in sepsis pathology. Using animal
models, sepsis has been shown to cause a significant impairment
of mitochondrial function in multiple organs including heart,
kidney, liver, and skeletal muscle (25–28). Although these studies
demonstrate a role for mitochondrial dysfunction in sepsis
pathology, discrepancies in various studies also show a highly
variable mitochondrial function in multiple organs depending
on the sepsis model used, severity of sepsis induced, time
course studied, and methodology used for measurement of
mitochondrial function (29). Therefore, there remains some
controversy in the field as to whether mitochondria are the actual
initiators or concurrent amplifiers of organ dysfunction during
sepsis (29).

SEPSIS-INDUCED MITOCHONDRIAL
DYSFUNCTION IN LEUKOCYTES

Recent studies demonstrate that sepsis-induced impairment
of leukocyte mitochondrial function contributes to impaired
antimicrobial immune responses and increased susceptibility
to secondary infections (30, 31). The majority of the studies
implicating a role for sepsis-induced leukocyte mitochondrial
dysfunction used Peripheral Blood Mononuclear Cells (PBMCs)
isolated from septic patients (summarized in Table 1). Adrie
et al., demonstrated significant sepsis-induced depolarization
of mitochondrial membrane potential and increased expression
of cell death markers in peripheral blood monocytes. Eventual
non-survivors demonstrated higher depolarization of the
mitochondrial membrane as compared to survivors (32).
Other studies showed a reduction in mitochondrial respiration
in the presence of high ADP and Pi (also known as state 3
respiration), ATP synthase complex activity and mitochondrial
spare respiratory capacity in PBMCs from sepsis patients
(33, 34, 39). Reduced mitochondrial respiration in leukocytes
was associated with increased incidence of organ failure (34).
Garrabou et al., demonstrated a significant impairment of
mitochondrial ETC complexes I, III, and IV in PBMCs of
patients with confirmed systemic infection but without septic
shock (35).
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TABLE 1 | Summary of clinical studies showing sepsis-induced alterations in leukocyte mitochondrial function.

References Sepsis definition and

patient age

Sample

analyzed

Time of sample collection

after sepsis diagnosis

Major alterations in mitochondrial function (as

compared to controls)

Adrie et al. (32) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 72 h

- Between 7th and 10th day

- Increased membrane depolarization

- Increased cell death markers

Belikova et al. (33) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 48 h of

ICU admission

- Reduced ADP-stimulated state 3 respiration and

increased basal oxygen consumption

Japiassu et al. (34) Septic shock

(>18 years)

PBMC - Within 48 h - Reduced ADP-stimulated state 3 respiration and

ATP synthase activity

Garrabou et al.

(35)

SIRS with infection (no

septic shock)

PBMC - Exact time point

not mentioned

- Decreased activities of ETC complexes I, III, and IV

- Unaltered mitochondrial mass

Sjovall et al. (36) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 48 h

- Days 3–4

- Days 6–7

- Basal respiration and ETC complex I, II, and IV

activities increased over time up to day 7

Weiss et al. (37)

(pediatric study)

Septic shock with

organ failure

(<18 years)

PBMC - Within 48 h

- Days 5–7

- Unaltered basal and ATP linked respiration on days

1–2

- Spare respiratory capacity (SRC) decreased on days

1–2

- SRC recovered over days 5–7

Cheng et al. (31) LPS infusion in

healthy volunteers

Bacterial and fungal

sepsis patients

(>18 years)

PBMC and

monocytes

- LPS infusion for 4 h

- Within 24 h for

septic patients

- Decreased oxygen consumption in all models

- Both glycolytic capacity and mitochondrial function

impaired in septic PBMCs

- Impaired ability to respond to a second stimulus

Merz et al. (38) Septic shock

(> 18 years)

Monocytes - 24 and 48 h

- At shock resolution

- ETC complex I, IV, and ATP synthase activities

elevated

- No difference in ATP content

Jang et al. (39) Sepsis and

septic shock

(>18 years)

PBMC - Within 24 h - Decreased ATP-linked respiration and reduced

uncoupled complex I activity, and no differences in

ETC complex II and IV activities.

- Decreased spare respiratory capacity

Kraft et al. (40) Sepsis with evidence of

organ injury

(>18 years)

PBMC - Days 1, 3, and 5 - Reduced mitochondrial DNA and mitochondrial

biogenesis

- Increased plasma D-loop indicating mitochondrial

damage

- Alterations normalized over a week with

patients’ recovery

Weiss et al. (41)

(pediatric study)

Sepsis and

septic shock

(<18 years)

PBMC - Days 1–2, 3–5 and 8–14 - Decreased spare respiratory capacity (SRC) and

increased mitochondrial content on days 1–2

- SRC recovered over time as patients improved over

14 days.

- Low SRC associated with residual organ injury at

day 14.

Weiss et al. (42)

(pediatric study)

Severe sepsis and

septic shock

(<18 years)

PBMC - Within hours

- Days 3–5 and 8–14

- Decreased mitochondrial respiration observed in

those septic PBMCs which showed reduced

LPS-induced TNF-α and HLA-DR expression.

Clere-Jehl et al.

(43)

Septic shock

(<18 years)

PBMC - Within 12 hours of

noradrenaline start

- Increased basal and maximal respiratory capacity

- Lower ATP synthase activity

In a major study, Cheng et al., showed that both bacterial
and fungal sepsis leads to a shift in cellular metabolism
toward glycolysis (Warburg effect), and leukocytes isolated from
septic patients, as well as those treated with lipopolysaccharide
(LPS), demonstrated a reduced oxygen consumption capacity
signifying mitochondrial defects (31, 44). Furthermore, these
metabolic defects were associated with impaired ability of
leukocytes to produce pro-inflammatory cytokines in response
to a secondary stimulus, which the authors refer to as a state of

immunoparalysis (31). A study by Kraft et al., brings to light an
important observation that effective reversal of the initial sepsis-
induced leukocyte mitochondrial damage via early activation
of mitochondrial biogenesis improved clinical outcomes among
septic patients (40). They showed that mRNA levels of genes
related to mitochondrial biogenesis, including PGC-1α, NRF1,
and TFAM, were significantly reduced 1 day after the initiation of
sepsis along with a decrease inmitochondrial DNA copy number.
Recovery of these parameters was paralleled by improved
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clinical outcome and discharge from the ICU over a 1 week
period (40). In multiple pediatric studies using PBMCs, Weiss
et al., demonstrated that sepsis leads to a significant decrease
in mitochondrial respiration and spare respiratory capacity
implying a decreased bioenergetic reserve and mitochondrial
dysfunction (37, 41, 42).

In contrast to these studies demonstrating sepsis-induced
impairment of mitochondrial respiration, some studies show
unaffected or increased mitochondrial respiration. Using PBMCs
and monocytes from patients with severe sepsis and septic shock,
Sjovall et al., and Merz et al., showed a significant increase in
activities of mitochondrial ETC complexes I, II, and IV and did
not observe a difference in these parameters among survivors vs.
non-survivors (36, 38). In line with these studies, Clere-Jehl et al.,
showed that sepsis leads to a significant increase inmitochondrial
respiratory capacity of PBMCs (43). However, mitochondrial
respiration was impaired upon suspending the PBMCs in septic
plasma, implying a role for a soluble plasma factor, which
the authors attributed to a high level of HMGB1 (43). The
contrasting findings might be attributed to the vast heterogeneity
in sepsis patient populations, differing time points selected
for measurements and underlying co-morbidities. Leukocyte-
specific mitochondrial function in freshly isolated systemic
immune cells has not been assessed in animal models.

In summary, the majority of studies implicate mitochondrial
dysfunction as an important contributor toward sepsis-induced
leukocyte and organ dysfunction. Importantly, early recovery
of mitochondrial function correlates positively with improved
clinical outcomes in septic patients (40, 45). Therefore, therapies
targeting recovery of mitochondrial function hold potential for
reversing leukocyte dysfunction during sepsis. Agents that target
the AMP kinase pathway, such as AICAR (5-aminoimidazole-4-
carboxamide ribonucleotide), or the mTOR signaling pathway,
such as metformin, could provide benefit. Recent studies
demonstrate that activation of pattern recognition receptors
of innate leukocytes, especially monocytes and macrophages,
augments mitochondrial function and rewires mitochondrial
metabolism leading to accumulation of specific TCA cycle
intermediates such as citrate, itaconate, succinate, fumarate,
and others. Prophylactic treatment with TLR4 agonists can
protect against severe infections for up to 14 days (46–48).
That benefit is due, in part, to heightened mitochondrial and
antimicrobial functions in macrophages Therefore, TLR agonist-
induced mitochondrial metabolic reprogramming in innate
leukocytes is associated with the generation of distinct innate
immune memory. Mitochondrial reprogramming and innate
immune memory are now being widely investigated as novel
strategies for developing mitochondria-targeted therapies for
protection against infections and sepsis in critically ill patients.

THE IMPACT OF TRAUMA ON
LEUKOCYTE METABOLISM

Although similar to sepsis, trauma provides a different set of
signals to the immune system.While infection and sepsis can be a
complication of trauma, the direct impact of trauma on immune

system function is generated through tissue injury, inflammation,
and tissue ischemia and reperfusion (49, 50). The effect of
trauma on immune function is variable and largely dependent
on the severity of injury (51, 52). The release of endogenous cell
products, such as mitochondrial DNA, oxidized phospholipids,
and ATP can activate toll-like receptors and inflammasomes
to precipitate immune system activation (53, 54). Excessive or
inappropriate immune system activation following major trauma
could lead to immune dysfunction. Impairment of neutrophil
andmonocyte chemotaxis and antimicrobial functions have been
described (55–57) as have alterations in lymphocyte function
(58). However, little is known about the impact of major trauma
on the metabolic state of leukocytes, which raises an area
for research.

POTENTIAL THERAPEUTIC STRATEGIES
TARGETING LEUKOCYTE
MITOCHONDRIAL FUNCTION DURING
SEPSIS AND TRAUMA

Effective mitochondrial biogenesis requires a coordinated action
of complex intracellular pathways including both nuclear and
mitochondrial genome encoded proteins (59, 60). PGC-1α
is recognized as one of the most important and inducible
transcription factor that drives mitochondrial biogenesis in
response to external stimuli for maintaining mitochondrial
homeostasis (61). The activity of PGC-1α is regulated by
post-translational modifications. Sirtuin 1 (SIRT1)-induced
deacetylation and adenosine monophosphate-activated protein
kinase (AMPK)-induced phosphorylation are known to activate
PGC-1α (62). Along with PGC-1α, other cellular transcription
factors and mediators, including NRF1 and NRF2, PGC-
1β, TFAM, ERRα, CREB, also play an important role in
regulating mitochondrial biogenesis (63). The following section
will discuss some of the promising therapeutic strategies targeting
augmentation of mitochondrial biogenesis, which could be
applicable for protecting or restoring leukocyte mitochondrial
function during sepsis and trauma.

Pharmacological Agents Targeting
Mitochondrial Biogenesis and Function
Studies included in this section are summarized in Table 2.

Modulators of AMPK Activity

AMPK is one of the key cellular mediators required for
maintaining cellular energy homeostasis. AMPK exists in
multiple isoforms and it is a heterotrimeric complex composed
of one alpha subunit (either α1 or α2), beta subunit (either
β1 or β2), and gamma subunit (either γ1, γ2, or γ3) (113).
Previous studies show that AMPK induced transcriptional
upregulation of genes involved in mitochondrial metabolism
require PGC-1α (114) and overexpression of AMPK increases
PGC-1α expression (115). AMPK regulates PGC-1α activity
via direct phosphorylation at threonine-177 and serine-
538, and the effect of AMPK on increased expression on
mitochondrial proteins and function is regulated via PGC-1α
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TABLE 2 | Pharmacologic agents targeting mitochondrial biogenesis and function.

Agent class Specific agent References Model Effect

AMPK

activity

enhancer

AICAR Canto et al. (64) Mouse - Reduced acetylation of PGC1α

- Induced expression of PGC1α-target genes in skeletal muscle

Inata et al. (65) Mouse CLP - Protected against cardiac architecture derangement and dysfunction

Hall et al. (66) Mouse endotoxemia - Protected against loss in muscle mass

Escobar et al. (67) Mouse CLP - Reduced pro-inflammatory cytokines

- Reduced kidney and liver injury markers

Metformin Wang et al. (68) Mice fed high fat diet - Improved hepatic mitochondrial complex activity and mitochondrial

density in AMPK-dependent manner

Detaille et al. (69) HMEC-1

(human immortalized

endothelial cell line)

- Inhibited of mitochondrial complex I leading to modulation of the cellular

AMP/ATP ratio to activate AMPK

Meng et al. (70) Hepa1–6

(mouse hepatoma cell line)

- Activated AMPK via increased phosphorylation of AMPKα at Thr-172

Suwa et al. (71) Rats - Increased PGC-1α expression and mitochondrial biogenesis in

skeletal muscle

Tzanavari et al. (72) Mouse endotoxemia - Rescued cardiac dysfunction

- Increased ATP synthesis

- Reduced inflammatory markers

Vaez et al. (73) Isolated rat hearts exposed

to LPS

- Activated AMPK

- Decreased TLR4 activity

- Improved cardiac function

Vaez et al. (74) Rat endotoxemia - Activated AMPK in lung tissue

- Reduced inflammatory cell infiltrate in alveolar walls

Vaez et al. (75) Rat endotoxemia - Activated AMPK in cardiac tissue

- Decreased myocardial TLR4

- Improved cardiac function

Tang et al. (76) Mouse CLP - Decreased brain edema, preserved BBB, improved cognitive function,

improved survival

Liang et al. (77) Metanalysis of cohort

studies

- Preadmission metformin use was associated with decrease mortality in

patients with sepsis and DM

5HT Freire-Garabal et al.

(78)

Isolated mouse peritoneal

macrophages

- Augmented phagocytic capacity of peritoneal macrophages

Mikulski et al. (79) Isolated mouse alveolar

macrophages

- Increased expression of MCP-1(CCL2)

PPAR

activators

Rosiglitazone Drosatos et al. (80) Mouse endotoxemia - Protected mitochondria, reduced cardiac dysfunction, and

improved survival

Pioglitazone Tsujimura et al. (81) Mouse CLP - Reduced inflammation and improved survival

Majer et al. (82) Mouse Candida albicans

sepsis

- Reduced renal pathology and improved survival

15d-PGJ(2) and Zingarelli et al. (83) Rat CLP - Reduced inflammation, neutrophil infiltration in lung, colon, and liver,

hypotension, and improved survival

Ciglitazone

15d-PGJ(2) and

Troglitazone

Maggi et al. (84) RAW 264.7 cells and

CD-1 mouse peritoneal

macrophages

- Reduced iNOS, COX-2, IL-1 in cells treated with LPS and IFNγ

15-PGJ(2) Guyton et al. (85) Isolated rat peritoneal

macrophages

- Inhibited LPS-induced peritoneal macrophage inflammatory mediators

15-PGJ(2)

Troglitazone

Guyton et al. (86) Isolated rat peritoneal

macrophages

- 15-PGJ(2) inhibited LPS, E. coli, and S. aureus-induced NO and TXA

- Troglitazone inhibited TXA synthesis in each condition

Fenofibrate Tancevski et al. (87) Murine Salmonella

typhimurium sepsis

- Reduced pro-inflammatory cytokines, increased neutrophil recruitment,

augmented bacterial clearance, improved survival

- These effects were independent of PPARα

Cree et al. (88) Clinical trial of pediatric

burn patients

- Increased hepatic mitochondrial ATP, maintenance of cytochrome C

oxidase and citrate synthase activity

- Improved insulin sensitivity

Clofribrate Crisafulli and

Cuzzocrea (89)

Isolated mouse peritoneal

macrophages

- Reduced LPS/IFN-γ induced pro-inflammatory cytokine production

(Continued)
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TABLE 2 | Continued

Agent class Specific agent References Model Effect

PDE

inhibitors

Milrinone Barton et al. (90) Pediatric sepsis clinical trial - Increased cardiac index, stroke volume index, and oxygen delivery

- Decreased systemic vascular resistance

Ro 20-1724 Carcillo et al. (91) Rat

endotoxemia

- Improved renal function and survival

Thomas et al. (92) Rat endotoxemia - Protected cardiac contractility and function

Rolipram Holthoff et al. (93) Mouse CLP - Improved renal blood flow, protected renal microcirculation, improved

GFR and renal function

Sims et al. (94) Rat pup CLP - Improved renal, cardiac function, and survival

Sanz et al. (95) Rat endotoxemia - Reduced leukocyte-endothelial interactions

Rolipram and

Roflumilast

Schick et al. (96) Rat endotoxemia - Reduced capillary leakage

- Stabilized endothelial barrier

Rolipram Wollborn et al. (97) Rat endotoxemia - Improved hepatic microcirculation and protects liver architecture

Cilostazol Zuo et al. (98) HUVEC - Induced mitochondrial biogenesis (increased ATP mitochondrial DNA,

cytochrome B, and mitochondrial mass) through PGC1α

Rolipram Ding et al. (99) Mouse renal fibrosis by

unilateral ureteral

obstruction

- Increased mitochondrial biogenesis and PGC1α expression

Natural

products

Resveratrol Biala et al. (100) Transgenic rat model of

heart failure

- Increased PGC-1α, NRF1, NRF2 and Tfam, and

mitochondrial biogenesis

Wang et al. (101) Rat CLP - Inhibited of NFκB

- Decreased kidney injury

- Increased survival

Luo et al. (102) Rat CLP - Decreased renal tubular pathology and proinflammatory cytokines

Wang et al. (103) Young rat CLP - Activated NRF2

- Protects from kidney injury

Shang et al. (104) Rat LPS peritonitis - Protected myocardium and decreased inflammatory markers

Martin et al. (105) Ex-vivo equine leukocytes - Did not increase antimicrobial functions

- Did not alter cytokine profiles

ECGC Valenti et al. (106) Human Lymphoblasts and

fibroblasts

- Increased SIRT1 and PGC1α

- Increased mitochondrial complex activities and oxidative

phosphorylation efficiently

Chiou et al. (107) Mouse endotoxemia - Activated NRF2 via direct interaction with KEAP1

- Reduced LPS-induced TLR4 activation

Wang et al. (108) Mouse endotoxemia - Protected against acute lung injury

- Decreased proinflammatory cytokines

Wheeler et al. (109) Mouse and rat CLP - Decreased hypotension

- Improved survival

Daidzein and

Genistein

(Phytoestrogens)

Cederroth et al. (110) Mouse - Diet containing both compounds increased PGC-1α expression

Daidzein Parida et al. (111) Mouse CLP - Suppressed lung injury, decreased bacterial load

Genistein Yi et al. (112) Mouse endotoxemia - Suppressed proinflammatory cytokines from endothelial cells

(62, 114). AMPK has also been shown to activate SIRT1,
an enzyme which catalyzes deacetylation and activation
of PGC-1α leading to mitochondrial biogenesis (116).
Therefore, activation of the AMPK pathway is a promising
approach to stimulate mitochondrial biogenesis in various
disease conditions, such as sepsis, that negatively affect
mitochondrial function.

Treatment with AICAR will induce mitochondrial biogenesis
and function in skeletal muscle cells, an effect mediated
through activation of SIRT1, which leads to deacetylation and
activation of PGC-1α (64). In a murine cecal ligation and

puncture (CLP) model, AICAR protected against the sepsis-
induced derangements in cardiac architecture and dysfunction
(65). AICAR treatment also protected against LPS-induced loss
in muscle mass (66) and reduced pro-inflammatory cytokine
production and sepsis-induced increases in markers of kidney
and liver injury during CLP-induced sepsis. Inhibition of
AMPK by compound C exacerbated sepsis-associated tissue
injury (67).

Metformin, a clinically used biguanide anti-diabetic drug,
improves mitochondrial function via activation of AMPK (68).
The mechanisms leading to metformin-induced activation of
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AMPK include increased phosphorylation of AMPKα at Thr-
172 and via inhibition of mitochondrial complex I leading to
modulation of the cellular AMP/ATP ratio (69, 70). Studies
by Suwa et al. recognized that metformin, a first line oral
drug for the treatment of type 2 diabetes, increases PGC1-α
and mitochondrial protein content in muscle through AMPK
activation (71). Metformin has been shown to be protective
in studies employing animal models of sepsis (117). During
LPS- and CLP-induced sepsis, metformin protected against
sepsis-induced injury in brain, heart, liver, and lung. These
benefits were mediated through inhibition of oxidative stress and
inflammation, reduced infiltration of neutrophils, maintenance
of mitochondrial membrane potential, and preservation of
mitochondrial function (72–76, 118). In humans, a metanalysis
including five observational cohort studies found that pre-
admission use of metformin was associated with decreased
mortality among patients with sepsis and diabetes mellitus (77).
This association warrants further study of causality and the
mechanism behind this association to assess the therapeutic
benefit of metformin during sepsis.

Despite the described benefits of AICAR and metformin
in reducing inflammation and providing organ protection in
experimental models of sepsis, little is known about the impact of
these drugs on immune function in the septic or severely injured
host, which provides fertile ground for future research.

5-Hydroxytryptamine Receptor (5HT) Agonists

Specific agonists of the 5HT receptor family have been shown
to induce mitochondrial biogenesis (119). 5HT is the chemical
name for endogenous neurotransmitter serotonin. 5HT receptors
are G-protein coupled receptors with serotonin functioning as
its endogenous ligand. It remains to be determined if 5HT
receptor agonists could provide therapeutic benefit to protect
against sepsis-induced organ injury. Immune cells including
macrophages, monocytes and T cells express 5HT receptors
(120). Serotonin has been shown to augment the phagocytic
capacity of murine peritoneal macrophages via 5HT1A receptor
subtype (78). Serotonin has also been shown to activate alveolar
macrophages via 5HT2c receptor leading to increased expression
of the monocyte chemoattractant MCP-1 (79). Various studies
have shown the stimulatory effect of serotonin on other immune
cells including Natural Killer cells, dendritic cells, and T cells
(120, 121). Studies evaluating the effect of serotonin and synthetic
5HT receptor agonists on mitochondrial biogenesis in leukocytes
is currently lacking.

Peroxisome Proliferator-Activated Receptor (PPAR)

Activators

PPARs are a class of nuclear receptors/transcription factors that
are comprised of three isotypes including PPARα, PPARβ/δ, and
PPARγ (122). PPARs are known to regulate various metabolic
functions including triglyceride and lipoprotein metabolism,
fatty acid synthesis, and oxidation and energy homeostasis to
name a few (123). PGC1-α, the aforementioned transcription
factor known for its role in mitochondrial biogenesis, also
functions as a coactivator PPARγ (124). Thiazolidinediones
are clinically used anti-diabetic drugs, which increase insulin

sensitivity through activation of PPARγ (125). Rosiglitazone,
a thiazolidinedione class drug, was shown to attenuate
LPS-induced cardiac dysfunction and protect mitochondria
leading to improved survival (80). Pioglitazone, another PPARγ

agonist, has been shown to reduce inflammation and improve
survival in a murine CLP and Candida albicans-induced sepsis
(81, 82). Zingarelli et al. showed that treatment with PPARγ

ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), and
ciglitazone attenuated inflammation, reduced excess neutrophil
influx into various organs, decreased hypotension and improved
survival through regulation of NF-κB and AP-1 signaling
pathways using murine CLP model of sepsis (83). Other studies
have also shown similar anti-inflammatory effects of synthetic
PPARγ ligands including 15d-PGJ(2) and troglitazone on
macrophages (84–86, 126). Fenofibrate, a known PPARα agonist
used clinically for the management of dyslipidemia, reduced
pro-inflammatory cytokines levels, promoted neutrophil
recruitment to the site of infection and augmented bacterial
clearance leading to improved survival in a murine model of
Salmonella typhimurium-induced sepsis (87). The beneficial
effect of fenofibrate was shown to be independent of PPARα but
dependent on the preservation of neutrophil CXCR2 expression
(87). Using another PPARα agonist, Crisafulli et al. demonstrated
that clofibrate reduces LPS/IFNγ induced pro-inflammatory
cytokine production in murine peritoneal macrophages (89).
Treatment of pediatric burn patients with fenofibrate within
the first week after burn injury has been shown to increase
hepatic mitochondrial ATP production, maintain cytochrome c
oxidase levels and citrate synthase activity along with improving
insulin sensitivity, thereby indicating the therapeutic utility of
fenofibrate-induced augmentation of mitochondrial function
after burn injury (88). A study by Standage et al. showed that
PPARα expression is decreased in the whole blood of pediatric
sepsis patients and this correlated with the severity of sepsis
outcomes and PPARα is required for maintaining optimal
immune function during sepsis (127). In summary, PPAR
agonists might have therapeutic potential in attenuation of sepsis
induced inflammation and organ injury. However, the specific
effect of various PPAR agonists on mitochondrial biogenesis and
function in various organs and leukocytes in context of sepsis
and trauma has not been investigated in detail and needs to be
evaluated in future studies.

Phosphodiesterase (PDE) Inhibitors

Phosphodiesterases serve to hydrolyze cAMP and cGMP,
increase levels of which reduces vascular tone, tightens
endothelial junctions, and increases cardiac contractility. The
cAMP-response-element-binding protein (CREB) is involved in
transcriptional activation of PGC1α (128). In pediatric sepsis
patients, treatment with PDE3 inhibitors increase both cAMP
and cGMP levels and not only improve cardiac function (90,
129, 130) but also increase survival (131, 132). PDE4 inhibitors
such as rolipram and Ro 20-1724 are selective for cAMP (133).
Inhibition of PDE4 using Ro 20-1724 reduced systemic vascular
resistance and improved cardiac and renal function in LPSmodel
of sepsis in rats (91, 92). Treatment with rolipram improves
renal blood flow, protects renal microcirculation and improves
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glomerular filtrate rate and renal function in a murine model of
CLP-induced sepsis, even when administered 6 h after CLP (93).
Rolipram treatment also improved renal and cardiac function
leading to improved survival in septic rat pups (94). PDE4
inhibitors, rolipram and roflumilast, have been shown to reduce
leukocyte-endothelial interactions which inhibits inflammatory
cell influx, and reduce capillary leakage during LPS-induced
inflammation (95, 96). Wollborn et al. showed that treatment
with rolipram improves hepatic microcirculation and protects
liver architecture in a rat model of LPS induced inflammation
(97). Pharmacological agents such as rolipram and cilastozol
which are specifically inhibit PDE4 and PDE3, respectively,
and have been shown to increase CREB phosphorylation,
upregulate PGC-1α expression and contribute to the induction
of mitochondrial biogenesis (98, 99, 134). Future studies
addressing the impact of PDE inhibitors on mitochondrial
function in organs and leukocytes in context of sepsis and trauma
are warranted.

Natural Products That Induce Mitochondrial

Biogenesis

Resveratrol, a polyphenol compound found in grapes and red
wine, has been shown to activate PGC1α and mitochondrial
biogenesis through SIRT1 or AMPK signaling (135). Resveratrol
upregulates PGC-1α, NRF1, NRF2 and Tfam leading to
potentiation of mitochondrial biogenesis (100). In multiple
studies using a CLP model of polymicrobial sepsis in rats,
resveratrol treatment results in increased survival as well as
decreased kidney injury associated with inhibition of NFκB (101,
102). In a similar model of pediatric sepsis-induced kidney injury
in young rats, resveratrol was shown to activate NRF2 and protect
from injury (103). Shang et al. report that resveratrol is protective
in LPS-induced cardiomyopathy in rats also through inhibition
of NFκB (104). In horses, however, Martin et al. showed that
a 3 week course of resveratrol did not increase antimicrobial
function or alter cytokine release profiles of ex vivo stimulated
leukocytes (105).

Epigallocatechin gallate (ECGC), a natural compound found
in tea, promotes cAMP dependent signaling and increases
SIRT1 and consequently PGC1α (106). In murine LPS-induced
endotoxemia, ECGC protected against acute lung injury and
decreased proinflammatory cytokine production (108). ECGC
has been shown to induce the NRF2 antioxidant response
element through direct interaction with its inhibitor KEAP1
thereby leading NRF2 activation (107). NRF2, like PGC1α,
is known to be involved in mitochondrial biogenesis. In
the CLP model, ECGC attenuated hypotension and improved
survival (109).

Estrogen receptors are known to regulate mitochondrial
biogenesis, so it follows that phytoestrogens may also induce
mitochondrial biogenesis and have protective affects in
sepsis. A diet high in two phytoestrogens daidzein and
genistein has been shown to increase PGC-1α expression, and
these two compounds were separately shown to decreases
proinflammatory cytokines in LPS-induced endotoxemia, and
increase survival and bacterial clearance in CLP-induced sepsis
respectively (110–112).

METABOLIC REPROGRAMMING OF
INNATE LEUKOCYTES BY MICROBIAL
LIGANDS

Stimulation of innate immune cells with microbial ligands
such as LPS, peptidoglycan, or β-glucan reprograms their
metabolism, which supports the increased physiological demands
needed to augment antimicrobial capacity to combat invading
infections (47, 136, 137). The reprogrammed phenotype of
innate leukocytes manifests as distinct augmentation of glycolysis
and mitochondrial tricarboxylic acid cycle flux and oxidative
phosphorylation, as detailed below (Figure 1).

Reprogramming of Glycolysis
Hard et al. discovered that immune macrophages, defined
as those from peritoneal cavities of mice injected with
bacteria, produced more lactate and consumed less oxygen than
controls (138). Further investigations showed that macrophages
stimulated with LPS manifest increased glucose uptake, an
elevated glycolytic rate and augmentation of the pentose
phosphate pathway (139, 140). These findings were reminiscent
of the aerobic glycolysis noted by Warburg et al. in cancer
cells, which preferentially utilize glycolysis, even in aerobic
conditions that should favor oxidative phosphorylation as more
energetically efficient (141). Aerobic glycolysis in macrophages
in facilitated, in part, by stabilization of hypoxia-inducible factor
(HIF)-1α. Early macrophage activation induces accumulation
of succinate and itaconate, which are transported out of
mitochondria in the cytosol where it acts to stabilize HIF-1α by
impairing the activity of prolyl hydroxylases (142, 143). HIF-
1α facilitates increased expression of numerous gene products
that regulate inflammation including enzymes that promote
glycolysis (140). Though this effect is notable in multiple types of
murine macrophages, Vijayan et al. reported that LPS does not
increase glycolysis in human PBMCs (144). Multiple purposes
for this increase in glycolysis, over oxidative phosphorylation
at the expense of energy efficiency, have been hypothesized.
West et al. described that classically activated macrophages
require mitochondrial reactive oxygen species for effective
bacterial clearance (145). The contributions of mitochondrial
complex I to ATP synthesis during oxidative phosphorylation
may detract from mROS generation (145). As suggested in
Viola et al., glycolysis may also be advantageous because it
supplies biosynthetic intermediates important for rapid cellular
adaptations, as well as NADPH through the pentose phosphate
shunt, which is important for generation of ROS. The Warburg
effect in macrophage activation is specific to the classical M1
phenotype, but not in alternatively activated M2 macrophages,
which rely on oxidative phosphorylation (146). Interestingly,
increases in oxidative phosphorylation and glycolysis occur
in macrophages activated by the TLR4 agonist MPLA 72 h
after exposure, resulting in a hybrid phenotype with metabolic
characteristics common to both M1 and M2 macrophages (47).

LPS also induces the TCA cycle metabolite itaconate, in
both murine and human macrophages (147) (Figure 1). It
has been recently shown that itaconate inhibits glycolysis via
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FIGURE 1 | Metabolic reprogramming of leukocytes. Inflammatory stimulation of leukocytes, specifically monocytes and macrophages, with Toll-like receptor 4 (TLR4)

ligands like lipopolysaccharide, has been shown to rewire mitochondrial metabolic pathways including upregulation of immunoresponsive gene 1 (Irg1) leading to

increased itaconate generation, and increased accumulation of other TCA cycle metabolites including succinate, fumarate, malate, and citrate which continue to be

replenished via additional pathways including glutamine anapleurosis and aspartate-arginosuccinate shunt. Itaconate produced by Irg1 inhibits succinate

dehydrogenase, which causes an increase in mitochondrial reactive oxygen species (mROS). Itaconate and mROS augment antimicrobial capacity of leukocytes.

inhibiting glycolytic enzymes aldolase A and glyceraldehyde-
3-phosphate hydrogenase in RAW 264.7 macrophage cell
lines (148, 149). Itaconate has also been shown to inhibit
succinate dehydrogenase, which might reprogram citric acid
cycle function and facilitate mROS generation due to reverse
electron transport secondary to inhibition of SDH-dependent
complex II (150).

Reprogramming of Mitochondrial
Metabolism
The majority of recent studies demonstrate significant alterations
in the generation of TCA cycle intermediates upon TLR
agonist-induced inflammatory stimulation of monocytes and
macrophages. Studies from our laboratory, and others, show that
citrate, itaconate, and succinate accumulate during metabolic
rewiring of macrophages and monocytes (47, 140, 151, 152).
Recent studies have elucidated a unique role for each of
these metabolites in the context of cellular metabolic and
antimicrobial functions.

Citrate is converted to α-ketoglutarate by isocitrate
dehydrogenase (IDH) through the intermediate cis-aconitate.
Michelucci et al., demonstrated that stimulation of macrophages
with LPS leads to significant upregulation of immunoresponsive
gene 1 (Irg1) enzyme, which catalyzes the production of itaconate
from cis-aconitate in the mitochondria, thus diverting pyruvate-
derived citrate production away from energy generation and
toward production of itaconate (153). Jha et al., also showed
that LPS induces downregulation of IDH and succinate
dehydrogenase (SDH) function in macrophages leading to a
significant accumulation of citrate and succinate (151). In line

with this, studies from our laboratory show that MPLA treatment
reduces TCA cycle flux between citrate and α-ketoglutarate at
24 h after stimulation in association with induction of Irg1
expression and large scale itaconate production (47). Therefore,
it is evident that inflammatory stimulation of macrophages
drives citrate toward production of itaconate. Itaconate has
now been shown to be a critical regulator of macrophage
and monocytic function after LPS stimulation. Intracellular
itaconate concentrations of up to 8mM have been shown
in macrophages at 6 h after LPS stimulation (153), which
subsequently steadily decline over time (152). There are multiple
known downstream cellular effects of this dramatic increase in
itaconate. First, itaconate inhibits mitochondrial complex II or
SDH function in a dose-dependent manner leading to succinate
accumulation (154), which is supported by the observation
that Irg1 knockout macrophages do not accumulate succinate
following LPS stimulation (151). The implications of succinate
accumulation are discussed later. Itaconate also plays a major
role in potentiating cellular anti-inflammatory and anti-oxidant
effects through activation and nuclear translocation of NRF2via
alkylation of KEAP1, a known physiological inhibitor of NRF2
(147). Through activation of NRF2, 4-octyl-itacoante (a cell
permeable analog of itaconate) increases expression of key anti-
inflammatory genes including heme oxygenase 1 and potently
inhibits proinflammatory cytokine release (147). Macrophages
lacking the Irg1 enzyme produce increased proinflammatory
cytokines, including IL-6, IL-18, and IL-1β, in response to
LPS relative to wild type macrophages and treatment with a
cell permeable itaconate derivative decreases proinflammatory
cytokines in response to LPS (147, 155).

Frontiers in Immunology | www.frontiersin.org 9 May 2020 | Volume 11 | Article 104372

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


McBride et al. Sepsis and Mitochondrial Metabolism

Itaconate is also known to be secreted by macrophages
into the extracellular milieu and have direct antibacterial
effects (156). Itaconate competitively inhibits the microbial
enzyme isocitrate lyase, a required step in the glyoxylate
shunt, thereby limiting bacterial growth under nutrient poor
conditions as occur at the site of infection (157). The microbial
glyoxylate shunt bypasses two decarboxylation steps in the
tricarboxylic acid cycle, facilitating the assimilation of carbon
when only two-carbon sources such as ethanol or acetate
are available (151, 158–160). Pathogens that have shown
sensitivity to itaconate-induced microbial growth inhibition
include Mycobacterium tuberculosis, Staphylococcus aureus,
Legionella pneumonia, Acinetobacter baumanii, and Salmonella
enterica (153, 161, 162). Therefore, itaconate affects cellular
metabolism and affords anti-inflammatory and anti-microbial
protection upon inflammatory activation of immune cells. As
such, our knowledge of the role of itaconate is currently limited
to macrophages and monocytes, and future studies addressing
its effects on other leukocytes such as neutrophils and dendritic
cells will shed more light on the novel aspects of this critical
metabolite. Nonetheless, based on studies, therapeutic utility of
itaconate to protect against life-threatening infections and sepsis
merits further investigation.

Succinate is another TCA cycle metabolite that significantly
accumulates in LPS-stimulated macrophages and monocytes
(150, 152, 163). Succinate is the principal substrate for succinate
dehydrogenase, which not only participates in the TCA cycle
but also in ETC complex II. Oxidation of succinate to fumarate
results in reduction of FAD+ and ultimately Coenzyme Q, which
continues in the ETC via complex III and IV, leading to ATP
generation via ATP synthase (16). Itaconate-induced inhibition
of SDH and facilitation of glutamine anapleurosis are the
major sources of intracellular succinate accumulation upon LPS
stimulation of macrophages (150, 151). High levels of succinate
and succinate dehydrogenase activity are associated with
inducing a pro-inflammatory phenotype in innate leukocytes
as result of succinate-mediated hypoxia inducible factor α

(HIF-1α) stabilization, increased mitochondrial ROS generation,
and protein succinylation (137, 163). LPS-induced succinate
accumulation is associated with stabilization of HIF-1α, leading
to increased IL-1β production and inflammation (140, 164).
Rapid oxidation of increased succinate to fumarate by SDH
requires CoQ, which is consumed under LPS stimulation,
thereby driving reverse electron transport leading to a substantial
generation of mitochondrial ROS (165). Although uncontrolled
generation of mitochondrial ROS can have deleterious effects on
cellular functions, it has also been shown to play an important
role in microbial clearance (145). However, further studies are
needed to establish the antimicrobial role of SDH-generated ROS
in in vivomodels of infection.

Inflammation-induced increases in intracellular accumulation
of citrate also affects cellular metabolism and functions. Activated
macrophages accumulate citrate due to decreased isocitrate
dehydrogenase activity (47, 151). De Souza and colleagues
recently demonstrated that LPS-mediated increase in IFN-γ
limits isocitrate dehydrogenase activity in an autocrine manner
in macrophages, implying a role for IFN-γ in LPS-mediated
increase in citrate levels (166). Accumulated citrate is not

only converted to itaconate (153) in the mitochondria but
also transported from the mitochondria into the cytosol via
mitochondrial citrate carrier (CIC) (167). Increased CIC and
cytosolic citrate has been shown to fuel the LPS-induced
generation of pro-inflammatory mediators such as nitric oxide,
ROS, and prostaglandins in macrophages (168). Our studies
also show that MPLA-stimulated citrate transported into the
cytosol is ultimately converted to malate and pyruvate, and
the cytosolic malate replenishes mitochondrial oxaloacetate
pools to further fuel a sustained increase in mitochondrial
TCA cycle flux (47). Importantly, these alterations in citrate
metabolism are associated with a sustained augmentation of
mitochondrial density and oxygen consumption, along with
increased macrophage phagocytic capacity (47). Therefore,
citrate accumulation not only plays an important role in fueling
acute inflammation but also potentiates a sustained increase
in TCA cycle flux and antimicrobial functions, which need
further evaluation.

Evidence for Metabolic Reprogramming in
Murine and Human Sepsis Studies
The majority of studies demonstrating the effect of inflammatory
activation on metabolic reprogramming of innate leukocytes
such as macrophages and monocytes have been performed in
vitro. Corroborating the changes described in the in vitro studies
described above, metabolic reprogramming of innate immune
cells in response to TLR activation has also been observed in
some in vivo murine and human studies. Sterile endotoxemia
(LPS administration) in mice causes peritoneal macrophages
to more than double glucose uptake, suggesting an increase in
glycolysis in this model (169). Functionally, monocytes from
septic patients were found to have increased basal glycolysis
compared to healthy controls (170). Shalova et al. performed
a gene ontology analysis to compare monocytes from septic
patients relative to healthy controls, and reported that the top 10
most significantly downregulated gene clusters were all related
to cellular metabolism (171). Consistent with this, Cheng et al.
found diminished glycolysis and oxidative phosphorylation in
peripheral blood mononuclear cells (PBMCs) in septic patients
with immunoparalysis as compared to control subjects (31).
Genome-wide microarray analysis of PBMCs from patients with
both bacterial and fungal sepsis in this study identified that genes
for oxidative phosphorylation and glycolysis were both increased
along with evidence of mitochondrial dysfunction pathways,
suggesting that immune cell metabolism is significantly affected
during sepsis. Further studies to separate the adaptive from the
pathogenic changes in leukocyte metabolism could guide the
development of therapies to augment or suppress these metabolic
changes. For example, a study by Pan et al. demonstrated that a
known anti-inflammatory compound, deoxyelephantophin, both
blocks LPS-induced glycolytic increase and protects mice against
endotoxemia (172).

There are limited in vivo studies analyzing the effect of sepsis
on alterations of specific mitochondrial TCA cycle intermediates
during sepsis. A murine study by Chao et al. employing scrub
typhus infection demonstrated a 60-fold increase in plasma
itaconate levels at 10 days after infection (173). A clinical
study by Meiser et al. reported absence of any detectable
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FIGURE 2 | Generation of innate immune memory using microbial ligands. Initial challenge with microbial ligands such as lipopolysaccharide, monophosphoryl lipid A,

CpG, β-glucan potently stimulates host innate effector immune responses in cells such as neutrophils, monocytes, and macrophages, leading to the reprogramming

of their metabolic and epigenetic status. Upon re-exposure of the initially primed host with a secondary inflammatory stimulus or infectious challenge, there occurs a

heightened innate immune response against invading microbes via increased immune cell recruitment leading to improved microbial clearance and survival. This

phenomenon is termed as innate immune memory.

itaconate in the plasma and urine of septic patients, in which
the authors concluded that itaconate may not be a suitable
systemic biomarker for predicting sepsis outcomes (174). That
study evaluated the levels of itaconate at a single time point
among sepsis patients and failed to elaborate on the clinical
condition of patients during sample collection and the exact
time point for collection. A recent study by Beloborodova et al.
detected low concentrations of itaconic acid (0.5–2.3µM) in
the plasma of septic shock patients collected within 24 h and
none was detected in patients at later stages of sepsis (175).
The levels of succinate were higher in the late stage sepsis
patients as compared to early stage, but lower than the control
healthy group. It must, however, be noted that the early and
late stage sepsis patients included in this study were entirely
different patient cohorts and the authors do not report the
changes in plasma itaconate levels as sepsis progressed in each
septic patient subset. It is critical to follow septic patients and
study the alterations in itaconate levels at various time points
after sepsis induction to derive a definitive conclusion for the
use of itaconate as a biomarker for sepsis outcomes or for
supporting itaconate’s use for therapeutic purpose to combat
sepsis. Future studies evaluating sepsis-induced alterations in the
levels of mitochondrial metabolites would be critical to further
the field of metabolic reprogramming toward discovery of novel
therapeutics to protect against infections and sepsis.

INNATE IMMUNE MEMORY AND TRAINED
IMMUNITY

Classically, the role of the innate immune system is to recognize
pathogens and mount a non-specific yet rapid response, whereas

immunological memory has been traditionally considered a
unique hallmark of the adaptive immune system. However,
recent studies indicate that innate immune cells adapt upon
exposure to a pathogen or pathogen-derived ligand, triggering
augmentation of cell physiology and antimicrobial functions
which allows for robust responses to a subsequent challenge
either by the same or different pathogen (176). This phenomenon
by which innate antimicrobial efficiency is increased due
to the priming effect of prior exposure is termed “innate
immune memory” or “trained immunity” (Figure 2). This
immunoregulatory process confers host resistance to infection
in plants and invertebrates that do not have adaptive immunity
but also in mammals (177). The cell type (myeloid, natural killer,
and innate lymphoid cells), stimuli (pattern recognition receptors
and cytokines), genetic mechanism (epigenetic rewiring), and
time scale (persisting weeks to months) are unique to innate
immune memory, independent of those involved in classical
immunological memory (178). An important player in health
and disease, trained immunity may also serve as an innovative
therapeutic strategy for protecting vulnerable patients from life-
threatening infections in the future.

Metabolic Reprogramming and Innate
Immune Memory
Recent findings strongly indicate that metabolic reprogramming
is a key process underlying development of innate immune
memory. Several studies have revealed that expression of key
pro-inflammatory proteins and an effective immune response
relies on intact mitochondrial respiration (179, 180), and the
study of the metabolic demands of mounting an immune
response has been a topic of increasing interest (181). It has
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become widely appreciated that metabolism dynamics regulate
innate immunity via production of metabolite intermediates
which influence cellular phenotype and function (182). β-glucan
immunomodulation has been associated with upregulated
glycolysis in trained macrophages (183) and monocytes (184),
likely to support pro-inflammatory macrophage antimicrobial
functions (182, 185). This has been shown to be dependent
on a shift from oxidative phosphorylation toward glycolysis
through an Akt/mTOR/HIF-1α dependent pathway (183, 186).
We recently reviewed regulation and function of HIF-1α in
myeloid cells (187). On the other hand, TLR ligands (such as
LPS, MPLA, and CPG) increase aerobic glycolysis in concert with
increased antimicrobial functions (such as respiratory burst and
phagocytosis) as well as induce mitochondrial biogenesis and
increased oxidative metabolism (47). These metabolic alterations
allow immediate leukocyte activation, cytokine secretion, and
a more effective innate immune response to infection (46,
47, 188, 189). Our study using HIF-1α deficient macrophages
demonstrated that HIF-1α is required for these metabolic
alterations (46). Another study from our group showed that the
inhibition of mTOR, which stabilizes HIF-1α, diminishes the
protective response of TLR4 ligands (47).

Despite the apparent benefits of inducing innate immune
memory, reprogramming of leukocyte oxidative metabolism
could be a double-edged sword. As noted above, current research
indicates that priming the immune system with microbial ligands
at doses that do not cause damaging systemic inflammation
induces protective immunity in association with an increase
in leukocyte oxidative metabolism (47, 48). It appears that the
heightened metabolic state induced under those conditions
is utilized to facilitate augmented leukocyte antimicrobial
functions such as phagocytosis, oxidative burst, and microbial
killing. However, in cases of tissue injury, reprogrammed
leukocytes could funnel energy to drive hyperinflammation. A
recent paper by Di Gioia and colleagues showed that oxidized
phospholipids derived from 1-palmitoyl-2-arachidonyl-sn-
glycero-3-phosphorylcholine (oxPAPC) can induce increased
leukocyte oxidative metabolism and hyperinflammation,
especially in the presence of microbial ligands such as LPS
(190). Oxidized phospholipids are damage associated molecular
patterns (DAMPS) that are released following tissue injury. Di
Gioia and colleagues reported that oxPAPC and LPS strongly
drive production of pro-IL-1β in macrophages, which is cleaved
and secreted as the mature protein upon activation of the
inflammasome by DAMPS such as ATP (190). However, the
ramifications of these alterations inmodels of acute inflammation
remain to be fully elucidated since a study by Chu and colleagues
showed that oxPAPC inhibits non-canonical inflammasome
activation and is protective in an experimental model of septic
shock (191).

INNATE IMMUNE MEMORY—A NOVEL
THERAPEUTIC TARGET TO PROTECT
AGAINST INFECTIONS AND SEPSIS

The non-specific protection conferred by trained immunity
lends itself to an exciting novel therapeutic approach by which

patients could be primed and protected from a wide array
of infections thus preventing sepsis and subsequent mortality.
Several microbial ligands have immunomodulatory potential,
most notably, TLR and dectin-1 agonists. Rowley first reported in
1956 that primingmice with the TLR4 agonist lipopolysaccharide
(LPS), a structural component of the cell wall of Gram-
negative bacteria, conferred host protection to subsequent
exposure to Gram-negative pathogens (192). Following this
discovery, it has been found that LPS challenge protects against
a wide array of pathogens, including fungal (193), Gram-
positive Staphylococcus aureus (194), and several Gram-negative
pathogens, including Escherichia coli (192), Salmonella enterica
serovar typhimurium (195), and Pseudomonas aeruginosa (196,
197), as well as polymicrobial sepsis (198). Priming with LPS
induces enhanced bacterial clearance (196, 199) and leukocyte
recruitment (194, 200).

Leukocytes primed with LPS can also be described as not
only trained, but also “endotoxin tolerant,” which is defined
by an attenuated pro-inflammatory response upon secondary
challenge with the stimulus. A body of literature suggests
that the phenomenon of endotoxin tolerance is a state of
immunoparalysis during which the host is more susceptible to
infection (201, 202), and results in poorer patient outcomes
(203–206). However, the clear relationship between endotoxin
tolerance and susceptibility to later infections has not been
established. In fact, our group recently demonstrated that the
cytokine response to LPS is not indicative of antimicrobial
immunity (46), and a body of literature illustrates that
altering proinflammatory cytokines during infection has had
no protective benefit (207–210) thereby bringing into question
whether proinflammatory cytokine levels are an essential element
in determining immune competence.

TLR4 Agonist-Induced Innate Immune
Memory and Protection Against Infection
As LPS is toxic to humans, experimental studies have progressed
to investigate other agonists that confer this attractive phenotype
of host resistance to infection after priming. Intriguingly,
prophylactic administration of the vaccine adjuvant MPLA,
which is derived by cleaving the C1 phosphate group from
lipid A and is 100-fold less toxic than LPS (211–213) improves
bacterial clearance, attenuates physiologic dysfunction, induces
leukocyte expansion and recruitment to sites of infection,
enhances antimicrobial functions, and profoundly improves
survival during infection with a wide array of clinically
relevant pathogens (47, 188, 214–217). TLR4 is unique among
TLRs as it can generally signal through both the myeloid
differentiation primary response gene 88 (MyD88)-dependent
and the TIR-domain-containing adapter inducing interferon-
β (TRIF)-dependent pathways. A study of human neutrophils,
however, revealed that TLR4 activation by LPS does not activate
the TRIF-dependent pathway in neutrophils, postulated to be
due to neutrophil’s more prominent role in bacterial responses
compared to viral (218). Our group is investigating the relative
contribution of these pathways in TLR-mediated trained innate
immunity, and has shown that MyD88 deficient mice fail to
augment leukocyte recruitment or G-CSF production in response
to infection following priming with MPLA, both of which are
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known to play a critical role in MPLA-mediated protection
(188, 189). Further, the MyD88-selective TLR9 agonist CpG
oligodeoxynucleotide (CpG) preserves physiologic function and
improves bacterial clearance following infectious challenge with
Pseudomonas aeruginosa (46). CpG similarly provided protection
in a model of intracerebral Escherichia coli (219), which implies
that TLR-mediated resistance to infection is dependent on
MyD88 signaling.

TLR4 agonist-induced antimicrobial properties are
independent of antibiotic therapy. This is of particular
importance due to the current rise in global antibiotic
resistance (220–222). The rate of antibiotic resistance has
been far exceeding the rate of new antibiotic class development,
and current market trends suggests pharmaceutical companies
will not be able to support new antibiotic development
programs (220, 223). Thus, there is an increasing need for
novel antimicrobial therapeutic strategies, lending to the
possibility of adopting agents that induce trained immunity
as independent or adjunct antimicrobial therapeutic agents.
Several synthetic ligands that target TLRs and dectin-1 are
under development. Novel synthetic phosphorylated hexaacyl
disaccharides (PHADs), which target TLR4, are equipotent
with MPLA as agents to augment antimicrobial immunity and
have strong potential to be developed into drug candidates
(48). PHADs are synthesized de novo and are currently under
investigation as immunopotentiating agents (48, 213). The
antimicrobial functions of PHADs are linked to the increased
recruitment of innate leukocytes to the sites of infection and
augmentation of their antimicrobial activity.

Therapeutic Utility of Other Microbial
Ligands
The class of TLR agonists that have strong potential for clinical
translation extend beyond TLR4 ligands. The TLR9-selective
agonist CpG oligodeoxynucleotide (CpG-ODN) is a short single-
stranded synthetic bacterial DNA molecule that has been shown
to confer host resistance to an array of pathogens including the
parasite Leishmania major (224), the Gram-negative pathogens
Francisella tularensis (225), Pseudomonas aeruginosa (226), and
Burkholderia pseudomallei (227–229), Gram-positive Listeria
monocytogenes (230), and viral HSV infections (231). Further,
CpG-ODN also has promise as a vaccine adjuvant (232)
and antitumor therapeutic (233, 234). There are several
classes of CpG-ODN based on their variety of sequence
and structure which elicit specific immunomodulatory profiles
(232). Unlike TLR4, which signals through both MyD88- and
TRIF-dependent pathways, activation of TLR9 triggers MyD88-
dependent signaling alone. CpG-mediated host protection to
infection seems to be dependent on downstream induction
of Th1-type immune response, specifically the production of
Interferon-β (224, 235). Further work is necessary to define the
cellular and molecular underlying mechanisms by which CpG
boosts antimicrobial responses and protects against infection.

Other microbial ligands and infections themselves can
induce innate immune memory and enhance antimicrobial
functions through different signaling mechanisms. β-glucans

are structurally diverse polysaccharide components found
mainly in fungal cell walls that are key pathogen-associated
molecular patterns that trigger an immune response and are the
quintessential inducers of trained immunity (236). Glucans are
potent immunomodulators that augment host resistance against
Gram-negative [Escherichia coli; (237, 238)], Gram-positive
(Staphylococcus aureus) (239, 240), fungal [Candida albicans;
(241)], and parasitic (Leishmania braziliensis) (242) infections.
Glucan binds Dectin-1, which triggers downstream Raf-1/Akt-
dependent signaling to augment phagocytosis, ROS production,
microbial killing, and cytokine production (243–245). Further,
glucan has been shown to decrease infectious complications in
high risk surgical patients (246). The biological mechanisms
underlying the immunomodulatory effects of glucan remain
to be fully understood but glucan strongly induces metabolic
reprogramming and epigenetic changes that alter gene expression
and augment leukocyte function (236). Interestingly, trained
immunity can also be induced by Bacillus Calmette-Guerin
(BCG), which has conferred resistance to Schistosoma mansoni
(247) and Candida albicans (248) infections in mice. These
studies found that BCG-primed macrophages show increased
phagocytosis and ROS production and improved clearance of
pathogens. Epidemiological studies show that BCG, among other
vaccines such as measles and oral polio vaccine, confer beneficial
protective effects to unrelated pathogens in humans (249–251).
Furthermore, evidence suggests that certain viral infections, such
as malaria (252) and murine cytomegalovirus (253, 254), and
parasitic infections [Nippostrongylus brasiliensis; (255)] induce a
state of cross-protection to different pathogens through increased
innate antimicrobial efficiency.

CONCLUSIONS

Here, we have reviewed the impact of sepsis on the mitochondrial
function of innate leukocytes, and potential therapeutic strategies
for reprogramming leukocyte metabolism to induce innate
immune memory and restore host immune competency. Studies
in both animal sepsis models and human septic patients reveal
significant mitochondrial dysfunction in various organ systems,
which correlates with sepsis severity and outcomes. In particular,
sepsis-induced mitochondrial dysfunction in leukocytes is a
key driver of impaired immune responses leading to increased
susceptibility to secondary infections in septic patients. Studies
show that early recovery of mitochondrial function in leukocytes
correlates with improved septic patient outcomes.

TLR agonists are a class of microbial ligands with attractive
immunomodulatory properties. Recent studies demonstrate
that TLR agonists can mediate non-specific protection against
infection with protective effects lasting up to 2 weeks,
independent of the adaptive immune system. This induction of
apparent innate immune memory is mediated by TLR agonist-
induced metabolic reprogramming of leukocytes. The altered
metabolic phenotype is characterized by increased glycolysis,
oxidative phosphorylation, and intra-cellular concentrations of
key metabolic intermediates such as itaconate and succinate,
which influence cellular antimicrobial and anti-inflammatory
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functions. Current studies show that administration of drugs
such as TLR ligands which boost leukocyte oxidative metabolism
days prior to infectious challenge improve survival. Therefore,
pre-treatment of critically, who are at risk for acquiring life-
threatening infections, with immunomodulators that induce
metabolic reprogramming and innate immunity might augment
host resistance to infection and improve survival. In vitro data
demonstrates that oxidative metabolism is boosted ∼3 days after
treatment. Though it is impossible to predict exactly which
patients will face an infectious challenge when, patients at risk for
hospital acquired infections could be dosed at admission or prior
to an event that may lead to infection, such as abdominal surgery.
A recent study by Casilag et al. shows that combination therapy
with MPLA significantly augmented the efficacy of antibiotics
leading to reduced bacterial burden and improved survival in a
murine model of bacterial pneumonia, even when administered
after induction of pneumonia (256). Therefore, treatment with
immunomodulators such as TLR agonists and others may also
be beneficial later in the course of sepsis to augment host innate
immunity and improve outcomes.

With the increasing development of antimicrobial resistance,
host-directed immunotherapies offer a promising approach to
combat the risk of deadly infections in critically ill and injured
patients. Immunomodulatory strategies aimed at augmenting
host immunity provide a means of mediating sustained broad

protection against a variety of common nosocomial pathogens.
This review highlights the prospect of developing microbial
ligands as novel therapeutics with the aim of augmenting
leukocyte mitochondrial function and inducing innate immune
memory for protection against life-threatening infections in
critically ill patients.
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Older adults have significantly worse morbidity and mortality after severe trauma than

younger cohorts. The competency of the innate immune response decreases with

advancing age, especially after an inflammatory insult. Subsequent poor outcomes

after trauma are caused in part by dysfunctional leukocytes derived from the host’s

hematopoietic stem and progenitor cells (HSPCs). Our objective was to analyze the bone

marrow (BM) HSPC transcriptomic [mRNA and microRNA (miR)] responses to trauma in

older and younger adults. BM was collected intraoperatively <9 days after initial injury

from trauma patients with non-mild injury [ISS ≥ 9] or with shock (lactate ≥ 2, base

deficit≥ 5, MAP≤ 65) who underwent operative fixation of a pelvic or long bone fracture.

Samples were also analyzed based on age (<55 years and ≥55 years), ISS score and

transfusion in the first 24 h, and compared to age/sex-matched controls from non-cancer

elective hip replacement or purchased healthy younger adult human BMaspirates. mRNA

and miR expression patterns were calculated from lineage-negative enriched HSPCs.

924 genes were differentially expressed in older trauma subjects vs. age/sex-matched

controls, while 654 genes were differentially expressed in younger subjects vs.

age/sex-matched control. Only 68 transcriptomic changes were shared between the two

groups. Subsequent analysis revealed upregulation of transcriptomic pathways related to

quantity, function, differentiation, and proliferation of HSPCs in only the younger cohort.

miR expression differences were also identified, many of which were associated with cell

cycle regulation. In summary, differences in the BM HSPC mRNA and miR expression
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were identified between older and younger adult trauma subjects. These differences in

gene and miR expression were related to pathways involved in HSPC production and

differentiation. These differences could potentially explain why older adult patients have

a suboptimal hematopoietic response to trauma. Although immunomodulation of HSPCs

may be a necessary consideration to promote host protective immunity after host injury,

the age related differences further highlight that patients may require an age-defined

medical approach with interventions that are specific to their transcriptomic and biologic

response. Also, targeting the older adult miRs may be possible for interventions in this

patient population.

Keywords: hematopoietic stem and progenitor cell, bone marrow, trauma, age, transcriptome, RNA, microRNA

INTRODUCTION

Traumatic injury remains one of the leading causes of morbidity
and mortality in the United States and the world, despite
advances in themanagement of these patients (1, 2). Themajority
of trauma patients are known to recover rapidly; however, 3-
year mortality remains ∼16%, and about 20% of trauma patients
develop chronic critical illness (CCI) (3–6), defined as > 14 days
in ICU with continued organ dysfunction (7–9). Importantly,
studies have revealed that risk factors for poor post-traumatic
outcomes include age and injury severity score (ISS) at admission
as well as total blood transfusion in the first 12 h after injury
(3, 10–13).

A dysfunctional host immune system is responsible in part
for post-traumatic morbidity and mortality (8). This includes
innate immune cells originating from the host’s hematopoietic
stem and progenitor cells (HSPC) in the setting of unresolving
organ failure—leukocytes derived from these HSPCs are not able
to adequately resolve secondary, post-traumatic infectious insults
(8, 13–15).

Importantly, advanced age is associated with an attenuated

acute peripheral leukocyte response and age is known to
be one of the strongest risk factors for poor outcome after
severe trauma with hemorrhagic shock (6, 11, 16). Older
adults have a baseline dysfunction in their immune system

(immunosenescence) and low grade systemic inflammation
(inflammaging) that in part can contribute to their suboptimal

immune response to inflammation, increasing poor outcomes
after severe injury (17). Our laboratory, as well as others, have

demonstrated that elderly mice after severe injury are unable to

mount an effective immune response as compared to juvenile

mice. This is secondary, in part, to a failure of bone marrow
progenitors to effectively respond to trauma (18). In a murine
trauma model, this resulted in increased mortality with delivery
of post-trauma Pseudomonas pneumonia (18–21).

Numerous attempts at pharmacological and therapeutic

interventions to prevent or attenuate post-traumatic insults in

this high risk group of older adults have not sufficiently taken
into account their unique response to severe injury (22–25).

This includes the HSPC response to trauma, as well as the

epigenome that in part controls the transcription of these host
cells. Specifically, microRNAs (miRs), a class small, non-coding

RNAs that regulate gene expression, are important to cellular
transcriptional/epigenetic modification of multiple processes
such as cell development and differentiation (26). miRs can
functions in several ways, including RNA silencing and post-
transcriptional regulation of gene expression, and are known
to modulate immune responses (27). Modulating miRs has
emerged as powerful therapeutic target for cell specific therapy
in personalized medicine (28).

We hypothesized that the bone marrow (BM) HSPC
transcriptomic and miR response to trauma would be dependent
upon the age of the subject and could in part explain the
post-trauma dysfunctional myelopoiesis in these individuals, and
reveal potential therapeutic targets.

METHODS

Study Approval
Approval was obtained from the University of Florida (UF)
Institutional Review Board and was performed from 2014
to 2019 at UF Health Shands Hospital, a 996-bed academic
quaternary-care referral center. The study was registered with
clinicaltrials.gov (NCT02577731) and conducted by the Sepsis
and Critical Illness Research Center at UF. In every case, signed,
informed consent was obtained from the individual patient
or their designated legal representative. If informed consent
was obtained from the legal representative, the patient was
re-consented after they had achieved a clinical state where
they could provide informed consent. If written informed
consent could not be obtained from the patient or their legal
representative within 96 h of study enrollment, the patient was
removed from the study and all collected biologic samples and
clinical data were destroyed.

Cohort Selection
We enrolled adult trauma patients (age ≥18) that were
admitted to UF Health Shands Hospital according to the UF
Institutional Review Board protocol #201601386. Patients with
blunt and/or penetrating trauma resulting in long bone or
pelvic fractures requiring open reduction and internal fixation
or closed reduction, percutaneous pinning) were selected if they
demonstrated an injury severity score (ISS) ≥ 9 or hemorrhagic
shock (HS; defined by systolic blood pressure ≤ 90 mmHg or
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mean arterial pressure ≤ 65 mmHg or base deficit (BD) ≥ 5
meq or lactate ≥ 2) within the first 24 h of admission. Patients
were excluded if pregnant, prisoners, expected survival was <

48 h, receiving chronic corticosteroids or immunosuppression
therapies, previous bone marrow transplantation, previous
diagnosis of End Stage Renal Disease, or any pre-existing
hematological disease.

Age/sex-matched controls were either purchased whole
human bone marrow (Lonza, Biosciences, Berkshire, U.K.)
or bone marrow collected from non-cancer, non-infectious
elective hip repair patients. Control patients were enrolled
according to the same IRB protocol above and were excluded
if pregnant, prisoners, receiving chronic corticosteroids or
immunosuppression therapies, previous chemotherapy or
radiation therapy, previous bone marrow transplantation,
previous diagnosis of end stage renal disease, or any pre-existing
hematological disease, pathological fractures, cancer, HIV or
connective tissue disease.

Bone Marrow Collection
A 10ml aspirate sample of whole bone marrow was collected
intraoperatively. Of note, this aspirate contained tissue and not
just cellular material. This tissue was considered a waste sample
as it would have to be removed to make room for the hardware
being placed by the orthopedic surgeons. Bone marrow was
collected into a heparinized tube, placed on ice and transferred
to the laboratory and processed < 12 h after collection (29).

HSPC Transcriptomic Profile Analysis
Bone marrow collection and bone marrow cell isolation were
conducted as previously published by our laboratory (29).
HSPCs from either trauma, control or purchased whole human
bone marrow were negatively isolated from bone marrow via
magnetic separation using a lineage-positive, cell depletion
kit according to protocol (Miltenyi Biotec). Total RNA was
isolated using QIAGEN RNeasyTM Mini Kit (Qiagen) and labeled
and hybridized onto GeneChip R© Human Transcriptome Array
2.0 (Affymetrix, Santa Clara, CA) and processed following
manufacturer’s instructions. BRBArray Tools R© was used to
identify significant microarray gene expression differences. Fold
expression changes of the significant genes were calculated
vs. age/sex-matched controls. Three separate analyses were
performed based on: (1) Patient age: younger < 55 years or old
≥ 55 years; (2) ISS score; and (3) blood transfusion.

The significant, differentially expressed genes were further
analyzed with Ingenuity Pathway Analysis (IPA) softwareTM

and Gene OntologyTM (GO) enrichment analysis. IPA software
was employed to make downstream functional predictions
from these groups of genes with a Z-score greater than
two indicating significance. GO enrichment analysis identifies
significant representative pathways/biogroups that are over-
represented, indicating that their expression is influenced by the
intervention. We selected pathways with p ≤ 0.005, determined
by the LS/KS permutation test and Efron-Tibshirani’s GSA
maxmean test utilized inGO software to find significant gene sets.

TABLE 1 | Patient characteristics.

Older ≥ 55 (n = 8) Younger < 55 (n = 25)

Age, median (Q1, Q3) 62.5 (59, 65.75) 37 (28.5, 50)

Percent Male (%) 50 64

Race

White (%) 87.5 76

African American (%) 12.5 24

Mechanism of injury

Motor Vehicle Crash (%) 32.5 72

Motor Cycle Crash (%) 12.5 16

Pedestrian vs. Car (%) 12.5 12

Fall (%) 12.5 0

ISS, median (Q1, Q3) 24 (19, 31.5) 18 (15.5, 31.5)

Lactate, median (Q1, Q3) 3.05 (2.23, 3.71) 2.68 (1.96, 3.46)

MAP, median (Q1, Q3) 80.5 (68.75, 91.5) 81 (74, 91.5)

Days to Surgery, median

(Q1, Q3)

4.5 (2, 7.5) 2 (1.5, 4.5)

miRNA Expression and miRNA Target Gene
Prediction
miRNA (miR) profiling was performed using GeneChipTM

miRNA 4.0 Array (ThermoFisher Scientific), covering 2,578
human microRNAs annotated in miRBase V2.0. miR expression
patterns were calculated with a log2-transformed expression
matrix with significant expression differences (fold expression
changes over age/sex-matched control) identified using
BRBArrayTools R© (p < 0.05). Predicted target genes of the
differentially expressed miR were identified with TargetScan
Human 7.2, which predicts biological targets of miRs, by
searching for conserved 8-mer, 7-mer and 6-mer sites matching
the seed region of each miR (30).

Statistics
Results for continuous variables are reported as mean ± SD for
normally distributed variables or median ± interquartile range
for non-normally distributed variables. Normality was checked
via the Shapiro-Wilk test. Student’s t-test or nonparametric
Mann-Whitney test was used to compare normal or non-normal
variables respectively between different groups or time points.
Tukey’s multiple comparison procedure was used to adjust p-
values for multiple comparisons. Data were analyzed using Prism
7 (GraphPad Software, CA) and SAS 9.4 (SAS Institute Inc.,
Cary NC).

RESULTS

Patient Characteristics
The overall and age-defined characteristics of the younger and
older adult trauma patient cohorts of this study are displayed in
Table 1. Previous studies have demonstrated that age≥55 years is
associated with worse outcomes after severe trauma (11, 31, 32).
Younger and older adult groups were relatively similar with the
exception of a higher percentage of trauma-related falls in the
older group, as opposed to zero in the younger adult group. ISS,
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FIGURE 1 | Microarray Transcriptomic Analysis of Leukocytes from Trauma Patients with Low, Intermediate and High ISS and Healthy Control Subjects. The genomic

response of isolated leukocyte RNA in healthy controls and trauma patients and healthy controls. (A) Conditional principal component analysis of ISS and healthy

control leukocyte gene expression patterns. (B) Heat map (log2) of the hierarchical clustering of leukocyte gene expression patterns and variation between trauma

patients with differing ISS healthy control subjects. M, Male; F, Female; Y, Younger group; E, Older group; T, Trauma subject (three colors on row four represent three

different ISS groups); c, Elective hip control subject; L, Lonza control subject.

lactate, blood transfusion, and Apache II score from the first
24 h from admission did not significantly differ between the two

groups (p = 0.48, p = 0.64, p = 0.85, and p = 0.58, respectively)

(33–36).
Trauma bone marrow samples were obtained during

long bone or pelvic fracture repair < 9 days following
blunt trauma (3.5 ± 2.4 days), and control samples
(mean age 60.0 ± 9.1 years) were obtained at the time of
elective surgery or from a commercial vendor (mean age
28.3± 4.4 years).

Hematopoietic Stem and Progenitor Cells
Genomic Analysis
Total RNA was isolated from negatively-isolated bone marrow
HSPCs for transcriptomic analysis. In an analysis of all
trauma patients (n = 33) vs. healthy controls (n = 16),
1,845 genes were differentially expressed by enriched HSPC
populations (p < 0.001). Sub-group analysis revealed that
the severity of injury (ISS categories) did not significantly
influence HSPC genome-wide expression (p= 0.083) (Figure 1).
Transcriptomic differences were also not detectable between
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FIGURE 2 | Microarray Transcriptomic Analysis of Leukocytes from Older Trauma Patients and Younger Trauma Patients vs. Healthy Control Subjects. The genomic

response of isolated leukocyte RNA in healthy controls and trauma patients and healthy controls. (A) Conditional principal component analysis of older adult trauma

patients and healthy control leukocyte gene expression patterns. (B) Heat map (log2) of the hierarchical clustering of leukocyte gene expression patterns and variation

between older adult trauma patients and healthy control subjects. (C) Conditional principal component analysis of younger adult trauma patients and healthy control

leukocyte gene expression patterns. (D) Heat map (log2) of the hierarchical clustering of leukocyte gene expression patterns and variation between younger adult

trauma patients and healthy control subjects. M, Male; F, Female.

patients with or without blood transfusion (n = 7 and 26,
respectively) within 24 h after injury. However, HSPC genome-
wide expression did vary after trauma in older vs. younger
adult patients. Older adult trauma patients (vs. age-matched
controls) had a total of 924 probe sets representing 749
unique genes that were differentially expressed (p < 0.005;
Figures 2A,B). Analysis of HSPCs in younger trauma vs. age-
matched controls, however, revealed differential expression of

709 probe sets representing 654 unique genes (p < 0.0005;
Figures 2C,D).

Interestingly, we determined that the majority of genes with
significant up or down regulation after trauma (vs. control)
were dissimilar between the older and younger adult trauma
patients (Table 2). Of the 749 and 654 genes identified after
trauma in older and younger adult trauma patients, respectively,
only 68 genes were observed to be in common (∼10%). In
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TABLE 2 | Top 10 genes with the greatest significant expression changes in only

older or younger adult trauma patients (relative to/vs. age-matched controls) in

bone marrow HSPCs.

Expression Genes

Upregulated in older

trauma patients

TREM1, RGS2, AQP9, PI3, LY96,

GZMA, FCGR3B, TNFAIP6, IGSF6,

IL1R2

Downregulated in older

trauma patients

LMAN1, EEF2, CD34, LRBA,

HSP90AB1, CSNK2A2, RSL1D1,

MIR4737, SPTBN1, NORAD

Upregulated in younger

trauma patients

JUNB, PRAM1, NFAM1, CEBPE,

CSF3R, ADGRG3, MYO1F, CORO2A,

PRKCD, MYH9

Downregulated in

younger trauma

patients

SNORD61, SNORD11, HLA-DRB5,

MIR973, SAP30, CRHBP, CAMLG

HEMGN, HLF, NBDY

TABLE 3 | Genes with common transcriptomic up or down regulation in HSPCs

from older trauma and younger trauma patients (as compared to their age/sex

matched healthy controls).

Expression Genes

Upregulated ABCA7, SLC45A4, ZNF276, CEMP1, TNFAIP2,

HCG27, APOBR, METTL7B, BTG2

Downregulated MYCT1, KIT, NRIP1, SPINK2, NPR3, PRKG2, ACSM3,

DSG2, MMRN1, FLT3, NOG, EPB41L4A-AS1,

ANGPT1, C11orf1, CCDC152, CFH, MEIS1, C3orf80,

DPPA4, HNRNPA0, RPS23, NFE2L3, PRKCQ-AS1,

PRKCQ, TFPI, AKT3, C1orf21, PAWR, CCDC171,

MPP5, PPFIBP1, SFT2D3, ST8SIA6, LOC100130992,

ZNF667-AS1, BCL2, CLGN, PLEKHA5, PARP11,

ARHGAP5, SLC39A10, SPIN1, WDR35, ZNF711,

BBS9, CRISPLD1, DZIP3, FAM135A, FAM213A,

HCG4B, LANCL1, ZBTB20, NREP, PDGFC, SCAI

this set of common genes between older and younger adult
trauma, the directionality of the change was identical, implying
their importance to the common mammalian response to severe
injury. Fifty-six genes were found to be downregulated, while the
remaining 12 genes were upregulated (Table 3). Many of these
genes are known to be important in inflammation and innate
immunity, such as MYCT1, NRIP1, FLT3, TNFAIP2, and BCL2
(37–40).

The older adult trauma cohort was noted to have significant
downregulation in the expression of genes involved in
hematopoiesis, not seen in younger trauma patients, when
compared to age/sex-matched controls (p < 0.001). This
included, but was not limited to, CD34, CASP2, CDK6, CXCL12,
SMARCA2, and SATB1 (Table 4) (37, 41–44). Analysis of
genes that were only significant in younger trauma HSPCs (vs.
age/sex-matched controls) revealed significant upregulation of
genes for receptors important to HSPC proliferation, migration
and differentiation, e.g., IL-8Rα, GM-CSFRα, and G-CSFR.

We utilized IPA and GO for further overall and pathway
analysis of our genomic data. The use of these software
allows greater biological insight into the functional processes
activated or inhibited in each trauma group. IPA functional

TABLE 4 | Prominent genes and miRs found to be significantly altered in old, but

not young, bone marrow HSPCs following severe trauma vs. age/sex-matched

healthy controls.

Genes/

mi-RNAs

Up/down-regulated Function

CCR10 Regulates chemokine expression

(JVI 2017)

CCR3 Eosinophil differentiation (JI 2003)

CD34 Hematopoietic differentiation

(International Immunology 1991)

CXCL12 Regulates migration of

hematopoietic stem (HSPC) and

progenitor cells (Cytokine 2015)

miR-

125a/b

Hematopoietic differentiation and

activation of NF-κB (PNAS 2012)

SATB1 Self-renewal & lymphopoiesis of

adult HSPCs (Cell Reports 2018)

TLR5 Activation of innate immune

response (Nature 2001)

VNN2 Encodes proteins in hematopoietic

cell trafficking (NCBI 2019)

pathways revealed that bone marrow HSPCs from older adult
trauma patients had an attenuated transcriptomic/epigenetic
response to severe trauma, as displayed in Figure 3. In addition,
only HSPCs from younger trauma patients demonstrated
significant (z-score > |2|) upregulation of hematopoiesis
pathways of function, quantity, and differentiation (Figure 4;
Supplemental Tables 1, 2; Supplemental Figure 1).

GO analysis of the differentially expressed genes illustrated
involvement of the older adult HSPC transcriptome mainly in
biological processes related to energy and protein metabolism
(Supplementary Table 3). Regulation of IL-10 production was
only statistically represented in older adult trauma patients,
supporting the concept that the inflammatory response of
each age group is dissimilar and potentially dysregulated in
older vs. younger adults (Figure 5A). The younger trauma
patients were predicted to have over-representation of
several biological process categories important for immune
response, such as myeloid and neutrophil mediated immunity
(Figures 5B,C), which was not seen in the older patients
(Supplementary Table 4). This post-analysis provided further
insights into the important pathways potentially involved in
younger and older trauma HSPCs.

HSPC miR Expression Patterns
A comparison of bone marrow HSPC miR expression from
all trauma (n = 27) and control (n = 16) subjects revealed
60 miRs that were differentially expressed (p < 0.005). The
expression of 27 miRs were significantly downregulated and 33
were significantly upregulated. Fifteen of thesemiRs from trauma
patients demonstrated at least a 2-fold positive or negative change
in expression when compared with control subjects (Table 5).
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FIGURE 3 | Hematological System Development and Function Pathway from Younger and Older Trauma Patients vs. Age-Matched Controls. Ingenuity Pathway

Analysis engendered figure illustrating significant (A) down regulation of many genes in the hematological system development and function pathways in older trauma

patients as opposed to (B) upregulation in younger trauma patients. Orange to red = upregulation, green to blue = downregulation.

Among these were miRs 125a/b and 146a of which are known
to influence HSPC function persistence (45, 46).

Interestingly, miR-125a/b and −146a were amongst the
8 miRs with the highest fold-change difference between
expressions of bone marrow HSPC miR from older trauma
vs. younger trauma patients. The elderly trauma patients had
markedly greater down-regulation of these miRs. Additionally
among the miR with the highest fold-change differences,
miR-7515 and miR-3128 (47, 48), both implicated in tumor
suppression, were upregulated in older trauma patients and
down-regulated in younger trauma patients (Table 6).

Analysis using TargetScan revealed that the predicted gene
targets of the expressed miR with the largest fold changes
from HSPCs isolated from older trauma patients overlap with
the genes found significantly expressed in the same subjects

(Table 7). The predicted gene targets for the up-regulated miRs
had a higher overlap with the genes down-regulated in HSPCs
of older trauma patients. These included genes associated with
HSPC proliferation and function like AREG, CXCR1, KIT,
andMGAM.

DISCUSSION

Advanced age is a known risk factor for poor outcomes in
trauma patients (11). Increased mortality in the elderly is largely
attributed to their diminished physiologic and immunologic
reserves, resulting in higher rates of nosocomial infections and
sepsis post-trauma (11, 12). Previous murine studies by our
laboratory demonstrate that the increased incidence of infection
in the elderly is also related to HSPC failure in the aged host
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FIGURE 4 | Hematopoiesis Diseases and Functions Pathway from Younger

and Older Trauma Patients vs. Age-Matched Controls. Ingenuity Pathway

Analysis engendered figure illustrating significant (A) down regulation of genes

in the hematopoiesis diseases and function pathways in old trauma patients as

opposed to (B) upregulation in younger trauma patients. Orange to red =

upregulation, green to blue = downregulation.

after severe injury (18). Therefore, we sought to determine if
similar hematopoietic defects are present in humans. While
there was no difference in genomic expression patterns based
on the magnitude of the traumatic injury (ISS) nor based
on blood transfusion in the first 24 h, age was associated
with significantly different genomic expression patterns when
compared to younger trauma patients of equivalent severity.

FIGURE 5 | Selected Gene Ontology Pathway Heat Maps in Younger and

Older Trauma Patients. Gene ontology pathway analysis demonstrated that

several pathways involved in innate and adaptive immunity, (A) neutrophil

activation and (B) myeloid leukocyte mediated immunity, only in the younger

trauma patients were significantly different from controls. (C) Only older trauma

patients had over-representation of the regulation of IL-10 production. Dark

blue = upregulation, light blue = down regulation.

Transcriptomic evaluation of bone marrow HSPC from older
adult trauma patients illustrates a diminished functional status
as well as a blunted capacity for the terminal differentiation of
myeloid cells (49). Many genes important in HSPC proliferation,
differentiation and mobilization, such as CD34, CXCL12,
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TABLE 5 | HSPC miRNA from trauma patients with fold-change (FC) > |2|.

MicroRNA Trauma vs. control FC

hsa-miR-4454 4.3

hsa-miR-4656 2.2

hsa-miR-193a-5p 4.5

hsa-mir-711 2.1

hsa-miR-185-5p 3.2

hsa-miR-338-5p 2.3

hsa-miR-4284 2.9

snoRNA U62 2.3

hsa-miR-125a-5p −4.7

hsa-miR-99a-5p −3.1

hsa-miR-146a-5p −5.4

hsa-miR-10a-5p −3

hsa-miR-125b-5p −5.7

hsa-miR-126-3p −8

hsa-let-7e-5p −7.2

TABLE 6 | miRNA in Human HSPCs from older vs. younger adult trauma patients

with largest absolute fold-change (FC) difference.

miRNA Older adult

trauma FC

Younger adult

trauma FC

FC

difference

hsa-miR-3201 −1.8 −10.2 8.4

hsa-miR-150-5p 9.4 1.4 8

hsa-mir-7515 1.8 −5.1 6.9

hsa-miR-3128 1.6 −3.6 5.2

hsa-miR-146a-5p −9 −2.8 −6.2

hsa-miR-126-3p −12.7 −6 −6.7

hsa-miR-125a-5p −9.4 −2.4 −7

hsa-miR-125b-5p −16.4 −2.4 −14

miR-125a/b, SATB1, APEX1, and PRDX1, were all found
to be downregulated and only differentially expressed in
older trauma HSPCs (50, 51). Interestingly, the genes found
differentially expressed only in younger trauma patients
were predicted by IPA to have increased activation of
hematopoietic function pathways not seen in older trauma
patients (Supplemental Tables 1, 2). Pathway analysis also
revealed significantly down regulated IL-4 and IL-8 signaling
in HSPCs from older trauma patients compared to the younger
patients (Supplemental Figure 2).

The older trauma patients show a more blunted and
down regulation of many genes in the CXCR4 pathway
leading presumably to decreased capacity for cell migration
in comparison to the younger trauma patient with significant
upregulation in this signaling pathway (Supplemental Figure 3).
A few studies have demonstrated that CXCL12 expressed by
surrounding cells in the bone marrow niche promotes HSPC
quiescence and retention in the bone marrow via the CXCR4
signaling pathway (52–54). Although, our data demonstrates a
downregulation of CXCL12 in HSPCs of trauma patients in this
study, Ding et al. showed that deletion of CXCL12 in HSPCs

TABLE 7 | List of select significant upregulated HSPC miRNAs from old trauma

patients and their predicted targets of significant genes of the same cells as

analyzed by Target Scan software.

miRNA Associated genes

hsa-miR-150-5p ACVR1B

hsa-miR-22-3p ACVR1B, PRR14L

hsa-miR-145-5p NR4A2, ACVR1B, ANKFY1, CRK, PRR14L,

TSPAN14, ZNF436

hsa-miR-148a-3p KIT

hsa-mir-7515 AQP9, CXCR2, GYPE, SART3, SNCA,

ANKFY1, MFAP3, MON1B, PRR14L, PTK2B,

TRIM27, TSPAN14, ZNF436, ZNF672

hsa-miR-3128 MGAM, SNCA, ACVR1B, ANKFY1, C12orf65,

MON1B, MYCT1, PAGR1, PRR14L,

TNFAIP8L2, TSPAN14, ZKSCAN4, ZNF436

Genes in red were significantly down-regulated, while genes in black were

significantly upregulated.

had no effect on HSPC mobilization (55). Downregulation of
CXCR4 has been noted in the literature to increase mobilization
of HSPCs (56–58). However, we did not find a significant
change in CXCR4 gene expression in our study. Additionally,
many studies have noted modulation of CXCL12 expression
via epigenetics (59–62). Specifically, miR-23a, noted to be
upregulated in old trauma patient HSPCs in our study, down-
regulates CXCL12 mRNA and protein expression (59). The
role of endogenous CXCL12 is not completely understood,
but these points highlight the complexity of the bone marrow
niche in the regulation of the HSPC response to certain
stressors. More research to study the effect of trauma on
specific pathways in the bone marrow niche, its crosstalk
with HSPCs, and HSPC migration from the bone marrow
is warranted.

Our laboratory previously determined that elderly patients
with complicated outcomes have significantly decreased plasma
cytokine and chemokine concentrations 0–4 days after severe
injury and hemorrhage (11). Interestingly, HSPC genomic
analysis in this study revealed many pro-inflammatory related
genes differentially expressed and upregulated only in older
trauma patients such as TLR5, TLR8, TNFAIP6, TGFA, IL1R2,
IL23A, IL7R, CCR3, and IL10RA. However, GO analysis
of the differentially expressed genes in the older trauma
patients revealed over-representation of biological process
categories related to only one inflammatory molecule—IL-
10. Additionally, GO revealed over-representation of many
processes involved in immune activation in the younger
trauma HPSC mRNAs not seen in the older adult patients
(Supplementary Tables 3, 4). Taken together, this data suggests
that older patients fail to activate the appropriate immune
response early after severe injury and show a dysregulated
inflammatory response.

miR analysis also revealed differential HSPC regulation after
trauma dependent upon age, with significant differences in
expression patterns of miRs known to be important for HSPC
function. This included increased expression of miR-143/145
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in the young, as well as decreased expression of miR-125a/b
in the old, all of which are vital to HSPC function (45, 46).
Under-expression of miR-143 and−145 have been noted in many
malignancies, and overexpression in these malignant cell lines
impair cell growth, differentiation, and cause apoptosis of CD34+

HSPCs (63, 64). Expression of miR-125a has been noted to
increase the number of HSPCs (65), while overexpression ofmiR-
125b in hematopoietic stem cells has been noted to promote
self-renewal, differentiation and expansion (66). Additionally,
expression ofmiR-125a/b inhibits TNFAIP3, leading to activation
of the NF-κB pathway (45). Evidence indicates that NF-κB
signaling leads to a loss of HSPC quiescence and increased
differentiation (67). The markedly lowered expression of miR-
125a/b seen in HSPCs from the older trauma patients may
translate to a markedly decreased NF-κB activity, which in
turn contributes to the continued quiescence of HSPCs after
traumatic injury.

Our study was limited in several ways. First, HSPCs were
negatively isolated by depletion of lineage-committed cells.
This is due to the limited amount of bone marrow that
can be safely be obtained from these patients, and with
hematopoietic stem cells being an extremely rare population.
Therefore, the transcriptomics in this study represent all lineage-
negative cells including hematopoietic stem and early progenitor
cells. HSPCs are known to expand after trauma and also
with advanced age, so the expression patterns likely reflect
this phenomena as well (18, 49, 68). However, multi-potent
progenitor cells (MPPs) and some other progenitor cells, like
HSCs, do represent early cell populations present that are
host-capable of engendering differentiated hematopoietic cells
(69). However, the number of lineage negative cells that we
could isolate was limited due to being a rare population,
constricting our ability to perform detailed fluorescence-
activated cell sorting/flow cytometry. Future studies using novel
technology such as single cell RNAseq, Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (CITE-Seq), and
Assay for Transposase Accessible Chromatin using sequencing
(ATAC-Seq) are currently underway in our laboratory and will
be required to better comprehend how each cell type may
contribute to the suboptimal aged response to injury (70). In
addition, sample size and the number of lineage negative cells
that we could isolate limited our ability to perform several sub-
analyses such as methylcellulose colony assays and functional
assays to evaluate mobilization of HSPCs into peripheral
blood. Additionally, age-specific data analysis of miR arrays
was unable to be performed due to the small sample size of
the older adult patient cohort. This may have led to a bias
toward the younger adult arrays in the analysis of miR in all
trauma patients.

However, trends can still be seen that suggest age-specific
differences in epigenetic expression in response to trauma.
In addition, we were unable to perform multi-variant logistic
regression analysis on all risk factors between older and
younger adults (e.g., co-morbidities on arrival) so that age
could be determined to be independently associated with
the HSPC differences. However, there are limitations to
how many bone marrow samples can be obtained in these

patients. In addition, in a somewhat practical analysis of
older subjects, this is the HSPC response present after
trauma for patients ≥55 years old, regardless of other
factors (11).

CONCLUSIONS

Bone marrow HSPCs from older human trauma patients have
a unique, and in some ways, subdued mRNA/miR response
to trauma compared to younger patients. Independent of
injury severity and blood transfusion requirement, advanced age
may be the key driver of post-traumatic bone marrow HSPC
transcriptomic and some epigenetic changes. The regulation
of vital miRs and genes involved in HSPC production
and differentiation may suggest why older patients have a
blunted hematopoietic response to trauma, contributing to their
subsequent immune dyscrasia. Although immunomodulation of
HSPCs is possible, elderly patients may not respond well to
standard cytokines or growth factors. Precision medicine may
require epigenetic manipulation to modify HSPC protective
immunity to improve long-term outcomes in the elderly.
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Major trauma-induced tissue injury causes a dysregulation of the immune system. Severe

systemic inflammation occurs early after the insult. Later on, an enhanced risk for

life-threatening opportunistic infections develops that culminates at the end of the first

week after trauma. CD56bright Natural killer (NK) cells play a key role in the defense

against infection due to their rapid release of Interferon (IFN) γ in response to Interleukin

(IL) 12. NK cells are impaired in IFN-γ synthesis after severe injury due to a disturbed

IL-12/IFN-γ axis. Thereby, a circulating factor mediates extrinsic suppression of NK cells.

Yet unknown cell-intrinsic mechanisms manifest by day 8 after trauma and render NK

cells unresponsive to stimulatory cytokines. In the present study, we investigated the

origin of such late NK cell-intrinsic suppression after major trauma. Peripheral blood

mononuclear cells (PBMC) were isolated from patients 8 day after severe injury and from

healthy control subjects and were stimulated with inactivated Staphylococcus aureus.

The expression of diverse cytokine receptors, intracellular signaling molecules, and the

secretion of IFN-γ by CD56bright NK cells were examined. After stimulation with S. aureus,

NK cells from patients expressed enhanced levels of c-kit/CD117 that inversely correlated

with IFN-γ synthesis and IL-12 receptor (IL-12R) β2 expression. Supplementation with

IL-15 and inhibition of the transforming growth factor receptor (TGF-βR) I reduced CD117

expression and increased the level of IL-12Rβ2 and IFN-γ. NK cells from patients showed

reduced phosphorylation of mammalian target of rapamycin (mTOR). Addition of IL-15

at least partly restored mTOR phosphorylation and increased IL-12Rβ2 expression.

The reduced mTOR phosphorylation after severe injury was cell-intrinsic as it was not

induced by serum factors. Inhibition of mTOR in purified NK cells from healthy donors

by rapamycin decreased the synthesis of IFN-γ. Thus, impaired mTOR phosphorylation

in response to a microbial challenge contributes to the cell-intrinsic mechanisms that

underlie NK cell dysregulation after trauma. Restoration of the mTOR phosphorylation

capacity along with inhibition of the TGF-βRI signaling in NK cells after severe injury might

improve the immune defense against opportunistic infections.
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INTRODUCTION

Severe traumatic injury induces systemic inflammation that may
cause early multi-organ damage. In parallel, an enhanced
susceptibility to opportunistic infections develops that
culminates at the end of the first week after injury and may
persist even after discharge (1). The origin of the long-lasting
suppression of the immune defense mechanisms after major
trauma is only poorly understood (2, 3). Accordingly, effective
therapeutic strategies that aim to restore immune homeostasis
are lacking. Appropriate therapy of the immune dysregulation of
injured patients is further complicated as the unbalance between
inflammation and immunosuppression may shift to either side
and at its best requires a personalized treatment (4).

Natural killer (NK) cells are cells of the innate immune system
and play a central role in the defense against diverse infectious
diseases and cancer (5). In human blood, two main populations
of NK cells are distinguished: CD56dim NK cells are highly
cytotoxic and may kill cells infected with viruses or tumor cells.
CD56bright NK cells are potent in the secretion of cytokines
such as Interferon (IFN) γ that is required for the activation of
macrophages and dendritic cells (DCs) during the elimination
of bacterial infection (6, 7). Interleukin (IL) 12 is released by
monocytes/macrophages and DCs upon contact with microbial
components and stimulates NK cells for IFN-γ synthesis (8, 9).
The IL-12 receptor (IL12R) consists of a constitutively expressed
β1 and an induced β2 chain. Binding of IL-12 to its receptor
induces the phosphorylation of Signal Transducer and Activator
of Transcription (STAT) 4 that translocates into the nucleus
where it enables the transcription of the IFNG gene (10, 11).
The T-box transcription factor T-bet cooperates with STAT4
in IFNG gene transcription and additionally promotes IL12RB2
gene transcription (12). The cytokines IL-2 and IL-15 increase
the IL-12-induced IFN-γ synthesis by NK cells in a synergistic
manner (13, 14).

NK cells express both T-box transcription factors T-bet and
Eomesodermin (EOMES) and therebymay be distinguished from
innate lymphoid cells (15). A part of circulating CD56bright NK
cells expresses the tyrosine kinase CD117 (also known as c-kit)
that was originally associated with the phenotype of NK cell
progenitors (16, 17).

Considering the relevance of NK cells in immune defense
it is apparent that NK cells might be involved in the immune
dysregulation after major injury. A recent study followed total
NK cells for 5 d after trauma and observed a transient decrease
in the expression of T-bet and IFN-γ (18). We have previously
shown that CD56bright NK cells are rapidly and long-lasting
suppressed after major trauma in terms of IFN-γ synthesis
in response to Staphylococcus aureus, a frequent cause of
opportunistic infections after injury (19). We identified an
impaired IL-12Rβ2 expression that was associated with decreased
STAT4 activation and IFN-γ synthesis. Although NK cells were
similarly suppressed in IFN-γ synthesis from 24 h to at least
4 weeks after injury there were qualitative differences in the
underlying mechanisms: extrinsic suppression of NK cells occurs
early after injury and is mediated by a soluble factor that
signals through the transforming growth factor (TGF) β receptor

(TGF-βR) I. In addition, so far unknown endogenous changes
establish in NK cells between 6 and 8 day after trauma that impair
the IL-12/IFN-γ axis independent of the suppressive factor in
the serum (19). Thus, the endogenous changes in NK cells
overlap with the reported time window of cumulating infectious
complications after trauma. In the present study, we aimed to
shed light on the endogenous mechanisms in NK cells that arise
late after traumatic injury and contribute to the impaired IFN-γ
synthesis in the context of S. aureus infection.

MATERIALS AND METHODS

Study Design and Patients
Severely injured patients (Injury Severity Score ≥16; age
≥18 years) who were admitted to the emergency room
of the Department of Trauma, Hand and Reconstructive
Surgery of the University Hospital Essen between August
2017 and September 2018 were included after approval by an
independent physician. Exclusion criteria were isolated head
injury, immunosuppressive therapies, cancer, and autoimmune
diseases. Serum and heparinized blood samples were obtained
from n = 14 patients 8 day after trauma. Blood from sex and
age matched healthy donors was drawn as controls. The patient
characteristics are shown in Supplementary Table 1.

The study was approved by the local ethic committee of
the University Hospital Essen and written informed consent
was obtained from patients or their legal representatives and
from healthy donors. The study was conducted according to the
Declaration of Helsinki.

Isolation of Mononuclear Cells and
Preparation of Serum
Peripheral blood mononuclear cells (PBMC) were isolated from
heparinized blood by Ficoll density gradient centrifugation and
subsequent red blood cell lysis (Sigma-Aldrich, Taufkirchen,
Germany). PBMCs were used for cell culture or immediately
stained for FACS analysis. Serum was obtained from clotted
whole blood after centrifugation at 2,000 g for 10min and
immediately used or stored at−20◦C for further analysis.

Cell Culture
PBMC were cultured in VLE RPMI 1640 Medium (containing
stable glutamine; Biochrom, Berlin, Germany) supplemented
with 100 U/ml Penicillin and 100µg/ml Streptomycin
(Sigma-Aldrich Chemie, Taufkirchen, Germany) and 10%
autologous serum.

4 × 105 cells/well were cultured in 96-well flat bottom
plates (BD Biosciences, Heidelberg, Germany) in a total volume
of 200 µl/well and incubated at 37 ◦C and 5% CO2 in a
humidified atmosphere.

After 1 h rest, PBMC were stimulated with heat-killed S.
aureus (106 bacteria /ml; Invivogen, San Diego, CA). Eighteen
hour later, the cells were harvested for FACS analysis. Where
indicated, 4µM SB431542 (inhibitor of ALK4, ALK5, and ALK7;
Tocris Bioscience, Bristol, UK), 5 ng/ml recombinant human IL-
15 (PeproTech, Hamburg, Germany), or a combination of both
was added to the cells before stimulation with the bacteria.
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For the preparation of “conditioned medium,” PBMC were
cultured in 2% FCS and stimulated with heat-killed S. aureus (0.5
× 106 bacteria /ml). Supernatants were harvested after 18 h.

NK Cell Assay
NK cells were isolated from PBMC of healthy donors using
the “Human NK cell isolation kit” (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to the manufacturer’s protocol.
NK cells were seeded in 96-well plates (2 × 104/well) in medium
supplemented with 5% serum from healthy donors. Conditioned
medium from PBMCwas added at 25% v/v. The mTOR inhibitor
rapamycin (2 nM; PeproTech, Hamburg, Germany) or its solvent
(DMSO) was added. Eighteen hour later, the cells were harvested
for FACS analyses.

Flow Cytometry
Three color staining of cell surface molecules was performed
as described previously (19) using antibodies against CD3
(clone MEM-57, FITC-labeled, ImmunoTools, Friesoythe,
Germany) and CD56 (clone CMSSB, APC-labeled, Thermo
Fisher Scientific, Waltham, MA) in combination with one of the
following PE-labeled antibodies: anti-IL-12Rβ2 (clone REA333,
Miltenyi Biotec), anti-CD94 (clone DX22, BioLegend, San
Diego, CA), anti-CD122 (clone TU27, BioLegend), anti-CD132
(clone TUGh4, BioLegend). Where indicated PE-Cy7-labeled
antibodies against CD117 (clone 104D2, BioLegend) was used as
a fourth color.

Intracellular staining of IFN-γ was performed as described
previously (19) using antibodies against IFN-γ (clone 4S.B3,
PE-labeled, BioLegend) in combination with anti-CD3 and
anti-CD56. Intracellular staining of mTOR, EOMES, and T-
bet was performed using the “FoxP3/Transcription Factor
Staining Buffer Set” (Thermo Fisher Scientific) according to the
manufacturer’s instructions. After surface staining with anti-
CD3 and anti-CD56 as described above, the cells were fixed
and permeabilized before staining with PE-labeled antibodies (all
from eBioscience, Thermo Fisher Scientific) against T-bet (clone
4B10), EOMES (clone WD1928), or mTOR (clone MRRBY). For
all stainings appropriate isotype control antibodies were used to
determine the threshold of positive staining.

Data were acquired using a FACSCalibur (BD Biosciences;
Franklin Lakes, NJ) and analyzed using NovoExpress software
(ACEA Biosciences, San Diego, CA). The expression of respective
molecules was determined on gated CD3−CD56bright NK cells.

Due to technical failure or an insufficient number of PBMC
after isolation from whole blood it was unfeasible to generate all
data from all patients.

Statistical Analyses
Statistical analysis and graphical presentation were performed
using GraphPad Prism Version 5 software (GraphPad Software,
La Jolla, CA). The non-parametric Mann-Whitney U-test and
Wilcoxon signed rank test were used for statistical analysis as
depicted in the figure legends. Spearman r analysis was used to
test the correlation between two parameters.

RESULTS

CD3−CD56bright Cells Express
Characteristic Markers of Differentiated
NK Cells Late After Trauma
We included n = 14 severely injured patients and n = 14
age- and sex-matched healthy controls in our study (patient
characteristics are listed in Supplementary Table 1). On day 8
after trauma, the patients displayed elevated levels of C-reactive
protein but normal levels of procalcitonin. Twenty-one percent
of the patients developed sepsis that was diagnosed beyond day 8.

In order to evaluate the activity of CD56bright NK cells, PBMC
obtained from patients 8 day after trauma and from healthy
control subjects were stimulated with inactivated S. aureus
bacteria and the expression of IFN-γ and of the IL-12Rβ2 chain
by CD3−CD56bright NK cells was determined by flow cytometry
(for gating see Figure 1A). For our study, we used flow cytometry
because it allows the analysis of surface and intracellular
protein expression on and in selected cell subpopulations. As
expected, NK cells from trauma patients displayed diminished
levels of IFN-γ and IL-12Rβ2 (Figures 1B,C). The expression
of IFN-γ correlated with the expression of the IL-12Rβ2 chain
(Figure 1D).

CD3−CD56bright cells from patients expressed the
transcription factors T-bet and EOMES as well as CD94 ex
vivo that are all characteristic markers for NK cells [(20);
Figures 2A–D]. CD56bright NK cells moreover expressed the β

and γ chains of the IL-15 receptor comparable to NK cells from
controls (Supplementary Figure 1). The percentage of NK cells
that expressed CD117, a marker that has been linked with NK
cell progenitors, was decreased after trauma (Figure 2E). Thus,
despite their reduced capacity to secrete IFN-γ late after trauma
CD3−CD56bright cells display a phenotype of mature NK cells
similar to NK cells from controls.

Expression of CD117 Is Linked With the
Suppressed Cytokine Release of NK Cells
After Trauma
The expression of the IL-12Rβ2 chain is a check point in IFN-
γ synthesis by NK cells after major trauma (19). In search of
a potential mechanism that controls the expression of the IL-
12Rβ2 chain we investigated how NK cells that do not express
the IL-12Rβ2 (and therefore do not secrete IFN-γ) differ from
IL-12Rβ2+cells. In order to induce IL-12Rβ2 expression PBMC
from patients and controls were stimulated with S. aureus. There
was a striking difference in terms of CD117 expression between
IL-12Rβ2+ and IL-12Rβ2− NK cells: the IL-12Rβ2 chain was
almost exclusively expressed on CD117− NK cells (Figure 3A).
Further analysis of IL-12Rβ2− NK cells revealed a two-fold
increased percentage of CD117+ NK cells after major injury
(Figure 3B). The expression of CD117 inversely correlated with
the expression of the IL-12Rβ2 chain (Figure 3C) and with the
production of IFN-γ (Figure 3D).

Next, the potential relationship between the expression of
CD117 and NK cell function was examined. The expression of
CD117 on NK cells is regulated by IL-15 in the environment (21).
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FIGURE 1 | Impaired IFN-γ synthesis of CD56bright NK cells after severe trauma correlates with reduced expression of the IL-12Rβ2 chain. PBMCs were isolated from

healthy donors (c) and trauma patients (t) 8 day after trauma. Cells were exposed to heat-killed S. aureus. After 18 h, the IFN-γ synthesis and IL-12Rβ2 expression

were determined by flow cytometry. (A) Gating strategy of CD3−CD56bright NK cells. Representative dot plots are shown. Numbers indicate the percentage of positive

cells. (B,C) Cumulative results of the percentage of IFN-γ+ cells (B; n = 13) and IL-12Rβ2+ cells (C; n = 13) among CD56bright NK cells. Horizontal lines indicate the

median/interquartile range. Statistical differences between control and trauma were tested using the Mann-Whitney U-test. (D) Spearman correlation between the

percentage of IL-12Rβ2+ and IFN-γ+ CD56bright NK cells. **p < 0.01.

NK cell function after trauma is regulated by TGF-βRI signaling
(19). Therefore, PBMC from injured patients were stimulated
with S. aureus in the presence of recombinant IL-15, with an
inhibitor of the TGF-βRI, or with the combination of both. Each
component alone decreased the expression of CD117 on NK cells
from injured patients. Even more effective was the combination
of IL-15 with the TGF-βRI inhibitor (Figure 3E). Likewise, but in
the inverse direction, the expression of the IL-12Rβ2 changed and
increased by up to six-fold in the presence of IL-15 and the TGF-
βRI inhibitor (Figure 3F). In contrast, only the combination of
IL-15 with the TGF-βRI inhibitor enhanced the synthesis of IFN-
γ (Figure 3G). Thus, IL-15 and inhibition of TGF-βRI signaling
decrease the expression of CD117 that is associated with impaired
NK cell function after trauma.

T-bet Expression Is Reduced in NK Cells
After Trauma
T-bet is a relevant transcription factor that promotes IL12RB2
and IFNG gene transcription in T lymphocytes and NK cells
(12, 22). We examined the expression of T-bet in NK cells after
severe injury and asked whether the expression of T-bet was
altered in the presence of IL-15 or upon inhibition of the TGF-
βRI. T-bet expression did not differ between NK cells from
injured patients and healthy controls when analyzed ex vivo
(Figure 1B). In contrast, after stimulation with S. aureus, NK cells
from injured patients expressed less T-bet than NK cells from
healthy subjects (Figures 4A,B). The expression of T-bet slightly
increased in the presence of IL-15 (Figure 4C) or of the TGF-βRI
inhibitor (Figure 4D). Thus, the changes of IL-12Rβ2 expression
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FIGURE 2 | CD56bright NK cells from trauma patients express characteristic markers of mature NK cells. PBMCs from control subjects (c) and trauma patients (t) were

stained ex vivo for the expression of T-bet, EOMES, CD94, and CD117. CD3−CD56bright NK cells were gated. (A) Representative histograms. (B–E) Cumulative data

on the expression of T-bet (B; n = 12), EOMES (C; n = 13), CD94 (D; n = 12), and CD117 (E; n = 14). Horizontal lines indicate the median/interquartile range.

Statistical differences between control and trauma were tested using the Mann-Whitney U-test. **p < 0.01 and ***p < 0.001. iso, isotype control.

that are mediated by IL-15 and inhibition of the TGF-βRI in
NK cells from injured patients are in part reflected by altered
T-bet expression.

Decreased Phosphorylation of mTOR
Correlates With CD117 Expression
A central molecule in the IL-15 signaling pathway during NK
cell activation is “mammalian target of rapamycin” (mTOR)
(23). We determined the expression of phosphorylated mTOR
in NK cells after trauma and evaluated its potential regulation
by IL-15 and inhibition of the TGF-βRI. There was no
difference in mTOR phosphorylation in NK cells from injured
patients and from healthy controls when analyzed ex vivo
(Figures 5A,B). Stimulation with S. aureus strongly induced the
phosphorylation of mTOR in NK cells from healthy controls
but not in NK cells from trauma patients (Figures 5C,D).
The presence of IL-15 during stimulation with S. aureus
increased the phosphorylation of mTOR in NK cells from
trauma patients while the inhibition of the TGF-βRI remained
without consequences (Figure 5E). The pattern of mTOR
phosphorylation resembled the changes in CD117 expression
on NK cells (Figure 3E) though in the opposite direction.
Indeed, there is a negative correlation between mTOR and
CD117 (Figure 5F). Thus, mTOR phosphorylation in NK cells

after severe injury is reduced and inversely correlates with
CD117 expression.

mTOR Phosphorylation in NK Cells
Promotes the Synthesis of IFN-γ
Considering the suppressive activity of serum from injured
patients on the function of NK cells (19) the question
arose whether any factors in the serum interfere with mTOR
phosphorylation in NK cells. To address this issue, PBMC from
healthy subjects were stimulated with S. aureus in the presence
of serum from trauma patients or from healthy controls. The
basal level of mTOR phosphorylation in NK cells was not affected
by serum from injured patients but tended to decrease upon
stimulation with S. aureus (Figure 6A).

In order to examine the relevance of mTOR in NK cell
function we established a cell culture system with purified NK
cells. Purified NK cells do not respond to S. aureus since they
require the interaction with monocytes or DCs as source of IL-
12 (24). Therefore, isolated NK cells from healthy donors were
cultured in conditioned cell-free medium obtained from PBMC
after stimulation with S. aureus. Rapamycin was used to inhibit
mTOR activity. The presence of rapamycin diminished the
production of IFN-γ (Figure 6B) by NK cells but did not affect
the expression of the IL-12Rβ2 chain (Figure 6C). Furthermore,
inhibition of mTOR did not change the expression of CD117 on
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FIGURE 3 | Stimulated CD56bright NK cells express increased levels of CD117 after trauma that inversely correlates with IFN-γ synthesis and IL-12Rβ2 expression.

PBMC from control subjects (c) or patients (t) were stimulated with S. aureus and the expression of CD117, IFN-γ, and the IL-12Rβ2 chain was examined.

Unstimulated cells (none) served as control. (A) Representative contour plots of the expression of CD117 and IL-12Rβ2 on gated CD3−CD56bright NK cells. Numbers

indicate the percentage of CD117+ among IL-12Rβ2− cells (rectangle). (B) Cumulative data of the percentage of CD117+ cells among IL-12Rβ2− cells (n = 12).

(C,D) Spearman correlation of CD117 expression with IFN-γ synthesis (C) and IL-12Rβ2 expression (D) on CD3−CD56bright NK cells. (E–G) Recombinant IL-15 or

SB431542 (inhibitor of the TGF-βRI) was added during stimulation of PBMC from trauma patients with S. aureus [the values for cells stimulated with S. aureus alone

are also shown in Figures 1B,C and (B)]. (E) Percentage of CD117+ cells among IL-12Rβ2−CD3−CD56bright NK cells (n = 11–12). (F) Expression of the IL-12Rβ2

chain on CD3−CD56bright NK cells (n = 11–12). (G) Expression of IFN-γ in CD3−CD56bright NK cells (n = 12–13). Horizontal lines indicate the median/interquartile

range. Statistical differences between control and trauma (B) were tested using the Mann-Whitney U-test, differences between different culture conditions (E–G) were

tested using the Wilcoxon signed rank test. *p < 0.05; **p < 0.01; and ***p < 0.001.
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FIGURE 4 | T-bet expression in stimulated CD56bright NK cells is reduced after trauma. PBMC from control subjects (c) or patients (t) were stimulated with S. aureus

and the expression of intracellular T-bet was examined. (A) Representative histogram of T-bet expression in gated CD3−CD56bright NK cells. (B) Cumulative data of

T-bet expression in CD56bright NK cells (n = 13). (C,D) Recombinant IL-15 (C; n = 9) or SB431542 (D; n = 9) was added during stimulation of PBMC from trauma

patients with S. aureus [the values for cells stimulated with S. aureus alone are also shown in (B)]. Horizontal lines indicate the median/interquartile range. Statistical

differences between control and trauma (B) were tested using the Mann-Whitney U-test, differences between different culture conditions (C,D) were tested using the

Wilcoxon signed rank test. *p < 0.05 and **p < 0.01. iso, isotype control.

NK cells (Figure 6D). Thus, mTOR is an intrinsic regulator of
IFN-γ synthesis in NK cells in the context of S. aureus infection.

DISCUSSION

Immediately after major injury, circulating NK cells display a
long-lasting impaired capacity to produce IFN-γ in response to
microbial stimuli (19).While soluble factors in the serummediate
NK cell suppression early after injury, cell-intrinsic changes in
NK cells are responsible for the anergic state late after trauma that
renders NK cell unresponsive to otherwise stimulatory cytokines
such as IL-12 and IL-2 (19). NK cells do not show signs of
activation such as CD25 and CD69 after injury (19) nor differed
in the expression of various characteristic markers of mature NK
cells from cells of control subjects (except a reduced expression
of CD117). Thus, the impaired function of NK cells after severe
injury is not reflected by an altered phenotype at least according
to the markers that we have examined so far. According to a
recent study, CD39 is differentially expressed on NK cells after
trauma (25) and might be a candidate for phenotyping NK cells
from trauma patients.

The striking modulation of NK cells after major injury was
only visible when the cells were exposed to S. aureus that
mimicked an infectious challenge. This finding indicates that

severe injury “primes” NK cells for an altered responsiveness
to infectious agents. We propose that major injury induces a
functional reprogramming of NK cells that is responsible for
the impaired capacity of the cells to secrete IFN-γ while their
cytotoxic function remains unaffected (19).

Our previous work has shown that the cell-intrinsic inhibition

of NK cells requires 8 day to be fully established (19). Here,

we provide first evidence that CD117 and mTOR are potential
key molecules in the development of NK cell dysregulation

after trauma. The expression of CD117 inversely correlated

with the expression of IL-12Rβ2 and IFN-γ. This finding
points to a potential inhibitory effect of the CD117-induced
signaling pathway on the IL-12Rβ2/IFN-γ axis. Cell type-
specific differences in the biological effect of CD117 signaling
have been reported: in mast cells the activation of the CD117
tyrosine kinase triggers PI3K, MAPK, and JAK/STAT pathways
and thereby induces the release of pro-inflammatory cytokines
and histamine (26). In DCs, signaling through CD117 induces
the secretion of IL-6 through PI3K activation (27). Some of
these CD117-induced pathways overlap with IL-12Rβ2 signaling
(28). Since CD117-induced signaling in NK cells has not
been addressed so far it remains speculative whether and
how CD117 interferes with IL-12-induced IFN-γ synthesis in
NK cells.
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FIGURE 5 | The expression of phosphorylated mTOR is reduced in stimulated CD56bright NK cells after trauma and inversely correlates with the expression of CD117.

(A) Representative histograms of phosphorylated mTOR expression in CD56bright NK cells from control subjects (c) and trauma patients (t) ex vivo. (B) Cumulative data

of phosphorylated mTOR expression ex vivo (n = 10). (C,D) PBMC were stimulated with S. aureus and intracellular expression of phosphorylated mTOR was

determined after 18 h. Representative histograms after stimulation with S. aureus (C) and cumulative data (n = 10) of phosphorylated mTOR (D) are shown. (E)

Recombinant IL-15 or SB431542 was added during stimulation of PBMC from trauma patients (n = 10) with S. aureus [the values for cells stimulated with S. aureus

alone are also shown in (D)]. Horizontal lines indicate the median/interquartile range. Statistical differences between control and trauma (B,D) were tested using the

Mann-Whitney U-test, differences between different culture conditions (E) were tested using the Wilcoxon signed rank test. (F) Spearman correlation between

expression of CD117 and phosphorylated mTOR after stimulation with S. aureus. **p < 0.01. iso, isotype control.

We observed a striking inverse correlation of CD117
expression with the phosphorylation of mTOR in NK cells
late after trauma. mTOR is an intracellular serine/threonine
kinase and plays a central role in cytokine secretion, survival,
and proliferation through its role as master switch in cell
metabolism. CD117 signaling has been described to regulate
mTOR phosphorylation in mesenchymal stem cells (29). A
similar regulatory function of CD117 on mTOR might take place
in NK cells and explain the inverse correlation of CD117 and
mTOR. Detailed analyses of signaling pathways in NK cells are
required in future to prove this assumption of such a functional
relationship between CD117 and mTOR.

Previous studies have shown that mTOR is critical for the
maintenance of the cytotoxic activity and for metabolic control
of NK cells but not for their IFN-γ secretion in response to
recombinant cytokines (23, 30, 31). We established a novel in
vitro model that mimicked the activation of NK cells as it takes
place during stimulation of PBMC with S. aureus but that was
independent from recombinant cytokines and from accessory
cells such as monocytes. We provide evidence that under certain
circumstances mTOR indeed promotes the synthesis of IFN-γ by
NK cells. However, so far we could not identify the mediators
that are responsible for mTOR activation in NK cells in our in
vitro model. Based on these findings we assume that reduced
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FIGURE 6 | mTOR is a cell-intrinsic regulator of IFN-γ synthesis in NK cells exposed to S. aureus. (A) Cultures of PBMC from healthy donors (n = 3) were set up in

serum from control subjects (c) or from trauma patients (t) and were stimulated with S. aureus. Unstimulated cells served as control (none). The mean fluorescence

intensity (MFI) of phosphorylated mTOR was determined in gated CD3−CD56bright NK cells after 18 h. Horizontal lines indicate the median/interquartile range. (B–D)

Purified NK cells from healthy donors (n = 2–4) were exposed to conditioned medium of PBMC from healthy donors that had been obtained after stimulation with S.

aureus (2–3 different batches). Rapamycin (rapa) was added or not (–). The percentage of CD56bright NK cells positive for IFN-γ (B), IL-12Rβ2 (C), and CD117 (D) was

quantified. Statistical differences were tested using the Wilcoxon signed rank test. *p < 0.05.

phosphorylation of mTOR in NK cells late after trauma and
signaling through the TGF-βRI both contribute to their impaired
capacity to produce IFN-γ in response to S. aureus.

In contrast to IFN-γ synthesis, the inhibition of mTOR in NK
cells did not affect the expression of CD117. Thus, it is unlikely
that the expression of CD117 is directly regulated by mTOR in
NK cells.

It has been described that Smad1/5/8, components of
the signaling pathway downstream of the TGF-β receptor,
promote the expression of CD117 in primordial follicles
(32). In line, we detected decreased CD117 expression on
NK cells from injured patients upon inhibition of the TGF-
βRI. We have previously shown that growth/differentiation
factor (GDF) 15 is present in the serum at high levels after
major trauma, signals through the TGF-βRI and activates
Smad1/5/8 (19). Accordingly, the increased expression of
CD117 on NK cells after major injury might be mediated
by circulating GDF-15. In contrast, the inhibition of
TGF-βRI signaling did not affect the phosphorylation of
mTOR in NK cells of the patients. This finding further

supports our assumption that CD117 is not under control
of mTOR.

In line with a previous study (21), we observed that the
expression of CD117 on NK cells decreased when recombinant
IL-15 was added during stimulation with S. aureus. Maximal
reduction of CD117 expression was achieved with a combination
of IL-15 and inhibition of the TGF-βRI that was at the same
time the most effective in upregulation of the IL-12Rβ2 chain.
Interestingly, IL-12Rβ2 was only expressed on CD117− NK cells.
This finding implies that the signaling pathways induced by
CD117 and TGF-βRI cooperate and prevent the expression of
the IL-12Rβ2 chain. Certainly, additional studies are required to
confirm the existence of this novel cross-talk between CD117 and
TGF-βRI in NK cells.

The synthesis of IFN-γ by NK cells correlated with the
expression of the IL-12Rβ2 chain. Unexpectedly, addition of IL-
15 or inhibition of the TGF-βRI did not result in increased IFN-
γ synthesis by NK cells after major trauma despite augmented
expression of the IL-12Rβ2 chain. This is in contrast to the well-
known capacity of IL-15 to enhance IFN-γ secretion by NK
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cells from healthy subjects (33). NK cells from trauma patients
expressed the IL-15 receptor subunits at levels comparable to
NK cells from controls. This finding argues against a reduced
sensing of IL-15 as the origin of the unchanged IFN-γ synthesis.
But IL-15 was efficient in amplifying the production of IFN-
γ when it was combined with the inhibitor of the TGF-βRI
inhibitor. We suggest that yet unknown mechanisms exist in
NK cells of severely injured patients that interfere with the
signaling pathway downstream of the IL-12Rβ2 chain and that
are regulated by IL-15- and TGF-βRI-induced signaling. In this
regard, the transcription factor T-bet might be of relevance as it
was reduced after trauma and increased in response to IL-15 and
inhibition of the TGF-βRI.

Increased mTOR activity is a central component in the
development of so called “trained immunity” that describes
the long-term increased response to a secondary stimulus
after an acute, often infectious insult (34). Trained immunity
of NK cells is a consequence of cytomegalo virus infection
and is associated with enhanced cytotoxicity in response
to repeated infection (35). Defective trained immunity of
monocytes occurs during sepsis and is considered to enhance
the risk for secondary infections (36). Considering the reduced
mTOR phosphorylation and the relevance of IFN-γ in immune
defense we hypothesize that NK cells undergo an impaired
trained immunity after major traumatic injury that, in case
of a subsequent infectious insult, may result in a disturbed
NK cell function. Due to the small sample size of our
pilot study we could not differentiate NK cell function
between patients who later developed infectious complications
and those who remained free of an infection to prove
this hypothesis.

In conclusion, there exists an inverse relationship between
CD117 and phosphorylated mTOR in CD56bright NK cells after
exposure to S. aureus. After trauma, this relationship is shifted
toward CD117 and is associated with a disturbed IL-12/IFN-
γ axis. Restoration of the capacity for mTOR phosphorylation
by application of IL-15 in combination with inhibition of

the TGF-βRI signaling pathway might represent a potential
therapeutic option to improve the function of NK cells after
major trauma.
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Sepsis is characterized by the host’s dysregulated immune response to an infection

followed by a potentially fatal organ dysfunction. Although there have been some

advances in the treatment of sepsis, mainly focused on broad-spectrum antibiotics,

mortality rates remain high, urging for the search of new therapies. Oxidative

stress is one of the main features of septic patients, so antioxidants can be a

good alternative treatment. Agaricus brasiliensis is a nutraceutical rich in bioactive

compounds such as polyphenols and polysaccharides, exhibiting antioxidant, antitumor,

and immunomodulatory activities. Here, we investigated the immunomodulatory and

antioxidant effects of A. brasilensis aqueous extract in the cecal ligation and puncture

(CLP) sepsis model. Our data showed that aqueous extract of A. brasiliensis reduced

systemic inflammatory response and improved bacteria clearance and mice survival. In

addition, A brasiliensis decreased the oxidative stress markers in serum, peritoneal cavity,

heart and liver of septic animals, as well as ROS production (in vitro and in vivo) and tert-

Butyl hydroperoxide-induced DNA damage in peripheral blood mononuclear cells from

healthy donors in vitro. In conclusion, the aqueous extract of A. brasiliensis was able to

increase the survival of septic animals by a mechanism involving immunomodulatory and

antioxidant protective effects.

Keywords: polymicrobial sepsis, CLP, Agaricus brasiliensis, sun mushroom, antioxidant, immunomodulator,

protection
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INTRODUCTION

According to the World Health Organization (WHO), sepsis
leads to about 6 million deaths per year worldwide (1) and
is considered the main cause of death in intensive care
units, especially in patients with comorbidities (2, 3). Sepsis
is currently defined as a syndrome caused by a dysregulated
immune response to infection (4) accompanied by an imbalance
between pro-oxidant and antioxidant defenses in response to
pro-inflammatory cytokines, nitric oxide (NO) and reactive
oxygen species (ROS), which can cause lipid peroxidation,
DNA damage, mitochondrial dysfunction, and multiple organ
failure (5–7). Thus, new therapies based on compounds with
antioxidant and/or immunomodulatory action may be effective
as alternative therapy.

To study the pathogenesis and therapeutic targets in sepsis,
several animal models have been widely used, but cecal ligation
puncture (CLP) procedure is considered one that most closely
resembles human sepsis (8). Recently, our group showed that in a
murine model of moderate CLP-induced sepsis, animal mortality
(up to six days after sepsis) was correlated with increased
leukocyte migration to the peritoneal cavity and oxidative stress
in several organs (spleen, heart, liver and lung) within 24 h
of infection (9) and that the pretreatment of animals with
salivary gland extract from Aedes aegypti improved mice survival
through immunomodulatory and antimicrobial effects associated
with lower oxidative status (decreased lipid peroxidation and
increased antioxidant defense) (9). In this regard, it is of
great interest to research new therapies with antioxidant and
immunomodulatory properties through nutraceuticals such as
Agaricus brasiliensis (Ab) (10).

Ab is a mushroom rich in bioactive compounds such
as organic acids, amino acids, phenolic compounds and
polysaccharides such as β-glucans (11, 12). The β-glucans found
in mushrooms like Ab have a β-(1–3) structure associated with
β-(16), which is able to stimulate cellular and humoral immune
response, increase NO production, phagocytosis and lymphocyte
proliferation (13–15). According to Carvajal et al., Ab present

Abbreviations: Ab, Agaricus brasiliensis; ABTS, 2,2′-Azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid); ANOVA, Analysis of Variance; Bcl10,

B-Cell Lymphoma/Leukemia 10; CARD9, Caspase Recruitment Domain-

Containing Protein 9; CEF, Ceftriaxone; CFU, Colony-Forming Units; CLP, Cecal

Ligation and Puncture; DCF, Dichloro-Fluorescein; DMSO – Dimethylsulfoxide;

DTNB, 5,5′-Dithiobis (2-nitrobenzoic acid); EDTA, Ethylenediamine Tetraacetic

Acid; ELISA, Enzime-Linked Immunosorbent Assay; FBS, Fetal Bovine Serum;

GCS, Glutamylcysteine Synthase; G-CSF, Granulocyte Colony-Stimulating Factor;

GSH, Glutathione; H2DCF-DA, Dichlorodihydrofluorescein Diacetate; HEPES, 4-

(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid; ICF, Informed Consent Form;

IL, Interleukin; LPS – Lipopolysaccharide; MALT1, Mucosa-Associated Lymphoid

Tissue Lymphoma Translocation Protein 1; MDA, Malondialdehyde; MIP-1β –

Macrophage Inflammatory Protein 1β; NF-κB, Nuclear Factor Kappa B; NO, Nitric

Oxide; NO2, Nitrite; OM, Olive Moment; PBMC, Peripheral Blood Mononuclear

Cells; PBS, Phosphate-Buffered Saline; PPARα, Peroxisome Proliferator-Activated

Receptor alpha; RNS, Reactive Nitrogen Species; ROS, Reactive Oxygen Species;

RPMI, Roswell Park Memorial Institute; TAS, Total Antioxidant Status; TBA,

Thiobarbituric Acid; TBARS, Thiobarbituric Acid-Reactive Substances; tBHP,

tert-Butyl Hydroperoxide; TCA, Trichloroacetic Acid; TEAC, Trolox Equivalent

Antioxidant Capacity; TL, Tail Length; TLR, Toll-Like Receptor; TM, Tail

Moment; TNF-α, Tumor Necrosis Factor Alpha.

compounds such as lactic and fumaric acid, as well as secondary
metabolites such as sesquiterpenes, steroids, anthraquinones,
quinolines and derivatives of benzoic acid, inhibitors of bacterial
growth (10). In addition, Ab has a high antioxidant potential
mainly due to the presence of phenolic compounds such as
gallic acid, serum acid and pyrogallol, karmic acid and other
compounds such as ascorbic acid and α-tocopherol (11, 12, 16).

Therefore, considering sepsis as one of the major global
public health challenges, the urgency for new therapeutic
alternatives and the immunomodulatory properties of Ab, the
aim of this study was to evaluate for the first time the effects
of prophylactic administration of aqueous extract of Ab on
survival, immunological and oxidative parameters in a murine
sepsis model.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in strict accordance with the
recommendations of the Guide for the Care and Use of
Laboratory Animals of the Brazilian National Council of
Animal Experimentation (http://www.sbcal.org.br/) and the NIH
Guidelines for the Care and Use of Laboratory Animals.
The institutional Committee for Animal Ethics of Federal
University of Pará/UFPA (CEUA, Protocol: 02/15) approved all
the procedures used in this study.

To in vitro tests, human venous blood was collected from
healthy volunteers that signed the Informed Consent Form (ICF).
This study was approved by the Institutional Committee of
Ethics in Research involving human beings from the health
sciences sector of UFPA (CEP-ICS/UFPA), under n◦ 3544380 and
CAAE 12776619.0.0000.0018.

Mice
Male Swiss mice (7–8 weeks old) were used in this study and
were obtained from the Animal Facility of the Federal University
of Pará. Mice were kept in cages under controlled conditions of
temperature (22 ± 3◦C), light (12 h light/dark cycle) with food
and water ad libitum, and acclimatized conditions for 3 days
before use.

Preparation of Agaricus brasiliensis (Ab)
Aqueous Extract
Ab was kindly donated by Dr. Herta Stutz Dalla Santa from the
fungi collection of bioprocesses of the Bioprocesses Laboratory,
Food Engineering Department, Universidade Estadual do Centro
Oeste (UNICENTRO), Paraná, Brazil. To obtain an Ab aqueous
extract rich in bioactive substances such as carbohydrates, in
special β-glucans, proteins and phenolic compounds (17–19),
we used a methodology described before (20), where 20 g of
dried and pulverized mycelium of Ab were boiled in 20mL of
distilled water for 10min and then the solution was filtered
and lyophilized. A stock solution at 100 mg/mL was prepared
in sterile distilled water and used for in vivo (135 mg/Kg) and
in vitro experiments (2.81 and 22.5 mg/mL). These doses were
chosen based on in vitro tests of cytotoxicity using macrophages
and peripheral blood mononuclear cells. Before initiate the
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experimental sets, the antioxidant activity of Ab aqueous extract
was confirmed by the in vitro assay for total antioxidant
activity (TAC) (data not shown).

Design of in vivo Experiments
The animals were separated into 4 groups according to the
treatment schedule, as follows: saline (saline 0.9%+ cecal ligation
and puncture –CLP/ n = 18 animals), Ceftriaxone (Cef −20
mg/kg + CLP/ n = 6 animals), aqueous extract of Ab (Ab −135
mg/kg + CLP, n = 18 animals) and sham (surgery control, n =

18 animals). All treatments were administered in a volume of 100
µL orally by gavage, 24 h before and immediately before CLP
induction (time 0). In the first set of experiments, 24 animals
were used to monitor the survival rate during 12 days. In the
next set of experiments 36 animals were used, septic mice were
euthanized at specific time points to evaluate the therapeutic
potential and immunomodulatory/antioxidant activities of Ab.
In this study, 18mice (6/group) were euthanized 12 h after CLP to
analyze oxidative stress parameters and 18 mice (6/group) were
euthanized 24 h after CLP to analyze pro-inflammatory cytokines
based on previous studies (9, 21) (Figure 1).

CLP Model
The polymicrobial sepsis was induced using the cecal ligation
and puncture (CLP) model according to D’Acampora and
Locks, with some adaptations (9, 22). To summarize, animals
were anesthetized with intraperitoneal injection of ketamine
(100 mg/kg) and xylazine (10 mg/kg), a small one-centimeter
laparotomy performed, and the cecum exposed and then ligated
using a 3–0 silk suture. Then, the cecumwas punctured one single
time with 22G needle to induce a moderate severity CLP. The
cecum was gently squeezed to extrude a small amount of fecal
content and was left to its original position in the abdominal
cavity. Sham-operated mice underwent the same procedure,
except for ligation and perforation of the cecum. The abdominal
wall was closed, and fluid resuscitation was conducted with
subcutaneous injection of 1mL of saline 0.9%.

Survival and Weight Analysis of
Septic Mice
After induction of sepsis, mice of each group (n = 6) were
weighted twice a day for twelve consecutive days. To reduce
suffering, mice presenting signs of imminent death (i.e., ataxia,
inability to maintain upright position, tremor, and/or agonal
breathing) were euthanized by ketamine/xylazine (>100/10
mg/kg, sc) overdose. The animals that survived for longer than
12 days were euthanized. The survival rate and weight were
calculated followed by delineation of survival and weight curve.

Blood Samples and Leukocyte Counts
Peripheral blood was obtained by cardiac puncture of mice
anesthetized with ketamine (100mg/kg) and xylazine (10mg/Kg)
at 12 and 24 h after CLP induction. Aliquots (500 µL) of blood
collected with ethylenediamine tetraacetic acid (EDTA) 5% were
analyzed using an automatic hematologic analyzer (Hematoclin
2.8 VET, Starlab, Salvador, BA, BRA) and blood samples (1000
µL) collected without anticoagulant were used to obtain serum

for analyses of oxidative stress (12 and 24 h post CLP) and
cytokines (24 h post CLP).

Cytokines Measurement
The levels of TNF-α and IL-1β in serum and peritoneal
lavage fluid collected at 24 h post CLP induction were
quantified by Enzime-Linked Immunosorbent Assay (ELISA)
using an appropriate commercial kit (R&D Systems,
Minneapolis, Canada) according to the manufacturer’s
instructions. The detection limits of each cytokine
were IL-1β, 12.5–800 pg/mL with sensitivity of 4.8
pg/mL; TNF-α, 10.9–700 pg/mL with sensitivity of 7.21 pg/mL.

Determination of Nitric Oxide
(NO) Production
The nitrite (NO2) was estimated colorimetrically at 12 and 24 h
post CLP on the basis of reduction of nitrate to nitrite using
Griess method (23). Nitrite level was determined in 100 µL
of samples (serum and lavage peritoneal) incubated with an
equal volume of Griess reagent for 10min at room temperature.
The absorbance was measured at 550 nm and calculated from a
standard curve with sodium nitrite expressed per µMol/mL (24).

Bacterial Load Determination
For determination of colony-forming units (CFU) in blood and
peritoneal fluid of mice (n = 6 per/group), 10 µL of samples
were diluted with sterile Phosphate-Buffered Saline (PBS) 1:10,
and then 10 µL of each dilution was cultured in Müller Hinton
Agar and incubated at 37 ◦C for 24 h. The colonies were counted
and expressed in CFU/mL.

Peritoneal Leukocyte Counts
Twenty-four h after sepsis induction, peritoneal cells of animals
were harvested with 3mL of PBS containing 1mM EDTA
and the number of total leukocytes was determined using a
hemocytometer. The number of differential cell counts was
carried out counting a total of 200 cells on cytocentrifuge slides
stained with panoptic dye. The results are presented as the
number of neutrophils and mononuclear cells per cavity.

Phagocytic Capacity of Peritoneal Macrophages
The phagocytic capacity of peritoneal macrophages of septic and
shammice was evaluated as previously described (25). Peritoneal
macrophages from sham, CLP-saline and CLP-Ab groups were
collected 24 h post sepsis induction and incubated in 96-well
microplates (2 x 105 cells/well) for 40min at 37◦C and 5%
CO2. Then, 10 µL of neutral-red stained zymosan (1 × 108

particles/mL) were added to each well and after 30min the
supernatants were removed and cells fixed with Baker’s formol-
calcium (4% formaldehyde, 2% sodium chloride, 1% calcium
acetate) for 30min. Following, the cells were washed two times
by centrifugation in PBS (450g for 5min). After solubilization of
neutral-red stain with 0.1mL of acidified alcohol (10% acetic acid,
40% ethanol in distilled water) the absorbance was measured in
a microplate reader at 550 nm.
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FIGURE 1 | Experimental protocol of CLP model and pre-treatments. Ab, aqueous extract of Agaricus brasiliensis; CLP, cecal ligation and puncture; CEF, ceftriaxone;

CFU, colony-forming unit; GSH, Glutathione; MDA, malondialdeihyde; ROS, reactive oxygen species; TEAC, Trolox equivalent antioxidant capacity.

Measurement of Reactive Oxygen Species
(ROS) Production
Reactive oxygen species (ROS) production in peritoneal
macrophages of septic animals was quantified using 2′,7′-
Dichlorodihydrofluorescein diacetate (H2DCF-DA) (26).
Briefly, peritoneal cells obtained 24 h post CLP induction
were incubated at 37◦ C during 15min with 30mM N-
(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

(HEPES) (pH 7.2), 200mM KCl, 1mM MgCl2, and
16µM of H2DCF-DA. The conversion of DCFH-DA

to the fluorescent product DCF was measured using a
fluorescence microplate reader (Victor 2, Perkin Elmer)

every 5min during 30min with excitation/emission
at 488/530 nm. Background fluorescence was determined

before the addition of H2DCF-DA and data were expressed as
fluorescence intensity.
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Determination of Lipid Peroxidation
Lipid peroxidation was measured in serum, peritoneal cavity,
heart and liver samples collected from septic animals at 12 and
24 h post CLP induction as an indicator of oxidative stress,
using the thiobarbituric acid-reactive substances (TBARS) assay
(27, 28). Briefly, samples were mixed with 0.05M trichloroacetic
acid (TCA) and 0.67% thiobarbituric acid (TBA; Sigma-Aldrich,
St. Louis, MO) in 2M sodium sulfate, and heated in a water bath
at 94◦C for 90min. The chromogen formed was extracted in n-
butanol and measured at 535 nm. An MDA standard solution
was used to construct a standard curve against which unknown
samples were plotted. Results are expressed as malondialdehyde
equivalents in nmol/L.

Total Evaluation of Trolox Equivalent
Antioxidant Capacity (TEAC)
The total antioxidant capacity (TAC) of serum, peritoneal
fluid, heart and liver samples of septic mice (collected 24 h
post CLP induction) was evaluated by Trolox ((±)-6-Hydroxy-
2,5,7,8-tetramethylchromane-2-carboxylic acid; Sigma-Aldrich)
equivalent antioxidant capacity assay (TEAC), which provides
relevant information that may effectively describe the dynamic
equilibrium between pro-oxidant and antioxidant compounds.
In this assay, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) (Sigma Aldrich) was incubated
with potassium persulphate (Sigma Aldrich) to produces
ABTS•+, a green/blue chromophore. The inhibition of
ABTS•+ formation by antioxidants in the samples were
expressed as Trolox equivalents, determined at 740mm using
a calibration curve plotted with different amounts of Trolox
(Sigma Aldrich) (29, 30).

Glutathione (GSH) Levels
The level of GSH was determined in samples of serum and
peritoneal lavage fluid of septic mice at 12 and 24 h post
CLP induction using Ellman’s reagent (31). This assay was
based on the production of yellow color when 5,5′-Dithiobis(2-
nitrobenzoic acid) (DTNB) is added to compounds containing
sulfhydryl groups. The GSH concentration was determined using
a standard curve constructed with different concentrations of
GSH in the reduced form. The absorbance was recorded at
412 nm in a microplate reader (SpectraMax 250, Molecular
Devices, Union City, CA, USA) and results were expressed
in µmol/mL.

In vitro Studies
Peripheral Blood Mononuclear Cells (PBMC) Isolation

and in vitro Stimulation
PBMC of healthy volunteers who were abstainers of alcohol
and tobacco (both sexes, ages 20 to 45 years) were isolated
from blood using Ficoll (Sigma-Aldrich). PBMC viability was
determined by trypan blue exclusion and the viability was always
>95%. Then, the cells were washed and suspended in Roswell
Park Memorial Institute-1640 medium (RPMI-1640, Sigma-
Aldrich) supplemented with 2 g/L sodium bicarbonate, 10%
fetal bovine serum (FBS, Sigma-Aldrich), 2% glutamine, and
100 U/mL penicillin-0.1 mg/mL streptomycin (Sigma-Aldrich)

and incubated in vitro with RPMI medium (control), tert-Butyl
hydroperoxide (tBHP: 200µM) or tBHP plus Ab (22.5 mg/mL)
for 30min at 37◦C.

Measurement of Reactive Oxygen Species (ROS)

Production
In this assay, mice were injected intraperitoneally with 2.5mL
of 3% thioglycollate (Sigma-Aldrich) and 48 h latter, peritoneal
macrophages were harvested as previously described in 2.10.
Macrophages (2 × 105) were incubated in vitro with tBHP
(40µM) or tBHP plus A. brasilienses (22.5 mg/mL) for 30min
at 37◦C. ROS production was detected as described in item
2.11 (32).

DNA Damage Using Comet Assay
PBMCwere treated in vitro with tBHP (200µM) or tBHP plus A.
brasilienses (2.81 or 22.50 mg/mL) for 3 h. To perform the Comet
assay, each sample was mixed with low melting-point agarose at
37◦C to a final concentration of 0.5%. The mixture (100 µL) was
added to the slides precoated with 1.5% normal-melting-point
agarose to retain the agarose cell suspension. The drop containing
cells was covered with a glass cover slip and left at 4◦C for 5min.
The slides were treated with a lysis solution (2.5MNaCl, 100mM
EDTA, 100mM TRIS, 1% Triton X-100, 10% DMSO, pH∼ 10.2)
for 24 h at 4◦C. After, the slides were placed horizontally on an
electrophoresis tray and the resultant nucleoids were immersed
in electrophoresis buffer (300mM NaOH, 100mM EDTA, pH >

13) for 20min at 4◦C to cleave the alkali-labile sites. Then the
electrophoresis was started using an electric field of 23 V/cm
for 20min. At the end of the process, the slides were gently
removed from the tray and washed with distilled water for
5min for neutralization. The slides were dehydrated for 3min in
absolute ethanol and were then air dried. Finally, the slides were
stained with ethidium bromide (20µg/mL) and viewed using
fluorescence microscopy ZEISS AxioCamHRc with green barrier
filter 510–560 nm and 400x coupled to a video camera. The cell
images were analyzed using Tritek Comet Score Freeware 1.6
software. Registered parameters included the percent of DNA in
the tail (Tail DNA %), Tail Length (TL), Tail Moment (TM), and
Olive Moment (OM) as marker of DNA damage. One hundred
comets were scored randomly for each concentration employed.
All steps described previously were carried out in a darkroom to
prevent the interference of additional DNA damage.

Statistical Analysis
Statistical analyses were performed using Graphpad Prism 6
software (GraphPad Software Inc., La Jolla, USA). We assessed
differences in the survival groups after CLP using Kaplan-Meier
analysis followed by a log-rank test. Other data were analyzed
using Analysis of Variance (ANOVA) followed by Tukey multiple
comparison test. Data are presented as mean ± SD values. In all
cases the significance level adopted was 5% (p < 0.05).
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FIGURE 2 | Effects of A. brasiliensis aqueous extract on survival rate (%), body weight, hematological[[Inline Image]] parameters, bacterial burden, and systemic

inflammatory response in septic mice. (A) Survival of septic animals pretreated with Ab (135 mg/kg), CEF (20 mg/Kg), or saline (0.9%). (B) Body weight during 12

days. (C) Total leukocyte counts 24 h post CLP. (D) Monocyte counts 24 h post CLP. (E) Neutrophil counts 24 h post CLP. (F) Platelet counts 24 h post CLP. (G)

Bacterial load in the blood 12 and 24 h post CLP. (H) NO levels 12 h and 24 h after CLP. (I) IL-1β and (J) TNF-α levels in serum of septic animals 24 h post CLP. Data

presented as mean ± SD. (*p < 0.05 Saline-CLP or Ab-CLP vs. Sham; #p < 0.05 Ab-CLP vs. Saline-CLP).
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FIGURE 3 | Effects of A. brasiliensis aqueous extract on microbicidal activity, cell migration, bacterial burden, and inflammatory mediators in the peritoneal cavity of

septic mice. (A) Neutrophils, (B) mononuclear cells count and (C) CFU quantification in the peritoneal cavity of septic mice at 12 and 24 h post CLP. (D) In vitro

phagocytic activity of zymosan particles by phagocytic peritoneal cells from septic animals after 24 h of CLP induction. (E) Nitric oxide, (F) IL-1β and (G) TNF-α levels

in the peritoneal lavage fluid of septic mice. Data presented as mean ± SD. (*p < 0.05 Saline-CLP or Ab-CLP vs. Sham; #p < 0.05 Ab-CLP vs. saline-CLP).

RESULTS

Aqueous Extract of A. brasiliensis Improve
Survival and Inflammatory Systemic
Markers in Septic Mice
As showed in Figure 2A, saline-pretreated septic mice (saline-
CLP) died within six days, while 100% of Ab-pretreated septic
animals (Ab-CLP) survived up to 12 days after CLP induction.

Moreover, ceftriaxone-pretreated CLP group showed only 40%

survival until 12th day. Regarding hematological parameters and
inflammatory mediators, mice from saline-CLP group showed a

significant augment in the number of circulating total leukocytes
(Figure 2C), monocytes (Figure 2D), neutrophils (Figure 2E),
and platelets (Figure 2F). Moreover, CLP increased the systemic
levels of NO (Figure 2H), IL-1β (Figure 2I), and TNF-α
(Figure 2J). On the other hand, Ab-CLP group maintained

normal hematological parameters compared to sham group
(Figures 2C–F). These animals produced low systemic levels of
NO at 12 h of infection compared to saline-CLP group, increasing
this production at 24 h post infection (Figure 2H). In addition,
the pretreatment with Ab extract leads to a complete control of
bacteremia 24 h post infection (Figure 2G), associated with an
augment in NO (Figure 2H), and a significant decrease in IL-1β
(Figure 2I) and TNF-α (Figure 2J) levels in septic animals.

Aqueous Extract of A. brasiliensis
Modulate Inflammatory Response and
Increase Bacterial Killing
Septic mice showed a significant increase in neutrophil and
mononuclear cell recruitment to the peritoneal cavity at 12 h after
sepsis induction (Figures 3A,B), as well as high bacterial load
(Figure 3C) and increased NO levels (Figure 3E). In addition,
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FIGURE 4 | Effects of aqueous extract of A. brasiliensis on antioxidant parameters of septic mice 12 and 24 h after CLP. (A) TEAC in serum. (B) TEAC in the

peritoneal lavage fluid. (C) TEAC levels in heart and liver. (D) GSH levels in serum. (E) GSH levels in peritoneal lavage fluid. The results were expressed as the mean ±

SD. (*p < 0.05 Saline-CLP or Ab-CLP vs. Sham; #p < 0.05 Ab-CLP vs. saline-CLP).

at 24 h, these animals presented significant amount of NO
(Figure 3E), IL-1β (Figure 3F), and TNF-α (Figure 3G) into
peritoneal fluid and recruited cells showed increased phagocytic
ability compared to that from sham group (Figure 3D). However,
Ab-CLP group, at 12 h, showed a significant reduction in the

influx of neutrophils and mononuclear cells (Figures 3A,B)
and in NO production (Figure 3E) compared to saline-CLP
animals. On the other hand, at 24 h post CLP, the Ab-CLP group
showed an increase in NO production in the peritoneal fluid
(Figure 3E), without alteration in phagocytosis (Figure 3D),
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FIGURE 5 | Effects of aqueous extract of A. brasiliensis on oxidative and genotoxic parameters of septic mice. (A) ROS production by peritoneal cells collected from

septic animals 24 h after CLP induction. (B) ROS production by thioglycollate-elicited peritoneal macrophages after in vitro incubation with tBHP or tBHP plus Ab

(Continued)
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FIGURE 5 | (22.5mg/mL) (C) Tail length (µm), (D) DNA tail (%), (E) Tail Moment (TM), (F) Olive Moment (OM) in peripheral blood mononuclear cells from healthy

volunteers incubated in vitro with tBHP or tBHP plus A. brasiliensis. (G) Representative images of comet assay of human cells incubated in RPMI medium, RPMI plus

tBHP and tBHP plus Ab, (H) MDA levels in serum, (I) MDA levels in peritoneal cavity, and (J) MDA levels in heart and liver at 12 and 24 h after CLP. The results were

expressed as the mean ± SD. (*p < 0.05 Saline-CLP or Ab-CLP vs. Sham; #p < 0.05 Ab-CLP vs. saline-CLP).

TABLE 1 | MDA/TEAC ratios in samples from CLP-induced septic mice treated or not with A. brasiliensis.

MDA/TEAC (mean ± SD)

Time Group Serum Peritoneal cavity Heart Liver

12 h Sham 0.30 ± 0.017 0.11 ± 0.001 0.07 ± 0.008 1.19 ± 0.026

Saline-CLP 2.83 ± 0.18a 8.04 ± 1.135a 13.53 ± 0.178a 5.52 ± 0.416a

Ab-CLP 0.51 ± 0.051b 0.02 ± 0.002b 2.15 ± 0.412a,b 1.94 ± 0.561a,b

24 h Sham 0.08 ± 0.024 0.55 ± 0.017 0.83 ± 0.300 0.89 ± 0.013

Saline-CLP 2.78 ± 0.004a 6.49 ± 0.833a 3.45 ± 0.120a 5.33 ± 0.076a

Ab-CLP 0.50 ± 0.050b 0.05 ± 0.009b 1.66 ± 0.462a,b 2.20 ± 0.074b

ap < 0.05 Saline-CLP or Ab-CLP vs. Sham.
bp < 0.05 Ab-CLP vs. Saline-CLP.

IL-1β (Figure 3F), and TNF-α (Figure 3G), accompanied by
inhibition of bacterial load (Figure 3C).

A. brasiliensis Increases the Antioxidant
Status of Septic Mice
In general, the antioxidant defense state was lower in septic
animals compared to control animals (Figures 4A–D). Twelve
hours post CLP, TEAC levels were reduced in serum, peritoneal
cavity, heart and liver of septic mice treated with saline.
Regarding antioxidant capacity based on GSH, saline-CLP
animals showed a decrease in serum GSH levels at 12 and
24 h (Figure 4D). On the other hand, the pretreatment with Ab
extract was able to improve the antioxidant defense state of septic
animals in all tissues at 12 and 24 h post CLP (Figures 4A–E),
with exception of heart at 24 h.

Aqueous Extract of A. brasiliensis Reduce
Oxidative Stress Markers and DNA
Damage in Septic Animals
The in vivo treatment of septic mice with Ab caused
significant inhibition in ROS production in response to
infection (Figure 5A). In addition, Ab extract was also able to
inhibit tBHP-induced ROS production in vitro by macrophages
(Figure 5B), as well as tBHP-induced DNA damage in PBMC
of health donors (Figures 5C–G). Regarding the most used
lipid marker of oxidative stress, MDA levels were significantly
increased in serum, peritoneal cavity, heart and liver of septic
mice (Figures 5H–J). The pretreatment of animals with Ab
caused strong decrease in MDA levels in all tissues evaluated,
being completely inhibited in the peritoneal cavity, the main
focus of bacteria (Figures 5H–J). These protective findings of
A. brasiliensis were also demonstrated by the MDA/TEAC
ratio (Table 1).

DISCUSSION

In the present study, we showed for the first time the
immunomodulatory and antioxidant protective effect of
prophylactic A. brasiliensis aqueous extract treatment in the
CLP-induced sepsis. Ab protected mice against sepsis by
increasing bacterial clearance and survival, maintaining normal
hematological parameters. The pretreatment with Ab reduced
the systemic levels of inflammatory cytokines (TNF-α, IL-1β),
increased the antioxidant response in several organs and tissues
(GSH and TEAC) with concomitant inhibition of oxidative
damage (lipid peroxidation in serum, peritoneal cavity, heart and
liver) of septic mice.

Ab is a basidiomycete mushroom considered nutraceutical.
Our group have reported that Ab has bioactive compounds
such as phytosterols, aromatic amino acids, flavonoids and
phenolic compounds (33). Phenolic compounds have a high
antioxidant capacity according to their structure, depending
on the number and position of the hydroxyl and act through
enzymatic inhibition or in the trace elements sequestration,
reducing reactive species formation (34). In addition, the aqueous
extract of Ab is rich in polysaccharides such as β-glucans (11),
which can activate leukocytes and increase phagocytosis and
antimicrobial activity (35, 36).

In this study, Ab improved the survival of septic mice by
an immunomodulatory mechanism. Our data are in agreement
with previous reports showing that oral supplementation
of Ab improved Crohn’s disease through the reduction
of systemic pro-inflammatory cytokines such as IL-1β, IL-
6 and G-CSF. In addition, patients with ulcerative colitis
presented decreased levels of IL-2, IL-5 and MIP-1β after
21 days of consumption compared placebo group (37).
Moreover, the antitumor effect in multiple myeloma and
cervical cancer mediated by an immunomodulatory activity
have been reported (38, 39). These antimicrobial, antioxidant
and immunomodulation properties described in preclinical and

Frontiers in Immunology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 1238118

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Navegantes-Lima et al. Agaricus brasiliensis Improves Survival in Sepsis

FIGURE 6 | Aqueous extract of A. brasiliensis enhanced survival and reduced organ damage and oxidative stress in CLP sepsis model. Pretreatment with Ab

aqueous extract in CLP septic mice was able to increase survival, reduce bacterial load, control leukocyte recruitment, reduce inflammatory cytokines, oxidative stress

markers, and tissue damage, as well as, increases antioxidant defense.

clinical studies with Ab supplementation may be associated with
bioactive compounds found in mushroom, such as phenolic
compounds, organic acids, amino acids and β-glucans (11, 12).

In sepsis, the pretreatment with antibiotics have a role to
prevent complications such as systemic infections, reducing
the mortality of patients (40). Here, the pretreatment with
aqueous extract of Ab modulated the systemic and local
release of proinflammatory cytokines, inhibited the leukocyte
infiltration into peritoneal cavity, increased phagocytosis and NO
production in infectious focus, leading to complete inhibition
of bacterial burden in blood and peritoneal cavity. Smiderle
et al. showed that the expression of proinflammatory cytokines

(TNF-α and IL-1β) in LPS-stimulated THP-1 macrophages were
inhibited by in vitro incubation with Ab-isolated β-glucans in
presence of LPS (35). In addition, it was showed that the β-
glucans negatively downregulated TLR-2 and TLR-4 receptors,
decreasing exacerbated systemic immune system activation (41).
It is important to point out that until now, there are no studies
with A. braziliensis aqueous extract or any isolated compound in
sepsis model.

In relation to the primary site of infection, Ab treatment
modulated the inflammatory response into peritoneal cavity
of septic mice, inducing almost complete bacterial burden
elimination 24 h post CLP and a significant augment in NO
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levels, without alterations in IL-1β and TNF-α levels in relation
to CLP-saline treated mice. In agreement, it was demonstrated
that (16)-β-D-glucans activates dectin-1 receptors in monocytes,
neutrophils and dendritic cells leading to phosphorylation of
Syk and activation of CARD9/Bcl10/MALT-1 4 with consequent
augment in phagocytic capacity and increased generation of ROS
and RNS (42). Furthermore, according to Vitak et al., Ab is
rich in arginine, a precursor to nitric oxide production by NO
synthases responsible for the conversion of L-arginine to NO and
L-citrulline (43).

Studies have shown that NO has dual effect during sepsis.
NO contributes to elimination of pathogens through DNA
nitrosation and desamination and inhibiting the action of
bacterial DNA repair enzymes at the site of infection (44).
On the other hand, studies have shown that NO modulates
the expression of adhesion molecules and reduces leukocyte
recruitment which can lead to microvascular dysfunction (45).
However, although pretreatment with Ab reduced migration of
leukocytes we observed an increase in NO levels and decreased
bacterial burden. This may be due to the immunomodulatory
property of Ab which might be correlated with increased
phagocytic capacity and mechanisms reported above (44).

In addition, in sepsis the uncontrolled inflammatory response
can cause oxidative stress, that plays a critical role in
the pathogenesis and dysfunctions inmultiple organs (46). In this
respect our data showed that macrophages from septic animals
produce higher levels of ROS compared to cells from sham or Ab
treated animals. Moreover, Ab was able to inhibit the production
of ROS by macrophages stimulated in vitro with tBHP, and also
tBHP-induced DNA damage in human PBMC. In this context,
Angeli et al. reported that the pretreatment with β-glucans
extracted from Ab presented protective effect in human hepatic
cells against the genotoxic and mutagenic effects of carcinogenic
compound (Benzo[a]Pyrene) (47).

In septic patients, MDA levels are elevated and may be
correlated with clinical worsening (48, 49). In our study, the
levels of lipid peroxidation were significantly decreased in serum,
peritoneal cavity, heart and liver of septic animals treated with
Ab. These results are in agreement with evidences showing that
the association of oxidative stress with systemic abnormalities in
microcirculatory blood flow lead to cardiovascular and hepatic
changes, that contributes to the high mortality of patients (50).
In fact, Yan et al. reported that in CLP model, liver tissue
damage starts ∼1 h after sepsis, while cardiac dysfunction starts
at 6 h (50).

In relation to the antioxidant defense, decreased levels of GSH
and the inhibition of total antioxidant capacity are associated
with organ failure and high mortality in sepsis (51). In contrast
to septic animals, Ab-treated animals showed increased TEAC
andGSH levels in serum and peritoneal cavity, and also enhanced
antioxidant capacity in heart in liver tissues, as well as increased
MDA/TEAC ratios in serum, peritoneal cavity, heart and liver,
suggesting that the protective effect of Ab in CLP model is at least
in part due to its antioxidant property.

Recently, De Souza et al. showed that the treatment of
adjuvant-induced arthritic rats with Ab aqueous extract, at dose
of 400 mg/kg, cause significant decrease in lipid damage in

liver, brain, and plasma of treated rats. Moreover, the extract
maintained the antioxidant defense, preserving the levels of
reduced glutathione and protein thiol (52). In this line, it
was demonstrated that in diabetic rats, the administration of
Ab restored superoxide dismutase, catalase, and gluthatione
peroxidase activity (43). This ability may be, at least in part, due
to the presence of glutamic acid and glycine in Ab, since these
amino acids are precursors of GSH synthesis, where glutamic acid
reacts with cysteine to produce γ-glutamylcysteine (GCS) and
subsequently reacts with glycine to form GSH (11, 53).

CONCLUSION

In conclusion, it was showed for the first time that the
pretreatment with Ab aqueous extract was able to increase
the survival of septic animals by a mechanism involving
immunomodulatory and antioxidant protective effects as
summarized in Figure 6. Further studies are needed to better
elucidate the immunomodulatory mechanisms and ensure the
safety of their clinical use.
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Sepsis remains a major cause of death in the United States and worldwide, and

costs associated with treating septic patients place a large burden on the healthcare

industry. Patients who survive the acute phase of sepsis display long-term impairments

in immune function due to reductions in numbers and function of many immune cell

populations. This state of chronic immunoparalysis renders sepsis survivors increasingly

susceptible to infection with newly or previously encountered infections. CD4T cells

play important roles in the development of cellular and humoral immune responses

following infection. Understanding how sepsis impacts the CD4T cell compartment is

critical for informing efforts to develop treatments intended to restore immune system

homeostasis following sepsis. This review will focus on the current understanding of how

sepsis impacts the CD4T cell responses, including numerical representation, repertoire

diversity, phenotype and effector functionality, subset representation (e.g., Th1 and

Treg frequency), and therapeutic efforts to restore CD4T cell numbers and function

following sepsis. Additionally, we will discuss recent efforts to model the acute sepsis

phase and resulting immune dysfunction using mice that have previously encountered

infection, which more accurately reflects the immune system of humans with a history

of repeated infection throughout life. A thorough understanding of how sepsis impacts

CD4T cells based on previous studies and new models that accurately reflect the human

immune system may improve translational value of research aimed at restoring CD4T

cell-mediated immunity, and overall immune fitness following sepsis.

Keywords: CD4T cell, sepsis, immunoparalysis, adaptive immunity, therapy

INTRODUCTION

Sepsis is life-threatening organ dysfunction that results from an exaggerated host immune response
to disseminated infection (1). It is characterized (in part) by increased production of both pro- and
anti-inflammatory cytokines, resulting in transient severe lymphopenia and long-lasting immune
dysfunction (2). Each year at least 1.7 million adult Americans develop sepsis and nearly 270,000
Americans die as a result of sepsis (3). Hospital costs associated with treating sepsis total >$23
billion each year, making it the most expensive condition treated in the U.S. (4). Due to advances
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in medical care, the majority (∼75%) of today’s septic patients
survive the cytokine storm that results from the initial septic
event (5). However, surviving patients suffer from a long-lasting
state of immune dysfunction termed immunoparalysis and
display increased susceptibility to secondary infection, increased
viral reactivation, and decreased 5-year survival compared to
individuals who did not develop sepsis (6–8).

The first signs of immunoparalysis can be seen during
and shortly after resolution of the cytokine storm in the
numerical loss of many cell types, but most notably lymphocytes
(9). Lymphocyte numbers recover after resolution of the
cytokine storm, but the functional capacity of lymphocytes
that reconstitute the immune system is impaired for an
extended period (10). Therefore, experimental therapies aimed
at alleviating sepsis-induced immunoparalysis have focused
on reducing cell loss, increasing numerical recovery, and
restoring function of cells that repopulate the immune system
(11). Experimental mouse models have been instrumental in
informing our knowledge of the impact of sepsis on the immune
system and the benefits of perspective therapies for promoting
recovery of immune cell numbers and function. However, the
translational value of mouse studies depends on how accurately
they reflect the human condition (12, 13), and recent studies
have highlighted how some aspects of the immune response in
inbred, SPF mice do not accurately reflect the immune response
in the outbred, non-SPF human population. For example, studies
conducted in outbred Swiss Webster mice have shown how
inbred mice fail to reflect variation in immune outcomes seen
in a genetically diverse population more similar to the human
population (14–16). Additionally, studies using microbially-
experienced pet store mice or laboratory mice cohoused with
pet store mice (a.k.a. “dirty mice”) have shown that exposure
to a diverse array of pathogens shapes the immune system.
Notably, in contrast to SPF mice that possess an immune system
more similar to infants, the immune system of dirty mice more
closely resembles that of adult humans (17–21). These studies
suggest that incorporating genetic diversity and/or a history of
diverse pathogen exposures may improve the translational value
of experimental models.

This review will focus on our understanding of how CD4T
cells are impacted by sepsis and how changes within the
CD4T cell compartment affect overall immune fitness. To
provide context for this, we will begin with an overview of
the effects of sepsis on immune cell subsets, and end with a
discussion of therapeutic strategies to alleviate sepsis-induced
immunoparalysis, and implications of recent mouse studies that
more accurately model sepsis in humans.

EFFECTS OF SEPSIS ON IMMUNE CELL
SUBSETS

Sepsis causes a seismic shift in representation and function
of immune cell subsets (Figure 1), which contributes to both
the pathophysiology of sepsis and resulting immunoparalysis.
Sepsis is initially characterized by leukocytosis in the first 2–
4 days, with marked increases in neutrophil and monocyte

populations, which is followed quickly by a state of lymphopenia
(22, 23). Lymphocyte populations are especially susceptible to
apoptosis, and numbers of B cells and CD4 and CD8T cells are
markedly reduced following sepsis onset (9, 23–29). Failure to
normalize cell numbers during either the stages of leukocytosis or
lymphopenia is associated with increased mortality. In surviving
patients, cell numbers return to normal within a month, but
failure to prevent viral reactivation and reduced effectiveness
at handling new infections suggests long-lasting functional
impairments (6–8).

Due to the important roles they play in initial pathogen
recognition and response and orchestration of adaptive
immune responses, defects in innate immune cells including
monocytes/macrophages, neutrophils, NK cells, and dendritic
cells (DCs) greatly impact overall immune fitness. Unlike
monocytes/macrophages and neutrophils, numbers and on-
per-cell basis function of NK cells and DCs initially decline
following sepsis (9, 23, 30, 31). RNA-sequencing has revealed
that multiple immune-response pathways are down-regulated in
monocytes of sepsis patients (32), and mass cytometry (CyTOF),
which allows for simultaneous analysis of more parameters
than conventional flow cytometry, has shown that monocytes
of sepsis patients have increased expression of the inhibitory
ligand PD-L1 and decreased expression of HLA-DR (33).
Considering that increased expression of inhibitory molecules
BTLA and PD-1 on monocytes/macrophages following sepsis
has been shown to impact bacterial clearance (34, 35), these
findings suggest that alterations in monocytes/macrophages
contribute to defective host innate immunity resulting from
sepsis. Additionally, decreased expression of HLA-DR could
reduce the ability of monocytes/macrophages to present antigen
(Ag) and prime B and T cell responses, so these data also suggest
that alterations in monocytes/macrophages may also contribute
defective host adaptive immunity resulting from sepsis. NK
cells that remain following sepsis have a reduced ability to
produce the effector cytokine IFN-γ in response to inflammatory
cytokines IL-12 and IL-18 or following infection, as well as the
reduced ability to degranulate and execute cytolytic activity
following Ly49H receptor-mediated activation. Consequently,
these numerical and functional defects resulting from sepsis
lead to decreased NK cell-mediated control of viral infection
(30). In addition, DCs present following sepsis have a decreased
ability to produce “signal 3” cytokines (e.g., IFN-γ) in response
to TLR stimulation or pathogen challenge, and to prime T cell
responses (31, 36). Taken together, these studies suggest that
defects in innate immune cell subsets following sepsis contribute
to immunoparalysis through both reduced innate antimicrobial
activity and decreased ability to stimulate adaptive immune
responses (Figure 1).

In addition to quantitative and qualitative alterations in
multiple innate immune cell populations, it has become clear that
cell-intrinsic defects in B cells and T cells also persist following
sepsis (Figure 1). Sepsis results in reduced representation of
immature B cells and increased representation of mature B
cells, with increased numbers of plasma cells and shifts in
representation of B1 and B2 B cells (29, 36, 37). Despite
increased plasma cell numbers, Ag-specific antibody production
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is impaired following sepsis (36–38), suggesting sepsis decreases
host ability to develop Ag-specific plasma cells. Following
sepsis, CD8T cells have a reduced ability to prevent infection
(39), which is likely due to many factors. Recovery of naïve
CD8T cells following sepsis is incomplete, resulting in loss of
some precursor specificities and inability to form responses to
some newly encountered Ags (40). The memory CD8T cells
that remain following sepsis display defects in Ag-dependent
and -independent functions including reduced Ag-sensitivity,
proliferative capacity, and ability to produce cytokines in a
bystander manner (41). Furthermore, memory CD8T cells from
hosts that have recovered from sepsis are more prone to undergo
exhaustion when combating chronic infections, displaying
increased expression of inhibitory receptors PD-1 and 2B4,
reduced ability to produce effector cytokines IFN-γ and TNF-α,
and reduced ability to clear the infection (42–44). Interestingly,
numerical loss and functional defects are not as profound for
infection-induced tissue resident memory (TRM) CD8T cells in
hosts that survive sepsis. However, immune responses initiated
by CD8 TRM from septic hosts are still ineffective due to the
inability of endothelial cells to transmit alarm signals, resulting
in reduced recruitment of circulating effector cells to the site
of infection (45). Decreased protective capacity of CD8T cells
following sepsis extends beyond pathogenic infection, as tumor-
infiltrating CD8T cells from septic hosts have reduced ability
to proliferate, produce IFN-γ, and prevent tumor growth (46).
However, CD8T cells from tumor-bearing hosts that experienced

sepsis, under certain conditions, could be even reinvigorated due
to sepsis-induced release of tumor Ags, leading to the surprising
reduction in tumor burden (47).Many defects in CD4T cells have
also been found, and due to their role in providing help to B cells
and CD8T cells, we will discuss the effects of sepsis on CD4T
cells in further detail in the following section.

EFFECTS OF SEPSIS ON CD4T CELLS

CD4T Cell Loss, Recovery, and Repertoire
Changes Following Sepsis
Numbers of CD4T cells are greatly reduced following sepsis
onset (24–27, 48–50). Absolute CD4T cell numbers return
to pre-septic levels after a month for most patients, but
failure to recover sufficient numbers of immunocompetent
CD4T cells is associated with poor prognosis, especially in
the elderly (24, 27, 49, 50). However, questions remain as
to how numerical recovery of CD4T cells occurs and the
roles that thymic output, homeostatic proliferation, and Ag-
driven proliferation play in that recovery. Initial experiments
examining numerical recovery of CD4T cells showed increased
percentages of CD4T cells expressing markers associated with
memory (e.g., CD44hi, CD62Llow) following sepsis, suggesting
recovery occurs through homeostatic proliferation of naïve
cells, Ag-driven proliferation, and/or outgrowth of endogenous
memory CD4T cell populations (49). However, the authors

FIGURE 1 | Effects of sepsis on immune cell subsets. The immune system enters a state of leukocytosis during the first 2−4 days following sepsis onset, with marked

increases in neutrophil and monocyte populations and increased levels of circulating pro- and anti-inflammatory cytokines. The state of leukocytosis is followed by a

state of lymphopenia, characterized by a marked decrease in numbers of adaptive immune cells including B cells, CD4 and CD8T cells, and innate immune cells

including NK cells and dendritic cells (DCs). The state of lymphopenia resolves ∼1 month after sepsis onset, as numbers of leukocytes return to normal. Despite the

numerical recovery of immune cells, hosts that have recovered from sepsis suffer from a long-lasting state of immune dysfunction termed immunoparalysis. The state

of immunoparalysis is characterized by reduced functionality of both innate and adaptive immune cells, increased viral reactivation, and reduced ability to control new

infections and to eliminate solid tumors.
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found that adoptively transferred naïve TCR-transgenic OT-II
CD4T cells did not proliferate when transferred into septic
hosts suggesting CD4T cell recovery does not occur through
homeostatic proliferation. Additionally, no skewing in TCR
Vβ expression in memory CD4T cells following sepsis was
observed, suggesting numerical recovery was not due to Ag-
driven proliferation of cells responding to infection during
sepsis. By ruling out homeostatic proliferation and Ag-driven
proliferation, the authors concluded that numerical recovery
results from outgrowth of endogenous memory CD4T cells—
even though this conclusion was not formally proven in this
study. In contrast, a later study found decreased TCR Vβ

diversity in human sepsis patients, which was associated with
increased risk of death (51). Data published from our group
(50) found CD4T cell numerical recovery occurred similarly
in wild type and thymectomized mice, suggesting numerical
recovery occurs independently of thymic output. As in previous
studies, numerical recovery of CD4T cells was accompanied by
accumulation of cells with an Ag-experienced phenotype (i.e.,
upregulation of CD11a and CD49d). However, both adoptively
transferred TCR-transgenic CD4T cells and endogenous CD4T
cells of known epitope specificity that were present during the
septic event (rather than transferred post-sepsis) proliferated in
septic hosts, suggesting that numerical recovery of CD4T cells
is driven at least in part by homeostatic proliferation. Ag-driven
proliferation also is likely to play a role for some Ag-specific
CD4T cell populations, as CD4T cells recognizing epitopes
derived from gut-derived segmented filamentous bacterium
(SFB) were found to proliferate in an Ag-dependent manner
following sepsis (52). Importantly, recovery of epitope-specific
CD4T cells occurred asymmetrically following homeostatic
proliferation. When numerical representation of six different
Ag-specific CD4T cell populations was determined in sham
and 1 month post-sepsis mice, half of Ag-specific populations
recovered numerically, while one population was found in
greater numbers and two were numerically reduced post-
sepsis (50). Furthermore, Ag-specific populations that failed
to recover numerically displayed functional defects including
decreased ability to proliferate and to produce cytokines
following infection or incubation with cognate Ag and to
mount Th17 polarized responses. Thus, changes within the
CD4T cell compartment during numerical recovery (Table 1)
impact their ability to respond to newly encountered Ags, which
likely impacts their ability to provide protection against newly
encountered infections.

CD4T Cell Functional Defects Following
Sepsis
Evidence for functional defects of CD4T cells in septic patients
was first inferred from studies showing impaired DTH skin
reactions (53). Later studies pointed to the significantly higher
rates of CMV and HSV reactivation in septic patients (54, 55)—
infections for which effective CD4T cell immunity is essential
for limiting frequency and severity of recrudescence in humans
(54, 73–75). Early studies that examined cytokine production by
CD4T cells from septic patients showed that cytokines produced

TABLE 1 | Effects of sepsis on CD4T cells.

Category Effects References

Repertoire changes Decreased TCR Vβ diversity in humans (51)

Incomplete recovery of some epitope

specificities

(50)

Ag-dependent proliferation for some

specificities

(52)

Functional defects Impaired DTH responses and higher

rates of viral reactivation

(53–55)

Global anergy

• Reduced ability to produce cytokines

• Reduced ability to proliferate

• Increased expression of

inhibitory receptors

(2, 56–61)

(50, 56, 62)

(34, 35, 63–68)

Changes in subset

representation

Decreased transcript levels of T-bet,

GATA3, and ROR-γT

(69)

Repressive histone methylation at IFN-γ

and GATA3 promoter regions

(62)

Increased Treg cell representation (26, 59, 70, 71)

Decreased representation of Th1, Th2,

Th17, and Tfh subsets

(28, 59, 71, 72)

under Th1 or Th2 conditions were altered (56–60), leading to
the suggestion that sepsis caused a phenotypic switch of CD4T
cells from Th1 to Th2 (61). However, a later study examining
cytokine production by freshly isolated, postmortem spleen and
lung samples found almost no production of IFN-γ, TNF-α,
IL-6, and IL-10 after anti-CD3/CD28 mAb stimulation (2),
providing evidence for the suggestion that post-septic CD4T
cells display a global state of anergy (56). This argument was
strengthened by studies showing reduced proliferative capacity;
decreased mRNA transcript levels of T-bet, GATA3, and ROR-
γt transcription factors that regulate differentiation into Th1,
Th2, and Th17 CD4T cell subsets, respectively; and repressive
histone methylation marks at the IFN-γ and GATA-3 promoter
regions of CD4T cells taken from septic hosts (50, 62, 69).
Decreased ability to proliferate and produce effector cytokines is
reminiscent of functional defects arising during T cell exhaustion
caused by prolonged antigen exposure and inflammation in the
face of chronic viral infection and cancer (76–78). Exhaustion is
accompanied by increased expression of inhibitory receptors that
dampen immune responses, and CD4T cells from septic hosts
have greater expression of inhibitory receptors including PD-1,
2B4, BTLA, and TRAIL, which directly impacts their ability to
effectively respond to infection (34, 35, 63–68). Furthermore,
expression of inhibitory receptors has the potential to impact
CD4T cell-derived help to other cells, including B cells and
T cells. In support of this, reduced effectiveness of CD8T
cell immune responses in septic hosts has been shown to be
due in part to TRAIL-dependent mechanisms (67, 68, 79).
Thus, sepsis causes global changes in expression of factors
regulating CD4T cell effector responses (Table 1), which limits
help provided to other immune cells and effectiveness of de novo
immune responses.
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It should be noted, however, that triggering events and
microorganisms capable of inducing sepsis are numerous.
The most common triggering event in humans is pulmonary
infection, with other common triggers including infections
of the abdomen (e.g., those arising from a perforated or
ischemic bowel), soft tissues (often as a result of burns), and
the urinary tract (80, 81). Microorganisms that commonly
cause sepsis include gram-positive (Staphylococcus aureus and
Streptococcus pneumoniae) and gram-negative (Escherichia coli
and Klebsiella species) bacteria, fungal organisms, and viruses
including SARS-CoV-2 (82–85). Triggering events and causative
microbes for studies that suggested CD4T cells from recovered
sepsis patients exist in a state of global anergy varied among
patients (2). It is unclear if or how different triggering
events or factors unique to the causative pathogens, such
as their mitogenic capacity or quality and/or severity of the
cytokine storm they elicit, influence the severity of CD4T cell
functional defects observed in patients who have recovered
from sepsis.

Changes in CD4T Cell Subsets Following
Sepsis
One of the defining features of CD4T cells is that they are
able to differentiate into subsets capable of performing unique
effector functions best suited to drive responses against perceived
threats based upon polarizing inflammatory cytokine and co-
stimulatory molecule signals present during Ag-presentation.
Based on the literature, it is clear that sepsis disrupts both
representation of and function of CD4T cell subsets, including
Th1, Th2, Th17, Tfh, and Treg subsets (Table 1). A number
of studies have noted an increased frequency of Treg cells in
the periphery of septic patients (26, 70, 71), which was later
shown to be the result of preferential loss of other subsets
(i.e., Th1, Th2, Th17, and Tfh) (28, 59, 71, 72, 86). It should
be noted, however, that these observations in humans are
based upon analysis of cells found in the blood. Considering
that mouse studies have shown lymphocytes in tissues are less
susceptible to sepsis-induced alterations (28, 45), similar shifts
in CD4T cell subset representation may not be observed in
peripheral tissues of humans. Losses in CD4T cell subsets
impacts CD4T cell-mediated help provided to other cell types,
as was recently demonstrated for reduced antibody production
resulting from CD4T cell-dependent B cell responses, which
was caused in part by reduced Tfh differentiation following
immunization of septic hosts (38). In addition, the effects
of sepsis on the ability to produce effector cytokines (IL-
10 in the case of Treg) may be less severe for Treg than
for other CD4T cell subsets (87). The impact of increased
Treg cell representation following sepsis has been debated,
as some have correlated it with worse outcomes (88), while
others have suggested it correlates with better outcomes and
immunity (89–91). Studies using anti-GITR mAb to block Treg
function (92) and siRNA to downregulate Foxp3 expression
(93) showed that reducing Treg numbers and/or function in
septic hosts improved overall immune function and pathogen
control. However, later studies concluded that depletion of

Tregs did not lead to improvements in survival (94), although
interpretation of this study is compounded by the use of anti-
CD25 mAb, which can deplete CD25-expressing cells (such as
effector T cells) other than Tregs. In addition to the factors
mentioned above, discrepancies for the role of Treg cells in
sepsis pathology and immunoparalysis may be due to timing of
analysis, as a recent study has suggested Treg cells contribute to
positive outcomes during the early stages of sepsis, but do not
significantly impact immunosuppression seen following recovery
(95). Regardless, the continued debate concerning the role Treg
cells play in sepsis pathology and immunoparalysis calls for a
more detailed analysis.

If targeting changes in CD4T cell subset representation could
provide a therapeutic benefit to sepsis patients, understanding
the factors leading to these imbalances becomes important.
Altered functions and loss of other immune cell subsets likely
plays a role in the remodeling of CD4T cell subsets following
sepsis. Adoptive transfer of bone marrow-derived DCs (BMDCs)
to septic animals elevated levels of Th1 cytokines, reduced
expression of the inhibitory receptor PD-1 on CD4T cells,
reduced proliferation and differentiation of Treg cells, and
increased rates of survival (96). Additionally, IL-33—a cytokine
that plays a role in promoting Treg expansion—is elevated in
septic patients, and recent studies showed neutralization of IL-
33 limited the immunosuppressive effects of sepsis and improved
outcomes following secondary infection (97). These studies
suggest therapies designed to restore numbers and function
of immune cells other than CD4T cells may be beneficial for
reestablishing the balance of CD4T cell subsets following sepsis
and for reducing the effects of increased Treg representation.
Furthermore, it is becoming appreciated that sepsis alters the
metabolic capacity of T cells (98), and targeting the effects of
sepsis on immunometabolism presents an intriguing opportunity
to restore T cell dysfunction resulting from sepsis. Targeting
metabolism may help to prevent undesirable shifts in CD4T
cell subsets following sepsis, based on recent data showing
administration of glutamine led to decreased representation of
Th2 and Treg cells in septic hosts (99). While there is much work
to be done to fully understand how changes in CD4T cell subsets
observed following sepsis impact the state of immunoparalysis,
these studies present the exciting possibility that therapies may be
developed to limit CD4T cell subset alterations following sepsis
and promote restoration of protective T cell immunity.

EXPERIMENTAL THERAPIES TO
ALLEVIATE SEPSIS-INDUCED
IMMUNOPARALYSIS

Due to the contributions of numerical cell loss and functional
defects, therapies designed to alleviate sepsis-induced
immunoparalysis have focused on reducing cell death, expanding
numbers of surviving cells, and restoring function of those cells.
Initial experiments designed to block apoptosis through
overexpression of the antiapoptotic molecule Bcl-2 or inhibition
of caspases showed a clear survival benefit for septic hosts
(100–103). However, the use of caspase inhibitors to treat sepsis
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was not widely adopted due to the importance of caspases to
other cellular processes and difficulties in establishing doses and
timing of administration that provided clinical benefit. Because
of this, the most promising strategies currently involve single
or combination therapies with γc receptor-dependent cytokines
and blockade of inhibitory molecules, which both have the
potential to increase cell numbers and restore cell functions.

Common γc cytokines, including IL-2, IL-7, and IL-15,
promote the survival of naïve, effector, and memory CD4 and
CD8T cells. While IL-2 and IL-15 have shown therapeutic
benefits (104–106), indicating that further exploration of
their use in treatment of sepsis is warranted, therapeutic
administration of IL-7 is well-tolerated and shows promise to
reverse immunoparalysis of sepsis patients. Studies conducted
over the last several years have shown that IL-7 administration
improves T cell survival; functionality of surviving T cells
including ability to proliferate, traffic, and to produce effector
cytokines including IFN-γ, TNF-α, and IL-17; and ability to
stimulate DTH responses and clear secondary infections (107–
110). IL-7 treatment may also help to restore metabolic defects of
T cells present after sepsis recovery, as IL-7 was recently shown to
promote activation of mTOR, an important regulator of oxidative
phosphorylation, in T cells of sepsis patients (108). Importantly,
recent results from clinical trials have shown IL-7 administration
is well-tolerated in sepsis patients and results in improved
numbers and functions of CD4 and CD8T cells (110), pointing
to the translational value of this treatment for sepsis patients. It
will be important to follow septic patients treated with IL-7 in
the future to see if improvements in immune cell numbers and
functions translate to improved ability to prevent opportunistic
secondary infections and better long-term outcomes.

Interactions between inhibitory receptors, such as PD-1,
CTLA-4, BTLA, Tim-3, LAG-3, 2B4, and TRAIL expressed
by T cells and their cognate ligands can be generally
described to have inhibitory effects on T cell function.
Immune checkpoint modulation therapy, which is used to
block interactions of inhibitory receptors and their ligands,
has shown great promise for reducing functional defects of
exhausted T cells in settings of chronic infection and as a
therapeutic treatment of certain cancers (111–113). Because
T cells of sepsis patients share such similarities to exhausted
T cells, including increased expression of inhibitory receptors
and functional anergy (34, 35, 63–68), immune checkpoint
modulation has been explored as a therapeutic strategy to reverse
sepsis-induced immunosuppression. Therapeutic administration
of agents blocking inhibitory receptor interactions of PD-
1/PDL-1, 2B4, Tim-3, CTLA-4, LAG-3, and TRAIL have all
shown some benefit for improving function of T cells and
monocytes of septic hosts, including improving expression
of the costimulatory molecule CD28, ability of T cells and
macrophages to produce inflammatory cytokines, and ability
of CD8T cells to form memory populations (68, 107, 114–
123). However, the immunomodulatory effects of treatments
targeting immune checkpoint pathways in septic hosts are
dependent upon dose and timing of administration (116,
117), which will require careful consideration for clinical use.
Additionally, treatments based on administration of IL-7 and

PD-1 blockade have differing effects on reversing sepsis-induced
immunosuppression (107), suggesting that combined treatments
may have synergistic effects. While their long-term effects on
restoring fully protective immune responses of septic patients
remain to be elucidated, improvements in immune cell numbers
and function following administration of γc cytokines and
checkpoint blockade inhibitors are promising signs for their use
as therapies to reverse immunoparalysis resulting from sepsis.

ADVANCEMENT OF ANIMAL MODELS
THAT MORE ACCURATELY REFLECT
SEPSIS IN HUMANS

While mouse-based preclinical studies have resulted in
development of therapies that have shown great efficacy in
the clinic, such as the immune checkpoint blockade therapies
for the treatment of some cancers, it has also been argued that
differences between mice and humans are a major reason for
the inability to translate therapies described in laboratories to
successful clinical outcomes (124–128). Therefore, developing
experimental mouse models that more closely resemble the
human condition may improve the translational potential of
preclinical sepsis studies. One of the major differences between
mouse studies and humans is that the majority of preclinical
mouse studies are conducted using inbred mice, which does not
reflect the genetic diversity present in the human population.
We know from human sepsis studies that outcomes, including
survival and resulting parameters of immunoparalysis, vary
greatly from person to person (129). While this may be due to
a number of factors including patient age, severity of sepsis,
and underlying health conditions, genetics may also play a role.
Studies utilizing outbred mice have shown inbred mice fail
to capture diversity of immune outcomes seen in genetically
diverse populations (14–16). Only a limited number of sepsis
studies have included outbred mice and/or mice of varied
genetic background, but these experiments have provided
insight into how models of sepsis in mice might compare to
outcomes in humans. Studies using outbred Swiss mice have
shown that immunoparalysis following sepsis, including reduced
numbers and function of both DCs and CD8T cells, can be
observed in outbred as well as inbred mice (31, 41, 42, 45),
suggesting some aspects of immunoparalysis are likely to
be universal in a population of mixed genetics. However,
other parameters of immunoparalysis might differ based in
part on genetics, as the percentage of MHC II-expressing
lymphocytes and representation of Treg cells post-sepsis was
found to differ between BALB/c and outbred CD-1 mice (130).
Thus, use of genetically diverse mice in sepsis studies should
be encouraged, as they could help uncover aspects of sepsis
that are influenced by genetics, as well as help to pinpoint
genetic factors responsible for divergent sepsis outcomes in the
human population.

Another big difference between mouse studies, which are
primarily conducted using SPF mice, and humans is that
humans are exposed to a diverse array of pathogens throughout
life. Recent studies have shown that the immune system of
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SPF mice is more similar to human infants, while “dirty”
mice that have been exposed to a diverse array of pathogens
through co-housing with pet store mice possess an immune
system more similar to adult humans (17–21). Importantly, the
training and shaping of the immune system that occurred as a
result of pathogen exposure rendered mice less susceptible to
newly encountered infections, suggesting the history of infection
may also influence how organisms respond to a septic insult.
Recent work from our laboratory, however, found that microbial
exposure results in an enhanced cytokine storm following sepsis
and increases risk of mortality (131). While changes in the
microbiome due to cohousing were partially responsible for
this outcome, changes in function of immune cells due to
history of pathogen encounter also played a role, as leukocytes
of cohoused mice displayed increased expression of TLR4 and
produced greater amounts of inflammatory cytokines in response
to LPS. Thus, changes in the immune system due to history
of infection with diverse pathogens, which varies from person
to person shape the response to septic insult. This also could
impact the effectiveness of treatments for sepsis, as antibiotic
treatment of septic hosts possessing pre-established memory
populations was more effective when combined with memory
cell reactivation (132). Mouse models that incorporate a history
of pathogen exposure also may improve translatability of sepsis
studies, as was recently demonstrated using laboratory mice
born to wild mice, which possess similar microbiota and history
of pathogen exposure to dams (21). Using this model, the
authors were able to replicate clinical trial data showing TNF-
α neutralization was ineffective in their dirty mice (just like in
human sepsis patients), even though it was an effective therapy
for SPF mice. Clearly, increased use of mouse models that
incorporate history of pathogen exposure have the potential to
increase our understanding of sepsis pathology and resulting

immunoparalysis in humans, and to improve translatability of
sepsis studies that utilize animals.

CONCLUSIONS

Advancing therapies to reverse sepsis-induced immunoparalysis
will require a thorough understanding of defects in immune cell
subsets resulting from sepsis, and how those defects contribute
to decreased host immune fitness. CD4T cells play an important
role in orchestrating successful immune responses due to their
ability to provide help to a range of immune cell types. Therefore,
understanding how CD4T cells are impacted by sepsis, including
numerical and functional alterations and changes in subset
representation, is an important goal in sepsis-based research.
Mouse models that more closely represent the human condition
through incorporation of host genetic differences and history of
infection with diverse pathogens have the potential to increase
our understanding of defects in immune cells of various types
caused by sepsis and to improve the translational value of animal-
based sepsis studies.
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Epidemiological studies have demonstrated that survivors of acute burn trauma are

at long-term increased risk of developing a range of morbidities. The mechanisms

underlying this increased risk remain unknown. This study aimed to determine whether

burn injury leads to sustained immune dysfunction that may underpin long-term

morbidity. Plasma and peripheral blood mononuclear cells were collected from 36

pediatric burn survivors >3 years after a non-severe burn injury (<10% total body

surface area) and from age/sex-matched non-injured controls. Circulating cytokine

and vaccine antibody levels were assessed using multiplex immunoassays and cell

profiles compared using a panel of 40 metal-conjugated antibodies and mass cytometry.

TNF-α (1.31-fold change from controls), IL-2 (1.18-fold), IL-7 (1.63-fold), and IFN-γ

(1.18-fold) were all significantly elevated in the burn cohort. Additionally, burn survivors

demonstrated diminished antibody responses to the diphtheria, tetanus, and pertussis

vaccine antigens. Comparisons between groups using unsupervised clustering identified

differences in proportions of clusters within T-cells, B-cells and myeloid cells. Manual

gating confirmed increased memory T-regulatory and central memory CD4+ T-cells,

with altered expression of T-cell, B-cell, and dendritic cell markers. Conclusions:

This study demonstrates a lasting change to the immune profile of pediatric burn

survivors, and highlights the need for further research into post-burn immune suppression

and regulation.

Keywords: non-severe burn injury, immunity, vaccination, mass cytometry, acute trauma, systemic

INTRODUCTION

Burns continue to impact the lives of millions of people each year; from new injuries to ongoing
recovery, the psychological, physical, and financial burden is persistent. In 2004 the World Health
Organization (WHO) estimated that 11 million people globally required medical attention for
a burn injury (1). A more recent annual report from the Burns Registry of Australia and New
Zealand (BRANZ) recorded 3,295 cases treated at specialized burn clinics across the two countries
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(2016–2017), with pediatric cases accounting for 30% of the
cohort (2).

Patient outcomes are influenced by the severity of the burn
injury (3, 4). Total body surface area (TBSA) involvement is
used to classify burns as severe (≥20% TBSA) or non-severe
(<20% TBSA). Due to their profound local and systemic effects
(5, 6), severe burns remain the focus of the majority of burns
research. However, the majority of burns (84%) involve a TBSA
of <10% (2), and it is becoming increasingly apparent that
even non-severe burns have a long-term impact on the health
of survivors.

Epidemiological studies have found that burn survivors,
regardless of severity, are at increased risk for a range of diseases
even decades after injury, and typically have a longer length of
stay when hospitalized for them. These include cardiovascular
diseases (7, 8), nervous disorders (9), musculoskeletal diseases
(notably infectious and inflammatory polyarthropathies) (10),
cancers (11), diabetes mellitus (12), gastrointestinal diseases (13),
and infections (14). Extensive data in the literature support a
role for innate and adaptive immune cell dysfunction in the
pathogenesis of the diseases that have an elevated incidence in
burn survivors (15–19), suggesting immune dysfunction may
contribute to post-burn morbidity.

In our laboratory pre-clinical studies in mice, modeling 8%
TBSA involvement as a non-severe burn injury (NSBI), have
demonstrated changes in innate and adaptive immunity up to
84 days post-injury (14, 20). In pediatric patients with severe
burn injury, sustained elevation of circulating cytokines has been
observed up to 3 years after the injury (21). In this study we
have investigated whether there is an enduring change within
the immune compartment of pediatric patients more than 3
years after a non-severe burn injury. We hypothesized that
patients would manifest significant changes to the circulating
immune profile compared to uninjured controls, reflecting a
sustained impact of acute but non-severe burn trauma on the
immune system.

MATERIALS AND METHODS

Specimen Collection
Children were recruited at least 3 years after presenting for
a non-severe burn injury at Princess Margaret Hospital. They
were aged 0–4 years of age at the time of original presentation.
Age/sex-matched controls were selected from a pool of healthy
donors. All samples were obtained with informed consent of a
parent or guardian and the collection was conducted with ethical
approval from the Child and Adolescent Health Service WA
(approval numbers: 2015219EP; 1111EP; 768EP). All patients
recruited had no history of pre-existing illness and were not
currently on medication at time of sampling. No patients had
visible signs or recent history of acute infection at the time
of blood collection. Blood was collected into tubes containing
preservative-free heparin, then centrifuged to collect the plasma.
The remaining blood was resuspended in RPMI-1640 (Gibco,
USA) and the peripheral blood mononuclear cells (PBMCs)
were isolated using Lymphoprep (STEMCELL Technologies,
Canada), and then cryopreserved in 10%DMSOupon slow freeze
for storage.

Multiplex Cytokine Assay
Circulating cytokines were assessed using a customized Milliplex
MAP human high sensitivity T cell panel multiplex bead assay
(Merck). Cytokines tested were Tumor necrosis factor-alpha
(TNF-α), Interleukin-8 (IL-8), Interleukin 7 (IL-7), Interleukin-
6 (IL-6), Interleukin-5 (IL-5), Interleukin-2 (IL-2), Interleukin-
1beta (IL-1β), Interleukin-17A (IL-17A), Interleukin-13 (IL-
13), Interleukin-12 p70 (IL-12(p70)), Interleukin-10 (IL-10),
Interferon-gamma (IFN-γ) and Granulocyte macrophage colony
stimulating factor (GM-CSF). Briefly, plasma samples that
had not been thawed since the original freeze were thawed,
filtered using 0.45µm syringe filters (Nalgene) and a 50 µl
aliquot removed. Standards were prepared for each cytokine and
plated in duplicate and assay conducted as per manufacturer’s
instructions. Each 96-well plate was read on a Luminex 200
instrument. Each sample was assayed in duplicate and the mean
value for each cytokine/patient was used for statistical analysis.

Diphtheria-Tetanus-Acellular Pertussis
Multiplex Immunoassay
Total IgG concentrations against vaccine antigens pertussis
toxin (PT), pertactin (PRN), filamentous hemagglutinin (FHA),
fimbriae 2/3 (FIM 2/3), tetanus toxin (TT), and diphtheria
toxoid (DT) were measured using an in-house multiplex bead-
based immunoassay. PT, PRN, and FHA were kindly provided
by GlaxoSmithKline (Belgium). TT was purchased from Sigma-
Aldrich while DT and FIM 2/3 was sourced from List biological
laboratories (USA). A standard curve was generated using a 10-
step 3-fold serial dilution of an in-house reference sera previously
quantified against National Institute for Biological Standards
and Control reference sera: PT (06/140), TT (TE-3), and DT
(10/262). The concentration of FIM 2/3 IgG was previously
assigned to 06/140 by an international collaborative study (22).
Blanks and two QC samples were included on every plate to
calculate% critical variance across all assays, which fell between
6 and 12.7%. Assay specificity was determined using inhibition
and interference assays. No cross reactivity was detected (data
not shown).

The multiplex immunoassay was carried out as per van
Gageldonk et al. (23), with minor modifications. In brief, Bio-
Plex R© COOH-microspheres (6.25 × 106) were conjugated with
optimized concentrations of antigen in 1 x PBS pH 7.2 (Life
Technologies, AUS) as follows: PT 10µg/ml, PRN 75µg/mL,
FHA 25µg/ml, FIM 2/3 100µg/ml, TT 100µg/mL, and DT
100µg/ml. Samples were diluted in PBS containing 3% bovine
serum albumin (BSA) and 0.05% Tween 20 (Sigma-Aldrich).
MultiScreen Filter Plates (Merck) were pre-wet with 50 µl PBS
containing 0.05% Tween 20 (PBS.T) and the liquid removed by
vacuum manifold (2–5 mmHg). Diluted plasma samples were
mixed with bead-mix (25 µl; PBS containing 4000 beads/region)
in individual wells and incubated on a plate shaker (500 rpm)
protected from light for 30min. Plates were washed twice with
100 µl of 0.05% PBS.T before the addition of 100 µl 1:200
RPE-conjugated goat-anti human IgG Fc secondary antibody
(Jackson ImmunoResearch Laboratories Inc.) and incubated as
above for a further 30-min. Following washing, the beads were
resuspended in 125 µl 0.05% PBS.T and read using a bioplex-200
machine. Antigen-specific IgG concentrations (mIU/mL) were
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determined using a 5-PL linear curve generated with Bioplex
Manager software version 5.0.

Immunophenotyping by Mass Cytometry
All reagents used for mass cytometry were prepared in plastics
that had not been exposed to detergents, to avoid barium
contamination. Stain buffer was prepared as 0.1% bovine
serum albumin (Sigma-Aldrich, Australia), 2mM EDTA (Sigma-
Aldrich), and 0.05% sodium azide (Sigma-Aldrich) dissolved in
calcium/magnesium-free phosphate buffered saline (PBS; Gibco)
and adjusted to pH 7.4. 4% paraformaldehyde (PFA) prepared
fresh each day by dissolving PFA (Sigma-Aldrich) in PBS and
adjusting pH to 7.4.

Metal-labeled antibodies (Table 1) were validated, pre-
tittered, and supplied in per-test amounts by the Ramaciotti
Facility for Human Systems Biology Reagent Bank. Reagent
bank antibodies were either purchased from Fluidigm in pre-
conjugated form or unlabeled antibodies were purchased in a
carrier-protein-free format and conjugated at the Ramaciotti
Facility with the indicated metal isotope using the MaxPAR
conjugation kit (Fluidigm, South San Francisco, CA) according
to the manufacturer’s protocol. Four Element EQ Beads, Maxpar
water, Cell-ID cisplatin, and Cell-ID DNA intercalator were
purchased from Fluidigm.

Cryopreserved PBMCs were thawed rapidly then transferred
into warm RPMI + 10% heat-inactivated fetal calf serum
(FCS) (Bovogen, French origin) + Pierce universal nuclease
(Thermofisher, Australia). Two million live PBMCs were stained
as previously described (24), with amendments: 100 µL of the
first surface antibody cocktail containing an individual barcoding
reagent (either Pd104-CD45 for patients or Pd108-CD45 for
controls, Table 1a) was added. Samples were incubated with
stain at room temperature for 30min. Cells were washed, then
patient and control pairs were combined into a single tube and
washed again. The remainder of the surface staining antibodies
(Table 1b) were added, 100 µL per sample, and incubated on
ice for 30min. Cells were washed twice, then permeabilized with
FoxP3 Fix/Perm buffer (Thermofisher) and incubated with the
intracellular antibodies (Table 1c) on ice for 30min. Cells were
fixed overnight at 4◦C in 4% PFA containing 0.125µM DNA
intercalator. After washing, cells were resuspended at 8.5 × 105

cells/mL in a 1:10 suspension of EQ beads and Maxpar water
prior to data acquisition on a Fluidigm Helios mass cytometer.

Data were normalized using CyTOF Software (v6.7.1014,
normalization passport EQ-P13H2303_ver2) (25, 26) and gated
using Flowjo (v10.4.2). An overview of analysis is outlined
in Figure 1. Files from each sample were cleaned by gating
on Ir191_DNA, Ir193_DNA, event length, and bead-specific
Ce140 to remove debris and non-cellular events. Patient
and control events were debarcoded and the exported files
further cleaned to remove dead cells based on high cisplatin
staining (Supplementary Figure 1). T-cells (CD3+ CD19–), B-
cells (CD19+ CD3–), and other cell lineages (CD3– CD19–
) were gated and exported as individual files for use in
downstream analysis. The CAPX data analysis pipeline (v2.5,
Sydney Cytometry) (27) was then used to down-sample,
transform (arcsine), cluster (FlowSOM) (28), and perform

TABLE 1 | Antibody cocktails for immunophenotyping PBMCs by mass cytometry.

Marker mAb Isotope label

a) Surface stain 1 CD45* HI30 Pd_104

CD45* HI30 Pd_108

CCR2 K036C2 Eu_151

CD183 (CXCR3) REA232 Dy_163

CD184 (CXCR4) 12G5 Lu_175

CCR7 G043H7 Tb_159

b) Surface stain 2 IgD IA6-2 Y_89

CD11c Bu15 In_115

CD19 HIB19 Nd_142

CD56 NCAM16.2 Nd_143

CD4 RPA-T4 Nd_145

CD8a RPA-T8 Nd_146

CD20 2H7 Sm_147

CD16 3G8 Nd_148

CD25 M-A251 Sm_149

CD275 (ICOSL) MIH12 Nd_150

CD45RO UCHL1 Gd_152

CD68 Y1/82A Eu_153

CD31 WM59 Gd_155

CD86 IT2.2 Gd_156

CD123 6H6 Dy_161

CCR6 11A9 Pr_141

CX3CR1 2A9-1 Er_164

CD61 VI-PL2 Ho_165

CD34 581 Er_166

CD27 M-T271 Er_167

CD45RA HI100 Tm_169

CD3 UCHT1 Er_170

CD38 HIT2 Yb_172

CD14 M5E2 Yb_173

HLA-DR G46-6 Yb_174

CCR5 HEK/1/85a Nd_144

CD127 A019D5 Lu_176

CD11b ICRF44 Bi_209

CCR4 L291H4 Gd_158

c) Intra-cellular stain IDO-1 700838 Gd_154

T-bet 4B10 Gd_160

FoxP3 PCH101 Er_162

Ki67 B56 Er_168

Arginase I 14D2C43 Yb_171

*CD45 is on two isotopes in order to barcode patients (Pd_104) and controls (Pd_108).

CD45 stains all leukocytes. mAb, monoclonal antibody.

dimensionality reduction (tSNE) on the 3 gated populations
for each subject. Events were clustered using all markers
in each file except CD45, DNA-intercalator, cisplatin, and
CD61. B-cells, T-cells, and “other cells” were analyzed with
a range of cluster numbers between 10 and 90 to ensure
cluster separation on meaningful markers. The intent was to
identify the maximum number of clusters without artificially
separating events that were biologically similar. A hierarchical
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FIGURE 1 | Pipeline for the analysis of mass cytometry data. (A) Raw files acquired from the Helios mass cytometer were normalized based on the signal intensity of

bead-specific isotopes, and exported as FCS files. (B) Files were manually cleaned to identify intact cells based on Ir_191 DNA staining, beads removed based on

(Continued)
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FIGURE 1 | bead specific Ce_140, and doublets excluded using Ir_191 DNA staining vs. event length. Patient and control samples were debarcoded and exported

into separate files based on staining with CD45-Pd_104 (patients) and CD45-Pd_108 (controls). Live cells were identified based on cisplatin stain intensity. (C) Events

were pre-gated on CD3 vs. CD19 to export files containing T-cells (CD3+ CD19-), B-cells (CD19+ CD3-) and non-T-non-B cells (CD3- CD19-, i.e., monocytes,

dendritic cells, NK cells). (D) The signal intensity of each marker was transformed by arcsin scaling and events from each individual were downsampled then

concatenated for clustering analysis. (E) T-cells, B-cells, and non-T-non-B-cells were clustered separately by FlowSOM and visualized by t-stochastic neighbor

embedding (tSNE). This was repeated multiple times with cluster numbers ranging from 40 to 90, in order to determine the most appropriate number of clusters (F)

based on marker expression. (G) Significance analysis of microarrays (SAM) was used to identify clusters with different frequencies between patients and controls (H),

and the lineage of these clusters was determined based on the expression of markers (F). (I) Binary gating was employed to manually investigate previously

characterized PBMC subpopulations, and to further investigate events corresponding to clusters identified in unsupervised analysis.

gating strategy (Figure 2) was also implemented to investigate
previously described PBMC subpopulations (29) and populations
identified during unsupervised clustering.

Statistics
For each sample, the mean of duplicate runs of the cytokine
and vaccine antibody assays were used for Mann-Whitney
comparisons of burn survivors vs. controls. Multiple Experiment
Viewer (v4.9.0, TM4) (30) was used to visualize immune subset
frequencies as heatmaps. Each cell in the heatmap represented
the percentage of the cluster contributed by an individual subject.
Significance analysis of microarrays (SAM), a technique used
for large datasets (31), was implemented to identify clusters
with a different frequency between paired patients and controls.
Wilcoxon signed-rank test was performed on paired data from
supervised gating and p-values adjusted for false-discovery rate.
Graphs produced using GraphPad Prism (v8.0.1).

RESULTS

Sample Demographics
Blood was collected from 36 pediatric burn survivors aged 4–8
years old and compared to 36 age- and sex-matched uninjured
controls. Mean burn size was 3.95 ± 3.1% TBSA, mean age at
time of injury was 22 months ± 9 months and mean age at time
of sample collection was 6.1 years ± 1.1 years. 17 female and 19
male burn survivors were recruited (47%:53% respectively). Age
at time of injury, total body surface area, etiology of injury, and
time between injury and sample collection are detailed inTable 2.

The AustralianNational Immunisation Program recommends
all children receive primary diphtheria-tetanus-acellular
pertussis (DTPa) vaccinations at 6–8 weeks, 4 months and 6
months of age, followed by booster doses at 18 months and
4 years. Vaccination status was verified using the Australian
Immunisation Register. Records were available for 35 of the
burn survivors and 27 of the controls, confirming they had
completed all DTPa vaccinations according to the Australian
schedule. This included receiving the vaccination at 4 years of
age, which was after the burn injury for all the burn patients.
Only individuals with vaccination status records were included
in the vaccine-specific antibody analysis, and the others were
excluded as we could not confirm vaccination status.

Cytokine Profiling
Plasma was isolated from each blood sample and tested for
TNF-α, IL-8, IL-7, IL-6, IL-5, IL-2, IL-1 β, IL-17A, IL-13,

IL-12(p70), IL-10, IFN-γ, and GM-CSF. Of the 13 cytokines
analyzed, four were found to be significantly elevated in the
burn survivors (Figure 3A). The inflammatory cytokine TNF-
α was measured at a 1.31-fold concentration greater in patients
compared to controls (mean ± SE controls, mean ± SE
burn; p < 0.01). B cell and T cell modulating cytokines
were also significantly increased in the burn group. Notably,
IL-7 was 1.63-fold higher (p < 0.01), whilst IL-2 (mean ±

SE con v burn) and IFN-γ (mean ± SE con v burn) both
showed a 1.18-fold increase (p < 0.05). The elevation of
these cytokines in the patient cohort suggests a sustained pro-
inflammatory milieu may be present for many years after the
initial acute trauma.

Vaccine Antibodies
Antibody responses to DTPa antigens, were compared between
control and burn groups in individuals who had completed the
DTPa vaccination protocol according to the Australian schedule.
Burn survivors showed a diminished IgG response to pertussis
toxin burn mean ± SE and control mean ± SE (0.48-fold
reduction, p < 0.05). Similarly, pertactin IgG response was
significantly decreased burn mean ± SE and control mean ±

SE (0.46-fold reduction, p < 0.01) (Figure 3B). In addition,
for pertussis (PT IgG ≥ 5 IU/mL) 31% of the patient cohort
was below the seropositive cut-off, compared to 15% of the
controls (Figures 3C,D). A significantly diminished response
in the burn group was also observed for tetanus specific IgG,
burn mean ± SE and control mean ± SE (0.48-fold, p < 0.01).
While diphtheria toxoid IgG concentrations were comparable
between groups, 11% of the burn cohort were below the threshold
of long-term seroprotection against diphtheria (DT IgG ≥ 0.1
IU/mL) compared with none of the controls (Figures 3C,D).
This decreased response to vaccine antigens in the patient cohort,
observed despite the administration of a vaccine post-injury,
suggests that the acute trauma may reduce the ability to respond
to vaccination, mediated by a sustained systemic change, since
the vaccine was administered in many cases over a year after
the injury.

Immunophenotyping by Mass Cytometry
Of the 36 patients recruited, sufficient PBMCs were obtained
from only 29 due to the small volume of blood collected. Of these
29, seven were excluded due to poor sample quality resulting
from low cell viability, and two additional sample pairs were
excluded as the barcoding step failed. Of the 20 remaining pairs,
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FIGURE 2 | Gating strategy for T-cell subsets. The gating strategy used to quantify the frequency of T-cell subsets in burn patients and controls. CD, cluster of

differentiation; Tregs, T-regulatory cells; NK, natural killer; DCs, dendritic cells; mDCs, myeloid dendritic cells.
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TABLE 2 | Details of burn injury population including age at time of injury, TBSA

and etiology of the burn.

Age at

burn/months

TBSA (%) Cause of burn Time since burn to sample

collection/months

22 1 Frictional 65

13 7 Scald 59

15 3 Scald 54

18 3 Scald 51

24 <10 Scald 54

37 3 Scald 36

18 2 Frictional 44

25 2.50 Scald 52

25 8 Scald 49

18 1.5 Scald 50

16 <10 Scald 49

12 6 Scald 44

18 9 Scald 63

12 7 Scald 60

19 5 Scald 59

12 2 Chemical 65

7 1 Electrical 63

12 <2 Scald 66

18 1 Contact 62

6 <10 Sun burn 67

12 8 Scald 65

18 9 Scald 54

18 2 Thermal 55

12 1 Scald 51

18 <5 Chemical 57

12 5 Contact 53

10 <1 Contact 66

30 2 Contact 51

42 <2 Frictional 36

24 <1 Frictional 48

16 <2 Contact 55

14 3 Contact 67

41 <1 Frictional 50

38 10 Contact 59

38 1 Scald 61

36 2.50 Scald 62

36 9 Scald 54

30 <5 Frictional 63

22 1.50 Contact 60

36 1 Frictional 64

30 <1 Scald 67

36 2–3 Scald 64

13 were males and 7 were females, with a mean age of 6.3 years at
time of sample collection.

Unsupervised analysis on pre-gated T-cells (CD3+),
B-cells (CD19+), and all other cells (CD3-CD19-) using
the CAPX pipeline (27) was used to identify 50 T-cell
clusters (Supplementary Figure 2), 20 B-cell clusters

(Supplementary Figure 3), and 10 non-T non-B clusters
(Supplementary Figure 4). Analysis of the data using t-
distributed stochastic neighbor embedding (t-SNE) did not
demonstrate any apparent differences between patients and
controls (Supplementary Figures 2–4). However, analysis using
significance analysis of microarrays (SAM) indicated that four
T-cell clusters (Figure 4A), four B-cell clusters (Figure 4B),
and one non-T non-B cluster (Figure 4C) differed in frequency
between burn survivors and controls (SAM test delta adjusted so
that the type 1 error rate was 0%).

Supervised analysis using a curated gating strategy informed
by the unsupervised analysis (whereby markers present on
clustered populations were used to focus investigation) identified
a difference in the frequencies of several T-cell subpopulations.
However, there were no changes in frequency of B-cell, NK, or
myeloid cell populations (Figures 5A–C). There was a significant
increase in the frequency of central memory (CM) CD4+ T-
cells (CD3+ CD4+ CD45RO+ CCR7+; 1.42-fold, p < 0.05)
in the burn group compared to controls. There were also
changes in the frequency of memory T-regulatory cells (32)
(Tregs; CD3+ CD4+ CD25+ CD127-low FoxP3+ CD45RO+;
1.69-fold, p < 0.05) in the burn group compared to controls.
In addition, there was a trend toward a higher frequency of
CCR7+ double-negative (CD4- CD8-) T-cells in the burn group
that failed to reach statistical significance (1.42-fold p ≈ 0.06)
(Figure 5B).

Several markers that were expressed by the clusters
highlighted by SAM analysis of the FlowSOM data were
investigated by geometric mean signal intensity on manually
gated subpopulations corresponding with those identified by
unsupervised analysis (Figures 5D–G). Interestingly, there was
a significant increase in mean expression of the chemokine
receptor CXCR4 on T-cells, B-cells, and mDCs in burn survivors
compared to controls (1.67-fold, p < 0.01; 1.81-fold, p < 0.01;
and 1.52-fold, p < 0.05, respectively). There was also a significant
0.73-fold decrease (p < 0.05) in the expression of CXCR3 on
B-cells and CCR7+ DN T-cells (33, 34) in burn survivors, and
a trend toward lower Tbet expression in B-cells and higher
HLA-DR expression by mDCs.

DISCUSSION

Burns patients have a lifelong increase in the likelihood of
developing a range of chronic inflammatory conditions (9–
14, 35). The possibility of immune disruption in acute burn
injuries, and more specifically severe burn trauma, has been
extensively investigated. It has been established that burn injury
shifts hematopoiesis to increased production of myeloid cells
in the acute response to severe injury (36, 37), and there is a
transient increase in circulating DC frequency after the sudden
drop seen soon after severe burns (38). In cases involving
sepsis, DCs fail to regain normal numbers in the circulation
in the weeks following injury. Severe burn injury has also
been found to abrogate proinflammatory DC responses and
to disrupt DC-mediated T-cell priming, increasing the risk of
infection for at least 5 days following injury (39). It is clear that
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FIGURE 3 | Concentrations of circulating cytokines and vaccine-specific IgG in plasma of burn survivors and controls. A multiplex cytokine assay was used to

measure the concentration of 13 cytokines, and IgG targeting six antigens from the diphtheria, tetanus acellular pertussis (DTPa) vaccine. (A) Mann-Whitney tests

used to compare burn survivors and controls (n = 36 age/sex-matched pairs) demonstrated four cytokines were elevated in burn survivors: interferon gamma, IL-2,

IL-7, and tumor necrosis factor alpha. (B) IgG concentrations specific for pertussis toxin, pertactin, and tetanus toxin were lower in burn survivors; (C) dotted lines

indicate thresholds of seropositivity (PT > 5 IU/mL, and long term seroprotection against tetanus and diphtheria (TT and DT IgG > 0.1IU/mL). (D) The rates of

seropositivity/seroprotection in the burns cohort (n = 35) for pertussis toxin, tetanus toxin and diphtheria toxoid, compared to controls (n = 27). Experiments were

performed in duplicate and the average used for analysis. **p < 0.01, *p < 0.05. GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; IFNg,

interferon gamma; TNFa, tumor necrosis factor alpha; PT, pertussis toxin; PRN, pertactin; FHA, filamentous hemagglutinin; FIM 2/3, fimbriae types 2/3; TT, tetanus

toxin; DT, diphtheria toxoid.
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FIGURE 4 | Clusters and cell lineages with disparate frequencies between burn survivors and controls determined by unsupervised clustering analysis. FlowSOM

clustering was undertaken on paired data from patients and matched controls. Data was pre-gated on CD3+ and CD19+ to analyse (A) T-cell subpopulations, (B)

(Continued)
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FIGURE 4 | B-cell subpopulations, and (C) CD3- CD19- subpopulations, respectively. Significance analysis of microarrays (SAM) was used to identify clusters with

disproportionate frequencies between patients and controls, which are shown here. The frequency of events in a cluster from each individual has been normalized

per-cluster (rows) and presented as a z-score. Positive and negative markers for identifying lineages were determined using median expression values of markers in

each cluster. Ordered by age of pairing. n = 20 age/sex-matched pairs. CD, cluster of differentiation; N, increased frequency in patients compared to controls; H,

decreased frequency in patients compared to controls.

FIGURE 5 | Frequencies of cell populations in pediatric burn patients vs. matched controls, and the expression of markers on several subsets. A binary gating

approach was used to manually identify leukocyte subpopulations in PBMCs stained for mass cytometry. Significant differences were identified using Wilcoxin

signed-rank test. (A) Populations analyzed a frequency of total PBMCs, including overall CD3+ (T-cells) and CD19+ (B-cells), NK cells, monocytes, and dendritic

cells. (B) T-cell subpopulations analyzed as a frequency of CD3+ cells. Significant increases were identified in the frequency of central memory CD4+ T-cells and

memory Tregs, and a trending increase was identified in the frequency of CCR7+ double-negative (CD4- CD8-) T-cells. (C) B-cell subpopulations analyzed as a

frequency of CD19+ CD20+ cells. Unsupervised analysis informed the investigation of signal intensity for (D) CXCR4 on T-cells, B-cells, and mDCs, (E) CXCR3 on

DN T-cells and B-cells, (F) Tbet on B-cells, and (G) HLA-DR on mDC subpopulations. CXCR4 expression was found to be increased across T-cells, B-cells, and

mDCs, while CXCR3 expression was decreased on CCR7+ DN T-cells and B-cells. A trending decrease in the expression of Tbet was identified in B-cells, and a

trending increase in the expression of HLA-DR **p < 0.01, *p < 0.05, #p < 0.1. CD, cluster of differentiation; mDC, myeloid dendritic cells; pDC, plasmacytoid

dendritic cells; CM, central memory; NK, natural killer; Th, T-helper; DN, double negative (CD4- CD8-), T-bet, T-box expressed in T-cells, CCR, C-C pattern chemokine

receptor, CXCR, C-X-C pattern chemokine receptor, IgD, immunoglobulin D. MSI, mean signal intensity. n = 20 age/sex-matched controls.

burn injuries, specifically severe burn injuries, result in acute
immune dysregulation. Current research has understandably
focused on improving survival for those worst impacted by burn
trauma. What remains unclear is whether these changes persist,

and to what extent they manifest in survivors of non-severe
burn injuries.

In this study we performed a comprehensive analysis of
immune parameters in children who had suffered a burn

Frontiers in Immunology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 1481143

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Johnson et al. Immune Changes After Burn Injury

to <10% of total body surface area at least 3 years prior,
compared to age- and sex-matched controls. We noted multiple
abnormalities in the patient cohort, including increased plasma
cytokines, decreased vaccine responses, and a number of changes
in immune cell populations and the expression of immune
molecules by those populations.

Circulating concentrations of TNF-α, IL-7, IL-2, and IFN-γ
were all elevated in the patient cohort. DTPa-specific antibodies
were lower resulting in diminished rates of seroprotection
to diphtheria and pertussis seropositivity amongst the burn
survivors. The frequency of memory T-cell subsets—central
memory CD4+ T-cells and memory Tregs—was higher for burn
survivors, and expression of CXCR4 across B-cells, T-cells, and
myeloid dendritic cells was increased. CXCR3 expression on B-
cells and a subset of double-negative T-cells was lower in patients
than controls. The increase in central memory CD4+ T-cells and
memory Tregs is consistent with the findings in a recent report
that used mass cytometry to investigate blood immune subsets
in complex regional pain syndrome, another condition in which
inflammation persists long after the original injury (40).

Elevated plasma levels of TNF-α are associated with
inflammation and are a risk factor for cardiovascular disease (41).
TNF-α is also implicated in the development of diabetes mellitus
and inflammatory polyarthropathies (42–44). A sustained
elevation of TNF-α suggests that burn survivors have a chronic
inflammatory condition. This would typically be driven by
macrophages, which have been shown to persist in scar tissue
many weeks after injury (45). However, TNF-α secreting M1
macrophages are generally replaced by M2 macrophages after
several weeks of healing (46, 47). An alternative source of TNF-α
(and IL-2 and IFN-γ) in the scar/skin microenvironment is tissue
resident memory T-cells (Trm) (48). It is unknown whether a
distinct population of Trm persists in burn scars or other parts of
the dermis, but they have previously been associated with chronic
inflammatory diseases and pose an interesting avenue for further
research (48).

IL-7 is produced by stromal cells in the bone marrow, thymus,
and lymph nodes, all hematopoietic tissues, and cells found in
the skin, including keratinocytes and fibroblasts (49, 50). IL-7 is
necessary for lymphoid proliferation and maturation, and acts
to maintain peripheral homeostasis of T-cells (51). Exposure to
IL-7 has been associated with increased expression of CXCR4
in mature T-cells, which may explain the significantly increased
expression of CXCR4 on T-cell subsets in burn survivors. IL-
7 is known to protect against apoptosis in T-cells via increased
expression of Bcl2 (52), which contributes to T-cell survival.
This may have an impact on the T-cell frequencies observed
in burn survivors, particularly (central) memory T-cells, as IL-
7 supports the transition from effector phenotypes to long-term
memory (53).

CXCR4 is involved in the regulation of hematopoiesis, bone
marrow homing, and sequestering progenitor cells in the bone
marrow (54).We did not identify any differences in the frequency
of circulating progenitor cells, and there was no significant
decrease in the frequency of any PBMC subset despite an increase
in CXCR4 expression across B-, T-, and myeloid cells. This study
did not consider changes to the bone marrow niche, which may

be disrupted by aberrant CXCR4 expression, or the expression of
the CXCR4 ligand CXCL12, which is constitutively expressed by
bone marrow stromal cells (55).

Dendritic cells have been shown to downregulate MHC-II
expression in response to IL-7 (56). However, our data show a
trend toward increased expression of HLA-DR in burn survivors
at 3 years post-injury. Decreased expression of MHC-II on DCs
has been reported in studies using mouse models of burn injury
(20) at 3 months post-injury; the duration of this reduction is
unknown, though the data presented here suggests it does not
persist for 3 years. Elevated IL-7 concentrations could potentially
be contributing to low seroprotection rates in burn survivors via
DCMHC-II downregulation at the time of vaccination, although
further studies will be required to confirm such a mechanism.

IFN-γ is secreted by CD4+ T-cells, CD8+ effector T-cells,
macrophages, and NK cells. Although there were no significant
differences in the frequencies of CD8+ T-cells or NK cells
between burn survivors and controls (macrophages were not
assessed in this study) there may have changes in cell phenotype.
Potentially there is a skew in CD8+ T cells or NK cells toward
cytokine secreting rather than cytotoxic cells that contributes to
the elevated levels of IFN-γ in burn survivors. The expression of
IFN-γ in response to stimulation was not assessed for this study,
but should be considered for future work, along with cytotoxicity
markers including Granzyme B and Perforin. The functional
responses of these cells ex vivo or after stimulations with antigen
may highlight changes in the burn survivor’s immune system.

Of note, IFN-γ is a regulator of DC maturation (57),
which is associated with the increased expression of CXCR4
on plasmacytoid DCs (58, 59), which are potent type I IFN
producers. Interestingly in this burn patient cohort we found
increased CXCR4 expression on the myeloid DC population.
In keeping with recent findings of increased viral infection and
cancer in burn patients (11, 14), studies indicate prolonged type
I IFN production is linked with immune cell dysfunction in
both viral infection and cancer (60). The implications for post-
burn pathophysiology are unclear—however increased CXCR4
expression by circulating DCs may reflect an overall increase
in DC maturation, particularly in secondary lymphoid tissues
where DCs drive T-cell responses through antigen presentation
and co-stimulatory activation.

IFN-γ has also been shown to directly upregulate the
expression of the immune checkpoint molecule PD-L1 that
contributes to immune tolerance (61, 62). It is likely that the
long-term increase in IFN-γ titres in burn survivors is associated
with an increase in expression of PD-1/PD-L1, similar to the
increase in PD-1/PD-L1 across B- and T-cells in patients with
sepsis or severe burn injury (63). Indeed, the multiorgan failure
that is a major cause of morbidity in sepsis, and is associated with
increased risk of infection and ineffective adaptive immunity,
may be due to aberrant expression of checkpoint molecules
leading to impaired immune responses, particularly in T-cells
(64). Similar increases in PD-1/PD-L1 have been observed
in patients undergoing surgery with systemic inflammatory
response syndrome (65).

T-bet expression in B-cells is associated with antigen
experience and IgG2a/c class-switching (66). Alternatively,
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CXCR3 expression in B-cells is associated with IgG1 co-
expression (67), and is involved in lymphoid follicular homing
and this may contribute to reduced antibody isotype switching
(33). We observed a decrease in CXCR3 expression on B-cells
in burn survivors, with a trend for decreased T-bet expression,
and this may contribute to the reducedDTPa IgG concentrations,
and decreased seroprotection/seropositivity rates. Alternatively,
an immunosuppressive environment may drive the difference
between T- and B-cell phenotypes in patients and controls: the
dominant function of IL-2 is to support the differentiation,
survival and function of regulatory T-cells (68). The increased
frequency of memory Tregs in burn survivors may reflect
increased availability of IL-2. Additionally, IL-2 inhibits the
development of T follicular helper cells which have a role in the
regulation of B-cell proliferation and class-switching (69, 70).
Immunosuppression and tolerance have an important role in
the pathogenesis and progression of cancer and infection (15,
71), and this may further contribute to the severity of post-
burn morbidities.

There are observed similarities with the changes observed
in this study and those observed with severe burn injury and
other severe pathologies such as sepsis. Multiorgan failure due to
pronounced systemic inflammation is a major cause of morbidity
in sepsis, however these patients are also observed to be at
increased risk of infection and demonstrate ineffective adaptive
immunity (64). Other studies of the impact of burn injury have
shown sustained elevated cytokine levels, with IL-1α, Il-7 and
IFN-γ all shown to be elevated for up to 1–2 months post-
injury in pediatric patients (final follow-up (5, 72). In the long-
term, widespread elevation of cytokines has been observed up
to 3 years post-severe burn injury in children (21), with only
IL-12p70 and MIP1β not showing sustained elevation. These
studies also demonstrate long-term clinical impacts of the burn
on metabolism and physical function, supporting a likely link of
this hyperinflammation to pathology.

Our study did not include PD-1 or PD-L1 in our marker
panel, so we cannot draw direct conclusions regarding long-
term immune checkpoint dysfunction in survivors of NSBI.
However, evidence exists that demonstrates a severe burn injury,
in conjunction with bacterial infection, can lead to increased PD-
L1 expression in amousemodel, with improved survival at 7 days
following anti-PD-L1 therapy (73). Therefore, further studies to
examine immune checkpoint in NSBI are warranted.

Our approach provides a broad snapshot of the immune
system in pediatric burn survivors. Whilst many of the changes
observed were subtle between the two groups, given the
epidemiological, patient and animal study evidence for sustained
impacts of burn injury (7–14, 20, 21), we believe it is likely
these subtle immune changes, magnified over time, contribute
to the increase in susceptibility to disease. However, there are
limitations to these findings. The scope of the studywas restricted
to the circulating components of the immune system and cannot
provide any insight into the constituents of different tissues.
Therefore, we cannot draw any conclusions regarding differences
between patients and controls that may exist in the bone marrow,
lymphoid organs, skin, and other tissues—e.g., it may be more
informative to investigate immune memory in the bone marrow
(74). The relatively small sample size is also a key limitation

of this study and further patient recruitment will be important
to validate findings from this cohort. Nevertheless, this study is
comparable to those of others that have also identified changes
in PBMC profiles associated with sustained pathology (40) and
provides new insight into the possible consequences of acute
burn injury and an important basis for further research. Most
importantly, whilst these experiments provide observations of
changes in these cell populations, functional assays will be critical
to understand the potential clinical consequences of the observed
disparity between groups.

In conclusion, this study provides evidence of an enduring
change to the circulating components of the immune system
in pediatric burn survivors at least 3 years after a non-severe
burn injury. Burn survivors appeared to have a more limited
response to the DTPa vaccine booster (administered at 4 years
of age), and significant changes to T-cell lineages, coupled with
disparate expression of surface proteins and transcription factors
in T-, B- and dendritic cells. This suggests an ongoing impact
of burn trauma on the immune system. These changes hint at
a mechanism that may drive the rates of post-burn infections
and other diseases controlled by the adaptive immune response.
Further work to unravel the link between this disparity and
the secondary morbidities observed in burn survivors will be
important to understanding the systemic impacts of burn trauma,
and the development of therapeutic pathways to reduce the
incidence of morbidity in children who recover from a burn.
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In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong

increase in serum IgM and IgG antibodies was observed, which reachedmaximum values

14 days following sepsis induction. The specificity of this antibody response was studied

in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as

well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed,

studies at the single-cell level revealed that IgM antibodies, in particular, were largely

polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs

derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs),

which are known targets of the innate/adaptive immune response. This identifies those

self-antigens as the main target of B cell responses in sepsis.

Keywords: CASP, polymicrobial sepsis, B cell response, polyreactive antibodies, oxidation-specific epitopes

INTRODUCTION

Sepsis, by definition, is a life-threatening organ dysfunction caused by a dysregulated host response
to infection (1, 2), which is associated with high morbidity and mortality (3, 4). Due to an aging
population, a steady increase in surgical interventions, and the occurrence of antibiotic resistance,
sepsis is still of high clinical relevance (4–6).

B cells have been ascribed a protective function in sepsis which encompasses
antibody-dependent as well as -independent mechanisms (7, 8). However, during sepsis, a
large number of B cells and other immune cells are lost by apoptosis (9, 10) and it is assumed
that B cell responses are severely impaired (11, 12). In fact, Mohr et al. have shown that B cell
priming with defined antigens is defective in sepsis (13). By contrast, we and other research
groups have shown that sepsis induces high concentrations of serum IgM and IgG antibodies
of unknown specificities (13, 14). Since these may be responsible for the observed antibody-
mediated protection, we set out to examine their antigen specificities in a mouse model of
abdominal sepsis.
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During sepsis, the organism is flooded with bacterial antigens
as well as self-antigens, which are released by dying host
cells. Moreover, there is an abundance of danger signals, both
pathogen- and damage-associated molecular patterns (PAMPs
and DAMPs, respectively) (15, 16). These may, on the one
hand, act as adjuvants in an antigen-driven B cell response
and, on the other, trigger a polyclonal B cell reaction (17–
19). In addition to these danger signals, inflammation and
cell death are accompanied by lipid peroxidation, resulting in
the generation of oxidation-specific epitopes (OSEs), which are
also recognized by pattern recognition receptors (PRR) of the
innate immune system exerting an adjuvant effect (20–22).
All of these factors could contribute to the B cell response
in sepsis.

During sepsis, antibody production is induced by T cell-
dependent (TD) as well as -independent (TI) mechanisms (14).
In a TD immune reaction, follicular B cells are activated via
the B cell receptor. With the help of activated T cells, they
differentiate and form germinal centers, where class switch to
all Ig (sub)classes and somatic hypermutation take place. At the
end of this process, affinity-matured plasma cells have developed
that continuously secrete antibodies (23). TI B cell responses
may be triggered in two ways: TI-2 antigens like polysaccharides
efficiently crosslink B cell receptors and initiate a strong and
long-lasting antigen-specific primary response (24). In contrast,
TI-1 antigens like lipopolysaccharide (LPS) and bacterial DNA
(CpG) activate B cells polyclonally, i.e., independent of the B
cell receptor, via TLR triggering (25–27). Predominantly B-1-
and marginal zone (MZ) B cells can rapidly respond to TI-1
antigens (28).

The main reservoir of B-1 cells are the pleural and peritoneal
cavities, but a small proportion can be found in all lymphoid
organs. Not only are B-1 cells prone to TI responses, but
they are also the main producers of natural antibodies (NAbs),
defined as antibodies that circulate in normal individuals in
the absence of exogenous antigenic stimulation (29). NAbs are
considered polyreactive, usually lack somatic hypermutation and
are said to use a restricted set of B cell receptor genes (30–32).
NAbs are hence at the interface between innate and adaptive
immune responses, and can bridge the time gap until the TD
response has matured. In terms of their antigen specificity, B-1
cells are selected for a certain strength of self-antigen binding.
Remarkably, ∼30% of B-1 cell-derived IgM binds to OSEs. B-1
cells are able to switch to all IgG subclasses in vitro, whereas in
vivo, they are producers of NAbs, mainly of the IgM, IgG3, and
IgA isotype [reviewed extensively in (32–34)].

MZ B cells are located close to the marginal sinus in the
spleen, where they have direct access to blood-borne antigens
(35). Although they have the capacity to generate TD and TI
responses, their main function is the TI response against blood-
borne pathogens (36, 37). Very early in the course of an infection,
they differentiate to IgM- or IgG-secreting cells (38). Both TD
as well as TI processes take place during sepsis, and all B
cell populations become activated (8, 14). We have therefore
tested sepsis-induced IgM- and IgG-binding to a broad panel
of bacterial as well as autoantigens. OSE were identified as the
dominant target of the B cell response.

MATERIALS AND METHODS

Animals and Ethics Statement
All experiments were performed on 8–12 weeks old female
C57BL/6 wild type (WT) mice. All animals were housed in a
conventional, temperature-controlled animal facility with a 12-
h light and dark cycle, and provided with food and water ad-
libitum. All experiments were approved by the animal ethics
committee of the local animal protection authority (LALLF, State
Office for Agriculture, Food Safety and Fisheries Mecklenburg-
Western Pomerania; numbers LALLF M-V/TSD/7221.3-1.1-
052/07 and LALLF M-V/TSD/7221.3-1.2-013/09). All efforts
were made to minimize the suffering of mice.

CASP Surgery
CASP surgery was performed as described before (39, 40).
Briefly, mice were anesthetized with Ketamin (Ketanest, Parke-
Davis GmbH, Berlin) and xylazin (Rompun, Bayer Health Care,
Leverkusen) intraperitoneally (100 mg/10mg per kg bodyweight,
respectively) and a 18G stent (Ohmeda AB, Helsingborg,
Sweden) was implanted into their colon ascendens. Mice were
monitored every 4 h until recovery.

Hybridoma Generation
Splenocytes from mice 10 or 14 days following CASP or
sham surgeries were prepared and fused with X63 AG8.653
myeloma cells using polyethylene glycol (Sigma-Aldrich),
following an extensive protocol for fusion and selection
as described elsewhere (http://www.umass.edu/vetimm/docs/
Wagner_Hybridoma.pdf). Briefly, 10 million X63-cells were
fused with 1–3 × 107 splenocytes, and the fusion products were
plated in several dilutions into 96-well cell culture plates. Ten
days later, plates were screened under a light microscope for
hybridoma growth. Only hybridomas from plates where<50% of
the wells showed cell growth were taken into account, since this
improves the probability of monoclonality to over 85% (41). In
addition, wells were observed under a light microscope to select
for single clone growth based on morphology.

Immunohistochemical Autoantibody
Screening on HEp-2-Cells
Screening of autoantibodies was performed as described before
(13). Briefly, serum samples, diluted 1:100 in PBS containing
20% FCS or undiluted hybridoma supernatants were incubated
on HEp-2-ANA slides (INOVA Diagnostics, San Diego, CA,
USA) overnight at 4◦C. Slides were washed with PBS, and
bound antibodies were detected either with polyclonal goat anti-
mouse IgG or IgM conjugated to FITC (10µg/mL, Southern
Biotech, Atlanta, GA, USA). Slides were then equally exposed,
and pictures were taken with a Zeiss Axio imager A.1
fluorescence microscope (Zeiss, Göttingen, Germany) equipped
with Spotadvanced software (Diagnostic Instruments, Sterling
Heights, MI, USA) using the same settings for all images.

ELISA
Antigens were prepared for ELISA as follows: (i) Bacterial
antigens: Bacteria (E. coli, E. faecalis, P. mirabilis, S. aureus
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8325-4 1spa) were grown overnight in tryptic soy broth (TSB)
medium as described previously (41). Cells were washed twice
in cold PBS (3,340 g for 15min at 4◦C) and diluted to
an optical density at 595 nm (OD595) of 1.0 in PBS before
being inactivated by irradiation with UV-light for 10min;
(ii) Self-antigens: Histone H2A (calf thymus, 2µg/mL) and
dsDNA (calf thymus, 10µg/mL), both obtained from Sigma-
Aldrich, were diluted in PBS, whereas murine IgG-Fc-fragments
(Dianova, 1µg/mL) were diluted in coating buffer (pH 9.6;
Candor Bioscience GmbH, Wangen, Germany); (iii) LPS (E.
coli O55:B5, Sigma Aldrich, 10µg/mL) and sepsis unrelated
antigens, including TNP (14)-bovine serum albumin (BSA,
Biosearch Technologies, 10µg/mL) and ovalbumin (OVA,
Sigma-Aldrich, 10µg/mL) were diluted in coating buffer to the
indicated concentrations; (iv) OSEs: phosphocholine-conjugated
BSA (PC-BSA) was obtained from Biosearch Technologies
Inc. Malondialdehyde-acetaldehyde-modified BSA (MAA-BSA)
was prepared as described elsewhere (42). Human native
LDL was isolated, and Cu2+-oxidized LDL (CuOx-LDL) and
Malondialdehyde-modified LDL (MDA-LDL) were prepared as
described previously (42).

96-well flat-bottom microplates (Nunc MaxiSorpTM) were
coated with the respective antigens overnight at 4◦C (bacterial
antigens, H2A: 100 µL per well), LPS, dsDNA, murine IgG-
Fc-fragments and sepsis unrelated antigens: 50 µl per well).
The plates were then washed three times with PBS containing
0.05% Tween20, and blocked with PBS containing 10% fetal
calf serum (150 µL/◦) for 1 h at room temperature (RT).
Murine sera (dilution range 1:100–1:2,500) or hybridoma
supernatants were added to the wells and incubated for 90min
at RT. After three washing steps, bound antibodies were
detected using F(ab)2-fragments of goat anti-mouse IgG or
IgM conjugated to POD (Dianova) as previously described
(43). Chemiluminescence was measured using a Tecan Sunrise
photometer (Tecan Group Ltd., Maennedorf, Switzerland), and
the data were expressed as relative light units (RLU) per
100 ms.

RNA Isolation From Hybridoma Cells and
Complementary DNA Generation
Total RNA was isolated from about 1 × 105 hybridoma cells
using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany)
according to manufacturer’s instructions. The isolation steps
included a DNase-digestion step to eliminate genomic DNA.
The quantity of RNA was determined by using the DS-11 Series
Spectrophotometer (DeNovix Inc., DE, USA). One microgram
of RNA was transcribed to cDNA using oligo DT Primers of
the RevertAidTM First Strand cDNA Synthesis Kit (Fermentas)
as per the manufacturer’s instructions. For the amplification
of VH-domain sequences of the immunoglobulins, cDNA was
amplified by multiplex PCR using msVHE as universal forward
primer and a mixture of the Ig-specific reverse primers (Table 1).
The reaction was performed in a total volume of 25 µL using
2 µL of cDNA, 0.2 µL of GoTaq-polymerase (Promega), 2.5
µL of dNTP (1mM, Roche Diagnostics), 5 µL MgCl2 (25mM,

TABLE 1 | Primers used for VH-gene sequence amplification.

Primer

designation

Primer sequence References

Forward Primer:

msVHE 5′-GGGAATTCGAGGTGCAGCTGCAGGAGTCTGG-3′ (44)

Ig-Subclass-Specific Reverse Primers:

IgG1 5′-GATCCAGGGGCCAGTGGATAG-3′

IgG2b 5′-CACCCAGGGGCCAGTGGATAG-3′

IgG2c inner 5′-GCTCAGGGAAATAACCCTTGAC-3′ (45)

IgG3 inner 5′-GCTCAGGGAAGTAGCCTTTGAC-3′ (46)

IgM 5′-GGCTCTCGCAGGAGACGAGG-3′

Promega). Primers were used at a final concentration of 200 nM
each, and the PCR was performed for 35 cycles at 95◦C 30 s,
65◦C 30 s, 72◦C 45 s and a final elongation step at 72◦C for
10min. PCR products were analyzed on 1.5% agarose gels, and
the DNA bands of around 400 bp size were cut under UV
light for extraction of DNA using the Nucleo-Spin R© Extract II
kit (Machery-Nagel).

Cloning and Transformation of Target DNA
The extracted DNA-fragments were cloned into the pCR R© 2.1-
TOPO R© TA vector using the TOPO R© TA Cloning R© Kit (Life
Technologies, Thermo Fisher Scientific, Carlsbad, CA, USA).
All steps were done according to manufacturer’s instructions.
Products were transfected into chemically competent E. coli
by the heat-shock method. Transformed E. coli were cultivated
on LB agar plates containing 50µg/mL of each IPTG, x-
Gal and Ampicillin, and incubated at 37◦C for 12 h. At least
three single white colonies were picked and seeded further
into single wells of a 96-well plate containing LB agar with
50 µg/mL Ampicillin.

VH-N-DH-N-JH Fragment Sequencing and
Analysis
Plasmid isolation and sequencing of the single colonies
was performed by GATC Biotech AG, Konstanz, Germany,
using the vector-specific M13 forward primer. The resulting
sequences were further verified using IMGT/V-Quest
database, (https://www.imgt.org/IMGT_vquest/vquest?livret=0&
Option=mouseIg).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
6 (GraphPad software, San Diego, CA, USA). Data were
assessed for significant differences using One-Way ANOVA with
Bonferroni post test for selected pairs, or using the unpaired
Student t-test, whenever appropriate. P < 0.05 were considered
to be significant.
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RESULTS

A Strong Induction of Total Serum IgG
During Sepsis Was Not Due to an
Antibacterial IgG Response
We and others have shown that sepsis induced a marked increase
in serum IgM levels followed by an even stronger IgG response
(11, 13). As we have previously shown, most ASCs reside in the
spleen, and the class switch to IgG results from both TI and TD
processes (14). Since the antigen-specific T cell response is still
fully functional at the onset of sepsis (47), we assumed that the
class switched IgG response was mainly directed at the invasive
bacteria. To test this hypothesis, we induced sepsis in WT mice
using the CASP sepsis model. First, systemically disseminated
bacteria were identified by plating sera of septic mice onto
agar plates followed by microbiological identification of growing
colonies. Enterococcus faecalis (E. faecalis) and Escherichia coli
(E. coli), two microbial species of the intestinal flora, were
regularly found in the blood of septic mice. Antibody binding
to these bacteria as well as to Staphylococcus aureus (S. aureus),
which is often observed in the murine intestine, was then
measured by ELISA. UV-inactivated washed bacterial cells served
as antigens. To avoid non-specific IgG binding to S. aureus,
the protein A-deficient mutant strain 8425-1spa was used.
Additionally, LPS of E. coli was included. As shown in Figure 1,
sepsis induced a significant increase in IgM-binding to whole
bacteria as well as LPS. In contrast, there was no significant anti-
bacterial or anti-LPS IgG response in the majority of animals.
The absence of an anti-bacterial IgG response in sepsis was
in striking contrast to immunization with inactivated bacteria
(without adjuvant), where ímmunized animals did not develop
disease symptoms, but elaborated high specific antibacterial IgG
titres (Supplementary Figure 1). Thus, the very strong serum
IgG increase in sepsis was not due to an anti-IgG response to the
bacteria tested, namely S. aureus, E. coli and E. faecalis.

Sepsis-Induced Serum Antibodies Are
Directed Against Self-Antigens
In sepsis, the strong general IgG response with only a modest
reaction to bacterial antigens could be caused by polyclonal
activation of B-cells due to the release of large amounts of
PAMPs and DAMPs. We reasoned that autoreactive Ig should be
increased in this case, because the normal B-cell pool contains
numerous self-specificities (48–50). Moreover, the PAMPs and
DAMPs could also act as adjuvants in a TD immune response
to self-antigens that are released from damaged cells and tissues.
Therefore, we tested the sera of septic and control mice for Ig-
binding to eukaryotic cellular structures using HEp-2 cells as
antigens and FITC-labeled anti-mouse-IgM or IgG antibodies
for detection of binding. As shown in Figure 2, the sera of
septic mice (data from two representative septic animals are
depicted) showed an increase in autoreactive IgM and IgG
response, as compared to untreated animals (left panel), 14 days
after sepsis induction. The fluorescence patterns observed were
mostly diverse, where often more than one cellular structure was
stained (Figure 2, arrows). The binding patterns differed between

individual septic mice from the same cage. Hence, sepsis, which
was probably caused by very similar gut microbiota, induced
autoantibodies of different specificities. Remarkably, a similar
autoreactive response was observed in the sera of splenectomized
animals upon sepsis induction (Supplementary Figure 2).

Sepsis Increased Serum Antibodies
Directed Against Sepsis-Unrelated
Antigens
An immune response which is largely polyclonal rather than
antigen-driven would be expected to show increased antibody
binding to antigens unrelated to sepsis. Hence, besides anti-
bacterial and self-binding antibodies, we screened for the
presence of antibodies binding to such sepsis-unrelated antigens.
At first, we investigated the binding of serum antibodies
to two antigens the animals had never been exposed to,
namely the classical TD protein antigen ovalbumin (OVA)
and the hapten 2,4,6-trinitrophenyl (TNP) conjugated to
bovine serum albumin (TNP-(14)-BSA). Regarding OVA, only
IgM binding increased significantly during sepsis (data not
shown), whereas IgM- as well as IgG-binding to TNP-(14)-BSA
were both very strongly enhanced (Supplementary Figure 3).
Together, these results clearly support the concept of a
polyclonal B cell response, which may be dominated by
NAb specificities.

Sepsis Induced High Titer IgM and IgG
Antibodies Directed Against
Oxidation-Specific Epitopes (OSEs)
Since sepsis induced a robust autoreactive-antibody response,
we questioned whether these antibodies would be able to bind
to OSEs, which are present at high density on apoptotic cells,
whose numbers are known to increase during sepsis. OSEs
generated during sepsis act as an endogenous DAMPs, and
initiate an innate immune response. It has been shown that a
large proportion of NAbs, especially those produced by B-1 cells,
bind to OSEs (20, 42). Therefore, we tested sera of septic and
untreated animals at day 10 and 14 for OSE-specific antibodies
by chemiluminescent ELISA. Sepsis elicited a very strong IgM
and IgG response to known OSEs in all tested animals (Figure 3
and Supplementary Figure 4), while there were very low levels
of OSE-specific antibodies or none at all in untreated animals.
Hence, at day 14 post sepsis, the IgM response to both modified
LDL and BSA was significantly higher in septic mice than in the
control group, where specific IgMwas low or even under the limit
of detection (Figure 3). On the same day, the IgG/IgM response
to MAA-BSA was 4-fold higher than in the untreated group. The
IgM response to CuOx-LDL showed a trend toward increased
levels, while IgG levels were significantly higher compared
to untreated animals (Supplementary Figure 4). Since under
other conditions, such as hypercholesterolemia, IgM antibodies
dominate the immune response to OSEs (51), the pronounced
specific class-switched response in sepsis is remarkable.
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FIGURE 1 | Binding of sera IgM/IgG to bacteria and LPS. The binding of murine serum antibodies, IgM (A-D) or IgG (E-H), to indicated bacteria; E. coli (A,C),

E. faecalis (B,F), S. aureus (C,G), and LPS (D,H) was tested by ELISA. Fourteen days after sepsis induction, blood was collected, and sera were diluted 1:100 in

blocking buffer. Sera from non-septic animals were used as controls. Control mice were untreated (•), whereas the treated mice were anesthetized only (N), or

additionally received a laparotomy ( ), or sham surgery (△). Mice that underwent CASP surgery are indicated by a black diamond (�). Mean values of OD 450 nm are

shown. Each symbol represents one animal (N = 5–18). Statistical analysis was done by One-way ANOVA with the Bonferroni post test for selected pairs. *p < 0.05,

**p < 0.01, ***p < 0.001.
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FIGURE 2 | Serum antibodies directed against self-antigens 14 days after sepsis induction. Sepsis was induced in C57BL/6 mice by 18G CASP. Control mice

remained untreated. Fourteen days later blood was taken, and sera diluted 1:100 in 20% FCS/PBS were incubated on HEp-2-ANA slides. Bound antibodies were

detected by FITC-labeled anti-mouse IgM or IgG antibodies. Out of the tested serum antibodies, 12/13 IgM and 12/13 IgG antibodies were autoreactive. Shown are

representative pictures of septic and control mice. N = 8 per group. Serum IgM and IgG binding patterns varied greatly. In most cases more than one cellular structure

is stained, albeit at variable intensities.

Studies at the Single Cell Level Revealed a
High Proportion of Autoreactive IgM
Antibodies
To study the sepsis-induced antibodies at a single-cell level,
monoclonal antibodies (mAbs) were generated. Since we
discovered the spleen as the main source of antibody secreting
cells (ASCs) in sepsis (14), splenocytes from eight septic mice
were obtained on day 10 after sepsis induction and fused. Three
quarters (74.3%) of the hybridomas from septic mice produced
IgM (Table 2). However, sepsis induced a much stronger increase
in serum IgG than IgM, which peaked at day 14 (14). Assuming
that the class switch to IgG may not have been completed on
day 10 after sepsis induction, additional fusions were performed
using splenocytes from six septic mice on day 14. However,
choosing this later time point did not change the proportion
of IgM- to IgG-producing cells, where 82% of the resulting
hybridomas secreted IgM (Table 2). Several attempts to produce
hybridomas from non-septic control mice failed, presumably
due to the lack of activated B cells and plasmablasts in the
spleen, which is a limitation of this study (data not shown).
Determination of the mAb specificities confirmed and extended
the observations made with serum antibodies, namely that sepsis
induces autoreactive antibodies, predominantly IgM.

The total of 386 hybridoma supernatants derived from the
14 above mentioned septic mice and containing either IgM or
IgG mAbs were screened for autoreactivity. A large proportion

of IgM mAbs (31% to 40%) reacted with specific structures
of the HEp-2 cells (Table 2). HEp-2-binding IgM mAbs were
found in every animal, regardless of whether the spleen cells
were obtained 10 or 14 days after sepsis. In contrast, only
three out of 93 IgG mAbs showed detectable HEp-2-binding,
when using undiluted hybridoma culture supernatants. These
auto-reactive IgG hybridomas were obtained from three mice.
Figure 4 illustrates the variability of the binding patterns of the
mAbs derived from splenic B cells of septic mice 10 or 14 days
after CASP induction, which bind several cellular self-antigens.
FITC-labeled anti-mouse IgG or IgM antibodies were used to
determine the binding of those mAbs and clearly showed that,
similar to our previous experiment at the serum level, the binding
patterns of the individual antibodies were highly variable.

Most IgM Antibodies Are Polyreactive
Since we observed high titres of autoantibodies in sera of septic
mice at day 10 or 14 (Figure 2), we wondered whether this also
applies to the mAbs present in the hybridoma supernatants of six
septic mice (generated from splenocytes at day 10 of sepsis).

We tested the hybridoma supernatants for mAb-binding to
a broad panel of antigens, including bacterial and self-antigens,
as well as two antigens that the animals had never been exposed
to, namely TNP and OVA. Binding was observed with 27 out of
120 IgM-supernatants (22.5%) (Table 3) but with none of the 40
tested IgG supernatants (data not shown). The majority of the
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FIGURE 3 | Serum IgM and IgG binding to model oxidation-specific epitopes. C57BL/6 mice were subjected to CASP surgery, while control animals remained

untreated. Ten and 14 days after sepsis induction, blood was drawn to determine serum IgM and IgG binding to malondialdehyde-modified LDL [MDA-LDL; (A)] and

phosphocholine-conjugated BSA [PC-BSA; (B)], using chemiluminescent ELISA. Serum dilutions used are indicated in brackets. Statistical analysis was performed

using the unpaired t-test. N = 3–9 per group. *p < 0.05, **p < 0.01, ***p < 0.001.
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binding IgM mAbs (85%) were polyreactive, recognizing at least
two antigens in the test panel used.

In Septic Mice, a Large Proportion of
mAbs, Both IgM and IgG, Binds to
Oxidation Specific Epitopes
Eighteen IgM mAbs that showed reactivity to the antigen panel
in Table 3, as well as all available IgG mAbs (N = 20) of so far

TABLE 2 | HEp-2-positive IgM- or IgG-secreting hybridomas.

HEp-2-positive hybridoma supernatants

IgM IgG

N/total % N/total %

CASP d10 91/225 40 3/78 4

CASP d14 21/68 31 0/15 0

The table shows the numbers of IgM or IgG hybridoma supernatants binding to

cellular structures of HEp-2 cells, respective to the total numbers of tested hybridomas.

Splenocytes were obtained on day 10 (eight animals, eight fusions) or 14 (six animals,

seven fusions) after sepsis induction.

unknown specificity, were tested for binding to OSEs. Thirteen
(72%) IgM and 5 (25%) IgG mAbs showed binding to one or
several OSEs in ELISA (Table 4). Examples of IgG mAb titration
curves are shown in the Supplementary Figure 5. The five OSE-
specific IgG hybridomas were derived from four different mice.
Remarkably, with the exception of IgG3, the OSE-specific mAbs
encompassed all IgG subclasses. These findings underline that
OSEs are prominent targets of the humoral immune response
in sepsis.

Most Sepsis-Induced IgG mAbs Carried
Few Somatic Mutations
Many class switched antibody responses are TD and are
characterized by somatic hypermutation. Therefore, the IgG
mAbs were tested for somatic hypermutation by sequencing
the variable domains of the IgG heavy chains. IgG mAbs
at day 10 or 14 after sepsis mostly showed no significant
differences in mutations (Supplementary Figure 6A). Most
sequences were near germline, similar to 12 IgG monoclonal
antibodies obtained from an untreated animal, which all
had <4 mutations/100 nucleotides (Supplementary Figure 6A).
However, four out of the 34 IgG mAbs derived from septic
animals had five or more mutations per 100 nucleotides,

FIGURE 4 | Monoclonal antibodies derived from splenic B cells of septic mice bind several cellular self-antigens. Ten or 14 days after CASP induction, splenocytes

were isolated and fused with myeloma cells to obtain hybridomas. Supernatants of monoclonal IgM- or IgG-producing hybridomas were incubated on HEp-2-ANA

slides to detect auto-reactivity. Bound IgG or IgM was detected by FITC-labeled anti-mouse IgG or IgM antibodies. Three examples, respectively, of autoreactive

monoclonal IgM- and IgG-antibodies are shown. The binding patterns of the various antibodies showed obvious differences, where in most cases more than one

cellular structure was stained, albeit at varying intensities (indicated by arrows). For quantified data, regarding the numbers/percent of IgM or IgG hybridoma

supernatants from septic mice directed against self-antigens, please refer to Table 2.
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TABLE 3 | Antigen-binding patterns of positively-tested IgM hybridomas.

Positive clones Bacterial antigens Foreign antigens Self antigens

E. coli P. mirabilis S. aureus LPS (E. coli) TNP-BSA OVA ds DNA histone HIIA IgG-Fc HEp-2-Test

1 F4_03 + + /

2 F4_04 + +

3 F4_05 + + + + + +

4 F4_09 + + +

5 F4_16 + + + + +

6 F4_23 + + + + + + + + + +

7 F4_38 + + + +

8 F4_46 + +

9 F4_55 + /

10 F5_10 + +

11 F5_11 + + + +

12 F5_17 + + +

13 F6_20 +

14 F7_07 + +

15 F7_30 + +

16 F7_32 + +

17 F7_33 + +

18 F7_36 + +

19 F7_39 +

20 F8_14 + + +

21 F9_09 + + +

22 F9_10 + + + +

23 F9_12 + + + /

24 F9_24 + + + +

25 F9_29 + +

26 F9_33 +

27 F9_38 + + + + +

Overview of the antigen binding patterns of 27 binding (out of a total of 120 tested) IgM hybridoma-supernatants. The hybridomas were generated from splenocytes of septic mice at

day 10 and tested for binding to a panel of bacterial, sepsis-unrelated (foreign) as well as self-antigens by ELISA. Binding to HEp-2 cells was tested by fluorescence microscopy. (+,

binding; /, not tested). The corresponding OD (450 nm) values are shown in Supplementary Table 1.

indicative of somatic hypermutation. As such mAbs were
present already at day 10, they were probably derived from
memory B cells (52). OSE-specific and –non-specific IgG mAbs
showed similar proportions of highly mutated IgG (Figure 5).
Thus, most of the IgG antibodies generated during sepsis used
near-germline gene sequences. Regarding the CDR3 length,
the number of amino acid exchanges per V-region as well
as the proportion of non-silent mutations, there were no
significant differences between septic and non-septic animals
(Supplementary Figures 6, 7).

DISCUSSION

Our data clearly show that OSEs are the main targets of the
strong humoral immune response observed in sepsis. While Ig
binding patterns to other self-epitopes were individual, OSE-
specific binding was observed in all tested animals.

The sepsis-induced suppression of the adaptive immune
system is well-documented (10, 13, 53). Nevertheless, we and
others observed a strong increase in serum IgM and IgG
concentrations following sepsis (13, 14). Interestingly, the peak of
the IgG serum concentration exceeded that of IgM by a factor of
four, and an Ig switching to all IgG subclasses was seen. However,
at the single cell level, there were three times as many IgM
hybridomas as those producing IgG. Although one could argue
that fusion was performed too soon, we found essentially the
same proportions on day 14 as on day 10, which rules out time
as the causal factor. Although the numbers of hybridomas are
in general too low to make a definitive conclusion, a plausible
explanation for this observation may be found in the half-lives
of IgM vs. IgG antibodies. IgM has a markedly shorter serum
half-life than IgG, and the half-life of polyreactive IgM is further
reduced by Ag-binding, leading to a relative accumulation of
IgG (54, 55).
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TABLE 4 | Binding pattern of CASP d10 monoclonal IgG and IgM to

oxidation-specific epitopes.

Clone Ig-class Binding specificity

Oxidation-specific epitopes (OSE) Human native LDL

MAA-BSA MDA-/CuOx-LDL PC-BSA

F4_32 IgG1 × × ND -

F6_13 IgG2b × × - -

F8_07 IgG2c × × × ×

F9_3_H7 IgG1 × × ND -

F9_25 IgG2c × × - -

F4_38 IgM × × - -

F5_10 IgM × × × -

F7_07 IgM × × - -

F9_24 IgM × × - -

F9_38 IgM × × × -

F4_04 IgM × × - -

F4_16 IgM × × - -

F4_46 IgM × - - -

F7_32 IgM × × - -

F9_09 IgM × - - -

F9_29 IgM × × - -

F8_14 IgM × × × ×

F9_10 IgM × × × ×

F7_33 IgM - - - ×

F4_09 IgM - - - -

F7_36 IgM - - - -

F7_39 IgM - - - -

F9_12 IgM - - - -

The hybridomas were generated from splenocytes of septic mice at day 10. Twenty IgG

hybridoma-supernatants (diluted to 0.25µg/mL) and 18 IgM hybridoma-supernatants

(diluted to 0.125µg/mL) were tested for binding to model oxidation-specific epitopes.

Human native LDL served as control. Binding specificities of five positively-tested IgG, as

well as all IgM clones, are shown. ×, binding; -, no binding; MAA-BSA, malondialdehyde-

acetaldehyde-modified bovine serum albumin (BSA); MDA/CuOx-LDL, malondialdehyde-

modifed (MDA)/Cu2+-oxidized (CuOx)-LDL; PC-BSA, phosphorylcholine conjugated to

BSA; ND, not determined.

Since sepsis induces dissemination of endogenous bacteria
into the bloodstream (11), a specific antibacterial IgG response
would have been expected. However, there was very little serum
IgG binding to bacteria in post-septic mice. Since we focussed
our investigation on culturable bacteria in the sera of septic
mice, it is possible that bacterial species other than the ones
examined here were the culprits, since ELISA was performed
only for E. coli, S. aureus, and E. faecalis. However, E. coli
and E. faecalis originate from the serum of a septic animal. In
fact, the bacterial strains used for testing are definitely present
in large numbers in the intestine. When animals were injected
i.p. with dead bacteria (E. coli, S. aureus, and E. faecalis)
without sepsis, they were perfectly able to elaborate a specific
IgG response. Depending on the bacterial species, we could
show that 107-109 UV-inactivated bacteria trigger a robust
specific IgG response (Supplementary Figure 1). Hence, we
assume that sepsis interferes with an antibacterial antibody

FIGURE 5 | Number of mutations in Vh-genes of monoclonal IgG. CASP

surgery was performed on C57BL/6 mice. Hybridomas were generated by

fusing splenocytes from 10- days-septic mice. The resultant monoclonal IgG

hybridomas were sequenced for Vh-genes. Mutations of monoclonal IgG that

showed binding to OSEs (OSE pos.) were compared to IgG that showed no

binding (OSE neg.). Statistical analysis was performed using the unpaired

t-test. N = 5–14 per group. nt, nucleotides; ns, not significant.

response. Interestingly enough, we rather observed Ig binding to
autoantigens, as well as antigens, to which the animals had never
been exposed. The production of natural autoantibodies against
a spectrum of autoantigens has been described in sepsis patients
(56–58). Using a relatively small panel of autoantigens, Burbelo
et al. detected autoantibodies in 46% of severe sepsis patients,
suggesting that this is a relatively common phenomenon (58).
However, the production of autoantibodies is not confined to
sepsis, but appears to be a general phenomenon observed with
other types of bacterial, viral, and protozoan infections (18, 59–
61), in addition to autoimmune disorders. In their recent study,
Sakakibara et al. observed that the immune response to murine
γ-herpesvirus 68 is accompanied by autoantibody production
from polyreactive B cells in the germinal center, whose self-
reactivity is generated through somatic hypermutation (61).
More interestingly, several reports suggest a role of polyclonal
activation in triggering anti-self responses, and hence leading to
autoimmune disorders as a consequence of infections (18, 62).
For instance, a direct link between infection and autoimmune
encephalitis has been experimentally demonstrated in mice, and
has been attributed to the production of autoantibodies (62).

It has been demonstrated that sepsis induces massive
apoptosis of B and T lymphocytes, as well as DCs in mice and
humans, and the release of danger molecules, known as PAMPs
and DAMPs (8, 9, 63–67). We confirmed this in our model by
TUNEL staining (terminal deoxynucleotidyl transferase dUTP
nick end labeling) of the spleens for apoptotic nuclei (data not
shown). The observed autoantigen response in sepsis could be
explained by a polyclonal B cell activation through PAMPs and
DAMPs, which activate B cells independent of the BCR, leading
to the production of the so-called NAbs, which are polyreactive
(68). To test whether polyreactive (natural) Abs or monoreactive
Ig from a large variety of B cells dominate the humoral immune
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response after sepsis, an analysis at the single cell level was
conducted. It revealed that a large proportion of IgM-producing
cells were polyreactive, as one would have expected based on the
results obtained with serum.

Our results identify OSEs as the dominant target of the B
cell response in murine polymicrobial sepsis: First, all post-
septic animals had OSE-binding IgM and IgG, whereas antibody
binding patterns to other tested autoantigens differed between
individuals, even from the same cage. Second, anti-OSE titres
were much higher than those of other tested bacterial or
self-antigens. Finally, OSE-specific B cells were very frequent.
Thirteen out of 18 tested IgM mAbs bound to OSEs even at
low concentrations. Since 19% (23/120) of the IgM mAbs were
polyreactive, at least 14% of IgM-producing B cells were OSE-
specific. This frequency is somewhat similar to that of IgG mAbs,
of which 25% were OSE-reactive.

Several points argue for a B-1 cell-driven immune response
in the case of IgM. B-1 cells reside in the peritoneum and
upon activation migrate to the spleen as well as other lymphatic
organs, where they differentiate into ASCs (69, 70). These are
the main producers of NAbs, which are polyreactive and utilize
germline-near sequences (68). Chou et al. have shown that 20–
30% of B-1 cell-derived IgM targets model-OSEs (42). This
reflects the frequencies we find in monoclonal IgM and IgG.
Moreover, Chang et al. have demonstrated that immunization of
mice with apoptotic cells, which are abundant in sepsis, induces
OSE-binding IgM (70).

In contrast, it is rather unlikely that the IgG response to
OSEs is also dominated by B-1 cells. In B-1 cells, only a switch
to IgG3 has been shown in vivo (31, 71). However, none of
the five OSE-specific IgG mAbs were IgG3, whereas all other
IgG subclasses were represented. Hence, a TD response of
follicular B cells appears more likely. Chang et al. were able to
induce OSE-binding IgG in mice by immunizing with model-
OSE and apoptotic cells simultaneously (70). Moreover, Grasset
et al. showed that some follicular B cells can bind fluorescently-
labeled oxidized LDL. Repeated immunization with apoptotic
cells induced OSE-binding IgG (72).

We suggest the following model: In sepsis, numerous immune
cells undergo apoptosis. PAMPs and DAMPs polyclonally
activate peritoneal B-1 cells to migrate to the spleen and
differentiate into ASCs. These produce NAbs, explaining the
increase in serum IgM targeting OSEs as well as other
autoantigens. NAbs, including OSE-targeting IgM antibodies,
may act as scavengers, promoting the clearance of apoptotic
cells and debris, which would be relevant in sepsis (22, 42). In
this study, however, we observed that OSE-specific antibodies
had switched to IgG as well, presumably in a TD response. It
may be speculated that the dominant response to OSEs restricts

a specific antibody response to the sepsis-causing bacteria,
which the organism would mount in the absence of apoptosis.
Besides this, massive apoptosis has been shown to be tolerogenic,
which explains the well-known fact that sepsis does not induce
strong protective immune memory (11). The pathophysiological
function of OSEs and OSE-specific IgM and IgG in sepsis
should now be investigated, to determine whether OSE-specific
antibodies could have therapeutic potential.
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Endotoxin tolerance represents a safeguard mechanism for preventing detrimental

prolonged inflammation and exaggerated immune/inflammatory responses from innate

immune cells to recurrent harmless pathogens. On the other hand, excessive immune

tolerance can contribute to pathological immunosuppression, e.g., as present in sepsis.

Monocyte activation is accompanied by intracellular metabolic rearrangements that are

reportedly orchestrated by the metabolic signaling node mTORC1. mTORC1-dependent

metabolic re-wiring plays a major role in monocyte/macrophage polarization, but whether

mTORC1 participates in the induction of endotoxin tolerance and other immune adaptive

programs, such as immune training, is not clear. This connection has been difficult to test

in the past due to the lack of appropriate models of human endotoxin tolerance allowing

for the genetic manipulation of mTORC1. We have addressed this shortcoming by

investigating monocytes from tuberous sclerosis (TSC) patients that feature a functional

loss of the tumor suppressor TSC1/2 and a concomitant hyperactivation of mTORC1.

Subjecting these cells to various protocols of immune priming and adaptation showed

that the TSC monocytes are not compromised in the induction of tolerance. Analogously,

we find that pharmacological mTORC1 inhibition does not prevent endotoxin tolerance

induction in human monocytes. Interestingly, neither manipulation affected the capacity

of activated monocytes to switch to increased lactic fermentation. In sum, our findings

document that mTORC1 is unlikely to be involved in the induction of endotoxin tolerance

in human monocytes and argue against a causal link between an mTORC1-dependent

metabolic switch and the induction of immune tolerance.

Keywords: mTORC1, endotoxin tolerance, monocytes, macrophage, sepsis, immune suppression

INTRODUCTION

Innate immune cells of the myeloblastic lineage constitute the first line of defense against infection
and tissue breakdown in trauma. Upon identifying, spotting, tracking, or engulfing pathogens,
pathogen-associated molecular patterns (PAMPs), or damage-associated molecular patterns, the
myeloblastic cells elicit a cascade of inflammatory and immune responses mediated by the release
of cytokine cocktails and eventually the direct presentation of antigen to lymphocytes. Due to their
unique ability to recognize and rank infectious or traumatic triggers, the innate immune cells
dictate the quality and the intensity of the host response and hence the course of an infection
episode. Owing to this primordial role at the vanguard of the host response, the innate immune
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cells possess intricate mechanisms for fine-tuning their immune
responses according to the risk and the severity of any particular
infection. One level of control is provided by the limited
lifespan of monocytes or neutrophils (as new immunocytes
continuously emerge from the bone marrow), which precludes
the pernicious accumulation of hyper-reactive or aberrant
immune cells. Additional fine-tuning proceeds at the molecular
level as the innate immune cells are able to adapt dynamically
to a particular infection and trauma scenarios and re-shape
their response accordingly. For example, in a process known
as immune training, the activated monocytes re-configure their
response toward ensuing inflammatory cues in the long term via
PAMP-induced changes in the epigenome (1, 2).

Another important process that can shape the amplitude and
the quality of monocyte responses is endotoxin tolerance (ET)
(3). ET represents a well-established state of hyporesponsiveness
characterized by a skewed, largely anti-inflammatory response,
which is intended to prevent exaggerated immune/inflammatory
responses to recurrent and innocuous antigens. Several models
have been put forward to explain tolerance induction in
monocytes, but the precise molecular mechanisms remain
elusive (3, 4). Besides the intellectual challenge of deciphering
the molecular processes that mediate ET in the monocyte,
understanding the tolerance mechanisms is relevant also from
a clinical perspective because untimely or unleashed tolerance
contributes to states of immunosuppression in lethal conditions
such as sepsis (5, 6).

Most models of endotoxin tolerance invoke molecular
rearrangements downstream of TLR4 or other pattern
recognition receptors (PRR) in the tolerant immune cell
(4, 7). Thus, up-regulation/activation of the downstream kinase
IRAK-M has been shown to block TLR4 signaling at the
level of Myd88-containing complex (Myddosome) formation,
promoting a state of tolerance toward lipopolysaccharide (LPS)
(8, 9). Another focus has been placed on the characterization
of feedback mechanisms that attenuate signaling by PRRs
in tolerized cells. Many of those feedback models invoke
autocrine loops, including the secretion of anti-inflammatory
cytokines such as IL-10 or TGFß that can, moreover, contribute
to a generalized environment of immune suppression by
impinging on other immune cells such as lymphocytes (10, 11).
Indeed the endotoxin tolerance of circulating monocytes from
sepsis patients correlates with high levels of IL-10 and other
anti-inflammatory cytokines and is characterized by high
intramonocytic levels of IRAK-M protein (8). Despite these
advances in our understanding of endotoxin tolerance, however,
a unifying model of tolerance induction is still lacking as several
important features of ET in monocytes remain unaccounted for.

One such poorly understood aspect that has raised much
interest is with regards the immunocyte’s metabolism and
the potential role of metabolic re-wiring processes in the
course of ET induction. Recently, a metabolic switch toward
anaerobic glycolysis, analogous to the Warburg effect originally
described for cancer cells, has been put forward as a crucial
step for immune training of monocytes (12, 13). Indeed as
documented in multiple reports dating back to the 1960s,
monocytes experience a pronounced Warburg-like metabolic

switch upon immune activation, leading to more aerobic
glucose fermentation and lactate production with a concomitant
drop in cellular respiration (14, 15). It is generally assumed
that these metabolic rearrangements serve the purpose of
optimizing energy production and expenditure, arming and
preparing the monocyte to combat the infectious threat in
the inflamed tissue. However, whether or not Warburg-like
metabolic rearrangements are an integral component of immune
adaptive programs leading to ET or immune training is
not clear.

The metabolic switch in immunocytes and other cell types is
presumably orchestrated by a limited number of cellular master
metabolic regulatory proteins, prominently the energy and
nutrient sensors AMPK, HIF1α, and mTORC1. The metabolic
signaling node mTOR containing complex 1 (mTORC1) is a
multi-protein complex named after its core component, the
Ser/Thr kinase mTOR. It acts as a master intracellular hub
of metabolic control as it funnels and records hormonal,
environmental, and intracellular cues reporting nutrient and
energy availability [reviewed in (16)]. mTORC1 processes and
converts this information into an appropriate signaling output
that orchestrates catabolic and anabolic processes in the cell.
Mechanistically, mTORC1 activity is controlled by the action
of tuberous sclerosis 1 and 2 (TSC1/TSC2) tumor suppressor
protein complex, an immediate upstream negative regulator
acting as a GTPase-activating protein for the small G-protein
Rheb (17, 18). mTORC1 activity is critical for immune cell
function as the pharmacological inhibition of mTORC1 can
substantially alter or, in some cases such as T-lymphocytes,
completely ablate immune responses (19). Indeed the mTORC1
inhibitor rapamycin and its derivatives, like everolimus, are
immunosuppressants commonly used in the clinic. Thus, while
it is firmly established that mTORC1 activity is critical for
immune cell function, it is not known whether it plays
a direct role in adaptive processes such as ET. Such a
connection has proved to be difficult to test experimentally,
other than by using pharmacological inhibitors like rapamycin.
However, pharmacological approaches suffer from a number
of drawbacks and thus need to be complemented by genetic
approaches, which are difficult to implement on primary
immune cells.

To circumvent these methodological shortcuts, we have
investigated monocytes from TSC patients that feature a
functional loss of TSC1/2 and a concomitant hyperactivation
of mTORC1. TSC is an autosomal dominant disorder caused
by loss-of-function germ-line variants of either of the two
TSC protein complex components TSC1 and TSC2 (20, 21).
TSC1 and TSC2 together form the upstream negative regulator
TSC complex for mTORC1. TSC patients manifest multiple
benign neoplasias, designated as hamartomas, that can affect
many organs and are often characterized by exorbitantly
large, giant cells. Although TSC1 and/or TSC2 have been
attributed additional functions beyond acting as a gatekeeper
for mTORC1 (22), it is generally accepted that the clinical
manifestations of TSC result principally from hyperactive
mTORC1 signaling. Thus, TSC represents a “genetic model”
for mTORC1 gain-of-function. Here we subjected monocytes
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from TSC patients to various protocols of immune adaptation
to test if they were compromised in the induction of tolerance
or training. As presented and discussed below, our findings
strongly argue against a role for mTORC1 in the induction of
immune tolerance.

MATERIALS AND METHODS

TSC Patient Enrolment and Ethics
Patient enrolment and blood drawing were performed at
the Department of Neuropediatrics, University Hospital Jena,
Germany. The study was approved by the local ethics committee
of the University Hospital Jena (study registry number: 4498-
07/15). Written informed consent was obtained from all
the study participants or their legal representatives before
the blood drawing. All patients included were diagnosed
with TSC on the basis of gene sequencing (16 out of
19 patients) and/or unambiguous clinical features of TSC
(Table 1). The exclusion criteria included recent/acute episodes
of inflammation or infection, a CrP value >10 mg/l, any type
of chronic disease, and treatment with immunosuppressive
other than everolimus at the time point of blood drawing.
Further patient and healthy donor characteristics are listed
in Table 2.

Materials
Rapamycine was from Calbiochem. Torin-1 was from TOCRIS.
LPS (strain055:B5) was purchased from Sigma-Aldrich (#L2880).
ß-Glucan was obtained from two sources: (1) a kind gift of Mihai
Netea, Nijmegen, Netherlands and (2) a kind gift of David L.
Williams, Johnson City, USA.

The proteome profiler Human Cytokine Array Kit was
from R&D Systems; the cytometric-based bead array (CBA)
flex sets for multiplexed cytokine determinations were
acquired from BD Biosciences. Ficoll Histopaque R©-1077
was from Sigma-Aldrich. The ELISA-standard TNFα was from
Biolegend, Inc.

Antibodies
The antibodies for western blotting, S6-Protein (5G109), p-
S6-Protein (Ser235/236), AKT, p-AKT (D9E) (Ser473), ERK1/2
(137F5), and p-ERK1/2 (E10) (Thr202/204), were all purchased
from Cell Signaling. Anti-p38 and p-p38 (Thr108/Tyr182)
were from BD Transduction. All antibodies were used at
1:1,000 dilution in TBS-Tween supplemented with 1% BSA. The
antibody for flow cytometry was AntiCD14 (Immunotools).

Monocyte Isolation and Cultivation
Blood was drawn using Li/heparin monovettes by trained
physicians. EDTA-blood from patients and control donors was
blinded on-site at the neuropediatrics unit, transported at
room temperature to the laboratory within <4 h of drawing,
and processed immediately. Peripheral blood mononuclear
cells (PBMCs) were isolated by standard density gradient
centrifugation on Ficoll. Briefly, blood was diluted with isolation
buffer [phosphate-buffered saline (PBS) without Ca2+/Mg2+,
1% BSA, 2mM EDTA] to a final volume of 30ml. The

TABLE 1 | Spectrum of the genetic lesions mapped to TSC1/TSC2 and the

clinical features of the patients enrolled in the study.

Internal

subject #

Clinical features

(tuberous sclerosis specific)

Genetic mutation

002 SEN, SEGA, EPI, ID, RAML, HM, FA TSC2: c.5135C>T

003 SEN, CD, EPI, DD, RAML, RC TSC2: c.2251C>T

005 SEN, CD, SEGA, EPI, ID, RAML, RC,

CR, AR, HM, FA

TSC2: c.5110del

008 SEN, CD, SEGA, EPI, ID, RC, CR, HM,

FA

TSC2: c.1287dup

009 SEN, CD, EPI, RAML, RC, CR, MMPH,

HM, FA

TSC2: c.976-15G>A

010 EPI, FA TSC1: c.211-1G>A

011 SEGA, EPI, ID, RC, CR, FA TSC2: c.? (written report not

available)

012 EPI, RC, CR, HM, FA TSC2: deletion exons 30-41

013 EPI, RC, FA Not available

016 SEN, CD, DD, RC, CR, AR, HM TSC2: deletion exons 15-21

017 SEN, CD, EPI,DD, HM, FA TSC2: c.1832G>A

018 SEN, CD, SEGA, EPI, ID, RAML, RC,

CR, AR, HM, FA

TSC2: c.5110del

020 SEN, CD, SEGA, EPI, ID, RC, CR, HM TSC2: c.4925G>A

021 SEN, CD, SEGA, EPI, ID, RAML, CR,

HM, FA

TSC2: c.? (written report not

available)

024 SEN, CD, SEGA, EPI, ID, RAML, RC,

CR, HM, FA

TSC1: c.2029insC

026 SEN, CD, SEGA, EPI, ID, RAML, RC,

HM, FA

TSC2: c.4646A>G

029 SEN, CD, EPI, DD, HM TSC2: c.4712A>G

031 SEN, CD, EPI, ID, PI, RAML, RC, CR,

HM, FA

TSC2: c.1832G>A

036 SEN, CD, RC, CR TSC2: c.3284+1G>A

SEN, subependymal nodules; SEGA, subependymal giant cell astrocytomas; EPI,

epilepsy; ID, intellectual disability; RAML, renal angiomyolipomas; HM, hypomelanotic

macules; FA, facial angiofibromas; CD: cortical dysplasias; DD, developmental delay; RC,

renal cysts; CR, cardiac rhabdomyomas; AR, arrhythmias; PI, psychiatric illness.

blood–buffer solution was carefully layered on 15ml Ficoll
Histopaque R©-1077 solution and centrifuged at 800 g for 20min
(without break). The PBMC layer was harvested and washed
twice with cold isolation buffer. The cells were resuspended in
RPMI 1640 medium supplemented with 10µg/ml gentamycine,
1% sodium pyruvate, 1% GlutaMax, and 10% heat-inactivated
human serum (Sigma-Aldrich) and seeded at a density of 5–10
× 106 cells/ml. The monocytes were further purified on the
basis of differential attachment to cell culture dish surfaces.
The cells were left to settle and attach to the culture plate
surface for 1 h at 37◦C. The non-adherent cells representing
non-monocytic fractions were washed off by three rounds
of mild rinsing with warm PBS without Ca2+/Mg2+. The
purity of the monocyte preparations was assessed by flow
cytometry staining for surface CD14. Purity was routinely
90% or higher. The test runs of monocyte preparations
using magnetic anti-CD14 beads yielded virtually identical
purity and undistinguishable experimental results (not shown).
The monocytes were cultured at 37◦C and 5% CO2 in a
humidified atmosphere.
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TABLE 2 | Patient and healthy donor characteristics.

Characteristics Number

Tuberous sclerosis patients

Total 19

Male 13

Female 6

Age (mean/median) 12/12

Age range (years) 0–38

Everolimus treatment 7

TSC1 mutation 2

TSC2 mutation 14

Mutation unknown 3

Healthy donors

Total 25

Male 16

Female 9

Age (mean/median) 13/13

Age range 0–42

Monocyte Priming and Stimulation
Priming (either tolerance induction by LPS or training by
ß-glucan) was performed by the treatment of monocyte cultures
with 10–100µg/ml LPS or with 3µg/ml β-glucan for 24 h,
respectively. At the end of the priming period, the cells
were washed three times by rinsing with warm medium and
subsequently stimulated with fresh medium containing 10 ng/ml
LPS for additional 24 h. The cell culture supernatants were
collected, cleared from cell debris by centrifugation (10,000 g for
10min), and analyzed for cytokine production and metabolic
parameters or stored at −20◦C until analysis. The cells were
collected by mild centrifugation (600 g for 10min at 4◦C)
and analyzed by flow cytometry as appropriate. For inhibition
of mTORC1, the cells were pre-incubated with a mixture of
20 ng/ml rapamycin and 10 ng/ml Torin-1 for 30min prior to
priming or stimulation with PAMPs. In the primed cells, both
inhibitors were present during the 24-h period of priming.

Cytokine Profiling by Cytokine
Strips/Proteome Profiler Human Cytokine
Array
The cell culture supernatants were collected at the indicated
time points, cleared from cell debris, and stored at −20◦C
until analysis. The cytokine profiles were determined using
cytokine strips (R&D Systems) according to the manufacturer’s
instructions. The signals were detected by exposure to X-ray films
and quantitated/imaged on a LAS system.

Cytokine Profiling by ELISA
TNFα production was measured in cleared cell culture
supernatants by ELISA in accordance to the manufacturer’s
protocol. Colorimetric detection was performed with 3,3’,5,5’-
tetramethylbenzidine substrate solution (Biolegend, San Diego,

CA, USA), and the reactions were quenched by the addition of
2N H2SO4. Absorbance was measured at 450 nm with a TECAN
Microplate Reader (VersaMax) and analyzed using SOFTmax
Pro software (Molecular Devices).

Cytokine Profiling by Multiplexed Bead
Arrays/Cytometric Bead Array Flex Set
The production of nine defined inflammatory cytokines in
cleared cell culture supernatants was measured by flow CBA
on a FACSCantoTMII, following the manufacturer’s instructions.
Data analysis was carried out using Flow Jo software (TreeStar
Inc.). The calculated cytokine amounts were normalized to
protein content (determined on the pelleted cells measured
using Pierce R© Micro BCA Protein Assay Kit) to account for
different viability or growth patterns under the various treatment
conditions (23). All cytokine concentrations are plotted as
normalized cytokine amount per milliliter of supernatant.

Western Blotting
Human monocytes were seeded on six-well plates at a density
of 107 cells/ml and left to attach for 1 h at 37◦C, followed by
three rounds of gentle washing to remove non-adherent cells. The
cells were either primed with LPS or β-glucan in the presence
or the absence of mTOR inhibitors or left untreated for 24 h.
After priming, the cells were washed three times with medium,
followed by stimulation with 10 ng/ml LPS for 30 or 60min.
The reactions were quenched with ice-cold RIPA lysis buffer
(50mM HEPES pH 7.5, 150mM NaCl, 5mM EDTA, 1% NP-40,
0.5% deoxycholate, and 0.1% SDS, supplemented with protease
inhibitors) and the cell extracts were cleared by centrifugation.
The protein concentration was determined with the BCA Protein
Assay. The samples were treated with Laemmli buffer, boiled for
5min, and equal amounts of total protein were resolved by SDS-
PAGE. The proteins were transferred to polyvinylidene difluoride
membranes using Trans-Blot Cell Tank system (Bio-RadTM)
for wet blotting and probed with the indicated antibodies. The
signals were quantified by densitometry on a ImageQuantTM LAS
4,000 instrument.

Stimulation With Conditioned Medium
Conditioned media were collected from human monocyte
cultures as follows: the cells grown in full culture medium
were challenged with 100 ng/ml LPS; at 1 h later, the cells were
washed once and the medium was replaced with a fresh one
without LPS. At 23 h later, the medium was collected, cleared
from cell debris by centrifugation, and used immediately without
intermediate storage as conditioned medium for the priming of
naïve monocytes.

Lactate and Glucose Measurements
The lactate and glucose levels from monocyte culture
supernatants were measured by the in-house clinical chemistry
department of the Jena University Hospital.

Statistical Analysis
GraphPad Prism five and six were used for statistical analysis. All
data are expressed as means ± SEM. A Wilcoxon matched-pairs

Frontiers in Immunology | www.frontiersin.org August 2020 | Volume 11 | Article 1515166

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ludwig et al. mTORC1 in Endotoxin Tolerance

FIGURE 1 | Lipopolysaccharide (LPS) and ß-glucan (ßG) exert distinct patterns of monocytic cytokine secretion. (A) Human peripheral monocytes from healthy

volunteers were isolated, cultured, and stimulated with 10 ng/ml LPS or 3µg/ml ß-glucan as described in the experimental section. At 24 h later, cytokine production

was assessed with a human cytokine array encompassing 36 cytokines. The selected prototypical cytokines are highlighted with a color code. Changes in all 36

cytokines were scored and plotted in categories from strong down-regulation to strong up-regulation (—, –, -, =, +, ++, and +++). (B) Human monocytes from

healthy donors were isolated and treated as before. The cytokine levels were assessed by ELISA at 24 h post-stimulation. Different significance symbols were used to

mark different inter-group comparisons.

signed rank test was performed to determine the significance
between different treatments within one experimental group.
Two-way ANOVA with Bonferroni post-test was used to
determine the significance between two experimental groups
(∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, ∗∗∗∗p ≤ 0.0001).
Different significance symbols were used to mark different inter-
group comparisons.

RESULTS

TSC Monocytes Feature Normal Response
to LPS Challenge
In order to test the role of mTORC1 on the plasticity and the
adaptation properties of human monocytes, we investigated, side
by side, monocytes from TSC patients and healthy donors. To
this end, we collected blood from mostly infant TSC patients
that visited the neuropediatrics department for a routine medical
check. Whenever possible, blood from age-matched healthy
donors was collected and assayed on the same occasion. In order
to avoid interference with the immunological parameters under
investigation, the exclusion criteria for TSC patients included
immunosuppressive therapies or recent infectious episodes,
among others (see section Materials and Methods). Seven out of
the 19 enrolled patients received everolimus therapy at the time

point of blood withdrawal. Nine patients donated blood twice,
with a gap of 6 months or more in between, but the obtained
values were treated as individual data sets. Monocytes were
isolated by differential plate attachment/washout protocols or
magnetic isolation based on the surface expression of CD14. The
cells isolated by either protocol showed undistinguishable results
(data no shown). We did not observe any obvious phenotypic
differences between control and TSC monocytes during routine
cultivation. To assess general monocyte responsiveness, we
challenged the cells with the PAMP LPS, a cell wall constituent
of gram negatives and a strong inducer of ET (2). In parallel
samples we stimulated also with ß-glucan from Candida albicans
as a PAMP that reportedly induces immune training in these
cells (24). In order to obtain a broad view of the cytokine
spectrum induced by both PAMPs, we first challenged the
control monocytes from healthy donors for 24 h and loaded the
supernatant on cytokine strips (Figure 1A). As reported before
(25), LPS induced the secretion of multiple cytokines, including
TNFα, IL-1ß, IL-6, RANTES, and MIP1, while it reduced the
secretion of others, prominently IL-8. By contrast, ß-glucan was
a poor secretagogue, causing the mild upregulation of but a
few cytokines, at least as measured under these conditions. To
exclude a lack of activity of the employed ß-glucan, we tested two
ß-glucan preparations of different origins (see the experimental
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FIGURE 2 | Monocytes from tuberous sclerosis (TSC) patients feature a largely unperturbed cytokine response to lipopolysaccharide (LPS) and ß-glucan. (A) Purity of

human monocyte preparations from TSC patients as assessed by CD14 surface staining. The identified peripheral blood mononuclear cells were pre-gated for

cellularity and doublet exclusion, followed by surface staining with or without anti-CD14 Abs. (B) Human peripheral monocytes from TSC and control groups were

treated as indicated with a mix of rapamycin (Rap) and Torin1 (Tor) at 30min prior to stimulation with 10 ng/ml LPS or 3µg/ml ß-glucan. The cytokine levels in the

supernatant were determined by flow cytometry using a multiplex bead array. (C) The same data from TNFα panel in (B) stratified for +/– everolimus treatment.

Different significance symbols were used to mark different inter-group comparisons.

section). Both batches yielded undistinguishable results. A
flow cytometric bead array-based assay, which produced better
quantifiable results, confirmed the marked difference in the
cytokine release proficiency of LPS vs. that of ß-glucan, the latter
inducing only a modest secretion of IL-8, MIP-1, and MCP-1
(Figure 1B).

To assess the role of mTORC1, we performed side-by-side
measurements on control and TSC monocytes (Figure 2). The
purity of the monocyte preparations routinely exceeded 90%,
as assessed by flow cytometry (Figure 2A). These experiments
evidenced that monocytes from TSC patients were not markedly
affected in their cytokine response to LPS (Figure 2B). In line
with previous findings in mouse monocytes (26), some pro-
inflammatory mediators were released even more profusely by
the stimulated TSC monocytes, perhaps reflecting a generalized
higher protein translation rate as a consequence of hyperactive
mTORC1 signaling. In our experiments, this was true for TNFα,
IL-1ß, and RANTES, achieving statistical significance for the
latter twomediators. Seven out of the 19 TSC patients included in
our study received everolimus therapy at the time point of blood

drawing. Stratification of the data with regard to everolimus
therapy showed that the higher cytokine release resulted in its
majority from patients that had not received therapy with the
mTORC1 inhibitor, suggesting an association between chronic
aberrantly high mTORC1 signaling and enhanced cytokine
release (Figure 2C). To test if cytokine production was affected
by acute mTORC1 inhibition, we administered a combination of
two potent mTORC1 inhibitors acting by different mechanisms:
the allosteric inhibitor rapamycin and the ATP-competitive
drug Torin-1. We used this inhibitor mix because rapamycin
reportedly shows a selective inhibition of distinct mTORC1
downstream targets under particular conditions (27). Both
inhibitors were administered simultaneously at 30min prior
to the stimulation with PAMPs. As can be seen in Figure 2B,
mTORC1 inhibition prevented the production of IL-10 and
MCP1, whereas the production of MIP-1ß was mildly enhanced
in mTORC1-inhibited cells. The levels of all other cytokines
were largely unaffected. The elevated production of TNFα, IL-
1, or RANTES in TSC monocytes was largely attributable to
the patients who were not treated with everolimus (Figure 2C;
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FIGURE 3 | Monocytes from tuberous sclerosis (TSC) patients can be rendered tolerant by endotoxin. Peripheral monocytes from TSC patients (black triangles) or

control healthy donors (white circles) were isolated and subjected to a bi-phasic priming/stimulation protocol for induction of endotoxin tolerance. The cells were

primed with LPS or ß-glucan for 24 h (prime), followed by stimulation with 10 ng/ml LPS (stim) for 24 h further. The cytokine levels were measured by flow cytometric

multiplexed bead arrays as before. Different significance symbols were used to mark different inter-group comparisons.

data not shown). Intriguingly, this elevated cytokine response
in TSC cells was not prevented by inhibitor treatment,
suggesting that acute mTORC1 inhibition could not revert
the effect of chronic mTORC1 upregulation. In summary, the
generation of individual cytokines by human monocytes was
differentially dependent on mTORC1 but was not significantly
compromised by the presence of unleashed mTORC1 activity
in TSC.

ET Proceeds Normally in TSC Monocytes
The above findings evidenced that the generation of cytokines
was distinctively sensitive to chronic or acute changes in
mTORC1 activity, as implemented by the TSC genotype and

pharmacological mTORC1 inhibition. We went one step further
and assessed whether mTORC1 played a role in the induction
of ET. For this purpose, we altered the experimental protocol to
include a priming step with LPS or ß-glucan. Whereas, priming
with LPS for as short as 1 day is known to induce a state
of tolerance in mouse macrophages and human monocytes, ß-
glucan induces immune training in these cells (2, 24). At 24 h
after the priming step, the cells were challenged with LPS and
the cytokine levels were monitored 24 h later via flow cytometry
on bead arrays. It is important to note that re-stimulation was
accompanied by the replacement of the culture medium. This
step largely removed all cytokines produced upon the initial
LPS/ß-glucan priming step, as ascertained in control experiments
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FIGURE 4 | Pathogen-associated molecular pattern stimulation upregulates lactic fermentation, but this metabolic switch does not correlate or associate with

endotoxin tolerance (ET). (A) Lactate levels in the supernatant of monocyte cultures from control donors and tuberous sclerosis (TSC) patients. The cells were

pretreated as indicated with a mix of rapamycin and Torin (Inh) and challenged with lipopolysaccharide or ß-glucan (ßG). (B) Glucose levels in the supernatant of the

same monocyte samples as in (A). (C) Lactic acid production by monocytes from control and TSC patients subjected to the two-step priming/stimulation protocol for

analysis of ET. White columns: healthy controls. Gray columns: TSC patients. Different significance symbols were used to mark different inter-group comparisons.

(data not shown), excluding an adulteration of the measured
cytokine levels. As shown in Figure 3, priming with LPS fully
prevented the production of TNFα and partially suppressed that
of RANTES, IL-10, and MIP-1ß. By contrast, LPS priming did
not reduce the production of other cytokines, including IL-6,
IL-8, or MCP-1, and even boosted the release of IL-1. Priming
with ß-glucan for 24 h exerted only a little effect on the cytokine
levels. Prolonging the priming step of ß-glucan to 5 days neither
lead to training effects as those reported previously (24, 28).
Importantly, the loss of TSC had no impact on ET induction as
priming with LPS induced a largely undistinguishable re-wiring
of cytokine production in control and TSC cells. These findings
showed that mTORC1 hyperactivation, as present in TSC cells,
did not prevent nor affect the molecular processes underlying the
induction of ET in human monocytes. In line with a negligible
role of mTORC1, the pharmacological inhibition of mTORC1
prior to and throughout the priming period did not also affect
ET. Taken together, these data strongly suggested that mTORC1
activity or changes in its activity are not principally involved in
the induction of ET in monocytes.

Metabolic Switch Is Not Affected in TSC
Monocytes and Does Not Correlate With
ET Induction or Cytokine Response
Monocytes exhibit dramatic metabolic rearrangements upon
activation/stimulation with inflammatory agents (12, 14, 29).
These changes supposedly represent a switch from aerobic
mitochondrial respiration to anaerobic, glycolytic metabolism
characterized by increased glucose consumption and lactic
fermentation. Our own experiments were in line with this
scenario as human monocytes exhibited a markedly and
significantly enhanced release of lactate upon stimulation with

LPS (Figure 4A). This was accompanied by higher glucose
consumption, attaining a statistical significance for the TSC
monocytes (Figure 4B). ß-Glucan exerted an analogous but
somewhat weaker response than LPS. The TSC monocytes
showed a trend toward higher lactate production than the
control cells under LPS stimulation, whereas treatment with
rapamycin/torin1 did not exert any marked effect on lactate
levels. These data were consistent with the occurrence of a
switch to lactic fermentation in LPS-stimulated monocytes. The
inefficacy of rapamycin/Torin treatment in reverting the switch
to aerobic glycolysis indicated that mTORC1 did not play a major
role in this process.

In order to understand if this metabolic switch played a
role in the induction of ET, we assessed lactate production
by tolerant monocytes. As observed in Figure 4C, LPS-primed
and re-stimulated (hence tolerant) monocytes exhibited an
exacerbated lactate generation. Virtually the same effect was
observed in ß-glucan-primed and restimulated (hence non-
tolerant) monocytes. Thus, priming by LPS or ß-glucan induced
an undistinguishable switch to lactic fermentation in tolerant and
non-tolerant cells re-stimulated with LPS.

ET Does Not Correlate With mTORC1
Activity and Is Not Mediated by Paracrine
Signaling Mediators
The absence of the effects of TSC genotype or pharmacological
mTORC1 inhibition on ET parameters prompted the question
whether mTORC1 was activated following exposure to PAMPs
under these experimental conditions. We took monocytes from
control, healthy donors, and measured the phosphorylation
of the mTORC1 downstream target S6-protein (S6P) by
western blotting as a readout of pathway activation. As shown
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FIGURE 5 | MTORC1 activation is not affected by endotoxin tolerance but lipopolysaccharide (LPS) fails to activate p38α in tolerant monocytes. (A) Monocytes from

healthy donors were isolated and subjected to the indicated two-step stimulation protocols with LPS and or ß-glucan, including pretreatment with mTORC1 inhibitor

mix as indicated. The cell extracts were processed for western blot against the indicated phosphorylated and total protein levels. The molecular size markers are

indicated on the left side of the panels. (B) Bands for phosphorylated and total p38α and pS6 were quantified by densitometry, and the extent of activation was

determined by plotting the ratio of phosphorylated/total protein. The quantification includes all measured samples (S6P: n = 6, p38α: n = 4) depicted as fold activation

of the unstimulated samples. Data are presented as mean ± SEM.

in Figure 5A, LPS activated mTORC1 as evidenced by the
phosphorylation and concomitant mobility shift of S6P. This
phosphorylation largely vanished after 24 h. Importantly,
S6P was re-phosphorylated by a second LPS addition in
tolerant cells (Figure 5A). The same pattern was observed
for the phosphorylation/activation of Akt, an upstream
activator of mTORC1. We concluded that the mTORC1
pathway was fully responsive to PAMP stimulation in the
tolerant monocytes. Interestingly, activation of the parallel
pro-inflammatory signaling pathway p38 was suppressed in the
tolerized monocytes (Figure 5A), showing that ET had a distinct
impact on the downstream transmission of the LPS signal to
distinct pathways.

These data showed that LPS activates mTORC1 and that
mTORC1 activation by endotoxin proceeded normally in the
tolerized monocytes. At the same time, mTORC1 activity is
necessary for the production of IL-10 (30) (Figure 2A), an
anti-inflammatory cytokine that has been linked before to the
induction of ET (3). Since mTORC1 inhibition did not prevent
ET, we reasoned that IL-10 or other paracrine mediators released
in a mTORC1-dependent manner were unlikely to mediate the
induction of ET in human monocytes. To test this assumption,
we collected conditioned supernatant from human monocytes
stimulated with LPS and used this medium to prime naïve
monocytes prior to stimulation with LPS. As shown in Figure 6,
LPS-elicited TNFα production was not compromised by the

FIGURE 6 | Paracrine factors do not mediate endotoxin tolerance induction.

Monocytes from healthy donors were primed for 24 h with 100 ng/ml LPS or

with conditioned medium obtained from monocytes 24 h after stimulation with

100 ng/ml LPS. The cells were re-stimulated with lipopolysaccharide, and

TNFα production was assessed by ELISA. Different significance symbols were

used to mark different inter-group comparisons.

previous administration of a conditioned medium from tolerant
monocytes, indicating that the paracrine factors released during
priming are not crucially involved in the induction of ET.
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DISCUSSION

mTORC1 coordinates resource availability and hormonal status
with intracellular energy and nutrient expenditure and, as such,
is predicted to be involved in processes involving re-wiring of
metabolic pathways. Our experiments document an increase
in lactic fermentation in human monocytes challenged with
LPS or ß-glucan, which is in line with previous studies that
reported Warburg-like metabolic reprogramming in activated
macrophages (31). However, our data argue against a dominant
role of mTORC1 in this process as the increase in lactic acid
production was indistinguishable in control and TSC monocytes
or in the presence of mTORC1 inhibition. While we cannot
exclude that mTORC1 activity may be relevant for metabolic
changes in monocytes under particular circumstances, e.g., in
a background of distinct energy or nutrient availability, our
findings illustrate that the PAMP-induced metabolic switch
proceeds in the absence of a functional mTORC1 module.
Similarly, we did not observe prominent effects of the TSC
genotype, which causes high mTORC1 activity, on the cytokine
response of TSC patient monocytes to LPS or ß-glucan besides
a trend to mild overproduction of certain cytokines such as
TNFα. Indeed the higher cytokine production in cells from
TSC patients was blunted in those that had received everolimus
treatment, pointing to a causal link between mTORC1 and the
secretory activity of human monocytes, which is consistent with
previous reports (32). Inversely, mTORC1 activity was critically
required for the production of selected cytokines (IL-10, MIP1ß),
the secretion of which dropped in a background of mTORC1
inhibition. Together with similar previous findings (30), this
observation suggested that mTORC1 is differentially involved
in the generation/secretion of distinct inflammatory cytokines.
The reasons for this differential repercussion (considering that
mTORC1 acts as a gatekeeper of global protein translation)
are intriguing and could reflect a mechanism for adaptation of
inflammatory cytokine release to the reigning nutrient/energy
status. In this regard, we observed that monocytes from TSC
patients showed enhanced LPS-induced IL-1ß production (see
Figure 2). Since the activation of the inflammasome requires an
initial priming step to stimulate the synthesis of caspase 1 and
IL-1ß precursor proteins, we speculate that the intrinsically high
mTORC1 activity of TSC cells likely boosts this priming reaction
that precedes IL-1ß production and secretion. Interestingly,

while we observed an inhibitory effect of chronic everolimus

therapy on the secretory activity of TSC monocytes, e.g., for

IL-1ß or TNFα (Figure 2B), acute mTORC1 inhibition did

not cause the same effect. This evidenced that not every

consequence of aberrantly high mTORC1 activity in TSC cells

could be reversed by the acute inhibition of mTORC1, an

observation that is not unprecedented (33). In this context, it

is interesting to consider mTOR-independent effects of TSC

loss in human monocytes. In particular, TSC1 acts as a co-
chaperone of HSP90 (22, 34), and HSP90, in turn, reportedly

modulates PAMP/TLR signaling at multiple levels, including the

stabilization of functional TLR receptor complexes at the plasma

membrane of human monocytes/macrophages (35). Taking all

these findings together, we concluded that the effects of mTORC1

on monocyte cytokine secretion are multifaceted and impact
differentially on individual cytokines. Moreover, the effects are
most likely not mediated by mTORC1-dependent changes in
cellular metabolism as TSC loss or mTOR inhibition had little
impact on metabolic reprogramming in our experiments.

The monocytes exhibit a dramatic readjustment of their
secretory and functional status upon entering a state of immune
tolerance (3). Our data highlight that the hyperactivation
of mTORC1 in TSC or its pharmacological inhibition did
not preclude the induction of endotoxin tolerance in human
monocytes, monitored here by the reduced or the altered
endotoxin-induced production of inflammatory cytokines. These
findings indicate that changes in mTORC1 activity are not
involved in the induction of ET and have far-reaching
implications. For example, it would argue against a role for
endocrine loops involving cytokines whose secretion depends
on mTORC1, at least in settings of in vitro ET induction.
This includes, e.g., the anti-inflammatory cytokine IL-10, whose
secretion is strictly contingent on mTORC1 (Figure 2). Our
experiments using conditioned medium from primed human
monocytes argue in the same direction as they excluded a
contribution of extracellular factors in the induction of ET.
Taken together, these considerations suggest that themechanisms
responsible for ET involve intracellular re-wiring processes
that are largely independent of mTORC1. Since all presented
data argue also against a role of metabolic reprogramming,
the straightforward conclusion is that changes in the signaling
machinery and/or genetic re-programming of the primed
monocyte underlie the induction for ET. In this regard, we
document that tolerant monocytes become unresponsive at the
level of the p38 pathway, while other pathways (mTOR, Erk,
and Akt) remain sensitive to LPS challenge. These findings
suggest that uncoupling of p38 from TLR signaling could be
one important feature of ET. Irrespective of the mechanism,
this finding is consistent with the notion that tolerance leads
to a qualitative change in LPS signaling, e.g., perhaps to a
rearrangement of the proximal TLR4 signaling network in the
tolerant monocyte. It will be intriguing to evaluate the functional
consequences of defective p38 signaling in the stimulated
monocyte and whether this can explain some of the features of
tolerized cells.

In our experiments, we did not observe a significant training
effect of the PAMP ß-glucan despite testing various sources
of ß-glucan and different protocols. This confirms previous
findings (23, 36) but contrasts with reports documenting an
enhanced cytokine production in ß-glucan-primed monocytes
(2, 24). We suspect that differences in the experimental protocols
and normalization procedures underlie these different outcomes.
Irrespective of these considerations, the results of ß-glucan
stimulation shown herein are nevertheless intriguing as ß-glucan
induces a comparably strong switch to lactic fermentation as
LPS, in line with previous reports (12, 29). Moreover, ß-glucan
stimulates the mTORC1 pathway as monitored at the level of
S6-protein phosphorylation (Figure 5), to the same extent as
LPS, yet ß-glucan does not induce ET, proving that stimulation
of mTORC1 and metabolic re-wiring are not sufficient for the
induction of ET. Thus, our findings provide strong evidence that
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mTORC1 activity and a metabolic switch to lactic fermentation
are neither necessary nor sufficient for the induction of ET.

Taking this line of thinking one step further, it must
be concluded that polarization of monocytes/macrophages
[a strictly mTORC1-dependent process (26)] and tolerance
induction (mTORC1-independent, as shown herein) are largely
separate and independent processes. Indeed the relation between
these two processes has been difficult to judge in the past because
training or adaptation studies involved mostly experimental
cytokine profiling, while polarization mostly relied on the
assessment of marker signatures. Our data illustrate that ET does
not depend on mTORC1 activity, which sets the adaptive process
of ET clearly apart from the mTORC1-dependent program of
monocyte/macrophage polarization.

ET represents a physiological adaptation process for shaping
and adapting the inflammatory response to individual infection
scenarios. However, unleashed or uncontrolled immune
tolerance is thought to lie at the heart of critical conditions
such as sepsis (5, 6). Sepsis is often accompanied and linked to
metabolic comorbidities (insulin resistance, diabetes, obesity,
and liver dysfunction) (5, 37), all of which do affect nutrient
levels and nutrient/hormonal signaling in the critically ill patient.
A better understanding of the role of mTORC1-dependent
signaling in this context could help in devising new strategies
of immune modulation in sepsis and other clinical settings.
For another example, in solid organ transplantations, patients
often receive mTORC1 inhibitors (everolimus and tacrolimus)
as immunosuppressant. Our present findings, which show very
limited consequences of TSC loss and/or mTORC1 inhibition
on monocyte function and/or plasticity, suggest that immune
suppression in these cases is most likely to result from a
strong inhibition of adaptive immunity. Given the distinct
contributions of innate vs. adaptive immune entities to the
course of different syndromes and pathologies, it is tempting
to consider mTORC1 inhibitors as a means to selectively
modulate the immune response in different clinical settings in an
individualized fashion.

In conclusion, while mTORC1 is a well-established player in
the primary response of numerous immune cells [e.g., in T-cells
(38) or monocytes, see Figure 1], our findings argue against a
prominent contribution of mTORC1 to processes of immune cell
adaptation, at least in monocytes. In line with this concept, TSC
is not associated with a defective response to infection as judged
by the absence of an increased incidence or severity of infectious
episodes in TSC patients. Accordingly, we did not observe any
conspicuous, unusually high incidence of infections or immune
abnormalities in our TSC patient cohort, yet the clear impact

of mTORC1 on monocyte polarization and the monocyte’s
secretory landscape [present data and (26)], along with its well-
established function in T-cell activation and clonal expansion,
underscore an important role of mTORC1 signaling in immune
cell function and warrant further investigations to understand
the role of metabolic mTORC1 signaling in the host response
to infection.
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Recent studies have demonstrated that induction of a diverse repertoire of memory
T cells (“immune education”) affects responses to murine cecal ligation and puncture
(CLP), the most widely – used animal model of sepsis. Among the documented effects
of immune education on CLP are changes in T cell, macrophage and neutrophil activity,
more pronounced organ dysfunction and reduced survival. Little is known, however,
about the effects of CLP on B cell responses, and how these responses might be altered
by immune education. Importantly, effective B cell responses are modulated by IL21
produced by CD4+/CXCR5+/PD1+ T follicular helper (Tfh) cells. We examined the B cell
population in control and immune educated mice 24 h and 60 days after CLP. Education
alone increased Tfh cells. Twenty-four hours after CLP, Tfh cells were depleted. However,
this reduction was less pronounced in immune educated mice than in controls and
the percentage of CD4 T cells expressing a Tfh phenotype increased in the animals.
CLP did not alter splenic architecture and decreased numbers of follicular, marginal,
and germinal center B cells. CLP induced changes were not, however, noted following
CLP in immune educated mice. At 60 days post – CLP, numbers of follicular, germinal
center and marginal zone B cells were increased; this increase was more pronounced
in immune educated mice. Finally, while CLP reduced the induction of antigen specific
B cells in controls, this response was maintained following CLP in immune educated
mice. Our data suggest that preexisting Tfh assists in rescuing the B cell response to
CLP.

Keywords: cecal ligation and puncture, sepsis, long-term effects, B cells, T follicular helper cells, CD4 T cells,
T cell memory, adaptive immunity

INTRODUCTION

In contrast to other aspects of the immune system, study of the B cell response to sepsis has
been limited. Previous studies have shown little beyond a progressive depletion of B cells over
time (1) while more recent work has demonstrated that mortality from sepsis is associated with
impaired B-cell maturation (2). Sepsis-induced depression of the adaptive immune response has
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been recognized for many years. However, a lack of data
regarding the early B cell response represents an important gap
in our understanding of this deadly disorder.

Investigation into the pathobiological underpinnings of
sepsis have long relied on the use of animal models, most
commonly cecal ligation and pucture (CLP) in mice and
rats (3, 4). However, the use of this and other models
of inflammatory disorders has been questioned based on a
lack of correlation between genetic responses in mice and
humans (5, 6). More recent studies on laboratory mice have
identified immune deficiencies that may impact on their use
as models of human disease. In contrast to patients and
to pet store or “mice in the wild,” laboratory mice lack a
memory T cell compartment. This deficiency likely reflects
limited exposure to antigenic stimulation in the pathogen-free
facilities where lab mice are reared and maintained (7, 8). Several
approaches to address this concern have been developed. For
example, Huggins, et al. have used co-housing of pathogen
free mice with “pet store” mice to increase the number of
TLR2+ and TLR4+ phagocytes prior to challenge with Listeria
monocytogenes (9) while Sjaastad et al., immunized mice
with an MHC-II-restricted peptide following CLP to examine
T cell-dependent B cell activation following (10). Along the
same lines, we have addressed the contribution of preexisting
T cell memory in the mice by inducing widespread T cell
memory via administration of an anti-CD3ε activating (11).
This procedure, termed “immune education,” led to widespread
increase in the numbers of CD4 and CD8 memory T cells.
Additional experiments indicate that memory T cell expansion
altered the response to CLP by enhancing innate immune
responses, increasing organ dysfunction, and reducing survival
(Taylor et al., unpublished data). In the experiments described
here we detail the effects of immune education on B cell
responses following CLP.

MATERIALS AND METHODS

Mice
C57Bl/6J male mice were obtained from the Jackson Laboratory
and maintained in the animal facility at the Feinstein Institute
for Medical Research. All animal studies were approved by the
Institutional Animal Care and Use Committee and adhered to
National Institutes of Health and Animal Research: Reporting of
in vivo Experiments (ARRIVE) guidelines.

In vivo Immunization
A total of 50 µg of Ultra-LEAF Anti-mouse CD3ε Antibody
(145-2C11, BioLegend, San Diego, CA, United States) and
Ultra-LEAF isotype Armenian Hamster IgG control (HTK888,
BioLegend) were administered to 11 week old mice through
a retro-orbital venous sinus injection. Mice were then rested
for 35 days to allow for T cell memory development and to
ensure that no acute response remained. Details of the initial
response to inoculation and of the T cell phenotype at 35 days
following have been published separately (11). Briefly, anti-CD3ε

treatment induces acute CD4 and CD8 T cell activation. The

acute response resolves by day 5 following treatment. Initial
inoculation causes an acute expansion of neutrophils, which
resolves by 35 days post-treatment. Further, by 35 days following
treatment, no acute effector CD4 or CD8 T cells remain, and
there is an expansion of the CD4 central and effector memory T
cell population and the effector memory CD8 T cell population
in the spleen, liver, and lungs. The innate immune system
is not altered at 35 days following anti-CD3ε treatment in
unchallenged mice.

For antigen specific response experiments, 4-hydroxy-3-
nitrophenylacetic acid (NP, 5 µg, Sigma Aldrich, St. Louis,
MO, United States) was dissolved in PBS and injected into the
peritoneum at the end of CLP surgery or into unoperated (T0)
mice at the same time.

Cecal Ligation and Puncture Procedure
Cecal ligation and puncture was performed on 16 week old mice
under isoflurane anesthesia as previously described (12). Briefly,
following exposure, the cecum was single ligated approximately
1cm from the tip and two 22-guage needle punctures performed
in series. One millimeter of fecal content was expressed from
the punctures. The incision was closed in layers and the mice
were resuscitated with 50 mL/kg 0.9% NaCl. No antibiotics were
given. Resuscitation was repeated at 24 and 48 h post-CLP/NP
injection. Mice were euthanized at given time points after CLP
with pentobarbital. The effects of organ dysfunction in this model
parallel those noted in the Vienna Consensus Conference on
Animal Models of Sepsis (4).

Historically, CLP as detailed in this work was associated
with 50% mortality at 24 h. Further, when mice were examined
with a clinical scoring system developed for CLP, educated
mice appeared sicker than control mice (Supplementary
Figure S1) (13).

Leukocyte Isolation
Spleens were obtained from euthanized mice and immediately
weighed. Sections were taken for hematoxylin and eosin stain.
The remaining splenic tissue was homogenization and filtered at
70 µm. Red blood cells were lysed and cells counts were obtained
using a Countess II Automated Cell Counter (Thermo Fisher
Scientific, Waltham, MA, United States).

Flow Cytometric Analysis
Immediately after suspension, cells were stained for flow
cytometric analysis with LIVE/DEAD fixable viability dye (Life
Technologies, Carlsbad, CA, United States) and the following
antibodies: CD90.2, CD44, CD8a, CD4, CD62L, CD11a, CXCR5,
PD1, CD69, B220, CD19, CD23, CD21/35, GL7, IgM, IgD,
CD138, and CD93. NP-PE (Biosearch Technologies, Teddington,
Middlesex, United Kingdom) was utilized to detect NP-specific
cells. Full antibody details are available in Supplementary
Table S1. All flow cytometric analysis was performed on
a BD LSR Fortessa 16-color cell analyzer and analyzed
using FlowJo software version 10 (BD Biosciences, San Jose,
CA, United States). Gating Strategy for T cells is shown
in Supplementary Figure S2 and for B cells is shown in
Supplementary Figure S3.
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Cytokine Production Assays
To assess cytokine production in T cells, single cell suspensions
were treated with anti-CD3 (5 µg/ml, Biolegend) and anti-CD28
(1.7 µg/ml, Biolegend) for 5 h in the presence of Brefeldin
A (2 µg/ml, BD Biosciences, San Jose, CA, United States).
An unstimulated control was analyzed alongside stimulation
experiments to assess for background production (14).

Statistical Analysis
Animal data were analyzed using Student’s two-tailed T
test or using two-tailed analysis of variance with Dunnett’s
correction where appropriate [Prism 7.0; GraphPad or SAS
Studio University Edition (SAS)].

RESULTS

CLP Differentially Depletes Splenic B
Cell Subsets and Memory T Follicular
Helper Cells
Previous studies demonstrated that CLP depleted B cells via
apoptosis (1, 15). The effects of CLP on specific B cell subsets,
however, is unknown. Therefore, we examined splenic B cells
obtained at baseline (T0) and at 24, 48, and 72 h post-
CLP. Compared to unoperated (T0) controls, total splenic B
cell numbers were significantly lower at 48 and 72 h post-
CLP (Figure 1A). This difference was noted in both mature
(CD93−, Figure 1B, left) and immature (CD93+, Figure 1B,
right) B cells. Because the majority of B cells in the spleen were
mature, these cells made the largest contribution to the reduction
in total B cells.

Mature B cells can be divided into either follicular (FO,
IgMlo/CD21/35lo) or marginal zone (MZ, IgMhi/CD21/35hi) B
cells. Germinal center (FO GL7+) B cells are a subset of FO B
cells that generate germinal centers and initiate mature antibody
responses. Numbers of splenic FO, MZ and germinal center
B cells were lower than T0 at 24, 48, and 72 h post-CLP
(Figure 1C). FO B cells are further categorized as FO I B cells,
which are resistant to depletion during infection or FO II B
cells, which that transit to the spleen following B cell depletion
to replenish both MZ and FO B cells. This decrease equally
affected both FO I B cells that are more resistant to depletion
during infection and FO II B cells (Supplementary Figure S4)
(16, 17).

At 24, 48, and 72 h post-CLP, T1 (early emigrant) immature
splenic B cells (that normally mature to form FO and MZ
B cells) were depleted (Figure 1D). Numbers of splenic
T2 and T3 immature B cells, which develop from T1 B
cells during maturation, were not affected by CLP (data not
shown) (18).

At 72 h post-CLP the number of plasma cells (mature B cells
that can make functional antibody) was significantly increased;
changes were not noted at earlier time points (Figure 1E).

T follicular helper cells (Tfh, CD90+/CD4+/PD1+/CXCR5+)
interact with FO B cells to promote an effective B cell response,
germinal center formation, and antibody production. At 24, 48,

and 72 h following CLP the number of splenic CD4 Tfh was lower
than at T0 (Figure 1F).

Immune Education Attenuates the
CLP-Induced Decrease in Memory Tfh
Cells
We next examined the effects of immune education (induction
of a diverse memory T cell repertoire using an anti-CD3ε

activating antibody, as previously described) (11) on the Tfh and
B cell responses to CLP. Relative to controls, immune education
significantly increased the number (Figure 2A) and percentage
(Figure 2B) of CD4 T cells expressing the Tfh phenotype. In
both control and immune educated mice, CLP decreased the
number of CD4 Tfh cells/spleen and the percentage of CD4 cells
expressing the Tfh phenotypes. The CLP-induced decrease in the
number of Tfh cell was significantly greater in educated than in
control mice (0.9× 106 vs. 0.5× 106 cells/spleen, Figure 2A) but
the percentage change in both groups was similar (approximately
7%, Figure 2B) and CLP did not induce a different change in
Tfh in educated or control mice. Thus, both before and at 24 h
post-CLP, Tfh cells represented a significantly greater proportion
of CD4 T cells in educated mice than in controls.

Interleukin-21 (IL21) produced by Tfh cells interacts with
FO B cells to promote differentiation and germinal center
formation. In both educated and control baseline mice, no IL21
was detected following ex vivo T cell receptor (TCR; CD3/CD28)
stimulation of Tfh cells. Similarly, TCR stimulation of Tfh cells
isolated from control mice 24 h post-CLP did not elicit IL21
production (Figure 2C). In contrast, TCR-stimulation induced
Tfh cells isolated from immune educated mice 24 h post-CLP to
produce IL21 (Figure 2C) – that is, IL21 production was noted
in approximately 2% of Tfh cells (Figure 2D). These Tfh cells
were predominantly CD44+/CD11a+/CD62L−, consistent with
a memory effector phenotype (Figure 2E).

Immune Education Alters CLP-Induced
Changes in Splenic Architecture
When activated, Tfh cells promote a follicular B cell response and
germinal center formation. Therefore, we examined the effects of
the immune education–induced increase in Tfh cells on splenic
architecture 24 h following CLP. Neither education alone nor
CLP in control mice altered the weight of the spleen (Figure 3A).
Relative to both baseline in educated mice prior to CLP and
to post-CLP controls, CLP in educated mice increased splenic
weight by 25% (Figure 3A). The CLP-induced splenomegaly
in educated mice was associated with an increased number of
germinal centers (Figure 3B) and an increase in the area of
the spleen taken up by germinal centers (Figures 3C,D and
Supplementary Figure S5).

Immune Education Increases CLP
Induced FO B Cell Responses in the
Spleen
We next examined the effects of immune education on CLP-
induced changes in splenic B cell phenotypes detailed in Figure 1.
T cell education had minimal effect on B cells prior to CLP
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FIGURE 1 | Effects of CLP on total B cells and B cell subtypes in the spleen. C57Bl/6 laboratory mice underwent CLP and were euthanized at given timepoints.
Data obtained using flow cytometry. Unmanipulated mice were used as T0 controls. Each point represents results in an individual animal, central horizontal line
indicates mean, upright, and inverted Ts indicate standard deviation, data representative of two independent experiments. *p < 0.05, **p < 0.01 for ** relative to T0

using one-way ANOVA with Dunnett post hoc correction for multiple comparisons. (A) Total splenic B cells at given time post-CLP. Gating: FSC/SSC, singlets, Live,
CD19+/B220+; N = 4–6/group. (B) Total mature (left) and immature (right) splenic B cells at given time post-CLP. Gating: FSC/SSC, singlets, Live, CD19+/B220+,
CD93; N = 4–6/group. (C) Total follicular, marginal zone, and germinal center B cells per spleen at given time post-CLP. Gating: Follicular B cells: FSC/SSC, singlets,
Live, CD19+/B220+, CD93-, B220+/CD138-, IgMlo/CD21/35lo; Germinal center: FSC/SSC, singlets, Live, CD19+/B220+, CD93-, B220+/CD138-,
IgMlo/CD21/35lo, GL7+; Marginal zone: FSC/SSC, singlets, Live, CD19+/B220+, CD93-, B220+/CD138-, IgMhi/CD21/35hi; N = 5/group for Follicular, 3–4/group for
germinal center B cells, 4–10 for marginal zone. (D) Total T1 transitional immature B cells per spleen at given time post-CLP. Gating: FSC/SSC, singlets, Live,
CD19+/B220+, CD93+, IgMhi/CD23-; N = 3–4/group. (E) Total plasma cells per spleen at given time post-CLP. Gating: FSC/SSC, singlets, Live, CD19+/B220+,
CD93-, B220+/CD138+; N = 3–4/group. (F) Total splenic CD4 T follicular helpers in the spleen at given time post-CLP. Gating: FSC/SSC, singlets, Live,
CD90+/CD4+, PD1+/CXCR5+; N = 3–4/group.

(Figure 4A). In contrast to the reduction in total B cells
observed 24 h post-CLP in control mice (Figures 1A, 4A),
CLP did not alter total B cell numbers in immune educated
mice (Figure 4A). Similarly, while CLP in control mice reduced
the number of FO B cells (Figure 1C), no such change was
noted 24 h post-CLP in educated mice (Figure 4B). In contrast,
immune education did not alter the CLP-induced decrease
in MZ B cells (Figures 1C, 4C). While the number of FO
I B cells in control animals was not changed, in immune
educated mice the number of FO I cells present 24 h post-
CLP was greater than in control mice (Figure 4D). However,
CLP reduced the number of FO II B cells in controls but
not in educated mice (Figure 4D). The combined effects of
CLP on FO I and FO II B cells accounted for the overall
difference in the response of FO B cells observed 24 h post-
CLP in educated mice (Figures 4B,D). The number of germinal

center B cells in both control and educated mice was equally
reduced 24 h post-CLP (Figure 4E) while neither CLP nor
immune education affected the number of splenic plasma
cells (Figure 4F).

B cell activation through antigen recognition is associated
with upregulation of the surface marker CD69 (19). T cell
education had no effect on the number of FO or MZ B
cells expressing CD69 prior to CLP (Figure 4G). Following
CLP, the number of CD69+ FO B cells in control mice
was not altered. In contrast, CLP induced an increase in
CD69+ FO B cells in educated mice, indicating increased
activation (Figure 4G). When MZ B cells were examined for
CD69 expression, CLP induced a similar increase in CD69+
MZ B cells compared to baseline numbers in baseline mice,
but immune education had no effect on activation of these
cells (Figure 4G).
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FIGURE 2 | Effects of immune education on splenic CD4 T follicular helper cell response to CLP. C57Bl/6 laboratory mice were injected with anti-CD3ε or isotype
control antibody. Thirty five days later mice were euthanized (T0) or subjected to CLP. Mice subjected to CLP were euthanized at 24 h and T follicular helper T cells
were analyzed using flow cytometry. Each point represents results in an individual animal, central horizontal line indicates mean, upright and inverted Ts indicate
standard deviation, data representative of two independent experiments. Filled circles – T0 in control mice; Filled square – T0 in immune educated mice; Open
circle – 24 h post-CLP in control mice; Open square – 24 h post-CLP in immune educated mice. Data analyzed using two-way ANOVA with Sidak’s post hoc
correction for multiple comparisons. *, significantly different from value in control mice at same time point; *p < 0.05. (A) Total number of CD4 T follicular helper cells
per spleen. Gating: FSC/SSC, singlets, Live, CD90+/CD4+, PD1+/CXCR5+; N = 4–5/group. (B) Percentage of CD4 T cells with T follicular helper cell phenotype.
Gating: FSC/SSC, singlets, Live, CD90+/CD4+, PD1+/CXCR5+; N = 4–5/group. (C) Total number of IL21-producing T follicular helper cells per spleen. Cells
stimulated ex vivo with CD3/CD28 for 5 h in the presence of Brefeldin A. Numbers represent percent above background. Gating: FSC/SSC, singlets, Live,
CD90+/CD4+, PD1+/CXCR5+, IL21+; N = 4–5/group. (D) Percentage of IL21 – producing T follicular helper cells per spleen. Cells stimulated ex vivo with
CD3/CD28 for 5 h in the presence of Brefeldin A. Numbers represent percent above background. Gating: FSC/SSC, singlets, Live, CD90+/CD4+, PD1+/CXCR5+,
IL21+; N = 4–5/group. (E) Flow cytometric plot demonstrating CD44/CD62L phenotype of Tfh compared to all CD4 T cells, along with CD11a, PD1, CXCR5
histograms. Line represents all CD4 T cells, Gray represents Tfh. Representative of 5 replicates.

CD4 T Cell Memory Causes Persistent
Alteration in the B Cell Response
60 Days Post-CLP
Sjaastad et al. have demonstrated that CLP attenuated the Tfh
and FO B cell response to specific antigens (10). This decreased
response persisted for at least 30 days following CLP. We have
shown that immune education induced prior to CLP altered the
acute response to CLP by (1) increasing the percentage of CD4
T cells expressing the Tfh phenotype (Figure 2B), (2) increasing
IL21 production (Figures 2C,D) by Tfh cells, (3) increasing
germinal center formation (Figures 3B,C), and increasing the

number of splenic follicular B cells (Figure 4B). The effects of
immune education, and specifically of the pre-existing presence
of a substantial number of Tfh cells, on the long-term immune
response to CLP is unknown. We therefore examined B cell
responses 60 days after CLP in control and immune educated
mice. Results are detailed in Figure 5. At this more remote time
point, splenic weight in both control and immune educated mice
was similarly increased (Figure 5A). The total number of splenic
B cells increased relative to T0 and 24 h post-CLP numbers but
the increase in educated mice was significantly greater than in
controls (Figure 5B). A similar response was noted in splenic
follicular (Figure 5C) and germinal center cells (Figure 5D) as
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FIGURE 3 | Effects of immune education splenic size and splenic germinal center formation 24 h post-CLP. C57Bl/6 laboratory mice underwent education or
treatment with isotype control antibody. Thirty-five days later mice were euthanized (T0) or subjected to CLP. Mice subjected to CLP were euthanized 24 h later.
Spleens were weighed immediately ex vivo and normalized to pre-CLP body weight. Spleens were fixed and stained with hematoxylin and eosin and analyzed for
germinal center formation by blinded pathologists. Each point represents results in an individual animal, central horizontal line indicates mean, upright and inverted Ts
indicate standard deviation, data representative of two independent experiments. Filled circles – T0 in control mice; Filled square – T0 in immune educated mice;
Open circle – 24 h post-CLP in control mice; Open square – 24 h post-CLP in immune educated mice. Data analyzed using two-way ANOVA with Sidak’s post hoc
correction for multiple comparisons. ***p < 0.001, significantly different from value in control mice at same time point; #p < 0.05, slope of line connecting T0 mean
and mean 24 h post-CLP significantly different than slope of line for control mice. (A) Splenic weight normalized to pre-CLP body weight. N = 3/group. (B) Germinal
centers per high power field. N = 6/group. (C) Hematoxylin and eosin stain of the spleen visualized at 100× or 200× revealing germinal centers. Representative of 6
slides each. (D) Percent area covered by germinal centers in the spleen. N = 6/group.

well as in splenic plasma cells cell (Figure 5E). Marginal B cells
were increased relative to T0 and 24 h post-CLP numbers but,
as seen in Figure 4C, there was no difference in marginal B cells
between educated and control mice at 60 days (Figure 5F).

Education Increases the
Antigen-Specific B Cell Response to CLP
Immune education induced general changes to the B cell response
to CLP (Figure 4). However, the effects of CLP on specific B
cell responses to known antigen present at the time of CLP
in the presence of educated Tfh are unknown. Therefore, we
administered 5 µg 4-hydroxy-3-nitrophenylacetic acid or vehicle
into the peritoneum of control and educated mice at the time
of CLP to mimic antigen introduction at the time of insult.
Results were compared to what was observed 7 days after a
similar injection was given to unoperated mice. Compared to
mice administered NP but not subjected to CLP, NP-specific B

cells could not be detected in animals not exposed to NP. Seven
days following CLP, the number of NP-specific B cells in control
mice was significantly lower than that measured in control
animals subjected to injection only (Figure 6A). In contrast, the
number of NP-specific B cells was maintained in educated mice
following CLP. A similar result was noted in NP-specific FO B
cells (Figure 6B, left), while NP-specific MZ B cells were not
maintained in educated mice (Figure 6B, right).

DISCUSSION

The data presented here examine the B cell response to CLP
in a murine model that includes a broad repertoire of memory
T cells (“immune educated mice”). This particular component
of adaptive immunity is not present when CLP is performed
on standard laboratory (control) mice (7), and constitutes an
important deficiency in this most commonly – used model of
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FIGURE 4 | Effects of immune education on B cell populations 24 h post-CLP. C57Bl/6 laboratory mice underwent education or treatment with isotype control
antibody. Thirty-five days later mice were euthanized (T0) or subjected to CLP. Mice subjected to CLP were euthanized 24 h later. Spleens were homogenized and B
cell populations were analyzed using flow cytometry. Each point represents results in an individual animal, central horizontal line indicates mean, upright and inverted
Ts indicate standard deviation, data representative of two independent experiments. Filled circles – T0 in control mice; Filled square – T0 in immune educated mice;
Open circle – 24 h post -CLP in control mice; Open square – 24 h post-CLP in immune educated mice. Data analyzed using two-way ANOVA with Sidak’s post hoc
correction for multiple comparisons. *p < 0.05, significantly different from value in control mice at same time point; #p < 0.05, slope of line connecting mean at T0 to
mean value 24 h post-CLP significantly different than same line in control mice. (A) Total splenic B cells. Gating: FSC/SSC, singlets, Live, CD19+/B220+;
N = 5–9/group. (B) Total follicular (Left) and marginal zone (Right) B cells per spleen. Gating: Follicular B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD93-,
B220+/CD138-, IgMlo/CD21/35lo. N = 5–6/group. (C) Total marginal zone B cells per spleen. Gating: Marginal zone: FSC/SSC, singlets, Live, CD19+/B220+,
CD93-, B220+/CD138-, IgMhi/CD21/35hi. N = 5–6/group. (D) Total follicular I (left) and follicular II (right) B cells per spleen. Gating: Follicular I B cells: FSC/SSC,
singlets, Live, CD19+/B220+, CD93-, B220+/CD138-, IgMlo/CD21/35lo, IgD+/IgMlo. Follicular II B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD93-,
B220+/CD138-, IgMlo/CD21/35lo, IgD+/IgMmid N = 5–6/group. (E) Total germinal center B cells per spleen. Gating: FSC/SSC, singlets, Live, CD19+/B220+,
CD93-, B220+/CD138-, IgMlo/CD21/35lo, GL7+; N = 5–6/group. (F) Total plasma cells per spleen. Gating: FSC/SSC, singlets, Live, CD19+/B220+, CD93-,
B220+/CD138+; N = 7/group. (G) Total CD69 + follicular (left) and CD69 + marginal (right) B cells per spleen. Gating: Follicular B cells: FSC/SSC, singlets, Live,
CD19+/B220+, CD93-, B220+/CD138-, IgMlo/CD21/35lo, CD69+/IgM+. Marginal B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD93-, B220+/CD138-,
IgMhi/CD21/35hi, CD69+/IgM+ N = 3–4/group.

human sepsis (3, 4). Our data demonstrate that the presence of
T cell memory altered several aspects of the acute response to
CLP, most notably increasing induced IL21 production by Tfh
cells indicating increased functionality. Increased functionality,
in turn, reversed the CLP-induced decrease in splenic B cell
populations noted in control animals, enhancing FO B cell
and germinal center development. Further, B cell activation, as
indicated by CD69 expression, was increased in the presence
of T cell memory. While CLP diminished the response to a
specific antigen in control mice, the response was preserved in
immune educated animals. This finding indicates that memory

Tfh cells may be required for antigen-specific responses in
the presence of inflammation. Most importantly, the effects of
immune education on B cell maturation were still present 60 days
after CLP. Thus, a mature B cell response may contribute to
differences in both short – and long – term abnormalities between
control and immune educated mice. Further, the results suggest
that T cell memory, in part via its effect on B cell development,
plays an important role in the pathogenesis of human sepsis.

Little is known concerning the effects of preexisting T cell
memory on the acute response to CLP. Tfh assist FO B cells
in converting from short-lived, naïve IgM+/IgD+ B cells to
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FIGURE 5 | Effects of immune education on Splenic Weight and B cell populations at T0, 24 h and 60 days post-CLP. C57Bl/6 laboratory mice underwent education
or treatment with isotype control antibody. Thirty-five days later mice were euthanized (T0) or subjected to CLP. Mice subjected to CLP were euthanized 24 h (24 h
CLP) or 60 days (60 days CLP) later. Spleens were weighed and homogenized and B cell populations were analyzed using flow cytometry. Each point represents
results in an individual animal, central horizontal line indicates mean, upright and inverted Ts indicate standard deviation, data representative of two independent
experiments. Filled circles – T0 in control mice; Filled square – T0 in immune educated mice; Open circle – 24 h post-CLP in control mice; Open square – 24 h
post-CLP in immune educated mice. Data analyzed using two-way ANOVA with Sidak’s post hoc correction for multiple comparisons. #, slope of line connecting T0

mean and mean 24 h post-CLP significantly different than slope of line for control mice. ***p < 0.001, significantly different from value in control mice at same time
point; #p < 0.05, slope of line connecting mean at T0 to mean value 24 h post-CLP significantly different than same line in control mice. (A) Splenic weight
normalized to pre-CLP body weight. N = 4/group. (B) Total splenic B cells. Gating: FSC/SSC, singlets, Live, CD19+/B220+; N = 3–4/group. (C) Total follicular B
cells. Gating: Follicular B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD93-, B220+/CD138-, IgMlo/CD21/35lo; N = 4/group. (D) Total germinal center B cells.
Gating: FSC/SSC, singlets, Live, CD19+/B220+, CD93-, B220+/CD138-, IgMlo/CD21/35lo, GL7+; N = 4/group. (E) Total plasma cells. Gating: FSC/SSC, singlets,
Live, CD19+/B220+, CD93-, B220+/CD138+; N = 4/group. (F) Total marginal zone B cells. Gating: FSC/SSC, singlets, Live, CD19+/B220+, CD93-,
B220+/CD138-, IgMhi/CD21/35hi; N = 4/group.

long-lived, memory B cells and plasma cells that can efficiently
produce antibodies to assist the body in preventing recurrent
infection. FO B cells that receive Tfh assistance are able to induce
antibody class-switching with increased antibody affinity to both
extracellular and intracellular pathogenic antigens. Without T
cell help, only low affinity antibodies can be produced and class-
switching is limited. Considering that most adult humans have
a significant Tfh compartment prior to a septic event, the effect
of pre-existing Tfh on the B cell response must be considered.
Recent clinical data supports that decreased circulating Tfh at
sepsis onset in human subjects correlates with decreased B cell
maturation during sepsis and decreased survival (2).

Murine CLP has long been the animal model of choice for
human sepsis (3, 4). There are, however, two commonly voiced

concerns about this approach. First, based on immunologic and
genetic differences, some have opined that differences between
CLP and human sepsis are too profound for translation of
findings from mice to men (5). Second, improved acute care
has identified a cohort of sepsis survivors who have significant
long-term health problems. To date, murine equivalents of these
late or persistent abnormalities have not been well-characterized
or investigated. The data presented here is pertinent to both
concerns, emphasizing that addressing the first issue is required
to address the second.

In previous work we have used an anti-CD3ε antibody to
induce a broad repertoire of memory T cells in C57Bl/6 mice
(11). The result has been a significant change in the response
to CLP (Taylor et al., unpublished data). The findings presented

Frontiers in Immunology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 1946182

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-01946 August 10, 2020 Time: 14:48 # 9

Taylor et al. Role of TFH in CLP

FIGURE 6 | Effects of immune education on NP-specific B cell populations. C57Bl/6 laboratory mice underwent immune education or treatment with isotype control
antibody. Thirty-five days later were treated with intraperitoneal 4-hydroxy-3-nitrophenylacetic acid (NP), 5 µg suspended in PBS (T0) or subjected to CLP and
treated with NP (7 days CLP). Mice were euthanized 7 days later. Spleens were homogenized and B cell populations were analyzed using flow cytometry. Each point
represents results in an individual animal, central horizontal line indicates mean, upright and inverted Ts indicate standard deviation, data representative of two
independent experiments. Filled circles – T0 in control mice; Filled square – T0 in immune educated mice; Open circle – 24 h post-CLP in control mice; Open
square – 24 h post-CLP in immune educated mice. Data analyzed using two-way ANOVA with Sidak’s post hoc correction for multiple comparisons. *p < 0.05,
significantly different from value in control mice at same time point; #p < 0.05, slope of line connecting T0 mean and mean 24 h post-CLP significantly different than
slope of line for control mice. (A) Total splenic NP-specific B cells per spleen. Gating: FSC/SSC, singlets, Live, CD19+/B220+, CD19+/NP+; N = 5–9/group.
(B) Total NP-specific follicular (Left) and marginal zone (Right) B cells per spleen. Gating: Follicular B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD19+/NP+,
CD93-, B220+/CD138-, IgMlo/CD21/35lo, Marginal Zone B cells FSC/SSC, singlets, Live, CD19+/B220+, CD19+/NP+, CD93-, B220+/CD138-, IgMhi/CD21/35hi;
N = 5–6/group.

here further characterize the role of T cell memory in the
response to CLP. Specifically, our findings demonstrate that the
presence of memory Tfh cells, which has not been examined
in either CLP or in human sepsis, is an essential component
in the activation of B cells responses. These findings may have
direct clinical relevance. Many years ago, Meakins et al., observed
that a failure to resolve anergy was a poor prognostic factor
in septic surgical and trauma patients (20). It is difficult to
assess the ability of B cells to form antibody following an
inflammatory insult. However, our findings indicate that an
inadequate Tfh response limits B cell receptor signaling and
maturation. One potential consequence of a lack of Tfh cells

would be an acceleration of B cell apoptosis (21, 22), a finding
present at autopsy in patients with fatal sepsis (1). Supporting this
explanation is a recent prospective cohort study of sepsis patients
indicating activation-associated cell death is a major driver of
B cell lymphopenia in sepsis; preexisting Tfh may increase the
apoptotic threshold of activated B cells, partially rescuing the B
cell response (23).

Our data indicate that the acute CLP-induced
decrease in mature B cell numbers was reversed 60 days
following the procedure. The fact that this increase
was more greater in immune educated mice likely
reflects increased functionality by memory Tfh cells.
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Our findings may also have relevance to what has been
viewed as a major limitation of CLP – the use of laboratory
mice (5, 6). Translation of results from CLP to human sepsis
has been poor. It has been noted that, in contrast to humans,
lab mice lack a memory T cell compartment (7, 8). Our
group has developed a method of inducing widespread T cell
memory through administration of an anti-CD3ε activating
antibody. This “education” leads to widespread CD4 and CD8
T cell memory induction. This approach altered the response
to CLP in a manner that enhances features consistent with
sepsis – a more pronounced innate immune response, more
profound organ dysfunction and decreased survival (Taylor,
et al., unpublished data). The importance of the effects of
immune education on CLP-induced changes in B cell numbers
is unclear. However, it reverses acute depression of B cell
responses that follows CLP. The augmentation of this early
response to CLP indicates that perhaps a major component of
the early response to sepsis has been neglected and that T cell
memory may have important effects on the long-term responses
to CLP and sepsis.

More importantly, the remaining B cells in the spleen
that are not eliminated during the sepsis response, while low
in number, may be mounting an effective antibody response
that could play an important role in protective immunity.
When examined, there was no difference in total IgG levels
in the serum of mice at any time point (data not shown),
indicating that the immune response at the cellular level
may not be reflected in changes in total immunoglobulin
repertoire, but instead, may represent alteration in specific
B cell clones as demonstrated by an NP-specific B cell
response with introduction of antigen. Addition of Tfh may
help refine the B cell response and allow for antibody
recognition of different epitopes that cannot be recognized
without T cell help.

The Tfh memory response is understudied in CLP and could
be an important target in future treatment of sepsis as a way to
modulate the B cell response in a more effective manner. Tfh
modulation may represent a target for preventing post-sepsis
immunosuppression in the future.
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FIGURE S1 | Murine Sepsis Score comparing control and immune educated mice
following CLP. C57Bl/6 laboratory mice underwent education or treatment with
isotype control antibody. Thirty-five days later mice were subjected to CLP and
monitored daily for clinical scoring using the murine sepsis score. Data as
mean ± standard deviation, ∗p < 0.001 for treatment effect over time by mixed
effects modeling. Representative of two independent experiments. N = 5/group.

FIGURE S2 | Gating Strategy for Tfh cells. Splenic T cell populations shown from
educated mouse 24 h following CLP without TCR stimulation for all except
cytokine staining, which is shown following TCR stimulation.

FIGURE S3 | Gating Strategy for B cells. Splenic B cell populations shown from
educated mouse 24 h following CLP (18).

FIGURE S4 | Effects of CLP on total B cells and B cell subtypes in the spleen.
C57Bl/6 laboratory mice underwent CLP and were euthanized at given timepoints.
Data obtained using flow cytometry. Unmanipulated mice were used as T0

controls. Data as mean ± standard deviation, ∗p < 0.05, ∗∗p < 0.01 for spleen
compared to T0 by one-way ANOVA with Dunnett correction for multiple
comparisons. Total follicular I (left) and follicular II (right) B cells per spleen at given
time post-CLP. Gating: Follicular I B cells: FSC/SSC, singlets, Live,
CD19+/B220+, CD93−, B220+/CD138−, IgMlo/CD21/35lo, IgD+/IgMlo. Follicular
II B cells: FSC/SSC, singlets, Live, CD19+/B220+, CD93−, B220+/CD138−,
IgMlo/CD21/35lo, IgD+/IgMmid N = 3–4/group.

FIGURE S5 | Effects of immune education on splenic germinal center formation in
the spleen following CLP. C57Bl/6 laboratory mice underwent CLP and were
euthanized at 24 h. Spleens were fixed and stained with hematoxylin and eosin
and analyzed for germinal center formation by blinded pathologists. Photos are
representative of two independent experiments. (A) Germinal center as indicated
by red circle with central paling in white pulp of spleen. (B) Hematoxylin and eosin
stain of the spleen in control and educated mice 40× magnification.
Representative of 6 slides each.

TABLE S1 | Antibodies used for this manuscript.

Frontiers in Immunology | www.frontiersin.org 10 August 2020 | Volume 11 | Article 1946184

https://www.frontiersin.org/articles/10.3389/fimmu.2020.01946/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01946/full#supplementary-material
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-01946 August 10, 2020 Time: 14:48 # 11

Taylor et al. Role of TFH in CLP

REFERENCES
1. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al.

Immunosuppression in patients who die of sepsis and multiple organ failure.
JAMA. (2011) 306:2594–605.

2. Duan S, Jiao Y, Wang J, Tang D, Xu S, Wang R, et al. Impaired B-Cell
maturation contributes to reduced B Cell numbers and poor prognosis in
sepsis. Shock. (2020) 54:70–7.

3. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock–a review of
laboratory models and a proposal. J Surg Res. (1980) 29:189–201. doi: 10.1016/
0022-4804(80)90037-2

4. Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM,
et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): an
international expert consensus initiative for improvement of animal modeling
in sepsis. Infection. (2018) 46:687–91.

5. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al.
Genomic responses in mouse models poorly mimic human inflammatory
diseases. Proc Natl Acad Sci USA. (2013) 110:3507–12.

6. Warren HS, Tompkins RG, Moldawer LL, Seok J, Xu W, Mindrinos MN, et al.
Mice are not men. Proc Natl Acad Sci USA. (2015) 112:E345.

7. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al.
Normalizing the environment recapitulates adult human immune traits in
laboratory mice. Nature. (2016) 532:512–6.

8. Abolins S, King EC, Lazarou L, Weldon L, Hughes L, Drescher P, et al.
The comparative immunology of wild and laboratory mice, Mus musculus
domesticus. Nat Commun. (2017) 8:14811.

9. Huggins MA, Sjaastad FV, Pierson M, Kucaba TA, Swanson W, Staley C, et al.
Microbial exposure enhances immunity to pathogens recognized by TLR2 but
increases susceptibility to cytokine storm through TLR4 sensitization.Cell Rep.
(2019) 28:1729–43.e1725.

10. Sjaastad FV, Condotta SA, Kotov JA, Pape KA, Dail C, Danahy DB, et al.
Polymicrobial sepsis chronic immunoparalysis is defined by diminished Ag-
specific T cell-dependent B cell responses. Front Immunol. (2018) 9:2532.
doi: 10.3389/fimmu.2018.02532

11. Taylor MD, Brewer MR, Deutschman CS. Induction of diverse T cell memory
through antibody-mediated activation. Eur J Immuno. (2020). doi: 10.1002/eji.
202048570. [Epub ahead of print].

12. Abcejo AS, Andrejko KM, Raj NR, Deutschman CS. Failed interleukin-6
signal transduction in murine sepsis: attenuation of hepatic glycoprotein 130
phosphorylation. Crit Care Med. (2009) 37:1729–34.

13. Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SM, McCormick JK, et al.
A robust scoring system to evaluate sepsis severity in an animal model. BMC
Res Notes. (2014) 7:233. doi: 10.1186/1756-0500-7-233 doi: 10.1186/1756-
0500-7-233

14. Taylor MD, Burn TN, Wherry EJ, Behrens EM. CD8 T Cell memory increases
immunopathology in the perforin-deficient model of hemophagocytic
lymphohistiocytosis secondary to TNF-alpha. Immunohorizons. (2018) 2:67–
73. doi: 10.4049/immunohorizons.1800003

15. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang
KC, et al. Sepsis-induced apoptosis causes progressive profound
depletion of B and CD4+ T lymphocytes in humans. J Immunol. (2001)
166:6952–63.

16. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos
K, et al. The follicular versus marginal zone B lymphocyte cell fate
decision is regulated by aiolos, Btk, and CD21. Immunity. (2001) 14:
603–15.

17. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in
the early response against T-independent blood-borne particulate antigens.
Immunity. (2001) 14:617–29.

18. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. (2008)
20:149–57.

19. Zimmermann M, Rose N, Lindner JM, Kim H, Gonçalves AR, Callegari I,
et al. Antigen extraction and B Cell activation enable identification of rare
membrane antigen specific human B cells. Front Immunol. (2019) 10:829.
doi: 10.3389/fimmu.2019.00829

20. Meakins JL, Pietsch JB, Bubenick O, Kelly R, Rode H, Gordon J, et al. Delayed
hypersensitivity: indicator of acquired failure of host defenses in sepsis and
trauma. Ann Surg. (1977) 186:241–50.

21. Kil LP, de Bruijn MJ, van Nimwegen M, Corneth OB, van Hamburg
JP, Dingjan GM. Btk levels set the threshold for B-cell activation
and negative selection of autoreactive B cells in mice. Blood. (2012)
119:3744–56.

22. Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM, Lanzavecchia A,
et al. Persistent antigen and germinal center B cells sustain T follicular helper
cell responses and phenotype. Immunity. (2013) 38:596–605. doi: 10.1016/j.
immuni.2012.11.020

23. Shankar-Hari M, Fear D, Lavender P, Mare T, Beale R, Swanson
C, et al. Activation-associated accelerated apoptosis of memory B
cells in critically Ill patients with sepsis. Crit Care Med. (2017) 45:
875–82.

Conflict of Interest: CD is a consultant for Enlivex Therapeutics Inc, Jerusalem,
Israel.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Taylor, Brewer, Nedeljkovic-Kurepa, Yang, Reddy, Abraham,
Barnes and Deutschman. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Immunology | www.frontiersin.org 11 August 2020 | Volume 11 | Article 1946185

https://doi.org/10.1016/0022-4804(80)90037-2
https://doi.org/10.1016/0022-4804(80)90037-2
https://doi.org/10.3389/fimmu.2018.02532
https://doi.org/10.1002/eji.202048570
https://doi.org/10.1002/eji.202048570
https://doi.org/10.1186/1756-0500-7-233
https://doi.org/10.1186/1756-0500-7-233
https://doi.org/10.1186/1756-0500-7-233
https://doi.org/10.4049/immunohorizons.1800003
https://doi.org/10.3389/fimmu.2019.00829
https://doi.org/10.1016/j.immuni.2012.11.020
https://doi.org/10.1016/j.immuni.2012.11.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 12 August 2020

doi: 10.3389/fimmu.2020.01786

Frontiers in Immunology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 1786

Edited by:

Vandana Kalia,

University of Washington School of

Medicine, United States

Reviewed by:

Adrian Piliponsky,

Seattle Children’s Research Institute,

United States

Stefanie Barbara Flohé,

Essen University Hospital, Germany

*Correspondence:

Thomas S. Griffith

tgriffit@umn.edu

Specialty section:

This article was submitted to

Immunological Memory,

a section of the journal

Frontiers in Immunology

Received: 26 February 2020

Accepted: 03 July 2020

Published: 12 August 2020

Citation:

Sjaastad FV, Kucaba TA, Dileepan T,

Swanson W, Dail C, Cabrera-Perez J,

Murphy KA, Badovinac VP and

Griffith TS (2020) Polymicrobial Sepsis

Impairs Antigen-Specific Memory

CD4T Cell-Mediated Immunity.

Front. Immunol. 11:1786.

doi: 10.3389/fimmu.2020.01786

Polymicrobial Sepsis Impairs
Antigen-Specific Memory CD4T
Cell-Mediated Immunity
Frances V. Sjaastad 1, Tamara A. Kucaba 2, Thamotharampillai Dileepan 3,4,

Whitney Swanson 2, Cody Dail 5, Javier Cabrera-Perez 1,6, Katherine A. Murphy 2,

Vladimir P. Badovinac 7,8,9 and Thomas S. Griffith 1,2,4,10,11*

1Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States,
2Department of Urology, University of Minnesota, Minneapolis, MN, United States, 3Department of Microbiology and

Immunology, University of Minnesota, Minneapolis, MN, United States, 4Center for Immunology, University of Minnesota,

Minneapolis, MN, United States, 5Medical Student Summer Research Program in Infection and Immunity, University of

Minnesota, Minneapolis, MN, United States, 6Medical Scientist Training Program, University of Minnesota, Minneapolis, MN,

United States, 7 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States,
8Department of Pathology, University of Iowa, Iowa City, IA, United States, 9Department of Microbiology and Immunology,

University of Iowa, Iowa City, IA, United States, 10Masonic Cancer Center, University of Minnesota, Minneapolis, MN,
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Patients who survive sepsis display prolonged immune dysfunction and heightened risk

of secondary infection. CD4T cells support a variety of cells required for protective

immunity, and perturbations to the CD4T cell compartment can decrease overall immune

system fitness. Using the cecal ligation and puncture (CLP) mouse model of sepsis,

we investigated the impact of sepsis on endogenous Ag-specific memory CD4T cells

generated in C57BL/6 (B6) mice infected with attenuated Listeria monocytogenes (Lm)

expressing the I-Ab-restricted 2W1S epitope (Lm-2W). The number of 2W1S-specific

memory CD4T cells was significantly reduced on day 2 after sepsis induction, but

recovered by day 14. In contrast to the transient numerical change, the 2W1S-specific

memory CD4T cells displayed prolonged functional impairment after sepsis, evidenced

by a reduced recall response (proliferation and effector cytokine production) after

restimulation with cognate Ag. To define the extent to which the observed functional

impairments in the memory CD4T cells impacts protection to secondary infection,

B6 mice were infected with attenuated Salmonella enterica-2W (Se-2W) 30 days

before sham or CLP surgery, and then challenged with virulent Se-2W after surgery.

Pathogen burden was significantly higher in the CLP-treated mice compared to shams.

Similar reductions in functional capacity and protection were noted for the endogenous

OVA323-specific memory CD4T cell population in sepsis survivors upon Lm-OVA

challenge. Our data collectively showCLP-induced sepsis alters the number and function

of Ag-specific memory CD4T cells, which contributes (in part) to the characteristic

long-lasting immunoparalysis seen after sepsis.

Keywords: sepsis, immune suppression, CD4T cells, memory, IFN-gamma

186

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01786
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01786&domain=pdf&date_stamp=2020-08-12
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tgriffit@umn.edu
https://doi.org/10.3389/fimmu.2020.01786
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01786/full
http://loop.frontiersin.org/people/597862/overview
http://loop.frontiersin.org/people/610654/overview
http://loop.frontiersin.org/people/24014/overview
http://loop.frontiersin.org/people/523173/overview


Sjaastad et al. Sepsis Compromises Memory CD4 T Cells

INTRODUCTION

The importance of a functional immune system for overall
health is dramatically illustrated by individuals with immune
system defects being highly susceptible to serious and often
life-threatening infections. States of immune deficiency can be
congenital (e.g., impaired T and/or B cell development) or
acquired [e.g., HIV infection, iatrogenic (post-organ transplant)
immune suppression, or surgery/trauma]. Studies interrogating
the events leading to acquired immunodeficiency are done with
the goal of designing treatment modalities to restore immune
system function and reduce the susceptibility to infection.

Sepsis causes millions of deaths annually worldwide (1).
Defined as a systemic inflammatory response syndrome during
a disseminated infection (2, 3), early stages of sepsis are
marked by a potentially fatal hyperinflammatory state driven
by proinflammatory cytokines (4–6). Concurrent with this
hyperinflammation is system-wide transient loss of multiple
immune cell types that decreases the ability of the septic host
to respond to the primary infection or secondary nosocomial
infection. Advancements in critical care medicine have improved
survival rates of patients following the initial sepsis-inducing
injury (7–10), where acute death from sepsis is no longer the
major cause of mortality for these patients. Currently, ∼70%
of sepsis-related deaths occur after the first 3 days of the
disorder as the result of a secondary infection, with many patient
deaths occurring weeks and months later (11). Interestingly,
the sepsis-induced lymphopenia is transient, and the once
hyperinflammatory immune response transitions to a prolonged
immunosuppressive state even though the cellular composition
of the immune system numerically returns to normal. In fact,
the prolonged immune suppression that develops after a septic
event is now considered a leading reason for the extended period
of increased susceptibility to pathogens normally handled by the
immune system in healthy individuals (11, 12).

CD4T cells are among the immune cells significantly
depleted during the acute stage of sepsis (13), but gradually
recover during the immunosuppressive phase (14). CD4T cells
support the function of a variety of immune cells needed to
mount a productive and protective immune response (15), and
perturbations in the CD4T cell compartment can dramatically
affect overall immune system fitness. The ability to develop
and sustain memory cells after infection or immunization is
a hallmark of adaptive immunity and basis for protective
vaccination against infectious disease (16, 17). Memory CD4T
cells possess several important features that distinguish them
from naïve CD4T cells. First, there are increased numbers
of memory CD4T cells compared to precursors, providing
better coverage and a more rapid cellular response during
re-challenge. Memory CD4T cells have experienced cell-
intrinsic “programming” changes that allow for rapid expression
of effector cytokines, chemokines, and cytotoxic molecules.
Additionally, memory CD4T cells establish residence in both
lymphoid and non-lymphoid tissues (18, 19). Finally, the number
of memory CD4T cells present at the end of the contraction
phase of a primary response is maintained for the life of
the host (20). Maintenance of memory CD4T cell responses

over time is a dynamic process, depending on subsequent
encounters with either cognate or non-related Ag/infections
that have the potential to change their phenotype and function
(15). Similar to the primary response, the magnitude of a
memory CD4T cell response directly correlates with the quantity
and quality of memory CD4T cells present at the time
of re-challenge. Thus, changes in composition and function
of naive and memory CD4T cells can result in impaired
immunity and increased susceptibility to subsequent infections
(21, 22). The present study took advantage of our ability
to track the number and function of endogenous Ag-specific
memory CD4T cells in the wake of a septic event [using
the cecal ligation and puncture (CLP) model of polymicrobial
sepsis]. Our data demonstrate sepsis leads to dramatic and
transient decline in pre-existing memory CD4T cell numbers,
with sustained functional impairments, which contribute to
the overall increased susceptibility to secondary infections in
sepsis survivors.

MATERIALS AND METHODS

Mice
Female C57BL/6 mice (8-weeks old) were purchased from the
National Cancer Institute (Frederick, MD). Female pet store
mice were purchased from local pet stores in the Minneapolis-St.
Paul, MN metropolitan area. All mice were housed in AALAC-
approved animal facilities at the University of Minnesota at
the appropriate biosafety level (BSL-1/BSL-2 for SPF B6 mice,
and BSL-3 for cohoused B6 and pet store mice). SPF B6 and
pet store mice were cohoused at a ratio of 8:1 in large rat
cages for 60 days to facilitate microbe transfer (23, 24). In all
experiments, including those using cohoused mice, mice were
age-matched. Experimental procedures were approved by the
University of Minnesota Institutional Animal Care and Use
Committees and performed following the Office of Laboratory
Animal Welfare guidelines and PHS Policy on Human Cancer
and Use of Laboratory Animals.

Cecal Ligation and Puncture (CLP)
Sepsis was induced by CLP (25). Briefly, mice were anesthetized
using isoflurane (2.5% gas via inhalation). The abdomen was
shaved and disinfected with 5% povidone-iodine antiseptic.
Bupivacaine (6 mg/kg s.c.) was then administered at the site
where a midline incision was made. The distal third (∼1 cm) of
the cecum was ligated with 4–0 silk suture and punctured once
with a 25-g needle to extrude a small amount of cecal content.
After returning the cecum to the abdomen, the peritoneum
was closed via continuous suture and the skin was sealed
using surgical glue (Vetbond; 3M, St. Paul, MN). Post-operative
analgesia and fluid resuscitation occurred at the conclusion of
surgery and the following 3 days in the form of meloxicam
(2 mg/kg) in 1ml saline. Mice were monitored daily for
weight loss and pain for at least 5 days post-surgery. To
control for non-specific changes from the surgery, sham mice
underwent the same laparotomy procedure excluding ligation
and puncture.
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Experimental Pathogens and Infections
C57BL/6 mice were immunized with attenuated Listeria
monocytogenes-2W1S (Lm-2W1S) or Lm-OVA (107 CFU i.v.)
or attenuated Salmonella enterica serovar Typhimurium strain
BRD509-2W1S (Se-2W1S; AroA−; 106 CFU i.v.) 30 days before
sham or CLP surgery to generate memory CD4T cells. In some
experiments, mice received a second infection with attenuated
Lm-2W1S (107 CFU i.v.), virulent Lm-OVA (104 CFU i.v.), or
virulent Se-2W1S (103 CFU i.v.). In experiments where mice
received a secondary virulent Lm-OVA bacterial challenge, mice
were depleted of CD8T cells by injecting 100 µg anti-CD8 mAb
(clone 2.43) i.v. 3, 2, and 1 days prior to secondary infection.
In experiments where mice received a secondary virulent Se-
2W1S bacterial infection, some of the mice were depleted of
CD4T cells by injecting 800 µg of anti-CD4 mAb (clone
GK1.5) i.v. 7 days before and 400 µg i.v. 4 and 3 days before
challenge. To measure the clearance of the secondary infection
of virulent Lm-OVA or virulent Se-2W1S, livers and spleens
were removed 3 or 7 days post-infection, respectively, placed
in 0.2% IGEPAL solution (Sigma-Aldrich), and homogenized.
Serial dilutions of the homogenate were plated on tryptic soy
broth agar containing 50µg/ml streptomycin (for Lm-OVA) or
100µg/ml streptomycin (for Se-2W1S), which restricted bacterial
growth to the streptomycin-resistant Lm-OVA or Se-2W1S used
for secondary infection. Bacterial colonies were counted after
24 h incubation at 37◦C (26–28).

Enrichment and Analysis of Ag-Specific
CD4T Cells
I-Ab-specific tetramers containing 2W1S
(EAWGALANWAVDSA) or OVA323−339

(ISQAVHAAHAEINEAGR) were used to identify Ag-specific
CD4T cells (29–31). Briefly, I-Ab

β-chains containing the 2W1S
or OVA323−339 epitopes covalently linked to the I-Ab

β-chain
were produced in Drosophila melanogaster S2 cells. 2W1S:I-Ab

or OVA323−339:I-A
b monomers were then biotinylated and

made into tetramers with streptavidin-phycoerythrin (SA-PE;
Prozyme). To enrich for Ag-specific CD4T cells, tetramers
(10 nM final concentration) were then added to single cell
suspensions in 300 µl tetramer staining buffer (PBS containing
5% FBS, 2mM EDTA, 1:50 normal mouse serum, and 1:100 anti-
CD16/32 mAb). The cells were incubated in the dark at room
temperature for 1 h, followed by a wash in 10ml ice cold FACS
Buffer. The tetramer-stained cells were then resuspended in 300
µl FACS Buffer, mixed with 25 µl of anti-PE mAb-conjugated
magnetic microbeads (StemCell Technologies), and incubated in
the dark on ice for 30min. The cells were washed, resuspended
in 3ml cold FACS Buffer, and passed through an EasySepMagnet
(StemCell Technologies) to yield the enriched tetramer positive
population. The resulting enriched fractions were stained
with a cocktail of fluorochrome-labeled mAb (see below). Cell
numbers for each sample were determined using AccuCheck
Counting Beads (Invitrogen). Samples were then analyzed
using a Fortessa flow cytometer (BD) and FlowJo software
(TreeStar Inc., Ashland, OR). The percentage of 2W1S:I-Ab+ or
OVA323−339:I-A

b+ events was multiplied by the total number
of cells in the enriched fraction to calculate the total number of
2W1S:I-Ab- or OVA323−339:I-A

b–specific CD4 T cells.

In vivo peptide stimulation was used to determine Ag-specific
CD4T cell cytokine production, as previously described (31–34).
Briefly, infected mice were injected i.v. with 100 µg of the 2W1S
orOVA323−339 peptides (synthesized by Bio-Synthesis, Louisville,
TX). After 4 h, spleens were harvested in media containing
10µg/ml brefeldin A. The resulting cell suspensions were fixed,
permeabilized, and stainedwith anti-IFNγ, -TNF, and -IL-2mAb.

Flow Cytometry
To assess the expression of cell surface proteins, cells were
incubated with fluorochrome-conjugated mAb at 4◦C for 30min.
The cells were then washed with FACS buffer. For some
experiments, the cells were then fixed with PBS containing 2%
paraformaldehyde. In procedures requiring intracellular staining,
cells were permeabilized following surface staining using the
transcription factor staining kit (Tonbo), stained for 1 h at
20◦C with a second set of fluorochrome-conjugated mAb, and
suspended in FACS buffer for acquisition. The fluorochrome-
conjugated mAb used in both surface and intracellular stainings
were as follows: Dump gate: APC-Cy7 CD11b (clone M1/70;
Tonbo), APC-Cy7 CD11c (clone N418; Tonbo), APC-Cy7
B220 (clone RA3-6B2; Tonbo), APC-Cy7 F4/80 (clone BM8.1;
Tonbo), Ghost Red 780 viability dye (Tonbo). Surface staining:
BV650 CXCR5 (clone L138D7; BioLegend), Brilliant Violet 510
CD44 (clone IM7; BioLegend), redFluo 710 CD44 (clone IM7;
Tonbo), Brilliant Violet 711 CD8 (clone 53-6.7; BioLegend),
Brilliant Ultra Violet 395 Thy1.2 (clone 53-2.1; BD Biosciences)—
used as an alternative to CD3 for gating T cells, Brilliant
Ultra Violet 496 CD4 (clone GK1.5; BD Biosciences), Alexa
Fluor 647 CD49d (clone R1-2; BD Biosciences), FITC CD11a
(clone M17/4; eBioscience), PE-Cy7 CD11a (clone M17/4;
eBioscience). Intracellular staining: Alexa Fluor 488 Foxp3 (clone
FJK-15S; Invitrogen), PE-Cy7 Tbet (clone 4B10; BioLegend),
PE Bcl6 (clone K112-91; BD Biosciences), BV650 IFN-γ
(clone XMG1.2; BD Biosciences), APC IFN-γ (clone XMG1.2;
eBioscience), PE-Cy7 IL-2 (clone JES6-5H4; BioLegend), APC
TNF-α (clone MP6-XT22; BioLegend), PE TNF-α (clone MP6-
XT22; BioLegend), PE-Cy7 IL-2 (clone JES6-5H4; BioLegend).
Gating and fluorescence thresholds were determined using
fluorescence minus one (FMO) controls.

Statistical Analyses
Data shown are presented as mean values ± SEM. GraphPad
Prism 8 was used for statistical analysis, where statistical
significance was determined using two-tailed Student t-test (for
2 individual groups, if unequal variance Mann-Whitney U-test
was used) or group-wise, one-way ANOVA analyses followed by
multiple-testing correction using the Holm-Sidak method, with
α = 0.05. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005, and ∗∗∗∗p < 0.001.

RESULTS

The Number of Pre-existing Memory CD4T
Cells Fluctuate After Sepsis
Septic patients have reduced delayed-type hypersensitivity
(DTH) responses, marked by a failure to respond to skin
testing with Ag to which previous exposure is known to have
occurred (35–37). DTH responses are driven in large part by
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memory CD4T cells—even though other immune cells such
as CD8T cells and antigen presenting cells (APCs) participate
in the response—and DTH can be used as an assessment
of overall immune system fitness (38). To more directly and
rigorously interrogate the long-term consequences of sepsis on
memory CD4T cells, we used a protocol where an endogenous,
Ag-specific memory CD4T cell population was generated by
infection with attenuated Listeria monocytogenes engineered
to express the I-Ab-restricted peptide 2W1S (Lm-2W1S)
30 days before performing sham/CLP surgery (Figure 1A).
We also employed a peptide:MHC II (I-Ab) tetramer-based
approach to identify the endogenous 2W1S-specific CD4T
cells before and after sham/CLP surgery. Initially, spleens were
harvested from naïve mice and mice at 7, 14, and 28 days
post-infection to document the expansion, contraction, and
establishment ofmemory 2W1S-specific CD4T cells (Figure 1B).
The majority of memory 2W1S-specific CD4T cells adopted a
Th1 (Tbet+) phenotype (Figure 1C), but some cells upregulated
Foxp3 suggesting their differentiation into regulatory T cells
(Figure 1D).

Sham or CLP surgery was performed on the remaining mice
30 days post-infection, and the number of total and 2W1S-
specific CD4T cells in the spleen were determined 2, 7, 14, and
28 days post-surgery by flow cytometry (Figure 2A). Our version
of the CLP model results in ∼20% mortality within the first 4
days after surgery (Figure 2B). Despite this low overall mortality,
the mice that underwent CLP show dramatic reductions in
number of total CD4T cells and 2W1S-specific memory CD4T
cells at 2 days post-surgery that gradually recovered by day 30
(Figures 2C,D), which is consistent with our previous data (39–
42). Interestingly, the numerical recovery of the Foxp3+ 2W1S-
specific memory CD4T cells occurred by day 7 post-CLP, while
it took longer for the number of Tbet+ 2W1S-specific memory
CD4T cells to return to sham levels (Figures 2E,F). Collectively,
these data show pre-existing memory CD4T cells experience a
transient reduction in number during CLP-induced sepsis.

Loss and Recovery of Ag-Experienced
Memory CD4T Cells in Septic “Dirty” Mice
Most preclinical sepsis research done to date has used specific
pathogen-free (SPF) mice, which possess an immune system
equivalent to that of neonatal humans (23). The vaccinations
and infections experienced over a lifetime shape the immune
system so rapid and protective functional responses can occur
during new microbial encounters. Recently, we investigated
the effect of sepsis on standard SPF B6 mice cohoused
for 60 days with microbially-experienced “dirty” pet store
mice (24). Cohousing laboratory SPF mice with pet store
mice permits physiological pathogen transfer and matures the
murine immune system to more closely resemble that seen
in adult humans (23). To determine the effect of sepsis on
multiple memory CD4T cell populations generated following
environmental pathogen/commensal exposure, we performed
sham or CLP surgery on cohoused B6 mice age-matched to
their SPF counterparts (Figure 3A). Cohousing increases the
frequency of circulating memory CD44hi CD4T cells (compared

to age-matched SPF mice; Figure 3B), and the number of
total CD4T cells and CD44hi memory CD4T cells dramatically
decline 2 days after CLP surgery (Figures 3C,D). We extended
this analysis of the memory CD4T cell compartment using
a second, more-stringent phenotyping to identify true “Ag-
experienced” memory CD4T cells based on the upregulation of
CD11a and CD49d (43). The cohoused mice showed a significant
reduction in number of Ag-experienced (CD11+CD4d+) and
naïve (CD11a−CD49d−) CD4T cells in the spleen 2 days after
CLP that returned to sham levels by day 30 (Figures 3B–E),
indicating entire CD4T cell compartment is susceptible to sepsis-
induced numerical reduction. Thus, the data in Figures 2, 3
collectively show memory CD4 cells initially elicited by infection
undergo a significant, but transient, numerical reduction in
secondary lymphoid organs following CLP-induced sepsis.

Recall Response to Cognate Ag by
Pre-existing Memory CD4T Cells Is
Reduced After Sepsis
Data in Figure 2 show 2W1S-specific memory CD4T cells
numerically recover by day 30 post-sepsis. This result would
suggest this population of Ag-specific memory CD4T cells
has returned to normal. However, the ability of pre-existing
memory CD4T cells to proliferate, accumulate, and exert effector
functions after a second encounter with cognate Ag in the
post-septic host has not been rigorously defined. Thus, we
first examined the ability of this population of Ag-specific
CD4T cells to proliferate in response to cognate Ag recognition
during secondary pathogen encounter. To do this, B6 mice were
immunized with attenuated Lm-2W1S 30 days before sham or
CLP surgery. The mice were then infected a second time with
attenuated Lm-2W1S on day 2 or 30 after surgery. Total numbers
of 2W1S-specific CD4T cells in the spleen were determined
before and after the second Lm-2W1S infection (Figure 4A).
When infected on day 2 post-surgery, the 2W1S-specific CD4T
cells had significantly reduced proliferative capacity compared
to sham-treated mice (Figure 4B). Specifically, the number of
2W1S-specific CD4T cells in the sham-treated mice expanded
44-fold during the 7 days after secondary infection, but only
6-fold in the CLP-treated mice. However, when challenged on
day 30 post-surgery, the proliferative capacity of the 2W1S-
specific memory CD4T cells in CLP-treated mice had nearly
recovered to what was found in sham mice (Figure 4C). These
data indicate the ability of Ag-specific memory CD4T cells
to proliferate during a recall response to cognate Ag (such
as during a secondary infection) is only transiently reduced
following sepsis.

To examine the effector function of the 2W1S-specific
memory CD4T cells at 2 and 30 days post-surgery, we used in
vivo peptide restimulation where the Lm-2W1S-immune mice
were injected i.v. with 2W1S peptide (27, 31–34). This technique
permits the evaluation of cytokine production by Ag-specific
(tetramer+) CD4T cells with almost no background staining.
Spleens were harvested 4 h after 2W1S peptide injection and
processed for flow cytometry to determine the frequency and
number of cytokine-producing 2W1S-specific memory CD4T
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FIGURE 1 | Generation of Ag-specific memory CD4T cells following attenuated Listeria monocytogenes-2W1S infection. (A) Experimental design—B6 mice were

immunized with attenuated Listeria monocytogenes-2W1S (107 CFU i.v.). The number of 2W1S-specific CD4T cells were determined before and after infection.

(Continued)

Frontiers in Immunology | www.frontiersin.org 5 August 2020 | Volume 11 | Article 1786190

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sjaastad et al. Sepsis Compromises Memory CD4 T Cells

FIGURE 1 | (B) Representative flow plots show the gating strategy used to identify 2W1S:I-Ab+ cells first identified as being CD3+ and CD4+. From the tetramer+

gate, cells expressing the transcription factors Tbet (Th1 phenotype) or Foxp3 (regulatory T cell phenotype) were then identified. Positive and negative gating

determined using FMO controls. The number of (C) total CD4T cells, 2W1S-specific CD4T cells, Tbet+ 2W1S-specific CD4T cells, and (D) Foxp3+ 2W1S-specific

CD4T cells in the spleen was determined 7, 14, and 28 days after attenuated LM-2W1S infection. Data shown are representative from 3 independent experiments,

with at least 3 mice/group/time point in each experiment.

FIGURE 2 | Loss and recovery of 2W1S-specific memory CD4T cells following CLP-induced sepsis. (A) Experimental design—B6 mice were immunized with

attenuated Listeria monocytogenes-2W1S (107 CFU i.v.) 30 days before sham or CLP surgery. The number of 2W1S-specific CD4T cells were determined after

surgery. (B) Survival of LM-2W-infected B6 mice after sham and CLP surgery (n = 29 sham; n = 67 CLP). The number of (C) total CD4T cells and (D) 2W1S-specific

CD4T cells in the spleen was determined 2, 7, 14, and 28 days after sham or CLP surgery by flow cytometry. In addition, the 2W1S-specific CD4T cells were

subtyped based on (E) Tbet (Th1 phenotype) and (F) Foxp3 (regulatory T cell phenotype) expression. Data shown are cumulative from 3 independent experiments,

with at least 3 mice/group/time point in each experiment. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.005, and ****p ≤ 0.001.

cells. Lm infection primarily generates a Th1 response (44),
therefore we identified the 2W1S-specific CD4T cells making
IFNγ, TNF, and IL-2 (Figures 5A,B). It is important to note the
gating strategy employed permits the identification and analysis
of bona fide memory CD4T cells using 2W1S:I-Ab tetramers that
helps us determine the “per cell” capacity of those cells to produce
cytokines. Similar to what was observed with the reduction in
proliferative capacity seen 2 days post-CLP-induced sepsis, the
frequency and number of single or multi-cytokine producing
2W1S-specific memory CD4T cells (IFNγ

+-, IFNγ
+TNF+-, and

IFNγ
+TNF+IL-2+) was significantly reduced at 2 days post-

surgery (Figures 5C,D) and remained reduced 30 days after CLP.
Interestingly, when we looked at the 2W1S-specific memory
CD4T cells only making IL-2 30 days after CLP surgery, the
frequency and number of IL-2+ 2W1S-specific memory CD4T
cells was similar to that seen in sham-treatedmice (Figures 5E,F).

This data is consistent with that in Figure 4, where we saw a
restoration in proliferative capacity at day 30 post-CLP. Together,
these data indicate prolonged impairment in the ability of
the 2W1S-specific memory CD4T cells to produce cytokines
critical for pathogen clearing immunity when re-stimulated in
an Ag-specific manner, despite recovery of cell numbers, and
proliferative capacity (by day 30).

Sepsis Impairs Memory CD4T
Cell-Mediated Immunity to Infection
Our data show 2W1S-specific memory CD4T cells numerically
recover by 30 days after CLP surgery, but their ability to
produce effector cytokines after re-stimulation remains blunted,
suggesting a potential lesion in protective capacity following
re-infection. To test this, we wanted to challenge post-septic
mice with a virulent pathogen. Our experiments thus far have
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FIGURE 3 | Sepsis induces transient loss in number of pre-existing “Ag-experienced” CD4T cells in microbially-experienced “dirty” mice. (A) Experimental

design—SPF B6 mice were cohoused with pet store mice for 60 days to permit microbe transfer and immune system maturation. (B) Age-matched SPF and

cohoused (CoH) mice were bled prior to and at 2, 4, 6, and 8 weeks after cohousing to determine the frequency of CD44hi CD4T cells. (C–G) Sham or CLP surgery

was performed on cohoused B6 mice. The number of total, CD44hi, CD11a+CD49d+ “Ag-experienced,” and CD11a−CD49d− naive CD4T cells in the spleen was

determined 2 and 30 days post-surgery by flow cytometry. (E) Representative flow plots show gating strategy. Positive and negative gating determined using FMO

controls. The number of (C) total, (D) CD11a+CD49d+, and (E) CD11a−CD49d− CD4T cells was determined. Data shown are representative of 2 independent

experiments, with at least 4 mice/group in each experiment. *p ≤ 0.05 and **p ≤ 0.01.

used attenuated Lm-2W1S to generate a trackable population
of endogenous memory Ag-specific CD4T cells; however, no
virulent form of Lm-2W1S exists. Therefore, in the following
experiments we employed two different murine models of
infection using virulent bacterial strains. It is important to note
that while the bacteria strains selected are pathogens not typically

found in human septic patients, their use as experimental
pathogens is well-established and modification to express known
I-Ab-restricted epitopes allow us to examine distinct, Ag-specific
CD4T cell responses after CLP. In the first model, we generated
2W1S-specific memory CD4T cells by infecting mice with
attenuated Salmonella enterica engineered to express the 2W1S
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FIGURE 4 | Sepsis impairs the recall response by pre-existing 2W1S-specific memory CD4 T cells to cognate Ag. (A) Experimental design—B6 mice were immunized

with attenuated L. monocytogenes-2W1S (107 CFU i.v.) 30 days before sham or CLP surgery. The mice were given a second infection with attenuated L.

monocytogenes-2W1S (107 CFU i.v.) (B) 2 or (C) 30 days after surgery. Total number of 2W1S-specific CD4 T cells in the spleen was determined the day of and 7

days after the second LM-2W1S infection (107 CFU i.v.). The fold increase in cell numbers at day 7 post-secondary infection is indicated. Data shown are

representative of 2 independent experiments, with 4 mice/group in each experiment. **p ≤ 0.01.

epitope (Se-2W). Salmonella-2W1S infection stimulates a robust
Ag-specific CD4T cell response (33, 45) because the bacteria
replicate in the phagosomes of dendritic cells andmacrophages—
the location of peptide:MHC II complex formation (28, 46–49).
Moreover, mice immunized with Salmonella-2W1S demonstrate
protective immunity to a secondary infection with virulent
Salmonella (45). To confirm the importance of Salmonella-
specific memory CD4T cells in the protection to virulent
Salmonella infection, some of the Se-2W-infected mice were
depleted of CD4T cells (using the anti-CD4 mAb GK1.5) prior
to a second infection of virulent Se-2W (Figure 6A). CD4T cell-
replete mice infected with attenuated Se-2W had significantly
lower pathogen burdens after secondary virulent Se-2W infection

compared to the CD4T cell-depleted mice (Figure 6B), and had
pathogen burdens comparable to that seen in naïve mice only
infected with virulent Se-2W. We then performed sham or CLP
surgery on a separate cohort of mice infected with attenuated Se-
2W 30 days prior to surgery. On days 2 or 30 after surgery, all
groups were infected with virulent Se-2W. Splenic bacterial titers
were determined 7 days after virulent Se-2W infection, revealing
higher burdens in the CLP-treated mice regardless of early or late
secondary challenge (Figures 6C,D).

In the secondmodel, naïve mice were infected with attenuated
Lm engineered to express OVA (Lm-OVA) to elicit OVA323-
specific memory CD4T cells (50). We tested the ability of
the OVA323-specific memory CD4T cells to provide protection
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FIGURE 5 | Sepsis impairs the ability of 2W1S-specific memory CD4T cells to produce effector cytokines after in vivo cognate Ag restimulation. (A) Experimental

design—B6 mice were immunized with attenuated L. monocytogenes-2W1S (107 CFU i.v.) 30 days before sham or CLP surgery. Mice were injected with 2W1S

(Continued)
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FIGURE 5 | peptide (100 µg i.v.) 2 or 30 days after surgery to restimulate the 2W1S-specific memory CD4T cells. Spleens were harvested 4 h later, and the frequency

and number of IFNγ
+, IFNγ

+TNFα+, and IFNγ
+TNFα+ IL-2+ 2W1S-specific CD4T cells was determined by flow cytometry. (B) Representative flow plots of

intracellular IFNγ, TNFα, and IL-2 detection in CD44hi2W1S:I-Ab+ CD4T cells after in vivo peptide restimulation. Plots show cells gated from 2W:I-Ab-enriched CD4T

cells from sham- or CLP-treated mice. Positive and negative gating determined using FMO controls. Frequency (C) and number (D) of CD44hi2W1S:I-Ab+-specific

CD4T cells in the spleen producing IFNγ, IFNγ/TNFα, and IFNγ/TNFα/IL-2. (E) Representative flow plots of intracellular IL-2 detection in CD44hi2W1S:I-Ab+ CD4T

cells after in vivo peptide restimulation. Plots show cells gated from 2W:I-Ab-enriched CD4T cells from sham- or CLP-treated mice. Positive and negative gating

determined using FMO controls. (F) Frequency and number of CD44hi2W1S:I-Ab+-specific CD4T cells in the spleen producing IL-2. Data shown are representative of

2 independent experiments, with at least 4 mice/group in each experiment. *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.005.

FIGURE 6 | Impaired 2W1S-specific memory CD4 T cell-mediated immunity to secondary Salmonella-2W1S infection after CLP-induced sepsis. (A) Experimental

design—B6 mice were immunized with attenuated Salmonella enterica strain BRD509-2W1S (Se-2W1S; AroA−; 106 CFU i.v.) 30 d before sham or CLP surgery. (B)

One group of mice (Imm/αCD4) was depleted of CD4 T cells by injecting anti-CD4 mAb GK1.5 i.v. (800 µg on day -7, and 400 µg on days −4 and −3) before second

infection with virulent Salmonella-2W1S (103 CFU i.v.). Bacterial titers in the spleen were determined 7 days later. (C–D) In separate cohorts of attenuated Se-2W1S

infected mice, sham or CLP surgery was performed. These mice were then challenged with virulent Se-2W1S (103 CFU i.v.) (C) 2 or (D) 30 days after surgery.

Bacterial titers in the spleen were determined 7 days later. Data shown are representative of 3 independent experiments, with at least 5 mice/group in each

experiment. *p ≤ 0.05, **p ≤ 0.01.

against a secondary Lm-OVA infection after sepsis induction.
The adaptive immune system does not confer protection
against primary Lm infections after CLP (51). CD8T cells
play prominent roles in controlling and eradicating secondary
infections by intracellular pathogens that mainly localize to
the cytosol of the infected cell, such as L. monocytogenes (52),
due to the efficient production of peptide:MHC I complexes
by the infected cell. However, Lm-specific CD4T cells can
provide sufficient protection to infection even in the absence

of CD8T cells (53–55). Thus, to focus on the memory CD4T
cell-mediated clearance of Lm-OVA, CD8T cells were depleted
using anti-CD8 mAb (clone 2.43) prior to performing sham
of CLP surgery (Figures 7A,B). Two days later the mice were
infected with virulent Lm-OVA, after which pathogen burden
in the liver and spleen was determined. A separate group of
naïve, CD8-depleted mice were infected with virulent Lm-OVA
for reference. As expected, we saw substantially reduced Lm-OVA
burden in both the liver and spleen compared to infected naïve
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FIGURE 7 | Effect of sepsis on OVA323−339-specific memory CD4T cells. (A) Experimental design—B6 mice were infected with attenuated L. monocytogenes-OVA

(LM-OVA; 107 CFU i.v.) 30 d before sham or CLP surgery. Mice in the naïve, sham, and CLP groups were depleted of CD8T cells by injecting 100 µg anti-CD8 mAb

(Continued)
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FIGURE 7 | (clone 2.43) i.v. 3, 2, and 1 days prior to surgery. (B) A small amount of blood was collected from the anti-CD8 mAb-treated mice on the day of surgery

and staining for CD4 and CD8T cells. Representative flow plots show the extent of CD8T cell depletion compared to a reference mouse injected with a control

isotype mAb. (C,D) The mice were infected with virulent LM-OVA (104 CFU i.v.) 2 days after surgery. Bacterial titers in the liver and spleen were determined 3 days

post-vir LM-OVA infection. Data shown are representative of 2 independent experiments, with at least 5 mice/group in each experiment. *p ≤ 0.05 and **p < 0.01. (E)

Experimental design—B6 mice were infected with attenuated L. monocytogenes-OVA (LM-OVA; 107 CFU i.v.) 30 d before sham or CLP surgery. (F) On day 2

post-surgery, the number of OVA323−339-specific memory CD4T cells in the spleen were determined. (G) A separate cohort of mice were injected with OVA323−339

peptide (100 µg i.v.) 2 days after surgery to restimulate the OVA323−339-specific memory CD4T cells. Spleens were harvested 4 h later, and the frequency of IFNγ
+

OVA323−339-specific CD4T cells was determined by flow cytometry. Data shown are representative of 2 independent experiments, with at least 5 mice/group in each

experiment. **p < 0.01.

mice (Figures 7C,D). In contrast, the Lm-OVA burdens were
dramatically higher in the CLP-treated mice compared to sham
mice. To better understand the cause for this reduced protection,
we examined the impact of sepsis on the number and function
of the OVA323-specific memory CD4T cells (Figure 7E). Just as
seen with the 2W1S-specific memory CD4T cells, CLP-induced
sepsis led to a significant reduction in OVA323-specific memory
CD4T cell numbers and ability to produce IFNγ after in vivo
restimulation (Figures 7F,G). Together, the data in Figures 5,
6 show the sepsis-induced long-lasting changes in Ag-specific
memory CD4T cell pools that ultimately impact the ability of the
host to properly respond to pathogen re-infection.

DISCUSSION

Sepsis causes millions of deaths annually (1, 56, 57), and
the incidence of sepsis has increased dramatically in recent
decades. Understanding the cellular mechanisms that contribute
to sepsis-induced immunosuppression is critical for developing
effective therapies and improving the survival and quality of
life for septic patients. CD4T cells have the unique flexibility
of functioning in an array of immunological settings due to
their ability to differentiate into a variety of phenotypic subsets
based on the inflammatory milieu produced at the time of
primary Ag encounter (58, 59). Clinical data show considerable
reduction in number of circulating CD4T cells (along with other
lymphocyte populations) in sepsis patients of all ages (13, 60–
62) and at the time of high pathogen burden (63, 64). Moreover,
reports of decreased effector CD4T cell function in critically
ill sepsis patients date back to the 1970’s with data showing
impaired DTH reactions (35). These observations and the fact
that DTH is mediated in large part by CD4T cells (65) bring into
question to what extent memory CD4T cells are numerically and
functionally affected by sepsis. However, most (if not all) of the
previous studies examined the effect of sepsis on the CD4T cell
compartment in sum, which has the potential tomask some of the
unique characteristics of individual Ag-specific populations (34).
In contrast to these previous publications, the present study took
advantage of pathogens engineered to express defined CD4T
cell epitopes to stimulate the generation of bona fide memory
CD4T cells and reagents to identify and quantitatively and
qualitatively evaluate endogenous Ag-specific memory CD4T
cells that have experienced a septic event. As a complement
to the experiments using conventional laboratory mice infected
with a known experimental pathogen to generate Ag-specific
memory CD4T cells, our “dirty” mouse model allowed us to

investigate how multiple populations of memory CD4T cells are
affected during sepsis in an animal with a more adult human-like
immune system (23, 24, 66). Together, the experimental model
systems used provided a unique means by which sepsis-induced
immunoparalysis of memory CD4T cells was evaluated.

One area of sepsis research that has received considerable
attention recently deals with the idea that sepsis may differentially
affect naïve and memory T cells. Indeed, there is data to suggest
memory CD8T cells are more resistant to radiation-induced
apoptosis than naive cells (67). Cellular apoptotic mechanisms
induced by extrinsic (i.e., death receptor) and intrinsic (i.e.,
mitochondrial) pathways have been suggested to be major
contributors to the numerical reduction in total CD4 and
CD8T cells following sepsis (68), but the definitive molecule
responsible for initiating lymphocyte apoptosis during sepsis has
yet to be indentified. Regardless of the mechanism by which
sepsis-induced lymphopenia occurs, studies from a number
of laboratories using proven experimental infection models
for eliciting Ag-specific memory T cells indicate circulating
Ag-experienced memory CD8T cells are equally susceptible
to sepsis-induced attrition as naïve CD8T cells (26, 69–
71). In addition, the circulating memory CD8T cells exhibit
profound impairment in effector functionality (e.g., decreased
Ag sensitivity, proliferative capacity, cytokine production, and
inability to clear secondary infections) following a septic event
(72). The numerical and functional decrease in circulating
memory CD8T cells is not, interestingly, reciprocated in tissue-
resident memory CD8T cells after a moderate sepsis insult that
leads to <10% mortality (71). The number of tissue-resident
memory CD8T cells is maintained after sepsis, as well as
their ability to produce effector cytokine after re-stimulation.
In contrast to the aforementioned similar attrition of naïve and
memory CD8T cells after sepsis, it was recently suggested by
Xie et al. that CD44hi CD8T cells in “memory mice” (generated
via Listeria and LCMV infection) exhibited significant attrition
after CLP while this was not the case for naïve CD44lo CD8T
cells (73). It was surprising to see that CLP sepsis did not
lead to a reduction in CD44lo CD8T cells, as such a reduction
has been noted in other papers (14, 39, 40, 74–77). Moreover,
these authors examined the bulk CD8T cell compartment, even
though peptide:MHC I tetramers were available to identify
LCMV-specific CD8T cells. The authors also detected increased
expression of CD25, PD-1, and 2B4 on the memory CD8T
cells, but did not perform any studies to directly determine if
and/or how these proteins may be altering T cell sensitivity
to sepsis-induced attention. Needless to say, additional data
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is needed to conclusively determine the extent of naïve and
memory CD8T cells sensitivity to CLP-induced apoptosis and
the potential role played by intrinsic factors (e.g., CD25, PD-1,
2B4, and other proteins) in regulating this sensitivity.

Fewer studies have examined the effect of sepsis on Ag-
experienced memory CD4T cells compared to what has been
done for memory CD8T cells, driving our interest in the current
set of experiments. Contrary to the increased susceptibility of
memory CD44hi CD8T cells (vs. naïve CD44lo CD8T cells)
to sepsis-induced apoptosis suggested by Xie et al. (73), data
presented by these authors suggested CD44hi CD4T cells were
not more sensitive to attrition during sepsis compared to CD44lo

CD4T cells. As with their CD8T cell data, the CD4T cells
were examined at the bulk (non-Ag-specific) level. Some of the
data presented herein are consistent with the data by Xie et al.,
but there are some important differences in our study that are
worth noting. First, our data show CLP-induced sepsis results
in a transient numerical reduction of 2W1S-specific memory
CD4T cells (current study), while 2W1S-specific naive CD4T
cells suffer from prolonged numerical reduction (34). Second,
while the numerical reduction was transient, the inability of
the 2W1S-specific memory CD4T cells to produce cytokines
upon peptide restimulation was evident out to day 30 post-CLP,
similar to what was observed in naïve cells (34). Cytokine “help”
from CD4T cells is a hallmark of this population of immune
cells, and the prolonged dysfunction in cytokine production
may contribute the generalized immunoparalysis seen during
sepsis. Furthermore, the in vivo peptide restimulation assay
used is a more physiological way of activating the desired
Ag-specific population via MHC II presentation of peptide
Ag (31–34). Third, despite their reduced ability to produce
cytokines at day 30-post-sepsis, 2W1S-specific memory CD4T
cells were surprisingly able to expand upon Ag re-encounter
30 days after CLP to nearly sham levels. It is important to
note that the accumulation/expansion of Ag-specific effector
CD4T cells upon Ag re-encounter is dependent on the rate
of proliferation (leading to an increase in cell accumulation)
and rate of death (decrease in accumulation). We did not
measure either of these parameters; however, impairment
is clearly seen in day 2 septic mice undergoing secondary
challenge since the fold-expansion in numbers from pre-
challenge level was significantly diminished (6x compared to
44x—see Figure 4). It is reasonable to suggest that the reduction
in accumulation of memory CD4T cells following a second
encounter with cognate Ag to be due to decreased per-cell
proliferation, increased death, or both. Together, our data show
the 2W1S-specific memory population is similarly prone to
the initial sepsis-induced depletion and prolonged inability
to produce important inflammatory cytokines compared to
their naïve counterparts. However, unlike naïve 2W1S-specific
CD4T cells, Ag-experienced memory 2W1S-specific CD4T
cells quickly recover numerically, as well as their ability to
proliferate in response to a secondary infection. It remains to
be determined how sepsis affects the number and function of
tissue-resident memory CD4T cells. Moreover, the different
recovery rates between the memory and regulatory Foxp3+

CD4T cell populations could suggest additional time-dependent

mechanisms that control the ability of sepsis survivors to
respond to secondary infection. There have been a few reports
specifically looking at the role of regulatory Foxp3+ CD4T
cells in sepsis (78–80), and while these data hint at the
participation of this CD4T cell subset in sepsis-induced immune
suppression additional evaluation is needed to better define how
regulatory CD4T cells are maintained and function in the post-
septic host.

Our data collectively show CLP-induced sepsis results in a
transient numerical reduction and long-term functional deficits
of Ag-specific memory CD4T cells, which contributes to the
characteristic long-lasting immunoparalysis seen after sepsis and
reduced protection to secondary infection. Secondary infection
after sepsis, acquired while in the hospital or after discharge, is a
leading cause of sepsis mortality (81–84). Lungs, blood stream,
surgical site/soft tissue, and urinary tract are the most sites of
secondary infection in septic patients, with Pseudomonas spp.,
Staphylococcus spp., Candida albicans, E. coli, and Enterococcus
spp. being common secondary infection microbes (85). We
recognize that the experimental pathogens used in this study
(to establish either the primary or secondary infection) are
not the “typical” pathogens found in sepsis patients. We chose
to use Listeria and Salmonella for the following reasons: (1)
both are well-established model pathogens for examining the
immune response to bacteria, where attenuated strains are
available for generating memory T cells and virulent strains
are available to assess the protective capacity of the memory T
cells; (2) Listeria and Salmonella infection stimulates a robust
Ag-specific CD4T cell response because the bacteria replicate
in the phagosomes of dendritic cells and macrophages—the
location of peptide:MHC II complex formation; and (3) the
recombinant Listeria and Salmonella strains express known I-
Ab-restricted epitopes. Future studies could include engineering
recombinant P. aeruginosa, S. aureus, and/or S. pneumonia to
express the 2W1S (or some other) epitope that will enable
testing of the 2W1S-specific memory CD4T cell response in
CLP-treated mice given a secondary infection with a clinically-
relevant pathogen after recovery from the initial septic event.
It is also important to note that while our study exclusively
examined the in vivo function of memory CD4T cells after
sepsis, other publications have shown the environment is also
a critical factor in sepsis-induced suppression of T cells (86).
Following sepsis, a number of CD4T cell extrinsic factors
have been found to suppress the activity of CD4T cells,
including the reduced APC function and TNF signaling (79,
86). Sepsis also leads to dysfunction of the innate immune
system, including impaired bacterial clearance by neutrophils,
leading to increased susceptibility to P. aeruginosa and S.
aureus (51, 87). Future studies could investigate the extent to
which sepsis impairs innate immune responses, especially those
related to trained innate immunity, in microbially-experienced
mice containing a high frequency of Ag-experienced memory
T cells.

In summary, our experiments have uncovered differences
in recovery and function within the endogenous memory
CD4T cell compartment compared to what has been detected
at the “bulk” CD4T cell level. The data presented here
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will serve as the foundation for a number of future studies
examining the behavior of endogenous, Ag-experienced
memory CD4T cells in the septic host, as well as methods
of reversing the immunoparalysis typically observed within
this population of immune cells vital to overall immune
system fitness.
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