About this Research Topic
Despite the aforementioned enhancement in earthquake research, there are cases that information for major to great earthquakes like location, moment tensor, rupture propagation, relation with secondary effects are to date poorly known and both the causative sources and triggering forces are still debated by the scientific community. Such ambiguities are often the source of misleading seismic hazard estimates that may at times result in adverse and unexpected impacts. In addition, the effect of human activities on the physical processes of the earthquake cycle, imposing unpredicted seismic risk on the exposed assets, is a challenging topic of the modern research.
The Goal of this Research Topic is to assemble studies of seismogenic sources able to produce major to great earthquakes, focusing on their nature and rupture properties, pre-seismic and co-seismic deformation, interactions with nearby sources, spatiotemporal arrangement of aftershocks, ground shaking characteristics, and induced secondary effects. This goal may be achieved through the application of multidisciplinary geophysical analyses both to most recent earthquakes and to those earthquakes occurred in the past decades for which the application of new methodologies may overcome limitations of the available early instrumental data likely enabling new constraints on the causative faults. This branch has the additional aim of reconciling previously discordant source models often associated to past earthquakes.
We welcome Original Research, Reviews, Mini Reviews and Perspectives contributions dealing with multidisciplinary geophysical analyses based on the implementation of advanced techniques such as: inversion methods, processing of seismological, geodetic and gravimetric data, remote sensing, physical and numerical modelling, aimed (but not limited) to:
- Identifying major to great earthquake seismic structures and/or refine their geometry and kinematics;
- Imaging the overall co- and post-seismic rupture pattern of major/great events;
- Revisiting of past earthquakes using up-to-date methodologies;
- Investigating of pre-seismic deformation detected from GNSS observations;
- Framing the earthquake rupture process into the regional geodynamics; and
- Contributing to the issue of anthropogenic triggering of large earthquakes.
Keywords: Major to great earthquakes, seismic rupture, instrumental data, geophysical inversion methods, physical and numerical modelling
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.