About this Research Topic
In plants, many chemical energy conversions do not involve radiation-linked energy, such as metabolism and transport of biomolecules, absorption, metabolism and transport of inorganic molecules, and developmental processes, leading to organised low-entropy structures within an entropic universe. During these complex metabolic and physical processes, the net electromagnetic energy absorbed by plants, which is not stored as biomolecules, is dissipated as heat with obvious consequences in the environment and in plant function.
While entropic changes associated with plant function and plant/environment processes have been estimated in scientific publications, thermodynamic analyses rarely consider ecological and evolutionary implications, despite their undoubted significance. Specialisation within research fields, also known as the silo effect, often hinders integrative approaches that could be provided by analyses based on universal thermodynamic principles.
This Research Topic aims to highlight the importance of the thermodynamic foundations upon which plant function, structure, ecology and evolution are rooted, through articles that focus on energy and entropy changes as key considerations. Original, theoretical and experimental contributions are welcome in all aspects of plant biology from molecules to function, ecology and evolution.
We welcome cutting-edge contributions with central focus on plant thermodynamics involving photosynthesis, nutrient absorption, short and long-distance transport, transpiration, environmental stress, genetic machinery, endosymbiosis, ecology and evolution. Contributions that span across thermodynamically different fields in plant science, and synthetic and systemic approaches are particularly welcome.
Keywords: Bioenergetics, Metabolism, Photosynthesis, Plant Thermodynamics, Plant Evolution, Plant Transport and Nutrition
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.