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Editorial on the Research Topic

Bisphenols and Male Reproductive Health

Bisphenols are organic industrial chemicals, widely used in the manufacture of plastic articles
such as polyvinylchloride (PVC), polycarbonate plastics, and epoxy resins. Currently, bisphenol A
(BPA), which represents the first-choice plasticizer due to its cross-linking properties, is produced
and used in the highest volumes worldwide. Leaching of BPAmonomers from inner coating of food
and drink containers, especially with repeated use and following exposure to high temperature,
largely accounts for the widespread human exposure to BPA by oral ingestion. However, equally
important alternative non-dietary routes of absorption, including inhalation and transdermal
route, have been demonstrated. Accordingly, in the National Health and Nutrition Examination
Survey (NHANES), over 90% of the study population exhibited measurable urinary concentrations
of BPA (1).

The ubiquitous presence and environmental persistence of BPA, along with its reputation of
being an endocrine disruptor, is generating worldwide concerns about the possible links with a
spectrum of human health disorders, including infertility. Due to the resultant restrictions in BPA
production, the increasing use of BPA analogs is attracting interest to these new compounds, which,
however, could share chemical and biological properties similar to BPA.

This special issue provides an overview of more recent clinical and basic insights about
the possible impact of bisphenols on male reproductive health and expresses the opinions of
experts from different areas of medicine and biology who have expanded the field with their
recent discoveries.

Results from preclinical research clarified possible mechanisms by which BPA can interfere with
the regulation of spermatogenesis (Castellini et al.; De Toni et al.). A polycyclic phenolic chemical
structure, similar to estradiol, confers to BPA estrogenic activities exerting disrupting effects on the
feedback regulation of the hypothalamic–pituitary–gonadal axis. The decreased pituitary secretion
of luteinizing hormone (LH) and hypostimulation of Leydig cell steroidogenesis results in lower
intratesticular levels of testosterone, which plays a pivotal role in fetal development as well as in
adulthood maintenance of secondary sexual function and spermatogenesis. In addition, bisphenols
can exert direct harmful effects at testicular levels. In in vitro studies, BPA promoted mitochondrial
dysfunction, apoptosis and DNA damage of Sertoli cells with disruption of the blood-testis barrier
integrity (Adegoke et al.). Detrimental reflections on spermatogenesis would be further exacerbated
by intratesticular direct and indirect anti-androgenic activities, as BPA interferes with Leydig cell
development and expression of steroidogenic enzymes, as well as with androgen receptor signaling
(Adegoke et al.; Barbagallo et al.; Castellini et al.; Li et al.). Of note, many of these effects could be
shared by several BPA analogs, which display properties of estrogen receptor agonists and androgen
receptor antagonists (Li et al.).
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Experimental studies also suggest that bisphenols could
extend their biological effects on male fertility beyond the
disruption of the spermatogenesis regulation. Exposure to
BPA has been shown to promote epigenetic modifications
in both animal and human cells, resulting in endocrine
derangements, microscopic and macroscopic abnormalities of
male reproductive system as well as inheritable epigenetic
changes involving human reproduction (Cariati et al.). Direct
effects of bisphenols on sperm functions have been also reported.
In different species, including human (2), the in vitro exposure
of spermatozoa to BPA induced pro-oxidative and apoptotic
mitochondrial dysfunctions, resulting in the loss of sperm
motility, viability, and DNA integrity. Furthermore, in human
spermatozoa, bisphenols BPG, BPAF, BPC, BADGE, BPB, and
BPBP can interfere with physiological signaling of the sperm-
specific Ca2+ channel CatSper (Rehfeld, Andersson et al.), which
is activated by the female sex steroid progesterone and plays a
key role in the acquisition of sperm fertilizing ability. However,
molecular mechanisms leading to activation of CatSper differ
between the species, as BADGE and progesterone failed to induce
Ca2+ signals in boar spermatozoa (Rehfeld, Mendoza et al.).

Overall, while preclinical research has provided compelling
evidence that bisphenols can negatively interfere with male
reproduction, clinical studies have produced quite inconclusive
results. With the exception of few reports on the relationship
of prenatal exposure to BPA with abnormal androgen status

and pubertal timing (Hart), the claimed clinical adverse effects
of bisphenols on male fertility are largely inferred from
conventional semen analysis, which, however, is burdened by a
number of limitations (Castellini et al.). To date, any conclusion
about the cause–effect relationships is hindered by the cross-
sectional design of the studies and the large spontaneous
between- and within-subject variability of semen parameters (3).
Furthermore, despite the adjustment for possible confounding
factors in different studies, other unmeasured confounders
could have influenced the associations under investigation.
Obviously, the best evidence of an adverse effect of BPA on male
fertility would be provided by longitudinal analyses, assessing
clinically relevant endpoints, such as natural or medically assisted
pregnancies amongmen either with different exposure degrees or
with different clinical conditions (fertile/subfertile).

While this latter represents a real challenge for future research,
we would like to express our sincere gratitude to all authors
and referees for their contribution to this issue summarizing
the multidisciplinary and collaborative efforts which in recent
years have helped shed some light on a topic yet to be
largely investigated.
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Bisphenol A Diglycidyl Ether (BADGE)
and Bisphenol Analogs, but Not
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Aim: Evidence suggests that bisphenol A diglycidyl ether (BADGE), bisphenol A (BPA),

and BPA analogs can interfere with human male fertility. However, the effect directly on

human sperm function is not known. The CatSper Ca2+ channel in human sperm controls

important sperm functions and is necessary for normal male fertility. Environmental

chemicals have been shown to activate CatSper and thereby affect Ca2+ signaling in

human sperm. BPA has previously been investigated for effects on Ca2+ signaling human

sperm, whereas the effects of other BPA analogs are currently unknown. The aim of this

study is thus to characterize the effect of BADGE, BPA, and the eight analogs BPG, BPAF,

BPC, BPB, BPBP, BPE, BPF, BPS on Ca2+ signaling, and CatSper in human sperm.

Methods: Direct effects of the bisphenols on Ca2+ signaling in human sperm cells

were evaluated using a Ca2+ fluorimetric assay measuring changes in intracellular Ca2+.

Effects via CatSper were assessed using the specific CatSper inhibitor RU1968. Effects

on human sperm function was assessed using an image cytometry-based acrosome

reaction assay and the modified Kremer’s sperm–mucus penetration assay.

Results: At 10µM the bisphenols BPG, BPAF, BPC, BADGE, BPB, and BPBP induced

Ca2+ signals in human sperm cells, whereas BPE, BPF, BPS, and BPA had no effect.

The efficacy of the chemicals at 10µM is BPG > BPAF > BPC > BADGE > BPB >

BPBP. Dose-response relations of BPG, BPAF, BPC, BADGE, BPB, and BPBP yielded

EC50-values in the nM-µM range. The induced Ca2+ signals were almost completely

abolished using the CatSper inhibitor RU1968, indicating an effect of the bisphenols

on CatSper. All bisphenols, except BPBP, were found to dose-dependently inhibit

progesterone-induced Ca2+ signals, with BPG and BPAF displaying inhibition even

in low µM doses. BPG and BPAF were shown to affect human sperm function in a

progesterone-like manner.

6

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00324
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00324&domain=pdf&date_stamp=2020-05-19
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rehfeld@sund.ku.dk
https://doi.org/10.3389/fendo.2020.00324
https://www.frontiersin.org/articles/10.3389/fendo.2020.00324/full
http://loop.frontiersin.org/people/80292/overview
http://loop.frontiersin.org/people/939608/overview


Rehfeld et al. Bisphenols Activate Human CatSper

Conclusion: Our results show that the bisphenols BPG, BPAF, BPC, BADGE, BPB, and

BPBP can affect Ca2+ signaling in human sperm cells through activation of CatSper.

This could potentially disrupt human sperm function by interfering with normal CatSper-

signaling and thus be a contributing factor in human infertility, either alone or in mixtures

with other chemicals.

Keywords: endocrine disruption, fertility, CatSper, male reproduction, bisphenol

INTRODUCTION

Humans are widely exposed to bisphenol A (BPA), a high-
production-volume chemical (1), and bisphenol A diglycidyl
ether (BADGE), both widely used in the production of, e.g.,
epoxy resins and food container linings (2). Due to concerns of
the safety of BPA, it is increasingly substituted with analogous
chemicals (3, 4). Although evidence suggests that BPA and its
analogs can interfere with human male fertility (4–8), the effects
directly on human sperm function are less well-studied.

Ca2+ signaling is a key regulator of human sperm function
(9). The CatSper Ca2+ channel is the principal Ca2+ channel
in human sperm (10, 11) and is activated by the female sex
steroid progesterone, released in high amounts from the cumulus
cells surrounding the oocyte (10, 12). The activation of CatSper
by progesterone controls important sperm functions (13). A
suboptimal progesterone-induced Ca2+ influx is associated with
reduced male fertility (14–20) and men who lack functional
CatSper are sterile (18, 21–29), illustrating the importance of
CatSper and Ca2+ signaling for normal male fertility. Studies
have shown that human CatSper can be promiscuously activated
by various signaling molecules (30), steroids (31, 32), small
molecules (33), and environmental chemicals (34–39). As only
BPA, and none of its structural analogs, has previously been
investigated for effects on Ca2+ signaling in human sperm cells
(34, 40), we set out to screen BADGE, BPA, and its eight structural
analogs BPG, BPAF, BPC, BPB, BPBP, BPE, BPF, BPS for effects
on Ca2+ signaling, and CatSper in human sperm, as well as on
human sperm cell function.

MATERIALS AND METHODS

Chemicals and Reagents
Bisphenols were purchased from Sigma-Aldrich (MO, USA)
and dissolved in DMSO at a stock concentration of 10mM.
Progesterone, prostaglandin-E1 (PGE1) and ionomycin were
obtained from Sigma-Aldrich (MO, USA) and dissolved in
DMSO at stock concentrations of 20, 20, and 1mM, respectively.
RU1968 was obtained from Professor Timo Strünker and
dissolved in DMSO at a stock concentration of 10mM. Fluo-
4, AM, and BCECF, AM were purchased from Invitrogen (CA,
USA). Fluorescein isothiocyanate conjugated Pisum sativum
agglutinin (FITC-PSA), and 4,000 cP methylcellulose were
obtained from Sigma-Aldrich (MO, USA). Propidium iodide
(PI), Hoechst-33342 (Hoechst), and S100 were obtained from
ChemoMetec A/S (Allerød, Denmark). Human serum albumin
(HSA) was obtained from Irvine Scientific (CA, USA).

Semen Samples and Ethical Approval
Healthy human volunteers donated the semen samples after
their prior consent. The semen samples were produced
by masturbation and ejaculated into wide-mouthed plastic
containers, on the same day as the experiment and allowed to
liquefy for 15–30min at 37◦C before the purification of motile
sperm cells via swim-up. The volunteers were recruited from
the semen donor corps, which is routinely donating samples
for quality control analyses at the Department of Growth
and Reproduction, Rigshospitalet. All volunteers fulfilled WHO
criteria for normal sperm quality. After delivery, the samples
were fully anonymized and no data on the donors fertility status,
general health, or exposure to bisphenols were provided. We
presumed that the donors were exposed to the same levels of
bisphenols as the general population. Each donor received a
fee of 500 DKK (about 75 UD dollars) per sample for their
inconvenience. All samples were analyzed on the same day of
delivery and destroyed immediately after the laboratory analyses.
Each experimental replicate was thus based on sperm cells from
a single sperm sample. Because of the full anonymization of the
samples and the destruction of the samples immediately after
the laboratory analyses, no ethical approval was needed for this
work, according to the regional scientific ethical committee of the
Capital Region of Denmark.

Purification of Motile Sperm Cells via
Swim-Up
Motile spermatozoa were isolated from the semen sample by the
swim-up method (41). Briefly 1mL of semen was gently placed
in the bottom of a 50mL tube containing 4mL of human tubular
fluid (HTF+) medium with the composition: 97.8mM NaCl,
4.69mM KCl, 0.2mM MgSO4, 0.37mM KH2PO4, 2.04mM
CaCl2, 0.33mM Na-pyruvate, 21.4mM Na-lactate, 2.78mM
glucose, 21mMHEPES, and 4mMNaHCO3, adjusted to pH 7.3–
7.4 withNaOH.After 1 h at 37◦C, the upper swim-up fractionwas
carefully removed and after two washes, the sperm concentration
was determined by image cytometry (42) and the sample adjusted
to 10× 106 sperm cells/ml in HTF+ with human serum albumin
(3 mg/ml). Hereafter the sperm cells were incubated for at least
1 h at 37◦C. For the experiments with capacitated sperm cells,
the semen samples were resuspended in a capacitating medium
with the following composition: 72.8mM NaCl, 4.69mM KCl,
0.2mM MgSO4, 0.37mM KH2PO4, 2.04mM CaCl2, 0.33mM
Na-pyruvate, 21.4mM Na-lactate, 2.78mM glucose, 21mM
HEPES, and 25mM NaHCO3, adjusted to pH 7.3–7.4 with
NaOH. Human serum albumin (3 mg/ml) was added to the
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capacitatingmedium and the sperm cells were incubated for>3 h
at 37◦C in a 5% CO2 atmosphere.

Measurement of Changes in [Ca2+]i
Changes in the free intracellular Ca2+ concentration [Ca2+]i
in human sperm cells were measured in 384 multi-well-plates
in a fluorescence plate reader (Fluostar Omega, BMG Labtech,
Germany) at 30◦C as described in Rehfeld et al. (41). Briefly,
sperm cells were incubated with the fluorescent Ca2+ indicator
Fluo-4, AM (10µM) for 45min at 37◦C. Excess dye was
removed by centrifugation (700 × g, 10min, RT) and the
sperm pellet was resuspended in HTF+ to 5 × 106 sperm
cells/mL. Aliquots of 50 µL were loaded to the wells of a
384-well-plate using an automatic repeater pipette. Fluorescence
was excited at 480 nm and emission was recorded at 520 nm
with bottom optics. Fluorescence was recorded before and
after addition of 25 µL bisphenol solutions, negative control
(buffer with vehicle), positive control (progesterone, 5µM final
concentration) manually with an electronic multichannel pipette
to duplicate wells. Changes in Fluo-4 fluorescence are shown
as 1F/F0 (%), indicating the percentage change in fluorescence
(1F) with respect to the mean basal fluorescence (F0) before
addition of bisphenols, positive control, and negative control. For
the inhibition studies mean basal fluorescence (F0) was defined as
the last 5 cycles before addition of 100 nM progesterone.

Measurement of Changes in pH(i)
Changes in pH(i) in human sperm cells were measured in 384-
well-plates in a fluorescence plate reader (Fluostar Omega, BMG
Labtech, Germany) at 30◦C as in Schiffer et al. (34). Sperm cells
were loaded with the fluorescent pH indicator BCECF (10µM)
for 15min at 37◦C. Excess dye was removed by centrifugation
(700 × g, 10min, RT) and the sperm pellet was resuspended
in HTF+ to 5× 106 sperm/ml. Aliquots of 50 µL were loaded
to the wells of the multi-well-plate. Fluorescence was excited at
440 and 480 nm (dual excitation) and emission was recorded at
520 nm with bottom optics. Fluorescence was recorded before
and after addition of 25 µL of bisphenol solutions, negative
control (buffer with vehicle), positive control (NH4CL, 30mM
final concentration) manually with an electronic multichannel
pipette to duplicate wells. Changes in the ratio of BCECF
fluorescence between the 440 and 480 nm excitation are shown
as 1R/R0 (%), indicating the percentage change in the ratio of
fluorescence between the two modes of excitation (1R) with
respect to the mean basal ratio of fluorescence between the two
modes of excitation (R0) before addition of bisphenols, positive
control, and negative control.

Assessment of Sperm Penetration Into a
Viscous Medium
Assessment of sperm penetration was done using sperm
penetration tests with 4,000 cP methylcellulose (1% w/v) as an
artificial viscous medium as described in Alasmari et al. (43). The
viscousmethylcellulose (1%w/v) mediumwas prepared in HTF+

by adding 10mg methylcellulose per mL HTF+ and mixing
it by rotation overnight at RT. The viscous methylcellulose
(1% w/v) medium was introduced into glass capillary tubes

[borosilicate microslides (VitroTubes) 0.20mm × 2.0mm ×

10 cm (VitroCom, USA)] by capillary forces, by placing the
glass tubes vertically in a 1.5mL microfuge tube with 750 µL
methylcellulose (1% w/v) for 15min. Care was taken to prevent
air bubbles from entering the glass tubes. The end of the glass
tube that was placed in the microfuge tube was sealed with
wax (Hounisens laboratorieudstyr A/S, Denmark). Hereafter the
other end was cut within the part filled with methylcellulose,
just before the methylcellulose-air transition, and additional wax
was added to the other end to push out a small droplet of
methylcellulose at the cut end. The cut end is then placed in a
1.4mL tube (Eppendorf, Germany) with 200 µL non-capacitated
sperm sample (10× 106/ml in HTF+). Just prior to the insertion
of the glass tubes, either bisphenols (10µM), 5µM progesterone
(positive control), 5µMPGE1, or 0.1%DMSO (negative control)
were added to the sperm sample. The sperm cells were allowed to
migrate into themethylcellulose (1%w/v) for 60min at 37◦C. The
glass tube was then removed, wiped to remove residual sperm
cells from the surface of the glass, placed under a UV lamp
(302 nm) in a BIO-RAD Universal Hood III (BIO-RAD, CA, US)
for 3min to paralyze the sperm cells (44) and hereafter examined
using phase contrast optics on an Olympus BX45 microscope at
a total magnification of×200 (Olympus, Denmark). The number
of sperm cells were counted at 2 cm distance from the opening
of the tube, with two fields in each of four planes counted.
Throughout the study, all samples were counted by the same
observer. Only experiments with a positive increment in cell
density at 2 cm for the positive control compared to the negative
control and with more than 40 sperm cells counted at 2 cm for
the positive control were used for the analysis.

Assessment of Acrosome Reaction
The amount of live acrosome reacted sperm cells was measured
using an image cytometry-based acrosome reaction assay, as
described in Rehfeld et al. (41). Briefly, capacitated sperm cells
(10 × 106/ml) were divided into equal aliquots and mixed
thoroughly with a staining solution containing 5µg/mL FITC-
PSA, 0.5µg/mL PI, and 10µg/mL Hoechst in HTF+. Bisphenols
(10µM) were added to the aliquots of stained capacitated sperm
cells together with the positive controls, ionomycin (10µM), and
progesterone (10µM). As a negative control, HTF+ with 0.2%
DMSO was used. After addition of bisphenols and controls the
samples were mixed well and placed on a gentle mixing heating
plate at 37◦C. After 30min of incubation, the aliquots weremixed
thoroughly by pipetting and a 50 µL sample was drawn and
added to a 100µL aliquot of an immobilizing solution containing
0.6M NaHCO3 and 0.37% (v/v) formaldehyde in distilled water.
This solution was mixed well by pipetting, immediately loaded in
an A2 slide (ChemoMetec A/S, Allerød, Denmark) and assessed
in a NC-3000 image cytometer (ChemoMetec A/S, Allerød,
Denmark). The following protocol was applied: 2-color flexicyte
with Hoechst defining the sperm cells to be analyzed; Ex475-
Em560/35: exposure time 3,000ms, Ex530-Em675/75: exposure
time 500ms, with a minimum of 5,000 analyzed cells (positive
for Hoechst). PI intensity as a function of FITC-PSA intensity
was plotted on bi-exponential scales and specific quadrant gates
were used to distinguish four groups:
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1. PI positive and FITC-PSA positive cells: Acrosome reacted
non-viable sperm cells.

2. PI negative and FITC-PSA positive cells: Acrosome reacted
viable sperm cells.

3. PI positive and FITC-PSA negative cells: Acrosome intact
non-viable sperm cells.

4. PI negative and FITC-PSA negative cells: Acrosome intact
viable sperm cells.

Only experiments with an increase of live acrosome reacted
sperm cells for both positive controls compared to the negative
control at ≥100% were included in the analysis.

Statistical Analysis
Data from sperm penetration tests and the acrosome reaction
assay were analyzed using a mixed effects model with Geissner-
Greenhouse correction. Normality was assumed based on a
QQ-plot of residuals. P-values were corrected for multiple

comparison type I error inflation by Dunnett’s method. Statistical
analyses were performed using GraphPad Prism 8.3.1 (GraphPad
Software Inc., USA).

RESULTS

Bisphenols Induce Ca2+ Signals in Human
Sperm Cells
We investigated the 10 bisphenols BADGE, BPA, BPG, BPAF,
BPC, BPB, BPBP, BPE, BPF, and BPS for their ability to induce
Ca2+ signals in human sperm cells (Table 1), using a Ca2+

fluorimetric assay (34). The bisphenols were screened at a
concentration of 10µM, along a positive control (progesterone,
5µM), and negative control (HTF+ with vehicle). Changes in
[Ca2+]i were recorded for 4min after addition of the chemicals
and controls. We calculated the relative peak Ca2+ signal in %
induced by the bisphenols, by dividing the peak Ca2+ signal
with that of the paired positive control, in order to compare

TABLE 1 | Bisphenols ranked according to the mean relative peak Ca2+ signal induced at 10µM, i.e., the peak Ca2+ signal induced by the bisphenol at 10µM divided by

the peak Ca2+ signal induced by progesterone at 5µM in the same experiment.

Rank Name CAS number Abbrevation Mean relative peak Ca2+

signal at 10 µM (in %) (n = 3)

Chemical structure

Positive hits 1 Bisphenol G 127-54-8 BPG 109.02

2 Bisphenol AF 1478-61-1 BPAF 57.95

3 Bisphenol C 79-97-0 BPC 21.67

4 Bisphenol A diglycidyl ether 1675-54-3 BADGE 14.79

5 Bisphenol B 77-40-7 BPB 11.75

6 Bisphenol BP 1844-01-5 BPBP 9.09

Negative hits 7 Bisphenol E 2081-08-5 BPE 5.37

8 Bisphenol F 620-92-8 BPF 5.09

9 Bisphenol S 80-09-1 BPS 4.41

10 Bisphenol A 80-05-7 BPA 1.44

Based on their ability to induce Ca2+ signals, the bisphenols are categorized into “positive hits,” which induced mean relative peak Ca2+ signals above that of the negative controls

(HTF+ with vehicle) ± 3 × SD (0.0 ± 3 × 2.3 = 6.9%) and “negative hits.” CAS number, abbreviation, and chemical structure are also listed in the table.
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data from the different experiments. Six of the ten bisphenols
tested induced a mean relative peak Ca2+ signal larger than that
of negative controls (HTF+ with vehicle) ± 3 × SD (0.0 ± 3
× 2.3%, giving a maximal value of 6.9%, Table 1). These six
bisphenols were categorized as “positive hits” and investigated in
further detail.

Dose Response Relationship for the
“Positive Hit” Bisphenols
Dose response relations were assessed for the “positive hit”
bisphenols to examine whether they induced Ca2+ signals in
human sperm cells at physiologically relevant levels. Saturating
dose response relations could be made for all six bisphenols,
with mean EC50-values within the concentration range

TABLE 2 | Left and middle columns: EC50 and EC05 for the dose response curves

(mean and SD, n = 3–7) of all “positive hit” bisphenols.

EC50, µM EC05, µM IC50, µM

Mean SD Mean SD Mean SD

BPG 1.27 0.61 0.18 0.16 1.86 0.80

BPAF 2.40 0.93 0.36 0.09 12.3 4.12

BPC 10.26 1.83 0.70 0.27 45.2 4.25

BADGE 8.18 3.88 1.82 1.01 – –

BPB 14.87 4.42 2.37 1.75 39.9 8.05

BPBP 0.79 0.06 0.38 0.26 – –

Right column: IC50 (mean and SD, n = 3–5) for the dose response curves of Ca2+

signals induced by 100 nM of progesterone after pre-incubation of human sperm cells

with various concentrations of the 6 “positive hit” bisphenols. Note that the dose response

data generated from the preincubation experiments with BADGE and BPBP could not be

used to estimate IC50-values.

0.79–15.87µM and mean EC05-values within the concentration
range 0.18–2.37µM (Table 2, Figure 1).

Bisphenols Induce Ca2+ Signals Through
an Activation of CatSper
To test if the six “positive hit” bisphenols induced Ca2+ signals
through CatSper, we used the novel and specific CatSper inhibitor
RU1968 (13). We compared the Ca2+ signals induced by the
bisphenols at doses inducing peak Ca2+ signals (5–50µM) and
progesterone at 5µM, in the presence or absence of 30µM of
RU1968 (Figure 2). We found that the Ca2+ signals induced by
all six bisphenols, like that of progesterone, were highly inhibited
by RU1968. This strongly indicates that the bisphenols induce
Ca2+ signals via a specific activation of CatSper in human sperm
cells. Furthermore, the shape of the Ca2+ signals induced by the
bisphenols at these doses, except BPBP, which only induce a small
Ca2+ signal, resembles that induced by progesterone (Figure 2).
This further indicates an action of the bisphenols on CatSper.
As CatSper can be activated both by the endogenous ligands
progesterone and prostaglandins, as well as by intracellular
alkalization, we examined if the bisphenols induced changes in
pH(i). At bisphenol doses inducing peak Ca

2+ signals (5–50µM)
no increase pH(i) was observed (n = 3, Figure 3). This suggests
that the bisphenols most likely act on the ligand-dependent
pathway of either progesterone or prostaglandins leading to
activation of CatSper.

Bisphenols Dose-Dependently Inhibit
Progesterone-Induced Ca2+ Signals
As the bisphenols were found to induce Ca2+ signals through
CatSper we examined whether pre-incubating the human
sperm cells with the bisphenols could inhibit progesterone-
induced Ca2+ signals. We compared the amplitude of the

FIGURE 1 | Normalized dose response curves (mean ± SD) for “positive hit” bisphenols. (A) BPG, (B) BPAF, (C) BPC, (D) BADGE, (E) BPB, and (F) BPBP, n = 3–7.
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FIGURE 2 | Ca2+ signals induced by (A) BPG, (B) BPAF, (C) BPC, (D) BADGE, (E) BPB, (F) BPBP, (G) the endogenous CatSper ligand progesterone, and (H) HTF+

buffer in the absence and presence of CatSper inhibitor RU1968, 30µM. (I) Mean inhibition (in %) of the induced Ca2+signal ±SD in the presence of RU1968, 30µM

(n = 3).

Ca2+ signals induced by 100 nM of progesterone in human
sperm cells after 5min of pre-incubation with serially diluted
doses of the bisphenols or a negative buffer control. Our
results showed that all bisphenols, except BPBP, were able
to dose dependently inhibit the progesterone-induced Ca2+

signals (Figure 4). The mean IC50-values estimated from the
fitted dose response curves were within the concentration
range 1.86–45.2µM (Table 2).

Effects of Bisphenols on CatSper-Mediated
Human Sperm Responses
To examine whether the bisphenols could affect CatSper-
mediated human sperm responses, we examined the effect of
the two most efficacious bisphenols, BPG and BPAF at 10µM,
on sperm penetration into a viscous medium, as well as on
acrosome reaction. BPG and BPAF were found to induce a
significant increase in the numbers of human sperm cells
penetrating into a viscous medium (Figure 5), similar to the
effect of the endogenous CatSper ligands, progesterone, and
prostaglandin E1 at 5µM. Furthermore, BPG and BPAF were
found to induce a significant increase in live acrosome reacted

FIGURE 3 | Changes (mean ± SD) in pH(i) induced by the bisphenols

(5–50µM), HTF+ buffer and positive control NH4Cl at 30mM (n = 3).

sperm cells (Figure 6), similar to the effect of the endogenous
CatSper ligand progesterone at 10µM, in capacitated human
sperm cells.

Frontiers in Endocrinology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 32411

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Rehfeld et al. Bisphenols Activate Human CatSper

FIGURE 4 | Inhibition of Ca2+ signals induced by 100 nM progesterone after 5min of pre-incubation with the negative control HTF and different concentrations the

bisphenols: (A) BPG, (C) BPAF, (E) BPC, (G) BADGE, (I) BPB, and (K) BPBP. Normalized dose response relations (n = 3−5) of Ca2+ signals induced by 100 nM

progesterone after 5min of pre-incubation with the different concentrations the bisphenols: (B) BPG, (D) BPAF, (F) BPC, (H) BADGE, (J) BPB, and (L) BPBP.

DISCUSSION

Our study showed that BADGE and the five bisphenol analogs
BPG, BPAF, BPC, BPB, and BPBP can induce Ca2+ signals in
human sperm cells at 10µM, whereas BPA and three other
bisphenols BPE, BPF, and BPS induced no Ca2+ signals in human
sperm cells at this concentration (Table 1). The efficacy of the
chemicals at 10µMwas BPG > BPAF > BPC > BADGE > BPB.
It seems that the bisphenols with larger/bulkier side chains are
more efficacious and that relatively small molecular differences
between the bisphenols can alter their effects significantly
(Table 1). This is in line with a previous study showing that
the read-across approach was non-applicable for otherwise
structurally comparable bisphenols (45). Interestingly, low doses
of BPAF, BPB, BPF, BPS, and BPA have all been shown to
induce Ca2+ signals in SKBR3 cells via the G protein-coupled
estrogen receptor (GPER) (46), with BPAF and BPB being more

efficacious than BPF, BPS, and BPA. This is somewhat similar to
our findings, although we in our assay see no effect for BPF, BPS,
and BPA. Furthermore, even though BPA showed no effect in our
assay, it has been shown both to activate (47) and inhibit other
voltage-activated Ca2+ channels (48).

The induced Ca2+ signals could be used to form saturating
dose response curves for all six “positive hit” bisphenols
(Figure 1). The EC50-values estimated from these curves ranged
from 0.79 to 14.87µM and the lowest effective dose values
(EC05) ranged from 0.18 to 2.37µM (Table 2). In the literature,
we could only identify human plasma or serum levels for
BPAF, BADGE, and BPB out of the six “positive hit” bisphenols
(49–53). A reported maximal human serum concentration of
BADGE (3.45µM) (50) is above the EC05 estimated in our study
(1.82µM), whereas the reported maximal human serum levels
of BPAF (0.05µM) (50) and BPB (0.59µM) (50) are below
the estimated EC05-values of 0.36µM for BPAF and 2.37µM
for BPB.

We found that the induced Ca2+ signals were almost
completely inhibited by the specific CatSper inhibitor RU1968
(Figure 2), like the Ca2+ signal induced by the endogenous
CatSper ligand progesterone. This indicates that the six
bisphenols induce Ca2+ signals in human sperm cells via
CatSper. Furthermore, the shape of the Ca2+ signals induced
by all bisphenols, except BPBP, which only induced a small
peak Ca2+ signal, resembled that of the Ca2+ signal induced
by progesterone (Figure 2), similarly suggesting an effect of
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these bisphenols on CatSper. Human CatSper can be activated
by a ligand-dependent pathway, by the endogenous CatSper
ligands progesterone and prostaglandins (10, 12), as well as by
a ligand-independent pathway through intracellular alkalization
(10, 12). Our data showed that the induction of Ca2+ signals
by the bisphenols is not due to an increase in pH(i) (Figure 3),
suggesting that the bisphenols act on the ligand-dependent
pathways of either progesterone or prostaglandins leading to
activation of CatSper in human sperm cells (10, 12). Interestingly,
progesterone has been suggested to activate CatSper through an
activation of the enzymeABHD2, whereas themolecular target of
prostaglandins leading to CatSper activation remains unknown
(54). The direct action of the bisphenols on the ligand-dependent
pathway leading to activation of CatSper in human sperm cells, is
similar to what has been shown for multiple other environmental
chemicals previously (34, 35, 55).

Pre-incubation of the human sperm cells with the bisphenols
BPG, BPAF, BPC, BADGE, and BPB was found to dose-
dependently inhibit progesterone-induced Ca2+ signals
(Figure 4). BPG and BPAF were found to be much more potent
inhibitors of progesterone-induced Ca2+ signals than the
other bisphenols, which only inhibited progesterone-induced
Ca2+ signals at high µM doses (Table 2). Exposure of human
sperm cells to these bisphenols may thereby inhibit the action
of progesterone on CatSper, as has been shown for other
environmental chemicals acting on the ligand-dependent
pathway (34–36, 38).

In addition, our results showed that the two most efficacious
bisphenols at 10µM, BPG and BPAF, could both increase
sperm penetration into a viscous medium, like the response
induced by the endogenous CatSper ligands progesterone and
PGE1 (Figure 5), and induce acrosome reaction in capacitated
human sperm cells, similar to the response induced by
progesterone (Figure 6). Again, this is in line with previous
studies where other environmental chemicals activating CatSper
were found to exert progesterone-like effects on human sperm
function (34, 36–38, 56).

Only few studies have examined the effect of bisphenols on
human sperm cell function. One study showed that very high
doses of BPA (≥300µM) induced mitochondrial dysfunction
in human sperm (57), another study showed that BPA at 0.1
nM−1µM could affect human sperm motility parameters and
that BPA at 1µM could induce a rapid, transient increase in
[Ca2+]i in a whole population of observed single human sperm
cells (40), whereas BPA at 0.1, 1, and 10µMdid not affect [Ca2+]i
in human sperm cells in a large screening of environmental
chemicals by Schiffer et al. (34). Our results here support the
findings by Schiffer et al. (34) that BPA at concentrations up to
10µM do not induce Ca2+ signals in human sperm cells.

Our findings add BADGE and the five bisphenol analogs BPG,
BPAF, BPC, BPB, and BPBP to the growing list of environmental
chemicals that can induce Ca2+ signals in human sperm cells
through CatSper (34–39). Studies have shown that chemicals
acting on CatSper can cooperate in low dose mixtures to activate
CatSper both additively (34, 35) and synergistically (55). As
humans in the industrialized part of the world are suggested
to be exposed to thousands of environmental chemicals (58),
such a low dose mixture exposure scenario is quite realistic.

FIGURE 5 | Human sperm cells at 2 cm into a viscous medium (mean ± SEM)

after treatment with negative control (HTF+ with 0.1% DMSO “HTF”), positive

controls (5µM progesterone “Prog” and prostaglandin E1 “PGE1”), 10µM

BPG, and 10µM BPAF (n ≥ 5). Statistics from multiple comparison between

negative control and treatments: ****adjusted P ≤ 0.0001; **adjusted P =

0.0029; *adjusted P ≤ 0.0295.

FIGURE 6 | Percentage live acrosome reacted sperm cells (mean ± SEM)

after 30min treatment of capacitated human sperm cells with negative control

(HTF+ with 0.2% DMSO “HTF”), positive control (10µM progesterone “Prog”),

10µM BPG, and 10µM BPAF (n ≥ 8). Statistics from multiple comparison

between negative control and treatments: ****adjusted P ≤ 0.0001; *adjusted

P ≤ 0.0249.

This indicates that the bisphenols could affect Ca2+ signaling
in human sperm cells even at doses well below the EC05, when
present in mixtures with other chemicals acting on CatSper. This
is important as only BADGE has been found with a maximal
serum concentration (3.45µM) (50) above the EC05 estimated in
our study (1.82 µM).
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Whether exposure of the human sperm cells, either within
the male or female reproductive tract, to environmental
chemicals acting on CatSper can interfere with the fertilization
process remains to be shown. However, the fact that impaired
progesterone-signaling is associated with reduced male fertility
(14–20) and that men who lack functional CatSper are
completely infertile (18, 21–29) hints that environmental
chemicals interfering with this signaling pathway could make it
more difficult for the human sperm cells to successfully locate
and fertilize the oocyte. As our experiments have been performed
on sperm cells in vitro future studies would be needed to validate
our results and to examine the effects of exposure to bisphenols
on fertility in vivo.
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Bisphenol A (BPA) is a recognized xenoestrogen, in that it possesses oestrogenic and

anti-androgenic properties. These endocrine-disrupting effects of BPA at the estrogen

receptor (ER) occur despite the very low affinity of BPA for the ERβ, which is 10,000 times

lower than that of 17-β estradiol, and despite the European regulatory authorities stating

that BPA is safe, at usual exposure concentrations, the use of BPA in baby drink bottles

was banned in 2011. There exists conflicting evidence from human epidemiological

studies as to its influence on adult male reproductive function, although animal data is

more convincing. This mini-review will report on the limited epidemiological data from

human studies relating early life exposure to BPA on adult male reproductive function. A

long term follow-up study from Western Australia using a birth cohort, the Raine Study,

demonstrated no adverse associations of antenatal exposure to BPA, and potentially a

positive association with antenatal BPA exposure with sperm concentration and motility

at 20 years of age, although recent scientific reports suggest traditional measures of

BPA exposure may underestimate exposure levels, which makes data interpretation

potentially flawed.

Keywords: BPA, sperm count, testosterone, male reproduction, raine study, endocr disrupting chemicals, early

life exposures, in-utero

INTRODUCTION

Bisphenol A (BPA) is a widely used chemical which is ubiquitous within the environment, being
present within plastics and epoxy resin. In the United States the Centre for Disease Control and
Prevention reported that more than 90% of individuals, in the early years of the twenty-first
century, had measurable concentrations of BPA present within their body (1). The production
of BPA has increased substantially over the last 15 years and the projection for 2020 is 9,600
kilo tons http://www.digitaljournal.com/pr/2009287 (2). Exposure to BPA can be through the diet,
drinking, inhalation or dermal contact, although inhalation exposure appears to be negligible in
comparison to the dietary route (3). Furthermore, measurable levels of BPA have been detected
in breast milk, amniotic fluid, and cord blood. Furthermore, the fetus is at risk of BPA exposure
as it freely crosses the placenta. In the circulation BPA is present in the free form at about 8%
of the total BPA in the blood (4). Subsequent to eating, after gastric absorption, peak serum BPA
concentrations are reached within 90min (5), and BPA is rapidly eliminated, after gut absorption
(6), dermal and sub-lingual absorption have different pharmacokinetics. After undergoing rapid
conjugation, forming inactive glucuronides and sulfates by the liver of the mother and fetus, and
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by the placenta, BPA is excreted in the urine (7), although some
work suggests that the glucuronide metabolite may be active
(8). Consequently, it is theoretically possible for the fetus to be
exposed to a greater concentration of BPA than the mother, as the
placenta can de-conjugate BPA by placental sulphatase and beta-
glucuronidase enzymes (9), and furthermore, the immaturity
of fetal liver would make the BPA conjugation poorly effective
in the fetus (9). However, the significance of this placental
metabolism is believed to be low (7), although studies suggest
almost universal exposure of pregnant women to BPA, and a
substantial variation in its metabolic clearance, which will lead
to substantial variability of fetal exposure (10).

Despite reassurances of the safety of BPA by the European
Food Safety Authority (EFSA) as recently as 2015, the EFSA
reduced the tolerable daily intake of BPA from 50 µg/kg body
weight per day (bw/day) to 4 µg/kg bw/day, and stated that the
average daily exposure was below this “safe” level (11). With
estimated BPA dietary intake in infants and toddlers (up to 0.875
µg/kg bw/day), with reproductive aged women having dietary
exposures comparable to men of the same age (up to 0.388 µg/kg
bw/day), and adolescent exposure of upto 1.449 µg/kg bw/day,
in 2011 the European Union banned the use of BPA within baby
bottles. Interestingly, due to the lipophilic properties of BPA, BPA
could concentrate in the breast milk, and levels of infant exposure
to BPA decrease with the introduction of solid foods (11).

Due to its prevalence within the environment, and its known
endocrine disrupting effects, it has been suggested that BPA
may have a negative impact on male fertility acting as a
xenoestrogen. Unconjugated BPA binds as a weak agonist to
estrogen receptors α and β (12, 13), as well as the androgen
receptor (14). Hence, it may be expected to potentially impact the
reproductive development of the male, particularly if exposure
was to occur during a vulnerable period of development of
the male fetus during pregnancy. It has been demonstrated in
rodent models that a “masculinization programming window”
exists in pregnancy, and would be expected to correlate with
8–14 weeks gestation in humans (15). Features of lack of male
androgenisation are a shorter anogenital distance, impairment of
sperm production, hypospadias and cryptorchidism (15), which
have been grouped together as part of a “testicular dysgenesis
syndrome” (TDS) (16, 17). Consequently, it is during this period
of time that the male fetus would, theoretically, be at greatest
vulnerability to chemicals that either interfere with the secretion,
transport, action, metabolism, and excretion of testosterone; the
hormone primarily responsible for fetal masculinisation. This is
particularly of relevance as BPA freely diffuses across the placenta
(7), and the placenta’s ability to conjugate, and hence potentially
de-activate BPA is limited. Hence, BPA at maternal serum
concentrations may freely pass to the fetus across the placenta,
leading to near-equivalent levels in fetal and maternal blood
(7), therefore measuring maternal circulating concentrations is
a reasonable proxy for fetal exposure.

It has been assumed by many experts that sperm counts
may have been diminishing over the last 30 years, although
this is hotly debated (18, 19), however it is not disputed
that the incidence of undescended testis, hypospadias and
testicular cancer is increasing in some countries (20–23).

The TDS hypothesis proposes that, as a result of abnormal
testicular development, a secondary abnormality in Leydig
and/or Sertoli cells results during male sexual differentiation,
leads to reproductive disorder in later life (24, 25), again, this
assertion has been disputed (26). However, with the increasing
prevalence of oestrogenic endocrine disrupting chemicals within
the environment it is plausible, but unproven, that human
fetal Sertoli cell proliferation may be altered by an excessive
oestrogenic environment in early life. Consequently, researchers
have attempted to study potential associations of early life
exposures to oestrogens (27), and endocrine disrupting chemicals
(28, 29), with the incidence of cryptorchidism (30), anogenital
distance (a reliable marker of prenatal androgenisation) (31),
pubertal timing (32), sperm counts (27), and adult markers
of testicular function (27). This mini-review will review the
epidemiological studies of prenatal BPA exposure on humanmale
reproductive function.

BACKGROUND ANIMAL STUDIES OF
EXPOSURE TO BPA

Data from animal studies provide potential mechanistic insights
to the human data and are briefly reviewed for context. Animal
studies suggest that exposing mice early in the neonatal period to
BPA, at concentrations that humans encounter daily, may reduce
sperm number, motility, and maturation, without influencing
testicular histology (33). Perinatal BPA administration to female
rats has been reported to reduce the fertility of the mature
male offspring (34). Furthermore, negative influences on plasma
testosterone and estradiol concentrations have been reported
subsequently, after maturity, when pre-pubertal rats were
exposed to low doses of BPA, inducing some degree of androgen
deficiency features in adulthood (35, 36).

Male mice exposed in utero to BPA have been demonstrated to
have reductions in concentrations of serum and intra-testicular
testosterone (37), impairments of testicular development (37)
and spermatogenesis (37), with reduced sperm counts (38).
Indeed, studies suggest that BPA may be a testicular toxicant
in animal models (39, 40). Furthermore, adverse effects of
BPA exposure on rodents’ developing testis and prostate stem
cells have been also reported (41, 42). Other animal studies
suggest that BPA may exert it effects through central influences
from in-utero maternal BPA exposure causing alterations in
gonadotrophin releasing hormone and kisspeptin secretion, and
consequently influence anterior pituitary function (43). From
Figure 1 (44), it can be seen that the influence of BPA exposure
at different stages of development in the animal model appears to
produce similar effects on reproductive function in adulthood.
Due to the concerns of the potential health effects of BPA
on human health analogs to BPA have been introduced into
commercial production. However, this approach may not be
entirely beneficial, as one study that administered BPA, and its
analogs bisphenol B, bisphenol F, and bisphenol S, at various
low concentrations to pregnant rats, demonstrated in the male
offspring a decrease in sperm production, testosterone secretion,
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FIGURE 1 | Reproduced with permission Cariati et al. (44). FSH, Foliular stimulating hormone; LH, Luteinising hormone; GnRH, Gonadotrophin releasing hormone;

T, Testosterone.

and histological changes in the reproductive tissues with these
analogs (45).

HUMAN STUDIES OF PRENATAL
EXPOSURE TO BPA

Due to the difficulty of completing human studies, there
are understandably less studies that have addressed human
prenatal exposure to BPA on subsequent male reproductive
development. This is in part due to the duration of follow-
up required to study potential exposure effects, the potential
multiple confounders inherent in any human exposure study,
and consequently the cost of such long-term studies. As the
measured anogenital distance (AGD) is now a recognizedmarker
of prenatal androgenisation (46), with a longer AGD being
a marker of greater prenatal androgen exposure, this offers
a potential reference point to assess prenatal androgenisation.
Researchers from Shanghai measured the AGD of male infants,
and related this distance to thematernal urine BPA concentration
at 12–16 weeks of gestation (47). This early stage of pregnancy
is considered a critical time for prenatal androgenisation, as
described the masculinization programming window (48), where
perturbations in the androgenic environment, may have long
term consequences. This study demonstrated that those boys,
whose mothers had detectable levels BPA in their urine, at 12–
16 weeks of gestation, were more likely to have shorter AGD at
birth, than boys with undetectable levels of maternal BPA (47).
These findings were consistent when measured again at both 6
and 12 months of age, and was irrespective of ascertainment of
AGD by measuring from the anus to the base of the penis, or the
scrotum (47). A further study was performed using cord blood
measurements of BPA in relation to the AGD among 72 boys,
which demonstrated an inverse relationship between cord blood
BPA concentrations and male newborn ano-scrotal distance (49).

With respect to pubertal timing, a recent study demonstrated
an association of greater prenatal exposure to BPA, assessed
by maternal urine measurement, with later puberty in girls
and earlier puberty in boys (50). Nevertheless, when data
were adjusted for overweight/obesity status, all associations for
boys were attenuated, suggesting a contribution of body fat

in mediating the associations (50). An earlier study, possibly
the first reported study, of BPA exposure as assessed by a 3rd
trimester urine sample relating exposure to pubertal timing, did
not demonstrate any association with hormone levels or pubertal
staging in adolescence (51). However, this may relate to the
sampling timing in this study not being performed at a vulnerable
time in pregnancy.

With respect to deriving associations of in-utero exposures
to BPA with adult reproductive assessment only one study has
been undertaken (28). This study, led by the author of this
mini-review, studied early life influences on adult testicular
function. This was a birth cohort study where men from the birth
cohort, who had been followed very closely through childhood,
were recruited at 20 years of age to undergo a thorough
testicular assessment (serum sex steroids and gonadotrophins
were measured, semen assessment undertaken, and a testicular
ultrasound examination performed). The mothers of 149 of
the men had blood drawn at 18 and 34 weeks of gestation in
1990–1991, and their paired samples were mixed to provide an
“average” of antenatal exposure. The total BPA concentrations in
the maternal samples were measured by mass spectrometry and
correlated with their sons’ adult testicular function. There was a
substantial range in serum concentrations measured in maternal
serum, with the 10, 25, and 95th percentile concentrations
recorded as ≤0.005, 0.08, and 2.15 µg/l, respectively, reflecting
a large variation in exposures. The result of the analysis after
adjustment for time since last ejaculation, maternal smoking,
sexual abstinence, and presence of a varicocele, demonstrated
that maternal BPA exposure was positively associated with
their sons’ sperm concentration and motility in adulthood. In
addition, no associations of maternal serum BPA concentrations
were detected with their sons’ testicular volume or hormonal
measures of male reproductive function in adulthood; serum
testosterone, LH, FSH, or inhibin B concentrations (28). The
positive association of maternal BPA exposure with sperm
concentration and motility may be chance findings (Table 1),
in view of the lack of other associations being identified.
However, the association may be real, but the study is limited by
numbers of participants (maternal BPA measures were available
for 284 men, however only 149 of them underwent testicular
assessment at 20 years of age). It is important to state that
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TABLE 1 | Correlation between adult testicular volume and semen parameters with BPA exposure.

Ranked phthalates Testis volume (mls) Semen sample parameter

Volume Sperm output Concentration SCSA Normal morphology Motility

(mls) (million) (million/ml) (%) morphology (a + b grade)

BPA Correlation −0.05 −0.05 0.13 0.18 0.05 0.00 0.18

P-value NS NS NS 0.037 NS NS 0.036

All correlations were adjusted for abstinence period, presence of a varicocele and maternal smoking and in addition, testicular volume was also adjusted for adult height (z-scores). NS,

not statistically significant; BPA, bisphenol A; SCSA, sperm chromatin structural assay.

Values in bold purely highlighting the statistically significant results.

contemporary BPA exposure was not measured, which may have
influenced the results, as recent xenoestrogen exposure has the
potential to influence the testicular assessment. Furthermore,
any potential associations may be lost by the long duration
of follow-up, due to the multiple exposures and life events
that will have occurred over 20 years. Within our study the
median total serum BPA concentration within the maternal
blood was 0.25 µg/l, which is similar to reported by the
EFSA (11), and other authors (52, 53). However, it must be
stated that the assessment of BPA exposure was via serum
sampling, whereas the standard method of assessment is urine,
hence the serum concentration documented may not reflect a
more sustained exposure as recorded in urine measurement.
As the concern with serum measures is that urine provides
significantly less variability than serum for a compound with
a relatively short half-life, although even urinary total BPA
concentrations vary across different times in pregnancy (54),
and individuals have a diurnal variation, with the exposure
levels generally being lower in the morning than the evenings
(55). Consequently variability of the concentrations recorded
understandably reduces the power of any statistical analysis.
Furthermore, as recently proposed, if the method of analysis of
BPA concentrations was flawed, then the exposure levels may
have been greater than reported, and subtle associations may
have been missed (56), although the recognized measurement of
serum BPA is well-established and reliable, as BPA contamination
can be controlled during sample collection and inadvertent
hydrolysis of BPA conjugates can be avoided during sample
handling (57, 58).

CONCLUSIONS

The focus of this mini-review has been to determine if there is
any association between prenatal BPA exposure and human male
reproductive function. There have been many cross-sectional
studies looking at linking assessment of reproductive function
with current BPA exposure, such as timing of puberty and sperm
counts, however the purpose of this review was to determine
if the exposures to BPA at a critical stage of development,
the “masculinization programming window” may lead to a
permanent perturbation in the hypothalamic-pituitary-gonadal
axis. Furthermore, from animal studies it may be suspected that
BPA exposure may also have a permanent gonadotoxic effect.
The benefit of animal studies are numerous, in that they are

comparatively cheap, have the ability to control for multiple
confounders and exposures within an environment, and due to
their short gestation, and pubertal maturation period, provide
an ability to review a life-span in a relatively short period of
time. However, a major problemwith animal studies of endocrine
disrupting chemicals is that these chemicals are known to have
potential different effects at different concentrations leading to
difficulty in extrapolating animal effects to the human situation.
Furthermore, whilst it appears form the animal studies that BPA
has an endocrine disrupting influence when administered in
the prenatal, and perinatal period, it is important to determine
whether human exposures are at, above or below, safe levels
of exposure in the perinatal period. Controversially, the EFSA
stated in 2015 that current levels of exposure are below the
tolerable daily intake (<4 µg/kg bw/day) and as such current
BPA exposure does not pose a threat to the fetus (11). However,
work performed by independent researchers cast some doubt on
these claims, and raise concerns that very low doses of exposure
may pose a risk during development (59, 60). Furthermore,
there is evidence to suggest that the previous methods used
to measure BPA exposure, using enzyme de-conjugation, may
substantially underestimate human exposure, and hence fail to
detect any subtle associations (56). The explanation for this is
that an assay that reduces the variance in BPA concentrations,
underestimates the exposures of those most highly exposed,
tends to lead to an increase in the likelihood of false negative
findings. Furthermore, it is proposed that the current safe levels
are flawed, as evidence suggests that low-dose BPA exposure
induces marked adverse effects below the considered safe levels
(40). Indeed, the greatest number of effects were observed,
in one study, at doses substantially lower than the current
“safe” dose of BPA for humans (59). As this CLARITY study
found that there were evidence of detrimental effects detected
at doses of 2.5 µg/kg per day (59). With respect to human
serum levels of free BPA, the serum concentrations have been
reported to be below the limits of detection (<0.2µg/L) in several
cohorts (11, 52), which has led to doubts around the potential
for environmental BPA exposure to exert endocrine disrupting
effects (52).

The limited human data presented suggest that prenatal
exposure to BPA may have a potential negative association
with early life anogenital distance for boys, but the evidence
for an influence on pubertal timing is less clear. Furthermore,
it is unclear whether prenatal exposure to BPA in-utero has
an influence on later life mature male reproductive health,
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with the data suggesting a potential positive association

with sperm concentration and motility at 20 years of age.

Certainly there is a need for further long-term studies of

early life exposure to endocrine disrupting chemicals, such

as BPA, to assist individuals and regulatory authorities

in their decision making for the use of chemicals in

the environment.
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Bisphenols, and in particular bisphenol A (BPA), have been widely used for the

production of plastic manufacts in the last 50 years. Currently, BPA is present in a

variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion

is considered the main route of human exposure. Accordingly, BPA is the chemical

pollutant with the widest exposure in humans, involving nearly 90% of general population,

according to recent studies. Concerns about BPA effects on human health date back

to 1930s, when severe impact on male sexual development was suggested. Now, the

acknowledged biological effects of BPA are various. In regard to human fertility, BPA

has been shown to disrupt hormone signaling even at low concentrations. Results from

human epidemiological studies have reported BPA interference with follicle stimulating

hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects.

Moreover, recent studies have reported an association between BPA levels and reduced

sperm concentration, motility, normal morphology, sperm DNA damage, and altered

epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review,

the recognized effects of BPA on male reproductive health are described, from the most

recent issues on experimental models to epidemiological data. In addition, the very recent

interest about the use of nutraceutical remedies to counteract BPA effects are discussed.

Keywords: endocrine discruptors, semen parameters, endocrine axes, drug metabolism, exposure markers

INTRODUCTION

Bisphenols, and in particular the phenol compound 2,2 Bis (4-hydroxylphenyl)–propane,
universally known as Bisphenol-A (BPA), are widely used as additives for the production of plastic
materials, such as polycarbonate, phenol and epoxy resins, and polyesters and polyacrylates, as
well as an antioxidant in foodstuffs and cosmetics (1, 2). Specifically, nearly 75% of the industrial
production of BPA is intended for the manufacture of polycarbonate-based products, which find
wide application in food industry, such as in containers for food and beverages, in plastic dishes, in
kitchen utensils, in containers for microwave cooking, and until 2011, in bottles (3). Of note, BPA
is also used in epoxy resin films used as binary patina: the internal coatings in the cans for canned
food (4).

BPA is a solid at 25◦C with a melting temperature of 156◦C, insoluble in water but soluble
in alcohol, ethers, and fats. Accordingly, BPA can migrate for continuity in food and drinks by
direct contact with plastic container under certain conditions. Prolonged storage times, exposure
to high temperatures (e.g., >70◦C), and the presence of foods with a significant lipid component
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represent some of these conditions. Consequently, BPA enters
the food chain due to the massive use of plastics, as containers
or technological packaging, and as a function of increasing the
shelf life of foods (5). A recent report from the European Food
Safety Agency (EFSA) showed that the highest concentrations of
BPA were found in packaged products (on average 18.68 µg/kg)
compared to unpackaged foods (on average 1.50 µg/kg) (6).
To this regard, the most relevant concentrations of BPA (>30
µg/kg) were observed in packaged food, such as cereals, meat
and fish, ready-to-use foods, snacks, and sweets. As for other
bulk foods, the presence of the contaminant is most likely due to
the production processes. Among unpackaged foods, the highest
concentrations were found in fish, with average values of 9.40
µg/kg. These data strongly suggest a major role of massive plastic
pollution in waterways (7).

As a result, there is a significant risk of human exposure to
BPA through ingestion, skin contact, or inhalation (8, 9). Once
accessed into the body, nearly the 12% of BPA is metabolized
in the liver by glucuronidation, providing more water-solubility
and quicker excretion in urine, even if the concentrations in
plasma and urine are very low and difficult to detect (10, 11). In
addition, the conjugated form of BPA is equally accounted in the
pool of the active forms (12). For this reason, total urinary BPA,
including both conjugated and unconjugated BPA, is generally
used as a biomarker of exposure to BPA (13). Epidemiological
data from the United States have reported detectable levels
of BPA in urine samples from more than 90% of general
population, resulting a major problem of exposure to chemical
substance (14).

Concerns about BPA issues on the human health date back
to 1930s, when severe impact on male sexual development
had been suggested. From a mechanistic point of view, the
most relevant risks associated with the exposure to BPA are
mainly due to its action as an endocrine disruptor (ED), being
able to interfere with the balance of the hormonal system and
thus causing harmful effects on the whole body (15). Available
reports in late 1990s firstly documented a stimulating activity
of BPA on estrogen receptor α that differed, however, from the
classical pattern observed in weak estrogens, partial agonists,
and pure antagonists (16, 17). This evidence was confirmed
by subsequent investigations, reporting that BPA binds several
nuclear receptors, mimicking the action of endogenous steroids,
maintaining the target molecule in active conformations or
blocking the access of endogenous 17β-estradiol to receptor’s
binding site by competition (18–20). In addition, unconjugated
BPA showed a binding activity to other two receptors: the G
protein-coupled estrogen receptor 30 (GPR30), also known as
membrane estrogen receptor alpha (mERα) (21, 22) and the
orphan nuclear estrogen-related receptor gamma (ERR-gamma)
(23, 24). Finally, experimental animal studies demonstrated that
BPA binds also to the androgen receptor (AR), to the peroxisome
proliferator-activated receptor gamma (PPAR-gamma), and the
thyroid hormone receptor (19).

On these bases, the exposure to BPA is increasingly suspected
to exert major reproductive issues, such as the impairment
of semen production in men as well as alteration of the
hormonal cycle and oocyte maturation in women (25). This

narrative review will cover available evidence regarding the
male reproductive outcomes associated with the exposure to
BPA. In addition, possible remedies to counteract BPA effects
are discussed.

METHODS

PubMed, Scopus and Web of Science databases were used to
perform a literature search on the time interval 2000–2019.
The following terms were included: “bisphenol male fertility,”
“bisphenol testis,” “bisphenol reproductive outcome,” “bisphenol
semen parameters,” “bisphenol spermatozoa,” “bisphenol
nutraceuticals,” “bisphenol dietary supplements,” “bisphenol
antioxidant,” “bisphenol medicinal plants.” We included studies
on cell models, studies on murine models, and observational
studies in humans.

The overall 6,865 records were then screened for relevance
to the topics, for a total of 77 studies finally considered for the
review. Data from eligible studies were considered separately,
according to the different following topics: “data from animal
studies,” “data from human studies,” and “nutritional remedies
to BPA related disorders.”

Disrupting Effects of BPA on Male Fertility:

Data From Animal Studies
A wide amount of data from animal studies shows a clear effect
of BPA on male reproductive system, even at very low doses.
One of the first investigations on this topic relied of the fact that
BPA is massively used in sealant made of resin-based composite
materials for dental use, with the consequent oral ingestion of
BPA. Al-Hiyasat et al. were among the first to investigate the
reproductive outcome in male mice exposed to BPA by oral
ingestion, suggesting possible issues for infertility, genital tract
malformations and increased cancer rates in estrogen sensitive
target tissues (26). BPA doses >25 ng/kg were associated with
reduced sperm count, both at epididymal and ejaculated level,
and with significant reductions of the absolute weights of the
testes and seminal vesicles. These early results were confirmed by
more recent studies reporting decreased sperm count associated
with the exposure of BPA in rodent models, suggesting major
impairment of the spermatogenetic process. (27–33). In addition,
lower levels of exposure were equally associated with reduced
semen quality, particularly with regard to motility parameters
and markers of adequate cell-redox balance (27, 29, 31, 33, 34).
Furthermore, the exposure to BPA has been associated with the
alteration of other non-conventional markers of sperm quality
such as the index of DNA fragmentation, suggesting a possible
role as mutagen (29, 31, 34–42). Also, in a recent study from
Wisniewski et al. acrosomal integrity, an overall marker of the
fertilization potential, was significantly reduced by PBA exposure
in murine models (27).

As outlined by the aforementioned studies, BPA showed
major abilities to interfere with spermatogenesis and germ
cell maturation, a process largely regulated by the synthesis
of testosterone (T) from the Leydig cell population of the
testis under the direct control of pituitary luteinizing hormone
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(LH) (43). Several studies have been performed to disclose the
possible disruption of the hypothalamus/hypophysis/testis axis
(HHTA) associated with BPA exposure in animal models, with
the result of a fairly complex picture that invariably leads to
the impaired production of T (28, 44). In this regard, both
direct effects on Leydig cells and indirect effects on HHTA
were recognized. Among the direct effects, a study conducted
in the classical murine Leydig MA-10 cell model, Lan et al.
showed that BPA forces a detour of the normal steroidogenic
activity by stimulating, on one hand, the production of 17-
hydroxy-pregnenolone and T from cholesterol, but on the other
hand, the expression of CYP19A1, the aromatase activity that
converts T into 17-β estradiol, resulting in a overproduction
of this latter (45). Other studies suggested that BPA triggers
multi-level dysfunction in Leydig cells, altering either insulin
signaling and glucose transport or the mitochondrial activity,
with a resulting downstream redox imbalance and altered
steroidogenesis (46, 47). As anticipated, BPA was also suggested
to indirectly suppress the pituitary LH release through the
massive aromatase upregulation in the testes; the consequent
increase of serum estrogens would then exert a negative
hormonal feedback at central level (48). Importantly, because of
its high lipid solubility, BPA undergoes to trans-placental transfer
in animal models with a consequent detection in cord blood,
an evidence reported also in humans (49–52). Accordingly,
BPA exposure during the prenatal period was associated with
the impairment of both fetal development and the endocrine
function of the testis, with reduced Leydig cell proliferation
and fetal testosterone production (53–55). Additional data from
animal models suggests that the endocrine disruption associated
with BPA exposure in male fetuses negatively affects fertility
in adult life. To this regard, in a study by Salian et al.,
maternal exposure to BPA was associated with reduced sperm
count and motility in male offspring and, in turn, with post
implantation loss and decreased litter size (56). However, the
mechanisms by which BPA interferes with testis development
and function, whether in fetal or in adult life, seem to be wider
than the exclusive endocrine disruption of the HHTA. In fact,
exposure to BPA alters the glucose homeostasis in germ cells
through the decreased expression of GLUT-8 glucose transporter,
particularly in spermatocytes and spermatids (39). In addition,
an increased oxidative stress in the testis was claimed as the
responsible for the impaired seminal quality associated with
exposure to BPA (35, 57). For example, excessive production
of reactive oxygen species (ROS) and consequent mitochondrial
dysfunction induced by BPA, was associated with Sertoli cells
apoptosis (58). BPA was also suggested to directly interfere with
apoptotic signaling and to induce the morphological changes in
Sertoli cell mitochondria, the triggering of Pten/Akt signaling
pathway, or the activation of the JNKs/p38 MPAK pathway, with
the consequent nuclear translocation of NF-kB and Fas/FasL
system (59–61). Despite this severe interference with Sertoli
cell cycle, a morphological alteration of testicular histologic
architecture was not observed frequently, largely depending on
the protocol of administration. In fact, Aikawa et al. showed that
the experimental exposure of male mice to 50 µg BPA for 5 days
after birth caused a decrease in normal morphology and sperm

motility with no significant histologic changes of testes (62). Jiang
et al. observed ultrastructural lesions in Sertoli and Leydig cells
after the administration of 5 mg/kg/day of BPA to rats for 8
weeks (63).

Of note, very recent studies disclosed some transgenerational
effects associated with BPA exposure. Manikkam et al. showed
that the early exposure of female gestating rats to a cocktail of
plastic additives, including BPA, was associated with a significant
increase of the prevalence of diseases and abnormalities in F1 and
F3 generation males, particularly pubertal abnormalities, testis
disease and obesity (64). Likewise, similar effects were exerted by
replacement bisphenols, namely compounds structurally similar
to BPA used in “BPA-free” products (65). Subsequent studies
were able to detect major genetic abnormalities associated with
exposure to BPA. Firstly, BPS showed a mutagen effect on male
germ cells, resulting in blocked meiotic progression of germ
cells (31, 66). Furthermore, Shi et al. showed that both BPA and
replacement bisphenols are able tomodify the expression of DNA
methyltransferases and the pattern of histone methylation in the
neonatal and adult testes (67).

However, earlier studies by Hass et al. on this topic (68)
reported that male offspring from pregnant Wistar rats, gavaged
with bisphenol A from gestation day 7 to pup day 22,
showed a significant reduction of the sperm count only at
the lowest bisphenol A dose (25 µg/kg/day). Higher doses
had no effect on either sperm parameters or the weight and
histology of the reproductive organs. These results suggest a
likely transgenerational toxicity of bisphenols, with a possible
mechanistic involvement of epigenetics on the impairment of
male reproductive functions. However, a more complex scenario
should be hypothesized given the observed non-monotonic
dose–response relationship.

DISRUPTING EFFECTS OF BPA ON MALE

FERTILITY: DATA FROM HUMAN STUDIES

Despite the large availability of data in animal models, fewer
studies assessed the possible relationship between BPA exposure
and semen quality in humans. The first reports on this
topic dealt with occupational medicine; particularly, Li et al.
found a negative association between urinary BPA and sperm
concentration, total sperm count, viability, and motility in
215 factory workers, further distinguished into occupationally
exposed to high or low levels of BPA. However, in the subgroup
with lower creatinine-adjusted urinary BPA, the only significant
association was with reduced sperm concentration. Notably,
urinary BPA levels were not associated to altered morphology
in this study (69). As for data in animal models, other studies
investigated the possible association of BPA exposure with
alterations of sperm DNA. Meeker et al. explored the possible
correlation between urinary BPA concentration and sperm DNA
damage, evaluated by neutral comet assay, in a cohort of 190
subfertile male patients (70). Urinary BPA concentration was
associated with reduced sperm concentration, motility, and
morphology, whereas a positive association with sperm DNA
damage was observed. However, two independent studies on

Frontiers in Endocrinology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 30125

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


De Toni et al. BPA and Male Reproduction

male partners from infertile couples attending infertility clinics
were not able to retrieve any significant association between
BPA urinary concentration and altered semen parameters.
Importantly, a relatively high variability of exposure markers was
observed, since the mean urinary BPA concentration in these two
studies were, respectively, 1.5 and 0.6 ng/mL (71, 72).

Another field of investigation pursued was the possible
correlation between exposure to BPA and alteration of the
endocrine pattern, but widely varying scenarios can be observed.
Hanaoka et al. conducted a study on 42 workers occupationally
exposed to BPA through the handling of epoxy resin spray
containing BPA (73). Interestingly, authors have found lower
serum levels of follicle-stimulating hormone (FSH) in exposed
workers compared to those non-exposed, although non-obvious
differences in plasma LH and free T levels were observed. Also,
Galloway et al. investigated the relationship between urinary BPA
and male reproductive hormones in a cohort of 715 healthy
adults aged 20–74 years from the general population (74).
Surprisingly, urinary BPA levels were positively and significantly
associated with serum T levels, but no associations with either
17-β estradiol, sex hormone-binding globulin (SHBG), or free T
were observed. On the other hand, Lassen et al., in a study on
308 healthy males from the general population, found increased
serum T, free T, LH, and estradiol in subjects pertaining to
higher urinary BPA concentrations quartile, compared with the
lowest quartile. Subjects in the highest urinary BPA quartile also
showed reduced progressive sperm motility compared with the
lowest quartile (75). Also, Mendiola et al. performed a similar
study on 375 fertile men recruited from prenatal clinics, finding
that urinary BPA concentrations were positively associated
with serum SHBG levels and inversely correlated with free
androgen index (FAI), calculated as total T × 100/SHBG and
the FAI/LH ratio. However, serum FSH, LH, total T, inhibin B,
and free T levels showed no obvious correlation with urinary
BPA concentration (72). In addition, Meeker et al. found a
negative association between urinary BPA levels and both serum
inhibin B levels and 17-β estradiol/T ratio in male partners of
subfertile couples attending a fertility clinic; however, BPA was
positively associated with both FSH and FSH/inhibin B ratio
(76).

Finally, few studies aimed to assess the possible impact of BPA
exposure on the overall fertility potential in males through the
overall evaluation of the relationship between BPA levels and
the reproductive outcome in the setting of assisted reproduction
facilities. In a study enrolling 215 infertile couples undergoing
assisted reproduction techniques, with roughly equal distribution
between in vitro fertilization and intrauterine insemination,
Dodge et al. (77) investigated the possible correlation between
urinary concentrations of parabens and BPA with the live-
birth rate. Authors found minimal association between paternal
urinary propyl paraben levels and reduced live-birth rate in a
correlation model corrected by possible confounders. However,
no significant association emerged between paternal urinary BPA
and reproductive outcomes after fertility treatments (77). On the
other hand, Buck-Louis et al. in the Longitudinal Investigation
of Fertility and the Environment (LIFE) Study, a multicenter
investigation involving 501 infertile couples from 16 targeted
counties in the middle-east of the United States (78), evaluated

the possible relationship between time to pregnancy (TTP) and
urine levels of more than 15 environmental pollutants, including
BPA, in both males and females. Urinary BPA concentration in
either males or females was not associated with increased TTP,
which was instead correlated with male urinary concentration of
monomethyl, mono-n-butyl, and monobenzyl phthalates.

Overall, available data are supportive of detrimental role
of BPA on semen parameters, but this is not accompanied
by clear data on sex hormones and on fertility outcomes.
As suggested by other authors (79), within the limits of the
availability of data in humans, a possible reconciling explanation
could rely on a greater direct toxicity of BPA on germ line
cells, rather than in an albeit important endocrine disruption
of the HHTA. This hypothesis is somewhat supported by very
few studies reporting the interference of BPA on germ cell
development in human fetal testis and on mitochondrial
activity and energy metabolism in ejaculated human
sperms (57, 80, 81).

NUTRACEUTICAL APPROACHES TO

OVERCOME BPA EFFECTS

Given the large availability of evidence reporting detrimental
effects of BPA on testis function, especially in animal models, this
chemical has progressively gained a role as a reference substance,
able to induce endocrine disruption in several experimental
models, from laboratory animals to in vitro cell cultures (82).
On this basis, some recent studies have focused on possible
approaches to treat or prevent BPA-induced derangements and
testicular toxicity. Since the direct toxicodynamics of PBA on
both Leydig and germ cells of the testis were largely related
to the impairment of cell redox system, most of the treatment
approaches relied on the use of natural sources of antioxidants.

Based on the fact that the expression of the enzymes
glutathione peroxidase and glutathione reductase are regulated
by melatonin, a study from Anjum et al. aimed to disclose the
possible effect of melatonin on mitochondrial lipid peroxidation
observed in mouse testis after BPA exposure (41). Interestingly,
the treatment with melatonin reduced mitochondrial lipid
peroxidation, restored the overall mitochondrial enzyme
machinery and improved the mitochondrial antioxidant pool
compromised by BPA. However, major limitations of the study
were represented by the high dosage of melatonin administered
intraperitoneally. In 2012, El-Beshbishy et al. demonstrated
some mitigation of the mitochondrial toxicity exerted by BPA
exposure in rats, by the co-administration of lipoic acid (44).
Also, Khalaf et al. (83) recently reported a protective effect of
selenium (Se) against BPA-induced testis impairment in albino
male rats. In particular, co-administration of Se attenuated
the reproductive issues induced by BPA toxicity through the
restoration of testicular antioxidant activity and the amelioration
of sperm genetic abnormalities observed in BPA exposed animals
(83). Similar results were obtained by Kaur et al. who reported
decreased lipid peroxidation in mouse testis associated with the
co-administration of Se and BPA, compared with sole exposure
to BPA (84).
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TABLE 1 | Summary of the references supporting the possible effects of bisphenols on male reproductive health.

Animal Model Human Model

Outcome In vitro In vivo In vitro In vivo

Testis Histology (62) ↔

(63) ↓

Effect on sperm count (26) ↓

(29) ↓

(28) ↓

(61) ↓ (↓Sertoli cell function)

(32) ↓

(33) ↓

(30) ↓

(31) ↓

(59) ↓ (↓Sertoli cell function)

(60) ↓ (↓Sertoli cell function)

(27) ↓

(71) ↔

(69) ↓↔

(95) ↓

(72) ↔

Effect on sperm

motility/mitochondrial function

(39) ↓ (↓ Germ/Sertoli cells metabolism)

(29) ↓

(34) ↓

(33) ↓

(31) ↓

(27) ↓

(57) ↓

(35) ↓

(80) ↓

(81) ↓

(71) ↔

(75) ↓

(95) ↓

(72) ↔

Sperm DNA Fragmentation (41) ↑

(35) ↑

(39) ↑

(29) ↑

(42) ↑

(40) ↑

(36) ↑

(34) ↑

(37) ↑

(31) ↑

(38) ↑

(70) ↑

Testosterone Production (46) ↓ (↓ redox balance)

(47) ↓ (↓ redox balance)

(45) ↓ (↑ CYP19)

(53) ↓ (↓Fetal testis development)

(44) ↓

(28) ↓

(55) ↓ (↓Fetal testis development)

(54) ↓ (↓Fetal testis development)

(48) ↓ (↓ LH by estrogens)

(74) ↑

(73) ↔

(75) ↑

(76) ↓

(72) ↓↔

Fertility Outcome (78) ↔

(77) ↔

Fertility in Offspring (66) ↓

(68) ↓↔

(64) ↓

(56) ↓ (↓ Fetal testis development)

(67) ↓

(31) ↓

For each outcome considered, the respective references are listed according to the model used, animal or human, the in vitro or in vivo evidence and the observed effect (↓, decrease;

↑, increase; ↔↓, mild decrease or no effect). When available, mechanistic details are provided.

Another key vitamin supplementation, namely vitamin D,
showed a partial restore of testicular fibrosis in a complex
rat model of diabetes, obtained by streptozotocin treatment,
associated with BPA-induced hypogonadism (85). Interestingly,
this effect appeared as the result of a direct downregulation of
nuclear factor kappa B exerted by vitamin D, rather than the

indirect involvement of the central pituitary/testis axis.
Of note, the composition of the antioxidant mixture

seems to have major relevance on the efficacy of the
treatment. In fact, the classical vitamin C administration
failed to produce any amelioration on the testicular oxidative

damage induced by BPA in rats, or even exerted worsening
effects (86). On the contrary, Rahman et al. (87), in an
in vitro experimental model on isolated mouse spermatozoa,
showed that the combination of glutatione, vitamin C, and
vitamin E effectively prevented the oxidative stress and
the respective downstream tyrosine phosphorylation-signaling

pathway, avoiding the premature acrosome reaction and possibly
improving the fertilization capacity of sperm cells exposed to
BPA. (87).

Interestingly, a wide variety of phytochemicals and plant
extracts showed ameliorating effects of testis function in rodent
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models exposed to BPA (88). Cordyceps militaris, a medical
fungus largely employed in Chinese traditional medicine,
restored the histological architecture of seminiferous tubules
and epididymis in male rats exposed to BPA, with a significant
recovery of the sperm count, through the likely reduction
of the oxidative stress damage (89). Also, lycopene showed
a detoxifying activity toward testicular damages associated
with BPA exposure, as evidenced by the protection from
the loss of germ cell population, the reduction of testis and
epididymis weight, as well as the impairment of sperm motility,
exerted by the treatment of male rats with the sole BPA (90).
Furthermore, co-administration of quercetin, an antioxidant
phytochemical member of the polyphenolic flavonoid family,
amended the toxic effects on testis and epididymis exerted by
BPA (91).

Our group recently showed that the metabolic/mitochondrial
disruption, induced by the in vitro exposure of human
spermatozoa to BPA, was effectively compensated by low dose
treatment with aqueous extract from leaves of Eruca sativa,
a plant of the Brassicaceae family widely represented in the
Mediterranean region. Importantly, the characterization of the
extract showed to be extremely rich in natural antioxidants,
such as polyphenols and flavonoids. The treatment with
high concentration of the aqueous extract was unexpectedly
associated with severe disruption of both mitochondrial and
cell membrane redox balance, resulting in a significant loss
of sperm motility (81). Importantly, these preliminary results
have been confirmed by a subsequent study performed on
Wistar rats (92). Consistent with in vitro data, the overall
hormonal and semen disruption associated with BPA exposure
was significantly ameliorated by the low-dose administration of
Eruca sativa aqueous extract, while it was worsened by high
dose treatment.

Despite these encouraging results, exogenous antioxidants
may exert a double-edged effect. In particular, the SELECT
study found that the supplementation of vitamin E significantly
increased the risk of prostate cancer among healthy men (93).
Furthermore, more recently, it has been shown that vitamin E
can act as pro-oxidant agent promoting DNA damage and cell
transformation (94). Thus, the use of antioxidants-based dietary
supplements for the prevention of disease states in general, and
in particular for the compensation from altered states associated
with exposure to environmental factors, should be considered
with caution.

CONCLUSIONS AND FUTURE

PERSPECTIVES

Bisphenol A represents one of the most controversial chemical
pollutants, with the typical features of an endocrine disruptor.
Early toxicological evidence on BPA date back to nearly 30
years ago, when major interference with estrogen signaling
pathway was claimed. Since that time, a wide range of cell
mechanisms of both endocrine and metabolic disruption have
been claimed by the use of experimental models. In particular,

major impairment of the male hypothalamus/hypophysis/testis
axis has been recognized as associated with the exposure to BPA
during both the fetal and the adult life, resulting in altered testis
development, impaired endocrine function and infertility. In this
regard, direct disruption of sperm characteristics, such as reduced
motility performances and development genetic abnormalities
have been identified. On the other hand, data obtained in humans
are actually limited and poorly conclusive to identify a strict
causal role of BPA in reduced male fertility potential. A summary
of references supporting each singular effects of bisphenols on
male reproductive health is reported in Table 1.

Methodological differences and different study populations
are factors that can explain some discrepancies. Moreover,
available clinical outcomes, such as semen parameters and time
to pregnancy, are likely susceptible of variation related to many
different confounding factors. It should be noted that, as for most
of chemical pollutants, the identification of a reliable marker of
exposure remains a major issue. Specifically, for BPA, urinary
concentrations are surely reliable data from an analytical point of
view, but may not be representative of the real exposure to BPA
due to its short half-life. To this regard, Vitku et al. reported that
BPA levels in blood plasma were positively correlated with BPA
levels in semen, but only seminal BPA was negatively associated
with seminal quality (96). Finally, the cross-sectional design of
the available studies surely provides proof of association, but
limited evidence of causality.

One of the main problems associated with exposure to
endocrine disruptors in general, and to BPA in particular, is
represented by the potential activity at low concentrations.
This represents a critical issue during the development phases,
such as embryo/fetal life and newborn or peri-pubertal age,
since the effects in these time windows may be irreversible
and are generally detected only at adulthood (15). Accordingly,
populations at higher risk includes pregnant women, infants, and
adolescents. On these bases, the current European law restricted
the use of BPA in the production of packaging and materials
in direct contact with food by limiting migration rate to 0.05
mg/kg of food and prescribing the total absence in products
for newborns, from food to food containers and clothes (6). In
addition, based on new toxicological data and methodologies,
the European Authorities adjusted the tolerable daily intake from
50 to 4 µg/kg body weight/day with an overall lowering rate of
12 times, highlighting the increasing level of attention for these
health concerns.

In conclusion, reproductive issues associated with bisphenol
A exposure still remains an intense field of investigation,
particularly dealing with health consequence reported in males.
Current challenges for the future are represented by the
identification of efficient markers of exposure in order to address
the extent of health consequences in different age ranges.
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Bisphenol A (BPA) represents the main chemical monomer of epoxy resins and

polycarbonate plastics. The environmental presence of BPA is widespread, and it can

easily be absorbed by the human body through dietary and transdermal routes, so that

more than 90% of the population in western countries display detectable BPA levels in

the urine. As BPA is qualified as an endocrine disruptor, growing concern is rising for

possible harmful effects on human health. This review critically discusses the available

literature dealing with the possible impact of BPA on male fertility. In rodent models,

the in vivo exposure to BPA negatively interfered with the regulation of spermatogenesis

throughout the hypothalamic–pituitary–gonadal axis. Furthermore, in in vitro studies, BPA

promoted mitochondrial dysfunction and oxidative/apoptotic damages in spermatozoa

from different species, including humans. To date, the claimed clinical adverse effects

on male fertility are largely based on the results from studies assessing the relationship

between urinary BPA concentration and conventional semen parameters. These studies,

however, produced controversial evidence due to heterogeneity in the extent of BPA

exposure, type of population, and enrollment setting. Moreover, the cause–effect

relationship cannot be established due to the cross-sectional design of the studies

as well as the large spontaneous between- and within-subject variability of semen

parameters. The best evidence of an adverse effect of BPA on male fertility would

be provided by prospective studies on clinically relevant endpoints, including natural

or medically assisted pregnancies among men either with different exposure degrees

(occupational/environmental) or with different clinical conditions (fertile/subfertile).

Keywords: endocrine disruptors, environmental pollution, oxidative stress, spermatozoa, sperm DNA damage

INTRODUCTION

Bisphenol A (BPA), 4,40-isopropylidenodi-phenol, 2,2-bis(4-hydroxyphenylo)propane, is a
crystalline chemical compound widely used as key monomer of epoxy resins and polycarbonate
(PC) plastics for more than 50 years (1). The industrial use of BPA is impressive with ∼9 million
tons per year produced worldwide (2–4). Resiliency, flexibility, and durability have decreed the
large-scale success of BPA-based PC plastics, leading to their use inmany and various fields, ranging
from the arms industry, for components of safety equipment (helmets), to the manufacture of
medical devices, including dental sealants and fillers. In the food industry, synthetic materials
containing BPA are widely employed for manufacturing long-term food and drink containers and
represent key components of protective coatings, including those covering the internal surface of
cans (2–4). A wide variety of other commonly used articles also contain BPA and its derivatives:
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fridges, baby bottles, dishes, lenses, sunglasses, hair dryers, CD
and DVD, cell phones, computers, and thermal paper (1, 5, 6).
Owing to its ubiquitous presence, environmental persistence,
and the reputation of being an endocrine disruptor, BPA is now
regarded as a potential threat to human health, and concerns arise
from its possible link with cardiovascular diseases, metabolic
disorders, cancer, and infertility (7–10).

The aim of this review is to critically outline and discuss the
available literature dealing with the possible impact of BPA on
male fertility.

TOXICOKINETICS OF BPA

BPA is an ideal plasticizer because of its cross-linking
characteristics; nevertheless, free monomers can be released into
food content after polymerization, especially on exposure to
high temperature and with re-use of the containers: this makes
possible BPA entering the organism (11–14). As early as 1994,
Brotons et al. (15) reported that vegetables preserved in lacquer-
coated cans acquire estrogenic activity due to contamination by
BPA, which is leached from the lacquer coating. More recently,
Kubwabo et al. (16) reported that BPA also migrated from
the wall of PC baby bottles: high temperatures and prolonged
incubation times resulted in increased leaching of BPA, especially
when fatty foods were used, whereas BPA leaching from non-
PC baby bottles appeared to be negligible under the same
experimental conditions (16). Hence, as a precautionarymeasure,
the European Union banned BPA in the production of baby
bottles in 2011(2011/8/EU). Resin-based dental filling materials
have been feared as another possible source of oral exposure (17).
According with two recent systematic reviews, BPA can leach
from some resin-based dental materials into the saliva (18, 19),
reaching detectable urinary concentrations that peak 24 h after
treatment (19). However, the extent to which such an increase
may affect the health of patients remains an open question (18).

According to the main regulatory agencies, dietary route
represents the primary source of human exposures (2, 20–26)
and a tolerable daily intake (TDI) of 50 µg/kg body weight/day
has been established, based on studies from rodent models, where
clear harmful effects at much higher doses were registered. Based
on an analysis of consumer exposure to BPA, the European Food
Safety Authority (EFSA) stated that the current levels of exposure
are below the TDI (27). Therefore, they would not represent a
threat for consumers at any age, taking also into account the short
half-life of orally ingested BPA (27).

After ingestion, most of BPA is quickly bound to glucuronic
acid by the liver enzyme uridine diphosphonate glucuronosyl
transferase (UGT) to produce BPA glucuronide (BPA-G) (25, 28).
This rapid first-pass liver metabolism makes BPA more soluble
in water, with a half-life of elimination in urine of 5.4–6.4 h
(28, 29). Therefore, at oral doses ranging from 50 to 100 µg/kg
body weight (far above the TDI), in humans, BPA elimination
is essentially complete within 24 h, with free BPA accounting
for < 1% of total PBA (28, 29). Of note, toxicokinetic processes
can be influenced by physiological changes related to pregnancy,
as the placenta exhibits beta-glucuronidase enzymatic activity
that deconjugates BPA-G (26, 30, 31). Once having crossed the

placental barrier, the BPA conversion to BPA-G in the fetus would
be poorly effective, due to the immature liver functions (30).

The highly effective detoxifying system of the human body
could counteract possible consequences of a large-scale exposure
to BPA. In line with the ubiquitous use of this substance,
the reports by the Center for Disease Control and Prevention
revealed that more than 90% of the US population displays
detectable BPA levels in urine (32, 33). In the largest population
study by Calafat et al. (34), detectable levels of total (free
plus conjugated) BPA were found in 92.6% of urine samples
from 2,517 participants aged ≥6 years in the 2003–2004
National Health and Nutrition Examination Survey (NHANES).
According to a recent study by Gerona et al. (35), these
epidemiological data could even be underestimated. Indeed,
the results of the largest population studies were produced
by using indirect methods requiring the enzymatic hydrolysis
of conjugated BPA to free BPA, before its quantification in
urine by liquid chromatography–mass spectrometry (LC-MS).
Unfortunately, the deconjugation process would be largely
incomplete in many cases (35).

Interestingly, when NHANES data were adjusted for the
fasting hours preceding the collection of the urinary samples,
no clear inverse relationship between fasting hours and urinary
BPA levels was found (36). This finding seems to be at the
variance with the assumption that BPA is rapidly eliminated
after ingestion and that the digestive tract represents the main
source of exposure. On the contrary, NHANES data could suggest
that either the half-life of BPA is longer than we think or this
substance can, to some extent, remain stored in the body or it
can even be assimilated through alternative non-dietary routes.
Indeed, BPA is also detectable in indoor/outdoor air and floor
dust and is widely used in products that come into contact
with skin, including not only cosmetics but also thermal paper,
where BPA is used as a heat-activated developer (2, 27, 37). This
makes possible its absorption by alternative non-dietary means,
such as inhalation and transdermal route. While the estimated
inhalation exposure would be negligible when compared to
dietary route (38, 39), with the exception of some factory
workers with high occupational exposure (40, 41), transdermal
absorption should deserve special attention. Unlike plastics and
can linings, where BPA is largely in a polymerized form (PC
or PVC), the printing surface of many thermal papers contains
milligrams of unbound (free) BPA per gram of paper (42–45),
thus explaining the quick transdermal absorption of BPA from
this source after handling (26, 45–47): this raises special concerns
in individuals who work as cashiers (48). The absorption degree
is further enhanced by chemicals which are present in hand
sanitizers that can cause a breakdown of the dermal barrier
(45). According to EFSA (49), apart from oral exposure, the skin
contact with thermal paper represents a major source of exposure
to BPA. Of note, while almost all of bloodstream circulating BPA
following oral ingestion is in the conjugated form (50–52), after
entering the body via a transdermal route, BPA bypasses the
liver metabolism, resulting in significantly higher concentrations
of unconjugated form in the bloodstream (50, 53–56). This is
relevant to toxicodynamics because only unconjugated BPA can
activate estrogen receptors and is regarded as the biologically
active one.
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EFFECTS OF BPA ON MALE FERTILITY

Effects on Spermatogenetic Function:

Evidence From Preclinical Studies
In the last decades, results of preclinical research revealed
endocrine-disrupting effects of BPA on male reproductive
functions, clarifying possible mechanisms by which BPA
can interfere with the regulation of spermatogenesis mainly
throughout the hypothalamic–pituitary–gonadal axis.

In rodent models, with some exceptions (57–59), the in vivo
exposure to BPA at different doses (largely ranging from
2 µg/kg/day to 960mg BPA/kg body weight/day) and time
intervals (from 5 to 84 days) resulted in a significant decrease in
sperm counts (60–70), sperm motility (61, 62, 67), normal sperm
morphology (62), increase in sperm DNA damage (63, 67), and
poor spermatogenesis (64–66, 70–72). A large between-studies
heterogeneity in both cumulative effective doses and tolerable
daily intakes was observed. It might partially be due to differences
in susceptibility to BPA effects across rodent species and strains.
Genetic factors of animal models can modulate the metabolic
rate of a chemical substance, accounting for the variability of its
toxicokinetics among the species (73, 74). This could determine a

variable extent of sensitivity of different species and strains to the
same chemical under the same experimental conditions (75).

An interference at hypothalamic–pituitary level of the gonadal
axis has been clearly demonstrated in the rat, where, with a
few exceptions (65, 76), the administration of BPA significantly
lowered both the expression of the GnRH gene in cells of
preoptic area (64) and circulating levels of gonadotropins and/or
testosterone (64, 69, 70, 77–81). Interestingly, the perinatal
phase would represent a sensitive exposure window (3), as the
treatment of pregnant and nursing dams with BPA decreased
intratesticular (77) and circulating (82) testosterone levels ofmale
offspring in adulthood.

BPA is qualified as a xenoestrogen because it mimics estrogen
effects due to its characteristic polycyclic phenolic chemical
structure, similar to estradiol (77). In a study by Matthews et al.
(83), BPA, but not the soluble product of its glucuronidation,
was able to displace tritiated 17-β estradiol from the estrogenic
alpha and beta receptors (ERα and ERβ, respectively). The
authors observed a more evident dose dependence for ERβ,
to which BPA exhibited higher affinity than to ERα (83). The
affinity for ERα is 10,000 times lower than that of 17-β estradiol,
more than 20,000 times lower than that of diethylstilbestrol, a
synthetic molecule with a powerful estrogenic activity, and 3–
700 times lower than that of various polychlorinated biphenyls,
which represent ubiquitous organic polluting compounds in
the environment (84). Despite the low affinity, the binding
of BPA to ERs is biologically functional in terms of ER-
dependent transcription of target genes, as demonstrated by
the luciferase reporter gene assay (83). Noteworthy, although
BPA acts as a weak estrogen on ERs, it exhibits a very
higher affinity (similar to estradiol) for the membrane G
protein-coupled estrogen receptor (GPER) of the non-classical
estrogenic pathways, mediating rapid non-genomic effects of
BPA even at low doses (85). In males, such an estrogen-
like endocrine disruption is expected to interfere with the

feedback mechanisms of the hypothalamic–pituitary–gonadal
axis, leading to a reduced pituitary secretion of gonadotropins
and consequent hypostimulation of spermatogenesis and Leydig
cell steroidogenesis.

Indeed, the decrease in testosterone levels in animals exposed
to BPA could reflect a combination of central (hypothalamic–
pituitary) and peripheral (testicular) effects. The in vitro
treatment of Leydig cells from adult rat with BPA decreased
testosterone biosynthesis as a result of decreased expression of
steroidogenic enzymes (77, 86).

Further possible mechanisms leading to an androgen
deficiency status could be sought in the endocrine perturbation
exerted by BPA on the differentiation and functions of the
adipose tissue. BPA promotes both adipogenesis (87) and
lipid storage in adipocytes (88); furthermore, animals treated
with low doses of BPA exhibited obesity-related metabolic
dysfunctions (89). In this view, BPA is now regarded as a possible
environmental obesogen (90). In the complex and bidirectional
relationship between obesity and low testosterone, it is well-
demonstrated that adipocytes express aromatase activity which is
responsible for testosterone conversion into estradiol (91), which
can exert a synergistic inhibitory effect on pituitary secretion
of luteinizing hormone (LH) (92, 93). An excess of fat mass is
also associated with increased levels of circulating leptin which
exerts a direct inhibition of Leydig cell steroidogenesis (94,
95). Noteworthily, the chemical structure of BPA is lipophilic;
therefore, the effects on adipocytes could be amplified and
maintained by its retention in fat mass, establishing a possible
vicious circle (96).

BPA can also exert anti-androgenic activity by interfering
with the signaling of the androgen receptor (AR) at several
levels (9, 69, 97). BPA acts as a competitive (98) and non-
competitive (99) antagonist of AR and decreases the expression
of AR in the testis (66). Other mechanisms of the anti-
androgenic interference include the disruption of the nuclear AR
translocation (99) and the enhancement of the interaction of AR
with its corepressors, such as the silencing mediator of retinoid
and thyroid hormone receptor (SMRT) and the nuclear receptor
co-repressor (N-CoR) (100). As spermatogenesis requires both
high intratesticular levels of testosterone and an adequate
functionality of the AR (101, 102), it is not surprising that the
effects of BPA on testosterone biosynthesis and activity could
affect spermatogenic function.

Independently of its hormonal disrupting effects, BPA could
interfere with spermatogenesis processes even through other
mechanisms. After in vivo exposure to BPA, an impaired
testicular glucose homeostasis has been reported in the rat
(103), and an increased testicular oxidative stress has been
revealed both in the rat (70, 103) and in the mouse (104, 105).
BPA can also induce apoptosis in cultured Sertoli cells from
rodents (106–109) by inducing dysfunction of mitochondria and
generation of reactive oxygen species (ROS) (110). Moreover,
an impaired expression of junctional proteins of Sertoli cell has
been found in rats that were exposed to BPA neonatally (61),
while a downregulated expression of genes involved in Sertoli
cell functions has been found in mice that were exposed to BPA
prenatally (62).
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Effects on Semen Quality and

Reproductive Outcomes: Evidence From

Clinical Studies
Due to the obvious lack of controlled clinical trials investigating
the effects of BPA on human male fertility, information is largely
inferred from findings of observational epidemiological studies
that, with a few exceptions, used semen quality as a surrogate
endpoint, producing divergent results likely due to heterogeneity
in the extent of BPA exposure, sample sizes, type of population,
and enrollment setting (Table 1). Some studies included men
from the general population (112–115), others included men
attending fertility clinics with (116–120) or without known
subfertility (121); one study was restricted to men with proven
fertility (122). Only in two studies were men with occupational
exposure to BPA included (111, 112).

Inconclusive results arise from studies on semen quality in the
general population. In a study by Lassen et al. (114) on 308 young
men enrolled during physical examinations for military service in
Denmark, those in the highest quartile of BPA urinary excretion
exhibited significantly lower percentages of progressive sperm
motility when compared to the lowest quartile group. Adoamnei
et al. (115) reported a significant negative association of urinary
BPA concentrations with sperm concentration and total sperm
count, but not with motility, in 215 healthy young university
students. On the contrary, no significant associations were found
between urinary BPA concentrations and any standard semen
parameter in the Longitudinal Investigation of Fertility and the
Environment (LIFE) study, which recruited 418 men from 16
counties in Michigan and Texas (113).

Also inconclusive are the findings on semen quality arising
from studies that enrolled men attending fertility clinics. In
a study by Meeker et al. (116), where 190 male partners of
couple seeking treatment for infertility were dichotomized as
either equal/above or below the reference range for total sperm
number, sperm concentration, and sperm motility, according to
theWHO 1999 criteria (123), urinary BPA concentration was not
associated with a significant odd for having semen parameters
below the reference levels. Nevertheless, when variables were
modeled continuously in multivariable linear regression models,
an increase in urinary BPA levels was associated with a slight,
albeit just significant, decrease in the percentage of normal sperm
morphology (p = 0.049), curvilinear velocity at the computer-
aided semen analysis (p = 0.04) and increased sperm DNA
damage (p = 0.048) at the comet assay. In a large case–control
study by Chen et al. (120), no significant differences were found
in urinary BPA concentrations between 877 men with idiopathic
infertility and 713 fertile control men. In the same study, crude
and multivariable adjusted models did not show significant
associations between BPA levels and standard semen parameters
(120). In a subsequent study on 149 couples undergoing their
first or second in vitro fertilization (IVF) or intracytoplasmic
sperm injection (ICSI) procedure, an increased urinary BPA
concentration in male partners was associated with lower sperm
count, sperm concentration, and sperm vitality (117). However,

parameters of embryo development (from the fertilization of
oocyte to the stage of blastocyst) were not related to the

exposure to BPA (117). In another study on 191 Czech men with
infertile marriages, seminal BPA, but not plasma BPA, levels were
negatively associated with sperm concentration, sperm count,
and, to a lesser extent, normal sperm morphology (118). More
recently, Radwan et al. (119) reported that urinary concentration
of BPA in 315 men with normal sperm concentration according
to the WHO 2010 criteria (124) was negatively associated with
sperm motility and positively associated with the percentage of
sperm sex chromosome disomy. Finally, in a recent report on
a preconception cohort of 161 men without known subfertility,
higher urinary BPA concentrations were found in the group
of men with abnormal sperm tail morphology, whereas no
association was found with sperm count, and no information was
provided about other semen parameters (121).

In the Study for Future Families (SFF), the only one enrolling
men with proven fertility (315 male partners of pregnant
women), regression models revealed no relationship between
urinary BPA levels and semen parameters (122).

Noteworthy, Li et al. (112) assessed the relationship between
urinary BPA levels and semen parameters among 218 factory
Chinese workers with or without occupational exposure to
BPA. Men with occupational exposure to BPA, who exhibited
much higher urinary BPA concentrations, also displayed a
significant negative association of BPA with sperm count,
viability, and motility. A significant association with lower
sperm concentration remained when analysis was restricted
to non-occupationally exposed workers. In another study on
factory Chinese workers (111), BPA-exposed men (n = 75)
had significant lower sperm concentration when compared to
unexposed group (n = 65). Interestingly, authors also found a
negative independent association between urinary BPA levels and
global methylation degree of sperm DNA, pointing to possible
epigenetic consequences of BPA exposure, as already suggested
by in vitro studies (125, 126).

Actually, two studies assessing more clinically relevant
endpoints seem to weaken concerns about the possible adverse
impact of BPA exposure on male fertility. In a series from
the population-based LIFE study, where Buck-Louis et al.
(127) assessed the time to pregnancy in 501 men who were
actively trying to conceive, no significant association was found
between higher BPA concentrations in the urine and longer
duration of pregnancy attempts, after controlling for a number
of possible confounders that included partner age. In the cohort
of the Environment and Reproductive Health (EARTH) Study,
including 218 couples who underwent assisted reproductive
technologies (ART) procedures (intrauterine inseminations or
IVF), no association was found between paternal urinary BPA
concentrations and ART outcomes (128).

Effects on Sperm Functions: Evidence

From in vitro Studies
Experimental studies suggest that BPA could extend its biological
effects on male fertility beyond the disrupting effect on the
regulation of spermatogenesis, by directly affecting sperm
functions. In animal models, the in vitro treatment with different
doses of BPA adversely affected sperm motility in fish (129),
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TABLE 1 | Epidemiological studies on the relationship of urinary BPA concentration with semen quality and/or other reproductive outcomes.

Study Population BPA urinary

concentration:

mean ± SD or

median (range)

Results Adjustments

Mendiola

et al. (107)

Fertile men

(n = 375)

1.5 (0.80–3.0) µg/l* No significant associations between urinary BPA and semen

parameters.

Age, BMI, smoking status, ethnicity,

center, urinary creatinine

concentration, and time to motility

analysis.

Meeker et al.

(101)

Male partners of

subfertile couples

(n = 190)

1.3 (1.8–2.5) ng/ml Urinary BPA concentrations were linearly associated with

lower percentages of sperm with normal morphology (β

regression coefficient: −0.90, 95% CI: −1.79, −0.004,

p = 0.049), lower VCL values (β regression coefficient: −3.97,

95% CI: −7.65, −0.27, p = 0.04) and increased DNA

damage (β regression coefficient: 3.88, 95% CI: 0.01, 7.74,

p = 0.048).

Age, BMI, abstinence period, and

smoking.

Li et al. (97) Factory workers

with and without

occupational BPA

exposure

(n = 218)

38.7 (6.3–354.3)

µg/grCr in exposed

and

1.4 (0.0–17.9) µg/grCr

in non-exposed

Urinary BPA was associated with lower sperm concentration

(β regression coefficient: −15.6; p < 0.001), total sperm

count (β regression coefficient: −42.1; p = 0.004), sperm

vitality (β regression coefficient: −4.6; p < 0.001), and motility

(β regression coefficient: −3.1; p < 0.001).

Age, education, history of chronic

disease, previous exposure to other

chemicals and heavy metals,

employment history, marital status,

age at first intercourse, smoking,

alcohol consumption, and center.

Chen et al.

(105)

Infertile men

(n = 877) and

fertile controls

(n = 713)

Geometric means:

0.612 ng/ml in cases

and 0.621 ng/ml in

controls

No significant associations between urinary BPA levels and

standard semen parameters

Age, BMI, and urinary creatinine

concentration.

Buck Luis

et al. (109)

Couples recruited

upon

discontinuing

contraception to

become pregnant

(n = 501)

1.04 (0.91–1.18) ng/ml* BPA concentration was not associated with time to

pregnancy.

Partner age, BMI and urinary

creatinine concentration, female

urinary BPA concentration, smoking,

and center.

Knez et al.

(102)

Male partners of

couples

seeking infertility

treatment

(n = 149)

1.55 (0.81–3.27) ng/ml* Urinary BPA was associated with lower total sperm count (β

regression coefficient: −0.241, 95% CI: −0.47, −0.012),

sperm concentration (β regression coefficient: −0.219, 95%

CI: −0.436, −0.003), and viability (β regression coefficient:

−2.66, 95% CI: −4.991, −0.392). No association between

urinary BPA concentration and embryo development

parameters at IVF/ICSI.

Male age, BMI, current smoking

status, alcohol consumption,

abstinence period, and urinary

creatinine concentration.

Lassen et al.

(99)

General population

(n = 308)

3.25 (0.59–14.89)

ng/ml

BPA urine concentration was significantly associated with

lower progressive motility (−6.7%; 95% CI: −11.76, −1.63).

Smoking, varicocele, cryptorchidism,

genital conditions, and time to motility

analysis.

Miao et al.

(111)

Factory workers

with and without

occupational BPA

exposure

(n = 140)

36.23 ± 7.69 µg/grCr

in exposed and

1.38 ± 6.89) µg/grCr in

non-exposed

Exposed men (n = 75) exhibited a lower sperm concentration

when compared to unexposed group (n = 65): 94.93 ±

58.58 × 106/ml vs. 126.42 ± 82.26 × 106/ml (p = 0.03).

Higher urinary BPA levels were independently associated with

lower global methylation degree of sperm DNA.

Age, education, history of disease,

smoking, and alcohol consumption

Dodge et al.

(110)

Couples seeking

infertility

treatments

(n = 218)

1.6 (0.8–2.8) ng/ml Lower male BPA concentrations were associated with a

greater proportion of high-quality embryos in IVF cycles (RR

= 1.92; 95% CI: 1.13, 3.25).

Maternal age, paternal normal weight,

maternal normal weight, and maternal

smoking.

Goldstone

et al. (98)

Male partners of

couples who

discontinued

contraception to

become pregnant

(n = 418)

0.51 (0.46–0.58)

µg/grCr*

No significant association was found between urinary BPA

levels and any standard semen parameter.

Age, abstinence time, alcohol

consumption, BMI, smoking,

previously fathered pregnancy, center,

and ethnicity.

Vitku et al.

(103)

Male partners in

couples seeking

infertility treatment

(n = 191)

0.075 (0.055–0.100)

ng/ml#
Seminal BPA but not plasma BPA was negatively associated

with sperm count (r§ = −0.178; p = 0.018), concentration (r§

= −0.198; p = 0.009), and morphology (r§ = −0.160;

p = 0.044).

Age, BMI, and abstinence time.

(Continued)
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TABLE 1 | Continued

Study Population BPA urinary

concentration:

mean ± SD or

median (range)

Results Adjustments

Adoamnei

et al. (100)

Healthy young

university students

(n = 215)

1.8 (0.14–11.9)

µg/grCr*

Urinary BPA concentration was negatively associated with

sperm concentration (β regression coefficient = −0.04, 95%

CI: −0.07; −0.02) and total sperm count (β regression

coefficient = −0.05, 95% CI: −0.08; −0.02).

BMI, smoking, varicocele, abstinence

time, and time to motility analysis.

Radwan et al.

(104)

Male partners of

couples

seeking infertility

treatment

(n = 315)

1.64 ± 2.32 µg/grCr Higher urinary BPA concentration was related to lower sperm

motility (p = 0.03), increased percentage of immature sperm

(p = 0.018), and sperm sex chromosome disomy (p = 0.01).

Abstinence time, age, smoking,

alcohol consumption, and past

diseases.

Pollard et al.

(106)

Male partners in

couples seeking to

become pregnant

without history of

infertility (n = 161)

2.5 ng/ml
†

Higher urinary BPA concentrations were associated with

increased percentage of sperm with abnormal tail

morphology (p = 0.032).

Age, ethnicity, income, smoking, and

BMI.

BMI, body mass index; BPA, bisphenol A; CI, confidence intervals; ICSI, intracytoplasmic sperm injection; IVF, in vitro fertilization; RR, rate ratio; VCL, curvilinear velocity. *values are

mean (25th−75th percentiles); #seminal BPA levels; §r = correlation coefficient of partial correlation;
†
geometric mean.

bovine (130), mouse (131), and chicken (132) and also impaired
sperm fertilizing ability in mouse (131) and chicken (132).
Consistent with data from in vitro studies on several types of
cells (106–108, 133–137), these effects could be mediated by
oxidative–apoptotic mechanisms: it has been reported that the
exposure to BPA reduces mitochondrial membrane potential
(1Ψm) in chicken spermatozoa (132) and promotes ROS
generation in bovine spermatozoa (130); oxidative stress and high
DNA fragmentation have been also reported in fish spermatozoa
exposed to BPA (129). To date, only two studies have assessed
the direct in vitro effects of BPA on human spermatozoa. In
the first study, which was carried out from our group (138), the
exposure of motile spermatozoa to scalar concentrations of BPA
(10–800µM) for 4 h produced a decrease in 1Ψm, starting from
300µM, which was accompanied by mitochondrial superoxide
anion generation, activation of caspase-9 and caspase-3, and
motility decrease. As a late consequence of oxidative stress, a
20-h exposure to 300µM BPA (but not to lower doses) also
produced a significant decrease in sperm viability, complete
sperm immobilization, and oxidative damage of DNA, as
revealed by the generation of the oxidized base adduct 8-
hydroxy-2′-deoxyguanosine (138). An inhibitory effect on 1Ψm
in human spermatozoa exposed to BPA has been also reported,
even at very lower doses, in a subsequent study by Grami
et al. (139).

DISCUSSION

Due to the widespread presence of BPA, environmental
exposure to this chemical spares no one: large epidemiological
studies revealed that more than 90% of the population
in western countries displays detectable BPA in the urine
(32–34) and toxicokinetic analyses pointed to dietary and
transdermal routes as the primary sources of human exposure.

As BPA is qualified as a xenoestrogen endocrine disruptor,
growing concern is rising for possible harmful effects on
human health, including fertility. Indeed, except for some
factory workers with high occupational exposure, measured
BPA levels in biological fluids are usually low and the
hazards to fertility for the general population remain a matter
for debate.

Overall, while preclinical studies have clearly shown that BPA
can negatively interfere with the regulation of spermatogenesis,
as well as with sperm functions, the claimed clinical adverse
effects on male fertility are largely based on the results
from conventional semen analysis, that, however, produced
controversial evidence (Table 1), being strongly weakened by a
number of limitations. Firstly, the cross-sectional design of the
studies and the large spontaneous between- and within-subject
variability of semen parameters (140) hinder any conclusion
about the cause–effect relationships. Although analyses were
adjusted for a number of possible confounding factors, it
cannot be excluded that other unmeasured confounders have
not influenced the examined associations. Other endocrine-
disrupting substances are ubiquitous in the environment and
may coexist in the human body, leading to possible synergic
effects on semen quality with BPA not necessarily playing the
major role. Secondly, heterogeneity arises from the inclusion of
different study populations with variable degrees of exposure
to BPA and, probably, from the variable susceptibility to its
effects: in fertile men with low unintentional environmental
BPA exposure, any detectable effect on reproductive functions
is likely to be small, with uncertain clinical significance.
Whether or not low unintentional environmental BPA exposure
can worsen the fertility potential in subfertile men would
represent a more relevant issue, but it is difficult to be
ascertained. On the other hand, when men with or without
occupational exposure to BPA were compared, those with
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occupational exposure, who exhibited much higher urinary BPA
concentrations, also displayed a significant negative association
of BPA with sperm count (111, 112), viability, and motility
(112). Further studies on occupationally exposed workers
are warranted.

The best evidence of an adverse effect of BPA on male
fertility would be provided by prospective studies on clinically
relevant endpoints, including natural or medically assisted
pregnancies among men either with different exposure
degrees (occupational/environmental) or with different
clinical conditions (fertile/subfertile). However, this is a
hard challenge.
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Over the last decades, the adverse effects of human exposure to the so-called “endocrine

disruptors” have been a matter of scientific debate and public attention. Bisphenols are

synthetic chemicals, widely used in the manufacture of hard plastic products. Bisphenol

A (BPA) is one of the best-known environmental toxicants proven to alter the reproductive

function in men and to cause other health problems. Consumer concern resulted in

“BPA free” products and in the development of bisphenol analogs (BPA-A) to replace

BPA in many applications. However, these other bisphenol derivatives seem to have

effects similar to those of BPA. Although a number of reviews have summarized the

effects of BPA on human reproduction, the purpose of this article is to review the

effects of bisphenols on testicular steroidogenesis and to explore their mechanisms

of action. Testicular steroidogenesis is a fine-regulated process, and its main product,

testosterone (T), has a crucial role in fetal development and maturation and in adulthood

for the maintenance of secondary sexual function and spermatogenesis. Contradictory

outcomes of both human and animal studies on the effects of BPA on steroid hormone

levels may be related to various factors that include study design, dosage of BPA used

in in vitro studies, timing and route of exposure, and other confounding factors. We

described the main possible molecular target of bisphenols on this complex pathway. We

report that Leydig cells (LCs), the steroidogenic testicular component, are highly sensitive

to BPA and several mechanisms concur to the functional impairment of these cells.

Keywords: bisphenols, BPA, endocrine disruptors, testicular steroidogenesis, spermatogenesis

INTRODUCTION

Over the last decades, the adverse effects of human exposure to the so-called “endocrine disruptors”
have been a matter of deep debate by the scientific community and the layman. Particular
attention has been paid to their toxicity on the reproductive function. Bisphenol A [2,2-bis(4-
hydroxyphenyl)propane] (BPA) is among the most well-known endocrine disruptors proven
capable of impairing the male reproductive function and to cause other health problems. BPA

is an organic synthetic compound, including the group of dyphenylmenthane derivatives and
bisphenols, widely used in the manufacture of hard plastic products. BPA has been used since
the 1950s, in food packaging, industrial materials, dental sealants, personal hygiene products, and
thermal receipts (1, 2). A significant exposure to BPA for children is given by toys, books, and
feeding bottles (3, 4). BPA penetrates the body through the skin, inhalation, and the digestive
system (5). Once adsorbed, BPA is then metabolized by the liver and excreted with the urine in 24 h
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(2). Despite the rapid metabolism, BPA can accumulate in
different tissues (6). Consumer concern for BPA effects on health
resulted in “BPA free” products and in the development of
bisphenol analogs to replace BPA inmany applications. However,
these compounds seem to have endocrine disrupting capabilities
similar to BPA and their impact on reproduction has been little
investigated (7–9).

BPA seems to influence fetal testis development and
predispose to the testicular dysgenesis syndrome (TDS).
This syndrome may manifest itself not only at birth with
cryptorchidism and hypospadias, but also in adulthood when
it shows up with testicular tumors, hypogonadism, and/or
infertility (10). Current evidence suggests that BPA can
cause testicular histological abnormalities, which encompass
dysregulated proliferation and apoptosis of Leydig cells (LCs)
and alteration of steroidogenesis (11). In mice, pubertal exposure
to high doses of BPA causes LC and germ cells apoptosis,
resulting in underdeveloped testis with histopathological changes
including atrophied seminiferous tubules, decreased number
of late spermatids, and increased karyopyknotic cells (12).
The reduction of testicular weight and the alteration of
spermatogenesis persist till adulthood, long after the period
of BPA exposure (12). The gestational period is a sensitive
window of exposure to BPA. Male rats maternally exposed to
BPA from gestation to the postnatal period have low testicular
weight and testosterone (T) levels in the testicular interstitial
fluid in adulthood (13). These effects may involve different
molecular pathways discussed in section Bisphenol A Molecular
Mechanisms of Action on Testicular Steroidogenesis.

Many studies have investigated the effects of BPA on
human reproduction and extensive reviews have addressed
the strength of the evidence on BPA toxicity (9, 10, 14,
15). Contradictory outcomes may depend on several factors
including study design, BPA dose, timing, and route of exposure
and other confounding factors (15). Several mechanisms of
action have been described. First of all, BPA exhibits weak
estrogenic and antiandrogenic proprieties. It binds to both
estrogen receptors (ERs), ERα and ERβ (1, 10), and at high
concentrations, BPA binds to the androgen receptor (AR) on
which it acts as an antagonist (16). In addition to binding to
the ARs, it disturbs the hypothalamic–pituitary–testicular axis
and modulates gene expression and the enzymatic activity of
testicular steroidogenesis (16). Furthermore, exposure to BPA is
also associated with a decrease in the activity of the antioxidant
system, resulting in increased oxidative stress, the most common
cause of sperm damage (17, 18). Although several studies have
supported the harmful effects of BPA on testicular function, its
mechanism remains not fully understood.

The purpose of this article is to review the evidence on the
relationship between bisphenols and testicular steroidogenesis,
focusing on their mechanism(s) of action on LCs function.

TESTICULAR STEROIDOGENESIS

The testis is a complex endocrine organ regulated by intra-
and extra-testicular pathways that interact synergistically (19).
LCs have a crucial role in the regulation of steroidogenesis and
spermatogenesis. LCs produce testosterone (T), which has a

main role in fetal development and maturation. During the
masculinization programming window, the fetal testes begin
to produce T, which allows male gonadal differentiation and
development (20). Hence, T is necessary for the maintenance
of secondary sexual function and spermatogenesis (21).
Intratesticular T levels are approximately 100 times higher than
the levels found in systemic circulation (22). The high local
production rate of T implies the need for its intratesticular
transport from LCs to Sertoli cells which nourish and support
the development of the germinal cells during the various stages
of spermatogenesis (23). LCs derive from mesenchymal cells
located in the interstitial compartment of the testis. Their
development occurs through three different stages during which
they are called progenitor, immature, and adult LCs. Apoptosis
seems to have a main role in maintaining a constant population
of LCs, although other mechanisms may be involved (9).

LCs produce T in response to the luteinizing hormone (LH).
LH binding to the LH receptors (LHR) on LCs activates Gs
protein and adenylyl cyclase, increasing cAMP levels. cAMP acts
as a key second messenger and upregulates the expression of
genes related to the steroidogenesis (24). The steroidogenesis
consists in a complex multi-enzyme process by which precursor
cholesterol is converted to biologically active steroid hormones
in a tissue-specific manner (Figure 1). Cholesterol can be
synthesized in the endoplasmic reticulum but the first source
of this precursor for steroidogenesis is via uptake of cholesteryl
esters from high-density lipoprotein by the scavenger receptor
SR-B1 (25). Therefore, SR-B1 has a key role for the maintenance
of cholesterol balance. The first step in steroidogenesis takes
place within mitochondria. The steroidogenic acute regulatory
protein (StAR) mediates the transport of cholesterol from
the outer to the inner mitochondrial membrane (26). The
StAR-mediated transport of cholesterol is a crucial step for
steroidogenesis (27, 28) and appropriate concentrations of
cAMP are necessary for the regulation of StAR expression
(29). However, cAMP/PKA is not the only pathway that
regulates StAR expression. Other factors such as steroidogenic
factor, activator protein, and cAMP-response element-binding
protein are also associated with StAR regulation (30). Then,
cholesterol is metabolized to pregnenolone into the smooth
endoplasmic reticulum through a cascade of reactions that
are catalyzed by the cytochrome P-450 proteins. Pregnenolone
is then converted to T by 3β-hydroxysteroid dehydrogenase
(3β-HSD), 17α-hydroxylase/17,20 lyase (CYP17A1), and 17β-
hydroxysteroid dehydrogenase (17β-HSD). This complex process
of steroidogenesis itself can be responsible for the increase of
reactive oxygen species (ROS) (31). Thus, the normal products of
steroidogenesis can act as pseudosubstrates and interact with P-
450 enzymes, resulting in a pseudosubstrate–P-450–O2 complex,
which is a source of dangerous free radicals (32).

BISPHENOLS AND TESTICULAR

STEROIDOGENESIS

Effects of BPA on Steroid Hormone Levels
Experimental studies in male animals have shown that exposure
to BPA is associated with altered hormone levels suggesting
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FIGURE 1 | Leydig cell steroidogenesis. LH binds to its receptors (LHR) on the Leydig cell (LC) membrane. This results in activation of Gs protein and adenylyl cyclase

and increased concentration of intracellular cAMP. cAMP stimulates the mobilization and transport of cholesterol within the mitochondria in part by activating PKA and

MAPK signaling. The first source of cholesterol for steroidogenesis is via uptake of cholesteryl esters from high-density lipoprotein (HDL) by the scavenger receptor

SR-B1. Steroidogenic acute regulatory enzymes (StARs) regulate cholesterol transport from the outer to the inner mitochondrial membrane. At the inner mitochondrial

membrane, cholesterol is converted into pregnenolone by CYP11A1 and pregnenolone is converted into testosterone by enzymes in the smooth endoplasmic

reticulum (3β-HSD, CYP17A1, and 17β-HSD).

direct effects of BPA on LCs. However, these data are discordant.
Low-dose BPA decreased T levels in CD-1 mice exposed during
perinatal and postnatal periods (33), but not in adult C57BL/6
mice exposed in utero (34). In addition, low-dose BPA lowered
T levels in Holtzman rats exposed during gestation or in the
neonatal age (35, 36) and albino (37) and Wistar (38) rats
exposed in adulthood. In contrast, by examining the gestational
and neonatal exposure of low-dose BPA in Long–Evans (39)
or Sprague–Dawley (SD) rats (40, 41), the levels of T did
not change. Treatment with increasing concentrations of BPA
(1 to 1,000 nM) did not significantly lower basal or hCG-
stimulated T secretion by primary culture of LCs of young
adult male rats (42). However, although Sánchez et al. reported
that low-dose BPA did not decrease T levels in Wistar rats,
dihydrotestosterone levels decreased (43). Gamez et al. reported
that exposure to low-dose BPA led to an increase in serum
LH and FSH levels in young Wistar rats (44). Nevertheless,
another study in adult Wistar rats showed that exposure to
BPA decreased serum T, LH, and FSH levels, but increased
the levels of 17β-estradiol (E2) (45). In two studies in SD rats,
postnatal exposure to low-dose BPA decreased serum T and E2
levels (46). BPA exposure lowered T levels in Swiss albino and
C57BL/6 mice, but at variable dosage between 0.5 µg/kg and
100 mg/kg (47, 48). Sadowski et al. described a decrease in FSH
concentrations in Long–Evans rats at weaning, after exposure
to BPA at both 4 and 400 µg/kg/day (49). An in vitro study
conducted on fetal testes explanted from mice, rats, and humans
demonstrated that exposure to 10 nM of BPA was enough to
decrease basal T secretion in human fetal testes, but higher

concentrations were required in rats and mice (10 and 1µM,
respectively) (50).

The epidemiological studies evaluating the effects of BPA
exposure on serum hormone levels in men have also shown
conflicting results. In the INChianti adult population study,
Galloway et al. found a correlation between higher urinary
BPA concentrations and higher serum T, but not E2 levels
in 307 Italian men living in Chianti, Italy (51). Another
study, conducted on 308 young men from Denmark’s general
population, reported that higher urinary BPA concentration
was associated with a significant increase of LH, T, and E2
levels (52). In contrast, in a cross-sectional study of 290 men,
Zhou et al. found that increased serum BPA concentrations
were statistically significantly associated with the reduction of
androstenedione, free T and free androgen index (FAI) levels,
and with the increase of sex hormone-binding globulin (SHBG)
levels (53). Two cross-sectional studies, respectively, of 167 and
302 men, did not report any associations between BPA and T
concentrations (54, 55). According to Meeker and colleagues,
men with elevated urinary BPA concentrations had higher
FSH and lower inhibin B levels with a higher FSH/inhibin
B ratio and a lower E2/T ratio (54). Mendiola et al. found
that higher urinary BPA levels were associated with lower FAI
and FAI/LH and free T/LH ratios in fertile men (55). Two
cross-sectional studies reported that urinary BPA levels were
associated with higher SHBG in men occupationally exposed
to BPA (56, 57). The NHANES 2011-2012 study showed an
inverse correlation between urinary BPA levels and serum T
concentrations inmale adolescents (58). However, a retrospective
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cohort study did not find any effects on hormone levels in
boys aged 8 to 14 years after prenatal or childhood exposure to
BPA (59).

Although these results are controversial, they suggest that BPA
alters steroid hormones pathways in men.

BPA Molecular Mechanisms of Action on

Testicular Steroidogenesis
Although both animal and human studies support the harmful
effects of BPA on steroid hormones, the mechanism of
action of BPA in negatively interfering with testicular
steroidogenesis remains unclear. Since LCs are the site of
testicular steroidogenesis, several studies have been conducted
on these cells to investigate the effects of BPA. In Wistar/ST
pubertal rats, continuous exposure to BPA at high doses reduced
the number of LCs and the expression of steroidogenic enzymes
in these cells (60). In contrast, Long–Evans rats exposed to a
low dose of BPA during gestation and at birth had an increase
in the number of LCs in adulthood through the upregulation of
mitogen factors. However, although a low dose of BPA increased
LC proliferation, the expression of steroidogenic enzymes and
T biosynthesis decreased (61). Chen et al. reported that BPA
did not stimulate staminal LC proliferation, but it induced
the differentiation of stem LCs into more mature LCs. They
used an in vivo ethane dimethane sulfonate (EDS)-induced
LC regeneration model to mimic the pubertal development
of LCs. They treated rats with EDS to eliminate LCs and then
they injected BPA within the testis. The intratesticular injection
of BPA avoided possible interference of hypothalamus and
pituitary. The results of this study showed that BPA significantly
increased the number of 11β-HSD1-positive cells, which is a
biomarker for LCs at an advanced stage. Thus, BPA promoted
the differentiation of staminal LCs, increasing T production
and upregulating LC-specific genes (LHCGR, StAR, CYP11A1,
HSD3B1, CYP17A1, HSD17B3, and HSD11B1). These findings
suggest a possible role of BPA in sexual precocious puberty
in males (62). Exposure to high doses of BPA (480 and 960
mg/kg/day at postnatal days 31–44) has been reported to induce
apoptosis in Leydig and germ cells via the upregulation of Fas,
FasL, and caspase-3 (12). The apoptosis of LCs was associated
with a decreased testicular testis weight and histopathological
changes, which persisted into adulthood (12). In another study,
Thuillier et al. reported that SD rats exposed in utero to BPA
had an increase number of LCs but did not present significant
change in serum T levels (63). Moreover, BPA can also induce
Nur77 gene expression, an orphan nuclear receptor that plays an
important role in the regulation of LH-mediated steroidogenesis,
altering LC steroidogenesis (64). BPA induced Nur77 gene
expression via PKA and MAPK signaling pathways in a time-
and dose-dependent manner. BPA-mediated Nur77 expression
resulted in the upregulation of steroidogenesis both in vitro and
in vivo, with a significant increase of T synthesis (two-fold) (64).

The inhibition of testicular steroidogenesis by BPA can also
be associated with a decreased LH secretion. Akingbemi et al.
reported that Long–Evans rats exposed to low doses of BPA (2.4
µg/kg/day) from postnatal days 21–35, decreased both serum

LH and T levels, downregulating pituitary LHβ expression but
increasing ERβ pituitary mRNA levels (13).

The expression of LH and FSH receptors may also be
altered by BPA. Li et al. showed that treatment of adult
male zebrafish (Danio rerio) by 500 ng/L BPA for 7 weeks
downregulated the expressions of FSHr and LHCGr (65). For
the first time, Roelofs et al. demonstrated that BPA, BPF, and
TBBPA showed clear glucocorticoid receptor antagonism, other
than AR antagonism. They also found that bisphenol analogs
upregulated the 5αRed1 gene expression, suggesting a redirection
of steroidogenesis, which may have significant consequences for
fetal testis development and function (7).

Within the steroid hormone biosynthetic pathway,
steroidogenic enzymes are recognized as important targets
for the actions of endocrine-disrupting chemicals. Several studies
showed that BPA decreases the expression of steroidogenic
enzymes (33, 41, 60, 61, 66, 67). Moreover, some compounds,
including BPA, seem to disturb steroidogenesis by inhibiting
the cAMP pathway. Nikula et al. analyzed the effects of BPA
at micromolar concentration in cultured mouse Leydig tumor
cells (mLTC-1). BPA did not have any effects on hCG binding
to LH receptors, but it inhibited LH-receptor-mediated signal
transduction by decreasing hCG-stimulated cAMP. Specifically,
they found that after preincubation of mLTC-1 cells for 48 h with
different doses of BPA, hCG-stimulated cAMP and progesterone
production was inhibited. Whereas, preincubation with 17β-
estradiol inhibited progesterone production but had no effect
on cAMP. Thus, the effects of BPA did not seem to be estrogen-
related (68). Moreover, the inhibitory effect of BPA could not be
seen when cAMP formation was directly stimulated by forskolin
(Fk) or through Gs protein by cholera toxin (CT), and when
steroidogenesis was directly activated by 8-Br-cAMP, which can
penetrate the plasmamembranes and directly activate the protein
kinase A. These results suggested that the negative effect of BPA
is exerted between the LH receptor and the adenylate cyclase.
Accordingly, Feng et al. found that BPA exposure inhibited
progesterone secretion in hCG-stimulated mouse Leydig tumor
cell line (mLTC-1) by decreasing SR-B1 and P450scc expression
due to the adverse effects on cAMP.Moreover, lower SR-B1 levels
cause a reduction in cholesterol levels within LCs that alters
steroidogenesis (69). The role of StAR is instead controversial.
According to Feng et al. (69), StAR seems not be the molecular
target of BPA. Similarly, male rats exposed to BPA showed
decreased T levels but did not exhibit significant changes in
StAR expression (61). However, other previous studies have
reported that BPA decreased StAR expression in cell culture
in vitro (15, 33, 47), but, in contrast, other studies have shown
that StAR expression is upregulated (41, 65). Takamiya et al.
reported that StAR gene expression increased in the presence
of both hCG (10 µg/L) plus BPA (10−5 M) or by hCG alone,
but was not influenced by BPA alone. They found that BPA
had only a weak modulating effect on gene expression of hCG-
stimulated mLTC-1 cells (70). Li et al. showed that the exposure
of adult male zebrafish to low doses (0.22–2.2 nM) of BPA for
7 weeks resulted in abnormal expression of genes involved in
testicular steroidogenesis, specifically of 3β-HSD1, CYP17A1,
and CYP11C1 (65). Samova et al. found that BPA significantly
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and dose-dependently affected the functions of 3β-HSD and
17β-HSD in the testis of inbred Swiss strain male albino mice
(67). Ye et al. reported that BPA significantly inhibited 3β-HSD,
CYP17A1, and 17β-HSD3 activities in both human and rat
testis. However, the inhibition of 17β-HSD3 activity was much
weaker compared with that on the other two enzymes. They
also found that human enzymes were more sensitive to BPA
(71). Specifically, their results suggested that BPA did not
exert a competitive inhibition of 3β-HSD against its substrate
(pregnenolone), but it competed with the cofactor NAD+ in the
cofactor binding site of the enzyme, whereas BPA inhibition of
CYP17A1 was mixed type for enzyme substrate progesterone,
indicating a combination of two different types of reversible
enzyme inhibition, both competitive and uncompetitive (71).
Additionally, not only BPA, but also bisphenol S (BPS) and
bisphenol F (BPF) exposure decreased T production in fetal
mouse testis by inhibiting mRNA expression of StAR, 3β-HSD,
and cytochrome P45017A1 (CYP17A1), but not of P450scc
(72). Moreover, Dankers et al. suggested that the changes in T
secretion after BPA or TBBPA exposure were only partly due to
alterations of steroidogenic enzyme expression. These authors
hypothesized that the inhibition of ATP-binding cassette (ABC)
transporters, expressed in the blood–testis barrier (BTB), may
play a role in this process. The BTB divides the seminiferous
epithelium into a basal and an apical compartment and provides
structural and protective support for the differentiation of
spermatogonia into spermatocytes. It consists of tight junctions,
testis-specific atypical adherent junctions, desmosomes, and
gap junctions. In the active part of BTB, ABC transporters

are present to allow the passage of endogenous molecules
involved in cellular signaling and to block the passage of
dangerous compounds within the testes and to protect germ
cells. The cellular membranes of LCs, Sertoli cells, and capillary
endothelial cells are provided of these transporters. For this
reason, the association between endocrine disruptors and ABC
transporters has a strong toxicological impact (23). The breast
cancer resistance protein (BCRP/ABCG2), the P-glycoprotein
(P-gp/ABCB1), and the multidrug resistance proteins 1 and 4
(MRP1, 4/ABCC1,4) are the major efflux transporters in the
BTB with a differential expression in the various parts of the
BTB (23). LCs express P-gp, MRP1, and MRP4, but not BCRP
in adult human testis (73, 74). Dankers et al. investigated the
effects of BPA and of TBBPA (tetrabromobisphenol A) on BCRP,
MRP1, MRP4, and P-gp. They found that TBBPA inhibited
all these transporters; thus, it is considered a non-competitive
transporter inhibitor, whereas BPA inhibited only BCRP activity.
They also showed that BPA, but not TBBPA, is transported by
BCRP (23). Interestingly, they found that, although exposure to
BPA and TBBPA significantly increased T level in MA-10 cells,
the effects on steroidogenic genes were not so significant. Thus,
these authors hypothesized that the changes in T levels upon
BPA or TBBPA exposure were associated with the inhibition of
efflux of T precursors. Increased availability of these precursors,
such as androstenedione or DHEA, could be responsible for the
increased T levels found.

Moreover, many compounds increase the levels of ROS in
the testis, altering steroidogenesis. Oxidative stress has also been
found to induce apoptosis in LCs and germ cells (64). Recent

FIGURE 2 | Mechanisms of action of bisphenol A on testicular steroidogenesis. Testicular steroidogenesis is a complex and fine-regulated process that bisphenol A

(BPA) can perturb by acting with several mechanisms represented in this figure (circled in red).
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studies have reported an inverse relationship between NOS
activity and StAR expression (47). Chouhan et al. exposed Swiss
albino mice to BPA at concentrations of 0.5, 50, and 100 µg/kg
body weight/day intraperitoneally for 60 days. They showed that
BPA upregulated the expression of iNOS, downregulating the
expression of StAR in mouse testis (47). It was also supposed
that BPA impaired steroidogenesis by decreasing testicular
glucose levels (38). Glucose homeostasis is crucial for testicular
spermatogenesis and steroidogenesis. D’Cruz et al. reported that
low-dose BPA exposure impaired insulin signaling interacting
with GLUT-2 and GLUT-8 and inhibiting the uptake in the
testis (38).

Recently, a number of studies suggest epigenetic effects
of BPA, including DNA methylation, histone modifications,
and non-coding RNAs. Epigenetic mechanisms can have long-
term effects and may be transmitted across several generations
(75). Specifically, Gao et al. (76) have recently investigated
the epigenetic effects of BPA on the expression of non-
coding RNAs (e.g., microRNAs) in the regulation of testicular
steroidogenesis. They used both cell culture and in vivo mouse
models and showed that miR-146a-5p was expressed only in
LCs, and this expression was significantly induced by BPA.
Consequently, the high miR-146a-5p expression intensifies
the negative effects of BPA on testicular steroidogenesis by

directly targeting the 3
′

UTR of Mta3 gene (76). Mta3 is a
subunit of the Mi-2/nucleosome remodeling and deacetylase
(NuRD) protein complex that is exclusively expressed in
LCs (77). Specifically, Mta3 role in the control of testicular
steroidogenic function is proven by its negative regulation
by the high levels of circulated insulin (77). He et al.
showed that a deficiency of Mta3 in LCs of diabetic mice
was associated with low serum T level, indicating that Mta3
expression in LCs may be associated with androgen deficiency
(77). Thus, the downregulation of mir-146a-5p/Mta3 cascade
seems to be involved in steroidogenic alterations caused by
BPA (76).

DNA methylation is one of the best characterized epigenetic
mechanisms. Liu et al. investigated the effects of BPA on
DNA methylation in rare minnow Gobiocypris rarus. DNA
hypermethylation consists of an addition of a methyl group

to the cytosine bases of DNA to form 5-methylcytosine and
it may be associated with changes in gene expression. In their
study, Liu et al. found that the global DNA methylation level
was significantly increased in testis of male G. rarus exposed to
BPA for 7 days. Then, they specifically analyzed the change in

DNA methylation in the 5
′

flanking region of the cytochrome
P450 aromatase (CYP19A1A) gene. After 35-day exposure, the
DNA methylation levels of CYP19A1A did not have significant
change in the testis, whereas they significantly increased in the
ovary (78).

CONCLUSIONS

This review summarizes the current evidences on the association
between BPA and testicular steroidogenesis. Altogether, these
results show that LCs are very sensitive to BPA and that
several mechanisms concur to the functional impairment of
these cells. Testicular steroidogenesis is a complex and fine-
regulated process and each component of this pathway may be
the molecular target of BPA. The main possible sites of BPA
action are summarized in Figure 2. The conflicting results of
both human and animal studies may be related to various factors
that include study design, dose of BPA, timing and route of
exposure, and other confounding factors. This review confirms
that the widespread use of bisphenols is certainly dangerous for
testicular development and function and that a reduction of its
use is necessary to preserve male sexual and reproductive health.
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Aim: Exposure of boar sperm cells to Bisphenol A diglycidyl ether (BADGE) has been
shown to lead to reproductive failure in sows, however, the mode of action is unknown.
As we have recently shown that BADGE can interfere with Ca2+ signaling in human
sperm cells through an action on CatSper, and as CatSper has been shown to be
expressed in boar sperm cells, we hypothesized that a similar mechanism in the boar
sperm cells could be responsible for the reproductive failure.

Methods: Direct effects of BADGE and the endogenous ligand of human CatSper,
progesterone, on Ca2+ signaling in human and boar sperm cells were evaluated side-by-
side using a Ca2+ fluorimetric assay measuring changes in intracellular Ca2+. Effects of
BADGE on Ca2+ signaling in boar sperm were furthermore assessed by flow cytometry
by an independent laboratory.

Results: The exact same solutions of BADGE and progesterone induced transient
biphasic Ca2+ signals in human sperm cells, but failed to do so in both non-capacitated
and capacitated boar sperm cells. BADGE also failed to induce transient biphasic Ca2+

signals in boar sperm cells in the flow cytometric assay.

Conclusion: BADGE and progesterone failed to induce Ca2+ signals in boar sperm
cells. This indicates that the signaling mechanisms leading to activation of CatSper
differs between human and boar sperm cells, and suggests that the mode of action
by which exposure of boar sperm cells to BADGE can lead to reproductive failure in
sows does not involve effects on Ca2+ signaling.

Keywords: Endocrine disruption, fertility, CatSper, boar sperm, bisphenol

INTRODUCTION

The CatSper Ca2+ channel is a sperm specific Ca2+ channel highly conserved in mammals (Cai
and Clapham, 2008), but also present in a wide range of other species (Romero and Nishigaki,
2019). Ca2+ signaling is a key regulator of sperm function and CatSper thus controls important
sperm functions (Lishko et al., 2012). In human (Lishko et al., 2011; Strünker et al., 2011) and
macaque sperm cells (Sumigama et al., 2015) CatSper has been shown to be activated by the female
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sex steroid progesterone, released in high amounts from
the cumulus cells surrounding the oocyte (Lishko et al.,
2011; Strünker et al., 2011). However, in mouse sperm cells
progesterone fails to activate CatSper (Lishko et al., 2011; Schiffer
et al., 2014), hinting that signaling pathways leading to CatSper
activation may be more different than similar, even between
mammalian species (Kaupp and Strünker, 2017). CatSper has
been shown to be expressed in boar sperm cells (Song et al.,
2011; Vicente-Carrillo et al., 2017), and has been suggested to
be functional through the use of CatSper-inhibitors (Vicente-
Carrillo et al., 2017; Machado et al., 2019), but the exact role of
CatSper in boar sperm cells remains unclear.

Bisphenol A diglycidyl ether (BADGE) is synthesized through
O-alkylation of bisphenol A (BPA) with epichlorohydrin and
is a widely used constituent of, e.g., epoxy resins, paints, and
food container linings (Chamorro-García et al., 2012). Recently,
a study found that BADGE could leach from plastic bags used
for storage of boar semen and that exposure of boar sperm cells
to BADGE led to reproductive failure in sows (Nerin et al.,
2014), however, without any clear mode of action identified. As
we have shown that BADGE in µM concentrations can induce
transient biphasic Ca2+ signals via an activation of CatSper in
human sperm cells (Rehfeld et al., 2020), we hypothesized that a
similar mechanism in the boar sperm cells could be responsible
for the reproductive failure in sows. Here we set out to test
this hypothesis, by investigating whether BADGE could interfere
with Ca2+ signaling in boar sperm cells through an examination
of the effect of both BADGE and the endogenous ligand of
human CatSper, progesterone, on human and boar sperm cells
side-by-side using a Ca2+ fluorimetric assay.

MATERIALS AND METHODS

Chemicals and Reagents
Bisphenol A diglycidyl ether (BADGE) was purchased from
Sigma-Aldrich (St. Louis, MO, United States) and dissolved
in DMSO at a stock concentration of 10 mM. Progesterone,
A23187 and ionomycin were obtained from Sigma-Aldrich (St.
Louis, MO, United States) and dissolved in DMSO at stock
concentrations of 20 mM, 100 mM and 1 mM, respectively.
Fluo-4, AM, was purchased from Invitrogen (Carlsbad, CA,
United States). Fluo-3, AM, and propidium iodide were
obtained from Sigma-Aldrich (St. Louis, MO, United States).
Human serum albumin was obtained from Irvine Scientific
(Santa Ana, CA, United States). Dulbecco’s Phosphate Buffered
Saline with calcium chloride and magnesium chloride (DPBS+)
(Item # D8662) and Dulbecco’s Phosphate Buffered Saline
without calcium chloride and magnesium chloride (DPBS-)
(Item # D8537) were obtained from Sigma-Aldrich (St. Louis,
MO, United States).

Semen Samples
Human semen samples from volunteer donors were produced
by masturbation and ejaculated into wide-mouthed plastic
containers, on the same day as the experiment and allowed
to liquefy for 15–30 min at 37◦C. The volunteer donors were

recruited from the semen donor corps, which is routinely
donating samples for quality control analyses at the Department
of Growth and Reproduction, Rigshospitalet. All volunteers
fulfilled WHO criteria for normal semen quality. Each
experimental replicate was based on sperm cells from a
single sperm sample.

Boar semen samples for the Ca2+ fluorimetric assay were
produced the day before the experiment and obtained as raw
semen samples from Ringsted Forsøgslaboratorium, Denmark, a
part of Hatting A/S. For the flow cytometry experiments eight
ejaculates were collected on the same day as the experiment
from eight different animals in different Spanish boar studs,
diluted 1:10 in commercial boar semen extender Duragen R©

and then immediately sent to Magapor SL laboratories. The
viability was evaluated by flow cytometry using propidium iodide
staining and motility was evaluated using a commercial computer
assisted sperm analysis system (CASA) (ISAS Proiser, Spain) as in
(Nerin et al., 2014).

Purification of Motile Sperm Cells via
Swim-Up
For the Ca2+ fluorimetric assay, motile sperm cells were isolated
from human and boar semen samples by the swim-up method
(Rehfeld et al., 2019). Briefly 1 mL of semen was gently placed
in the bottom of 50 mL tube containing 4 mL of human tubular
fluid (HTF+) medium with the composition: 97.8 mM NaCl,
4.69 mM KCl, 0.2 mM MgSO4, 0.37 mM KH2PO4, 2.04 mM
CaCl2, 0.33 mM Na-pyruvate, 21.4 mM Na-lactate, 2.78 mM
glucose, 21 mM HEPES, and 4 mM NaHCO3, adjusted to pH 7.3–
7.4 with NaOH. After 1 h at 37◦C, the upper swim-up fraction was
carefully removed and after two washes, the sperm concentration
was determined by image cytometry (Egeberg et al., 2013) using
an NC-3000 (ChemoMetec AS, Denmark) and samples were
adjusted to 10× 106 sperm cells/mL in HTF+ with human serum
albumin (3 mg/mL). Hereafter the sperm cells were incubated for
at least 1 h at 37◦C. For the experiments with capacitated boar
sperm cells, the samples were treated similar to in a previous
study on boar sperm (Bernecic et al., 2019) and resuspended in
a capacitating medium with the following composition: 72.8 mM
NaCl, 4.69 mM KCl, 0.2 mM MgSO4, 0.37 mM KH2PO4,
2.04 mM CaCl2, 0.33 mM Na-pyruvate, 21.4 mM Na-lactate,
2.78 mM glucose, 21 mM HEPES, and 25 mM NaHCO3, adjusted
to pH 7.3–7.4 with NaOH. Human serum albumin (3 mg/mL)
was added to the capacitating medium and the sperm cells were
incubated for >3 h at 37◦C in a 5% CO2 atmosphere.

For the flow cytometry experiments the boar semen samples
diluted 1:10 in extender, were simply diluted further to a final
concentration of 4× 107 cells per mL in DPBS+.

Measurement of Changes in [Ca2+]i in
Ca2+ Fluorimetric Assay
Changes in the free intracellular Ca2+ concentration [Ca2+]i
in human and boar sperm cells were measured in 384 multi-
well plates in a fluorescence plate reader (Fluostar Omega, BMG
Labtech, Germany) at 30◦C as described in Rehfeld et al. (2019).
Briefly, sperm cells were incubated with the fluorescent Ca2+
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indicator Fluo-4, AM (10 µM) for 45 min at 37◦C. Excess dye was
removed by centrifugation (700 × g, 10 min, RT) and the sperm
pellet was resuspended in HTF+ to 5 × 106 sperm cells/mL.
Just before loading the sperm cells to the 384-well plates,
sperm motility was evaluated manually using phase contrast
optics on an Olympus BX45 microscope at a total magnification
of ×200 (Olympus, Denmark) to make sure that the sperm
cells used for the experiments were motile and thus viable.
Aliquots of 50 µL were loaded to the wells of a 384-well plate
using an automatic repeater pipette. Fluorescence was excited
at 480 nm and emission was recorded at 520 nm with bottom
optics. Fluorescence was recorded before and after addition of
25 µL bisphenol solutions, negative control (buffer with vehicle),
and positive controls (progesterone, 5 µM final concentration,
and ionomycin, 10 µM final concentration) manually with an
electronic multichannel pipette to duplicate wells. Changes in
Fluo-4 fluorescence are shown as 1F/F0 (%), indicating the
percentage change in fluorescence (1F) with respect to the
mean basal fluorescence (F0) before addition of BADGE, positive
control and negative control.

Measurement of Changes in [Ca2+]i
Using Flow Cytrometry
Changes in [Ca2+]i in boar sperm cells were additionally
measured using Fluo-3 and flow cytometry, similar to what
other have previously used in boar sperm cells (Schmid et al.,
2013; Yeste et al., 2015). The measurements were performed
on a BD AccuriTM C6 (Becton Dickinson, Madrid, Spain) with
BD software. At least 40,000 events were counted in every
measurement. Sperm population was gated for further analysis
on the basis of its specific forward (FS) and side scatter (SS)
properties; other non-sperm events were excluded. To stain the
boar sperm cells 3.5 µL of Fluo-3, AM stock solution (2 mM in
DMSO) was added to 400 µL of sperm samples (4 × 107 cells
per mL), giving a final Fluo-3, AM, concentration of 17.5 µM
and incubated for 45 min at 37◦C protected from light. After
the incubation, small aliquots of the BADGE stock solution
were added to each sample, respectively, yielding final BADGE
concentrations of 100, 50, 25, 12.5, 6.25, 3.125, and 1.562 µM. As
a positive control the calcium ionophore A23187 was added at
1 mM final concentration to one of the samples and as a negative
control DPBS- buffer was added. Just after adding BADGE, the
positive control or the negative control, samples were measured
in the flow cytometer at different times. Changes in Fluo-3
fluorescence are shown as 1F/F0 (%), indicating the percentage
change in fluorescence (1F) with respect to the mean basal
fluorescence (F0) before addition of BADGE, positive control and
negative control.

Statistical Analyses
Comparison of peak Ca2+ signal amplitudes were done
using one-way ANOVA. P-values were corrected for multiple
comparison type I error inflation by Dunnett’s method. Statistical
analyses were performed using GraphPad Prism 8.3.1 (GraphPad
Software Inc., United States).

Ethical Approval
Healthy human volunteers donated the semen samples after their
prior consent. The volunteers were recruited from the semen
donor corps, which is routinely donating samples for quality
control analyses at the Department of Growth and Reproduction,
Rigshospitalet. After delivery, the samples were fully anonymized
and no data on the fertility status or general health of donors
is provided. Each donor received a fee of 500 DKK (about 75
UD dollars) per sample for their inconvenience. All samples were
analyzed on the same day of delivery and destroyed immediately
after the laboratory analyses. Because of the full anonymization
of the samples, and the destruction of the samples immediately
after the laboratory analyses, no ethical approval was needed for
this work, according to the regional scientific ethical committee
of the Capital Region of Denmark.

RESULTS

Effects of BADGE and Progesterone on
Ca2+ Signaling in Boar Sperm Cells
We investigated BADGE for its ability to induce Ca2+ signals
in human and boar sperm cells, using a Ca2+ fluorimetric
assay (Schiffer et al., 2014). BADGE was tested at decreasing
serially diluted concentrations from a starting concentration of
50 µM, along with the endogenous ligand of human CatSper,
progesterone, at 5 µM, ionomycin at 10 µM, and a negative
buffer control (HTF+). Changes in [Ca2+]i were recorded for
250 s after addition of the compounds. Our results showed
that addition of the exact same solutions of BADGE and
progesterone to the sperm cells, induced transient biphasic Ca2+

signals in the human sperm cells, but failed to do so both
in non-capacitated and capacitated boar sperm cells (n ≥ 3)
(Figures 1A–C), whereas addition of 10 µM ionomycin induced
rapid and saturating Ca2+ signals in both human and boar
sperm cells. In boar sperm, only a small, slowly rising Ca2+

signal was induced by 50 and 25 µM of BADGE, but these
Ca2+ signals did not resemble the transient biphasic Ca2+ signal
induced by BADGE in human sperm cells. When comparing
the amplitude of the induced Ca2+ signals 30 s after addition
of compounds, a time point where both the progesterone- and
BADGE-induced Ca2+ signals peak in human sperm cells, we
found that BADGE at concentrations ≥3,125 µM induced Ca2+

signals significantly larger than those induced by HTF buffer
alone in human sperm cells (Figure 1D). 5 µM progesterone and
10 µM ionomycin, similarly induced significantly larger Ca2+

signals in human sperm cells (Figure 1D). In contrast to this, only
10 µM ionomycin induced Ca2+ signals significantly larger than
those induced by HTF buffer alone in both non-capacitated and
capacitated boar sperm cells (Figures 1E,F).

Effects of BADGE on Ca2+ Signaling in
Boar Sperm Cells in an Independent
Laboratory
To scrutinize our negative results for BADGE above, we
contacted an independent laboratory to get them to repeat
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FIGURE 1 | Ca2+ signals induced by addition of serially diluted doses of BADGE, 5 µM progesterone, 10 µM ionomycin, and a negative buffer control “HTF” to (A)
non-capacitated human sperm cells, (B) non-capacitated boar sperm cells, and (C) capacitated boar sperm cells. The black arrow depicts the time of addition of
solutions to the sperm cells. Graphs (A–C) are from single representative experiments. Mean amplitude of the induced Ca2+ signals 30 s after addition of
compounds and controls are shown for (D) non-capacitated human sperm cells (n = 4), (E) non-capacitated boar sperm cells (n = 6), and (F) capacitated boar
sperm cells (n = 3). Statistics are from one-way ANOVA analyses comparing the mean amplitude of the induced Ca2+ signals 30 s with the mean amplitude of the
Ca2+ signal induced by HTF buffer alone. **** depicts an adjusted p-value of <0.0001, and * depicts an adjusted p-value of 0.0286.

FIGURE 2 | (A) Ca2+ signals measured by flow cytometry after addition of serially diluted doses of BADGE, 1 mM of ionophore A23187, and a negative buffer
control (DPBS-) to non-capacitated boar sperm cells. The black arrow depicts the time of addition of solutions to the sperm cells. Representative data from a single
experiment. (B) representative flow cytometric Fluo-3 fluorescence images from a single experiment.

the experiment. They similarly tested BADGE for effects on
Ca2+ signaling in boar sperm cells using a slightly different
experimental setup. Using boar sperm of a diluted, raw
boar semen sample instead of swim-up purified sperm, a
flow cytometer instead of a plate reader, and the Ca2+-
fluorophore Fluo-3 instead of Fluo-4, BADGE was again
tested at decreasing serially diluted concentrations from a

starting concentration of 100 µM, along with a positive
control, ionophore A23187 at 1 mM, and a negative buffer
(DPBS-) control. The data from these experiments were almost
identical to our initial results from the Ca2+ fluorimetric
plate reader based assay. BADGE at any concentration failed
to induce Ca2+ signal in non-capacitated boar sperm cells
(n = 8) (Figure 2), whereas addition of 1 mM A23187
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induced rapid and saturating Ca2+ signal in the boar
sperm cells.

DISCUSSION

A recent study showed that exposure of boar sperm cells to
BADGE could lead to reproductive failure in sows (Nerin
et al., 2014), although the mode of action remained unknown.
Intriguingly, no effects were found on routine boar sperm
parameters, including motility and viability, or on in vitro
fertilization tests, but only on in vivo fertility rates in sows
(Nerin et al., 2014). We speculated that the reproductive failure
could be due to effects on Ca2+ signaling through an action
on CatSper in the boar sperm cells, as CatSper has been shown
to be expressed in boar sperm cells (Song et al., 2011; Vicente-
Carrillo et al., 2017), has been suggested to be functional
through the use of CatSper-inhibitors (Vicente-Carrillo et al.,
2017; Machado et al., 2019), and as we have recently found
that BADGE in µM concentrations can interfere with Ca2+

signaling through an action on CatSper in human sperm cells
(Rehfeld et al., 2020). Our results here, however, showed that
addition of the exact same solutions of BADGE to the sperm
cells, induced transient biphasic Ca2+ signals in the human
sperm cells, but failed to do so both in non-capacitated and
capacitated boar sperm cells (n ≥ 3) (Figure 1), similar to
after addition of 5 µM progesterone. Furthermore, a similar
experiment in an independent laboratory, using a slightly
different experimental setup, confirmed the lacking ability of
BADGE to induce transient biphasic Ca2+ signals in boar sperm
cells (Figure 2). As the sperm cells were motile and thus viable
just prior to running the Ca2+ fluorimetric assay experiments,
the difference in the Ca2+ responses between human and boar
sperm cells are unlikely to be caused by a lack of viable
boar sperm cells. In line with this, the very large Ca2+ signal
induced by the Ca2+-ionophores ionomycin (Figure 1) and
A23187 (Figure 2) indicates that, at the moment of adding
the ionophones to the sperm cells, a large proportion of the
sperm cells must have been viable, as unviable sperm cells
cannot maintain their Ca2+ gradient across the cell membrane.
Our findings therefore do not support our hypothesis that
exposure of boar sperm cells to BADGE leads to reproductive
failure in sows (Nerin et al., 2014) through an effect on
Ca2+ signaling in boar sperm cells, similar to the effect that
we have recently shown for BADGE on human sperm cells
(Rehfeld et al., 2020).

Interestingly, the structurally similar compound BPA, has
been shown to inhibit mouse CatSper transiently in low pM-nM
concentrations and to cause a significant reduction in motility
and acrosome reaction in mouse sperm cells (Wang et al., 2016).
A similar inhibitory action of BADGE on boar CatSper could take
place, although we did not observe a large decrease in Fluo-4 or
Fluo-3 fluorescence [1F/F0 (%)] (Figures 1, 2) after application
of BADGE, similar to what has been shown after addition of
the potent CatSper inhibitor RU1968 to human sperm cells
(Rennhack et al., 2018). Future studies will have to examine this
using electrophysiological measurements on boar sperm cells.

Furthermore, our finding that the same solution of
progesterone (5 µM) induced a large biphasic Ca2+ signals
in the human sperm cells, but failed to do so both in non-
capacitated and capacitated boar sperm cells (n ≥ 3) (Figure 1)
also do not support the hypothesis that boar CatSper should
be activated by progesterone as seen for human CatSper, as has
been suggested by others (Machado et al., 2019). The fact that
17-OH-progesterone (Strünker et al., 2011) and pregnenolone
sulfate (Mannowetz et al., 2017; Brenker et al., 2018) are potent
ligands of human CatSper, but that both 17-OH-progesterone
and pregnenolone did not mimic the action of progesterone in
boar sperm cells (Machado et al., 2019), further fails to support
a similar mechanism of activation between human and boar
CatSper. It is possible that boar sperm cells need to undergo
some form of maturation process, other than capacitation, before
boar CatSper can be activated by progesterone. Future studies
will have to examine this. However, as human CatSper can be
activated by progesterone even in testicular and epididymal
human sperm cells (Smith et al., 2013), without the sperm cells
having to go through any form of maturation process first, this
would again suggest large differences in the events leading to
activation of CatSper activation between human and boar sperm
cells. Even though CatSper has been shown to be expressed in
boar sperm cells (Song et al., 2011; Vicente-Carrillo et al., 2017),
and has been suggested to be functional through the use of
CatSper-inhibitors (Vicente-Carrillo et al., 2017; Machado et al.,
2019), electrophysiological evidence of CatSper-conductance
in boar sperm cells need to be obtained to confirm a possible
functional role in this species. To our knowledge, such data are
yet to be published.

We are unaware of any studies showing induction of transient
biphasic Ca2+ signal by progesterone in physiological (low µM)
concentrations in boar sperm cells, although, studies have found
an induction of transient Ca2+ signals by progesterone at very
high concentrations (100 µM) (Kim et al., 2008) and (10 µg/mL
or 31.8 µM) (Yeste et al., 2015), similar to what has been seen
in mouse sperm cells after addition of progesterone at very high
concentrations (40 and 100 µM) (Romarowski et al., 2016).
As mouse CatSper is not activated by progesterone (Lishko
et al., 2011; Schiffer et al., 2014), these Ca2+ signals must be
induced by some other mode of action, which is supported by
the finding that progesterone at 1 mM can even induce Ca2+

signals in CatSper−/− mouse sperm cells (Ren et al., 2001).
However, progesterone at a much lower nM concentrations
has been shown to affect boar sperm penetration through a
cell separation media (100 nM) (Campbell, 2013), to affect the
acrosome reaction in capacitated boar sperm cells (100 nM)
(Campbell, 2013), to affect the release of boar sperm cells from
oviductal cells (80 nM) (Machado et al., 2019), and to induce
a slow increase in intracellular Ca2+ evident after 30 min of
incubation (80 nM) (Machado et al., 2019), probably associated
with an induction of capacitation. Furthermore, a progesterone
gradient from a starting concentration of 1 µM has been shown
to act chemotactically on boar sperm cells (Berendsen et al.,
2020). It is likely that progesterone exerts these effects in boar
sperm cells through a mechanism unrelated to Ca2+ signaling
and CatSper. If this is the case, BADGE could possibly have

Frontiers in Physiology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 78554

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00785 July 4, 2020 Time: 17:43 # 6

Rehfeld et al. Boar Sperm Ca2+-Signaling and BADGE

caused the reproductive failure through this same unknown
pathway. Future studies are needed to clarify this. Importantly,
our findings are in line with other studies showing that the
activation of CatSper by progesterone is unique to human (Lishko
et al., 2011; Strünker et al., 2011) and primate sperm cells
(Sumigama et al., 2015), whereas mouse CatSper is insensitive
to both the chemicals affecting human CatSper (Schiffer et al.,
2014) and to progesterone (Lishko et al., 2011). This means that
observations on reproductive toxicology in non-primate animal
models cannot simply be translated to humans in terms of effects
on CatSper-mediated sperm function and consequently in terms
of effects on fertility.

CONCLUSION

In conclusion, our study fails to support our hypothesis that
exposure of boar sperm cells to BADGE leads to reproductive
failure in sows (Nerin et al., 2014) through an effect on
Ca2+ signaling in boar sperm cells. Furthermore, our data
do not support the hypothesis by others (Machado et al.,
2019) that boar CatSper can be activated by progesterone as
seen for human CatSper. Future studies will have to validate
our results and further explore the mode of action by which
exposure of boar sperm cells to BADGE can lead to reproductive
failure in sows (Nerin et al., 2014), as this could be of high
interest given the widespread human exposure to BADGE
(Chamorro-García et al., 2012).
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Bisphenol A (BPA) is a widespread chemical agent which can exert detrimental effects

on the male reproductive system. Exposure to BPA has been shown to induce several

epigenetic modifications in both animal and human cells. Specifically, BPA could not

only modify the methylation pattern of multiple genes encoding proteins related to

reproductive physiology but also directly influence the genes responsible for DNA

methylation. BPA effects include hormonal alterations, microscopic and macroscopic

alteration of male reproductive organs, and inheritable epigenetic changes involving

human reproduction. BPA exposure was also linked to prostate cancer. This review aims

to show the current scenario of BPA-induced epigenetic changes and its effects on the

male reproductive system. Possible strategies to counter the toxic effect of BPA were

also addressed.

Keywords: bisphenol A, male reproduction, infertility, epigenetic, oxidative stress, DNA methylation,

spermatogenesis, prostate cancer

INTRODUCTION

Epigenetics is the science that studies the environmental influence over the genetic heritage
without modifying the DNA sequence. Epigenetic modifications include chromatin remodeling,
histonemodifications, and non-coding RNAmechanisms, which in turn could affect the phenotype
of different types of cells. Epigenetics acts in the regulation of the expression of silencing
genes in response to a variety of environmental exposures, allowing cells to answer and adapt
to environmental stressors (1). Moreover, epigenetic modifications in parents can determine
long-lasting changes, evolving in pathologies for the offspring (1).

It is now acknowledged that widespread chemical agents can exert detrimental effects on human
physiology. Some substances identified as “endocrine-disrupting chemicals” (EDC) could also
interfere with the endocrine system (2–4).

Bisphenol A (BPA) is an organic synthetic compound largely used for the production of
polycarbonate plastics and epoxy resins. Due to the widespread industrial use of polycarbonate
plastics (e.g., food/drink packaging, production of compact discs, impact-resistant safety
equipment, and medical devices), the presence of BPA is ubiquitous (5). BPA can be detected in
various body fluids like urine, saliva, blood, breast milk, and amniotic fluid, as well as on the skin
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(6). The most harmful effect of BPA is due to both its estrogenic
and anti-estrogenic properties (7, 8). BPA is able to bind to
multiple targets both inside and outside the nucleus, inducing
alterations in various endocrine-related pathways (7). The effects
of BPA on the hypothalamic–pituitary–gonadal axis, determining
pathologic consequences on the reproductive system, have been
elucidated in animal and human studies (9). In addition to
short-term effects, it has been demonstrated that BPA can alter
epigenetic mechanisms producing also long-term effects (1).

The ability of BPA to alter normal epigenetic patterns
has been recently demonstrated. Some studies revealed a
role in the differentiation of spermatogenic cells, through the
functional modification of some genes (10, 11). This review
intends to summarize the epigenetic mechanisms by which BPA
acts on both animal and human male reproductive systems.
Furthermore, the possible strategies to counteract BPA effects
were also disclosed and discussed.

MATERIALS AND METHODS

The search was conducted using Medline, Embase, Web
of Science, Scopus, ClinicalTrials.gov, Ovid, and Cochrane
Library as electronic databases. Studies were identified using
the combination of the following search terms: “bisphenol
A” AND “epigenetic” OR “epigenetic changes” OR “male”
OR “male reproduction” OR “reproduction” OR “male
reproductive system” OR “sperm” OR “sperm function” OR
“sperm changes” OR “spermatogenesis” OR “prostate cancer”
OR “oxidative stress” OR “offspring” OR “transgenerational” OR
“transgenerational effects” OR “transgenerational changes” OR
“DNA methylation,” from inception of each database to May
2020. Therefore, all data from both animal and human studies on
the relationship among BPA and the different aspects of the male
reproductive system were considered for inclusion. However,
only data regarding epigenetic changes were included in the
review. All discrepancies were resolved by discussion among
authors. No restrictions for language were applied. Unpublished
studies were not included. Data were presented and categorized
in relation to the different level at which BPA may induce
impairment of male reproductive system physiology. The list of
the genes mentioned throughout the whole text is presented with
their proper nomenclature and role in Table 1.

Reproductive Endocrine System
BPA is able to bind hormonal receptors, stimulating, or inhibiting
the physiologic pathway. Consequently, the ability to interfere
with the hormonal axis has been observed, thereby influencing
steroid signaling (12). BPA affects testis competence, varying the
gene expression of steroid hormone receptors and influencing
the enzymes that catalyze DNA methylation, as demonstrated by
in vivo and in vitro animal studies (13–21).

In fishes (adult males of rare minnow Gobiocypris rarus),
BPA has been demonstrated to affect the gene expression of
steroid hormone biosynthesis, blood–testis barrier, proteolysis,
lipid transport, and metabolism (13).

In rats, similar data were obtained, showing how BPA
exposure influences the hypothalamic–pituitary–gonadal axis,

finally modifying the levels of steroid hormone receptors in
testes, with important consequences on sperm parameters as
motility and count (14). Again, when neonatal male rats were
exposed to BPA for the first 5 days of life, a change in gene
expression of estrogen receptors (ERα and ERβ) in adult testis
and an increase in both transcript and protein levels of DNA
methyltransferases (DNMT3A and DNMT3B) were revealed
(15). Interestingly, El Henafy et al. (16) obtained very similar
results, analyzing the methylation pattern of DNMT3A and ERα,
showing hypermethylation for both genes, in male rat pups
exposed to BPA by transplacental and trans-lactational routes. In
addition, their findings indicated that if the period of exposure
was longer (pregnancy plus lactation), the effects were higher,
suggesting a dose–response effect (16).

The interference of BPA with hormones is also suggested
from an in vivo study in mice, where a flavonoid-based diet was
administered to counteract the epigenetic effects induced by BPA.
DNAmethyltransferase expression was inhibited, with a decrease
in epigenetic methylation of ERα and H19/IGF2 genes (the H19
imprinting is associated with IGF2 since they have the same gene
locus and common enhancers) and of reproductive hormone
levels, thus contrasting BPA’s effect (17).

Another mechanism by which epigenetic changes are induced
may be the increase in oxidative stress caused by BPA exposure
(18, 19); in this sense, an in vitro study from Zhang et al.
(20) showed that after exposing mouse testicular cells to BPA,
the mRNA levels of proteins involved in sexual hormone
steroidogenesis as StAR, P450scc, Cyp17a1, and 3β-HSD were
reduced but were also normalized after exposure to melatonin.
Finally, the exposure to BPA in mouse preimplantation embryo
produces a disruption of testicular synthesis of testosterone
and reduction of StAR promoter histone acetylation, thereby
inducing a retard of testis development (21).

Teratogenesis and Gonadal Morphology
The majority of the studies principally focus on molecular
mechanisms of pathophysiological changes and not on proper
structural abnormalities. However, some evidence from animal
studies showed how the BPA exposure promotes teratogenesis
and affects testis morphology.

In zebrafish embryo–larvae, BPA shows teratogenic
properties, provoking different anomalies going from cardiac
edema to craniofacial abnormalities, spinal malformations,
cranial hemorrhage, and yolk sac deformity, depending on dose
of exposure (22).

In mice, BPA administration appears to compromise the testis
morphology; especially the size of seminiferous tubules and
the epithelium were significantly reduced with impairment of
spermatogenesis at various stages (21).

Moreover, El Henafy et al. (16) evidenced that BPA could
significantly impair anogenital distance, which represents an
important measure of genital development, as well as testis and
epididymis weight.

Another study showed the involvement of Sertoli cells,
essential for physical and nutritional support of developing germ
cells, as a target of epigenetic and transcriptome alterations from
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TABLE 1 | Genes studied in relation to BPA exposure and male reproductive system alterations.

Acronym Gene Role Reference paragraph

DNMT3A DNA methyltransferase 3 alpha De novo methylation Reproductive endocrine system

Spermatogenesis impairment

Risk of prostatic cancer

DNMT3B DNA methyltransferase 3 beta De novo methylation Reproductive endocrine system

Spermatogenesis impairment

Risk of prostatic cancer

ERα Estrogen receptor α Sexual development and reproductive function Reproductive endocrine system

H19 Imprinted maternally expressed

transcript 19

• Imprinted gene only expressed from the maternally inherited

chromosome

• Epigenetic changes in this gene have been associated with

Beckwith–Wiedemann syndrome

• Epigenetic deregulations at H19 imprinted gene in sperm have been

observed associated with male infertility

Reproductive endocrine system

Spermatogenesis impairment

Transgenerational effects

IGF2 Insulin-like growth factor 2 • Imprinted gene only expressed from the paternally inherited

chromosome

• Epigenetic changes at this locus are associated with Wilms tumor,

Beckwith–Wiedemann syndrome, rhabdomyosarcoma, and

Silver–Russell syndrom

Reproductive endocrine system

Spermatogenesis impairment

Transgenerational effects

StAR Steroidogenic acute regulation

protein

Regulation of steroid hormone synthesis by enhancing the conversion

of cholesterol into pregnenolone

Reproductive endocrine system

P450scc Cytochrome P450 family Drug metabolism and synthesis of cholesterol, steroids, and other lipids Reproductive endocrine system

CYP17A1 Cytochrome P450 family Drug metabolism and synthesis of cholesterol, steroids, and other lipids Reproductive endocrine system

3β-HSD 3β-Hydroxysteroid

dehydrogenase

Catalyzation of the oxidative conversion of delta (5)-ene-3-beta-hydroxy

steroids and the oxidative conversion of ketosteroids

Reproductive endocrine system

EXPO5 Exportin 5 Transport of small RNAs and double-stranded RNA-binding proteins

from the nucleus to the cytoplasm

Teratogenesis and gonadal morphology

DICER Ribonuclease type III Production of small RNA component that represses gene expression Teratogenesis and gonadal morphology

DROSHA Ribonuclease type III MicroRNA (miRNA) synthesis Teratogenesis and gonadal morphology

AGO2 Argonaute RISC catalytic

component 2

Short-interfering-RNA-mediated gene silencing Teratogenesis and gonadal morphology

DNMT3L DNA methyltransferase 3 like • De novo methylation

• Transcriptional repression

Spermatogenesis impairment

H3K9 Histone H3-lysine 9 • Involvement in acetylation of genes for activation, methylation of

genes for silencing

• Marker of heterochromatin

Spermatogenesis impairment

Transgenerational effects

H3K4 Histone H3-lysine 4 Involvement in acetylation of genes for activation, methylation of genes

for silencing

Spermatogenesis impairment

DNMT1 DNA methyltransferase 1 De novo methylation Spermatogenesis impairment

Risk of prostatic cancer

H3K9Me3 Histone H3-lysine 9 • Trimethylation at the 9th lysine residue of the histone H3 protein

• Binding heterochromatin protein 1 (HP1) to

constitute heterochromatin

Spermatogenesis impairment

H3K27Me3 Histone H3-lysine 27 • Trimethylation at the 27th lysine residue of the histone H3 protein

• Involvement in the peroxisome-associated pathway and induction of

peroxisome loss to ameliorate oxidative stress

Spermatogenesis impairment

H3K9Me1 Histone H3-lysine 9 • Monomethylation at the 9th lysine residue of the histone H3 protein Spermatogenesis impairment

H3K9Me2 Histone H3-lysine 27 • Dimethylation at the 9th lysine residue of the histone H3 protein

• Mark of the inactivated X chromosome (Xi)

Spermatogenesis impairment

MYBPH Histone H3-lysine 9 Biased expression in prostate Spermatogenesis impairment

PRKCD Protein kinase C δ Tumor suppressor and cell cycle progression Spermatogenesis impairment

IGF2R Insulin-like growth factor 2

receptor

• Intracellular trafficking of lysosomal enzymes

• Activation of transforming growth factor beta

• Degradation of insulin-like growth factor 2

Spermatogenesis impairment

G9a Lysine methyltransferase Key histone methyltransferase for H3K9me1 and H3K9me2 Spermatogenesis impairment

GNMT Glycine N-methyltransferase Catalyzation of the conversion of S-adenosyl-L-methionine (along with

glycine) to S-adenosyl-L-homocysteine and sarcosine

Spermatogenesis impairment

(Continued)
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TABLE 1 | Continued

Acronym Gene Role Reference paragraph

TET Ten–eleven translocation protein Regulation of DNA demethylation, gene transcription, embryonic

development, and oncogenesis

Spermatogenesis impairment

LINE-1 Long interspersed nucleotide

elements 1

• Gene regulation by the 5′ UTR methylation level

• Active in germ cells and silent in most of the somatic cells

Spermatogenesis impairment

ACHE Acetylcholinesterase Hydrolyzation of the neurotransmitter acetylcholine in choline and

acetic acid

Spermatogenesis impairment

H3K27 Histone H3-lysine 27 • Epigenetic mark

• Regulation of chromatin structure and gene expression

Transgenerational effects

H4K12 Histone H4-lysine 12 • Epigenetic mark

• Regulation of chromatin structure and gene expression

Transgenerational effects

SIRT1 Sirtuin 1 Regulation of epigenetic gene silencing and suppression of rDNA

recombination

Transgenerational effects

ERβ Estrogen receptor β • Transcription activation

• Inhibition of the activity of other estrogen receptor family members

Transgenerational effects

CAV-1 Caveolin 1 Involvement in the Ras-ERK pathway and promotion of cell cycle

progression

Transgenerational effects

IGF2R Insulin-like growth factor 2

receptor

• Intracellular trafficking of lysosomal enzymes

• Activation of transforming growth factor beta

• Degradation of insulin-like growth factor 2

Transgenerational effects

PEG3 Paternally expressed 3 gene • Paternally expressed

• Involvement in cell proliferation and p53-mediated apoptosis

Transgenerational effects

SLC12A2 Na-K-Cl cotransporter Mediation of sodium and chloride transport and reabsorption Risk of prostatic cancer

PDE4D4 Phosphodiesterase 4D4 3′,5′-Cyclic-AMP phosphodiesterase activity and cAMP degradation Risk of prostatic cancer

HPCAL1 Hippocalcin-like 1 Calcium-dependent regulation of rhodopsin phosphorylation with

implication in neuronal signaling in the central nervous system

Risk of prostatic cancer

MBD2 Methyl-CpG-binding domain

protein 2

• Binding specifically to methylated DNA sequences

• Transcription repression from methylated gene promoters

• Mediation of the biological consequences of the methylation signal

Risk of prostatic cancer

GPCR14 Putative G-protein coupled

receptor

Mediation of signaling processes to the interior of the cell via activation

of heterotrimeric G proteins

Risk of prostatic cancer

PDGFRα Platelet-derived growth factor

receptor alpha

Mitogenesis for cells of mesenchymal origin Risk of prostatic cancer

PLCβ3 Phospholipase C beta 3 Catalyzation of the diacylglycerol and inositol 1,4,5-triphosphate from

phosphatidylinositol in G-protein-linked receptor-mediated signal

transduction

Risk of prostatic cancer

NSBP1 Nucleosomal binding protein 1 Nucleosomal binding and transcriptional activating protein Risk of prostatic cancer

HMGN5 High-mobility group

nucleosome-binding domain 5

Nucleosomal binding and transcriptional activating protein Risk of prostatic cancer

PITX3 Paired-like homeodomain 3 Lens formation during eye development Risk of prostatic cancer

WNT10B Wnt family member 10B • Oncogenesis

• Regulation of cell fate and patterning during embryogenesis

Risk of prostatic cancer

PAQR4 Progestin and adipoQ receptor

family member 4

Tumor suppression by inhibition of the Raf/MEK/ERK signaling cascade Risk of prostatic cancer

SOX2 SRY-box transcription factor 2 Regulation of embryonic development and determination of cell viability Risk of prostatic cancer

CHST14 Carbohydrate sulfotransferase

14

Catalyzation of sulfate transfer to the C-4 hydroxyl of

N-acetylgalactosamine residues in dermatan sulfate

Risk of prostatic cancer

TPD52 Tumor protein D52 Tumor progression Risk of prostatic cancer

CREB3L4 CAMP-responsive

element-binding protein 3 like 4

Adiposity and male germ cell development Risk of prostatic cancer

EZH2 Enhancer of zeste 2 polycomb

repressive complex 2 subunit

Maintaining of the transcriptional repressive state of genes over

following cellular generations

Risk of prostatic cancer

UHRF1 Ubiquitin-like with PHD and ring

finger domains 1

Regulation of gene expression Risk of prostatic cancer

BCR Breakpoint cancer region • Serine/threonine kinase activity

• GTPase activation of protein for p21rac and other kinases

(Continued)
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TABLE 1 | Continued

Acronym Gene Role Reference paragraph

PTGS2 Prostaglandin-endoperoxide

synthase 2

Involvement in prostaglandin biosynthesis Risk of prostatic cancer

TIMP3 Tissue inhibitor of

metalloproteinase 3

Inhibition of the matrix metalloproteinases with a role in tumor

suppression

Risk of prostatic cancer

ZMYDN10 Loss of zinc finger MYND-type

containing 10

Tumor suppressor Risk of prostatic cancer

GSTP1 Glutathione S-transferase Pi 1 Detoxification by catalyzing the conjugation of many hydrophobic and

electrophilic compounds with reduced glutathione

Risk of prostatic cancer

LOX Lysyl oxidase Tumor suppression Risk of prostatic cancer

MGMT O-6-Methylguanine-DNA

methyltransferase

Cellular defense against mutagenesis and toxicity from alkylating agents Risk of prostatic cancer

NEUROG Neurogenin 1 Transcriptional regulator Risk of prostatic cancer

TSC2 TSC complex subunit 2 Tumor suppression Risk of prostatic cancer

PDLIM4 PDZ and LIM domain 4 Bone development Risk of prostatic cancer

PYCARD PYD and CARD domain

containing

Mediation of signaling complex assembly in the inflammatory and

apoptotic signaling pathways via the activation of caspase

Risk of prostatic cancer

KDM5B Lysine demethylase 5B Transcriptional repression Risk of prostatic cancer

NSD1 Nuclear receptor-binding SET

domain protein 1

Androgen receptor transactivation Risk of prostatic cancer

environmental toxicant exposures. These epigenetic alterations
are related to testis abnormalities (23).

Cho et al. studied the influence of BPA on micro-RNA
(miRNA): in mouse Sertoli cell lines, the BPA was shown
to alter miRNA expression, with subsequent gene expression
modification, and related changes in reproductive patterns (24).

An in vitro study on testicular fragments culture from 7-day-
old male pigs exposed to BPA demonstrated a downregulation
of EXPO5 and Dicer genes and an upregulation of Drosha and
AGO2 genes, involved in miRNA pathways. Also, Leydig cells’
morphology was not altered but interstitial tissue collagen was
increased (25).

Spermatogenesis Impairment
Epigenetic modifications can occur at different steps during
spermatogenesis. Firstly, primordial germ cells are subjected
to genomic imprinting through a process of DNA/histone
demethylation and deacetylation of H4 (Histone 4). DNA
methyltransferases already expressed at this stage are DNMT3A,
DNMT3B, and DNMT3L. Then, de novo DNA methylation
occurs in spermatogonia and remains stable until fertilization
and zygote development (26). This mechanism appears necessary
to complete spermatic meiosis, as suggested in a study in
which DNA methyltransferase knockout mice resulted to be
sterile because they were unable to sustain meiosis (26).
Furthermore, H3K9 and H3K4 methylation takes place in
spermatocytes; DNMT1 is expressed in round spermatids,
where hyperacetylated H4 is found and replacement of histone
variants by transition proteins is starting. Elongated spermatids
show establishment of a DNA methylation pattern associated
with histone H3K9 demethylation. The histone-to-protamine
transition is completed at this stage of spermatogenesis.
Finally, the genomic imprinting is saved in spermatozoa

(27). The histone-to-protamine transition permits a packaging
of spermatic DNA, with condensation of sperm heads and
protection of DNA from damage and mutagenesis. However,
a low percentage of histones can remain in sperm, at
undefined genes or gene promoter levels, causing possible
post-translational modifications, resulting in severely altered
reproductive phenotypes (11, 28, 29). It has been demonstrated
that the alteration of the histone–protamine ratio affects male
fertility (27).

In mice, in vitro studies on testis germ cells exposed to
high doses of BPA demonstrated a decrease in the global DNA
methylation levels, due to a reduction in DNMT1 protein
and mRNA. At the same time, histone hypomethylation of
H3K9Me3, H3K27Me, H3K9Me1, and H3K9Me2 was revealed.
These changes seem to be mediated by a reduction in G9a
proteins, which are essential methyltransferases for the meiotic
process and hence for the whole spermatogenesis (20, 30).

The toxic effect of BPA on mouse semen quality was
demonstrated from Zhang et al., who observed an increased
number of morphologically altered and headless spermatozoa;

in addition, sperm motility was reduced, after subcutaneous
injection or feeding with BPA (31). Yin et al. demonstrated the
alteration of DNA methylation of MYBPH and PRKCD, eliciting
a change in spermatocyte proliferation and motility in a murine
model (32).

In fishes, several studies showed that BPA exposure causes
an impairment of global DNA methylation in the testes and
consequently reduced rate of fertilization (33–36).

In details, in Gobiocypris rarus, BPA-induced DNA
hypermethylation was demonstrated and explained by several
mechanisms, including de novo synthesis of glutathione and
oxidative stress, in addition to a significant decrease of the
TET protein levels, responsible for demethylation (33, 36, 37).
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It was also observed that administration of antioxidants as
N-acetylcysteine may reverse such damages, protecting DNA
integrity and sperm motility (36).

On the contrary, in zebrafish gonads, a global DNA
demethylation due to a transcriptional miss-regulation
of the DNA methylation/demethylation-associated genes
(DNMTs, GNMT, and TETs) was noticed (35, 38). Moreover,
a compromised spermatogenesis in male zebrafish exposed
to a high dose of BPA was demonstrated. As a matter of fact,
a significant decrease in sperm count was seen together with
an increase in apoptosis; in addition, a miss-regulation of
transcription of enzymes responsible for epigenetic remodeling
was proven, leading to an increase in histone acetyltransferase
activity and causing alterations in embryo development (34, 39).

In Danio rerio zebrafish, Lombó et al. observed sperm DNA
fragmentation dependent on dose and time of BPA exposure (6).

In humans, the dimethylation of histone H3 on lysine K4
has been demonstrated to be negatively correlated with sperm
concentration, motility, and mitochondrial function (40). In
particular, a genome-wide study on semen samples from workers
exposed to BPA and unexposed controls showed the ability
of that compound to interfere with gene expression during
spermatogenesis, with DNA hydroxymethylation due to H3
trimethylation, clinically ending in reduced sperm concentration
motility (41). More recent data confirm previous findings,
especially demonstrating a LINE-1 hydroxymethylation (42).
Since LINE-1 activation has already been studied in relation
to male infertility, its epigenetic modifications induced by
BPA exposure may be one of the mechanisms for this EDC’s
toxicity. In another study, blood and semen samples collected
from BPA exposed vs. non-exposed men were analyzed, in
order to evaluate the toxic effect on a marker of genome-wide
methylation status as LINE-1. Results showed a significantly
lower methylation level of sperm LINE-1 in workers exposed to
BPA. In addition, the BPA urinary levels were associated with low
semen quality, even though they were inversely correlated with
LINE-1 methylation (43).

Men exposed to BPA showed an increase in the rate
of 5-hydroxymethylcytosine (5-hmc, which is a marker of
DNA demethylation processes and demonstrates active gene
transcription) of the sperm ACHE gene. Therefore, the
accumulation of 5-hmc is associated with demethylation status.
Taking into consideration that this type of alteration is correlated
with sperm concentration and motility, the authors suggested
that male infertility could be a consequence of BPA exposure
(10, 44). Indeed, the effects of BPA on spermatogenesis are widely
discussed in literature, whereas the majority of the studies do not
explicitly mention if the underlying pathogenetic mechanisms
are epigenetic (5, 14).

Moreover, since the effects of BPA exposure are also unfolded
by DNA damage and epigenetic modifications, information on
the influence of BPA on spermatogenesis and related male
infertility is derived not only by studies directly analyzing
sperm parameters but also through evidence of embryo and
offspring abnormalities, as for transgenerational effects, thus
described accordingly.

Transgenerational Effects
The process of DNA methylation is closely linked to the
well-known phenomenon of genomic imprinting, wherein a
gene is differentially expressed depending on whether it has
been inherited from the mother or from the father. Examples
of imprinting-derived diseases are Angelman syndrome and
Prader-Willi syndrome. These, although caused by the epigenetic
modification of the same gene, elicit different consequences
depending on which parent it has been inherited from (45).

When a “safe” dose of bisphenol A was administered for a
long time in rats, a decrease in histone acetylation of H3K9,
H3K27, and H4K12, an increase in deacetylase Sirt1 expression
with reduced binding, and finally an increase in estrogen receptor
β (ERβ) to caveolin-1 (Cav-1) binding were observed. These
processes and the related findings provided clues about the
underlying mechanisms for epigenetic inheritance induced by
BPA exposure (46).

An indirect proof of alteration of the sperm epigenome came
from the study of Doshi et al., who evaluated the percentage of
post-implantation loss and expression of DNMTs in embryos
of pregnant female rats coupled with BPA-exposed males.
They pointed out that post-implantation loss rate appeared
to be higher and resorbed embryos had lower expression of
DNMTs when sired by BPA-exposed males, compared to viable
embryos from both BPA-exposed and control males (47). In
addition, in their following work on the imprinting control
region (ICR) of two genes implicated in embryonic growth and
cellular proliferation, H19 and IGF2, the methylation pattern was
analyzed. The authors showed hypomethylation at the H19-ICR
in both spermatozoa and resorbed embryos fromneonatally BPA-
exposed rats, demonstrating that epigenetic mechanisms regulate
both infertility, and transmission to offspring (48).

Oppositely, Zhang et al. noticed no changes in methylation
of IGF2, IGF2R, Peg3, and H19, which are imprinted genes.
However, they acknowledged that the offspring of BPA-exposed
mice had smaller size and worse pelage quality, thus admitting a
certain effect of this compound (31).

Shi et al. demonstrated how BPA modifies the mRNA
expression of DNA and histone methyltransferases and their
associated factors in the testis of a generation of mouse neonates
prenatally exposed to that compound and how these effects were
transmitted to the third generation of offspring (49).

In Danio rerio zebrafish, treatment with BPA during
embryogenesis did not impact the methylation profile of sperm,
although a decrease in H3K9ac, involved in sperm development,
was observed (50).

An in vivo study on adult zebrafish males exposed to
BPA during spermatogenesis and mated with non-exposed
females revealed a disruption of cardiogenesis in forthcoming
generations (51).

Akhter et al. studied the appearance of different
malformations in various generations of zebrafish, after that the
parental generation was exposed to BPA, finding abnormalities
in the testes of the second-generation males and explaining this
as a trans-generational effect most probably due to epigenetic
mechanisms (52).
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Other lines of evidence from animal studies showed that
sperm motility was associated with methylation variation
affecting genes involved in chromatin organization. The result of
this alteration could affect embryo development (53, 54).

In a study on perinatal exposure of pregnant rats to BPA,
the authors observed male fertility impairments in the three
subsequent generations (13).

Hong et al. observed a reduction in the population of all
sperm cells at different stages of development (spermatogonia,
spermatocytes, and spermatids) in adult mouse testes, after
exposure of preimplantation embryos to low-dose BPA,
suggesting it as a consequence of epigenetic mechanisms (21).

Moreover, male rats subjected to neonatal BPA exposure
showed downregulation of DNMT gene expression and related
transcription factors, with impact on sperm epigenome and

therefore influence on embryo development and implantation
process (47).

In addition, after fetal exposure to BPA in utero, male rats
were mated with unexposed female rats: the results showed an
epigenetic alteration of IGF2 methylation in the male germline
and subsequently promotion of glucose intolerance and β-cell
dysfunction in the offspring, proving therefore the inheritance of
epigenetic pattern changes, leading to dysregulation and disease
(55, 56).

Furthermore, a study on pregnant rats exposed to
environmental compounds including BPA during embryonic
gonadal sex determination showed pubertal abnormalities, testis

disease, obesity, and ovarian disease in the third generation.
Apoptosis of spermatogenic cells resulted to be impaired through
different generations of offspring (57). Moreover, 197 differential
DNA methylation regions (DMR) in the gene promoter were
shown in the sperm epigenome in the third generation after
exposure. Authors stated that the sperm DMRs could represent
epigenetic biomarkers for transgenerational disease and/or
ancestral environmental exposures (58).

Risk of Prostatic Cancer
Ho et al. identified 28 genes as possible markers of epigenetic
modifications, looking in particular to DNAmethylation, leading
to increased predisposition to adult-onset prostate cancer in
rats, after neonatal estrogenic or BPA exposure. The majority
of such genes were implicated in signal transduction pathways:
Na–K–Cl cotransporter (SLC12A2), mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK)
pathway (GPCR14 and PDGFRα), phosphokinase C pathway
(PLCβ3), and cAMP pathways (PDE4D4 and HPCAL1). In
particular, the prostatic PDE4D4 gene remains expressed in
all rats early exposed to a low dose of BPA, before adult-onset
prostatic lesions; in addition, HPCAL1 showed a specific
methylation and expression alteration with aging. Therefore, the
authors concluded that early exposure to BPA could provoke
permanent impairment of the prostate epigenome, determining
a predisposition to prostate cancer (59–62). Later, Tang et al.
showed that few genes, such as DNMT3A, DNMT3B, andMBD2,

TABLE 2 | Characteristics of the studies which analyzed hormonal axis disturbances.

Epigenetic modifications Effects Study type Species References

Genes expression • Induction of gene expression in the renin–angiotensin system pathway

• Inhibition of tRNA processing-related gene expression

• Decreases in hemostasis and blood coagulation-related gene expression

In vivo Fish (13)

DNA methylation • Hypermethylation of ERα/ERβ promoter regions

• Increase in DNMT3A and DNMT3B expression

In vivo Rat (15)

DNA methylation Hypermethylation within DNMT3A and ER∞ In vivo Rat (16)

DNA methylation • Hypermethylation of the ERα promoter and H19/Igf2 imprinting control

region in the testis

• Increase of DNMT expression

In vivo Mouse (17)

DNA methylation • Decrease in G9a-dependent H3K9 di-methylation

• Impairment of spermatogenesis

In vitro Mouse (20)

Histone acetylation • Decrease in H3 and H3K14 acetylation in the StAR and P450 in the testes

• Decrease in the expressions of testicular StAR and P450scc

In vivo Mouse (21)

TABLE 3 | Characteristics of the studies which analyzed morphological alterations.

Epigenetic modifications Effects Study type Species References

Histone acetylation Reduction in diameter and epithelium height of seminiferous tubules and

spermatogenic cells at different stages

In vivo Mouse (21)

Gene expression Upregulation or downregulation of 37 miRNA related to overexpression of

genes implicated in metabolism and reproduction

In vitro Mouse (24)

miRNA biogenesis and function • No changes in Leydig cell morphology

• No changes in lipid droplet content and distribution

• Changes in lipid and autophagy protein abundance

• Downregulation of EXPO5 and Dicer genes and an upregulation of

Drosha and AGO2 genes

In vitro Boar (25)
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responsible for epigenetic mechanisms, were overexpressed in
rats after early exposure to BPA. Moreover, this study defined
three patterns of epigenetic changes, characterizing genes
like NSBP1 and HMGN5, persistently present epigenetic
markers of early-life exposure; a second group represented by
PDE4D4, which appear only at genital maturation but persist
throughout life; and the last group, including genes such as
HPCAL1 considered modifiable epigenetic markers, whose later
appearance depends on early-exposure features and subsequent
events during adult life (63). Moreover, Cheong et al. analyzed
the prostatic tissue of BPA early-exposed rats for the methylation
pattern of 7 genes (PITX3, WNT10B, PAQR4, SOX2, CHST14,
TPD52, and CREB3L4), at the promoter region, showing that 4
of them (PITX3, WNT10B, PAQR4, and TPD52) were differently
methylated when comparing prostatic cancer cells with normal
adjacent tissues. They also noticed a connection with recurrence-
free survival of prostatic cancer patients (64). Interestingly, Prins
et al., discovered that different prostatic regions and lobes in rats
have variable sensitivities to different doses of early-administered

BPA in later-developing cancerous lesions, with different
dose-dependent methylation patterns: CREB3L4, TPD52, and
PITX3 showed a noteworthy hypomethylation at lower doses
of BPA, with a normalization toward higher doses; PAQR4
showed significant hypomethylation for all BPA doses; and
SOX2 showed an inverse correlation between hypomethylation
and BPA doses (65). In a study on healthy primary human
prostate epithelial cells (PrECs) exposed to high concentrations
of BPA and analyzed using a whole-genome microarray, the
authors noticed that BPA can modify the expression of epigenetic
factors as EZH2, DNMT1, DNMT3B, and UHRF1, producing
transcriptional perturbations with epigenetic consequences
and even raising cancer risks (66). In addition, Karaman et al.,
studying prostatic carcinoma cells, observed hypermethylation
in the p16 promoter region as well as for BCR, PTGS2, TIMP3,
and ZMYDN10, with different changes seen in GSTP1, LOX,
MGMT, NEUROG, and TSC2 methylation pattern. Also, a low
dose of BPA could determine hypomethylation of PDLIM4 and
PYCARD. Moreover, exposure to BPA induces downregulation

TABLE 4 | Characteristics of the studies which analyzed the epigenetic impairment of spermatogenesis.

Epigenetic modifications Effects Study type Species References

Histone methylation • Decrease of DNMT

• Reduction in the global DNA methylation levels in spermatogonia

In vitro Mouse (30)

DNA methylation • No effect on DNA methylation of imprinted genes (IGF2, IGF2R, PEG3. and H19) in

germ cells

• Increase in ERα expression

• Impairment of meiotic progression of germ cells

• Decrease in quality and quantity of spermatozoa

In vivo Mice (31)

DNA methylation • Reduction in DNA replication capacity

• Alteration of the genome-wide DNA methylation level in GC-2 cells

• Alteration of DNMT expression levels

• Regulation of MYBPH and PRKCD methylation

In vivo Mouse (32)

DNA methylation Promotion of the DNA methylation process in the testes by novo synthesis of

glutathione and oxidative stress

In vivo Fish (33)

DNA methylation Alteration of the global DNA methylation level of gonads In vivo Fish (34)

DNA methylation • Alteration of the global DNA methylation level of gonads

• Transcriptional change of genes (DNMTS, GNMT, and TEST)

In vivo Fish (35)

DNA methylation Variation in DNA methylation levels In vivo Fish (36)

DNA methylation Hypermethylation of global DNA in the testes In vivo Fish (37)

DNA methylation Global DNA demethylation In vivo Fish (38)

DNA methylation • Decrease of spermatocytes

• Increase in apoptosis

• Downregulation of CCNB1 and SYCP3

• Upregulation of GPER1 and ESRRGA receptors

• Miss-regulation of epigenetic remodeling enzyme transcripts

• DNA hypermethylation

• H3K27me3 demethylation

• Increase in histone acetyltransferase activity

In vitro Fish (39)

DNA methylation • Di-methylation of lysine K4 on histones H3

• Impairment of motility, concentration, and mitochondrial activity in sperm

In vivo Human (40)

DNA methylation Trimethylation of histone 3 (H3K27me3, H3K4me2, or H3K4me3) in sperm In vivo Human (41)

DNA methylation Hypomethylation of LINE-1 In vivo Human (42)

DNA methylation • Decrease in sperm LINE-1 methylation status

• Association between BPA urinary levels and low semen quality

In vivo Human (43)

DNA methylation • Correlation between 5hmC rates of AChE and low sperm motility

• Correlation between HoxC4 promoters and sperm concentration

In vivo Human (44)
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TABLE 5 | Characteristics of the studies which analyzed the transgenerational effects of BPA exposure.

Epigenetic modification Effects Study type Species References

Histone acetylation

DNA methylation

Apoptosis and impairment of the meiotic process In vitro Fish (39)

DNA methylation • Decrease in histone acetylation of H3K9, H3K27, and H4K12

• Increase in protein expression of deacetylase Sirt1

• Reduction in binding of Sirt1 and ERβ to caveolin-1

In vivo Mouse (46)

DNA methylation Downregulation of the gene expression of DNMTS and related transcription

factors

In vivo Rat (47)

DNA methylation • Hypomethylation of the H19 imprinting control region

• Downregulation in the transcript expression of IGF2 and H19

In vivo Rat (48)

DNA methylation • Expression of DNMT3A in Sertoli cells

• Strengthening of DNMT3B and weakening H3K9me2 and H3K9me3 in

germ cells of the neonatal testis

In vivo Mouse (49)

DNA methylation • Impairment of primordial germ cell (PGC) migration to the genital ridge

• Dysregulation of genes involved in PGC migration (CXCR4B and SDF1A)

• No alteration of DNA methylation

In vivo Fish (50)

Gene expression • Increase in the rate of heart failure of progeny up to the second

generation deriving from females that mated with males exposed to BPA

• Downregulation of 5 genes involved in cardiac development in

first-generation embryos

• Decrease in parents and first-generation sperm remnant mRNAs related

to early development

In vivo Fish (51)

DNA methylation Maintenance of chromosome structure through epigenetic regulation

correlated with sperm functionality

In vivo Bull (53)

DNA methylation Hypermethylation of IGF2, glucose intolerance, and β-cell dysfunction in

islets in offspring

In vivo Rat (55)

DNA methylation Global DNA methylation decreased in the first-generation sperm In vivo Rat (56)

DNA methylation Sperm DMR correlation with several adult-onset pathologies (e.g.,

mammary tumors, prostate disease, kidney disease, testis abnormalities,

immune abnormalities) in offspring

In vivo Rat (57)

TABLE 6 | Characteristics of the studies which analyzed the risk of prostate cancer induced by BPA exposure.

Epigenetic modification Effects Study type Species References

DNA methylation Hypomethylation of the prostate cancer gene (PDE4D4) In vivo/In vitro Human (59)

DNA methylation • Aberrant NSBP1 promoter demethylation and transcriptional

overexpression persisting in adult life

• Aberrant HPCAL1 promoter hypermethylation and transcriptional

suppression with a little degree of gene expression in adult life

• High expression of DNMT3A and DNMT3B in early life, diminishing with

aging

• Involvement in early-life reprogramming of DNA methylation patterns in

target genes such as NSBP1 or HPCAL1

In vitro Rat (63)

DNA methylation DNA methylation-mediated gene expression of 6 genes linked to embryonic

stem cell pluripotency

In vivo Rat (64)

DNA methylation DNA hypomethylation of genes that confer carcinogenic risk In vivo Rat (65)

DNA methylation Deregulation of EZH2, DNMT1, DNMT3B and UHRF1 In vitro Human (66)

DNA methylation • Expression levels of p16 gene decreased significantly after promoter

hypermethylation

• p16-related histone modifications

• Dose-dependent promoter hypermethylation of tumor suppressor genes

as BCR, PTGS2, TIMP3, and ZMYDN10

• Hypomethylation of PDLIM4 and PYCARD

• Demethylation of GSTP1, LOX, MGMT, NEUROG, and TSC2

• Significant decrease of gene expression levels and downregulation of

KDM5B and NSD1 measured in RT-PCR (real-time polymerase

chain reaction)

In vitro Human (67)
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of chromatin-modifying enzymes like KDM5B and
NSD1 (67).

DISCUSSION

Our review intended to highlight the mechanisms by which
BPA modifies at various levels the reproductive system. In
particular, we looked into literature and summarized the studies
that analyzed the epigenetic changes leading to impairment of
the different aspects of male reproduction, both in animals and
in humans.

Epigenetics is responsible for the control of many genes
implicated in hormonal production, sperm parameters, and
inheritable abnormalities (Tables 2–6).

The interesting point that comes out from our analysis is that
BPA acts on two levels of epigenetic changes. In fact, on the one
hand, it is responsible for the widely altered DNA methylation,
the most commonly studied epigenetic mechanism; on the other
hand, studies showed that the main effect of bisphenol A is on
genes related to methylation proteins. In other words, BPAmight
be considered as an example of a proper epigenetic controller.

In this paper, we have also illustrated the possible strategies
to counteract the epigenetic effect of BPA. Indeed, several
antioxidants can ameliorate reproductive function by inhibiting
BPA’s effect on oxidative stress (68–70).

Since the increase in ROS (reactive oxygen species) is one

of the recognized effects of BPA in male spermatogenesis,
causing reduction in sperm viability and motility, due also
to mitochondrial dysfunction, a study explored the efficacy of
taurine in reversing such events, although not properly epigenetic
changes, observing good results in a dose-dependent fashion
(71). N-Acetylcysteine also has been evaluated to reduce ROS
after BPA exposure, showing amelioration of spermmotility (36).

As abovementioned, flavonoids can defend from the
epigenetic modifications induced by bisphenol A, due to their
antioxidant and similar estrogenic properties (17). In addition,
thanks to its antioxidant and free radical scavenger properties,
melatonin has been demonstrated to pass the blood–testis
barrier and protect steroidogenesis and spermatogenesis, acting
principally on H3K9me2 and DNA methylation (20, 72).

Folates are methyl donors, essential for the DNA methylation
process and for stabilization of the methylation status of the
epigenome. Mao et al. (73) studied the efficacy of folate
supplementation during pregnancy in restoring pancreatic
function after BPA administration in rats, obtaining a reversal
of its epigenetic changes. Moreover, Dolinoy et al. (74)
demonstrated that supplementation with folate or phytoestrogen
as genistein during pregnancy could counteract the effects

of BPA exposure in Agouti mice, showing reduction in the
hypomethylation pattern and hence pelage modification. These
studies support that the transgenerational effects of BPA could be
reduced by folate administration.

In 2011, Hardy and Tollefsbol coined the term “epigenetic
diet” to refer to the dietary intake of all the compounds with
protective properties against epigenetic modifications, including
folates, isothiocyanates, isoflavones, resveratrol, curcumin,
and tea polyphenols, among others (75). However, data on
therapeutic options to reduce the impact of BPA are still
quite scarce.

To the best of our knowledge, this is the first comprehensive
narrative review on BPA-induced epigenetic changes and
its consequence on male reproductive health. Indeed, we
explored the effect of BPA in any aspect of reproductive
system anomalies, considering different species. Furthermore,
various epigenetic targets of BPA in reproductive disorders
were also analyzed. On the other hand, we recognize that
this led us also to a limitation, since we did not apply a
systematic approach.

Given the relevant epigenetic effect of BPA and other
EDCs, it could be useful in future to define specific epigenetic
markers associated with male reproductive dysfunction during
preconceptional analysis (8, 76, 77). In addition, since epigenetic
changes can be potentially treated, target therapies could
represent a very interesting topic of study in order to preserve
fertility in subsequent generations.

CONCLUSION

Exposure to BPA has the potential to induce epigenetic
modifications in both animal and human cells. Such
modifications could in turn play a role in male reproductive
disorders and cancer development. An epigenetic transmission
to offspring was also demonstrated.

Further research is needed to define the mechanisms
underlying BPA-related epigenetic changes in paternal sperm and
offspring phenotype and to find appropriate therapies to reduce
the impact of BPA-induced dysfunctions.
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Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production

and use of plastics and the degradation of wastes related to industrial plastics. Evidence

from laboratory animal and human studies supports the view that BPA has an endocrine

disrupting effect on Leydig cell development and function. To better understand the

adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent

data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and

anti-androgen effects, thereby destroying the development and function of Leydig cells

and causing related reproductive diseases such as testicular dysgenesis syndrome,

delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the

increased use of BPA analogs has also attracted attention to these new chemicals. They

may share actions and mechanisms similar to or different from BPA.

Keywords: bisphenol, bisphenol analogs, Leydig cells, steroids, reproductive function

INTRODUCTION

Leydig cells (LCs) are a group of cells specifically located in the interstitium of the testis [see review
(1)]. They secrete two important hormones: testosterone (T, androgen), which is an androgen, and
insulin-like 3 (INSL3) [see review (2)]. There are at least two generations of LCs, namely fetal
LCs (FLCs) and adult LCs (ALCs) (2). These two generations of LCs have different development
processes and different functions (2). In fetuses, T and metabolically activated dihydrotestosterone
(DHT) from T by 5α-reductase is essential for the development of the male reproductive tract (3).
Failure to synthesize Tmay cause abnormalities in the male reproductive tract, such as hypospadias
and small penis [see review (4)]. Androgens are also essential for testis descent (4). INSL3 binds to
its receptor in the gubernaculum and pulls the testis from the kidney position to the lower part of
abdomen (5). Insl3 knockout in mice leads to cryptorchidism, indicating that it is important for
testis descent (6, 7). Therefore, defects in FLCs may cause the fetal part of Testicular Dysgenesis
Syndrome (TDS) (8). TDS was coined to refer to diseases such as cryptorchidism and hypospadias
in neonates and testicular cancer, as well as decreased fertility in men with common fetal causes
(9). Although the exact cause is unclear, the high incidence of male reproductive tract defects in
male neonates has brought significant attention to children’s health (10, 11). In adults, T is essential
for the onset of puberty, the maintenance of secondary sexual characteristics, the promotion of
spermatogenesis, and the promotion of muscle health (4). INSL3 is essential for regulating bone
metabolism in adult males (12) and acts as an anti-apoptotic factor against germ cell apoptosis (13).

There is increasing evidence that environmental pollutants can cause TDS, androgen deficiency,
and infertility. A group of highly studied environmental chemicals comprises bisphenol A [2,2-bis
(4-hydroxyphenyl) propane, BPA, Figure 1] and related compounds, such as bisphenol AF, AP, B,
C, F, H, S, Z, and other similar chemicals (Table 1).
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FIGURE 1 | Illustration of BPA on LC development. Bisphenol A (BPA) or its analogs can bind both estrogen receptors (ESR1 and ESR2) and estrogen-related

receptors (ERR1–3), which blocks LC gene expression, binds to androgen receptor (NR3C4) as an antagonist to block the activation of LC genes. BPA can also bind

membrane G-coupled receptor (GPER) or ESR1, which activates ERK1/2 pathway to inhibit the differentiation of Leydig cells. The combined consequence of BPA

action leads to lower testosterone synthesis.

BPA is widely used in our industrial and consumer
products and seriously pollutes our environment. BPA was first
synthesized in 1891. Since then, BPA has been widely used
in various products and applications as a common ingredient
in plastic manufacturing. Plastics containing BPA are used to
make children’s toys, food containers, water bottles, medical
equipment, and other durable materials (14–16). Many countries
and regions are synthesizing BPA, including the United States,
China, and European countries (16–19). Plastics are widely used
in our consumer products and have changed our lifestyles,
including the environment (20, 21). The widespread use of
BPA-containing plastics has prompted BPA to spread in the
environment. Therefore, BPA is ubiquitous in the environment,
including air, drinking water, water systems, sewage sludge, soil,
house dust, and food (16, 22). Humans are exposed to BPA
mainly through food intake, dust, and skin contact (14, 15).
BPA exposure through water and food is considered to be the
main source (16, 22). Surveys indicate that 90% of urine samples
in the general population of the United States can detect BPA
levels (14, 17). The average urine BPA concentration in American
people is about 2.5–10.95 ng/ml (14, 17). BPA can also penetrate
the placenta and enter the fetal circulation. The average level
of BPA in pregnant women’s plasma is 0.3–18.9 ng/ml, and the
average level of BPA in fetal plasma is 0.2–9.2 ng/ml (23, 24),
and the level of BPA in placental tissue is 1.0–104.9 ng/g. BPA
can enter breast milk, and the BPA level in breast milk is 0.28–
0.97 ng/ml (23, 24). After ingestion through the oral route, BPA
rapidly combines with blood proteins, and the concentration of
free BPA in the blood is about 1 ng/ml (15).

There is increasing evidence that BPA is associated with
the occurrence of reproductive toxicity (25, 26) and other
health problems such as diabetes (27), neurotoxicity (28–30),
immunotoxicity (31), and cancer (32–34).

BPA is classified as an endocrine disruptor that mainly
mimics the effects of estrogen and disrupts the synthesis of
male androgens (35–37). BPA is one of the most studied
endocrine disrupting compounds. The toxicological effects of
BPA may cause TDS (38) and other reproductive toxicities.
The relationship between BPA and TDS and other reproductive
effects has been well-studied in human epidemiology (18, 19,
39, 40). Due to the reproductive toxicity of BPA, some new
BPA analogs, such as bisphenol AF, AP, B, C, F, H, S, and Z,
were introduced into the market (Table 1) (41–43). These new
compounds have received little attention. Many data on BPA
reproductive toxicity have been collected from mice and rats. In
this review, we mainly discuss the effects of BPA and its analogs
on the development and function of LCs.

ACTION OF BPA

Estrogen Receptors
The classic mechanism of estrogens requires them to bind to
estrogen receptor (ESR), a type of nuclear receptor (44). There are
two subtypes of ESR, namely ESR1 and ESR2 (45, 46). Estrogen
binds to ESR to form a nuclear ESR dimer that binds to the ligand.
This dimer binds to the DNA sequence (GGTCACAGTGACC)
and is called an estrogen response element (ERE) in the target
gene promoter to induce ESR transactivation (44). ESRs bind to
the same sets of ERE in the target genes (47). When different
isoforms exist in the same cell, the ESR bound to the ligand can
form homodimers or heterodimers.

In addition to the genomic pathway of ESR,
cytoplasmic/membrane-bound ESR interacts with many other
proteins to mediate the activation of several kinase pathways that
are hormone-dependent (48).
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TABLE 1 | Bisphenol analogs and their structures.

Bisphenols Abbreviation CAS No. MW Structure

Bisphenol A BPA 80-05-7 228.28

Bisphenol AF BPAF 1478-61-1 336.23

Bisphenol AP BPAP 1571-75-1 290.36

Bisphenol B BPB 77-40-7 242.31

Bisphenol C BPC 14868-03-2 281.13

Bisphenol E BPE 2081-08-5 12.24

Bisphenol F BPF 620-92-8 200.24

Bisphenol FL BPFL 3236-71-3 350.41

Bisphenol H BPH 24038-68-4 380.48

Bisphenol P BPP 2167-51-3 346.50

Bisphenol S BPS 201-250-5 250.27

Bisphenol Z BPZ 843-55-0 268.35

4,4′-Thiodiphenol TDP 2664-63-3 218.27

Tetramethyl bisphenol A TMBPA 5613-46-7 284.39
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Estrogen-related receptors α, β, and γ (ERRα, ERRβ, and
ERRγ, also known as ERR1–3) are another subfamily of
orphan nuclear receptors with sequence similarity to ESR1 (49).
However, 17β-estradiol (E2) is not its natural ligand, and ERR has
constitutive activity (50). ERRs contain a DNA binding domain
with two highly conserved zinc finger motifs in a specific DNA
binding element (TCAAGGTCA, called ERRE). ERR and ERRE
are combined into monomers or homodimers or heterodimers
with coactivators (51). In addition to ERRE, ERR can also be
bound to ERE. ESR1, but not ESR2, can also be combined with
ERRE (52), so ESR1 and ERRs will affect each other.

In addition, estrogen can bind to G protein-coupled
membrane estrogen receptor (GPER, also known as GPR30),
which is a member of the G protein receptor superfamily.
This receptor mediates the rapid signaling of estrogen. After
activation, estrogen can induce ERK1/2 activation by releasing
HB-EGF through transactivation of EGFR (53). GPER works
through a pertussis toxin-sensitive pathway that depends on
Gβγ (53). Then, GPER activation through Gαs protein activation
(54) stimulates adenylate cyclase, increases cAMP, and weakens
the EGFR-MAPK signaling axis (55). The activation of cAMP
further leads to the activation of PKA-CREB signal (56,
57) and the transcriptional activation of CREB. GPER also
activates other signaling, including PI3K (58), PKC (59), and
calcium (60).

Estrogen Receptors in LCs
In rodents, there are two generations of LCs: namely, FLCs and
ALCs (2). The two generations of LCs have different development
trajectories and functions (2, 61). The first generation of FLCs was
found in fetal age (GD) 12 of mice, GD14 in rats, and fetal testes
of human around gestational age (GW) 6 (62, 63). After birth,
FLCs involute, and a few FLCs persist in the adult testes (64, 65).

The second-generation ALCs begin to develop around the
9th day after birth (PND) in rats, transit to progenitor LCs in
PND21 (pre-pubertal period), develop into immature LCs during
PND28-35, and finally mature to ALCs around PND56 (66).

ESRs, ERRs, and GER are differently expressed in LCs during
the development, depending on two generations of LCs and
species. ESR1 has been detected in mouse (67) and rat (68) FLCs,
as well as mouse (69) and rat (70) ALCs. ESR2 was also found in
mouse and rat (71) FLCs as well as mouse and rat (72) ALCs. It
has been shown that the GPER level of rat LC is higher (73). In
human fetal testes, ESR1 and ESR2 are located in FLCs (74, 75).
Human LCs also have low levels of ESR1 and ESR2 and high
levels of GPER (76–78). All three ERRs are found in mouse
tumor LCs (79). In ESR1 knockout mice, ALCs are hypertrophic
and serum T levels are elevated (80, 81). However, the ESR2
knockout mice did not change, but the average cell volume of
ALC decreased (81).

The Action of BPA and Its Analogs via
Estrogen and Estrogen-Related Receptors
in LCs
Both FLCs and ALCs mainly synthesize T from steroid
cholesterol. High-density lipoprotein transport through

scavenger receptor class B member 1 (SCARB1) contributes to
the formation of most cholesterol in LCs (82, 83). Under the
stimulation of luteinizing hormone (LH) or human chorionic
gonadotropin (hCG) by binding to LH receptor (LHCGR) on
the surface of LCs, adenylate cyclase is activated to increase
intracellular adenosine 3′,5′cyclic monophosphate (cAMP)
levels, triggering protein kinase A signaling (84). Then,
the expression and phosphorylation of steroidogenic acute
regulatory protein (StAR) is activated (85, 86) and, together
with the translocation protein (TSPO) (87), they transport
cholesterol to the mitochondrial inner membrane. In this
organelle, there is a complex of P450 cholesterol side chain
cleavage enzyme (CYP11A1), which catalyzes the production
of pregnenolone by cholesterol (88). Pregnenolone diffuses
from the mitochondria to the smooth endoplasmic reticulum,
where 3β-hydroxysteroid dehydrogenase (HSD3B), 17α-
hydroxylase/17,20-lyase (CYP17A1), and 17β- hydroxysteroid
dehydrogenase 3 (HSD17B3) catalyzes a chain-reaction to
generate T (89).

INSL3 is encoded by Insl3 in LCs and is secreted into
the circulatory system (6, 90). Insl3 is also only expressed
by two types of LCs. Insl3 encodes a G protein, a leucine-
rich repeat sequence GPCR 8 (also known as relaxin family
peptide receptor 2, RXFP2). Knockdown of INSL3 or RXFP2
resulted in failure of testis descent (90–92), indicating that

INSL3 is critical for testis descent. INSL3 constitutive expression

depends only on LC number, but also on differentiation status.
INSL3 is different from T. When T synthesis is low, it is
restored to normal levels by supplementing LH levels (93).

Because INSL3 is specifically expressed by LCs, INSL3 is a
powerful sensitive biomarker that is affected by environmental
endocrine disruptors even when exposed to them during
pregnancy (94).

The detailed mechanisms of BPA and its analogs to interfere
with LC functions has been reviewed (95). When ESR1 was used
to compare the estrogen potency of BPA with E2 through the
endogenous estrogen regulatory gene in human MCF7 cells, the
potency of BPA was found to be four to six orders of magnitude
lower than E2 (96). Some of these studies have shown that
the BPA analog BPS has lower estrogen potency than E2 when
measured in nuclear receptormodels. However, BPS has the same
or higher estrogen potency as E2 by binding membrane ESR [see
review (95)].

In mouse MLTC-1 tumor LCs, BPA, and E2 have
similar potency and can inhibit LH-stimulated cAMP
production with <0.7 nM after 1 h, which may be caused by
GPER (97).

Mouse tumor LCs express ERRs (79). BPA significantly
binds to human ERR3, with an IC50 value of 13.1 nM, and
binds to the ERR3 receptor cavity, and its two OH groups
form a hydrogen bond; one forms a hydrogen bond with
Glu275 and Arg316, and the other binds to Asn346 (98).
BPA and ERR3 effectively bind as antagonists (28), and may
inhibit cAMP-induced Star promoter activation by inhibiting
the transcriptional activity of Nur77 (99). These results indicate
that BPA works by binding different receptors, depending on
the concentration. High concentrations of BPA mainly target
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ESR1, while low concentrations of BPA mainly target GPER
and ERR3.

Direct Inhibition on LC Steroidogenic
Enzymes
Besides the receptor-mediated actions, BPA also directly
interferes with androgen synthesis. The direct effects of BPA
on rat and human T synthetic enzymes, including CYP17A1,
HSD3B, and HSD17B3, were evaluated using testis microsomes.
BPA directly inhibited rat and human CYP17A1, HSD3B, and
HSD17B3 enzyme activities. IC50 values of BPA for rat and
human testicular HSD3B were about 27 and 8µM; IC50 values
for rat and human CYP17A1 were about 65 and 19µM,
and BPA inhibited both rat and human HSD17B3 around
100µM (100). Adult rat LCs also express both HSD11B1 and
HSD11B2 (101), behaving in oxidative inactivation of cortisol
or corticosterone, which can suppress androgen synthesis (102).
BPA inhibited human HSD11B1, with an IC50 of about 15µM
and rat enzyme with IC50 of about 19µM. BPA also weakly
inhibited both human and rat HSD11B2 with IC50 values
about 100 or over 100µM (103). These results indicate that
BPA directly inhibits steroidogenic enzyme activities at the
higher concentrations.

Other Mechanisms of BPA
Studies using Nr3c4 (androgen receptor) knockout mice (104,
105) and Tfm mice (106, 107) showed that androgen is very
critical for LC development. Knockout of Nr3c4 in Sertoli cells,
LCs, and peritubular myoid cells (104, 105) also caused the
delay of ALC development. BPA might act as antiandrogen via
blocking the activation of NR3C4. Lee et al. used a yeast detection
system for the antiandrogenic effects of BPA and found that BPA
antagonized DHT binding at 50 nM (108).

BPA-induced reactive oxygen species (ROS) generation has
also been proposed for BPA-mediated suppression of T synthesis
in LCs. ROS has been shown to disrupt LC steroidogenesis
(109, 110). BPA was orally administered to adult male rats
at 0.005, 0.5, 50, and 500 µg/kg/day for 45 days, and it
significantly increased testicular ROS levels, suggesting that BPA-
induced ROS might also be involved in its inhibition of T
synthesis in LCs (111). Rats were administered BPA via gavage
at 10 mg/kg/day BPA for 14 days, and it lowered T levels
and decreased testis weight and inhibited antioxidants (such
as SOD2 and catalase) and co-treatment with an antioxidant
(lipoic acid) was able to reverse it (112). Male adult rats were
administrated via gavage of 200 mg/kg BPA for 4 weeks, and
it inhibited serum LH and T levels after decreasing SOD,
GPx, and GSH and increasing ROS generation and antioxidants
can attenuate BPA-induced inhibition (113). Adult male Wistar
albino rats (aged 3 months) were gavaged with 50, 500, and
1,000 µg/kg BPA and/or vitamin E (40 mg/kg) for 3 months,
and BPA significantly lowered T levels, testis weights, and sperm
count, and vitamin E could attenuate it (114). These results
indicate that BPA at high or very high doses also increases
ROS levels.

ANIMAL STUDIES

Effect of in utero BPA Exposure on Male
Reproductive Tract Development
Reports on the effects of in utero BPA exposure on T production
and male reproductive tract development are conflicting. This
difference may be due to the dosage, developmental period, and
species. Pregnant CD mice orally exposed to 50 µg/kg BW/day
BPA from GD16 to 18 and F2 male pups had an increase in AGD
on PND3 (115) (Table 2).

However, other studies have shown that BPA inhibits T
synthesis in fetal testes. Oral administration of BPA from GD1
to GD22 to pregnant rats inhibited T production in neonates
(129). Pregnant SpragueDawley rats were administered 4, 40, and
400 mg/kg BW BPA via gavage daily from GD12 to 21, and BPA
dose-dependently reduced serum T levels and down-regulated
the expression of Insl3 and Hsd17b3 and their proteins at 40 and
400 mg/kg and that of Lhcgr, Cyp11a1, and Cyp17a1 and their
proteins at 400 mg/kg (26). BPA inhibited FLC proliferation at
400mg/kg (26). Pregnant Sprague Dawley rats were administered
0.002, 0.02, 0.5, 50, or 400 mg/kg BW or 0.001, 0.01, 0.1, 1, or 10
µg/kg BW 17α-ethynyl estradiol (EE, as the positive control of

ESR1 agonist) daily s.c. from GD11 to GD20. Gene microarray
analysis in GD20 fetal testes revealed that BPA at 400 mg/kg and
EE at 10 µg/kg significantly down-regulated the expression of
FLC genes, including Scarb1, Star, Cyp11a1, Cyp17a1, and Svs5
(116), and they had similar down-regulation patterns, suggesting
that BPA exerts ESR1-mediated inhibition of FLC function (116).
High doses of BPA exert similar effects to E2. Horstman et al.
also exposed pregnant Sprague Dawley rats to 0.001 or 0.1 µg/kg
BW/day EE or 0.02, 0.5, and 400 mg/kg/day BPA via s.c. from
GD11 to GD20 and found that the highest concentration of
EE and BPA down-regulated the expression of Star gene and
proteins (117) (Table 2). These studies indicate that BPA may
show different actions at low and high doses and it may mainly
bind to ESR1 to take action at the high doses.

Effects of in utero BPA Exposure on
Postnatal Male Reproduction
There are also conflicting reports about the effects of in utero BPA
exposure on the production of T after birth. This difference may
also be due to dose, duration of treatment, and species. Pregnant
rats were orally administered with 4 or 40 mg/kg BW/day BPA
from GD6 to PND20, and BPA did not affect AGD in PND21
male offspring. This study cannot conclude the inhibitory effect
of BPA on T secretion (118). From GD7 to PND18, pregnant
Long Evans rats were administered doses of 2, 20, and 200 µg/kg
BW/day, which had no effect on AGD at PND2 and nipple
retention at PND14 in male offspring, suggesting that low doses
of BPA cannot cause TDS (119). Pregnant mice were exposed to
50 µg/kg BW/day BPA from GD16 to GD18, which increased
AGD and prostate size and decreased epididymal weight without
affecting testicular weight at PND3, 21, and 60 (115) (Table 2).

Pregnant CD-1mice who were administered low doses of BPA
(2 and 20 µg/kg/day) via gavage of from GD11 to GD17 had
significantly lower relative testicular weight compared to 8 and
12-week-old male mice without affecting serum T levels (120).
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TABLE 2 | Bisphenol A (BPA) and animal studies.

Species Regimen Outcome References

In utero exposure on FLC development and function

CD mouse po 50 µg/kg/day from GD16 to 18 Increase of AGD and decrease of epididymal weight without

affecting testicular weights at PND3

(115)

SD rat po 4–400 mg/kg/day from GD12 to 21 Reduction of serum T levels and expression of Lhcgr, Insl3, and

Hsd17b3 and FLC proliferation at 40 or 400 mg/kg

(26)

SD rat s.c. 0.002–400 mg/kg/day from GD11 to 20 Reduction of expression of Scarb1, Star, Cyp11a1, Cyp17a1, and

Svs5 at 400 mg/kg

(116)

SD rat s.c. 02–400 mg/kg/day from GD11 to 20 Reduction of expression of Star at 400 mg/kg (117)

In utero exposure on postnatal LC development and function

SD rat po 4 or 40 mg/kg/day form GD6 to PND20 Effect on at PND21 and inconclusive effect on T synthesis (118)

LE rat po 2–200 µg/kg/day from GD7 to PND18 No effect on AGD examined at PND2 and nipple retention at

PND14

(119)

CD mouse po 50 µg/kg/day from GD16 to 18 Decrease in epididymal weight without affecting testicular weights

at PND21 and 60

(115)

CD mouse po 2, 20 µg/kg/day from GD11 to 17 Reduction of relative testicular weights at PND56 and 84 without

affecting serum T levels

(120)

SD rat po 0.0025–250 mg/kg/day from GD6 to PND90 Reduction of testis/epididymis weights only at 250 mg/kg (121)

LE Rat po 2.5–25 µg/kg/day from GD12 to PND21 Increase of LC number and reduction of LHCGR and HSD17B3

and T secretion at PND90

(122)

Neonatal exposure on postnatal LC development and function

SD rat s.c. 0.002–97 mg/kg/day from PND0-9 No effect of preputial separation, T levels, and fertility rate on

PND10 and PND150

(123)

LE rat po 2.4 µg/kg/day from PND21 to 35 Reduction of serum LH and T levels (124)

Adult exposure on postnatal LC development and function

Swiss mouse po 5–100 µ/kg BW/day from PND21 to 35 Reduction of absolute testis weights, seminal vesicle weight and

sperm counts and fertility rate

(125)

SD rat po from PND21 for 56 days Reduction of free T levels without affecting LH levels (126)

Wistar rat s.c. 20–200 mg/kg BW BPA from PND21 for 42 days Inhibition of plasma T and LH levels and down-regulation of

Cyp11a1 and Scarb1

(127)

SD rat s.c. 1 mg/kg BW BPA at adulthood for 14 days Decrease in plasma T level and increase in LH level (128)

SD rat po 10 mg/kg BW BPA at adulthood for 14 days Reduction of serum T levels and testis weight (112)

SD rat po 0.005–500 µg/kg BW BPA at adulthood for 45 days the testis as well as HSD3B1, HSD17B3, and StAR protein levels

and T levels

(111)

AGD, anogenital distance; GS, gestational day; LH, luteinizing hormone; PND, postnatal day; po, gavage; s.c., subcutaneous; T, testosterone.

Sprague Dawley pregnant rats were given 0.006, 0.025, 0.25, 2.5,
25, and 250 mg/kg BW/day by oral administration from GD6
to GD21, and their male pups were directly administered via
gavage of the same doses of BPA from PND1 to PND90. BPA only
suppressed the weight of testes and epididymis at a dose of 250
mg/kg (121) (Table 2).

However, when pregnant CD-1 mice were given 0.1, 1, or 10

mg/kg BPA BW/day by gavage and another plasticizer bis (2-

ethylhexyl)-phthalate (DEHP) from GD1 to GD21, and further,
in the weaning period (PND1-21), the mixture down-regulated

the Star expression and reduced sperm count in epididymis at

PND42 (130). This effect may be confused by the addition of
DEHP. In pregnant Long-Evans rats gavaged with 2.5–25 µg/kg
BW/day from GD12 to PND21, BPA stimulated LC proliferation
during prepuberty and increased the number of LCs at PND90,
but down-regulated LHCGR and HSD17B3 and decreased T
secretion by LCs (122) (Table 2). These different actions of BPA
might be due to the doses of BPA.

Effects of Neonatal and Prepubertal BPA
Exposure on Postnatal Male Reproduction
There are also conflicting reports on the effects of BPA exposure
on postnatal T production and reproduction. This difference
may also be due to dose, duration of treatment, and species.
Male Sprague Dawley rats were daily s.c. administered 0.002–97
mg/kg BW BPA or 0.9 mg/kg BW E2 from PND0 to PND9, and
BPA did not affect preputial separation (an androgen-dependent
process), T levels, and fertility rate on PND10 and PND150, while
E2 inhibited these parameters (123). However, Long Even rats
were orally exposed to 2.4 µg/kg BW/day BPA from PND21 to
PND35, and BPA inhibited serum LH and T levels (124). Rats
were exposed to 2.4 µg/kg BW/day BPA from GD12 to PND21,
and BPA inhibited T levels in adulthood (124). Prepubertal
mice were administered BPA via gavage for 56 days, and they
had significantly lower free T levels without a change in LH
levels (126). Prepubertal Wistar male rats (28 days old) were
injected subcutaneously with 20, 100, and 200 mg/kg BW/day
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BPA, and BPA inhibited plasma T and LH for 6 weeks but did
not affect FSH levels. BPA down-regulated steroidogenic enzymes
and cholesterol carrier proteins in LCs and decreased LC number
(127) (Table 2).

Effects of Adult BPA Exposure on Male
Reproduction
Adult male Swiss mice were given BPA by gavage of 5, 25, and 100
µg/kg BW for 28 days. BPA significantly lowered absolute testis
weights, seminal vesicle weight, and sperm count and fertility
rate (125). Adult male rats were exposed subcutaneously to 1
mg/rat BPA for 14 days. BPA decreased plasma T level and
increased LH levels, suggesting that BPA directly inhibits LC
function (128). Adult rats were administered via gavage of 10
mg/kg BW/day BPA for 14 days. BPA lowered T levels, decreased
testis weight, and inhibited antioxidants, and co-treatment with
an antioxidant (lipoic acid) could reverse it (112). Adult male rats
were administered by gavage of 0.005, 0.5, 50, and 500 µg/kg

BW/day BPA for 45 days. BPA significantly decreased insulin,
insulin receptor, insulin receptor substrate-1, phosphoinositide
3-kinase (PI3K), and GLUT-2 in the testis as well as HSD3B1,
HSD17B3, and StAR protein levels and T levels (131). Adult male
rats were gavaged with 400 or 800µmol/kg BW/day BPA for 14
days. BPA significantly decreased CYP17A1, POR, CYP1B1, and
CYP2A1 protein levels without affecting HSD3B1 protein levels
(132) and this potency of BPA was similar to 4µmol/kg BW/day
E2 (132). Treatment of ALCs with 0.01µM BPA decreased
T synthesis by down-regulating expression of Cyp17a1 (124)
(Table 2). This further demonstrates that BPA has different
effects depending on doses.

HUMAN STUDIES

Human Epidemiological Study
Some epidemiological studies have explored the relationship
between human exposure to BPA during pregnancy and male
reproductive diseases. The results are contradictory. Fénichel
et al. measured unconjugated BPA levels in cord blood in 152
boys born after GW34 with cryptorchidism and 106 controls and
did not find any association between BPA and cryptorchidism
(133). Cord blood BPA levels were measured in 52 neonates
with cryptorchidism and 128 controls in France. No correlation
was found between BPA and T or cryptorchidism, but a
significant negative correlation was found between BPA and
INSL3 (18). Because INSL3 and T are important for testis
descent, no relationship of BPA with cryptorchidism might be
involved in more confounding factors. Serum BPA levels were
detected in 98 (1–4 years old) unilateral cryptorchidism boys
and 57 controls. No association between free BPA levels and
cryptorchidism was found. However, they did find a significant
association between total BPA levels and cryptorchidism (134).
Fernandez et al. measured free BPA levels in term placenta in 28
boys of cryptorchidism/hypospadias and 51 controls, finding an
association between BPA levels and cryptorchidism/hypospadias
in the third tertile of cases (135). Miao et al. investigated maternal
occupational exposure to BPA and AGD in 56 BPA-exposed male
offspring and 97 unexposed controls and found that BPA was

significantly negatively correlated with AGD (136). Liu et al.
investigated the effect of BPA on sex hormone levels in 100
mother–infant pairs in two hospitals in China and found that
maternal urinary BPA levels were negatively correlated with male
fetal cord blood T levels and T/E2 ratios in male fetal cord blood
without association with AGD (137). Therefore, more human
studies are needed to clarify the effect of BPA on FLC functions
of male fetuses and newborns.

For BPA-mediated effects on adult reproduction, Adoamnei
et al. measured urinary BPA levels, serum LH levels, and sperm
counts in 215 healthy young men (ages 18–23 years) in southern
Spain, and found that urinary BPA was positively associated
with serum LH levels and negatively with sperm concentrations,
suggesting that BPA disrupts LC function and spermatogenesis
(138). Den Hond et al. measured the urinary BPA levels and
serum sex hormones in 163 subfertile men in four fertility clinics
and found that there was a negative association between urinary
BPA concentrations and serum T levels (139). Meeker et al.
measured urinary BPA levels and serum reproductive hormone
levels in 167 infertile men and found an inverse relationship
between urinary BPA levels and free T (T/SBBG) (140). Mendiola
et al. reported on 375 men with partners of pregnant women in
four cities of the United States and found that urinary BPA level
was not associated with semen quality, but was negatively related
to free T index and positively related to SHBG (141).

In vitro Studies Using Human Testis
The effect of BPA on FLC function was evaluated in human fetal
testes. Exposure of BPA to human GW6-11 fetal testis explants
for 3 days did not affect T secretion at 1 nM, but significantly
lowered T secretion at 10 and 10µM (142). Ben Maamar et al.
found that BPA exposure to human GW7-12 human fetal testis
explants for 3 days significantly inhibited T synthesis under the
basal and LH or hCG-stimulated conditions at 10µM (143, 144).
BPA exposure also inhibited T secretion under a basal condition
at 10 nM, but not under a LH-stimulated condition at this low
concentration (143). Similar data were observed on the basis of
BPA exposure to GW6-11 human testis and LH-stimulated T
synthesis (41). Interestingly, Eladak et al. performed the first and
second trimester human fetal testis xenograft to explore effect
of BPA on T secretion and found that exposure of host mice to
10µM BPA in water or 0.5 or 50 µg/kg BPA via gavage for 35
days did not influence T secretion from xenografts (41, 145).

BPA ANALOGS

Exposure of BPA Analogs
Due to strict restrictions on the production and use of BPA,
several BPA analogs are gradually replacing BPA. Recent studies
have reported that there was widespread exposure to a variety
of chemicals with structural or functional similarity to BPA,
referred to as BPA analogs (Table 1). BPA and its analogs were
reported to exist in food stuffs (16, 146) and indoor dust (147)
in both China and the United States. BPS and BPF are highly
detectable in many water supply systems (148) and paper (149).
BPA analogs can enter human tissues, circulation, and urine.
In a survey for 190 women in Hangzhou, China, showed that,
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besides BPA (average level of 2.5 ng/mL), BPS (0.19 ng/mL) and
BPAF (0.092 ng/mL) were also detectable in breast milk (150).
In the serum samples of 181 Chinese pregnant women, BPS,
BPF, BPAF, BPB, BPP, BPZ, BPAP, TBBPA, tetrabromobisphenol
S (TBBPS), and tetrachlorobisphenol A (TCBPA) were detected,
and TBBPS was 0.593 ng/mL and BPS was 0.113 ng/mL (151).
BPB was detected in the urine of Portuguese volunteers, and its
level was similar to BPA (152) (Table 1).

In vitro Studies of BPA Analogs
Despite extensive research on the effects and toxicity of BPA on
the male reproductive endocrine system in mammals, including
humans, little is known about the activity of most BPA analogs.
Several studies have been conducted on the toxicological effects
of certain BPA analogs on Leydig cell function.

As mentioned above, LCs contain NR3C4 and androgen
agonists, and antagonists can affect their development and
function. The effects of BPA, BPF, BPS, and tetrabromobisphenol
(TBBPA) on the activation of human NR3C4 were studied in
vitro. BPA, BPF, and TBBPA antagonized NR3C4 activation with
IC50 values of 39, 20, and 0.982µM, while BPS did not affect it
(153) (Table 3). Using a human recombinant androgen receptor
(NR3C4) competitive binding test, it was found that BPB binds
NR3C4 at a potency similar to BPA (157, 158). However, BPS
bound NR3C4 weakly (157). BPA and its analogs were compared
using in vitro and in vivo reporter assays for androgen agonism
and antagonism. BPA significantly antagonized DHT androgenic
activity in mouse fibroblast cell line NIH3T3 with TMBPA>

BPAF >BPAD >BPB >BPA, whereas TBBPA and TCBPA were
inactive (159). In another assay, like BPA, the following BPA

analogs, TBBPA, BPAF, BPB, BPZ, BPE, 4,4-BPF, 2,2-BPF, BPC,
TGSA, and TMBPA were NR3C4 antagonists between 3 and
100µM, where BPS and TCBPA were inactive (160).

A series of estrogen receptor luciferase assays of BPA analogs
in all 127 test compounds showed that BPC bound ESR1 with
the highest affinity, with IC50 of 2.81 nM, and other BPA analogs
such as BPAF (53.4 nM), BPM (56.8 nM), BPZ (56.9 nM), BPP
(176 nM), BPB (195 nM), BPAP (259 nM), and BPA (1,780 nM)
(155) (Table 3). Estrogen receptor binding experiments have
shown similar effects of these BPA analogs (154, 156) (Table 3).
Comparing the estrogen activity of BPA and its analogs in
human breast cancer cell line MCF-7, the results showed that
the estrogen activity was TCBPA> BPB> BPA> TMBPA (159).
Using an in vivo uterotrophic assay in ovariectomized mice, anti-
estrogenic activity against E2 was observed with TMBPA and
TBBPA (159).

Compared with ESR1, BPAF also binds to ESR2 more
effectively. The IC50 value of BPAF for ESR2 as an antagonist is
18.9 nM. Reporter gene assay showed that BPAF is a full agonist of
ESR1, inactive to ESR2, and has very weak binding to ERR3 (161).

In vitro studies showed that after 24 h of treatment, BPAF
was found to dose-dependently inhibit the production of P4 in
mLTC-1 tumor LCs after 24 h of treatment with an IC50 value

of 70.2µM. BPAF also lowered intracellular cAMP levels and

down-regulated Scarb1 andCyp11a1 expression without affecting
Star expression (162). This indicates that at high concentrations,
BPAF has similar effect to BPA.

When MA-10 tumor LCs were treated with BPA analogs,
TBBPA induced T synthesis, while BPF and BPS increased P4
levels (153). Fetal human testis was exposed to BPA, BPF, and

TABLE 3 | Bisphenols as estrogen receptor agonists and androgen receptor (NR3C4) antagonists.

ESR1

agonist

ESR2

agonist

NR3C4

antagonist

Chemical EC50 (nM)a Rel to BPA EC50 (nM)b Rel to BPA EC50 (nM)c Rel to BPA EC50 (nM)a EC50 (nM)c Rel to BPA EC50 (nM)c Rel to BPA

BPA 1200 1 1780 1 180 1 350 1 250 1 17500 1

T IA IA IA IA IA IA IA IA IA IA 2.8 6250

E2 0.042 28571 0.88 2225 0.9 200 1.1 318 0.3 833 30 583

BPAF 130 9 53.4 33.3 ND ND 46 7.6 ND ND ND ND

BPAP - - 259 6.9 2600 0.07 - - - - 5400 3.2

BPB 320 4 195 9.1 ND ND - - ND ND ND ND

BPC 780 2 2.81 633 3900 0.05 3200 9.1 - - 1800 9.7

BPE 1400 1 ND ND ND - 460 1.3 ND ND ND ND

BPF 1600 1 ND ND 1800 0.1 1300 3.7 3800 0.07 5800 3.0

BPFL ND ND 2230 0.8 - - ND IA IA 30 583

BPH ND ND ND ND - - ND - - 1100 15.9

BPP 5600 0.2 176 10.1 ND ND - - ND ND ND ND

BPS 1300 1 ND ND ND ND 2100 6 ND ND ND ND

BPZ 400 3 56.9 31.3 80 2.3 500 1.4 1100 0.23 1600 10.9

TDP ND ND ND ND 480 0.4 ND ND 1100 0.23 5800 3.0

TMBPA 1100 1.1 1630 1.1 - - - - - - 1100 15.9

aPotency of bisphenols in estrogen receptor (ESR) and androgen receptor (NR3C4) luciferase reporter gene assays (154); bLigand binding assay (155); cLigand binding assay (156);

IA, inactive; ND, not detected; -, no active activity; REL, potency relative to BPA.
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BPS in vitro. These compounds inhibited T secretion at 10 nM
(41). Fetal mouse testis was exposed to BPA and its analogs; these
chemicals inhibited T secretion at higher concentrations, and the
minimum effective concentrations were 1µM for BPA and BPF
as well as 100 nM for BPS (41). These data indicate that there
is species-dependent difference for the inhibition of T synthesis
between humans and mice, and human is more sensitive to
BPA analogs than mouse. These chemicals also lowered Insl3
transcription level at 10µM in fetal mouse testis (41).

In vivo Studies of BPA Analogs
Only some reproductive and developmental toxicity studies

have been conducted on BPA analogs. BPAF did not change
fetal T secretion from male fetuses on GD18 when exposed to
BPAF by GD14 to 18 at a dose of 200–500 mg/kg/day (163).
Exposure of rats to 5, 25, and 50 µg/L BPA and its analogs
BPB, BPF, and BPS from GD1 to GD21 in drinking water caused
significantly low antioxidant enzyme, plasma testosterone, and
estrogen concentrations and altered morphological changes of
testis and epididymis in male offspring after birth (164). In vivo
studies of 5 mg/kg/day of BPA, BPB, BPF, and BPS exposed to
adult male rats for 28 days showed that they led to decreased
T levels and increased ROS levels (165). Male prepubertal rats
exposed to 5, 25, and 50µg/L BPA, BPB, BPF, and BPS in drinking
water for 48 weeks also showed a decrease in T levels in the
highest dose group (166). These results indicate that BPA analogs
BPB, BPF, and BPS have similar effects on the development of the
male reproductive system to BPA.

CONCLUSION

BPA is a ubiquitous environmental pollutant, mainly from
the manufacture and use of plastics and its degradation of

waste related to industrial plastics. More and more animal
experiments have shown that BPA has endocrine disruption to
the development and function of LCs. Studies on laboratory
animals have shown that the effect of BPA is usually more
harmful in the uterus, which is a critical stage of embryonic
development. BPA has been found to cause defects in the embryo,
such as feminization of the male fetus, atrophy of the testes
and epididymis, as well as shortened AGD and changes in adult
sperm parameters. BPA also disrupts the development of LCs
after birth and the function of LCs in adulthood. BPA may
have several molecular mechanisms: (1) binding to different ESR
(ERS1 and ERS2) and ERR (1-3) as agonists, and NR3C4 as
antagonist (Figure 1); (2) binding to the membrane receptor
(GPER) (Figure 1); (3) direct inhibition of steroidogenic enzyme
activity; and (4) stimulation of ROS production. Epidemiological
studies provide some data indicating that BPA can change male
reproductive function in men. There are dose-dependent effects,
including low-dose and high-dose effects and species-dependent
effects. Human testes may be more sensitive to the T inhibition
of BPA analogs.
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Male reproductive function and health are largely dependent on the testes, which

are strictly regulated by their major cell components, i. e., Sertoli, Leydig, and germ

cells. Sertoli cells perform a crucial phagocytic function in addition to supporting

the development of germ cells. Leydig cells produce hormones essential for male

reproductive function, and germ cell quality is a key parameter for male fertility

assessment. However, these cells have been identified as primary targets of endocrine

disruptors, including bisphenols. Bisphenols are a category of man-made organic

chemicals used to manufacture plastics, epoxy resins, and personal care products such

as lipsticks, face makeup, and nail lacquers. Despite long-term uncertainty regarding

their safety, bisphenols are still being used worldwide, especially bisphenol A. While

considerable attention has been paid to the effects of bisphenols on health, current

bisphenol-related reproductive health cases indicate that greater attention should be

given to these chemicals. Bisphenols, especially bisphenol A, F, and S, have been

reported to elicit various effects on testicular cells, including apoptosis, DNA damage,

disruption of intercommunication among cells, mitochondrial damage, disruption of tight

junctions, and arrest of proliferation, which threaten male reproductive health. In addition,

bisphenols are xenoestrogens, which alter organs and cells functions via agonistic or

antagonistic interplay with hormone receptors. In this review, we provide in utero, in

vivo, and in vitro evidence that currently available brands of bisphenols impair male

reproductive health through their action on testicular cells.
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INTRODUCTION

In recent years, the declining trend in male reproductive health has generated public concern,
and industrialized countries are the most affected (1, 2). A recent study indicated that the fertility
rate has drastically declined in the United States of America, European countries, Japan, South
Korea, and Singapore (2). About half of these infertility occurrences are linked to male factors (3–
5). Studies relating to infertility in both human and animals have identified endocrine disruptors,
including bisphenols, among etiologies (2, 5, 6). Bisphenols are man-made organic chemicals used
to manufacture plastics, epoxy resins, and other products. The most common and widely used
analog of bisphenol, bisphenol A (BPA), was designed by Diani in 1891 and synthesized by Zincke
in 1905 (7). However, there are growing concerns about BPA which constitutes a major component
of food packaging, plastics and other household products becoming a threat owing to its tendency
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to leach into the surroundings. The perceived harmful tendency
of BPA has led to a complete ban, regulatory policies, and search
for safer substitutes in many countries (8–10). Consequently,
there is variation in its usage in different countries (8, 9).

As BPA is being removed from consumer products, there is
a progressive move to its derivatives: bisphenols F, E, B, and
S as materials for polycarbonate resin (11). Other industrial
application of BPS include wash fastening and electroplating
(12), BPF epoxy resins are used in lacquers, liners, adhesives,
dental sealants, and food packaging (13), while other analogs
of BPA such as 2,2-bis-(3,5- dibromo-4-hydroxyphenyl)propane
(TBBPA), are commonly used as fire retardant in several
materials (11). An ideal substitute for replacing BPA, whose safety
is of public concern, should be inert or less toxic. Unfortunately,
these analogs have been implicated in male reproductive health
problems and found in several household commodities, for
instance; body cream, shampoo, meat, and milk (14, 15),
making them imperfect substitutes for BPA. Bisphenols are
ubiquitous contaminants in humans, livestock, wildlife, and the
environment (16). Humans get exposed to bisphenols through
food, skin, and inhalation (17, 18). Protective coatings of drinks
and food cans, and household water containers are made of
phenolic epoxy resins that contain BPA (8).

Once BPA and analogs are absorbed into the body, their
major targets include testicular cells (19, 20). Functional cells
of the testes include Leydig, Sertoli, and germ cells (21).
Although the testis houses other important cells such as
peritubular myoid, nerve, blood, and lymphatic endothelial cells,
information on impact of bisphenols on these cells in relation
to male reproductive health is few (22). Leydig cells produce
testosterone, which perform a crucial function in differentiation
of the germ cells and maintenance of testicular functions (21).
Additionally, testosterone produced by Leydig cells perform
important functions in the maintenance of the prostate gland
(23). Sertoli cells phagocytize apoptotic germ cells to maintain
testicular homeostasis for normal spermatogenesis and regulate
germ cell proliferation and differentiation (24). These cells
control male somatic sex determination during embryogenesis
and spermatogenesis in adulthood (25). In addition, Sertoli cells
secrete lactate and pyruvate, which are sources of energy for
germ cells (26–29). Their number in the testes is, therefore,
closely related to testicular volume and sperm yield (21). The
production of viable spermatozoa involves a sequence of gradual
differentiation of germ cells via mitosis and meiosis, and final
transformation into mature sperm (30, 31).

Previous studies have revealed estrogen signaling as
important signaling involved in endocrine disrupting activities of
bisphenols, especially BPA (11, 17, 32). Estrogen signaling occurs
throughmultiple pathways in which estrogen receptors (ERα and
ERβ) regulate transcription of target genes directly or indirectly
(33). BPA binds with cytoplasm estrogen receptors (cERs) or
ERs located in the nucleus (nERs) in the genomic pathway. The
binding to these receptors affects nuclear chromatin function
and regulates the transcription/translation of genes and protein.
Consequently, the cell proliferation, differentiation, and survival
are altered (17, 34). In non-genomic signaling pathway, BPA
could bind to G-protein coupled receptor (GPR30) on the

membrane of testicular cells especially sperm cells (17). The
activation of these receptors by BPA in sperm cells results in rapid
phosphorylation of mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K), protein kinase A (PKA),
and alteration in levels of cyclic adenosine monophosphate,
protein kinase C, and intracellular calcium which result in
serious cellular effect (11). BPA can also elicit its effect on
testicular cells via reactive oxygen species-mediated damage and
apoptosis through activation of pro-apoptotic signaling (MAPK,
Fas/FasL, Caspase 3 and 9, Bax) (35).

Although, a study indicated that BPA probably incapable to
elicit observable effects at low concentration through estrogen
receptors (ERα and ERβ) by demonstrating a low affinity between
BPA and these receptors (32), recent studies reported that
BPA possesses a strong affinity with membrane-bound estrogen
receptors and G protein–coupled receptor 30 (GPR30) and
evokes cellular effects at low doses (picomolar and nanomolar
concentrations), which are lower compared to concentrations
needed to stimulate nuclear ERs (36, 37). This review suggests
that extremely low doses of BPA that are incapable of producing
detrimental effects in tissues and organs via ERα and ERβ

will produce negative effects in testicular cells through GPR30
and ERR-γ which are more abundant in the cells (Figure 1).
Therefore, the objective of this review is to clarify conflicting
studies surrounding the effect of bisphenols onmale reproductive
health, and produce evidence that BPA and currently available
analogs threaten male health and fertility through their action on
testicular cells, which results in alterations to testicular functions
and culminates in impairment of male reproductive health.

FUNCTION OF LEYDIG CELLS IN MALE

REPRODUCTIVE HEALTH

Leydig cells are found in the interstitial spaces of the testis (38).
They are vital parts of male reproductive organ development
and reproduction (39). Androgens produced by Leydig cells
are essential for the differentiation of male genitalia and
masculinization in response to luteinizing hormones from
the pituitary (39). Sexual differentiation in males is a complex
sequence of processes that involves activities of hormones
produced by somatic cells in the gonads, including Leydig cells
(38). There are two populations of Leydig cells in eutherian
mammals: fetal and adult Leydig cells (38–40). The post-natal
surge in androgens has led to suggestion that there is neonatal
or infantile population of Leydig cells in certain species such
as humans and primates (38, 40). The fetal Leydig cells are
found in the embryonic testes following formation of the
testis until parturition (40, 41). In mouse, the fetal Leydig
cell secrete androstenedione which is consequently converted
to testosterone by hydroxysteroid 17-beta dehydrogenase
3(HSD17B3) produced by Sertoli cells, whereas fetal Leydig
cells of rat produce testosterone commencing from gestational
day 15.5 (39–41). The adult Leydig cells synthesize testosterone
needed for the development of male reproductive organ
and the commencement of spermatogenesis (38). Although
both fetal and adult Leydig cells possess some distinctions in
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FIGURE 1 | Schematic representation of the action mechanism of bisphenols on testicular cells.

morphological characteristics, they perform same function of
androgen production (38). Androgens and other hormones
produced by Leydig cells are indispensable to male reproductive
system development and health (38). The absence or dysfunction
of these cells give rise to maldevelopment of reproductive organs
and disorders associated with incomplete masculinization of
the male fetus (41, 42). Additionally, the alteration of Leydig
cell function can adversely impair fertility in men (43). Normal
male sex differentiation procedure involves movement of the
testes from their initial location close to the kidneys into
the extracorporeal position inside the scrotum. There are
two separate and successive phases of testicular descent: the
intraabdominal phase, where the testes migrate to the abdominal
base; and the inguinoscrotal phase, which involves the movement
of the testes through the inguinal canal into the scrotum (43).
Each of these phases is controlled by specific hormones; insulin-
like 3 (INSL3) and testosterone (40), produced by Leydig cells.
The intraabdominal phase which occurs in man between 8 and
10 weeks of gestation is controlled by INSL3, while testosterone
regulates the inguinoscrotal phase which occurs between 20 and
26 weeks of gestation (44, 45). Therefore, Leydig cells perform a
critical role in male reproductive development and health.

THE EFFECTS OF BISPHENOLS ON

LEYDIG CELLS AND THE DEVELOPMENT

OF MALE REPRODUCTIVE ORGANS

Leydig cells are the main producers of testosterone in the male
reproductive system, and harm to them can lead to infertility (6).

A previous study identified a high occurrence of undescended
testes in several developed nations (43); one third of male
born prematurely have unilateral cryptorchidism, while 2–8%
cases are found in full-term males, indicating cryptorchidism
as prevalent male reproductive abnormality (46). Leydig cells
have been identified among the target cells of bisphenols and
other environmental contaminants (47–49). There is increasing
evidence of the detrimental implication of BPA and derivatives
on health and function of male reproductive system acting via
Leydig cells in a dose-dependent manner (48, 49). A previous
study examined the effect of BPA on testicular testosterone
production using human (6th−11th gestational weeks) and
rodent [(Wistar rat:14.5 dpc), (C57BL/6mice 12.5 dpc)] testicular
explants using Fetal Testis Assay (FeTA) method and found that
testosterone production was unaffected when exposed to 10−12

MBPA for 3 days. However, a reduction in testosterone secretion
was noticed with exposure to 10−8 M BPA (48). By implication,
the effect of BPA on Leydig cells is dose dependent. In the same
study, 10−8 M BPA decreased testosterone production in human
testicular explant, while a higher concentration of 10−5 M was
required to produce same effect in mice and rats. These results
indicate that the effect of BPA is species dependent. Similar to
the results obtained from testosterone secretion, BPA decreased
mRNA levels of INSL3 in both human and mouse testicular
explants in species-dependent manner (48). Meanwhile, a new
experiment investigating the effect of BPA on Leydig cells using
human and two strains of rodent testicular explants (49) reported
that the administration of BPA doses of 10−8 M and 10−5 M
(the concentration that decreased testosterone and INSL3 in
humans in an earlier study) for 72 h suppressed testosterone
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secretion in Sprague-Dawley fetal rat testicular explants, while
a higher concentration of 10−5 M repressed testosterone in
Wistar strain. This report implies that higher concentration of
BPA is required to reduce testosterone production in Wistar rat,
while a lower concentration similar to that of human is required
to produce same effect in Sprague–Dawley strain. Therefore,
whether data regarding the effect of bisphenols on Leydig cells
from all strains of rodents under the same conditions can be used
to make inferences for human risk assessments requires further
investigation. Another experiment conducted using the TM3
Leydig cell from mice indicated that BPA decreased testosterone
production, cell viability, growth, metabolic active mitochondria,
and induced cell death and alteration of mitochondria membrane
potential (50). Exposure of adult Leydig cells to 0.01 nm BPA
altered testosterone production by 25%, while 2.4 µg/kg/day
decreased testosterone production, androgen biosynthesis, and
CYP17 gene expression in rats in the same study (6). Another
study conducted to investigate the involvement of BPA in
the maldevelopment of male reproductive organs and heath
demonstrated that BPA increased aromatase mRNA levels but
suppressed testosterone production in R2C cell line (from rats)
in vitro (51).

Furthermore, studies on the effect of bisphenols on
development of male reproductive organs revealed that
10,000 nmol/L of BPA and its analogs; BPS and BPF,
reduced the mRNA level of fetal Leydig cell-related genes
[Steroidogenic acute regulatory protein (Star), 3 beta-
hydroxysteroid dehydrogenase/Delta 5–>4-isomerase type
1 (Hsd3b1), cytochrome P450 family 17 subfamily A member 1
(Cyp17a1), INSL3] in 12.5 dpc fetal mouse testicular explants
cultured for 3 days (52). In the same study, the author expanded
their earlier finding that used (FeTA) method (48) by adopting
basal condition to investigate the differential effect of BPA
on rat (14.5 dpc), mouse (12.5 dpc), and human (6.3–11.1
gestational weeks) testicular explants. It was confirmed that
1,000 nmol/L (10−6 M) of BPA significantly reduced basal
testosterone secretion of human and mouse fetal testes (52).
The authors concluded that the minimum observed adverse
effect level is 100-fold higher in mouse than in human testes
and 100 or 1,000-fold higher in rat than in human testes in basal
conditions (52). Moreover, higher occurrences of undescended
testes may stem from impairment of the functions of Leydig cells
during embryonic stage. In another study, BPA concentration
in the blood was negatively correlated with INSL3 expression
level (53). Several other studies have indicated that BPA and
its analogs reduced both Leydig cell number and testosterone
production (54–59). Interestingly, a clinical study conducted
on 160 neonate males (Control:80, hypospadias patients: 80)
suffering from hypospadias had seven folds BPA concentration
in their blood compared to normal newborns (60). Testosterone
controls the masculinization of male genitourinary system
and a decrease or alteration in its production between days 15
and 18 post-coitus results in developmental defects in male
rat fetuses (52). Despite the variation in the mode of study
(in vitro or in vivo), route (subcutaneous or gavage), duration
(short or long), and species, all researchers confirmed the effect

of bisphenols on Leydig cells. Variations observed in reports
are linked with dosage, species, age, duration, and solvent
used for dissolving bisphenols. Meanwhile, the interspecies
discrepancies present critical concern since animal studies are
commonly employed in risk assessment of bisphenols. Human
risk assessment data extrapolation from in vivo animal studies
has generated a concern because metabolic process of BPA in
man and rodent is different (61–63). The sensitivity to BPA in
rodent fetal and adult-type Leydig cells cannot be comparatively
assessed because most studies involving mature animals were
conducted in vivo, moreover, hypothalamus-pituitary-testicular
axis can be affected by bisphenols at varying developmental
stage differently (62). Furthermore, the effect of BPA and
analogs could be cell specific, e.g., BPA, BPF, BPS, BPE, BPB,
and bisphenol A diglycidyl ether (BADGE) inhibit testosterone
production in Leydig cells from human testicular explants,
whereas Sertoli and germ cells were not affected by the same
concentration in the study (54). This suggests variation in the
action mechanism of bisphenols on different cells of the testes.
A summary of effects of bisphenols on Leydig cells is shown in
Table 1.

EFFECT OF BISPHENOLS ON LEYDIG

CELLS AND TESTICULAR DYSGENESIS

SYNDROME

Hypospadias, cryptorchidism, impaired spermatogenesis,
and testicular cancer are categorized as testicular dysgenesis

syndrome (TDS). They also represent indices of impaired
prenatal testicular development (64, 65). This syndrome (TDS)
is associated with embryonic maldevelopment of the testis,
which impair differentiation of somatic cells (66). Cryptorchid
testes mostly harbor twisted tubules and undifferentiated Sertoli
cells (66, 67). Although many factors have been hypothesized
as causes of TDS, some studies have linked TDS to the effect
of endocrine disruptors on Leydig cells (68–70). Bisphenols
are endocrine disruptors that can cause malfunctioning of
Leydig cells (47–49). Cases of TDS are characterized by the
failure of gonads to fully develop and emergence of intersex
genitalia (64). The influence of BPA on human fertility and its
involvement in several reproductive complications, including
TDS, germ cell cancers, and Sertoli cell only syndrome have
been reported (10, 71–73). In a study conducted to evaluate the
BPA in the blood samples of 98 cryptorchid males admitted for
surgery, serum BPA levels ranged from 4.1 to 89.8 ng/mL (74).
The study concluded that serum BPA was positively correlated
with cryptorchidism. Effect of BPA on Leydig cells resulting to
hypoplasia of the cell can be complete or incomplete. Complete
hypoplasia is characterized by presence of both male and female
copulatory organs. However, atrophy or hypertrophy of testicles
characterized incomplete forms (48). These findings prove
beyond doubt the involvement of bisphenols, especially BPA
in the maldevelopment of the male reproductive organs and
system. The aftermath of decreases in the expression of INSL3
and testosterone synthesis are masculinization defects. Low
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TABLE 1 | Effects of Bisphenols on Leydig cells.

Chemical

name

Dosage Species Effects References

BPA 2.4

µg/kg/day

Long-Evans

rat

Decreased testosterone

production (1.62 ±

0.16 ng/ml; vs. control,

2.52 ± 0.21)

(6)

Decreased androgen

biosynthesis

Suppression of CYP17

gene expression

Inhibition of testicular

steroidogenesis

BPA 0.01 90-day old

Rat adult

Leydig cell

Decreased testosterone

biosynthesis by 25%

(6)

BPA 10, 25, and

50µg/ml

TM3 cell line Decreased testosterone

secretion by 30.4, 69.2,

79.5 % for 10, 25, and

50µg/ml, respectively

(47)

Decreased viability

BPB 10, 25, and

50µg/ml

TM3 cell line Decreased testosterone

secretion by 41, 76.1,

and 91% for 10, 25, and

50µg/ml, respectively

(47)

BPS 10, 25, and

50µg/ml

TM3 cell line Decreased testosterone

secretion by 8.8, 7, and

19.4% for 10, 25, and

50µg/ml, respectively

(47)

BPF 25 and

50µg/ml

TM3 cell line Decreased testosterone

secretion by 3.8 and

13.8% for 25 and

50µg/ml, respectively

(47)

BPA 10−8 M Human

(6.5–10.5

gestational

weeks)

testicular

explant

Decreased testosterone

by 20% compared to

control

(48)

Reduced expression of

INSL3 by 20% compared

to control

BPA 10−5 M Wistar rat

(14.5 dpc)

testicular

explant

Decreased testosterone

by approximately 50 %

on 3rd day of culture

(48)

Reduced expression of

INSL3 by approximately

20%

BPA 10−5 M Sprague-

Dawley Rat

(14.5 dpc)

testicular

explants

Inhibition of testosterone

by 10−5M BPA diluted in

DMSO at all periods 24

h: 53%; 48 h: 40%; 72 h:

39%,

(49)

Suppressed INSL3 by

76%

BPA 10−5 M Man (7–12

gestational

week)

testicular

explants

Inhibition of testosterone

by 10−5 BPA diluted in

DMSO by 28%

(49)

(Continued)

TABLE 1 | Continued

Chemical

name

Dosage Species Effects References

BPA 1, 10, and

100µM

TM3 cell line Decreased testosterone

production by 22%,

28%, and 39%, for 1, 10,

and 100µM, respectively,

when compared to the

negative control

(50)

Decreased cell viability

Decreased cell growth

Decreased metabolically

active mitochondria

Alteration of

mitochondrial membrane

potential

BPA,

BPS, and

BPF

10,000

nmol/L

Mice (12.5

dpc)

Reduced INSL3

expression

(52)

Reduced expression of

testosterone biosynthesis

related genes (Star,

Hsd3b1, Cyp17a1) and

Lhcgr

BPA,

BPS, and

BPF

10 nmol/L Human

(6.3–11.1

gestational

weeks)

Decreased basal

testosterone secretion

(52)

BPA and

BPB

10−9-10−5 M Human (46.7

± 4.65)

testicular

explant

Inhibition of testosterone

production (BPA, 28.7

and 39.2 % at 24 and

48 h, respectively) (BPB,

17 and 47% at 24 and

48 h, respectively.

(54)

BPAF 200

mg/kg/day

7 weeks

Sprague–

Dawley

rat

Reduction of

testosterone production

by 90.6% compared to

control

(55)

Altered testosterone

biosynthesis

BPA 100 and 200

mg/kg/day

Wistar/ST rat Reduced plasma and

testicular testosterone

production

(56)

Reduced number of

Leydig cell

BPA 4, 40, and

400 mg/kg

Sprague–

Dawley rats

(Gestational

day 21)

Disruption of fetal Leydig

cell number, proliferation

and distribution

(57)

Downregulation of Leydig

cell genes

Decreased expression of

INSL3

fertility and germ cell cancer are major complications linked with
testicular dysgenesis (43). The association between the actions of
bisphenols on Leydig cells and testicular dysgenesis is as shown
in Figure 2.
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FIGURE 2 | Schematic diagram of the effect of Bisphenols on Leydig cells.

THE ACTION OF BISPHENOLS ON LEYDIG

CELLS AND PROSTATE HEALTH

Testosterone performs a very important function in male
reproductive health. Reduction or alteration of its synthesis is
connected to complications of hypogonadism and impairment
of male reproductive health (52). Estrogen and testosterone
execute crucial roles in the onset, advancement, and growth of
prostate cancer (75). The growth and maintenance of prostate
gland is regulated by testosterone and prolactin (23). Citrate
production by prostate glands is performed by the highly
specialized citrate-producing acini epithelial cells (23). The
capability of the acini epithelial cells to produce substantial
citrate depends on their zinc accumulating ability and inhibition
of citrate oxidation. Meanwhile, the zinc and citrate levels
are controlled by testosterone and prolactin (76, 77). There
is increasing concern that exposure to xenoestrogen, including
bisphenols, during critical developmental window may multiply
vulnerability to prostate cancer. Leydig cells are involved in
testosterone production and are major targets of bisphenols
(47–49). Earlier research findings revealed that BPA decreases
testosterone synthesis via Leydig cells, indicating that it is also
a threat to prostate health. As shown in previous studies, BPA
contamination is related to development of prostate cancer and
elevates centrosome amplification in vitro (78). In another study,
BPA caused enlargement of prostate and increased EGFR mRNA
level in mature Sprague–Dawley rats when administered orally
(79). Another study demonstrated that BPA enhanced human

prostate stem cell proliferation (80). However, a recent study
conducted by the same author using a rat model and human
prostate epithelial cells indicated that BPA alone did not drive
prostate pathology but low doses of BPA augment vulnerability
to prostate cancer and induced homeostatic imbalance in
adult prostate stem cell (81). At present, these studies indicate
bisphenols, especially BPA, as predisposing factors of prostate
cancer via decreased testosterone production. However, further
investigation into the severity of the involvement of bisphenols
as a single chemical and in a mixture with other xenoestrogen in
the development of prostate cancer is required.

ACTION MECHANISMS OF BISPHENOLS

ON LEYDIG CELLS

As bisphenols are estrogenic in nature, estrogen receptors (ERs)
are expressed in Leydig cells and are controlled by estrogen
activities (82). Information regarding the localization of ERs in
Leydig cells has been inconsistent, they were reported absent (83)
and present (84) in the mouse Leydig cell. It was found to be
localized in fetal rat Leydig cells (85), but not in adult rat Leydig
cells (86). Similarly, ERs were not detected in mouse Leydig cells
(6). It was further demonstrated that ERα expression is non-
detectable in human fetal testes (87), suggesting that there is no
involvement of ERα in impact of BPA on human testes. This
result was considered applicable in mice because BPA induced
decrease in testosterone production was maintained following
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ERα withdrawal (48). Meanwhile, studies regarding the presence
or absence of ERβ in human and mouse Leydig cells need to
be confirmed in future research. Low concentrations of BPA
have reportedly elicited effects via GPR30 or estrogen-related
receptor gamma (ERR-γ) (88–90). Both GPR30 and ERR-gamma
were expressed in human and mouse fetal testes (48) and ERR-
γ has a high affinity for BPA (91). Therefore, GPR30 and ERR-γ
represent means by which bisphenols act on testicular cells.

BISPHENOLS, SERTOLI CELLS, AND

MALE REPRODUCTIVE HEALTH

Function of Sertoli Cells in

Spermatogenesis
Spermatogenesis is a successive development of male germ cells
to mature spermatozoa. It involves mitotic and meiotic divisions
of germ cells. Sertoli cells play a key role in every stage of
spermatogenesis, by clinching tightly to developing germ cells
in the seminiferous tubules thereby providing a suitable milieu
necessary for their development. Sertoli cells produce pyruvate
for nourishment of germ cell. Lactate and pyruvate produced
by Sertoli cells are needed by germ cells for energy and survival
(26–29), thereby providing nutrition for their development (92).
About thirty to fifty germ cells at various developmental phases
can be nourished in the seminiferous epithelium by every Sertoli
cell (93). The cumulative number of Sertoli cell is positively
correlated with testicular size and sperm count (94). Tissue
transformation that takes place during spermiation is achieved
through the activities of proteases produced by Sertoli cells (21).
Similarly, plasminogen activator which facilitates the migration
of preleptotene spermatocytes are produced by Sertoli cells (21).
Importantly, Sertoli cells expansive junctional networks and
communication provide structural support for developing germ
cells (20).

Effect of Bisphenols on the Blood-Testis

Barrier and Its Implication on

Spermatogenesis
Several studies have provided strong evidence that BPA
derivatives (BPE and BPS) affect Sertoli cell functions (19, 20, 95).
An experimental study on the effect of BPA on Sertoli cells
at >150µM concentration time and dose dependently reduced
cell viability, while those exposed to 200µM BPA reduced
to approximately two-thirds of the control (96). The study
further revealed that Sertoli cells treated with BPA in vitro at
a concentration of 200µM induced morphological distortions
such as collapse of cytoskeleton, chromatin impairment, and
DNA damage in the cells. Immunocytochemistry studies of the
cells showed the expression of caspase-3, colocalization of active
caspase-3, and fragmentation of actin filaments (96). The authors
concluded that stimulation of apoptotic pathways within the
cells rather than necrosis was responsible for their death (96).
In another study involving Sertoli cells, BPA induced cellular
damage and apoptosis; the BPA-induced damage was attributed
to its ability to block endoplasmic reticulum-Ca2+ homeostasis
(97). BPA was also reported to affect anchoring junction which

TABLE 2 | Effects of bisphenols on Sertoli cells.

Chemical

name

Dosage Species Effects References

BPA 50 mg/kg

(Rats)

Sprague–

Dawley rats

and Wistar

rats (20 day

old);

Disruption of the

blood-testis barrier

integrity

(19)

BPA 200µM

(Sertoli cell)

Sertoli cells

(20-day-old

Sprague-

Dawley

rats)

Perturbation of Sertoli cell

tight junction permeability

barrier

(19)

Activation of ERK1/2 in

the cell

Downregulation of basal

ectoplasmic specialization

and gap junction at the

blood-testis barrier

BPA 150–

200µM

18-day-old

Wistar rats

Sertoli cell

Decreased cell viability (96)

Induction of membrane

blebs, cell rounding,

cytoskeletal collapse,

chromatin condensation,

and DNA fragmentation

Expression of caspase-3

Disorganization of the

actin cytoskeleton

Decreased hormone

(transferrin) secretion

BPA 200µM Mouse Sertoli

TTE3 cells

Induction of cellular

damage and apoptosis

(97)

Induction of endoplasmic

reticulum stress

Endoplasmic reticulum

Ca2+ homeostasis

blockage

BPA 20 and

200 µg/kg

ICR mice (3

months old)

Impairment of ectoplasmic

specialization between the

Sertoli cell and spermatids

(98)

Wistar rat (4

months)

Incomplete, redundant

ectopic specialization

BPA 200µM Rat and

SerW3 Sertoli

cell line

Perturbation of the Sertoli

cell tight junction

permeability barrier

function

(99)

Downregulation of

blood-testis barrier

proteins

Redistribution of

blood-testis

barrier-associated

proteins

Alteration of the

distribution of integral

membrane proteins and

their peripheral adaptors

BPA 45µM SerW3 Sertoli

cells

Alterations of Sertoli cell

functions

(101)

(Continued)
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TABLE 2 | Continued

Chemical

name

Dosage Species Effects References

Metabolic, endocrine

and/or paracrine

dysfunctions

BPA 50 mg/kg ICR mice (6

weeks)

Downregulation of Sertoli

cell-related genes (Msi1h,

Ncoa1, Nid1, Hspb2, and

Gata6)

(102)

BPA 2.4

µg/kg/day

Neonatal

Holtzman rat

Impairment of fertility (105)

Perturbations tight

junctions and decreased

expression of junctional

proteins

BPA 40 and

200µM

Human Sertoli

cell (12, 23,

and 36-year

old)

Truncation and

depolymerization of actin

(106)

Microfilaments

Disorganization of F-actin

Changes in the localization

and distribution of F-actin

regulatory proteins in

Sertoli cell epithelia

Retraction of actin

microfilaments

BPA 4, 40, and

400 mg/kg

Sprague–

Dawley

rat

Downregulation of Sertoli

cell genes

(57)

attached spermatids to Sertoli cells (98). This effect of BPA
characterized the human Sertoli cell only (SCO) testes, in which
the testes were void of blood-testis barrier and constituent
proteins, especially connexin 26, which mediates adhesion or
communication at the site of attachment of Sertoli cells and
spermatogonial are downregulated (99). Several other studies
(19, 20, 42) showed that bisphenols, especially BPA, impair
male reproductive health. BPA reportedly perturbed Sertoli cell
tight junction, downregulated the level of blood-testis barrier
constituent proteins (JAM-A, ZO-1, N-cadherin, connexin 43),
activated ERK1/2, and redistributed cell-cell interface proteins
(19, 20). Although these effects were reported to be non-
significant in adult rats, significant effects were observed in
immature (20-day-old) rats at the same concentration, indicating
a higher susceptibility of immature rats and infants to BPA (19).
Information regarding the effect of bisphenols on Sertoli cells
isolated from adult rats is not available. Therefore, it remains
uncertain whether the effect will be significant if Sertoli cells
isolated from mature rats are exposed to BPA in vitro. When
cultured in vitro, Sertoli cells form a blood-testis barrier and
intercellular junctions that mimic in vivo conditions between 48
and 72 h after culture (100, 101). Using in vitromethods, another
study (101) investigated the mechanism of BPA action on Sertoli
cells and confirmed that BPA interferes with junctional proteins
of the cells, for example; occludin, connexin 43, and E-cadherin.

In addition to in vitro evidence, in vivo studies involving 6-
week-old male mice revealed that BPA downregulated a wide
range of genes connected to Sertoli cell function [Musashi
RNA Binding Protein 1 (Msi1h), Nuclear Receptor Coactivator
1(Ncoa1), nidogen 1 (Nid1), Heat shock protein beta-2 (Hspb2),
and GATA-binding factor 6 (Gata6)] following prenatal exposure
(102). Downregulation of the junctional and functional proteins
of Sertoli cells is potentially capable of disrupting the blood-testis
barrier, thereby impairing spermatogenesis (103). Clinical and
laboratory reports indicate that BPA exerts higher effects on male
reproduction and fertility after prenatal and neonatal exposure
than adults because they are resistant to BPA (19, 104, 105). For
example, oral administration of 0.02–50 mg/kgbw doses of BPA
to adult rats did not alter normal sperm production; meanwhile,
it disrupted the blood-testis barrier integrity when neonatal rats
were treated with 50 mg/kgbw/day of BPA. Similar result was
obtained during in vitro BPA treatment of rat Sertoli cells at 40–
200µM(76).Most effects of bisphenols on testicular cells become
visible after many years of accumulated effects at a cellular level.
A summary of the effect of bisphenols on Sertoli cells is shown in
Table 2.

Bisphenol Effects on Sertoli Cells and

Testicular Homeostasis
During spermatogenesis, few developing germ cells experience
programmed cell death while some exfoliate some cytoplasmic
materials following completion of differentiation procedures
(107). Phagocytosis activities of Sertoli cells rid the testes of
dead germ cells and exfoliated materials from full developed
germ cells. Sertoli cells ensure elimination of noxious materials
originating from dead cells and the removal of autoantigens that
may induce an autoimmune response in the testes. Alteration of
Sertoli cell phagocytosis is responsible for disease development
and testicular dysfunction, consequently, infertility. In addition,
disruption of phagocytic function of Sertoli cells interferes
with spermatogenic cycle (108). Critical cellular functions like
phagocytosis, structural support, and movement are achieved
via actin cytoskeleton. Meanwhile, research findings on the
effects of BPA on the actin cytoskeleton of the Sertoli cells
revealed that BPA induced changes in the organization and
location of F-actin proteins in Sertoli cell epithelia (106). The
distribution of F-actin systemwas dose dependently disorganized
when human Sertoli cells were cultured in the presence of
BPA in vitro (106). The same study found that 0.4µM BPA
caused reduction of Sertoli cells actin microfilament. However,
high doses, ranging from 40 to 200µM, of BPA retracted actin
microfilaments close to the nucleus (106). BPA also caused
disorganization of the actin cytoskeleton in rat Sertoli cells (96).
These changes were attributed to the mislocalization of two
actin regulatory proteins leading to its failure to aid Sertoli
cell blood-testis barrier function (17, 106). In addition, another
recent study revealed that disengagement of spermatozoa from
Sertoli cells at spermiation is controlled by modifications in
arrangement of actin cytoskeletons at the apical ectoplasmic
specialization (109). The disruption and mislocalization of actin
proteins did not only interfere with testicular homeostasis but
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FIGURE 3 | Schematic description of the effects of bisphenols on Sertoli cells and male reproductive health.

lead to untimely release of spermatids into the seminiferous
epithelium and are consequently trapped within seminiferous
epithelium. These studies confirm that through the action of
BPA on actin cytoskeleton, Sertoli cell phagocytic function and
testicular homeostasis are impaired. The description of the effects
of bisphenols on Sertoli cells and male reproductive health is
represented in Figure 3.

The Action of Bisphenols on Sertoli Cells

and the Defense of Testicular Immunity
Developing germ cells within the seminiferous epithelium are
shielded by Sertoli cells being immune privileged cells (110). They
perform this critical role by secreting chemicals that can suppress
stimulation of pro-inflammatory cytokines and growth of B and
T lymphocytes (111). Previous studies show that they synthesize
complement inhibitors (112), and endured exposure to antigen
(113). In addition, they secrete several protective factors that
perform a critical function in immunomodulation and protection
of spermatogonia and spermatids (111, 112, 114). Moreover,
galectin-1, a highly conserved β-galactosidase-binding protein,
capable of inhibiting pro-inflammatory cytokine activation was
also discovered in Sertoli cells (115). Sertoli cells are a primary
target of BPA and its analogs BPE and BPS impair its functions
(19, 20, 95). The impairment of Sertoli cells defensive and
immune functions is highly critical to the testes and male
reproductive health because it predisposes developing germ cells
to external attack. Despite varying dosages and strains of animals
used in investigating the effects of bisphenols on Sertoli cells, all
studies confirm the negative effect of bisphenols on Sertoli cells,
especially during the neonatal window of development.

Action Mechanism of the Effects of

Bisphenol on Sertoli Cells
Bisphenols are endocrine disruptors that elicit their impact via
affinity with estrogen, androgen, or thyroid hormone receptors
(88). These steroid receptors are expressed in Sertoli cells (116,
117). The exposure of fetal rats to BPA reportedly activated Raf1
and p-ERK1/2 in the testes while further evaluation indicated
increased level of Raf1 and ERK1/2 proteins in Sertoli cells
in response to BPA exposure (118). A study also established

that disruption of Sertoli cell tight junction barrier by BPA
was accompanied by upregulation of p-ERK in Sertoli cells
(19). Another study demonstrated that upregulation of pERK1/2
in cultured Sertoli cells with established junctional barrier
declined to lowest level following BPA withdrawal, indicating
the involvement of ERK1/2 in BPA induced disruption of Sertoli
cell tight junction barrier (119). Although PD98059, an inhibitor
of ERK, suppresses the BPA-induced ERK1/2 upregulation in
Sertoli cells (120), whether the same inhibitor can repress other
effects of BPA on rat and human Sertoli cells remains unknown.
Information regarding the mechanism of BPA analogs on Sertoli
cells is lacking. Therefore, studies regarding whether BPA analogs
have the same or different mechanisms of action on Sertoli cells is
necessary. Nonetheless, these findings indicated that BPA elicits
its effects on Sertoli cells via the estrogen-ERK signaling pathway.

Bisphenol Effects on Germ Cells and

Spermatogenesis
Differentiation process by which spermatogonial stem cells
become full developed spermatozoa is called Spermatogenesis
(121) Spermatogonial stem cells experience mitotic and meiotic
cell divisions to become functional spermatozoa (121). The
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quality of germ cells largely determines the fertility of males.
Meanwhile, research findings have shown the negative impacts
of bisphenols on different growth stages of male germ cells (121–
124). BPA concentrations of 10 and 100µM reportedly induced
apoptosis, meiotic abnormalities, and altered stemness properties
of ICR (CD-1) and C57BL/6-TG-EGFP mice spermatogonial
stem cells cultured for 1 week (121). In the same study, BPA
inhibited proliferation and induced alterations in testicular germ
cells. Similar findings were reported in another study wherein
BPA decreased the density and survival rate of rat spermatozoa
(122). Contrary to earlier reports (19) that bisphenols only
elicit effects on neonatal males, it was demonstrated in a more
recent finding that BPA caused DNA damage, reduced sperm
count, and motility in adult rats (123). This study was also
supported by a recent finding that BPA through IFNβ-XAF1-
XIAP signaling pathway caused germ cell apoptosis in adult
mice (125). The incidence of hypomethylation was discovered
in the spermatozoa of neonatal males exposed to 2.4 µg of
BPA/ pup. Another recent study found that BPA, BPE, and BPS
at concentrations of 0.5, 20, and 50 µg/kg/day, respectively,
induced oxidative stress and apoptosis, altered the transition of
germ cell stages (1–VI, VII, and VIII), caused spermatogenic
defects, and decreased sperm motility (126). The study further
used in utero exposure to confirm that lower concentration
of BPE and BPS (between calculated human exposure and no
adverse effect doses of BPA) are sufficient to interrupt germ
cell differentiation in males. By implication, BPE and BPS are
not safe alternatives to BPA in terms of the threat they pose
to male reproductive health. The same authors also reported in
their earlier study that BPA (10 mg/kgbw), BPE (50 µg/kgbw),
and BPS (10 mg/kgbw) caused developmental distortion during
spermatogenesis, disrupted male germ cell differentiation,
induced germ cell apoptosis and DNA breaks in pachytene
spermatocytes in mice (127). BPA, BPB, BPF, and BPS at dosages
of 50 µg/L abated the number of germ cells (spermatocytes and
spermatids), reduced spermmotility, and daily sperm production
(128). This condition represents a critical situation in male
reproductive health. In addition, 2 and 20 µg/kgbw of BPA
induced oxidative stress in epididymal spermatozoa, caused
abnormalities in sperm morphology, and decreased epididymal
sperm counts and motility (129). When mice were administered
50 mg/kg/day of BPA, the seminiferous tubule contained a
lower number of germ cells and undifferentiated germ cells
(130). BPS at a dosage of 50 µg/L induced the generation
of reactive oxygen species (ROS) and the apoptosis in germ
cells (131). Another in vivo study that investigated the effect
of 1, 5, and 100 mg/kg body weight of BPA in rats observed
absence of germ cells within seminiferous tubules. In addition,
the seminiferous epithelia appeared to disintegrate and germ
cells were disengaged from Sertoli cells. There were no germ
cells in the epididymis but filled with cellular debris (132).
In another study that bordered on the impact of BPA on
male germ cells using chickens, the results showed that male
chickens orally administered BPA dosage of 2 mg/kg body weight
every 2 days for 23 weeks had smaller seminiferous tubules
exhibiting constrained spermatogenesis (133). The induction of
ROS, undifferentiated germ cells, and empty epididymal tubules

are indicators of impaired spermatogenesis. These alterations
attributed to BPA and its analogs are not only impairments of
spermatogenesis but also represent threats to male reproductive
health. The effects of bisphenols on germ cells are summarized in
Table 3.

The Effects of Bisphenols on Sperm

Functions
Clinical data consistently revealed an adverse association between
BPA exposure and sperm function. Decreased sperm counts
and motility observed in occupationally exposed men (138) and
infertile patients (139) positively correlated with their urinary
BPA concentration. Additionally, an investigation involving
middle aged men in Denmark showed lower sperm motility in
persons in the upper percentile of urinary BPA concentration
compared to those in lower percentile (140). Animal studies on
impact of prenatal or neonatal exposure to BPA on spermatozoa
showed deleterious aftermath on sperm production in adulthood.
For example, the seminiferous tubule of ICR mice and Holtzman
rats exposed to low concentration of BPA in utero contained
reduced number of elongated spermatids and reduced sperm
counts (134). The time taken for copulation in F1, F2, and F3
generations of the male offspring of rats exposed to 1.2 and
2.4 µg of BPA was significantly higher compared to that of
their control counterparts in respective generation (135). Sperm
motility, viability, mitochondrial functions, and intracellular
ATP levels have been reported to be negatively affected by
BPA through activation of the mitogen-activated protein kinase,
phosphatidylinositol 3-kinase, and protein kinase-A pathways
(136). A study which investigated the effect of BPA on sperm
function revealed that in utero exposure of male vesper mice
to BPA at 40, 80, and 200 µg/kg/day altered sperm membrane
integrity and motility (141). In addition, pubertal exposure of
C57BL/6J male mice to BPA at 50 mg/kg/day concentration
caused deformity in ∼9% of sperm population compared to the
control group (142). The sperm acrosome integrity of postnatal
day 50 male Wistar rats exposed to 5 and 25 mg/kg/day of
BPA decreased by 8 and 16%, respectively (72). Similarly, same
concentrations reduced sperm plasma membrane integrity by
2% (72). Capacitation-associated proteins in spermatozoa relates
to male fertility (143, 144), unfortunately, these proteins are
downregulated by BPA (145). Maternal transfer of BPA during
nursing was reported caused impairment of spermatozoa in male
offspring (146). BPA concentrations of 5 and 50 mg/kg/day
reduced sperm motility and intracellular ATP levels of ICR mice
(147). In another experiment in which the effect of BPA on
sperm function was investigated, BPA concentrations of 50 and
250 µg/kg/day significantly decreased the acrosome reaction
which is an indicator of fertilizing ability of the sperm in mice
(148). These studies aimed at evaluating the impacts of BPA
on male reproductive health and consistently indicated that
exposure to low doses of BPA across all developmental stages
affected sperm production and fertilizing quality. Although
there were differences in exposure windows, period of time,
and species investigated, effects unanimously noticed included
reduced sperm number, stimulation of sperm apoptosis and
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TABLE 3 | Effect of bisphenols on germ cells.

Chemical

name

Dosage Species Effects References

BPA 100µM ICR mice Alteration of motility

characteristics,

acrosome reaction,

fertilization, and early

embryonic development

(71)

Downregulation of

fertility-related proteins

Altered capacitation

status

BPA 10 and

100µM

Germ cell

(ICR mice)

Induction of apoptosis in

cultured spermatogonial

stem cells

(121)

Inhibition of testicular

germ cell proliferation

Alteration of stemness

properties of

spermatogonial stem

cells

Induction of meiotic

abnormalities in

spermatogonial stem

cells

Induction of proteome

alterations in germ cells

BPA 50, 100,

and 200

mg/kg/day

Wistar male

rats (aged 28

days)

Sperm abnormality (122)

Decreased sperm density

and survival rate

BPA 5.0

mg/kgbw

Holtzman rat

(8 weeks)

Increased sperm DNA

damage

(123)

Decreased motility

Decreased sperm count

BPA 2.4

µg/pup

Holtzman rat Induction of

hypomethylation

(124)

BPA 30

mg/kg/day

Kunming

mice (8

weeks)

Induction of apoptosis in

germ cells

(125)

BPA,

BPE, and

BPS

0.5, 20, or

50

µg/kg/day

CD-1 mice

(Post-natal

day 12 and

16)

Disrupted progression of

germ cell development

(126)

Decreased sperm motility

Induction of oxidative

stress and apoptosis of

germ cells

Spermatogenic defect

BPA (10

mg/kgbw)

50 or 10

mg/kgbw

CD-1 mice

(5–6 weeks)

Meiotic errors during

spermatogenesis

(127)

Reduced sperm

production and quality

Disrupted male germ cell

development

BPE (50

µg/kgbw)

Induction of germ cell

apoptosis and DNA

breaks in pachytene

spermatocytes

(Continued)

TABLE 3 | Continued

Chemical

name

Dosage Species Effects References

BPS (10

mg/kgbw

Delayed cycle in germ

cell development

BPA,

BPB,

BPF, and

BPS

50 µg/L Rat (22 day

old)

Reduced sperm motility (128)

Reduced daily sperm

production

Reduced number of

epididymal sperm

BPA 2 and 20

mg/kgbw

Wistar rat Abnormalities in sperm

morphology

(129)

Decreased epididymal

sperm counts and

motility

Induction of oxidative

stress in epididymal

sperm

BPA 50

mg/kg/day)

FXRα
−1−

mice

Reduced number of

germ cells

(130)

BPS 50 µg/L Sprague

Dawley rats

(70–80 days)

Generation of reactive

oxygen species (ROS)

(131)

Induction of apoptosis

Reduced number of

germ cells

BPA 1, 5, and

100

mg/kgbw

Sprague

Dawley rat

(Postnatal day

21)

Undifferentiated germ

cells

(132)

Empty epididymal

tubules

Sloughing of germ cells

Altered germ cell maturity

BPA 2

mg/kgbw

Chicken

(white

leghorn)

Constrained

spermatogenesis

(133)

BPA 5

mg/kg/day

ICR mice (4

weeks)

Lower seminiferous

tubule and mature

spermatids

(134)

Disruption of

spermatogenesis

BPA 1.2 and

2.4

µg/kg/day

Holtzman

mice

(Postnatal day

75)

Increased time taken for

copulation

(135)

Degeneration of the germ

cell

Sertoli cell only syndrome

Sloughing of germ cells

BPA 100µM ICR mice Decreased number of

motile sperm

(136)

Altered spermatozoa

mitochondria activities

BPA 50 mg/kg

bw/day)

ICR mice (8

weeks old)

Alteration of capacitated

spermatozoa function

and the proteomic profile

(137)

Compromised fertilization

capabilities of

Spermatozoa
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oxidative stress (72, 136, 141–148). A description of the effect of
bisphenols on germ cells is shown in Figure 4.

Bisphenols Are Related to

Transgenerational Male Reproductive

Health Disorders
Bisphenols are both genotoxic and epigenotoxic (149). The
transgenerational inheritance of the effects of endocrine
disruptors has been demonstrated in a series of studies (135,
137, 147, 149, 150). A recently published study demonstrated
that paternal exposure to BPA during spermatogenesis markedly
modified sperm genetic materials and F1 embryo (149). Our
previous study indicated that effects of BPA were vertically
transferred to sperm of F1 mice after gestational exposure
(143). In another study (137), gestational exposure to BPA
caused functional and proteomic modifications in F1 capacitated
spermatozoa of adult mice. Epigenetic mechanisms are believed
to be responsible for these transgenerational effects (151).
Epigenetic modification in spermatozoa and other testicular
cells could occur via histone modifications, DNA methylation,
and noncoding RNAs (151, 152). Recently, it was discovered
that the impacts of BPA could be transgenerational and
multigenerational via DNA methylation (141). During DNA
methylation, a methyl group is added to the cytosine base within
a CpG dinucleotide, and methylation is always connected to
transcription subjugation (153). Histone modification involves
changing the chromatin organization by substituting DNA
interaction with other histones, thereby accelerating or reducing
transcription chances (154). Noncoding RNAs, including small
and long, are involved in chromatin function and the modulation
of gene expression through gene silencing or activation (155,
156). Global hypomethylation in human spermatozoa (157)

FIGURE 4 | Schematic description of the effects of bisphenols on germ cell and male fertility.

and zebrafish testes have been reported to be caused by BPA
(157, 158). In the same manner, BPA has been implicated in
hypermethylation of mouse spermatocytes (159). A decrease in
histone acetylation in rat testes was observed following long-term
exposure to a low concentration of BPA (160), while increase in
histone acetylation in zebrafish testes accompanied exposure to
high dose of BPA (161). These reports indicate that bisphenols,
especially BPA, threaten the reproductive health of direct contact
males and successive generations.

Action Mechanisms of Bisphenols on Germ

Cells
BPA and its derivatives exert their effects on different cells
and tissues via varying mechanisms and signaling pathways.
The effect of exposure to BPA is instant and prompt although
observed consequence on gene expression could be delayed
by action of the nuclear hormone receptor (36, 162). The
mechanism involved in the action of bisphenols on varying cell
types is becoming clearer based on recent research findings.
The quality and features of receptors implicated in the onset of
effect signaling sometimes differ from one cell to the other but
are usually associated with those of nuclear hormone receptor-
like protein (36). It is generally known that bisphenols possess
estrogenic and antiandrogens properties competent of interfering
with hypothalamic-pituitary-gonadal axis, especially BPA (11, 32,
52, 163). The structural characteristics of BPA aid its capability to
bind with both estrogen receptor types (ERα and ERβ) (17, 164,
165). Germ cells of all developmental stages of rodents and man
are known to express ERα and ERβ. As a selective ER modulator,
BPA can behave as estrogen agonist or antagonist depending on
cell type (166). The activities of bisphenols via estrogen receptors
is supported by several studies (36, 167, 168). Through binding
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to GPER/GPR30, BPA can produce rapid and impactful effects
in germ cells (90, 169, 170). Moreover, it was recently reported
that IFNβ-XAF1-XIAP pathways mediated BPA induced male
germ cell apoptosis in adult mice (125). The multiple pathways
involved in the effect of bisphenols, especially BPA, on male germ
cells may be why it affects both neonatal and adult rat germ
cells, while significant effects of BPA were mainly observed in the
Sertoli cells of neonatal rats in most studies.

BISPHENOLS EFFECT ON PERITUBULAR

MYOID CELLS

Peritubular myoid cells are smooth muscle cells that surround
the seminiferous tubule in the testis. They are contractile
cells which propel spermatozoa to the caput portion of the
epididymis (171, 172). Earlier finding also indicated that
testosterone-regulated glial cell line-derived neurotrophic factor
(GDNF) expression by peritubular myoid cells contributes to
the maintenance of spermatogonial stem cell (172). They secrete
components of the basement membrane such as fibronectin,
collagens, proteoglycans, and entactin (173). In addition,
communication between the peritubular myoid and the Sertoli
cells is required for the formation of basal lamina during
postnatal development (174).

Meanwhile, it has been reported that gestational exposure of
female ICR mice to 100 nmol/l per day from gestational day 0
to the end of lactation resulted in apoptosis and mitochondrial
vacuolation of peritubular myoid cells of the male pups (175).
In another study, an ultrastructural analysis of the testes of
adult monkeys (marmosets) exposed to 12.5 and 25µg/kgbw/day
showed the presence of vacuoles in mitochondria of peritubular
myoid cells. These reports suggest BPA could interfere with
the sperm transport in exposed males. While the effect of
bisphenols on Leydig, Sertoli, germ, and peritubular myoid cells
are becoming better understood, the impacts on other testicular
cell types such as nerve, blood, and lymphatic endothelial cells
have not been studied. Therefore, investigation into the effects of
bisphenols on these cells is needed, thus providing a roadmap for
future studies.

FUTURE PERSPECTIVES

For decades, the impact of low doses of bisphenols on male
reproduction has been disputed. While some studies have
reported that the administration of bisphenols at low doses
does not impact vital alteration in reproductive qualities, other
revealed varying degree of harm they unleash on male fertility.

In this review, we have shown that bisphenols represent
threats to male reproductive health through their actions
on Leydig, Sertoli, and germ cells. However, bisphenols are
crucial chemicals in household chemical products and plastics
industry and are still being used in the production of consumer
products around the world due to difficulties in developing
economical and safe alternatives (176). It is worthy of note
that some of the evidence reported in animal studies may
not have same effects on humans for reasons such as stage

of development at exposure, cocktail effect, and difference in
metabolic process. Therefore, future research should focus on
the clarification of the extrapolation of human risk assessment
data from rodents due to varying responses to bisphenols among
different strains. Secondly, testes are complex organs housing
distinct cells that respond to bisphenols differently via varying
mechanisms, therefore, holistic studies that simultaneously
evaluate the response of Leydig, Sertoli, and germ cells to
the same dosages of bisphenols and mechanisms involved
are greatly needed. In addition, other testicular cells such
as peritubular cells, macrophages, other immune cells, and
vasculature should be included among priorities in the study
of effect of bisphenols on testicular cells. Fortunately, some
approaches have been suggested toward the suppression of BPA
toxicities. The pharmacological inhibition of ERKI/2 could be
considered a target for mitigating the effects of bisphenols
in testicular cells. In addition, producers in real situation do
not strictly adhere to a prescribed quantity or dosage by
regulatory bodies because they may not provide the desired
quality. While the scientific consensus indicates that at a cellular
level, BPA, and its analogs alter testicular cell development
and functions at low, environmentally relevant doses, future
studies should investigate mitigation to protect human health
and the environment.
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