Metal Hydride-Based Energy Storage and Conversion Materials

31.8K
views
56
authors
9
articles
Cover image for research topic "Metal Hydride-Based Energy Storage and Conversion Materials"
Editors
3
Impact
Loading...

In this paper, we report amorphous-carbon-supported TiB2 nanoparticles having sizes of 2–4 nm (nano-TiB2@C) as highly active catalysts for hydrogen storage in NaAlH4. Nano-TiB2@C was synthesized by a simple calcination at 550°C with Cp2TiCl2 and MgB2 (molar ratio of 1:1) as precursors. The addition of 7 wt% nano-TiB2@C reduced the onset dehydrogenation temperature of NaAlH4 by 100 to 75°C. A practically available hydrogen capacity of 5.04 wt% could be desorbed at 140°C within 60 min, and completely hydrogenated at 100°C within 25 min under a hydrogen pressure of 100 bar. Notably, the hydrogen capacity was almost unchanged after 20 cycles, which shows the stable cyclability, considerably higher than those of structures catalyzed by Ti halides or TiO2. The stable catalytic function was closely related to the in-situ-formed Ti–Al alloy, which considerably facilitated the dissociation and recombination of H–H and Al–H bondings.

3,319 views
15 citations
4,921 views
26 citations
Original Research
19 February 2020

In this work, Magnesium nanoparticles with Pd decoration, ranging from 40 to 70 nm, were successfully coprecipitated from tetrahydrofuran (THF) solution, assigned as the Mg–Pd nanocomposite. The Mg–Pd nanocomposite exhibits superior hydrogen storage properties. For the hydrogenated Mg–Pd nanocomposite at 150°C, the onset dehydrogenation temperature is significantly reduced to 216.8°C, with a lower apparent activation energy for dehydrogenation of 93.8 kJ/mol H2. High-content γ-MgH2 formed during the hydrogenation process, along with PH0.706, contributes to the enhancing of desorption kinetics. The Mg–Pd nanocomposite can take up 3.0 wt% hydrogen in 2 h at a temperature as low as 50°C. During lower hydrogenation temperatures, Pd can dissociate hydrogen and create a hydrogen diffusion pathway for the Mg nanoparticles, leading to the decrease of the hydrogenation apparent activation energy (44.3 kJ/mol H2). In addition, the Mg–Pd alloy formed during the hydrogenation/dehydrogenation process can play an active role in the reversible metal hydride transformation, destabilizing the MgH2.

4,457 views
28 citations
2,531 views
22 citations
XRD patterns of the desolvation products of AlH3·nEt2O heated at 60°C for various durations.
Original Research
15 January 2020
Wet Chemical Synthesis of Non-solvated Rod-Like α'-AlH3 as a Hydrogen Storage Material
Haizhen Liu
11 more and 
Jin Guo

Aluminum hydride (AlH3) is a promising candidate for hydrogen storage due to its high hydrogen density of 10 wt%. Several polymorphs of AlH3 (e.g., α, β, and γ) have been successfully synthesized by wet chemical reaction of LiAlH4 and AlCl3 in ether solution followed by desolvation. However, the synthesis process of α'-AlH3 from wet chemicals still remains unclear. In the present work, α'-AlH3 was synthesized first by the formation of the etherate AlH3 through a reaction of LiAlH4 and AlCl3 in ether solution. Then, the etherate AlH3 was heated at 60°C under an ether gas atmosphere and in the presence of excess LiAlH4 to remove the ether ligand. Finally, α'-AlH3 was obtained by ether washing to remove the excess LiAlH4. It is suggested that the desolvation of the etherate AlH3 under an ether gas atmosphere is essential for the formation of α'-AlH3 from the etherate AlH3. The as-synthesized α'-AlH3 takes the form of rod-like particles and can release 7.7 wt% hydrogen in the temperature range 120–200°C.

2,917 views
19 citations
Open for submission
Frontiers Logo

Frontiers in Medicine

Improving the Gut Microbiome: Applications of Fecal Transplantation in Disease - Volume II
Edited by Angel Lanas, Ana Isabel Alvarez- Mercado
Deadline
31 May 2025
Submit a paper
Recommended Research Topics
Frontiers Logo

Frontiers in Medicine

Improving the Gut Microbiome: Applications of Fecal Transplantation in Disease - Volume II
Edited by Angel Lanas, Ana Isabel Alvarez- Mercado
Deadline
31 May 2025
Submit a paper