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Scale-free outbursts of activity are commonly observed in physical, geological, and

biological systems. The idea of self-organized criticality (SOC), introduced back in 1987

by Bak, Tang, and Wiesenfeld suggests that, under certain circumstances, natural

systems can seemingly self-tune to a critical state with its concomitant power-laws and

scaling. Theoretical progress allowed for a rationalization of how SOCworks by relating its

critical properties to those of a standard non-equilibrium second-order phase transition

that separates an active state in which dynamical activity reverberates indefinitely, from

an absorbing or quiescent state where activity eventually ceases. The basic mechanism

underlying SOC is the alternation of a slow driving process and fast dynamics with

dissipation, which generates a feedback loop that tunes the system to the critical point of

an absorbing-active continuous phase transition. Here, we briefly review these ideas as

well as a recent closely-related concept: self-organized bistability (SOB). In SOB, the

very same type of feedback operates in a system characterized by a discontinuous

phase transition, which has no critical point but instead presents bistability between

active and quiescent states. SOB also leads to scale-invariant avalanches of activity

but, in this case, with a different type of scaling and coexisting with anomalously large

outbursts. Moreover, SOB explains experiments with real sandpiles more closely than

SOC. We review similarities and differences between SOC and SOB by presenting and

analyzing them under a common theoretical framework, covering recent results as well

as possible future developments. We also discuss other related concepts for “imperfect”

self-organization such as “self-organized quasi-criticality” and “self-organized collective

oscillations,” of relevance in e.g., neuroscience, with the aim of providing an overview of

feedback mechanisms for self-organization to the edge of a phase transition.
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1. INTRODUCTION

The seminal work of Bak, Tang, and Wiesenfeld in which the
idea of “self-organized criticality” was first introduced [1], which
has been cited thousands of times in the scientific literature
and beyond, opened a whole research field and triggered a huge
avalanche of scientific excitement in Statistical physics. Fractals
[2] can be considered as precursors of these ideas, and scale-
free complex networks [3] successors in the timeline of waves of
scientific interest.

Bak and collaborators developed the groundbreaking idea that
scaling behavior is observed in Nature owing to self-organization
mechanisms that tune systems to the vicinity of critical points
[4]. Thus, self-organized criticality (SOC) helped shed light
onto why scale-invariant phenomena (both in space and time)
are so commonly observed in natural systems, in spite of the
fact that criticality, i.e., second-order phase transitions, with
their associated power-laws and scaling, occur only at singular
(critical) points of parameter spaces [1, 4, 5] (for pedagogical
reviews and detailed accounts of SOC, we refer to [6–12]).

The most succesful and archetypical examples of SOC are
sandpile toy models [1, 13–17]1. In sandpiles, “grains” —which
represent in an abstract way some token of “stress” or “energy”
[19]—are slowly added into a system (usually a lattice or another
type of network), and locally redistributed on a fast way whenever
an instability threshold is overcome. This redistribution triggers
avalanches of topplings, eventually dissipating some of these
grains at the system’s open boundaries. Upon iteration, these
dynamics result in the self-organization of the system to a critical
stationary state that exhibits power-law avalanche distributions
and obeys finite-size scaling [4, 6–9, 11, 20–23].

The observation of scale invariance and other features
characteristic of criticality without the need for parameter fine
tuning prompted an enormous interest in these simple models.
As a word of caution, let us remark that it was also soon
realized that sandpile models bear little resemblance with the
physics of actual sandpiles as experimentally analyzed in the
laboratory. In actual sandpiles, ingredients such as inertia,
gravity, and stickiness (typically absent in standard SOC models)
play important roles, and scale invariance is not easily observed
[8, 9, 11]. Empirical evidence of SOC is more easily found
in ricepiles or in superconductors [see [8] for an account on
experimental realizations as well as for other general aspects of
SOC]. Let us just highlight that compelling evidence of SOC has
been recently found in an ultracold atomic gas [24, 25]. This
discovery illustrates that, more than 30 years after its birth, SOC
is still a powerful, relevant and pervading concept.

On the theoretical side, a key ingredient of the mechanism
for self-organization in sandpiles is the fact that driving and
dynamics operate at two broadly separated timescales (i.e., slow-
fast dynamics) [4, 6, 7, 22]. An infinite separation of timescales
is usually achieved by driving the system only when all activity

1Alternative models and mechanisms such as for example, the celebrated Bak-
Sneppenmodel for punctuated evolution relying on “extremal dynamics” [18] were
also proposed to achieve scaling in a self-organized way, but we will not discuss
them here.

has stopped, but not during avalanches (“infinitely slow” or
“offline” driving); if this is not the case, a finite characteristic
(time/size) scale appears [22, 26, 27]. Similarly, conservative
dynamics in the bulk of the system are also key to SOC,
because bulk dissipation leads necessarily to the emergence
of characteristic spatio-temporal scales, thus preventing the
possibility of scale-invariance [22, 28–32]. We refer to [22] for a
more in depth theoretical discussion on the emergence of generic
scale invariance, conservation laws, and SOC.

A large variety of sandpile models, with diverse microscopic
rules, were investigated after the original proposal of Bak and
colleagues (see a compilation of prototypical SOC models in [33]
and [6–8]). The main additional ingredient was the introduction
of stochasticity in the redistribution rules, replacing the fully
deterministic updating rules of the original sandpile [13]. Given
the diversity of models, a compelling question emerged as to
whether there is universality in SOC (i.e., models/systems that
share the same scaling features) [34, 35]. From the computational
viewpoint it soon became clear that, in spite of preliminary
evidence, the original (deterministic) sandpile model of Bak,
Tang, and Wiesenfeld (BTW) does not obey clean scaling
behavior but rather some type of multiscaling or anomalous
scaling [36–39]. This anomaly stems from the breaking of
ergodicity [16], and the existence of many conservation laws
associated with the deterministic nature of its updating rules2. On
the other hand, sandpiles with some level of stochasticity (such as
the Manna model [13] or the Oslo ricepile model [14]) exhibit
standard and universal scaling behavior, even though large-scale
simulations and careful computational analyses were required to
reach such a conclusion (see e.g., [33, 40–43]).

Because criticality and universality are hallmarks of second-
order phase transitions, diverse attempts were made to map
the behavior emerging in SOC systems to that of standard
(continuous or second-order) phase transitions. In particular:

• A first proposal mapped sandpiles to the pinning-depinning
transition of interfaces moving in random media [44–48]. In
this approach, the height of the interface at a given location
corresponds to the number of times that such a site has toppled
in the sandpile. This successful mapping has profound physical
implications, as pinning-depinning transitions are also related
to the dynamics of magnetic domain walls in random media,
the Barkhausen effect, and 1/f noise, which had long been
studied and are known to display scale invariance [49–51].

• A second proposal, on which we focus here, connected
SOC with reaction-diffusion systems exhibiting absorbing-
active phase transitions [9, 33, 52–56]. The mapping was
proposed on general symmetry and conservation principles,
and afterward refined in an exact formal way [57].

These two apparently disparate approaches were found to be
fully equivalent to each other, first using heuristic and numeric
arguments [58–60] and then with more rigorous analyses [61].

2Let us remark that there exist very powerful theoretical tools for deterministic
(Abelian) sandpiles [20, 21], a theoretical endeavor complementary to the type of
analyses for stochastic sandpiles discussed here.
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In order to scrutinize how SOC behavior is related to standard
phase transitions, the notion of “fixed-energy sandpiles” (FESs)
was introduced, an idea similar in spirit to an early suggestion by
Tang and Bak [19, 62]. The key idea was to “regularize” sandpiles
by switching off both slow driving and boundary dissipation,
with the total number of sandgrains in the system thus becoming
fixed, i.e., a conserved quantity, suitable to be considered a
control parameter [9, 52–54, 63]. Thus, the state of a FES is
described by two quantities: the total number of sandgrains in
the system (control parameter) and the total number of sites
that are above the threshold of instability (order parameter). The
latter is based on the fact that, in a sandpile, sandgrains can
be either “active” if they happen to be above threshold (ready
to topple and be redistributed), or “inactive” otherwise. Inactive
grains can, however, contribute to future activations. Using a
more general and abstract language, “energy” hereon refers to
the mean accumulated stress (e.g., total number of sandgrains
per site on the sandpile) while “activity” describes the number
of sandgrains above the instability threshold.

Not surprisingly, FESs exhibit two distinct phases depending
on the value of their energy E: either they are in an “active”
phase with ceaseless redistribution of activity for sufficiently large
values of E, or they are in an absorbing or quiescent phase in
which all activity ceases and the dynamics are frozen [64–66] (see
Figure 1, left panel). Thus, there exists a continuous absorbing-
to-active phase transition at a critical energy value Ec. Let us note
that the existence of such a phase transition in FESs has only
recently been demonstrated mathematically [67, 68].

This observation allowed for a rationalization of SOC as a
dynamical feedback mechanism that tunes the system to the
edge of an absorbing-to-active phase transition through (slow)
driving and (fast) bulk dynamics, occurring at infinitely separated
timescales with boundary dissipation [9, 33, 53, 54, 69–71]. In
other words, the steady state reached spontaneously by the SOC
dynamics is characterized by an average steady-state energy ESOC

such that ESOC = Ec. As a consequence, the scaling features of
SOC systems can be inferred from those of their corresponding
fixed-energy counterparts using the powerful set of theoretical
tools available for standard non-equilibrium phase transition.

Non-equilibrium phase transitions into absorbing states have
long been studied, and it is well-established that most of them
share the same type of universal behavior, belonging to the so-
called “directed percolation” (DP) universality class [64–66, 72].
As in some DP systems, in FESs there is not one but many
absorbing states. Any configuration with vanishing activity and
arbitrary values of the energy is absorbing [73]. However, in FESs
there is an additional conservation law that might be relevant for
universality issues (see below).

To help clarify this and other issues, here we use the
formalism of Langevin equations to review classic and state-
of-the-art theoretical aspects of SOC. This formalism follows
the philosophy of the extremely successful approach of Landau
and Ginzburg to equilibrium phase transitions and critical
points [74–76], as well as its extension to dynamical problems
(as reviewed by [77]). For each case, we will present the
simplest (Langevin) equation, including the main symmetries,
conservation laws, and stochastic effects present in the system,

and neglecting irrelevant terms [74–76]. This approach places
the focus on universal scaling features, leaving aside unimportant
microscopic details. Thus, such Langevin equations constitute
an ideal starting point for further theoretical analyses (such as
renormalization group calculations and other field theoretical
approaches) and even for numerical studies. After presenting and
discussing the theory of SOC, we move on to discussing related
theories of self-organization to the edge of a phase transition.
We next describe the theory for the self-organization to the edge
of a discontinuous phase transition with bistability, and finally
we discuss theories for “imperfect self-organization” either to a
continuous or to a discontinuous transition. The latter can be
of more relevance than the original self-organization theories to
describe real-world situations.

2. THEORY OF SELF-ORGANIZED
CRITICALITY (SOC)

Let us start by discussing the simplest possible SOC system
[78]. For a macroscopic (mean-field) description of a sandpile,
two relevant variables are needed: the overall energy E (which
represents the total density of sandgrains in sandpiles and is
conserved in the bulk), and the overall activity ρ (i.e., the density
of sites which are above threshold). To analyze the possible
connection between sandpiles and standard non-equilibrium
phase transitions at a mean-field level, let us consider the simplest
possible equation describing a continuous absorbing-active phase
transition for the overall density ρ:

ρ̇(t) = aρ(t)− bρ2(t) (1)

where a and b > 0 are constants, and the fine-tuning of a controls
the behavior of the system. This equation exhibits an absorbing
phase with vanishing activity (ρ = 0) below the critical point,
i.e., for a < ac = 0, and an active phase with steady-state density
ρ = a/b 6= 0 for a > ac = 0.

To establish the connection with SOC, let us start by linking
the equation above with FESs. To that end, it is required an
additional conserved energy (or energy density) E such that it
fosters the creation of activity (i.e., increases a in Equation 1).
Thus, in first approximation we can write:

ρ̇(t) = (a+ ωE)ρ(t)− bρ2(t) (2)

where ω > 0 is simply a proportionality constant. Observe that,
since E is a conserved quantity (i.e. Ė = 0), it can be used as a
control parameter keeping a fixed. In particular, the critical point
lies now at Ec = −a/ω. Equation (2) constitutes the mean-field
description of fixed energy sandpiles: a dynamical equation for
the overall activity, ρ(t), whose steady state is determined by the
control parameter, the energy density E in the system.

On the other hand, in the SOC version of sandpiles E becomes
a dynamical variable E(t), which increases by external driving
(at an arbitrarily small rate h) and decreases owing to activity-
dependent dissipation (at a rate ǫρ). This can be summarized by
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the equation:

Ė(t) = h− ǫρ(t). (3)

In the double limit h, ǫ → 0+ (infinitely separated timescales),
or if h/ǫ → 0 (energy conservation), the steady-state solution of
the system represented by Equations (2) and (3) is ρ = h/ǫ →
0+ and ESOC = (bh/ǫ − a)/ω → Ec (see Figure 1, left). In
other words, the system self-organizes to the critical point of a
standard absorbing-active phase transition, i.e., the critical state
is a dynamical attractor of the system [19].

Observe that the key to the SOC mechanism lies on the
feedback created by the dynamics of the control parameter E
(see Figure 1). Its dynamics strongly depend on the system
state/phase: if activity vanishes, ρ = 0 and Ė = h, leading to an
increase in E that shifts the system toward its supercritical phase.
If, on the other hand, ρ > 0, since ǫ ≫ h, then Ė ≈ −ǫρ and E
decreases, pushing the system toward the subcritical phase. This
feedback loop necessarily drives the system to the vicinity of the
critical point, and exactly to the critical point if the separation of
timescales is infinite, as shown above. In more general terms: the
existence of a control mechanism that acts differentially on each
phase—i.e., at each side of the phase transition—creates a feedback
loop that self-organizes the system to the very edge of the transition
[9, 26, 33] (see [79] for a discussion of this general idea in the
context of control theory).

In order to go beyond this simple mean-field description,
we need to extend the theory to make it spatially explicit
and stochastic, i.e., shift from mean-field theory to stochastic
field theory [75, 76]. The simplest possible equation describing
absorbing phase transitions is the so-called Reggeon field theory
(or DP theory), which can be written as the following Langevin
equation [66, 80, 81]:

∂tρ(Ex, t) = aρ(Ex, t)− bρ2(Ex, t)+ D∇2ρ(Ex, t)+ σ
√

ρ(Ex, t)η(Ex, t)
(4)

where ρ(Ex, t) is the activity field, a and b > 0 are constants, andD
and σ are the diffusion and noise constants, respectively. η(Ex, t)
is a zero-mean Gaussian noise with 〈η(Ex, t)η( Ex′, t)〉 = δ(Ex −
Ex′)δ(t − t′) which, together with the prefactor

√

ρ(Ex, t), accounts
for demographic fluctuations in particle numbers. Importantly,
the noise term vanishes in the absorbing state ρ(Ex, t) = 0.

In analogy with the mean-field approach, we now use the
equation above to represent FESs, for which we need to add
another equation for the (conserved) energy coupled linearly
with the activity [9, 53, 54]:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)

(5)
where E(Ex, t) is the energy field. Some dependencies on (Ex, t) have
been omitted for the sake of simplicity. Note that the equation
for the energy is diffusive, describing the redistribution of energy
among neighboring locations with no loss in the presence of
activity. Thus, the system-averaged energy per site (i.e., the spatial
integral of the energy field divided by the system volume) E is
constant in FESs and can be taken as a control parameter. As in

the case of the mean-field theory, Equation (5) exhibit a phase
transition at a particular value of the average energy density: for
E > Ec there are continuous ongoing redistributions of activity
and energy, while for E < Ec the system eventually falls into the
absorbing state ρ(Ex, t) = 0 (see e.g., [82]). The set of equations
for FESs, Equation (5), was proposed on phenomenological
grounds [53, 54] (see also [83]) and later derived from a discrete
reaction-diffusion model with many absorbing states and a local
conservation law [56]. Only recently has it been derived in a
rigorous way from the microscopic rules of a stochastic (fixed-
energy) sandpile [57].

Equation (5) can be integrated “a la SOC,” e.g., by adding
at the initial time and after each avalanche a discrete amount
of energy and activity (“infinitely slow” or “offline” driving),
and considering open boundary conditions (i.e., allowing for
boundary dissipation). The resulting self-organized system
converges to the critical point of Equation (5). Alternatively, a
continuous version can be achieved by including in Equation (5)
an explicit (“online”) driving and a dissipation term:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t),
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Ex, t).

(6)
Note that the small driving h(Ex, t) could also be added to the
activity in order to avoid the absorbing state (in which the
dynamics stop). Otherwise, a small seed of activity needs to be
added to slightly perturb the system every time the absorbing
state is reached. Note that this “online” methods are slightly
different from the “offline” driving since the average energy field
changes during avalanches and not only between them.

As in the mean-field theory, this system of equations
converges to Equation (5) in the limit h/ǫ → 0 (Figure 2, upper-
left panel). Although the equivalence of Equation (5) at criticality
and its SOC counterpart Equation (6) is very challenging to prove
analytically, it has been consistently demonstrated by means of
extensive computational analyses [33]. Such numerical analyses
are possible owing to an exact algorithm to integrate this type of
Langevin equations with multiplicative (square-root) noise [82]3.
Figures 2–4 (upper-left panels) show results from the numerical
integration of these equations. In particular, Figure 3 (upper-left)
shows the probability distribution to find the system in a state
with average energy density E in the SOC version of the dynamics.
This distribution becomes progressively more peaked around Ec
as the system is enlarged (since dissipation and driving become
arbitrarily small as the system size is increased), converging to a
Dirac delta function at E = Ec in the infinite-system-size limit.

Some aspects of this mapping have generated long-lasting
controversies in the past:

• The first one regards the conclusion of the above theory
that the value to which the self-organization mechanism
leads the system, ESOC, coincides with the critical point of
the standard phase transition in the FES model, Ec. This

3Details of the algorithm, a description of an improvement over the original
formulation [84], and a code for its implementation can be found in Github:
https://github.com/pvillamartin/Dornic_et_al_integration_class.
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FIGURE 1 | Mean-field (MF) pictures of SOC and SOB. Sketch of the nullclines associated with the two dynamical mean-field equations defining self-organized

criticality [SOC, (Left)] and self-organized bistability [SOB, (Right)]. In both cases, the nullcline for the second (feedback) equation is plotted for three different values

of the ratio h/ǫ. (Left) In the case of SOC, nullclines intersect at a stable fixed point, which becomes closer and closer to the critical point as the limit of infinite

separation of timescales h/ǫ → 0 is approached (see gray arrow). (Right) In the case of SOB, for sufficiently low values of h/ǫ the intersection between nullclines

occurs on the so-called spinodal line (dashed dark line). Points located in the spinodal line are unstable, and the system presents a stable, fixed-amplitude limit cycle

sketched by the cyan trajectory.

FIGURE 2 | Sketch of the different types of self-organization mechanisms discussed here. The four panels illustrate, respectively, the mechanisms for self-organization

to a continuous phase transition with criticality (left panels) and to a discontinuous transition (right panels), for both the “perfect” conserved case (top panels) and the

“approximated” or “imperfect” non-conserved case (bottom panels). In all cases the steady-state average activity is plotted as a function of the control parameter (the

average “energy” or “stress”). The SOC and SOB mechanisms change dynamically the control parameter to a precise value (either Ec or EM, respectively), meaning

that the system becomes perfectly self-organized to the edge of a phase transition (either a continuous one for SOC or discontinuous one for SOB) in the

thermodynamic limit. On the other hand, their corresponding “imperfect” or non-conserved counterparts—that we call “self-organized quasi-criticality” (SOqC) and

“self-organized collective oscillations” (SOCO)—give rise to broad distributions of possible energy values, even in the thermodynamic limit, typically around the edge of

the transition point (shown as an area enclosed by dashed lines). The thin arrows in the upper panels illustrate the fact that dissipation and driving rates are very small

(h → 0, ǫ → 0 with h/ǫ → 0), while the thick ones indicate that such a strict limit is not taken, but still (h≪ ǫ).

was questioned by using a possible counterexample [85]. In
particular, for the original BTW deterministic sandpile model
in some particular types of lattices is was shown that ESOCc 6=

Ec (for example, for a square lattice ESOC = 2.1252... [85] but
the analytical prediction is Ec = 2.125 [86], i.e., there is a
deviation in the fourth decimal digit). This result, criticized
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FIGURE 3 | Distribution of average energy density E at the stationary state in the different types of self-organization mechanisms for finite system sizes. In the case of

SOC and SOB (upper panels), the (unimodal) distribution of energy values becomes progressively more peaked at the transition point as the system size is enlarged,

converging as N → ∞ to perfect self-organization to the transition point (either a critical point Ec for SOC, or the Maxwell point EM for SOB). In the absence of a

conservation law, i.e., in the presence of non-vanishing dissipation term (bottom panels), the distribution remains broad even in the N → ∞ limit, reflecting the

presence of excursions of E to both sides of the transition: both in SOqC and in SOCO, the system continuously shifts between the active and absorbing regimes,

even in the limit of infinitely-large system sizes. In the case of SOqC, the distribution is broad and bimodal. In the case of SOCO, the broad distribution results from the

presence of ongoing oscillations from one phase to the other. In all cases, we simulated the corresponding Langevin equations as described in the text [e.g., Equation

(5) with updating rules (11) for SOC, etc.]. For the conserved cases, ǫ = 0, while for non-conserved ones we employed the “offline” charge rules described by

Equation (11). See Table A1 for a list of all parameter values.

in [87, 88], stems from the previously-mentioned lack of
ergodicity of deterministic sandpiles, and it does not apply
to standard stochastic (ergodic) sandpiles, where the equality
ESOCc = Ec has been consistently verified numerically to
hold (see e.g., [33]).

• The second one concerns the universality class of stochastic
SOC models. The numerical values of the exponents are close
to those of DP, which led some researchers to claim that
SOC models (and FES theory) are in the directed percolation
class [89–91]. However, the following observations support
the existence of a universality class per se, the so-called C-DP
(conserved directed percolation) orManna class (see e.g., [82]):

1. In Equation (5) there is an additional equation with respect
to the DP theory that includes a conservation law. The latter
constitutes a relevant perturbation in the renormalization
group sense at the DP fixed point [54].

2. There is a mapping from SOC to interfaces moving in
random media, whose universality is different from DP
(as known from numerical as well as from analytical
renormalization group approaches; see [58–61] and
references therein).

3. Numerical estimates of critical exponent values for this
class with one- and two-dimensional systems are distinct
from those of DP [33, 35, 41, 43, 56, 92]. Recent large-
scale numerical analyses (of the one-dimensional Oslo
sandpile [14]) closed the debate even on more firm bases
by confirming the discrepancy with the DP scaling and
conjecturing rational values for some of the exponents
[42]. As a side note, let us highlight that obtaining critical
exponents numerically in SOC is challenging because
there is a very slow decay from initial conditions in the
background or energy field, which makes observing true
asymptotic behavior necessitate large system sizes and long
computer simulations [91]. Indeed, in the stationary state
of SOC and FES, as first pointed out in [91] (see also [93–
95]) the energy field is “hyper-uniform” (i.e., the standard
deviation of field values in a region of size N decays
faster than

√
N [42, 96]). Given the critical slow decay of

correlations, a convenient strategy to observe numerically
clean exponents consists in preparing initial conditions
that preserve hyperuniformity (or naturally obtained from
the system’s dynamics) [42]. Another powerful strategy to
discriminate between DP and C-DP consists in perturbing
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FIGURE 4 | Avalanche size distributions for the four different types of self-organization mechanisms in two dimensional lattices. For the cases of SOC and SOB (upper

panels) the distribution can be fitted by a power law in an exact way in the thermodynamic limit, while it is truncated—in a scale-invariant way—in finite systems. For

SOC, the distributions show scaling that belongs to the C-DP or Manna class. In the case of SOB, power-laws are also obtained, and show mean-field exponents

(including logarithmic corrections to scaling as the upper critical dimension is 2, see main text); also, note the bump at the end of the distribution, due to “king” events,

effect that can be made more apparent by increasing the value of b in the Langevin equation (i.e., making the jump at the discontinuity of the phase transition more

abrupt). For the cases of imperfect self-organization (i.e., non-conserved) either SOqC or SOCO (lower panels), the distributions can be fitted by power-laws only in an

approximate way. This is a consequence of the fact that, in these cases, the control parameter does not settle to a precise (critical) value but keeps hovering around

the edge of the transition even in the thermodynamic limit. Parameter values are as in Table A1, except for SOB, for which b was reduced to b = −0.7 to avoid

excessively large “king” events.

the system introducing walls or anisotropy, because systems
in the DP class and in the C-DP class respond very
differently to these perturbations [43]. Finally, not only
critical exponents but also some correlators have been
shown to be different in DP and C-DP with remarkable
numerical accuracy [35, 60].

Another important point is the lingering (and frustrating) lack of
a working renormalization group approach to study analytically
the large-scale behavior of the C-DP field theory (Equation 5).
Thorough attempts to renormalize the theory have been made in
the literature (see e.g., [54, 97–99]), but a sound solution to this
problem has yet to be found.

Notwithstanding, as already mentioned the C-DP universality
class can be exactly mapped into the pinning-depinning
transition of linear interfaces moving in a random media [61],
also called the quenched-Edwards-Wilkinson class [100]. This
mapping enables an additional route to understanding the
scaling features of SOC systems, providing us with an excellent
workbench to check for consistency in computational results.
Moreover, given that a working (functional) renormalization
group solution exists for the interfaces in random media
[100–103], this connection could be used as an inspiration

for theoreticians to tackle the renormalization problem of
Equation (5).

In summary, there exists a full stochastic theory of SOC
that explains how a mechanism relying on slow driving and
dissipation—operating at infinitely separated timescales—is able
to self-organize a system to the edge of a non-equilibrium
continuous phase transition. At the critical point of this
absorbing state transition, marginal propagation of activity in
the form of scale-free outbursts occurs. From a more technical
point of view, such a critical point is in the C-DP or Manna
class, equivalent to the quenched-Edwards-Wilkinson class, and
different from DP. Some theories, however, suggest that noise
could be optimized to help the system reach the self-organized
steady state even in the absence of perfect timescale separation, a
phenomenon called “Steady State Stochastic Resonance” [104].

3. THEORY OF SELF-ORGANIZED
BISTABILITY (SOB)

SOC describes the self-organization of a system to the edge of a
continuous (or second-order) phase transition. Thus, one could
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wonder whether there exists a similar mechanism for the self-
organization of a system to the edge of a discontinuous (or
first order) phase transition, with a region of bistability between
active and absorbing phases. This idea, recently scrutinized, has
led to the concept of “self-organized bistability (SOB)” [105]
(see also [106]).

Let us start, once again, by considering the minimal form
of a discontinuous absorbing-to-active transition in the simplest
possible mean-field terms:

ρ̇(t) = aρ − bρ2 − ρ3 (7)

where now b < 0 and c > 0. Indeed, as illustrated in Figure 1

(right panel), the stationary solution of Equation (7) exhibits a
regime of bistability between an absorbing and an active state.
Coupling this dynamical equation to one for an energy field as
in SOC, Ė = h − ǫρ, introduces a feedback loop that leads the
system to exhibit a limit cycle (the loop in Figure 1). Indeed,
the nullcline of this second equation is ρ = h/ǫ which, for
small h/ǫ, intersects the other nullcline at an unstable point, thus
leading to the creation of a limit cycle [105, 107]. Therefore,
a mechanism identical to that of SOC is able to self-organize
a mean-field system that exhibits a discontinuous transition to
generating periodic bursts of activity.

In order to go beyond this mean-field picture, a simple
modification of the theory above leads to the following set of
Langevin equations describing self-organization to the edge of a
discontinuous transition in spatially extended systems [105]:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 − cρ3 + D∇2ρ

+ σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)

(8)

where all the terms are as in Equation (5) except the coefficient of
the quadratic term, negative here (i.e., b < 0), and the additional
cubic term (with coefficient c > 0), which needs to be added to
preserve stability.

Numerical integration of Equation (8) can be performed
using the same integration scheme as with SOC. The system
can be initialized with either low or high homogeneous values
of the density, ρ, which enables the system to reach different
homogeneous steady states (provided that |b| is larger than a
certain (tricritical) value4), thus confirming explicitly that the
fixed-energy equations above exhibit a full region of bistability
with hysteresis on two-dimensional lattices [105]. In addition,
within the bistable region there exists a Maxwell point (E = EM
at which both phases are equally stable) that defines the edge
of phase coexistence. The latter is computationally verified by
considering as initial condition half a system in the active state
and the other half in the absorbing state; right at E = EM , the flat
interface separating these two halves does not move on average
(i.e., none of the two phases is more stable than the other).

4Let us remark that, for relatively small (in absolute value) b, the transition
becomes continuous even if the mean-field approximation predicts a
discontinuous one. As discussed in [108], fluctuation effects typically soften
the discontinuity, shrink bistability regions, and can even alter the order of the
phase transition, leading to noise-induced criticality.

The mechanism enabling self-organization to the edge of
bistability (SOB) is constructed, as in SOC, by adding slow
(“offline”) driving and boundary dissipation to the previous
equations. In particular, the system is set into an absorbing state
and is locally perturbed to trigger avalanches of activity, which
are eventually dissipated at the system boundaries. By iterating
this process, the system self-organizes to values of E close to
EM (converging exactly to EM in the thermodynamic limit).
Alternatively, again as in the SOC case, we can obtain a similar
behavior by considering “online” driving and dissipation, i.e., by
replacing the second equation in (8) with:

∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Ex, t) (9)

in the limit h/ǫ → 0 (see Figure 2, upper-right panel).
Remarkably, avalanches of broadly different scales with

signatures of scale invariance also emerge in SOB, in spite of the
lack of a critical point [105]. However, the avalanche size and
duration probability distributions are different from their SOC
counterparts in two important ways:

• The probability distributions for both avalanche size and
duration are bimodal: small avalanches coexist with extremely
large ones that span the whole system. These latter
“anomalous” outbursts of activity, which are also called
“king” (or “dragon king”) avalanches in the literature [105,
109], occur in an almost periodic way. They represent
waves of activity that propagate almost deterministically (i.e.,
ballistically) starting from a localized seed, and span through
most of the system until they are dissipated at the open
boundaries, leaving the system depleted of “energy.” Let us also
emphasize that such system-wide episodes are reminiscent of
what happens in the mean-field counterpart, in which activity
cyclically “waxes and wanes” the system.

• Smaller standard avalanches have sizes and durations
distributed as power laws with exponents τ = 3/2 (size, see
Figure 4 upper-right panel) and α = 2 (duration). These
values coincide with those of the mean-field branching
process, which is also equivalent to compact directed
percolation and the voter model [64–66, 72, 110]. This type of
scaling emerges because the system becomes self-organized to
the Maxwell point EM (see Figure 3, upper-right panel), where
the two phases are equally stable (or “neutral” [111, 112]). In
this way, clusters of active sites in a non-active environment
are equally likely to expand or shrink through fluctuations;
this marginality is tantamount to criticality and generates scale
invariance. In this sense, the system behaves as an effective
voter model (or compact directed percolation) with two
symmetric states in which none of them is favored. Indeed,
the voter model exhibits a critical point for the propagation
of activity with the mean-field behavior mentioned above. In
two dimensions, upper critical dimension for these systems,
logarithmic corrections to scaling appear [66, 113].

As discussed in detail in [105], the larger the value of |b|—
which defines the jump or discontinuity at the phase transition—
the stronger the weight and frequency of anomalous avalanches.
Thus, for relatively small jumps, clean scaling can be observed
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for many decades (as in Figure 4, upper-right panel), while for
large values of |b| the statistics are more prominently dominated
by large anomalous avalanches. In the latter case, larger system
sizes are needed to observe clearly the power-law scaling of
standard avalanches.

For the sake of completeness, let us mention that it is also
possible to construct sandpile models with SOB phenomenology
[105]. The key difference with respect to standard SOC
sandpiles is the presence of a “facilitation” mechanism such
that activity (i.e., sites above threshold) amplifies in a non-
linear way the creation of additional activity. This type of
facilitation mechanism is well-known to be at the origin of
discontinuous transitions, leading to bistability (see e.g., [108]).
The phenomenology of sandpiles with facilitation coincides
remarkably well with what we just described for SOB; in
particular, they exhibit scale-free avalanches with mean-field
exponents together with king avalanches [105]. Moreover,
in experimental results for real-life sandpiles [114] small
avalanches coexist with much larger ones, the global energy
experiences large excursions, and the empirically determined
avalanche distributions are remarkably similar to those of
SOB. Furthermore, it seems that inertia in the dynamics of
real sandgrains plays a role similar to facilitation. All these
observations together suggest that SOB is potentially a more
adequate theory to describe real sandpiles than SOC. Similarly,
SOB could also be at the origin of the “self-organized avalanche
oscillator” found in microfracture experiments [115]. Finally,
in the context of neurodynamics, models of neuronal activity
regulated by the level of synaptic resources—very similar in
essence to SOB—can reproduce scale-free avalanches coexisting
with anomalous large waves of activity in agreement with
empirical observations [116] (see next sections for more details
on neural dynamics).

4. THEORIES FOR IMPERFECT
SELF-ORGANIZATION

The theories of SOC and SOB rely heavily onto conservative
(bulk) dynamics as well as onto infinite separation of timescales
between driving and (boundary) dissipation. These ingredients,
as we have extensively discussed, are essential to achieving a
precise and exact self-organization to either a critical point (SOC)
or to the point of phase coexistence (SOB). On the other hand,
there is a large variety of natural phenomena that exhibit scale
invariance (at least approximately) and in which some form of
(bulk) dissipation is inevitably present and/or timescales are not
perfectly separated. As an illustrative example, let us discuss
the case of neuronal dynamics in the cerebral cortex. Seminal
experiments revealed that the dynamics of actual neural networks
are bursty, and that critical-like scale-free avalanches of activity
can be measured experimentally under generic experimental
conditions [117]. It has been argued that such a critical-like
state induces important functional advantages for information
processing and transmission in the cortex [118–125] (for a recent
review, see [126]). This caught the attention of physicists, who
readily tried to describe neural networks in terms of SOC [127–
131]. However, neurons are “leaky,” as there is no conserved

quantity in their dynamics (for instance, the membrane voltage
decays spontaneously to some baseline level in the absence of
inputs). Moreover, timescales in the brain are not infinitely
fast/slow. Therefore, the scaling behavior of cortical networks
observed empirically cannot be exactly ascribed neither to SOC
[132] nor SOB [107]. In order to understand this type of scaling,
a more general theory that does not rely on infinite separation of
timescales and conservation laws is needed.

Alternative mechanisms for alleged self-organization to
criticality in the absence of conservation have long been studied
[22]. Indeed, some of the archetype models of self-organized
criticality (other than sandpiles) are non-conserved. Prominent
examples are earthquakemodels [133, 134] and forest-firemodels
[135–137]. These are non-trivial models with a rich and complex
phenomenology showing power-laws and scaling for at least
some decades. However, the lack of theoretical arguments as
solid as the ones discussed above for conserving systems led to a
long-standing controversy regarding the existence of true generic
scale-invariance in these non-conserving systems. It is not our
scope here to review this controversy, but let us just to summarize
the main conclusion: none of the studied self-organizing non-
conserved models is truly critical but, instead, they exhibit some
sort of “approximate” or “relaxed” criticality [see e.g., [138–144],
as well as [33] for further discussions and references].

In what follows, we use our unified theoretical framework
to briefly introduce and discuss versions of SOC and SOB,
respectively, in which the strict conditions of conservation and
infinite separation of timescales are relaxed.

4.1. Theory of Self-Organized Quasi
Criticality (SOqC)
To provide non-conserved systems alleged to be SOC with a
general theoretical background, some of us proposed a modified
version of the SOC theory, Equation (5), that includes explicitly a
non-vanishing energy-dissipation term:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t),

(10)
that is, Equation (6) with h = 0, and where now ǫ > 0 is not
necessarily small and does not vanish in the large-system-size
limit. This equation can be complemented with the following
“offline” updating rule, inspired in the charging mechanism in
models of forest fires and earthquakes [33]: every time the system
reaches the absorbing state, a small “seed” of activity is placed at
a randomly chosen site, and the energy of all sites is increased:

ρ(Ex0, 0) → h

E(Ex, 0) → E(Ex, 0)+ γ (Emax − E) (11)

where γ is an external driving, Emax the maximum allowed
energy in the system, E the system average energy density, and Ex0
a random position in the lattice. Note that this “offline” updating
rule has been used for the ǫ 6= 0 cases in Figures 3, 4. These
modifications with respect to the SOC case lead to the following
results [33]:
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• First, the leakage (i.e., dissipative) term prevents the existence
of a true self-sustained active phase. This can be easily seen
by integrating formally the second equation and plugging the
result into the first one, thus generating a non-Markovian term
−ǫρ(Ex, t)

∫ t
0 dt

′ρ(Ex, t′), which is characteristic of dynamical
percolation [73, 145–147]. This makes it impossible to have a
steady state with ρ(Ex) 6= 0 in the long-time limit. Moreover,
Equation (11) exhibit a transition at some value of the initial
energy, Ep > Ec, that separates a spreading phase (in which
local perturbations of activity can propagate by percolating
transiently through the systemwithout reaching a steady state)
from a non-spreading phase where perturbations cannot span
the whole system.

• As a consequence of the previous argument, scaling features in
this type of models are related to dynamical percolation when
using “offline” driving, rather than to C-DP [33]. In other
words, bulk dissipation (i.e., breaking the bulk-conservation
law) is a relevant perturbation in the renormalization group
sense [146]. See Appendix for further details.

• An analytical and computational study of Equation (10)
revealed that, in this case, increasing E through the addition
of energy like in sandpiles shifts progressively the systems into
the dynamical-percolating phase beyond its critical point Ep
[33]. If an avalanche occurs, the associated strong dissipation
depletes the system of energy, thus pushing it deep into the
non-percolating phase. Therefore, the system does not self-
organize exactly to the edge of a phase transition as in the
conserved cases above but, instead, it keeps hovering around
it, with excursions of finite amplitude to both sides of the
(dynamical percolation) transition point, Ep (see Figures 2, 3,
lower-left panels). In other words, the average energy does not
self-tune to a critical value but keeps on alternating between
subcritical and supercritical values, even for infinitely large
systems. Numerical results reveal that this sweeping though
the phase transition point might suffice to induce approximate
or “dirty” scaling behavior, but not strict “bona fide” scale
invariance [33, 148, 149].

This mechanism, accounting generically for non-conservative
self-organized systems, has been termed “self-organized quasi-
criticality” (SOqC) [33]5. Several remarks are in order:

• In systems in which driving does not occur “offline” (i.e.,
at an arbitrarily slow timescale, where both the activity and
the energy are perturbed only between avalanches) one needs
to include explicitly a continuous “online” driving term in
Equation (10), so that the second equation becomes ∂tE(Ex, t) =
∇2ρ(Ex, t) − ǫρ(Ex, t) + h, where h is the (arbitrarily large)
charging or driving rate; alternatively:

∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Emax − E) (12)

if there is a maximum possible level of charging given by
Emax. These alternative charging mechanisms may change the

5The concept on “weak criticality,” proposed more recently, bears strong
resemblance to SOqC [149]; see also the slightly different definition of quasi-critical
employed in [150].

previously described phenomenology. The “online” driving
parameters can be fine-tuned to effectively compensate for
dissipation, and a steady state with ρ 6= 0 can be achieved.
In this case the system phenomenology is controlled by
the C-DP transition even if the system does not become
truly critical (it just hovers around the critical point, Ec);
energy is conserved on average, and an approximated or
“dirty” C-DP-like behavior emerges. However, dynamical
percolation dominates for sufficiently large systems if “offline”
charge is used because, during avalanches, energy can only
be dissipated, i.e. bulk conservation is not present during
the dynamics. The system will always deplete the available
energy until falling again into the absorbing state, when
the system is charged to restart the dynamics (see Figure 4,
lower-left panel).

• It is important to underline that, in spite of its name
reminiscent of SOC, SOqC does not describe true “self-
organization” to a unique dynamical state. The ratio
between dissipation and driving constants h/ǫ (and also
Emax) determines the system state, thus acting as a true
control parameter. If dissipation dominates strongly, the
system is subcritical (a case sometimes called “self-organized
subcriticality”). If driving is strong, then the system becomes
supercritical (“self-organized supercriticality”) [33, 132].
Finally, for a broad range of intermediate situations, the
system hovers around a critical point (“self-organized
quasi criticality”). Thus, unlike the SOC case, the choice of
parameters (and not only system size) can determine the
“cleanliness” of the observed scaling behavior.

For more detailed explanations of all this phenomenology we
refer to [33, 132] and, for applications in neuroscience, to
[151–161].

4.2. Theory of Self-Organized Collective
Oscillations (SOCO)
To close the loop, we now discuss self-organization in the case
of non-conservative systems exhibiting a discontinuous phase
transition (see Figures 2–4, lower-right panels).

A theory for this case can be written combining the activity
equation in Equation (8) with a second equation analogous to
Equation (12) for the non-conserved energy (“online” driving
and dissipation). Alternatively, the “online” driving component
can be replaced by the (“offline”) rule in Equation (11) to “charge”
between avalanches. However, in order to make the presentation
more appealing, we will instead discuss the recently introduced
Landau-Ginzburg theory for cortical dynamics in the presence
of synaptic resources [162], which fits perfectly our purposes
here. The theory is defined by the following set of equations
(considered on e.g., a two-dimensional lattice [162]):

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 − cρ3

+D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫEρ + h(Emax − E)

(13)

with b < 0 and c > 0. In the context of neural dynamics, ρ(Ex, t)
represents the density of neuronal activity in a coarse-grained
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region of the cortex, while the energy field represents the level
of synaptic resources at a given location (with Emax its maximum
level at any given location). These equations are similar to those
for SOB (Equation 8), but note the presence of a dissipative term
in the second equation (similar to, but different from, that in
the SOqC theory, Equation 10), as well as a driving term (as in
Equation 12) that “charges” the energy field. The diffusion term
in the second equation could be safely removed as it is irrelevant
in this case [107], and was actually absent/omitted in the original
neural-dynamic model [162].

As commented for SOqC, because the dynamics are not
conserved, the system is not really “self-organized” to a unique
type of behavior [162]. Indeed, the free parameter Emax becomes
a control parameter, regulating the system output:

• If Emax is exceedingly small, the system “self-organizes” into an
absorbing configuration with no activity.

• If Emax is sufficiently large, the system “self-organizes” into
a homogeneous active state where individual sites alternate
between the active and the inactive state; the latter occurs in
an incoherent or “asynchronous” way, thus keeping an overall
fixed stationary density of activity.

• In the more interesting case between the two regimes above,
there is an intermediate phase in which quasi-oscillatory
dynamics emerge. This regime is described by waves of activity
traveling through the system, generating co-activation ofmany
units within a relatively small time window [we refer to [162]
for more details and videos of these rich dynamics]. These
events bear strong resemblance with the system-spanning
avalanches—or anomalous waves—described in SOB.

By fine-tuning Emax, it is possible to find a critical point that
separates the phase of global oscillations (“synchronous phase”)
from the active phase in which units do not oscillate in unison
(“asynchronous phase”). In other words, these systems exhibit a
synchronization phase transition [162].

Finally, let us remark that, in the limit in which the driving
and dissipation parameters ǫ and h converge to 0 (keeping
the usual separation of timescales), the system approaches true
self-organization. Not surprisingly, in this limit one recovers
all the phenomenology of SOB, including scale-free avalanches
coexisting with anomalously large waves of activity [107].

SUMMARY AND DISCUSSION

More than three decades after the creation of the concept
of self-organized criticality, SOC continues to attract interest
of theoretical and applied scientists. The original prototypical
models such as sandpiles rely on a rather general type of
feedback mechanism that, acting differentially at both sides
of the phase transition, allows for the self-organization to the
edge of the transition. As profusely discussed here, such a
feedback mechanism depends crucially on a large separation
of timescales between a slow driving and the intrinsic fast
dynamics, conserved in the bulk. Note that the feedback
mechanism is “just” a way to reach the neighborhood of a
phase transition, but it is the intrinsic dynamics that determines

the universality class that the system belongs to. Thus, there
is no “self-organized universality class,” but instead phase
transitions that belong to specific universality classes (BTW,
C-DP...) and that may be reached through the described self-
organization mechanism.

Although other mechanisms for self-organization to criticality
that do not depend on such a type of feedback were originally
proposed (e.g., extremal dynamics [18]), in this mini-review
paper we have focused instead on this feedback mechanism to
provide the reader with a concise and systematic overview of field
theoretical or, equivalently, Langevin approaches to SOC. This
formalism—in the spirit of Landau-Ginzburg and Hohenberg-
Halperin—constitutes, in our opinion, an excellent framework
to underline the generality of the discussed phenomenology,
stressing the key aspects and neglecting as much as possible
specific model-dependent details.

Thus, we reviewed the Langevin approach to SOC and
described how and why the system self-organizes to the edge
of a standard (non-equilibrium) continuous phase transition
separating an active from an absorbing phase. In the limit
of an infinite separation of timescales and conservative bulk
dynamics, the systems self-organizes perfectly to the phase
transition, i.e., to criticality. On the other hand, when some
of these stringent conditions are relaxed (i.e., if the separation
of timescales is not perfect and/or the system is not perfectly
conservative), then there is instead approximate or “imperfect”
self-organization to the vicinity of the transition point, with the
system’s control parameter hovering around it and excursions
into both the subcritical and the supercritical phases (SOqC).
Forest-fire and earthquake models—as well as models of neural
dynamics—can much better be ascribed to SOqC than to actual
SOC. It is, however, important to underline that tuning the
parameters associated with driving and dissipation is required
for the system to self-organize either to the subcritical or the
supercritical regimes. Thus, SOqC systems do not really self-
organize to the vicinity of a transition in a strict sense, but
rather there are broad ranges of parameter values for which
the system hovers around criticality and exhibits approximate
scale invariance.

We also reviewed the recently proposed concept of SOB,
explaining how a feedback mechanism similar to that of SOC
may operate to self-organize a system to the edge of a first-
order, discontinuous, phase transition. As for SOC, in the
limit of infinite separation of timescales and conservative bulk
dynamics, the self-organization to the transition is exact. Unlike
for SOC, however, small avalanches coexist with anomalously
large ones. Furthermore, avalanches belong to the voter model
universality class, which results from the existence of bistability
(i.e., two equivalent states as in the voter model class) at the
self-organized Maxwell point. We also defined an “imperfect”
self-organization mechanism for a family of systems exhibiting
a discontinuous phase transition. As in SOqC, there is not “true”
self-organization. Instead, the non-conserved equivalent of SOB
shows a broad range of parameter values for which the system
exhibits collective oscillations, alternating between regimes of
high activity and quiescent ones (hence the name “self-organized
collective oscillations,” SOCO).
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All the mechanisms discussed above lead to the self-
organization to the vicinity of a non-equilibrium absorbing-
active phase transition. Nevertheless, similar mechanisms have
also been described in other contexts, such as self-organization
to the edge of a synchronization phase transition in the context
of models of neuronal dynamics [163–165]. This mechanism
is similar in spirit to those above, operating differentially in
the two alternative phases; in particular, the synaptic strengths
(which play the role of “energy variable”) tend to be reinforced
when the system is in the asynchronous phase and weakened
when it is exceedingly synchronous (which is achieved by a
synaptic plasticity mechanism such as “spike-time dependent
plasticity” [166]), thus, leading the system to the edge of a
synchronization phase transition in a self-organized way. The
concept of “imperfect self-organization” can also potentially
shed some light on other biological systems where controversy
remains as to whether they show critical behavior, such as the
emergence of marginal orientational order in flocks of birds
and insect swarms [126, 167–170], as well as on other ordering
transitions emerging in the lively research field on active matter
[171]. In fact, the concepts discussed here can be re-interpreted in
terms of homeostatic mechanisms allowing systems (e.g., brain),
organisms, or collectives to self-regulate to an operational regime
that is close to optimal.

It is indeed in the realm of living systems, where self-
organization and optimization are habitual, where we
foreshadow SOC will find some of its most exciting future
challenges. Although during the last decades the idea of SOC has
been widely and successfully used to conceptualize the dynamical
behavior of natural systems, there exist many biological systems
that appear to display critical properties [126] and, therefore, are
susceptible to being studied from the SOC viewpoint. The theory
of SOC, along with its current generalizations, are a powerful
tool to conceptually understand these and other phenomena. For
example, as already discussed here, SOC, SOqC, as well as SOB,
have been argued to play a relevant role in neuronal dynamics
(see e.g., the review paper by Kinouchi et al. in this same special
issue and [132, 172]); a Langevin approach as the one presented
here could potentially help develop a renormalization-group
approach to describe the scale-invariant behavior of brain
activity [107, 162]. In addition, evolutionary processes can
be seen as the driving force that allows biological systems to

self-organize to an optimal critical-like point [18]. Concepts
such as “self-evolved criticality” [173, 174] could thus be used to
explain the evolutionary pathway of specific organisms and/or
the emergence of specific traits, or adaptive responses to short-
or long-term perturbations. The latter would provide important
insight on the resilience of key biological systems, as it could
help assess whether the self-organizing mechanisms present in
a focal system are robust enough for it to cope with the rapid
environmental changes occurring in the anthropocene.

In summary, we have reviewed within a common and
unified framework different types of mechanisms for the self-
organization to the the vicinity of phase transitions. We
hope that this work help clarify the—sometimes confusing
or contradictory—literature on the subject, and contribute to
pave the road for new and exciting developments in physics,
but also other disciplines. This could be especially important
in biology, where the idea that living systems can obtain
important functional advantages by operating at the edge of two
alternative/complementary types of phases/states has attracted a
great deal of attention and excitement [126, 170].
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APPENDICES

TABLE WITH PARAMETER VALUES

TABLE A1 | Parameters used in the numerical simulations for Figures 1, 2.

Parameter SOC SOqC SOB SOCO

a −1.00 −1.00 −1.00 −1.00

b 1.00 1.00 −1.50 −1.50

c − − 1.50 1.50

ω 1.00 1.00 1.00 1.00

h 1.00 0.10 1.00 1.00

γ 0.00 0.10 0.00 0.02

ǫ 0.00 0.10 0.00 0.10

Emax − 1.50 − 1.30

D 1.00 1.00 1.00 1.00

DE 1.00 0.10 1.00 1.00

σ 1.00 1.00 1.00 1.00

Dashes indicate that the corresponding parameter is not present in the model.

C-DP APPROXIMATE SCALING IN SOqC

Although the case of the SOqC has been argued to be belong,
in general, to the dynamical percolation universality class, it is
possible to select parameter values such that avalanches present
a scaling controlled, at least transiently (i.e. for small sizes and
durations) by C-DP (see Figure A1, and [33] for more details).
For instance, in the case of “offline” driving, if the driving is not
strong enough as to bringing the system above the critical point
for spreading, the averaged energy E hovers around the C-DP
critical point Ec, as shown in [33]. Actually, there is a value of the
charge rate, γs, that allows the system to enter into the spreading
phase leading to dynamical-percolation type of scaling. Similarly,
“online” driving can effectively compensate for dissipation so that
an steady state can be reached: as discussed in the main text,
this state can be either sub-critical, supercritical, or near critical,
depending on the relative strengths of driving and dissipation.
In the near-critical case the critical-like features are expected to
be controlled by the C-DP point due to the dynamic “online”
addition of energy, which perturbs the dynamical-percolation
(dissipative) behavior.

FIGURE A1 | Simulations of the SOqC theory may exhibit scaling similar to that of C-DP. (Left) The probability distribution of the average energy is peaked around Ec,

but it is much more sprread that the SOC case, owing to oscillations around the critical point. (Right) Distributions of avalanche sizes in this case. The C-DP exponent

is shown for comparison. Although a change in trend can be seen around s ∼ 104, larger sizes are required in order to clearly see the exponent corresponding

asymptotic scaling (controlled by dynamical percolation, as discussed in the main text). Parameter values are: a = 0.423, b = ω = 1, D = DE = 0.25, σ =
√
2,

γ = 0.1, h = 1.0, ǫ = 0.1, Emax = 1.1, L = 256.
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Amongst the numerous models introduced with SOC, the Forest Fire Model (FFM) is

particularly attractive for its close relationship to stochastic spreading, which is central to

the study of systems as diverse as epidemics, rumors, or indeed, fires. However, since

its introduction, the nature of the model’s scale invariance has been controversial, and

the lack of scaling observed in many studies diminished its theoretical attractiveness.

In this study, we analyse the behavior of the tree density, the average cluster size and

the largest cluster and show that the model could be of high practical relevance for the

activation dynamics seen in brain and rain studies. From this perspective, its peculiar

scaling properties should be regarded as an asset rather than a limitation.

Keywords: forest fire model, critical density, residence times, largest cluster, scale invariance, cluster size

distribution, average cluster size, data collapse

1. INTRODUCTION

Soon after the seminal paper introducing Self-Organised Criticality (SOC) [1], it was suggested that
examples of SOC could include models describing the spread of activation in a manner reminiscent
of forest fires or infectious diseases. The degree to which these models were examples of scale
invariance and criticality instantly became a subject of intense debate, see, e.g., [2, 3]. Despite the
controversy and indications that the Drossel-Schwabl Forest Fire Model [2] lacks scale invariance
[4, 5], the dynamics of the model is of a type that seems of direct relevance to many real systems
such as the brain [6] and precipitation [7]. So if for no other reason, it is still worthwhile to
develop a better understanding of the behavior generated by this kind of stochastic spreading and
relaxation dynamics and to develop ways to probe the dynamics which can be applied to data from
real systems.

SOC focuses on criticality in the sense of equilibrium statistical mechanics, and for this reason,
one typically looks for scale invariance and dynamics that can tune sharply to a critical point.
Conversely, broad crossover behavior is not seen as properly belonging to the SOC paradigm.
However, the relevance of a theoretical scientific framework is, in the end, determined by how
useful it is for the description and analysis of real systems. Seen from this perspective, it is of
importance to bear in mind that exact fine-tuning to a completely scale-invariant state is not
always observed in systems that exhibit SOC-like behavior. This is demonstrated, e.g., by the
studies of the size distribution of rain showers [7], and the bursts of brain activity measured
during fMRI scans [6]. Indeed, neither study finds sharp critical behavior but, despite the
systems being of totally different microscopic nature, both identify similar indications of critical
behavior in terms of approximate power laws and even features reminiscent of peaked, or perhaps
diverging, fluctuations or susceptibilities. Moreover, both studies find that the dynamics pulls
the systems into a crossover region of large fluctuations within which one most frequently
finds configurations to reside. In other words, in both cases, the distribution of residence times,

21
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i.e., the amount of time spent at a certain value of the control
parameter, is found to exhibit a broad peak centered about what
appears to be a critical-like value of the control parameter. From
our experience with equilibrium critical phenomena, one would
expect a broad peak for small system sizes only, and that the width
of the peak will shrink with increasing system size. Therefore, for
systems as big as the atmosphere or with as many components as
the brain, broad peaks would not be expected.

The experimental observations in [6, 7] suggest that the
dynamics couples the control parameter to the fluctuations in
a way that makes the system move around in a critical region,
rather than tuning to a critical point. This is similar to suggestions
previously put forward, such as [8, 9]. Intuitively, one may
imagine something like the following in the case of precipitation:
nucleation of drops can happen at a particular value of the vapor
content. The vapor in the atmosphere over the ocean gradually
builds up toward that value, and sometimes overshooting may
even occur before nucleation is seeded. When precipitation
events occur, a significant amount of vapor is removed from the
atmosphere, and one observes oscillations between subcritical
and supercritical regions. For some reason, the coupling between
the driving (vapor formation) and the response (precipitation)
produces such large fluctuations that a precise tuning to the
critical value of the control parameter is excluded. A parallel
situation may take place in the brain as neurones have to go
through a refractory period before they are able to fire again
after discharge.

A link between the behavior observed in brain activity and
rainfalls [6, 7] and the Forest Fire Model was already suggested
in [10]. Inspired by these studies, we analyse in detail the
residence time distribution (which corresponds to the tree
density distribution in the FFM) and its relationship to the order
parameters used in standard percolation [11] and the brain study
[6], namely the average cluster size and the normalized size of
the largest cluster. We find that there is indeed a critical-like
region where the fluctuations peak up and where the system
seems to spend most of the time, exactly like in the brain and rain
observations. Furthermore, analyzing the distribution of the non-
normalized largest cluster, we find that it displays scale invariance
for our reachable system sizes and that its first moment seemingly
grows superlinearly with the activity θ , in a way that reminds
the superlinear growth of the instantaneous correlation length
observed in [12].

2. MODEL DESCRIPTION

As reported in [3], the original forest fire model proposed in
[13] was revised in [2] and became known in the literature as
the Drossel-Schwabl Forest Fire Model (DS-FFM), despite the
resulting model coinciding with the one introduced a few years
before in [14] as Self-organised percolation. In the following, we
will analyse the model proposed in [2, 14] and refer to it simply
as forest fire model (FFM). The FFM consists of a dissipative
dynamic that involves the occupation of empty sites (planting
of trees) and the removing of clusters of trees (burning of a

forest). In the following, we will restrict our simulations to a two-
dimensional square grid with periodic boundary conditions and
side length L. Our implementation follows [4, 10, 12, 15–17], and
is summarized by the following pseudocode [10]. An efficient
implementation of the FFM can be found at [18].

Algorithm 1: Forest Fire Model

while True do
for i = 1:θ do

select randomly a site s
if s is empty then

s becomes occupied
end if

end for

select randomly a site s
if s is occupied then

collect statistics
burn the cluster connected to s

end if

end while

Clusters are computed considering 4 neighbors for each site
(2 horizontal and 2 vertical). In order to avoid finite-size effects,
θ has to be tuned, taking into account the system size L2. In
our simulations, we keep fixed the ratio k = θ

L2
as in [12]. The

great majority of the simulations are done at k = 10−3, but
we also present results for smaller values of k in Figures 3, 10.
Since the model is known for taking a long time to thermalize,
we performed 5 · 106 burning steps for thermalization and 106

to collect the statistics as in [4]. The only exception is for the
heatmaps in Figures 7, 8, where 107 datapoints were used to
produce the statistics.

3. RESULTS

3.1. The Distribution of Densities
To compute the distribution of the densities P(ρ), we assign one
spatially averaged density ρ to each generated configuration and
sample the distribution over the ensemble. In this way, we obtain
an object that is equivalent to the distribution of residence times
in [6, 7]. In the early studies of the FFM, the average density of
trees 〈ρ〉 was assumed to behave as

〈ρ〉 = ρ∞ − aθ−b (1)

Where ρ∞ is the supposedly asymptotic density of trees and a
and b are two constants. The value of the power was estimated
as b = 0.47 in [19, 20] and b = 0.5 in [15]. However, it was
noted in [5] that for θ & 104 the average density starts to deviate
dramatically from the estimates made at lower values, ending
up to be more than 100 standard deviations higher than the
expected value for θ ∼ 105, and seemingly growing as a pure
power law for θ & 104. Assuming that the power law behavior
holds asymptotically in θ , it was estimated in [5] that the tree
density would reach the percolation density (ρp ≃ 0.5927 . . .)
for θ ∼ 1040.
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FIGURE 1 | Distribution of densities P(ρ) computed at different values of θ and

fixed L = 1, 000. The x-axis has been rescaled by θ0.02 to align the peaks.

To avoid finite-size effects, in [5] the values of θ and L were
chosen as follows: for every value of θ , several simulations were
carried out at different system sizes, and it was verified that the
distribution of the rms radius, cluster sizes, and burning time
were independent of L. The distribution of densities, on the other
hand, depends strongly on the system size. For a fixed value of
θ , increasing the system size would make the variance of the
distribution decrease as L−2 in the absence of finite size effects [4].
Conversely, fixing L and increasing θ would lead to an increase in
the standard deviation and 〈ρ〉, as can be seen in Figure 1. In the
following, we will focus our attention on the behavior of P(ρ) for
increasing system sizes and fixed values of k.

In Figures 2, 3 we plot the distribution of densities rescaling
the x-axis by θν , and tune ν to align the peaks of the distributions
computed at different values of θ . Interestingly, in both cases
the curves seem to collapse on the same shape for quite a
wide range of θ , suggesting that the distribution has reached a
stationary state and that increasing θ would imply only a shift
of 〈ρ〉. However, increasing θ even further clearly shows that
the asymptotic behavior suggested by the data collapse is only
transient, as the curves start to deviate considerably from the
shape observed at lower values of θ , as can be seen in Figure 4.
Rescaling ρ by θ0.005 one can align the position of the peaks in
Figure 4 for θ & 104, but it is clear that, in order to perform a
data collapse, the y-axis must be rescaled as well, as the height of
the peaks decreases with θ .

For a fixed θ , we found that P(ρ) is well fitted by a Gaussian
distribution. In Figure 5, we plot the mean and standard
deviations of P(ρ) for k = 10−3 and find that the average density
seemingly increases as a power-law for θ & 104, in agreement
with the numerics presented in [5]. Although the mean µ(θ)
seems to enter an asymptotic regime after θ & 104, it is less

FIGURE 2 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−3. Although rescaling the x-axis by θ0.018 seems to make it possible to

perform a data collapse for θ ∈ [250, 1000], this does not hold for larger values

of θ .

FIGURE 3 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−4. Although rescaling the x-axis by θ0.008 seems to make it possible to

perform a data collapse for θ ∈ [2000, 3025], this does not hold for larger

values of θ .

convincing whether the standard deviation σ (θ) has reached its
asymptotic form.

If we assume a Gaussian behavior for P(ρ) and that the mean
and the standard deviation behave as

µ = aθνµ and σ = bθνσ . (2)
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FIGURE 4 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−3. The x-axis has been rescaled by θ0.005 to align the position of the

peaks at large values of θ .

FIGURE 5 | Log-log plot of the mean and standard deviation of P(ρ) as a

function of θ .

then plotting P(ρ)σ (θ) vs. ρ−µ
σ

should produce a standard
normal distribution for systems at θ & 104. To estimate the
asymptotic behavior, we used the last six data points for µ(θ) and
the last three data points for σ (θ) in Figure 5, finding

a = 0.388± 0.001 and νµ = 0.0049± 0.0003

and

b = 0.007± 0.004 and νσ = 0.099± 0.047

using 95% confidence bounds.

FIGURE 6 | Data collapse for the distribution of densities P(ρ) and k = 10−3

obtained by inputting the estimated values of µ and σ into a Gaussian

distribution. The x-axis and the y-axis have been rescaled in order to make all

the curves collapse on a standard normal distribution.

Using these estimates, we find that a data collapse seems to
hold well for very large values of θ , as can be seen in Figure 6.
However, such extrapolations have to be taken with great care,
firstly because of the small data available for the fit and the not so
convincing behavior of σ (θ), and secondly because the average
density can never exceed 1, meaning that the apparent power-law
growth has to stop at some point.

Since νσ > νµ, the fluctuations grow at a faster rate than the
average, as one would expect for a system close to criticality. From

the ratio σ (θ)
µ(θ) ∼ 0.018 · θ0.094, one can obtain a crude estimate

for when the fluctuations would become of the same order of
magnitude as the average. This would happen at θ ∼ 1018 and
〈ρ〉 ≃ 0.478. However, this argument can hardly hold, as it would
imply that within two standard deviations, we would have values
of the densities that exceed ρ = 1, which is, of course, impossible.
Therefore, we can conclude that for k = 10−3 and within the
Gaussian approximation, we can expect the standard deviation
to be smaller than the average, despite growing at a faster rate.

As a reference, we computed a rough estimate of the value
θ∗ that would correspond to an average density equal to the
percolation threshold µ(θ∗) = ρp. This gives θ∗ ∼ 1037, which
is consistent with the estimate made in [5] once the confidence
bounds on a and νµ are taken into account for both datasets.
However, there is no reason why the asymptotic density of the
FFM should be the same as the critical percolation density, as
even for very large systems the clusters would still be correlated
and therefore intrinsically different from a percolation process.

Like previous studies of the FFM, we are unable to settle
the true asymptotic scaling behavior of the model, which is
still unreachable with today’s computers. However, we showed
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that effectively, the distribution of densities remains Gaussian
for very large system sizes and significant ranges of θ . In the
next section, we will study the relationship between P(ρ) and
the order parameters used in percolation and in [6], and show
that P(ρ) defines a wide region where one can observe critical-
like behavior.

3.2. The Most Frequently Visited Region
Even though the studies of precipitation [7] and brain activity
[6] related their findings to critical behavior, both observed a
remarkable broad onset of the order parameter, which is certainly
not the behavior seen as one approaches the critical point of a
second-order phase transition of an infinite system. The absence
of a sharp onset of the order parameter is remarkable because,
for system sizes like the earth atmosphere or the human brain,
one would not expect any significant finite-size effect if the
usual phenomenology of equilibrium phase transitions were
any guidance.

While the activation dynamics characteristic of precipitation
and brain phenomena are not at all similar to thermal
equilibrium dynamics, both systems are at least at a schematic
qualitative level similar to the dissipative dynamics of the FFM,
with its cycles of loading and discharging. Here we want to
investigate further the relationship between the distribution of
residence times and the order parameter suggested in [10] and
to determine to what extent the FFM exhibits an onset region
similar to those observed in rain and brain. If that is the case,
we may perhaps take this as indicative of a kind of "universality"
different from the stringent universality definition we know from
equilibrium systems and more of a pragmatic nature. Needless
to say, could such a universality be established, it may be a
great help in attempts to classify the behavior of activation
dynamics in complex systems. Furthermore, it could be taken as
indicative of a level of emergent behavior that is independent of
the microscopic details, since rain and brain clearly do operate on
totally different substrates.

We are of course just repeating the original hope of SOC
research and suggesting that systems of entirely different nature
may indeed exhibit similar emergent collective behavior, even
if the dynamics does not operate in a critical state, but rather
is found to inhabit a broad region of approximately scale-free
nature. Crucial for our suggestion is the observation that the
true asymptotic behavior of the FFM appears to happen for such
enormous systems sizes that they hardly are of relevance to real
macroscopic systems. In contrast, the quasi-scale free behavior
observed in the FFM for intermediate system sizes [4, 5] may
very well be helpful for the understanding of observations such
as those presented in [6, 7].

To investigate the presence of a critical-like region in the FFM,
we focus on the onset of measures that characterize the clusters of
trees and keep track of the frequencies at which the system visits
different regions of the parameter space. The order parameter for
precipitation [7] was taken to be the precipitation rate and for the
brain [6], the normalized size of the largest cluster of activated
voxels in the fMRI scans—a choice that appears very natural in
the light of ordinary percolation analysis.

FIGURE 7 | Heatmap representing the bivariate histogram of the average

cluster size and the density.

FIGURE 8 | Heatmap representing the bivariate histogram of the normalized

largest cluster and the density.

In Figures 7, 8 we present the contour plot of the bivariate
histograms of the average cluster size [11] 〈S〉 vs. the density
ρ, and of the largest cluster normalized to the number of trees
Smax vs. ρ. The color map represents the probability of observing
a certain point in the parameter space, which is the same as
the proportion of time spent by the system at that point. To
create the heatmaps, we sampled 107 configurations and grouped
points with similar probabilities for better visual representation.
Therefore, the histograms are not perfectly normalized. The
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study of both the average cluster size 〈S〉 and the normalized
largest cluster Smax is inspired by the resemblance between the
clusters of sites occupied by trees and the ordinary geometrical
percolation transition. In percolation, either 〈S〉 or Smax are used
to construct an order parameter.

It is clear from the heat-maps that the density around ρ∗ ≃ 0.4
stands out and that precisely like in the precipitation study [7],
and even more so in the brain study [6], ρ∗ is indicative of
an onset of the order parameter. Furthermore, the region over
which the creation of large events happens is very broad, and the
system spends a significant fraction of time in the critical region.
We know from the Gaussianity of P(ρ), see Figure 6, that this
region stays broad for any reachable system size and values of θ .
This very much suggests that the FFM’s quasi-tuning to a critical
region is a stylistic feature of important relevance.

3.3. The Distribution of the Largest Cluster
We now turn our attention to the non-normalized largest cluster,
which we indicate with 3 to distinguish it from Smax. For a
fixed system size and θ , we find that the distribution of the
largest cluster P(3) is very well fitted by a Fréchet distribution,
which corresponds to the class of extreme value statistics with
a power-law tail. The good agreement of P(3) with a Fréchet
distribution implies that the correlations between consecutive
configurations generating the clusters are sufficiently weak to
be ignored.

Although the distribution of cluster sizes does not obey simple
scaling [4, 5], it was found in [12] that the distribution of
instantaneous correlation lengths is scale-invariant for k = 10−3

and system sizes at least as big as θ = 9, 000. Given that P(λ) is
fat-tailed, we now turn our attention to its scaling properties and
see if simple scaling applies.

In order to measure 3, one has to maintain and keep
track of all clusters at all times, which makes the task more
computationally intensive than just sampling the density ρ. For
this reason, we analyzed systems sizes that are smaller than those
used for the analysis of P(ρ). In our simulations, we used k =
10−3 and values of θ up to 4000, but we also checked the scaling
for k = 5 · 10−4.

Assuming that simple scaling holds, we can expect P(3)
to follow

P(3) = aG

(

3

3c(θ)

)

3−τ (3)

for 30 ≪ 3 ≪ 3c, where 30 is a constant lower cutoff and
3c is an upper cutoff that diverges with θ . In Equation (3), a is
a constant metric factor, τ is the critical exponent, and G is a
universal function that decays quickly for 3≫3c. The form that
is usually assumed for the upper cutoff is 3c = bθν , where b is
another constant metric factor and ν is the spatial dimensionality
of the observable 3 [3].

If the data are consistent with the simple scaling ansatz, then
it is possible to perform a data collapse by plotting P(3)3τ vs.
the rescaled variable 3

3c
for different values of θ . In Figure 9,

we performed a data collapse using ν = 1.055 and τ = 1.04.
We also estimated the critical exponents analyzing the first two
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FIGURE 9 | Data collapse for the distribution of the largest cluster P(3) at

k = 10−3.

moments of Equation (3) and fitting the data with 〈3〉 = c1θ
α1

and 〈32〉 = c2θ
α2 , obtaining

c1 = 10.7± 0.8 and α1 = 1.04± 0.01

and

c2 = 110± 36 and α2 = 2.11± 0.04

using 95% confidence bounds.
From the exponents of the first two moments one can easily

recover ν and τ using Equation (3):

ν = α2 − α1 τ = 2− α1

ν
(4)

Using our estimates for α1 and α2, we get

ν = 1.07± 0.04 τ = 1.03± 0.04 (5)

using 95% confidence bounds.
These estimates for ν and τ are consistent with the ones

obtained via data collapse and that have been used in Figure 9.
Finally, we applied the whole procedure a second time using a
smaller value of k, namely k = 5·10−4 and θ up to 2000. From the
data collapse in Figure 10 we obtained an estimate of ν = 1.065
and τ = 1.04, while fitting the first two moments we obtained:

c1 = 12.0± 0.7 and α1 = 1.05± 0.01

and

c2 = 148± 15 and α2 = 2.12± 0.02
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FIGURE 10 | Data collapse for the distribution of the largest cluster P(3) at

k = 5 · 10−4.

which are consistent with the data collapse and with those
estimated for k = 10−3.

Although we had to restrict our simulations to values of θ <

104, we observe a very robust scaling for the largest cluster 3,
which is not observed in the distribution of cluster sizes P(S) over
the same range of θ [4]. Interestingly, we found that 〈3〉 ∼ θ1.04,
a super-linear growth which indicates that the correlations in
the system increase rapidly with θ . This behavior is consistent
with the analysis of the distribution of instantaneous correlation
lengths P(ξ ) performed in [12], where it was found that the
average instantaneous correlation length grows as 〈ξ 〉 ∼ θ0.56

over the same range of θ .

4. DISCUSSION

SOC was very much inspired by the successes of the
renormalization group studies of equilibrium critical phenomena
of the 1970-ties and its phenomenal understanding of the origin
of universality classes. Initially, the discussions of SOC focused
on accurately establishing the scaling behavior and related
scaling exponents of the various models thought to represent
the SOC phenomenology. The original sandpile model [1] was
disappointingly far from simple scaling, and also the FFM turned
out to behave very differently from the familiar scaling observed
in equilibrium models such as the Ising model or geometrical
percolation. Though there is at least one class of SOCmodels that
exhibits clear scaling, namely the class represented by the Manna
model [21], the beauty of strict scaling and universality classes
defined by scaling exponents seems not to really capture the less
than ideal critical behavior frequently observed in real systems,
such as our two examples from rain and brain.

There is no doubt that the studies of the emergent dynamics
of real complex systems from biology, geophysics, astrophysics,
economics and more [22–24] keep identifying behavior which is

qualitatively in the spirit of the hopes and dreams behind SOC,
namely the lack of one characteristic scale in time and space, large
fluctuations and no need for specific external tuning. So if the
beauty of strict scaling and exact power laws does not carry over
from equilibrium critical phenomena, the question is how we
establish a systematic classification of the emergent phenomena
observed in completely different systems. The study of the FFM
and its comparison with the behavior of real systems suggests it
is possible to establish a useful phenomenological understanding
and classification reaching beyond the usual strict classification of
universality classes defined in terms of shared scaling exponents.

The study presented here confirms earlier investigations of
the behavior of the density ρ, and the change in the behavior
of 〈ρ〉 for very large system sizes. Although we observed that
the Gaussian behavior of P(ρ) holds at least until θ = 105,
we also showed that it is possible to obtain very good but
deceitful data collapses for P(ρ) at different ranges of θ . If, on
the one hand, this should serve as a warning for the analysis
of the asymptotic scaling behavior of the FFM and other out
of equilibrium systems, on the other hand, it shows that such
effective scaling could be of guidance in the understanding and
analysis of real systems that show similar dynamics.

Analyzing the average cluster size and the normalized largest
cluster, we found that the FFM exhibits very similar behavior to
the one observed in experimental studies of rain and brain [6, 7].
In particular, both studies and the FFM display a critical region
over which both the residence time distribution and the order
parameter peak up, meaning that the system spends most of the
time in a highly susceptible state.

From the study of the largest cluster 3 it emerges that,
although the FFM displays broken scaling in the distribution of
cluster sizes, the distribution P(3) appears to be scale-invariant
at least for θ < 104. Furthermore, P(3) displays a super-linear
growth of the first moment similar to the one observed for
the average instantaneous correlation length in [12]. It is clear
from the anomalous behavior of the density ρ that such results
should be taken with care, as the model seems to enter a new
regime when θ & 104. However, the robust scaling observed
both in the largest cluster and in the instantaneous correlation
length suggests that at least for system sizes below θ = 104

there is a fast and scale-free growth of the correlations with
the activity θ .

Although the FFM does not display the reassuring scaling
observed in equilibrium models, its phenomenology appears to
summarize elegantly and robustly the emergent dynamics of
spreading and recharging seen in such disparate phenomena as
rain precipitation and brain dynamics. Moreover, examples of
broken scaling and non-exact powerlaws are ubiquitous in nature
and in the scientific literature [25] and, for this reason, we believe
that the characteristic behavior of the FFM should be seen as an
asset rather than a limitation of the model.
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Sandpile models exhibit fascinating pattern structures: patches, characterized by

quadratic functions, and line-shaped patterns (also called solitons, webs, or linear

defects). It was predicted by Dhar and Sadhu that sandpile patterns with line-like

features may be described in terms of tropical geometry. We explain the main ideas

and technical tools—tropical geometry and discrete superharmonic functions—used to

rigorously establish certain properties of these patterns. It seems that the aforementioned

tools have great potential for generalization and application in a variety of situations.

Keywords: tropical curves, pattern formation, solitons, sandpile, discrete harmonic analysis

1. PATTERN FORMATION AND CELLULAR AUTOMATA

Animals show beautiful skin and wing patterns. Explaining how these come about has been a
longstanding puzzle. In line with the Darwinian paradigm, an evolutionary biologist may suggest
that formations of patterns on the skin of animals are visual traces of certain biological mechanisms
that help survival in terms of natural selection.

In his seminal book, however, Thomson [1] argues that the geometry of patterns may be mainly
dictated by chemical forces, albeit it is known that patterns may benefit their owners in certain
cases. In his famous paper on morphogenesis [2], Turing speculated on the mechanism behind
pattern formation on the skin of animals and proposed the famous reaction diffusion system, which
consists of an inhibitor and an activator with different diffusion rates. Historically, this was the first
explicit model of pattern formation, though it is purely theoretical.

An important example of self-oscillating patterns in the real world was discovered soon after, see
the Belousov-Zhabotinsky reaction [3, 4]. Both the Turing model and the Belousov-Zhabotinsky
reaction produce beautiful spatiotemporal patterns with quasi-ordered strips and spots, see a
popular concise exposition of both topics in Ball [5]. A recent discussion about parallels in emerging
complexities and patterns in biological systems and physical glass-like models can be found inWolf
et al. [6].

A possibility to obtain all sorts of patterns starting from local interactions suggests trying
relatively simple models to explore patterns by pure or computer mathematics. Assuming that on a
big scale all coarse grained functions are smooth and continuous, onemay use differential equations
in the study of patterns; see comprehensive reviews [7, 8]. But, appealing to the discrete nature of
pattern formation, we shift our attention to cellular automata.

Historically, cellular automata were introduced to “abstract the logical structure of life” in 1948
by J. von Neumann and S. Ulam [9, 10]. Since then, cellular automata were used with great success
to analyze complexity [11], pattern formation [12], self-organized criticality [13], and segregation
[14]. Recent examples of using cellular automata for pattern prediction in biology include marine
angelfish [15], seashells [16], and lizard skin [17]; see also a survey [18].
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In this article we focus on so-called sandpile models, and firstly,
discuss in section 2 how the patterns in that model were obtained
in experimental computer physics, and secondly, we survey the
main ideas permitting to study these patterns with mathematical
rigor: discrete harmonic analysis (section 3), tropical geometry
(section 4), toppling function (section 5), and the most technical
part of the proofs, the lower bound (section 6). Wemention open
problems and new research directions when appropriate.

2. PATTERN FORMATION IN SANDPILES

2.1. Definitions
A sandpile model, which we consider here, consists of the
standard integer lattice grid inside a compact convex domain
� ⊂ R

2, i.e., the graph Ŵ = � ∩ Z
2.

A state of a sandpile model is a function ϕ(i, j), representing
the number of grains of sand at the vertex (i, j) ∈ Ŵ. A state, thus,
is an integer-valued function ϕ :Ŵ → Z≥0.

A vertex (i, j) is unstable if there are four or more grains of
sand at (i, j), i.e., ϕ(i, j) ≥ 4. The evolution proceeds as follows:
any unstable vertex (i, j) topples by sending one grain of sand to
each of its four neighbors (i+1, j+1), (i+1, j−1), (i−1, j+1), (i−
1, j− 1). The sand, falling outside �, disappears from the system.
Vertices outside of� (formally they do not even belong toŴ) and
stable vertices are never toppled. Equivalently, onemay think that
all the lattice points outside of � are sinks; sand, falling to sinks,
disappears. Given an initial state ϕ, the state ϕ◦ denotes the stable
state reached after all possible topplings have been performed. It
is a classical fact that ϕ◦ does not depend on the order of topplings
[19, 20].

2.2. Line-Shaped Patterns in the Literature
Line-shaped patterns [which can also go under different names:
solitons, linear defects, and (p, q)-webs] can be found in the
pictures in Liu et al. [21] and Ostojic [22], but the main subject
of the latter article was quadratic patches, recently explained
in Pegden and Smart [23, 24] and Levine at al. [25, 26] using
Apollonian circle packings.

Let us put three grains in all the vertices of the intersection
between the standard grid Z

2 and a planar domain �. Let us
choose several vertices and add one more grain to each of them.
An example of the relaxation of such a state for � being a square
is shown in Figure 1. We sequentially drop grains to blue points,
performing a relaxation after each dropping (thus we have one
blue point on the first pictures and four blue points on the fourth
picture, where blue points indicate the positions of additional
grains). One may easily guess a graph with straight edges along
non-white parts of the pictures. With each new blue point such a
graph changes, but its edges always pass through the blue points.
In Figure 2 we added grains to all blue points simultaneously
and took snapshots of the subsequent relaxation (since the order
of topplings does not influence the final picture, we might add
grains sequentially).

Line-shaped patterns, clearly recognizable in Figures 1, 2

along straight edges of the imaginable graph, explicitly came
in the sight of researchers in Dhar et al. [27] and Dhar
and Sadhu [28] with an emphasis on a proportional growth
phenomenon, and later, in Caracciolo et al. [29] (see also [30,

31]). These papers performed the analysis from the point of
view of theoretical physics and explained the pictures based on
experimental evidence.

The use of tropical geometry was predicted in Sadhu and Dhar
[32] and later implemented with rather involved mathematical
proofs in a series of articles [33–35]. A certain limit of the
sandpile model gives a continuous limiting piece-wise linear
model that also exhibits power-law behavior [36]; the statistical
properties of the latter model can be found in Kalinin and Prieto
[37]. Line-shaped patterns may be viewed as spacetime diagrams
of two incoming particles that join to form one particle. It turns
out that we can associate the “energy of the particle” with each
world line such that total energy is conserved in these collisions.
As it was recently shown (experimentally), quadratic patches may
be thought of as a limit of many line-shaped patterns coming
together during a relaxation [38].

2.3. Our Main Problem: Small Perturbation
of the Maximal Stable State
Let us formalize the observations in Figure 1 in the following
way. Let � be a non-degenerate compact domain with non-
empty interior and P be a finite non-empty subset of �. For each
N ∈ N consider a set ŴN = � ∩ 1

NZ
2, i.e., the intersection of �

with the lattice of mesh 1
N . Define the state ϕN = (3+∑

p∈P δp)◦

on ŴN , i.e., we put three grains everywhere on ŴN and dropped
one additional grain to each of the points p ∈ P or to a near vertex
in ŴN if p /∈ ŴN , and then we performed a relaxation. Define the
deviation set

CN = {v ∈ ŴN |ϕN(v) < 3} ⊂ �.

Experimental evidence suggests that when N grows, the sets
CN ⊂ � converge to a thin balanced graph (see Figure 1).

Theorem 1. announced in [33] and proven in [33–35] The
sequence of sets CN ⊂ � converges (in the Hausdorff sense) to a
set C̃�,P. The set C̃�,P is a planar graph passing through the points
P. Each edge of C̃�,P is a straight segment with a rational slope.

At least in this setting, we have proven that the
limiting/asymptotic patterns exist, though there is no close
description of the shape and exact amount of grains for the
pattern in the direction (p, q) ∈ Z

2.
More intricate instances of the line-shaped patterns, namely,

in the identity element of the sandpile group of �, await an
explanation. Recall that the recurrent states of a sandpile model
on a given graph form an Abelian group, the sandpile group of
a graph [19, 39]. In Figure 3, the identity of the sandpile group
for a cylinder consists of linear-shaped patterns. In Figure 4,
we see similar patterns (along with quadratic patches) on the
identity of the sandpile group for a non-convex domain. It has
not yet been mathematically proven that the sandpile identity of
such graphs indeed contains these linear patterns. A remarkably
simple pattern for the identity on a circular base was found by
Melchionna [40] [see Figures 7, 10 in [40]], the sandpile identity
on ellipses of certain type consists of a unique pattern, up to
“linear defects.”

In the further text we briefly explain the main ideas behind
the proof of Theorem 2. All the details of the actual proofs,
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FIGURE 1 | � is a square [0, 100]× [0, 100], we put 3 grains at every vertex of the lattice inside � and drop 1 additional grain to each blue point (sequentially). The

result of the relaxation after one additional grain is on the top-left picture. Then we added a grain of sand to the second blue point and performed a relaxation, the

result of which is the top-right picture. The third picture is the bottom left one, and the last one is the bottom right one. White is three grains, green is two, yellow is

one, and red is zero. Crosses mark the sinks in the model.

exact notation, omitted conditions, etc., can be found in Kalinin
and Shkolnikov [33–35]. We believe that our tools are worth
generalizing for other situations and can be used to prove the
aforementioned appearance of linear patterns in different setups.

3. DISCRETE HARMONIC ANALYSIS

The laplacian 1F of a function F :Z
2 → Z is defined as

(1F)(i, j) = −4F(i, j)+ F(i+ 1, j)+ F(i− 1, j)+ F(i, j+ 1)

+ F(i, j− 1).

A function F :Ŵ → Z is harmonic (resp., superharmonic) if
1F = 0 (resp., 1F ≤ 0) at every point of Ŵ ⊂ Z

2 where
1F is defined. Recall the Liouville theorem: a non-negative
harmonic function on Z

2 must be a constant (for several proofs
see Theorem 9.24 in [41]).

Assume that Ŵ is an intersection of a big convex subset � ⊂
R
2 with Z

2. Fix an arbitrary linear function L :Z2 → Z. The
following lemmata are close in spirit to Buhovsky et al. [42] where
an improvement of the Liouville theorem is presented.

Lemma 1. A positive integer-valued harmonic function F which
is less than L on a large enough subdomain Ŵ′ of Ŵ, is linear itself
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FIGURE 2 | � is a square [0, 100]× [0, 100], and we put 3 grains at every vertex of the lattice inside � and drop 1 additional grain to each blue point. On the left we

see the initial phase of the relaxation. The central picture shows an intermediate phase. On the right we see the final result.

FIGURE 3 | The identity of the sandpile group on a skewed cylinder is presented, that is, we took the standard lattice in the rectangle [0, 200]× [0, 12] and identified

each point (x, 0) with (x + 5, 12) for x ∈ [0, 195]. Let sinks be the vertices with less than four neighbors. The picture presents the identity of the sandpile group of this

graph. White is three, green is two, red is one, and blue is zero. If we would take a flat cylinder, i.e., we would identify (x, 0) with (x, 12), then, in the picture for the

identity of the sandpile group, we would have 3 everywhere except several green vertical lines, i.e., columns with two grains.

on a (smaller, but still large) subdomain Ŵ′′ of Ŵ′, i.e., there exists
Ŵ′′ ⊂ Ŵ′ such that

F(x, y)|Ŵ′′ = ix+ jy+ aij, where i, j, aij ∈ Z.

Lemma 2. Fix a constant c > 0. Consider a positive integer-
valued superharmonic function F such that the sum of its
laplacian at points in Ŵ′ ⊂ Ŵ linearly depends on the diameter
of Ŵ′ with an a priori bound c, i.e.,

∑

v∈Ŵ′
1F(v) < c · diam(Ŵ′).

Then, if F is less than L and the domain is large enough then F is
linear itself on a large subdomain Ŵ′′ ⊂ Ŵ′.

In other words, given an upper estimate of a natural-valued
function F by a linear function L, we may deduce that F is
linear on a large subdomain provided F is harmonic or almost
harmonic. Precise formulations can be found in Kalinin and
Shkolnikov [34]. The two main ideas used in the proofs are
as follows.

• The green function (harmonic at all points except one) on the
plane grows as the logarithm.

• For a positive discrete harmonic function F on a ball of radius
R with the center O, the discrete derivative of F at O (i.e.,

F(O)− F(O′) for a neighbor O′ of O) is at most the maximum
of F on the ball, divided by R. If F has only integer values, then
|F(O)− F(O′)| < 1 implies that F(O) = F(O′).

We conjecture that the line-shaped patterns show up in the
relaxation of a perturbation of the maximal stable state in the
sandpile model on a certain graph, if there is a notion of a
linear function on such a graph and both lemmata above hold.
To perform a “scaling” one needs a graph that is self-similar on
different scales, such as Z2. A natural candidate is a Cayley graph
of a group.

Recall that given a group G and a set S of its generators, one
may construct the so-called Cayley graph of G, whose vertices
are elements of G and two vertices u, v ∈ G are connected by an
edge if u−1v or v−1u belongs to S. If G = Z

2, S = {(1, 0), (0, 1)},
then the Cayley graph is the standard grid Z

2 with all vertices
of valency four. If G = Z

2, S = {(1, 0), (0, 1), (1, 1)} then the
Cayley graph is Z2 and each vertex (i, j) is connected by edges
to (i± 1, j), (i, j± 1), (i+ 1, j+ 1), (i− 1, j− 1).

On a Cayley graph, the generators of the group play the
role of coordinates [modulo relations, as (1, 0) + (0, 1) =
(1, 1) in the example above] so the notion of a linear
function can be easily extended. The discrete harmonic
function theory is quite developed for several classes of groups
[43–46].

Question. Do Lemmata 1,2 hold for the harmonic and
superharmonic functions on Cayley graphs of amenable groups?
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FIGURE 4 | The blue points mark the sinks. The identity of the remaining part of the lattice is presented. Note the presence of the linear patterns, the same as in the

previous pictures. Colors are the same as in Figure 1.

If yes, then, under an appropriately chosen scaling procedure,
one should be able to prove convergence of the deviation sets of
the relaxations of a slightly perturbed maximal stable states (on
a big bounded polygonal-shaped part of the Cayley graph) to the
corner locus of a piecewise linear function on the scaling limit
of these polygonal shaped parts of the Cayley graphs. The first
thing to prove is that the toppling function has a piecewise linear
estimate from above.

The Cayley graphs of abelian groups are composed of Zk and
cylinders as in Figure 3. The simplest non-abelian group, which
is not much different from Z

3, is the Heisenberg group.
Question. Are there any patterns in the sandpile for the

Cayley graph of the Heisenberg group H?

H = {Ha,b,c|a, b, c ∈ Z} where Ha,b,c =





1 a b
0 1 c
0 0 1



 .

Two generators H1,0,0,H0,1,0 of the group commute; the Cayley
graph of H therefore looks like a collection of standard lattices

Z
2 with additional edges corresponding to the third generator

H0,0,1. Consider the intersection of this Cayley graph with a
large cube, e.g., let Ŵ = {Ha,b,c|0 ≤ a, b, c ≤ 100}. Then, all
vertices v ∈ Ŵ have a valency of six, since they are connected to
v ·H±1,0,0, v ·H0,±1,0, v ·H0,0,±1, and all the vertices of Z3 outside
of Ŵ are treated as sinks.

Consider a maximal stable state (i.e., 5 grains at every vertex)
and add one grain to several vertices. One expects that the
relaxation of such a state on Ŵ should be not a very complicated
“extension” of a relaxation of a perturbation of themaximal stable
sandpile on domains in Z

2.

4. TROPICAL CURVES

A tropical polynomial is a piecewise linear function f :R2 → R

of the form

f (x, y) = min{ix+ jy+ aij|(i, j) ∈ A},
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where A is a finite subset of Z2 and aij ∈ R are coefficients.
Each term ix + jy + aij is called a monomial and should be
thought of log(taijxiyj), f should be thought of the limit of a
certain logarithmic rescaling of

ft(x, y) =
∑

(i,j)∈A
taijxiyj.

To each tropical polynomial f there is a corresponding tropical
curve C(f ), which, by definition, is the corner locus of f , i.e.,
the set of points (x, y) where f is not smooth. An equivalent
definition follows.

Definition 3. C(f ) = {(x, y) ∈ R|the minimum among ix+ jy+
aij is attainedat least twice}.
More on algebra-geometric aspects of tropical curves can be
found in Brugallé et al. [47], Itenberg and Mikhalkin [48], and
Maclagan and Sturmfels [49] along with recent applications
in symplectic topology [50–53]. In this set-up, tropical curves
should be thought of Riemann surfaces, and each vertex A of
a tropical curve corresponds to a small surface SA with the
boundary, the valency of A is equal to the number of the
boundary components of SA, and each edge AB of the tropical
curve corresponds to a very long thin cylinder connecting small
surfaces SA and SB. Unfortunately, we found no connection
between tropical curves in sandpiles and tropical curves in
algebraic or symplectic geometry.

4.1. Tropical Series
Pick a convex compact set � ⊂ R

2 with non-empty interior. Let
P be a finite subset of �.

Definition 4. Kalinin and Shkolnikov [35] an �-tropical series
is a piecewise linear function in � given by the following:

F(x, y) = inf
(i,j)∈A

(aij + ix+ jy), (1)

where the set A is not necessarily finite and F|∂� = 0. See an
example in Figure 5.

Consider the family FP of �-tropical series that are not
smooth at every point of P.

Note that all functions in FP are concave and thus
superharmonic. Let FP be the pointwise minimum of functions
in FP. In Kalinin and Shkolnikov [35] it is proven that this
pointwise minimum exists (that is easy) and belongs to FP (a
bit more involved, because it may be not continuous or not a
tropical series).

For each F ∈ FP we may consider the set

C(F) = {(x, y) ∈ �|(1F)(x, y) 6= 0}.

It is easy to see that C(F) is the corner locus of the function F, i.e.,
exactly those points where F is not linear but changes its slope.
The set C(F) is called the�-tropical curve defined by F, and C(F)
is a planar graph with straight edges of rational directions, the
sum of directions of outgoing edges is zero for every vertex, and
this is called the balancing condition.

Theorem 2. (elaboration) The sequence of sets CN ⊂ �

converges (in the Hausdorff sense) to the�-tropical curve C(FP).

Let � be a disk {x2 + y2 ≤ 1}. An example of an �-tropical series
is min{ix + jy+ aij|(i, j) ∈ Z

2} with |aij| =
√

i2 + j2 is presented
on the left in Figure 5, and its corresponding �-tropical curve,
which is an infinitely branching tree, is presented on the right.
See details in Kalinin and Shkolnikov [54].

Question. The sum of the values of the above�-tropical series
for a circle (or other plane curve) gives interesting formulae in
number theory [54] which are related to Mordell-Tornheim and
Witten zeta functions [55, 56]. These formulae take as input
the coefficients of the equations of the tangent lines to a given
plane curve, and they are thus easy to compute and may provoke
interesting questions in the experimental computer mathematics.
However, no analogs of these formulae for three dimensional
bodies are known.

5. TOPPLING FUNCTION

To understand the appearance of tropical geometry in sandpiles,
consider the toppling function H(v) defined for every v in ŴN as
follows: given an initial state ϕ on Ŵ and its relaxation ϕ◦, the
value H(v) equals the number of times that the vertex v toppled
in the process taking ϕ to ϕ◦.

The toppling function is clearly non-negative on Ŵ and
vanishes at the boundary of Ŵ. The Laplacian 1H of H
completely determines the final state ϕ◦ by the formula [22]:

ϕ◦(v) = ϕ(v)+ 1H(v). (2)

It can be shown by induction that the toppling function H
satisfies the Least Action Principle [57, 58]: if ϕ(v)+1F(v) ≤ 3 is
stable, then F(v) ≥ H(v). Ostojic noticed thatH(i, j) is a piecewise
quadratic function if we drop a lot of sand in the origin of the
otherwise empty plane [22].

5.1. Piecewise Linearity of the Toppling
Function in Our Main Problem
Consider a state ϕP, which consists of three grains of sand at every
vertex, except at a finite family of points P = {p1, . . . , pr} where
we have four grains of sand:

ϕ : = 〈3〉 + δp1 + · · · + δpr = 〈3〉 + δP. (3)

The state ϕ◦ and the evolution of the relaxation can be described
bymeans of tropical geometry. This was discovered in Caracciolo
et al. [29]. The crucial (experimental) observation is that the
toppling functionH of the state ϕ is almost harmonic everywhere
since ϕ◦ = ϕ almost everywhere (see Figure 1). Even better,
in this case the toppling function H is piecewise linear on the
most part of � and the line-shaped patterns belong to a finite
neighborhood of the corner locus of H (in the next section we
give a more detailed statement). It is easy to observe but tricky
to prove.

We provide an upper bound Hu and a lower bound Hl for H,
which are close to H. These tight bounds force the set

{v ∈ Ŵ|ϕ(v)+ 1Hu(v) 6= 3}
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FIGURE 5 | An �-tropical series and the corresponding �-tropical curve.

to belong to a small neighborhood of the set

{v ∈ Ŵ|ϕ(v)+ 1H(v) 6= 3}.

The upper bound Hu is a piece-wise linear function, ϕ is equal
to 3 everywhere except a small set P of points, the laplacian of a
function is zero on the domains of its linearity. The set1Hu(v) 6=
0 (the corner locus of a piece-wise linear function) is thus close
to the set 1H 6= 0, the deviation locus of ϕ◦. This concludes the
proof of the theorem.

5.2. Upper Bound for the Toppling Function
Denote by H(ϕN) the toppling function of the state ϕN =
〈3〉 + ∑

δpi on ŴN . Abusing notation we will write H(x, y) =
1
NH(ϕN)(x, y) :� → R for the rescaled toppling function
without specifying N. Consider the pointwise minimal function
FP in FP. Then FP ≥ H(ϕN) by the Least Action Principle (since
1FP ≤ 0,1FP(pi) < 0 for each i). Thus, FP ≥ H.

Corollary. The total defect
∑

v∈ŴN
(3 − ϕ◦(v)) grows linearly

in N.
Indeed, the total defect is equal to the amount of the sand

fallen outside of the system, which, in turn, is equal to the
sum of H(ϕN) near the boundary, which can be estimated as
N ·

∫

∂�1/N
NFP, i.e., N times the integral of FP over the 1/N-

neighborhood of the boundary of �.
In order to study the dependence of the deviation set {ϕ◦ 6=

3} on � and P (positions of points where we added grains),
one may study FP because it determines the tropical curve.
The dependence of FP on P is in no sense continuous: when
P passes through degenerate configurations (e.g., several points
on a vertical line), FP and the corresponding tropical curve
drastically change. Similar phenomenon appears when we keep
P fixed and change�: no meaningful results about stability of the
resulting picture are known.

6. LOWER BOUND. WAVE OPERATORS

Let ϕ be a sandpile state on a graph Ŵ. Given a fixed vertex p ∈ Ŵ,
we define thewave operatorWp acting on a sandpile state ϕ as the
following:

Wp(ϕ) : = (Tp(ϕ + δp)− δp)
◦,

where Tp is the operator that topples once the state ϕ at p if it
is possible ([59–61]) (see Figure 6). In a computer simulation,
the application of this operator looks like one wave of topplings
spreading from p, while each vertex topples at most once.

The first important property ofWp is that, for the initial state
ϕ : = 〈3〉 + δP, we can achieve the final state ϕ◦ by successive
applications of the operator Wp1 ◦ · · · ◦ Wpr a large but finite
number of times (we write∞ in spite of the notation):

ϕ◦ = (Wp1 · · ·Wpr )
∞ϕ + δP.

This is not a deep theorem but a rather useful description of a
relaxation. We thus decompose the total relaxation ϕ 7→ ϕ◦ into
layers of controlled avalanching

ϕ → Wk1
p1

ϕ = ϕ1 → Wk2
p2

ϕ1 → . . .

These layers, in turn, can be described by means of tropical
geometry. We only need to prove that the linear-shaped patterns,
visible in the pictures, move toward the point where we apply a
wave operator.

6.1. Construction of Solitons
For each direction (p, q) ∈ Z

2, gcd(p, q) = 1 we construct a
function Fp,q whose laplacian coincides with the linear pattern
in the direction (p, q). To do that, consider a function

F̃ :Z
2 → Z, F̃(x, y) = min(0, qx− py).
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FIGURE 6 | For a given sandpile state we apply several times the wave operator at the blue point p. One can see that the line-shaped pattern around p point creeps

toward p until it belongs to one on them. Recall that white cells contain 3 grains, so the deviation set is the green, yellow, and red cells, which belong to a small

neighborhood of a certain tropical curve. Let us present this tropical curve as a corner locus of a pointwise minimum of several linear functions (cf. Figure 5), i.e., as

an �-tropical series F. The planar graph is then the projection of edges of a three-dimensional polytope (the graph of F ). Then the action of the wave operator

corresponds to shifting one of the faces of this polytope, i.e., increasing by one the constant coefficient of the linear function, defining this face. On the level of planar

graphs, we take the linear function in F (see Equation 1), which is the minimal at p, and increase its constant coefficient until p belongs to the corner locus of the new

piecewise linear function.

Note that the corner locus l (the set of points in R
2 where

min(0, qx − py) is not smooth) of F̃ is a line of direction (p, q).
Next, consider all the integer-valued superharmonic functions on
Z
2, which coincide with F̃ outside of a finite neighborhood of l.

A non-trivial fact is that there exists a pointwise minimum Fp,q
among this family of functions [34].

The idea of the proof is as follows: instead of taking the
pointwise minimum at once, we first prove that we can achieve it
by “smoothings,” namely, by a sequence of steps F̃ = F0 → F1 →
F2 → . . . ; in each step Fk → Fk+1 we subtract the characteristic
function of a certain set in a finite neighborhood of l (thus, a kind
of inverse operator to the wave operator) and 0 ≤ Fk−Fk+1 ≤ 1.
Then, since F̃ is periodic, we may factor the plane by the action of
the vector (p, q) and reduce the problem to a cylinder.

Then we use lemmata about superharmonic functions: if it
would be possible to perform smoothings an infinite number
of times, then Lemma 1 would imply that Fk is linear with
integer slope in a compact neighborhood of l, hence there exists
a linear function with integer slope which is less than F̃ only on a
finite neighborhood of the corner locus. This function would be
periodic with respect to the shift on (p, q) and would therefore
be like k(qx − py) + c (since gcd(p, q) = 1), but any such
function (with an integer k) is less than F̃ outside of a finite
neighborhood of l, which is a contradiction. Then we cannot
perform smoothings an infinite number of times, and thus there
is a pointwise minimum in the aforementioned family.

Once proved that the pointwise minimum exists, we may
define solitons.

Definition 4. A soliton [a linear-shaped pattern in the direction
(p, q)] is ϕpq = 〈3〉 + 1Fp,q.

Then, from the Least Action principle and the minimality of Fp,q
it easily follows that sending a wave from one side of the deviation
set of ϕpq translates it [i.e., for certain p′, q′ we haveWxϕpq(i, j) =
ϕpq(i+p′, j+q′) for all (i, j)], otherwise not changing. This is why
we call them solitons.

The same can be done for three solitons of direction
(p1, q1), (p2, q2), (p3, q3), meeting at a point, provided that
∑

pi = ∑

qi = 0 and the triangle (p1, q1), (p2, q2), (p3, q3)
does not contain lattice points except vertices. The ideas of the
proof are the same, we use Lemma 2 and the final step is that
if a linear function px + qy is less than min(p1y − q1x, p2y −
q2x, p3y − q3x) only in a compact neighborhood of the apex of
the latter function, then (p, q) ∈ Z

2 must belong to the triangle
(p1,−q1), (p2,−q2), (p3,−q3), which is a contradiction.

We summarize the results as follows: there are certain
functions fp,q,... (“at infinity” being described by piecewise
functions, i.e., tropical functions), pointwise minimal in special
families of superharmonic functions, such that 〈3〉 + 1fp,q,...
models solitons, and three or four solitons coming to a point.

The crucial property of the wave operatorWp is that its action
on a state ϕ = 〈3〉 + 1fp,q,... has an interpretation in terms of
tropical geometry; see the next section.

6.2. Tropical Wave Operators and the
Lower Bound
Whenever, “at infinity” f is a piecewise linear function with
integral slopes that, in a neighborhood of p, is expressed as
ai0j0 + i0x+ j0y, then

Wp(〈3〉 + 1f ) = 〈3〉 + 1W(f ),

where W(f ), another piece-wise linear “at infinity” function, has
the same coefficients aij as f , except one, namely a′i0j0 = ai0j0 + 1.
This is to emulate the fact that the support of the wave (the set
of vertices that toppled during the wave) is exactly the part of the
plane where ai0j0 + i0x+ j0y is the leading part of f .

Consider an �-tropical series f . We will write Gp : = W∞
p

to denote the operator that “applies Wp to 〈3〉 + 1f until p lies
in the corner locus of f ”; i.e., Gp increases the coefficient aij,
corresponding to a neighborhood of p, by lifting the plane lying
above p in the graph of f by integral steps until p belongs to the
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corner locus ofGpf . Thus,Gp has the effect of pushing the tropical
curve closer toward p until it contains p (see Figure 6).

From the properties of the wave operators, it follows
immediately that (recall that FP is the upper bound):

FP =
(

Gp1 · · ·Gpr

)∞
0,

where 0 is the function which is identically zero on �.
Now we are ready to provide a lower bound in the main

theorem.
Note that the upper bound can be obtained by (possibly

infinite) series of applying tropical wave operators (which are
nothing else but repetitive increasing of coefficients on linear
parts in a piecewise linear function). Then, by the properties of
the solitons, this can be emulated in the sandpile model, where
wave operators are performed on the sandpile level, and instead
of piecewise linear functions we have pictures as in Figure 6.

In other words, we choose an approximation of FP by a finite
composition Gp1Gp2 . . . of tropical wave operators, and we then
choose an N big enough before starting from a state on ŴN with
a tropical series and a collection of solitons, representing the
corresponding �-tropical curve. Then we perform the sandpile
wave operators Wp1Wp2 . . . as prescribed by tropical wave
operators (see Figure 6). Since N is big enough we have full
control on the picture and know that the solitons move exactly
as edges of the tropical curve on the tropical pictures. By the
nature of the construction, this will give us a lower bound for
the relaxation of ϕ (constructed by the wave decomposition),
which is close to the upper bound (given by an �-tropical
series) with any prescribed accuracy. The deviation set of
ϕ◦
N consequently converges to the �-tropical curve defined

by FP.

7. DISCUSSION

We surveyed several mathematical tools which have been used
for a concrete problem of sandpiles on a part of Z

2. These
tools may be generalized in several directions. One may consider
sandpiles on other graphs, e.g., parts of the Cayley graphs
for amenable groups. Also, one can take a part of hyperbolic
tessellation [62] or other tiling of the plane [63] and ask similar
questions about patterns and rescaling procedures.

It seems that the only tool to describe explicitly the picture
for the sandpile identity is to compute the toppling function with
high precision and controlled error. Above, we explained that
the “smoothing” procedure allows us to show that there exists a
pointwise minimal function in certain classes of superharmonic
functions, and certain localization techniques (tropical geometry)
could then be applied based of the properties of harmonic or
almost harmonic functions on big domains with an explicit linear
upper bound.

Tropical series for planar domains are connected to certain
zeta functions. It would be nice to (at least, experimentally)
compute series, similar to Kalinin and Shkolnikov [54], for
higher dimensions with a good precision and guess what kind of
numbers (e.g., polynomials in π if we start with a round sphere)
will be obtained.

It would be interesting to find another decomposition of
a relaxation into waves of higher magnitude, i.e., such a
decomposition will allow us to control the change of not only
linear-shaped pattern but the quadratic patches too.

Similar to Sadhu and Dhar [32] it would be nice to run
the same research, and in particular, to establish continuity
properties for the toppling functions of sandpiles on Cayley
graphs and see whether one can get a kind of balancing
conditions out of that.
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The critical brain hypothesis states that there are information processing advantages for
neuronal networks working close to the critical region of a phase transition. If this is true, we
must ask how the networks achieve andmaintain this critical state. Here, we review several
proposed biological mechanisms that turn the critical region into an attractor of a dynamics
in network parameters like synapses, neuronal gains, and firing thresholds. Since neuronal
networks (biological and models) are not conservative but dissipative, we expect not exact
criticality but self-organized quasicriticality, where the system hovers around the
critical point.

Keywords: self-organized criticality, neuronal avalanches, self-organization, neuronal networks, adaptive networks,
homeostasis, synaptic depression, learning

1 INTRODUCTION

Thirty-three years after the initial formulation of the self-organized criticality (SOC) concept [1] (and
37 years after the self-organizing extremal invasion percolation model [2]), one of the most active
areas that employ these ideas is theoretical neuroscience. However, neuronal networks, similar to
earthquakes and forest fires, are nonconservative systems, in contrast to canonical SOC systems like
sandpile models [3, 4]. To model such systems, one uses nonconservative networks of elements
represented by cellular automata, discrete time maps, or differential equations. Such models have
distinct features from conservative systems. A large fraction of them, in particular neuronal
networks, have been described as displaying self-organized quasi-criticality (SOqC) [5–7] or
weak criticality [8, 9], which is the subject of this review.

The first person that made an analogy between brain activity and a critical branching process
probably was Alan Turing, in his memorable paper Computing machinery and intelligence [10].
Decades later, the idea that SOC models could be important to describe the activity of neuronal
networks was in the air as early as 1995 [11–16], eight years before the fundamental 2003
experimental article of Beggs and Plenz [17] reporting neuronal avalanches. This occurred
because several authors, working with models for earthquakes and pulse-coupled threshold
elements, noticed the formal analogy between such systems and networks of integrate-and-fire
neurons. Critical learning was also conjectured by Chialvo and Bak [18–20]. However, in the absence
of experimental support, these works, although prescient, were basically theoretical conjectures. A
historical question would be to determine in what extent this early literature motivated Beggs and
Plenz to perform their experiments.

Since 2003, however, the study of criticality in neuronal networks developed itself as a research
paradigm, with a large literature, diverse experimental approaches, and several problems addressed
theoretically and computationally (some reviews include Refs. [7, 21–27]). One of the main results is
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that information processing seems to be optimized at a second-
order absorbing phase transition [28–42]. This transition occurs
between no activity (the absorbing phase) and nonzero steady-
state activity (the active phase). Such transition is familiar from
the SOC literature and pertains to the directed percolation (DP)
or the conservative-DP (C-DP or Manna) universality classes [7,
42–45].

An important question is how neuronal networks self-
organize toward the critical region. The question arises
because, like earthquake and forest-fire models, neuronal
networks are not conservative systems, which means that in
principle they cannot be exactly critical [5, 6, 45, 46]. In these
networks, we can vary control parameters like the strength of
synapses and obtain subcritical, critical, and supercritical
behavior. The critical point is therefore achieved only by fine-
tuning.

Over time, several authors proposed different biological
mechanisms that could eliminate the fine-tuning and make the
critical region a self-organized attractor. The obtained criticality is
not perfect, but it is sufficient to account for the experimental data.
Also, the mechanisms (mainly based on dynamic synapses but also
on dynamic neuronal gains and adaptive firing thresholds) are
biologically plausible and should be viewed as a research topic per se.

The literature about these homeostatic mechanisms is vast,
and we do not intend to present an exhaustive review. However,
we discuss here some prototypical mechanisms and try to connect
them to self-organized quasicriticality (SOqC), a concept developed
to account for nonconservative systems that hover around but do not
exactly sit on the critical point [5–7].

For a better comparison between the models, we will not rely
on the original notation of the reviewed articles, but will try to use
a universal notation instead. For example, the synaptic strength
between a presynaptic neuron j and a postsynaptic neuron i will
be always denoted by Wij (notice the convention in the order of
the indexes), the membrane potential is Vi, the binary firing state
is si ∈ {0, 1}, the gain of the firing function is Γi, and the firing
threshold is θi. To prevent an excess of index subscripts as is usual
in dynamical systems, likeWij,t , we use the conventionWij(t) for
continuous time and Wij[t] for discrete time.

Last, before we begin, a few words about the fine-tuning
problem. Even perfect SOC systems are in a sense fine-tuned:
they must be conservative and require infinite separation of time
scales with driving rate 1/τ→ 0+ and dissipation rate u→ 0+
with 1/(τu)→ 0 [3, 4, 7, 43, 45]. For homeostatic systems, we
turn a control parameter like the coupling W into a time-
dependent slow variable W[t] � 〈Wij[t]〉 by imposing a local
dynamics in the individualWij. This dynamics could depend on
new parameters (here called hyperparameters) which need some
tuning (in some cases, this tuning can be very coarse in the large
τ case). Have we exchanged the fine tuning on W by several
tuning operations on the homeostatic hyperparameters? Not
exactly, as nicely discussed by Hernandez-Urbina and
Herrmann [47]:

To Tune or Not to Tune

In this article, we have shown how systems self-organize
into a critical state through [homeostasis]. Thus, we

became relieved from the task of fine-tuning the
control parameter W, but instead, we acquire a new
task: that of estimating the appropriate values
for parameters A,B,C, and D. Is there no way to
be relieved from tuning any parameter in the
system?

The issue of tuning or not tuning depends mainly on
what we understand by control parameter. (. . .) a
control parameter can be thought of a knob or dial
that when turned the system exhibits some quantifiable
change. We say that the system self-organizes if nobody
turns that knob but the system itself. In order to achieve
this, the elements comprising the system require a
feedback mechanism to be able to change their inner
dynamics in response to their surroundings. (. . .) The
latter does not require an external entity to turn the dial
for the system to exhibit critical dynamics. However, its
internal dynamics are configured in a particular way in
order to allow feedback mechanisms at the level of
individual elements.

Did we fine-tune their configuration? Yes. Otherwise,
we would have not achieved what was desired, as
nothing comes out of nothing. Did we change
control parameter from W to A,B,C, and D? No, the
control parameter is still intact, and now it is “in the
hands” of the system. (. . .) Last and most
importantly, the new configuration stresses the
difference between global and local mechanisms.
The control parameter W (the dial) is an external
quantity that observes and governs the global (i.e., the
collective), whereas [homeostasis] provides the
system with local mechanisms that have an effect
over the collective. This is the main feature of a
complex system.

2 PLASTIC SYNAPSES

Consider an absorbing-state second-order phase transition where
the activity is ρ � 0 below a critical point Ec and

ρxC(E − Ec

Ec
)β

, (1)

for EaEc, where E is a generic control parameter (see Figures
1A,B). For topologies such as random and complete graphs, one
typically obtains β � 1, which is consistent with a transition in the
mean-field directed percolation (DP) class (or perhaps, the
compact-DP (Manna) class usual in SOC models, which has
the same mean-field exponents but different ones below the
upper critical dimension; see Refs. 3, 7, 42, 48).

The basic idea underlying most of the proposed mechanism
for homeostatic self-organization is to define a slow dynamics in
the individual links Ei(t) (i � 1, . . . ,N) such that if the network is
in the subcritical state, their average value E(t) � 〈Ei(t)〉 grows
toward Ec, but if the network is in the supercritical state, E(t)
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decreases toward Ec (see Figure 1C). Ideally, these mechanisms
should be local, that is, they should not have access to global
network information such as the density of active sites ρ (the
order parameter) but rather only to the local firing of the neurons
connected by Ei. In the following, we give several examples from
the literature.

2.1 Short-Term Synaptic Plasticity
Markram and Tsodyks [49, 50] proposed a short-term synaptic
model that inspired several authors in the area of self-
organization to criticality. The Markram–Tsodyks (MT)
dynamics is

dJij(t)
dt

� 1
τ
[ A
u(t) − Jij(t)] − u(t)Jij(t)δ(t − t̂j) , (2)

du(t)
dt

� 1
τu

[U − u(t)] + U[1 − u(t)]δ(t − t̂j) , (3)

where Jij is the available neurotransmitter resources, u is the
fraction used after the presynaptic firing at time t̂j (so that the
effective synaptic efficacy is Wij(t) � u(t)Jij(t)), A and U are
baseline constants (hyperparameters), and τ and τu are recovery
time constants.

In an influential article, Levina, Herrmann, and Geisel
(LHG) [51] proposed to use depressing–recovering
synapses. In their model, we have leaky integrate-and-fire
(LIF) neurons in a complete-graph topology. As a self-
organizing mechanism, they used a simplified version of
the MT dynamics with constant u, that is, only Eq. 2. They
studied the system varying A and found that although we need
some tuning in the hyperparameter A, any initial distribution
of synapses P(Wij(t � 0)) converges to a stationary

distribution P*(Wij) with 〈W*
ij〉 ≈ Wc. We will refer to Eq.

2 with constant u as the LHG dynamics. These authors found
quasicriticality for 1.7<A< 2.3, u ∈ ]0, 1] and τ∝N . Levina
et al. also studied synapses with the full MT model in Refs.
52, 53.

Bonachela et al. [6] studied in depth the LHG model and
found that, like forest-fire models, it is an instance of SOqC.
The system presents the characteristic hovering around the
critical point in the form of stochastic sawtooth oscillations in
the W(t) that do not disappear in the thermodynamic limit.
Using the same model, Wang and Zhou [54] showed that the
LHG dynamics also works in hierarchical modular networks,
with an apparent improvement in SOqC robustness in this
topology.

Note that the LHG dynamics can be written in terms of the
synaptic efficacy Wij � uJij by multiplying Eq. 2 by u, leading to

dWij(t)
dt

� 1
τ
[A −Wij(t)] − uWij(t)δ(t − t̂j) . (4)

Brochini et al. [55] studied a complete graph of stochastic
discrete time LIFs [56, 57] and proposed a discrete time LHG
dynamics:

Wij[t + 1] � Wij[t] + 1
τ
(A −Wij[t]) − uWij[t]sj[t] , (5)

where the firing index sj[t] ∈ {0, 1} denotes spikes. Kinouchi et al.
[58], in the same system, studied the stability of the fixed points of
the joint neuronal LHG dynamics. They found that, for the
average synaptic value W, the fixed point is
W* � Wc +O((A − 1)/τu), meaning that for large τu, the

FIGURE 1 | Example of homeostatic mechanisms in a stochastic neuron with firing probability P(si � 1). (A) Scheme of the loci for homeostatic mechanisms:
synapses Wij , neuronal gain Γi , and firing threshold θi . Inset: Firing probability with homeostatic variables. (B) Bifurcation diagram for the activity ρ as a function of a
generic control parameter E. The critical point is Ec, but the homeostatic fixed point (a focus) is slightly supercritical. (C) Self-organization of the generic “control”
parameter E(t), where the standard deviation of the stochastic oscillations around the fixed point depends on system size as s.d.∝N−a.

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5832133

Kinouchi et al. Mechanisms of Self-Organized Quasicriticality

41

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


systems approach the critical pointWc if A> 1. However, since it
is not biologically plausible to assume an infinite recovering time
τ, one always obtains a system which is slightly supercritical. This
work also showed that the fixed point is a barely stable focus,
around which the system is excited by finite size (demographic)
noise, leading to the characteristic sawtooth oscillations of SOqC.
A similar scenario was already found by Grassberger and Kantz
for forest-fire models [59].

The discrete time LHG dynamics was also studied for
cellular automata neurons in random networks with an
average of K neighbors connected by probabilistic synapses
Pij ∈ [0, 1] (Costa et al. [60], Campos et al. [61] and Kinouchi
et al. [58]):

Pij[t + 1] � Pij[t] + 1
τ
(A
K
− Pij[t]) − uPij[t]sj[t] , (6)

with an upper limit Pmax � 1. Multiplying by K and summing
over i, we get an equation for the local branching ratio:

σ j[t + 1] � σ j[t] + 1
τ
(A − σ j[t]) − uσ j[t]sj[t] . (7)

It has been found that such depressing synapses induce
correlations inside the synaptic matrix, affecting the global
branching ratio σ[t] � 〈σj[t]〉, so that criticality does not occur
at the branching ratio σc � 1 but rather when the largest eigenvalue
of the synaptic matrix is λc � 1, with σ* � K〈P*

ij〉 ≈ 1.1 [61].

After examining this diverse literature, it seems that any
homeostatic dynamics of the form

Wij[t + 1] � Wij[t] + R(Wij[t]) − D(Wij, sj[t]) (8)

can self-organize the networks, where R and D are the recovery
and depressing processes, for example:

Wij[t + 1] � Wij[t] + 1
τ
Wij[t] − uWij[t]sj[t] . (9)

In particular, the simplest mechanism would be

Wij[t + 1] � Wij[t] + 1
τ
− usj[t] , (10)

a usual dynamics in SOC models [5, 7]. This means that the full
LHG dynamics, and also the full MT dynamics, is a sufficient but
not a necessary condition for SOqC.

The average W � 〈Wij〉 for this dynamics is

W[t + 1] � W[t] + 1
τ
− uρ[t] , (11)

where ρ[t] � 〈si[t]〉 is the time-dependent network activity. The
stationary state is ρ* � 1/(τu), and if τu is large, this means that
ρ* � O(1/(τu))→ ρc � 0+. Also, if we use Eq. 1, we get
W* � Wc +O(1/(τu)). The dissipative term u should also be
small, meaning that, if we desire absolute separation of time
scales, we need 1/τ→ 0+, u→ 0+, 1/(τu)→ 0, as is usual in other
SOC systems [3, 5, 7, 43, 45].

Here, for biological plausibility, it is better to assume a large
but finite recovery time, say τ ∈ [100, 10, 000]ms, in comparison
with 1 ms for spikes. Also, to obtain SOqC, u need not be small.
We must have A> 1 because A< 1 produces subcritical activity
[6, 51, 58]. So, moderate A ∈ [1, 2], u ∈ ]0, 1], and large τ > 1000
seem to be the coarse tuning conditions for homeostasis. This
produces the hovering of the average value W[t] � 〈Wij[t]〉
around the critical point Wc, with the characteristic sawtooth
oscillations of SOqC and power-law avalanches for some
decades.

We observe that the original LHG model [6, 51] had τ∝N to
produce the infinite separation of time scales in the large-N limit.
This, however, did not prevent the SOqC hovering stochastic
oscillations in the thermodynamic limit. Moreover, a recovery
time proportional to N is a very unrealistic feature for biological
synapses. Curiously, if we use a finite τu instead, the oscillations
are damped in the thermodynamic limit because the fixed point
ρ* � O(1/(τu)),W* � Wc +O(1/(τu)) continues to be an
attractive focus, but the demographic noise vanishes. On the
other hand, when we use τu→∞, the fixed point loses its stability
and continues to be perturbed even by the N→∞ vanishing
fluctuations [58].

As early as 1998, Kinouchi [62] proposed the synaptic
dynamics:

Wij[t + 1] � Wij[t] + 1
τ
Wij[t] − usj[t] , (12)

with small but finite τ and u. The difference here from the former
mechanisms is that, like in Eq. 10, depression is not proportional
toWij (but recovery is). He also discussed the several concepts of
SOC at the time, and called these homeostatic system as self-
tuned criticality, which is equivalent to a SOqC system with finite
separation of time scales.

Hsu and Beggs [63] studied amodel for the activityAi(t) of the
local field potential at electrode i:

Ai[t + 1] � Hi[t] +∑
j

Pij[t]sj[t] , (13)

whereHi(t) is a spontaneous activity used to prevent the freezing
of the system in the absorbing state (this is similar to a time-
dependent SOC drive term h). The probabilistic coupling is
Pij ∈ [0, 1]. Firing-rate homeostasis and critical homeostasis
are achieved by increasing or decreasing H and P if the firing
rate is too low or too high compared to a target firing rate
s0 � 1/τ0:

Hi[t + 1] � exp[ − kS(〈si[t]〉 − s0)]Hi[t] , (14)

Pij[t + 1] � exp[ − kP(〈si[t]〉 − s0)]Pij[t] , (15)

where 〈 . . . 〉 represents a moving average over a memory widow
τm.

Hsu and Beggs found that for kS/kP ≈ 0.5, this dynamics leads
to a critical branching ratio σ � 1. They also found that the target
firing rate s0 can be maintained by this homeostasis. Equation 15
reminds us of the depressing–recovering synaptic rule of Eq. 9.
Indeed, if we examine the small kP limit (as used by the authors),
we have

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5832134

Kinouchi et al. Mechanisms of Self-Organized Quasicriticality

42

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pij[t + 1]xPij[t] + 1
τ
Pij[t] − uPij[t]〈si[t]〉 , (16)

where now τ � 1/(kPs0) and u � kP . A similar reasoning applies to
the equation forH[t], which could be identifiedwith the homeostatic
threshold Eq. 60 discussed in Section 4, with H[t] � −θ[t].

In another article, Hsu et al. [64] extended the model to
include distance-dependent connectivity and Hebbian learning
[64]. Changing the homeostasis equations to our standard
notation, we have

dHi(t)
dt

� 1
τS
(1 − ηi(t))Hi(t) − uSHi(t)(〈si〉 − s0) , (17)

dPij(t)
dt

� 1
τ
(1 − ηi(t))Pij(t) − uPij(t)(〈si〉 − s0) − uDDijPij(t) ,

(18)

whereHi ∈ [0, 1] is now a probability of spontaneous firing, s0 is a
target average activity, and Dij is the distance between electrodes i
and j. The input ratio is ηi(t) � ∑jPij(t). Remember that, for a
critical branching process, 〈ηi〉 � 1. These values were chosen as
homeostatic targets.

Shew et al. [65] studied experimentally the visual cortex of
the turtle and proposed a (complete graph) self-organizing
model for the input synapses Ωi and the cortical synapses
Wij. The stochastic neurons fire with a linear saturating
function:

Prob(si[t + 1] � 1) �
⎧⎪⎨⎪⎩

Vi[t] if V < 1 ,

1 if V > 1 ,
(19)

Vi[t] � Ωi[t]Hi[t] + 1
N
∑
j

Wij[t]sj[t] , (20)

where, like in Eq. 13, Hi accounts for external stimuli. For both
types of synapses, they used the discrete time LHG dynamics, Eq.
5, and concluded that the computational model accounts very
well for the experimental data.

Hernandez-Urbina and Herrmann [47] studied a discrete time
IF model where they define a local measure called node success:

ϕj[t] �
∑iAijsi[t + 1]∑iAij

, (21)

where A is the adjacency matrix of the network, with Aij � 1 if j
projects onto i (Aij � 0 otherwise). Note that we reversed the
indices as compared with the original notation [47]. Observe that
ϕj measures how many postsynaptic neurons are excited by the
presynaptic neuron j.

The authors then define the node success–driven plasticity
(NSDP):

Wij[t + 1] � Wij[t] + 1
τ
exp( − ϕj(t)/B) − u exp(−Δtj/D) ,

(22)

where Δtj � t − t̂j is the time difference between the spike of node j
occurring at current time step t and its previous spike which

occurred at t̂j (the last spike), while B and D are constants. Notice
that the drive term is larger if the node success is small and the
dissipation term is larger if the firing rate (inferred locally as
ρ̂ � 1/Δtj) is large [compare with Eq. 8].

They analyzed the relation among the avalanche critical
exponents, the largest eigenvalue Λ associated to the weight
matrix, and the data collapse of the shape of avalanches for
several network topologies. All results are compatible with
(quasi-)criticality. They also found that if they stop NSDP and
introduce STDP, the criticality vanishes, but if the two dynamics
are done together, criticality survives.

Levina et al. [66] proposed a model in a complete graph in
which the branching ratio σ is estimated as the local branching σi

of a neuron that initiates an avalanche. The homeostatic rule is to
increase the synapses if σi < 1 and decreasing them if σi > 1. The
network converges, with SOqC oscillations, to σ* ≈ σc � 1.

2.2 Meta-Plasticity
Peng and Beggs [67] studied a square lattice (K � 4) of IF neurons
with open boundary conditions. A random neuron receives a
small increment of voltage (slow drive). If the voltage of
presynaptic neuron j is above a threshold θ � 1, we have

Vj[t + 1] � Vj[t] − 1 , (23)

sj[t + 1] � Θ(Vj[t + 1] − θ) , (24)

Vi[t + 1] � Vi[t] + 1
K
Wij[t]sj[t] , (25)

where Θ is the Heaviside function. The self-organization is
made by a LHG dynamics plus a meta-plasticity term:

Wij[t + 1] � Wij[t] + 1
τ
(A −Wij[t]) − uWij[t]sj[t] , (26)

ua+1 � ua − (1 − Xa)/N , (27)

where Xa is the total fraction of neurons at the boundary that
fired during the a-th avalanche and ua+1 is the updated value of
u after the avalanche. Notice that the meta-plasticity term
differs from the MT model of Eq. 3, because the
hyperparameter u is updated in a much slower time scale.
Peng and Beggs show that this dynamics converges
automatically to good values for the parameter u; that is, we
no longer need set the u value in advance. We observe, however,
that Xa is a nonlocal variable.

2.3 Hebbian Synapses
Ever since Donald Hebb’s proposal that neurons that fire together
wire together [68–70], several attempts have been made to
implement this idea in models of self-organization. However, a
pure Hebbian mechanism can lead to diverging synapses, so that
some kind of normalization or decay needs also be included in
Hebbian plasticity.

In 2006, de Arcangelis, Perrone-Capano, and Herrmann
introduced a neuronal network with Hebbian synaptic
dynamics [71] that we call the APH model. There are several
small variations in the models proposed by de Arcangelis et al.,
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but perhaps the simplest one [72] is given by the following
neuronal dynamics on a square lattice of L × L neurons: If at
time t a presynaptic neuron j has a membrane potential above a
firing threshold, Vj[t]> θ, it fires, sending neurotransmitters to all
its (nonrefractory) neighbors:

Vi[t + 1] � Vi[t] +WijVj[t] , (28)

where Wij � Wij/∑ nn
l Wlj. Then, neuron j enters in a refractory

period of one time step. The synaptic self-organizing dynamics is
given by

Wij[t + 1] � Wij[t] + 1
θ
WijVj[t] (active synapses) , (29)

Wij←Wij − 1
NB

∑
ij

δWij ( inactive synapses, after avalanche) ,
(30)

where NB is the total number bonds and active (inactive)
synapses are the ones used (not used) in Eq. 28. The sum
in Eq. 30 is over all synaptic modifications
δWij[t + 1] � Wij[t + 1] −Wij[t], a step which involves
nonlocal information and amounts to a kind of synaptic
rescaling. If the synaptic strength falls below some
threshold, the synapse is deleted (pruning), so that this
mechanism sculpts the network architecture. So, co-
activation of pre- and postsynaptic neurons makes the
synapse grow, and inactive synapses are depressed, which
means that it is a Hebbian process. Several authors explored
the APH model in different contexts, including learning
phenomena [72–80].

Çiftçi [81] studied a neuronal SIRs model on the C. elegans
neuronal network topology. The spontaneous activation rate
(the drive) is h � 1/τ→ 0+, and the recovery rate to the
susceptible state is q. The author studied the system as a
function of q/h (separation of time scales q≫ h). The
probability that a neuron j activates its neighbor i is Pij
(gij � 1 − Pij is the probability of synaptic failure in the
author notation). The synaptic update occurs after an
avalanche (of size S) and affects two neighbors that are active
at the same time (Hebbian term):

Pij[t + 1] �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pij[t] + 1
τ

1
S
(1 − Pij[t]) if the synapse was not used ,

Pij[t] − u(1 − 1
S
)Pij[t] if the synapsewas used .

(31)

Ciftçi found robust self-organization to quasicriticality. The
author notes, however, that S is nonlocal information.

Uhlig et al. [82] considered the effect of LHG synapses in
the presence of an associative Hebb synaptic matrix. They
found that, although the two processes are not irreconcilable,
the critical state has detrimental effects to the attractor
recovery. They interpret this as a suggestion that the
standard paradigm of memories as fixed point attractors
should be replaced by more general approaches like
transient dynamics [83].

2.4 Spike Time–Dependent Plasticity
Rubinov et al. [84] studied a hierarchical modular network of LIF
neurons with STDP plasticity. The synapses are modeled by
double exponentials:

dVi(t)
dt

� −(Vi(t) − E) + I + Isyni (t) , (32)

Isyni (t) � ∑
j

WijV0∑̂
tj

[exp( − t − t̂j
τ1

) − exp( − t − t̂j
τ2

)] , (33)

where {̂tj} are the presynaptic firing times. Synaptic weight
changes at every spike of a presynaptic neuron, following the
STDP rule:

ΔWij �
⎧⎪⎪⎨⎪⎪⎩ A+(Wij)exp( − t̂j − t̂iτ+) if t̂j < t̂i ,

−A−(Wij)exp( − t̂j − t̂iτ−) if t̂j ≥ t̂i ,
(34)

where A+(Wij) and A−(Wij) are weight-dependent functions (see
Ref. 84 for details). The authors show an association among
modularity, low cost of wiring, STDP, and self-organized
criticality in a neurobiologically realistic model of neuronal
activity.

Del Papa et al. [85] explored the interaction between
criticality and learning in the context of self-organized
recurrent networks (SORN). The ratio between inhibitory to
excitatory neurons is NI/NE � 0.2. These neurons interact via
WEE,WIE , and WEI synapses (no inhibitory self-coupling).
Synapses are dynamic, and also the excitatory thresholds θEi .
The neurons evolve as

sEi [t + 1] � Θ⎛⎝∑
j

NE

WEE
ij [t]sEj [t] −∑

k

NI

WEI
ik s

I
j [t] − θEi [t]

+ Ii[t] +ηEi [t]⎞⎠ , (35)

sIi[t + 1] � Θ⎛⎝∑
j

NE

WIE
ij s

E
j [t] − θIi + ηIi [t]⎞⎠ , (36)

where ηi[t] represents membrane noise. Synapses and thresholds
evolve following five combined dynamics:

WEE
ij [t + 1] � WEE

ij [t] +
1

τSTDP
[sEi [t + 1]sEj [t]

− sEj [t + 1]sEi [t]] excitatory STDP , (37)

WEI
ij [t + 1] � WEI

ij [t] −
1

τ iSTDP
sIj [t][1 − sEi [t + 1](1 + 1/μIP)]

inhibitory STDP ,

(38)

Wij[t + 1]← Wij[t + 1]∑jWij[t + 1] synaptic normalization (SN) , (39)

p(NE) � NE(NE − 1)
N(N − 1) p(N) structural plasticity (SP) , (40)

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5832136

Kinouchi et al. Mechanisms of Self-Organized Quasicriticality

44

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


θEi [t + 1] � θEi [t] +
1
τIP

[sEi [t] − μIP] intrinsic plasticity(IP) ,
(41)

where μIP is the desired activity level. In the structural plasticity
process, excitatory synapses are added with probability p(NE).
The authors found that this SORN model presents well-
behaved power-law avalanche statistics and that the plastic
mechanisms are necessary to drive the network to criticality,
but not to maintain it critical; that is, the plasticity can be
turned off after the networks reach the critical region. Also,
they found that noise was essential to produce the avalanches,
but degrade the learning performance. From this, they
conclude that the relation between criticality and learning is
more complex, and it is not obvious if criticality optimizes
learning.

Levina et al. [86] studied the combined effect of LHG synapses,
homeostatic branching parameter Wh, and STDP:

Wij(t) � uJij(t)Wh(t)WSTDP(t) . (42)

They found that there is cooperativity of these mechanisms in
extending the robustness of the critical state to variations on the
hyperparameter A (see Eq. 2).

Stepp et al. [87] examined a LIF neuronal network which has
both Markram–Tsodyks dynamics and spiking time–dependent
plasticity STDP (both excitatory and inhibitory). They found that,
although MT dynamics produces some self-organization, the
STDP mechanism increases the robustness of the network
criticality.

Delattre et al. [88] included in the STDP synaptic change ΔW+
a resource depletion term:

ΔW’+ � c(η(t))ΔW+ , (43)

c(η(t)) � 1 − exp(η*−η(t)
m )

1 + exp(η*−η(t)m ) , (44)

where resource availability η(t) evolves as

dη(t)
dt

� 1
τη

− η(t)
η0(α(t))τη

. (45)

Here, α(t) is a continuous estimator of the network firing rate,
τη is the recovery time of the resources availability, and the term
η0(α(t)) � (1 + α/k)− 1 in the denominator ensures that depletion
is fast and recovery is slow (k � 20 Hz). They called this
mechanism as network spiking–dependent plasticity and
showed that, in contrast to pure STDP, it leads to power-law
avalanches with branching ratio around one.

2.5 Homeostatic Neurite Growth
Kossio et al. [89] studied IF neurons randomly distributed in a
plane, with neurites distributed within circles of radii Ri that
evolved according to

dRi

dt
� 1
τ
− u∑

ti

δ(t − ti) , (46)

where {ti} are the spike times of neuron i, with τ and u
constants. Since the connections are given by Wij � gOij,
where g is a constant and Oij are the overlapping areas of
the synaptic discs, Eq. 46 is not much different from the simple
synaptic dynamics of Eq. 10, with constant drive and decay
due to spikes.

Tetzlaff et al. [90] studied experimentally neuronal avalanches
during the maturation of cell cultures, finding that criticality is
achieved in a third stage of the dendrites/axons growth process.
They modeled the system using neurons with membrane
potential Vi(t)< 1 and calcium dynamics Ci(t):

dVi(t)
dt

� −Vi(t) − V0

τV
+∑

j

k ±
j Wij(t)Θ(Vj(t) − ηj(t)) , (47)

dCi(t)
dt

� − 1
τC
Ci(t) + βΘ(Vi(t) − ηi(t)) , (48)

where k+ > 0 (k− < 0) defines excitatory (inhibitory) neurons, and
ηj(t) ∈ [0, 1] is a random number. Dendritic and axonal spatial
distributions are again represented by their radii Ri and Ai, whose
dynamics are governed by calcium dynamics as

dRi(t)
dt

� − 1
τR

(Ci(t) − Ctarget) , (49)

dAi(t)
dt

� 1
τA

(Ci(t) − Ctarget) . (50)

Finally, the effective connection is defined as

Wij(t) � [c1(t) − 1
2
sin(2c1(t))]A2

j (t)

+ [c2(t) −12 sin(2c2(t))]R2
j (t) , (51)

c1(t) � arccos(A2
j (t) + D2

ij − R2
i (t)

2Aj(t)Dij
) ,

c2(t) � arccos(R2
i (t) + D2

ij − A2
j (t)

2Ri(t)Dij
) ,

(52)

where Dij is the distance between the neurons. This essentially
represents the overlap of the axonal and dendritic zones, which
can be understood as an abstract representation for the
probability of synapse formation.

3 DYNAMIC NEURONAL GAINS

For all-to-all topologies as used in Refs. 6, 51, 53, 55, the number
of synapses is N(N − 1), which means that simulations become
impractical for large N. Brochini et al. [55] discovered that, in
their model with stochastic neurons, adaptation in a single
parameter per neuron (the dynamic gain) is sufficient to self-
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organize the network. This reduces the number of dynamic
equations from O(N2) to O(N), enabling large-scale
simulations.

The stochastic neuron has a probabilistic firing function, say, a
linear saturating function or a rational function:

P(s � 1|V) � Φ(V)
� Γ(V − θ)Θ(V − θ)Θ(1 − Γ(V − θ))

+ Θ(Γ(V − θ) − 1) , (53)

P(s � 1|V) � Φ(V) � Γ(V − θ)
1 + Γ(V − θ) Θ(V − θ) , (54)

where s � 1 means a spike, V is the membrane potential, θ is the
threshold, and Γ is the neuronal gain.

Now, let us assume that each neuron i has its neuronal gain Γi.
Several adaptive dynamics work, similar to LHG and even
simpler:

Γi(t + 1) � Γi(t) + 1
τ
[A − Γi(t)] − uΓi(t)si(t) , (55)

Γi(t + 1) � Γi(t) + 1
τ
Γi(t) − uΓi(t)si(t) , (56)

Γi(t + 1) � Γi(t) + 1
τ
− usi(t) . (57)

Costa et al. [91] and Kinouchi et al. [58] studied the stability of
the fixed points of mechanisms given by Eqs 55 and 56 and
concluded that the fixed point solution (ρ*, Γ*) is of the form
ρ* � 0+ +O(1/τ), Γ* � Γc +O(1/τ). The fixed point is a barely
stable focus for large τ, which means that demographic noise
creates the hovering around the critical point (the sawtooth SOqC
stochastic oscillations). The peaks of theses oscillations
correspond to large excursions in the supercritical region,
producing the so-called dragon king avalanches [77].

Zierenberg et al. [92] considered a cellular automaton
neuronal model with binary states si and probabilistic synapses
Pij[t] � αi[t]Wij, where αi[t] is a homeostatic scaling factor. The
homeostasis is given by a negative feedback:

αi[t + 1] � αi[t] + 1
τhp

(r* − si[t]), (58)

where τhp is the time constant of the homeostatic process and r* is
a target level. Notice that this mechanism depends only on the
activity of the postsynaptic neuron i, not the presynaptic neuron j
as in the LHGmodel. So, αi[t] plays the same role of the neuronal
gain Γi[t] discussed above.

Indeed, for a cellular automata model similar to [60, 61], a
probabilistic synapse with neuronal gains could be written as
Pij[t] � Γi[t]Wij. In order to compare with the neuronal gain
dynamics, we rewrite Eq. 58 as

Γi[t + 1] � Γi[t] + 1
τ
− usi[t] , (59)

where τ � τhp/r* and u � 1/τhp. So, in Zierenberg et al., we have a
neuronal gain dynamics similar to Eq. 10, with hovering around

the critical point and the ubiquitous sawtooth oscillations in
α[t] ≡ 〈αi[t]〉.

4 ADAPTIVE FIRING THRESHOLDS

Girardi-Schappo et al. [93] examined a network with NE � pN �
0.8N excitatory and NI � qN � 0.2N inhibitory stochastic LIF
neurons. They found a phase diagram very similar to that of the
Brunel model [94], with synchronous regular (SR), asynchronous
regular (AR), synchronous irregular (SI), and asynchronous
irregular (AI) states. Close to the balanced state g � WII/WEE �
p/q � 4 they found an absorbing-active second-order phase
transition with a critical point gc � p/q − 1/(qΓWEE). The self-
organization of the WII and WEI inhibitory synapses was
accomplished by a LHG dynamics.

They noticed, however, that for these stochastic LIF systems,
the critical point requires also a zero field h � I − (1 − μ)θ, where I
is the external input and μ is the leakage parameter. While setting
h � 0 for the critical point of spin systems is natural, obtaining
zero field in this case demands self-organization, which is done by
an adaptive firing threshold:

θi[t + 1] � θi[t] − 1
τθ
θi[t] + uθθi[t]si[t] . (60)

Notice the plus signal in the last term, since if the postsynaptic
neuron fires (si � 1) then the threshold must increase to hinder
new firings. This mechanism is biologically plausible and also
explains classical firing rate adaptation. Remembering that ρ �
〈si〉∝ h1/δh in the critical point, where δh is the field critical
exponent, from Eq. 60, we have h∝ 1/(τθuθ)δh ≈ 0 for large τθuθ.

As already seen, Del Pappa et al. [85] considered a similar
threshold dynamics, Eq. 41. Bienenstock and Lehmann [95] also
studied, at the mean field level, the joint evolution of firing
thresholds and dynamic synapses (see Section 6.3).

5 TOPOLOGICAL SELF-ORGANIZATION

Consider a cellular automata model [29, 32, 60, 61] in a network
with average degree K and average probabilistic synaptic weights
P � 〈Pij〉. The critical branching ratio is σ � PK � 1; that is,
critical average weight Pc � 1/K . Notice that we can study
networks with any K, even the complete graph, where
Pc � 1/(N − 1). In this network, what is critical is the activity,
which does not depend on the topology (the degree K).

In another sense, we call a network topology critical if there is a
barely infinite percolating cluster, which for a random network
occurs for Kc � 2. Several authors, starting in 2,000 with
Bornholdt and Rohlf [96], explored the self-organization
toward this type of topological criticality [22, 97–104].

So, we can have a critical network with a Wc and any K or a
topologically critical network with a well-defined Kc. The two
concepts (activity criticality and topological criticality) are
different, but sometimes a topological criticality also presents a
phase transition with power-law avalanches and critical
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phenomena. The topological phase transition is continuous and
has a critical point, related to the formation of a percolating
cluster of nodes, but in the Bornholdt and Rohlf (BR) model, it is
related to an order-chaos phase transition, not to an absorbing
state phase transition.

We present here a more advanced version of the BR model
[97]. It follows the idea of deleting synapses from correlated
neurons and increasing synapses of uncorrelated neurons. The
correlation over time T is calculated as

Cij[T] � 1
T + 1

∑t0+T
t�t0

si[t]sj[t] , (61)

where the stochastic neurons evolve as

Vi[t + 1] � ∑
j

Wijsj[t] , (62)

Prob(si[t + 1] � +1) � Φ(Vi) , (63)

Prob(si[t + 1] � −1) � 1 − Φ(Vi), (64)

Φ[Vi] � 1
1 + exp( − 2Γ(Vi − θi)). (65)

The self-organization procedure is as follows:

Choose at random a pair (i, j) of neurons.
Calculate the correlation Cij(T).
Define a threshold α. If Cij(T)> α, i receives a new link Wij

randomly drawn from a uniform distribution on [−1, 1] from
site j, and if Cij < α, the link is deleted.
Then, continue updating the network state {si} and self-
organizing the network.

Interesting analytic results for this class of topological models
were obtained by Droste et al. [105]. The self-organized
connectivity is about Kc ≈ 2, where the order-chaos transition
occurs. We must notice, however, that K � 2 seems to be a very
low degree for biological neuronal networks. Kuehn [106] studied
how the topological dynamics time scale τ and noise level D affect
the BR model, finding that optimal convergence to the critical
point occurs for finite values of τopt and Dopt.

Zeng et al. [107] combined the rewiring rules of the BR model
with the neuronal dynamics of the APHmodel. They obtained an
interesting result: the final topology is a small-world network with
a large number of neighbors, say 〈K〉 ≈ 100. This avoids the
criticism made above about the low number K ≈ 2 of the
BR model.

6 SELF-ORGANIZATION TOOTHER PHASE
TRANSITIONS

6.1 First-Order Transition
Mejias et al. [108] studied a neuronal population model with
firing rate ](t), which can be written in terms of the firing density
ρ � ]/]max:

τρ
dρ
dt

� −ρ + S(W(t)ρ − θ) + Dηη(t) , (66)

where S(z) � (1/2)[1 + tanh(z)] is a (deterministic) firing
function, η(t) is a zero-mean Gaussian noise, and Dη is a noise
amplitude. They used a depressing average synaptic weight
inspired by a noisy LHG model:

dW(t)
dt

� 1
τ
[1 −W(t)] − uW(t)ρ(t) + DWη(t) , (67)

where DW is the synaptic noise amplitude. Within a certain range
of noise, they observed up–down states with irregular intervals,
leading to a distribution of permanence times T in the upstate as
P(T)∝T−3/2. Notice that this model already starts with the
mean-field equations; it is not a microscopic model (although
a microscopic model perhaps could be constructed from it).

Millman et al. [109] obtained similar results at a first-order
phase transition, but now in a random network of LIF neurons
with average of K neighbors and chemical synapses. The synapses
follow the LHG mechanism:

dWij(t)
dt

� 1
τ
[A −Wij(t)] − uWij(t)sj(t) , (68)

where Wij(t) � prUij(t) in the authors notation (pr for
probability of releasing vesicles, Uij(t) for synaptic resources)
and A � pr . They found that the branching ratio is close to one in
the upstate, with power-law avalanches with size exponent 3/2
and lifetime exponent 2.

Di Santo et al. [110, 111] and Buendía et al. [7, 46] studied the
self-organization toward a first-order phase transition (called self-
organized bistability or SOB). The simplest self-organizing
dynamics was used in a two-dimensional model:

dρ( x→, t)
dt

� [a + ωE( x→, t)]ρ( x→, t) − bρ2( x→, t) − ρ3( x→, t)
+ D∇2ρ( x→, t) + η( x→, t) ,

(69)

dE( x→, t)
dt

� ∇2ρ( x→, t) + 1
τ
[A − E( x→, t)] − uρ( x→, t) , (70)

where ω, a> 0, b< 0 are constants, A is the maximum level of
charging, D is the diffusion constant, and η( x→, t) is a zero-mean
Gaussian noise with amplitude ρ. The authors’ original notation is
h � 1/τ, ϵ � u, and E is a (former) control parameter. In the limit
1/τ→ 0+, u→ 0+, 1/(τu)→ 0, this self-organization is
conservative and can produce a tuning to the Maxwell point
with power-law avalanches (with mean-field exponents) and
dragon-king quasi-periodic events.

Relaxing the conditions of infinite separation of time scales
and bulk conservation, the authors studied the model with an
LHG dynamics [7, 46, 111]:

dρ( x→, t)
dt

� [a +W( x→, t)]ρ( x→, t) − bρ2( x→, t) − ρ3( x→, t) + I

+ D∇2ρ( x→, t) + η( x→, t) ,
(71)
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dW( x→, t)
dt

� 1
τ
[A −W( x→, t)] − uW( x→, t)ρ( x→, t) , (72)

where W is the synaptic weight and I a small input. They
found that this is the equivalent SOqC version for first-order
phase transitions, obtaining hysteretic up–down activity,
which has been called self-organized collective oscillations
(SOCOs) [7, 46, 111]. They also observed bistability
phenomena.

Cowan et al. [112] also found hysteresis cycles due to
bistability in an IF model from the combination of an
excitatory feedback loop with anti-Hebbian synapses in its
input pathway. This leads to avalanches both in the upstate
and in the downstate, each one with power-law statistics (size
exponents close to 3/2). The hysteresis loop leads to a sawtooth
oscillation in the average synaptic weight. This is similar to the
SOCO scenario.

6.2 Hopf Bifurcation
Absorbing-active phase transitions are associated to transcritical
bifurcations in the low-dimensional mean-field description of the
order parameter. Other bifurcations (say, between fixed points
and periodic orbits) can also appear in the low-dimensional
reduction of systems exhibiting other phase transitions, such
as between steady states and collective oscillations. They are
critical in the sense that they present phenomena like critical
slowing down (power-law relaxation to the stationary state) and
critical exponents. Some authors explored the homeostatic self-
organization toward such bifurcation lines.

In what can be considered a precursor in this field,
Bienenstock and Lehmann [95] proposed to apply a Hebbian-
like dynamics at the level of rate dynamics to the Wilson–Cowan
equations, having shown that the model self-organizes near a
Hopf bifurcation to/from oscillatory dynamics.

The model has excitatory and inhibitory stochastic neurons.
The neuronal equations are

VE
i (t) � ∑

j

WEE
ij s

E
j (t) +∑

j

WEI
ij s

I
j(t) − θEi , (73)

VI
i (t) � ∑

j

WIE
ij s

E
j (t) +∑

j

WEI
ij s

I
j(t) − θIi , (74)

where, as before, the binary variable s ∈ {0, 1} denotes the firing of
the neuron. The update process is an asynchronous (Glauber)
dynamics:

P(s � 1|V) � 1
2
[1 + tanh(ΓV(t))] , (75)

where Γ is the neuronal gain.
The authors proposed a covariance-based regulation for the

synapses WEE and WIE and a homeostatic process for the firing
thresholds θE(t), θI(t). The homeostatic mechanisms are

dWEE(t)
dt

� 1
τEE

(cEE(t) − ΘEE) , dWIE(t)
dt

� − 1
τIE

(cIE − ΘIE) ,
(76)

dθE(t)
dt

� 1
τE

(ρE(t) − ΘE) , dθI(t)
dt

� 1
τI
(ρE(t) − ΘI) , (77)

where cEE ≡ (ρE(t) − 〈ρE(t)〉)2 is the variance of the excitatory
activity ρE(t), cIE ≡ (ρE(t) − 〈ρE〉)(ρI(t) − 〈ρI〉) is the
excitatory–inhibitory covariance, τEE, τIE, τE , τI are time
constants, and ΘEE,ΘIE,ΘE ,ΘI are target constants.

The authors show that there are Hopf and saddle-node lines in
this system and that the regulated system self-organizes at the
crossing of these lines. So, the system is very close to the
oscillatory bifurcation, showing great sensibility to external
inputs.

As commented, this article is a pioneer in the sense of
searching for homeostatic self-organization at a phase
transition in a neuronal network in 1998, well before the
work of Beggs and Plenz [17]. However, we must recognize
some deficiencies that later models tried to avoid. First, all
the synapses and thresholds have the same value, instead of
an individual dynamics for each one, as we saw in the
preceding sections. Most importantly, the network
activities ρE and ρI are nonlocal quantities, not locally
accessible to Eqs 76 and 77.

Magnasco et al. [113] examined a very stylized model of neural
activity with time-dependent anti-Hebbian synapses:

dVi(t)
dt

� ∑
j

Wij(t)Vj(t) , (78)

dWij(t)
dt

� 1
τ
(δij − Vi(t)Vj(t)) , (79)

where δij is the Kronecker delta. They found that the system self-
organizes around a Hopf bifurcation, showing power-law
avalanches and hovering phenomena similar to SOqC.

6.3 Edge of Synchronization
Khoshkhou and Montakhab [114] studied a random network
with K � 〈Ki〉 neighbors. The cells are Izhikevich neurons
described by

dVi(t)
dt

� 0.04V2
i (t) + 5Vi(t) + 140 − ui(t) + I + Isyni (t) , (80)

dui(t)
dt

� a(bVi(t) − ui(t)), (81)

if Vi ≥ 30 thenVi←c, ui←ui + d . (82)

The parameters a, b, c, and d are chosen to have regular spiking
excitatory neurons and fast spiking inhibitory neurons. The
synaptic input is composed of chemical double-exponential
pulses with time constants τs and τf :

Isyni � V0 − Vi

Ki(τs − τf )∑j Wij
⎡⎢⎢⎣exp⎛⎝ − t − (tj + τij)

τs
⎞⎠

− exp⎛⎝−t − (tj + τij)
τf

⎞⎠⎤⎥⎥⎦ , (83)

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 58321310

Kinouchi et al. Mechanisms of Self-Organized Quasicriticality

48

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


where τij are axonal delays from j to i, V0 is the reversal potential
of the synapses, and Ki is the in-degree of node i.

The inhibitory synapses are fixed, but the excitatory ones
evolve with a STDP dynamics. If the firing difference is
Δt � tpost − tpre, when the postsynaptic neuron i fires, the
synapses change by

ΔWij �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+(Wmax −Wij)exp( − Δt − τij
τ+

) if Δt > τij,

A−(Wmax −Wij)exp( − Δt − τij
τ−

) if Δt ≤ τij.

(84)

This system presents a transition from out-of-phase to
synchronized spiking. The authors show that a STDP
dynamics self-organizes in a robust way the system to the
border of this transition, where critical features like avalanches
(coexisting with oscillations) appear.

7 CONCLUDING REMARKS

In this review, we described several examples of self-organization
mechanisms that drive neuronal networks to the border of a
phase transition (mostly a second-order absorbing phase
transition, but also to first-order, synchronization, Hopf, and
order-chaos transitions). Surprisingly, for all cases, it is possible to
detect neuronal avalanches with mean-field exponents similar to
those obtained in the experiments of Beggs and Plenz [17].

By using a standardized notation, we recognized several
common features between the proposed homeostatic
mechanisms. Most of them are variants of the fundamental
drive-dissipation dynamics of SOC and SOqC and can be
grouped into a few classes.

Following Hernandez-Urbina and Herrmann [47], we stress
that the coarse tuning on hyperparameters of homeostatic SOqC
is not equivalent to the fine-tuning of the original control
parameter. This homeostasis is a bona-fide self-organization, in
the same sense that the regulation of body temperature is self-
organized (although presumably there are hyperparameters in
that regulation). The advantage of these explicit homeostatic
mechanisms is that they are biologically inspired and could be
studied in future experiments to determine which are more
relevant to cortical activity.

Due to nonconservative dynamics and the lack of an infinite
separation of time scales, all these mechanisms lead to SOqC
[5–7], not SOC. In particular, conservative sandpile models
should not be used to model neuronal avalanches because
neurons are not conservative. The presence of SOqC is

revealed by stochastic sawtooth oscillations in the former
control parameter, leading to large excursions in the
supercritical and subcritical phases. However, hovering around
the critical point seems to be sufficient to account for the current
experimental data. Also, perhaps the omnipresent stochastic
oscillations could be detected experimentally (some authors
conjecture that they are the basis for brain rhythms [91]).

One suggestion for further research is to eliminate nonlocal
variables in the homeostatic mechanisms. Another is to study
how the branching ratio σ, or better, the synaptic matrix largest
eigenvalue Λ, depends on the self-organization hyperparameters
(as done in Ref. [61]). As several results in this review have shown,
the dependence of criticality on the hyperparameters is always
weaker than the dependence on the original control parameter.
Finally, one could devise local metaplasticity rules for the
hyperparameters, similarly to Peng and Beggs [67] (which,
however, is unfortunately nonlocal). An intuitive possibility is
that, at each level of metaplasticity, the need for coarse tuning of
hyperparameters decreases and criticality will turn out more
robust.
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Self-Organized Criticality in Economic
Fluctuations: The Age of Maturity
Claudio Tebaldi*

Department of Finance, IGIER and Baffi Carefin, Università Bocconi, Milan, Italy

Self-Organized Criticality (SOC) has been proposed as a paradigm that may rationalize the
emergence of macrofinancial fluctuations. The wave of innovative thinking sparked by this
proposal continues to produce interesting contributions in many areas of economics,
ranging frommacroeconomics to finance. In this review, we propose a guided tour to these
achievements, highlighting that analysis of SOC equilibria is a promising avenue to
establish a nexus between i) a statistical equilibrium characterized by the spontaneous
emergence of dynamic critical fluctuations and ii) a strategic equilibrium concept modeling
a large number of interacting players. The critical state is the stable outcome arising from a
trade-off between cooperation and competition.

Keywords: self-organized critical behavior, macroeconomics and financial markets, econometrics, critical
phenomena, renorm group equation

1 INTRODUCTION

The interaction between economic and physical sciences is so rich that a new interdisciplinary field
has emerged, econophysics. While its cultural appealing is undisputable, contributions that are
considered relevant and well disciplined by both economists and physicists are rare. It is fair to say
that the self-organized critical (SOC) paradigm for economic and financial fluctuations put forward
in the seminal contributions [1–3] is one of them.

While many are sympathetic with the proposal that an SOC paradigm underlies financial and
macroeconomic fluctuations, the introduction of a common language and of analytic tools useful to
make this proposal effective at both the descriptive and normative level are still underway. In fact, the
virtue and the sin of the early SOC proposal lie in the use of a simple toy model to exemplify a
number of characteristics that are expected to play a paradigmatic role.

It is virtually impossible to produce a systematic discussion of the overall state of the art, given the
relevance of the topic and the number of research contributions in this area. Hence, in this short
review, I propose a guided tour through the research spillover originating from those seminal
proposals and argue that the SOC paradigm is an important building block of an emerging
interdisciplinary paradigm suitable for framing a notion of statistical equilibrium relevant for
both social and natural sciences.

In writing this contribution, I will take a purely subjective point of view with the deliberate goal of
highlighting not only the strengths but also the open issues that are to be clarified to make the notion
of the SOC state a more disciplined and useful instrument of economic analysis.

The review is organized as follows: we will start focusing in the next Section 2 on those common
misconceptions and cultural differences that have so far limited the interaction among researchers
with such different backgrounds. Then, we dedicate a section to each one of the following three
themes that we consider SOC—“identitarian.” In Section 3, we revisit the original model trying to
clarify why the notion of “spontaneous emergence of a critical state” fits well in the traditional
economic debate about the origin of macroeconomic fluctuations. In Section 4, we review the
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interdisciplinary attempts to improve the econometric description
of financial and economic fluctuations. In particular, we focus on
those that analyze financial time series borrowing the conventional
tools used to analyze critical phenomena in physics: scaling,
universality, and renormalization. In Section 5, we review the
growing body of literature focusing on the notion of “avalanche”
that we interpret as a correlated sequence of spatiotemporal events.
We conclude with a focus on those research directions that in our
opinion should be targeted by the coming research efforts in order to
complete our understanding of the SOC paradigm with the
provision of effective policy instruments.

2 ECONOMIC EQUILIBRIUM VERSUS
STATISTICAL (NON)-EQUILIBRIUM

While the use of probability and statistics is common in both
natural and social sciences, its theoretical foundations are
radically different [4]; the contribution written by L. Hansen
on occasion of the attribution of the Nobel Prize for economic
sciences offers a key insight that clarifies the critical challenges
underlying the quantification of uncertainty in a dynamic
stochastic economy. The line of attack to macrofinancial
modeling proposed in Ref. [4] fits nicely within a
nonequilibrium statistical mechanics analysis of open systems:
“Exogenous shocks repeatedly perturb a dynamic equilibrium
through the model’s endogenous transmission mechanisms” [4]
(page 946). As Hansen points out, macrofinancial modeling poses
two challenges. The first one has a descriptive focus: to describe
what is called “uncertainty outside the model,” that is, to best
reproduce statistical features and impulse response of measured
real-world time series. This challenge fits well within a
conventional statistical mechanical approach. The second
challenge faced in economic modeling is that the model also
describes inside uncertainty: “. . . agents inside our model, be it
consumers, entrepreneurs, or policymakers, must also confront
uncertainty as they make decisions. I refer to this as inside
uncertainty . . ..” This second aspect is intimately related to the
normative focus of economics: “The modeler’s choice regarding
insiders’ perspectives on an uncertain future can have significant
consequences for each model’s equilibrium outcomes.” It is this
second objective that poses a formidable hurdle to the statistical
mechanical description of economic fluctuations. This second
requirement changes the description at the microlevel of the
system qualitatively: description of individual economic behavior
requires the introduction of a set of control variables to describe
actions at the individual and collective levels. So the conventional
mechanical description of a particle must be replaced by the
micro-description of individual decision-making. While the
emphasis in physics is more focused on the descriptive
content, these considerations explain why economists often
consider acceptable a poor description of outside uncertainty
as an acceptable price to pay in order to achieve a better
description of inside uncertainty that is necessary to account
for the policy reaction of individuals.

At first sight, these fundamental issues look completely
unrelated and far from the SOC paradigm. On the contrary,

they have a strict connection. Intuitively, the SOC automata
microscopic rules are those that describe the rational behavior
of individuals. The choice of an individual depends crucially on
the inference process that the decision-maker adopts to frame
observed data in a model. The authors of Ref. [5] provide a
thorough information theoretic analysis of the relationship
between inference and emergence of critical behavior within
an abstract statistical information theory framework. They
show that inference procedures are likely to yield models
which are close to singular values of parameters, akin to
critical points in physics where phase transitions occur. Hence,
following this argument, when inside uncertainty is taken into
account, the emergence of critical behavior will look like the rule
rather than the exception.

A similar, yet simpler example of a microfunded process is
proposed in Ref. [6]. They model a game of strategic network
formation where agents must collectively form a network in
the face of the following trade-off: each agent receives benefits
from the direct links it forms with others, but these links
expose it to the risk of being hit by a cascading failure that
might spread over multistep paths. They prove that the
resulting optimal networks are, in a precise sense, situated
just beyond a (percolation type) phase transition in the
behavior of the cascading failures.

It is worth observing that in this economic detour, we touched
statistical equilibrium physics in relation to not only the
definition of a second-order critical point corresponding to the
critical point for percolation but also the notion of a cascading
failure that intrinsically requires the nonequilibrium dynamics.
An economy is fundamentally an open system where the
endogenous reaction is induced from the agents that re-
optimize their decisions. This makes the overall response
highly nonlinear and certainly not amenable to a standard
equilibrium statistical physics treatment.

In light of these considerations, it is striking and puzzling that
the SOC paradigm may often provide an effective and accurate
description of many empirical stylized properties of a competitive
(economic) equilibrium.

3 SELF-ORGANIZATION AND THE
“INVISIBLE HAND”

During the early 1990s, many authors have emphasized the role
of complexity and nonlinearity in economics and the potential
interaction with the analysis of complex phenomena in natural
sciences (for a review, see, e.g., [7]). It is within this framework
that [1, 2] formulate the proposal that a SOC state may explain
business cycle fluctuations in the level of economic activity
indicators. In the original model, sharing many characteristics
of the directed sandpile [8] and the stochastic failure sharing [9]
models, critical fluctuations are driven by local interaction
between customers and suppliers, forming a network of
producers with non-convex technologies. One key original
aspect of the SOC approach to the analysis of macrofinancial
fluctuations is the role played by what is called the “large-
economy limit” (see, e.g., [2]); “. . .we argue that aggregate
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fluctuations in production continue to occur in the large-
economy limit . . .”

From a statistical mechanical point of view, this statement may
seem quite natural. It mimics the necessity to consider the so-
called thermodynamic limit to match a model with the relevant
observables. As discussed in the previous section, the extension of
this argument to the analysis of macrofinancial fluctuations is far
from trivial; it is the problem of aggregation that has to be
analyzed more carefully. A more recent strand of research has
highlighted the main role that the network of firm interaction
plays in the propagation of shocks in production economies (see,
e.g., [10, 11]). Ref. [12] provides an extensive review and proposes
a model calibrated on real data. An undisputable merit of these
approaches is their compliance at both micro- and macro-levels
with the basic economic principles that regulate the firm and
consumer actions.

From the point of view of statistical mechanics, they are not
completely satisfactory: a more disciplined approach to the
analysis of the large-economy limit is proposed in Ref. [13],
relying on random matrix theory. In this case, the authors show
explicitly that a network economy triggered toward the critical
point generates power-tail size distributions of firms. The authors
conjecture that evolutionary and behavioral forces conspire to
drive the economy toward marginal stability.

In a different economic context, the authors of Ref. [14] offer
an important example, to our knowledge the first one, of a
properly microfunded “snowball effect” that drives the
spontaneous emergence of critical behavior in the large-
economy limit; Ref. [14] presents a state-dependent pricing
model that describes the inflation fluctuations driven by
idiosyncratic shocks hitting the cost of price changes of
individual firms. Firms’ pricing behavior in equilibrium
exhibits complementarity: the critical cascading effect is
sparked by firms’ repricing that reduces all the competitors’
relative prices, thus inducing more of them to reprice. They
model the cascade process relying on the classical theory of
critical branching processes. Following a trend common to
most of the mean field approaches to SOC models, see also [15].

4 SOC AND ECONOMETRICS

One of the strongest arguments in favor of the approach pursued
by econophysics is the inadequacy of linear stationary models in
providing a reliable description of the basic properties of
macrofinancial time series models.

From an empirical point of view, a “minimalist” characterization
of SOC models requires the spontaneous emergence of power-law
distributions and scaling relationships (in particular, see, e.g., [9, 16]);
it postulates that the size of the response (the avalanche) to an
exogenous idiosyncratic shock (the addition of a grain in the
sandpile) follows a law satisfying a finite-size scaling ansatz:

Ps(s, L) :� s−τs Fs( s
LDs

).
Then, assuming that Fs(x) has an exponential decay for x≫ 1,

L is a fundamental cutoff to the scale-invariant behavior.

Furthermore, the scale-invariant critical behavior also requires
that the size of the response is related to its spatial extension a and
to its lifetime T by homogeneous relations, that is, s ∼ ac and
s ∼ Tβ. This implies that the finite-size scaling relation holds also
for the distributions of a and T:

Pa(a, L) :� a−τaFa( a
LDa

), PT(T , L) :� T−τT FT( T
LDT

)
Ds

Da
� τs − 1
τa − 1

� c,
Ds

DT
� τs − 1
τT − 1

� β.

(1)

Scaling Invariance is hardwired in the parametric description
of the impulse response and are difficult if not impossible to
derive within the class of linear stationary models. Reference to
the SOC paradigm appears in all the early contributions [17–20].
One important debatable question is whether, beyond power
laws, macrofinancial fluctuations show consistency with the full
articulated set of observable implications that characterize
dynamic critical phenomena in physics.

In fact, a joint test of power-law behavior, finite-size scaling
and universality within a properly defined renormalization group
fixed point, is still missing. In the following, we review the
interesting results that are suggestive of the possibility that an
attracting fixed point may underlie the SOC state properties of
financial time series.

4.1 Universality
The emergence of universal scaling relations in financial
markets has a relatively long history in relation to return
data. It is a relatively more recent acknowledgment in
relation to the market microstructure behavior; Ref. [21]
formulates the so-called market microstructure invariance
hypothesis. It claims and verifies the existence of a universal
invariant quantity I representing the average cost of a single
bet. It is expressed in dollars, independent of the asset, and
constant over time. Dimensional analysis suggests a relation of
the form

PQ
I

� f(σ2
d

Q
V
) , (2)

where p is the share price in dollars, σ2d denotes the square daily
volatility, V denotes the total daily amount traded with bets, and
Q denotes the average volume of an individual bet. Invoking the
Modigliani–Miller capital structure irrelevance principle yields
f (x) ∼ x−1/2, which implies up to a numerical factor that

I � σdPQ3/2

V1/2
:� R

N3/2
, (3)

whereR :� σdPV measures the total dollar amount of risk traded
per day (also referred to as total exchanged risk or trading
activity), while N :� V/Q represents the number of daily bets
for a given contract; Ref. [22] proposes a reformulation of the
hypothesis that improves the finite-size scaling collapse. A
thorough discussion of the potential role played by the SOC
state in explaining market microstructure liquidity dynamics is
given in Ref. [23]. In classical critical phenomena, universality
finds its explanation in the simple observation that macroscopic
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(aggregate) properties will depend only on the stochastic limiting
properties of a model that are not removed by a progressive
integration (averaging) of micro-fluctuations. The progressive
averaging procedure is part of the so-called renormalization
group transformation.

4.2 Renormalization Group
A natural bridge between critical phenomena and stochastic
modeling of financial time series is offered by the probabilistic
interpretation of the renormalization group transformation
proposed in Ref. [24]. In this formulation, the RG theory is
nothing else than a stochastic limit theory for possibly
correlated random variables. Fixed points for the semigroup
generated iterating the RG transformation represent the
achievable limit distributions. Only properties that survive
to the iteration and are relevant to define the fixed point
are macroscopically observable; Ref. [25] includes an
“econometrics -friendly” introduction to RG
transformations in time series analysis. They formalize an
extension of the (real space) RG transformation introducing
an RG operator, the R operator in paper’s notation, that acts
on the classical space of stationary square integrable time
series.

The most flexible operational approach to stochastic
modeling of financial return time series relying on the
renormalization group approach is originally proposed in
Ref. [26] and systematically exposed in Ref. [27]. It is
grounded on a “fine-graining” procedure obtained
“inverting” the real space renormalization group (RG
hereafter) flow in the space of return probability
distributions. In this case, the starting point of the
procedure is the fixed point equation that characterizes the
scale-invariant distribution. Recovery of the observed ones
occurs considering a “cascading procedure” that tracks
backward the conventional RG coarse-graining procedure.
The merits and challenges of this approach are extensively
discussed in Ref. [27]. This approach seems to offer the best
setup to frame the probabilistic analysis of (possibly self-
organized) critical behavior in time series. The key ingredients
that in our opinion are necessary to characterize a SOC ensemble (a
set of counterfactuals) are essentially two: i) an endogenous
propagation dynamics that preserves scale invariance of
conditional moments and ii) a random rescaling factor designed
to embody exogenous influences also. The fine-graining procedure
has found application in a number of interesting declinations (see
[28–30]) that witness the applicative content of the theory.

One crucial observation, noticed in Ref. [16] for the SOC
abelian sandpile and explored also in relation to the fine
graining by the authors in Ref. [27], is that statistical
description of impulse-response functions may require a
multiscaling framework, an extension of the conventional
finite-size scaling framework. In this case, the probability
distribution can be seen as a superposition of scale-
invariant clusters with heterogeneous fractal properties.
Multifractal formalism requires that the scaling properties
of Ps(s, L) are described by the spectrum:

f (α) :� log(∫+∞
Lα

Ps(x, L)dx)
log(L) , α :� log(s)

log(L) for L→ +∞.

Then, in the limit L→ +∞, asymptotic moment scaling
functions are determined by:

〈sq〉
L→+∞

≈ Lσ(q), σ(q) :� sup
α
[αq + f (α)].

These equations are consistent with a multiplicative
decomposition of the random propagation effects and cast a
direct connection with the analysis of financial markets building
on the similarity of volatility fluctuations with energy dissipation
cascades in turbulence. Early contributions by the authors of Refs.
[31, 32] established a strong analogy between turbulent cascades
and volatility clustering. A new generation of refined multiscale
models, like, for example, the multifractal random walk model
[33], is capable of matching empirical properties of observed time
series volatility.

Beyond scale invariance, characterization of the SOC
behavior relies also on property ii), that is, the existence of
random correlated sequences of micro-events (an avalanche in
the SOC dictionary) that generate a breakdown of time
translation invariance. Statistical description of dynamic
clustering within a scale-invariant model is analyzed in Ref.
[34]. This class of models is able to reproduce the stylized
behavior of volatility intermittent decay after a main financial
shock. As observed in Ref. [35], it parallels the Omori law in
geophysics for the seismic activity after an earthquake of
exceptional magnitude.

5 AVALANCHE DYNAMICS

We dedicate the last concluding section to the paradigmatic
role played by the concept of avalanche that is as intuitive as
difficult to formalize within a macrofinancial model. Along
this review, we encountered already many notions that are
close friends of the notion of avalanche: the reorganization of
the supply chain economy in a competitive equilibrium that is
hit by a shock, the sequence of correlated orders that is
determined by a single trade decision, and the random
rescaling factor in the “fine-grained” model. Last but not
least, recent macrofinancial research has shown that
propagation of financial shocks across financial institutions
interconnected by the web of financial claims plays a major
role in the unfolding of financial crises (see, e.g., [36]).
Consideration of the financial system as a SOC state has
provided great insight into the economic collapse following
the subprime crises of 2008 and the following sovereign credit
crisis in Europe. The authors of Ref. [37] provide an extensive
and interdisciplinary review.

Despite the large amount of interesting empirical evidence and
modelization efforts, research has not yet reached a consensus on
a precise, empirically testable definition of avalanche dynamics.
Intuitively, it is meant to be a dynamic counterpart to the self-
similar ensemble of clusters that characterizes fluctuations in an
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equilibrium system close to the critical point, where susceptibility
diverges. Here is where the tension between the equilibrium and
nonequilibrium description of avalanche statistics is more
evident. Consider, for example, the “Ising model” of the SOC
paradigm, the abelian sandpile. In this case, the steady-state
model has an exact characterization in terms of the q→ 0
limit of the equilibrium Potts model, and critical properties
can be derived from its conformal invariance (see [38]).
Attempts to extend the mapping and characterize the dynamic
(nonequilibrium) scaling properties of avalanche clusters have so
far not been successful.

In conclusion, the previous considerations highlighted that the
search of a satisfactory SOC model for macrofinancial
fluctuations after thirty years is far from the end. Indeed, the
SOC paradigm is still a promising avenue toward a truly effective

interdisciplinary paradigm to characterize critical statistical
fluctuations arising in strategic equilibria of interacting
rational individuals.
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Self-organized criticality has been proposed to be a universal mechanism for the
emergence of scale-free dynamics in many complex systems, and possibly in the
brain. While such scale-free patterns were identified experimentally in many different
types of neural recordings, the biological principles behind their emergence remained
unknown. Utilizing different network models and motivated by experimental observations,
synaptic plasticity was proposed as a possible mechanism to self-organize brain dynamics
toward a critical point. In this review, we discuss how various biologically plausible plasticity
rules operating across multiple timescales are implemented in the models and how they
alter the network’s dynamical state through modification of number and strength of the
connections between the neurons. Some of these rules help to stabilize criticality, some
need additional mechanisms to prevent divergence from the critical state. We propose that
rules that are capable of bringing the network to criticality can be classified by how long the
near-critical dynamics persists after their disabling. Finally, we discuss the role of self-
organization and criticality in computation. Overall, the concept of criticality helps to shed
light on brain function and self-organization, yet the overall dynamics of living neural
networks seem to harnesses not only criticality for computation, but also deviations
thereof.

Keywords: self-organized criticality, neuronal avalanches, synaptic plasticity, learning, neuronal networks,
homeostasis, synaptic depression, self-organization

INTRODUCTION

More than 30 years ago, Per Bak, Chao Tang, and Kurt Wiesenfeld [1] discovered a strikingly simple
way to generate scale-free relaxation dynamics and pattern statistic, that had been observed in
systems as different as earthquakes [2, 3], snow avalanches [4], forest fires [5], or river networks [6,
7]. Thereafter, hopes were expressed that this self-organization mechanism for scale-free emergent
phenomena would explain how any complex system in nature worked, and hence it did not take long
until the hypothesis sparked that brains should be self-organized critical as well [8].

The idea that potentially the most complex object we know, the human brain, self-organizes to a
critical state was explored early on by theoretical studies [9–12], but it took more than 15 years until
the first scale-free “neuronal avalanches” were discovered [8]. Since then, we have seen a continuous,
and very active interaction between experiment and theory. The initial, simple and optimistic idea
that the brain is self-organized critical similar to a sandpile has been refined and diversified. Now we
have a multitude of neuroscience-inspired models, some showing classical self-organized critical
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dynamics, but many employing a set of crucial parameters to
switch between critical and non-critical states [12–16]. Likewise
the views on neural activity have been extended: We now have the
means to quantify the distance to criticality even from the very
few neurons we can record in parallel [17]. Overall, we have
observed in experiments, how developing networks self-organize
to a critical state [18–20], how states may change from
wakefulness to deep sleep [21–25], under drugs [26] or in a
disease like epilepsy [27–30]. Criticality was mainly investigated
in in vivo neural activity during the resting state dynamics
[31–34], but there are also some studies during task-induced
changes and in presence of external stimuli [35–39]. These results
show how criticality and the deviations thereof can be harnessed
for computation, but can also reflect cases where self-
organization fails.

Parallel to the rapid accumulation of experimental data,
models describing the complex brain dynamics were developed
to draw a richer picture. It is worthwhile noting that the seminal
sandpile model [40] already bears a striking similarity with the
brain: The distribution of heights at each site of the system
beautifully corresponds to the membrane potential of neurons,
and in both systems, small perturbations can lead to scale-free
distributed avalanches. However, whereas in the sandpile the
number of grains naturally obeys a conservation law, the number
of spikes or the summed potential in a neural network does not.

This points to a significant difference between classical SOC
models and the brain: While in the SOC model, the conservation
law fixes the interaction between sites [40–44], in neuroscience,
connections strengths are ever-changing. Incorporating
biologically plausible interactions is one of the largest
challenges, but also the greatest opportunity for building the
neuronal equivalent of a SOC model. Synaptic plasticity rules
governing changes in the connections strengths often couple the
interactions to the activity on different timescales. Thus, they can
serve as the perfect mechanism for the self-organization and
tuning the network’s activity to the desired regime.

Here we systematically review biologically plausible models of
avalanche-related criticality with plastic connections. We discuss
the degree to which they can be considered SOC proper, quasi-
critical, or hovering around a critical state. We examine how they
can be tuned toward and away from the classical critical state, and
in particular, what are the biological control mechanisms that
determine self-organization. Our main focus is on models that
exhibit scale-free dynamics as measured by avalanche size
distributions. Such models are usually referred to as critical,
although the presence of power laws in avalanches properties
is not a sufficient condition for the dynamics to be critical
[45–48].

MODELING NEURAL NETWORKS WITH
PLASTIC SYNAPSES

Let us briefly introduce the very basics of neural networks,
modeling neural circuits and synaptic plasticity. Most of these
knowledge can be found in larger details in neuroscience text-
books [49–51]. The human brain contains about 80 billion

neurons. Each neuron is connected to thousands of other
neurons. The connections between the neurons are located on
fine and long trees of “cables”. Each neuron has one such tree to
collect signals from other neurons (dendritic tree), and a different
tree to send out signals to another set of neurons (axonal tree).
Biophysically, the connections between two neurons are realized
by synapses. These synapses are special: Only if a synapse is
present between a dendrite and an axon can one neuron activate
the other (but not necessarily conversely). The strength or weight
wij of a synapse determines how strongly neuron j contributes to
activating neuron i. If the summed input to a neuron exceeds a
certain threshold within a short time window, the receiving
neuron gets activated and fires a spike (a binary signal). If a
synapse wij allows neuron j to send signals to neuron i, it does not
mean that the reverse synapse, wji is also present. Thus, unlike
classical physics systems, interactions between units are not
symmetric but determined by a sparse, non-symmetric weight
matrix W. Moreover, interactions are not continuous but pulse-
like (spike), and they are time-delayed by a few milliseconds: It
takes a few milliseconds for a spike to travel along an axon, cross
the synapse, and reach the cell body of the receiving neuron. Most
interestingly, the synaptic weights wji change over time. This is
termed synaptic plasticity and is the core mechanism behind
learning.

Before we turn to studying synaptic plasticity in a model, the
complexity of a living brain has to be reduced into a simplified
model. Typically, neural networks are modeled with a few
hundred or thousand of neurons. These neurons are either
spiking, or approximated by “rate neurons” which represent
the joint activity of an ensemble of neurons. Such rate
neurons also exist in vivo, e.g., in small animals, releasing
graded potentials instead of spikes. Of all neurons in the
human cortex, 80% are often modeled as excitatory neurons;
when active, excitatory neurons contribute to activating their
post-synaptic neurons (i.e., the neurons to whom they send their
signal). The other 20% of neurons are inhibitory, bringing their
post-synaptic neurons further away from their firing threshold.
Effectively, an inhibitory neuron is modeled as having negative
outgoing synaptic weights wij, whereas excitatory neurons have
positive outgoing weights. In many simplified models, only one
excitatory population is considered, and inhibition is implicitly
assumed to be contributing to activity propagation probability
that is already included in the excitatory connections. The
connectivity matrix W between the neurons is typically sparse,
since most of the possible synapses are not realized. Inmodels, the
connectivity and initial strength of synapses are often drawn from
some random distribution. In some studies, however, the impact
of specific choices for connectivity and topology is explicitly
explored, as outlined in this review (Network Rewiring and
Growth). Finally, the model neurons often receive some
external activation or input in addition to the input generated
from the network connections to keep the network going and
avoid an absorbing (quiescent) state.

Numerous types of plasticity mechanisms shape the activity
propagation in neuronal systems. One type of plasticity acts at the
synapses regulating their creation and deletion, and determining
changes in their weights wij. Thereby, regulating postsynaptic

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6196612

Zeraati et al. Self-Organized Criticality by Synaptic plasticity

60

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


potentials, which govern the ability of the sending neuron to
contribute to the activation of the receiving neuron and thus to
activity propagation in the network. The other types of plasticity
mechanisms regulate the overall excitability of the neuron, for
example, by changing the spiking (activation) threshold or by
adaptation currents.

The reasons and mechanisms of changing synaptic strength
and neural excitability differ broadly. Changes of the synaptic
strengths and excitability in the brain occur at different timescales
that might be particularly important for maintaining the critical
dynamics. Some are very rapid acting within tens of milliseconds,
or associated with every spike; others only make changes on the
order of hours or even slower. For this review we simplified the
classification in three temporally and functionally distinct classes,
Figure 1.

The timescale of a plasticity rule influences how it contributes
to the state and collective dynamics of brain networks. At the first
level, we separate short-term plasticity acting on the timescale of
dozens milliseconds, from the long-term plasticity acting with a
time constant of minutes to days. As an illustration for short-term
plasticity, we present prominent examples of short-term
depression (see Short-Term Synaptic Plasticity). Among the
long-term plasticity rules, we separate two distinct classes.
First, plasticity rules that are explicitly associated with learning
structures for specific activity propagation such as Hebbian and
spike-timing-dependent plasticity (STDP, Figure 1, middle).
Second, homeostatic plasticity that maintains stable firing rate
by up or down regulating neuronal excitability or synaptic
strength to achieve a stable target firing rate over long time.
This plasticity rule is particularly active after sudden or gradual
changes in input to a neuron or neural network, and aims at re-
establishing the neuron’s firing rate (Figure 1, right).

Criticality in Network Models
Studying the distributions of avalanches is a common way to
characterize critical dynamics in network models. Depending on
the model, avalanches can be defined in different ways. When it is
meaningful to impose the separation of timescales (STS), an
avalanche is measured as the entire cascade of events
following a small perturbation (e.g., activation of a single

neuron) - until the activity dies out. However, the STS cannot
be completely mapped to living neural systems due to the
presence of spontaneous activity or external input. The
external input and spontaneous activation impedes the pauses
between avalanches and makes an unambigous separation
difficult [52]. In models, such external input can be explicitly
incorporated to make them more realistic. To extract avalanches
from living networks or from models with input, a pragmatic
approach is often chosen. If the recorded signal can be
approximated by a point process (e.g., spikes recorded from
neurons), the data is summed over all signal sources (e.g.,
electrodes or neurons) and then binned in small time bins.
This way, we obtain a single discrete time-series representing a
number of events in all time-bins. An avalanche is then defined as
a sequence of active bins between two silent bins. If the recorded
signal is continuous (like EEG, fMRI, and LFP), it is first
thresholded at a certain level and then binned in time [8]. For
each signal source (e.g., each electrode or channel), an individual
binary sequence is obtained: one if the signal in the bin is larger
than the threshold and zero otherwise. After that, the binary data
is summed up across all the signal sources, and the same
definition as above is applied. Another option to define
avalanches in continuous signals is to first sum over the
signals across different sources (e.g., electrodes) and then
threshold the compound continuous signal. In this method,
the beginning of an avalanche is defined as a crossing of the
threshold level by the compound activity process from below, and
the end is defined as the threshold crossing from above [53, 54].
In this case the proper measure of the avalanche sizes would be
the integral between two crossings of the threshold-subtracted
compound process [55].

While both binning and thresholding methods are widely
used, concerns were raised that depending on the bin size [8,
21, 52, 56], the value of the threshold [55], or the intensity of
input [57] distribution of observed avalanches and estimated
power-law exponents might be altered. Therefore, to characterize
critical dynamics using avalanches it is important to investigate
the fundamental scaling relations between the exponents of
avalanche size, duration and shapes to avoid misleading results
[58, 59], or instead use approaches to assess criticality that do not

FIGURE 1 | Schematic examples of synaptic plasticity. (A) short-term synaptic depression acts on the timescale of spiking activity, and does not generate long-
lasting changes. (B) For spike-timing dependent plasticity (STDP), a synapse is potentiated upon causal pairing of pre- and postsynaptic activity (framed orange) and
depressed upon anti-causal pairing (framed green), forming long-lasting changes after multiple repetitions of pairing. (C) Homeostatic plasticity adjusts presynaptic
weights (or excitability) to maintain a stable firing rate. After reduction of a neuron’s firing rate (e.g., after a lesion and reduction of input), the strengths of incoming
excitatory synapses are increased to re-establish the neuron’s target firing rate. In contrast, if the actual firing rate is higher than the target rate, then synapses are
weakened, and the neuron returns to its firing rate–on the timescales of hours or days.
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require the definition of avalanches [17, 60]. We elaborate on
these challenges and bias-free solutions in a review book chapter
[61]; for the remainder of this review, we assume that avalanches
can be assessed unambiguously.

The timescale of a plasticity rule might play a deciding role for
the plasticity’s ability of reaching and maintaining closeness to
criticality. While short-term plasticity acts very quickly, it does
not generate long-lasting, stable modifications of the network;
and it can clearly serve as a feedback between activity and
connection strength. Long-term plasticity, on the other side,
takes longer to act, but can result in a stable convergence to
critical dynamics, Figure 2. To summarize their properties:

• Long-term plasticity is timescale-separated from activity
propagation, whereas short-term plasticity evolves at
similar timescales.

• Long-term plasticity can self-organize a network to a
critical state.

• Short-term plasticity constitutes an inseparable part of the
network dynamics. It generates critical statistics in the data,
working as a negative feedback.

• The core difference: long-term plasticity, after convergence,
can be switched off and the system will remain at criticality.
Switching off short-term plasticity will almost surely destroy
apparent critical dynamics.

• There is a continuum of mechanisms on different timescales
between these two extremes. Rules from this continuum can
generate critical states that persist for varying time after
rule-disabling, potentially even infinitely.

Short-Term Synaptic Plasticity
The short-term plasticity (STP) describes activity-related changes
in connection strength at a timescale close to the timescale of
activity propagation, typically on the order of hundreds to
thousands of milliseconds. There are two dominant
contributors to the short-term synaptic plasticity: the depletion
of synaptic resources used for synaptic transmission, and the

transient accumulation of the Ca2+ ions that are entering the cell
after each spike [62].

At every spike, a synapse needs resources. Inmore detail, at the
presynaptic side, vesicles from the readily-releasable pool are
fused with the membrane; once fused, the vesicle is not available
until it is replaced by a new one. This fast fusion, and slow filling
of the readily releasable pool leads to synaptic depression,
i.e., decreasing coupling strength after one or more spikes
(Figure 1A). Synapses whose dynamics is dominated by
depletion are called depressing synapses [63]. At the same time,
for some types of synapses, recent firing increases the probability
of release for the vesicles in a readily-releasable pool. This
mechanism leads to the increase of the coupling strength for a
range of firing frequencies. Synapses with measurable
contributions from it are called facilitating synapses [64].
Hence, depending on their past activity, some synapses lower
their release (i.e., activation) probability, others increase it,
leading effectively to a weakening or strengthening of the
synaptic strength.

Short-term plasticity (STP) appears to be an inevitable
consequence of synaptic physiology. Nonetheless, numerous
studies found that it can play an essential role in multiple
brain functions. The most straightforward role is in the
temporal filtering of inputs, i.e., short-term depression will
result in low-pass filtering [65] that can be employed to
reduce redundancy in the incoming signals [66]. Additionally,
it was shown to explain aspects of working memory [67].

We consider a network of neurons (in the simplest case, non-
leaky threshold integrators) that interact by exchanging spikes.
The state Vi ≥ 0 of neuron i � 1, . . . ,N represents the membrane
potential and obeys the following equation:

_Vi � δi,ζτ(t)I + CN ∑N
j�1

wij(tjsp)δ(t − tjsp − τd), (1)

where tjsp is the time of the spike of presynaptic neuron j, wij(tjsp)
is the strength of synapse between neuron j and i at time tjsp. Each

FIGURE 2 | Classical plasticity rules and set-points of network activity. (A) Short-term plasticity serves as immediate feedback (top). The resulting long-term
behavior of the network hovers near the critical point (orange trace, bottom panel). (B) Long-term plasticity results in slow (timescale of hours or longer) convergence to
the fixpoint of global coupling strength. In some settings, this fixpoint may correspond to the second-order phase-transition point (bottom), rendering the critical point a
global attractor of dynamics.
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neuron integrates inputs until it reaches a threshold θ. As soon as
Vi(t)> θ, the neuron emits a spike and delivers excitatory
postsynaptic potentials to every connected neuron in the network
after a fixed delay τd . The neurons receive external input defined by a
random process ζτ(t) ∈ {1, . . . ,N} that acts on a very slow timescale
τ≫ τd (timescale separation) by selecting a random neuron and
increasing its membrane potential by an amount I. The timescale τ
defines a time-step in the discrete simulation between the avalanches.

To model the changes in the connection strength associated
with short-term synaptic plasticity, it is sufficient to introduce
two additional dynamic variables: Ji indicates the number of
synaptic resources (i.e., vesicles) available in neuron i, and ui the
fraction of these resources that is used for one spike. Coupling
strength is captured by wi(t) � Ji(t)ui(t). Each time when
neuron i emits a spike at time tisp, Ji is reduced by
Ji(tisp)ui(tisp). This reflects the use of one or more vesicles to
transmit the spike. After a spikes, the resources recover (i.e., the
readily-releasable vesicle pool is filled again), and Ji approaches its
resting value Jrest at a time scale τJ .

_Ji � 1
τJ
(Jrest − Ji) − uiJiδ(t − tisp), (2)

with δ denoting Dirac delta function. To add synaptic facilitation,
we equip ui with temporal dynamics, increasing it at each spike
and decreasing between the spikes:

_ui � 1
τu

(urest − ui) + (1 − ui)urestδ(t − tjsp). (3)

Including depressing synapses (Eq. 2) in the integrate-and-fire
neuronal network was shown to increase the range of coupling
parameters leading to the power-law scaling of avalanche size
distribution [68] as compared to the network without synaptic
dynamics (Figure 3). If facilitation (Eq. 3) is included in the
model, an additional first-order transition arises [69] (Figure 3).
Both models have an analytical mean-field solution. In the limit
of the infinite network size, the critical dynamics is obtained for
any large enough coupling parameter. It was later suggested that

the state reached by the system equipped with depressing
synapses is not SOC, but self-organized quasi-criticality [70],
as it is not locally energy preserving.

The mechanism of the near-critical region extension with
depressing synapses is rather intuitive. If there is a large event
propagating through the network, the massive usage of synaptic
resources effectively decouples the network. This in turn prevents
the next large event for a while, until the resources are recovered.
At the same time, series of small events allow to build up
connection strength increasing the probability of large
avalanche. Thus, for the coupling parameters above the critical
values, the negative feedback generated by the synaptic
depression allows to bring the system closer to the critical
state. Complimentary, short-term facilitation can help to shift
slightly subcritical systems to a critical state.

A networkwith STD is essentially a two-dimensional dynamical
system (with one variable corresponding to activity, and other to
momentary coupling strength). Critical behavior is observed in the
activity-dimension, over a long period of time while the coupling is
hovering around the mean value as response to the changing
activity. If the plasticity is “switched off”, the system may be close
to–or relatively far from the critical point of the networks. The
probability that the system happens to be precisely at its critical
state when plasticity is switched off goes to zero, because 1)
criticality only presents one point in this one-dimensional phase
transition, and 2) for the large system size, already the smallest
parameter deviation results in a big difference in the observed
avalanche distribution, rendering the probability to switch off
plasticity at the moment of critical coupling strength effectively 0.

In critical systems, not only the avalanche size distribution, but
also the absence or presence of correlation between the
avalanches are of interest. Already in the classical Bak-Tang-
Wiesenfeld model [40], subsequent avalanche sizes are not
statistically independent, whereas in the branching process
they are. Hence, the correlation structure of subsequent
avalanche sizes allows inference about the underlying model
and self-organization mechanisms. In the presence of such
correlations, fitting the avalanche distributions and

FIGURE 3 | Short-term plasticity increases the range of the near critical regime. Left: model without plasticity reaches critical point only for single coupling
parameter,wi(t) � w. Middle: short-term depression extends the range of parameters resulting in the critical dynamics. Fraction ui of synaptic resources for each spike:
ui � u � 0.2, coupling parameter represents resting synaptic strength wrest � uJrest � 0.2Jrest. An actual connection strength at time t is wi(t) � uJi(t), where Ji(t) is
described by Eq. 2. Different lines correspond to different values of Jrest ∈ [2,5]. Right: short-term facilitation and depression together generate a discontinuous
(first order - like) phase transition. Resting state fraction of synaptic resources urest � 0.1, coupling parameter is resting state synaptic strength wrest � urestJrest,
connection strength wi(t) � ui(t)Ji(t) is given by Eqs 2,3. Different lines correspond to different values of Jrest ∈ [4.5,6.5]. For all simulations, network size N � 300,
τu � τJ � 10Nτ, where τ is a timescale of external drive.
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investigating power-law statistics should also be applied properly
[71]. For models with short-term plasticity, both the avalanche
sizes and inter-avalanche intervals are correlated, and similar
correlations were observed in the neuronal data in vitro [72].

After the first publication [73], short-term depression was
employed in multiple models discussing other mechanisms or
different model for individual neurons. To name just a few: in
binary probabilistic networks [74], in networks with long-term
plasticity [75, 76], in spatially pre-structured networks [77, 78]. In
one of the few studies using leaky integrate-and-fire neurons,
short term depression was also found to result in critical
dynamics if neuronal avalanches are defined by following the
causal activation chains between the neurons [79]. However, it
was shown later that the causal definition of avalanches will lead
to power-law statistics even in clearly non-critical systems [80]. In
all cases, the short-term plasticity contributes to the generation of
a stable critical regime for a broad parameter range.

Long-Term Synaptic Plasticity and Network
Reorganization
Long-termmodifications in neuronal networks are created by two
mechanisms: long-term synaptic plasticity and structural
plasticity (i.e., changes of the topology). With long-term
synaptic plasticity, synaptic weights change over a timescale of
hours or slower, but the adjacency matrix of the network remains
unchanged. However, with structural plasticity, new synapses are
created or removed. Both these mechanisms can contribute to
self-organizing the network dynamics toward or away from
criticality.

Three types of long-term synaptic plasticity have been
proposed as possible mechanisms for SOC: Hebbian plasticity,
Spike-timing-dependent plasticity (STDP) and homeostatic
plasticity. In Hebbian plasticity connections between near-
synchronously active neurons are strengthened. In STDP, a
temporally asymmetric rule is applied, where weights are
strengthened or weakened depending on the order of pre- and
post-synaptic spike-times. Last, homeostatic plasticity adapts the
synaptic strength as a negative feedback, decreasing excitatory
synapses if the firing rate is too high, and increasing it otherwise.
Thereby, it stabilizes the network’s firing rate. In the following, we
will discuss how each of these mechanisms can contribute to
creating self-organized critical dynamics and deviations thereof.

Hebbian-Like Plasticity
Hebbian plasticity is typically formulated in a slogan-like form:
Neurons that fire together, wire together. This means that
connections between neurons with similar spike-timing will be
strengthened. This rule can imprint stable attractors into the
network’s dynamics, constituting the best candidate mechanism
for memory formation. Hebbian plasticity in its standard form
does not reduce coupling strength, thus without additional
stabilization mechanisms Hebbian plasticity leads to runaway
excitation. Additionally, presence of stable attractors makes it
hard to maintain the scale-free distribution of avalanche sizes.

The first papers uniting Hebbian-like plasticity and criticality
came from Lucilla de Arcangelis’ and Hans J. Herrmann’s labs

[81–83]. In a series of publications, they demonstrated that a
network of non-leaky integrators, equipped with plasticity and
stabilizing synaptic scaling develops both power-law scaling of
avalanches (with exponent 1.2 or 1.5 depending on the external
drive) and power-law scaling of spectral density [81, 82]. In the
follow up paper, they realized multiple logical gates using
additional supervised learning paradigm [83].

Using Hebbian-like plasticity to imprint patterns in the
network and simultaneously maintain critical dynamics is a
very non-trivial task. Uhlig et al. [84] achieved it by
alternating Hebbian learning epochs with the epochs of
normalizing synaptic strength to return to a critical state. The
memory capacity of the trained network was close to the maximal
possible capacity and remain close to criticality. However, the
network without homeostatic regulation toward a critical state
achieved better retrieval. This might point to the possibility that
classical criticality is not an optimal substrate for storing simple
memories as attractors. However, in the so-far unstudied setting
of storing memories as dynamic attractors, the critical system’s
sensitivity might make it the best solution.

Spike-timing-dependent Plasticity
Spike-timing-dependent plasticity (STDP) is a form of activity-
dependent plasticity in which synaptic strength is adjusted as a
function of timing of spikes in pre- and post-synaptic neurons. It
can appear both in the form of long-term potentiation (LTP) or
long-term depression (LTD) [85]. Suppose the post-synaptic
neuron fires shortly after the pre-synaptic neuron. In that case,
the connection from pre-to the post-synaptic neuron is
strengthened (LTP), but if the post-synaptic neuron fires after
the pre-synaptic neuron, the connection is weakened (LTP),
Figure 1B. Millisecond temporal resolution measurements of
pre- and postsynaptic spikes experimentally by Markram et al.
[86–88] together with theoretical model proposed by Gerstner
et al. [89] put forward STDP as a mechanism for sequence
learning. Shortly after that other theoretical studies [90–94]
incorporated STDP in their models as a local learning rule.

Different functional forms of STDP are observed in different
brain areas and across various species (for a review see [95]). For
example, STDP in hippocampal excitatory synapses appear to
have equal temporal windows for LTD and LTP [86, 96, 97], while
in neocortical synapses it exhibits longer LTD temporal windows
[98, 99]. Interestingly, an even broader variety of different STDP
kernels were observed for inhibitory connections [100].

The classical STDP is oftenmodeled by modifying the synaptic
weight wij from pre-synptic neuron j to post-synaptic neuron i as

Δwij �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+(wij) exp(tj − ti
τ+

) tj < ti

−A−(wij) exp(tj − ti
τ−

) tj ≥ ti

(4)

where ti and tj are latest spikes of neurons i and j and τ+ and τ−
are LTP and LTD time constants. Weight dependence functions
A+(wij) and A−(wij) control the synaptic weights to stay between
0 and wmax, which is required from the biological point of view.
Two families of weight dependence functions have been
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introduced: 1) soft weight bounds (multiplicative weights) [103],
2) hard weight bounds (additive weights) [89]. Soft weight
bounds are implemented as

A+(wij) � (wmax − wij)η+, A−(wij) � wijη− , (5)

where η+ < 1 and η− < 1 are positive constants. Weight
dependence functions with hard bounds are defined using a
Heaviside step function H(x) as

A+(wij) � H(wmax − wij)η+, A−(wij) � H(−wij)η− . (6)

There are two types of critical points that can be attained by
networks with STDP. The first transition type is characterized by
statistics of weights in the converged network. For instance, at this
point synaptic coupling strengths [104] or the fluctuations in
coupling strengths [105] follow a power-law distribution. The
second transition type is related to network’s dynamics, it is
characterized by presence of scale-free avalanches [101, 102, 106].
In these models STDP is usually accompanied by fine-tuning of
some parameters or properties of the network to create critical
dynamics. This suggests that STDP alone might not be sufficient
for SOC.

Rubinov et al. [101] developed a leaky integrate-and-fire (LIF)
network model with modular connectivity (Figures 4A,B). In
their model, STDP only gives rise to power-law distributions of
avalanches when the ratio of connection between and within
modules is tuned to a particular value. Their results were

unchanged for STDP rules with both soft and hard bounds.
However, they reported that switching off the STDP dynamics
leads to the deterioration of the critical state, which disappears
completely after a while. This property places the model in-
between truly long-term and short-term mechanisms.
Additionally, avalanches were defined based on the activity of
modules (simultaneous activation of a large number of neurons
within a module). In this modular definition of activity, SOC is
achieved by potentiating within-module synaptic weights during
module activation and depression of weights in-between module
activations. While the module-based definition of avalanches
could be relevant to the dynamics of cell-assemblies in the
brain or more coarse-grained activity such as local field
potentials (LFP), further investigation of avalanches statistics
based on individual neurons activity is required.

Observation of power-law avalanche distributions was later
extended to a network of Izhikevich neurons with a temporally
shifted soft-bound STDP rule [102] (Figures 4C,D). The shift in
the boundary between potentiation and depression reduces the
immediate synchronization between pre- and post-synaptic
neurons that eventually stabilizes the synaptic weights and the
post-synaptic firing rate similar to a homeostasis regulation [107].
In the model, the STDP time-shift is set to be equal to the axonal
delay time constant that also acts as a control parameter for the
state of dynamics in the network. The authors showed that for a
physiologically plausible time constant (τ � 10 ms) network
dynamics self-organizes to the edge of synchronization

FIGURE 4 | Different STDP rules and their role in creating SOC. (A) Classical STDP rule with asymmetric temporal windows (STDP parameters: τ+ � 15 ms,
τ− � 30 ms,wmax � 1, η+ � 0.75, η− � 0.5). (B) Amodular network that is rewired to create particular inter- and intra-modules connections (left) combined with classical
STDP gives rise to dynamics characterized by power-law avalanche-size distribution (right, thick line). Non-power-law avalanche-size distributions correspond to other
rewiring probabilities with the gray lines showing the two extremes of ordered and random networks (reproduced from [101] under CC BY license). (C) Shifted
STDP rule (STDP parameters: τ+ � τ− � 20 ms,wmax � 0.6, η+ � η− � 0.05, time-shift � 10 ms). (D) (left) Average coupling strength G(t) in a network with shifted STDP
will converge to a steady state value. (right) Setting the STDP time-shift to τ � 10 ms (equal to axonal delay time-constant) leads to emergence of power-law avalanche-
size distributions that scale with the system size (reproduced from [102] under CC BY license). N indicates the network size.
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transition point. At this transition point, distribution of size and
duration of avalanches follow a power-law-like distribution. They
showed that the power-law exponents can be approximately fitted
in the standard scaling relation required for a critical system [59].
However, since they defined avalanches based on thresholding of
the global network firing, estimated avalanche distributions and
fitted exponents might be generated by the thresholding [55].

Homeostatic Regulations
Homeostatic plasticity is a mechanism that regulates neural
activity on a long timescale [108–113]. In a nutshell, one
assumes that every neuron has some intrinsic target activity
rate. Homeostatic plasticity then presents a negative feedback
loop that maintains that target rate and thereby stabilize network
dynamics. In general, it reduces (increases) excitatory synaptic
strength or neural excitability if the spike rate is above (below) a
target rate, Figure 1C. This mechanism can stabilize a potentially
unconstrained positive feedback loop through Hebbian-type
plasticity [114–121]. The physiological mechanisms of
homeostatic plasticity are not fully disentangled yet. It can be
implemented by a number of physiological candidate
mechanisms, such as redistribution of synaptic efficacy [63,
122], synaptic scaling [108–110, 123], adaptation of membrane
excitability [112, 124], or through interactions with glial cells
[125, 126]. Recent results highlight the involvement of
homeostatic plasticity in generating robust yet complex
dynamics in recurrent networks [127–129].

In models, homeostatic plasticity was identified as one of the
primary candidates to tune networks to criticality. The
mechanism of it is straightforward: taking the analogy of the
branching process, where one neuron (or unit) on average
activates m neurons in the subsequent time step, the stable
sustained activity that is the goal function of the homeostatic
regulation requires m � mc � 1 which is precisely the critical
value [130]. In 2007, Levina and colleagues made use of this
principle. They devised a homeostasis-like rule, where all
outgoing weights were normalized such that each neuron in
the fully connected network activated on average m � 1
neurons in the next time step [131, 132]. Thereby, the
network tuned itself to a critical state.

Similar ideas have been proposed and implemented first in
simple models [133] and later also in more detailed models. In the
latter, homeostatic regulation tunes the ratio between excitatory
and inhibitory synaptic strength [53, 129, 134–136]. It then
turned out that due to the diverging temporal correlations,
which emerge at criticality, the time-scale of homeostasis
would also have to diverge [135]. If the time-scale of the
homeostasis is faster than the timescale of the dynamics, then
the network does not converge to a critical point, but hovers
around it, potentially resembling supercritical dynamics [14,
135]. It is now clear that a self-organization to a critical state
(instead of hovering around a critical state) requires that the
timescale of homeostasis is slower than that of the network
dynamics [14, 135].

Whether a system self-organizes to a critical state, or to a sub-
or supercritical one is determined by a further parameter, which
has been overlooked for a while: The rate of external input. This

rate should be close to zero in critical systems to foster a
separation of time scales [52, 137]. Hence, basically all
models that studied criticality were implemented with a
vanishing external input rate. In neural systems, however,
sensory input, spontaneous activation, and other brain areas
provide continuous drive, and hence a separation of timescales
is typically not realized [52]. As a consequence, avalanches
merge, coalesce, and separate [51, 56, 137]. It turns out that
under homeostatic plasticity, the external input strength can
become a control parameter for the dynamics [14]: If the input
strength is high, the system self-organizes to a subcritical state
(Figure 5, right). With weaker input, the network approaches a
critical state (Figure 5, middle). However when the input is too
weak, pauses between bursts get so long that the timescale of the
homeostasis again plays a role - and the network does not
converge to a single state but hovers between sub- and
supercritical dynamics (Figure 5, left). This study shows that
under homeostasis the external input strength determines the
collective dynamics of the network.

Assuming that in vivo, cortical activity is subject to some level
of non-zero input, one expects a sightly subcritical state - which is
indeed found consistently across different animals [14, 17, 30,
139, 140]. In vitro systems, however, which lack external input,
are expected to show bursty avalanche dynamics, potentially
hovering around a critical point with excursions to
supercriticality [14, 136]. Such burst behavior is indeed
characteristic for in vitro systems [8, 14, 19, 59].

Recently, Ma and colleagues characterized in experiments
how homeostatic scaling might re-establish close-to-critical
dynamics in vivo after perturbing sensory input [139]
(Figure 6). The past theoretical results would predict that
after blocking sensory input in a living animal, the spike rate
should diminish, and with the time-scale of homeostatic
plasticity, a state close to critical or even super-critical would
be obtained [14, 136]. In a recent experiment, however, the
behavior is more intricate. Soon after blocking visual input, the
network became subcritical (branching ratiom smaller than one
[17, 130]) and not supercritical. It then recovered to a close-to-
critical state again within two days, potentially compensating
the lack of input by coupling stronger to other brain areas. The
avalanche size distributions agree with the transient deviation to
subcritical dynamics. This deviation to subcriticality is the
opposite of what one might have expected under reduced
input, and apparently cannot be attributed to concurrent rate
changes (which otherwise can challenge the identification of
avalanche distributions [47]): The firing rate only started to
decrease one day after blocking visual input. The authors
attribute this delay in rate decay to excitation and inhibition
reacting with different time constants to the blocking of visual
input [139].

Overall, although the exact implementation of the homeostatic
plasticity on the pre- and postsynaptic sides of excitatory and
inhibitory neurons remains a topic of current research, the
general mechanism allows for the long-term convergence of
the system to the critical point, Figure 1B. Homeostasis
importantly contributes to many models including different
learning mechanisms, stabilizing them.
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Network Rewiring and Growth
Specific network structures such as small-world [68, 81, 141, 142]
or scale-free [75, 83, 143–146] networks were found to be
beneficial for the emergence of critical dynamics. These
network structures are in particular interesting since they have
been also observed in both anatomical and functional brain
networks [147–150]. To create such topologies in neural
networks long-term plasticity mechanisms have been used. For
instance, scale-free and small-world structures emerge as a
consequence of STDP between the neurons [105]. In addition,
Hebbian plasticity can generate small-world networks [151].

Another prominent form of network structures are
hierarchical modular networks (HMN) that can sustain critical
regime for a broader range of control parameters [77, 101, 152].
Unlike a conventional critical point where control parameter at a
single value leads to scale-free avalanches, in HMNs power-law
scaling emerges for a wide range of parameters. This extended
critical-like region can correspond to a Griffits phase in statistical
mechanics [152]. Different rewiring algorithms have been
proposed to generate HMN from an initially randomly
connected [77] or a fully connected modular network [101, 152].

Experimental observations in developing neural cultures
suggest that connections between neurons grow in a way such
that the dynamics of the network eventually self-organizes to a
critical point (i.e., observation of scale-free avalanches) [18, 19].
Motivated by this observation, different models have been
developed to explain how neural networks can grow
connections to achieve and maintain such critical dynamics
using homeostatic structural plasticity [19, 153–158] (for a
review see [159]). In addition to homeostatic plasticity, other
rewiring rules inspired by Hebbian learning were also proposed to
bring the network dynamics toward criticality [160–162].
However, implementation of such network reorganizations
seems to be less biologically plausible.

In most of the models with homeostatic structural plasticity,
the growth of neuronal axons and dendrites is modeled as an
expanding (or shrinking) circular neurite field. The growth of the

neurite field for each neuron is defined based on the neuron’s
firing rate (or internal Ca2+ concentration). A firing rate below
the homeostatic target rate (ftarget) expands the neurite field, and a
firing rate above the homeostatic target rate shrinks it. In
addition, when neurite fields of two neurons overlap a
connection between them will be created with a strength
proportional to the overlapped area. Kalle Kossio et al. [156]
showed analytically that if the homeostatic target rate is
significantly larger than the spontaneous firing rate of the
network, such growth mechanism would bring the network
dynamics to a critical point with scale-free avalanches
(Figure 7). However, for a small target rate subcritical
dynamics will arise.

Tetzlaff et al. [19] proposed a slightly different mechanism
where two neurites fields are assigned separately for axonal
growth and dendritic growth to each neuron. While changes
in the size of dendritic neurite fields follows the same rule as
explained above, neurite fields of axons follow an exact opposite
rule. The model simulations start with all excitatoryry neurons,
but in the middle phase 20% of the neurons are changed into
inhibitory ones. This switch is motivated by the transformation of
GABA neurotransmitters from excitatory to inhibitory during
development [163]. They showed that when the network
dynamics converge to a steady-state regime, avalanche-size
distributions follow a power-law.

HYBRID MECHANISMS OF LEARNING AND
TASK PERFORMANCE

In living neural networks, multiple plasticity mechanisms occur
simultaneously. The joint contribution of diverse mechanisms
has been studied in the context of criticality in a set of models [75,
164, 165]. A combination with homeostatic-like regulation is
typically necessary to stabilize Hebbian or spike-timing-
dependent plasticity (STDP), e.g., learning binary tasks such as
an XOR rule with Hebbian plasticity [75] or sequence learning

FIGURE 5 | Homeostatic plasticity regulation can create different types of dynamics in the network depending on input strength h, target firing rate r* and recurrent
interactions. (top) example spiking activity traces. (bottom) full-sampled (circles) and subsampled (triangles) avalanche size distributions averaged over 12 independent
simulations. From left to right: network generates supercritical bursting (m> 1, h/r* ≤10− 3, purple-red), fluctuating (m ≈ 0.99, h/r* ≈ 10− 2 and m ≈ 0.9, h/r* ≈ 10− 1,
orange-yellow) and irregular (m ≈ 0, h/r* � 1, green) activity. Solid lines show the critical branching process avalanche-size distribution P(s)∝ s−3/2 [130] and
dashed line is the analytical avalanche-size distribution of a Poisson process [47] (reproduced from [14] by permission).
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with STDP [166–170]. These classic plasticity rules have been
paired with regulatory normalization of synaptic weights to avoid
a self-amplified destabilization [119–121]. Additionally, short-
term synaptic depression stabilizes the critical regime, and if it is
augmented with meta-plasticity [164] the stability interval is
increased even further, possibly allowing for stable learning.

In a series of studies, Scarpetta and colleagues investigated how
sequences can be memorized by STDP, while criticality is
maintained [166–168]. By controlling the excitability of the
neurons, they achieved a balance between partial replays and
noise resulting in power-law distributed avalanche sizes and
durations [166]. They later reformulated the model and used
the average connection strength as a control parameter, obtaining
similar results [167, 168]. Whereas STDP fosters the formation of
sequence memory, Hebbian plasticity is known to form
assemblies (associations), and in the Hopfield network enables
memory completion and recall [171]. A number of studies

showed that the formation of such Hebbian ensembles is also
possible while maintaining critical dynamics [84, 168, 172]. These
studies show that critical dynamics can be maintained in
networks, which are learning classical tasks.

The critical network can support not only memory but also
real computations such as performing logical operations (OR,
AND or even XOR) [75, 83]. To achieve this, the authors build
upon the model with Hebbian-like plasticity that previously
shown to bring the network to a critical point [81]. They
added the central learning signal [173], resembling
dopaminergic neuromodulation. Authors demonstrated both
with [75] and without [83] short-term plasticity that the
network can be trained to solve XOR-gate task.

These examples lead to the natural question of whether
criticality is always optimal for learning. The criticality
hypothesis attracted much attention, precisely because models
at criticality show properties supporting optimal task

FIGURE 6 | Homeostatic regulations in visual cortex of rats tune the network dynamics to near criticality. (A) (top) Firing rate of excitatory neurons during 7 days of
recording exhibit a biphasic response to monocular deprivation (MD). After 37 h following MD firing rates were maximally suppressed (blue arrow) but came back to
baseline by 84 h (orange arrow). Rates are normalized to 24 h of baseline recordings before MD. (bottom) Measuring the distance to criticality coefficient (DCC) in the
same recordings. Themean DCCwas significantly increased (blue arrow) uponMD, but was restored to baseline levels (near-critical regime) at 48 h (orange arrow).
(B) An example of estimation of DDC (right) using the power-law exponents from the avalanche-size distribution (left) and the avalanche-duration distribution (middle).
Solid gray traces show avalanche distributions in shuffled data. DCC is defined as the difference between the empirical scaling (dashed gray line) and the theoretical value
(solid gray line) predicted from the exponents for a critical system as the displayed formula [59]. (C) Avalanche-size distributions and DCCs computed from 4 h of single-
unit data in three example animals show the diversity of experimental observations (reproduced from the bioRxiv version of [139] under CC-BY-NC-ND 4.0 international
license).
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performance. A core properties of criticality is a maximization of
the dynamic range [174, 175], the sensitivity to input, and
diverging spatial and temporal correlation lengths [176, 177].
In recurrent network models and experiments, such boost of
input sensitivity and memory have been demonstrated by tuning
networks systematically toward and away from criticality [174,
178–182].

When not explicitly incorporating a mechanism that drives
the network to criticality, learning networks can be pushed away
from criticality to a subcritical regime [15, 16, 170, 183, 184]. This
is in line with the results above that networks with homeostatic
mechanisms become subcritical under increasing network input
(Figure 5). Subcritical dynamics might indeed be favorable when
reliable task performance is required, as the inherent variability of
critical systems may corroborate performance variability [52,
185–190].

Recently, the optimal working points of recurrent neural
networks on a neuromorphic chip were demonstrated to
depend on task complexity [15, 16]. The neuromorphic chip
implements spiking integrate-and-fire neurons with STDP-like
depressive plasticity and slow homeostatic recovery of synaptic
strength. It was found that complex tasks, which require
integration of information over long time-windows, indeed
profit from critical dynamics, whereas for simple tasks the
optimal working point of the recurrent network was in the
subcritical regime [15, 16]. Criticality thus seems to be optimal
particularly when a task makes use of this large variability, or
explicitly requires the long-range correlation in time or space, e.g.,
for active memory storage.

DISCUSSION

We summarized how different types of plasticity contribute to the
convergence and maintenance of the critical state in neuronal
models. The short-term plasticity rules were generally leading to
hovering around the critical point, which extended the critical-
like dynamics for an extensive range of parameters. The long-
term homeostatic network growth and homeostatic plasticity, for
some settings, could create a global attractor at the critical state.
Long-term plasticity associated with learning sequences, patterns
or tasks required additional mechanisms (i.e., homeostasis) to
maintain criticality.

The first problem with finding the best recipe for criticality in
the brain is our inability to identify the brain’s state from the
observations we can make. We are slowly learning how to deal
with strong subsampling (under-observation) of the brain
network [17, 20, 56, 191–193]. However, even if we obtained a
perfectly resolved observation of all activity in the brain, we
would face the problem of constant input and spontaneous
activation that renders it impossible to find natural pauses
between avalanches, and hence makes avalanche-based
analyses ambiguous [52]. Hence, multiple avalanche-
independent options were proposed as alternative assessments
of criticality in the brain: 1) detrended fluctuation analysis [60]
allows to capture the scale-free behavior in long-range temporal
correlations of EEG/MEG data, 2) critical slowing down [194]
suggests a closeness to a bifurcation point, 3) divergence of
susceptibility in the maximal entropy model fitted to the
neural data [195], divergence of Fisher information [196], or

FIGURE 7 |Growing connections based on the homeostatic structural plasticity in a network model leads to SOC. (A) Size of neurite fields (top) and spiking activity
(bottom) change during the network growth process (from 25 sample neurons). From left to right: initial state (red), state with average growth (blue), stationary state
reaching the homeostatic target rate (green). (B)Corresponding scaled total overlaps of 25 sample neurons (gray) and the population average (black) to the three different
time points in (A). (C) Avalanche-size (top) and avalanche-duration (bottom) distributions. If the homeostatic target rate (ftarget � 2 HZ) is significantly larger than
the spontaneous rate (f0 � 0.01 HZ) both distributions follow a power-law (black: simulation, orange: analytic). Small homeostatic target rate (ftarget � 0.04 HZ) leads to
subcritical dynamics (gray: simulation, pink: analytic) (reproduced from [156] with permission).
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the renormalization group approach [197] indicates a closeness to
criticality in the sense of thermodynamic phase-transitions, and
4) estimating the branching parameter directly became feasible
even from a small set of neurons; this estimate returns a
quantification of the distance to criticality [17, 39]. It was
recently pointed out that the results from fitting the maximal
entropy models [198, 199] and coarse-graining [200, 201] based
on empirical correlations should be interpreted with caution.
Finding the best way to unite these definitions, and select the most
suitable ones for a given experiment remains largely an open
problem.

Investigating the criticality hypothesis for brain dynamics
has strongly evolved in the past decades, but is far from being
concluded. On the experimental side, sampling limits our
access to collective neural dynamics [20, 202], and hence it
is not perfectly clear yet how close to a critical point different
brain areas operate. For cortex in awake animals, evidence
points to a close-to-critical, but slightly subcritical state [30,
139, 140]. The precise working point might well depend on the
specific brain area, cognitive state and task requirement [15,
16, 32, 35, 36, 179, 188, 190, 203–206]. Thus instead of self-
organizing precisely to criticality, the brain could make use of
the divergence of processing capabilities around the critical
point. Thereby, each brain area might optimize its
computational properties by tuning itself toward and away
from criticality in a flexible, adaptive manner [188]. In the past
decades, the community has revealed the local plasticity rules
that would enable such a tuning and adaption of the working
point. Unlike classical physics systems, which are constrained
by conservation laws, the brain and the propagation of neural
activity is more flexible and hence can adhere in principle a
large repertoire of working points - depending on task
requirements.

Criticality has been very inspiring to understand brain
dynamics and function. We assume that being perfectly

critical is not an optimal solution for many brain areas, during
different task epochs. However, studying and modeling brain
dynamics from a criticality point of view allows to make sense of
the high-dimensional neural data, its large variability, and to
formulate meaningful hypothesis about dynamics and
computation, many of which still wait to be tested.
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Bak, Tang, and Wiesenfeld (BTW) proposed the theory of self-organized criticality (SOC),

and sandpile models, to connect “1/f” noise, observed in systems in a diverse natural

setting, to the fractal spatial structure. We review some of the existing works on the

problem of characterizing time-dependent properties of sandpiles and try to explore if

the BTW’s original ambition has really been fulfilled. We discuss the exact hydrodynamic

structure in a class of conserved stochastic sandpiles, undergoing a non-equilibrium

absorbing phase transition. We illustrate how the hydrodynamic framework can be used

to capture long-ranged spatio-temporal correlations in terms of large-scale transport

and relaxation properties of the systems. We particularly emphasize certain interesting

aspects of sandpiles—the transport instabilities, which emerge through the threshold-

activated nature of the dynamics in the systems. We also point out some open issues at

the end.

Keywords: self-organized criticality, scale invariance, time-dependent correlation, transport coefficients,

absorbing phase transitions

1. INTRODUCTION

More than three decades ago, Bak, Tang, and Wiesenfeld (BTW) proposed the theory of “self-
organized criticality” (SOC) [1], and sandpile models [2, 3], as an explanation of the physical
origin of the spatio-temporal scale invariance in natural systems found around us [4–6]. Indeed,
in nature scale invariance is rather a rule, than an exception [7, 8]. One abundantly finds fractal
spatial structures, such as mountain ranges, coastlines and river basins [9, 10], etc., which can
be characterized by power-law correlations. For example, consider the height-height correlation
function [h(x) − h(x′)]2 ∼ |x − x′|2χ in a mountain range, where h(x) and h(x′) are heights at
position x and x′. Clearly, the correlation function varies with the distance |x− x′| as a power law,
characterized by an exponent 0 < χ < 1. In other words, upon varying the length scale, mountain
ranges would appear a “self-similar” object: if one zooms in or out, a picture of a mountain would
look almost the same. Likewise, the bird’s eye view of the structures at the delta area of a river,
such as the Ganges can look quite similar to the eyes if one changes the length scales (simply by
broadening the horizon); similarly, the satellite picture of a country’s coastline could well appear
self-similar at different length scales. Indeed, such self-similarities indicate that these natural objects
generate long-ranged power-law correlations in space.

Similar nontrivial structures can be observed also in the time (or, equivalently, frequency)
domain, where many natural phenomena exhibit scale-invariant behaviors, implying the existence
of long-ranged temporal correlations in the systems. For example, consider voltage fluctuations
across a resistor in a current-carrying conductor, operating in a non-equilibrium steady-state
condition. Due to the inherent noise in the system, the voltage V(t) across the resistor randomly
fluctuates as a function of time t, however has a steady value 〈V(t)〉 = V0. Now let us consider
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the voltage power spectrum, i.e., the Fourier transform S(f ) ∼
∫

e−i2π ftC(t)dt of the voltage autocorrelation function C(t) =
〈V(t)V(0)〉 − V2

0 . Indeed, in a broad range of frequencies
(10−7 Hz < f < 104 Hz) and independent of any specific
nature of the systems, the power spectrum has a power-law
form as S(f ) ∼ 1/f α with the exponent generally lying in the
range 1 <∼ α <∼ 1.4; for a review of the 1/f noise in solids (see
[11]). This low-frequency noise is called in the literature the
“flicker” or, simply, the “1/f ” noise, where the exponent can in
principle be in the range 0 < α < 2 (the case with α = 0
corresponds to the white or delta-correlated noise; on the other
hand, α < 0 implies anti-correlation in a time-signal). Notably,
the 1/f noise is different from the Johnson-Nyquist noise [12],
which does not depend on frequency (α = 0 in that case)
and occurs in equilibrium systems; it is different from the shot
noise, which is also independent of frequency and happens near
equilibrium. While it is less erratic than the white noise, the
1/f noise is somewhat more erratic than the 1/f 2 noise. Quite
remarkably, the 1/f noise has been observed in a diverse range
of apparently unrelated non-equilibrium phenomena, such as in
traffic movements [13], flow of sand in hour glasses [14], and
solar flare [15], etc. Not surprisingly, the origin of the subtle long-
time correlations in 1/f noise has lacked a general theoretical
understanding so far.

In their original paper [1], BTW attempted to provide a
universal mechanism of the 1/f noise through the interplay
between scale-invariant spatial and temporal structures, which
can develop in slowly driven spatially extended dynamical
systems observed in nature. There were two key ingredients in
their theory: threshold-activated dynamics and slow driving. Bak,
Tang, and Wiesenfeld argued that these systems, being highly
non-linear, are governed by dynamics where there are dynamical
activities only when the value of a certain local quantity crosses a
threshold value; the system dissipates energy to maintain itself
in a non-equilibrium steady state. According to BTW, under
slow driving, such systems would “self-organize” to a “minimally
stable” state, which is highly sensitive to perturbations and can
create fast relaxation activities, called avalanches. The activities
can occur at all length scales, implying a critical state for
the system. Here the “slow” driving essentially refers to the
separation of time scales in the systems: on the time scale of the
driving, the systems relax instantaneously through avalanches.
BTW dubbed this particular mechanism of achieving a critical
state as the “self-organized criticality” (SOC). That is, apparently
it does not require fine-tuning of any external parameter(s) to
maintain the criticality; this is unlike any equilibrium critical
phenomena, which are achieved only by tuning, say, temperature,
and chemical potential (or, magnetic field in a magnetic system).

To demonstrate the mechanism of SOC, BTW proposed a
model, called the BTW sandpile [1, 16], which is nothing but
simply a metaphor for a real sandpile, made on a finite base
and driven to the edge of its stability through slow addition of
grains and dissipation (loss of grains) at the boundary. On a two
dimensional square lattice, the model is defined as follows. At any
site (x, y), a height variable h(x, y, t) at time t is defined as the
number of grains at the site. If h(x, y, t) ≥ hc = 2d (dimension
d = 2 here), 2d grains topple and each of the neighboring sites

get one grain each, i.e.,

h(x, y, t + 1) = h(x, y, t)− 4,

h(x± 1, y, t + 1) = h(x± 1, y, t)+ 1,

h(x, y± 1, t + 1) = h(x, y± 1, t)+ 1. (1)

All sites are updated in parallel and the dissipation is
incorporated through the boundary condition by keeping
h(x, y, t) = 0 at the boundary. Note that the number of grains are
conserved in the bulk; grains are dissipated only at the boundary.
As the toppling condition depends on the height variable, in this
article we shall refer to this class of models as critical height-type
one. The model can be straightforwardly generalized to higher
(and lower) dimension. Later several stochastic variants of the
BTW model, such as the two celebrated models—the Manna
sandpile [17] and the Oslo ricepile [18], with stochastic toppling
rules, were introduced.

It has been debated whether the SOC systems can be thought
of as ones spontaneously evolving, or “self-organizing.” toward
criticality, especially when the driving rate itself is “tuned” to
zero [19]. (Nevertheless, one could simply take a view that such
slowly driven systems exist in nature and are worth exploring
for their interesting properties.) To elucidate this issue of “self-
organization” vs. “fine tuning”, the fixed-energy variants of the
BTW sandpiles were introduced [20–22]. In the fixed-energy
sandpiles, there is no dissipation of grains and the total mass
in the systems remains conserved. Upon tuning the density
below a critical density, the system is observed to undergo
an absorbing phase transition (APT) [23], where all dynamical
activities in the system ceases to exist. Indeed, in the stochastic
fixed-energy sandpiles, the critical density is found to be the
same as the steady-state density in the corresponding slowly
driven dissipative sandpiles [24]; however, the situation can be
complicated in the case of deterministic sandpiles, such as the
BTWmodel, due to the ergodicity breaking [25, 26].

Despite the fact that the original motivation of BTW was
to connect the long-ranged spatial and temporal correlations
observed in natural phenomena, much attention has been drawn
in the past toward characterizing the spatial structures of
sandpiles, mainly through the avalanches statistics [27]. Indeed,
there is a vast body of experimental [28, 29], simulation [17, 21,
22, 30–42] and exact [16, 43–50] results available in the literature;
for reviews, see [19, 51]. The time-dependent properties, on the
other hand, have not been explored as much. In this article, we
review some of the past works, which attempted, and achieved
to a certain extent, dynamical characterization of sandpiles,
through studies of simple models, which are amenable to analytic
calculations and easy to simulate on computers. However, the
task of large-scale hydrodynamic characterization of relaxation
and transport properties of sandpiles is still incomplete. This
review would perhaps give some hints of the possible directions
in which one could proceed.

Organization of the article is as follows. In section 2, we
discuss the nature of the long-range temporal correlations
present in sandpiles, through studies of power spectrum of
various time-dependent quantities, which have been measured
in the experiments and simulations in the past. In this context,
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we also discuss the theories, which have been developed to
capture these long-time correlations in the system. In section
3, we review some of the other interesting aspects of time-
dependent correlations in the context of particle transport, i.e.,
that of tagged-particle diffusion in sandpiles.We then address the
large-scale relaxation and the transport instabilities in sandpiles
through an exact hydrodynamical framework. We end the article
with concluding remarks and some open issues.

2. NOISE SPECTRUM IN SANDPILES:
EXPERIMENTS, SIMULATIONS, AND
THEORIES

2.1. Experiments
After the concept of SOC was introduced, it was quite natural
to ask whether a pile of real sand, or any other granular
material for that matter, exhibits SOC or not. This question
was addressed by Jaeger et al. in an experiment [28] on a pile
of granular materials (glass beads and aluminum-oxides grains)
driven in a slowly rotating drum, which tilts the surface of the
pile and thus generates avalanches of grains down the slope of
the pile. The outflux of the grains (i.e., particle-current at the
boundary) as a function of time, and the power-spectrum of
the corresponding time-signal, were calculated by measuring the
change of capacitance (which is related to the particle flow-rate)
in a parallel-plate capacitor through which the particles passed.
The power-spectrum was observed to have a broadened peak
with a subsequent 1/f 3 decay for large frequencies; the peak in the
power-spectrum corresponds to the average interval between two
successive avalanches and the large-frequency power-law decay
essentially arose from the short-time correlations in the particle
currents. In other words, the non-trivial 1/f α spectrum with
1 <∼ α < 2 was not observed in the experiment.

For a real granular pile, the 1/f noise is perhaps not expected
to occur, due to the dominant effects of inertia of grains, which
tend to roll down the slope under gravity. In the presence of
dissipation, the inertia essentially introduces a crossover length
scale, beyond which the dissipative regime takes over. This cross
over length scale could however be large in a typical experimental
set up. To reduce the inertial effects, the Oslo group [29] studied
avalanches in a pile of long-grained rice in a specially designed
experiment. The pile was made between two vertical plates kept
on a plane base, where the separation between the plates is small
compared to the length of the base. One end of the pile is closed
and the other end is open; the grains are added slowly through the
closed end and the grains go out of the system through the open
end. Large anisotropy of the grains stops the grains from rolling
too far down the surface of the pile. In this particular set up, SOC
was indeed observed in the avalanche statistics, where avalanche
sizes were observed to follow a power-law distribution, implying
events at all length scales and hence criticality. Here avalanche
size is defined as the spatial extent of activities generated in the
system when the system is perturbed by addition of a single grain
(in experiment, the avalanche size can be measured, e.g., through
the number of displaced grains in response to a perturbation
localized in space and time). The ricepile experiment shows that

SOC may not be that generic a feature of systems having a
threshold activated dynamics, rather depends on various other
details (e.g., shapes and sizes of grains and what materials they
are made of, etc.). In the ricepile experiment, in addition to the
avalanche statistics, another important aspect of SOC systems,
i.e., transport properties of sandpiles, was studied through the
distribution of residence times (the times spent by the grains
inside the pile). Interestingly, the distribution was observed to
have a power-law tail and is discussed later.

2.2. Simulations
Kertesz and Kiss revisited the BTW’s original question of long-
time correlations in the toppling activity (avalanche) in the BTW
sandpile models by carefully analysing the power-spectrum of
the activity time-signal [52]. Kertesz and Kiss showed that the
average power spectrum of activity,

S(ω) =
∫

dsP(s)
s2

(1+ ω2τ 2s )
, (2)

can be obtained by averaging over the distribution P(s) ∼ s−τ of
individual avalanche sizes s. Here it is assumed that an individual
avalanche of size s have a Lorentzian power spectrum s2/(1 +
ω2τ 2s ), with τs being the mean time-duration of the avalanche
of size s; note that we have written the spectrum in terms of the
angular frequencyω = 2π f . Provided the power-law dependence
of the mean avalanche time duration τs ∼ sx on avalanche
size s, one has S(ω) ∼

∫ ωτL u(3−x−τ )/x/(1 + u2)du where τL
is the upper cut-off to the avalanche duration. Now, depending
on the actual values of the two exponents τ and x, there are
two possibilities for the low-frequency behavior of the power
spectrum: (i) for 2x + τ > 3, S(ω) ∼ 1/ω(3−τ )/x and (ii) for
2x + τ ≤ 3, S(ω) ∼ 1/ω2 ∼ 1/f 2. In simulations, the exponents
were found to be τ ≃ 1.1 and x ≃ 0.68, implying that the
low-frequency behavior of the power-spectrum is actually 1/f 2

[52]. The theoretical form of the spectrum was verified in direct
measurement of the power-spectrum in simulations, which are
in fair agreement with 1/f 2. However, here one should note that
the noise spectrum measured in the experiment by Jaeger et al.
[28] and that by Kertesz and Kiss [52] (and by BTW in [1]) are
in principle two different quantities as the former was related to
the outflux at the boundary while the latter to the time-signal of
toppling activities in the bulk. In a related work, Jensen et al. [53]
pointed out this difference and calculated the power-spectrum of
the particle-flow at the boundary. From these studies, one could
conclude that the BTW sandpile, though having long-ranged
spatio-temporal correlations which are manifest in the power-
law distributed avalanche size and avalanche duration, apparently
does not exhibit the 1/f noise spectrum. The reason because
the BTW sandpile does not have 1/f -type spectrum is that the
distribution of avalanche duration has a long tail; indeed, if the
distribution of avalanche time decays faster, there would have
been a possibility of 1/f noise [e.g., provided τ + x = 3, the
power spectrum is given by S(f ) ∼ 1/f ]. Manna and Kertesz [54]
studied the time series of total mass in the two-dimensional BTW
sandpile in the slow driving limit; unlike in the studies in [1, 52],
here the time unit was chosen as the interval between the addition
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of two successive grains. The steady-state two-point temporal
correlation C(t) = 〈M(t)M(0)〉−〈M(0)〉2 ∼ exp(−t/TM), where
M(t) is the total mass at time t, has an exponential decay, with
the correlation time TM scaling with system size L as TM ∼ L2.
Therefore, the power spectrum of mass fluctuation in the system
has a Lorentzian form and essentially has a 1/f 2 decay in the
frequency domain f ≫ 1/L2. Therefore, the noise activity in the
BTW sandpile is less “erratic,” and more correlated, than what
was perhaps expected by BTW in their original paper.

In simulations of the BTW sandpiles by Kertesz and Kiss
[52], the power spectrum was actually obtained by randomly
superposing the activity time-signals during the individual
avalanches. As each grain is added only after the system becomes
stable (i.e., no unstable site is present), the avalanches created
at different positions do not interact, or overlap, with each
other. Hwa and Kardar [55] argued that the 1/f noise could
arise in the system when the individual avalanches, which are
created at different space points, are allowed to overlap with
each other and to develop nontrivial correlations in that process.
This scenario is possible only when the system is driven at a
finite rate, as opposed to the slow driving limit proposed in
the theory of SOC. Therefore, according to Haw and Kardar,
the BTW sandpile could well exhibit the 1/f noise when the
system is driven at a finite rate. Indeed, in many of the observed
phenomena, such as voltage fluctuations in conductors, the 1/f
noise actually appears at a finite driving rate. If that is the
case, presumably one cannot apply the SOC to explain the
1/f spectrum in those situations. Sandpiles driven with a finite
addition rate should be applicable to much broader range of
phenomena and, moreover, can in principle exhibit interesting
long-time correlations. Furthermore, from the physical point of
view, another troubling point is that the time unit in the slow
driving limit is not quite well defined as the grains are added
in unequal time intervals (on the microscopic time scale of the
elementary toppling events). Finite driving of the system removes
these difficulties and introduces a well defined external time scale
in the problem.

Following the update rules of the variants of the BTW
sandpiles proposed by Kadanoff et al. [3], Hwa and Kardar
considered a one dimensional critical slope-type sandpiles
(toppling condition depends on a threshold value of the slope),
called “running sandpiles.” The system is driven with finite rate
where one adds a grain at a site i, i.e., h(i, t + 1) = h(i, t) + 1,
with a small probability p = Jin/L, where h(i, t) is the height at
site i, Jin is the average deposition rate and L is the system size.
The evolution rules are given by

h(i, t + 1) = h(i, t)− nf , (3)

h(i+ 1, t + 1) = h(i+ 1, t)+ nf , (4)

provided that the slope h(i, t) − h(i + 1, t) > 1 (in simulations,
nf = 2 and1 = 8) and with the boundary condition that the left
boundary is closed, i.e., h(0, t) = h(1, t) and the right boundary
dissipates grains, i.e., h(L + 1, t) = 0. The quantities of interest
are the power spectrum of the instantaneous output current J(t)
(outflux at the boundary site i = L), which is the number of
grains leaving the system at time t, and that of the instantaneous

activity or energy dissipation E(t), which is the total number of
toppling in the system at time t. In the steady state, the input
current balances the average outflux, i.e., Jin = 〈J〉; note that
the model has a maximum output capacity of nf grains per unit
time so that Jin ≤ nf . The power spectra are found to have the

following power-law form SJ(ω) ∼ ω
−αJ and SE(ω) ∼ ω−αE for

the outflux and the activity time-signals, respectively. The system
is observed to have three distinct scaling regimes, characterized
by the different values of the exponents αJ and αE: high-frequency
single-avalanche regime I, intermediate-frequency interacting-
avalanche regime II and low-frequency system-wide discharge
regime III; each of the regimes are separated from each other by
L-dependent time scales [55]. Regime I is dominated by single
avalanches and arises in the time range of the typical avalanche
duration (as studied in [52], for example). In the simulations, the
exponents in the power spectrum are observed to be αJ ≈ 2 and
αE ≈ 4. Regime II is dominated by the interacting avalanches and
happens on the time scale Lz , where z is the dynamic exponent.
The exponents in the power spectrum in this regime are given
by αJ ≈ 1 and αE ≈ 1, confirming the presence of the 1/f
noise in the system. As we see later, this is the regime (also called
hydrodynamic regime), which can be captured by a large-scale
hydrodynamic theory [55]. Regime III is dominated by system-
wide discharge processes, which happen on the time scales of
L2, during which the macroscopic slope of the pile changes.
Interestingly, the exponents in the power spectrum are negative
in this regime and are given by αJ ≈ −1 and αE ≈ −1.
The negative exponents suggest anti-correlations in outflux and
activity time-signals.

It is quite interesting to note that, in a recent study by Garcia-
Millan et al. [56], similar anti-correlations, albeit in avalanche
time-signals, have been observed in the boundary driven one
dimensional Oslo ricepile model [18] in the slow driving limit
(grains are added with unit rate and only after the system
becomes stable). Here one constructs a time-series of avalanches,
where s(t) denotes avalanche size at time step t. Then the variance
σ 2
T = 〈S2T〉 − 〈ST〉2 of the sum of T consecutive avalanches ST =
∑T

t=1 s(t) is observed to be highly suppressed. That is, avalanche
time series have hyper-uniform fluctuation, characterized by
σ 2
T ∼ Tλ with λ = 0. (Normal fluctuations correspond to
λ = 1.) In fact, steady-state two-time correlation function
C(t) = 〈s(t)s(0)〉 − 〈s(t)〉〈s(0)〉 is negative for any nonzero t > 0.
Such anti-correlations in time possibly plays a crucial role in
determining transport properties of sandpiles and it would be
quite interesting to further explore their connections in future.

2.3. Theories
At this stage, one would be interested to explore whether
some of the above observations can be captured in a unified
theoretical framework. Hwa and Kardar [55, 57] addressed
this issue in developing a large-scale hydrodynamic framework,
based on symmetries and conservation laws. Later on, more
refined field theories were set up [58], especially in the context
of absorbing phase transition with a conserved field, which
is associated with the fixed-energy version of sandpiles [20–
22, 37, 38, 59, 60]. However, the studies by Hwa and Kardar
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made the basis for the standard field theoretical techniques
applied to sandpiles, particularly in characterizing the long-time
correlations and the corresponding power spectra in various
time-signals, such as toppling activities. As we discuss next, the
following hydrodynamic theory provides simple predictions of
the power spectra of various time-dependent quantities, which
could be directly tested in simulations.

Motivated by the experiments on granular piles [28] and
the observed power spectra of outflux and toppling-activity
in simulations of running sandpiles, Hwa and Kardar [55,
57] proposed a drift-diffusion equation for height field h(x, t)
in sandpiles, which are written in the leading order of
non-linearities,

∂h(x, t)

∂t
= D||∂2||h+ D⊥∇2

⊥h−
λ

2
∂||(h2)+ η(x, t), (5)

where x|| = (x.n̂)n̂ and x⊥ = x−x|| are the position vector along
the transport direction n̂ and perpendicular to the transport
direction; η(x, t) is a zero-mean non-conserved noise, having
〈η(x, t)η(x′, t′)〉 = 2Ŵδd(x− x′)δ(t− t′) (d is the dimension), and
physically represents random addition of grains; in the conserved
case, noise satisfies 〈η(x, t)η(x′, t′)〉 = 2Ŵ∇2δd(x − x′)δ(t − t′).
Note that, due to the specific nature of the boundary condition
where the grains are added at the one end (say, left) and are
dissipated through the other end (say, right) of the pile, the grains
tend to flow in a particular direction n̂. To obtain the above
hydrodynamic equation, the local current J(h) is expanded in
height variable h and its gradient,

J(h) ≃ −(D||∂||h)n̂− D⊥∇⊥h+
λ

2
(h2)n̂, (6)

where higher order non-linearities, though some of them (e.g.,
∇hn and hn, etc. for integer n > 0) permitted by the
symmetries, are ignored by assuming the fluctuations are small. It
is immediately not clear if the non-linear terms such as h2 should
be allowed as such terms do not obey simple translation in h,
i.e., h → h + c. However, Grinstein and Lee [61] later provided
a mechanism for generating such terms in the hydrodynamic
equations. The absence of this translation symmetry in height
can also be seen as the consequence of the boundary condition
[e.g., h(x|| = L) = 0 at the right end], due to which one
cannot translate the height profile arbitrarily. It should be noted
here though that the non-linear terms (e.g., that involving λ) are
in fact not necessary to generate scale invariance in a system;
anisotropic diffusion can be sufficient for that purpose [61–64].
Provided the stochastic non-linear hydrodynamics Equation (5),
one can use dynamic renormalization group and ǫ = 4 −
d expansion technique (upper critical dimension dc = 4 in
this case) to calculate the fundamental exponents χ , ζ and z,
which characterize spatio-temporal fluctuations of the height
variable: upon change of length and time scales x|| → bx||,
x⊥ → bζ x⊥ and t → bzt, the height variable should then
transform as h → bχh. Using simple dimensional analysis,
one can obtain the scaling properties of various time-dependent
correlation functions in terms of the height correlations and the
scaling dimensions (χ , ζ and z) of the systems. For example,

one has the outflux and the activity correlations CJ(t) =
〈J(t)J(0)〉−〈J(t)〉〈J(0)〉 ∼ t[4χ+(d−1)ζ ]/z andCE(t) = 〈E(t)E(0)〉−
〈E(t)〉〈E(0)〉 ∼ t[4χ+(d−1)ζ+1]/z, respectively, where J(t) and
E(t) are the outflux and the number of toppling at time t.
The corresponding power spectra, which are the corresponding
Fourier transforms of the time-correlation functions, are given
by SJ(ω) ∼ ω

−αJ with αJ = 1/z and SE(ω) ∼ ω−αE with
αE = 2/z; in two dimensions (z = 6/5), the numerical values
of the exponents can be obtained as αJ ≃ 0.83 and αE ≃
1.67, implying the existence of the 1/f -type power spectra in the
system corresponding to the anisotropic drift-diffusion Equation
(5). For isotropic case (as in the BTW sandpile), one has the
simplest non-linear hydrodynamic equation,

∂h(x, t)

∂t
= D∇2h− λ

2
∇2(h2)+ η(x, t), (7)

which, in the absence of noise term η(x, t), is a non-linear
diffusion equation, where the local current has the form up to
the leading order non-linearities,

J(h) = −(D− λh)∇h. (8)

As mentioned previously, depending on the situation, the noise
term can be either nonconservative or conservative. Interestingly,
in the above equation for local current, one can see that the bulk-
diffusion coefficient (D − λh) can have a clustering instability
(the diffusivity reduces for larger value of h). As we see later, the
nature of the above diffusive instability is different from that in
sandpiles. However, unlike the anisotropic case, the parameters
D and Ŵ in the isotropic case can get normalized in a nontrivial
way and calculation of the exponents are difficult [58, 65]. From
an overall point of view, in the dynamic renormalization group
analysis, it is not obvious how the renormalized diffusivity could
give rise to singular diffusion in the system (the renormalization
group theory does predict though “super-diffusive” behavior as
z < 2).

Hwa and Kardar attempted to provide a large-scale
hydrodynamic theory of sandpiles, which could capture
scale invariant spatio-temporal structures of the systems having
the same symmetries as in sandpiles. The theory was indeed
successful in calculating various time-dependent properties
of the SOC-like systems, such as the 1/f -type noise spectrum
and height correlations, etc. However, the theory remains
somewhat unsatisfactory as it cannot explain the precise
nature of the transport instability, a unique characteristic of
sandpiles, which, as we discuss later, is present in the form
of a near-critical singular bulk-diffusion coefficient as well as
singular conductivity. Possibly, the large non-linearity due to
the threshold-activated dynamics in the SOC systems invalidates
the gradient expansion of the local current as given in Equation
(6). The current is truncated at the lowest-order non-linearities
in height and height gradient, and cannot capture the singular
diffusion in sandpiles.
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3. INSTABILITIES IN SANDPILES:
SINGULAR TRANSPORT

It is important to characterize instabilities, which can be present
in a system near criticality and thus govern the large-scale
transport and fluctuations. For example, one could see such an
instability in the flow structure of grains in a Hele-Shaw cell
where a pile of grains is formed and grown between a confined
space and there can be a transition from a continuous flow
regime to an intermittent one upon varying certain parameters
[66]. In the context of the threshold-activated model systems
like sandpiles operating near criticality, the power-law spatio-
temporal correlations, as reflected in the avalanche statistics, are
strongly indicative of the existence of instabilities in particle
transport. However, the precise nature of the transport instability
was not clear until Carlson et al. [67] demonstrated the existence
of the singular diffusion in a two-state sandpile-like model.
Indeed, the bulk-diffusion coefficient in the model was shown
to diverge when the system is slowly driven (or, “tuned,” in the
sense of fixed-energy sandpiles) toward criticality. But, before
we go into this topic, let us first discuss another set of related
works, which explored tagged-particle diffusion (also called self-
diffusion) to characterize transport properties of sandpiles.

3.1. Tagged-Particle Correlations
In sandpiles, particle transport happens through avalanches.
One would therefore expect a close relationship between local
toppling activities and transport in the system. As discussed in
the previous section, the existence of such a relationship is quite
apparent through the emergence of long-time correlations in
both outflux and toppling activities (as evident in the respective
power spectra), which can be closely related through the height
fluctuations in the system (they have similar power spectra with
exponents αJ ≈ αE ≈ 1). Another way to characterize the time-
dependent correlations in the systemwould be to directly connect
the toppling activities and the particle transport. This could be
done by probing tagged-particle correlations in the systems, e.g.,
through the distribution of tagged-particle residence times or
through characterization of the self-diffusion.

The residence time is defined as the time spent by a tagged
particle inside the system. If a particle is added in the system,
say, at tin and the particle leaves the system at time tout , the
residence time is defined as T = tout − tin. One could ask
whether the distribution of residence time is described by a power
law and, if so, whether the distribution is any way related to
the power-law statistics of avalanches in the system. It turns
out that the distribution of residence time, though governed by
local toppling activities and can exhibit power-law tails, does not
depend on the avalanche exponents. However, the distributions
are not universal in the sense that it can depend on the details
of particle addition as well as the toppling (or particle-transfer)
rules in the systems.

In the Oslo ricepile experiment [29] discussed in the previous
section, the distribution of residence times P(T, L) of tracer
particles in a system of size L was measured. The tracers were
tracked since the time they have been added till the time they
leave the system, and the residence times were measured. The

distribution was observed to have a power-law tail, P(T, L) ∼
1/Tα , with the exponent α ≃ 2.4 and the mean residence time
〈T〉 ∼ Lν with ν ≃ 1.5. To explain the experimental findings,
Boguna and Corral proposed a continuous-time random walk
model, having a power-law distribution ψ(t) ∼ 1/tα

′
of trapping

time t - the time a grain is trapped or buried in the pile; here
the exponent α′ is an undetermined parameter in the model.
The analysis showed that the exponent α in the distribution of
residence time is determined by the exponent α′ in the trapping-
time distribution, α = α′. Later, using the ricepile model
proposed in Christensen et al. [18], it was argued [68] that the
power-law tail of the distribution P(T, L) should be dominated
by the grains, which are deeply buried in the pile and take a
very long time to come out due to the rare height fluctuations.
Indeed, the cut-off time Tmax to the trapping-time distribution
is related to the hight fluctuation of the pile and was estimated
to be exponentially large Tmax ∼ exp(κL3) [69], where L is the
system size. Moreover, the mean residence time 〈T〉 was exactly
shown to be equal to the average mass of the pile, i.e., 〈T〉 ∼
L2. The cumulative probability distributions of both trapping
times Ttr and residence times T have a power-law scaling
Prob.(Ttr ≥ t) ∼ Lω1/[t{ln(t/Lω1 )}δ1 ] and Prob.(T ≥ t) ∼
Lω/[t{ln(t/Lω)}δ], with a logarithmic corrections where ω1, δ1,
ω, and δ are model dependent exponents. Therefore, one obtains
α = 2, which also holds in other critical slope-type sandpiles
(toppling depends on the threshold value of the slope) as long
as one implements “first-in-last-out” rule, i.e., an incoming grain
at any site sits on the top, while the topmost grain at the site
leaves first [68]. Note that, in the Oslo ricepile experiment, the
measured value of α being slightly >2 is possibly because the
logarithmic correction was not considered in the experimental
data fitting. Though the distribution of residence times in
slope-type sandpiles have a universal power-law scaling 1/T2

(with a non-universal logarithmic correction), the distribution in
critical height-type sandpiles (threshold condition is on the height
variable) can be a power law or an exponential function [70],
depending on the details of the grain addition. Indeed, one can
show that the probability distribution (density) function P(x, t)
of position x of a tagged particle at time t is governed by a
space-dependent diffusion equation,

∂P(x, t)

∂t
= 1

2
∇2[D(x)P(x, t)], (9)

where local diffusivity D(x) of a tagged particle is proportional
to n(x), the average number of toppling at position x per
unit time; the initial condition can be specified as P(x, t =
0) = r(x) where r(x) is the addition rate at site x [70].
Therefore, unlike in slope-type models where distributions of
residence times are determined by the power-law trapping time
distributions, the distributions of residence times in height-
type models are governed by the space-dependent diffusivity,
which is directly related to the local toppling activity in the
systems. We note here that somewhat surprisingly, in both
slope- and height-type sandpiles, the exponents characterizing
the distributions of residence times are not related to the critical
avalanche exponents.
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The tagged-particle correlations have also been explored by da
Cunha et al. [39, 71] in several variants of the conserved Manna
sandpiles and both in one and two dimensions, directly through
the studies of the self-diffusion coefficient D(ρ) of a tagged
particle. Here one considers a stochastic steady-state trajectory of
a particle, i.e., position Xi(t) of, say, i-th particle at time t. Then
the mean-square displacement of the particle up to time t has
the following asymptotic form for large t: 〈[Xi(t) − Xi(0)]2〉 ≃
2D(ρ)t, where the self-diffusion coefficient D(ρ) depends on
the number density ρ. Interestingly, it was observed that the
self-diffusion coefficient is proportional to the activity in the
system. As the activity a(ρ) in the conserved Manna sandpiles
has singular behavior near the critical density, the tagged-particle
diffusion is also singular in this regime and can be characterized
by the same exponent as in the activity (there is no rigorous proof
yet though). Indeed, this particular feature is expected to be quite
generic in the fixed energy sandpiles undergoing an absorbing
phase transition; however, the issue is not settled yet.

3.2. Hydrodynamics of Sandpiles
The hydrodynamic equations, and the corresponding dynamic
renormalization group (RG) theory, proposed by Hwa and
Kardar [55, 57] was successful to some extent in explaining
the emergence of scale invariance, and in extracting the critical
exponents of sandpiles in a general hydrodynamic framework,
based on symmetries and conservation laws. Though scope and
applicability of this theory is quite broad, the theory cannot
really explain the mechanism, which gives rise to the singularity
(pole-type) in the diffusion coefficient. The possible reason for
the failure to capture the singular diffusion is that the proposed
hydrodynamic equations (Equations 5 and 7) do not actually
take into account the threshold-activated nature of the local
dynamics in the theory. In this scenario, the rigorous derivation
of hydrodynamics of the simple two-state model put forward
by Carlson et al. [67, 72, 73] provided not only the much
needed impetus into the theory of SOC, but also some useful
insights into the possible large-scale structures of sandpiles in
general. We discuss below a few examples of simple model
systems, where large-scale hydrodynamic time evolution can be
obtained and, in some of the systems, the transport can indeed
become singular. For simplicity, in the following discussions,
we confine ourselves to one dimensional models and conserved
(fixed-energy) versions; the models can be suitably generalized to
higher dimensions and open boundaries. Such a hydrodynamic
framework [74, 75] not only provides the insights into the
relaxation properties, but can also determine in principle the
fluctuation properties of these systems [76–79].

3.2.1. A Two-State Model of Sandpile
Carlson et al. [67, 72] considered amodel of lattice gas, consisting
of hardcore particles diffusing on a lattice. The occupation
variable ηi at site i can be at most one: ηi = 1 if the site is
occupied by a particle, otherwise ηi = 0. For simplicity, let us
consider the fixed-energy version of the model on a periodic
lattice of L sites, where the number of particles is conserved;
we denote the number density as ρ = N/L. The model can
be appropriately generalized to that with an open boundary

and a slow drive. Any particle hops to its nearest vacancy,
with a unit rate and symmetrically to its right or the left; the
dynamical rules are unlike that in a simple symmetric exclusion
process, where a particle can hop only to its vacant nearest-
neighbor site. For example, consider the following hopping event
{. . . 011̂110 . . . } → {. . . 010111 . . . }, where “1̂” denotes the
hopping particle; note that the reverse process also happens
with the same rate. Consequently, the hopping dynamics satisfy
detailed balance with respect to Bernoulli product measure,
where any site is occupied with probability ρ and is vacant with
probability (1 − ρ). Precisely due to the time-reversibility and
the product-measure steady state, the model is amenable to a
rigorous derivation of hydrodynamics [72], which governs the
large-scale relaxation in the system. Here we only present a sketch
of the derivation, which will illustrate the procedure of deriving
hydrodynamics in a general context. Notably, the model has a
long-ranged hopping (avalanche-like) mechanism built into it
and, in this way, it mimics the threshold-activated dynamics of
sandpiles. Indeed, one can immediately see that, depending on
the density ρ, the average jump length 〈l〉 of a particle in one
hopping event is given by 〈l〉 =∑∞

l=1 lρ
l−1(1− ρ) = 1/(1− ρ),

which diverges as the density approaches (from below) the critical
density ρc = 1 (i.e., as ρ → 1−). The model is not defined for
ρ > 1 and one of its variant is discussed in the next section.

To calculate the density-dependent bulk-diffusion coefficient
D(ρ), let us consider net local bond-current J(i, i + 1) between
i-th and (i+ 1)-th sites,

J(i, i+ 1) =
∞
∑

r=1

(〈

r
∏

r′=1

ηi+r′−r

〉

−
〈

r
∏

r′=1

ηi+r′

〉)

=
∑

r

[

A
(r)(i)−A

(r)(i+ r)
]

. (10)

Here we have denoted the r-point correlation as A(r)(i) ≡
〈
∏r

r′=1 ηi+r′−r

〉

, which is the probability that the consecutive r
number of sites to the left of site i are occupied. As one would
expect, on hydrodynamic scales, the local density ρ(i, t) = 〈ηi(t)〉
is assumed to be a slowly varying function of space and time, and
thus the current in the system is small [O(1/L)]. Now, by scaling
space x = i/L and expandingA(r)(i+r) ≡ A(r)(ρ(x+r/L)) in the
Taylor series around the local density 〈ηi(t)〉 = ρi(t) ≡ ρ(x, t), we
have

A
(r)(i+ r) ≃ A

(r)(ρ(x, t))+ r

L

∂A(r)(ρ(x, t))

∂x
. (11)

Similarly, the local current can be written using Equation (10),

J(i, i+1) ≃ −
∑

r

r

L

∂A(r)(ρ(x, t))

∂x
= − 1

L

∑

r

r
∂(ρ(x, t))r

∂x
, (12)

where, in the last step, we have written the correlation A(r) = ρr

by using the product-measure (local) steady-state. Therefore, the
rescaled local current J(x) ≡ LJ(i, i + 1) is proportional to the
density gradient (rescaled) ∂ρ/∂x and can be written as

J(ρ(x, t)) = −
∑

r

r2ρr−1 ∂ρ(x, t)

∂x
≡ −D(ρ)

∂ρ(x, t)

∂x
, (13)
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where the proportionality constant, which is called the bulk-
diffusion coefficient, is given by

D(ρ) =
∞
∑

r=1

r2ρr−1 = 1+ ρ
(1− ρ)3 . (14)

Note that the bulk-diffusion coefficient is in general a non-linear
function of density ρ and, in this case, has a third-order pole at
density ρ = 1. The time evolution of density at site i is given by
∂ρi(t)/∂t = −[J(i, i + 1) − J(i − 1, i)] ≃ −(1/L)∂J/∂x, which
can be written, by rescaling space x = i/L and time τ = t/L2

(called diffusive scaling limit) and in terms of the rescaled or the
coarse-grained density field ρ(x, τ ),

∂ρ(x, τ )

∂τ
= ∂

∂x

[

D(ρ(x, τ ))
∂ρ(x, τ )

∂x

]

. (15)

Provided an initial condition ρin(x) ≡ ρ(x, τ = 0), the long-
wavelength density relaxation in the system is exactly described
by the above hydrodynamic time-evolution (Equation 15).

Carlson et al. [72] also studied tagged-particle correlations,
which can provide information about the singularity in the
particle transport. Let us denote the position of the i-th tagged
particle at time t as Xi(t). Then the mean square displacement
(1Xi(t))2 = 〈(Xi(t)−X(0))2〉 of the tagged particle has a limiting
behavior, where the scaled variance limt→∞(1Xi(t))2/t =
∑∞

l=1 l
2ρ l−1(1 − ρ) = (1 − ρ)D(ρ) ∼ 1/(1 − ρ)2. The

scaled variance of the displacement of a tagged particle has the
order of pole singularity one less than that for the bulk-diffusion
coefficient in Equation (14). The bulk and the self diffusivities are
in principle two different quantities, but, as discussed above, both
of them can be a good indicator of the instability of the particle
transport in a system. In fact, we mentioned in the previous
section how the tagged-particle diffusion can be used to probe
activity in sandpiles. However, it remains to be seen how one
can actually connect activity and tagged-particle diffusion on a
hydrodynamic level.

3.2.2. Fixed-Energy Sandpiles and Absorbing Phase

Transition

3.2.2.1. A Simple Example
The two-state model discussed in the previous section is not
defined above density ρ = 1. Note that, during any hopping
move in the model, a particle gets transported to its nearest
vacant site instantaneously, introducing possibly an unwanted
feature of long-range hopping in the system. Alternatively, to
bypass the difficulty, one can introduce a microscopic hopping
time-scale into the problem and restrict to only nearest-neighbor
hopping [80]. For example, if the number of particles ni(t) at a site
i is greater than 1, there is a toppling at unit rate and one particle
gets transferred symmetrically to one of its two nearest neighbors.
That is, when ni(t) > 1, ni(t + 1) = ni(t) − 1 and nj(t + 1) =
nj(t)+1 where j = i±1 is one of the two nearest neighbors of site
i. In the modified model, we have relaxed the hardcore constraint
on the particle occupancies of the sites. Although this particular
model has a trivial scaling behavior, it would illustrate how the

relationship between the activity and transport on hydrodynamic
scales arise quite naturally in sandpiles.

In fact, given the simple dynamical rules, the model can
be treated analytically and the transport coefficients can be
calculated exactly as the steady-state, for density ρ > 1, has again
a product-measure, with the probability distribution Prob.[ni =
n] = P(n) = 1

ρ

(

ρ−1
ρ

)n−1
of single-site particle-number n =

1, 2, . . . . The above result can be easily obtained by mapping
steady-state dynamics of the model (i.e., in the space of steady-
state configurations), to that of a zero range process [81]. Indeed,
for density ρ > 1, the configurations with ni = 0 are non-
recurrent and does not appear in the steady state; however, in
the space of recurrent configurations, the model still satisfies
a detailed balance with respect to the steady-state (product)
measure. On the other hand, for density ρ ≤ 1, system goes
into an absorbing state, devoid of any dynamical activity in the
system.One can define an order parameter, called activity, a(ρ) =
〈Na〉/L, where Na is the number of active sites in the system. It
is easy to see that the activity a(ρ) is nonzero for ρ > ρc = 1
and zero otherwise. For ρ > 1, the activity is obtained exactly
as a(ρ) = ∑∞

n=2 P(n) = 1 − P(n = 1) = (ρ − 1)/ρ, implying
a(ρ) ∼ (ρ − ρc)β as ρ → ρ+c where order parameter exponent
β = 1.

In the presence of a single conserved quantity such as local
particle-number, the coarse-grained density field is governed by
two transport coefficients—the bulk-diffusion coefficient D(ρ)
and the conductivity χ(ρ); both transport coefficients are in
general non-linear functions of density ρ. In the context of
this simple model, it would be quite instructive to discuss a
general theoretical framework to calculate transport coefficients
following a linear response theory [77, 78, 82, 83]. The framework
provides, in the diffusive scaling limit, an exact hydrodynamic
theory of relaxation and fluctuation in the system. As done in the
previous section, to calculate the bulk-diffusion coefficient, one
has to apply a bias in the form of a small density gradient ∂ρ/∂x
and calculate the local diffusive current

Jdiff = −D(ρ)
∂ρ

∂x
, (16)

which is analogous to the Fick’s law of diffusion. Likewise, to
calculate the conductivity, one has to apply a small external force
field of magnitude F, which couples to the local particle-number
and thus bias the particle-hopping rates in the direction of the
biasing force. The biased or the modified particle-hopping rate
cFi→j, from site i to j = i ± 1, is determined using a local detailed
balance condition [82, 83] as following,

cFi→j = ci→j exp

[

1

2
1mi→jF(j− i)δx

]

≃ ci→j

[

1+ 1

2
1mi→jF(j− i)δx

]

, (17)

where ci→j is the original hopping rate in the absence of the
biasing force, 1mi→j = 1 is the number of particles transferred
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from site i to j, and δx = 1 is the lattice spacing. The biasing force
gives rise to a small drift current

Jdrift = χ(ρ)F, (18)

which is analogous to the Ohm’s law for the electrical
conductivity in a current carrying wire. The time-evolution
of density ρi(t) = 〈ni(t)〉 can be straightforwardly obtained
using the stochastic update rules for particle number ni(t) in an
infinitesimal time interval between t and t + dt as given below,

ni(t + dt) =















ni(t)− 1 prob. âidt,
ni(t)+ 1 prob. âi−1

(

1+ Fδx
2

)

dt
2 ,

ni(t)+ 1 prob. âi+1
(

1− Fδx
2

)

dt
2 ,

ni(t) prob. 1−61dt,

(19)

where âi is an indicator function for occupancy of ith site (âi = 1
if ni > 0 and âi = 0 otherwise), δx = 1 is the lattice spacing and

61 =
[

âi +
1

2

{

âi−1

(

1+ Fδx

2

)

+ âi+1

(

1− Fδx

2

)}]

. (20)

The local density evolves according to the equation,

∂ρi(t)

∂t
= 1

2

(〈

âi+1
〉

+
〈

âi−1
〉

− 2
〈

âi
〉)

+ F

4

(

âi−1 − âi+1
)

, (21)

which, in the diffusive scaling limit x = i/L, τ = t/L2 and biasing
force F → F/L, leads to the desired hydrodynamic evolution of
the scaled density field ρ(x, τ ),

∂ρ(x, τ )

∂τ
= 1

2

∂2a(ρ(x, τ ))

∂x2
− 1

2
F
∂a(ρ(x, τ ))

∂x
≡ − ∂J

∂x
, (22)

where a(ρ) = (ρ − 1)/ρ is the activity, i.e., the probability that a
site is active and the local current J(ρ(x, τ )) = Jdiff + Jdrift . Now
using Equations (16) and (18), we arrive at the expressions of the
bulk-diffusion coefficient

D(ρ) = 1

2

da(ρ)

dρ
=
{ 1

2ρ2
for ρ > 1

0 otherwise,
(23)

and the conductivity

χ(ρ) = a(ρ)

2
. (24)

Note that the bulk-diffusion coefficient and the conductivity both
vanish below critical density; however, the diffusivity approaches
a constant value while one approaches the critical density from
above (ρ → ρ+c ). On the other hand, the conductivity is
proportional to the activity in the system and vanishes as
density approaches the critical density, and remains zero below
critical density. Indeed, as we see next in the conserved Manna
sandpiles, vanishing of the conductivity near critical point seems
to be a generic feature in conserved stochastic sandpiles, which
undergoes an absorbing phase transition. At this stage, one
could perhaps recognize the connection to the class of facilitated
(or restricted) exclusion processes [84–86], where particles hop

symmetrically to one of its vacant neighbors, only if the other
neighbor is occupied. These facilitated exclusion processes also
have similar features in the transport coefficients.

The model discussed above serves as probably the simplest
possible example of an absorbing phase transition (APT) [87] in
the presence of a conserved quantity. In fact, due to the non-
singular behavior of the order parameter (the order parameter
exponent β = 1), the bulk-diffusion coefficient, which is
the derivative of the activity w.r.t. density, does not have any
divergence. However, as we see below, the situation changes
drastically when one modifies the dynamical rules slightly by
introducing time-irreversibility (violation of detailed balance) in
the steady state, leading to a nontrivial exponent β < 1 and thus
singular particle transport in the system.

3.2.2.2. The Conserved Manna Sandpile
We now consider the conserved Manna sandpile [17], which
serves as the paradigm for non-equilibrium absorbing phase
transition [23] in a broad class of models with conserved mass,
collectively called conserved stochastic sandpiles [32, 33, 88, 89].
Unlike the deterministic bulk dynamics in the BTW sandpile,
the update rules in the conserved Manna sandpile, though still
governed by a threshold-activated dynamics (critical height-
type), are stochastic in nature. In the conserved version of the
Manna sandpile, the total mass in the system remains conserved
and the system undergoes an absorbing phase transition below
a critical density ρc. We consider here the continuous-time
variant of the Manna sandpile [32], where a site i is selected
randomly and, if particle number ni > 1, there is a toppling.
During a toppling event, two particles (instead of one particle
in the previous model) are transferred stochastically, and
independently, to one of its neighboring sites. The hoppingmove,
where two particles go in the opposite directions, is not reversible.
As the system undergoes an absorbing phase transition below a
critical density ρc, which in this case is strictly less than 1, the
activity has nontrivial behavior as a function of density ρ: while
a(ρ) is nonzero for ρ > ρc, it has a power law decay a(ρ) ∼
(ρ − ρc)β , with β < 1, as ρ approaches the critical density from
above (ρ → ρ+c ). Clearly, as opposed to the unbounded model
considered previously, the activity now develops a singularity as
a function of density as the derivative of the activity diverges near
criticality. As we see below, the singularity in the activity leads to
singular diffusion (as well as singular conductivity) in the system.

To calculate the conductivity, we follow the linear response
theory of Chatterjee et al. [78]. We apply a constant external
biasing force of magnitude F, which couples to the local particle
number and bias the motion in the direction of force according
to local detailed balance condition given in Equation (17). In
the presence of the biasing force, the stochastic update rules for
particle number at a site i can be written as

ni(t + dt) =































ni(t)− 2 prob. âi(cFi,0 + cFi,+ + cFi,−)dt,
ni(t)+ 1 prob. âi−1c

F
i−1,0dt,

ni(t)+ 1 prob. âi+1c
F
i+1,0dt,

ni(t)+ 2 prob. âi−1c
F
i−1,+dt,

ni(t)+ 2 prob. âi+1c
F
i+1,−dt,

ni(t) prob. [1−6dt],

(25)

Frontiers in Physics | www.frontiersin.org 9 May 2021 | Volume 9 | Article 64123384

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pradhan Time-Dependent Properties of Sandpiles

where 6 = [âi(cFi,0 + cFi,+ + cFi,−) + âi−1c
F
i−1,0 + âi+1c

F
i+1,0 +

âi−1c
F
i−1,++âi+1c

F
i+1,−]; according to Equation (17), themodified

hopping rates cFi,0 = 1/2, cFi,+ = (1 + F)/4 and cFi,− = (1 − F)/4
correspond to transfer of one particle to the left and one to the
right, that of both particles to the right and that of both particles
to the left, respectively. The case with biasing force F = 0
corresponds to the unbiased conserved Manna sandpile. The
local density satisfies the following time-evolution equation,

∂ρi(t)

∂t
= (ai−1 − 2ai + ai+1)+ F

ai−1 − ai+1

2
. (26)

Now by scaling space x = i/L, time τ = t/L2 and biasing
force F → F/L, and by assuming a local-steady state [90, 91],
where activity ai(t) ≡ a[ρ(x, τ )] can be written as a function
of local density field ρi(t) ≡ ρ(x, τ ), one obtains the desired
hydrodynamic time-evolution of density field ρ(x, τ ),

∂ρ(x, τ )

∂τ
= ∂2a(ρ)

∂x2
− F

∂a(ρ)

∂x
≡ − ∂J

∂x
, (27)

where local current J(ρ) = −∂a/∂x + a(ρ)F. Comparing with
Equations (16) and (18), we get the bulk-diffusion coefficient

D(ρ) = da(ρ)

dρ
, (28)

and the conductivity

χ(ρ) = a(ρ), (29)

for the conserved Manna sandpile. One can immediately obtain
the near-critical behavior of the bulk-diffusion coefficient using
the power-law form of the activity a(ρ) ≃ Const.(ρ − ρc)β

near criticality, where critical exponent β < 1. Using Equation
(28), we indeed get a diverging bulk-diffusion coefficient D(ρ) ∼
1/(ρ−ρc)1−β → ∞ as ρ → ρ+c [78, 92]. On the other hand, the
conductivity in the system vanishes as one approaches criticality.
Diverging diffusivity and vanishing conductivity near criticality
are a unique kind of transport instability, which are usually not
seen in equilibrium critical phenomena and could well be the
signature of the fixed-energy sandpiles in general.

4. CONCLUDING REMARKS

We have come a long way since the introduction of self-
organized criticality (SOC), and the sandpile model, by Bak,
Tang, and Wiesenfeld; it has been an exciting journey, which
have opened a new horizon. Indeed, in the past three decades
or so, SOC and sandpiles have generated “avalanche-like”
activities in the literature, in terms of plethora of exact,
experimental and numerical results. Undoubtedly, these studies
have helped to shape our understanding of scale invariance
in general, and non-equilibrium absorbing phase transition
in particular, in a new light. One may however recall the
original motivation of BTW, which was to connect the long-
ranged temporal correlations observed in nature in the form
of the “1/f ” noise to the long-ranged spatial correlations in

these systems. In retrospect, it seems that perhaps the BTW’s
great ambition has not been really fulfilled and the success
of achieving the goal of explaining the 1/f noise has been
mixed at best. As we have discussed in this article, while,
under suitable driving condition, sandpiles do generate 1/f
power spectra in time-signal of various transport quantities,
in the slow driving limit though it usually generates 1/f 2-type
power spectra.

However, it does not mean in any way that the time-
dependent correlations in sandpiles are not interesting. On
the contrary, sandpiles possess extremely rich spatio-temporal
structures, which have some unique aspects in their transport
properties and would be worth pursuing for understanding
their nontrivial structures better. In the past, the scale-invariant
spatial structure in sandpiles have attracted a lot of attention
and they have been characterized mainly through avalanche
statistics. But, the time-dependent properties are much less
explored and the studies in the literature have been perhaps
a little scattered. Particularly, our knowledge of the exact
hydrodynamic structure of sandpiles concerning long wavelength
relaxations is still quite limited, primarily due to the lack of
knowledge of the steady (quasi) state measure, which could
be partly attributed to the absence of time-reversibility in
the systems. Indeed, a comprehensive characterization of the
temporal correlations, particularly in terms of the transport
properties of the systems, though daunting, would be certainly
desirable and could lead to a better theoretical understanding of
sandpiles in general.

Moreover we should now emphasize more on the problem of
characterizing one of the most interesting aspects—the transport
instabilities in sandpiles, which are present in the system near
criticality. As demonstrated in the past through the studies
of simple model systems, the bulk-diffusion coefficient, which
governs the long wavelength density relaxation in the system,
diverges near criticality [67, 92]. This particular feature, as
opposed to that near an equilibrium critical point, where the
bulk diffusivity vanishes (known as “critical slowdown”; [93]), is
presumably associated with the unique nature of the threshold-
activated dynamics in sandpiles. However, at this stage, it is not
quite clear whether the near-critical diverging diffusivity, along
with the vanishing conductivity, is a generic feature of sandpiles
undergoing an absorbing phase transition and, if so, in what ways
the transport instabilities can affect the behavior of the systems
near criticality. Understanding of these features can have a far
reaching consequence in resolving the long-standing issue of
determining the universality classes in sandpiles, which have been
hotly debated in recent times [41, 60, 78, 89, 94–100]. Indeed,
apart from the conserved Manna sandpiles, it would be useful
to explore the exact hydrodynamic structure in other variants of
conserved sandpiles, such as the restricted-height models [88],
the conserved threshold-transfer process (CTTP) [34–36] or the
conserved lattice gases (CLG), etc. [31]; this would help one to
check if these models too possess similar instabilities in particle
transport and thus to classify a rather diverse set of models
accordingly. Moreover, an exact hydrodyanamic characterization
of sandpiles can provide insights not only into the relaxation
properties, but also the fluctuation properties of the systems [78].
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Clearly, sandpiles still remain relevant, have many aspects yet
unexplored, and have much more to offer in future!
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Sandpile Models in the Large
Philippe Ruelle*

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Louvain-la-Neuve, Belgium

This contribution is a review of the deep and powerful connection between the large-
scale properties of critical systems and their description in terms of a field theory.
Although largely applicable to many other models, the details of this connection are
illustrated in the class of two-dimensional Abelian sandpile models. Bulk and boundary
height variables, spanning tree–related observables, boundary conditions, and
dissipation are all discussed in this context and found to have a proper match in
the field theoretic description.

Keywords: critical systems, scaling limit, sandpile models, conformal field theory, symplectic fermions

1 INTRODUCTION

In statistical mechanics, critical points are very special points in the space of external parameters
which control the state of a system. At such a point, the system is scale-invariant, and its
thermodynamic functions and correlations are characterized by critical exponents and power
laws. In many cases, physical systems have a finite number of critical points, most often only
one. Typical examples include the endpoint of the liquid–gas coexistence line or the Curie point for
ferromagnetic materials. In these cases, a system is brought to its critical point by tuning very
precisely a few external parameters to their critical values.

In nature, however, power laws are commonplace and can be found in a large variety of different
phenomena, like avalanches, earthquakes, solar flares, droplet formation. In all these cases, it is
certainly not clear what parameters should be tuned, and even if they are perfectly tuned, it is unlikely
that they would stay so over large periods of time. To solve this apparent paradox, Bak, Tang, and
Wiesenfeld suggested in the 80s that the external parameters would tune themselves dynamically:
even if the system is not initially in a critical state, its own dynamics will ineluctably drive it to
criticality and maintain it in that state [1]. This attractive idea has led to the concept of self-organized
criticality (SOC).

To support this idea, these authors proposed the sandpile model as a prototypical example of a
system which shows a form of self-organized criticality. Since then, many other models showing SOC
have been proposed, as abundantly illustrated in this volume and in introductory books and
reviews [2–5].

The present review will be exclusively concerned with specific versions of two-dimensional
sandpile models, formulated by Dhar [6], called Abelian sandpile models. Even though there are
among the simplest and easiest sandpile models to handle, they show a large spectrum of interesting
and difficult problems which have attracted considerable attention, in both the physical and
mathematical communities. From the point of view taken here (like their scaling limit and the
emerging conformal field theory), they are, to our knowledge, the only ones to have been studied. Yet,
compared to many other equilibrium statistical models, a fair statement is that our present
understanding of them is still very poor.

Our primary purpose is two-fold, namely, to give the unfamiliar reader an introduction of why
and how the neighborhood of a critical point can be described by a Euclidean field theory, which, at
first sight, appears to be a rather obscure statement, and also to show how this description can be
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worked out in practical terms. The second part will be illustrated
in sandpile models, which lend themselves very well to this kind
of analysis: they are simple enough that one can follow the steps in
a clear and transparent way, yet they are rich enough to show the
difficulties one sometimes has to face but also the elegance and
the power of the approach. Understanding how of a field theory
emerges from a stochastic lattice model enables to gain a
probabilistic and intuitive view of what a field theory is in this
context.

It turns out that the field theories which appear when
analyzing critical systems are conformal field theories. The
simple reason for this is that their large conformal symmetry
integrates the fact that critical systems have a local scale
invariance. Conformal theories in two dimensions have been
tremendously successful since the 80s and have led to a deep
understanding of the two-dimensional critical phenomena. It is
certainly not our purpose to give an introduction to conformal
field theories, and we will not go very deep into its technicalities,
referring to the vast literature. We restrict to their most basic
features, in the hope that these will be sufficient and useful to
understand how conformal theories are so well suited for
our study.

Section 2 starts with a brief review of the Abelian sandpile
models, where the most basic features of the models are recalled.
Section 3 is a general description, valid beyond the sandpile
models, of what is called the scaling limit, which allows
establishing the connection between the large-distance regime
of a critical system and the associated field theory. A brief tour of
conformal theories, and specifically logarithmic conformal
theories, is presented in Section 4. The application of the
conceptual ingredients is illustrated in the next three sections.
Section 5 focuses on the bulk observables in the sandpile models,
computes the first correlators, and explains how these should be
understood in terms field theoretic quantities. Boundary
conditions and boundary observables are examined in Section
6 as well as the way they should be thought of in conformal
theories. Section 7 discusses a dissipative variant of the sandpile
models and their description by a massive field theory, and also
some universality aspects of the sandpile models. The last section
summarizes the present status of the conformal theory at work in
sandpile models.

The present text has some overlap with [7]. The latter was
more concerned with the sandpile models as being described
specifically by a logarithmic conformal field theory. Intended to a
potentially wider readership, the present review is more devoted
to the general connection between critical systems and field
theories, illustrated in a specific class of models. The two are
somehow complementary and, if combined, may provide a more
complete overview.

2 ABELIAN SANDPILE MODELS

The models we discuss are discrete stochastic dynamical systems.
Their microscopic variables are attached to the vertices of a finite
connected graph Γ � (V,E) (with V the set of vertices, or sites, and
E the set of simple, unoriented edges) and evolve in discrete time

as a random process. We label the vertices of Γ by Latin indices
i, j, . . . and denote the microscopic variables by hi. These are called
height variables and simply give the height of the sandpile at
vertex i (i.e., count the number of sand grains at i); they are
integer-valued, with hiP1. A height configuration C is a set of
height values {hi}i∈V.

We are not quite ready to define the dynamics. For reasons
that will become clear in a moment, we need to extend Γ by
adding one special vertex, noted s and called the sink, as well as a
number of edges connecting s to the vertices of a non-empty
subset D ⊂ V . Vertices in D are called dissipative or open, while
those in V ∖D are conservative or closed. If Γ* � (V*, E*) denotes
the extended graph in an obvious notation, we define zi to be the
coordination number of i in Γ (the number of edges in E incident
to i, or the number of its nearest neighbors in Γ) and, similarly, zi*
its coordination number in Γ*. Thus, zi* � zi if i is closed and
zi*> zi if i is open. Finally, we say that a site i of V is stable1 if its
height satisfies 1#hi#zi*. A height configuration is stable if all
sites are stable. Clearly, the number of stable configurations is
equal to ∏i∈Vzi*.

The discrete, stochastic dynamics of the sandpile model is
defined as follows. Assume that Ct � {hi} is a stable configuration
at time t. The stable configuration Ct+1 is obtained from the
following two steps.

1) Deposition: One grain of sand is dropped on a random site
j of V, selected with probability pj, producing therefore a
new configuration Cnew with heights hi

new � hi + δi,j. If
hnewj #zj*, then Cnew is stable and defines Ct+1; if not, we
proceed to step (ii).

2) Relaxation: If hnewj > zj* (it is in fact equal to zj* + 1), we let
the site j topple: its height is decreased by zj*, each of its
neighbors in Γ receives one grain, and the remaining zj* −
zj grains go to the sink. After this, one or more neighbors
of j in Γmay become unstable, in which case they topple in
the way explained above for the site j. The toppling process
is pursued for all unstable sites until a stable configuration
is obtained. That configuration defines Ct+1.

It is useful to introduce the toppling matrix Δ as it will play an
important role in what follows:

Δi,j �
⎧⎪⎨⎪⎩

zi* for i � j,
−1 if i and j are neighbours (i.e. connected),
0 otherwise,

(1)

for i, j ∈ V . The sand redistribution occurring when a site j
topples can then be written as the update hi → hi − Δj,i for all
i ∈ V . The matrix Δ is like a Laplacian on Γ, with mixed boundary
conditions dictated by the open and closed sites, which induce,
respectively, Dirichlet and Neumann boundary conditions (see
Section 6).

The above dynamics is well-defined. We see that the total
number of sand grains is conserved under the toppling of a closed

1There is no need to keep track of the number of sand grains in the sink, and so we
do not assign it a height variable.
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site, whereas a nonzero number of grains are transferred to the
sink under the toppling of an open site. The existence of at least
one open site guarantees that the relaxation process terminates
after a finite number of topplings and motivates the necessity of
the extension of the graph Γ by the sink site. Moreover, if several
sites are unstable during the relaxation process, the order in
which they are toppled does not matter. More generally, one may
define the operator ai for each i ∈ V , whose action on a stable
configuration returns the stable configuration resulting from the
relaxation process after the deposition of a sand grain at i. One
can then prove that the operators ai commute [6], explaining the
qualifier “Abelian” used to designate the models satisfying this
property.

The dynamics described above is a discrete Markov chain on a
finite configuration space: at each time step, one applies the
operator ai with probability pi (it is the only stochastic element of
the dynamics), going from Ct to Ct+1 � aiCt. An important
question concerns the invariant measures, since they control
the behavior of the model in the long run.

If there is no strong reason to favor certain sites, one takes all
probabilities pi equal (uniform distribution). In this case,2 Dhar
[6] has shown that there is unique invariant measure PΓ, which is
uniform on its support. In the Markov chain terminology, the
configurations in the support of PΓ are called recurrent; the others
are called transient. Being in the support of the unique invariant
measure means that the recurrent configurations are those which
are in the repeated image of the operators ai. The transient ones
either never appear (depending on the initial configuration) or
cease to appear after some finite time.

If indeed the unique invariant measure is uniform, the
situation appears to be deceptively simple. Not so. What
makes the sandpile models nontrivial, fascinating, and rich is
the support of the invariant measure. A generic recurrent
configuration is really complicated because the height values
are delicately correlated over the entire graph. In the general
case, there is no simpler criterion characterizing the recurrent
configurations than the following. Let C be a stable configuration,
and let CF be its restriction to a subgraph F ⊂ Γ (F can be assumed
to be connected). We say that CF is a forbidden subconfiguration
if each vertex of F has a height smaller or equal to the number of
its neighbors in F. It can be shown [8] that a forbidden
subconfiguration cannot be in the repeated image of the
dynamics (of the operators ai). It follows that a configuration
is recurrent if and only if it contains no forbidden
subconfiguration. The simplest example of a forbidden
subconfiguration is when F contains just two neighboring
vertices with height values equal 1. The criterion also implies
that the maximal configuration with heights hi � zi* is recurrent
since a vertex i with height hi > zi cannot be in a forbidden
subconfiguration. It is also clearly in the image of the iterated
dynamics since it can be reached from any other stable
configuration by an appropriate sequence of ai’s.

The characterizing condition for recurrence shows that the
heights of a recurrent configuration are not at all independent.

They are not only correlated locally (think of two neighboring 1’s)
but also globally because asserting that a given configuration is
recurrent generally requires scanning the entire graph. For
instance, the configuration having hi � zi for all i is not
recurrent and possesses no other forbidden subconfiguration
than the whole configuration itself. Moreover, the recurrent
status is very sensitive to local changes and can be lost or
gained by the change of a single height (for the configuration
just discussed, the increase by one unit of the height at a single
open site makes it recurrent). However, the increase in any height
in a recurrent configuration preserves the recurrence.

The burning algorithm [8] (see also the review [5]) provides a
convenient way to test whether a given stable configuration is
recurrent. In addition to providing a completely automatic
procedure, more importantly, it establishes a bijection between
the set of recurrent configurations on Γ and the set of rooted
spanning trees on Γ*, rooted at the sink site s. Let us recall that a
spanning tree is a loopless connected subgraph (V*, F) ⊂ Γ* �
(V*, E*) with F ⊂ E*. This bijection is important and useful as
most of the actual calculations use the spanning tree formulation.
Interestingly, there is no canonical bijection between the two sets
in the sense that there are in fact many burning algorithms (the
detailed definition requires a certain prescription that is largely
arbitrary), each giving rise to a different bijection. This freedom in
the choice of a definite algorithm, a sort of huge gauge symmetry,
has remained unexploited so far.

If the notion of recurrence remains somewhat elusive in the
generic case, simple arguments lead to a remarkably simple and
general formula for the number of recurrent configurations [6],
naturally identified as the partition function Z since the invariant
measure is uniform:

Z � #{recurrent configs} � detΔ, (2)

for Δ the toppling matrix introduced in (1). It is a standard result
in combinatorics (Kirchhoff’s matrix-tree theorem) that det Δ
also counts the number of spanning trees on Γ (see Section 5.7 for
a proof). The previous formula usually implies that the recurrent
configurations form an exponentially small fraction of the set of
stable configurations (whose number is equal to ∏i Δi,i). On a
large grid in Z2, for instance, for which the density of dissipative
sites goes to 0 in the infinite volume limit, the effective number of
degrees of freedom per site in a recurrent configuration is roughly
3.21 (as compared to 4 in a stable configuration), meaning that

detΔxe
4G
π N � (3.21 . . .)N , with N the total number of sites and G

the Catalan constant.
The definition of recurrence implies that all the operators ai

map recurrent configurations to recurrent configurations,
implying that once the dynamics has brought the sandpile into
a recurrent configuration, all subsequent configurations are
recurrent. Therefore, the invariant measure is appropriate to
study the long-term behavior of the sandpile.

The sandpile models summarized above have raised a large
number of interesting and difficult questions. In the context of
this review, most if not all of them focus on the stationary regime
and study the statistical behavior of the sandpile when it runs over
the recurrent configurations. In other words, all the probabilities2The result holds in the more general case where pi ≠ 0 for every i.
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we are interested in are induced by the invariant measure PΓ. The
use of PΓ is what makes most of the calculations fairly hard3

because as noted earlier, that measure is nonlocal in terms of the
(local) height variables (equivalently the recurrence criterion is
nonlocal).

We should remark that the measure PΓ fully depends on all the
minute details which are necessary in order to completely specify
the sandpile model under study. Not only the graph Γ itself but
also the number and relative positions of closed and open
vertices, and the values of the local thresholds zi* affect the
invariant measure. Many features which directly depend on
these data will change if any of these parameters is modified,
like the number of recurrent configurations, the structure of the
sandpile group,4 the geometric structure of the identity
configuration,5 or the average height at a given site for
instance. All these features are mathematically interesting and
challenging (hence interesting) but very sensitive to the
underlying details.

One should however expect that more robust features would be
shared by sandpile models that are “close enough.” The same
situation prevails for other statistical models which, although
having different microscopic descriptions, are considered to be
essentially equivalent and grouped together to form a single
universality class. Models belonging to the same universality class
have identical behaviors “in the large,” a point of view made
technically more precise by the renormalization group analysis.

In order to identify these common behaviors, one should not look
at small scales as these are more likely to be determined by the local
details. The probability that two vertices next to each other have a
height 2, for instance, is not really interesting; in addition, it is a pure
number, different for each different model. Robust behaviors are
expected to be found at large scales as they are much less affected by
the microscopic details. One convenient method to access the large-
distance behaviors is by taking the scaling limit. (Readers familiar
with the scaling limit and the ideas of the renormalization group can
safely go straight to the next sections.)

3 THE SCALING LIMIT AND CONTINUUM
FIELD THEORIES

The simple idea underlying the scaling limit is this: if we want to
concentrate on the large-scale behavior of a system, let us look at it
from far away! The further away we look at the system, the larger our
horizon is and the larger the distances we keep in sight. At the same

time, when looking from a distance, the details get blurred and
disappear: one can no longer recognize the type of graph, and its
connectivities are no longer visible. What we see seems to become
independent of the microscopic details of the model.

Rather than stepping back, an equivalent but more convenient
way to proceed is to shrink the discrete structure (graph or grid or
lattice) on which the microscopic variables live. This will involve a
(real) small parameter ε such that the graph can be embedded in
εZd (or another shrinked regular lattice). For smaller and smaller
ε, fixing a macroscopic distance �x � ε �m ∈ εZd amounts to probe
larger and larger scales �m in terms of lattice units and at the same
time, allows to keep a macroscopic distance r � ∣∣∣∣ �x∣∣∣∣ under control.
The scaling limit corresponds6 to take ε → 0.

We note that since the scaling limit is a way to focus on
asymptotically large distances, we have to make sure that the
system does have such asymptotic distances! Indeed the scaling
limit requires that we also take the infinite volume limit, by
allowing the system to remain finite but of increasing size, the
growth being at least of order 1/ε.

The scaling limit has interesting consequences. The first most
apparent one is that the substrate of the rescaled model goes to a
continuum, either Rd or a part of Rd , which may be bounded.7 This
is the first sign that a continuum description ought to emerge in
the scaling limit. This is confirmed by a second observation: the
microscopic variables—the heights in the sandpile models—, which
were attached to the vertices of a graph, or a grid, should, in some
sense, converge to variables defined on a continuum. If indeed this is
expected to happen, exactly what happens is quite subtle. To realize
this, one may note that all the microscopic variables attached to sites
contained in a ball of radius o(1/ε) will actually collapse to the same
point in the scaling limit. Thus, every point in the continuum is the
convergence point of an infinite number of vertices in the original
discrete setting. The infinity of microscopic variables carried by these
vertices will supposedly mix and fuse to generate some kind of degree
of freedom located at a single point in the continuum.What is then the
nature of the emerging continuum degree of freedom at that point,
and how is it related to the lattice variables supposed to collectively
generate it? The conceptual answer is provided by the renormalization
group. It roughly goes as follows.8

The scaling limit, as explained at the beginning of this section,
was carried out in one stroke: all distances are scaled by ε, which is
then taken to 0. This limit was only designed to show how the
large-distance behaviors can be assessed but is too rough to
answer the question raised in the previous paragraph. The
renormalization group is much better designed conceptually as
it organizes the scaling limit scale by scale and keeps track, at each
scale, of the degrees of freedom present in the system.

Let us suppose that we start with a statistical model defined on
very large graph, or, to simplify and fix the ideas, on an infinite

3A notable exception concerns the linear or almost linear graphs, for which the
recurrence property usually takes a simpler form and allows for a larger number of
explicit results (see f.i., [9, 10]).
4We have mentioned that the operators ai generate an Abelian algebra. But when
acting on recurrent configurations, they are invertible and therefore generate an
Abelian group, called the sandpile group. The sandpile group, of order equal to
detΔ, has been determined for a number of finite graphs.
5Recurrent configurations form an Abelian group under the site-wise addition of
the heights, followed by relaxation. This group is isomorphic to the sandpile group.
In particular, one of the recurrent configurations is the identity in the group and
shows remarkable geometric patterns [11–14].

6For the scaling to be nontrivial, some external parameters may need to be
appropriately scaled with ε. One example of this is discussed in Section 7.1.
7It is bounded if all the linear sizes of the finite systems in the sequence defining the
infinite volume limit grow exactly like 1/ε.
8Among the many books and reviews on the renormalization group in statistical
mechanics, see, for instance, the book by Cardy [15].
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lattice. We fix a convenient scale Λ > 1, partition the lattice into
boxes of size Λ, and shrink the lattice by a factor Λ. Each box is
now of linear size 1 and contains of the order of Λd microscopic
variables. Within each box, we associate an effective, coarse-
grained degree of freedom which takes into account the overall
behavior of the microscopic variables inside the box (it could be,
f.i., their average value), and we then compute the sum over the
microscopic variables conditioned by the values of the coarse-
grained variables. The result is a statistical model for the coarse-
grained variables, defined on a lattice similar to the original one.
Once this is done (!), we iterate the process by defining a second
generation of coarse-grained variables out of those of the first
generation, and so on.

After the first iteration, each group of roughly Λd microscopic
variables has collapsed to a single coarse-grained variable of the
first generation; the statistical model obtained for these can be
interpreted as the original model in which the fluctuations of scale
smaller than Λ have been integrated out. The second iteration
yields a statistical model for the coarse-grained variables of the
second generation, each of which has integrated the fluctuations
of Λ2d microscopic variables over scales smaller than Λ2, and so
on, for the next iterations. In this way, each iteration, also called
renormalization, yields a model where more small-scale
fluctuations have been integrated out, and whose large-scale
behavior should be identical to that of the original model,
since the large-scale fluctuations have been preserved.

The continuum degrees of freedom we were asking about are
what the coarse-grained variables of higher and higher generation
should converge to when the number of iterations goes to infinity.
Each of them is indeed what is left of the infinite collection of the
microscopic variables that were located around it. Because the
coarse-grained variables of one generation are representative of
those of the previous generation, the continuum degrees of
freedom should similarly carry the same characteristics as the
original microscopic variables. In particular, the long-distance
correlations should be identical, at dominant order.

The continuum degrees of freedom emerging in the scaling
limit are called fields. Unlike their lattice ancestors, they usually
take continuous values. Fields are all what remains when the
short-ranged degrees of freedom have been integrated out: they
form the complete set of variables which are relevant as far as the
long-distance properties of the original model are concerned. It
means that only the lattice degrees of freedom which have long
range correlations, namely, with diverging correlation lengths,
will survive the scaling limit and eventually give rise to a field; all
the others progressively disappear in the renormalization process.

The microscopic variables in terms of which the discrete
statistical model is defined usually give rise to fields, but they
are not the only ones. Any lattice observable, that is, any function
of the microscopic variables, can potentially give rise to a field in
the scaling limit9 so that one is typically left with an infinite

number of different fields. Each field has its own specific
properties and should be interpreted as the scaling limit of
one particular lattice observable (it may also happen that
different lattice observables converge to fields with the same
characteristics).

One last question must be addressed. The original statistical
model was not only defined by its microscopic variables but also
by a probability measure on the configuration space. That
measure, which is a joint distribution for the
(nonindependent) random microscopic variables, is usually
given by a Gibbs measure and written, up to normalization, as
P(C) ∼ exp (−H[C]), where H is the Hamiltonian of the system,
that is, some given function of the microscopic variables which
determines the relative probability of a configuration C. What is
the equivalent of the Gibbs measure for the fields?

According to the discussion above, one starts from the original
model and its Hamiltonian H0 ≡ H. The first renormalization
yields the coarse-grained variables of the first generation and a
corresponding Hamiltonian H1, computed (at least in principle)
by summing exp(−H0) over the microscopic variables inside the
boxes. Similarly, the kth iteration will produce a Hamiltonian Hk,
defining the statistical model for the coarse-grained variables of
the kth generation. The appropriate measure for the fields should
therefore be something like the formal limit limk→∞exp(−Hk).
Physicists like to denote this formal object by exp(−S), where S,
called the action, is a certain functional of the fields.

Thus, if the description of a statistical model is given, in the
discrete lattice setting, in terms of a set of microscopic variables
(h1i , h

2
i , . . .) and a Hamiltonian H(h1i , h

2
i , . . .), it is given in the

scaling limit by a set of continuous fields (ϕ1( �x), ϕ2( �x), . . . ) and
an action S[ϕ1, ϕ2, . . .]. The pair {(ϕ1( �x), ϕ2( �x), . . . ), S} is referred
to as a continuum field theory.10 More precisely, specifying a set of
fields and their action S is only one way to present a field theory; it
is also the most comfortable one because it allows to compute the
correlators of the various fields, at least in principle.

Needless to say, working out the successive renormalizations
along with the Hamiltonians H0, H1, . . . is a formidable task that
is, for all practical purposes, impossible to carry out explicitly,
except on extremely rare occasions (and for tailored examples).
As a consequence, the field theory describing the large distances
of a statistical model cannot be obtained in a deductive way.

The situation however is not hopeless. Experience, heuristic
arguments, or results obtained on the lattice can often give
definite hints about the nature of the seeked field theory. More
importantly, and even if one has no clue of what the correct field
theory is, the relevance of a trial field theory, perhaps suggested by
an educated guess, can be firmly tested by comparing correlation
functions. If the lattice microscopic variable hi�x

ε
(at site i)

converges in the scaling limit to the field ϕ(x), it must be true
that the scaling limit of the lattice correlators is equal to field
theoretic correlators, as follows:

lim
ε→0

ε−nΔ hx1
ε
hx2

ε
. . . hxn

ε〈 〉
lattice

� 〈ϕ(x1) ϕ(x2) . . . ϕ(xn)〉FT, (3)

9For instance, the energy density in the Ising model, namely, the product of two
neighboring spins, gives rise to a field that is different from the one obtained from
the spin variable itself. Later, we will give examples of this in the sandpile models
(cluster variables).

10One should add “Euclidean” field theory because it is formulated on a Euclidean
space Rd .
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where the exponent Δ is determined so that the limits on the left
hand side exist: as shown below, it will eventually be related to the
scale dimension of the field ϕ to which the lattice variable hi
converges. The previous identity must be satisfied for all n-point
correlators, but also for any correlator of any number of lattice
observables provided that for each observableO(i) around the site
i inserted in the lattice correlator, the corresponding field Φ(x) to
which it converges is inserted in the field theoretic correlator:

lim
ε→0

ε−∑i
Δi 〈O1(x1

ε
)O2(x2

ε
) . . . On(xn

ε
)〉

lattice

� 〈Φ1(x1)Φ2(x2) . . . Φn(xn)〉FT. (4)

So, we can write the convergence of a lattice observable to a field
as the formal identity:

lim
ε→0

ε−Δ O(x
ε
) � Φ(x), (5)

meant to be valid inside correlators.
If both types of correlators can be separately computed, the

potential infinity of identities similar to the previous one will put
very strong constraints on the field theory proposed and allow to
validate it or, on the contrary, to discard it. Themore identities we
are able to test, the higher the level of confidence we gain for the
conjectural field theory.

At this stage, we seem to be running in a vicious circle: we want
to test the proposed field theory by comparing its correlators with
the lattice quantities, but we cannot compute the field correlators
if we do not know the field theory! If one thinks of a field theory as
being given by a set of fields and an action S, this is indeed a
serious problem because the action cannot be easily guessed, and
even worse, there are many cases for which one has no clue as to
what the action is. However, the action is just one convenient
(and usually not simple) way to compute correlators. One could
think of other ways to determine correlators, and one of them is
the presence of symmetry: enough symmetry allows determining
the correlators. It is precisely the principle underlying the
conformal field theories, which therefore provides a field
theoretic framework where no action is necessary. They are
discussed in the next section.

Knowing the details of the field theory describing the long-
distance properties of a statistical model is at the same time
extremely powerful and immensely complicated. On the one
hand, it is indeed powerful because it captures the very
essential behavior of the statistical model without being
cluttered with the many irrelevant lattice effects which make
the lattice model so much more complex. On the other hand, it is
also immensely complicated because every single element in the
lattice model which affects the long distances must have a match
in the field theory. Such elements include,

• of course, the bulk observables as discussed above;
• the boundary conditions, the changes of boundary

conditions, and the boundary observables;
• the nonlocal observables (like disorder lines in the Ising

model);

• the algebra of all the observables;
• the specific effects arising when the lattice is embedded in

topologically nontrivial geometries (cylinder, torus, etc.);
• the symmetry, finite or other, that may be present in the

model,

and possibly many others. All this represents a huge amount of
information that must be present and known in the field theory, and
which can be only very rarely contemplated in full. A renown exception
is when we consider critical statistical models, as we do here, which are
in addition formulated on two-dimensional domains (d � 2).

4 CONFORMAL FIELD THEORIES

Critical systems are primarily characterized by a scale invariance.
The correlation lengths of the observables surviving the scaling
limit diverge in the infinite volume limit so that there is no
intrinsic length scale left: the fluctuation patterns appear to be the
same at all scales. As a consequence, the correlation functions of
those observables decay algebraically rather than exponentially.
The large-distance 2-point correlator of a typical lattice
observable Oi located around the site i takes the following form:

〈Oi Oj〉 � A

|i − j|2Δ + . . . , (6)

where A is a normalization, Δ is the exponent controlling the
decay, and the dots indicate lower order terms.

The field theory emerging in the scaling limit inherits the scale
invariance. Further assuming translation and rotation
symmetries, the scale invariance is enhanced to the invariance
under a larger group, namely, the group of conformal
transformations, that is, the coordinate transformations which
preserve angles.11 In d dimensions, the conformal
transformations include the transformations mentioned above,
namely, the translations (d real parameters), dilations (1
parameter), and rotations (d(d − 1)/2 parameters), and the so-
called special conformal transformations (or conformal
inversions) which depend on an arbitrary vector �b (d
additional parameters) take the following general form:

�x′
| �x′|2 �

�x

| �x|2 +
�b 5 �x′ � �x + |x|2 �b

1 + 2 �b · �x + | �b|2 | �x|2. (7)

Together these transformations form a finite Lie group isomorphic
to SO(d + 1, 1). They are all global conformal transformations
because they are defined everywhere on Rd ∪ {∞} and bijective.
In dimension d > 2, a conformal transformation defined locally can
be extended to a global transformation.

Typical spinless (i.e., rotationally invariant) fields transform
tensorially under conformal transformations as follows:

Φ( �x) → zx′i
zxj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Δ/d

Φ( �x′), (8)

11The material recalled in this section is completely standard; useful references
include Ref [16] (rather comprehensive) and [17] (more focused on critical
statistical systems).
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for some number Δ. Fields transforming that way under global
conformal transformations are called quasi-primary. Global
conformal invariance then fixes the average value of a quasi-
primary field,

〈Φ( �x)〉 � 0, if Δ≠ 0, (9)

(a constant for Δ � 0 by translation invariance) and the 2-point
correlator of two quasi-primary fields is given as follows:

〈Φ1( �x1)Φ2( �x2)〉 �
⎧⎪⎪⎨⎪⎪⎩

A12

| �x1 − �x2|2Δ1
if Δ1 � Δ2,

0 if Δ1 ≠Δ2.

(10)

Specializing (8) to a dilation, �x′ � α �x, we have Φ( �x)→ αΔ Φ(α �x)
so that Δ can be identified with the dimension of the field Φ (in
units of inverse length).

Global conformal invariance also completely determines the
correlator 〈Φ1( �x1)Φ2( �x2)Φ3( �x3)〉 of three (and not more) quasi-
primary fields as follows:

〈Φ1( �x1)Φ2( �x2)Φ3( �x3)〉
� A123

| �x1 − �x2|Δ1+Δ2−Δ3 | �x1 − �x3|Δ1+Δ3−Δ2 | �x2 − �x3|Δ2+Δ3−Δ1
.

(11)

We see that the lattice 2-correlator (6) is consistent with the
convergence of the observable Oi to a quasi-primary field Φ( �x) of
dimension Δ upon setting i � �x/ε since the matching identity (3)
is satisfied as follows:

lim
ε→0

ε−2Δ 〈O �x1/εO �x2/ε〉lattice � A

| �x1 − �x2|2Δ � 〈Φ( �x1)Φ( �x2)〉FT. (12)

We note that all subdominant terms in the lattice correlator (6)
drop out when taking the limit ε→ 0, confirming once more that
a field theory captures the large-distance behavior of a critical
lattice model.

What has been just recalled is valid in any dimension dP 2
but is only the beginning of the story for d � 2. The global
conformal group discussed above remains but is more
conveniently presented in complex coordinates as the SL(2,C)
group of Möbius transformations w � az+b

cz+d, for a, b, c, d ∈ C

satisfying ad − bc � 1.
The two-dimensional world has however many more

conformal transformations in store. Indeed, it is a well-known
fact that any analytic map w(z) of the complex plane is conformal.
Surely, an analytic function requires an infinite number of
parameters to fix it (f.i., the coefficients of its Laurent
expansion in some neighborhood) so that the conformal
“group” is certainly infinite-dimensional. The term group is
not really appropriate because the composition of analytic
maps is generally not defined everywhere on the complex
plane: unless it is a Möbius transformation, an analytic map is
either not defined everywhere or its image is not the whole
complex plane. For instance, the map w � L

2πi log z maps the
complex plane to a cylinder of circumference L. The discussion of
the two-dimensional conformal group is thus usually carried out
at the level of its algebra, for which infinitesimal transformations
of the form w � z + ϵ zn+1 are considered. The corresponding

generators satisfy the famous infinite-dimensional Virasoro
algebra,

[Lm, Ln] � (m − n)Lm+n + c
12

m(m2 − 1)δm+n,0, m, n ∈ Z,

(13)

a central extension of the Witt algebra. The real number c is the
central charge and is one of the most important data of a two-
dimensional conformal field theory (CFT). The modes L0 and
L±1, whose algebra is unaffected by the central charge, are the
infinitesimal generators of the Möbius group, with L−1 and L0
corresponding to translations and dilations, respectively. As it
turns out, a second commuting copy of the Virasoro algebra, with
modes Ln, can formally be considered for the conformal
transformations of the antiholomorphic variable z.

It is not our purpose to give an introduction to the CFT, but
one can easily conceive the huge difference between a finite
symmetry algebra and an infinite one. A field theory that is to
be invariant under an infinite algebra is immensely more
constrained and therefore much more rigid, leaving the hope
that one should be able to say a lot more about it. It is indeed
the case.

For one thing, the field content of a CFT must be organized
into representations of the Virasoro algebra, which are all infinite
dimensional, and this opens up the possibility that an infinite
number of fields be in fact accommodated in a finite number of
representations (such CFTs are called rational). In this respect,
the primary fields are particularly important. They are the
strengthened version of quasi-primary fields in the sense that
they transform tensorially under any conformal transformation.
A primary field is an eigenfield of L0 and L0 with real eigenvalues
h and h and, more importantly, is annihilated by all positive
modes Ln>0, Ln>0. It is in particular characterized by a total weight
Δ � h + h (its eigenvalue under L0 + L0, the real dilation
generator) and is, of course, quasi-primary. The action of any
string of negative Virasoro modes Ln<0, Ln<0 on a primary field
produces infinitely many new fields, called descendant fields,
which include all derivatives of the primary field, since L−1 �
zz and L−1 � zz act as derivatives on any field. All of them are
eigenfields of L0 and L0. Together, they form a highest weight
representation of the Virasoro algebra whose structure is similar
to highest weight representations of simple Lie algebras, the
primary field playing the role of the highest weight state.

Like in higher dimensions, the forms of the 1-, 2-, and 3-point
of quasi-primary fields are completely fixed by their invariance
under Möbius transformations. They are more easily written in
complex coordinates (zij � zi − zj) as follows:

〈Φ(z, z)〉 � A δh,0δh,0, (14)

〈Φ1(z1, z1)Φ2(z2, z2)〉 � A12

zh1+h212 z h1+h2
12

δh1 ,h2δh1 ,h2, (15)

〈Φ1(z1, z1)Φ2(z2, z2)Φ3(z3, z3)〉
� A123

zh1+h2−h312 zh1+h3−h213 zh2+h3−h123 z h1+h2−h3
12 z h1+h3−h2

13 z h2+h3−h1
23

. (16)
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These forms suggest that the conformal weights hi, hi are positive
so that the correlators decrease with the separation distances, as
seems natural from a physical point of view. We will nonetheless
encounter physical fields with negative weights, for which the
correlators have a different meaning.

Occasionally, we will consider chiral correlators for which we
only retain the dependence in the zi variables of the full
correlators (equivalently the action of the holomorphic modes
Ln). Chiral correlators are appropriate for observables living on a
boundary, like the real line bordering the upper-half plane, since a
boundary is one-dimensional. In this case, only one copy of the
Virasoro algebra remains so that the fields are characterized by a
single conformal weight. Chiral correlators are also useful to
compute the correlators of bulk variables on surfaces with
boundaries (see Section 6).

The precise structure of a Virasoro highest weight representation
(c, Δ) based on a primary field of weight Δ is crucial. In the good
cases, it determines the properties of the primary field (and of its
descendants) by fixing its correlators with itself or with other fields.
The 2-point correlator of a primary field has the form (15) since it is
quasi-primary, and the same is true for the 3-point correlator. To go
beyond, the global conformal invariance is not enough.12 It turns out
to be often the case that the structure of a Virasoro highest weight
representation implies that the correlators 〈Φ(z, z) . . . 〉 involving
the primary fieldΦ obey differential equations. Four-point functions
can be routinely computed in this way. All correlators can then be
determined, at least in principle, without knowing anything of a
possible Lagrangian realization of the underlying field theory
(through its action).

The miracle of 2-dimensional CFTs can be paraphrased in the
following way: to completely solve a CFT, that is, compute all its
correlation functions, and thereby to know everything there is to
know of the large-distance limit of a critical model; it is sufficient to
know enough of the Virasoro representations making up that CFT.
This methodology has been immensely successful since the mid-80’s
and has led to a profound understanding of the many aspects of
critical models listed at the end of the previous section. The Ising
model is the prominent example of a model that can be treated that
way, but the same is true of more general statistical models involving
local interactions between the microscopic variables.

More recently, models showing some form of nonlocality have
been examined at the conformal light. Sandpile models are in this
class, since, as we have seen earlier, the height variables are in strong
interaction over the entire domain to form global recurrent
configurations. Other models with nonlocal interactions and/or
nonlocal degrees of freedom include percolation, critical polymers,
and more general loop models. It may sound surprising, but the
conclusion seems to be that the conformal approach is still relevant.
However, the CFTs underlying these models are more complex
essentially because the representations of the Virasoro algebra that
appear have a far more complicated structure. These special CFTs are

called logarithmic conformal field theories (LCFTs). What follows is a
very basic introduction to the salient features of the LCFT; various
reviews and applicationsmay be found in the special issue [18]. Let us
also mention [19] which reviews the extension to the LCFT of the
calculational tools used in CFT.

For the highest weight representations discussed above, the
operators L0, L0 are diagonalizable. LCFTs have the distinct
feature to include Virasoro representations for which L0 and L0
are no longer diagonalizable, but instead contain (infinitely many)
Jordan blocks of finite rank. To have a rough idea of what these
representations look like, one can think of a highest weight
representation for which the highest weight is not a single
primary field, but a pair of fields (Φ, Ψ), of which only Φ is
primary. The action of L0 on them would be typical of a rank 2
Jordan cell as follows:

L0Φ � hΦ, L0Ψ � hΨ + λΦ, (17)

where Ψ is called the logarithmic partner of the primary field Φ
and a similar action of L0 (with h). Under the action of the
negative Virasoro modes, the Jordan block structure will propagate
among the descendant fields. The presence of Jordan blocks is a
sort of minimal ingredient to make a representation logarithmic;
many mathematical complications can and do arise (see, f.i., [20]).
Higher rank Jordan blocks can also appear.

A immediate consequence of the presence of Jordan blocks
explains the use of the word “logarithmic”: the correlators of fields
in an LCFT contain logarithmic terms in addition to the power
laws encountered before. For instance, the 2-point correlators of
the logarithmic pair {Φ, Ψ}, both of weights (h, h), read

〈Φ(z1, z1)Φ(z2, z2)〉 � 0,

〈Φ(z1, z1)Ψ(z2, z2)〉 � B

(z1 − z2)2h(z1 − z2)2h
,

(18a)

〈Ψ(z1, z1)Ψ(z2, z2)〉 � C − 2λB log |z1 − z2|2
(z1 − z2)2h(z1 − z2)2h

. (18b)

For rank r Jordan blocks, the 2-point correlators would involve up
to (r − 1)th powers of logarithms. The parameter λ is not intrinsic
as it can be observed in the normalization of Φ or of Ψ; likewise,
the logarithmic partnerΨ is defined up to a multiple ofΦwithout
affecting the defining relations (17). The chiral version of the
above 2-point functions reads

〈Φ(z1)Φ(z2)〉 � 0, 〈Φ(z1)Ψ(z2)〉 � B

(z1 − z2)2h
, (19a)

〈Ψ(z1)Ψ(z2)〉 � C − 2λB log(z1 − z2)
(z1 − z2)2h

, (19b)

It should not be too surprising that Jordan blocks and logarithms
go hand in hand. Under dilation by a factor α, a logarithmic term
transforms inhomogeneously log z→ log z + log α, reflecting the
inhomogeneous action of the dilation generator L0 on Ψ. Under a
finite dilation w � αz, the transformation laws of Φ and Ψ read

Φ′(w,w) � |α|−Δ Φ(z, z),
Ψ′(w,w) � |α|−Δ Ψ(z, z) − λ log |α|2 Φ(z, z)}.{ (20)

12A general 3-point correlator 〈Φ1(z1)Φ2(z2)Φ3(z3)〉 is a function of three
complex numbers; if all three fields are quasi-primary, that function can be
determined by trading z1, z2, and z3 for the three complex parameters of a
general Möbius transformation.
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One may check that the form of the correlators (18) is indeed
invariant under the replacement Φ(z, z)→Φ′(w,w) and
Ψ(z, z)→Ψ′(w,w). Let us also note that the scaling (5) must
be redefined for the lattice observables described by logarithmic
fields since it involves a dilation by a factor 1/ε, to which the
field responds by an inhomogeneous term.

Despite all the efforts spent, LCFTs are generally much less
understood than their non-logarithmic cousins, although a
number of general features are known. On the statistical side,
few models have been thoroughly studied as their nonlocal
features make it hard to carry out exact calculations on the
lattice. On the field theoretic side, it is not known what a
generic LCFT looks like. The simplest of all (but nontrivial)
and probably the only LCFT to be fully under control is the
symplectic fermion theory with central charge c � −2, also called
the triplet theory. It has been introduced in [21] and then
investigated in greater detail in [22, 23]. It has the following
Lagrangian realization in terms of a pair of free, massless,
Grassmannian scalar fields θ, ~θ,

S � 1
π
∫

dzdz zθz ~θ , z � zz , z � zz. (21)

Several fields in this theory form logarithmic pairs, like the identity I
and the composite field θ~θ. We note that (18) then implies the
somewhat unusual relation 〈I〉 � 0, which indeed follows, using the
rules of integration overGrassmannian variables, from the fact that the
above action does not depend on the constantmodes of θ and ~θ. Since
this is a free scalar theory, all correlators of fields that are local
(i.e., product of derivatives) in θ, ~θ are polynomials in the derivatives of
theGreen function (the kernel of the inverse Laplacian−4zz ) given in
complex coordinates by G(z, w) � −log ǀz − wǀ.

To finish, let us note that the statistical models which have a non-
diagonalizable transfer matrix (when there is a proper one) are the
natural candidates for being described by LCFTs in their scaling regime.
Indeed, such a transfer matrix gives rise to a non-diagonalizable
Hamiltonian, which itself is the lattice version of the field theoretic
operator L0 + L0. As said above, the non-diagonalizability of L0, L0 is
the hallmark of LCFTs. The logarithmic minimal models form an
infinite series of such lattice models [24].

The rest of this review is devoted to discussing the variables of the 2-
dimensional sandpile models which have been successfully (i.e., with
enough confidence) identified in the corresponding LCFT. These
elements reveal some facets of the field theory at work in sandpile
models: the big and complete picture is well out of reach for the
moment.

5 BULK VARIABLES

The height variables are certainly the first and most natural
variables to look at as they are the microscopic variables in
terms of which the models are defined. The introduction we
gave in Section 2 was for the Abelian sandpile on an arbitrary
graph. If large-distance properties should be rather robust against
local modifications of a graph, they are not expected to be the
same on a graph with a high degree of connectivity (the extreme

example being the complete graphs), a regular graph with a
moderate degree of connectivity or a graph with a strong
hierarchical structure (like Cayley trees). Most of the results
reviewed here are obtained when the graph is a rectangular
portion of the square lattice Z2; varying the size of the grid is
an easy way to approach the infinite volume limit, and this choice
ensures that conservative sites away from the boundary have
height variables taking the same number of values (namely, 4).
The triangular and honeycomb lattices, for which the number of
height values is, respectively, 6 and 3, will be briefly discussed as
well in order to address universality issues (see Section 7.2).

In most cases, the only dissipative sites will be located on the
boundary,13 except when we discuss the insertion of isolated
dissipation. With one exception, we will exclusively consider
open and closed boundary conditions, by which we mean that
whole stretches of boundary sites are either dissipative or
conservative, respectively. The choice of boundary conditions not
only has an effect at finite volume but also in the infinite volume limit
if some of the boundaries are kept at finite distance (e.g., on the
upper-half plane or on a strip of finite width, see Section 6).

On a finite grid Γ, the heights assigned to the vertices form
stable configurations, but only the recurrent ones have a nonzero
(and uniform) weight with respect to the invariant measure PΓ. So
far, we have no clear idea of what a generic recurrent configuration
looks like. Answers to questions like “What is the proportion of
sites having height 1, height 2, . . .?” can certainly help figure out.
Also, the heights must be correlated within a recurrent
configuration. Can one characterize these correlations? Are they
exponential or power-lawed? The computation of multisite height
probabilities answers these questions and helps understand the
statistics of recurrent configurations.

To be definite, let us consider Γ as an L ×M rectangular grid in
Z2, with open boundary conditions: the non-boundary sites are
conservative and have a maximal height value equal to
zi* � zi � 4, whereas the boundary sites have a maximal height
value chosen to be zi* � 4> zi (boundary and corner sites dissipate
1 resp. 2 grains of sand under toppling; both types are connected
to the sink). Thus, the toppling matrix is four times the identity
minus the adjacency matrix of the grid, and the height at every
site takes values in {1, 2, 3, 4}. In this section, all boundaries are
sent off to infinity in the scaling limit so that the domain
converges to R2; in that limit, all multisite probabilities are
fully invariant under translations.

5.1 One-Site Height Probabilities
As a warm up for what has to come, we ask the following: what is
the probability PΓ(hi � a) that in a recurrent configuration, a
given site i has height equal to a, between 1 and 4? Because we are
interested in the infinite volume limit of these numbers, we take i
to be deep in the middle of the grid, well away from the
boundaries.

If we pause for a while and ponder over that simple question,
we feel a bit at a loss on how to handle it because the only means

13For rectangular grids Γ ⊂ Z2, the notion of boundary is clear: when Γ is embedded
in Z2, the boundary sites are those which are connected to sites of Z2 not in Γ.
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we have is the general criterion of recurrence, namely, the
nonexistence of forbidden subconfigurations. Let us start with
the height 1.

Since the total number of recurrent configuration is equal to
det ΔΓ (see Section 2), we can write

PΓ(hi � 1) � #{recurrent configs with hi � 1}
detΔΓ

. (22)

For hi � 1 to be in a recurrent configuration C, the height of none
of its neighbors N, E, S, or W can be equal to 1 (as they would
form a forbidden subconfiguration). Following the clever trick
proposed in [25], we consider a new grid ~Γi by deleting from Γ the
vertex i and the four edges incident to it. We also define from C a
new configuration ~C on ~Γi by setting

~hj � { hj for j ∉ {i,N,E, S,W},
hj − 1P1 for j ∈ {N,E, S,W}. (23)

Looking back at the criterion of recurrence for an arbitrary graph,
it is not difficult to see that a configuration C with hi � 1 is
recurrent on Γ if and only if ~C is recurrent on ~Γi. We thus obtain

PΓ(hi � 1) � detΔ ~Γi
detΔΓ

� det[Δ~Γi ⊕ 1ii]
detΔΓ

, (24)

where the matrix in the numerator has been extended by a one-
dimensional diagonal block labeled by the vertex i, without
changing the value of the determinant. One then can write

Δ~Γi ⊕ 1ii � ΔΓ + B(i), (25)

with B(i), the defect matrix is given by

B(i)k,k′ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−3 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, k, k′ ∈ {i,N,E, S,W},

(26)

and B(i) is zero everywhere else. We obtain

PΓ(hi � 1) � det[ΔΓ + B(i)]
detΔΓ

� det[I + Δ−1
Γ B(i)]. (27)

It reduces to the computation of a finite determinant since B(i)
has finite rank. In the infinite volume limit (both L,M→∞), this
probability converges to a constant P1 (by translation invariance).
As the matrix ΔΓ becomes the discrete Laplacian on Z2 in that
limit,14 standard results yield [25]

P1 ≡ lim
|Γ|→∞

PΓ(hi � 1) � 2(π − 2)
π3

x 0.073 63. (28)

It also means that a recurrent configuration has an average of
about 7% of sites with a height equal to 1.

What about higher heights? We know for sure that the
inequalities P4 >P3 >P2 >P1 hold because adding one grain of
sand to a recurrent configuration, at a site where hi � a, yields a
recurrent configuration if a < 4. However, to actually compute
these numbers, can one use the same trick as for the height 1? The
answer is definitely negative: no local modification of Γ like what
we did above will allow computing the corresponding
probabilities. To understand this, we turn to the description in
terms of spanning trees.

As was briefly mentioned in Section 2, the burning
algorithm yields a one-to-one correspondence between a
recurrent configuration and a spanning tree rooted at the
sink site s and growing into the interior of Γ. In a given
spanning tree T , a site j is called a predecessor of i if the
unique path in T from j to the root passes through i. Let us also
denote by Xk(i) the fraction of all spanning trees for which the
site i has k predecessors among its nearest neighbors, for
0# k# 3. A careful analysis of the burning algorithm shows
the following [26]:

PΓ(hi � a) � PΓ(hi � a − 1) + Xa−1(i)
5 − a

, 1# a# 4. (29)

For a � 1, we see that PΓ(hi � 1) is related to X0(i), namely, the
fraction of spanning trees on Γ for which the site i is a leaf. All
such trees can be obtained from arbitrary spanning trees on ~Γi by
adding one edge between one neighbor of i and i itself (four
different possibilities). Thus, both points of view coincide and
lead to the same local modification Γ→ ~Γi.

The next case is PΓ(hi � 2), related to X1(i). Here, the
situation is dramatically different because the condition that i
has only one predecessor among its nearest neighbors is highly
nonlocal. The reason for this is that there are two manners for a
neighbor of i to be a predecessor of i in a given tree. The first one is
that the tree includes the edge between the two sites so that the
neighbor of i is directly connected to i. In the second manner, the
tree contains a potentially long chain of edges that forms a path
between the two sites. The first one is a local connection and is
easy to check, and the second one is nonlocal and more difficult.
The same remark applies to the fractions X2(i) and X3(i) and
makes the calculation of the corresponding probabilities much
more complicated.

In fact, this first natural and simple-looking question we
have raised, namely, the value of P(hi � a), turned into a fairly
long warming up exercise as it took about twenty years before
the completely explicit probabilities could be found. By using a
rather heavy graph theoretical technology, Priezzhev [26]
obtained the first expressions for P2,P3, and P4, but these
were given in the form of multivariate integrals. The problem
was reconsidered in [27], where the following explicit values were
conjectured:

P2 � 1
4
− 1
2π

− 3
π2

+ 12
π3

x 0.173 90, (30a)

P3 � 3
8
+ 1
π
− 12
π3

x 0.306 29, (30b)

14The reader will legitimately point out that the Laplacian on Z2 has a zero mode
and is therefore not invertible. A closer look at the determinants (27) however
reveals that they only depend on differences of the inverse matrix entries, which are
perfectly well-defined.
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P4 � 3
8
− 1
2π

+ 1
π2

+ 4
π3

x 0.446 17. (30c)

A few years later, three independent proofs were given. The first
one was based on a relation with the probability of a loop-erased
random walk (LERW) to visit a fixed nearest neighbor of its
starting point, which was then computed in terms of dimer
arrangements [28]. The second proof also used the relation
with LERW passage probabilities but within a much more
general approach [29]. Finally the third one [30] carried out
the direct computation of the multiple integrals left open in [26].
Let us mention that the technique developed in [29] to enumerate
the so-called cycle-rooted groves (which generalize spanning
trees to spanning forests with marked points) currently
provides by far the most efficient way to compute height
probabilities, reducing the calculation of P2,P3 to just a few
lines (see Ref [31]). Most of the height correlators presented
below have been computed using this technique. Also noteworthy
in this context is the work [32] which presents a direct and
elementary derivation of the average height 〈h〉 � ∑a aPa on
planar lattices (from the formulas above, it is equal to 25

8 on Z2)
without computing the individual height probabilities.

Ironically, the four numbers Pa are not very useful for a
comparison with a field theory because they will have to be
subtracted in correlators (see below). And indeed, some of the
correlators have been determined exactly before the 1-site
probabilities Pa were found.

Even though the explicit expressions for Pa’s have the same
level of simplicity, the far larger complexity of the combinatorial
problem posed by the calculation of PaP2 hints at a striking
difference of nature between the height 1 and the higher heights:
the height 1 is essentially local, and the others are nonlocal. This
will soon be confirmed.

5.2 Height Cluster Probabilities
Cluster height probabilities are a rather obvious generalization of
one-site probabilities, by which we ask for the probability that a
specific connected subconfiguration occurs in recurrent
configurations, away from the boundaries and in the infinite
volume limit. Examples of height clusters are shown below.

The three clusters on the left belong to the family of weakly
allowed subconfigurations, or minimal height clusters, first
introduced in [25], which contains the cluster made of a
single height equal to 1. They are minimal subconfigurations
in the sense that if one decreases any of its heights by 1, the
clusters become (or contain) forbidden subconfigurations. As
was done in the previous subsection for single height 1, their
occurrence probabilities around position i can be computed by
cutting off appropriate lattice sites and edges. They take the
form of finite determinants PS(i) � det[I + Δ−1

Γ BS(i)], where
the defect matrix Bs(i) depends on the cluster S considered
[25, 33].

The three clusters on the right of (31) are not minimal and
generalize the simple cluster made of a single height larger or
equal to 2. Their level of complexity is comparable to the latter
and is best computed using the methods of [29]. Explicit
calculations become fairly tedious as the size of the cluster
increases.

5.3 Height Correlations
In terms of the subtracted height variables,15

ha(i) ≡ δh(i),a − Pa, (32)

the n-point correlation functions are given by

σa1 ,a2 ,...,an(i1, i2, . . . , in) � E[ha1(i1) ha2(i2) . . . han(in)]. (33)

These are the functions we are primarily interested in for a future
comparison with a conformal field theory. To make the
comparison sensible, we have to take the infinite volume limit
and the limit of large separations ǀik − ilǀ → +∞. In addition, to
avoid the boundary effects—they will be studied later on, all
insertion points ik are to stay (infinitely) far from the boundaries.
In practice, one first replaces ΔΓ by the Laplacian Δ on Z2 and
then expand the Green matrix (i.e., the inverse Laplacian) for
large separations.

The computation of correlations of heights 1 (or indeed any
weakly allowed subconfigurations, see below) poses no particular
problem. The argument used in Section 5.1 leading to consider
new configurations ~C on a locally modified lattice ~Γ is simply
repeated for the neighborhood of each cluster. Thus, the
probability to find a height h(i1) � 1 at site i1, a height h(i2) �
1 at site i2, and so on, is equal to

PΓ(h(i1) � 1, h(i2) � 1, . . . ) � det[ΔΓ + B(i1) + B(i2) + . . . ]
detΔΓ

� det[I + Δ−1
Γ {B(i1) + B(i2) + . . . }].

(34)

The correlators σ1,1, . . .,1 are obtained by taking appropriate
subtractions and the limits discussed above.

The first few n-point correlators can be easily computed for
arbitrary configurations of insertion points [31, 33]. By
construction, the 1-point function vanishes, σ1(i1) � 0 (the
relation (9) is indeed the main motivation for the subtraction).
The 2-point function is found to be (i1 − i2 � �r � reiφ)

σ1,1(i1, i2) � −P
2
1

2r4
− 4(π − 2)[1 + (π − 2) cos 4φ]

π6 r6
+ . . . (35)

where the dots stand for lower order terms.
This first result is instructive for several reasons. First, for large

separation distances, the dominant term indicates that the correlation
decay is algebraic, which shows that the model is critical and makes
room for a conformal field theoretic description. Second, choosing the
scale dimension Δ � 2, the scaling limit (12) indeed retains the first
term only, the form of which is the expected one (note that the

15In order to make contact with fields, we slightly change the notation hi → h(i) for
the height at site i.
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second term, like all other subdominant ones, has only the
lattice rotation invariance and is therefore not expected to
survive the scaling limit). And third, the dominant term is
negative, indicating an anticorrelation between heights 1. This
is consistent with the fact that the presence of many heights 1
in a configuration makes it more likely to be nonrecurrent.
Interestingly, the calculation can be carried out in Zd , with the
result that the correlation decays like r−2d, giving a dimension
Δ � d [25].

The mixed correlator of a height 1 and a height 2, 3, or 4 is harder.
They have first been obtained in [34, 35] by using classical graph
theoretic techniques, and then reconsidered and extended in Ref [31]
using the results of Ref [29]. Whatever the method used, one
has to evaluate the fractions ~Xk(i1) of spanning trees, as defined
in Section 5.2, but on a lattice modified around the site i2
where height 1 is located. This modification affects the
toppling (Laplacian) matrix and its inverse and,
consequently, the whole computation, heavily based on
these two matrices. The result for a height 1 and a height 2
reads, at dominant order,

σ2,1(i1, i2) � −P
2
1

2r4
{log r + (c + 3

2
log 2 + 16 − 5π

2(π − 2))} + . . . (36)

where c � 0.577216. . . is the Euler constant. The first subdominant
correction is of order r−6 and contains a nontrivial angular
dependence, like in (35), but also a log r term [31]. The
expressions of σ3,1 and σ4,1 are similar, with different coefficients.

The expressions σa,1 for a > 1 definitely establish the
logarithmic character of the CFT underlying the sandpile
model. The expressions (35) and (36) are strongly reminiscent
of those in (18) but do not quite match. If in the scaling limit,
heights 1 and 2 were to converge to a logarithmic pair {h1(z),
h2(z)}, one would think that σ1,1 and σ2,1 ought to go over to the 2-
point functions 〈h1(z1)h1(z2)〉 and 〈h2(z1)h1(z2)〉, respectively.
However, conformal invariance implies that the former vanishes
identically, whereas the latter is not logarithmic. We could think
of computing σ2,2 to see what comes out, but large-distance
correlators with several heights strictly larger than 1 are far
beyond our present computational capabilities. Let us add that
the calculation of σa,b(i1, i2) for a, b > 1 does not merely reduce to
the evaluation of numbers like Xa−1,b−1(i1, i2) which would
generalize the numbers Xa−1(i) defined earlier and enumerate
the spanning trees with fixed numbers of predecessors among the
nearest neighbors of i1 resp. i2. Indeed, the possibility that
neighbors of i1 are predecessors of i2, or vice versa,
substantially complicates the matter. Details on how to
perform the correct counting have been given in [31].

To reconcile the previous lattice results and the LCFT
predictions, we pause for a while to examine the effects of a
seemingly unrelated observable.

5.4 Isolated Dissipation
In the previous section, the calculation of height probabilities
started on a finite grid Γ, where the only dissipative sites are
boundary sites. We did not pay too much attention to exactly
which boundary sites are dissipative; in fact, since the infinite

volume limit sends the boundaries off to infinity, there is no
need to know precisely which boundary conditions are
used (this is what we meant when we said that ΔΓ becomes
the Laplacian on Z2). We show now that the situation changes
if we make some of the bulk sites dissipative [36]. It is not
difficult to understand why this is so in terms of spanning
trees. We remember that dissipative sites are sites that are
connected to the sink, the root of the trees, from which the
branches of the tree are growing. Therefore, the existence of
dissipative sites in the bulk makes it possible that branches
grow from the middle of the grid, thereby affecting the
macroscopic structure of the spanning trees.

To make a bulk site i1 dissipative, one simply has to connect it
to the sink. In the notations of Section 2, this amounts to increase
the value zi1*, for instance, from zi1 � 4 (on Z2) to 5 (a higher value
would not make much difference). In turn, this changes by 1 the
diagonal entry (ΔΓ)i1,i1 of the toppling matrix, that is, ΔΓ → ΔΓ +
Di1, with (Di1)i,j � δi,i1δj,i1. More generally, the new toppling
matrix ~Δn ≡ ΔΓ + Di1 + Di2 + . . . + Din defines a new model in
which several bulk sites ik are dissipative. As a consequence, the
height variables at these sites take values in the set {1, 2, 3, 4, 5}.

A simple and natural way to evaluate the effect of
inserting isolated dissipation is to consider the change in the
number of recurrent configurations, by computing the ratio
det ~Δn/detΔΓ, first at finite volume and then in the infinite
volume limit.

We start by inserting dissipation at the single site i, far from
the boundaries. The ratio is easy to compute since the defect
matrix Di has rank 1,

det ~Δ1

detΔΓ
� det(I + Δ−1

Γ Di) � 1 + (Δ−1
Γ )i,i. (37)

It is a finite number at finite volume but diverges in the infinite
volume limit, no matter where the site i is located. The divergence
reflects the fact that the extra value hi � 5 allows enormously more
recurrent configurations in the modified model.16

The same divergence is present in the ratio det ~Δn/detΔΓ,
which suggests to change the normalization and compare the
effect of inserting n dissipative sites with respect to the situation
where there is only one dissipative site, that is, to consider instead
the ratio det ~Δn/det ~Δ1, which is perfectly well-defined. Let us also
remark that in the infinite volume limit, the denominator does
not depend on the location of the (only) dissipative site so that the
ratios are fully symmetric in the insertion points ik and
translation invariant.

The first two ratios read, with r � ǀi1 − i2ǀ for n � 2,

det ~Δ1

det ~Δ1

� 1,
det ~Δ2

det ~Δ1

� 1
π
log r + 2c0 +O(r−2), (38)

16We note that the inverse ratio detΔΓ/det ~Δ1 is equal to Prob[all hj # 4] �
Prob[hi # 4] � 1 − Prob[hi � 5] where the probabilities are evaluated in
the modified model. The divergence mentioned in the text therefore implies
that hi � 5 with probability 1.
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where c0 � 1
2π (c + 3

2 log 2) + 1. If we denote by ω(z, z) the field
that describes, in the scaling limit, the insertion of dissipation at a
bulk site, the previous two equations would imply

〈ω(z, z)〉 � 1, 〈ω(z1, z1)ω(z2, z2)〉 � 1
π
log |z1 − z2| + 2c0.

(39)

Interestingly, they exactly match the last two equations of (18),
with the logarithmic pair {Φ, Ψ} identified with {I,ω}, both fields
having the weights h � h � 0 (the identity field is primary).
Moreover, the logarithmic term in the 2-point correlation fixes
the coefficient λ of the logarithmic pair (I,ω) equal to λ � − 1

4π so
that L0 ω � L0 ω � − 1

4π I. The relation 〈I〉 � 0, as noted for the
free symplectic fermion theory, is here understood as being given
by the inverse of the divergent quantity in (37).

The lattice calculation of det ~Δ3/det ~Δ1, corresponding to the
insertion of three dissipative sites, is not difficult and yields the
following 3-point correlation, with zij ≡ zi − zj,

〈ω(1)ω(2)ω(3)〉 � 3c20 +
c0
2π

log |z12z13z23|2

+ 1
16π2

[log |z12|2 log ∣∣∣∣∣∣∣z13z23z12

∣∣∣∣∣∣∣2 + cyclic]. (40)

It is fully consistent with the general 3-point correlators of
fields in a logarithmic pair [19]. Many additional checks have
been carried out [36] which all confirm the consistency of the
above field assignment. It has been shown [27] that the bulk
dissipation field can be realized in terms of symplectic free
fermions as

ω(z, z) � 1
2π

θ~θ + c0, (41)

in the sense that the correlators of this composite field, computed
in the symplectic fermion theory, reproduce the above
expressions.

5.5 Height Correlations Continued
The multisite height probabilities computed in Section 5.3
were obtained by taking the limit over a sequence of grids of
increasing size. Because of the dissipation along the
boundaries, the probabilities are well-defined for each finite
grid and properly converge. On the field theoretic side, the
CFT supposedly describing the scaling limit is defined right
away on the infinite continuum and does not know about the
dissipation of the finite systems. To make the CFT connect
with the lattice description, we have to insert by hand the
required dissipation in the correlators. Since on the lattice side,
the boundary dissipation is pushed off to infinity when we take
the infinite volume limit, the previous section suggests that we
insert the additional field ω(∞) in the correlators. Thus, the
proposal, first made in Ref [27], is that a lattice n-point height
correlator is described in the scaling limit by an (n+1)-point
field correlator as follows:

σa1 ,a2 ,...,an(i1, i2, . . . , in) #########→scalim 〈ha1(z1) ha2(z2) . . .han(zn)ω(∞)〉.
(42)

It turns out that the proposed field correlations exactly reproduce
the form of the lattice results obtained in Section 5.3. If {Φ,Ψ} are
fields of weights h � h forming a logarithmic pair such that
(L0 − h)Ψ � (L0 − h)Ψ � λΦ, one finds with Δ � 2h [27] the
following equations:

〈Φ(z1, z1)Φ(z2, z2)ω(∞)〉 � A

|z12|2Δ,

〈Φ(z1, z1)Ψ(z2, z2)ω(∞)〉 � B − λA log |z12|2
|z12|2Δ ,

(43a)

〈Ψ(z1, z1)Ψ(z2, z2)ω(∞)〉 � C − 2λB log |z12|2 + λ2A log2|z12|2
|z12|2Δ .

(43b)

Comparing with equation (18), we see that the insertion of
dissipation at infinity through ω(∞) allows a nonzero value of
A and solves the problem encountered in Section 5.3.

From the dominant terms in equations (35) and (36) for the
lattice correlations σ1,1(i1, i2) and σ2,1(i1, i2), we infer that the
(subtracted) bulk lattice height 1 and height 2 variables converge
to fields h1(z) and h2(z) that form a logarithmic pair of weight Δ �
2. Moreover, if we assign them the same normalization as their
lattice companions (A � −P2

1
2 ), we find the parameter of the

logarithmic pair (h1, h2) equal to λ � −1
2. The explicit results

for σ3,1(i1, i2) and σ4,1(i1, i2) [35] show that the fields h3(z) and
h4(z) are also logarithmic partners of h1(z), albeit of different
normalizations and for different values of λ. As noted in Section
4, it means that they can be written as linear combinations17 of
h1(z) and h2(z) with known coefficients,

ha(z) � αah2(z) + βah1(z),
α1 � 0, α2 � 1, α3 � 8 − π

2(π − 2), α4 � − π + 4
2(π − 2),

(44)

and other values for βa [27]. These field assignments predict that
the lattice correlation of heights larger or equal to 2 behaves
asymptotically as follows:

σa,b(i1, i2)x −αaαb
P2
1

2
log2r
r4

+O(log r
r4
), a, bP 2. (45)

Because α4 is the only negative coefficient among αa, the height
variables are all anticorrelated, except the height 4 which has a
positive correlation with the other three heights. Numerical
simulations have successfully confirmed the behavior (45) [27].
A lattice proof however remains one of the greatest challenges in
the sandpile models.

The lattice 2-point correlators discussed above correspond to 3-
point functions in the CFT. They are therefore completely generic,
depending only on the weights of the fields involved and a few

17The four height fields ha(z) also satisfy the trivial identity h1(z) + h2(z) + h3(z) +
h4(z) � 0.
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assumptions about their global conformal transformations. Higher
correlators are not generic and depend on finer details of the nature of
the fields and of the specific CFT at work, in particular its central
charge. In this regard, the first hint for the value of the central charge
was given in Ref [8] by looking at the finite-size corrections of the
partition function (i.e., the number of recurrent configurations); the
analysis yields the value c � −2.

The simplest higher correlators to consider on the lattice are
the 3- and 4-point height 1 correlators. They have been computed
in Ref [33] with the following results. Since the height 1 variable
has weight Δ � 2 in the scaling limit, one would expect the
dominant contribution to the 3-point correlator to be
homogeneous of degree −6 in the separation distances.
Surprisingly, the first nonzero term has degree −8,

σ1,1,1(i1, i2, i3) � 0 + . . . (46)

implying that its scaling limit, corresponding to the CFT 4-point
function 〈h1(z1) h1(z2) h1(z3)ω(∞)〉, vanishes identically.

The lattice 4-point correlator has the expected dominant
degree −8,

σ1,1,1,1(i1, i2, i3, i4) � P4
1

8
{ 1

|z12 z34|4 +
1

|z13 z24|4 +
1

|z14 z23|4

− 1

(z12 z34 z13 z24)2 −
1

(z13 z24 z14 z23)2

− 1

(z14 z23 z12 z34)2 + c.c.} + . . . (47)

and is much more instructive: it is precisely the expression we
obtain for the 5-point CFT correlation function
〈h1(z1) h1(z2) h1(z3) h1(z4)ω(∞)〉 if we assume that the height
1 field h1(z) is a primary field of dimensions (h, h) � (1, 1) in a
CFT with central charge c � −2 and that it satisfies a certain
degeneracy condition at level 2. This last condition furnishes a
differential equation [16], from which the correlator can be fully
determined, the result being exactly the function (47)! From this
result, one can actually infer that the previous correlator
〈h1(z1) h1(z2) h1(z3)ω(∞)〉 must vanish if it is to be
symmetrical in the three insertion points [31].

The lattice 3-point correlators σa,1,1(i1,i2,i3), aP 2, have been
computed more recently in [31]. For simplicity, the three points were
assumed to be aligned horizontally in the plane, with real separations
xij. The following result was obtained to dominant order:

σa,1,1(i1, i2, i3) � αa
P3
1

8
1

x321x
3
31

+ . . . , (aP 2), (48)

where the coefficients αa are those given in (44). In addition to
being very simple, this expression is surprisingly non-
logarithmic. Because its scaling limit should be given by
〈ha(z1) h1(z2) h1(z3)ω(∞)〉, it is particularly important to
understand it from the CFT point of view. Indeed, the
computation of such a correlator requires additional
information on the height fields haP2 as logarithmic partners
of h1. Since h3 and h4 can be regarded as linear combinations of h1
and h2, it is sufficient to consider h2.

Inspired by the conformal representations appearing in the
bosonic sector of the symplectic theory [22], the following
proposal has been made in Ref [27] regarding the conformal
nature of h2(z, z). A more complete account will be presented in
Section 8.

The field h2(z, z) is not primary since it transforms into h1(z, z)
under dilations. It is also not quasi-primary because its L1 and L1
transforms generate two new fields ρ(z, z) and ρ(z, z), respectively,
withweights (0,1) and (1,0).Moreover, the field ρ(z, z) is left primary,
and its L1 transform is equal to κI; likewise, ρ(z, z) is right primary,
and its L1 transform is also equal to κI. All this results in the following
transformation law of h2(z, z) under a general conformal
transformation z→w(z) and z→w(z) as follows:

h2(z,z) �
∣∣∣∣∣∣∣dwdz

∣∣∣∣∣∣∣
2[h2(w,w)+ log∣∣∣∣∣∣∣dwdz

∣∣∣∣∣∣∣
2

h1(w,w)]
+1
2
(d2w
dz2

/dw
dz
) dw
dz

ρ(w,w)

+ 1
2
dw
dz
(d2w
dz2

/dw
dz
)ρ(w,w)

+κ
4
(d2w
dz2

/dw
dz
)(d2w

dz2
/dw
dz
), κ�−P1

4
. (49)

This conformal transformation law of h2 is sufficient to compute
correlators involving h2, but substantially complicates the
calculations. Using this transformation and the left and right
level 2 degeneracies of h1(z, z), the required correlator can be
nonetheless determined. The result reads [31]

〈h2(z1) h1(z2) h1(z3)ω(∞)〉 � P3
1

16
1

|z12z13|2 [
1

z13z12
+ 1
z12z13

].
(50)

When the three points zi are aligned horizontally, it exactly
reproduces the lattice result (48) for a � 2. The cases a � 3, 4
follow by multiplying by the proper coefficient αa since
〈h1(z1) h1(z2) h1(z3)ω(∞)〉 � 0.

5.6 Minimal Height Cluster Correlations
The calculation of occurrence probabilities of minimal
subconfigurations has been briefly discussed in Section 5.2.
Their correlations can be computed very much like those of
heights 1 by using a defect matrix. The calculation of mixed 2-
point correlators for about a dozen different minimal
subconfigurations has been reported in Ref [33]. It turns out
that each such cluster S can be specified by a triplet (a, b1, b2) of
real numbers.

We define as before subtracted variables

hS(i) � δS(i) − PS, (51)

where δS(i) denotes the event “a minimal subconfiguration S is
found around site i” and PS(i) � E[δS(i)] is the probability of such
an event. The mixed correlator of two such variables takes the
form
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σS,S′(i1, i2) � E[hS(i1) hS′(i2)]
� − 1

2r4
{aa′ + (b1b1′ − b2b2′) cos 4φ} + . . . (52)

We see that the dominant contribution retains an angular
dependence, which in this case is not surprising since the
minimal clusters are generally not rotationally invariant. As a
matter of illustration, the cluster reduced to a single height 1 is
characterized by the triplet (a, b1, b2) � (P1, 0, 0), while for the
second one in equation (31), one has

In the scaling limit, the subtracted cluster variables give
rise to the fields hS(z), whose mixed correlators are given by
the terms displayed in equation (52). Interestingly, it has
been observed [33] that these fields have a realization in terms
of the symplectic free fermions, which is discussed at the end
of Section 4. Indeed, one may check that the explicit fields
given by

hS(z, z) � −{a(zθ z ~θ + z θ z~θ) +(b1 + ib2) zθ z~θ
+(b1 − ib2) z θ z ~θ}, (54)

reproduce the above 2-point correlators, as well as the higher
order correlators computed in Ref [33], provided the dissipation
field ω, proportional to θ~θ, is inserted in the correlators, as
explained earlier. In particular, the height 1 field h1(z, z) is
recovered upon setting a � P1 and b1 � b2 � 0. Let us
note a generic field hS(z, z) is a linear combination of
three fields with different conformal weights, namely,
(1,1), (2,0), and (0,2) and therefore different conformal
transformations; the last two are responsible for inducing
an angular dependence in the correlators. The field
realization (54) has been proved in a much greater
generality in Ref [37]: any lattice observable based on a
conservative local bond modification18 converges in the
scaling limit to a field of the form (54).

On general grounds, this should not be surprising. On the one
hand, the multisite probabilities for minimal clusters can be
computed by using defect matrices which implement the local
bond modifications. On the other hand, defect matrices always
yield contributions that are given by finite determinants of
discrete Green matrix entries. In the limit of large separations,
the determinants converge to polynomial expressions in the
Green function and its derivatives. It is therefore not a
complete surprise that the associated fields can be constructed
out from the symplectic free fermions θ, ~θ. Indeed, because the 2-point

correlators of θ, ~θ are given by the Green function, the correlators of
any fields that are local in θ, ~θ and their derivatives are necessarily
polynomials in the Green function and its derivatives (Wick’s
theorem). We expect this observation to extend to all the
observables that correspond to local perturbations of the toppling
matrix. Isolated dissipation and minimal cluster variables are among
them; the arrow variables discussed in the next section are in this class
too. These general remarks apply to the massive extension of the
sandpile model (see Section 7.1).

What about the height 2, 3, and 4 variables? Can they also be
accommodated in the free symplectic fermion theory? As
explained earlier, these three variables cannot be handled with
finite rank perturbations of the toppling matrix because they
involve nonlocal constraints on the nearest neighbors (some of
them should not be predecessors). Using the technique developed
in Ref [29], the 1-site probabilities PaP2 can be efficiently
computed. Surprisingly, the details show that the explicit
values are given in terms of a few entries of the lattice Green
matrix (at short distances), which explains why the values of PaP2

quoted in (30) are not much more complicated than for P1. This
is no longer the case for large-distance correlations σaP2,1(i1, i2).
The analysis of Ref [31] shows that those correlators are expressed
in terms of sums of the product of Green matrix entries over a
path connecting i1 to i2 and thus in terms of quantities that are
not local in the Green matrix. It supports the view that the
height fields haP2 do not belong to the free symplectic fermion
theory. A detailed analysis of this question has been carried out
in Ref [27] and has reached the same conclusion. Section 8
below summarizes this somewhat strange situation.

5.7 Spanning Tree–Related Variables
A recurrent configuration of the sandpile model can be specified
as a set of height values or as a spanning tree; the former has the
local heights as natural variables, the latter has local connectivities
as natural variables, namely, the existence or absence of specific
bonds in the spanning tree.

We recall that a spanning tree is a connected subgraph with no
loop which contains all vertices, including the sink. The latter is
chosen to be the root of the tree, implying that there is a unique
path connecting any vertex to the root and therefore any vertex
to any other vertex. A rooted spanning tree can then naturally
be oriented by deciding that the edges of the tree all point
toward the root. As a consequence, in any rooted spanning
tree, there is exactly one outgoing edge at each vertex but the
root; there may however be more (or less) ingoing edges (a
vertex with no ingoing edge is a leaf). A site j is then a
predecessor of i if the unique path from j to i is
consistently oriented (equivalently if the unique path form j
to i does not pass through the root). As we have seen, the
question of being predecessor is a nonlocal problem, even if i
and j are close to each other, even nearest neighbors [38].

Connectivities between neighboring sites can be handled in
much the same way as height 1 or minimal height cluster
variables. To see this, we must first understand why the
determinant of the toppling matrix on a graph counts the number
of spanning trees on that graph. In the perspective of this section, we
generalize the matrix by assigning arbitrary weights to the oriented

18The qualifier “conservative” means that the defect matrix that implements the
bond modifications has zero row and column sums. The defect matrix used in
Section 5.1 to compute the height 1 probability does not have this property. It can
however be replaced by another one that does have it [33]. An example of a
nonconservative bond modification is given in Section 5.7.
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edges of the graph Γ* � (V*, E*). We define xij as the weight carried
by the edge from the vertex i to the vertex j (xij � 0means that there is
no edge from i to j), and we set, for i, j ∈ V ,

Δi,j �
⎧⎨⎩ yi � xi* +∑j≠ i

xij for i � j,

−xij for i≠ j,
(55)

In the context of the sandpile model, the difference xi* � yi −∑j≠ i xij can be viewed as the weight of the oriented edge from i to
the sink * so that the conservative vertices have this difference
equal to 0 (no connection to the root).

IfN � ǀVǀ is the number of vertices in the graph, let us write the
determinant of Δ as a sum over the permutations σ of the
symmetric group SN, which we partition according to the
number k of proper cycles they contain, that is, the cycles of
length strictly larger than 1 as follows:

detΔ � ∑
σ ∈SN

εσ Δ1,σ(1)Δ2,σ(2) . . .ΔN ,σ(N)

� ∑[N/2]

k�0
(−1)k ∑

σ has k
proper cycles

Δ+
1,σ(1) . . .Δ+

N,σ(N) (56)

where the matrix Δ+ is Δ without the minus signs in the non-
diagonal part. The second equality follows by combining the signs
in the non-diagonal entries of Δ with the parity of σ: every cycle of
length ℓP2 in a permutation σ brings a sign (−1)ℓ− 1 coming from
the parity εσ and another sign (−1)ℓ from the product of non-
diagonal entries of Δ, resulting in an overall sign −1 per proper
cycle. A cycle of length ℓ � 1, corresponding to a vertex left
invariant by σ, brings no sign.

The term k � 0 is simply equal to∏i yi as the only permutation
with no proper cycle is the identity. In combinatorial terms, the
product∏i yi is the weighted sum over all configurations of N
arrows, where each vertex has exactly one arrow pointing to
one of the other vertices or to the root, each configuration
being weighted by the product of the weights carried by the
arrows. The generic term k ≠ 0, apart for the sign (−1)k, is a
weighted sum of arrow configurations which contain at least k
oriented loops. Indeed, the k cycles contained in a fixed σ give rise
to k loops, and the arrows attached to the vertices left invariant by σ
are unconstrained and possibly form more loops.

By using the inclusion–exclusion principle, one can see
that the above alternating sum has the effect to subtract from
the term k � 0 the weights of all the arrow configurations
which contain at least one loop [26, 39]. Thus, det Δ is the
sum over the oriented spanning trees on Γ*, each tree being
weighted by the product of the weights of the oriented edges
present in the tree (Kirchhoff’s theorem). These oriented
trees are also rooted spanning trees because one vertex at
least must have its arrow oriented to the sink (a configuration
of N arrows on N vertices necessarily contains a loop). When
all weights xij are equal to 0 or 1, det Δ is simply the number of
spanning trees.

Let us come back to the question of local connectivities on a
rectangular grid in Z2 and compute the probability that the
outgoing arrow from the site i is oriented to its right

neighbor. This amounts to compute the fraction of spanning
trees with such an arrow given as follows:

P→(i) � P(right arrow at i) � {# trees with right arrow at i}
detΔ ,

(57)

where Δ is the discrete Laplacian. We take i to be a conservative,
non-boundary site.

According to the general discussion above, in order to force an
arrow from i to its right neighbor E, one could simply set to 0 the
weights between i and its three neighbors S, W, and N. It is however
computationally more efficient to set the weight from i to its right
neighbor to x and take the limit x→ +∞ so as to give the edges to the
other three neighbors a relative weight equal to 0. This implies that we
define a newmatrix ~Δ which coincides withΔ, except on two entries,
namely, ~Δi,i+̂e1 � −x and ~Δi,i � x + 3. As before, we write ~Δ � Δ +
B→(i) for the defect matrix B→(i) which is zero everywhere, except on
the two sites i, i + ê1, where it reduces to ( x−1

0
1−x
0 ). Since x is in any

case large, we can simply set that part of B→(i) to ( x
0
−x
0 ). From

Kirchhoff’s theorem, we obtain

P→(i) � lim
x→+∞

1
x
det[I + Δ− 1B→(i)], (58)

which reduces to a 2-by-2 determinant. In the infinite volume
limit, one finds P→(i) � 1

4, as expected. If we want to have the
arrow at i oriented to its neighbor j, other than E, we use similar
defect matrices B↑, B↓, B←, which look the same as B→ but with the
nonzero 2-by-2 block ( x

0
−x
0 ) placed on the sites i and j. The four

orientations of the arrow at i yield the same result 1
4.

Multipoint arrow probabilities can be computed in the now
usual way, placing appropriate defect matrices at the different
sites. For instance, the probability to find a right arrow at two sites
i1 and i2 is given as follows:

σ→,→(i1, i2) � lim
x→+∞

1
x2

det[I + Δ− 1{B→(i1) + B→(i2)}]. (59)

In the infinite volume limit and for a large distance, the
following two-point probabilities are found at dominant order:

σ→,→(i1, i2) − 1
16

� 1
16π2

(z + z)2
|z|4 + . . . (60a)

σ↑,↑(i1, i2) − 1
16

� − 1
16π2

(z − z)2
|z|4 + . . . (60b)

σ→,↑(i1, i2) − 1
16

� − i
16π2

z2 − z2

|z|4 + . . . (60c)

Looking for symplectic fermion realizations of fields ρ→ and
ρ↑ which reproduce these two-point correlators, one quickly
sees that these have to include two parts with respective
weights (1,0) and (0,1), leading in a natural way to the
following forms:

ρ→(z, z) �
1
2π
(θ z~θ + θ z ~θ), ρ↑(z, z) �

i
2π
(θ z~θ − θ z ~θ),

(61)
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in agreement with the fact that ρ↑(z, z) is formally the rotated
form of ρ→(z, z) (under z → −iz). The first two correlators are
indeed related by rotation. This observation also suggests that the
other two orientations are described by fields which are the
opposite of the previous two, ρ←(z, z) � −ρ→(z, z) and
ρ↓(z, z) � −ρ↑(z, z). Explicit calculations confirm it.

In a similar way, probabilities that edges belong to a random
spanning tree, irrespective of their orientation, can be computed.
The probability that a single, fixed edge belonging to a tree is the
sum of the probabilities to find it in either of the two possible
orientations, and is thus equal to 1

2.
Likewise, the probability to find m edges in a tree is the sum

of the probabilities to find them in all possible orientations and
so is the sum of 2m probabilities of m oriented edges. That sum
can however be obtained in one go by replacing the block

( x
0
−x
0 ) used for the oriented edges by ( x

−x
−x
x ) and dividing as

above the determinant by xm. Because two arrows with
opposite orientations cannot occupy the same edge (as they
would form a loop), the summation over the 2m terms is
correctly realized.

Correlations of unoriented edges should decay faster than
those of oriented edges because the sum of the two orientations is
zero, in view of the relations ρ← � −ρ→ and ρ↓ � −ρ↑, at least at the
order that was dominant for the oriented edges (r−2). Indeed,
explicit calculations yield a r−4 decay:

σ↔,↔(i1, i2) − 1
4
� σh,h(i1, i2) − 1

4
� − 1

16π2

(z2 + z2)2
|z|8 + . . .

(62a)

σ↔,h(i1, i2) − 1
4
� 1
16π2

(z2 − z2)2
|z|8 + . . . (62b)

From these correlators, the associated fields ϕ↔ and ϕhmust have
components with conformal weights (2,0), (1,1), and (0,2).
One finds the same form as the fields associated to the
minimal clusters, in agreement with a previous remark since
the defect matrix ( x

−x
−x
x ) is conservative. More precisely, the

following fermionic expressions reproduce the above
correlations:

ϕ↔(z, z) �
1
2π
(zθ z ~θ + z θ z~θ + zθ z~θ + z θ z ~θ)

� (z + z )ρ→ − 1
2π
(θz2~θ + θ z

2~θ), (63a)

ϕh(z, z) �
1
2π
(zθ z ~θ + z θ z~θ − zθ z~θ − z θ z ~θ)

� i(z − z )ρ↑ − 1
2π
(θz2~θ + θ z

2~θ). (63b)

In fact, given that an unoriented edge is a sum of two oriented
edges with opposite orientation, or, from what we said above, a
difference of two oriented edges with the same orientation, one
would expect that the fields describing a horizontal resp. vertical
unoriented edge are proportional to the horizontal resp. vertical
derivative of the fields describing the oriented edges, namely,
ϕ↔ ∼ (z + z )ρ→ and ϕh ∼ i(z − z )ρ↑. It turns out not to be quite
the case.

6 BOUNDARIES, BOUNDARY
CONDITIONS, AND BOUNDARY
VARIABLES
Formulating the sandpile model on a surface with boundaries is
important to see how they affect the statistics of the model. The
multisite correlations discussed in the previous section are likely
to be modified by the presence of a boundary, and by the
associated boundary conditions. Moreover, the microscopic
variables on a boundary or very close to it will surely have a
different behavior from their bulk versions. In the field theoretic
description, the boundary fields have to be properly identified,
and the way changes of boundary conditions are implemented
must be clarified. All this adds to the known set of bulk fields a
number of boundary-related fields and offers the opportunity to
further test the consistency of their identification by computing
mixed correlations combining both types of variables.

Surfaces with boundaries arise in the thermodynamic limit when
some of the boundaries of the finite system are not sent off to infinity,
unlike the situation considered in the previous section. The simplest
case is when only one boundary of the rectangular grid is kept at
finite distance, leading to a domain converging to the upper-half
plane H � {(x, y) ∈ R2: yP0}. There is only one boundary to care
about, and the invariance under horizontal translations is preserved.

From our earlier discussion of conservative vs. dissipative sites,
we have already defined two possible boundary conditions: open
and closed. Let us recall that the boundary condition is open resp.
closed if the boundary sites are dissipative resp. conservative. As
before, a boundary open site has zi* � 4, while a boundary closed
site has zi* � zi � 3. In the scaling limit, it endows H with a
homogeneous boundary condition, open or closed. We also can
(and will) consider inhomogeneous boundary conditions, by
alternating open and closed stretches on a single boundary.

In terms of height variables, the open boundary condition is
equivalent19 to fix all the boundary heights to 4, whereas the
closed condition amounts to constrain the boundary heights not
to take the value 4. The fixed boundary condition with boundary
heights equal to 1 is not possible (two neighboring 1’s form a
forbidden subconfiguration); the fixed boundary conditions with
boundary heights equal to 2 and/or 3 should be possible but seem
to be difficult to handle in practice.

Two more boundary conditions, defined in the spanning tree
description and previously called windy boundary conditions will
be discussed at the end of this section (as we will see, they are not
so far from the possibility just mentioned, namely, that of having
height variables being equal to 2 or 3). No other boundary
condition has been considered so far, though it would be very
surprising that no other exist.20

19Indeed, the burning algorithm implies that the boundary sites, all with a height
equal to 4, will burn at the first step of the burning process. The sites on the next
layer all have zi* � 4, corresponding to the open condition.
20Of course, we talk here of no other universality class of boundary conditions.
Many boundary conditions may differ in the way they are microscopically defined
on the lattice and nevertheless renormalize to the same continuum boundary
condition in the scaling limit.
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6.1 Bulk VariablesWith Homogeneous Open
or Closed Boundary
In this section, we would like to reconsider the multisite
height probabilities but on a domain with a boundary, the
upper-half plane (UHP) being the simplest case. The principle
underlying the calculations on the UHP stays the same as on
the full plane. The most essential difference is that the
toppling matrix becomes in the thermodynamic limit the
Laplacian matrix on the discrete UHP with the appropriate
boundary condition, open or closed. In this section, we
consider homogeneous boundary conditions only.

To be specific, we choose the boundary row of sites to be
located on the horizontal line y � 1 so that the discrete UHP
we consider is {(x, y) ∈ Z2

∣∣∣∣ yP1}. For either boundary
condition, the Laplacian matrix Δop or Δcl is minus the
adjacency matrix of the discrete UHP plus a diagonal
matrix, everywhere equal to 4 for the open condition, equal
to 4 and 3, respectively, for the bulk and boundary sites for the
closed condition. By the method of images, the Green matrices
Gop/cl � (Δop/cl)−1 can be easily computed in terms of that on
the full plane as follows:

Gop
(x1 ,y1),(x2 ,y2) � G(x1 ,y1),(x2 ,y2) − G(x1 ,y1),(x2 ,−y2), (64a)

Gcl
(x1 ,y1),(x2 ,y2) � G(x1 ,y1),(x2 ,y2) + G(x1 ,y1),(x2 ,1−y2), (64b)

for y1 and y2 > 0. As anticipated, we verify that Gop satisfies the
Dirichlet condition, namely, it is odd under the reflection through
the line y � 0 and therefore vanishes on it, and thatGcl satisfies the
Neumann condition, namely, it is even under the reflection
through the line y � 1

2, inducing a vanishing normal derivative
in the scaling limit. The calculations of the previous section can
then be generalized to the UHP geometry by using these Green
matrices. For height 1 and for the cluster variables, one merely has
to use the appropriate Green matrix. For higher heights, the
presence of a boundary makes the calculations more complicated
because the combinatorics involved is heavier.

The simplest case is the 1-site height probability P
op/cl
1 (y) to

find a height equal to 1 at a distance y from the boundary. It can
be computed by using eq. (27), where Δ−1

Γ is replaced, in the
infinite volume limit, by one of the two Green matrices given
above. This was historically the first calculations of boundary
effects in sandpile models [40], with the result

σop
1 (y) � P

op
1 (y) − P1 � P1

4y2
+ . . . ,

σcl1 (y) � Pcl
1 (y) − P1 � −P1

4y2
+ . . .

(65)

The analogous results for higher heights were obtained
somewhat later [27, 41] and were the first to firmly
establish their logarithmic nature. They take the following
form, valid for aP1,

σopa (y) � 1
y2
(ca + da

2
+ da log y) + . . . ,

σcla (y) � − 1
y2
(ca + da log y) + . . .

(66)

up to terms of orderO(y−4 log y), which have since been explicitly
computed [31], as they enter the calculations of σop/cla,1 given below.
The coefficients are explicitly known and are shown in Table 1.
One may check that the relations (44) expressing h3 and h4
linearly in terms of h1 and h2 are confirmed. The distinctive change
of sign between the two boundary conditions and the fact that for fixed
a, both are controlled by the same constants ca and da and the equality
d2 � c1 are striking. As will be explained below and in one of the next
sections, all three features will follow from the CFT picture.

Let us mention that these lattice calculations have been carried
out on another lattice realization of the UHP, namely, on the
diagonal upper-half plane {(x, y) ∈ Z2

∣∣∣∣ y > x}, for which the
method of images allows to explicitly compute the Green
matrices for the two boundary conditions. As expected, the
dominant terms are exactly the same as above in terms of the
Euclidean distance between height 1 and the diagonal boundary,
while the subdominant terms are different [31].

The 2-site height correlators in the bulk of the UHP, at sites
i1 � (x1, y1) and i2 � (x2, y2), and which involve the same
subtractions as before,

σop/cla,1 (x; y1, y2) � P
op/cl
a,1 (i1, i2) − Pop/cl

a (i1)P1

− Pa P
op/cl
1 (i2) + Pa P1,

(67)

have been computed in [31] when the two sites are far from the
boundary and far fromeach other, again using the technique developed
in [29]. They depend on three real variables, the horizontal distance x�
x1−x2 between the two sites and their vertical positions y1 and y2. For
simplicity however, the lattice calculations have been carried out for
two vertically aligned sites, that is, for x � 0.

Defining the two bivariate functions,

P(u, v) � 1
8u2v2

− 1

(u − v)4 −
1

(u + v)4 ,

Q(u, v) � 1

(u − v)4 −
1

(u + v)4,
(68)

the results for a � 1, 2 take the following form, at dominant order:

σop
1,1(0; y1, y2) � σcl1,1(0; y1, y2) � P2

1

2
P(y1, y2) + . . . , (69a)

σop/cl
2,1 (0; y1, y2) � P2

1

2
[P(y1, y2)(log y1 + c + 5

2
log 2)

+Q(y1, y2) log
∣∣∣∣∣∣∣∣y2 + y1
y2 − y1

∣∣∣∣∣∣∣∣]+ Hop/cl(y21 , y22)
y21 y

2
2 (y21 − y22)4 + . . . ,

(69b)

where Hop(u,v) and Hcl(u,v) are homogeneous polynomials of
degree 4 in u, v, with explicitly known coefficients. The results for

TABLE 1 |Numerical coefficients for one-site height probabilities on the UHP, with
~c � c + 5

2 log 2. They satisfy the relation ∑a ca � ∑a da � 0.

a = 1 a = 2 a = 3 a = 4

ca
P1
4 � π−2

2π3
π−2
2π3 ~c + 34−11π

8π3
8−π
4π3 ~c + −88+5π+2π2

16π3 −π+4
4π3 ~c + 36+9π−2π2

16π3

da 0 P1
4 � π−2

2π3
8−π
4π3 − π+4

4π3
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a � 3, 4 take the same formwith different coefficients and confirm
once more the linear relations (44).

Let us discuss these results in the CFT picture, using what we
already know about the height fields ha(z, z). For a homogeneous
boundary condition like here, boundary CFT prescribes
to compute bulk correlators on the UHP by viewing a field
ϕ(z, z) with conformal weights (h, h) as the product ϕh(z)ϕh(z)
of two chiral fields of weights h and h, respectively, located at the
points z and z (the latter being in the lower-half plane) [42]. A
correlation function of n bulk (non-chiral) fields on the UHP can
then be computed as a correlation of 2n chiral fields on the full
plane; the correlation appropriate for the boundary condition
under consideration is accordingly selected in the solution space
of these 2n-correlators.

The above prescription must however be adapted in the case of
logarithmic fields because the chiral factorization is not consistent
with the non-diagonal action of L0. Indeed, let us consider a
logarithmic pair (Φ(z, z),Ψ(z, z)). If we factorize the logarithmic
partner as Ψ(z, z) � ψh(z)ψh(z), we find from the action of L0,

L0Ψ � (L0ψh)ψh � (hψh + λ ϕh)ψh � hΨ + λ ϕhψh, (70)

That the chiral factorization of the primary partner is Φ � ϕhψh.
The same argument with L0 shows that an equally good
factorization is Φ � ψhϕh.

Let us first see how this works for σopa (y). Their dominant
terms, made explicit in relations (65) and (66), should correspond
to 〈ha(z, z)〉op. Note that unlike the correlations on the plane
discussed in Section 5, we do not insert dissipation at infinity
since the whole boundary is open and therefore dissipative. From
the prescription recalled above, these 1-point functions should
have the general form of chiral 2-point functions. If ψ and ϕ
denote chiral versions of the height 2 and height 1 fields,
respectively, with h � h � 1, the chiral factorizations of
the height fields h1 and h2 read h1(z, z) � ψ(z)ϕ(z) and
h2(z, z) � ψ(z)ψ(z). The CFT formalism gives the general
forms (19) as follows:

〈h1(z, z)〉op � 〈ϕ(z)ψ(z)〉 � B

(z − z)2,

〈h2(z, z)〉op � 〈ψ(z)ψ(z)〉 � C − 2λB log(z − z)
(z − z)2 .

(71)

With the value λ � −1
2 noted in Section 5, these forms exactly

reproduce the lattice results (66), including the relation d2 � c1 � B.
For σcla (y) and since the closed boundary is not dissipative, we

insert by hand dissipation at infinity so that σopa (y) should be
given by 〈ha(z, z)ω(∞)〉cl. Using the same chiral factorization as
above leads to a 3-point function. The selection of a physically
sensible solution leads to the same general form as for the open
boundary condition [27].

The conformal calculations required to account for σopa,1 are
only technically more involved. The needed chiral correlators are
〈ϕ(z1)ψ(z1)ϕ(z2)ψ(z2)〉 for a � 1 and 〈ψ(z1)ψ(z1)ϕ(z2)ψ(z2)〉 for
a � 2. Both can be computed from the primary nature of the chiral
field ϕ, as established in Section 5, by solving a second-order
differential equation and selecting the appropriate solution. As

the details are given in [31], we merely give the results, valid for
any relative positions of the two heights, z1 � (x1, y1) and z2 �
(x2, y2)

〈h1(z1, z1)h1(z2, z2)〉op � P2
1

2
{ 2

(z1 − z1)2(z2 − z2)2

− 1∣∣∣∣z1 − z2
∣∣∣∣4 −

1∣∣∣∣z1 − z2
∣∣∣∣4},

(72)

and

〈h2(z1, z1)h1(z2, z2)〉op
� P1

32y21y
2
2

t4 − 2t3 + 4t − 2

(1 − t)2

×[3(3π − 10)
2π3 − P1(log y1 + c + 5

2
log 2)]

+ P2
1

64y21y
2
2

[t3(t − 2)
(1 − t)2 (log(1 − t) + y1

2y2
) − t2

1 − t
],

t � − 4y1y2∣∣∣∣z1 − z2
∣∣∣∣2. (73)

One can check that setting x1 � x2 exactly reproduces the lattice
results σop1,1(0; y1, y2) and σop2,1(0; y1, y2) reported above.

The analogous calculation for the closed boundary has
been carried out in the case a � 1, yielding the same
expression as for the open boundary. No calculation
however has been successful for a � 2 as it involves a
nontrivial 5-point chiral correlator (in this case, the
dissipation field ω must be added).

Similar calculations with isolated bulk dissipation, instead of
height variables, have been considered in [36]; it was found in all
cases that the CFT predictions compare successfully with the
lattice results.

6.2 Changing the Boundary Condition
We have considered so far two different boundary conditions, the
open and closed conditions. This allows addressing a
fundamentally new issue, namely, how to think of a change of
boundary condition, both on the lattice and in the emerging field
theory. Like in the previous section, we consider the UHP.

We have seen that the calculation of correlations on the UHP,
of height or dissipation variables, involves the use of the
appropriate Laplacian (toppling) matrix and its inverse. On
the lattice, the way we can change the boundary condition at a
boundary site i is thus fairly clear: since an open boundary site has
Δi,i � zi* � 4 and a closed one has Δi,i � zi* � 3, we simply lower
by 1 the diagonal entry Δi,i to close an open site, and we increase it
by 1 to open a closed site (as we did in Section 5.4 to introduce
dissipation at bulk sites). We do it either way for n consecutive
boundary sites to change the boundary condition on an interval
I of length n, that is, we do the following change on the toppling
matrix Δ → Δ ± DI, where DI implements the diagonal shifts
described above.
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Let us examine the effect of closing n consecutive sites in an
otherwise open boundary. We decide to measure this effect as
in Section 5.4, namely, by comparing the number of recurrent
configurations before and after the closing of n sites. So, we
want to compute the ratio Zop(n)/Zop. At finite volume, the
two partition functions can be computed as determinants of
the corresponding toppling matrices on rectangular grids,
with say four open boundaries in the case of Zop, and with n
closed sites inserted on the lower boundary for Zop(n). As
usual, we can readily write the infinite volume limit of the
ratio as follows:

Zop(n)
Zop

� detΔop(n)
detΔop � det[Δop − DIn]

detΔop � det[I − GopDIn]
� det[I − Gop]i,j∈ In, (74)

where (DIn)i,j � δi,j for i, j ∈ In is zero elsewhere, and
In � {(ℓ, 1) : 1#ℓ#n} is the set of sites being closed. Using the
relation (64a) expressing Gop in terms of the Green matrix on the
full plane Z2, the matrix in the determinant reads

(I − Gop)i,j∈ I � (δℓ,ℓ′ − G(ℓ,1),(ℓ′ ,1) + G(ℓ,1),(ℓ′ ,−1))1#ℓ,ℓ′#n
. (75)

By the horizontal translation invariance of Gop, this is a
Toeplitz matrix of the form aℓ−ℓ′. Using standard results
on the Green matrix on the plane, one finds that the
entries am are the Fourier coefficients of the following
symbol, which has a so-called Fisher–Hartwig singularity,

σop(k) � ********
1 − cos k

√ · { ********
3 − cos k

√ − ********
1 − cos k

√ }. (76)

For large n, the asymptotics of such Toeplitz determinants is well-
known (see f.i., [43]) and leads to the following result [44]:

Zop(n)
Zop

xAn1/4 e−
2G
π n, n≫ 1, (77)

with G � 0.915965, the Catalan constant. The proportionality
constant A is explicitly known but is unimportant here.

What if we consider the opposite situation in which we
open n consecutive sites of a closed boundary? Reasoning as
above, we quickly get the corresponding ratio,

Zcl(n)
Zcl

� detΔcl(n)
detΔcl � det[Δcl + DIn]

detΔcl � det[I + Gcl]
i,j∈In

, (78)

which is also a Toeplitz determinant. However, this one is
infinite—each entry is infinite—for the same reason we
have pointed out in Section 5.4. Adopting the same point
of view, we similarly evaluate the effect of opening n sites with
respect to the situation where only one site is open. One
therefore considers instead the ratio Zcl(n)

Zcl(1), which one can
write as

Zcl(n)
Zcl(1) �

1
b0

det(bℓ−ℓ′)1#ℓ,ℓ′#n, (79)

where the entries bm are the Fourier coefficients of a symbol σcl(k)
given by

σcl(k) � 1
2
(1 − cos k)α · { ********

3 − cos k
√ + ********

1 − cos k
√ }, α � −1

2
.

(80)

Its Fourier coefficients are well-defined for α> − 1
2, diverge in the

limit α→ − 1
2, but nonetheless keep the ratio (79) finite.

Remarkably, for large n, it takes the form [44].

Zcl(n)
Zcl(1)xAn1/4 e

2G
π (n−1), n≫ 1, (81)

for the same constant A as above.
Before discussing the CFT side, let us remark that the

exponential factors in equations (77) and (81) are expected.
On a finite N × N grid, all four partition functions
(numerators and denominators) are asymptotically
dominated by the bulk free energy, given by e

4G
π N

2
, as

mentioned in Section 2. These terms drop out in the
ratios. The next correction is related to the boundary free
energy fb (per site) and takes the form e4Nfb in case the
boundary condition b is the same at all boundary sites. For
the partition functions considered above, the boundary
conditions only differ on the lower edge of the grid so that
for large N≫ n≫ 1, the ratios are asymptotic to

Zop(n)
Zop

x
e(N−n)fop+nfcl

eNfop
� e−n( fop−fcl),

Zcl(n)
Zcl(1)x

e(N−n)fcl+nfop

e(N− 1)fcl+fop � e(n−1)( fop− fcl).

(82)

The free energies fop and fcl represent (the logarithm of) the
effective number of values taken by the boundary heights in the
set of recurrent configurations. The number of possible values
taken by the height at an open boundary site is 4, and is 3 at a
closed site. If these numbers of values get effectively reduced in
the set of recurrent configurations, one should expect that the
number of values at an open boundary site remains larger than
that at a closed site, implying fop − fcl > 0. An explicit calculation
[44] confirms this and yields fop − fcl � 2G

π , in agreement with the
above results. To fix the ideas, the effective number of values
taken by a boundary height is e fop � 3.70 at an open site, and
e fcl � 2.07 at a closed site.

In the CFT approach, a change of the boundary condition at
x, from condition a to condition b, is implemented by the
insertion in the correlators of a specific field ϕa,b(x). Such
boundary condition changing fields21 are usually expected to
be chiral primary fields and satisfy ϕa,b(x) � ϕb,a(x) when the
boundary conditions a and b do not carry an intrinsic
orientation (see Section 6.4 for counterexamples). The
insertion of the product ϕa,b(x1)ϕ

b,a(x2) accounts for the

21In the correspondence between statistical system and field theory, the boundary
condition changing fields are somehow special. They describe the effects of a
change of the boundary condition but are not associated with a lattice observable,
unlike the height fields ha, for instance.
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change at x1 from condition a to condition b and then back
from b to a at x2 but does not account for the exponential terms
related to the difference of boundary free energies of condition
a vs. condition b, namely, the terms we have just discussed in
the previous paragraph. These are clearly nonuniversal, that is,
depend on the specific model under consideration, and cannot
be accounted for by the underlying CFT, which itself applies to
all the models in the universality class to which the sandpile
model belongs.

It follows that the effect of changing the boundary condition
given above, in which we omit the exponential terms,
should correspond to the 2-point function
〈ϕop,cl(0) ϕcl,op(n)〉 � 〈ϕcl,op(0) ϕop,cl(n)〉. The two are indeed
equal on the lattice and asymptotic to n

1
4, and from this, we

infer that the boundary condition changing field ϕop,cl(x) �
ϕcl,op(x) is a chiral conformal field of weight h � −1

8, with a
correlator given by

〈ϕop,cl(x1) ϕcl,op(x2)〉op � A |x1 − x2|1/4. (83)

For physical reasons, we might worry about having a correlator
that actually increases with the distance, suggesting somehow
the existence of a strange interaction that would get stronger
at larger distances. There is nothing strange however as it
does not really correspond to the physical correlation of two
observables. As said above, the field ϕop,cl is expected to be
primary. As usual, this conjecture can be put to test: the
consequences of this statement must have a match in the
lattice properties of the model.

One of the strongest consequence of the primary nature of ϕop,cl

and the assumed structure of the conformalmodule that contains it is
thatanycorrelatorwherethisfieldappearsmustsatisfyasecond-order
partial differential equation,22 the precise form of which depends on
the other fields involved. A first and simple test is to look at a 4-point
function,23 for instance 〈ϕop,cl(x1)ϕcl,op(x2) ϕop,cl(x3) ϕcl,op(x4)〉,
which should describe the effect of closing the sites on two
disjoint interval [x1, x2] and [x3, x4] in the otherwise open
boundary of the UHP. Using the global conformal invariance,
one can reduce the partial differential equation to a second-
order ordinary differential equation. In the two-dimensional
solution space, we select the only solution which reduces to the
product 〈ϕop,cl(x1) ϕcl,op(x2)〉〈ϕop,cl(x3) ϕcl,op(x4)〉when the two
intervals are infinitely distant. This unique solution reads (with
xij � xi − xj)

〈ϕop,cl(x1) ϕcl,op(x2) ϕop,cl(x3) ϕcl,op(x4)〉op
� 2A2

π
(x12 x34)1/4 (1 − t)1/4 K(t), t ≡

x12x34
x13x24

, (84)

where K(t) � ∫ π2
0

dθ******
1−t sin2 θ

√ is the complete elliptic integral.

To compare with a lattice calculation, we take xi integers, with
x21, x32, and x43 all large, and try to compute the determinant in
eq. (74)with I � I1 ∪ I2, the union of the two intervals [x1, x2] and
[x3, x4]. This determinant is no longer Toeplitz, which makes it
difficult to compute its asymptotics analytically. Dividing it by the
prefactor (x12 x34)

1/4, it can however be evaluated numerically as a
function of t by varying the lengths of the intervals and their
separation distance. The agreement with eq. (84) is more than
satisfactory [44].

The opposite situation—two open intervals in a closed
boundary—has also been considered. The appropriate 4-point
function can be obtained from eq. (84) by making a simple
cyclic permutation (x1, x2, x3, x4)→ (x4, x1, x2, x3), with the result
that K(t) gets replaced by K(1 − t). An equally successful
agreement was observed [36]. Many other cross-checks have
been done, confirming that the open/closed boundary
condition changing field is indeed a primary field with
conformal weight h � −1

8. One of them, particularly
convincing, is presented in the next section.

6.3 Bulk Variables With Inhomogeneous
Boundary
In Section 6.1, we have computed the lattice 1- and 2-site
height probabilities on the UHP, with either the open or the
closed boundary condition. Here, we would like to revisit these
results in light of what we have learned of the boundary
condition field, in terms of which one should be able to
relate the probabilities for the two boundary conditions. In
particular, we would like to understand the 1-site probabilities
σopa (y) and σcla (y),

σopa (y) � 1
y2
(ca + da

2
+ da log y) + . . . ,

σcla (y) � − 1
y2
(ca + da log y) + . . .

(85)

One can do this by computing, on the CFT side, a more
general probability, namely, we look for the probability to find
a height equal to a at a distance y from the boundary, when
the boundary condition is mixed, namely, open everywhere,
except on the interval [x1, x2] where the condition is closed.
The two homogeneous open and closed conditions can be
recovered in the limits x1 → x2 and x1 → −∞, x2 → ∞. Let
us denote by 〈ha(z, z)〉mix the corresponding quantity in the CFT,
given by

〈ha(z, z)〉mix �
〈ϕop,cl(x1) ϕcl,op(x2) ha(z, z)〉op〈ϕop,cl(x1) ϕcl,op(x2)〉op , (86)

where the division by 〈ϕop,cl(x1) ϕcl,op(x2)〉op comes from the fact
that we want to evaluate the probability to have a height 1 in front
of a mixed boundary condition and not the combined effects of
having a height 1 and the closing the boundary between x1 and x2.
The denominator is known from eq. (83).

22Again, the technical assumption is that the field ϕop,cl is degenerate at level 2,
similarly to the height 1 field h1 (see Section 5.5).
23The CFT is really defined on the UHP plus the point at infinity. The boundary
must therefore be thought of as the real line plus the two points ±∞ identified, and
forming a loop closing at infinity. Any change of the boundary condition thus
involves an even number of insertions of ϕop,cl. For instance, 〈ϕop,cl(0)ϕcl,op(∞)〉
changes the boundary condition from open to closed on the positive real axis.
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To compute the numerator, we represent the height fields in
terms of the chiral fields as h1(z, z) � ϕ(z)ψ(z) and h2(z, z) �
ψ(z)ψ(z) (as usual, considering the heights a � 1, 2 is enough) and
write the differential equation satisfied by the two ensuing 4-point
correlators, as a consequence of the primary nature of ϕop,cl.
Because ψ is the chiral logarithmic partner of ϕ, the general
solution for 〈ϕop,cl(x1) ϕcl,op(x2)ψ(z)ψ(z)〉op in fact depends on
that of 〈ϕop,cl(x1) ϕcl,op(x2) ϕ(z)ψ(z)〉op.

All calculations done, one finds that they depend on two
integration constants c2 and d2 in such a way that the ratios in eq.
(86) take the following forms, where y � Rez [27]:

〈h1(z, z)〉mix � d2
2y2

1 + t*
t

√ , t � (x1 − z)(x2 − z)
(x1 − z)(x2 − z), (87a)

〈h2(z, z)〉mix � 1
2y2

1 + t*
t

√ {c2 + d2
8
(1 + *

t
√ )2*
t

√ + d2 log y

− d2 iy(1 − t)
(x1 − x2)[ 1

1 + t
− 1
2
*
t

√ ]}. (87b)

Although t is complex, both expressions are real on account of
t* � 1/t.

Let us now discuss the above two limits x1→ x2 and x1→ −∞,
x2 →∞. For convenience, we set x1 � −x2 and examine the limits
x2 → 0+ and x2 → +∞. To compute the two limits, the important
thing to notice is that the complex variable t, now equal to

t � (x2 + z)(x2 − z)
(x2 + z)(x2 − z), (88)

has complex norm equal to 1 and loops anticlockwise around the
origin as x2 varies from 0+ to +∞, starting from 1+ 0i to 1 − 0i. It
follows that t itself goes to 1 in both limits, but

*
t

√
goes to +1

when x2 → 0+ and goes to −1 when x2 → +∞. The actual limits
yield

〈h1(z, z)〉op � lim
x2→0+

〈h1(z, z)〉mix � d2
y2
,

〈h1(z, z)〉cl � lim
x2→+∞ 〈h1(z, z)〉mix � −d2

y2
,

(89a)

〈h2(z, z)〉op � 1
y2
(c2 + d2

2
+ d2 log y),

〈h2(z, z)〉cl � − 1
y2
(c2 + d2 log y), (89b)

in complete agreement with the lattice results: the change of the
overall sign between the open and closed boundary conditions,
the specific dependence on the two coefficients c2 and d2, and the
equality c1 � d2 are all accounted for! The conformal approach
however cannot fix the two coefficients c2 and d2; these must be
determined by lattice calculations.

The expressions (87) can also be tested in situations where the
boundary condition along the real axis is no longer homogeneous.
A particularly instructive case is when the boundary condition is
closed on the negative part of the real axis and open on the
positive part, corresponding to the limits x1 → −∞ and x2 → 0.
The conformal transformation w � L

π log z can be used to map the
UHP onto an infinite strip of width L, with open boundary

condition on the left side and closed on the right side. The
conformal transformation rules of the fields involved being
known, the expressions (87) can be transformed to the strip
and compared with numerical simulations on a truncated (and
large) strip (exact calculations on the lattice are not available). It
was found [27] that the conformal predictions and the numerical
plots match remarkably well, thereby confirming once more all
the field identifications made so far.

6.4 Wind on the Boundary
The open and closed boundary conditions are very natural as the
very definition of the sandpile model uses dissipative and
conservative sites. One may wonder what other type of
boundary condition could be thought of. Perhaps, we could
think of alternating open and closed boundary sites; we expect
however that such a boundary condition would flow to the open
condition in the scaling limit, as numerical experiments confirm.
We have already commented on the possibility to uniformly fix
the boundary heights. Fixing the boundary heights to 2 or to 3, or
even to 2 or 3, seems difficult. The two boundary conditions,
different from open and closed, which have been considered in
[45], are in fact closely related, but not quite identical, to the third
possibility. They are fixed boundary conditions but in the
language of spanning trees.

We recall that in a rooted spanning tree, there is exactly one
outgoing arrow at each vertex. The two new boundary conditions,
noted ← and →, force the outgoing arrows at the boundary sites
to be uniformly left or uniformly right.24 In terms of height
values, either conditionmeans that none of the boundary sites has
height 1 (because each boundary site has an ingoing arrow) or
height 4 (because the burning algorithm would imply that the
arrow is pointing down, toward the root). The converse is
however not true: recurrent configurations with height values
equal to 2 or 3 on the boundary do not necessarily have boundary
arrows uniformly oriented.

The way the orientation of an edge can be forced has been
briefly discussed in Section 5.7. This allows evaluating the effects
of inserting a stretch of left or right arrows into an open or a
closed boundary, similarly to what we did in Section 6.2. We refer
the reader to Ref [45] for details of the analysis and restrict here to
a summary of the results.

An obvious but unusual feature of the boundary conditions←
and → is that they are intrinsically oriented. It implies that the
boundary condition changing field ϕa,→ turning the boundary
condition from a to → may not be the same as the field ϕ→,a

implementing the opposite change. With a, b ∈ {op, cl,←, → },
this makes potentially twelve distinct fields ϕa,b (the fields ϕa,a are
just the identity). We already know ϕop,cl � ϕcl,op, and likewise, if
a ∈ {op, cl} is unoriented and b ∈ {←, → } is oriented, we expect
the identifications ϕa,→ � ϕ←,a and ϕa,← � ϕ→,a on the basis of a
left–right reflection symmetry. These identifications have been
confirmed and reduce the number of distinct fields to seven.

24In contrast, the outgoing arrow of a closed boundary site of the UHP can point
left, up, or right, while that of an open boundary site can point in any of the four
directions, a down arrow pointing to the root.
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There is an additional subtlety for the field that changes the
orientation from → to ←. Indeed the right and left arrows
+→ •←+ point to the same boundary site (in black), and
whether that site is open or closed may be relevant. Indeed, if
it is open, the flow of arrows, which eventually terminates at the
root, can go directly to the root; if it is closed, it must necessarily
go upward into the bulk of the UHP. In the two cases, the
macroscopic configurations of arrows are different. Thus, we
should distinguish two different fields, ϕ→

,op← and ϕ→
,cl←. The

detailed analysis confirms that they are distinct fields as their
conformal weights are different.

We therefore have eight distinct boundary condition changing
fields. A mix of analytical calculations and numerical simulations
has been used to determine the conformal weights of these eight
fields. The results are given in Table 2.

The more delicate question of the exact nature of all these
fields has been addressed by considering the fusion of the
representations to which they belong. Loosely speaking, the
fusion rules implement the composition law ϕa,b*ϕ

b,c x ϕa,c of
boundary condition changing fields in the limit where the
insertion points coincide. The ensuing consistency conditions
suggest that all of them are primary fields, except two, which
could belong to logarithmic representations (i.e., reducible
indecomposable with Jordan cells). Also, the fields of weight
0 are nontrivial, that is, not equal to the identity (they are
found to be degenerate at level 3). Relying on these proposals,
various 4-point correlators have been computed and
successfully compared with numerical simulations. We refer
the readers to Ref [45] for more details on these specific points.

6.5 Boundary Height Variables
The boundary condition changing fields are not the only ones to
live on a boundary. The lattice model includes observables in the
bulk as well as on the boundaries. Those in the bulk have been
discussed at length and give rise in the scaling limit to non-chiral
fields Φ(z, z), characterized by a pair of conformal weights (h, h);
those on the boundaries give rise to boundary, chiral fields Φa(x),
characterized by a single conformal dimension ha. In general, the
nature of the boundary field associated with a boundary
observable and its conformal weight depend on the boundary
condition.

In the Abelian sandpile model, only the boundary fields arising
from the height variables and from the insertion of isolated
dissipation have been studied on the UHP. In both cases, only
open and closed boundaries have been considered.

The case of isolated dissipation is simpler and has been
examined in detail in Ref [36], where isolated dissipation has
been considered on a closed boundary only. The calculation
proceeds much like that for the bulk, reviewed in Section 5.4,
for which the same regularization is used. The results are
similar: the dissipation field ωcl(x) turns out to be a chiral
field with conformal weight hcl � 0 and is a logarithmic
partner of the identity. The multipoint correlators involve
various combinations of logarithms like their bulk versions.
On an open boundary, already dissipative, the dissipation
field ωop(x) is expected to be a descendant of the identity.
Isolated dissipation is the simplest observable that can be

associated and computed in terms of a local defect matrix.
This, from what we have said in Section 5.6 of the minimal
clusters, suggests that both ωcl and ωop can be realized as local
fields in the symplectic fermions. It was indeed shown that
ωcl ∼ θ~θ [36] and ωop ∼ zθz~θ [46] reproduce all known
correlations. We note that the latter is proportional to the
boundary stress–energy tensor T(x) of the symplectic theory,
a non-primary chiral field of weight hop � 2 and a descendant
of the identity since T(x) ∼ (L−2 I)(x).

Boundary height variables are more complicated than
dissipation but simpler than the bulk height variables. The
first results have been derived by Ivashkevich in Ref [47],
where the one- and two-site height probabilities on open
and closed boundaries were obtained. The probabilities
involving heights 1 only are no more complicated than in the
bulk and can be easily obtained by using a defect matrix. As
could be expected, probabilities for higher heights are more
difficult.

On a boundary, heights larger or equal to 2 are characterized as
in the bulk, namely, in terms of the number of predecessors
among their nearest neighbors. So, it leads essentially to the same
problems of computing nonlocal contributions. Both in the bulk
and on a boundary, one can write linear identities expressing
combinations of nonlocal contributions in terms of local ones,
themselves calculable with a defect matrix. In turn, the nonlocal
contributions can be used to calculate probabilities. In the bulk,
the linear system is underdetermined and cannot be inverted to
provide the required nonlocal contributions and then the
probabilities themselves. The main observation made in Ref
[47] was that on a boundary, the linear system can be inverted
and therefore allows computing the height probabilities and
correlations in terms of local contributions only. The following
results were obtained.

The 1-site height probabilities on the boundary, open and
closed, of the infinite UHP were computed exactly. For
comparison purposes, we reproduce here their numerical
values (the exact values can be found in Ref [47]) and recall
those in the bulk, as given in Section 5.1:

P1 � 0.073 63, P2 � 0.173 90, P3 � 0.306 29,

P4 � 0.446 17,
(90)

P
op
1 � 0.103 82, P

op
2 � 0.216 57, P

op
3 � 0.316 23,

P
op
4 � 0.363 38, (91)

Pcl
1 � 0.113 38, Pcl

2 � 0.318 31, Pcl
3 � 0.568 31. (92)

TABLE 2 | Conformal weights of the fields ϕa,b which implement a change of
boundary condition from a (row label) to b (column).

h[ϕa,b] Open Closed → ←

Open −1
8 0 0

Closed −1
8 −1

8
3
8

→ 0 3
8 0 (center op)

1 (center cl)

← 0 −1
8 0
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On the open boundary, for which the comparison makes more
sense, lower heights are thus more likely.

Mixed 2-site correlators τopa,b(x1, x2) and τ
cl
a,b(x1, x2) on an open

or a closed boundary were also computed in Ref [47]; all of them
were found to decay like |x1 − x2|− 4. Although logarithmic
conformal field theory was in its infancy at the time, it
indicates in hindsight that unlike their bulk cousins, boundary
height fields are not logarithmic. This is also in agreement with
the fact explained above that boundary height correlations can be
fully computed in terms of local contributions.

The decay of the 2-site correlators strongly suggest that all
boundary height fields, whatever the boundary condition,
have a conformal dimension equal to hop � hcl � 2. But like for
the other observables discussed so far, we are interested to
know the precise nature of the associated fields. Since the
multisite boundary height probabilities appear to be
calculable in terms of local contributions using defect
matrices, it suggests again to look for field candidates
constructed out from the symplectic free fermions θ, ~θ.
This was done independently in Ref [46] and in Ref [48],
following however two different approaches: the former
computed various 3-point correlators, whereas the latter
considered 2-point correlators only but in the massive
extension of the sandpile model (see Section 7.1). The
massive extension indeed allows distinguishing more
efficiently different fields which would otherwise have the
same 2-point correlators in the non-massive (critical) limit.

The results are as follows. The four height fields on an open
boundary are all proportional to a single field,

hopa (x) � Oa zθ z~θ, 1# a# 4, (93)

with explicit normalization constants Oa and where the θ, ~θ fields
satisfy the Dirichlet boundary condition. Thus, on an open
boundary, the four height fields and the dissipation field turn
out to be all proportional to each other. On a closed boundary, the
three height fields are distinct and given by

hcl1 (x) � C1 zθ z~θ, hcl2 (x) � C2 zθ z~θ + 1
2π

θ zz~θ,

hcl3 (x) � C3 zθ z~θ − 1
2π

θ zz~θ, (94)

where the θ, ~θ fields now satisfy the Neumann boundary
condition. In both cases, the boundary condition means that
the correlators are computed using the Wick theorem with the
Wick contractions given by the Green functions Gop or Gcl (see
eqs. (64a) and (64b)). Let us point out that for both boundary
conditions, the 3-site correlations of three heights 1 do not
vanish, unlike their bulk version.

The question of the nature of the height fields on the windy
boundary conditions discussed in the previous section is
definitely interesting but has not been considered so far.

6.6 Duality
This long section on boundaries has been largely devoted to a
discussion of the open and closed boundary conditions, the best
known and most studied ones. To finish, it is worth pointing out

that a duality exists between these two boundary conditions,
which has not been fully investigated nor exploited. This duality
follows from a duality relation for planar graphs, well-known in
graph theory, and acquires in the framework of the sandpile
model an interesting flavor. It has been considered and discussed
in [39, 49] in the dimer model, intrinsically related, like the
sandpile model, to spanning trees.

Let us consider a rectangular portion of Z2, that is, the graph Γ
made of a rectangular array of vertices, in which two adjacent
vertices are linked by a single edge. The boundary conditions
chosen for the boundary vertices determine the extended graph
Γ*, obtained from Γ by adding the sink vertex and the edges
connecting the open boundary sites to the sink. The graph Γ*
corresponding to a 3 × 3 grid with three open edges and one
closed edge is shown in Figure 1.

Once the graph Γ* is embedded in the plane,25 the faces of Γ*
are the connected components of its complementary in the plane
(for a finite graph, there is thus a large outer face, encircling the
graph). The definition of the dual graph (Γ*)p is standard: the
vertices of (Γ*)p are associated with the faces of Γ*, and two such
vertices are connected if their corresponding two faces are
separated from each other by an edge of Γ*. The dual graph of
the example above is also shown in Figure 1.

By comparing the two graphs, one immediately notices that
the boundary conditions are exchanged: if a boundary is
homogeneously open resp. closed in Γ*, it becomes
homogeneously closed resp. open in (Γ*)p. In addition, the
dual graph (Γ*)p is the extension (Γp)* by a sink of a dual
rectangular grid Γp, of size slightly different from the original
grid Γ.

A classical result states that the number of spanning trees on Γ*
is equal to the number of spanning trees on its dual (Γ*)p. In fact,
for every spanning tree T on Γ*, there is a unique dual spanning
tree T p on (Γ*)p such that the two are perfectly interdigitating: the
edges of T p are exactly those of (Γ*)p which cross the edges of Γ*
not used in T , and vice versa. An example of this is given in
Figure 1.

This dual picture implies that the recurrent configurations for
the sandpile model defined using Γ* can be isomorphically
described by those on (Γp)*. As far as the counting goes, the
equality of their partition functions can be explicitly written for
rectangular grids. If Γ is an L1 × L2 rectangular grid with k of its
four boundaries being open, the other 4−k being closed, the dual
Γp is an L′1 × L′2 rectangular grid with swapped boundary
conditions, and the following identity holds,

Zk op | (4−k) cl (L1, L2) � Z(4−k) op | k cl (L′1, L′2). (95)

The dimensions are related as follows: Li′ � Li + 1 resp. Li − 1 if
the opposites sides of length Li of Γ are both open resp. closed, and
L′i � Li otherwise. If k � 4, the dual rectangle has all its boundaries
closed with a single boundary site open.

25This requires Γ* to be planar and therefore excludes that some of the bulk vertices
and some of the boundary vertices be open (dissipative) at the same time, except in
a few very special cases.
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The isomorphism of the two descriptions may be hard to
formulate in concrete terms for the height variables as it is defined
for the associated trees. Its practical utility remains to be seen.

7 MORE DEVELOPMENTS

We would like to add a few more considerations about two
further features of the sandpile model, namely, the dissipative
sandpile model and some aspects of universality.

7.1 The Massive Sandpile Model
In the standard sandpile we have studied so far, the sites in the bulk of
the grid, that is, the vastmajority of sites, are conservative. Thismeans
that when such a site topples, it loses a certain number of sand grains
which are all redistributed to its nearest neighbors. Sandmoves in the
grid but remains conserved. Dissipative sites must be present for the
dynamics of the model to be well-defined; however, the dissipative
sites were located most of the time on the boundaries.

The mostly conservative nature of the model is what drives it
dynamically to a critical state: when enough sand is stored in the
system, large avalanches become likely and span macroscopic parts of
it, inducing strong correlations between distant heights. In the long run,
the system enters a critical state described by the invariant measure P,
characterized by infinite correlation lengths in the infinite volume limit,
and algebraic decays of the correlation functions. The field theory
emerging in the scaling limit is conformal and consequently massless.

From the above point of view, a natural way to take the
sandpile model out of criticality is to introduce a fair amount of
dissipation so as to make the range of the avalanches shorter. It is
not completely clear what a fair amount means as there are
several ways to introduce dissipation. In the most common
version, every site is made dissipative, with a dissipation rate
controlled by an external parameter. In this case, it has been
argued that indeed criticality is broken, resulting in an
exponential decay of the correlations [33, 50, 51]. A
mathematically rigorous proof that all correlations decay
exponentially has been provided in Ref [52, 53]. Presumably, a
nonzero density of dissipative sites could be sufficient to break

criticality, but to our knowledge, this possibility has not been
investigated. In any case, the field theory emerging from the
dissipative sandpile model must be massive, with mass(es)
inversely proportional to the lattice correlation length(s).

To make all sites dissipative, one can simply add to the toppling
matrix of the standardmodel an integermultiple of the identitymatrix,
Δ→Δ(t) � Δ + t I with t an integer, while leaving all non-diagonal
entries unchanged. According to the update of the heights after the
toppling of site j, namely, hi → hi − Δj,i(t), a toppled site loses t sand
grainsmore thanwhat it used to lose (whether or not the toppled site is
on a boundary). That this change makes the correlation functions
decay exponentially should be clear, for the following simple reason.

The new toppling matrix Δ(t) is a massive Laplacian matrix. It is
well-known that the inverse Laplacian Δ−1(t) has a kernel given at
large distances by Gi1,i2(t)x

1
2πK0(|i1 − i2|

*
t

√
) + . . . and decays

exponentially like e−r
*
t

√
at large distances (K0 is the modified

Bessel function). Thus, all multisite probabilities examined in the
earlier sections, for observables like minimal cluster variables, arrow
variables, isolated dissipation, or boundary heights, will similarly decay
exponentially. Though technically less clear for bulk heights equal to 2,
3, or 4, the same decay is expected for the reason explained above: there
is a loss of sand each time a site topples, which makes the typical
avalanches short-ranged, which in turn induces correlations of heights
on local scales only.

To take a concrete example, let us look at the correlation of two
heights 1 in the dissipative model. The technique explained in
Section 5.3 in terms of defect matrices goes through. At
dominant order, the result, which is the off-critical extension
of (35), reads [33]

σ1,1(i1, i2; t) � −t2P
2
1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩K0″2 − K0 K0″ + 1
π
K0′

2 + 1 + π2

2π2
K2
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ + . . .

(96)

where the argument of the Bessel functions is r
*
t

√
and P1 on the

right hand side is the critical probability; the dots stand for higher
orders in t. We see that the correlation decays exponentially, with
a correlation length proportional to ξ ∼ t−1/2.

How do we compute the scaling limit in the massive model?
The general discussion in Section 3 suggested that setting i � �x

ε in

FIGURE 1 | Drawing codes for the three figures are as follows. The open circle stands for the sink vertex, while the solid circles stand for the non-sink vertices. The
solid lines represent true edges of the extended graphs, unlike the dashed lines connecting the open circles which indicate that these should be identified as the unique
sink vertex. Let us note that the corner vertices which lie at the intersection of an open and a closed boundary have a single edge to the sink; those at the intersection of
two open boundaries have two such edges. (A) The left figure shows the extended graph of a 3 × 3 grid with open boundary conditions on the left, lower, and right
boundaries, and closed boundary condition on the upper boundary. (B) The second panel shows how the dual of the blue graph, in red, is constructed. The red sink is
the vertex associated with the outer face of the blue graph. (C) For a better readability, the dual graph alone is reproduced on the third panel. (D) Two dual spanning trees
are drawn on the far right.
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the lattice correlator and taking the limit over ε (after multiplying
the correlator by a suitable power of ε) yields the field theoretic
correlator. This cannot be the right way to proceed in the
dissipative model. Because the correlators decay exponentially, the
limit for ε going to zero of exp(−∣∣∣∣ �x1 − �x2

∣∣∣∣ *
t

√
/ε) vanishes whatever

the power of ε it is multiplied by.
The only way to get a nontrivial limit is to take a double limit:

as we take the large distance limit by setting i � �x
ε, we

simultaneously take the large correlation length limit by
accordingly adjusting the dissipation rate. In the present case,
we should take the latter proportional to ε2: we therefore set t �
M2ε2, with M playing the role of a mass (inverse correlation
length in the continuum field theory).

Looking at the lattice correlator (96), we see that the factor t2 carries
the overall dimension of the fields involved: t2 is proportional to M4

and thus inversely proportional to a distance to the fourth power. It
replaces the explicit dependence in r−4 in the non-dissipative model.
Eventually, we find that the scaling limit of the correlator (96) is

lim
ε→0

ε−4 σ1,1(z
ε
,
w
ε
; ε2M2) � −M4 P

2
1

2
{K0″

2 − K0 K0″ + 1
π
K0′

2

+1 + π2

2π2
K2
0 }, (97)

where the argument of the Bessel function is now Mǀz – wǀ. It is
straightforward to check that the M → 0 limit of the previous
expression is equal to −P2

1/2|z − w|4, obtained in Section 5.
The last question is: the expression above is: the correlator of what

field and in what field theory? Themost obvious guess turns out to be
correct: let us look into the massive extension of the free symplectic
fermion theory. It contains the same two fields as before, which
simply acquire a mass through a mass term in the action,

S � 1
π
∫ 

dzdz(zθz ~θ +M2

4
θ~θ) . (98)

The 2-point correlators of the two fundamental fields are now
given by

〈θ(z, z)θ(w,w)〉 � 〈~θ(z, z)~θ(w,w)〉 � 0,

〈θ(z, z)~θ(w,w)〉 � K0(M|z − w|). (99)

Using Wick’s theorem, it is a simple matter to check that the
following local field,

h1(z, z;M) � −P1[zθ z ~θ + z θ z~θ +M2

2π
θ~θ], (100)

has a 2-point correlator26 in the massive fermionic theory that is
precisely given by equation (97). The 3- and 4-point correlators of
the same field have been checked to reproduce the corresponding
lattice results. The field h1(z, z;M) is therefore what the height 1

variable in the dissipative sandpile model converges to in the
scaling limit.

Similar correlators have been computed for many minimal
clusters in Ref [33], with an unexpectedly simple result. The field
describing the minimal cluster variable S in the dissipative model
appears to be simply given by

hS(z, z;M) � hS(z, z) − PS NS
M2

2π
θ~θ, (101)

where PS is the probability of S in the non-dissipative model
and Ns is the size of the cluster S. The field hS(z, z) is still
given by relation (54) in terms in the (now massive)
fermions.

Likewise, the mixed 2-point correlators for all boundary
heights on open and closed boundaries have been explicitly
evaluated in the dissipative model [48]. For them too, it is
found that the boundary fields given in Section 6.5 get
additional terms proportional to M2 θ~θ.

The nature of the higher height fields remains elusive but is
definitely worth investigating as it would add a most valuable and
crucial element of understanding of the sandpile model.

7.2 Aspects of Universality
Universality is the statement that the large distance properties of
statistical models should only depend on some gross features of
the way they are defined; microscopic details which become
invisible from large distances should not matter. The
statement is admittedly not very precise but, in concrete
instances, leads to an expected robustness with respect to local
modifications. In sandpile models, these would include the
precise way sand is deterministically redistributed among
neighbors (provided some form of isotropy is preserved), or,
to a certain extent, the specific graph or lattice on which the
model is defined. Features that do matter are a substantial
introduction of dissipation, as we have seen in the previous
section; a directed redistribution of sand after toppling [54]; a
dynamics with stochastic toppling rules [55]; the formulation of
the model on a hierarchical geometric structure like the Bethe
lattice [56]; and, of course, a change of dimensionality of the
underlying lattice.

Very early on, universality with respect to the planar lattice on
which the sandpile is being formulated has been tested via a
renormalization group approach [57, 58] and numerical
simulations [59]. More recently, exact calculations of height
correlations have been carried out on the honeycomb and
triangular lattices.

In Ref [60], all calculations of height 1 correlations presented
in the previous sections have been worked out on the hexagonal
lattice (in the non-dissipative model). These include the 2-, 3-,
and 4-site probabilities for heights 1 in general positions, in the
bulk and on open and closed boundaries, as well as 1-site
probabilities on the UHP, again for both types of boundary
conditions. The results show that although the subdominant
contributions differ from those on the square lattice, the
dominant terms are exactly identical, up to normalizations.
The same distinctive features are found, like the fact that the
3-site bulk correlation vanishes in the scaling limit (the dominant

26The insertion by hand of the dissipation field ω(∞) at infinity in the field
theoretic correlator is not required in the dissipative model as dissipation is present
everywhere in the bulk.
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term in the lattice result has dimension −7, instead of −8), and the
change of sign for the UHP 1-site probabilities when changing the
boundary condition from open to closed (see Section 6.3). Up to
normalization, the field identifications of the height 1 variable in
the bulk and on open and closed boundaries have been
confirmed.

The results have been extended to higher heights on the
honeycomb lattice and to all heights on the triangular lattice
[61]. Interestingly, these two regular lattices have coordination
numbers different from the square lattice, with the consequence
that the height variables take in each case a different number of
values: four for the square lattice, three for the honeycomb lattice
and six for the triangular lattice. This naturally raises the question
of which height variables scale to logarithmic fields and which
do not.

The calculations have been carried out by using the technique
developed in Ref [29], already used on the square lattice. The 1-
site probabilities on the infinite honeycomb lattice are all rational,

P1 � 1
12
, P2 � 7

24
, P3 � 5

8
, (102)

while those on the infinite triangular lattice are somewhat more
complicated, like

P6 � 1175
864

− 365
144

*
3

√
π
− 289
12π2

+ 30
*
3

√
π3

+ 45
π4

− 54
*
3

√
π5

x 0.286,

(103)

and very similar expressions for P1#a#5.
Concerning the nature of the height variables in the scaling limit,

the results confirmwhat the reader has probably already suspected: far
from boundaries, the height 1 variable becomes a primary field with
conformal weights (h, h) � (1, 1), while each of the higher heights
scales to a logarithmic partner of the height 1, exactly like on the
square lattice. On boundaries, all height fields are non-logarithmic.
Moreover, all computed correlations27 exhibit the same bulk and
boundary behaviors as on the square lattice. Thus, for what concerns
the type of the underlying lattice, universality has been explicitly and
successfully verified.

8 CONFORMAL SUMMARY

This last section is more specifically oriented toward conformal
aspects of the sandpile model. We will summarize what we believe
is currently known of the conformal picture, and discuss some of
the most peculiar issues that are not so well-understood. We will
almost exclusively discuss the non-chiral bulk fields, but before
coming to those, we briefly comment on the chiral boundary
fields encountered so far.

The boundary fields have been somewhat less investigated
than the bulk fields. We have encountered two types of boundary

fields, those arising from boundary observables and the boundary
condition changing fields. In the first class, we have considered
the height fields on open and closed boundaries and the
dissipation field. Except for the dissipation on a closed
boundary, none of them is logarithmic, and no evidence of a
logarithmic partner has been found. All can be expressed as local
fields in the symplectic fermions.

In the second class, we found primary fields of weights −1
8 and

3
8, which are both standard fields in a c � −2 CFT. Due to the
values of their conformal weight, they cannot be local in the
symplectic fermions but are naturally accommodated28 in the
symplectic fermion theory [22]. The status of the other boundary
condition changing fields related to the windy boundary
conditions is uncertain and should be further investigated
before their exact nature can be reliably stated.

Thus, overall, the boundary fields raise no particular questions.
They are fairly simple fields which fit well within the symplectic
theory. From this point of view, the bulk fields are somehowmore
intriguing.

Most of the bulk fields we have encountered seem to have a
realization in terms of symplectic fermions, by which we mean
that the fermionic expressions reproduce the known correlators.
A few have not been realized in this way so far, namely, the height
variables haP2 not equal to 1, logarithmic partners of the height 1
field h1, and the two fields ρ and ρ, to which they transform under
L1 and L1, respectively.

Although we have not given any physical interpretation of ρ
and ρ, they appear to be related to the derivatives of the
dissipation field ω [31],

ρ � δ L−1ω, ρ � δ L−1ω, (104)

where δ is a constant which may depend on the lattice considered
and equal to δ � πP1

2 on the square lattice. In addition, the primary
field h1 may be consistently identified as being proportional to the
derivatives of ρ and ρ,

L−1ρ � L−1ρ � βλh1, β � 1
2
, (105)

where λ is defined from L0 h2 � L0 h2 � h2 + λh1 and depends on
the normalizations of h1 and h2. Combining these relations with
the previous ones yields the somewhat surprising result is that the
height 1 field is proportional to the Laplacian of the dissipation
field, h1 ∼ zzω. The correlator (40) confirms this: applying
z1z 1z2z 2 on it indeed yields a multiple of 1/ǀz1 – z2ǀ4, itself
proportional to 〈h1(z1, z1)h1(z2, z2)ω(∞)〉.

From these observations, it follows that all bulk fields
encountered so far, namely,

ha>1, h1, ρ, ρ, ρ→, ρ↑, ϕS, ϕ↔, ϕh, ω, I, (106)

belong to the same conformal representation as they are all
related to each other by the action of Virasoro modes Ln or
Ln. Indeed, ρ→ and ρ↑ are not quasi-primary and transform to a

27Some of the calculations done on the square lattice could not be worked out. For
instance, we could not find a proper method of images to compute the Green
matrix on the triangular half-plane with the closed boundary condition and
therefore could not investigate that boundary condition.

28Very much like the spin field of the Ising model belongs naturally to the free
Majorana fermionc theory with c � 1

2, despite being nonlocal in the fermions.
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multiple of I under L1 or L1, while ϕS, ϕ↔ and ϕh are linear
combinations of h1 and the chiral and antichiral stress–energy
tensors T and T . In fact, in terms of fermions, all these fields,
except ha>1, are proportional to or are linear combinations of I,
θ~θ, θz~θ, θz ~θ, zθz ~θ, z θz~θ, zθz~θ and z θz ~θ. Clearly, the main
question is: do the fields ha>1 also have a realization in terms of
symplectic fermions?

In the symplectic fermion theory, the conformal
representation which contains the fields quoted above is larger
because it contains many other fields, like θzθ or zθz θ, which
have not yet been found in the sandpile model. Among other
peculiarities, the fermionic theory also contains four logarithmic
pairs (ϕαβ, ψαβ) of weight (1,1), given by ϕαβ � zθαz θβ for the
primary fields, and ψαβ � θ~θ zθαz θβ for their logarithmic
partners, where θα and θβ are independently either θ or ~θ (see
[22] for more details).

Conformal representations of the above type are called
staggered modules and have been first studied in Ref [62] in
their chiral version. As far as we know, it has been first noticed in
Ref [63] for the case of modules containing rank 2 Jordan blocks
that these representations are characterized by an intrinsic
complex parameter β, known as a logarithmic coupling, an
indecomposability parameter or a beta-invariant. The
parameter β is crucial because it specifies the equivalence class
of such representations, whose general structure was further
studied in Ref [20] in the rank 2 case. The non-chiral
staggered modules are far less understood and documented
and reflect the difficulty to formulate a consistent and local
logarithmic CFT (see however [64, 65]). It is nonetheless
believed that the parameter β present in the chiral
representations plays the same role of equivalence class label
in the non-chiral ones, even if the latter may have more than one
such label.

Concentrating on the action of the chiral Virasoro modes, the
parameter β arises when we consider the triangular relations
satisfied by a generic logarithmic pair (ϕ, ψ) of weights (1,1) and
the associated ρ.

The arrows coming out of ψ indicate the actions (L0 − 1)ψ � λϕ
and L1ψ � ρ. It is important to note that if the normalization of ψ
is fixed, those of λϕ and ρ are fixed as well (the value of λ depends
on the way ϕ is normalized). The vertical arrow indicates that
L−1ρ is proportional to λϕ,

L−1ρ � β(λϕ), (107)

the proportionality factor β being intrinsic to the representation
as all normalizations have already been fixed. In addition, these
relations are invariant under the change ψ → ψ + αϕ because the
field ϕ is primary (L1ϕ � 0), and so they do not depend on which
logarithmic partner is considered.

To answer the above question thus amounts to check
whether the sandpile representation and the symplectic
representation have the same value of β. The value of β in
the sandpile model has been given above: if the pair (ϕ, ψ) is
chosen to be (h1, h2), with the same normalization as the height
variables on the square lattice, in which case λ � −1

2, then one
finds β � 1

2 [27].
The field h1 has been already identified in terms of fermions and

yields a natural choice for the primary field ϕ on the symplectic side,

ϕθ � −P1(zθ z ~θ + z θ z~θ). (108)

As mentioned earlier, the lattice results in the scaling limit are
consistent with h1 being degenerate at level 2, namely, (L2−1 –
2L−2)h1 � 0 (see Section 5.5). The same equation is satisfied by ϕθ.

The only candidate for the logarithmic partner of ϕθ is
proportional to θ~θ (zθ z ~θ + z θ z~θ) up to an irrelevant multiple
of ϕθ. By computing its conformal transformations via its OPE
with the chiral stress–energy tensor, one finds that the
following normalization,

ψθ � −P1 θ~θ (zθ z ~θ + z θ z~θ), (109)

satisfies L0ψθ � ψθ − 1
2ϕθ , for the same value λ � −1

2. The same
OPE reveals in addition that

ρθ � L1ψθ � − P1

2
(θ z ~θ + z θ ~θ), (110)

from which, upon using zz θ � zz ~θ � 0, one obtains

L−1ρθ � zρθ � − P1

2
(zθ z ~θ + z θ z~θ) � 1

2
ϕθ. (111)

Comparing with equation (107), the value of the logarithmic
coupling is found to be βθ � −1 in the fermionic realization. As a
consequence, the symplectic fermion theory cannot
accommodate the height fields ha>1 and therefore does not
appear to be the correct CFT to describe the scaling limit of the
sandpile model.

As one might suspect, the value of β has strong consequences on
correlation functions involvingψ. A detailed comparison between β �
1
2 and the fermionic realization βθ � −1 has been made in Ref [27]; it
was shown in particular that the correlations with a trial field h2
corresponding to a value β � −1 do notmatch the lattice results.29 On
general grounds, this can also be understood from the fact that the
value of β determines the singular descendant of ψ, which, if set to
zero, yields a β-dependent differential equation satisfied by any
correlator containing ψ. In the present case, the singular
logarithmic field is a combination of a descendant of ψ at level 5
and a descendant of ρ at level 6, with the following explicit dependence
on β [20]:

29As an example, the correlator 〈h2(z, z)〉mix displayed in (87b), and corresponding
to the four-point function 〈ϕop,cl(x1) ϕcl,op(x2) h2(z, z)〉, can be computed upon
assuming that h2 is a logarithmic partner of h1 carrying a generic value of β ≠ 0. Its
general form is given in Ref [7].
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ξ � (L3−1 − 8L−2L−1 + 12L−3)(L2
−1 − 2L−2)ψ

− 1
β
[ − 16

3
(β + 1)L2−2L2−1 + 4

3
(14β + 5)L−3L−2L−1 − 6βL2

−3

− 6(β − 2)L−4L2
−1 + 8βL−4L−2 − 2

3
(5β + 2)L−5L−1 + 4βL−6]ρ.

(112)

Using the relations L1ψ � ρ, (L0 − 1)ψ � λϕ, as well as the
degeneracy condition (L2−1 − 2L−2)ϕ � 0 (and the value c � −2),
one can verify that the field ξ satisfies L1ξ � L2ξ � 0, provided the
identity L−1ρ � βλϕ holds. A rather convincing confirmation for the
value of β � 1

2 in the sandpile model is therefore to check that the
various correlators involving h2 indeed satisfy the condition ξ � 0 for
β � 1

2. It has been done for the correlator (87b).
The situation therefore seems to be the following. The sandpile

model contains a conformal logarithmic representation whose
structure is very similar to the one appearing in the symplectic
fermion theory, but which is nevertheless inequivalent to it. As far
as the logarithmic partner ψ is not brought in, the two
representations look the same; this explains why some of the
fields can be realized in terms of symplectic fermions. However,
the fermionic theory does not contain the β � 1

2 representation

found in the sandpile model, from which one concludes that it
does not describe its scaling limit.

To characterize the CFT that does describe the sandpile model,
even if a Lagrangian realization of it cannot be found, remains an
enormous challenge. At the moment, this looks to be an
extremely ambitious question in view of the (very) small
number of fields which has been successfully identified.
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Self-Organized Criticality in the Brain
Dietmar Plenz*, Tiago L. Ribeiro, Stephanie R. Miller, Patrick A. Kells, Ali Vakili and
Elliott L. Capek

Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States

Self-organized criticality (SOC) refers to the ability of complex systems to evolve toward a
second-order phase transition at which interactions between system components lead to
scale-invariant events that are beneficial for system performance. For the last two decades,
considerable experimental evidence has accumulated that the mammalian cortex with its
diversity in cell types, interconnectivity, and plasticity might exhibit SOC. Here, we review
the experimental findings of isolated, layered cortex preparations to self-organize toward
four dynamical motifs presently identified in the intact cortex in vivo: up-states, oscillations,
neuronal avalanches, and coherence potentials. During up-states, the synchronization
observed for nested theta/gamma oscillations embeds scale-invariant neuronal
avalanches, which can be identified by robust power law scaling in avalanche sizes
with a slope of −3/2 and a critical branching parameter of 1. This precise dynamical
coordination, tracked in the negative transients of the local field potential (nLFP) and
spiking activity of pyramidal neurons using two-photon imaging, emerges autonomously in
superficial layers of organotypic cortex cultures and acute cortex slices, is homeostatically
regulated, exhibits separation of time scales, and reveals unique size vs. quiet time
dependencies. A subclass of avalanches, the coherence potentials, exhibits precise
maintenance of the time course in propagated local synchrony. Avalanches emerge in
superficial layers of the cortex under conditions of strong external drive. The balance of
excitation and inhibition (E/I), as well as neuromodulators such as dopamine, establishes
powerful control parameters for avalanche dynamics. This rich dynamical repertoire is not
observed in dissociated cortex cultures, which lack the differentiation into cortical layers
and exhibit a dynamical phenotype expected for a first-order phase transition. The precise
interactions between up-states, nested oscillations, and avalanches in superficial layers of
the cortex provide compelling evidence for SOC in the brain.

Keywords: organotypic cortex culture, acute cortex slice, dissociated cortex culture, neuronal avalanches,
oscillations, up-state

INTRODUCTION

Brains are inherently complex. Composed of a vast number of cell types, orders of magnitude larger
number of connections, and a myriad of structural and functional networks that make up
biochemical pathways affecting every spatial and temporal scale of brain organization, brains are
deeply challenging to study. Yet, elaborate efforts to assemble the rich and detailed structural
evidence on brain circuits have uncovered a rather small set of dynamical features. Highly detailed
brain models comprised of thousands of neurons exhibit relatively simple neuronal activity patterns
that range from irregular firing to synchronized or oscillatory activity similar to what is measured in
real brains [1,2]. Importantly, the major aspect of brain dynamics that has been particularly difficult
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to understand thus far is how many neurons in the cortex
selectively communicate over long distances with associated
characteristic times and level of coherence.

The aspect of many interacting elements leading to relatively
few dynamical motifs is also a major appeal of self-organized
criticality (SOC) [3]. SOC will drive a system toward a second-
order phase transition at which dynamics are dominated by
universal properties (for review, see [4–10]). The universal
property that is of particular interest to brain functions is
scale invariance indicative of system-wide correlations that
emerge in a system exhibiting SOC. Such scale invariance
could be a hallmark of coordinated, yet adaptive, neuronal
activity that incorporates large numbers of brain cells.

For the brain, and specifically the cortex, it is currently an
intensive field of research whether certain aspects of brain
dynamics are true aspects of SOC. Fortunately, numerous key
features of SOC can be addressed experimentally in a number of
advanced brain preparations [11]. For example, one would expect
cortical tissue, developing autonomously in isolation, i.e., in the
absence of any instructive sensory and motor inputs, to exhibit
scale-invariant properties in the emergent dynamics. One would
expect that the emergence of scale invariance is highly regulated
as well. For example, it should be robust to slow driving
(i.e., exhibiting a separation of time scales) and it should
exhibit homeostatic regulation (i.e., returning to scale

invariance after profound perturbations), with these
regulations failing when essential circuit components are
absent or suppressed.

This review summarizes the experimental findings on the
emergent dynamics of immature and mature cortical networks
when taken in isolation and, thus, disconnected from any
external, structuring input or required outputs. These
dynamics from cortical tissue in isolation, i.e., in vitro, will be
compared to the corresponding dynamical findings in the intact
brain, i.e., in vivo. It will be argued that the four dynamical motifs
of up-states, nested oscillations, neuronal avalanches, and
coherence potentials emerge in superficial layers of the cortex
as major hallmarks of SOC in the brain.

Structural Motifs of Self-Organization:
Cortical Layers, Pyramidal Neurons,
Interneurons, and Glial Cells
Until now, the organotypic cortex culture to date represents the
most complex in vitromodel of the cortex. Typically taken from a
newborn rodent and grown in isolation for up to several months
(Figure 1), it captures several core features of cortical
organization. First, it exhibits the major division of the
mammalian cortex into superficial and deep cortical layers
(Figures 1A,B) [12–15], which exhibit distinct functional

FIGURE 1 | Structural motifs of self-organization: cortical layers, pyramidal neurons, and interneurons in organotypic cortex cultures. (A) Coronal sections from the
brain in adult rats showing the somatosensory cortex (left) and motor cortex (right). Note high density of calbindin (CB)–positive interneuron stain typical for superficial
layers (top) and the layer-dependent bands of parvalbumin (PV)–positive interneurons in deep layers (bottom). (B)Organotypic cortex culture after ∼4 weeks grown on a
planar multielectrode array (MEA). Note transparent healthy neural tissue of ∼4 mm2 covering the array at a thickness of ∼100–200 µm and electrodes (black dots),
conductors of the MEA. Composite images (red rectangles) indicating superficial layers (L2/3) that contain PV and CB-positive interneurons and deep layers (L5/6) with
their intense band of PV-positive interneurons.WM: white matter region. (C) Typical cell body and dendritic morphology of pyramidal neurons from L2/3 and L5, the latter
with their characteristically long and branched apical dendrite. Inset: spiny dendrite typical for pyramidal neurons (A reprinted with permission from [165], Bmodified with
permission from [14], and C modified with permission from [18]; Copyright 1998 Society for Neuroscience).
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properties [16,17]. Superficial layers 2/3, called the associative
layers, are composed of pyramidal (excitatory) neurons with
reduced branching of their apical dendrites that preferentially
connect to other intralaminar pyramidal neurons (Figure 1C,
top). In contrast, pyramidal neurons from deep layers 5/6
typically feature elaborate apical dendrites and, besides
selectively connecting with superficial layers, communicate in
vivo with brain regions outside the cortex (Figure 1C, bottom;
[18]). In vivo, layer 4 receives sensory input via the thalamus, a
brain structure that conveys sensory information to the cortex;
this selective connectivity has been found as well for organotypic
cocultures using the thalamus and cortex [19–21]. The second
important hallmark in cortical organization is the presence of
three major interneuron (inhibitory) classes identified as
parvalbumin (PV), somatostatin (SST), and vasoactive
intestinal peptide (VIP)–expressing neurons, which exhibit
highly selective connectivity and specific firing patterns (for
review, see [22,23]). Several of these classes, with their layer-
specific distribution and electrophysiology, have been
demonstrated in organotypic cortex cultures using various
immunochemical markers (Figure 1B [14,24,25]). The third
and often overlooked hallmark of the cortical microcircuit is
the up to 10× higher presence of nonneuronal cells, or glial cells,
compared to neurons. Of the three types of glial cells, cortical
astrocytes exhibit brain-region–specific control over neuronal
excitation and dynamics, among many other functions
[26–28]. For organotypic cortex cultures, glial cells have been
demonstrated to protect the neuronal tissue from mechanical
damage [29,30]. Also, organotypic cortex cultures show clear
differences compared to the in vivo cortex, such as an overall
reduced connectivity due to a reduction in the third dimension
when preparing the brain slice taken into culture [31] or a change
in glial protein expression [32]. Organotypic cultures are typically
prepared from newborn animals. Therefore, the cortical section
of the postnatal brain, which is taken for culturing, is still
immature, particularly with respect to the development of
superficial layers. However, this immature cortex has benefited
from structuring input during embryonic development, which
has been shown to be important for somatotopic map formation,
i.e., establishing a correspondence between body parts and brain
regions [33]. Therefore, the organotypic cortex culture should be
best thought of as an in vitro system that has experienced a robust
structural organization during embryogenesis and contains the
blueprint for the organization of layered, cortical columns in
isolation. The next section will summarize how structural self-
organization continues as the cortex further matures in isolation
and gives rise to several dynamical motifs of neuronal population
activity.

The First and Second Dynamical Motifs of
Self-Organization: Up-States and Nested
θ/γ-Oscillations
The structural self-organization in organotypic cultures should
parallel a self-organization of dynamical motifs found in the fully
mature brain. One of these motifs, which is dominant in the
electrocorticogram (ECoG) of humans in the awake state, is

composed of transient, i.e., up to several seconds lasting,
nested oscillations in the theta (θ: 8–12 Hz) and gamma (c:
>25 Hz) range capturing the emergence of population
synchrony at many local sites (Figure 2A; [34]). The nesting
of high-frequency γ-oscillations to each θ-cycle has been
proposed to be essential for working memory [35,36] and
information transfer from lower to higher cortical areas (e.g.,
[37,38]). In mature organotypic cortex cultures, detailed
intracellular recordings demonstrated the presence of nested
θ/γ-oscillations that arise during pronounced depolarizations
that can last up to several seconds (Figures 2B,C; [25,39,40]).
This depolarization establishes the well-known dynamical motif
of an “up-state”, which is typically defined as a prolonged period
of self-sustained network excitation lasting from hundreds of
milliseconds to several seconds.

The dominance of up-states supporting nested θ/γ-oscillations
has several profound implications when studying SOC in isolated
cortex preparations. First, it is well known that up-states,
particularly prolonged ones (>0.2 s), require stimulation of
both the fast-acting (<30 ms) AMPA-glutamate receptor and
the slow-acting (>50ms) NMDA-glutamate receptor (Figure 2D).
The prolonged time course of the NMDA-glutamate receptor
reduces the precision in action potential timing [41], suggesting
that the scaffolding of precise spatiotemporal events requires
alternative mechanisms, e.g., interneuron firing. Indeed, pyramidal
neurons tend to fire sparsely during up-states, whereas interneurons
fire reliably during almost every c-cycle, a robust finding established
in organotypic cortex cultures [25,39,42] and in acute cortex
slices [43].

Second, the profound intracellular depolarization found in
neurons during up-states indicates an overall increase in network
activity. However, the up-state depolarization should not be
equated with a higher excitability of individual neurons, which
is implicitly assumed in neuronal models that do not take
intracellular membrane conductance changes into account,
i.e., due to synaptic inputs [44]. On the contrary, individual
neurons significantly change in how they respond to additional
input during up-states [42,45,46]; this change is effected by a
rather expansive combination of a decrease in neuronal input
resistance [47], a shortened synaptic integration window [44],
transient changes in the balance of excitatory to inhibitory (E/I)
synaptic transmission [48], active dendritic conductances [49], a
critical slowing down of the threshold to action potential
generation [50], and other mechanisms (for further reading,
see [51]). Few neuronal simulations take these changes during
the buildup of network activity into account [1,2], potentially
limiting insights that can be gained into these dynamical motifs
from less biophysically oriented modeling.

Third, nested θ/γ-oscillations during the up-state are not
blocked by the gap junction blocker carbenoxolone [52] and
the activity propagates relatively fast, with a velocity >50 mm/s
[53]. These findings support the view that nested θ/γ-oscillations
originate in superficial layers from synaptic interactions between
local interneurons and pyramidal neurons [39]. These nested
oscillations are, therefore, considered to differ from the so-called
slow oscillations, which, in vivo, can be induced by deep but not
superficial layer stimulation [54]. Slow oscillations were shown
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in vitro to originate in deep layers and to propagate significantly
slower than θ/γ-oscillations locally, yet they were shown to
contribute to up-state initiation in superficial layers [55–57].

The propensity of the isolated cortex to produce up-states and
nested oscillations is demonstrated in the acute cortex slice as
well, in which tissue is studied within hours after being taken
from the adult brain. In the acute slice, synchronized nesting
during up-states can be induced by an external, pharmacological
stimulation that includes direct neuronal depolarization through
excitatory glutamate receptors in combination with the
neuromodulator acetylcholine (Figures 2E,F; [43,58,59]).
Current-source density (CSD) analysis, which tracks the spatial
location of neuronal current generation [60–62], demonstrates that
nested θ/γ-oscillations originate in superficial layers 2/3 in both the
acute cortex slice (Figure 2E; [63]) and the organotypic cortex

culture (Figure 3). Developmentally, these dynamical motifs occur
in organotypic cultures with a similar time course compared to in
vivo, specifically when coculturing the cortex with midbrain
regions, which provide the neuromodulator dopamine (Figure 3;
[52]). In summary, isolated cortex preparations demonstrate the
autonomous emergence of two dynamical motifs in superficial layers
of the cortex: up-states and nested oscillations.

The Third Dynamical Motif of
Self-Organization: Neuronal Avalanches
Until now, the two dynamical motifs of up-states and nested
oscillations have been treated from the point of view of averages.
In this view, an up-state is approximated as a binary transition
between two network states that differ in overall activity and

FIGURE 2 | The first and second dynamical motif of dynamical self-organization: up-state and nested θ/γ-oscillations in organotypic cortex cultures and acute
cortex slices. (A) The human brain displaying distinct periods of nested θ/γ-oscillations at rest and during behavior. Top: electrode array on the cortex surface (circles)
recording the electrocorticogram. Bottom: corresponding power spectrum of fast γ-oscillations (>25 Hz; top) phase locked over several cycles of a θ-oscillation (bottom)
(reprinted with permission from [34]). (B) In mature organotypic cortex cultures, neuronal activity self-organizes into up-states with nested θ/γ-oscillations in
superficial layers. Left: time course of the intracellular membrane potential for a pyramidal neuron in response to a microsecond-lasting, electrical shock stimulation (stim;
arrow). Note self-sustained up-state with nested θ/γ-oscillations and sparse occurrence of action potentials (spikes). Right: γ-oscillations are found in pyramidal neurons
(triangles) and interneurons (circles) of superficial (open), but not deep layers (filled). (C)Cross correlation over time in the membrane potential of two pyramidal neurons in
response to electrical shock stimulation (stim; arrow). Note maintained phase locking of nested θ/γ-oscillations during the up-state with drop in γ-frequency creating a
fan-out pattern (subpanels B and Cmodified from [39]). (D) Self-sustained up-states with θ-oscillations require recurrent, excitatory network connections. Blocking the
excitatory NMDA glutamate receptor with the antagonist APV only leaves an initial, short-lasting direct response (organotypic cortex culture) (red). Left: population activity
time course to electric shock stimulation (S; arrow). ctl: control. Right: APV only slightly reduces the number of up-states (leftmost bars) but blocks the emergence of
oscillations at θ-frequency (middle and rightmost bars). Act: control (reprinted with permission from [42]). (E) In the acute cortex slice, γ-oscillations emerge in superficial
layers (CSD analysis) (reprinted with permission from [63]). (F) Acute cortex slice from adult ferret with spontaneous, self-sustained period of fast γ-oscillations in the LFP
(reprinted with permission from [43]; Copyright 2008 Society for Neuroscience). Oscillation identifiers have been added to some subpanels for clarity.
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oscillations are treated to be spatiotemporally stationary. These
views are ill-equipped to capture spatiotemporal propagation in
synchronized cortical activity as well as the spatiotemporal
variability encountered in spontaneous or evoked instantiation
of synchronous activity.

In contrast, the third dynamical motif of self-organization,
neuronal avalanches [53], emphasizes both spatiotemporal
propagation and variability in cortical synchronization. In that
respect, avalanches are related to the spatially compact, wave-like
propagation of cortical activity [64–66] as well as the concept of
“synfire chains,” spatiotemporally selective cascades of neuronal
firing proposed by Abeles [67]. Neuronal avalanche dynamics
introduces several major concepts with respect to propagation
and variability in cortical synchronization. First, avalanche
dynamics quantifies synchronization within a period of
duration Δt and successive occurrences of synchronization in
near future time periods. It, therefore, covers “instantaneous” and
propagated synchrony (see Figure 4). Second, avalanche
dynamics exhibits scale-invariance in space and time, which
introduces power laws as the statistical measure of variability
and the concept of critical branching (see Figures 4, 5). Third,
avalanche dynamics allows for the decomposition of propagated
synchrony into “coherence potentials,” a previously unknown
concept in cortical dynamics for information transfer (Figure 6).
Fourth, avalanche dynamics lifts the idea of one particular

spatiotemporal pattern to that of “avalanches of avalanches,”
which serves as a set of very specific predictions of how
spatiotemporal synchronization events in the cortex are linked
to each other in sizes and time (see Figure 11). Finally, avalanche
dynamics introduces quantitative and absolute measures to study
optimization in cortical networks (see Figure 12). We will
elaborate on these major conceptual changes in studying
cortical synchronization in the following sections.

We start with the basic definition of avalanches using the
comparative in vivo and in vitro study on the developmental
emergence of neuronal avalanches in superficial layers of the
cortex (Figures 3, 4). Gireesh and Plenz [52] used multielectrode
array (MEA) recordings to demonstrate the embedding of
avalanches into ongoing nested oscillations. Using a simple
threshold crossing approach, they extracted the time and
amplitude of negative peak deflections in the LFP (nLFP) at
each electrode in order to identify the location, time, and size of
short-lasting, synchronized activity in a local group of neurons
(Figures 3F,G; Figure 4A; [11, 74]). Contiguous time periods
with nLFPs were defined as avalanches (Figure 4A, bottom),
which resulted in a large variety of different patterns. The size of
these patterns, here defined as the absolute sum of nLFPs
distributed according to a power law up to a cutoff, serves as
the hallmark of neuronal avalanches (Figure 4C). This power law
was also found when defining avalanche size by the number of

FIGURE 3 | Self-organization into nested θ/γ-oscillations in organotypic cortex cultures during the second week postnatal when superficial layers mature. (A)
Coronal sections of the cortex and ventral tegmental area (VTA) are combined and grown on the MEA over two weeks in culture. Left: sketch of the coronal cortex slice
and midline crossing midbrain region containing the VTA at postnatal day (PND) 1–2, when taken into culture after 1 day in vitro (DIV 1;middle), and about 2 weeks later
(DIV 12; right). Note flattening of the culture visible by the increased transparency and expansion of the dorsal tissue on the MEA as superficial layers develop (light
microscopic image). (B) Nested oscillations increase in power from first (white) to second (black) postnatal week in vivo (left), a developmental time course mirrored in
organotypic cortex-VTA cocultures (right). (C) Spontaneous nested θ/γ-oscillations distribute along the dorsal part of the cortex within superficial layers (red rectangle;
single culture). (D)Corresponding CSD (across blue rectangle in C) demonstrates θ/γ-oscillations to originate from synaptic sources (sinks) within superficial layers; CSD
density with distance from the upper culture border over time. (E) Summary of average CSD with distance from the dorsal border for 7 cultures separated into θ- and
γ-oscillation activity. (F) Separating the broadband LFP into a spike-information–carrying high-frequency band (HP) and the population-activity–containing low-
frequency band (LP) demonstrates local spiking (vertical bars) to be phase locked to γ-oscillations. (G) Spike probability is highest at the negative peak of the γ-cycle
(nLFP) at t � 0 (color code shows 4 cultures) (reprinted with permission from [52]; Copyright 2008 National Academy of Sciences).
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threshold crossing electrodes [52], which approximates the
spatial extent of avalanches [68]. The embedding of avalanches
in nested oscillations clearly emerges in cortex-VTA cocultures,
with avalanche size distributions exhibiting a precise power law
up to the cutoff (Figures 4C,D). These findings established that
the complex developmental signature of avalanches and nested
oscillations in vivo develops autonomously in organotypic cortex
cultures with a similar developmental time course; i.e., it is
established toward the end of the second week postnatal, in
the absence of any structuring sensory input or motor output
(Figures 4C,D). The precise match of the power law in avalanche
sizes with a slope of −3/2 that emerges from the variability of
nested θ/γ-oscillations is not a statistical coincidence. Besides
both dynamical motifs being highly sensitive to fast inhibition via
the GABAA receptor and slow excitation via the NMDA-
glutamate receptor, this coexistence requires fine tuning via
the dopamine D1 receptor. Specifically, when the dopamine
D1- but not D2-receptor was blocked, nested oscillations
continued to emerge, yet the resulting nLFP cascades now
exhibited a much steeper size distribution [52]. This regulation
of avalanche size distributions to a slope of −3/2 as a function of
NMDA/D1 receptor costimulation has been confirmed for
superficial layers in acute slices of the prefrontal cortex taken

from two-month-old adult rats [69,70] (cf. Figure 11). Recent
analysis in vivo in the prefrontal cortex of awake nonhuman
primates further confirmed this precise relationship between
avalanche dynamics and γ-oscillations [71].

We note that the definition of neuronal avalanches, originally
introduced by Beggs and Plenz [53] using the LFP, requires that
each local site exceeds a minimal activity threshold. Using a
neuronal network model, Poil et al. [72] adopted a scheme in
which the summed spiking activity within Δt of the finite-size
network is required to exceed a population threshold. This latter
definition is very similar to a threshold applied to the LFP, as will
be argued in more detail below (cf. Figure 13). It potentially
introduces linear terms in certain scaling relationships as pointed
out by Villegas et al. [73]. As for statistical tests demonstrating the
presence of a power law in avalanche size distributions, we refer to
the work of Yu et al. [68] for a more detailed discussion.

To summarize, in vivo experiments in rodents and nonhuman
primates, as well as developmentally well-controlled in vitro
experiments using organotypic cortex cultures and acute cortex
slices, demonstrate a precise regulation between up-states, nested
oscillations, and neuronal avalanches that involves fast GABA-
mediated inhibition, slow glutamate-mediated excitation, and the
neuromodulator dopamine.

FIGURE 4 | The third dynamical motif of self-organization: neuronal avalanches embedded in nested oscillations. (A) Nested θ/γ-oscillations in the superficial layer
of a 2-week-old rat in vivo organize as neuronal avalanches that predominantly emerge at oscillation cycles. Top: single cortical electrode with continuous LFP fromwhich
negative peak deflections (nLFP; filled circles) are identified after threshold crossing. Middle: corresponding raster of nLFPs on the full 32-MEA exhibiting columnar,
variable bouts of synchronization in space and time. nLFP peak amplitudes are color coded. Bottom: expanded view of identified avalanches (blue rectangles)
during each γ-oscillation period plotted in discrete time steps of duration Δt (vertical lines). Size of an avalanche is defined as the sum of absolute nLFP amplitudes within
each avalanche. (B) As in A but for a transient γ-oscillation in an organotypic culture. (C) At the end of the second week postnatal (black), avalanches distribute in size
from 10 to 300 μV followed by a cutoff (green arrow; n � 7 animals). Broken line: slope of −3/2 as guide to the eye. Size distribution is slightly bimodal (red arrow) at the
beginning of the second week postnatal (blue; n � 5 animals). (D) Power law in avalanche size distribution for a single culture and exponential size distribution obtained
from time-shuffled controls in which spatial and temporal correlations among nLFPs are destroyed (reprinted with permission from [52]; Copyright 2008 National
Academy of Sciences).
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Temporal and Spatial Scaling Links Size
Distribution Slope −3/2 to a Critical
Branching Parameter for Neuronal
Avalanches
The identification of avalanches and their implication for SOC has
been a particular challenge from an experimental point of view.
Besides the structural constraints of superficial layers and
developmental period that must be considered, there are
additional aspects specific to the emergence of neuronal
avalanches themselves that are of importance. These points will
be addressed in the following sections. The original identification of
neuronal avalanches [53] involved numerous scaling controls to
demonstrate that power laws identified in propagated neuronal
activity were robust to obvious choices in the experimental setup.
Specifically, tracking the spatiotemporal spreading of an avalanche
using discrete, spatial sensors such as MEAs requires the
appropriate choice of a discrete time interval Δt (Figure 5A).
This choice of Δt is imposed by the average, finite propagation
velocity<v> for neuronal activity in the system and the introduction
of a discrete sampling distance of Δd by the MEA. Three
observations laid the groundwork that established the power law

in avalanche sizes with a slope α � −3/2. First, increasing Δt, while
keeping Δd constant, led to a shallower slope α without change in
power law shape. This dependency of α(Δt) itself is approximated
by a power law, allowing for scaling collapse in vitro (Figures 5B,C)
and in vivo [74]. Second, when changing Δd and accordingly
adjusting Δt �<v> * Δd, a robust size exponent of α � −3/2 was
obtained (Figure 5C). Third, the cutoff of the power law was simply
a function of the finite MEA size and did not change α itself
(Figure 5D). Importantly, when cultures weremademore excitable,
by reducing inhibition in the system using pharmacological means,
avalanche size distribution changed from a power law to a bimodal
distribution exhibiting an initial steep slope close to −2 and a
pronounced system size peak indicative of all-or-none, system-wide
population events (Figure 5E). This latter separation into local,
nonpropagated events and large system-wide synchronization
exhibits the phenotype of a first-order discontinuous phase
transition. We will point out in detail in subsequent sections
that these scaling operations are not robustly observed in
dissociated culture experiments, where an increase in Δt typically
steepens the initial slope and uncovers a bimodal cascade size
distribution (see below for details; cf. Figure 13), which is more
in line with a hyperexcitable system.

FIGURE 5 | Temporal and spatial scaling links size distribution slope −3/2 to a critical branching parameter for neuronal avalanches. (A) When identifying spatial
propagation of activity over time (a→ b; blue and red circles), the distances between neighboring electrodes on a multielectrode array introduce a discrete spatial scale
Δd. For different spatial scales (grids: black: 200 μm; red: 800 µm) and a finite propagation velocity <v>, the time Δt to wait in order to identify propagation toward an
electrode is approximately Δt �<v>*Δd. (B) In organotypic cortex cultures, at fixed Δd � 200 μm, an increase in Δt results in a power law of avalanche size with a
shallower exponent α due to preferential concatenation of avalanches (avalanche size based on the number of active electrodes). Note the absence of any change in the
power law form itself. Inset: average change in α with Δt over all cultures and size based on electrodes (circles) or nLFP amplitudes (squares). (C) A change in Δd by
accordingly omitting electrode rows and columns (insets) maintains the size distribution slope of −3/2 (broken line) if correspondingly increasing Δt to Δt �<v>*Δd. (D)
Finite-size scaling using compact subarrays (insets) only affects the power law cutoff, but not power law slope α. Broken line: slope of −3/2. (E) Reducing inhibition
pharmacologically using picrotoxin (PTX) leads to hyperexcitable neuronal cultures, resulting in a “supercritical” phenotype with an initial, steep slope close to ∼−2 and a
preference for large, i.e., system-wide propagated, population events (red arrow). Right: quantification of change in α from −3/2→ −2 when reducing inhibition. (F) The
unfolding of an avalanche in a network viewed as a branching process. In this sketch, activity at an initial site at time t can induce activity at another site with probability p or
fails to induce activity at a new site with probability 1–p. Each site exhibits a potential branching to two new sites. (G) Experimental demonstration that avalanche
dynamics crosses the critical point (σ, α) � (1,−3/2) predicted for a critical branching process with change in Δt at fixed Δd. Avalanche size definition (squares, circles) as in
B, inset (subpanels B–E, G reprinted with permission from [53]; Copyright 2003 Society for Neuroscience).
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The original work by Beggs and Plenz [53] provided the first
insights into a critical branching process as a proxy to understand
avalanche dynamics in cortical networks as well. A memoryless
branching process captures the probability of an initial event to
spawn future events at new sites [75]. The corresponding
branching parameter, σ, quantifies the average ratio of next
generation to the currently active sites (Figure 5F). For
random neighbors and σ � 1, the resulting size distribution
from such an unbiased or critical branching process exhibits a
power law with a slope of −3/2 and can be analytically linked to
the self-organized critical sandpile [76]. In line with these basic
expectations, it was found that σ is close to one and α � −3/2 for
neuronal avalanches at Δt � <v>* Δd (Figure 5G). These findings
introduced branching processes as a promising entry point to
study avalanche generation.

These original scaling operations for avalanches involved
>10 h of continuous recordings in vitro, which is difficult to
achieve under standard experimental conditions. Recently, Miller
et al. [71,77] extended this scaling analysis of LFP-based
avalanches. They identified a scaling exponent of two for an
avalanche waveform and a mean size vs. duration relationship in
line with predictions for a critical branching process. We also note
that LFP avalanches show nearest-neighbor propagation and
typically involve no loops [68]. The precise identification of

scaling exponents for neuronal avalanches and the conditions
under which they are robust is currently an intense field of
research. Several alternative processes, both critical and
noncritical, have been suggested to produce size exponents
close to −3/2 (for further reading, see, e.g., [78,79]). In the
following sections, we will focus on additional dimensions of
neuronal avalanche dynamics that go beyond these basic scaling
relationships. Importantly, the presence of a power law in
avalanche sizes and a critical branching parameter of one is
linked to several distinct aspects in the emergence and
propagation of neuronal activity.

The Fourth Dynamical Motif of
Self-Organization: The Coherence Potential
In the previous section, the scaling relationship between the
temporal and spatial resolution was reviewed. The third free
parameter in assessing avalanche dynamics is the threshold, λ, at
which a local site is considered to carry significant activity. For
LFP-based avalanches, this threshold is typically chosen to be
around three SD of the fluctuations in activity at each site and it
has been shown in numerous studies that the presence of a power
law is rather robust to the threshold chosen, assuming that it is
reasonably outside of baseline noise [53,74,80]. Yet, when

FIGURE 6 | The fourth dynamical motif of self-organization: The coherence potential. (A) LFP avalanches from ongoing activity in nonhuman primate show a robust
power law in sizes for a range in threshold λ at which nLFPs are detected. Inset: example LFP trace and nLFP detection for three different values of λ. SD: standard
deviation. Broken line: slope of −3/2. (B) The number of nLFPs >λ drops several orders of magnitude with an increase in λ, while the power law in sizes remains robust
with slope α close to −3/2. (C) The similarity in nLFP waveforms within avalanches rapidly increases for λ> ∼2.7 SD (orange arrow). This threshold-dependent
sigmoidal increase in within-nLFP similarity identifies a relatively small number (∼20%) of nLFPs that constitute coherence potentials (cf. B). Control: expected change in
similarity after random temporal shifts in the LFP. (D) Complex nLFP waveforms within a coherence potential are highly similar. Example comparison for two subsequent
coherence potentials at two sites. Within similarity (gray/black; light/dark green) is high for each coherence potential (CP), whereas between similarity is very lowwith large
waveform deviations highlighted in red for visual contrast. (E) Coherence potentials spontaneously form in vitro in organotypic cultures. Overplot matrix of waveform
examples for coherence potentials of size four to eight for nLFP areas in three size categories. (F) Under disinhibited conditions (PTX), coherence potentials are absent
(reproduced with permission from [11]).
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systematic evaluations of threshold effects were conducted within
a regime of robust power law scaling, it was found that avalanche
dynamics implicitly contains a local synchrony threshold that
identifies a subclass of avalanches in vivo and in vitro: the
coherence potential (Figure 6; [11,81]). Coherence potentials
constitute avalanches with nLFPs above a minimal amplitude
threshold, typically ∼3 SD, of the ongoing LFP fluctuations [82].
Both avalanches and coherence potentials form power laws in size
distributions that are indistinguishable by simple thresholding
(Figure 6A). Only when the waveform of nLFPs is explicitly taken
into account is a sigmoidal function identified separating the
high-fidelity activity propagation regime that constitutes the
relatively small number of coherence potentials from that of
all other avalanches (Figures 6B–D). The identity of an nLFP
waveform correlates with the identity of local spike sequences
across different cortical locations [81], suggesting that coherence
potentials confer the exact temporal activity of local neuronal
firing over wide distances of the cortex. In the human ECoG,
coherence potentials were found to initiate finger tapping [83].
The emergence of coherence potentials in cortical networks with
avalanche dynamics has been compared to the emergence of
“gliders” in cellular automata and hypothesized to be a vehicle of
information transfer within the cortex at the network level [11].

The waveform identity in coherence potentials could be
expanded to area identity in vitro and in vivo. By grouping
nLFPs in coherence potentials into different size categories,
waveform similarity within these categories was established
and shown to break down when the network was disinhibited
(Figures 6E,F). This demonstrates that coherence potentials are
actively regulated by the network through the E/I-balance.
Coherence potentials were shown to demonstrate initial group
size conservation as well. Specifically, it was demonstrated that
the area of nLFPs, which participate in a single coherence

potential, does not grow nor decay on average as the
coherence potential unfolds, a finding that is independent of
the size of the initiating nLFP (Figures 7A–C). This property of
preserving the local group size initiating an avalanche was lost
when the cortex was even mildly disinhibited, upon which
propagated activity displayed a within-cascade explosive
growth (Figure 7D). This particular approach extends the
original identification of the critical branching parameter [53],
which was estimated by the ratio between the number of nLFPs in
the second (“descendants”) and first (“ancestors”) time bins of an
avalanche. The analysis in Figure 7 is more complete by including
an nLFP area and waveform and considers all avalanches in their
full duration. The critical branching parameter is reflected in the
finding that normalized distributions have a stable mode of 1,
i.e., log(1) � 0, for up to 20 ms of propagation, which typically
covers the full area of recording. The area of the nLFP correlates
tightly with the number of neurons firing at the corresponding
electrode in vivo and in vitro [11]. Therefore, the critical
branching parameter established for coherence potentials
demonstrates a conservation law, specifically in which the
initiating group size determines all group sizes that emerge
within the coherence potential. This complements the finding
that spike sequences at different locations within a coherence
potential are similar [11].

Oscillation-Synchronization Transition and
Neuronal Avalanches: Simulations
Over the last decade, several models have explored these
challenging relationships between oscillations, neuronal
avalanches, coherence potentials, and critical dynamics. The
group of Linkenkaer-Hansen [72,84] demonstrated the
emergence of avalanches with α � −3/2 embedded in

FIGURE 7 | Critical branching parameter estimation for coherence potentials. (A) Area a and waveform of a local nLFP identified by threshold (thr) crossing. (B)
nLFP areas normalized by the initial nLFP area (red dots) distribute around a median value (blue distribution) after n time bins of duration Δt. (C) In vitro avalanches reveal
distribution around the log(1) � 0 mode demonstrating that, as an avalanche unfolds, nLFPs on average neither grow nor decay in the area in line with expectations for a
critical branching process with σ � 1. (D) In organotypic cortex cultures that are made more excitable by slightly reducing inhibition (PTX), an expansion of the nLFP
area with time from cascade initiation is found in line with the prediction for a supercritical branching process with σ> 1. These experiments demonstrate that a transition
from a power law in sizes to a bimodal size distribution under reduced inhibition changes the system from critical to supercritical dynamics (reproduced with permission
from [11]).
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α-oscillations (∼12 Hz) in an E/I-balanced network model. They
compared this to a critical parameter of κ � 1 and the emergence
of long-range temporal correlations (see Figure 12) in human
MEG recordings demonstrating nested oscillations [72] (see also
[85]). The coemergence of oscillations and neuronal avalanches
has been demonstrated in small systems to result from temporal
correlations between large avalanches due to finite-size effects
[86]. It is an open question how such boundaries could be

established in superficial cortical layers. When neuronal
avalanches coemerge with oscillations, neural networks achieve
high cost efficiency; that is, they balance their need for moderate
synchronization with high information capacity [87]. Recent
models have combined system-wide synchronization and
hysteresis, i.e., to support an oscillation cycle, with structural
heterogeneity, i.e., to capture the variability observed in
avalanches, in order to arrive at the coemergence of

FIGURE 8 | Developmental time course for the self-organization of neuronal avalanches in isolated cortex preparations. (A) Overview picture of a custom-made
incubator for long-term recordings of individual organotypic cortex cultures on anMEA in a chronic, sterile chamber with head stage (left) and off-recording storage racks
(right). For details, see [166]. (reproduced with permission from [167]). (B) In organotypic cortex cultures, avalanches are absent during the first postnatal week in vitro,
but increase in rate during the second and third postnatal weeks in line with in vivomaturation of superficial layers.Highlighted periods: equivalent postnatal week in
vivo when cultures are taken from pups at postnatal day 1–2. (C) Raster plots of spontaneous nLFP increase in complexity from the first to fifth week (rows) postnatally
in vitro. Top of each row: 5 h raster. Bottom of each row: higher temporal resolution for periods indicated by the blue rectangle. (D) Example of early (7 DIV) bimodal size
distribution (top) and second week power law size distribution (bottom) in a single organotypic cortex culture. Sizes are defined as the number of active electrodes
(red) or summed nLFP (black). (E)Most organotypic cortex cultures achieved α � −3/2 within 2 - 3 weeks in vitro (arrow), except for one (open circle). Time course in
avalanche size distribution slope α for individual organotypic cortex cultures. (F) The emergence of slope α � −3/2 correlates with a ∼10x increase in LFP activity.
(B–Fmodified and reproduced with permission from [94]). (G) In dissociated cultures taken at PND 0 - 1, power laws tend to be reported after ∼4 weeks in culture
(reproduced under CC-NY license from [98]). (H) Neuronal activity reaches a steady state in dissociated cortex cultures after ∼4 weeks in vitro (reproduced with
permission from [107]). (I) Transition of avalanche size distributions from exponential to bimodal in dissociated cortex cultures (reproduced under CC-NY license
from [99]).
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oscillations and scale-invariant avalanche statistics (e.g., [88]),
while others have added an oscillating extinction rate to a
continuous-time branching process using perturbative field
theory [89]. Coherence-potential–like activity and its potential
computational advantages have been explored by the Gong group
[90–92]. The many experimentally established dimensions of
neuronal avalanches provide a rich testing ground to study the
role of SOC in cortical information processing both experimentally
and in network simulations. In the following sections, we will
provide additional key experimental aspects of neuronal avalanche
dynamics that go beyond size and synchronization scaling aspects.

Developmental Self-Organization of Robust
Avalanche Dynamics in Organotypic Cortex
Cultures
The previous sections demonstrated the emergence of neuronal
avalanches around the second week postnatally in culture and in
adult slices when tested in isolation. It is well understood that
cortical development in vivo involves intrinsically maturing
cellular properties and microcircuits in a complex interplay
with structuring sensory inputs and motor outputs [17]. Many
of these intrinsic embryonic and neonatal dynamics are found to
arise autonomously in isolated cortex preparations [16,93]. Yet,
so far, only few studies have reliably covered the time course of
avalanche emergence during development over prolonged
periods. In a first study of postnatal maturation of avalanches
in vitro, Stewart and Plenz [94] grew individual organotypic
cortex cultures on a planar MEA in sterile chambers over
many weeks (Figure 8A). Spontaneous LFP activity emerged
toward the beginning of the second week postnatally with a

typical bimodal distribution in cascade sizes (Figures 8B–D)
indicating a bias toward system-wide population bursts before the
time of superficial layer maturation. During the end of the second
week, stable power laws in avalanche activity emerged, particularly
in those cultures that reached a high level of spontaneous activity
and intermittent synchronized activity (Figures 8B–F). Given the
late development of superficial layers and the well-known
preponderance of deep-layer gap–junctions during the first
week postnatal [95], the initial bimodal distribution in cascade
sizes might reflect system-wide deep-layer synchronization
supported by extensive gap–junction coupling [96], in turn
potentially facilitated by transient hyperconnectivity that reduces
toward the end of the second postnatal week in vivo [97]. The
ability of the young cortex to express neuronal avalanches toward
the end of the second week postnatally was recently confirmed for
superficial layers in young acute cortex slices [70].

A second developmental study followed avalanche emergence
in dissociated cortex cultures grown on MEAs, starting with
neonatal cortex tissue around postnatal day (PND) 0–1 [98].
This study described an initial bimodal size distribution as well,
characterized as “supercritical,” followed by a pronounced
“subcriticality” and, eventually, after more than 5 weeks in
culture, a “critical” condition characterized by stable power
laws in size distribution (Figure 8G). While both organotypic
and dissociated cultures capture an initial bimodal activity state,
the developmental time course in dissociated cultures appears to
be delayed by more than three weeks with respect to the buildup
of neuronal activity (Figure 8H) and power law formation when
compared to in vivo [52]. Recently, Levina and Priesemann [99]
showed that the bimodal distribution in avalanche sizes is
maintained in dissociated cultures over long periods,

FIGURE 9 | Separation of time scales and homeostatic regulation of neuronal avalanches in vitro. (A) Power law in avalanche sizes is preserved during externally
induced slow changes in neuronal activity. Top: periodic tilting (ϕ) of the sealed, sterile chamber, which contains the organotypic culture grown on the MEA, alternates
culture exposure to feedingmedium or air. This slowly drives the network through the corresponding large changes in nLFP activity visualized in the corresponding raster
plot. Bottom: power law in avalanche sizes for n � 7 cultures under conditions of periodic tilting. Red: distribution from single culture shown in the raster plot. Inset:
average autocorrelation of population activity demonstrating strong correlations from periodic tilting. (B) Intracellular recording demonstrating rebound hyperactivity
when neuronal activity is suppressed in dissociated cortex cultures (reproduced with permission from [101]). (C) Increase in rebound population bursts after 24 h of
excitatory glutamate receptor suppression in organotypic cortex cultures (reproduced with permission from [100]). (D) Homeostatic regulation of avalanches in
organotypic cortex cultures. Control: size distribution before manipulation. DNQX: size distribution during 24 h of reducing excitatory synaptic transmission. Early wash:
bimodal size distribution demonstrating hyperexcitability after wash out of DNQX. Wash 24 h: homeostatic return to avalanche dynamics before pharmacological
manipulation. Distributions are based on 1 h recordings each from a single culture (A, D reproduced with permission from [11]).
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questioning the robustness of power laws identified by previous
studies for that system (Figure 8I; see also below).

These developmental studies of cortical tissue in isolation
suggest distinct differences in neuronal avalanche emergence
between organotypic and dissociated cortex cultures, with the
latter demonstrating a delayed maturation time course compared
to in vivo and a tendency of bimodal size distributions. In
contrast, avalanche emergence in organotypic cortex cultures
matches that of the in vivo development with respect to layer
location and robust power law scaling.

Separation of Time Scales and Homeostatic
Regulation of Neuronal Avalanches
A separation of time scales, in which the time course of driving the
system is slow enough as to not interfere with the fast avalanching
process itself, is of essence in some models of SOC (e.g., [8]). This
concept was tested in organotypic cortex cultures grown individually
in sterile, closed chambers, while the chamber is tilted periodically.
This approach periodically submerges the culture in a liquid culture
medium (“feeding”) followed by exposure to normal air
(“breathing”) and slowly drives the system through concomitant,
large changes in neuronal population activity (Figure 9A, top; [11]).
The resulting avalanche size distributions were power law distributed
despite strong common, external triggers from the change in
environmental condition (Figure 9A, bottom). In a second series

of experiments, the well-established effect of rebound activity and
rebound bursts after prolonged periods of suppression in excitatory
synaptic transmission (Figures 9B,C; [100,101]) was used to study
the robustness of avalanche dynamics. Excitatory synaptic
transmission was mildly reduced in organotypic cultures by adding
a low amount of the fast glutamate receptor antagonist, DNQX, to the
culture medium for 24 h. This reduction in excitatory transmission
steepened the distribution in cascade sizes. Importantly, after
removing the “brake” on excitatory transmission, cascade size
distributions rapidly became bimodal with an initial steep slope
close to −2, but autonomously recovered within 24 h toward the
power law distribution with a slope of −3/2 observed prior to the
perturbation (Figure 9D; [11]). These experiments demonstrate
homeostatic regulation of avalanche dynamics from a supercritical
to a critical state in the absence of any structuring external inputs. A
recent study by Ma et al. [102] demonstrated recovery to power-
law–distributed avalanches duringmonocular deprivation in vivo over
the course of several days, suggesting that recovery can be initiated
from the subcritical phase as well.

Size-Dependent Nesting in the Temporal
Self-Organization of Neuronal Avalanches
Population activity that spontaneously forms in isolated cortex
preparations has been typically described as intermittent
bursts of variable length, as well as variable intensity,

FIGURE 10 | Size-dependent nesting in the temporal self-organization of neuronal avalanches. (A) Time course of integrated avalanche activity at three different
resolutions. Note the presence of intermittent bursts of successively smaller size [e.g., (a, b, c, d)] that are recursively embedded at smaller time scales [e.g., d-> (a′, b′,
c′); b′-> (a″, b″, c″)]. Red arrows indicate the zoomed-in period from larger time scale (single organotypic culture; slowly driven; cf. Figure 9A). Labels place each time
scale within the corresponding up-state and nested oscillation regimes. (B) Sketch of size-dependent nesting of avalanches begetting future avalanches (A, B
modified and reproduced with permission from [11]). (C) Quiet time distribution of avalanches revealing power law decay with θ-oscillation peak and indicated
γ-oscillation and up-state regime (organotypic cortex cultures) (modified and reproduced under CC-BY license from [103]). (D) Quantification of the dependency in
preavalanche size and successive quiet time. Avalanches beget future avalanches (left) absent driving and during periodic, slowly driven condition (middle). This
relationship is reversed in disinhibited cultures (right). The Y-axis displays the probability that the next avalanche within observation window t0 is smaller given size s0 of the
current avalanche (reproduced under CC-BY license from [105]).
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pauses in between (cf. Figure 8C). When analyzing the
summed population activity of avalanche activity more
closely, the picture of “avalanches within avalanches”
readily emerges (Figures 10A,B), which dominates
periodically driven cultures as well [11]. Based on the
observation of an avalanche, the average time to wait before
observing a future avalanche is known as the waiting time
distribution and was found to reflect the characteristic time
scales of θ/γ-oscillations and up-states (Figure 10C; [103]).
This was true for avalanches independent of minimal size and
with strong dependence on the E/I balance [104]. By
calculating conditional probabilities, Lombardi et al. [105]
obtained precise functions capturing the nesting of
avalanches with respect to size and time to the next
avalanche. It was generally found that there is a high
probability that the next avalanche will be smaller than the
currently observed avalanche. This finding was robust to a
large range of sizes and time windows of observation as well for
periodically driven activity (Figure 10D, left, middle).
Importantly, this relationship reverses when reducing
inhibition; more specifically, the network becomes
hyperexcitable at which point future “avalanches” are likely
to be larger than the currently observed activity (Figure 10D,
right; cf. also Figure 7D). These experimental findings add an
important dimension to the discussion of hyperexcitable

network activity beyond the finding of bimodal size
distributions.

Control Parameters Identified in the
Regulation of Neuronal Avalanches
The core requirement for SOC is the ability for the system to adjust
a control parameter, which allows the system to reside near the
critical point [8,106]. Given the complexity of cortical microcircuits
regarding neurotransmitter categories (excitatory and inhibitory),
neuromodulators (e.g., dopamine, acetylcholine, and serotonin),
and brain states (e.g., wakefulness, sleep, and attention), there could
be many control parameters that are able to tune cortical networks
toward or away from criticality, yet few have been experimentally
examined so far. Of common focus, the E/I balance establishes an
important control parameter, first demonstrated for avalanches in
organotypic cortex cultures [53]. Specifically, reducing fast
inhibitory synaptic transmission nonselectively by
pharmacological means, rapidly destroys the power law in LFP-
based avalanches and causes bimodal distributed cascade sizes (cf.
Figure 5E). Similar results have been obtained in dissociated
cultures, in which a power law distribution in avalanches
changed to a bimodal distribution when inhibition was blocked
(e.g., [107]). In more detailed follow-up studies, a reduction in fast
synaptic inhibition or in fast and slow synaptic excitation changes

FIGURE 11 | The E/I balance is a control parameter for the emergence of avalanches. (A) The dynamic range Δ is maximized when avalanche size distributions are
closest to a power law. The parameter κ quantifies the Kolmogorov–Smirnov deviation at 10 equidistant steps of the actual cumulative size distribution from that of a
power law [108,109]. When κ � 1, the distribution is a power law, whereas κ>1 for a bimodal distribution and κ< 1 for an exponential distribution. (B) Information capacity
is maximized close to κ � 1. (C) Synchronization exhibits a phase transition at κ � 1 (top) where the entropy of synchronization is maximal (bottom) and total
synchronization is still orders of magnitude lower than that of the hyperexcitable regime for κ> 1. A–C are derived from LFP avalanches measured in organotypic cortex
cultures with κ changed pharmacologically as indicated in A (reproduced from [108–110], respectively; Copyright 2009, 2011, 2012 Society for Neuroscience).
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the dynamics from avalanches to a “supercritical” or “subcritical”-
like condition [108–111]. These studies, by quantifying the
distance of bimodal or exponential distributions from a power
law, demonstrated that numerous network parameters are
maximized at the E/I balance at relatively low level of
synchronizations, where avalanche dynamics reigns (Figure 11).

The neuromodulator dopamine has been identified as a second
control parameter for the regulation of neuronal avalanches in the
prefrontal cortex (Figure 12). Dopamine is crucial for working
memory performance, which in turn requires prefrontal cortex
functioning [112,113]. Acute prefrontal cortex slices taken from
adult rats, exposed to a moderate external excitatory drive, rapidly
respond to the presence of dopamine with the emergence of
avalanche activity in superficial cortex layers (Figures 12A,B;
[69]). At intermediate levels, but not low or high levels of
dopamine, nLFPs formed a power law in avalanche sizes with a
slope of −3/2 (Figure 12C). The activity was selective for the
dopamine D1 receptor and required NMDA-glutamate receptor
stimulation, thus matching the pharmacological inverted-U profile
reported for working memory performance in the prefrontal cortex
[114]. Analysis of the intracellularmembrane potential in individual
pyramidal neurons in the acute slice, as well as extracellular single-
unit analysis in vivo, demonstrated that even large LFP avalanches
engage individual pyramidal neurons selectively and this selectivity
breaks down when inhibition is reduced [70]. These results taken
together suggest that the control parameter dopamine maximizes
the spatial extent and occurrence frequency of system-wide
avalanches formed by selective activation of distributed
pyramidal neurons in the network.

The high sensitivity of the power law to the reported control
parameters suggests that thresholding of the LFP is unlikely to

play a major role in the origin of scale-invariant avalanches. The
LFP is a continuous time-varying signal, for which avalanche
processing requires a threshold operation to convert this signal
into point process-like data. Such thresholding preserves essential
avalanche information in a discretized spatiotemporal raster, e.g.,
as shown for human avalanches in the fMRI [80]. Yet,
thresholding is a nonlinear operation and can affect scaling
regimes, particularly, in the temporal domain [73,115]. On the
other hand, if thresholding were the underlying cause to observe
avalanches, one would expect power law characteristics in the
observed dynamics to be robust to relatively mild
pharmacological manipulation, which is not the case.

Changes in network connectivity based on local plasticity rules
have been demonstrated to establish SOC in models [116],
suggesting that plasticity could function as a control parameter
(e.g., [117,118]). Since network connectivity was found to support
avalanche dynamics in dissociated cultures, it could be considered a
control parameter as well [119]. On the other hand, measurements
in organotypic cortex cultures and in nonhuman primates in vivo
demonstrate that avalanches establish integrative network
architectures that are robust to certain plastic changes
[77,120,121]. Of note, in vivo studies have shown avalanches to
be exquisitely sensitive to the sleep/wakefulness transition
[122–126], suggesting sleep [127,128] and sleep-arousal
transitions [129] as a behavioral state control parameter.

Lack of Scale-Invariant LFP Avalanches in
Deep Layers
The results summarized here were based on LFP recordings taken
from high-density arrays oriented in a specific manner with

FIGURE 12 | Dopamine is a control parameter for the emergence of neuronal avalanches in superficial layers of the cortex. (A) Externally driven acute cortex slice
using weak excitatory drive (3 µM NMDA) maximizes avalanche activity at intermediate dopamine concentrations. Raster plots of nLFPs from different slices for
increasing dopamine concentrations (top to bottom). (B) Externally driven neuronal avalanches emerge in superficial layers 2/3. Average nLFP density (red circle size)
projected onto the light microscopic image of the MEA with the corresponding acute coronal slice from the medial prefrontal cortex. Lower left: nLFP density
projected along cortical layers demonstrating that most avalanche activity is induced in L2/3. (C) Avalanche activity exhibits a power law slope of −3/2 at moderate
dopamine concentration. Size distributions (top) and corresponding slopes (bottom) are a function of dopamine concentration (reprinted with permission from [69];
Copyright 2006 Society for Neuroscience).
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respect to the underlying cortical column. The planar projection
of the array was aligned in such a way where propagation of
activity in all layers of the cortex can be monitored. Even under
those carefully chosen projection conditions, deep-layer LFP
activity was strikingly absent, e.g., during spontaneous
avalanche emergence in organotypic cortex cultures (cf.
Figure 3) or during external glutamate-mediated
depolarization, which induces avalanche activity in superficial
layers in the acute cortex slice (Figure 13). The absence of LFP-
based avalanches in deep layers in vitro could have various causes.
First, deep layers could mature incompletely in organotypic
culture preparations, e.g., due to lack of subcortical inputs
from the thalamus or lack of subcortical targets. However, this
argument does not apply to the acute cortex slice. Second, deep
layers might require the presence of neuromodulators such as
acetylcholine and neurotensin, often provided by brain regions
outside the cortex, which regulate the amount of bursting in deep-
layer pyramidal neurons [130,131]. However, even in the awake
nonhuman primate, the LFP activity in deep layers does not
establish power laws even when avalanche activity propagates
simultaneously in superficial layers (Fig. S4 of [74]). Third,
avalanches in deep layers could be composed of spatially
distributed neurons that are difficult to track in the LFP.
However, local cortical connectivity favors connections
between nearby pyramidal neurons [132] such that avalanche
activity would be expected to sum in the LFP. Taken together,
these arguments suggest that deep layers might not be able to
support scale-invariant avalanche dynamics in general. Even
advanced recording techniques in vivo in the awake rodent
demonstrate the absence of avalanches in deep layers. Using
two-photon imaging in vivo, power laws in spike-based
avalanches were identified in cortical layer 2/3 and layer 4
[133], but seem to be absent in deep layers [134].

The Negative Transients of the Local Field
Potential is the Avalanche: A Local
Reconstruction From Spike Avalanches
Using Two-Photon Imaging
In the LFP, the structural and dynamical heterogeneity of the
network is summed to form a local point source, which does not
allow for the identification of the network elements contributing
to the LFP [135]. While many experimental findings on
avalanches have utilized spatially expansive MEAs, scale
invariance predicts that avalanche dynamics should be
observable even within the local neighborhood of a single
electrode as the spatial resolution increases. This in turn
should allow for a more detailed analysis of the underlying
network components contributing to scale invariance. In this
scenario, the nLFP amplitude should reflect the local neuronal
group activity governed by avalanche dynamics (Figure 13A).
Accordingly, it was found that the nLFP amplitude distribution at
the single-electrode level approximates a power law with a slope
of −3/2, which is destroyed when pharmacologically changing the
E/I balance (Figure 13B; [11]).

The notion that locally summed the activity of neuronal group
firing constitutes avalanche dynamics was first demonstrated

directly with two-photon imaging using the genetically encoded
calcium indicator (GECI) YC2.60, which exhibits single-spike
sensitivity [124,136]. The indicator was selectively expressed in
pyramidal neurons from superficial layers in organotypic cortex
cultures by electroporation (Figure 13C; [124]). When the
coordinated firing in groups of pyramidal neurons was studied,
it was found that the highly irregular firing of pyramidal neurons
during ongoing spontaneous activity exhibits clear avalanche
signatures. We note that these power laws are robust at the
temporal scale of Δt � 30ms (i.e., at an imaging frame rate of
30 Hz) and their slope α is more shallow than −3/2 as predicted
from LFP avalanche analysis (cf. Figures 5B,G). Importantly, the
power law in avalanche sizes was transformed to a bimodal
distribution only after pharmacologically reducing inhibition at
which the typical hyperexcitable phenotype of an initial steep slope
close to −2 and an overabundance of system-wide cascades
robustly presents (Figures 13D–F). We note in passing that a
hypersynchronized phenotype in the size distribution also emerges
when mildly reducing excitatory transmission (cf. Figures 13B,F,
right, “Disfacilitated”). Such a reduction increases spontaneous
synchronization in the network due to an overall increase in
synaptic transmission efficacy when the global rate of activity
drops (e.g., [137]). Taken together, these results demonstrate
that the nLFP reflects local avalanche activity and should not be
equated to single spikes. In this context, the threshold, λ, applied to
extract nLFPs is similar to the population threshold applied to
summed spiking activity in identifying neuronal avalanches in
network models (e.g., [72]). These findings identify pyramidal
neuron activity in superficial cortex layers to carry signatures
associated with the organization of avalanches, which, since
then, has been confirmed in vivo [124,133,134,138]. The
relationship between firing statistics of single neurons and
critical exponents in avalanche dynamics has been a major
research topic in neural network dynamics (e.g., [139–142]).

Not All Avalanches Are Self-Organized
Criticality Avalanches: The Prevalence of
Local and System-Wide Population Events
in Dissociated Neuronal Cultures
Dissociated cultures [143] have been used for decades to study the
autonomous development in structure and dynamics of cortical
microcircuits. As a complementary approach to organotypic
cultures [20], dissociated neuronal cultures are prepared from
cortical tissue typically taken from an embryo at embryonic days
15–18 (that is, 3–6 days before birth). The tissue is then
mechanically and enzymatically disintegrated, and the
remaining neuronal cell bodies and precursor cells are
reseeded on a glia-feeder layer and grown for up to several
months in vitro [143]. Dissociated cultures appeal by focusing
on the de novo formation of neuronal connections, yet they
require careful attention to the design of glia-feeder layers and
the culture medium composition. They lack cortical layers and a
clear classification of pyramidal neurons and interneurons into
functional subtypes, which, in contrast, are both well-established
in vivo and organotypic cortex cultures during various
developmental stages (see introductory sections). Synchronized
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bursting has been the hallmark of the developing population
activity in dissociated cultures grown onMEAs [144]. Despite the
apparent simplicity of this culture system, when systematically
studied using a large number of cultures grown on MEAs over
many weeks, highly variable outcomes in neuronal
synchronization have been documented that depend on
plating density, which affects the number of neurons per area
and developmental trajectory [145]. Accordingly, the application
of avalanche analysis to these synchronized bursts has yielded
heterogenous outcomes across and within studies (Figure 14).
Nevertheless, a consistent finding emerges from these studies,
which deviates from results reported for LFP- and spike-based
avalanches in organotypic cortex cultures, as detailed below.

Pasquale et al. [107] were the first to report spike avalanches in
six dissociated cultures with size distribution of either

exponential, bimodal, or power law form. Two out of six
cultures displayed the power law in avalanche size, however,
only at submillisecond temporal resolution Δt. In fact, increasing
Δt to 1 ms steepened the initial slope and rapidly uncovered a
bimodal distribution, explained in their model as explosive
growth introduced by neuronal hubs (Figure 14A). Using
neonatal tissue right after birth, Tetzlaff et al. [98] tracked
spike avalanche distributions during development and found
an initial slope close to −2 for mature cultures and an increase
in bimodality with increasing bin size (Figure 14B). Similar
findings were presented by Levina and Priesemann [99] using
dissociated cultures prepared from E18 tissue and grown for
∼3 weeks. Spike avalanches revealed a size distribution with a
steep slope close to −2 and a preference for large avalanches.
Again, an increase in Δt steepened the initial slope further and

FIGURE 13 | Experimental transition from single-nLFP avalanches to spike avalanches in organotypic cortex cultures using two-photon imaging (2PI). (A) Sketch of
spatial transformation of propagated nLFPs on the electrode array to propagated spike activity in local neuronal groups (circles; red: spiking; blue: quiet) within the
neighborhood of a single electrode (zoom). (B) Distribution of nLFP amplitudes at single electrodes (red: average; black: example single electrodes). Power-law–like
distributions change into bimodal distributions when reducing inhibition (disinhibited) or excitation (disfacilitated) (reproduced with permission from [11]). (C)–(F)
Reconstruction of spike avalanches in an organotypic cortex culture. (C) Single organotypic coculture of the cortex (ctx) and ventral tegmental area (VTA) after ∼3 weeks
grown postnatal. Electroporation of the embryo at E16.5 leads to expression of the genetically encoded calcium indicator YC2.6 in pyramidal neurons from superficial
cortex layers (b and c are successive zooms from a). Broken lines: tissue borders. wm: white matter. (D) Raster of spontaneous spike density monitored with 2PI and
obtained through deconvolution (n � 40 pyramidal neurons). Top: binarized raster. Bottom: temporally expanded raster segmented with color coded spike intensity λ for
each neuron. (E) Spontaneous neuronal activity reveals power laws in spike avalanches that are robust to the threshold λthr applied at the single neuron level (left).
Temporal shuffling of spike activity abolishes the power law in avalanche sizes (right). (F)Mild disinhibition changes the power law to a bimodal distribution with an initial
steep slope of −2 and system-wide population events (red arrow; cf. Figure 5E). System-wide events also become prominent when mildly reducing excitation (right).
(modified for C and C–F reproduced under CC0 license from [124]).
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disproportionately increased the probability for large activity
events (Figure 14C). Even when examining only a small range
of bin width, reported results for dissociated culture experiments
are more in line with expectations for a hyperexcitable system.
Yada et al. [146] tracked the development of spike avalanches in
six cultures and reported a bimodal form and an initial steep slope
close to −2 that was robust to modest changes in Δt (Figure 14D).

Similarly, robust bimodality and initial steep slope were reported
in [147] (Figure 14E).

These experimental findings are in contrast to what has been
reported for sizes of LFP and spike avalanches in organotypic
cultures, where an increase in Δt leads to a more shallow slope in
the size distribution and bimodality only arises when the system is
made hyperexcitable (cf. Figures 5, 13). The notion that

FIGURE 14 | Spike “avalanches” in dissociated cultures display the scaling characteristic of hyperexcitable dynamics. (A) Spike avalanches in dissociated cultures
exhibit a steeper initial slope and becomemore bimodal with an increase in Δt. Left: cultures; Right: model (reproduced with permission from [107]). (B)With an increase
in Δt, spike avalanches in dissociated culture change from exponential to bimodal size distribution with steep initial slope close to −2 (reproduced under CC-NY license
from [98]). (C) Initial slope of −2 and bimodality with an increase in Δt in mature dissociated cultures (reproduced under CC-NY license from [99]). (D) Bimodal size
distributions in dissociated cultures around the mean interspike interval Δt exhibit an initial slope of −2. The mean interspike interval Δt has been used as a proxy at which
the size distribution should show a power law with slope α � −3/2 (see Figure 5) (reproduced with permission from [146]). (E) Bimodal size distribution and linear mean-
size-to-duration relation at Δt close to the mean interspike interval for dissociated cultures (reproduced under CC-NY license from [147]). (F) Spike avalanches of
unknown layer origin in organotypic cortex cultures. Left: the bimodal size distribution and steepening initial slope with an increase in Δt suggest hyperexcitable culture
condition. Right: near linear mean-size-vs.-duration scaling similar to spike avalanches from dissociated cultures in E suggests deviation from critical branching that
predicts a slope of 2 (reproduced under CC-BY license from [157]). (G)Duration-to-mean-size slope close to 1/2 in dissociated cultures prepared from postnatal tissue in
line with prediction for a critical branching process (reproduced under CC-BY license from [163]). Subpanels A–F have been modified by adding a red arrow emphasizing
the bimodal feature in each size distribution and/or a broken red line with a slope of −2 as a guide to the eye. A broken red line with a slope of −0.5 was added to
subpanel G.
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dissociated cultures might be characterized better by
hyperexcitable dynamics is in line with a recent finding that
increasing inhibition by adding a GABA agonist reduces bimodal
size distributions in dissociated cultures, bringing them closer to a
power law [148]. It is striking that, in some dissociated cultures,
power laws were found mainly at submillisecond Δt (e.g., [107]).
Given that synaptic integration times between neurons are on the
order of 2–3 ms, a submillisecond temporal integration window
will prematurely terminate the tracking of propagated activity,
thereby randomly partitioning synchronous activity and
potentially creating heavy-tail statistics in cascade sizes.
Accordingly, at temporal resolutions >3–4 ms, which overlap
with synaptic integration times, a strongly bimodal population
dynamics of local, nonpropagated activity and global, propagated
activity is revealed in these systems. For comparison, temporal
resolutions studied in organotypic cultures ranged up to 16 ms
(LFP avalanches; Figures 5B,G) and 33 ms (spike avalanches; an
imaging frame rate of 30 Hz; Figure 13). Despite these long
integration windows, bimodal distributions were absent, unless
the system was made hyperexcitable. These integration windows
are about an order of magnitude longer than those at which
dissociated cultures show clear bimodal dynamics.

We suggest that the bimodal size distribution in dissociated
cultures reflects a predominance of local activity and system-wide
propagated activity. Such heterogenous dynamics can arise from
several scenarios. The bimodality could reflect different structural
networks, potentially including different cell types, that mature in
dissociated cultures. For example, Orlandi et al. [149] applied an
avalanche algorithm to neuronal activity tracked with
intracellular calcium imaging in dissociated cultures grown
from embryos for up to three weeks. They separated
functional networks of “background” avalanches that
established a cascade size distribution steeper than −2 from
system-wide avalanches. Alternatively, dissociated cultures
could establish a homogenous neural network in which
bimodality arises from a discontinuous, first-order phase
transition. In this latter case, neuronal activity either remains
local and small or, alternatively, propagated and system wide.
Increasing Δt in such a system more robustly collects activity into
system-wide events, concomitantly reducing smaller-sized events
steepening the initial slope in size distributions as observed for
dissociated cultures. In fact, the simulation of population activity
in dissociated cultures using a first-order phase transition has a
long tradition. These dynamics were captured in early models
featuring a first-order phase transition of all-or-none propagation
[150], as well as recently for up-state generation in deep layers of
cortical slices (e.g., [57]). They have been recently revived within
the framework of self-organized bistability [151–154] or
quasicriticality as well [155].

We note that spatial subsampling of activity, by recording only
from a small number of neurons from the full network, is a
common technical challenge in avalanche analysis. Yet, this
technical constraint cannot explain the uncovering of a
bimodal distribution at large Δt. Spatial subsampling
decorrelates activity, leading to exponential distributions in
cascade sizes [156]. However, in the present cases, a power-
law–like or exponential distribution is observed at the outset for

spike avalanches at small Δt, which changes to a bimodal
distribution with increasing Δt (Figures 14A–D). In fact,
avalanche analysis under increased spatial sampling in
dissociated cultures, e.g., using intracellular calcium imaging,
established clear bimodal size distribution [149]. Further
support that spike avalanches in dissociated cultures differ
from LPF avalanches in vivo comes from the mean size vs.
duration scaling exponent. This exponent was found to be 2,
which is in line with expectations for a critical branching process
[71], but ranges between 1–1.5 for spike-based avalanches with
bimodal distributions even at large Δt [146,147]. This is more in
line with expectations for a noise process wherein size simply
grows more linearly with duration [73,79].

We note that, in a study by Friedman et al. [157], spike avalanche
distributions were calculated from ten cortex slice cultures, and this
study is often used as an introduction of scaling relationships for
spike avalanches. Three of those cultures exhibited bimodal, four
exponential, and two were reported as “critical,” i.e., power-law–like
in their size distribution. However, similar to spike avalanches in
dissociated cultures, power law distributions in their cultures
considered “critical” steepened in initial slope and became
bimodal when increasing Δt (Figure 14F, left). The loss of the
power law at low temporal resolution supports the interpretation of
this activity to be of a first-order phase transition either from
preferentially recording spikes from deep layers or from networks
that are hyperexcitable, i.e., “supercritical.” This interpretation is
further supported by their report of a mean size vs. duration
exponent close to 1 (Figure 14F, right; [157]).

Developmental Differences Between
Organotypic Cultures and Dissociated
Cultures of the Cortex
Organotypic cortex cultures that are grown from postnatal brains
demonstrate up-states and nested θ/γ-oscillations in their
superficial layers, which give rise to avalanche scaling (see
Figures 2–7). The conspicuous absence of these dynamics in
dissociated cultures suggests an incomplete maturation of
superficial layer circuitry, which is supported by several
arguments, with the most obvious one being that the standard
protocol for dissociated cortex culture biases toward the formation
of deep-layer circuits. Dissociated cultures are typically prepared
from the cortex at embryonic day E18 [107], which is dominated by
deep-layer neurons known to autonomously generate population
burst activity, also called “delta” brushes [158]. In contrast,
superficial precursor neurons develop relatively late [16,17] and
at E15–16 are still migrating toward the cortex along the
periventricular wall, a developmental feature that can be used to
selectively transfect superficial cells at that developmental stage
[124,159] (cf. Figure 13). In addition, late migrating interneurons
will be absent in dissociated cultures prepared from the embryonic
cortical mantle only. Without an endogenous neurotransmitter
such as acetylcholine, which is lacking in vitro, deep-layer
pyramidal neurons exhibit intrinsic bursting [130,160,161] that
can result in network-wide events [55–57]. Importantly,
organotypic cortex cultures are typically prepared from the
cortex after birth between postnatal day P1 and 2, at which
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point most precursor neurons required for establishing superficial
pyramidal and interneurons have already arrived in the cortex,
allowing an autonomous assembly of superficial layers in the
isolated local cortical culture (see above). This sensitivity to the
developmental time point of neuronal harvest is further
exemplified by cultures of the hippocampus, an evolutionary
early part of cortex. Dissociated hippocampus cultures, when
taken at E18, reveal an avalanche size distribution slope close to
−2 and a supercritical branching parameter at 3 ms bin width
[162]. In contrast, dissociated hippocampus cultures made from
newborn pups reveal mean size vs. duration scaling exponents of 2,
not found for supercritical dynamics (Figure 14G; [163]).
Similarly, Tetzlaff et al. [98] prepared dissociated cultures from
postnatal day P1–2 resulting in relatively mild bimodality with
increasing bin width (Figure 14B). Preparing dissociated cultures
from postnatal tissue, expansion toward three-dimensional
scaffolding using microbeads, and coculturing with other brain
regions, e.g., the hippocampus, might introduce structural
heterogeneity that stabilizes avalanche dynamics in future
analysis [119,164].

To summarize, most avalanche analyses in dissociated cortex
cultures reveal power laws that change to a bimodal distribution
with steepening initial slope at longer integration windows. This
dependency on the integration time window seems to reflect a
first-order phase transition commonly found for predominantly
deep layer pyramidal networks. These findings suggest that the
activity in dissociated cultures does not compare well with
neuronal avalanche dynamics originally described in
organotypic cortex cultures and acute cortex slices and further
established in awake in vivo preparation that features neuronal
activity localized to superficial layers of the cortex.

Summary and Conclusion
The experimental evidence for SOC in the brain points to the
presence of at least four dynamical motifs, up-states, nested

oscillations, neuronal avalanches, and coherence potentials.
These motifs have been robustly reported for the intact brain
and in the isolated mammalian cortex, with its layered structure
and cell type diversity largely preserved, specifically for the
organotypic cortex culture and in the acute cortex slice. The
coemergence of scale-invariant neuronal avalanches with
oscillations during up-states should encourage future work on
SOC in the brain at a disorder-synchronization phase transition.
Neuronal population activity measured in dissociated cortex
cultures typically differs from that reported for layered cortex
preparations and is more in line with supercritical dynamics.
Identifying the precise structural and dynamical constraints
responsible for these differences might provide important
insights into the mechanisms supporting SOC in the brain.
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