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Determining the structure of a network is of central importance to understanding

its function in both neuroscience and applied mathematics. However, recovering the

structural connectivity of neuronal networks remains a fundamental challenge both

theoretically and experimentally. While neuronal networks operate in certain dynamical

regimes, which may influence their connectivity reconstruction, there is widespread

experimental evidence of a balanced neuronal operating state in which strong excitatory

and inhibitory inputs are dynamically adjusted such that neuronal voltages primarily

remain near resting potential. Utilizing the dynamics of model neurons in such a balanced

regime in conjunction with the ubiquitous sparse connectivity structure of neuronal

networks, we develop a compressive sensing theoretical framework for efficiently

reconstructing network connections bymeasuring individual neuronal activity in response

to a relatively small ensemble of random stimuli injected over a short time scale. By tuning

the network dynamical regime, we determine that the highest fidelity reconstructions

are achievable in the balanced state. We hypothesize the balanced dynamics observed

in vivo may therefore be a result of evolutionary selection for optimal information

encoding and expect the methodology developed to be generalizable for alternative

model networks as well as experimental paradigms.

Keywords: neuronal networks, balanced networks, signal processing, network dynamics, connectivity

reconstruction

1. INTRODUCTION

The connectivity of neuronal networks is fundamental for establishing the link between brain
structure and function (Boccaletti et al., 2006; Stevenson et al., 2008; Gomez-Rodriguez et al.,
2012); however, recovering the structural connectivity in neuronal networks is still a challenging
problem both theoretically and experimentally (Salinas and Sejnowski, 2001; Song et al., 2005;
Friston, 2011; Kleinfeld et al., 2011; Bargmann and Marder, 2013). Recent experimental advances,
such as diffusion tensor imaging (DTI), dense electron microscopy (EM), and highly resolved
tracer injections, have facilitated improved measurement of network connectivity, but constructing
complete neuronal wiring diagrams for networks of thousands or more neurons is currently
infeasible due largely to the small spatial scale and the dense packing of nervous tissue (Lichtman
and Denk, 2011; Sporns, 2011; Briggman and Bock, 2012; Markov et al., 2013). Likewise, modern
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mathematical approaches for recovering network connectivity
based on measured neuronal activity, such as Granger causality,
information theory, and Bayesian analysis, typically demand
linear dynamics or long observation times (Aertsen et al., 1989;
Sporns et al., 2004; Timme, 2007; Eldawlatly et al., 2010; Friston,
2011; Hutchison et al., 2013; Zhou et al., 2013b, 2014; Goñi
et al., 2014). Is it possible to achieve the successful reconstruction
of network connectivity from the measurement of individual
non-linear neuronal dynamics within a short time scale?

To address this central question, we develop a novel
theoretical framework for the recovery of neuronal connectivity
based on both network sparsity and balanced dynamics. Sparse
connectivity among neurons is widely observed on large (inter-
cortical) and small (local circuit) spatial scales (Mason et al., 1991;
Markram et al., 1997; Achard and Bullmore, 2007; He et al., 2007;
Ganmor et al., 2011), and, therefore, the amount of observed
activity required to reconstruct network connectivity may be
significantly smaller than suggested by estimates using only the
total network size. Compressive sensing (CS) theory has emerged
as a useful methodology for sampling and reconstructing sparse
signals (Candes et al., 2006; Donoho, 2006; Gross et al., 2010;
Wang et al., 2011b) and has primarily been utilized in estimating
the connectivity of linear or time-invariant network models
(Hu et al., 2009; Mishchenko and Paninski, 2012). In the case
of realistic neuronal networks, their non-linear dynamics in
time pose a major conceptual difficulty, particularly in isolating
the impact of direct network connections on recorded activity
from the effects of indirect neuronal interactions and the
external drive.

We demonstrate that the reconstruction of neuronal
connectivity based on compressive sensing of non-linear
network dynamics is indeed possible in an appropriately
balanced dynamical regime in which fluctuations in neuronal
input largely drive firing events. Numerous experimental studies
demonstrate that neuronal firing events are generally irregular,
with large excitatory and inhibitory inputs dynamically balanced
such that the voltage of a neuron typically resides near the resting
potential for a broad class of external stimulation (Britten et al.,
1993; Shadlen and Newsome, 1998; Compte et al., 2003; Haider
et al., 2006; Tan and Wehr, 2009; London et al., 2010; Runyan
et al., 2010; Isaacson and Scanziani, 2011; Xue et al., 2014).
Theoretical work corroborates the existence of this operating
regime for balanced network models in which neurons are
sparsely connected while strongly coupled, such that neuronal
activity is highly variable and heterogeneous across the network
(van Vreeswijk and Sompolinsky, 1996, 1998; Troyer and Miller,
1997; Vogels and Abbott, 2005; Miura et al., 2007; Mongillo et al.,
2012). Here, we utilize the same binary-state network model
as such previous studies and demonstrate that using a small
ensemble of random inputs and corresponding time-averaged
measurements of neuronal dynamics collected over a short
time scale, it is possible to achieve high fidelity reconstructions
of recurrent connectivity for sparsely connected networks of
excitatory and inhibitory neurons. We show that the quality
of this reconstruction improves as the network dynamics are
further balanced, expecting that for physiological networks, once
in the balanced state, CS-based estimates of network connectivity

are feasible. We hypothesize that the balanced operating regime
may have arisen in sensory systems from evolution as a means of
optimally encoding both connectivity and stimulus information
through network dynamics.

2. RESULTS

2.1. Compressive Sensing of Balanced
Dynamics
To investigate the reconstruction of neuronal network
connectivity in the balanced state, we consider a mechanistic
binary-state model with non-linear dynamics (van Vreeswijk
and Sompolinsky, 1996, 1998). The model network is composed
of N neurons, such that NE neurons are excitatory (E) and NI

neurons are inhibitory (I). The state of the ith neuron in the kth
population (k = E, I) at time t is prescribed by

σ i
k(t) = H

(

µi
k(t)− θk

)

, (1)

where H(·) denotes the Heaviside function and θk is the firing
threshold for the neurons in population k. The total synaptic
drive µi

k
(t) into the ith neuron in the kth population at time t is

µi
k(t) =

NE
∑

j=1

R
ij

kE
σ
j
E(t)+

NI
∑

j=1

R
ij

kI
σ
j
I (t)+ (Fp)ik, (2)

where R
ij

kl
denotes the connection strength between the ith post-

synaptic neuron in the kth population and the jth pre-synaptic
neuron in the lth population (l = E, I), and (Fp)i

k
is the total

external input into the ith neuron in the kth population. The

connection strength R
ij

kl
is chosen to be Rkl/

√
K with probability

K/Nl and 0 otherwise. In this case, the excitatory connection
strength RkE > 0 and the inhibitory connection strength RkI < 0.
Since each neuron is expected to receive projections from K
pre-synaptic excitatory neurons and K pre-synaptic inhibitory
neurons, sparse connectivity is reflected by the assumption that
K ≪ NE,NI . In advancing the model dynamics for each neuron,
the mean time between subsequent updates is τE = 10 ms
for excitatory neurons and τI = 9 ms for inhibitory neurons,
reflecting experimental estimates of cortical membrane potential
time constants (McCormick et al., 1985; van Vreeswijk and
Sompolinsky, 1996; Shelley et al., 2002). Based on the total
synaptic drive at each time the system is updated, a given neuron
is either in a quiescent (σ i

k
(t) = 0) or firing (σ i

k
(t) = 1) state.

To partition the model across the two subpopulations, the
neurons and their corresponding activity variables may also
be indexed from l = 1, . . . ,N, with the first NE indices
corresponding to neurons in the excitatory population and the
second NI indices corresponding to neurons in the inhibitory
population. Using this choice of indexing, R is the N × N
recurrent connectivity matrix and p is the N-vector of static
external inputs for the network. The external input p is selected
such that (Fp)i

k
isO(

√
K) for each neuron, thereby comparable to

the total synaptic drive from each population. Analogously, the
feed-forward connectivity matrix F is N × N and diagonal, such
that diagonal entries Fii = fE for i = 1, . . . ,NE and Fii = fI for
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FIGURE 1 | Balanced network dynamics. (A) Excitatory (blue), inhibitory (red), and net (green) inputs into a sample excitatory neuron in a balanced network. The

dashed line indicates the firing threshold. (B) The time-averaged state of the excitatory (blue) and inhibitory (red) population as a function of external input scaling

strength S. Inset: Probability density of the time-averaged ratio of excitatory and inhibitory inputs across the network. Unless otherwise specified, parameters utilized

are REE = RIE = 1,RII = −1.8,REI = −2,NE = 800,NI = 200, fE = 1.2, fI = 1,K = 0.03NE , θE = 1, and θI = 0.7. The external drive into a neuron in the kth population

is an excitatory constant current that is independently generated and identically uniformly-distributed with O(
√
K) magnitude scaled by fk .

i = NE+1, . . . ,NE+NI , thereby scaling the relative external input
strength for each respective population. Since the absolute scale
of the neuronal input is inconsequential in this non-dimensional
model, we assume connectivity parameters REE = RIE = 1,
so the primary parameters that determine the inhibition relative
to excitation are the post-synaptic connection strengths for the
inhibitory neurons and the external input strengths.

Since Rkl as well as θk are O(1) and the external drive
is O(

√
K), if the excitatory and inhibitory inputs are not

balanced, the total synaptic drive is O(
√
K) and thus each

neuron either fires with an excessively high rate or remains
nearly quiescent. In the balanced operating regime, however,
the excitatory and inhibitory inputs instead dynamically cancel
and produce physiological firing dynamics, leaving the mean
synaptic input nearly vanishing with relatively large O(1) input
fluctuations responsible for the exact timing of firing events and
their irregular distribution. This leads to theoretical conditions
on the connection strength parameters (van Vreeswijk and
Sompolinsky, 1996, 1998):

fE

fI
>

REI

RII
> 1. (3)

The net input into a representative neuron in the balanced state
is plotted in Figure 1A, demonstrating a dynamic tracking of
excitatory and inhibitory inputs such that the mean total input
is far below threshold. On the larger scale of the entire network,
an equilibrium between excitation and inhibition is also achieved
in the balanced regime, with the time-averaged mean of the ratio
between the excitatory and inhibitory input (E/I input ratio)
across the network narrowly distributed near−1.

While the sparsity of R in principle reduces the necessary
data for a successful reconstruction of the network connectivity,
compressive sensing theory generally only applies to the recovery
of sparse inputs into linear and time-invariant systems (Candes
et al., 2006; Donoho, 2006), rather than from measurements
of the non-linear and time-evolving dynamics of a neuronal

network. To overcome this theoretical challenge, it is important
to note that for a broad class of physiological neurons as well
as realistic neuron models, the neuronal firing activity exhibits
linear dependence on relatively strong external inputs in the
proper dynamical regime (Brunel and Latham, 2003; Rauch et al.,
2003; Fourcaud-Trocmé and Brunel, 2005; La Camera et al.,
2006; Barranca et al., 2014a). Considering the dynamic balance
between excitatory and inhibitory inputs facilitates a rapid
and robust linear response to external inputs (van Vreeswijk
and Sompolinsky, 1996, 1998), we hypothesize that balanced
neuronal network dynamics are critical to the efficient CS
reconstruction of sparse network connectivity.

For the binary-state balanced network model, the temporal
expectation of Equation (2) yields a natural linear input-output
mapping in response to a single input vector p

µ = Rx+ Fp, (4)

where µ is an N-dimensional vector denoting the time-averaged
total input into each neuron and x is an N-dimensional vector
denoting the time-averaged state of each neuron.

To demonstrate the generality of our network reconstruction
framework with respect to external inputs and to avoid
specializing their design, we drive the network with an
ensemble of r random input vectors with independent identically

uniformly distributed elements, denoted by
{

p(i)
}r

i=1
, and

measure the evoked time-averaged net input and state of the

neurons, denoted by
{

µ
(i)

}r

i=1
and

{

x(i)
}r

i=1
, respectively, over

a short time duration. From a physiological standpoint, on a
given trial, we inject into each neuron a distinct constant current
of magnitude determined by a uniformly distributed random
variable and measure the evoked dynamics across the network,
subsequently reconstructing the network connectivity from a
linear mapping relating these quantities. To facilitate efficient
recovery, the number of trials utilized r≪N2. Here theN2 entries
of R are to be recovered using only Nr state measurements,
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FIGURE 2 | CS network reconstruction and dynamical regime. (A) The connectivity matrix R for a 100 excitatory neuron subset of a balanced network with NE = 800,

NI = 200, and 0.05 connection density is depicted on the left. Existing connections are marked in black. On the right, errors in the CS reconstruction of R are marked

in black. The relative reconstruction error is ǫ = 0.14. (B) Difference in absolute value between the mean of the time-averaged ratio of excitatory and inhibitory input

across the network (E/I input ratio) and −1, the value expected in the balanced state, as a function of the quotients REI/RII and fE/fI. (C) Relative reconstruction error

of R as a function of REI/RII and fE/fI. In (B,C), red lines denote REI/RII = 1, fE/fI = 1, and REI/RII = fE/fI. (D) Statistics of the E/I input ratio across the network as a

function of REI/RII for fixed fE/fI = 1.2. Left ordinate axis: Difference in absolute value between the mean E/I input ratio and −1, Right ordinate axis: Standard deviation

of E/I input ratio. (E) Relative reconstruction error of R as a function of REI/RII for fixed fE/fI = 1.2. (F) Relative reconstruction error of R as a function of the exponent

α. Each reconstruction utilizes r = 900 inputs with 2.5 s observation time.

leading to a highly underdetermined inverse problem. However,
since R is sparse, CS may still potentially yield a successful
reconstruction (see the Methods section for details).

While conventional balanced network theory assumes a
constant and homogeneous excitatory external input is injected
into each population (van Vreeswijk and Sompolinsky, 1996,
1998), note that we choose the excitatory external input vector
p to be composed of independent and identically distributed
random variables. Even for these heterogeneous external inputs,
balanced dynamics are still well-maintained under population
scalings with fE > fI . The maintenance of balance across the
majority of the network can be seen in the inset of Figure 1B,
plotting the mean E/I input ratio across the network, which
closely resembles the distribution for the O(

√
K) constant

homogeneous input case in its narrow peak near −1 (van
Vreeswijk and Sompolinsky, 1996, 1998; Barranca et al., 2019).
To further probe the evoked network dynamics, we empirically
examine the response of the network to increasingly large
random external inputs in Figure 1B, adjusting scaled external
input SFp by increasing the scaling strength S. We observe that as
the external drive strength is increased, the time-averaged state of
both the excitatory and inhibitory populations intensifies linearly
with S for sufficiently large inputs, thereby demonstrating linear
gain in agreement with Equation (4) and as expected theoretically
in the large network limit in the case of homogeneous external
inputs (van Vreeswijk and Sompolinsky, 1996, 1998).

With linear input-output mapping (4), we obtain a system of
equations relating the network input, evoked dynamics, and the

connectivity structure of R. To recover the ith row of R in this
case, denoted Ri∗, it is necessary to utilize the full set of inputs,

P =
[

p(1) . . . p(r)
]

, the respective time-averaged inputs into

the ith neuron, Ui =
[

µ
(1)
i . . . µ

(r)
i

]

, and the respective evoked

time-averaged states of the ith neuron, Xi =
[

x
(1)
i . . . x

(r)
i

]

.

The resultant underdetermined linear system in recovering
the ith row, Ri∗ of the recurrent connectivity matrix is

Ri∗X = Ui − (FP)i∗. (5)

Since R is sparse and the respective average states in X

are approximately uncorrelated in the balanced regime (van
Vreeswijk and Sompolinsky, 1996, 1998), the optimal row
reconstruction is the solution to Equation (5) with minimal L1
norm (Candes et al., 2006; Donoho, 2006) in accordance with
CS theory. Considering the resultant L1 minimization problem
is solvable in polynomial time (Donoho and Tsaig, 2008) and
since Equation (5) represents a sequence of independent linear
systems with respect to the row index i, parallelization furnishes
a computationally efficient reconstruction of R.

In Figure 2A, we consider a sparsely connected network
with balanced dynamics and 0.05 connection density, and
reconstruct its connectivity matrix composed of N2 = 106

entries using Equation (5) for i = 1, . . . ,N, recording the
network response to r = 900 random inputs for 2.5 s
each. The connectivity matrix for a subset of 100 excitatory
neurons is depicted alongside the corresponding reconstruction
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error, demonstrating that the majority of connections, or lack
thereof, are indeed captured. Improving significantly upon
preexisting approaches for reconstructing network connectivity,
which commonly require long observation times and focus
primarily on excitatory networks (Timme, 2007; Eldawlatly et al.,
2010; Hutchison et al., 2013; Zhou et al., 2013b; Goñi et al.,
2014), this reconstruction framework successfully distinguishes
between excitatory and inhibitory connection types over short
observation times. Since the neuron types are not assumed to
be known a priori, we note that while there is no constraint
that excitatory and inhibitory connections are of the appropriate
sign directly enforced in solving optimization problem (5) via
L1 minimization, with sufficiently rich measurements of the
network dynamics, the connectivity reconstructions nevertheless
are generally able to successfully identify both connection signs
and magnitudes, as indicated by the small relative error obtained
in recovering the connectivity matrix.

To quantify the accuracy of the entire connectivity matrix
reconstruction, Rrecon, we measure the relative reconstruction
error, ǫ = ‖R− Rrecon‖/‖R‖, using the Frobenius norm, ‖R‖ =
√

∑

i

∑

j R
2
ij. In this particular case, utilizing significantly less

trials than entries in R, the network relative reconstruction error
is only ǫ = 0.14, yielding close agreement with the original
connection matrix. We remark that in this network the ratio
of excitatory to inhibitory neurons is chosen to be 4 : 1 in
agreement with estimates in the primary visual cortex (Gilbert,
1992; Liu, 2004; Cai et al., 2005; Zhou et al., 2013a), though this
framework is adaptable to other distributions of neuron types
corresponding to alternative cortical regions. While in this work
we specifically consider the role of balanced dynamics in the
context of an analytically tractable binary-state model setting,
the compressive sensing reconstruction framework naturally
generalizes to alternative model networks. In the case of the
integrate-and-fire model (Lapicque, 1907; Burkitt, 2006; Mather
et al., 2009; Barranca et al., 2014a), for example, rather than
requiring detailed knowledge of the networks’ inputs as in the
binary-state model, the network input-output mapping may
instead involve the time-averaged neuronal membrane potentials
and firing rates (Barranca et al., 2014b), yielding a framework that
is more amenable to experimental settings.

2.2. Balanced Network Characteristics for
Optimal Reconstruction
We posit that the network functioning in the balanced
operating regime is fundamental to the success of the CS
reconstruction and demonstrate that the relative reconstruction
error indeed increases as the network departs from the
balanced state. We confirm the central role of the balanced
state in network reconstruction by varying several network
connectivity parameters, which crucially determine the network
operating state, and examining the resultant impact on the CS
reconstruction of R.

For the network dynamics to be appropriately balanced
in the large K limit, Equation (3) gives restrictions on the
external and cortical input strengths for the network. These

parameter restrictions hold approximately for the sparsely-
connected networks of large yet finite size that we examine,
and we analyze the impact of these parameters on the
network reconstruction accuracy. Since we are considering the
connectivity reconstruction for networks composed of a finite
number of neurons and therefore Equation (3) only holds
approximately, inmany cases the dynamics may be well-balanced
even though the corresponding theoretical condition in the large
network limit is violated (van Vreeswijk and Sompolinsky, 1996;
Gu et al., 2018). For this reason, to gauge the degree to which
a finite-sized network exhibits balanced dynamics, we analyze
the absolute difference between the mean E/I input ratio for
all neurons and −1, the expected value for balanced dynamics,
as depicted in Figure 2B across network parameters. Here we
vary the quotients, REI/RII and fE/fI , which are each crucial to
Equation (3), observing a clear region of well-balanced dynamics.
Investigating the impact of the network dynamical regime on the
CS reconstruction of R, we plot in Figure 2C the corresponding
relative reconstruction error over the same parameter space. The
highest quality reconstructions are generally achieved when the
mean E/I input ratio is near−1, and the network is consequently
in the balanced operating regime, with degradation in accuracy
incurred as the mean E/I input ratio departs from−1.

Similarly, we examine a detailed one-dimensional slice of
these plots in Figures 2D,E, respectively, as we fix fE/fI =
1.2 and vary the quotient REI/RII . In particular, we plot
the absolute difference between the mean E/I input ratio
and −1 as well as the standard deviation of the E/I input
ratio across the network in Figure 2D to further classify the
network operating state. We observe that when Equation (3)
is approximately satisfied, the difference between the mean
E/I input ratio and −1 is small. In this same regime, the
standard deviation of the E/I input ratio is also near zero,
indicating a dynamic balance between the excitatory and
inhibitory inputs over the entire network. For nearly identical
parameter choices as those producing balanced dynamics, we
observe that the corresponding relative reconstruction error,
depicted in Figure 2E, is minimal. As the reconstruction accuracy
diminishes, increasingly large proportions of neurons remain
either active with unrealistically high firing rate or are completely
quiescent. Since the relatively rare and irregular threshold
crossings due to input fluctuations in the balanced regime largely
reflect the impact of the network connectivity on dynamics,
nearly frozen or excessively high neuronal activity results in
significantly diminished reconstruction quality.

Another crucial assumption in formulating the balanced
network model is strong synapses. Similar models could be
formulated with connection strengths of form Rkl/K

α . However,
the dynamics are only well-balanced in the large K limit for
α = 1/2. For 1/2 < α ≤ 1, the weaker synapse case, the
temporal input fluctuations decrease with K, scaling as K1/2−α ,
leading tomean-driven dynamics in the largeK limit. In contrast,
for 0 < α < 1/2, the stronger synapse case, input fluctuations
instead grow with K, and thus the net input wildly fluctuates well
above and below threshold.

Using our CS framework to reconstruct the network
connectivity R, we examine the reconstruction error achieved for
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FIGURE 3 | Efficiency and robustness of CS network reconstruction. (A) Relative reconstruction error as a function of the number of random input vectors r utilized.

Solid line depicts error using homogeneous thresholds θE = 1, θI = 0.7. Dashed line depicts error using inhomogeneous thresholds such that θ ik = θk + δ ik , where

inhomogeneities δ ik ∈ (0,d) are uniformly distributed random variables and d = 0.3. In each case, the observation time is 2.5 s. (B) Relative reconstruction error as a

function of observation time. In each case, 900 random input vectors are utilized.

the network model initialized across choices of α in Figure 2F

while fixing K and the remaining model parameters. The optimal
reconstruction is achieved near α = 0.5, when the network is in
the balanced operating regime, with error generally increasing as
α moves away from 0.5 and the mean E/I input ratio deviates
from balance. Note that while here we study the impact of α

for network realizations with a fixed and finite choice of K, the
theoretical considerations in the large network limit suggest that
these effects become more pronounced for larger networks with
correspondingly larger K. Considering that the reconstruction
error increases especially rapidly as α → 1, we hypothesize
that weaker synapses in non-balanced network models are
not conducive to the reconstruction of network connectivity,
particularly in themean-field limit.Whilemean-driven dynamics
generally well encode information regarding network inputs
and feed-forward connectivity (Barranca et al., 2016b), in this
case, we instead observe that the balanced dynamical regime
is better suited for encoding recurrent interactions in the
network dynamics.

2.3. Robustness of Connectivity
Reconstruction
For efficiency, it is desirable to achieve an accurate reconstruction
of the network connections using a relatively small number
of random inputs and also by collecting the evoked network
activity over a small observation time. In Figure 3A, we plot
the relative reconstruction error for R as the number of input
vectors is increased given a fixed observation time. Initially, as
the number of inputs is increased, the error rapidly decreases.
Once the number of inputs utilized is sufficiently large, near
∼800, more marginal improvements are garnered, at which point
additional experiments are of less utility. Hence, only a relatively
small number of trials are necessary to yield near-maximum
reconstruction quality.

Given a sufficient number of inputs such that the
reconstruction error saturates, we next examine the duration
of time over which data must be recorded for successful
connectivity reconstruction in Figure 3B. The relative

reconstruction error precipitously drops for small observation
times, leveling off for sufficiently large time durations over 2 s.
Thus, for each set of inputs utilized, it is only necessary to record
neuronal activity over a short time duration.

Similar dependence on input ensemble size and observation
time holds for networks of alternative sizes with analogous
connection density and architecture, yielding comparably
accurate reconstructions by using a relatively small number
of input vectors. As the irregular dynamics of neurons in the
balanced state is crucial to the success of the CS recovery
framework, we note that regardless of the observation time
and number of inputs utilized, reconstruction of R remains
intractable if the network dynamics are not sufficiently well-
balanced.

In our original binary-state model, we had assumed that
all excitatory neurons and inhibitory neurons are statistically
homogeneous. We now examine the effect of inhomogeneity in
the network on the reconstruction of R by varying the firing
threshold for each neuron. In this case, thresholds are chosen
such that the firing threshold for the ith neuron in the kth
population is θ i

k
= θk + δi

k
, with inhomogeneities prescribed by

identically uniformly distributed random variables δi
k
∈ (0, d). In

Figure 3A, we plot the reconstruction error dependence on the
number of random inputs for inhomogeneity strength d = 0.3 ≈
0.43θI , observing only a minor degradation in reconstruction
quality relative to the homogeneous threshold case. Thus, we
expect that even if a network is composed of neurons of many
types, as long as the neuronal dynamics are robustly balanced,
it is possible to still utilize our CS framework to reconstruct the
network connectivity.

3. DISCUSSION

Addressing the current theoretical and experimental difficulties
in measuring the structural connectivity in large neuronal
networks, we show that the high degree of sparsity in network
connections makes it feasible to accurately reconstruct network
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connectivity from a relatively small number of measurements
of evoked neuronal activity via CS theory. The success of
this reconstruction depends on the dynamical regime of
the network, with the balanced operating state facilitating
optimal recovery. Just as the connectivity matrix R may be
recovered from dynamical activity based on an underlying
linear mapping, such as Equation (4), unknown network feed-
forward connectivity as well as natural stimuli may analogously
be reconstructed (Barranca et al., 2016b). We have empirically
verified such reconstructions are also improved when the
network is in the balanced operating regime. In light of this,
we hypothesize that evolution may have fine-tuned much of the
cortical network connectivity to optimize both the encoding of
sensory inputs as well as local connectivity based on balanced
network dynamics.

It is important to note that while the compressive sensing
theory leveraged in this work is well-suited for the reconstruction
of sparse signals, the reconstruction of densely-connected
neuronal networks in the brain with potentially strongly
correlated dynamics remains a challenging area for future
investigation (Wang et al., 2011a; Markov et al., 2013; Yang et al.,
2017). Though we considered a balanced network model with
statistically homogeneous random connectivity among neuron
types, physiological neuronal circuits observed in experiment
typically exhibit a complex network structure (Massimini et al.,
2005; Bonifazi et al., 2009;Markov et al., 2013), whichmay induce
stronger correlations and oscillations in neuronal dynamics
(Honey et al., 2007; Wang et al., 2011a; Yang et al., 2017).
While prolonged synchronous dynamics may make it infeasible
to reconstruct network connections using our methodology,
intermixed periods of irregular dynamics may provide sufficient
neuronal interaction data or, otherwise, connections between
functional modules may be potentially identifiable. Recent
theoretical analysis demonstrates that even for networks with
small-world or scale-free structure, balanced dynamics can
persist in these neuronal networks with various types of single-
neuron dynamics, particularly in an embedded active core of
neurons hypothesized to play a key role in sparse coding (Gu
et al., 2018). For such a balanced core in a network with
heterogeneous connectivity, the primary dynamical assumptions
of our reconstruction framework hold as does compressive
sensing theory in the presence of mildly structured sampling
matrices (Elad, 2007; Barranca et al., 2016a; Adcock et al.,
2017), and thus it may be possible to extend our framework in
recovering connections within the balanced core.

While this work utilized specific modeling choices for which
the balanced state is well-characterized, in alternative settings,
a similar framework can potentially be utilized to reconstruct
sparse network connectivity as long as the dynamics are in the
balanced operating regime. Linear mappings in the balanced
state similar to Equation (4) have been well-established for
various classes of neuronal network models, including those
with more physiological dynamics (Brunel and Latham, 2003;
Fourcaud-Trocmé and Brunel, 2005; Barranca et al., 2014a,
2019; Gu et al., 2018), and experimental measurements of
neuronal firing-activity also generally exhibit a similar linear

dependence on input strength (Rauch et al., 2003; La Camera
et al., 2006). Advances in multiple neuron recording, such
as multiple-electrode technology, optical recording with fast
voltage-sensitive dyes, and light-fieldmicroscopy, have facilitated
the recording of increasingly large numbers of neurons
simultaneously (Stevenson and Kording, 2011; Prevedel et al.,
2014; Frost et al., 2015), and combined with new optogenetic
as well as optochemical techniques for precisely stimulating
specific neurons (Banghart et al., 2004; Rickgauer et al., 2014;
Packer et al., 2015), we expect the theoretical framework
developed to be generalizable by combining these techniques in
experiment. To circumvent potential experimental difficulties in
simultaneously stimulating specific neurons and recording their
evoked dynamics, we expect it to be also possible to extend
our theoretical framework by driving a subset of neurons and
recording the response of a random group of neurons in each
trial. Since a particular subnetwork of neurons in the brain
generally receives inhomogeneous and unknown input from
external neurons, the development and utilization of an accurate
input-output mapping involving only the recorded network
dynamics and applied drive in experiments marks a key area
for future exploration. While there are known mappings that
make no assumption of the detailed input into each neuron,
they do assume that external inputs are fully characterized.
Since such mappings are quite robust in the presence of noise
(Barranca et al., 2014b,c, 2016b), it may still be possible to well
discern recurrent connections even in the presence of unknown
external neuronal inputs for sufficiently strong forcing applied
in experiments.

4. METHODS

4.1. Compressive Sensing Theory
Compressive sensing theory states that for sparse data,
the number of measurements required for a successful
reconstruction in a static and linear system is determined
by the number of dominant non-zero components in the data
(Candes et al., 2006; Donoho, 2006). Using this reasoning,
optimally reconstructing sparse data from a small number
of samples requires selecting the sparsest reconstruction
consistent with the measured data, since such a signal is most
compressible. CS theory thus provides a significant improvement
in sampling efficiency from the conventional Shannon-Nyquist
theorem, which asserts that the sampling rate should instead be
determined by the full bandwidth of the data (Shannon, 1949).

The reconstruction of time-invariant data from a small
number of samples in a linear system can be considered an
underdetermined inverse problem. For an n-component signal,
y,m discrete samples of y can be represented byAy, whereA is an
m×nmeasurementmatrix composed of rows which are each a set
of measurement weights. This yields anm-component measured
signal, b. Reconstructing the true data y from the measured data
b is therefore equivalent to solving

Ay = b. (6)
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When the number of samples taken is significantly smaller than
the number of components in y, i.e., m ≪ n, the above system
is highly underdetermined with an infinite number of possible
solutions.While one approach to selecting the most compressible
solution is to choose the sparsest y satisfying Equation (6), this is
generally too computationally expensive for real-world signals.

For sufficiently sparse y and a broad class of measurement
matrices, CS theory shows that a viable surrogate is in fact

minimizing |y|L1 =
n

∑

i=1

|yi| (Candes and Wakin, 2008),

which is efficiently solvable in polynomial time using numerous
algorithms (Tropp and Gilbert, 2007; Donoho and Tsaig, 2008).
From an experimental standpoint, it is relatively straightforward
to devise sampling schemes such that the corresponding
measurement matrices are amenable to CS. Measurement
matrices exhibiting randomness in their structure are particularly
viable candidates (Baraniuk, 2007; Candes and Wakin, 2008;
Barranca et al., 2016a), and, consequently, the response matrix
X in the left-hand side of Equation (5) is suited for CS
reconstructions in the balanced regime since X demonstrates
little correlation among its entries.
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Barranca, V. J., Kovačič, G., Zhou, D., and Cai, D. (2014c). Sparsity and

compressed coding in sensory systems. PLoS Comput. Biol. 10:e1003793.

doi: 10.1371/journal.pcbi.1003793
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Cell fate decisions play a pivotal role in development, but technologies for dissecting them
are limited. We developed a multifunction new method, Topographer, to construct a
“quantitative” Waddington’s landscape of single-cell transcriptomic data. This method is
able to identify complex cell-state transition trajectories and to estimate complex cell-type
dynamics characterized by fate and transition probabilities. It also infers both marker gene
networks and their dynamic changes as well as dynamic characteristics of transcriptional
bursting along the cell-state transition trajectories. Applying this method to single-cell
RNA-seq data on the differentiation of primary human myoblasts, we not only identified
three known cell types, but also estimated both their fate probabilities and transition
probabilities among them. We found that the percent of genes expressed in a bursty
manner is significantly higher at (or near) the branch point (~97%) than before or after
branch (below 80%), and that both gene-gene and cell-cell correlation degrees are
apparently lower near the branch point than away from the branching. Topographer
allows revealing of cell fate mechanisms in a coherent way at three scales: cell lineage
(macroscopic), gene network (mesoscopic), and gene expression (microscopic).

Keywords: cell fate decision, single-cell data, developmental landscape, cell-type dynamics, cellular process
INTRODUCTION

Multi-cell organisms start as a single cell that matures through complex dynamic processes
involving multiple cell fate decision points, leading to functionally different cell types, many of
which have yet to be defined (Trapnell, 2015). While cellular processes such as proliferation,
differentiation, and reprogramming are governed by complex gene regulatory programs, each cell
makes its own fate decisions by integrating a wide array of signals and executing a complex
choreography of gene regulatory changes (Moris et al., 2016; Tanay and Regev, 2017). Since the
structure of a multi-cell tissue is tightly linked with its function (Perié et al., 2015), elucidating the
integrative (from gene to cell) mechanism of cell fate decisions is crucial yet challenging.

Single-cell measurement technologies (Svensson et al., 2017; Ziegenhain et al., 2017) which can
simultaneously measure the expressions of many genes in a large number of single cells, provide an
unprecedented opportunity to elucidate developmental pathways and dissect cell fate decisions.
December 2019 | Volume 10 | Article 1280115
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Several algorithms [see a recent review (Saelens et al., 2019)] have
been developed to organize single cells in pseudo-temporal order
based on transcriptomic divergence and cell-state classification.
It has been a major challenge to illuminate the dynamic
mechanisms of cellular programs governing fate transitions
from single-cell data that lacks temporal information (Trapnell,
2015). The current methods have mainly focused on identifying
trajectories between the most phenotypically distant cell states,
and they are usually less robust in reconstructing trajectories
from early states towards intermediate or transitory cell states
[e.g., Wishbone (Setty et al., 2016), Diffusion Pseudotime
(Haghverdi et al., 2016), Cycler (Gut et al., 2015), and
CellRouter (Lummertz da Rocha et al., 2018)]. Some of the
methods have focused on gaining insights into the regulatory
mechanisms driving cell differentiation [e.g., Monocle (Trapnell
et al., 2014), ERA (Kafri et al., 2013), Waterfall (Shin et al., 2015),
and PIDC (Chan et al., 2017)], and they seem not to consider
how discontinuous, stochastic fate transition events are driven by
the dynamic nature of the developmental landscape (which can
change in response to activity of gene regulatory networks and
extracellular signals) and reflected in the observed increased
transcriptional heterogeneity at transition points. In all the
existing methods, cell-type dynamics are mainly characterized
qualitatively, providing little quantitative information on in-
depth characterization of complex cellular ecosystems
involving cell fate decisions. For a system of multiple cell fate
decision points, it has been difficult for the current methods to
estimate cell types and their transitions. How fate transitions in
the single cell data are related to cell-state gene regulatory
networks and the characteristics of transcriptional bursting
remains largely unknown.

To overcome the above challenges and to address the
important issues on cell fate decisions, we developed
Topographer, an integrated pipeline. It first constructs a data-
driven “quantitative” (i.e., each cell is endowed with
spatiotemporal information) developmental landscape, which
provides a global view for differentiation processes together with
the cartoon landscapes (Waddington, 1957) and the model-
driven landscapes (Wang et al., 2011; Li and Wang, 2013; Li
and Wang, 2013; Li and Wang, 2014; Li and Wang, 2015), and
then reveals stochastic dynamics of cell types by estimating both
their fate probabilities and transition probabilities among them,
and infers dynamic characteristics of transcriptional bursting
kinetics along the identified developmental trajectory. In
addition, it can also both identify various branched (e.g., bi-
and tri-) cell-state transition trajectories with multiple
branching points from single-cell data and infer networks of
marker genes and their pseudo-temporal changes. Together,
Topographer enables construction of complex cell lineages,
resolving intermediate developmental stages, and revealing
multilayer mechanisms of cell fate decisions in a coherent way
at three different levels: cell lineage, gene network, and
transcriptional burst (referring to Supplementary Figure 1).

We demonstrated effectiveness of Topographer by analyzing
single-cell RNA-seq data on the differentiation of primary
human myoblasts (Trapnell et al., 2014) while showing
Frontiers in Genetics | www.frontiersin.org 216
appl icat ions to other examples in Supplementary
Information. We first identified three known cell types:
proliferating cells, differentiating myoblasts, and interstitial
mesenchymal cells, and then constructed a quantitative
developmental landscape where each cell is endowed with
spatiotemporal information. Furthermore, by estimating the
fate probabilities of the identified cell types and transition
probabilities among them, we found that the probability of
transition from the proliferating cell type to the interstitial
mesenchymal cell type was approximately twice that of
transition from the former to the differentiating myoblast type,
and that the fate probability of the differentiating myoblast type
was approximately equal to that of the interstitial mesenchymal
cell type. We also found that the relative number of the genes
expressed in a bursty manner was apparently higher at (or near)
the branch point (~97%) than before or after branch (below
80%). In addition, the mean burst size (MBS)/mean burst
frequency (MBF) monotonically decreased/increased before
branch but monotonically increased/decreased after branch,
with the identified trajectories.
RESULTS

The Outline of Topographer
In order to infer the stochastic dynamics of cell fate decisions
from single-cell transcriptomic data, Topographer makes the
following assumption about the data: the information on the
entire development process is adequate, or a snapshot of primary
tissue represents a complete developmental process. The data
need pre-processing (Supplementary Information for detail) so
that Topographer achieve a good performance. The overall
Topographer, a multifaceted single-cell analysis platform,
comprises five functional modules: (Trapnell, 2015) the
backbone module (Figure 1B); (Tanay and Regev, 2017) the
landscape module (Figure 1C); (Moris et al., 2016) the dynamics
module (Figure 1D); (Perié et al., 2015) the network module
(Figure 1E); and (Svensson et al., 2017) the burst module
(Figure 1F). The backbone module is independent of the
remaining 4 modules that depends on the former since they
make use of information on cell-state transition trajectories
identified in the first module. All the five modules are logically
related but each module achieves an independent function.

Two important notes on this method are (Trapnell, 2015)
Topographer is unsupervised and needs no prior knowledge of
specific genes that distinguish cell fates, and is thus suitable for
studying a wide array of dynamic processes involving fate
transitions. (Tanay and Regev, 2017) Except for the backbone
module, the other four functional modules only use the
pseudotime information derived in that module (Materials and
Methods), so they can also use the result on pseudo-temporal
ordering of single cells obtained by other existing algorithms
(Saelens et al., 2019) to achieve their respective purposes.
However, the backbone module is established based on a
different approach (see the following content for details), and
has its own advantages, e.g., it can identify not only cell-state
December 2019 | Volume 10 | Article 1280
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transition trajectories with multiple branching points, but also
intermediate or transitory cell states.

Below we introduce each of the five functional modules
separately (Materials and Methods give more details and
Supplementary Information provides a complete description).

Identifying the Backbone of Cell
Trajectories From Single-Cell Data
The backbone module is a fast and local pseudo-potential-based
algorithm. Here the pseudo-potential is defined as the negative of
the logarithm of a local density function (Eq. (1), Materials and
Methods), which aims to identify the “backbone” (i.e.,
“planimetric” contour) of cell-state transition trajectories cross
development and find valley floors in a developmental landscape
from single-cell data.

Starting from an initial cell (Figure 2A) selected either based
on the global minimal pseudo-potential or the prior knowledge,
Topographer calculates an adaptive step (Supplementary Eq.
(5)) and searches for pseudo-potential wells (i.e., “pits” where
pseudo-potentials are relatively lower) on a super-ring (i.e., a
high-dimensional circular tube, referring to Figure 2A, which
shows a flatten super-ring) centered at this initial cell and with
the radius equal to the step length (also Figure 2A). In this
search method, which clusters cells on super-rings, cluster
centers are characterized by a lower pseudo-potential than
their neighbors and by a relatively larger distance from points
with lower pseudo-potentials (e.g., the only two pseudo-
potential wells with “green ball” in Figure 2D are desired),
Frontiers in Genetics | www.frontiersin.org 317
providing the basis of a procedure to find pseudo-potential
wells on a super-ring. In this procedure, the number of pseudo-
potential wells arises naturally, outliers are automatically
spotted, and pseudo-potential wells are recognized regardless
of their shape and the dimensionality of the space in which they
are embedded. We stress that although there is an analogy
between our method and a density-based approach developed
originally by Rodriguez and colleagues (Rodriguez and Laio,
2014), the difference is that the former is carried out on a super-
ring rather than in the full cell state space. Clearly, if the
number of the found pseudo-potential wells (but not
including the one found on the “reverse” search direction) is
more than one, this implies the occurrence of branch. The
segments linking the center and the newly found pseudo-
potential well/or wells on the super-ring can be viewed as
part/or parts of the entire developmental trajectory. Similar
processes are repeated recursively on sequential super-rings
along search directions until no new pseudo-potential wells are
found (Figure 2B). By linking all the centers and all the pseudo-
potential wells found on super-rings, Topographer thus, builds a
tree-like developmental backbone (Figure 2C). Note that the
identified backbone is actually a projection of the pseudo-
potential landscape. By projecting every cell onto this
backbone (see subsection Cell Projection and Pseudotime
Assignment, Materials and Methods) and by selecting a root
node in the tree (e.g., based on the prior knowledge),
Topographer thus orders all the single cells in the dataset, and
equips each cell with a pseudotime if this root node is set as an
FIGURE 1 | Overview of Topographer. Topographer comprises five functional modules with each (B, C, D, E, or F) achieving an independent function. (A) Single-
cell data are represented by a matrix. (B) The backbone module identifies the main cell trajectories from the data. (C) The landscape module constructs a
quantitative Waddington’s landscape where each cell is endowed with spatiotemporal information (Materials and Methods), and the thick colored lines represent the
backbone of cell trajectories identified in the backbone module. This panel is not schematic, but is plotted using an artificial set of data generated by a toy model
(Supplementary Eq. (24)). (D) The dynamics module reveals stochastic dynamics of cell types by estimating the fate probabilities of cell types and the transition
probabilities (indicated by symbols) among them (Materials and Methods), where numbers 1–5 represent cell types, the size of circle represents that of fate
probability, and the thickness of line with arrow represents the size of transition probability. (E) The network module infers marker gene networks and their changes
along the identified cell trajectories (or along the pseudotime), where the orange ball represents a marker gene, and the thickness of connection line represents the
strength of correlation. (F) The burst module infers dynamic characteristics of transcriptional bursting kinetics (characterized by both burst size and burst frequency)
along the pseudotime, where arrows represent the pseudotime direction.
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initial moment (without loss of generality, the full pseudotime
may be set as the interval between 0 and 1).

Figures 2E, F showed respectively a doubly bi-branched
trajectory identified from one simulated dataset and a tri-
branched trajectory identified from another artificial set of data.
Figure3Abelowdemonstrateda two-dimensional projectionof the
de novo cell trajectories identified from single-cell RNA-seq data on
the differentiation of primary human myoblasts and Figure 3B
demonstrated the evolutions offive marker genes (MYOG, MYF5,
MYH2, CDK1, and MEF2C) with branches along the along the
pseudotime. Supplementary Figure 12 and Figure 14
demonstrated results of other two examples, which further
showed the power of Topographer in pseudo-temporally ordering
single cells in single-cell data.

Because of its ability to find pseudo-potential wells on super-
rings, Topographer can identify de novo developmental
trajectories with non-, bi-, and multi-branches (referring to
Figures 1E, F) (note: a low resolution of experimentally
sampling data may lead to tri-branches).

Constructing a Quantitative
Developmental Landscape of
Single-Cell Data
The backbone module used pseudo-potentials to construct the
contour of cell-state transition trajectories, which extracted the
information on both branch and cellular ordering from single-
cell data. Note that this kind of potential would not correctly
reflect transitions between cells since the probability fluxes would
exist between them due to cell division, cell death and/or other
factors, and have been quantified from gene network models (Li
and Wang, 2014). For example, precursor cells should in
principle have higher pseudo-potentials (Eq. (8), Materials and
Methods) in a developmental landscape in contrast to their
Frontiers in Genetics | www.frontiersin.org 418
generations, but if the precursor cells have higher densities,
they have lower pseudo-potentials. Apparently, both are
inconsistent. In addition, pseudo-potential lacks the temporal
information on differentiation or development.

Because of both the above shortcoming of pseudo-potential and
the intuition of theWaddington’s developmental landscape (in fact,
it has been extensively viewed as a powerful metaphor for how
differentiated cell types emerge from a single, totipotent cell 1), the
landscape module (an algorithm) is designed to construct a
“stereometric” developmental landscape (by “stereometric” we
mean that each cell is loaded with spatiotemporal information) in
contrast to the “planimetric” contour identified by the backbone
module. This constructed landscape can provide a more intuitive
understanding for the whole developmental process. The principle
of the landscape module is simply stated below.

Since single-cell data are noisy due to both cellular heterogeneity
and gene expression noise, transitions among the cells scattered
randomly in the cell state space can be considered as a random
walker (this consideration is inspired by Rosvall and Bergstrom’s
work 23). Topographer first constructs a weighted directed graph
based on the pseudotime information obtained in the backbone
module, and then defines a conditional probability (Eq. (Svensson
et al., 2017),Materials andMethods) that the randomwalkermoves
from one cell to another with relative weight strengths. Then,
Topographer estimates the visit probability for each cell by solving
amaster equation (Eq. (6),Materials andMethods), anddetermines
the potential of every cell in the dataset, where the potential is
defined as the negative of the logarithm of the visit probability,
seeing Eq. (8) with Eq. (7) in Materials and Methods. All these
potentials are then used to construct a Waddington’s
developmental landscape. For this, a dimension reduction
(van der Maaten and Hinton, 2008) is used for visualization, the
nearest neighbor interpolation is used to fit a landscape function of
FIGURE 2 | Topographer identifies the backbone of branched trajectories from a dataset. (A, B, C) A workflow chart (indicated by arrows): Topographer first selects
an initial cell as the center of a super-ring in the cell state space and searches for pseudo-potential wells on this ring (A). Then, Topographer repeats recursively on
every newly found pseudo-potential well (B), where symbol “X” represents a pseudo-potential well found on the reverse search direction, which needs to be
excluded in the search process, until no pseudo-potential wells are found, thus building a tree-like backbone of cell trajectories (C). Finally, Topographer projects
every cell onto the backbone, thus ordering all the cells in the dataset. (D) shows a super-ring example, where one undesired pseudo-potential well is indicated.
(E) Bi-branching trajectories identified from an artificial set of data. (F) Tri-branching trajectories identified from another artificial set of data.
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two variables in a 2-dimension space, and a Gaussian kernel is
applied to smooth interpolation (see subsection Scatter Plot of
Developmental Landscape, Materials and Methods or subsection
Scatter Plot of Developmental Landscape, Supplementary
Information). In this constructed landscape, each cell is equipped
with both potential and pseudotime: two important attributes of a
cell. Therefore, the identified backbone of cell-state transition
trajectories, which considers pseudo-potentials rather than
potentials, can be viewed as an aerial photograph of the
constructed Waddington’s developmental landscape (comparing
Figure 3A with Figure 3C).

To demonstrate effectiveness of the landscape module, we
analyzed two examples: the one for the same set of artificial data
used in Figure 2E, with the result demonstrated in Figure 1C, and
the other for a set of single-cell data on thedifferentiationofprimary
human myoblasts, with the results demonstrated in Figure 3C.
Consequently, we constructed a Waddington’s developmental
landscape shown in Figure 3C from a realistic set of data. Note
Frontiers in Genetics | www.frontiersin.org 519
that it is different from a cartoon landscape, such as Figure 5 in
references (Olsson et al., 2016). Supplementary Figure 13
demonstrated another Waddington’s developmental landscape
constructed using single-cell data on the development of somatic
stem cells.

It is worth noting that: (1) In contrast to the backbone module
that is mainly used to identify a main “road” but ignores
“bumpiness” of the road, the landscape module considers both
the road (actually a valley floor of the constructed Waddington’s
landscape) and its bumpiness (reflected by the height of potentials).
(2) Bothmodules can identify cell-state transition trajectories from
a dataset, but the former uses pseudo-potentials that rely on neither
pseudotime nor cell type whereas the latter uses potentials that
depend on both pseudotime and cell type (Eq. (8) with Eq. (4),
Materials and Methods). (3) Pseudo-potential cannot correctly
reflect the motion of a “ball” (i.e., progenitor cell progression) in
the constructedWaddington’s landscape inwhich theball has lower
potential at the beginning than at the end, since a lower cell density
FIGURE 3 | Results obtained by analyzing single-cell RNA-seq data on the differentiation of primary human myoblasts. (A) Topographer constructs a pseudo-
potential landscape, where PCA1 and PCA2 represent components, and every empty circle represents a cell. (B) Pseudo-temporal kinetics of five marker genes
(indicated by different colors) underlying cell fate decisions, where dashed lines represent the expression levels after branch. (C) Topographer constructs a
Waddington’s landscape, where a thick, green line with branch corresponds to the “backbone” of cell-state transition trajectories identified by the backbone module,
and every small, grey circle represents one cell. The normalized potential is shown with the depth of color representing the size of potential. (D) Topographer reveals
stochastic dynamics of cell types along the identified trajectories by estimating both the fate probabilities of cell types (distinguished by colors) and transition
probabilities among them. Three known cell types: proliferating cells, differentiating myoblast, and interstitial mesenchymal cells, are indicated by dashed ellipses and
circles. The large, dashed ellipse shows that the proliferating cell type (top panel) can further be divided into two subtypes (below panel), where the fate probabilities
of cell subtypes and the transition probabilities between them are also indicated.
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means a higher pseudo-potential.Supplementary Figure 5 shows a
difference between potential and pseudo-potential.

Estimating Fate and Transition
Probabilities From Single-Cell Data
Gene regulatory programs underlying cell fate decisions drive
one cell type toward another. Quantifying such a transition using
single-cell data is challenging due to both cellular heterogeneity
and the noise in gene expression in the data.

In order to estimate cell-type dynamics characterized by fate
and transition probabilities from single-cell RNA-seq data, it is
first needed to determine types of the cells in the dataset.
Topographer determines cell type according to the following
rules: (1) each branch of the identified developmental trajectory
is viewed as a cell type with a different branch representing a
different cell type; (2) At each branch, the found potential well is
taken as a cell subtype with a different potential well representing
a different cell subtype. Thus, the number of cell types is equal to
the number of branches whereas the total number of cell
subtypes is equal to that of potential wells. We will not
distinguish cell type and cell subtype unless confusion arises.
The cell types determined using this method depend on the
shapes of rugged potential wells (prior knowledge can provide
additional information in some cases). Therefore, the
classification of cell types in this approach is relative rather
than “absolute”. For example, in Figure 3D, the proliferating cell
type indicated by a dashed ellipse can be further divided into two
subtypes. In some situations, a potential well in the constructed
Waddington’s developmental landscape might not be apparent,
but still represents a small cell subtype or an intermediate cell
state, which may have important biological implications.

In the dynamics module, Topographer considers that
transitions among the cells scattered randomly in the cell state
space is a random walker who randomly moves from a cell state
to another, and then estimates two kinds of probabilities: the fate
probability for each cell type and the transition probabilities
between every two cell types (Materials and Methods). In these
estimations, Topographer makes use of the cell-state transition
trajectories identified in the backbone module.

Specifically, Topographer first defines a weight of the directed
edge from one cell to another based on the pseudotime (Eq. (4),
Materials and Methods), and then uses all the possible weights to
estimate the visit probability that the random walker visits a cell
in the state space, and further the conditional probability defined
as a relative link weight (Eq. (5), Materials and Methods). With
these two kinds of probabilities, Topographer further estimates
the probability that the random walker visits each cell type, and
the transition probabilities between every two cell types (Eq. (9),
Materials and Methods). These estimations indicate that
transitions between cell types are in general not deterministic,
but stochastic (referring to Figure 3D). In addition, Topographer
estimates the fate probability of each cell type (Eq. (12),Materials
and Methods).

In order to demonstrate stochastic cell-type dynamics estimated
by the dynamics module, we again analyzed a simulated data with
results shown in Supplementary Figure 6, and a realistic set of
Frontiers in Genetics | www.frontiersin.org 620
single-cell RNA-seq data on the differentiation of primary human
myoblasts with results demonstrated in Figure 3D (as well as
another realistic set of single-cell RNA-seq data on the
development of somatic stem cells, with results demonstrated in
Supplementary Figure 13). From Figure 3D, we observed that the
fateprobability (~0.53) for theproliferatingcell type is about thehalf
of that for the differentiating or interstitial mesenchymal cell type
(this is not strange since the proliferating cells are root ones), but the
fate probabilities for the latter two (~0.99 and ~0.98, respectively)
are approximately equal. In addition, the proliferating cells
differentiate into the differentiating cells at the ~0.16 probability,
but the inverse differentiation probability is very small (~0.001).On
the other hand, the proliferating cells differentiate into the
interstitial mesenchymal cells at the ~0.31 probability but the
inverse differentiation probability is also very small (~0.01),
implying that the proliferating cells tend to differentiate into the
interstitial mesenchymal cells. Figure 3D also showed the fate
probabilities of cell subtypes and the transition probabilities
between them (low panel).

Apart from the above three main functional modules,
Topographer can also infer both marker gene networks and
their pseudo-temporal changes as well as pseudo-temporal
characteristics of transcriptional bursting kinetics. We point
out that these inferences can in turn be used to infer whether
and when (along pseudotime) the branches of a developmental
trajectory occur.

Inferring Marker Gene Networks and Their
Pseudo-Temporal Changes
The network module aims to infer the trend of how marker gene
networks dynamically change along the identified cell-state
transition trajectories. For this, Topographer uses the network
neighborhood analysis method (Li and Horvath, 2007) (or
section The Network Module Infers Marker Gene Networks and
Their Pseudo-Temporal Changes, Materials and Methods) to
explore dynamic changes in gene regulatory networks (GRNs)
across development.

First, Topographer uses GENIE3 (Huynh-Thu et al., 2010) to
generate a series of GRNs along the pseudotime. Then, based on
these GRNs,Topographer further analyzes the covariation partners
of some particular gene (or genes) using a topological network
analysis scheme (Klein et al., 2015) that can identify those genes
most closely correlated with a given gene (or genes) of interest and
most closely correlate to each other (SeeMaterials andMethods for
details). We stress that before these two steps, transcriptomic data
of interest need pre-processing (Supplementary Information)
since they are noisy and would contain many zeros that must be
removed in our method.

Here, we used the network module to analyze single-cell data
on the differentiation of primary human myoblasts, and obtained
dynamic changes in the connections of marker gene networks
along the identified cell-state transition trajectories (Figure 4A,
where the PEBP1 gene is a core node of the networks). From the
dependences of mean gene-gene correlation degrees (Figure 4B)
and mean cell-cell correlation degrees (Figure 4C) on the
pseudotime, we observed that before branch, both degrees were
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a monotonically decreasing function in pseudotime (the blue
line, Figure 4B or C), but after branch, each became first
monotonically increasing and then monotonically decreasing
on one branch (the orange line, Figure 4B or C), and
monotonically increasing on the other branch (the green line,
Figure 4B or C). However, the change tendency for the ratio of
the gene-gene correlation degree over the cell-cell correlation
degree was just opposite to that described above (Figure 4D).
Note that a decrease in the overall gene-gene correlation
indicates that there are less regulations in the cells. And a
decrease in the cell-cell correlation reflects an increase in the
amplitude of random fluctuation in gene expression due to the
weakening attracting force in the flattening basin of attraction
prior to the bifurcation. The ratio of GeneCorr/CellCorr is a
quantitative index for predicting critical transitions. This index
increases toward a maximum when cells go through the critical
state transition that is similar to the index proposed by Chen
et al., (2012) and Mojtahedi et al., (2016).
Inferring Pseudo-Temporal Characteristics
of Transcriptional Bursting Kinetics
Transcription occurs often in a bursty manner, and single-cell
measurements have provided evidence for transcriptional
bursting both in bacteria and in eukaryotic cells (Larson, 2011).
By analyzing a simplified stochastic model of gene expression, Xie,
et al. previously showed (Friedman et al., 2006) that the number of
mRNAs produced in the bursty fashion following a Gamma
distribution determined by two parameters: MBF (i.e., the mean
number of mRNA production bursts per cell cycle) and MBS (i.e.,
the average size of the mRNA bursts). We point out that if a Beta-
Frontiers in Genetics | www.frontiersin.org 721
Poisson distribution (Kim and Marioni, 2013) is used or other
distributions are used, the result is similar (data are not shown).

There is great interest in analyzing single cell data to understand
the transcriptional changes that occur as cells differentiate and the
genes and regulatory mechanisms controlling differentiation
processes and cell-fate transition points (Moignard and Göttgens,
2016;Tanay andRegev, 2017).Theburstmodule is designed to infer
the trend of how transcriptional bursting kinetics dynamically
changes across development. For this, Topographer uses the
maximum likelihood method (Cam, 1991) to infer the two
parameters of MBF and MBS from single-cell RNA-seq data (see
section The Burst Module Infers Pseudo-Temporal Characteristics
of Transcriptional Bursting Kinetics, Materials and Methods), thus
revealing dynamic characteristics of transcriptional bursting
kinetics before branch, near the branching point and after
branch of the developmental trajectory.

We used the burst module to analyze single-cell data on the
differentiation of primary human myoblasts. Figures 5A–E
showed how the cells at four pseudotime points (two before
branch, one at branch point, and one after branch) were
distributed in the logarithmic plane of BF and BS. A reference
system (two orthogonal blue lines indicated by blue: the
horizontal line for BF and the vertical line for BS) was used to
guide visual comparison between the rates (i.e., the percents
indicated) of gene numbers over the total gene number at a
particular pseudotime point. The four quadrants of the reference
system clearly showed how the genes in the dataset were
expressed, e.g., the fourth quadrant showed that the genes were
expressed in a manner of high frequency (i.e., the BF is more
than 0.33) and small burst (i.e., the BS number is less than 200).
We observed that the genes expressed in a bursty manner (i.e.,
FIGURE 4 | Topographer infers dynamic changes in the local connection network of a marker gene along the pseudotime from single-cell transcriptomic data on the
differentiation of primary human myoblasts. (A) Dynamic changes in a connection network of seven genes along the pseudotime, where the PEBP1 gene (orange) is
taken as a core node of neighborhood networks. (B) Dynamic changes in the gene-gene correlation degree along the pseudotime before and after branch (different
colors), where 6 empty circles correspond to the networks at 6 stages indicated in (A), respectively. (C) Dynamic changes in the cell-to-cell correlation degree along
the pseudotime before and after branch. (D) Dynamic changes in the ratio of the gene-to-gene correlation degree over the cell-to-cell correlation degree along the
pseudotime before and after branch.
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the other three cases except for the case in the fourth quadrant)
were more at the branching point (97%) than before or after
branch (approximate or below 80%). In other words, the percent
of the genes expressed with high frequency and small burst was
apparently lower at the branching point. From these figures, we
can conclude that during the differentiation of primary human
myoblasts, there are more genes expressed in a bursty manner at
the branching point than before or after branch.

From the dependences of MBF and MBS on the pseudotime
(Figures 5F, G), we observed that there were apparently different
change trends before and after branch. Figure 5H showed the
dependence of the mean mRNA expression level on the
pseudotime, demonstrating a change tendency opposite to that
of MBF. Although fundamentally similar to the change trend of
MBS on the whole, the mean mRNA level (which is
approximately equal to the product of the MBS and the MBF)
for the branched pseudo trajectory of points 1, 2, 3, and 4 has an
increasing tendency with the increase of the pseudotime (Figure
5H). These three subfigures implied that MBF or MBS can be
taken as a better indicator of the branch occurrence than the
mean mRNA expression level. They also imply that cell fate
decisions would not be inferred from the changes in the mean
gene expression levels but can be inferred from the changes in the
transcriptional bursting kinetics characterized by BS and BF.
Recently, Larsson, et al., showed that a separation of expression
into bursting kinetics was required to identify the effects of core
promoter elements on transcriptional dynamics that were
masked at mean expression levels (Larsson, 2019).
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DISCUSSION

We have developed a computational pipeline— Topographer for
construction of developmental landscapes, identification of de
novo continuous developmental trajectories, and quantification
of fate transitions. One unique feature of Topographer is its
capability of characterizing both transcriptional bursting
kinetics and changes in connections of marker gene networks
along developmental trajectory. When identifying the backbone
of cell-state transition trajectories from single-cell data,
Topographer was robust to the noise in the dataset
(Supplementary Figures 8–10). When applied to the
differentiation of primary human myoblasts, Topographer first
constructed an intuitive developmental landscape for an order
and timing of events that closely recapitulated previous studies of
this system. In addition, it estimated the fate probabilities for cell
types and the transition probabilities between them. Together, the
results suggested that the fate transition during the differentiation
of primary human myoblasts occurred in a probabilistic rather
than deterministic manner, and the transitions between cell types
might be unidirectional and bidirectional. These two new insights
challenge the traditional view that the development of primary
human myoblasts was tree-like or that the process from a
predecessor to its generations was both deterministic and
unidirectional (Svensson et al., 2017).

When ordering single cells, Topographer (like existing methods
in the literature) needs to assume sufficient number of cells in the
dataset because the backbone module is established essentially
FIGURE 5 | Topographer infers dynamic characteristics of transcriptional bursting kinetics along the pseudotime from single-cell RNA-seq data on the differentiation
of primary human myoblasts. (A–E) Scatter plot of the genes in the logarithmic plane of burst size (BS) and burst frequency (BF) at four pseudotime points, where
every circle represents a gene in the dataset. Four percents are indicated in a reference system (two orthogonal blue lines at every subfigure, which correspond to
mean BS and BF, respectively). Numbers 4 and 5 actually represent the same pseudotime point. (F) Evolution of the mean BF along the pseudotime, where the
branching point is indicated and two empty circles after the branching point correspond to (D and E), respectively. (G) Evolution of the mean BS along the
pseudotime (H) Evolution of the mean mRNA expression level along the pseudotime.
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based on the estimation of cell density.A small number of cells (e.g.,
less than 100), would lead to inaccuracy offinding pseudo-potential
well/orwells on a super-ring in the backbonemodule. Asmore cells
can simultaneously bemeasured (Klein et al., 2015), the accuracy of
Topographer will improve. In principle, Topographer can also be
used to analyze other single-cell data such as mass cytometry data
and single-cell PCR data (Bendall et al., 2011).

Cell fate decisions may involve hierarchy of cell types
including intermediate cell states or cell subtypes. Identifying
such (e.g. rare) sub-cell types is important yet challenging.
Topographer has shown its ability to identify cell subtypes,
which may correspond to shallow or small potential wells in
the constructed developmental landscape (right below, Figure
3D). Moreover, Topographer can estimate the fate probability of
each identified cell subtype and the transition probabilities
between every two identified cell subtypes (right below, Figure
3D), which is one main advantage of Topographer compared to
many existing methods (Saelens et al., 2019). In particular,
Topographer enables identification of non-, bi-, and multi-
branches (Figures 2C, D).

It is worth noting that Topographer only provides a general
framework connecting three interplayed major components based
on single-cell data: cell lineage committing dynamics
(macroscopic), gene network dynamics (mesoscopic), and
transcriptional bursting kinetics (microscopic). First, Topographer
provides useful information on their relationships that are implied
by the pseudotime, but this kind of time only reflects the impact of
the former on each of the latter two. The issues of how and in what
degree the inferred gene connection networks or/and
transcriptional bursting kinetics influence or/and determine cell
fates in the underlying developmental process, remain unexplored.
In order to study the relationship between the mesoscope/
microscope and the macroscope, a possible way is to establish the
so-called balance equation (Wu and Tzanakakis, 2012). Second, in
order toestimate the fateprobabilitiesof cell typesand the transition
probabilities between them (Eq. (12) and Eq. (9), Materials and
Methods, respectively), Topographermakes an assumption that the
transition from one cell to another along a cell-state transition
trajectory is linear (Eq. (4) in Materials and Methods or
Supplementary Eq. (6)). In many cases, such transition may be
nonlinear due to, e.g., cell-cell communication through signal
molecules. Third, the traditional Waddington’s landscape (e.g.,
tumor pathobiology 39) is often used as an intuitive tool to
describe a differentiation process through the trajectory of a ball
into branching valleyswith each representing a developmental state
(Furusawa and Kaneko, 2012). Topographer uses the potential of
each cell to quantify developmental landscape, which allows
estimation of the transition probabilities between cell types and
their fate probabilities to characterize cell lineage committing
dynamics. These probabilities have physical meanings as they
actually represent the Krammer escape rates (van Kampen, 1992)
between potential wells. However, how cell fate decisions including
cell-state dynamics are related to Krammer escape rates remain
unclear. Fourth, based on the transition probabilities between cell
types, one can establish a model of cell population dynamics
[referring to Supplementary Eq. (21)], and further study
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stochastic state transitions from a dynamical-system perspective.
Fifth, Topographer uses a simple Gamma distribution to infer
transcriptional bursting kinetics. For this reference, a more
reasonable distribution used would be a Beta-Poisson
distribution, but the result is similar (data are not shown). In fact,
our reference method is suitable to any distribution.

Finally, using “relatively smaller pseudo-potential and
relatively larger distance” (Materials and Methods) as a rule in
the backbone module is a robust approach in finding cell
trajectories (referring to Supplementary Figures 8–10); In our
method, the transitions among cells are considered as a random
walker who moves randomly between the data points scattered in
the cell state space. These two ground rules used in Topographer
can be viewed as new principles of mining single-cell data to
uncover mechanisms of cell fate decisions.
CONCLUSION

As the single-cell field progresses towards analyzing the
transcriptomic data of large-scale individual cells in parallel, it
will become increasingly important to develop statistical methods
to reveal cell fate mechanisms in a coherent way at three levels: cell
lineage (macroscopic), gene network (mesoscopic), and gene
expression (microscopic). In this context, we anticipate that the
Topographer presented here, and other related approaches, will be
vital in maximizing the amount of biological insight that can be
obtained from these data.
MATERIALS AND METHODS

The overall Topographer, a multifunctional algorithm, comprises
five functional modules: the backbone module, the landscape
module, the dynamics module, the network module, and the
burst module. Main details of these modules are separately stated
below and the complete description including data pre-
processing is given in Supplementary Information.

The Backbone Module Identifies the
Backbone of Cell-State Transition
Trajectories From Single-Cell Data
Assume that there arem cells and n genes in single-cell RNA-seq
data of interest, which can in principle be represented as m
points in the n -dimensional space (X) of gene expression (called
the cell state space for convenience).

The backbone module aims to identify the backbone of cell-
state transition trajectories across development from the dataset.
The essence is to find valley floors in a developmental landscape.
Specifically, Topographer finds valleys with local minimal
pseudo-potentials, where pseudo-potential is defined as

~E(x) = − log r(x) (1)

with

r(x) = o
y∈X

exp −
d x, yð Þ2
2s2

� �
: (2)
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In Eq. (2), d is the Euclidean distance between two state points x
and y in the cell state space X (note: other kinds of distances are also
suitable forTopographer).Note thatr represents the local cell density,
mostly accounting for the number of cells in a neighborhood defined
bys. The value of parameters is set as the correspondingquantile for
all pair-wise distances of cell states in the dataset.

Roughly speaking, Topographer starts by cell state x0 (i.e., an
initial cell) and then searches for pseudo-potentials wells on super-
rings (which are actually circular tubes in the cell state space) by
recursively applying an extended version of the cluster algorithm
(Rodriguez andLaio, 2014) Finally, all the centers of the super-rings
are represented in a tree, T. Main details are stated below andmore
details are given in Supplementary Information.

Constructing a Developmental Tree
Startingbyan initial cell thathas the globalminimalpseudo-potential
or by the cell that the user chooses according to the prior knowledge,
Topographer calculates an adaptive radius or an adaptive step length
(see subsection Setting Step Length, Supplementary Information)
and searches for pseudo-potential wells on a super-ring centered at
this cell and with the radius (referring to Figure 2A). The search
method (called the pseudo-potential well search algorithm) is based
on the idea that cluster centers on the super-ring are characterized by
a lower pseudo-potential than their neighbors and by a relatively
larger distance from points with locally lower pseudo-potentials.
Specifically, Topographer first defines

d(x) =
max
y≠x

d x, yð Þ if~E(x) = min
y∈X

~E(y)

min
y : ~E yð Þ<~E xð Þ

d x, yð Þ otherwise,

8><
>: (3)

and then finds local pseudo-potential well/or wells on the super-
ring, based on the combination of relatively smallerẼ and relatively
larger d. Therefore, there is an analogy between the pseudo-
potential well search algorithm and a density-based approach
developed originally by Rodriguez and colleagues (Rodriguez and
Laio, 2014). The segments linking the center and the pseudo-
potential wells found on the super-ring can be taken as
approximate part/or parts of the entire developmental trajectory.

Then, taking every found pseudo-potential well as the center of a
new super-ring with a new adaptive radius, Topographer performs
similar calculations as at the previous step, thus finding pseudo-
potential well/or wells on this new super-ring. Again, the segments
linking the new center and the newly found pseudo-potential wells
on the new super-ring can be taken as other approximate part/or
parts of the entire developmental trajectory. This process is repeated
until no new pseudo-potential wells are found. By linking the cluster
centers, Topographer thus builds a tree-like developmental
backbone, which is actually composed of valleys.

Note that for a super-ring center, rather than the starting point,
the newly found valleys would include valleys on the “reverse
direction” in the processes of searching for local pseudo-potential
wells on super-rings, which are not expected in our algorithm. To
handle such an exception, Topographer excludes those valleys that
are too close to the found valleys. In addition, any two newly found
valleys with the distance of smaller than the step length are merged
by discarding the valleys with larger pseudo-potentials. Such a
Frontiers in Genetics | www.frontiersin.org 1024
treatment may greatly improve the algorithm’s robustness against
the noise in the dataset (referring toSupplementary Figures 8–10).

Also note that a complete valley floor is constructed by
terminating the recursive process for some super-ring on
which no desired pseudo-potential wells can be found. Since
no loops are assumed to exist in the developmental trajectory,
there is definitely a boundary, implying that the search process
necessarily stops within finite steps.

After the above search process is completed, all the foundpseudo-
potential valley floors are represented in an undirected acyclic graph
(a tree with branches). To achieve better accuracy and coverage,
Topographer refines a pseudo-potential valley tree by searching for
pseudo-potentialwell/orwellson the line linking twocentersonevery
edge of the tree (referring to Supplementary Figures 9 and 10). To
that end, Topographer finishes construction of the backbone of a
developmental tree from a given set of single-cell data.

Cell Projection and Pseudotime Assignment
After constructing a developmental tree, Topographer then
projects every cell point in the cell state space onto some edge
of the tree according to the shortest distance principle (i.e., the
perpendicular distance from the cell point to the edge is
shortest). Thus, every cell has its unique relative position in the
identified backbone (or in the constructed tree).

Next, Topographer assigns a pseudotime for every cell in the
dataset. Before that, however, it is needed to determine a root node
in the constructed tree. Topographer chooses a root cell in such a
manner that the distances between this cell and those cells that are
initially set according to, e.g., the prior knowledge, are as short as
possible. An initial pseudotime is first assigned to this root node.
Every other cell in the dataset is then assigned in order with a
pseudotime according to its relative position in the constructed
tree. Without loss of generality, the full pseudotime may be set as
the interval between 0 and 1 (i.e., 0 ≤ t ≤ 1).

The Landscape Module Constructs a
Quantitative Waddington’s Developmental
Landscape of Single-Cell Data
Calculation of Cell Potential
After the backbone of a developmental trajectory has been
identified and every cell has been endowed with a pseudotime
value, the landscape module first estimates the potential of every
cell in the dataset and then uses these potentials to construct a
quantitative developmental landscape. It is expected that the
potential to be introduced can be avoid shortcomings of the
pseudo-potential as pointed out in the main text. For this
estimation, Topographer analogizes transitions between cells at
distinct stages of the differentiation process to a random walker
who moves randomly between the data points that are randomly
scattered in the cell state space. This analogy, which is inspired by
Rosvall and Bergstrom’s work (Rosvall and Bergstrom, 2008), is
reasonable due to both cellular heterogeneity and gene
expression noise in the dataset. In addition, it is important that
Topographer uses the pseudotime information to construct a
weighted directed graph W.

Specifically, Topographer defines the weight of the directed
edge from cell a to cell b as
December 2019 | Volume 10 | Article 1280
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Wa!b = W0e
−c ta−tbð Þ: (4)

(Supplementary Information gives a reason for this
definition), where ta and tb represents the pseudotime points
for cells a and b respectively, and positive constant c represents
a linearly changing rate that cell a transitions to cell b (this
setting implies an assumption, i.e., the evolutional process from
one cell to another along the pseudotime is assumed to be
linear). The setting of the c value in general depends on the
dataset under consideration (see subsection 3.2.1 in Supplementary
Information gives a simple discussion) but it may be set as 30 in our
cases (i.e., c=30). It is worth pointing out that the weight defined in
such a manner has used the information on the pseudo-temporally
ordered cell trajectories, which is a key for the entire calculation.

Then, in order to estimate cell visit probability on a random
walk, Topographer defines a conditional probability that the
random walker moves from cell b to cell a as the relative link
weight, given by

pb!a =
Wb!a

obWb!a
, (5)

which is apparently independent of initial W0. If the stationary
visit probability of cell a is denoted by pa, then pa can in
principle be derived from a recursive system of the form

pa =o
b
pbpb!a , (6)

which represents the probability that the random walker visits
the a cell from all the other possible cells. Note that Eq. (6) is
actually a master equation (van Kampen, 1992) and can
efficiently be solved with the power-iteration method (Booth,
2006). However, to ensure that the unique solution of this
equation is independent of the starting node in the directed
network, the random walker instead teleports to a random node
at a small rate e with 0< e <1 (in simulation, we set e =0.01). In
addition, to obtain more robust results that depend less on the
teleportation parameter e, it is most often to use teleportation to
a node proportional to the total weight of the links to the node
(Rosvall and Bergstrom, 2008). Because of these considerations,
the resulting stationary visit probability for cell a is modified as

pa = 1 − ϵð Þo
b
pbpb!a + ϵ obWa!b

oa ,bWb!a
: (7)

Finally, Topographer quantifies the potential of every cell in
the dataset, according to

Ea = − log pa , (8)

where pa is given by Eq. (7). Apparently, the potential defined in
such a manner has again made use of the information on the
identified cell-state transition trajectories due to Eq. (4). We
point out that the potential of a cell depends on pseudotime but
the pseudo-potential lacks the information on pseudotime.

Scatter Plot of Developmental Landscape
After all the cells in the dataset have been equipped with potentials,
all these potentials are then used to construct a Waddington’s
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landscape for the developmental process. The method is stated as
follows. First, dimension reduction is needed for visualization (the
tSNE method (van der Maaten and Hinton, 2008) or the PCA
method (Hastie et al., 2001)may beused to achieve this purpose). In
general, dimension reduction cannot explicitly reflect the
information on coordinates in a visualized landscape, e.g., PCA1
andPCA2inFigure3Cdonot actually represent components in the
dataset. Second, Topographer uses the nearest neighbor
interpolation method to perform interpolation on a 3-
dimensional scattered data set. Specifically, Topographer uses
ScatteredInterpolant (a function of the MATLAB software) to
establish the corresponding relationships between a set of points,
(x,y), and a set of cell potentials, E. These relationships, denoted by
E=F (x,y), in principle define a curved surface in the 3-dimensional
space for the developmental landscape, which in return passes
through all the sampling points in the space under consideration.
Topographer then uses the nearest neighbor interpolation to
evaluate this surface at any query point (xq,yq), thus obtaining an
interpolating value of every known potential given by Eq. (8), i.e.,
Eq=F(xq,yq). Third, a Gaussian kernel is used to smooth
interpolation. Finally, the identified developmental trajectory is
drawnonthe constructeddevelopmental landscape (referring to the
thick colored line inFigure 1Aor the thick green line inFigure 3C).

We point out that pseudo-potential cannot correctly reflect the
motion of a “ball” in the constructedWaddington’s developmental
landscape in which the moving ball has lower potential at the
beginning than at the end, since a lower cell density implies a higher
pseudo-potential according todefinitions.SupplementaryFigure5
shows a difference between potential and pseudo-potential.

The Dynamics Module Estimates Fate
Probabilities of Cell Types and Transition
Probabilities Between Them From Single-
Cell Data
Determining Cell Types
Cell-type dynamics can be characterized by fate and transition
probabilities. In order to estimate these probabilities, it is first
needed to determine the types of cells in the dataset. For this,
Topographer adopts the following rules: First, each branch in the
identified developmental trajectory is defined as one cell type,
and a different branch is defined as a different cell type. Then,
each potential well on each branch is defined as one cell subtype,
and a different potential well is defined as a different cell subtype.
These definitions imply that the number of cell types is equal to
that of branches whereas the number of cell subtypes is equal to
that of potential wells. It should be pointed out that the cell type
determined in such a manner is not unique but depends on the
choice of Ẽ and d (their respective definitions above). In the
following, we will not distinguish cell type and cell subtype unless
confusion arises.

Estimating Transition Probabilities Between Cell Types
Equation (5) has given the conditional probability (pb!a) that
the random walker moves from cell b to cell a, whereas Eq. (7)
has given the stationary visit probability of cell a, i.e.,pa. On the
basis of these, Topographer estimates the transition probability at
which a random walker visits the jth cell type from the ith cell
December 2019 | Volume 10 | Article 1280
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type (denoted by qi↷), according to

qi↷ j = o
a∈i,b∉j

qa!b , (9)

and the transition probability at which the random walker exits
the ith cell type (denoted by qi↷), according to

qi↷ = o
a∈i,b∉i

qa!b , (10)

where the unrecorded visit rate on a link, qb!a is given by

qb!a = pbpb!a : (11)

Estimating Fate Probabilities of Cell Types
The fate probability for cell type i, denoted by fatei, is defined as

fatei = 1 − qi↷, (12)

which implies that a larger transition probability at which the
random walker exits cell type i corresponds to a smaller fate
probability for this cell type. This definition is in accordance with
our intuition, so it is reasonable.Again,we emphasize that the above
formulae for transition probability (qi↷j) and fate probability (fatei)
have all made use of the pseudotime information.
The Network Module Infers Marker Gene
Networks and Their Pseudo-Temporal
Changes
In a complex mixture of cells, correlations of gene expression
patterns would arise from differences between different cell
lineages. To explore the correlation between the patterns of
gene expression across development, Topographer constructs a
series of GRNs along the pseudotime, which are directed
networks for gene-gene interactions. Unsupervised GRNs are
then created by GENIE3 (Huynh-Thu et al., 2010) that takes
advantage of the random forest machine learning algorithm.

Based on the constructed GRNs, Topographer further explores
the covariation partners of some particular gene (or genes) using a
topological network analysis scheme (Li and Horvath, 2007). The
method is to identify the set of those genes that are most closely
correlated with a given gene (or genes) of interest and that most
closely correlate to each other, at a given pseudotime point (in
practical calculations, we use data at a pseudotime window to
improve accuracy) (in Figure 4 of the main text, however, we
showed how neighborhood networks of a marker gene change at
several representative pseudotime points). Supplementary
Information provides more details of the method.

The Burst Module Infers Pseudo-Temporal
Characteristics of Transcriptional Bursting
Kinetics
Transcriptional bursting kinetics can be characterized by BS and
BF. As is well known, Gamma distributions can well capture this
bursty expression in some cases. Topographer uses a Gamma
distribution to infer dynamic characteristics of transcriptional
bursting kinetics along the cell-state transition trajectories
Frontiers in Genetics | www.frontiersin.org 1226
identified from single-cell RNA-seq data. Assume that this
distribution takes the form (Friedman et al., 2006)

p(x) =
xa−1

baG að Þ e
−x
b , (13)

where x represents the number of transcripts, a represents the
mean BF (i.e., the mean number of mRNA production bursts per
cell cycle) whereas b does the mean BS (i.e., the average size of the
mRNA bursts), and G(·) is the common Gamma function.

Thus, in order to infer pseudo-temporal characteristics of
transcriptional bursting dynamics, the key is to estimate two
parameters a and b from the dataset at every pseudotime point.
For this,Topographermakes use of themaximum likelihoodmethod
(Hastie et al., 2001). Since the number of cells at a single pseudotime
pointwouldbevery few,Topographeruses thecelldata inawindowof
this point to obtain more reliable estimations of a and b.
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Single-cell transcriptomics is advancing discovery of the molecular determinants of cell
identity, while spurring development of novel data analysis methods. Stochastic
mathematical models of gene regulatory networks help unravel the dynamic, molecular
mechanisms underlying cell-to-cell heterogeneity, and can thus aid interpretation of
heterogeneous cell-states revealed by single-cell measurements. However, integrating
stochastic gene network models with single cell data is challenging. Here, we present a
method for analyzing single-cell gene-pair coexpression patterns, based on biophysical
models of stochastic gene expression and interaction dynamics. We first developed a
high-computational-throughput approach to stochastic modeling of gene-pair
coexpression landscapes, based on numerical solution of gene network Master
Equations. We then comprehensively catalogued coexpression patterns arising from
tens of thousands of gene-gene interaction models with different biochemical kinetic
parameters and regulatory interactions. From the computed landscapes, we obtain a low-
dimensional “shape-space” describing distinct types of coexpression patterns. We
applied the theoretical results to analysis of published single cell RNA sequencing data
and uncovered complex dynamics of coexpression among gene pairs during embryonic
development. Our approach provides a generalizable framework for inferring evolution of
gene-gene interactions during critical cell-state transitions.

Keywords: stochastic modelling, gene expression noise, gene regulatory networks, single-cell data, scRNA-seq
INTRODUCTION

In recent years, single-cell-resolution measurements have revealed unprecedented levels of cell-to-
cell heterogeneity within tissues. The discovery of this ever-present heterogeneity is driving a more
nuanced view of cell phenotype, wherein cells exist along a continuum of cell-states, rather than
conforming to discrete classifications. The comprehensive view of diverse cell states revealed by
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single cell measurements is also affording new opportunities to
discover molecular regulators of cell phenotype and dynamics of
lineage commitment (Trapnell et al., 2014; Olsson et al., 2016;
Briggs et al., 2018). For example, single cell transcriptomics have
revealed the widespread nature of multilineage priming (MLP), a
phenomenon wherein individual, multipotent cells exhibit
“promiscuous” coexpression of genes associated with distinct
lineages prior to commitment (Nimmo et al., 2015). In principle,
mathematical modeling of gene regulatory network dynamics
can provide a theoretical foundation for understanding cell
heterogeneity and gene expression dynamics, by quantitatively
linking molecular-level regulatory mechanisms with observed
cell states. However, due to the molecular complexity of gene
regulatory mechanisms, it remains challenging to integrate such
models with single-cell data.

Mathematical models of gene regulatory network dynamics can
account for (and at least partially reproduce) observed cellular
heterogeneity in two primary ways. First, gene network models
are multistable dynamical systems, meaning a given network has the
potential to reach multiple stable states of gene expression. These
states arise from the dynamic interplay of activation, inhibition,
feedback, and nonlinearity (Kauffman, 1969; MacArthur et al., 2009;
Huang, 2012). Second, some mathematical models inherently treat
cellular noise. This noise, or stochasticity, is modeled in various
ways depending on assumptions about the source (Peccoud and
Ycart, 1995; Arkin et al., 1998; Kepler and Elston, 2001; Swain et al.,
2002). Discrete, stochastic models of gene regulation, which track
discrete molecular entities, regulatory-protein binding kinetics, and
binding states of promoters controlling gene activity, have formed
the basis of biophysical theories of gene expression noise due to so-
called intrinsic molecular noise (Peccoud and Ycart, 1995; Thattai
and van Oudenaarden, 2001; Kepler and Elston, 2001; Pedraza and
Paulsson, 2008). Such stochastic gene-regulation mechanisms have
also been incorporated into larger regulatory network models using
the formalism of stochastic biochemical reaction networks, and
have been utilized to explore how molecular fluctuations can cause
heterogeneity within phenotype-states and promote stochastic
transitions between phenotypes (Feng and Wang, 2012; Sasai
et al., 2013; Zhang and Wolynes, 2014; Tse et al., 2015).

The quantitative landscape of cellular states is another
concept that is increasingly utilized to describe cellular
heterogeneity. Broadly, the cellular potential landscape (first
conceptualized by Waddington (Wang et al., 2011; Huang,
2012; Waddington, 2014) is a function in high-dimensional
space (over many molecular observables, typically expression
levels of different genes), that quantifies the stability of a given
cell-state. In analogy to potential energy (gravitational, chemical,
electric, etc.), cell states of higher potential are less stable than
those of lower potential. The landscape concept inherently
accounts for cellular heterogeneity, since it holds that a
continuum of states is theoretically accessible to the cell, with
low-potential states (in “valleys”) more likely to be observed than
high-potential states. The landscape is a rigorously defined
function derived from the dynamics of the underlying gene
network model, according to some choice of mathematical
formalism (Wang et al., 2011; Bhattacharya et al., 2011;
Frontiers in Genetics | www.frontiersin.org 229
Huang, 2012; Zhou et al., 2016). For stochastic gene network
models that inherently treat noise, the landscape is directly
obtained from the computed probability distribution over cell-
states (Cao and Liang, 2008; Micheelsen et al., 2010; Feng and
Wang, 2012; Tse et al., 2015).

Stochastic modeling of gene network dynamics has been
employed in various forms for analysis of single cell
measurements. For example, application of noisy dynamical
systems theory has shed light on cell-state transitions
(Mojtahedi et al., 2016; Jin et al., 2018; Lin et al., 2018).
Stochastic simulations of gene network dynamics have been
used to develop and/or benchmark tools for network
reconstruction (Schaffter et al., 2011; Dibaeinia and Sinha,
2019; Bonnaffoux et al., 2019) Stochastic model-aided analysis
of single-cell measurements has been demonstrated to yield
insights on gene regulatory mechanisms (Munsky et al., 2018).
However, few existing analysis methods utilize discrete-
molecule, stochastic models, which fully account for intrinsic
gene expression noise and its impact on cell-state, to aid in the
interpretation of noisy distributions recovered from single cell
RNA sequencing data. There exists an opportunity to link such
biophysical, stochastic models, which reproduce intrinsic noise
and cell heterogeneity in silico, to single cell datasets that
characterize cell heterogeneity in vivo. In particular, the
landscape of heterogeneous cell-states computed from discrete
stochastic models can be directly compared to single-
cell measurements.

In this work, we present a method for analyzing single-cell
gene pair coexpression patterns that is founded on biophysical
theory of stochastic gene networks. In our approach, the key
object linking the models to the data is the gene-pair
coexpression landscape, which is derived directly from the
bivariate distribution of expression states, and which is
computed from a stochastic model or extracted from single cell
measurements. The rationale underlying the method is two-fold:
(1) information on gene-gene interactions can be inferred from
the distinctive characteristics of noise in single-cell data (i.e.,
from the “shape” of the landscape); (2) existing analysis
techniques are relatively insensitive to landscape shape. We
first comprehensively compute and classify the landscapes
produced by a family of ∼40,000 stochastic two-gene
regulatory network models. We then use the model-derived
classification to analyze published data from vertebrate
development. In so doing, we uncover both expected and novel
patterns of coexpression in development. While our analysis here
is proof-of-principle, and limited to two-gene interactions, the
conceptual framework could be expanded to include multibody
gene interactions in the future.
METHODS

Discrete, Stochastic Models of Two-Gene
Regulatory Networks
We first developed a family of stochastic models of gene-gene
interactions (see Figure 1 for model schematic), which is based
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on previously published models (Feng and Wang, 2012; Zhang
and Wolynes, 2014). We label two genes X and Y. Each gene
encodes a protein, which acts as a transcription factor (TF) that
potentially regulates its own expression as well as that of the
other gene. Each gene has a promoter (or more generally,
regulatory regions of DNA) that can be bound by any
combination of its own expressed protein and/or the other
gene's expressed protein. The promoter states are thus labeled
as: X00 (neither transcription factor is bound to X's promoter),
X0x (X's own protein is bound, resulting in autoregulation of gene
expression), Xy0 (Y's protein is bound to X's promoter, resulting
in cross-regulation), Xyx (both proteins are bound to X's
promoter, resulting in combinatorial regulation). (The
promoter states for gene Y are defined in a symmetric
manner.) The regulatory effect of each promoter state (i.e., the
effect of having none, one, or both proteins bound on the gene's
expression) is accounted by the transcription rate gij
corresponding to each possible promoter state: e.g., when gene
X's promoter is unbound, it transcribes at rate gX00. Binding of Y's
protein changes the transcription rate to gXy0, which may be lower,
higher, or the same, depending on whether the effect of Y on X is
assumed to be repressing, activating, or not impacting. (All other
transcription rates for each promoter state and for gene Y are
defined similarly.) The model involves three classes of reactions:
mRNA synthesis, mRNA degradation, and promoter-state-
change reactions. mRNA synthesis reactions are given by:

Xij!
gXij
Xij + x

Yij!
gYij
Yij + y

(1)

where x and y denote mRNA transcripts which will be translated
into the transcription factors encoded by genes X and Y,
respectively. mRNA degradation reactions are given by:
Frontiers in Genetics | www.frontiersin.org 330
x!k 0
y!k 0

(2)

Promoter-state-change reactions are given by, e.g.:

X00 ⇌
hy2=2

f
Xy0, (3)

which represents the change of promoter-state (and
corresponding regulatory impact) on gene X when Y 's
transcription factor binds (forward reaction) or unbinds
(reverse reaction). All other promoter-state-change reactions
for X and Y are defined similarly. The changes of promoter
state occur with forward rates hy2/2 or hx2/2 (when the change of
state occurs due to binding of transcription factor from gene Y or
X, respectively) and f (when the change of state occurs due to an
unbinding event). The model tracks copy numbers of individual
mRNA molecules in the cell, to enable direct comparison with
single cell transcriptomic data, but translation of mRNA into
protein is not explicitly accounted for. Instead, transcription
factor (protein) levels are assumed to be linearly proportional to
mRNA, and this proportionality constant is subsumed into the
binding rate h. The quadratic dependence of the forward binding
rates on x or y arises from the assumption that homodimeric
transcription factors regulate gene expression, which is a general
and convenient way to include cooperativity in the model.

We assign rate constants to intracellular processes that are in
line with experimental estimates from vertebrates, where possible
(see Table 1). (For full details of model reactions and parameter
derivations, see Supplement). Rates of mRNA synthesis and
degradation are relatively well characterized, though they vary
considerably for different transcripts (Schwanhäusser et al.,
2011). Rates of promoter-state-change are less well-defined,
FIGURE 1 | Schematic of the two-gene regulatory network model. The overall network motif is variable (see Inset), encoding a symmetric combination of repression
(flat arrow-head), activation (pointed arrow-head) or no-impact (dashed line), mutually between the two genes labeled X and Y, and by each gene on itself (see
Methods for details). The stochastic reaction kinetic model includes rate constants for mRNA synthesis (gij), mRNA degradation (k), and regulatory element state-
changes due to transcription factor binding (h) and unbinding (f). Cooperative effects are included by the assumption that transcription factors bind as homodimers.
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since promoter-state-changes that ultimately impact gene
expression may be attributed to a variety of molecular
processes, including: (a) relatively fast processes of TF binding
or unbinding from DNA (b) relatively slow chromatin
remodeling processes that may be initiated or facilitated by TF
binding, require multiple steps and cooperative interactions, and
are generally poorly understood. In our models, to account for
this range of possible mechanisms, we consider a wide range of
parameter values h, f for promoter-state-changes. (The
significance of these fast and slow regimes, termed the
adiabatic and nonadiabatic regimes, respectively, to cell-state
stability has been studied previously by stochastic modeling
(Sasai and Wolynes, 2003; Feng and Wang, 2012; Sasai et al.,
2013; Zhang and Wolynes, 2014). We here define the “fast”
regime as determined by measured parameter values of protein
binding/unbinding DNA (e.g., from Geertz et al., 2012),
occurring with timescales of minutes, seconds, or faster. We
define the “slow” regime more broadly as any epigenetic/
chromatin changes occurring on timescales of hours, days, or
longer. For example, in mammalian cells, changes of chromatin
state during cell-fate specification were estimated to be on the
order of several days (Mariani et al., 2010; Hathaway et al., 2012),
while theoretical studies predicted timescales on the order of the
cell cycle time (i.e., hours to days, Sasai et al., 2013).

We define two types of model systems. The Mutual
Inhibition/Self-Activation (MISA) model encodes a common
network motif that is understood to control a variety of cell
fate decisions (Graf and Enver, 2009; Huang, 2013) and has been
extensively studied by mathematical modeling (Huang et al.,
2007; Feng and Wang, 2012; Chu et al., 2017). In contrast, the
Two-Gene Flex model flexibly encodes a variety of regulatory
interactions, as described below.

Mutual Inhibition/Self-Activation Model
In all models, promoter activity is assumed to be either high
(transcription rate ghi) or low (glo) (giving a relatively fast or slow
rate of mRNA synthesis, respectively). To encode MISA regulatory
logic, mRNA synthesis rates for each promoter state are fgX00, gX0x ,
gXy0, g

X
yxg = fglo, ghi, glo, glog. Transcription rates for gene Y are

defined symmetrically, fgY00, gY0y, gYx0, gYyxg = fglo, ghi, glo, glog. The
high rate corresponds to maximal activity, whereas the low rate is
Frontiers in Genetics | www.frontiersin.org 431
effectively off (but is nonzero to allow for some leakiness in the
promoter). Thus, binding of the self-TF turns the gene on, but
subsequent binding of the other TF turns the gene off. The relative
strengths and kinetics of the activating (self-regulatory) and
repressing (cross-regulatory) interactions are encoded in the rates
of binding/unbinding of regulators. Autoregulatory binding and
unbinding rates (symmetric on both genes) are denoted by ha and
fa, respectively. Cross-regulatory rates are denoted by hr and fr. The
model is thus fully specified by 7 parameters: {glo, ghi, k, ha, fa, hr, fr}.
We computed landscapes for ∼22,000 unique parameter
combinations for the MISA regulatory logic (see Table 1 for
parameter value ranges). We studied only symmetric network
motifs, but asymmetry between the genes is accounted for by
allowing the “on” transcription rate ghi to be asymmetric between
the two genes (in case of asymmetry in ghi, the model is specified by
eight parameters).

Two-Gene Flex Model
The Two-Gene Flex model is identical to MISA in all ways except
the regulatory logic. Instead of the transcription rates being {glo, ghi,
glo, glo}, all 16 logical combinations of four promoter states and two
activity-levels are included. Within these combinations, various
behavior is encoded including self-activation, self-repression,
mutual activation, mutual repression, no interaction (self- or
cross-), and dual-effects (where a TF has a distinct effect whether
bound alone or in combination with the other). Note that the MISA
logic is contained within these 16 combinations. Note also that the
promoter states for X and Y are always defined symmetrically, i.e.,
only symmetric motifs are included. We computed landscapes for
∼34,000 unique parameter combinations for the Two-Gene Flex
Model (including all network motif variants). Our aim with the
Two-gene Flex model was to comprehensively encode all possible
logical combinations within the constraints of the symmetric two-
gene model. Note that these combinations encompass several cis-
regulatory motifs that have been described previously. For example,
{g00, g0y, gx0, gyx} = {ghi, glo, ghi, glo}, corresponds to a “simple
repressor” motif where Y is the repressor, and {g00, g0y, gx0, gyx} =
{ghi, glo, glo, glo}, corresponds to a “dual repressor”motif (Bintu et al.,
2005). Our Two-Gene Flex model also encompasses various
biologically inspired logic gates for combinatorial cis-regulation
studied previously (Zhang et al., 2009).
TABLE 1 | Rate Parameters used in gene regulatory network models.

Rate constant Symbol Units Value Comments/Source

mRNA synthesis (not repressed) ghi mRNA/hr 0.8 – 1.4* Schwanhäusser et al. (2011)
mRNA synthesis (repressed) glo mRNA/hr 0.001 see text
mRNA degradation k /hr 0.2‡ Schwanhäusser et al. (2011)
Promoter state change (unbinding) f† /hr (fast) 10 – 105 Geertz et al. (2012)

(slow) 10− 6
– 10 see text

Promoter state change (binding) h† hr−1 mRNA−2 (fast) 10 – 500 Geertz et al. (2012)
(slow) 10− 6

– 10 see text
January 2020
Parameter values are derived from experimental measurements in vertebrates, where possible. See Methods text for details. *Measured rates of mRNA synthesis varied, with a median of
2/h Schwanhäusser et al. (2011). We use lower values (within experimental range) to roughly match observed counts in scRNA-seq data, which may be lower than expected because of
dropouts or other technical issues. ‡Corresponds to mRNA half-life of 3.5 h, which is well within experimentally measured values but shorter than the median value of 9 h, assuming that
transcriptional regulators have shorter-than-average half-lives in the cell. †Promoter state change rates f and k are reported in fast and slow regimes. Fast promoter state changes are
assumed to occur due to TF-DNA unbinding or binding events, with rate parameters chosen based on values reported in Geertz et al. (2012) (see Supplement for details on parameter
derivation and unit conversion). Slow promoter state changes are thought to involve collective changes in epigenetic marks and rearrangement of chromatin.
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Mathematical Framework: Chemical
Master Equation
Chemical Master Equation
Stochastic dynamics for the above-described network motifs are
modeled by a Chemical Master Equation (CME) (alternatively
known as a discrete space, continuous time Markov Chain). The
instantaneous state of the system is given by the vector n, which
enumerates the mRNA copy numbers and promoter-states of
both genes, i.e., n = [nx, ny, Xij, Yij], where nx is the mRNA copy
number for gene X, Xij is the promoter state for gene X, and so
on. The CME gives the probability for the system to exist in a
given state at a given time, p(n,t). The CME can be written in
vector-matrix form as a linear system

dp(n, t)
dt

= Kp(n, t), (4)

where K is the reaction rate-matrix. Each off-diagonal element
Klm gives the rate of transitioning from state m to l (nonzero
values correspond to allowed state transitions with rates
according to reactions 1–3 above), while the diagonal elements
are the summed rates for exiting each state, Kll=−∑m≠lKml

Transition rates are computed according to standard stochastic
chemical kinetic rate laws (Gillespie (1977). If both types of
mRNA are assumed to exist in the cell in copy numbers that
never exceed M − 1, then the total size of the enumerated space
including all possible states is N = M × M × 4 × 4 (note that the
total number of mRNA copy number states includes the state of
0 copies, thus nx, ny ∈ {0, 1,…,M – 1}). The assumption that
mRNAs never exceed M − 1 is equivalent to assuming reflective
boundary conditions on the enumerated state-space. That is, it
assumes the propensity of reactions that lead to mRNA numbers
exceeding M − 1 is 0. This assumption is justified when M is
chosen to be sufficiently large compared to g/k (Chu et al., 2017).
We confirmed that the probability of mRNAs exceedingM-1 for
our parameter values is negligible (Supplement, Section 2.2) and
we further confirmed that increasing M (from 21, the value used
in calculations throughout the manuscript, to 36) had negligible
impact on quasipotential landscape shape and all subsequent
analysis of single cell RNA sequencing (scRNA-seq) data (Figure
S2). Note that an algorithm has been published recently that
provides rigorous error bounds on steady-state solutions to the
CME (Gupta et al., 2017) though we do not make use of the
algorithm here.

Computing Gene Pair Coexpression Landscapes
The complete steady state probability to find a cell in state n is
given by the vector p(n) = p(n, t ! ∞), which is obtained from
Eq. 4 using eigenvalue routines in numpy and scipy (McKinney,
2010; van der Walt et al., 2011). Each individual model requires
solution of an N-state system, where N is (e.g., assuming the
probability to have mRNA exceed 25 is negligible, then N =
10,816). Efficient computation of the landscapes over tens of
thousands of model variants/parameter combinations was
achieved using routines compiled with the numba library (Lam
et al., 2015) and parallelization using Python's multiprocessing
library to distribute the workload across the available cores.
Frontiers in Genetics | www.frontiersin.org 532
To mimic experimental scRNA-seq data, the probability is
projected onto the mRNA subspace by summation over all
promoter state combinations. We hereon define the gene pair
coexpression landscape as the steady-state probability to find a
cell with mRNA count numbers (nx, ny). More precisely, the
probability landscape is the vector p with each element pi giving
the steady-state probability for the cell to be found in state i with
the combination of mRNA counts (nx, ny) from genes X and Y,
and i ∈ 1,…,M2. Alternatively, the quasipotential landscape is
log-transformed, given by the vector f where fi = –ln(pi).

scRNA-Seq Data Acquisition, and
Landscape Estimation
Experimental data is obtained from the published scRNA-seq
measurements of Briggs et al . (2018) . The dataset
“Corrected_combined.annotated_counts.tsv” was used which
provides the normalized transcriptome profiles for Xenopus
tropicalis at single cell resolution for ten different stages of
embryonic development, with labeled cell types and parent cell
types. We analyzed 1,380 gene pairs, which were identified as
putative MLP pairs in Briggs et al. (2018), based on their
estimated changes in coexpression over the course of
deve lopment . Gene pairs were ident ified by the ir
developmental stage and lineage branch point in which
coexpression was maximal. Cell types from other stages were
then included in the lineage if they were a parent (preceding in
development) cell type or daughter (descendant later in
development) cell type. After selecting the desired gene pair
and cell/tissue/cluster type of interest, gene pair counts were
combined and summed resulting in ten gene pair landscapes, one
for each stage of development, in cells of the relevant lineage.

To directly compare computed coexpression landscapes with
experimental data, we extracted cell count matrices for each gene
pair, and where necessary, truncated to mRNA count numbers ≤
M − 1 (truncation eliminated less than 0.5% of cells in the data,
across all gene pairs and cell stages). This produces an M × M
(including zeros) count matrix that serves as a sampled estimator
of the steady-state distribution, ep(n), of the same size as
computed landscapes. In order to compute the sampled
quasipotential landscape, we use ef(n) = −lnep(n), after replacing
the not-observed count-combinations with a low but nonzero
estimate of these probabilities (since log of zero is undefined).
We use a general estimate of 1E-6 for nonobserved counts, both
because it is in line with the predictions of the theoretical models
for the low probability edges of the distributions, and because it is
less than the lowest estimable probability (i.e., observation of one
cell in a given matrix position, given total cell counts on the order
of 105, would correspond to an estimated probability of 1E-5).

Dimensionality Reduction for Landscape
Shape-Space
We apply Principal Component Analysis (PCA) to the
theoretically computed landscapes over the model sets to
achieve a reduced-dimension description of landscape shape.
All PCA training and dimensionality reduction was performed
using the decomposition module of the python package scikit
January 2020 | Volume 10 | Article 1387
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learn. Each unique model is treated as a replicate and the steady-
state probability pi (or alternatively, quasipotential fi) of each of
theM ×M possible mRNA copy-number states (nx, ny) is treated
as a feature.

The principal components obtained from the model set were
then used to fit the experimental data, where each landscape
from each gene-pair/stage is a replicate. Note that in our
application, we have opted to use a “theory-driven” analysis of
landscape shape-space, where the PCA training set consists of
theoretically computed probability (or quasipotential)
landscapes. The experiment-derived landscapes are then
projected into this theory-driven shape-space, which enables
linking of experimentally measured gene-pair landscapes with
possible model logic/parameter combinations that could produce
observed landscape shapes. Alternatively, a “data-driven”
analysis is possible, wherein the PCA training set consists of
experiment-derived landscapes. Such an analysis makes no
connection between theoretical models and experimental data,
but can still be useful in revealing shape-features present in
experimental data. We show results from data-driven analysis in
Supplement section 2.4 and Figure S5.

Clustering Of Developmental Landscape-
Shape Trajectories
By viewing the time-ordered coexpression landscapes of a given
gene pair in PCA space, termed “landscape-shape trajectories”,
one can gain insight into the genes' roles in development. The
trajectories were hierarchically clustered based on their geometric
distance in PCA space. More specifically, the fcluster method in
scikit-learn package was used in hierarchical clustering
(McKinney, 2010), and the geometric distance between
trajectories A and B were defined as the sum of the pair-wised
Euclidean distance between two corresponding stages, i.e.,

jjA − BjjF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m

i=1
o
n

j=1
(Ai,j − Bi,j)

2

s
(5)

where ||·||F is the Frobenius norm, A and B are two trajectories
represented by m by n matrices, m is the number of
developmental stages in single cell data, n is the number of
PCA components used in clustering.
RESULTS

Stochastic Two-Gene Network Models
Show A Variety Of Coexpression
Landscape Shapes, Distinguishable
by PCA
Our modeling framework enabled efficient computation of
coexpression landscapes resulting from discrete, stochastic
gene network models. This in turn enabled us to compute
landscapes for tens of thousands of parameter sets,
encompassing both various relative strengths and kinetics of
regulatory interactions, as well as different schemes of regulatory
logic among the two genes (see Methods). This approach
Frontiers in Genetics | www.frontiersin.org 633
afforded a comprehensive view of theoretically predicted
landscape shapes resulting from gene-gene interactions (within
the assumptions of the current model system).

We applied PCA to the computed probability landscapes for
Two-Gene Flex, in order to find a low-dimensional description of
their shapes (Figure 2). The first two PCA components
encompass 98% of total covariance, and all models fall within
a triangular region of this 2D subspace. The vertices of the
triangle correspond generally to landscapes with: (1) very low
expression of both genes (i.e., transcript levels of X/Y are lo/lo,
Figure 2E), (2) high simultaneous expression of both genes (hi/
hi, Figure 2C), and (3) expression of only one gene at a time (hi/
lo and lo/hi, Figure 2A). Landscapes located away from the
vertices are thus well-described by some linear combination of
these three shapes, consistent with PCA, and supported by visual
inspection. In all, the results reveal that two-gene interaction
motifs can encode a wide variety of patterns of coexpression,
including mixtures of all combinations of lo/lo, hi/hi and lo/hi,
hi/lo phenotypes (e.g,. Figure 2B). At the same time, this variety
of shapes is well-described by a small number of principal
components (which form a basis for what we term the “shape-
space”), and we hereon use the magnitudes along these
components as measures of landscape shape.

Shape Measures of Coexpression
Landscapes Distinguish Different Types of
Mutual Gene–Gene Interactions
We sought to understand how different regulatory motifs
contributed to landscape shape. Projecting the landscapes
arising from each network motif separately revealed distinctive
patterns (i.e., occupying distinct, but overlapping, regions of the
PCA triangle) (approximately 2,000 landscapes were computed
for each network motif, i.e., ∼2,000 models that share the
regulatory logic but have different kinetic parameters). We
grouped all motifs according to their region of occupancy
within the PCA triangle, and discovered logical consistency
among the groups (see Figure 3). For example, all motifs with
some type of mutual activation were found to co-occupy a region
of PCA shape-space in the lower part of the triangle (3A). This
result is consistent with the intuition that motifs with mutual
activation cannot produce the apparent bistability seen in
landscapes at the hi/lo-lo/hi vertex of the triangle. The other
three motif groupings include motifs with some type of mutual
repression, motifs with no inter-gene interactions, and
incoherent motifs with dual-interactions (when the regulator
bound by itself has the opposite effect of the regulator bound in
combination with the other TF). Note that 2 of the 16 logical
combinations of promoter binding-states in the Two-Gene Flex
models are not included here, since they effectively encode no
gene-gene interactions (the “always on” or “always off” logic, {ghi,
ghi, ghi, ghi} or{glo, glo, glo, glo}). Note that here we assess all kinetic
parameter combinations associated to one regulatory motif;
these parameters tune the strength of different interactions. As
such, the analysis of Figure 3 assumes fixed network topologies
but variable weights on network edges, accounting for the
overlap between different motifs. These results indicate that
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landscape shape can to some extent be used to distinguish
regulatory interactions between pairs of genes, despite variable
and/or unknown kinetics governing the interactions.

Commonly Used Pairwise Metrics Are
Relatively Insensitive to Coexpression
Landscape Shape
In order to analyze how previously applied measures of gene-
gene interactions align with landscape shape, we computed a set
of metrics for each model landscape and visualized the resultant
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values projected onto the PCA subspace. We chose four metrics:
Shannon Entropy, Pearson Correlation Coefficient, Mutual
Information, and a Coexpression Index (see Figure 4, note
Shannon Entropy is visualized also in Figures 2 and 3). The
first three of these are obtained directly from the computed
bivariate probability distributions according to standard
definitions; the Coexpression Index has been used previously
(Briggs et al., 2018) and is given by the conditional probability to
find cells with nonzero counts of both mRNA x and y
(conditioned on the cells having nonzero counts of at least one
FIGURE 2 | Shape-space of simulated Two-Gene Flex coexpression landscapes analyzed by Principal Component Analysis (PCA). Coexpression landscapes were
computed for 34,097 unique two-gene stochastic network models with varying regulatory interactions and kinetic rate parameters (see Model schematic in Figure
1). (Top) All model landscapes projected onto the first two principal components. Each dot corresponds to one model, colored by the model's Shannon Entropy.
(Bottom) Representative quasipotential landscapes f(n) (see Methods) of individual models from different regions of PCA component-space. color of each discrete
grid space in {x,y} corresponds to computed probability (in log-scale) to find a single cell with the corresponding numbers of {x,y} transcripts. Each landscape is
labeled (A–F) to indicate the corresponding point where it appears in PCA space above.
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of genes X or Y). Here, for a given model j, we derive this metric
from the probability landscape p over count-states i by:

mj,Coex : Index =
Si∈nx>0∩ny>0pi
Si∈nx>0∪ny>0pi

: (6)

We estimate the value of each metric as a function of
landscape shape (that is, we estimate the function m(c1, c2),
wherem is a given metric and (c1, c2) are the coordinate values in
PCA components 1 and 2). For each of the four metrics, we
estimate and visualize this function by first computing each of
the four metrics from the probability landscapes p(nx, ny)
corresponding to each of the 34,097 models. We then project
the models onto the first two principal components, with a given
metric serving as the color scale (e.g., as shown with Shannon
Entropy, Figure 2 top). The continuous surface m(c1, c2) is then
estimated by local averaging and interpolation over the
computed results for each individual model landscape with the
tricontourf routine from the matplotlib package. We found that
each metric aligns in distinctive, and generally intuitive, ways
with the PCA landscape shape-space. High or low values of each
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metric were to some extent localized to particular sub-regions of
the triangle, and thus could be understood to be arising from
landscapes of similar shape. However, numerous examples can
also be found of models colocated (or nearly colocated) in the
triangle but having different values of a given metric, so the
functional dependence m(c1, c2) is noisy.

For Shannon entropy, the highest values are generally seen
near the hi/hi vertex of the triangle, while the lowest values are
seen near the lo/lo vertex. This reflects the amount of disorder in
the hi/hi state of expression, in which a broad range of count-
values are possible for each gene, whereas in the in the lo/lo
vertex, count values are always zero or near-zero. The noise in
expression levels can be quantified more precisely for the subset
of models in the “slow-binding” regime (h, f << g, k). In this
parameter regime, cells show distinctive high (“hi”) and/or low
(“lo”) expression states with mean counts ghi/k and glo/k,
respectively, and the disorder in each expression state can be
quantified as Poisson birth/death noise (Al-Radhawi et al., 2019),
such that variance scales linearly with the expression rate g.
Sources of disorder contributing to higher values of Shannon
Entropy include both noisy expression within a given phenotype
FIGURE 3 | Coexpression landscapes computed from the Two-Gene Flex models show distinctive shapes that depend on the regulatory logic of gene-gene
interactions. The Two-Gene Flex model encodes 16 logical combinations (24) of gene-gene interactions, corresponding to four possible promoter-binding states and
two possible levels of transcription activity (low and high). These 16 model variants can be grouped into motif classes: (A) Models with mutual activation. (B) Models
with mutual repression. (C) No mutual gene-gene interactions. (D) “Incoherent” models, where the combinatorial-binding state has the opposite behavior of both of
the singly bound states (see text). Within each motif class, different kinetic parameters serve to modify the relative strength of interactions (i.e., different weights on
the edges). Each motif class occupies a distinct, but overlapping, region of the shape-space (with the exception of the Incoherent motif, which can reach all areas of
the shape-space).
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state and the ability for cells to exist in multiple different
phenotype states (i.e., the breadth of a valley in the potential
landscape, and the number of different valleys). Notably, in the
parameter regimes studied here, the highest Shannon Entropy
models are single-phenotype (hi/hi), indicating that the noise in
this one state contributes more disorder than does noise from
multiple phenotype-states. As such, models with two or more
accessible states have intermediate values of Shannon Entropy.

A strongly negative correlation coefficient between the two
genes is found near the lo/hi-hi/lo vertex of the triangle, which is
occupied by models showing bistability (cells can express one
gene or the other, but not both simultaneously) resulting from
mutual repression in the network motif. Landscapes with high
positive correlation tend to be those that combine expression in
the hi/hi and lo/lo quadrants of the two dimensional subspace
(see, e.g., 4B and 2D), resulting from mutual activation in the
network motif. Mutual Information aligns somewhat with large
absolute values of Correlation Coefficients, but cannot
distinguish high positive from high negative correlation.
Mutual Information values near zero colocalize with
Correlation Coefficients near zero. This arc-shaped region
bisecting the triangle also overlaps with the models lacking
interactions between the two genes (see Figure 3C).

The Coexpression Index shows the smoothest functional
dependence on PCA components (c1, c2). Of note, the model-
subspace of high coexpression is not fully overlapping with the
subspace of high correlation coefficients. This reflects the fact
that high simultaneous expression occurs in both genes in an
Frontiers in Genetics | www.frontiersin.org 936
uncorrelated manner, since the noise arises from aforementioned
birth-death noise of mRNA transcription/degradation.

None of the four metrics are by themselves able to fully
differentiate between landscape shapes. For example, model
landscapes with similarly high values of Mutual Information
include both hi/lo-lo/hi landscapes from mutual repression
motifs and hi/hi-lo/lo landscapes from mutual activation
motifs. (see, e.g., Figures 4A, B). Model landscapes with
similar intermediate values of Coexpression Index also
encompass a variety of landscape shapes, including some that
arise from different network motifs (see, e.g., Figures 4C, D).
Taken together, these results show that these four single metrics
are not reliable determinants of landscape shape. They
furthermore show that a given value for commonly used
measures, as obtained from experimental data, can potentially
arise from a variety of regulatory scenarios.

Stochastic Theory-Based Analysis of
Coexpression Landscapes From Single-
Cell Experiments Reveals Distinct
Developmental “Landscape Shape”
Trajectories
We applied the landscape shape analysis framework, developed
above on the basis of theoretical models, to publicly available
single cell RNA sequencing data in vertebrate development. We
applied the analysis to putative MLP gene pairs in Xenopus
tropicalis development collected at ten stages of embryonic
development (Stages 8,10,11,12,13,14,16,18,20,22) (Briggs et al.,
FIGURE 4 | Comparison of four standard metrics of gene-gene coexpression with landscape shape. Metrics include: (A) Shannon Entropy. (B) Correlation Coefficient. (C)
Mutual Information. (D)Coexpression Index (see text for details). Each metric was computed for each computed model landscape, using the same set of 34,097 Two-Gene
Flex models as in Figures 2 and 3. Contour plots show each metric as a function of principal components 1 and 2, obtained by local averaging and interpolation over the
results from individual model landscapes. Taken together with Figure 2, the results show how these metrics correspond with landscape shape.
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2018). To carry out the analysis, we first analyzed the landscape
shape-space for a restricted set of theoretical models, which
encode only the MISA interaction motif. The MISA motif has
been previously discovered to operate at critical cell-fate branch
points (Graf and Enver, 2009) and has potential to enable both
antagonistic expression and coexpression of genes in individual
cells (depending on kinetic parameters), as is characteristic of
MLP gene-pairs. We first generated a MISA-model training set
(Figure 5) and the Two-Gene Flex-model training set (Figure 2).
For MISA, we utilized quasipotential landscapes, rather than
probability landscapes, in order to increase sensitivity to rarer
cell-states (i.e., weaker landscape features). We furthermore
restricted the kinetic parameters h, f to the fast (adiabatic)
regime (see Table 1), in order to use the models to analyze
time-resolved data. That is, the experiments measure embryos at
different developmental stages, which are roughly 1–3 h apart in
time. We compare the steady-state landscapes from stochastic
models to the experiment-derived landscapes at different time
points by applying a quasi-steady-state assumption: we assume
that the promoter-binding states (which govern gene activity)
reach equilibrium faster than the progression of developmental
stage, which is valid only in the adiabatic regime. Despite these
modifications to the model training set, the projection of models
onto the PCA subspace for MISA (Figure 5) shows qualitative
similarity to that of Two-Gene Flex [(Figure 2), including
delineation of a subregion of a triangle (note that the triangle
is inverted between the two figures, which is an arbitrary result of
eigenvector sign invariance]. However, antagonistic expression
of the two genes is a stronger feature across models in the MISA
training set, such that the hi/hi vertex of the triangle for MISA
still shows considerable probability for cells to antagonistically
express one gene or the other (Figure 5F).

We extracted two-gene coexpression quasipotential
landscapes corresponding to distinct developmental stages
from the dataset of Briggs et al. We then projected the
landscapes onto the PCA subspace, and thereby derived
developmental trajectories through landscape shape-space. By
way of illustration, we first present developmental trajectories for
three representative gene pairs (Figure 6). Gata5 and pax8 were
identified (in Briggs et al.) as being antagonistically expressed
within the intermediate mesoderm lineage, in cardiac mesoderm
and pronephric mesenchyme cell subtypes, respectively. In
contrast, lhx1 and pax8 were shown to coexpress in cells of the
pronephric mesenchyme. Finally, the gene pair sox2 and
brachyury (t) has been identified as influencing the cell fate
decision between the neural plate and the dorsal marginal zone
(Wardle and Smith, 2004), and was identified as presenting MLP
behavior, characterized by high coexpression at some stage of
development, followed by antagonistic expression at a later stage
(Briggs et al., 2018). We found that these three gene pairs showed
distinctive trajectories through PCA subspace. All of the genes
showed low expression early in development (stage 8) and their
landscapes were colocated near the lo/lo vertex in the model
subspace. Their trajectories then diverged: gata5-pax8 travels
along the bistable edge of the triangle, increasing expression of
both genes over the course of development, but in largely
Frontiers in Genetics | www.frontiersin.org 1037
nonoverlapping subpopulations of cells. In contrast, lhx1-pax8
shows strong coexpression starting at stage 14, and continues
thereafter to move toward increasing values of PCA component
2, which coincides with increasing coexpression. (lhx1-pax8
landscapes for some of the measured developmental stages fall
slightly outside the area reached by MISA models in the training
set, suggesting that the interaction is likely not well described by
a MISA motif). Finally, sox2-t shows a cyclic pattern in the shape
subspace, where landscapes move towards hi/hi, and then back
towards the antagonistic lo/hi-hi/lo region, landing in a similar
area to gata5-pax8. Relating these landscape-shape dynamics to
the stochastic MISA model parameters suggests that the gene-
pairs undergo changes in the relative balance of mutual
inhibition versus self-activation as development progresses (see
Figure S1).

The experiment-derived developmental trajectories can be
further understood by considering the features extracted by
individual (by definition orthogonal) PCA components.
Visualization of the first three PCA eigenvectors (Figure 7)
reveals that the first component (69.3% of covariance across the
training set) can be summarized as separating landscapes with more
or less expression overall, regardless of whether expression occurs in
individual genes or both simultaneously. By contrast, the second
component (15.6% of covariance) separates landscapes with
coexpression versus antagonistic expression. The third component
(6.8% of covariance) distinguishes landscapes with asymmetry
between the two genes (subsequent components that describe less
of the covariance displayed more complex shapes, and are not
shown here). Comparison of the PCA scores versus developmental
stage (Figure 7, right) to the experiment-derived landscapes of
Figure 6 confirms visually that the PCA components extract the
above-described features. For example, all three gene pairs show
varying degrees of asymmetry (imbalance in expression levels of the
two genes). Gata5-pax8 shows generally increasing positive
amplitude of asymmetry, corresponding to stronger pax8
expression. At later stages, the other two gene-pairs show
asymmetry in the other direction, corresponding to negative
amplitude in component 3. Sox2-t exhibits a switch in asymmetry
between stage 10 (t > sox2) and later stages (sox2 > t).

Developmental trajectories through the coexpression shape-
space were compiled for 1,380 gene pairs (putative MLP pairs in
Xenopus tropicalis identified by Briggs et al., 2018). By applying
the developmental trajectory clustering procedure described in
Methods, we found that the trajectories of multiple gene pairs
across different lineages display conserved patterns of
coexpression dynamics. Twenty-four clusters were identified
(see Supplemental Figures S3 and S4), four of which are
shown in Figure 8; these clusters are chosen as representative
of the different types of dynamic patterns obtained. The clusters
display a variety of behaviors. For example, the cluster of Figure
8B shows behavior that is consistent with MLP, i.e., genes are
first increasingly coexpressed in single cells, followed by a switch
towards antagonistic expression, similar to the cycle in PCA
space delineated by sox2-t in Figure 6. Surprisingly, we also
observed clusters that show “inverted MLP” behavior (Figure
8A) where the genes initially turn on in nonoverlapping subsets
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of cells (i.e., increasing antagonism), but later show increasing
coexpression in single cells. A number of the analyzed gene pairs
showed generally antagonistic expression (Figure 8C),
reminiscent of gata5-pax8. Others showed behavior consistent
with the dynamics of MLP (i.e., first coexpression, later
antagonistic expression), but with coexpression being only
weakly detectable (Figure 8D). The gene pairs represented in
these clusters include (but are not limited to) regulators of
embryonic development including zic3, hoxc10, and neurog1.
Frontiers in Genetics | www.frontiersin.org 1138
The full list of clusters and their associated gene pairs are listed in
the Supplementary File 1.
DISCUSSION

In this work, we comprehensively studied theoretically predicted
single-cell gene-gene coexpression landscapes based on a class of
stochastic gene regulation models, and applied the theory to
FIGURE 5 | Shape-space of simulated MISA coexpression landscapes analyzed by Principal Component Analysis (PCA). Coexpression landscapes were computed
for 22,718 unique two-gene stochastic network models with Mutual Inhibition/Self-Activation (MISA) logic and varying kinetic rate parameters. Promoter-state change
rates were restricted to the fast regime (see Table 1). (Top) All model landscapes projected onto the first two principal components. Each dot corresponds to one
model, colored by the model's Shannon Entropy. (Bottom) Representative quasipotential landscapes f(n) (see Text) of individual models from different regions of PCA
component-space. Color of each discrete grid space in {x, y} corresponds to computed probability (in log-scale) to find a single cell with the corresponding numbers
of {x,y} transcripts. (Analogous to Figure 2). Each landscape is labeled (A–F) to indicate the corresponding point where it appears in PCA space above.
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analyze two-gene coexpression landscapes from single cell
measurements. From a training set of tens of thousands of
computed, theoretical landscapes, we identify Principal
Components of landscape covariance that serve as simple
“fingerprints” of landscape shape and reflect underlying gene-
Frontiers in Genetics | www.frontiersin.org 1239
gene interaction dynamics. We then apply the theoretically
derived framework to scRNA-seq data from vertebrate
development. In so doing, we uncover distinctive and novel
developmental trajectories of gene-gene coexpression.
Specifically, our framework reveals a nuanced picture of
FIGURE 6 | Landscape-shape trajectories of three representative gene pairs from scRNA-seq measurements in Xenopus tropicalis embryonic development. (Top)
Developmental trajectories of three different gene pairs, plotted in principal component-space. Stages of interest shown below are labeled with the corresponding
stage. Note the three stage 8 points are overlapping near the origin as a result of low expression. (Bottom) Coexpression quasipotential landscapes extracted from
experimental measurements for the three gene pairs at different labeled stages of embryonic development (white numbers indicate developmental stage). The
experiment-derived landscapes were trained on the principal components generated from the simulated MISA dataset of Figure 5. Principal component 1
corresponds to overall level of expression, while component 2 separates antagonistic vs. coexpression (see Figure 7). The landscape of gata5-pax8 (blue) shows
increasing antagonistic expression, consistent with movement along the lower left edge of the triangle in Principal Component Analysis (PCA) shape-space. Sox2-t
(red) shows high coexpression at stage 10, followed by later antagonistic expression, corresponding to a partial loop through PCA space, consistent with
Multilineage Priming behavior. Lhx1-pax8 (orange) shows consistently increasing coexpression, corresponding to a mostly steady increase in principal components 1
and 2. (Data from Briggs et al., 2018).
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multilineage priming, where the relative balance between
expression of gene pairs simultaneously (in the same cells)
versus antagonistically (in different cells) within a lineage
shows complex dynamics during development, for example,
revealing that simultaneous coexpression occurs either earlier
or later than antagonism. Based on the results, we propose that
the framework developed here can be generalized to other single
cell datasets and stochastic network models to analyze the
Frontiers in Genetics | www.frontiersin.org 1340
evolution of gene-gene regulatory interactions over the course
of development.

The theoretical framework applied here—discrete, stochastic
reaction kinetic modelling—is well-suited to aid interpretation of
single cell measurements: first, because it inherently captures cell
population heterogeneity and second, because of the direct
correspondence between the computed quantities (e.g.,
probability to find a given number of mRNAs in a cell) and
FIGURE 7 | Principal components of landscape shape features. (Left Column) The reshaped Principal Component Analysis (PCA) principal axes in feature space
which represent the maximum variance in the data, specifically which features of the coexpression landscape that each component is accounting for. (Right Column)
Magnitude or positive/negative value shift in observed variance for the respective component for each gene pair, versus developmental stage. Each component
summarizes a landscape shape features: (Top Row) The overall amount of gene expression, (Middle Row) Antagonistic Expression vs. Coexpression of the two
genes, and (Bottom Row) degree of asymmetric expression between the two genes.
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experimentally measured transcript counts in scRNA-seq. The
theoretical models can partially reproduce true cell population
heterogeneity, but also neglect many sources of noise, both
biological and technical. We employ models that treat intrinsic
noise but neglect sources of persistent cell-to-cell variability (i.e.,
extrinsic noise) (Swain et al., 2002), which is known to contribute
to noise in gene expression. For example, one source of extrinsic
noise would be asynchronicity between cells, where individual
cells might be at different stages of progression in development.
Here, we opted to use a relatively simplistic model framework
(i.e., no additional noise assumptions beyond intrinsic noise of
biomolecular interactions, relatively few reactions describing
molecular mechanisms of gene regulation, etc.) to minimize
the number of model parameters while still enabling study of a
variety of “rules” for gene regulatory logic. The framework
presented here could be expanded in the future by integration
of additional types of mechanistic assumptions and noise sources
in the stochastic models.

The models also neglect technical noise/measurement errors
arising from experiments (Grün et al., 2014). For example, scRNA-
seq measurements face a well-known technical issue of drop-outs
(Kharchenko et al., 2014), which we have not included in our
modeling. Future efforts may improve the presented modeling
framework by inclusion of these additional sources of noise, or by
additional data-processing steps for imputation of missing data
points (Gong et al., 2018). However, such an approach would also
present challenges by necessarily introducing additional
assumptions about cell population heterogeneity, which is still not
fully understood. Given the danger of false signals (Andrews and
Hemberg, 2019),weoptedhere toutilizeminimal dataprocessing in
comparing our theoretical results to a public dataset. We also note
Frontiers in Genetics | www.frontiersin.org 1441
that the discrete stochastic modeling framework advanced in this
work has potential to shed new light on the drop-outs issue: a
relatively large proportion of “zeros” arises naturally from discrete
stochastic models, depending on the regulatory interactions among
genes, suggesting that perhaps biological variability plays a larger
role in producing dropouts than has previously been supposed.
Overall, despite the lack of additional biological/technical noise
sources in our models, we note that our computed landscapes
qualitatively reproduce the noise characteristics of the scRNA-seq
measurements, in that they showed similarly broad distributions of
coexpression. Thus we conclude that the simplistic models
employed here are sufficient for the current application, which
focusedon characterization of coexpression landscape shape and its
evolution in development, but we also foresee that incorporation of
additional noise sources in the model might improve the practical
utility of our proposed coexpression-shape-based analysis.

We focused here on two-gene models and pairwise interactions,
because (1) certain gene-pairs are known to play a critical role in
development (Graf and Enver, 2009) (2) the edges (pairwise
interactions) are the elemental units or building blocks of larger
regulatory networks.However, the focus on pairwise interactions has
potential drawbacks: it does not elucidate how gene-pair interactions
aremodifiedwhen embedded in a larger network. In the same vein, it
does not differentiate between direct or indirect interactions between
genes (e.g., by direct transcriptional regulation versus molecular
intermediaries). In principle, the framework presented here could
be expanded to treat “3-body” (or higher order) interactions among
genes, though this presents several computational challenges.
For example, solution of the CME becomes intractable already
for 3-gene networks, such that advanced approximation
methods (Zhang and Wolynes, 2014) or more costly simulations
FIGURE 8 | Landscape shape trajectory clustering reveals conserved patterns of gene-pair coexpression dynamics during development. Four representative
trajectory clusters showing distinct dynamics are presented (full list of 24 clusters and associated gene pairs in Supplement). Gene pairs in cluster (A) display
behavior of an “inverted MLP”: first undergoing increasing antagonistic expression which then switches to increasing coexpression around stage 13. Gene pairs in
cluster (B) follow the typical MLP behavior, with highest coexpression taking place around stage 10 followed by antagonistic expression at later stages. Cluster (C)
shows consistent antagonistic expression (negative component 2), with nonmonotonic overall expression (a switch-back in component 1 around stage 12). (D)
shows cyclic behavior similar to (B), with highest coexpression at stage 12, but overall expression and relative amount of coexpression is lower.
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(Tse et al., 2018) become necessary. Nevertheless, expansion of the
approach tohigher-order interactions is feasible, and recentwork has
revealed how such as approach might proceed, for example, by
incorporating developments in multivariate information measures
(Chan et al., 2017).

In this work, linear PCA was used to identify shape features of
gene-pair coexpression landscapes, and this approach was useful
for separating landscapes with, e.g., more simultaneous
coexpression versus more antagonistic expression for a given
gene pair. Another possible extension of the method in the future
could be to test alternative, nonlinear dimensionality reduction
strategies for potential improvements in classifying coexpression
landscapes based on desired features.
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Recurrence and metastasis have been regarded as two of the greatest obstacles to
cancer therapy. Cancer stem cells (CSCs) contribute to cancer development, with the
distinctive features of recurrence and resistance to popular treatments such as drugs and
chemotherapy. In addition, recent discoveries suggest that the epithelial mesenchymal
transition (EMT) is an essential process in normal embryogenesis and tissue repair, as well
as being a required step in cancer metastasis. Although there are many indications of the
connections between metastasis and stem cells, these have often been studied
separately or at most bi-laterally, not in an integrated way. In this study, we aimed to
explore the global mechanisms and interrelationships among cancer, development, and
metastasis, which are currently poorly understood. First, we constructed a core gene
regulatory network containing specific genes and microRNAs of CSCs, EMT, and cancer.
We uncovered seven distinct states emerging from the underlying landscape, denoted
normal, premalignant, cancer, stem cell, CSC, lesion, and hyperplasia. Given the
biological definition of each state, we also discuss the metastasis ability of each state.
We show how and which types of cells can be transformed to a cancer state, and the
connections among cancer, CSCs, and EMT. The barrier height and flux of the kinetic
paths are explored to quantify how and which cells switch stochastically between the
states. Our landscape model provides a quantitative approach to reveal the global
mechanisms of cancer, development, and metastasis.

Keywords: landscape, kinetic path, cancer stem cell, epithelial mesenchymal transition, differentiation, metastasis
INTRODUCTION

Cell phenotypes change during the development of cellular differentiation (Wang et al., 2011; Xu
et al., 2014). Differentiation starts from an oosperm, which develops into a complex biont system
and continues into adulthood as stem cells (SCs) divide and generate differentiated daughter cells
during tissue repair and cell regeneration (Sell, 2004). Induced pluripotent SCs (iPS) provide an
opportunity for therapeutic use (Takahashi et al., 2007).
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Adult cells were reprogrammed into pluripotent SCs in 2006
(Takahashi and Yamanaka, 2006). This was a significant step in
SC and regenerative biology, as the cell type switching could skip
many intermediate steps. This lineage reprogramming
technology may also have profound implications for
cancer biology.

Cancer is one of the most deadly diseases in humans. Studies
show that there are multiple factors associated with recurrence
and metastasis. Moreover, cancer is fatal mainly owing to
metastasis (Cowin et al., 2005). Many studies have focused on
the genetic origins of cancer (Muller and Vousden, 2013;
Martincorena and Campbell, 2015). The accumulation of
mutations leads to malignant transformation, which has been
described as a disease of clonal evolution. Through such
mutation and selection, cells acquire the hallmarks of cancer
(Lynch et al., 1998; Hanahan and Weinberg, 2000). Some cells
may acquire hypoxic and fast-growing characteristics, or may
develop new blood vessels and so on. This is a widely accepted
aspect of the generation of cancer. On the other hand, many
observations have demonstrated that cancer could be thought of
as an intrinsic state which emerges from underlying gene
regulation networks (Kauffman, 1971; Spano et al., 2012),
which control a series of cellular activities and biological
processes. The network can provide regulatory instructions
which may affect early events of cancer (Blancafort et al.,
2013). These network environmental and epigenetic effects can
result in not only silencing of tumor suppressors but also
reactivation of the silenced regions, which could prime
subsequent events in the development of cancer (Liu et al.,
2008; Rodrguez-Paredes and Esteller, 2011).

Cancer SCs (CSCs) can be defined as cells with the
characteristics of cancerousness and stemness (Tang, 2012).
Although cancer cells might be killed during chemotherapy or
immune surveillance, CSCs can survive as “seeds” of the cancer
(Hanahan and Coussens, 2012; Kreso et al., 2013), explaining the
recurrence of cancer after treatment. Although the CSC theory
was reported as early as 1952 (Hewitt, 1952), its importance has
only recently been understood. CSCs have been shown to serve
as the basis of cancer development, maintenance, metastasis, and
recurrence (Dragu et al., 2015). In general, the differentiation and
development process is due to primary SCs, and reprogramming
is vice versa; this is important in tissue reengineering. Cellular
reprogramming involves iPS, indicating the possibility of cell fate
switching and transformation (Kondo and Raff., 2000). However,
reprogramming often results in a cancer state, resulting in the
transformed progenitors acquiring self-renewal and cancerous
characteristics (Pavlova and Thompson, 2016). Furthermore,
CSCs facilitate the primary tumor cells to migrate from one
location to another, which is a key step in the metastatic cascade.

Epithelial mesenchymal transition (EMT) is an essential
process through which most adult tissues maintain their
migratory capacity in normal embryogenesis, wound healing,
and tissue repair (Morel et al., 2012). CSCs can also implant into
another organ through the EMT process (Wang et al., 2015).
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In EMT, a set of transcription factors (TFs) induce the early steps
of metastasis (Scheel and Weinberg, 2012). Through EMT-TFs,
differentiated epithelial cells can obtain mesenchymal traits to
colonize foreign tissues and create new tumor sites in distant
organs. Moreover, the EMT process is also the means by which
non-SCs are transformed into SC states. Experiments have
shown that inducing an EMT process during normal
mammary epithelial cell differentiation can cause generation of
mammary epithelial stem-like cells (Mani et al., 2008). This kind
of experimental phenomena can be observed in both normal and
cancerous tissues (Morel et al., 2008). Thereby, EMT is an
important process which not only contributes to creating
metastatic CSCs but also has a close relationship with CSCs
(Chaffer et al., 2011).

Despite many results indicating the connections between
metastasis and CSCs, or cancer and differentiation and
development (Li and Wang, 2015), cancer, metastasis, and
differentiation and development are rarely studied in an
integrated way. Here, we aim to explore the connections
among cancer, differentiation and development, and metastasis
in a systematic and quantitative way. We start by constructing a
core gene regulation network. In order to characterize the key
points of the dynamic process, some specific genes and
microRNAs of cancer, CSC, and EMT are included. In this
work, we quantify the underlying landscape of cancer,
metastasis, and differentiation and development. Furthermore,
we include regulatory binding and unbinding information to
make the model more precise. Seven states emerge from the
landscape, which are quantified by the basins of attractions
representing the normal, premalignant, cancer, SC, CSC,
lesion, and hyperplasia states. In certain previous studies (Yu
and Wang, 2016), normal, premalignant and cancer states were
explored. In another model (Li andWang, 2015), normal, cancer,
CSC, and stem cell states were found. The lesion and hyperplasia
states were not found in the previous theoretical studies but were
observed in the experiments. They are predicted in our studies.
We define these states by gene expression levels and biological
significance. We also discuss the metastatic ability of these states.
There are three pathways from the normal to the cancer state.
Two kinetic paths which connect CSC state show the formation
of cancer SCs from two sources. The optimal paths and barrier
heights between the states illustrate how and which cells will be
able to transform into the cancer state, and why cancer is so
difficult to cure. This leads to a quantitative understanding of the
degree of difficulty in curing the cancer. Moreover, the quantified
landscape provides a portrait of the dynamic interrelationships
among the biological processes of CSCs, EMT, and cancer.
Finally, we use global sensitivity analysis to explore which
regulatory process is more relevant to cancer therapy, which
may provide guidance for future clinical experiments. This work
helps to elucidate the origins of cancer, as well as the processes of
differentiation and development in cancer and metastasis. This
has clear clinical significance in understanding the role of CSCs
in treatment response, therapeutic resistance, and cancer relapse.
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RESULTS AND DISCUSSION

Model Construction
To emphasize the characteristics of CSCs, EMT, and cancer, a
core gene regulatory network was constructed to cover specific
genes and microRNAs of the three aspects, as shown in Figure 1.
MDM2 is an oncogene of cancer, P53 is a well-known tumor
suppressor gene (Yu and Wang, 2016), ZEB is an EMT activator
gene which suppresses the stemness-inhibition of a microRNA
(mir-200) (Wellner et al., 2009), OCT4 is an essential gene which
mediates phenotype self-renewal and stemness (Kumar et al.,
2012), and mir-145 and mir-200 are two important microRNAs
with vital roles in both CSC and EMT regulation (Liu et al.,
2015). The arrows represent activation and the short bars
represent repression. The details of the regulatory network and
gene function can be seen in Tables S1 and S2 in the
Supporting Information.

The network includes ZEB−|mir-145−|OCT4 and OCT4−|
mir-145−|ZEB regulation, indicating that ZEB effectively
activates (!) OCT4, while OCT4 effectively activates (!)
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ZEB. Therefore, stemness and metastasis promote each other:
stemness can induce metastasis, and metastasis can also induce
stemness. The regulation of OCT4−|mir-145−|MDM2 and
MDM2−|P53−|OCT4 and ZEB−|mir-145−|MDM2 indicates
that OCT4 effectively activates (!) MDM2, while MDM2
effectively activates (MDM2!) OCT4, and ZEB effectively
activates (ZEB!) MDM2. MDM2 is known to be an
oncogene. Therefore, stemness and metastasis can induce
cancer, and cancer can also induce stemness. The regulation of
ZEB−|mir-145−|MDM2 and MDM2−|P53!mir145−|ZEB also
shows that ZEB effectively activates (!) MDM2, and MDM2
effectively activates (!) ZEB. Thus, metastasis and cancer can
promote each other. From the network wiring, we can gain
certain information about the reinforcing relationships among
stemness, cancer, and metastasis.

Methods
In our previous study (Yu and Wang, 2016), as the strong
interaction, proteins and genes are treated as the same identity.
We used differential equations to describe the gene regulatory
network. The parameters are activation, repression and
degradation items which describe the activation regulation rate,
repression regulation rate and self-degradation rate, respectively.
In this study, we use the chemical reactions to describe not only
the protein concentration dynamics but also explicitly the
underlying gene regulations (protein binding to the genes) and
defined a set of rate parameters for each reaction to describe the
gene regulatory process, which is stochastic. The underlying
chemical reactions of gene regulation can be described as follows:

G0ab
1 + (n + 1)P1⇌

h1

f1
G1ab
1 + (n)P1 (1)

Ga0b
1 + (n + 2)P2⇌

h2

f2
Ga1b
1 + (n)P2 (2)

Gab0
1 + (n + 4)P3⇌

h3

f3
Gab1
1 + (n)P3 (3)

(n)G1⇌
g

k
(n + 1)G1, (4)

where G1 represents a gene with three binding sites, 0
indicates the binding site which is unoccupied, and 1 indicates
the binding site which is occupied. In the chemical reactions, the
first binding site of G1 can be occupied by a monomer, the second
binding site of G1 can be occupied by a dimer, and the third
binding site can be occupied by a tetramer. Pi (i = 1,2,3)
represents the type of the protein regulator. The parameter in
front of the protein, Pi, represents its molecular number. The
parameter g represents the protein synthesis rate and k
represents the protein degradation rate; h represents the
binding rate and f is the unbinding rate of regulatory proteins
to the target genes.

In Figure 1, we take gene regulation of P53 and OCT4 as an
example to illustrate the regulatory process. The red rectangles
FIGURE 1 | Diagram of the core gene regulatory network containing six
nodes and 16 regulations (seven activations and nine repressions; arrows
represent activating regulations, short bars represent repressing regulations).
Diamond-shaped nodes represent microRNAs. Round orange nodes
represent specific cancer genes, violet node represents the specific EMT
gene, blue represents the specific CSC gene. Parameters: k1 = k2 = 1,
la = 8, lr = 0.5, ha = 2, hr = 1.875, g0 = 50, f = k ∗ w.
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indicate activated binding sites for the genes, while the blue
rectangles are repressed binding sites. P53 and OCT4 have
protein synthesis rates of g1 and g2, and protein degradation rates
of k1 and k2, respectively. The P53 and OCT4 proteins have binding
rates of h1a (a represents activation) and h2a to their own activated
binding sites, and unbinding rates of f1a and f2a from the binding
sites. The P53 protein has a rate of h1r (r represents repression) for
binding to the repressing binding site of gene OCT4, and a rate of
f1r for unbinding from the binding site of OCT4.

For the first reaction (monomer binding site), the binding rate is
given as h1 = h1n1. For the second reaction (dimer binding site), the
binding rate is given as h1 = h1n2 (n2 −1)/2. For the third reaction
(tetramer binding site), the binding rate is given as h1 = h1n3(n3−1)
(n3−2)(n3−3)/6. The protein synthesis rate is influenced by the
regulated molecular number and regulated type. There are two
regulated types: binding state and unbinding state. If the gene has n
binding sites, it can give rise to 2n synthesis rates. The synthesis rate
can be increased by a factor of la (a represents activation) or
decreased by a factor of lr (r represents repression). If there are two
binding sites, one for activation and the other for repression, the
four synthesis rates are set as: g00, g01 = g00la, g10 = g00lr, and
g11 = g00lalr. We define the equilibrium constantXeq = f/h and the
adiabatic parameterw= f/k. The latter is used toquantify the ratio of
the unbinding rate of a protein to the gene and its degradation rate.
If the value of w is large, the regulatory processes are relatively fast
comparedwith synthesis anddegradation; this is sometimes termed
adiabatic. If the value ofw is small, itmeans the regulatoryprocesses
are relatively slow. In thismodel,we set theparametersk=1, g0=50,
la= 8,lr= 0.5, ha= 2, and hr= 1.875. If the protein switches on and
off to the target gene relatively slowly, then the regulation process is
non-adiabatic. In this work, we mainly focus on fast binding and
unbinding, that is, the adiabatic case (w = 1000).

In the adiabatic case, the stochastic reactions can be described
by a master equation (Gillespie, 2000), with a probability P(x,t)
of reaching the state x of the system at time t. The transition rates
M(x|x′) are given as a matrix, for a system changing from state x
to state x′, where

M(xjx′) = ≥ 0, if  x ≠ x′

−Sx≠x′M(xjx′), if  x = x′

(

The master equation can be expressed as the rate of change of
P(x,t) for the combinations of possible transitions of x:

∂ P= ∂ t = o
x∈X

M(xjx′)P(x, t) (5)

The master equation can be further written in a more explicit
form as:

∂ P= ∂ t = (M0 +Mb)P, (6)

where the probability P is a state vector. Each component of P
represents the probability of the system with a protein number at
a gene state. M0 is the diagonal part of the matrix M that
represents the protein synthesis and degradation processes. Mb

is the non-diagonal part of the matrix M which represents the
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binding and unbinding regulation reactions. The binding and
unbinding parts represent the reactions between gene states. The
potential landscape of the gene regulation system can be defined
as U = −lnP (Wang et al., 2008) . In practice, we use Gillespie
algorithm (Gillespie et al., 1977) to simulate the gene regulatory
network and effectively solve the master equation (see details in
the Supporting Information).

Definition and Metastatic Ability of Each
Steady State and the Kinetic Paths of the
Landscape
There are six nodes in our network. As it is difficult to visualize a
six-dimensional space, we chose to discuss three specific genes,
P53, ZEB, and OCT4, reflecting the cancer, EMT, and
differentiation and development (with CSCs) aspects. P53 is a
tumor suppressor gene. Normally functioning cells often have
high gene expression levels of P53. Low gene expression of P53 is
a general characteristic of cancer (Yang et al., 2013; Yu and
Wang, 2016). OCT4 is a signature gene of SCs. Many studies
have shown that OCT4 is critically involved in self-renewal and
is a critical gene for cell differentiation and reprogramming (Lin
et al., 2012). High gene expression of OCT4 indicates that cells
have self-renewing ability, multi-differentiating potential, and
strong proliferative ability. ZEB is a critical gene of the EMT
process. The expression of ZEB can activate EMT, which is a
required step in metastasis (Lamouille et al., 2014). The gene
expression level of ZEB is a metastatic signature.

As shown in Figure 2, seven states emerge, which are denoted
normal, premalignant, cancer, SC, CSC, lesion, and hyperplasia.
In the normal state, the gene expression level of P53 is high, and
those of OCT4 and ZEB are low. Thus, if cells remain in the
normal state, they maintain normal function and do not have the
characteristics of SCs such as self-renewal or reprogramming,
nor do they have metastasis ability. This is consistent with the
regulation in the network, in which OCT4 and ZEB effectively
FIGURE 2 | Three-dimensional landscape showing the normal, premalignant,
cancer, SC, Cancer stem cell (CSC), lesion, and hyperplasia states, and
optimal paths among these states.
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activate each other and both repress P53 (ZEB−|mir-145−|
OCT4, OCT4−|mir-145−|ZEB; this is because OCT4 and ZEB
activate each other. ZEB−|mir-145−|MDM2−|P53 can be seen as
ZEB−|P53, and OCT4−|mir-145−|MDM2−|P53 can be seen as
OCT4−|P53). Therefore, OCT4 and ZEB can both have low
expression. In this case, there is no further repression of P53,
resulting in high P53 expression. Overall, the gene expression
levels indicate that the cells in the normal state are in a healthy
condition without metastasis or self-renewal capability.

The lesion state involves low expression levels of P53, OCT4,
and ZEB. Low gene expression levels of OCT4 and ZEB indicate
that the cells do not have the characteristics of SCs or metastatic
ability. Low gene expression levels of P53 indicate that the cells
do not have normal function, which may be caused by
inflammation, pH, hypoxia, and so on (Jeremy et al., 2003).
This is again consistent with the gene regulatory wiring. Mutual
effective activation can give rise to a low expression state for both
OCT4 and ZEB, as discussed earlier. However, MDM2 represses
P53 and P53 activates MDM2. It is possible for MDM2
expression to be high while P53 expression is low, or for
MDM2 expression to be low while P53 expression is high. The
former corresponds to the lesion state, while the latter
corresponds to a normal cell state. In this case, the gene
expression levels indicate that the cells are not in a healthy
condition but do not have metastatic or self-renewal capability.

In the hyperplasia state, compared with the lesion state, the
expression level of OCT4 is high and the expression levels of P53
and ZEB are low. A high gene expression level of OCT4 implies
that the cells have the characteristics of SCs, such as self-renewal or
reprogramming. The hyperplasia state can be seen as the
accumulation of cell damage, while the tissues which are
inflamed start the self-repair process which helps to produce
new cells to replace the pathological cells. In this process, OCT4
is also a significant player in self-repair and DNA replication
(Rizzino, 2013). Low gene expression levels of ZEB indicate that
the metastasis is not significant. A low expression level of P53
indicates that the cells are still in an abnormal condition. This is
consistent with the gene regulatory wiring. High OCT4 expression
can repress P53 expression, maintaining the low expression of P53.
OCT4 can also repress ZEB by another route to keep ZEB
expression levels low (OCT4!mir200−|ZEB, the same as the SC
state). OCT4 can self-activate to keep its expression high. The gene
expression levels indicate that the cells in the hyperplasia state are
not in a healthy condition and have strong self-renewal but not
metastatic capability. We considered the hyperplasia state to be a
tumor state without metastasis. Cells in the lesion and hyperplasia
states both have a degree of damage, as the gene expression levels
of P53 are low. In general, they can be reversed to a normal state by
the self-healing system, as the expression level of ZEB is low,
indicating that metastasis has not yet started. Tumors exist mainly
in the hyperplasia state according to our definition, in which they
have certain hallmarks of cancer such as overgrowth in some
organs. However, tumors are not fatal until they are metastatic.
When the tumor is already in a metastatic condition, it is
considered to be cancer.
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In the cancer state, the gene expression level of ZEB is high,
and the gene expression levels of OCT4 and P53 are low. For
cells in the cancer state, the tumor suppressor gene P53 shows
low expression levels, but the metastatic ability is obvious (high
gene expression level of ZEB). Moreover, cancer cells in the
terminally differentiated stage have lost the ability to proliferate
or to alter their destiny; their stemness ability is relatively low as
well. Thus, the gene expression level of OCT4 is low. That is
consistent with the gene regulatory wiring. High ZEB
expression will repress P53 so as to keep P53 at a low
expression level. OCT4 expression may be low owing to self-
degradation, despite effective activation by ZEB. The low
expression levels of P53 and OCT4 mean they cannot
effectively repress ZEB by another regulation route, so ZEB
expression remains at a high level. The gene expression levels
indicate that the cells in the cancer state have very significant
cancerous characteristics and metastatic capability. Thus, the
cancer state represents a tumor with metastasis.

The premalignant state is a transition state between the
normal and cancer states. In the premalignant state, the
expression level of P53 decreases and that of ZEB increases
when the cells transform from the normal to the cancer state,
that is, the cancerization and metastasis become increasingly
significant. The metastatic ability of the premalignant state is
intermediate, bridging those of the normal state and the
complete cancer/metastasis state. Moreover, the intermediate
expression level of ZEB indicated that the EMT is also in an
intermediate state, which known as the partial (hybrid)
epithelial/mesenchymal (E/M) state (Kumar Jolly, 2015;
Pastushenko et al., 2018). The partial EMT can be considered
as primary bad actors of metastases. This is consistent with the
gene regulatory wiring. Relatively higher ZEB expression will
repress P53 so as to keep P53 expression at a relatively low level.
OCT4 expression may be low owing to self-degradation despite
effective activation by ZEB. The relatively lower expression of P53
and low expression of OCT4 mean that they cannot effectively
repress ZEB by another regulatory route, so ZEB expression
remains at a relatively high level. The gene expression levels
indicate that cells in the premalignant state have certain
cancerous characteristics, partial EMT phenotype and metastatic
capability. Therefore, we considered the premalignant state to
represent tumors with a certain level of metastasis.

In the SC state, the gene expression levels of P53 and OCT4
are high, and that of ZEB is low. Cells in this state have stemness
activity, so the expression levels of OCT4 are high. The
expression level of P53 is also high and that of ZEB is low,
indicating that the cells are functioning normally and their
metastatic ability is not active. This is consistent with the
regulatory wiring. When both OCT4 and ZEB have high
expression as a result of their effective mutual activation, their
repression leads to low P53 expression. When the expression of
ZEB is low, its repression of P53 is weak, leading to high
expression of P53, which represses OCT4. However, OCT4 can
sustain its high level of expression through self-activation. OCT4
is involved in an alternative route (OCT4!mir200−|ZEB); the
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protein concentration determines which path is dominant. If the
concentration of mir-200 is dominant, the route is repression.
This route can repress ZEB and keep its expression levels low.
The gene expression levels indicate that the cells in the SC state
are in a healthy condition with strong self-renewal capability, but
without the metastatic capability.

In the CSC state, the expression levels of P53, OCT4, and ZEB
are all intermediate. These cells are in a transition between the SC
and the cancer state. CSCs show some characteristics of
cancerization and self-renewal (stemness), as their gene
expression level of P53 is lower and that of OCT4 is higher
than in the normal state. Moreover, the elevated gene expression
of ZEB indicates that the cells have a certain metastatic ability
and an intermediate EMT phenotype, in between those of the SC
and cancer state. Many studies suggest that partial EMT
associates with Stemness. Cells in partial EMT state are most
likely to gain stemness (Strauss et al., 2011; Kumar Jolly et al.,
2014; Grosse-Wilde et al., 2015).This is consistent with the
regulatory wiring. When both OCT4 and ZEB have high
expression levels as a result of their effective mutual activation,
their repression leads to low P53 expression. The gene expression
levels indicate that cells in the CSC state have certain cancerous
characteristics, self-renewal capability, a partial EMT phenotype
and metastatic ability. Therefore, the CSC state represents a
tumor with a certain degree of stemness and metastasis.

We also compared our landscape with the experimental data.
To quantify the landscape from the experimental results, we
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project the data to 3 dimensions in expression levels of P53, ZEB,
and OCT4. This projection for the landscape can be used to
reflect the characteristic features of the cancer, EMT, and
differentiation/development (with CSCs). The RNA-seq data
can only reflect the gene expressions at the transcriptional
level. The protein concentrations reflect the gene expressions at
the post translational level. Due to the post transcriptional and
post translational influences, the RNA-seq data may not be able
to completely determine the activities of these genes.

Instead of directly using the individual gene RNA-seq data,
we consider some other genes which are regulated by or
indirectly regulated by the individual gene (P53 representing
the cancer group for example). The downstream genes
transcription levels (18 of them related to P53 in this example)
are determined by the upstream genes protein activities (post
translation level). Therefore, these 18 genes are also cancer
related genes and their genes transcriptional data can be used
to reflect p53s post translation level gene expressions in some
respect. This can lead to more complete information on P53 gene
expressions at the post translation level beyond the transcription
level which is crucial for describing the function. It serves as the
rational for choosing more genes (total of 40) instead
of individual genes (six genes) we focused on at the beginning
of the analysis. We then analyzed these three groups of
experimental data using principal component analysis. By
selecting the first principal component for each group,
respectively, the RNA-seq data could be reduced to three
FIGURE 3 | Comparisons of experimental data and the steady states of our landscape. (A) is our landscape projection to X and Y axes. (B, C) show the data
clustering and raw data for LIHC. (D) is our landscape projection to Y and Z axes. (E, F) show the data clustering and raw data for COAD.
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dimensions. In Figures 3B, C, E, and F, RNA-seq data are
represented by their first principal component. Figure 3A shows
our landscape projection to the X and Y axes. As the CSC state
coincided with the premalignant state, and the hyperplasia state
coincided with the lesion state, there were five steady states:
normal, CSC (premalignant), cancer, hyperplasia (lesion), and
SC. In Figure 3B, there are five clusters which correspond to the
five states. Figure 3D shows our landscape projection to the Y
and Z axes. As the normal state coincided with the lesion state,
the hyperplasia state coincided with the SC state, and the cancer
state was connected with the premalignant state, there were four
steady states: normal (lesion), cancer (premalignant), CSC, and
SC (hyperplasia). In Figure 3E, there are four clusters which
correspond to the four states. Figures 3C, F show the raw data
for LIHC and COAD, which were used to validate the clustering
results in Figures 3B, E. The normal state positions of the cluster
results coincide with those of the raw data.

From a landscape perspective, there were several major
kinetic paths that could be quantitatively explored. When the
expression level of ZEB increases, the paths from the SC to CSC
and the CSC to cancer states become prominent. These two paths
show that the formation of CSCs has two main sources. One
route of CSC generation involves somatic SCs with self-renewal
capabilities; these have the potential to divide into both SCs and
specialized somatic cells, which are destined to stop proliferating
or die (Lobo et al., 2007). If these SCs are out of control with
respect to stopping division, but still keep their self-renewal and
differentiation abilities, they become CSCs (Ponti et al., 2005; Ye
and Weinberg, 2015). Another route for generating CSCs exists
owing to a minor proportion of cancer cells with the capacity for
self-renewal and differentiation in their progeny (Liu et al., 2015).
Many experiments have demonstrated that terminally
differentiated cancer cells can gain SC properties under specific
epigenetic conditions (Tang, 2012). These SC-like cancer cells
drive cell growth and metastasis, and are considered to be CSCs.
Many reports have shown that cancer cells undergoing EMT can
obtain SC-like characteristics (Mani et al., 2008), demonstrating the
connection between EMT and CSC. These have been found in
hematopoietic (Bonnet and Dick, 1997) and solid tumors such as
brain (Singh et al., 2004) and breast cancers (Alhajj et al., 2003). These
two paths driving CSC generation lead independently to the capacity
for self-renewal, differentiation, and migration. The kinetic paths in
the landscape view illustrate the dynamic transitions of SCs, CSCs,
and cancer. Owing to these diversifications, CSCs present a major
challenge with respect to drug resistance and cancer recurrence.

The landscape view also shows that there is more than one
pathway from the normal to the cancer state. There are at least three
major paths. The first is from the SC to CSC to cancer state. Stem
cells can gain cancer characteristics and become CSCs. Recently,
some studies tracing CD133+ cells have provided direct evidence
that SCs are susceptible to cancerous transformation (Medema,
2013; Zhu et al., 2016). CSCs inherit many characteristics of SCs,
including self-renewal and differentiation. Moreover, CSCs have
cancerization characteristics such as uncontrollable growth and
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metastasis. CSCs can be asymmetrically divided into cancer cells
and CSCs (Sell, 2004). Thus, CSCs can be seen as the seeds of cancer
cells. This path involves both stemness through CSCs and the
metastasis (or EMT) process (half-metastasis state for CSCs). When
cells are in the SC state, the gene expression levels of P53 and OCT4
are high, but that of ZEB low. This indicates that the cells are in a
healthy condition and have stemness but not the metastatic feature.
When the cells transform to the CSC state, the gene expression
levels of P53 and OCT4 both decrease, and that of ZEB increases.
This indicates that the cells in the CSC state become cancerous and
have a certain metastatic ability.

The second pathway is from the normal to premalignant to
cancer state. This can be seen as a cancerous process. On this
path, the gene expression level of P53 decreases and that of ZEB
increases. This indicates that the cells not only show a trend of
pathological changes but also have metastatic characteristics.
This path involves metastasis or EMT, since the premalignant
state is a half-cancer and half-metastasis. The cells in the normal
state are in a healthy condition and do not have the metastatic or
stemness features, as the gene expression level of P53 is relatively
high but those of OCT4 and ZEB are low. When the cells
transform to a premalignant state, the gene expression level of
P53 decreases and that of ZEB increases. This indicates that the
cells exhibit half-cancerous and half-metastatic features. When
the cells are in the cancer state, the gene expression level of P53 is
low and that of ZEB is high. OCT4 gene expression is also low.
This indicates that the cells in the cancer state gain a strong
metastatic ability and are differentiated without stemness.

The third pathway is from the normal to lesion to hyperplasia
to cancer state. This can be seen as a process by which normal
cells develop into the lesion state, gaining proliferation ability
(hyperplasia), then turning malignant and eventually achieving
the cancer state. Some experiments have shown that a lesion
often occurred before the hyperproliferative changes (Jeremy
et al., 2003). Hyperplasia is accumulated to a certain degree; cells
possess metastatic ability and ultimately transform to the cancer
state. This pathway involves stemness and the EMT process
during its last stage. The cells in the lesion state are not in a
healthy condition and do not have the stemness or metastasis
features, as the gene expression level of P53, ZEB, and OCT4 are
low. When the cells are in the hyperplasia state, the gene
expression level of OCT4 becomes high, although the
expression levels of the other two genes do not change
significantly. This indicates that the cells in the hyperplasia
state have significant stemness features, as cell damage induces
their self-renewal ability to enable self-repair (Rizzino, 2013).
However, the gene expression level of ZEB remains low. This
indicates that cells in the hyperplasia state do not have the
metastatic feature. When the cells reach the cancer state, the gene
expression level of ZEB becomes very high and metastasis is
obvious. These three paths address a central question in cancer
biology: how and which cells can be transformed to cancer. These
results also indicate that cancer is difficult to cure because the
formation of these paths.
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Barrier Heights and Flux of Kinetic Paths
Figure 4 shows the barrier heights between the normal,
premalignant, cancer, SC, CSC, lesion, and hyperplasia states.
In path 1, the barrier height from the SC to the CSC state was
6.0189, and that from the CSC to cancer state was 3.5048. We can
describe the carcinogenesis of SCs with a high barrier as less
likely to occur, as strong regulatory and environmental
conditions are required to make the SCs cancerous (Tang,
2012). With a lower barrier, differentiation of CSCs to cancer
cells is an easy process, as the CSCs can generate cancer cell
progeny when they divide. A CSC can be asymmetric divided
into a cancer cell and another CSC (Sell, 2004). The barrier
height from the SC to the normal state was 6.0509, which is
comparable to the barrier from the SC to CSC state. The SC state
has two choices: to become a normal differential cell or a CSC,
both with certain degrees of difficulty. In adults, somatic SCs are
always dormant; specific conditions are required to induce them
to divide. On the other hand, reprogramming requires specific
gene regulation. Therefore, the barriers for both differentiation
and reprogramming are relatively high. When SCs are activated,
they are asymmetric divided into SCs and normal somatic cells.
It appears that in the SC state, the cell can switch to either a
differentiated cell or a CSC. The paths connecting the CSC state
to the SC state and the cancer state had barriers of 3.0348 and
3.5048, respectively. This illustrates that when cells stay in the
CSC state, they are both very unstable owing to the low barrier
height and more likely to transform to the cancer state or back to
the SC state. The barrier height from the cancer to the CSC state
was also high, at 9.11, which means it is difficult for cancer cells
to transform back to CSCs. Experiments have revealed that only
a minor proportion of cancer cells have the capacity for self-
renewal and differentiation in their progeny (Liu et al., 2015).
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Therefore, the switching from cancer cells to CSCs is not easily
realized. We can state that path 1 has the characteristics of both
SCs and metastasis. Cells going through path 1 from the normal
state can acquire stemness and metastasis, and eventually reach
the cancer state.

In path 2, the barrier heights from the premalignant to the
normal state and from the normal to the premalignant state were
3.2795 and 5.2719, respectively. The lower barrier height from
the premalignant to the normal state compared with that from
the normal to the premalignant state shows that it is relatively
difficult for a cell in the normal state to be transformed to the
premalignant state, whereas a cell in the premalignant state can
relatively easily revert back to the normal state. Moreover, the
barrier heights from the premalignant to the cancer state and
from the cancer state to the premalignant state were 1.3395 and
7.41, respectively. This illustrates that it is much easier for a cell
in the premalignant state with an intermediate level of metastasis
to transform to the cancer state than the reverse from the cancer
state back to the premalignant state. The barriers between the
premalignant state and the normal and cancer states were lower;
thus, a cell state can transform to the normal or cancer state
relatively easily. The fatality of cancer is due to uncontrolled
diffusion and metastasis; if cells are in the cancer state, metastasis
is obvious. So, the premalignant state with an intermediate level
of tumor characteristics and metastasis has vital clinical
significance with respect to early diagnosis and prevention of
cancer, as cells in the premalignant state can transform to cancer
or revert back to a normal state easily. Therefore, path 2 has the
characteristics of metastasis. Cells going through path 2 reflect
the metastatic process, as the premalignant state is an
intermediate state of metastasis. The importance of the
premalignant state was discussed in our previous study (Yu
and Wang, 2016).

In path 3, the barrier heights between the normal, lesion, and
hyperplasia states were 4.0419–4.9682 and 4.7582–6.2117, that is,
they were not very high. This means that it is not very difficult for
cells to transform from one state to another. Experiments have
shown that lesions commonly occur before hyperproliferative
changes (Jeremy et al., 2003). However, the barrier heights
between the hyperplasia and cancer states were 6.4117–8.11.
This means that transformation from hyperplasia to cancer and
the reversion from cancer to hyperplasia are both difficult, and the
cancer to hyperplasia transition is unlikely to occur. That is, it is
not difficult for cells to transform from one state to another before
metastasis (transformation to the cancer state) occurs. If the cells
have not reachedmetastasis, it is relatively easy for the cancer to be
cured (reversion of cells to a normal state). When cells become
cancerous owing to hyperplasia, this is a difficult process, but it is
even more difficult to escape from the cancer state to hyperplasia
as a very high barrier needs to be overcome. Therefore, path 3
reflects the process of accumulated cell damage resulting in
metastasis. Cells in path 3 go through increasing pathological
changes and eventually reach the cancer state.

As shown in Figure 4, the paths connecting the cancer state to
the CSC, premalignant, and hyperplasia state had relatively high
barriers of 9.11, 7.41, and 8.11, respectively. That is, the barriers
FIGURE 4 | Barrier heights between normal, premalignant, cancer, SC, Cancer
stem cell (CSC), lesion, and hyperplasia states, and optimal paths among these
states. Black arrows represent the barrier from one state to another. The data
marked represent the barrier height to overcome. Blue arrows represent the
kinetic paths from normal to cancer state and the reverse.
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of the cancer state are all very high. Thus, cells cannot easily
escape the cancer state, which explains why cancer is so difficult
to cure.

We also calculated the correlation of the transition time with
the barrier height, obtaining a correlation coefficient of 0.80. As
Figure 5 shows, the transition time and the barrier height show
almost the same trend.

We also compared the flux of the three paths (from the
normal to the cancer state, and the reverse). The flux of each path
indicates which path is more important in cancer formation.
According to the transition time and the probability of each
pathway, we could quantify the flux of each path. The transition
time in our work depended on the landscape topography, which
is reflected by the barrier heights of each state. The transition rate
k of a pathway is the reciprocal of the transition time. The details
and data can be seen in the Supporting Information. This
method was used in our previous work (Wang et al., 2013). The
flux of the path normal ! SC ! CSC ! cancer was 2.2157 ∗
10−10. The probability of this path was 0.0719. The flux of the
path normal ! premalignant ! cancer was 2.6227 ∗ 10−9. The
probability of this path was 0.8509. The flux of the path normal
! lesion ! hyperplasia ! cancer was 2.3813 ∗ 10−10. The
probability of this path was 0.0773. The flux and the probability
of the path normal ! premalignant ! cancer account for the
vast majority of the three. Thus, this path is dominant for the
transition from the normal to the cancer state and should
therefore be the focus to prevent cancer formation. We
demonstrated the importance of the premalignant state for
cancer prevention in our previous work (Yu and Wang, 2016).

In the same way, we could also quantify the flux from the
cancer to the normal state. The flux of the path cancer! CSC!
SC! normal was 2.1830 ∗ 10−9. The probability of this path was
0.4243. The flux of the path cancer ! premalignant ! normal
was 9.3693 ∗ 10−10. The probability of this path was 0.1821. The
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flux of the path cancer ! hyperplasia ! lesion ! normal was
2.0245 ∗ 10−9. The probability of this path was 0.3935. The flux of
path 1 (cancer ! CSC ! SC ! normal) and that of path 3
(cancer ! hyperplasia ! lesion ! normal) were very similar,
and both were higher than that of path 2 (cancer !
premalignant ! normal). These paths are important in the
reversal of the cancer state back to the normal state. The flux
and probability of path 1 were higher than those of path 3, so this
path is dominant for the cancer to normal state transition. These
results indicate the importance of CSCs in cancer therapy.

These three paths can be used to address a central question in
cancer biology, how and which cells can be transformed to
cancer, in a quantitative way. The barrier heights describe the
basin depths of the landscape and help in understanding the
tendency of the cells to transform from one state to another.
Furthermore, the barrier heights of the cancer state are all very
high, meaning that the cells in the cancer state transform less
readily to others. The presence of multiple cancer formation
paths explains the various mechanisms of cancer formation,
which are among the reasons that cancer is difficult to prevent.
The flux of the paths indicate which path is dominant in cancer
formation and help to describe in a quantitative way the difficulty
of curing a particular cancer.

Finding Key Regulations by Global
Sensitivity Analysis of Landscape
Topography
To gain further insight into cancer formation, we explored the
network to find the key regulations by global sensitivity analysis
of the landscape topography. In the network, each gene and
regulation contributes to the network dynamics. Variation of the
regulatory strengths will influence the barrier heights between
attractor basins. In this way, we could determine which
regulations were more sensitive for cancer formation in the
network. The results may provide a reference for drug design
for cancer therapy.

Figures 6A, B display the variation of the regulation miR200˧
ZEB; regulation 1 is miR200˧ ZEB in Figures 6A. C, and D
display the variation of regulation OCT4!OCT4; regulation 1 is
OCT4! OCT4 in Figures 6C, E, and F display the variation of
regulation P53!P53; regulation 1 is P53!P53 in Figure 6E. In
Figures 6A, C, and E, the control regulations 2–13 are
P53!miR200, P53!miR145, P53!MDM2, miR145˧ ZEB,
miR145˧ OCT4, miR145˧ MDM2, ZEB˧ miR200, ZEB˧
miR145, ZEB!ZEB, OCT4!miR200, OCT4!miR145, and
MDM2˧ P53, respectively.

As shown in Figure 6A, we increased the regulation strength to
1.5 times. In regulation 1 (miR200˧ ZEB), the barrier height from
the premalignant state to the cancer state increased significantly,
and the barrier height from the cancer state to the premalignant
state decreased slightly. Although regulation 6 also changed very
significantly, this was discarded as it changed in the same direction.
ZEB is anEMTactivatorgene;when its geneexpression level ishigh,
metastasis becomes obvious. Thus, when we increased the
suppression strength of ZEB, the expression level decreased,
leading to weaker metastasis. In that case, it is much more
difficult for the cell state to move from premalignant to cancer,
FIGURE 5 | Correlation of the transition time and barrier heights. The y-axis
represents the barrier height and the x-axis represents the natural logarithm of
the transition time.
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and easier for it to move from cancer to premalignant, which is
beneficial to cancer recovery.As shown inFigure 6B, we also varied
the regulation strength from 0.8 to 1.5 times. When the regulation
strength decreased, the barrier height from the premalignant to the
cancer state alsodecreased, and thebarrier height fromthe cancer to
the premalignant state increased. This illustrates that the regulation
is associated with the variation of the barrier height between the
premalignant and cancer states. This variation of regulation
miR200˧ ZEB indicates how metastasis could be controlled.

As shown in Figure 6C, we increased the regulation strength to
1.3 times. OCT4 is a signature gene of SCs. If the expression level of
OCT4 is high, the stemness of the cell is obvious. When the
regulation strength increased, the expression level of OCT4
increased, the barrier height from the normal to the SC state
decreased, and the barrier height from the SC to the normal state
increased significantly. This means that a cell in the normal state
could more easily move to the SC state, but it was more difficult for
cells in the SC state to move to the normal state. At the same time,
the barrier height from the normal to the premalignant
state decreased, and that from the premalignant to the normal
state increased. This indicates that a cell in the normal state is more
likely to become cancerous, and a cell in the premalignant state is
less likely to move back. These results are consistent with those of
experiments involving iPS. Many studies have shown that the
cellular reprogramming of iPS often leads to cells with cancerous
characteristics, which eventually reach the cancer state (Kondo and
Raff., 2000; Pavlova andThompson, 2016). As shown inFigure 6D,
when the regulation strength decreased to 0.7 times, the barrier
height from the normal to the premalignant state increased, and
that from the premalignant to the normal state decreased. This
indicates that the cells in the normal state aremore stable, and those
in the premalignant state aremore likely to transform to the normal
state. The barrier height from the normal to the SC state increased,
and that fromthe SC to thenormal statedecreased. Thus, cells in the
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normal state are less likely to switch to the SC state, and those in the
SC state are more apt to transform to the normal state. The
regulation OCT4!OCT4 reflects the connection between SCs
and metastasis. This may guide the search for cancer treatments
involving SCs.

As shown in Figure 6E, we also increased the regulation
strength to 1.3 times. The variation of regulation 1 (P53!P53)
increased the barrier height from the normal to the SC state, and
decreased that from the SC to the normal state. This indicates
that when the expression level of P53 increases, the cells in the
normal state are less likely to transform to the SC state, whereas
the cells in the SC state were more likely to transform to the
normal state. Experiments have shown that P53 is a major
driving force for the differentiation of embryonic SCs (ESCs).
Spontaneous differentiation of hESCs reduced significantly when
P53 expression decreased (Qin et al., 2007). P53 also can provide
an effective barrier for the generation of stemness cells from
terminally differentiated cells (Solozobova and Blattner, 2011).
The variation of regulation P53!P53 illustrates the importance
of P53 not only for cancer but also for SC processes.

P53 is a tumor suppressor, as shown in Figure 6F. When the
regulation strength decreased to 0.9 times and P53 abundance
was reduced, the barrier height from the normal to the
premalignant state barely changed, but the barrier height
from the premalignant to the normal state increased
significantly. In this situation, the cells in the premalignant
state are less likely to move back to the normal state. When the
regulation strength was increased to 1.1 times, the barrier height
from the normal to the premalignant state showed no
significant change, whereas that from the premalignant to the
normal state was reduced. That means the cells in the
premalignant state would more easily transition to the normal
state. When the regulation strength was increased to 1.2 and 1.3
times, the barrier height between the normal and premalignant
FIGURE 6 | Variation rate of barrier height with regulation strength. P − C (C − P) denotes the barrier height from premalignant to cancer (cancer to premalignant)
state. N −P (P −N) denotes the barrier height from normal to premalignant (premalignant to normal) state. N −SC (SC −N) denotes the barrier height from normal to
SC (SC to normal) state. (A, B):miR200┤ ZEB; (C, D):OCT4→ OCT4; (E, F) :P53→P53.
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states varied only slightly. When the concentration of P53
reaches a very high level, its tumor suppressor characteristics
become less obvious and other characteristics are present, such
as inducing apoptosis (Haupt et al., 2003).

To see the variation more clearly, we depicted the landscape
topography of miR200┤ ZEB from regulation strength 1.0 to 1.5
times. As shown in Figure 7, the depth of the basin of the
premalignant state increased significantly when the regulation
strength increased, and the depth of the basin of the cancer
state decreased.
CONCLUSIONS

Cancer is a complex and fatal disease. Its features of metastasis,
drug resistance, and recurrence, which are related to CSCs, cause
cancer to be a major health threat. Recent studies have shown
that EMT has a vital role in inducing the early stage of metastasis,
as well as being a way for non-SCs to transform into SCs. In this
study, we developed a dynamic model which includes specific
genes and microRNAs for CSC, EMT, and cancer, with the aim
of uncovering the connections among cancer, metastasis, and
differentiation and development in CSC, EMT, and cancer. We
quantified the underlying landscape to explore differentiation
and development and metastasis, thereby elucidating the origin
of cancer. The kinetic paths and barrier heights between each
state were quantified. The barrier heights determine the stability
of the state and relate to the switching frequency of the cells from
one state to another. Multiple cancer formation pathways were
observed. The flux of each path (from normal to cancer, and the
reverse) was calculated using the statistics of the path transitions.
This was used to determine which path is more important in
cancer formation and treatment, and could also help to quantify
the degree of difficulty of curing a particular cancer.
Furthermore, we used global sensitivity analysis to find key
regulations which are vital for cancer formation. Three
regulations, miR200┤ ZEB, OCT4! OCT4, and P53!P53
were more sensitive than other regulations. These regulations
may provide a reference for the treatment of cancer. This work
Frontiers in Genetics | www.frontiersin.org 1154
studied the functional dynamics and physical mechanisms of
differentiation and development in cancer and metastasis in a
quantitative way, and may serve as a guide for clinical therapy
of cancer.
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Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue
requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they
may differentiate into mesenchymal cells (MCs). These processes are known as EC
activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip,
and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP)
function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and
VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart
valve development, while a defective EndMT regulation is involved in the physiopathology
of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis,
pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has
many promising potential applications in regenerative medicine. Despite the fact that
many molecular components involved in EC activation and EndMT have been
characterized, the system-level molecular mechanisms involved in this process have
not been elucidated. Toward this end, hereby we present Boolean network model of the
molecular involved in the regulation of EC activation and EndMT. The simulated dynamic
behavior of our model reaches fixed and cyclic patterns of activation that correspond to
the expected EC and MC cell types and behaviors, recovering most of the specific effects
of simple gain and loss-of-function mutations as well as the conditions associated with the
progression of several diseases. Therefore, our model constitutes a theoretical framework
that can be used to generate hypotheses and guide experimental inquiry to comprehend
the regulatory mechanisms behind EndMT. Our main findings include that both the
extracellular microevironment and the pattern of molecular activity within the cell regulate
EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular
microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip
cells cannot undergo EndMT directly. Furthermore, the specific conditions that are
sufficient to trigger EndMT depend on the specific pattern of molecular activation within
the cell.

Keywords: endothelial-mesenchymal transition, systems biology, angiogenesis, Boolean network, endothelial cell
plasticity, heart development, fibrosis
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INTRODUCTION

The circulatory system allows the body to efficiently transport
oxygen and nutrients to all the constituent cells of animals
through an intrincate network of blood vessels. Capillaries are
the smallest blood vessels, communicating arterioles and venules;
they are composed of a single layer of endothelial cells (ECs), and
are partially covered by mural cells called pericytes (PCs). ECs
and PCs are in close proximity to most cells in multicellular
animals and are some of the most important cells involved in
wound healing and tissue regeneration. Thus, alterations that
affect these cells result in several pathological processes (Eming
et al., 2014; Birbrair et al., 2015).

While ECs and PCs are fully differentiated cell types, they
have the notable capacity to trans-differentiate into each other
(Nakagomi et al., 2015; Chen et al., 2016; Jackson et al., 2017),
and are also capable of differentiating into hematopoietic stem
cells, mesenchymal stem cells, and several other cell types (van
Meeteren and Ten Dijke, 2012; Birbrair et al., 2017; Dejana et al.,
2017). Notably, ECs differentiate into PCs in a process called
endothelial to mesenchymal transition (EndMT), which is very
similar to the epithelial-to-mesenchymal transition (EMT)
(Lamouille et al., 2014; Méndez-López et al., 2017). Like EMT,
EndMT is a reversible process, and the opposite mechanism is
denominated mesenchymal-to-endothelial transition (MEnT)
(Sánchez-Duffhues et al., 2018). EndMT is triggered either by
changes in the concentration of WNT, NOTCH, FGF, or TGF
ligands in the extracellular microenvironment, reduced oxygen
availability or shear stress. These changes lead to the activation of
Frontiers in Genetics | www.frontiersin.org 258
the transcription factors SNAI1, SNAI2, TWIST1, ZEB1, and
SPI1(ZEB2), resulting in the repression of the expression of
endothelial markers, specifically VEGFR2, PECAM1, VE-
Cadherin, TIE1, TIE2, and vWF accompanied by the
augmented expression of mesenchymal markers including a-
SMA, N-cadherin, and Collagen I//II. During EndMT, ECs lose
cell-to-cell adhesion and luminobasal polarity, gaining migratory
and invasive potential (Figure 1B) (Gong et al., 2017; Jackson
et al., 2017).

EndMT is a key process; physiologically, it is present during
the development of the heart. The formation and maturation of
the endocardial cushion leads to the formation of the septa and
valves. First, the endocardial cells located at the atrioventricular
canal (AVC)—including endocardial ECs—separate from the
myocardial cells that cover them. Then, the endocardial and
myocardial cells secrete extracellular matrix (ECM) components
that accumulate to form and expand the cardiac matrix jelly that
separates them. After that, AVC myocardial cells secrete bone
morphogenetic proteins (BMPs), causing AVC ECs to undergo
EndMT. Lastly, the mesenchymal cells resulting from the
EndMT differentiate into the cells that compose the cardiac
septa and heart valves (Kaneko et al., 2008). From the
pathological perspective, EndMT alterations are involved in
many cardiovascular disorders including artherosclerosis,
congenital heart disease, myocardial fibrosis, myocardial
infractions, and pulmonary arterial hypertension.

Stable vascular networks are lined by a layer of quiescent ECs
called Phalanx cells that are tightly bound to each other and to
the basement membrane, as well as being at least partially
FIGURE 1 | Sprouting angiogenesis as partial endothelial-to-mesenchymal transition (EndMT): (A) In a precapillary arteriole with an angiogenic sprout, the pericytes
(light orange cells that surround the arteriole) detach from a region of the arteriole exposed to a concentration of angiogenic signal that exceeded a certain threshold
leading to the activation of an endothelial cell (EC) that became a Tip cell (purple) that extends filipodia to sense the angiogenic signal gradient. The ECs that
surrounded the Tip cell where induced to become Stalk cells (pink) that proliferate, elongate, secrete vacuoles, and trail the tip cell as it migrates following the
angiogenic signal gradient. (B) The EndMT process is similar to sprouting angiogenesis, as ECs have to be activated and secrete Matrix metallopeptidases that
degrade the basement membrane to increase their motility and proliferate. However, in contrast to Tip and Stalk cells, ECs that undergo EndMT completely detach
from other ECs and stop expressing EC markers.
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covered by PCs. These Phalanx ECs do not proliferate, however,
they do exhibit lumen to basal membrane polarity, and express
EC markers (Korn and Augustin, 2015; Betz et al., 2016). Either
hypoxia or the lack of sufficient nutrients may cause cells that
surround a microvascular network to secrete angiogenic factors,
triggering sprouting angiogenesis. In this process, certain ECs are
induced to become migratory, invasive Tip cells (TCs), while
adjacent PCs detach from the capillary segment. Each TC
induces abutting ECs to become Stalk cells (SCs). Then, both
the TC and SCs detach from the basement membrane and the
TC migrates toward the source of the angiogenic signal trailing
SCs that elongate and proliferate (Figure 1A). The new sprout
continues to grow until the TC reaches either another blood
vessel or the TC leading another sprout. Then, the lumen of the
new segment is formed from the fusion of vacuoles (Jianxin et al.,
2015; Kim et al., 2017) and flow-mediated apical membrane
invagination (Gebala et al., 2016). Lastly, the new capillary
segment is stabilized and surrounded by PCs.

During sprouting angiogenesis TCs and SCs detach from the
basement membrane, migrate, and lose their luminobasal
polarity. Furthermore, TCs are invasive and secrete MMPs that
degrade the ECM while SCs proliferate. However, during
angiogenesis, ECs continue to express their characteristic
molecular markers, and the adherens and tight junctions that
bind ECs remain intact, thus suggesting that TC and SC behavior
involves partial EndMT (Welch-Reardon et al., 2015). Both TCs
and SCs express SNAI1 and SNAI2, and silencing either of these
genes inhibits angiogenic sprout formation, TC migration, and
affects lumen formation. SNAI2 directly regulates the expression
of MT1-MMP, the protein encoded by this gene cleaves and
activates MMP2 and MMP9. These are two proteases involved in
ECM degradation during sprouting angiogenesis (Welch-
Reardon et al., 2014).

As summarized above, a large set of molecules has been
described to be involved in angiogenesis and EndMT.
Nonetheless, the integrated dynamical mechanisms that
underlie full or partial EndMT are still not well understood
(Welch-Reardon et al., 2015). We propose that theoretical and
system-biology approaches, such as those proposed by (Álvarez-
Buylla Roces et al., 2018; Yang and Albert, 2019), can help us
elucidate the molecular mechanisms involved in EndMT
regulation. Cell types and behaviors are defined by a
combination of morphological, behavioral, genetic, and
epigenetic traits (Pavillon and Smith, 2019). In molecular
regulatory network models, cell types and behaviors are
represented by fixed and cyclic patterns of molecular activation
called attractors. Both ECs and MCs are very diverse groups of
cells with different developmental origins and exhibit many
patterns of gene expression and molecular activation (Chi
et al., 2003; Ho et al., 2018) Therefore, we expect the
underlying molecular mechanism involved in EC and MC
identity and behavior regulation to be multistable.

Due to the enormous biological and medical importance of
angiogenesis and EMT, both processes have been widely explored
through the simulation of models at the molecular and cellular
levels (Peirce, 2008; Qutub et al., 2009; Lu et al., 2013;
Frontiers in Genetics | www.frontiersin.org 359
Steinway et al., 2014; Heck et al., 2015; Li et al., 2016; Méndez-
López et al., 2017; Weinstein et al., 2017; Suzuki et al., 2018). In
contrast, to the best of our knowledge, simulation or formal
analyses of the molecular mechanism that control EndMT are
lacking. To this aim, we inferred the regulatory network of EndMT
by undertaking an exhaustive search of published data, and
formalizing it as a dynamical network system to study its
behavior under wild type and mutant backgrounds. The model
is able to recover the expression patterns that characterize the
main cell types during normal and pathological angiogenesis.
Importantly, the model can be used as a tool to generate
hypotheses regarding molecular and cellular effects of a large
group of perturbations, such as mutations and pharmacological
manipulations. Our main findings are that the specific conditions
sufficient to trigger EndMT and MEnT depend on the pattern of
molecular activation within the cell. EndMT requires a lack of
FLI1 and GATA2 activity within the cell and also requires the
absence of VEGFA and the presence of sufficient oxygen in the
extracellular microenvironment. Additionally Tip cells cannot
undergo EndMT directly.
METHODS

We assembled the molecular regulatory network of EndMT
using information available in the literature, focusing on the
incorporation of key molecules and their regulatory
interactions. Then, the inferred network was transformed
into a discrete dynamical system in the form of a Boolean
network (BN). We analyzed the dynamical behavior of the
model to find and classify the stationary and cyclic patterns of
molecular activation. Thereafter, we studied the conditions
that led to changes in the behavior or identity of the cells.
Also, we evaluated the robustness of the model to single gain-
and loss-of-function mutations, as well as its robustness to
changes in the components of the logical update rule. Besides
the study of these properties of the system, the model was
compared with the expected effect of the extracellular
microenvironments, gain- and loss-of-function mutations,
and mechanical forces associated to several diseases
in humans.

Regarding the validation of our model, the standard way of
doing it is by comparing the specific effects of gain and loss-of-
function mutations as reported in the references with their
simulated effect. Furthermore, we also simulated the conditions
that have been associated with several diseases related o EndMT
and compared the simulated dynamic behavior of our model
with the clinical observations of the pathologies.

Formalization of the Molecular Regulatory
Network as a Discrete Dynamical System
By assuming that every molecule in a regulatory network has a
concentration threshold that must be exceeded in order to have
an effect, it makes sense to use the formalism of a BN, where each
molecule is represented by a node that can be either active or
inactive, represented by 1 or 0, respectively. Let B = { 0,1 } and
March 2020 | Volume 11 | Article 40
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Z+
≤n = f1, 2,…, ng a set of labels. A state of a BN is an n-tuple x =

(x1,x2,…,xn) such that x ∈ Bn, and each component xi of a state x,
represents the activation state of variable i. To relate a
synchronous BN with a molecular network, we interpret that
variable i denotes a molecule included in the network. A BN is
then a set of functions that contains for each variable i in the
network an update rule fi:Bk!B where k is the number of nodes
that regulate variable i, and the n-tuple is an ordered list of the
states of the nodes that regulate node i. The dependency of the
state of activation of each node on the discrete time parameter t is
denoted as xi (t), and obeys the update rule given by fi, such that
for all t ∈ Z:

xi t + 1ð Þ = f (x tð Þ)i = fi ri tð Þð Þ :
When no race conditions or important cyclic behaviors are

expected from the simulated dynamic behavior of the model, it is
convenient to update all nodes simultaneously obtaining a
deterministic discrete dynamic system. A synchronous BN with
n components is a function f:Bn!Bn, where the i-th component
of f is a function fi such that fi(x) = f(x)i. That is for all t ∈ Z

x t + 1ð Þ = f x tð Þð Þ = f1 r1 tð Þð Þ, f2 r2 tð Þð Þ,…, fn rn tð Þð Þð Þ :
BNs encode regulatory interactions among the molecules that

compose them. Node j activates node i if there exists a pair of
network states x, y that differ only in the state of activation of
variable j, where xj = 0 and yj = 1, such that fi(y) – fi(x) > 0.
Conversely, node j inhibits node i if there exists a pair of network
states x, y that differ only in the state of activation of variable j.
Specifically, xj = 0 and yj = 1, such that fi(y) – fi(x) < 0. Node i
both activates and inhibits node j if there exists a pair of network
states x, y that differ only in the state of activation of variable j.
Specifically, xj = 0 and yj = 1, such that fi(y) – fi(x) > 0, and there
exists another pair of network states p. q that differ only in the
state of activation of variable j. Specifically, pj = 0 and pj = 1, such
that fi(q) – fi(p) > 0. An interaction denoted as the pair (i, j), i,j ∈
N≤n is functional if variable j activates or inhibits variable i,
or both.

BNmodels as defined above are deterministic andfinite systems,
thus simulating the dynamic behavior fromany given initial state of
the network leads to an attractor. A fixed point attractor is a state
s∈Bn such that f (s) = s. If we define f ol as the l-th iterate of the
function f such that f ol = f (f o(l – 1)). Then, an attractor is a set of
statesA⊆Bn, such that f ol(x) = x for any state x∈A. Furthermore, l
is the size of the attractor and for any j ∈ N+

<l , f
oj(x)∈A.

It is a standard practice to interpret fixed point attractors as
the stationary patterns of molecular activation observed in a
given regulatory network, and attractors of larger order as cyclic
patterns of molecular activation (Álvarez-Buylla Roces et al.,
2018; Yang and Albert, 2019). In the present study, we were able
to assign to all attractors a biological interpretation in term of
either a cell type or a cellular behavior.

We defined each component fi of the update rule f as follows:
In the simplest case, the node N1 is only regulated by R1, then
fN1 = xN1 (t + 1) = xR1(t). However, when the number of
regulators is greater than one, we find groups of active and
Frontiers in Genetics | www.frontiersin.org 460
inactive regulators that are sufficient to activate a given node. We
then represent such group as a logical expression where if all the
regulators of the group are active or inactive, as needed, then the
node is active. For instance, if N2 is regulated by the activators
A1, A2, and A3 that form a complex, and the formation of such
complex is inhibited by I1, then fN2 = xN2(t+1) = xA1(t) ∧ xA2(t) ∧
xA3(t) ∧ ¬xI1(t). If there are several groups of molecules that are
sufficient to activate the node, then those groups form an OR
expression. For example, if N3 represents a gene that can be
activated either by A4 if I2 is absent, or independently by A5,
then fN3 = xN3(t+1) = (xA4(t) ∧ ¬xI2(t)) ∨ xA5(t). Additionally,
some nodes are regulated at transcriptional, posttranslational
and protein levels and can be formalized using an AND
expression. For example, if the transcription of node N4 is
regulated by TF1 or TF2, its splicing is regulated by SF1, and
also MPK1 activates the protein by phosphorylation and PF1
causes its proteolysis. Then fN4=xN4(t+1)=(xTF1(t)∨xTF2(t))∧xSF1
(t)∧(xMPK1(t)∧¬xPF1(t)).

The molecular basis of our regulatory network is sufficient to
specify the direction and sign for most of the interactions, as well
as to specify most of the components of the logical update rule of
the model. Nevertheless, in some cases the published
information was not sufficient to unequivocally determine the
sign of an interaction or an update rule. In these cases, we
adjusted the system by assuming that the dynamic behavior of
our model must reach fixed or cyclic patterns of molecular
activation that correspond to the expected cell marker
expression for Phalanx, Stalk, and Tip EC behaviors, as well as
mesenchymal cells.

For the interested reader, the BoolNet, and GINsim versions
of the discrete model are available for download at https://github.
com/NathanWeinstein/EndMT.
Molecular Pattern Identification
We labeled the attractors according to the molecular activation
patterns associated to specific cell types or cell states. Notably,
these labels are not mutually excluding; a given network state
may fit more than one label. In the following paragraphs, we
describe the possible labels that might be assigned to network
states. Furthermore, some of the attractors are cyclic in nature,
therefore, we applied a label to a cyclic attractor only if it was
possible to apply the label to each one of the states that composes
the cyclic attractor.

It is known that all ECs express VE-cadherin, PECAM1,
TIE2, and VEGFR2. These molecules, in turn, are activated by
the combined presence of the transcription factors GATA2, and
FLI1. Hence, whenever a network state has these two nodes in an
active state, we say that such network represents an EC. Some
mesenchymal cells express GATA2 and FLI1, but they also
express fibroblast specific protein-1 (FSP-1), asmooth muscle
actin (aSMA), Smooth muscle-22a (SM22a), encoded by
transgelin (TAGLN), and fibronectin (Kamata et al., 2014).
The precise mechanism by which mesenchymal markers are
expressed during EndMT has not been fully elucidated.
However, SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2, which
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are also expressed by certain ECs, have been used experimentally
as mesenchymal markers (Magenta et al., 2011; Welch-Reardon
et al., 2014; Mahmoud et al., 2016). Because of these, we identify
as a mesenchymal cell all those network states where ZEB1,
ZEB2, TWIST1, and either SNAI1 or SNAI2 are active. Phalanx
ECs are the quiescent and tightly-bound ECs that form a layer
that functions as a barrier. We identify as Phalanx ECs those
states where there is an absence of NPR1, CTNNB, SNAI1,
SNAI2, while GATA2 and FLI1 are present. The absence of the
first set of markers is important because SNAI1 and SNAI2
inhibit the transcription of VE-cadherin (Lopez et al., 2009;
Cheng et al., 2013), and other important components of
endothelial adherence and tight junctions (Laakkonen et al.,
2017). Also, CTNNB activates the transcription of SNAI2 and
TWIST1, while CTNNB and LEF1 induce EC proliferation by
activating the transcription of Cyclin D1. Finally, NRP1 is a
marker for Tip EC behavior (Aspalter et al., 2015), (Phng et al.,
2009). Stalk cells are activated ECs that trail ECs. These cells
express FLI1, GATA2, and JAG1, yet they do not express NPR1
(del Toro et al., 2010; Blancas et al., 2012). Finally, Tip cells are
activated ECs that grow filipodia. Here, we use the presence of
FLI1, GATA2, NRP1, and ETS1 to identify Tip cells. NRP1 is a
recognized Tip cell marker (del Toro et al., 2010; Blancas et al.,
2012) and Tip cells must express DLL4, which requires ETS1
activity (Wythe et al., 2013).

The basin of attraction of an attractor is the group of states
that converges to that attractor. These states include the attractor
itself. In models where an attractor corresponds to just one cell
type (see for example Weinstein et al. (2015)), it is customary to
characterize the basins of attraction. In the present model,
however, a given attractor may correspond to more than one
label, and vice versa, one label can be assigned to more than one
attractor. Henceforth, it is necessary to define a trap space of any
given cell type or behavior c. This trap space is the union of the
basins of attraction of the fixed and cyclic behaviors that can be
classified as c. We estimated the size of each trap space by first
generating 107 random network states. For each state, we
simulated the behavior of our model until reaching an
attractor. We then classified the attractor and calculated the
fraction of the sampling space covered by each trap space.

Robustness of the Model
Evolution has made biological organisms resilient to several
perturbations such as mutations and fluctuations in the
concentration or level of molecular activation, while at the
same time remaining sensitive to changes in the concentration
of key molecular signals used to regulate its development. We
refer to this property as selective robustness. Specifically, the
systems affected by EndMT resist most changes in the
extracellular microenvironment, single gain and loss-of-
function mutations, as well as parameter variation. Substantial
alterations occur only when a critical molecule or interaction is
affected, or when several molecules are affected simultaneously.
Therefore, the molecular mechanisms involved in EndMT
regulation exhibit selective robustness. For clarity, we need to
Frontiers in Genetics | www.frontiersin.org 561
specify the trait we test for robustness, as well as the nature of the
perturbations we use to assess such robustness. Moreover, it is
also necessary to define a method to quantify robustness (Félix
and Barkoulas, 2015). Hence, we measured the robustness of the
network in the following ways:

1. The robustness of the cell types, as measured by the
percentage of gain- or loss-of-function mutations the
system is able to resist without the loss of a specific
stationary or cyclic pattern of molecular activation.

2. The robustness of the cell types to random changes in the
update rule. This was done by generating a population of
100,000 instances of the models, but each instance affected by
a single bit-flip in a random component of the update rule.
The mean number of attractors for all the networks in the
population were calculated. We say in this case that a cell type
is robust if the mean of the population is closer to the
nonperturbed model, and also if the variance is small.

3. The sensitivity of each component of the update rule to
molecular activation noise. For each update rule component,
namely each fi ∈ f, we generated 500,000 random initial
states, and for each one of those initial states s, a variant s' is
generated with a one bit flip. Then, we applied the update rule
to both s and s' and calculated the sensitivity of fi as the
fraction of initial states where f (s)i ≠ f (s')i. Additionally, we
calculated the sensitivity of each update rule component
when flipping from 2 to 15 bits of s to obtain s' in order to
observe how the sensitivity of each update rule is affected by
different levels of molecular activation noise. For each
component and each number of flipped bits we used 20,000
random initial states.

4. The robustness of each cell type in response to perturbations in
themoleculesthatrepresent theextracellularmicroenvironment
and the main transcription factors involved in maintaining EC
identity. Such nodes are DLL4, FGF2, FLI1, GATA2, HIF1a,
PDGF_AB, TGFb, VEGFA, WNT5b, andWNT7a. For each of
the patterns classified as a cell type or cellular state, we tested all
possible combinations of perturbations in the aforementioned
nodes and let the system converge. Here, the robustness is the
fraction of the perturbations that were absorbed by the system,
such that the network reached the original cell type or behavior
before the perturbation.
Libraries for the Dynamical Analysis
We used GINsim (Naldi et al., 2009) to find and analyze the
feedback circuits of our model. Then, we used the R package
BoolNet (Müssel et al., 2010) to find the attractors using a heuristic
method that formulates the attractor search as a boolean
satisfiability (SAT) problem that is solved using the PicoSAT
solver (Biere, 2008; Dubrova and Teslenko, 2011). We also used
BoolNet to simulate mutations and perturbations. The analysis of
the perturbations that cause changes in cell type and behavior
required preparing a function for parallel processing, and for this
we used the R package doParallel (Weston and Calaway, 2019).
We also used the R package ggplot2 (Wickham, 2011) to create
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graphics. Lastly, we used the R package xtable (Swinton, 2014) to
export matrices and data frames from R into LaTeX. The scripts
and the data generated by the scripts are freely available at: https://
github.com/NathanWeinstein/EndMT.
RESULTS

Molecular Basis of the Regulatory
Network
EndMT is defined by the loss of EC adhesion, the conversion of
endothelial apical-basal polarity to front end-back end polarity,
and a marked decrease in EC markers accompanied by increased
MC marker expression. During EndMT, the signaling pathways
of TGF, WNT, NOTCH, VEGF, FGF, TNF, and PDGF modulate
the activity of the transcription factors FLI1 and GATA2 that are
essential for EC identity, as well as the activity of SNAI1, SNAI2,
TWIST1, ZEB1, ZEB2, and LEF1 that are necessary for
mesenchymal cell differentiation. Importantly, these
transcription factors form a complex regulatory network that
we have uncovered here. The following sections include the
mechanism by which these and other relevant molecules regulate
each other.

EC Adhesion
In stable and mature blood vessels, ECs are interconnected, forming
a barrier that separates blood or lymph from the surrounding tissue.
Additionally, ECs are covered by a basement membrane, and at
least partially covered by mural cells. Many of the proteins that
compose the transmembrane complexes that bind ECs together are
expressed only in ECs, and are thus used as EC markers. Both
EndMT and EC activation reduce EC adhesion and increase the EC
barrier permeability; however, only EndMT causes ECs to
completely detach from the endothelial monolayer.

EndMT represses the expression of many of the proteins that
compose intraendothelial junctions resulting in loss of EC
adhesion and identity. ECs are connected by junctional
proteins, which assemble to form adherens junctions (AJs) that
link the cytoskeletons of adjacent ECs; by tight junctions (TJs)
that function as a selectively permeable barrier between ECs; and
by gap junctions (GJs) that function as selective ion channels
(Radeva and Waschke, 2018). Furthermore, focal adhesions
(FAs) anchor ECs to the basement membrane, but they can
also be located between ECs where they function as important
regulators of the microvascular function (Wu, 2005).

Vascular endothelial cadherin (VE-cadherin) is one of the
main components of endothelial AJs (Giannotta et al., 2013). a,b
and g-catenins, a-actinin and vinculin anchor VE-cadherin to
actin. VE-cadherin can also recruit the desmosomal proteins
desmoplakin and vimentin. Intermediate filaments composed of
vimentin may be linked to endothelial AJs via plakoglobin/
desmoplakin or p0071 forming junctional structures called
complexus adherens (Wallez and Huber, 2008). Moreover, VE-
PTP inhibits VEGFA-mediated phosphorylation of VE-
cadherin, thus stabilyzing endothelial AJs (Bazzoni and Dejana,
2004). Furthermore, VE-cadherin, PECAM1, and VEGFR2 form
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a junctional mechanosensory complex (Conway et al., 2013;
Kutys and Chen, 2016). Nectins are one of the main
components of AJs, are linked to actin microfilaments through
Afadin, and also form interendothelial bonds.

Tight junctions also include proteins that form bonds at the
interendotelial cleft, forming a physical barrier that prevents
solutes and water from freely crossing the EC sheet. The number
of TJs at an interendotelial cleft is proportional to the shear stress
applied to the endothelial sheet by blood flow. The proteins that
compose TJs include Claudins, Ocludin, JAMS, ESAM, and
Nectins. Those proteins are linked to numerous intracellular
partners, including AF-6/afadin, cingulin, the antigen 7H6, PAR-
3, ZO-1, ZO-2, and ZO-3, forming a molecular complex (Wallez
and Huber, 2008). The barrier forming Claudins CLDN3,
CLDN5, and CLDN11 are expressed by ECs. Occludin
(OCLN) increases TJ barrier function and is one of the main
molecules involved in the regulation of endothelial layer
permeability. The expression of ocludin is upregulated by
Angiopoietin 1 (ANGPT1), and further stabilized by
angiotensin-2 (AT2) binding to type 1 angiotensin receptor
(ATR). VEGFA downregulates OCLN by inducing OCLN
proteolysis through activation of the urokinase (uPA)/uPAR
system and also by PKC-mediated phosphorylation. OCLN is
also regulated by monocyte chemoattractant protein-1 (MCP-1/
CCL-2), histamine, oxidized phospholipids, lysophosphatidic
acid, and shear-stress (González-Mariscal et al., 2008; Wallez
and Huber, 2008; Radeva and Waschke, 2018). The junctional
adhesion proteins F11R (JAM-A), JAM2 (VE-JAM or JAM-B),
JAM3 (JAM-C), and the related protein ESAM (EC adhesion
protein) from the immunoglobulin superfamily are important
components of endothelial TJs that regulate paraendothelial
permeability, leukocyte trafficking and TJ dynamics (Wallez
and Huber, 2008; Rahimi, 2017).

FAs are composed of a and b integrin heterodimers that bind
several ECM components, as well as TJ components and several
intracellular proteins. Those adhesive integrin interactions
contribute to the maintenance of endothelial barrier function,
and the loss of integrin-matrix adhesion results in leaky
microvessels (Wu, 2005; Izawa et al., 2018). ECs express
multiple integrins that assemble into several different
heterodimers. The extracellular domains of many integrins
have a high binding affinity for the Arg-Gly-Asp (RGD)
sequence and are able to interact with several matrix proteins.
However, certain heterodimers exhibit a higher affinity for a
specific protein including a6b1 and a6b4 that favor laminin,
a1b1 and a1b2 that tend to bind collagen, avb3 and avb5 that
exhibit affinity to vitronectin, as well as a3b1 and a5b1 that favor
fibronectin (Wu, 2005). Focal adhesion kinase (FAK) is another
important FA component. The N-terminal domain of FAK
contains a region called FERM homology that exhibits a high
binding affinity for growth factor receptors and integrins. The C-
terminal domain contains a noncatalytic region, also referred to
as FRNK (FAK-related nonkinase), that carries a FAT sequence
that directs FAK to adhesion complexes and provides docking
sites for other cytoplasmic proteins. FAK activation, triggered by
phosphoryation regulates endothelial barrier function either
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increasing or decreasing permeability depending on the site of
phosphorylation and the context. When VEGFA binds VEGFR2,
it causes a conformation change that exposes an integrin avb3
binding site. Integrin avb3 then binds VEGFR2, recruits FAK
and promotes the activation of several signaling pathways that
lead to increased microvascular permeability. VEGFA also causes
phosphorylation-coupled FAK activation and relocation from
the cytoplasm to focal contacts.

EC Polarization
Certain cellular processes including asymmetric cell division, cell
migration, and barrier formation require the asymmetric
organization of components within a cell. In stable blood
vessels, ECs have an apical (luminal) membrane domain, an
interendothelial (lateral) membrane domain, and a basal
membrane domain. This organization results in a luminobasal
or apicobasal EC polarity. During angiogenesis, the cytoskeleton
of tip cells and stalk cells undergoes several changes that result in
transient front-to-rear EC polarity which is necessary for
collective directed migration (Ebnet et al., 2018). Many of the
molecules involved in EC polarization are implicated in lumen
formation and also regulate endothelial permeability linking
these processes (Lizama and Zovein, 2013).

Both angiogenesis and vasculogenis involve cord hollowing, a
process that results in lumen formation. Prior to lumen
formation, the ECs that compose the segment must acquire an
apicobasal polarity (Lizama and Zovein, 2013; Ebnet et al., 2018).
The molecular signaling pathways involved in EC polarization
and lumen formation are largely unknown and are subject to
current research (Norden et al., 2016; Szymborska and Gerhardt,
2018). During early embryonic vasculogenesis, b1 integrin
(ITGB1), RAS interacting protein 1 (RASIP1), and partitioning
defective 3 (PAR3) interact to establish EC apicobasal polarity
before epithelial lumen formation (Herbert and Stainier, 2011).
VE-cadherin acts as a positional cue to attract and organize the
proteins involved in EC polarization. Accordingly, loss of VE-
cadherin function prevents apicobasal EC polarization and EC
agglomerations from developing a vascular lumen. VE-cadhein
directly interacts with many proteins involved in EC polarization
such as PAR3, PARD6A (PAR6), MPP5 (PALS1), and KRIT1
(CCM1) (Giannotta et al., 2013; Lizama and Zovein, 2013;
Brinkmann et al., 2016). VE-cadherin recruits the sialomucins
CD34 and PODXL (Podocalyxin) to EC-cell contact sites.
Sialomucins contain negative charges that cause repulsive
forces and initiate adjacent EC membrane separation. Later,
VE-cadherin is involved in Moesin, F-actin and nonmuscle
myosin II recruitment to induce lumen expansion and
stabilization. Other proteins involved in lumen expansion and
stabilization include Protein kinase C (PKC) that links CD34 to
the actin cytoskeleton through Moesin phosphorylation, and
ROCK, that is also necessary for nonmuscle myosin II
recruitment (Lizama and Zovein, 2013).

During the initial stages of angiogenesis, tip cells form
filopodia and lamellipodia and orient them following the
gradient of a vascular growth factor, typically VEGFA. The Ras
homologue gene (Rho) and Ras-related protein (Rap) families of
small G proteins are important mediators of VEGFA signaling in
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ECs (Shimizu et al., 2018). The Rho GTPases RhoA, Rac1, and
Cdc42 interact with integrins at FAs where actin accumulates to
initiate the formation of filopodia and lamellipodia (Lizama and
Zovein, 2013). Tip cells then migrate toward the source of the
morphogen trailing stalk cells. During sprout elongation, the
elastic properties of the cytoskeleton of the ECs that conform the
sprout have to be tightly regulated (Szymborska and Gerhardt,
2018). In vitro, EC sprout elongation requires a reduction of EC
contractility mediated by the downregulation of Rho kinase
(ROCK) and myosin light chain 2 (MLC2). Another important
molecular mechanism that increases EC contractility involves
RAP1, which induces the formation of a RAF1-VE-cadherin
complex that recruits ROCK (Szymborska and Gerhardt, 2018).
KRIT1 is an effector of RAP1, which upon activation interacts
with b-catenin and afadin. Additionally, KRIT1 stabilizes
endothelial junctions by recruiting RAP1 that stabilizes and
concentrates VE-cadherin. KRIT1 also recruits CCM2 to the
junction where it inhibits RHOA to further stabilize the junction.
Another important function of KRIT1 is to prevent the
activation of the canonical WNT signaling pathway by
sequestering b-catenin (Wilson and Ye, 2014).
Key Transcription Factors for Endothelial and
Mesenchymal Identities
The specification and maintenance of EC identity requires the
function of ETV2, FLI1, ERG, ETS1, and other members of the
E26 transforming specific (ETS) family of transcription factors; all of
them share a core GGAA/T DNA-binding motif (Craig and
Sumanas, 2016). ETV2 function is required for endothelial
specification during early embryonic development in both mice
and zebrafish (Abedin et al., 2014), and it is also necessary for
vascular regeneration after an injury (Park et al., 2016). ETV2
directly binds to the promoters of Cdh5 (VE-cadherin), Tie2, Kdr
(VEGFR2), Scl, Gata2, Meis1, Dll4, Notch1, Nrp1/2, Flt4, RhoJ,
Mapk, and Fli1 (Oh et al., 2015). Later, during embryonic
development, ETV2 is no longer expressed and FLI1 maintains
endothelial identity by binding to the promoters of Cdh5, Tie2,
Cd31(PECAM1), Erg and Fli1, activating their expression as well as
its own (Abedin et al., 2014). Notably, diminishing the expression of
FLI1 and ERG triggers the EndMT (Nagai et al., 2018).

ETS1 exhibits functional redundancy with ETS2, is expressed
during angiogenesis, and is involved in the regulati6on of EC
survival, migration, and proliferation. ETS1 induces the
expression of several matrix metalloproteinases (MMPs),
integrins, and NRP1 (Teruyama et al., 2001; Craig and Sumanas,
2016). Then, GATA2 belongs to the C2H2 zinc-finger class of
transcription factors and is also involved in the regulation of EC
identity. Importantly, the loss of GATA2 in ECs triggers EndMT. In
ECs, GATA2 activates the transcription of Emcn (Endomucin,
interferes with FJ assembly), Cdh5, Pecam1, Vegfr2, Nrp1, vWF,
and Gata2 itself (Kanki et al., 2011; Coma et al., 2013). It is also
important to mention that GATA2 and FLI1 activate the
transcription of each other (Pimanda et al., 2007b).

Five transcription factors have been associated with EndMT.
Four of them, SNAI1 (SNAIL), SNAI2 (SLUG), ZEB1, and ZEB2
(SIP1), contain four to six E2â€ box DNA binding zinc fingers,
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and a SNAG domain involved in transcriptional repression. The
other transcription factor is the basic helix-loop-helix (bHLH)
TWIST1 (Gong et al., 2017; Jackson et al., 2017; Sánchez-
Duffhues et al., 2018). SNAI1, SNAI2, and TWIST directly
repress the transcription of VE-cadherin (Lopez et al., 2009;
Cheng et al., 2013). Other components of endothelial AJs and TJs
are also downregulated during EndMT. However, in most cases,
the molecular mechanism has not been fully elucidated. For
instance, CLDN5 is downregulated by SNAI1 (Kokudo et al.,
2008) and SNAI2 (Laakkonen et al., 2017), yet it is well
recognized that VE-cadherin is a key component of endothelial
junctions that integrates molecular and mechanical signals. VE
cadherin is involved in EC identity, quiescence, migration and
polarization. Therefore, loss of VE-cadherin function explains
several of the cellular processes involved during EndMT.

Both SNAI1 and SNAI2 proteins bind to E2 boxes in
promoters that regulate Snai1 and Snai2 expression (Chen and
Gridley, 2013b). SNAI1 and SNAI2 directly suppress each other's
transcription during chondrogenesis (Chen and Gridley, 2013b;
Chen and Gridley, 2013a). SNAI1 (Peiro et al., 2006) and
TWIST1 (Yu et al., 2013; Forghanifard et al., 2017) directly
repress the transcription of Snai1. However, E47 binds TWIST1
forming a dimer that binds to the Snai1 promoter and activates
its expression (Yu et al., 2013). In certain tumor cells, SNAI1
upregulates ZEB1 and ZEB2 expression (Guaita et al., 2002;
Takkunen et al., 2006). In contrast, in melanoma cell lines,
SNAI1 does not activate the transcription of ZEB1 (Wels et al.,
2011), thus, we have not included this interaction in our model.
SNAI2 (Kumar et al., 2015) and TWIST1 (Casas et al., 2011)
directly activate the transcription of Snai2. SNAI2 also directly
induces the transcription of ZEB1 (Wels et al., 2011). The
molecular mechanism that causes loss of FLI1, ERG, and
GATA2 expression to induce EndMT remains obscure.
Nonetheless, it is known that GATA2 siRNA leads to increased
SNAI1 and SNAI2 expression, and GATA2 binds to the
proximal promoter of SNAI2 (Kanki et al., 2011). Additional
interactions have been reported for other cell types. In
hematopietic stem cells, for example, TWIST1 binds to the
promoter of Gata2 and induces its transcription (Kulkeaw
et al., 2017), while in nasopharyngeal carcinoma cells, GATA2
induces EMT by binding to the promoter of Twist1 and
activating its expression (Wang et al., 2017b). Furthermore,
ETS1 and ZEB2 activate each other's transcription (Katoh and
Katoh, 2009; Yalim-Camci et al., 2019).

The Molecular Signaling Pathways Involved in
EndMT Regulation
In a previous model of endothelial behavior during angiogenesis
(Weinstein et al., 2017), the TGF, NOTCH, WNT, VEGF, FGF,
and HIF signaling pathways were described in detail. Thus, we
will focus now on their roles during the EndMT.

The TGF signaling pathway is of central importance for the
regulation of EC plasticity and EndMT (Dejana et al., 2017).
When a TGF or a BMP ligand binds to a TGF receptor complex,
it causes the activation of several signaling pathways that mediate
TGF-induced EndMT, among them SMAD, MEK, p38 MAPK,
Frontiers in Genetics | www.frontiersin.org 864
and PI3K signaling (Medici et al., 2011). Some of the key
components of TGF signaling involved in the regulation of
EndMT include the ligand TGFb2 (Chen et al., 2012), type I
receptors ALK1 and ALK5 (TGFBR1), the type II receptor
TGFbR2, as well as SMAD2, SMAD3, and SMAD4 (Medici
et al., 2011; Chen et al., 2012). SMAD2 and SMAD3 activate the
transcription of SNAI2, while SMAD4—which is a co-SMAD
that allows other SMADs to activate the transcription of target
genes—is required for TGF-induced SNAI1 expression (Cooley
et al., 2014). The expression of ZEB2 is induced by TGF signaling
and its promoter contains SMAD binding sites (Katoh and
Katoh, 2009). Furthermore, ZEB1 and ZEB2 bind SMADs
forming transcriptional regulation complexes (Grabitz and
Duncan, 2012). Also, TGFb2 also induces inhibitory VEGFA
splicing (Weinstein et al., 2017).

FGF signaling modulates EC and PC function and behavior.
When an FGF ligand, like FGF2, binds to an FGF receptor such
as FGFR2, it causes FRS2-mediated ERK and PI3K signaling
pathway activation (Yang et al., 2015). FGF signaling inhibits
EndMT by downregulating TGF signaling; FGF2 activates the
transcription of miRNAs from the let7 family, especially let7b
and let7c, which prevents the expression of TGFBR1 (Chen et al.,
2012). FGF2 also increases the expression of mir-20a, another
miRNA that prevents the expression of TGFBR1, TGFBR2 and
SARA (Smad anchor for receptor activation) (Correia et al.,
2016). In addition to RNA silencing, FGF2 activates the Ras-
MAPK signaling pathway that regulates TGFB1-induced
SMAD2 phosphorylation in lymphatic ECs (Ichise et al., 2014).
Another important function of FGF signaling in ECs is to
activate the transcription of VEGFR2. FGF activates ERK
signaling, which then activates several transcription factors
from the ETS family including ETS1 and ETV2 that activate
Vegfr2 transcription (Murakami et al., 2011; Yang et al., 2015).

Insufficient oxygen availability (hypoxia) in the cells that
compose the tissue surrounding a network of capillaries
triggers angiogenesis. HIF1, composed of subunits HIF1a
and HIF1b, is a key mediator of the cellular response to
hypoxia. Hypoxia prevents the PHD-mediated proteasomal
degradation of HIF1a, a molecule that directly activates the
transcription of VegfA (Forsythe et al., 1996; Kumar et al.,
2014). When ECs themselves are exposed to hypoxia, it may
cause senescence, increased apoptosis and necrosis rates due
to augmented oxidative stress and irreparable DNA damage,
or angiogenesis and proliferation, depending on the duration
and severity of the reduction in oxygen availability (Baldea
et al., 2018). Under certain circumstances, hypoxia causes
EndMT. In this case, HIF1a directly binds to the promoter
region of Snai1 and induces its transcription (Xu et al., 2015).
Hypoxia also induces the expression of SNAI2 and TWIST1 in
ECs (Xu et al., 2015). Additionally, during EMT (Yang and
Wu, 2008) and also during EndMT associated with pulmonary
arterial hypertension, HIFa directly induces the expression of
TWIST1 (Zhang et al., 2018). Furthermore, the proximal
promoter region of ZEB2 contains a HIF1a-binding site
(Katoh and Katoh, 2009). Finally, HIF1 is an important
inducer of EC differentiation since HIF1a binds to the Etv2
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promoter and activates its transcription. ETV2, in turn,
activates the transcription of Fli1 (Oh et al., 2015).

VEGF signaling is involved in EC activation during
vascular remodeling. Typically, during angiogenesis VEGFA
binds to a VEGFR2 homodimer and activates PLCg, and
TSAd-AKT signaling (Simons et al . , 2016). VEGFA
signaling strengthens the EC identity by activating the
expression of GATA2 (Coma et al., 2013). Further, VEGFA-
VEGFR2 signaling phosphorylates and activates STAT3
(Chen et al., 2008), which then activates the transcription of
SNAI1 in HeLa cells (Saitoh et al., 2016). Additionally, the
VEGF co-receptor NRP1 is a key molecule that promotes tip
cell behavior and inhibits stalk cell behavior by limiting
SMAD2/3 phosphorylation (Aspalter et al., 2015). However,
NRP1 also acts as a co-receptor for TGFb1 and is necessary for
TGFb-mediated EndMT (Matkar et al., 2016).

Notch signaling is required for EndMT by the cardiac
cushions during early cardiac valve development. The signaling
of this pathway is initiated when a ligand (DLL4) binds to a
Notch receptor (NOTCH1). Then, the receptor is cleaved into an
intracellular domain, a transmemrane domain, and an
extracellular domain. NOTCH1 activation leads to increased
SNAI2 expression (Niessen et al., 2008), as well as increased
SNAI1 stability and nuclear retention. The intracellular domain
of NOTCH1 forms a complex with b-catenin and TCF4 that
activates the transcription of AKT2. This molecule then inhibits
glycogen synthase kinase 3 (GSK3b)-mediated proteolysis and
translocation of SNAI1 from the nucleus to the cytoplasm (Frías
et al., 2016). Furthermore, Notch signaling induces the
transcription of both subunits of the nitric oxide (NO)
receptor soluble guanylyl cyclase (sGC), namely GUCY1A3
and GUCY1B3. Also, this signaling induces Activin A,
consequently promoting both NO production and the
transcription of its receptor, which are necessary for EndMT to
occur in the developing AVC (Chang et al., 2011). In response to
an increase in shear stress, NOTCH1 activation leads to the
formation of GTPase signaling complexes at AJs composed of the
NOTCH1 transmembrane domain, VE-cadherin, the guanine
nucleotide exchange factor Trio, and the tyrosine phosphatase
LAR that activates RAC1 to stabilize adherens junctions (Fischer
and Braga, 2018). NOTCH also induces the transcription of
Vegfr1. VEGFR1 inhibits VEGFA-VEGFR2 signaling by
reducing the amount of VEGFA available to bind VEGFR2
(Funahashi et al., 2010). The Notch-regulated ankyrin repeat
protein (NRARP) links NOTCH and WNT signaling. Dll4-
NOTCH1 signaling induces Nrarp expression in ECs. NRARP
negatively regulates Notch signaling by destabilizing the Notch
intracellular domain and positively regulates Wnt signaling by
increasing the stability of the LEF1 protein (Ishitani et al., 2005;
Phng et al., 2009). Finally, another important function of
NOTCH signaling in stalk cells is to negatively regulate the
expression of NRP1 (Aspalter et al., 2015).

Canonical Wnt signaling is initiated by a WNT ligand, which
is usually WNT7A or WNT3, and leads to the stabilization of
CTNNB (b-catenin). Like Notch signaling, canonical Wnt
signaling also causes GSK3b phosphorylation, allowing the
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accumulation and nuclear localization of SNAI1 and SNAI2
(Wu et al., 2012; Menezes, 2014). Further, the complex formed
by CTNNB and TCF activates the transcription of many of the
genes regulated by canonical Wnt signaling (Menezes, 2014),
including SNAI2 (Conacci-Sorrell et al., 2003), TWIST1 (Howe
et al., 2003), and ZEB1 (Sánchez-Tilló et al., 2011; Sanchez-Tillo
et al., 2014). CTNNB and TCF also induce the transcription and
activation of LEF1. During EMT, LEF1 activates the
transcription of Snai2 and Zeb1 even in the absence of both b
and g-catenins (Kobayashi and Ozawa, 2018). Other WNT
ligands including WNT5a, WNT5b, and WNT11 activate the
noncanonical planar cell polarity (PCP) and CA+2 WNT
signaling pathways that also activate the Activator protein 1
(AP-1) transcription factor (Nishita et al., 2010). AP-1 binding
sites exist in the promoter regions of Snai1 and Snai2, and the
inhibition of AP-1 results in reduced SNAI1 expression in
mesenchymal cells (Nguyen et al., 2013). Moreover, WNT5b
induces EndMT and SNAI1 expression in lymphatic ECs
through the activation of WNT/b-catenin and PCP pathways.
WNT5b also induces inhibitory VEGFA splicing through
noncanonical WNT signaling (Weinstein et al., 2017).

The PDGF signaling pathway is involved in the regulation of
pericyte recruitment during microvascular maturation, and
EndMT-mediated pericyte differentiation from ECs (Gaengel
et al., 2009; Chen et al., 2016). The signaling is initiated by a
PDGF ligand that can be the PDGF-AB heterodimer, or one of
four homodimers, namely PDGF-AA, -BB, -CC, and -DD. The
tyrosine kinase receptors PDGFRa and PDGFRb dimerize after
ligand biding. PDGF-AA forms PDGFRaa. PDGF-BB can form
either PDGFRaa, PDGFRbb or PDGFRab dimers. PDGF-CC
forms PDGFRaa, or PDGFRab receptors. PDGF-DD signals
specifically via the PDGFRbb receptor, but is able to form the
PDGFRab heterodimer. PDGF-AB forms PDGFRaa, or
PDGFRab receptors. After activation and dimerization,
PDGFRs can interact with signaling proteins that contain an
SH2 domain, including FER, PI3K, PLC, SHP2, and SRC, leading
to the activation of several signaling pathways, such as MAPK,
PI3K-AKT-NF-kB and PLCg (Romashkova and Makarov, 1999;
Papadopoulos and Lennartsson, 2018). ECs weakly express
PDGFRa and PDGFRb. However, when brain ECs are exposed
to PDGF-AB, it causes the activation of the transcription factor
NF-kB, which binds to the promoter of Snai1 and activates its
transcription, leading to EndMT (Liu et al., 2018). In spite of the
fact that in human breast cancer cells, NF-kB binds to the
promoter regions of Snai2, Twist1, and ZEB2 and activates
their transcription (Pires et al., 2017), PDGF-AB does not
increase the expression of Snai2, Twist1, and ZEB2 in brain
ECs (Liu et al., 2018). Additionally, NF-kB directly activates the
transcription of Lef1 in chondrocytes (Yun et al., 2007).

During acute inflammation, TNFa and IL-1b cause NF-kB-
mediated EndMT by inducing the degradation of the inhibitory
kB (Ikba) protein, which sequesters NF-kB in the cytosol
(Sánchez-Duffhues et al., 2018). Furthermore, inflammation
may suffice to determine if an EC is activated or if it undergoes
full EndMT. TNFa induces VE-cadherin internalization and
degradation. Additionally, TNFa inhibits VE-cadherin
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expression by activating the transcription of hsa-miR-6086 (Cai
et al., 2018). Shear stress and cyclic strain also modulate EndMT.
Laminar shear stress activates the mechanosensitive
transcription factors KLF2 and KLF4 that inhibit EndMT by
downregulating AP1 and NFkB. Also, KLF2 induces the
expression of Smad6, Smad7 and VegfA, which inhibit SMAD2
activity. Further, KLF4 activates the transcription of VE-
cadherin, prevents the expression of genes regulated by
SMADs by binding to the TGFb control element, and also
impedes the transcription of mesenchymal genes by binding
SMAD3. Cycle strain induces EndMT by Rho mediated VE-
cadherin translocation from the membrane into the cytoplasm,
causing the concentration of b-catenin in the nucleus to increase
(Krenning et al., 2016). For simplicity, we only take into account
one activating signal for AP-1, b-catenin, and NF-kB.

BN Model Assembly
As summarized in the previous section, a very large number of
molecular components and pathways have been described to be
involved in the regulation of EndMT and angiogenesis. In order
to integrate their roles and understand their concerted action, we
propose here a BN approach. For simplicity, we selected a subset
of molecules. Specifically, we incorporated into our model only
those molecules that are essential either due to their biological
function, or due to their effect in the simulated dynamic behavior
of our model. As a result, the regulatory network of EndMT
includes 29 molecules connected by 77 regulatory interactions, as
shown in Figure 2. The model encompasses molecules necessary
for EC identity, the ligands that activate the VEGF, HIF,
NOTCH, FGF, TGF, WNT, and PDGF signaling pathways, as
Frontiers in Genetics | www.frontiersin.org 1066
well as the main transcription factors involved in EndMT. We
did not include many EC and MC markers because they act as
network sinks, and their activity can be inferred from that of the
included transcription factors. Most of the 77 interactions
represent direct transcriptional or posttranscriptional
regulations. However, the interactions that connect ligands
directly to transcription factors represent entire linear
signaling pathways.

After the reconstruction of the regulatory network, we
translated the information to construct a Boolean model, as
described in Section 2.1. We used the molecular information
outlined in Section 3.1 to obtain the logical rules. Additionally,
the references we used to define each component of the update
rule are specified in Table 1. However, in order for our model to
reach fixed or cyclic patterns of molecular activation that
correspond to the expected cell marker expression for Phalanx,
Stalk and Tip EC behaviors as well as mesenchymal cells, we had
to fix the rules in three instances (Table 2). As a result, the
components of the update rule of the network are shown as
follows in equations 1–29.
Our Model Formalized as a Set of Boolean
Equations

AP1(t + 1) = WNT5b(t)∨ SMAD2(t) (1)

CTNNB(t + 1) = WNT5b(t)∨WNT7a(t) (2)

DLL4(t + 1) = DLL4(t) (3)
FIGURE 2 | The topology of our model of the network of molecules involved in the regulation of endothelial-to-mesenchymal transition (EndMT) represented as a
signed directed graph: Black arrows represent positive regulations, green arrows represent positive autocrine regulations, and red blunt arrows represent inhibitions.
The VEGF signaling pathway and the main transcription factors involved in endothelial cell (EC) identity are shown in green, HIF1a is shown in orange, the NOTCH
signaling pathway is shown in light red, FGF2 is shown in turquoise, the TGF signaling pathway is shown in pale magenta-pink, the WNT signaling pathway is shown
in lavender, the PDGF signaling pathway is shown in light cyan-blue, and the main transcription factors involved in EndMT are shown in yellow.
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ETS1(t + 1) = VEGF2(t)∨ FGF2(t)∨ZEB2(t)∨AP1(t) (4)

FGF2(t + 1) = FGF2(t) (5)

FLI1(t + 1) = FLI1(t)∨GATA2(t)∨HIF1a(t) (6)

GATA2(t + 1) = FLI1(t)∨GATA2(t)∨VEGFR2(t) (7)

HIF1a(t + 1) = HIF1a(t) (8)

LEF1 t + 1ð Þ = LEF1 tð Þ∨NRARP tð Þ∨ SMAD2 tð Þ
∨NFkB tð Þ∨CTNNB tð Þ

(9)

NFkB(t + 1) = PDGF _AB(t) (10)

NOTCH(t + 1) = DLL4(t)∧:NRARP(t) (11)

NRARP(t + 1) = NOTCH(t) (12)

NRP1(t + 1) = VEGFA(t)∧ (ETS1(t)∨GATA2(t))∧:NOTCH(t) (13)

PDGF _AB(t + 1) = PDGF _AB(t) (14)

SMAD1(t + 1) = TGFbR(t)∧:SMAD6(t) (15)

SMAD2(t + 1) = TGFbR(t)∧:SMAD6(t)∧NRP1(t) (16)

SMAD6(t + 1) = FLI1(t)∧GATA2(t)∧ (NOTCH(t)∨ SMAD1(t)) (17)

SNAI1 t + 1ð Þ = (HIF1a tð Þ∨ STAT3 tð Þ∨CTNNB tð Þ∨AP1 tð Þ
∨NFkB tð Þ∨ SMAD2 tð Þ)
∧ NOTCH tð Þ∨CTNNB tð Þð Þ
∧:TWIST1 tð Þ∧:SNAI1 tð Þ∧:SNAI2 tð Þ

(18)

SNAI2(t + 1) = :(SNAI1(t)∧GATA2(t))

∧ (SMAD2(t)∨ SNAI2(t)∨TWIST1(t)∨ LEF1(t)∨NOTCH(t))

(19)

STAT3(t + 1) = VEGFR2(t) (20)

TGFb(t + 1) = TGFb(t) (21)

TGFbR(t + 1) = TGFb(t)∧:FGF2(t) (22)

TWIST1(t + 1) = CTNNB(t)∨HIF1a(t) (23)
TABLE 2 | The changes to the update rule components necessary in order to
reach a fixed pattern of molecular activation for each expected cell type or behavior.

Modification Reason or desired effect

In ECs, E47 should be absent so that
TWIST1 inhibits the transcription of SNAI1

Otherwise TWIST1 would activate
SNAI1 in Stalk ECs.

GATA2 must not activate the transcription
of TWIST1 in ECs

Prevents TWIST1, SNAI1 and
SNAI2 activation in Phalanx cells.

Both SNAI1 and GATA2 should be required
to inhibit SNAI2 expression

to preserve SNAI2 expression in
Stalk cells.
TABLE 1 | References that serve as a base for each component of the update
rule.

Molecule References

AP1 Nishita et al. (2010); Sundqvist et al. (2013); Zhao et al. (2014)
CTNNB Wu et al. (2012); Menezes (2014)
DLL4 Niessen et al. (2008); Chang et al. (2011)
ETS1 Murakami et al. (2011); Hollenhorst (2012); Chen et al. (2017); Yalim-

Camci et al. (2019)
FGF2 Murakami et al. (2011); Chen et al. (2012); Ichise et al. (2014); Yang

et al. (2015); Correia et al. (2016)
FLI1 Lelièvre et al. (2002); Pimanda et al. (2007b); Abedin et al. (2014); Oh

et al. (2015); Tsang et al. (2017)
GATA2 Pimanda et al. (2007b); Kanki et al. (2011); Coma et al. (2013)
HIF1a Kumar et al. (2014); Xu et al. (2015); Baldea et al. (2018)
LEF1 Ishitani et al. (2005); Medici et al. (2006); Yun et al. (2007); Phng

et al. (2009)
NFkB Liu et al. (2018)
NOTCH Phng et al. (2009)
NRARP Phng et al. (2009)
NRP1 Teruyama et al. (2001); Coma et al. (2013); Aspalter et al. (2015)
PDGF_AB Liu et al. (2018)
SMAD1 van Meeteren and Ten Dijke (2012); Pardali et al. (2017)
SMAD2 van Meeteren and Ten Dijke (2012); Aspalter et al. (2015); Pardali

et al. (2017)
SMAD6 Ishida et al. (2000); Pimanda et al. (2007a); Mouillesseaux et al.

(2016)
SNAI1 Peiro et al. (2006); Julien et al. (2007); Kokudo et al. (2008); Medici

et al. (2011); Yu et al. (2013); Chen and Gridley (2013b); Menezes
(2014); Frías et al. (2015); Xu et al. (2015); Saitoh et al. (2016); Wang
et al. (2017a); Liu et al. (2018)

SNAI2 Niessen et al. (2008); Lambertini et al. (2010); Casas et al. (2011);
Chen and Gridley (2013b); Cooley et al. (2014); Kumar et al. (2015);
Welch-Reardon et al. (2015); Kobayashi and Ozawa (2018)

STAT3 Chen et al. (2008)
TGFB van Meeteren and Ten Dijke (2012); Pardali et al. (2017)
TGFBR Chen et al. (2012); van Meeteren and Ten Dijke (2012); Pardali et al.

(2017)
TWIST1 Howe et al. (2003); Zhang et al. (2018)
VEGFA Forsythe et al. (1996); Chang et al. (2004); Harper and Bates (2008);

Kumar et al. (2014); Simons et al. (2016); Weinstein et al. (2017)
VEGFR2 Funahashi et al. (2010); Kanki et al. (2011); Murakami et al. (2011);

Abedin et al. (2014); Simons et al. (2016); Weinstein et al. (2017); Liu
et al. (2018)

WNT5b Wu et al. (2012); Menezes (2014); Wang et al. (2017a)
WNT7a Menezes (2014)
ZEB1 Sánchez-Tilló et al. (2011); Wels et al. (2011); Sanchez-Tillo et al.

(2014); Kobayashi and Ozawa (2018)
ZEB2 Takkunen et al. (2006); Katoh and Katoh (2009); Grabitz and Duncan

(2012); Zhao et al. (2014)
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VEGFA t + 1ð Þ = :WNT5b tðð Þ∧:TGFbR tð Þ∧ STAT3 tð Þð

∨HIF1a tð ÞÞÞ∨VEGFA tð Þ

(24)

VEGFR2 t + 1ð Þ = VEGFA tð Þ∧:SNAI1 tð Þ∧:NOTCH tð Þ
∧ FLI1 tð Þ∨GATA2 tð Þ∨ ETS1 tð Þð Þ

(25)

WNT5b(t + 1) = WNT5b(t) (26)

WNT7a(t + 1) = WNT7a(t) (27)

ZEB1(t + 1) = SNAI2(t)∨CTNNB(t)∨ LEF1(t) (28)

ZEB2 t + 1ð Þ = HIF1a tð Þ∨ ETS1 tð Þ∨ SMAD2 tð Þ
∨AP1 tð Þ∨ SNAI1 tð Þ

(29)

Feedback Circuits
The regulatory network, as shown in Figure 2, contains a total of
74 feedback circuits. However, only 11 circuits are functional,
eight of them positive and three negative (Supplementary Table
S1). The three functional negative circuits are of particular
importance because they originate the cyclic behavior in the
dynamical model. Specifically, a) SNAI1 inhibits itself; b)
NOTCH activates NRARP, which in turn inhibits NOTCH;
and c) SMAD1 activates SMAD6, which inhibits SMAD1.
Additionally, the microenvironment is defined by the pattern
of activation of seven source molecules, and since there are
possible microenvironments, the minimum number of attractors
is 128. However, the simulated dynamic behavior results in 444
attractors due to the effect of the functional positive feedback
circuits (Azpeitia et al., 2017; Rozum and Albert, 2018). This is in
qualitative accordance with the large diversity of EC and MC
patterns of molecular activation that has been reported in the
literature (Chi et al., 2003; Ho et al., 2018).

Fixed and Cyclic Patterns of
Molecular Activation
The analysis of the dynamical behavior of the model shows that
the system has 444 attractors, 169 of which are fixed points, 18 are
cyclic attractors of size 2, and 257 are cyclic attractors of size 4.
These attractors correspond to stationary or cyclic patterns of
molecular activation, which in turn can be identified with specific
cell types and cellular states. Using the procedure described in
Section 2.3, these attractors can be identified as belonging to
Endothelial, Mesenchymal, Phalanx, Stalk, and Tip sets, which
intersect each other but that can be dissected into nine disjoint
sets, as shown in Figure 3. The specific active and inactive
molecules for all these sets are shown in Table 3.

The presence or absence of a seven ligands in the extracellular
microenvironment together with the pattern of molecular
activation within the cell define the attractor reached after a
simulation of the dynamic behavior of our model. In order to
illustrate how this process functions, we simulated the behavior
Frontiers in Genetics | www.frontiersin.org 1268
of our model cell in an EndMT-inducing extracellular
microenvironment where HIF1 and FGF2 are absent while
DLL4, TGFB, WNT5b, WNT7a, and PDGF_AB are present.
The attractors reached by our model under such conditions are
shown in Table 4. Attractor 1 corresponds to the expected
pattern of expression of a mesenchymal stalk cell. Note that
here, FLI1 and GATA2 are active, and their activity is sustained
by three positive feedback circuits. Attractor 2 represents the
pattern of expression of an EC that competes with its neighbors
to become a tip cell, and cannot fully become a tip cell due to the
paracrine effect of the DLL4 ligand expressed by its neighbors
(Jakobsson et al., 2010). Note that in Attractor 2, in addition to
GATA2 and FLI1, VEGFA is active, and its activity is sustained
by a positive feedback circuit. Attractor 3 represents a
nonendothelial mesenchymal cell where FLI1, GATA2, and
VEGFA are inactive.

Robustness Analysis
The first type of robustness analysis was the evaluation of the
effects on cell types and behaviors caused by the simulation of all
possible single loss and gain-of-function mutations in the model.
These are summarized in Table 5. Observe that only 24 of 58
possible single mutations do not alter the qualitative behavior of
the model, as measured by the type of resulting attractors. The
relative low robustness to gene mutations is likely to be due to the
fact that we only included in our model molecules with an
important biological role. Furthermore, the simulation of the
other single mutations all results in the disappearance of certain
cell types. However, according to our model, each cell type or
FIGURE 3 | A venn diagram of the attractors reached by simulating the
dynamic behavior of our Boolean model. We classified the attractors as
mesenchymal, endothelial, phalanx, stalk, and tip cells, forming nine disjoint
sets that represent the following cell types and behaviors: a) Cell types that are
neither endothelial nor mesenchymal, b) Endothelial cell types that are not
mesenchymal and do not behave as phalanx, stalk or tip cells, c) Endothelial
and nonmesenchymal phalanx cell types, d) Endothelial and nonmesenchymal
stalk cell types, e) Endothelial and mesenchymal stalk cell types, f) Endothelial
and nonmesenchymal tip cell types, g) Mesenchymal and endothelial tip cell
types, h) Endothelial and mesenchymal cell types that do not exhibit tip stalk or
phalanx cell behavior, and i) Mesenchymal only cell types.
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behavior is very robust to single gain- and loss-of-function gene
mutations. Notably, the larger the number of attractors classified
as a cell type or behavior, the larger the robustness of the cell type
is to gene mutations.

As for the robustness of each cell type against noise in the
update rule, in all cases, the original model reached slightly more
attractors than the mean of the 100 000 networks with perturbed
update rules, as shown in Figure 4. Observe that the standard
deviation in the number of attractors for all cell types and
behaviors is relatively large, and therefore the robustness of the
number of attractors that represent each cell type or behavior is
low. The maximum numbers of attractors for each of the cell
types were the following: nECsnMCs 238, EConly 243, Phalanxes
27, nMCStalks 106, MCStalks 216, nMCTips 70, MCTips 149,
MCEConly 129, MCsnECs 237, while the minimum values
reached 0 for all cell types and behaviors.

Regarding the robustness of the components of the update
rule to noise in the activation value, all such components are
sensitive to less than 4.6% of all single bit perturbations that are
the most likely to occur, as shown in Figure 5. Notice that the
components corresponding to ZEB2, LEF1, and ETS1 are under
TABLE 3 | Simulated cell type characteristics: Each cell type is represented by a
group of attractors sorted as explained in Molculear Pattern Identifcation

Cell type Active molecules Inactive molecules Fraction of the
state space

covered by the
trap space

Non-EC and
Non-MC

N.A. AP1, FLI1, GATA2,
HIF1a, NRP1, SMAD2,
SMAD6, SNAI1,
STAT3, VEGFR2,
WNT5b

0.64206%

ECs FLI1, GATA2 SNAI1 97.24696%
ECs only FLI1, GATA2, SNAI2,

ZEB1
CTNNB, HIF1a,
TWIST1, WNT5b,
WNT7a

7.12915%

MCs ETS1, SNAI2,
TWIST1, ZEB1,
ZEB2

SNAI1 87.32046%

MCs only CTNNB, ETS1, LEF1,
SNAI2, TWIST1,
ZEB1, ZEB2

FLI1, GATA2, HIF1a,
NRP1, SMAD2,
SMAD6, SNAI1,
STAT3, VEGFA,
VEGFR2

2.11098%

ECs and
MCs

ETS1, FLI1, GATA2,
SNAI2, TWIST1,
ZEB1, ZEB2

SNAI1 85.20948%

ECs and
MCs only

ETS1, FLI1, GATA2,
SNAI2, TWIST1,
ZEB1, ZEB2

SNAI1 29.79242%

Phalanx FLI1, GATA2 AP1, CTNNB, DLL4,
HIF1a, LEF1, NFkB,
NOTCH, NRARP,
NRP1, PDGF_AB,
SMAD2, SNAI1,
SNAI2, STAT3,
TWIST1, VEGFA,
VEGFR2, WNT5b,
WNT7a, ZEB1

0.00322%

Stalk CTNNB, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
ZEB1

NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2

26.56887%

Stalk MCs CTNNB, ETS1, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
ZEB1, ZEB2

NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2

26.43057%

Stalk Non-
MCs

CTNNB, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
WNT7a, ZEB1

AP1, FGF2, HIF1a,
NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2, WNT5b

0.13830%

Tip ETS1, FLI1, GATA2,
NRP1, STAT3,
VEGFA, VEGFR2,
ZEB2

DLL4, NOTCH,
NRARP, SNAI1

33.7533%

Tip MCs ETS1, FLI1, GATA2,
NRP1, SNAI2,
STAT3, TWIST1,
VEGFA, VEGFR2,
ZEB1, ZEB2

DLL4, NOTCH,
NRARP, SNAI1

28.98649%

Tip Non-
MCs

ETS1, FLI1, GATA2,
NRP1, STAT3,
VEGFA, VEGFR2,
ZEB2

CTNNB, DLL4, HIF1a,
NOTCH, NRARP,
SNAI1, TWIST1,
WNT5b, WNT7a

4.76681%
TABLE 4 | The attractors reached by our model in an endothelial-to-
mesenchymal transition (EndMT)–inducing extracellular microenvironment where
HIF1 and FGF2 are absent while DLL4, TGFB, WNT5b, WNT7a, and PDGF_AB
are present.

Attractor 1 1 1 1 2 2 2 2 3 3 3 3
AP1 1 1 1 1 1 1 1 1 1 1 1 1
CTNNB 1 1 1 1 1 1 1 1 1 1 1 1
DLL4 1 1 1 1 1 1 1 1 1 1 1 1
ETS1 1 1 1 1 1 1 1 1 1 1 1 1
FGF2 0 0 0 0 0 0 0 0 0 0 0 0
FLI1 1 1 1 1 1 1 1 1 0 0 0 0
GATA2 1 1 1 1 1 1 1 1 0 0 0 0
HIF1a 0 0 0 0 0 0 0 0 0 0 0 0
LEF1 1 1 1 1 1 1 1 1 1 1 1 1
NFkB 1 1 1 1 1 1 1 1 1 1 1 1
NOTCH 0 1 1 0 0 0 1 1 0 1 1 0
NRARP 0 0 1 1 1 0 0 1 0 0 1 1
NRP1 0 0 0 0 0 1 1 0 0 0 0 0
PDGF_AB 1 1 1 1 1 1 1 1 1 1 1 1
SMAD1 0 1 1 0 0 0 1 1 1 1 1 1
SMAD2 0 0 0 0 0 0 1 1 0 0 0 0
SMAD6 0 0 1 1 1 0 0 1 0 0 0 0
SNAI1 0 0 0 0 0 0 0 0 0 0 0 0
SNAI2 1 1 1 1 1 1 1 1 1 1 1 1
STAT3 0 0 0 0 0 0 1 1 0 0 0 0
TGFB 1 1 1 1 1 1 1 1 1 1 1 1
TGFBR 1 1 1 1 1 1 1 1 1 1 1 1
TWIST1 1 1 1 1 1 1 1 1 1 1 1 1
VEGFA 0 0 0 0 1 1 1 1 0 0 0 0
VEGFR2 0 0 0 0 0 1 1 0 0 0 0 0
WNT5b 1 1 1 1 1 1 1 1 1 1 1 1
WNT7a 1 1 1 1 1 1 1 1 1 1 1 1
ZEB1 1 1 1 1 1 1 1 1 1 1 1 1
ZEB2 1 1 1 1 1 1 1 1 1 1 1 1
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2%; SNAI1, FLI1, VEGFR2, GATA2, SMAD2, and ZEB1 have a
sensitivity of about 2.5%, while most of the other components
have a sensitivity between 3.4% and 3.5% except for SNAI2 and
VEGFA that have a sensitivity of over 4%. Nonetheless, the
sensitivity of all the components increases as the number of
flipped bits increases (Figure 6). When the activity of 15 nodes is
affected, the components can be grouped by their sensitivity into
5 categories: 1) VEGFA, STAT3, NRARP, FGF2, PDGF_AB,
HIF1a, DLL4, WNT7a, WNT5b, and NFkB, TGFb with a
sensitivity between 49.4% and 52%. 2) TGFBR, TWIST1,
CTNNB, AP1, NOTCH, SMAD1, and SNAI2 with a sensitivity
between 38.1% and 40.55%. 3) SMAD6, and NRP1 with a
sensitivity of 31.1%, and 31.2% respectively. 4) SNAI1,
VEGFR2, SMAD2, ZEB1, GATA2, and FLI1 with a sensitivity
between 17.7% and 22.8%. And 5) ETS1, LEF1, and ZEB2 with a
sensitivity between 5.9% and 11.8%. Note that there exists a trend
that is independent of the number of flipped bits, where the
sensitivity for the components that represent ligands that define
the extracellular microenvironment is high, and the sensitivity of
the components that represent molecules used as cell type
Frontiers in Genetics | www.frontiersin.org 1470
markers is low. The very low sensitivity of the components
that represent ETS1, LEF1, and ZEB2 is in accordance with the
importance that of the three transcription factors not only during
EndMT, but also during other cell differentiation processes.
Specifically, ZEB2 is involved in T cell differentiation
(Goossens et al., 2019) and neurological development
(Epifanova et al., 2018). LEF1 is important during osteogenesis
(Li et al., 2018), immune cell regulation (Chae and Bothwell,
2018), and hair follicle development (Abaci et al., 2018). ETS1 is
an important regulator of lymphatic cell differentiation and
physiology (Garrett-Sinha et al., 2016).

Finally, one of the goals of this modeling effort was to
understand the conditions that cause an EC cell to change,
either by behaving differently or by differentiating partially or
fully into a mesenchymal cell. Further, EndMT is a gradual, and
reversible process and therefore we also aimed to fathom the
conditions that cause MEnT. Moreover, the intermediate states
reached through partial-EndMT are important due to their
physiological role during sprouting angiogenesis (Welch-
Reardon et al., 2014), and due to the similarity between
EndMT and EMT; it seems likely that the intermediate states
are also important from a dynamic perspective (Lu et al., 2013; Li
et al., 2016). In order to grasp the conditions that lead to EndMT
and MEnT, for each cyclic or fixed pattern of molecular
activation of our model, we simulated al l possible
p e r t u r b a t i on s i n t h e mo l e cu l e s t h a t a r e e i t h e r
microenviromental signals or the main transcription factors
involved in the regulation of EC identity. Specifically DLL4,
FGF2, FLI1, GATA2, HIF1a, PDGF_AB, TGFb, VEGFA,
WNT5b, and WNT7a. The possible effects of the 1024
perturbations are available for the interested reader as the 81
Supplementary Files in the folder https://github.com/
NathanWeinstein/EndMT/T_Results.zip in the format used to
export R objects, namely,. RData and are summarized in Table 6
which can be interpreted as a cell type or behavior transition
graph (Figure 7).

Model Validation
An exhaustive comparison between the global effect of all
possible single gene mutations in the model and the reported
experimental results are presented in Supplementary Table S2,
and summarized in Table 7. Overall, the behavior of the model is
very good at recovering the effect of a large proportion of the
reported mutants. Notice that several of the discrepancies are
because the model does not incorporate multicellular or
morphological effects, or because the reported effects involve
some molecules not included in the model. This is encouraging
given the qualitative nature of the model. Of the 58 possible
mutations, we successfully simulated the specific effects reported
for 37 (63.8%) of them. Furthermore, the effects of 4 (6.9%)
mutations constitute predictions of our model. 13 (22.4%)
mutations cause multicellular effects that we could not
reproduce using our model. Two mutations (3.45%) cause
morphological changes in the shapes of cells that are also
beyond the scope of our model. 4 (6.9%) mutations affect
molecules that we did not include in the model. 4 (6.9%)
mutations have an effect that was only observed in lymphatic
TABLE 5 | The simulated single gain and loss-of-function mutations that affect
each cell type.

Effect Mutations Robustness

Wild type AP1−, DLL4−, FGF2−, HIF1a−, LEF1
−, NFkB−, NOTCH−, NRARP−,
PDGF_AB−, SMAD1−, SMAD1+,
SMAD2−, SMAD6−, SMAD6+,
SNAI1−, STAT3−, STAT3+, TGFB−,
TGFB+, TGFBR−, TGFBR+, VEGFR2
−, WNT5b−, ZEB1+

41.38%

Loss of nonendothlial and
nonmesenchymal cells

FLI1+, GATA2+, HIF1a+, VEGFR2+,
WNT5b+

91.38%

Loss of nonmesenchymal,
nonphalanx, nontip, and
nonstalk ECs

CTNNB+, FLI1−, GATA2−, HIF1a+,
WNT5b+, WNT7a+

89.66%

Loss of phalanx cells CTNNB+, DLL4+, FLI1−, GATA2−,
HIF1a+, LEF1+, NFkB+, NOTCH+,
NRARP+, NRP1+, PDGF_AB+,
SMAD2+, SNAI1+, SNAI2+, TWIST1
+, VEGFA+, WNT5b+, WNT7a+

68.97%

Loss of nonmesenchymal
stalk cells

AP1+, CTNNB−, ETS1+, FGF2+,
FLI1−, GATA2−, HIF1a+, NRP1+,
SMAD2+, SNAI1+, SNAI2−, VEGFA
+, VEGFR2+, WNT5b+, WNT7a−,
ZEB2+

72.41%

Loss of mesenchymal
stalk cells

CTNNB−, FLI1−, GATA2−, NRP1+,
SNAI1+, SNAI2−, TWIST1−, VEGFA
+, ZEB1−, ZEB2−

82.76%

Loss of nonmesenchymal
tip cells

CTNNB+, DLL4+, ETS1−, FLI1−,
GATA2−, HIF1a+, NOTCH+, NRP1−,
TWIST1+, VEGFA−, WNT5b+,
WNT7a+

79.31%

Loss of mesenchymal tip
cells

DLL4+, ETS1−, FLI1−, GATA2−,
NOTCH+, NRP1−, SNAI2−, TWIST1
−, VEGFA−, ZEB1−, ZEB2−

81.03%

Loss of mesenchymal ECs
that are neither phalanx,
tip nor stalk cells

FLI1−, GATA2−, NRP1+, SNAI2−,
TWIST1−, ZEB1−, ZEB2−

87.93%

Loss of nonendothelial
mesenchymal cells

CTNNB−, FLI1+, GATA2+, HIF1a+,
SNAI2−, TWIST1−, VEGFA+,
VEGFR2+, ZEB1−, ZEB2−

82.76%
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ECs. Some of the reported effect of 7 (12.1%) mutations was not
recovered by the simulated behavior of our model. For two
mutations (3.45%), there are conflicting effects reported in
the literature.

Simulating EC Behavior and Differentiation During
Developmental Processes and the Progression of
Diseases Related to EndMT
During early heart valve formation, embryonic heart cushion
EndMT is triggered by TGF, WNT, and NOTCH signaling and is
inhibited by VEGF signaling (von Gise and Pu, 2012). This
behavior is recovered by the simulated dynamic behavior of our
Frontiers in Genetics | www.frontiersin.org 1571
model, (TGFb+, WNT5b+, and NOTCH+ increase the fraction
of mesenchymal attractors, and VEGFA+ prevents full-EndMT).
TGFb2−, ALK1−, ALK5−, SMAD4−, SMAD6+, NOTCH1−,
VEGFA+, CTNNB−, and PDGF_AB− inhibit EndMT, and
cause endocardial cushion hypoplasia. In contrast SMAD6-
causes heart valve hyperplasia by increasing the number of
MCs (von Gise and Pu, 2012). According to the simulated
dynamic behavior of our model, the simulated loss of TGFb,
which represents TGF-b2, and the loss of TGFbR, which
represents all TGF receptors including ALK1 and ALK2,
reduces the fraction of mesenchymal attractors. Further, the
loss of the cofactor SMAD4 can be simulated as the loss of
FIGURE 4 | The robustness of the cell types and behaviors to changes in the update rule: The height of the bars represents the median number of attractors of
each cell type or behavior, the error bars represent one standard deviation over and under the mean respectively, and the red horizontal line segments represent the
number of attractors of each cell type or behavior on our original model.
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both SMAD1 and SMAD2 function and does not affect the
fraction of mesenchymal attractors. The simulated SMAD6 gain
of function mutation also does not affect the fraction of
mesenchymal attractors. Simulated NOTCH loss of function
reduces the fraction of mesenchymal attractors. Moreover,
simulated VEGFA gain of function and CTNNB loss of
function prevent the existence of nonendothelial mesenchymal
Frontiers in Genetics | www.frontiersin.org 1672
attractors. Additionally, the simulated loss of PDGF_AB reduces
the fraction of mesenchymal attractors. Lastly, the simulated loss
of SMAD6 function exhibits a slight increase in the fraction of
mesenchymal attractors.

The initial stages of atherosclerosis and vascular calcification
are characterized by neointimal hyperplasia. Local disparity in
shear stress is associated to neointimal lesions. While most
FIGURE 5 | The sensitivity of each component of the update rule: The height of the bars represents the sensitivity of the components of the update rule to
perturbations that affect one node.
FIGURE 6 | The effect of the number of flipped bits on the sensitivity of the update rule components. Note that the components segregate according to their
sensitivity to molecular activation noise into five categories.
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TABLE 6 | The number and the characteristics of the pertubations in the activation state of the molecules DLL4, FGF2, FLI1, GATA2, HIF1a, PDGF_AB, TGFb, VEGFA, WNT5b, and WNT7a that cause cell type or cell
number is bigger than 0, the cell contains the molecules that are active in all perturbations +(), as well as the
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neointimal cells originate from smooth muscle, some neointimal
cells might arise from ECs that undergo EndMT. ECs that are
exposed to disturbed flow undergo EndMT; conversely, uniform
laminar shear stress hinders EndMT through KLF2, KLF4,
MEK5, and ERK5 (Moonen et al., 2015). Molecularly, ERK5 is
the main mitogen-activated protein kinase (MAPK) involved in
the regulation of cardiovascular development (Nishimoto and
Frontiers in Genetics | www.frontiersin.org 1874
Nishida, 2006), and VEGF/MAPK signaling activates the
transcription of several transcription factors from the ETS
family including ets1 and fli1 (Wythe et al. , 2013).
Furthermore, the low shear stress caused by disturbed
nonlaminar flow at the sites where neointimal hyperplasia
occurs leads to a decrease in ets1, and fli1 expression.
Therefore, we can simulate uniform laminar shear stress as the
double gain of function mutation ets1+/fli1+, and a disturbed
nonlaminar flow as the double mutant ets1−/fli1−. The simulated
effect of ets1−/fli1− is the loss of all endothelial attractors, the
number of nonendothelial mesenchymal attractors increases
from 48 to 347, and the fraction of nonendothelial
mesenchymal attractors increases from 0.108 to 0.69. This
behavior can be interpreted as an increase in full EndMT
resulting from nonlaminar flow. Moreover, the simulated effect
of ets1+/fli1+ is the loss of all nonendothelial mesenchymal
attractors as well as an increase in the fraction of mesenchymal
attractors from 0.567 to 0.816. This behavior can be interpreted
as an increase in partial-EndMT and a complete inhibition of full
EndMT. Therefore, according to our model, nonlaminar flow
triggers full EndMT, and uniform laminar shear stress prevents
full EndMT and upregulates angiogenesis-related partial
EndMT. These results are in direct correspondence with the
observed effect of uniform laminar and disturbed nonlaminar
flow (Wragg et al., 2014).

Another important EndMT-related disease is pulmonary
arterial hypertension, which is defined as a sustained pulmonary
arterial pressure of more than 25 mm Hg at rest or more than 30
mm Hg during exercise, with a left ventricular pressure at the end
of the diastole and a mean pulmonary-capillary wedge pressure
lower than 15 mm Hg. The lung tissue of patients affected with
pulmonary arterial hypertension is characterized by increased
medial thickness, intimal fibrosis, plexiform lesions, and
pulmonary arteriolar occlusion (Farber and Loscalzo, 2004).
EndMT is involved in many of the pathological mechanisms
associated with pulmonary arterial hypertension (Kovacic et al.,
2019). At the molecular level, most cases of heritable pulmonary
arterial hypertension involve mutations that affect the bone
morphogenic protein (BMP) branch of the TGF signalling
pathway including ACVRL1(ALK1), BMPRII, ENG, SMAD1,
SMAD4, and SMAD9. Furthermore, BMPRII siRNA increases
the expression of SNAI2 (Hopper et al., 2016). According to our
model, the simulated gain of function mutation for SNAI2
increases the fraction of mesenchymal attractors, which is
consistent with the experimental evidence.

Finally, hypoxia-induced EndMT is another important
mechanism involved in the patophysiology of pulmonary
arterial hypertension. HIF-1a directly binds to the promoter of
TWIST1 and activates its expression (Zhang et al, 2018).
Pulmonary arterial hypertension patients exhibit high levels of
the cytokines IL-1b and TNFa that in the presence of TGFb
induce EndMT in pulmonary arterial ECs in vitro (Good et al.,
2015). IL-1b and TNFa induce EndMT by stabilizing NF-kB
(Sánchez-Duffhues et al., 2018). According to the simulated
dynamic behavior of our model, a gain-of-function mutation
of NF -kB induces EndMT and elevates the expression of ZEB2.
FIGURE 7 | The effect of the perturbations as a state transition graph: The
width of the edges represents the fraction of the perturbations that lead to
that transition, and the color of the edge denotes the original cell type or
behavior.
TABLE 7 | The capacity of our model to simulate the effects of mutations as
reported in the literature.

Successfully simulated CTNNB+, DLL4+, ETS1−, FGF2−, FLI1−, FLI1+,
GATA2−, HIF1a−, HIF1a+, LEF1+, NFkB+, NOTCH1−,
NOTCH+, NRARP+, PDGF_AB−, PDGF_AB+, SMAD6
−, SMAD6+, SNAI1+, SNAI2−, SNAI2+, STAT3−,
TGFb−, TGFb+, TGFbR−, TGFbR+, TWIST1−TWIST1+,
VEGFA−WNT5b−WNT5b+, WNT7a+, ZEB1−, ZEB2−,
ZEB2+.

Affect the likelihood of
transient patterns of
expression

AP1−, NFkB−, STAT3+.

Predictions of our
model

AP1+, GATA2+, SMAD1+, SMAD2+.

Unable to simulate the
multicellular effect

CTNNB−, DLL4−, DLL4−, LEF1−, NRARP−, SMAD6−,
SNAI2−, SNAI2+, VEGFA+, VEGFR2−, VEGFR2+,
WNT7a−, ZEB2−.

Unable to simulate the
morphological cell
change

SNAI1−, SNAI1+

Affects molecules not
included in our model

ETS1+, SNAI2−, SNAI2+, ZEB2+

Some effects were only
observed in lymphatic
ECs

FGF2−, FGF2+, WNT5b−, WNT5b+

Some effects not
simulated

SMAD1−, SMAD2−, STAT3+, TGFbR+, TWIST1+,
VEGFA+, ZEB1+

Conflicting effects
reported in the
literature

NRP1−, NRP1+
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DISCUSSION

The Model as Theoretical Framework
Our model of the molecular regulatory network involved in the
control of EndMT and EC activation integrates a vast amount of
published experimental results. Therefore, our model constitutes
a theoretical framework that summarizes the current knowledge
and allows for the simulation of experiments that explore the
molecular mechanisms involved in the regulation of EndMT
in silico.

Many important questions about EndMT remain
unanswered (Welch-Reardon et al., 2015). While such
questions require a experimental approach to obtain a
conclusive answer, models like the one presented here can
be used to generate hypotheses to direct, or at least restrict, all
the possible venues of experimental inquiry. In this sense, our
model provides an important theoretical framework to
understand the regulatory mechanisms behind EndMT. The
following paragraphs provide testable hypotheses on some key
aspects, according to our model.

Are SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2 all required for
EndMT? According to the dynamic behavior of the model, the
loss of any of the transcription factors SNAI2, TWIST1, ZEB1,
and ZEB2 prevents mesenchymal cell differentiation.
Experimentally, the loss of SNAI2 (Niessen et al., 2008),
TWIST1 (Mammoto et al., 2018), or ZEB1 (Sanchez-Tillo
et al., 2010) prevents EndMT. ZEB2 has many functions in
addition to its role during EndMT, its loss causes severe
neurodevelopmental defects and cardiovascular malformations
(Epifanova et al., 2018), while its specific effect during EndMT
still needs to be elucidated. Conversely, the gain of ZEB2
function is sufficient to trigger EndMT (DaSilva-Arnold et al.,
2018). SNAI1 over-expression can rescue the heart valve defects
caused by the loss of SNAI2 (Niessen et al., 2008). According to
our model, SNAI1 gain-of-function increases the fraction of
mesenchymal attractors. This implies that it can trigger
EndMT under certain circumstances. However, it cannot
replace SNAI2 in fixed or cyclic patterns of expression because
it inhibits its own expression.

Do SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2 work
sequentially, in parallel or in feedback circuits? TWIST1
regulates the transcription of both SNAI1 and SNAI2 (Yu
et al., 2013; Forghanifard et al., 2017), while these two inhibit
each other (Peiro et al., 2006; Chen and Gridley, 2013b). Then,
SNAI1 activates the transcription of ZEB2 (Guaita et al., 2002;
Takkunen et al., 2006), and SNAI2 activates the transcription of
ZEB1 (Wels et al., 2011). The regulatory network presented here
shows that SNAI1 and SNAI2 form part of several other circuits,
including two functional feedback circuits where SNAI1 inhibits
its own expression and SNAI2 activates its own expression.
Furthermore, TWIST1, ZEB1, and ZEB2 appear to work
sequentially with SNAI1 and SNAI2. In this context, our
model contributes to the unraveling of several molecular
circuits relevant for EndMT.

What regulates the expression of EndMT-promoting
transcription factors? According to experimental observations
(Piera-Velazquez and Jimenez, 2019) captured by our model,
Frontiers in Genetics | www.frontiersin.org 1975
nonlaminar blood flow, inflammation, as well as TGF, WNT and
NOTCH signaling pathway activity can trigger EndMT. By
contrast, laminar blood flow, hypoxia, and VEGF signaling can
inhibit full EndMT. Other molecular mechanisms that have been
reported to regulate EndMT include the autocrine TGF
activation by ET-1, the most potent known endogenous
vasoconstrictor polypeptide that triggers EndMT. CAV-1, the
main protein component of caveolae, is an important inhibitor of
EndMT, by means of the internalization, trafficking, and
degradation of TGF receptors. H2O2-induced oxidative stress,
NOX2 and NOX4 can induce EndMT via TGF signaling. Fatty
acid oxidation inhibits EndMT by activating SMAD7 and
inhibiting TGF signaling. Hyperglycemia leads to EndMT
through increased phosphorylation of ERK1/2, Angiotensin II
synthesis, miR-200b and miR-328 upregulation, and ROCK1
activation (Piera-Velazquez and Jimenez, 2019). The wide variety
in the patterns of expression that represent each cell type or
behavior prevents the specification of the molecules that regulate
EndMT. However, if the initial cell type or behavior is known,
our model allows the specification of all possible perturbations
that might cause a partial or full EndMT. This information is
available in the Supplementary Files in the folder https://github.
com/NathanWeinstein/EndMT/T_Results.zip in the format used
to export R objects (.RData), and summarized in Table 6 and
Figure 7.

What controls whether cells undergo a full or partial
EndMT? Many of the molecular mechanisms involved in the
regulation of EndMT and angiogenesis remain unknown.
Nevertheless, we know that the activity of several molecules,
including NRP1 (Oh et al., 2002; Matkar et al., 2016), SNAI1
(Sun et al., 2018), SNAI2 (Welch-Reardon et al., 2015),n
WNT5b (Wang et al., 2017a), and WNT7a (Howe et al., 2003;
Pahnke et al., 2016) induce both EC activation and EndMT.
Furthermore, TWIST1 (Mammoto et al., 2018), ZEB1 (Sanchez-
Tillo et al., 2010), and ZEB2 (DaSilva-Arnold et al., 2018)
induce EndMT and are not known to be involved in EC
activation during angiogenesis. Finally, the activity of FGF2
(Ichise et al., 2014; Yang et al., 2015), and VEGFA (Paruchuri
et al., 2006) induce angiogenesis and inhibit full EndMT.
According to our model, all the cases that achieve a full
EndMT with the loss of EC identity require FLI1, GATA2,
HIF1a, as well as VEGFA inactivity. These molecules, as a
group, have not been involved in this process up to now. In this
case, our model serves as a guide to study the role of specific
molecules, while at the same time providing a hypothesis of its
role in the regulatory network.

The Endothelial-to-Mesenchymal
Transition in Medicine
EndMT is necessary during embryonic development for heart
septation and heart valve morphogenesis. During the span of
human life, EndMT is required to maintain heart valve
homeostasis and adapt to hemodynamical changes. EndMT
deregulation is involved in the pathophysiology of vascular
malformation, vascular calcification, pulmonary arterial
hypertension, and organ fibrosis (Medici, 2016; Sánchez-
Duffhues et al., 2018).
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EndMT is critical during the formation of the heart.
Human heart development begins with the aggregation of
splanchnopleuric mesenchyme cells that form part of the
mesoderm into two endocardial tubes in the cardiogenic
area of the embryo. Then, the two endocardial tubes fuse to
form the primitive heart tube, which then begins to beat. After
that, cardiac looping occurs. Next, septation and valve
formation transpires (Moorman et al., 2003). Heart valves
develop from endocardial cushions through two processes: the
deposition of a special kind of ECM called cardiac jelly, and
the arrival of mesenchymal cells that are the precursors to
valve cells. Most cushion mesenchymal cells are derived from
endocardial cells that undergo EndMT, while the rest
originate from epicardium and cardiac neural crest cells that
undergo EMT (MacGrogan et al., 2014). EndMT is also
involved in adult valve homeostasis and disease. Adult heart
valves are covered by a layer of ECs that undergo EndMT to
replenish valve interstitial cells. Further, mechanical stretch-
induced EndMT allows heart valves to adapt to changes in
blood flow within the heart. However, excessive EndMT
causes heart valve dysfunction thorough thickening or
ca lc ificat ion. For instance , excess ive EndMT after
myocardial infraction can lead to mitral valve leaflet
thickening and mitral regurgitation (Bischoff, 2019).

The formation and progression of arteriovenous
malformations and cerebral cavernous malformations
involves EndMT. CCM1, CCM2, and CCM3 loss-of-
function mutations cause the formation of cerebral
cavernous malformations. EC-specific disruption of the
Ccm1 causes TGF-mediated EndMT. Inhibiting TGF
signaling reduces the number and size of vascular lesions
caused by CCM1- deficiency (Maddaluno et al., 2013).
Arteriovenous malformations are shunts that directly
connect the afferent arteries to efferent veins, bypassing the
usual capillary network. In addition to the fact that they take a
large volume of space and prevent normal tissue perfusion, the
nidus of arteriovenous malformations is prone to leaking or
bursting, often causing unbearable pain and serious damage.
ECs within brain arteriovenous malformations in mice
undergo SOX2, and JMJD5-mediated EndMT that can be
suppressed using Pronethalol hydrochloride (Yao et al., 2019).

Fibrosis is a wound healing process that involves the synthesis
and accumulation of ECM proteins. Excessive fibrosis can cause
functional organ failure. Myofibroblasts are the essential cell type
in the pathogenesis of fibrotic disorders. In systemic sclerosis,
cardiac fibrosis, renal fibrosis, idiopathic portal hypertension,
colitis, and inflammatory bowel disease, some myofibroblasts
express EC markers, suggesting that they originate from ECs that
underwent TGF-induced EndMT (Pardali et al., 2017; Sánchez-
Duffhues et al., 2018).

ECs can be found in every major organ in the body, and
thorough EndMT ECs can become MCs that are capable of
differentiating into pericytes, smooth muscle cells, skeletal
muscle cells, cardiomyocytes, myofibroblasts, chondrocytes,
osteocytes, adipocytes, hematopoietic stem cells, and other
organ-specific cell types. Therefore, EndMT has vast potential
Frontiers in Genetics | www.frontiersin.org 2076
for tissue engineering and regenerative medicine (Medici, 2016;
Man et al., 2019). Currently, EndMT is harnessed to manage
ECM production and remodeling during cardiovascular tissue
graft engineering (Muylaert et al., 2015).

Beyond a Synchronous BN
Despite the valuable insights provided by a Boolean model
into the molecular mechanisms behind EndMT, it is evident
that the complexity of the biological systems requires the
incorporation of several characteristics. These constitute a set
of improvements that will be incorporated into future versions
of the model. The first improvement would be to convert the
model into a continuous dynamical system, which will allow
us to explore the biological relevance of the cyclic attractors
reached by model, thus eliminating possible methodological
artifacts caused by the synchronous update. Specifically, it is
possible that some cycles found in the Boolean models might
correspond to fixed point attractors with intermediate values
when modeled as a continuous system. Furthermore, another
important improvement would be the explicit modeling of the
three-dimensional shape of the cells by specifying the
cytoskeleton and cellular matrix. This information would
allow the analysis of those signals that trigger EC
cytoskeleton and ECM remodeling. This characteristic is
important to understand the mechanism by which the shear
stress caused by blood flow causes actin fibers within an EC to
align with the flow (Kroon et al., 2017).

Conclusion
We found sufficient information obtained from published
experimental results to assemble a functional model of the
molecular regulatory network involved in EndMT regulation.
Therefore, everything indicates that sufficient main signaling
pathways that regulate EndMT are already characterized. The
next logical step is to unravel the operation of the molecular
regulatory network involved in EndMT control at a systemic
level. The model we describe in the present manuscript
constitutes an initial qualitative analysis in that direction.
EndMT is required for heart valve formation during
embryonic development and is an important component in
the pathophysioloy of cardiovascular and fibrotic diseases.
Understanding how to regulate EndMT has vast applications
in the treatment of disease and regenerative medicine. The
simulated dynamic behavior of our model recovers fixed and
cyclic patterns of molecular activation that correspond to the
main cell types and behaviors involved in EndMT. Further,
the simulated effect of most single gain and loss-of-function
mutations of the molecules included in our model
corresponds to the experimentally observed effect of the
same mutations. Additionally, we used all possible
perturbation patterns for 10 molecules to explore the
conditions that cause EC activation, EndMT, and the reverse
transitions. Based on the results of the perturbation analysis,
we infer that the Phalanx and nonmesenchymal Stalk EC
behaviors can only be reached from a few initial EC
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behaviors, and also that the Tip EC behavior prevents direct
full EndMT. Tip ECs may undergo indirect full EndMT only
by previously transforming into nonphalanx, nonstalk, and
nontip ECs or into mesenchymal stalk cells. Therefore, our
model constitutes a theoretical framework that enables
hypothesis generation, and illuminates and restricts the
possible paths for future experimental EndMT research and
the pharmacological control of EndMT.
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Aging attracts the attention throughout the history of humankind. However, it is still

challenging to understand how the internal driving forces, for example, the fundamental

building blocks of life, such as genes and proteins, as well as the environments work

together to determine longevity in mammals. In this study, we built a gene regulatory

network for mammalian cellular aging based on the experimental literature and quantify

its underlying driving force for the dynamics as potential and flux landscape. We found

three steady-state attractors: a fast-aging state attractor, slow-aging state attractor, and

intermediate state attractor. The system can switch from one state attractor to another

driven by the intrinsic or external forces through the genetics and the environment.

We identified the dominant path from the slow-aging state directly to the fast-aging

state. We also identified the dominant path from slow-aging to fast-aging through an

intermediate state. We quantified the evolving landscape for revealing the dynamic

characteristics of aging through certain regulation changes in time. We also predicted

the key genes and regulations for fast-aging and slow-aging through the analysis of the

stability for landscape basins. We also found the oscillation dynamics between fast-aging

and slow-aging and showed that more energy is required to sustain such oscillations.

We found that the flux is the dynamic cause and the entropy production rate the

thermodynamic origin of the phase transitions or the bifurcations between the three-state

phase and oscillation phase. The landscape quantification provides a global and physical

approach to explore the underlying mechanisms of cellular aging in mammals.

Keywords: aging, slow-aging, landscape, flux, entropy production, gene regulatory network

1. INTRODUCTION

The study of aging has been one of the most long-lasting and influential fields for both
scientists and the public. Previous studies have shown that there are nine hallmarks of aging:
genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication (López-Otín et al., 2013). In this work, we focus on studies of cellular
aging based not only on the key genes but also, more importantly, on their associated gene
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regulations. Thanks to the rapid development of molecular
biology, researchers can manipulate certain genes and observe
their effects on the aging process of a model organism (Gems
and Partridge, 2013). An early breakthrough showed that the
mutation of only one gene, daf-2, can prolong the lifespan of
Caenorhabditis elegans by more than two times (Kenyon et al.,
1993). Since then, hundreds of genes related to aging have been
isolated, and evolutionarily conserved pathways like Insulin/IGF-
1 signaling, TOR signaling, AMP kinase, and Sirtuins have been
identified (Kenyon, 2010; Colman et al., 2014). Although great
progress has been made in aging research over the last several
decades, there is still a lack of a physical model to integrate
these experimental observations, to quantitatively understand
the mechanisms of how the internal and external elements
(such as environments) work together to control aging, and to
predict the key genes and regulations that significantly affect the
aging process.

The landscape paradigm for development was introduced
by Waddington in the 1940s (Waddington, 2014). However,
the Waddington landscape initially only provided a qualitative
picture and lacked physical foundation and quantification
(Wang, 2015). Recently, there has been significant progress in
establishing the physical theory and foundation as well as the
quantification of the Waddington landscape (Wang et al., 2008;
Wang J. et al., 2011; Wang, 2015; Zhou and Li, 2016). A detailed
comparison and critical review of various approaches was
presented in (Zhou and Li, 2016). To find the core mechanisms of
the mammalian cellular aging process, we built a gene regulatory
network based on the existing experimental literature (Haruta
et al., 2000; Stambolic et al., 2001; Inoki et al., 2002, 2003;
Ogawara et al., 2002; Kong, 2004; Lahav et al., 2004; Nemoto,
2004; You et al., 2006; Greer et al., 2007b; Okoshi et al., 2007;
Budanov and Karin, 2008; Gwinn et al., 2008; Lan et al., 2008;
Salih and Brunet, 2008; Cantó et al., 2009; Chen et al., 2010;
Georgescu, 2010; Ghosh et al., 2010; Sengupta et al., 2010; Yi
and Luo, 2010; Budanov, 2011; Dunlop et al., 2011; Gao et al.,
2011; Kim et al., 2011; Löffler et al., 2011; Renault et al., 2011;
Wang F. et al., 2011; Parmigiani et al., 2014). We quantified the
potential landscape through analyzing the long-term dynamic
trajectories. We identified the driving forces of aging dynamics
as the steady-state probability landscape and the steady-state
probability flux. While the landscape tends to stabilize the states
of the system, the flux tends to stabilize the flow of state.
The quantification of the landscape and the flux provides us
with a global way to understand the functions and stabilities
of and also the relationships among different functional states.
Furthermore, one can detect what key elements can lead to
significant changes on the system stabilities and quantify these by
the landscape topography through barrier heights and switching
times between states.

In the following sections, we first detail how we built an
underlying gene regulatory network of mammalian cellular aging
based on the existing experimental literature (Haruta et al., 2000;
Stambolic et al., 2001; Inoki et al., 2002, 2003; Ogawara et al.,
2002; Kong, 2004; Lahav et al., 2004; Nemoto, 2004; You et al.,
2006; Greer et al., 2007b; Okoshi et al., 2007; Budanov and Karin,
2008; Gwinn et al., 2008; Lan et al., 2008; Salih and Brunet, 2008;

Cantó et al., 2009; Chen et al., 2010; Georgescu, 2010; Ghosh
et al., 2010; Sengupta et al., 2010; Yi and Luo, 2010; Budanov,
2011; Dunlop et al., 2011; Gao et al., 2011; Kim et al., 2011;
Löffler et al., 2011; Renault et al., 2011; Wang F. et al., 2011;
Parmigiani et al., 2014). Based on this gene circuit, we developed a
mathematical model to quantitatively describe the basic features
of the mammalian cellular aging process. A landscape with
three attractors that represent fast-aging, intermediate, and slow-
aging, respectively, was identified. We discuss the biological
functions of these three attractors and their possible effects on
mammalian cellular aging. We identify the dominant paths of
system switching between the fast-aging and slow-aging state
attractors, giving the most likely route of how fast-aging and
slow-aging processes may have occurred. Since the cellular aging
process is affected by many factors from inside and outside of
the system, we performed a global sensitivity analysis based on
the landscape topography and kinetics to investigate how the
changes of the genes and the regulations influence the fast-aging
and slow-aging processes. The genes or regulations that may play
key roles in controlling the mammalian cellular aging process are
predicted. Finally, we also found a possible scenario of oscillation
dynamics between fast-aging and slow-aging. We show the phase
transition/bifurcation between amulti-stable state and oscillation
of fast-aging and slow-aging. We show that the flux is the
dynamic cause and entropy production rate related to the flux
the thermodynamic cause for this phase transition/bifurcation
process of fast-aging and slow-aging.

2. RESULTS

2.1. Network Wiring and Kinetic Equations
To investigate the fundamental dynamic features of mammalian
cellular aging, we first selected genes that have been revealed to
play essential roles in aging. We then gathered the regulatory
information regarding these genes by mining the literature for
previous relevant studies (Haruta et al., 2000; Stambolic et al.,
2001; Inoki et al., 2002, 2003; Ogawara et al., 2002; Kong, 2004;
Lahav et al., 2004; Nemoto, 2004; You et al., 2006; Greer et al.,
2007b; Okoshi et al., 2007; Budanov and Karin, 2008; Gwinn
et al., 2008; Lan et al., 2008; Salih and Brunet, 2008; Cantó
et al., 2009; Chen et al., 2010; Georgescu, 2010; Ghosh et al.,
2010; Sengupta et al., 2010; Yi and Luo, 2010; Budanov, 2011;
Dunlop et al., 2011; Gao et al., 2011; Kim et al., 2011; Löffler
et al., 2011; Renault et al., 2011; Wang F. et al., 2011; Parmigiani
et al., 2014). We integrated all of this information to give rise to
a gene regulatory network. This gene regulatory network of the
mammalian cellular aging includes nine genes and 28 regulatory
interactions, as shown in Figure 1.

Some well-studied genes and pathways related to mammalian
cellular aging are included in the network. The PI3K/Akt
signaling pathway, which inhibits FOXO transcription factors,
is highly conserved across metazoans (Hay, 2011). FOXO
transcription factors have consistently been revealed as
important determinants in aging and longevity. In mammals,
the FOXO subfamily is involved in a wide range of crucial
cellular processes regulating stress resistance, metabolism, cell
cycle arrest, and apoptosis (Martins et al., 2015). AMPK and
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FIGURE 1 | Gene network wiring of mammalian cellular aging. Green arrows

represent activation regulations. Red bars represent inhibition regulations.

mTORC1 are important nutrient-sensing protein kinases that
have antagonistic functions in regulating metabolic homeostasis.
Several experiments show that inhibiting mTORC1 delays
aging in yeast and invertebrates, extends lifespan in mice,
and has an impact on a diverse array of age-related diseases
(Johnson et al., 2013). An increase in AMPK activity extends
lifespan in lower organisms (Salminen and Kaarniranta,
2012), and experiments demonstrated that AMPK together
with mTORC1 and ULK1, a key protein needed in the early
steps of autophagosome biogenesis, controls cell growth and
autophagy in mammals (Huber et al., 2012; Dunlop and Tee,
2013). Inactivation of Sestrin genes in invertebrates resulted
in diverse metabolic pathologies, including oxidative damage,
fat accumulation, mitochondrial dysfunction, and muscle
degeneration, which resemble accelerated tissue aging (Lee
et al., 2013). SIRT1 regulates numerous processes, including
inflammation and cellular senescence and aging (Rahman and
Bagchi, 2013). SIRT1 is decreased in both transcriptional and
post-transcriptional conditions during aging, accompanied by
attenuated mitochondrial biogenesis, an important component
of aging-related diseases (Yuan et al., 2016). The p53 gene
is well-known as a tumor suppressor gene. Its activation
also modulates cellular senescence and organismal aging.
P53 also regulates aging in a complex way. It accelerates or
decelerates the aging process under different circumstances
(Rufini et al., 2013). Besides, a few important regulatory
interactions affecting aging have been studied. It is found
that an AMPK-FOXO pathway is important for mediating
life span extension by caloric restriction in C. elegans (Greer
et al., 2007a). AMPK regulation of FOXO factors may help
coordinate energy metabolism with cellular responses to
prevent diabetes (Greer et al., 2007b). FOXO3 and p53 are part
of a common transcriptional network affecting cellular and
organismal responses that is important to counter aging and
cancer (Renault et al., 2011). The p53-regulated antioxidant
Sestrins gene family involved in control of the AMPK-TORC1
pathway and mitochondrial function might defend against the

accumulation of detrimental damage, which potentiates aging
and fuel age-associated diseases (Budanov, 2011). It has been
found that SIRT2 deacetylates FOXO3 to increase the expression
of its target genes, thus regulating cell proliferation, anti-
oxidation, and apoptosis (Wang et al., 2007). Detailed references
for each regulatory interaction in the network can be found in
Table S1.

The complexity of the network wiring is reflected in two
different aspects. From the molecular biological perspective,
several types of regulatory interactions are present in the
network, including transcriptional regulation, translational
control, protein-protein interaction, and signal transduction.
From the network wiring topology perspective, the intensive
communications among the nine genes imply emergent
biological functions as a result. The network motif includes
positive and negative, feed-forward and feed-back loops.
This can give rise to the possibility of generating complex
dynamic features, such as forming multi-stable state attractors
and oscillations.

To explore the dynamics of the mammalian cellular aging
network, we employ non-linear differential equations (Tyson and
Novák, 2010) to describe the dynamics of each genes expression
in the network. A sigmoidal function was previously used to
model T-cell differentiation (Hong et al., 2012) and epithelial-
mesenchymal transition (Watanabe et al., 2019) in mammalian
cells and appears to be suitable for describing both gene
expression and gene regulation networks (Mjolsness et al., 1991;
Hong et al., 2011, 2015). There are nine genes in the network, so
a total of nine equations are included in our simulation model.
The form of the kinetic equation is shown as:

Ẋi = γi[F(σiWi)− Xi] (1)

F(σiWi) = 1/(1+ e−σiWi ) (2)

Wi = ωi0 +
∑

j

ωijXj (3)

where Xi represents the expression level of the gene i, where i
= 1,...,9, in the network. The parameter γi denotes a reciprocal
rate description of the dynamic timescale of the system. F(σiWi)
denotes the regulation for gene i. It is described by a non-linear
sigmoidal function that varies from 0 where Wi ≪ −1/σi to 1
where Wi ≫ 1/σi. Wi denotes a combination of the effects of all
input regulations to gene i. A small regulation input to gene i will
lead to a weak driving force for the dynamics of gene i, while a
large regulation input to gene i will give rise to a large driving
force to the dynamics of gene i. The coefficient ωij indicates
the regulatory strength of gene j on gene i, where ωij < 0 for
inhibitory interaction, ωij > 0 for promoting regulation, and
ωij = 0 for no effect of gene j on gene i. The coefficient ωi0

represents the basal regulation strength. Since cellular aging is not
an isolated or static process, the value of ωi0 can be varied under
genetic changes or environmental influences. The parameter σi
controls the steepness of the sigmoidal function at its inflection
point. It provides a threshold for the onset of significant dynamics
of the gene.
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FIGURE 2 | The potential landscape and gene expression levels of fast-aging

and slow-aging. Red arrows represent the dominant path from slow-aging to

fast-aging. Green arrows represent the dominant paths from fast-aging to

slow-aging. (A) The potential landscape of fast-aging and slow-aging. (B)

Gene expression levels of fast-aging and slow-aging.

2.2. Potential Landscape of Aging
A biological system is naturally subject to intrinsic and extrinsic
fluctuations. Therefore, we added an additional fluctuation
term in the ODEs to characterize the stochastic behaviors of
the mammalian cellular aging process. We use the Langevin
dynamic approach to simulate the gene circuit dynamics. From
the resulting dynamic trajectories of the gene expressions, we
collected the statistics and quantified the underlying potential
landscape (Wang J. et al., 2011). For visualization, we projected
the high-dimensional state spaces into two coordinates. This
choice can still distinguish the major biological functions that are
reflected as attractors in the landscape.

The potential landscape of mammalian cellular aging is shown
in Figure 2A.X and Y coordinates represent the expression levels
of genes SIRT1 and mTORC1, respectively. The Z coordinate
represents the landscape U. Three attractors emerge on the 3D
landscape. The position of each attractor can be distinguished by
the expression levels of all of the nine genes in the network. This is
shown as a heatmap in Figure 2B. We defined the three attractors
as the slow-aging state (S), fast-aging state (F), and intermediate
state (I) according to the gene expression levels and their
corresponding gene functions. In the slow-aging state, genes with
longevity-promoting functions, such as SIRT1, AMPK, and Ulk1,

have relatively high expression levels and genes with lifespan-
limiting effects, such as mTORC1 and AKT, have relatively low
expression levels. In the fast-aging state, longevity-promoting
genes and lifespan-limiting genes show the opposite expression
patterns compared to the case of slow aging. The intermediate
state is located between the fast-aging and the slow-aging state;
genes, such as FOXO, Sestrins, p53, and Ulk1 show relatively low
expression levels compared to the slow-aging state, while genes,
such as SIRT1 and AMPK show relatively high expression levels
compared to the slow-aging state. Some organisms undergo rapid
aging and death, while others grow old slowly and live far longer,
even within a population of isogenic organisms in identical
environments (Crane et al., 2020). A previous study on an aging
model of yeast cell with an intermediate state was proposed
based on categorizing the age-dependent phenotypic conditions
and was validated through experiment (Jin et al., 2019). The
emergence of the intermediate state provides new perspectives to
explain themechanisms of themammalian cellular aging process.
The intermediate statemay provide a bridge ormid-land between
fast-aging and slow-aging. This can help to facilitate the fast or
slow aging process through the intermediate state.

The depths of the three attractors are significantly different.
A deeper attractor has lower energy U, where U = −logP
and P represents the steady-state probability of the state. Thus,
the system is expected to reside in a deeper attractor for a
longer time, and it is harder to escape from it. The mean first
passage time (MFPT) reflects the average transition time from
one attractor to another. In Figure 2A, we can see the fast-
aging state attractor is deeper than the slow-aging state attractor
and the intermediate attractor. We calculate the MFPT from
slow-aging to fast-aging and from fast-aging to slow-aging as
44.27 and 126.32, respectively. These quantifications indicate that
under current system conditions, the system prefers to stay at the
fast-aging attractor with lifespan-limiting effects, and the
transition from slow-aging to fast-aging is significantly faster
than that from fast-aging to slow-aging. This may explain why
the fast-aging process seems more dominant, since the fast-aging
state attractor is more stable and therefore has a higher chance of
being observed.

The dominant path (Wang et al., 2010) is the most probable
path when a system switches from one state to another. We
quantify the dominant paths from slow-aging to fast-aging and
from fast-aging to slow-aging, which are separately shown as a
red arrow and a green arrow in Figure 2A. It is notable that
the two dominant paths are completely different. For the fast-
aging process, the red dominant path is directly from the slow-
aging state to fast-aging state. The green dominant path from
fast-aging to slow-aging passes through the intermediate state.
This indicates that, in our mammalian cellular aging model, the
slow-aging process is divided into two steps. The first step is
from the fast-aging state to the intermediate state, marked by
a significant increase in the expression levels of AMPK and the
SIRT1. These two genes together regulate diverse processes, such
as cellular fuel metabolism, inflammation, and mitochondrial
function (Ruderman et al., 2010). The second step is from
the intermediate state to the slow-aging state, marked by the
changes of the gene expressions of the other aging-related genes,
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FIGURE 3 | Dynamic landscape of fast-aging and slow-aging upon changes

in the basal expression level of SIRT1. The horizontal coordinates represent

the top two principal components of gene expression, while the vertical axis

represents changes in the basal level of expression for gene SIRT1.

such as FOXO and mTORC1 (see Figure 2B). It is possible to
experimentally slow the rate of aging through longevity genes
or dietary restriction (Rando and Chang, 2012), but further
experimental verifications are needed to check the predictions of
the two-step transition to slow-aging in our model.

2.3. Dynamics of Landscapes of Aging
Aging is certainly not an isolated process. Most of the aging-
related genes are multi-faced, and they also play key roles in some
other basic functions, such as metabolism, energy homeostasis,
protein synthesis, cell growth, proliferation, autophagy,
apoptosis, and senescence. Several kinds of stimulations have
been found to have a great influence on the natural aging
process. Genetic manipulations of certain genes have been found
to significantly extend the lifespan of C. elegans (McCormick
et al., 2011). Dietary restrictions have been found to regulate
aging and increase the healthy lifespan in various model
organisms (Kapahi et al., 2010; Smith-Vikos et al., 2014). The
accumulation of cell damage was shown to lead to several types
of degenerative diseases like cancer and Alzheimers disease
(Powers et al., 2009). These examples reflect the importance of
studying aging in a systematic and dynamic way.

In our mammalian cellular aging model, the parameter ωi0

in the ODEs represents the basal expression level for each
gene i. The increase or decrease of ωi0 will influence the
behaviors of the system. The dynamic landscapes describe
the changes in the landscape topography according to the

FIGURE 4 | Changes in barrier heights upon increasing the basal gene

expression level of SIRT1. BHFI, barrier height from the fast-aging to the

intermediate attractor; BHIF , barrier height from the intermediate to the

fast-aging attractor; BHIS, barrier height from the intermediate to the

slow-aging attractor; BHSI, barrier height from the slow-aging to the

intermediate attractor; BHSF , barrier height from the slow-aging to the

fast-aging attractor; BHFS, barrier height from the fast-aging to the

slow-aging attractor.

changes in certain genes or regulations. The barrier height
(BH) based on principal component analysis (PCA) of the
landscape can be used to quantitatively measure the degree
of difficulty for the system to switch from one attractor to
another. BH is defined as the difference between the minimum
potential in the current attractor and the potential of the
saddle point from the current attractor to the other attractor.
We first use the PCA method to project the nine-dimensional
landscape into the top two principal components (PCs). We
then calculate the BH among the attractors based on the PCA
projected landscape.

The dynamical PCA landscapes according to the changes
in the basal expression level of SIRT1 are shown in Figure 3.
The X and Y coordinates represent the top two principal
components, respectively. These two principal components
show about 95 percent of the variance of the dynamic
expression trajectory. The three attractors are labeled F (fast-
aging), I (intermediate), and S (slow-aging), respectively. If
we increase (decrease) the SIRT1 basal expression level, the
depth of the fast-aging attractor decreases (increases) and the
depths of both the intermediate and slow-aging attractors
increase (decrease). Figure 4 quantitatively shows the change
of barrier height vs. the increase in basal expression level
of SIRT1. There are three attractors in the PCA landscape,
so a total of six barrier heights for each pair of attractors
can be quantified. The line labeled BHSF denotes the BH of
the system switching from the slow-aging to the fast-aging
attractor, while BHFS represents the BH of the system switching
from the fast-aging to the slow-aging attractor. Other labels
have similar notations. The results clearly show an increase
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(decrease) in the stability of the fast-aging attractor state and
a decrease (increase) in the stability for the slow-aging and
intermediate states when the SIRT1 basal expression level
decreases (increases). These results are consistent with the
evidence that SIRT1 plays a key role in dietary restriction-
induced longevity promotion, while the activity of SIRT1
decreases with the mammalian cellular aging process (Ruderman
et al., 2010).

2.4. Global Sensitivity Analysis of Aging in
Mammals
Here, we use global sensitivity analysis to quantitatively identify
the contributions of individual regulations on the functional
behavior of mammalian cellular aging. We change the basal
expression level ωi0 for every gene and the regulatory strength
for every regulation ωij to investigate to what extent these
regulations influence the functional behavior. The functional
stability can be quantitatively measured by the barrier heights.
BH0 represents the barrier height with the original value of
the given parameter. 1BH represents changes in the barrier
height when the regulation is changed by a constant value (0.04).
Thus, 1BH/BH0 can be used to measure the sensitivity of the
barrier heights under certain regulation changes. We performed
global sensitivity analysis to find the key genes or regulations
by changing ωi0 or ωij and then finding out which genes and
regulations will significantly impact the landscape stability. These
predicted genes or regulations may play important roles in the
mammalian cellular aging process or may even be useful in
treating aging-related degenerative diseases.

We performed global sensitivity analysis on the basal
expression level to quantifying the barrier height changes for
every gene. The detailed results of the global sensitivity analysis
are shown in Figure 5. For the barriers related to the slow-
aging state, BHSF and BHSI , we can see that increasing the
basal expression levels of the genes AMPK, FOXO, and Sestrins
significantly enhances the stability of the slow-aging state. This
indicates that it becomes harder for the system to escape from the
slow-aging state. In contrast, gene AKT significantly decreases
the stability of the slow-aging state. These results are consistent
with previous experimental findings (Salminen and Kaarniranta,
2012; Lee et al., 2013; Gharibi et al., 2014;Martins et al., 2015). For
the barrier heights related to the fast-aging state, BHFI and BHFS,
we can clearly see that increasing the basal expression levels of
the genes AMPK, SIRT1, and Sestrins significantly decreases the
stability of the fast-aging state. AMPK and Sestrins play opposite
roles in the slow-aging state, but the role of SIRT1 in slow-aging is
not significant. For the intermediate state, the result is complex.
Genes mTORC1 and p53 are only effective in the intermediate
state, but not in the other two states. Although the existence of
the intermediate state between fast-aging and slow-aging has not
been directly verified, this study shows that different genes seem
to influence different attractors. This can provide new insight for
research on mammalian cellular aging mechanisms.

We also performed global sensitivity analysis on regulatory
strength ωij. The bar charts shown in Figure 6 reflect 1BH =

BH0 vs. ωij. The most sensitive regulation from the slow-
aging state to the fast-aging state is SIRT1->AMPK, and the
barrier height from the slow-aging state to the fast-aging state
is increased with increasing SIRT1->AMPK. This means that
increasing the activation regulation of SIRT1->AMPK will
stabilize the slow-aging state and therefore delay the aging
process. The most sensitive regulation of barrier height from
the fast-aging state to the slow-aging state is AMPK->SIRT1,
and the barrier height from the fast-aging state to slow-aging
state is decreased with increasing AMPK->SIRT1. This means
that increasing the activation regulation of AMPK->SIRT1 will
destabilize the fast-aging state and therefore increase the chance
of slow aging, thereby delaying the aging process. The most
sensitive regulation of barrier height from the intermediate state
to the slow-aging state is AKT-|p53, and the barrier height from
the intermediate state to the slow-aging state is increased with
increasing AKT-|p53. This means that increasing the inhibition
regulation of AKT-|p53 will stabilize the intermediate state and
decrease the chance of slow aging, effectively promoting the aging
process. The most sensitive regulation of barrier height from the
slow-aging state to the intermediate state is p53->Sestrins, and
the barrier height from the slow-aging state to the intermediate
state is increased with increasing p53->Sestrins. This means
that increasing the activation regulation of p53->Sestrins will
stabilize the slow-aging state and therefore delay the aging
process. The most sensitive regulation of barrier height from the
fast-aging state to the intermediate state is Sestrins->AMPK, and
the barrier height from the fast-aging state to the intermediate
state is decreased with increasing Sestrins->AMPK. This means
the increasing the activation regulation of Sestrins->AMPK will
destabilize the fast-aging state and therefore increase the chance
of slow aging, thus effectively delaying the aging process. The
most sensitive regulation of barrier height from the intermediate
state to the fast-aging state is SIRT1->AMPK, and the barrier
height from the intermediate state to the fast-aging state is
decreased with increasing SIRT1->AMPK. This means that
increasing the activation regulation of SIRT1->AMPK will
stabilize the intermediate state and destabilize the fast-aging state
and therefore delay the aging process. We show the top three
sensitive regulations for each barrier in Table 1. Changes in these
regulatory strengths significantly change the system behavior.
Further experiments are needed to validate these predictions.

2.5. Aging Oscillations Landscape
Oscillation dynamics can emerge in certain parameter regimes
when the regulation strengths are varied. The transitions
between the oscillation and monostable states are found to be
mainly regulated by Sestrins->AMPK. The changes in landscape
topography are shown in Figure 7. RS represents the regulation
strength of Sestrins->AMPK. The landscape shows oscillation
dynamics with a Mexican hat shape when RS is 0.76, as
shown in Figure 7B. The two relatively deeper regions on the
oscillation ring correspond to the fast-aging and slow-aging state,
respectively. The states of the system rotate clockwise along the
oscillation ring valley around the central hill of the Mexican hat.
When the regulation strength RS is increased, the slow-aging
state attractor becomes deeper. When the regulation strength
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FIGURE 5 | Results of global sensitivity analysis of the barrier height upon changing the basal expression level of different genes. BH0, barrier height with the original

value; 1BH, change in barrier height upon changing the basal expression level. (A) Change in barrier height from the fast-aging to the intermediate attractor. (B)

Change in barrier height from the intermediate to the fast-aging attractor. (C) Change in barrier height from the intermediate to the slow-aging attractor. (D) Change in

barrier height from the slow-aging to the intermediate attractor. (E) Change in barrier height from the slow-aging to the fast-aging attractor. (F) Change in barrier height

from the fast-aging to the slow-aging attractor.

RS is increased to 0.88, the system switches from the oscillation
to a monostable state with only the slow-aging attractor state.
In contrast, when the regulation strength RS is decreased, the
basin at the fast-aging steady state becomes deeper. When the
regulation strength RS is decreased to 0.62, the system switches
from the oscillation to a monostable state with only the fast-aging
steady state.

Interestingly, these oscillation dynamics were found in the
previous mathematical model of C. elegans (Zhao and Wang,
2016). The oscillation can drive the dynamics to switch
coherently (periodically) between the fast-aging state and the
slow-aging state. The processes of fast-aging and slow-aging
occur at different times along with the oscillation. The transitions
between the fast-aging state and the slow-aging state with

the oscillation are different from the transitions in a tri-
stable system. The transitions between the fast-aging state
and the slow-aging state in the tri-stable regime are random
and incoherent, while the transitions between the fast-aging
state and the slow-aging state in the oscillation regime are
periodic and coherent. In order to address the role of the flux
as the driving force of the aging process in addition to the
landscape, we quantified the flux integral as a measure of the
magnitude of the flux and the coherence of the oscillation,
as shown in Figure 8B. The flux integral correlates with the
coherence. This indicates that higher flux leads tomore stable and
coherent oscillation.

We also quantified the thermodynamic cost in terms of the
entropy production rate (EPR), which is related to the flux and
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FIGURE 6 | Global sensitivity analysis of the barrier height upon changing regulatory strengths. BH0, barrier height with the original value; 1BH, change in barrier

height upon changing the regulation. (A) Change in barrier height from the fast-aging to the intermediate attractor. (B) Change in barrier height from the intermediate

to the fast-aging attractor. (C) Change in barrier height from the intermediate to the slow-aging attractor. (D) Change in barrier height from the slow-aging to the

intermediate attractor. (E) Change in barrier height from the slow-aging to the fast-aging attractor. (F) Change in barrier height from the fast-aging to the slow-aging

attractor.
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TABLE 1 | Top three key regulations from global sensitivity analysis.

Barrier Sensitive regulations

BHSF SIRT1->AMPK, p53->Sestrins, p53->FOXO.

BHFS AMPK->SIRT1, Ulk1-|mTORC1, AMPK->p53.

BHIS AKT-|p53, SIRT1-|p53, TSC1/2-|mTORC1.

BHSI p53->Sestrins, p53->FOXO, SIRT1->AMPK.

BHFI Sestrins->AMPK, AMPK->SIRT1, mTORC1-|p53.

BHIF SIRT1->AMPK, AMPK-|mTORC1, TSC1/2-|mTORC1.

the mean flux, for the phase transition/bifurcation from the
monostability of fast-aging to oscillation and from the oscillation
to monostability of slow-aging by increasing the regulation
strength of Sestrins->AMPK. An increase in the EPR indicates
that the system costs more energy to maintain. The mean flux
correlates with the EPR. As shown in Figure 8A, the EPR is low
when the system stays in the phase of the fast-aging state. When
the strength of Sestrins->AMPK increases, the EPR increases
sharply at the phase where the transition from the stable fast-
aging state to oscillation occurs. When the system switches from
oscillation to the monostable slow-aging state, the EPR sharply
decreases and then stays at a low level. This demonstrates that
the oscillation costs more energy to maintain than either the fast-
aging or slow-aging state. Through the oscillation, the dynamic
process of switching between fast-aging and slow-aging achieves
functional switching, which can cost more energy. Therefore,
there can be direct and indirect pathways for aging. The direct
pathway is the one directly from the slow-aging state to the fast-
aging state. The indirect pathways can be from the slow-aging
state to the fast-aging state through either the intermediate state
or oscillation.

3. DISCUSSION

In this study, we presented a mathematical model to describe
the dynamic features of the mammalian cellular aging process.
We built the underlying gene regulatory network by integrating
the information from previous experimental studies. The genes
and wirings in the gene regulatory network were formed, and
the dynamics of gene expression was described by nine non-
linear ordinary differential equations. Based on these equations,
we quantified the potential landscape of the mammalian cellular
aging process. Three attractors emerged on the landscape:
the fast-aging, intermediate, and slow-aging states. When the
system resides in one of the three attractors, the escape time is
determined by the depth of the attractor. The system can also
switch from one attractor to another, and the transition needs
to overcome the barriers between the attractors. We integrated
the previous studies and analyzed the mammalian cellular aging
process from a systemic and network perspective.

The aging process is not only a spontaneous biological
process but also can be significantly altered by interventions,
such as genetic manipulations and dietary restrictions. Thus,
the potential landscape of aging is not invariant. We changed

FIGURE 7 | The landscape topography changes from the monostable state of

fast-aging to the oscillation between the fast-aging and the slow-aging, and

then to the monostable slow-aging state upon the increase of the regulation of

Sestrins->AMPK. (A) The landscape of fast-aging. (B) The landscape of

oscillation between fast-aging and slow-aging. (C) The landscape

of slow-aging.

certain regulations in our model in order to perform quantitative
analysis and investigate the changes in aging functions through
the changes in the landscape. The stabilities of attractors can be
significantly changed by the basal strength of certain genes and
the regulatory strengths of gene-gene regulations.We believe that
these genes or regulations may play key roles in the mammalian
cellular aging process. Further experiments are needed to validate
these predictions.

Oscillations emerge in certain regulation regimes. The
oscillation leads to switching between the processes of fast-aging
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FIGURE 8 | EPR, flux, and coherence changes upon the regulation changes

of Sestrins->AMPK through the transitions from the monostable fast-aging

state to the oscillation between the fast-aging state and the slow-aging state,

and then to the slow-aging state. (A) The entropy production rate and the

mean flux of the monostability and the oscillation. (B) The flux integral and the

coherence of oscillations.

and slow-aging. This is different from switching between the
fast-aging state and the slow-aging state through the stochastic
trajectories in the tri-stable regime. The switching between the
fast-aging state and the slow-aging state in the oscillation regime
is periodic and coherent. In contrast, the switching between the
fast-aging state and the slow-aging state in the tri-stable regime
is random and incoherent. Through the analysis of the flux
integral and coherence as well as the mean flux and entropy
production rate, it is suggested that more energy is required to
sustain oscillations.

In this work, we have provided a framework to reveal the
underlying mechanism of fast-aging and slow-aging in mammals
based on landscape and flux theory. We predict the key genes
and interactions in the fast-aging and slow-aging processes. This
approach may be helpful for studying strategies for expanding
lifespan in mammals or humans.

FIGURE 9 | Shape of the force function F (σW) vs. different values of W. W,

the combination of effects of all input regulation on a certain gene.

4. MATERIALS AND METHODS

4.1. Kinetic Equations
The shape of the term F(σW) in the non-linear ODEs used in our
model is intuitively similar toHill equations. The sigmoidal shape
and the steepness of F(σW) can be altered by varying certain
parameters, as shown in Figure 9.

The form of summing Hill equations as the regulation force
for ODEs is used in other studies (Li, 2018; Li and Balazsi, 2018).
It is shown in Equation (4).

dxk

dt
=

∑

i∈activators

wkx
n
i

sn
ik
+ xni

+
∑

j∈inhibitors

wks
n
jk

sn
jk
+ xnj

− µkxk (4)

where xk represents the kth gene expression, while wk represents
the relative strength of every regulation of gene k. Parameter µk

is defined as the self-degradation rate. Parameter n is the Hill
coefficient. Parameters sik and sjk represent the inflection points
of the activation or inhibition regulation terms.

However, the Hill equations have an inherent defect that the
value of w cannot be negative. This leads to defects in the case
of the presence of both activation and inhibition regulations.
For example, under the additive rule, when adding a negative
regulation or increasing the weight of a negative regulation,
the expression changes, and dx/dt may increase, while in fact
it should decrease. This problem also emerges when using the
multiplicative rule.

In the equations in our model, the regulations of
activation and inhibition have the same form, ωijXj, as
shown in Equations (1–3). The coefficient ωij indicates the
regulatory strength from gene j to gene i, where ωij < 0
for inhibitory interaction and ωij > 0 for promoting
regulation. The value of Ẋi is increased when Wi is increased.
Wi is increased or decreased when an activation term or
inhibition term is added. Thus, Ẋi is increased when an
activation term is added and is decreased when an inhibition
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term is added. This overcomes the defects of the form
representing the regulation in Equation (4). Therefore, we
can directly add the regulation term, ωijXj, together to
quantify the force. The calculation is logically reasonable and
less time-consuming.

4.2. Parameter Setting
We assume the following restrictions on the regulation
parameters. For all equations, the steepness parameter is set
to σ = 10, and the time scale parameter is set to γ =
1. The basal weight parameter is set to −1 < ωi0 < 1,
and the regulation weight parameter is set to −1 < ωij <

1. This equation has the great advantage that it is subject to
all the powerful analytical and simulation tools of non-linear
ODEs. This is because in the limit of large σi, it behaves
like a discrete Boolean network. When σ ≫ 1, Xi tends to
flip between 0 and 1, and the dynamic system describes a
Boolean network.

There is a question about why and how to set the basal weight
parameter ωi0. Technically, ωi0 has to be present because if only
activation or inhibition on a target node X exists, the expression
level of X will eventually reach the boundary values, 1 and 0.
This can make it hard for multi-stability to emerge. Biologically,
the model we developed can be influenced by the environment,
and many conditions and molecular signals from outside can
change the state of the system and affect the basal level of the
expressions. The parameter settings of ωij and ωi0 are shown
in Table S2.

4.3. Langevin Method
The aging process in real life is influenced by the intrinsic
or external fluctuations of the system. Langevin equation is
appropriate to describe the stochastic time evolution of gene
expression dynamics. These stochastic differential equations
for describing to gene regulatory network dynamics are
as follows:

ẋ = F(x)+ η (5)

where x is a vector of the gene expressions and F(x) is the
driving force of the gene-regulating network dynamics. The
term η represents fluctuation or noise force, which has a
Gaussian probability distribution with correlation function <

ηi(t), ηj(t
′) >= 2Dijδijδ(t − t′), where D is the diffusion

coefficient matrix characterizing the strength of the fluctuations.
The global steady-state probability distribution P for the state
space can be quantified through the statistics by collecting the
time evolution trajectories of the expression dynamics from long-
duration simulations.

4.4. Landscape and Flux
The individual stochastic trajectory is unpredictable due to
its random nature. However, the evolution of the probability
distribution is predictable and can be used to describe the
probabilistic behaviors and patterns of the aging process.

The evolution of the probability distribution is governed by
the Fokker-Planck equation (Wang et al., 2008; Wang, 2015)
as follows:

∂P(x, t)

∂t
= −∇ · J(x, t) (6)

J(x, t) = F(x)P(x, t)−D · ∇P(x, t) (7)

which presents that the change in the probability P(x, t) in time
at state x and time t is equal to the probability flux J(x, t) in or
out of this state at time t characterized by its divergence. In the
steady state, the divergence of probability flux is equal to zero.
However, the probability flux is not necessarily equal to zero. The
steady-state probability flux, due to its divergent free nature, is
rotational as a curl. The steady-state probability flux at the steady
state (long time limit) is given in Equation (7). The steady-state
probability flux being not equal to zero represents net flow to
or from the system. The non-zero net flow breaks the detailed
balance. Therefore, the steady-state probability flux quantifies the
degree of non-equilibrium away from the equilibrium when it
has deviated from zero. For non-equilibrium systems, the driving
force F for the dynamics can be decomposed to a gradient of
the potential landscape and a curl flux force under constant
fluctuations (Wang et al., 2008): F = −D · ∇U + Jss/Pss,
where U = −lnPss is the potential landscape, while Pss is the
steady-state probability distribution.

4.5. Dominant Path
The dominant paths are the most probable paths when the
system switches from one state to another. The quantification
of the dominant paths is important for uncovering how the
biological processes have actually occurred and is therefore
the key for understanding the underlying physical mechanism
and function. The dominant path can be quantified by the
path integral approach (Wang et al., 2010; Wang J. et al.,
2011). The probability of switching from the initial x at
time 0 to the final x at time t with the path integral is
given as:

P(xfinal, t, xinitial, 0) =
∫

Dxexp[−
∫

dt(
1

2
∇ · F(x)

+
1

4
(ẋ− F(x))) ·D−1 · (ẋ− F(x))]

=
∫

Dxexp[−S(x)]

=
∫

Dxexp[−
∫

L(x(t))dt] (8)

The integral over Dx represents the sum over all the possible
trajectories from the state xinitial at time 0 to the state xfinal at time
t. F(x) represents the driving force of the gene regulatory network
dynamics. D represents the strength of the diffusion coefficient
matrix. S(x) and L(x(t)) represent the action and the Lagrangian
of the associated path. Each path is assigned with a probability
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weight, exp[−S(x)], associated with the action of that path. The
dominant path is the path with the largest weight. Therefore,
the dominant paths can be identified through minimizing
the action.

4.6. Entropy Production Rate
A non-equilibrium system often exchanges energy, matter, and
information with the environment. This leads to thermodynamic
dissipation. The change in the system entropy in the
non-equilibrium system can be divided into two parts (Wang
et al., 2008; Wang, 2015) as:

Ṡ = Ṡt − Ṡe (9)

Ṡt =
∫

dx(J ·D−1 · J)/P (10)

Ṡe =
∫

dx(J ·D−1) · F′ (11)

where Ṡt represents the entropy production rate (EPR) or
the total entropy rate of the system and environment and Ṡe
represents the heat dissipation rate of the environments. The
effective force F′ is defined as F′ = F−∇ ·D.
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Stochastic dynamics of gene switching and energy dissipation for gene expression are

largely unknown, mainly due to the complexity of non-equilibrium mechanisms. Here,

based on an important double-deck loop model, the stochastic mechanisms of gene

switching and energy dissipation are studied. First, the probability distributions of steady

states are calculated theoretically. It is found that the signal can strengthen the choice of

gene switching between the “off” and “on” states. Our analysis of energy consumption

illustrates that, compared with the synthesis and degradation of proteins, the process

of gene switching costs little energy. Our theoretical analysis reveals some interesting

insights into the determination of cell state and energy dissipation for gene expression.

Keywords: non-equilibrium mechanisms, stochastic dynamics, gene switching, energy dissipation, chemical

master equations

1. INTRODUCTION

Signal pathways play vital roles in life by cooperating to control more than one biochemical process
while consuming free energy supplied by ATP or high-energy bonds to carry out different vital
functions. Based on the core negative feedback control loop shared by various adaption biological
systems, Lan et al. show that energy dissipation is indicated to stabilize the adapted state against
noise (Lan et al., 2012). Further study explores the present analytic results on the non-equilibrium
steady-state (NESS) of the model through mapping to a one-dimensional birth-death process, and
the result suggests that the adaptation error can be reduced exponentially as the methylation range
increases (Wang et al., 2015). In recent research, the number of phase coherent periods is found to
be proportional to the free energy consumed per period (Cao et al., 2015). Increasingly numerous
theoretical studies focus on the role of energy in biological information processes and biochemical
signal transduction (Lan and Tu, 2013; Endres, 2017).

Biological information processes are complex. In the process of skeletal development,
extracellular signals activate RhoA, and control the state of downstream genes mainly through
two pathways: RhoA/SRF and RhoA/ROCK (Charrasse et al., 2002; Sordella et al., 2003; Tsai et al.,
2013; Matsuoka and Yashiro, 2014). The marvelous phenomenon in this signal cascade is that those
two pathways exert the opposite effects, as shown in Figure 1. Hence, such a signal cascade is
composed of two competitive pathways and possesses the ability to accurately control the vital
bio-processes (Wei et al., 1998, 2000, 2001; Meriane et al., 2000; Beqaj et al., 2002; Castellani
et al., 2006; Charrasse et al., 2006). The study of stochastic dynamics and energy dissipation in
this biological system represents an interesting topic. The competitive networks may present two
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kinetic characteristics: oscillation and bistable state. Ouyang et al.
show a series of works on the non-equilibrium thermodynamics
of oscillations within cells and their results revealed that the
critical energy dissipation per period depends on both the
frequency and strength of the exchange reaction which gave an
optimal design for achieving maximum synchronization with a
fixed energy budget (Cao et al., 2015; Fei et al., 2018; Zhang et al.,
2020). Gene switch as another kind of competitive networks is
a representative bistable state system and will be the focus of
our study.

FIGURE 1 | Signal pathways from RhoA to the target gene in the development of skeletal muscle. RhoA-GDP is activated by extracellular signals to RhoA-GTP (RhoA*)

while RhoA* is deactivated back to RhoA-GDP as well. RhoA* contributes to the development of skeletal muscles through two signal pathways: RhoA/ROCK regulates

the target gene myoD negatively which is corresponding to the blue cascade, and RhoA/SRF regulates myoD positively which is corresponding to the red cascade.

FIGURE 2 | The detailed cascades in the double-deck loop (DDL) which is a simplified model based on the biochemical reaction networks in Figure 1. The orange

stick is the gene in the “on” state and the blue one is the gene in the “off” state; ROCK is represented as the small green ball; Arrow 1 corresponds to the Rho/ROCK

pathway in Figure 1 and Arrow 2 corresponds to the Rho/SRF pathway. The negative regulation from ROCK can push down the state of gene from the “on” state to

the “off” state along Arrow 1 with rate k2. The positive regulation from RhoA* can also push up the state of gene along Arrow 2 with rate ak1. The Arrow 3 and 4

represent the basic switching of gene’s state with rates kon and koff respectively. The synthesis and degradation of ROCK will drive the system move along the

horizontal directions (i.e., Arrow 5 and 6) with rates ak3 and k4, respectively. Since two parallel loops (i.e., the blue and red loops) can be found in our model, it is so

called DDL.

In this paper, we propose a double-deck loop (DDL) model
to describe signal cascades which are similar to those found
in the development of skeletal muscle, as shown in Figure 2.
By virtue of non-equilibrium statistical physics theory and
stochastic dynamics, exact analytical solutions to the steady-state
probability distribution are obtained and energy dissipation in
the DDL is derived, which allows for many deeper discussions.
Our aims are to reveal (i) the crucial factors that determine
the state of gene switching in our model and (ii) the energy
dissipation in biochemical reactions. We expect that these
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theoretical results could help us to understand the general
principles of signaling selectivity and energy dissipation in gene
regulation networks.

2. THE MODEL

In the process of skeletal development, RhoA is activated by
extracellular signals from RhoA-GDP to RhoA-GTP (RhoA⋆),
and RhoA⋆ is deactivated back to RhoA-GDP as well. RhoA⋆

plays a key role in process of skeletal development and
contributes to the regulation of the expression of muscle-
specific genes both through RhoA/SRF and RhoA/ROCK
signal pathways. RhoA/ROCK pathway triggers a negative
control function on the target gene while RhoA/SRF pathway
induces a positive regulation. The relevant biochemical
processes are shown in Figure 1. The red signal cascade
represents RhoA/SRF pathway and the blue one represents
RhoA/Rock pathway.

To derive our mathematical model, some assumptions are
put forward. (i) The switching dynamics between GTP and
GDP have been discussed thoroughly (Lan and Tu, 2013)
which has the same dynamic mechanism with the switching
between RhoA⋆ and RhoA-GDP. This aspect is neglected in
our model, since we focus on the selectivity between different
gene’s state modes and energy dissipation of RhoA/ROCK and
RhoA/SRF signal pathways. These two pathways are adopted
to regulate the development of skeletal muscle. (ii) It is well-
known that a large number of genes are involved in this
biological process (Matsui et al., 1996). If all genes are considered,
it will complicate the modeling and theoretical analysis. We
hypothesize that the development state of skeletal muscle
can be represented with the state of gene myoD. Muscle-
specific genes begin to be expressed when the state of gene
myoD is “on”, otherwise these genes are closed when the
state of gene myoD is “off”. (iii) Since the role of ROCK
in biological activities is vital (Leung et al., 1995; Aelst and
D’Souza-Schorey, 1997; Kaibuchi et al., 1999; Cloutier et al.,
2010), the detailed biochemical process of RhoA/SRF pathway
is neglected and the regulation of RhoA/SRF pathway is
simplified to the direct regulation of RhoA∗ on gene myoD
as shown in Figure 1. Therefore, we mainly aim to discuss
the biochemical reactions including the switch of myoD state
and synthesis/degradation of ROCK. Based on the above
assumptions, the detailed biochemical equations are as follows:

RhoA∗ k3−→ RhoA∗ + ROCK, ROCK
k4−→ ∅

Goff + RhoA∗ k1−→ Gon + RhoA∗,Goff
kon−→ Gon

Gon + ROCK
k2−→ Goff + ROCK,Gon

koff−→ Goff. (1)

The “on” state of myoD is indicated as Gon in Equation
(1), while the “off” one is Goff. k1 is the transition rate
of gene state under the positive control and k2 is the
transition rate of gene under the negative control. The basic
switching rates between Gon and Goff are koff and kon. k3 is

the synthesis rate of ROCK and k4 is the degradation rate
of it.

As shown in Equation (1), every state of gene can be
achieved through two ways: Gon can be achieved both through
the promotion of RhoA∗ and the basic switching; Goff can be
achieved both through the repressive control of ROCK and the
basic switching. Considering the synthesis and degradation of
ROCK which correspond to the increasing and decreasing of the
small green balls in Figure 2, two parallel loops can be found.

One is clockwise [i.e., Gon(m)
ak3−→ Gon(m + 1)

k2−→ Goff(m +
1)

k4−→ Goff(m)
ak1−→ Gon(m)] which is represented as a blue

loop in Figure 2. The other one is anticlockwise [i.e.,Gon(m)
koff−→

Goff(m)
ak3−→ Goff(m + 1)

kon−→ Gon(m + 1)
k4−→ Gon(m)] which

is represented as red loop in Figure 2. Since these two loops are
two parallel decks between Gon and Goff, this theoretical model
is called “double-deck loop (DDL)” in this paper. Moreover,m is
the number of ROCK, and a is the concentration of RhoA∗. Based
on above biochemical equations, the chemical master equations
(i.e., CME) can be presented as

dP0(m, t)

dt
= koffP1(m, t)− konP0(m, t)+mk2P1(m, t)

−ak1P0(m, t)+ ak3P0(m− 1, t)− ak3P0(m, t)

+(m+ 1)k4P0(m+ 1, t)−mk4P0(m, t);
dP1(m, t)

dt
= −koffP1(m, t)+ konP0(m, t)−mk2P1(m, t)

+ak1P0(m, t)+ ak3P1(m− 1, t)− ak3P1(m, t)

+(m+ 1)k4P1(m+ 1, t)−mk4P1(m, t) (2)

where P0(m, t) is the probability of the gene “off” state and
P1(m, t) are the probability of the gene “on” states.

3. RESULTS

3.1. The Analytical Solutions of the DDL
Model
Regulatory networks generally consist of interactional signal
pathways. Different signal pathways may dominate cell fate
in different circumstances. Based on the biology processes in
the development of skeletal (Wei et al., 1998, 2000, 2001;
Meriane et al., 2000; Beqaj et al., 2002; Castellani et al., 2006;
Charrasse et al., 2006), the DDL model has both activation
and inhibitory signal pathways originating from the same input.
Therefore, it is interesting to identify the crucial factors in
the selection of different signaling pathways. To address this
problem, the probability distributions under different a are
derived. In response to a persistent input, the synthesis and
degradation of ROCK induce the evolution of ROCK, resulting
in a steady state of the number of ROCKm. Using the method of
probability-generating functions (Qian, 2007; Huang et al., 2015),
the analytical expressions of steady-state probability distributions
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P0(m) and P1(m) are obtained

P0(m) =
1

kon + ak1

(

ak2k3

k2 + 1
+ koff

)

A0
1

m!

(

ak3

k2 + 1

)m

×
m

∑

l=0

kl2C
l
m

(α)l

(β)l
1F1(α + l,β + l;ω2)

−
1

kon + ak1

ak2k3

k2 + 1

α

β
A0

1

m!

(

ak3

k2 + 1

)m

×
m

∑

l=0

kl2C
l
m

(α + 1)l

(β + 1)l
1F1(α + 1+ l,β + 1+ l;ω2)

+
ak2k3

kon + ak1

α

β
A0

1

(m− 1)!

(

ak3

k2 + 1

)m−1

×
m−1
∑

l=0

kl2C
l
m−1

(α + 1)l

(β + 1)l
1F1(α + 1+ l,β + 1+ l;ω2);

P1(m) = A0
1

m!

(

ak3

k2 + 1

)m

×
m

∑

l=0

kl2C
l
m

(α)l

(β)l
1F1(α + l,β + l;ω2) (3)

where α = ak2k3/(k2 + 1)2 + (kon + koff + ak1)/(k2 + 1),β =
α + 1, and ω2 = −ak2k3/(k2 + 1)2. Here, all the parameters
are normalized by k4, i.e., ki = ki/k4 which is different with
Equation (2). Cl

m is the binomial coefficient in Equation (3), (γ )l
is the Pochhammer symbol defined as (γ )l = Ŵ(γ + l)/Ŵ(γ )
with Ŵ(γ ) being the Gamma function, and 1F1(α,β;ω2) is a
confluent hypergeometric function (Huang et al., 2015). A0 is the
normalization constant as follows

A−1
0 = e

ak3
k2+1 [

1

kon + ak1

(

ak2k3

k2 + 1
+ koff

)

1F1(α,β;ω1) (4)

−
1

kon + ak1

ak2k3

k2 + 1

α

β
1F1(α + 1,β + 1;ω1)

+
ak2k3

kon + ak1

α

β
1F1(α + 1,β + 1;ω1)]+ e

ak3
k2+1

1F1(α,β;ω1)

where ω1 is a constant with the expression ω1 = ak2k3/(k2 +
1)− ak2k3/(k2 + 1)2. The details of analysis for chemical master
equations are presented in the Supplementary Material of this
paper. The above results will be checked through the structure of
our model in the following part.

The character of signaling cascades in the development of
skeletal muscle can provide us with information to verify our
analytical solutions. The changes of ROCK, as an upstream
component of the signaling cascades, follow a basic process of
birth and death. The statistical law of a birth and death process
is that the probability distribution about m is a standard Poisson
distribution. In order to test this, we calculate the total probability
P(m) which is provided by P0(m) + P1(m). This represents the
statistical law of ROCK and can be simplified from Equation
(3) as:

P(m) =
1

m!
(ak3)

me−ak3 . (5)

This is a standard Poisson distribution. Furthermore, ROCK
should be in its steady state ms = ak3 most of the time. This
means that the peaks of P0(m) and P1(m) focus onms. According
to Equation (3), the values of P0(m) and P1(m) with different
parameters are computed through “Mathematica” which are
shown in Figure 3. It is obvious that the peaks of distributions
occur at the steady state value of ms. It’s worth mentioning
that the roughness of the curves shown in Figures 3a,c,d is
caused by the computational accuracy of “Mathematica” when
it is used to calculate the confluent hypergeometric function
rather than biological or physical factors. We can also get
these curves through “Matlab” which appear very smooth.
However, compared with “Mathematica”, “Matlab” fails to
calculate confluent hypergeometric function whenm is too large.
In order to verify these curves, the corresponding curves with the
same parameters obtained by Monte Carlo simulation are shown
in Figures S1a,b. It is obviously that the curves in Figures S1a,b

closely resemble the ones in Figures 3a,b, respectively.
The above discussion confirms the reliability of our theoretical

results in Equation (3). Based on those results, we will try
to explore the selectivity of different pathways and energy
consumption in the following section.

3.2. Stochastic Dynamics of Gene
Switching in DDL
The steady-state probability distributions with different
stimulation strength are displayed in Figure 3.

∑

m P0(m) and
∑

m P1(m) which correspond to the areas under the curves
of P0(m) and P1(m) are respectively the probabilities of the
gene’s “off” state and “on” state. We use them to define two
gene modes: Mode I and Mode II. Mode I denotes that the
probability of the gene’s “off” state is larger than the one of
the “on” state, and Mode II denotes that the probability of
the gene ’s “on” state is larger than the one of the “off” state.
As shown in Figures 3a,b, when k3 = 5, the gene’s state is
Mode I. Conversely, if k3 = 1.5, the gene’s state becomes
Mode II shown in Figures 3c,d. Compared with k3, even if
the parameter a varies widely, the gene’s state mode is not
changed. Figure 4A shows the areas of these two modes. It is
obviously that the boundary between them is almost a horizontal
line where k3 ≈ 2.1. This means that the mode of the gene’s
state is determined primarily by k3 and the parameter a has
little effect on the selection of gene’s state modes. Since k3
and a represent the synthesis rate of the negative controller
ROCK and the strength of external stimulations, respectively,
the gene’s state mode depends almost exclusively on the
synthesis rate of the negative controller ROCK rather than the
external stimulations.

By the definition of Mode I, the gene is more likely to be
in the “off” state than the “on” state. In other words, the ‘off”
state of gene is dominant in Mode I. Similarly, the “on” state
of gene is dominant in Mode II. To quantify the dominance of
the gene’s state, we define a gene’s state dominance factor δ =
|P0,max − P1,max|/P1,max. The larger peak in Pi(m) (i = 1, 2)
means more dominance as shown in Figure 3. Therefore, δ can
be used to measure the dominance of the gene’s state. Next, we
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FIGURE 3 | Distributions of probability as a function of m. The synthetic rate of ROCK k3 = 5 in (a,b) and k3 = 1.5 in (c,d). The value of other parameters can be

found in Table S1. P0(m) is the probability of the gene “off” state indicated with orange curve, P1(m) is the probability of gene “on” state indicated with blue curve.

FIGURE 4 | The influences of k3 and a on gene’s “off” and “on” states. (A) The areas of Mode I and Mode II in a-k3 plane; (B) The heat map of gene’s state

dominance factor δ in a-k3 plane. The black line is the boundary between Mode I and Mode II; (C) The curve between δ and a in Mode I; (D) The curve between δ and

a in Mode II. The values of other parameters are listed in Table S1.
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will discuss the influences of the synthesis rate of the negative
controller ROCK and the external stimulations on gene’s state
dominance. The values of δ in a-k3 plane correspond to the scale
values of the color bar in Figure 4B. As shown in Figure 4B, with
increasing k3 (i.e., the synthesis rate of the negative controller
ROCK), δ (i.e., the dominance of the gene’s “off” state) increases
in Mode I. Conversely, as k3 increases, δ decreases in Mode
II. That suggests that when the synthesis rate of the negative
controller ROCK increases, the dominance of the gene’s “off”
state is gradually weakening in Mode II, until the mode of the
gene’s state changes to Mode I and the dominance of the gene’s
“on” state increases gradually. Compared with k3, the influence
of the strength of external stimulations RhoA∗ (i.e., a) on the
dominance of the gene’s state (i.e., δ) is not obvious enough in
Figure 4B. Therefore, the relation between a and δ with different
parameters k3 which correspond respectively to Mode I and
Mode II is shown in Figures 4C,D (Note that we also use Monte
Carlo simulation to verify the trend of δ with a in Mode I
which is shown in Figure S2). Similar to the case of k3, with
increasing the strength of external stimulations RhoA∗ (i.e., a),
the dominance of the gene’s state (i.e., δ) increases in Mode I
and decreases in Mode II. That means that although external
stimulations RhoA∗ has little effect on the selection of gene’s state
modes, it can fine-tune the dominance of the gene’s state in its
respective modes.

In summary, the core factor for the stochastic dynamics
of gene switching in DDL-type biochemical networks is
identified in our work. Reaction rates are responsible for the
selectivity between different gene’s states, while the external signal
stimulation fine-tunes the choice in its respective modes. The
cooperation between signals and network maintains the vital
process in an orderly manner.

3.3. Energy Dissipation in DDL
It is intuitively obvious that living biochemical systems need
free energy (Gui et al., 2016, 2018). From the viewpoint
of thermodynamics, gene expression is essentially a non-
equilibrium process due to feedback or feedforward regulation
that breaks detailed balance and thus necessarily consumes
energy (Lu et al., 2017). But how is energy actually utilized
during the regulation of gene expression in the development
of skeletal muscle? To our knowledge, few works have touched
upon this point. The composition of total energy consumption
may help us grasp the selection mechanism between different
biochemical processes.

From the definition of entropy S(Pi) = kBT
∑

i Pi ln Pi, the
entropy production rate εp(t) is given as follows (Ge and Qian,
2010):

εP(t) =
∑

i,j

(Pi(t)qij − Pj(t)qji) ln

(

qij

qji

)

. (6)

Pi(t) is the probability of the system in state i at time t, while
qji is the transport rate from state j to i. kBT is set to be
1 for convenience in our work. εp(t) is the sum of energy
dissipated in the biochemical network. Furthermore, the entropy

production rate for a non-equilibrium steady-state system can be
calculated as

EP =
∑

(σ ,σ ′)

P(σ )k(σ , σ ′) log

(

k(σ , σ ′)

k(σ ′, σ )

)

(7)

where k(σ , σ ′) is the transition probability from state σ to σ ′.
Considering the detailed biochemical reactions in our model,

we derive the EP of the DDL network as

EP =
∑

m[P0(m)ak3 ln
(

ak3
m+1

)

+ P0(m)m ln
(

m
ak3

)

+P0(m)(ak1 + kon) ln
(

ak1+kon
koff+mk2

)

+P1(m)ak3 ln
(

ak3
m+1

)

+ P1(m)m ln
(

m
ak3

)

+P1(m)(koff +mk2) ln
(

koff+mk2
ak1+kon

)

]. (8)

Next, we discuss the influences of the strength of external
stimulation on the total energy dissipation EP in Mode I and
Mode II respectively. As shown in Figure 5A, EP increases and
its rate of increase decreases with increasing a in Mode I. This
suggests that when the strength of external stimulation increases,
the system consumes more and more energy to response it.
Compared with the small strengthen of external stimulation,
there is less growth of energy for the system corresponding to
the large one in Mode I. In contrast to Mode I, both EP and its
reduction rate decrease in Mode II as a increases (Figure 5B).
This means although the system requires less and less energy with
the increase of the strengthen of external stimulation, a small
amount of energy is still needed to sustain it in Mode II.

Since the control ofMyoD gene expression can be divided into
two parts: one is the synthesis and degradation of ROCK and
the second is the switching of gene state, the process of energy
dissipation can be decomposed into three state transitions: (m −
1, off) ⇋ (m, off) ⇋ (m + 1, off), (m − 1, on) ⇋ (m, on) ⇋

(m + 1, on) and (m, on) ⇋ (m, off). Here, (m, on) represents the
state when the gene is “on” and the level of ROCK ism. Note that
the first two formulas are related to the synthesis and degradation
of ROCK. According to these three state transitions, the total
energy dissipation EP is decomposed into three terms as follows:

EP1 =
∑

m

[P0(m)ak3 log

(

ak3

m+ 1

)

+ P0(m)m log

(

m

ak3

)

]

EP2 =
∑

m

[P1(m)ak3 log

(

ak3

m+ 1

)

+ P1(m)m log

(

m

ak3

)

]

EP3 =
∑

m

[P0(m)(ak1 + kon) log

(

ak1 + kon

koff +mk2

)

+P1(m)(koff +mk2) log

(

koff +mk2

ak1 + kon

)

]. (9)

Since the synthetic rate of ROCK k3 which has been normalized
by its degradation rate k4 just appears in the formulas of EP1
and EP2, we define EPm = EP1 + EP2 and use it to represent
the energy dissipation in the synthesis-degradation process of
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FIGURE 5 | The influences of the strength of external stimulation on energy dissipation in Mode I and II. The values of all parameters are listed in Table S1. (A,B) The

relation curves between total energy dissipation EP and a in Mode I and II; (C,D) The relation curves between the percentages of energy dissipation in the

synthesis-degradation process of ROCK (i.e., EPm) in total energy dissipation (i.e., EP) and a in Mode I and II.

ROCK. In the following part, we will study the allocation of
total energy dissipation corresponding to different strengthen of
external stimulations by the comparison between EP and EPm.
The Figure S3 shows the trends of the total energy dissipation
(i.e., EP) and the energy dissipation in the synthesis-degradation
process of ROCK (i.e., EPm) with the increase of the strengthen
of external stimulations (i.e., a) in Mode I and II. It is obviously
that their trends are consistent as a increases in its respective
modes. Specifically, EP and EPm increase simultaneously in
Mode I and decrease simultaneously in Mode II with the
enhancing of the strengthen of external stimulations (i.e., a).
Moreover, the difference between EP and EPm diminishes both
in Mode I and Mode II when a increases. The percentages
of energy dissipation in the synthesis-degradation process of
ROCK (i.e., EPm) in total energy dissipation (i.e., EP) shown in
Figures 5C,D are more than 60% both in Mode I and Mode II
with different strengthen of external stimulations. In other words,
the synthesis-degradation process of ROCK consume more
energy than the third state transitions (i.e., EP3) with different
strengthen of external stimulations. Furthermore, Figures 5C,D
also show that the percentage of energy which is consumed
by the synthesis-degradation process of ROCK increases as the
strengthen of external stimulations increases until almost no

energy is consumed in process of the third state transitions both
in Mode I and Mode II.

4. DISCUSSION AND CONCLUSION

In our work, a double-deck loop model is constructed. Due
to the stochastic nature of bio-processes (Wang et al., 2017;
Yao et al., 2018a,b), we have calculated the steady-state
probability distributions of ROCK protein through themethod of
probability-generating functions for chemical master equations.
The crucial factors in the stochastic dynamics of gene switching
are identified. It is found that the weights between different
pathways (i.e., the internal reaction rates) in DDL are the key
point governing the state of gene switching, while an external
stimulus fine-tunes this choice preference. Furthermore, the
energy consumption in DDL is also discussed. Our results show
that most of the energy is required for synthesis and degradation
of ROCK, however, a very small amount of energy consumption
is required for the basic transition processes of downstream
genes between “on” and “off” states. This is because the ROCK
processes are not in equilibrium and do not follow detailed
balance. But the inter-conversion between “on” state and “off”
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state is indeed in equilibrium and follows detailed balance. In
other words, the two terms in EP3 defined in Equation (8)
cancel each other out because of detailed balance. The theoretical
findings about selectivity between different gene states and energy
dissipation will be advantageous for our understanding of cell
fate determination. Our next steps are to conduct closely related
experiments about the development of skeletal muscle and to
combine our theoretical study with experimental observations
and data.
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Mathematical models of biochemical reaction networks are central to the study of
dynamic cellular processes and hypothesis generation that informs experimentation
and validation. Unfortunately, model parameters are often not available and sparse
experimental data leads to challenges in model calibration and parameter estimation.
This can in turn lead to unreliable mechanistic interpretations of experimental data and
the generation of poorly conceived hypotheses for experimental validation. To address
this challenge, we evaluate whether a Bayesian-inspired probability-based approach,
that relies on expected values for quantities of interest calculated from available
information regarding the reaction network topology and parameters can be used to
qualitatively explore hypothetical biochemical network execution mechanisms in the
context of limited available data. We test our approach on a model of extrinsic apoptosis
execution to identify preferred signal execution modes across varying conditions.
Apoptosis signal processing can take place either through a mitochondria independent
(Type I) mode or a mitochondria dependent (Type II) mode. We first show that in silico
knockouts, represented by model subnetworks, successfully identify the most likely
execution mode for specific concentrations of key molecular regulators. We then show
that changes in molecular regulator concentrations alter the overall reaction flux through
the network by shifting the primary route of signal flow between the direct caspase and
mitochondrial pathways. Our work thus demonstrates that probabilistic approaches can
be used to explore the qualitative dynamic behavior of model biochemical systems even
with missing or sparse data.

Keywords: systems biology, limited data, apoptosis, probabilistic, mechanism, inference, high performance
computing

INTRODUCTION

The complex dynamics of biochemical networks, stemming from numerous interactions and
pathway crosstalk, render signal execution mechanisms difficult to characterize (Bhalla and Iyengar,
1999; Kitano, 2002; Loscalzo and Barabasi, 2011). Mathematical modeling of biochemical networks
has become a powerful compliment to experimentation for generating hypotheses regarding
the underlying mechanisms that govern signal processing and suggesting targets for further
experimental examination (Aldridge et al., 2006; Le Novère, 2015). Models of biochemical reaction
networks, often based on a mass action kinetics formalism, are built to represent known pathway
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mechanics with knowledge garnered from years or even decades
of experimentation (Albeck et al., 2008; Lopez et al., 2013).
Although these models have yielded important predictions
and insights about biochemical network processes, they also
depend on kinetic rate parameters and protein concentrations
that are often poorly characterized or simply unavailable.
A typical workaround is to employ model calibration methods
to estimate suitable parameter values via optimization to protein
concentration time course data (van Riel, 2006; Shockley
et al., 2018; Mitra et al., 2019). However, the data needed
for parameter optimization is often scarce, leading to the
possibility of multiple parameter sets that fit the model to
that data equally well but exhibit different dynamics (Lopez
et al., 2013; Shockley et al., 2018). This poses a challenge
for the study of dynamic network processes as the mode
of signal execution can be highly dependent on a specific
parameter set and could in turn lead to inadequate model-
based interpretation. A computational approach that enables the
exploration of biochemical signal execution mechanisms from
a probabilistic perspective, constrained only by available data,
would facilitate a rigorous exploration of network dynamics
and accelerate the generation of testable mechanistic hypotheses
(Wrede and Hellander, 2018).

In this work, we investigate whether a Bayesian-inspired
probabilistic approach can identify network signal execution
mechanisms in extrinsic apoptosis restricted only by
experimental observations. Two execution phenotypes have
been identified for extrinsic apoptosis signaling: a mitochondria
independent (Type I) phenotype, whereby initiator caspases
directly activate effector caspases and induce cell death, and
a mitochondria dependent (Type II) phenotype whereby
initiator caspases engage the Bcl-2 family of proteins, which
ultimately lead to effector caspase activation (see Box 1 for
biology details). Most mammalian cells execute apoptosis via
the Type II mechanism, yet the Type I mechanism plays a
central role in specific cell types, particularly certain types
of lymphocytes (Scaffidi et al., 1999). A significant body of
experimental and modeling work has identified key regulators
for Type I vs. Type II execution. Computational approaches
to study apoptosis network dynamics are numerous and range
from simple dynamic Boolean networks to deterministic and
stochastic kinetic models (Bentele et al., 2004; Albeck et al.,
2008; Schlatter et al., 2009; Spencer and Sorger, 2011; Schleich
and Lavrik, 2013; Würstle et al., 2014; Anderson et al., 2019).
Aspects of apoptosis dynamics, like bistability (Eissing et al.,
2004; Bagci et al., 2006; Legewie et al., 2006; Ho and Harrington,
2010) are often targets of analysis, and the structure of the
apoptosis network has been examined via Bayesian model
selection methods (Eydgahi et al., 2013). To specifically study
phenotypic regulation of the extrinsic apoptosis network
Aldridge et al. (2011) used a kinetic model in conjunction
with Lyapunov exponent based bifurcation diagrams to define
a boundary between phenotypes on the space of regulatory
element concentrations. Raychaudhuri et al. (2008) also focused
on the Type I/II phenotypes and used Monte Carlo simulations
of an extrinsic apoptosis model to study stochastic fluctuations
through the network.

Despite these efforts, it is still unclear how network structure
and the interplay among multiple regulators can modulate signal
execution for either cell type. A more traditional approach would
prescribe intricate and detailed experimental measurements
of cellular response to yield the desired data and improve
our understanding of signal execution. However, the time
and cost associated with such experiments makes it unlikely,
and at times infeasible, to obtain said data. It is here that
we see probabilistic inference approaches as complementary
to experimentation, providing qualitative insights about signal
execution mechanisms by integrating the expected parameter
space subject only to available computer time. Here, we
demonstrate that a probabilistic approach, constrained by
network structure or molecular concentrations, can identify
the dominant signal execution modes in a reaction network.
Specifically, we demonstrate the dependence of Type I or a
Type II cellular apoptosis execution on network structure and
chemical-species concentrations. We use existing tools designed
for the calculation of Bayesian evidence and repurpose them
for the calculation of expected values for quantifiable in silico
experimental outcomes. These expected values are then used
as metrics for comparisons of signal flow through different
pathways of the network and subnetworks in order to identify
how regulators affect execution modes. We introduce two
complementary approaches that can be used in tandem to explore
signal execution modulation. We first define a multimodel
exploration method to explore multiple hypothesis about
apoptosis execution by deconstructing an established apoptosis
network model into functional subnetworks that effectively
represent in silico knockout experiments. We also define a
pathway flux method to characterize the signal flux through
specific network pathways within the chosen canonical network.
Combined, these two approaches enable us to qualitatively
identify key network components and molecular regulator
combinations that yield mechanistic insights about apoptosis
execution. Our approach is generalizable to other mass action
kinetics-based networks where signal execution modes play
important roles in cellular outcomes. This work leverages Nested
Sampling algorithm methods to efficiently calculate expected
values on high performance computing (HPC) platforms, both of
which are seldom used in biological applications. In this manner
we are able to carry out the necessary calculations to consider the
entirety of the proposed parameter space and estimate expected
values within the timespan of hours to days.

METHODS

Apoptosis Model and Simulations
The base model used in this work is a modified version of
the Extrinsic Apoptosis Reaction Model (EARM) from Lopez
et al. (2013) (EARM v2.1). The original EARM was simplified
to reduce complexity and lower the number of parameters,
but still retains the key features of the network for apoptosis
execution. Specifically, we reduced the molecular complexity
of mitochondrial outer membrane permeabilization (MOMP)
down to a representative set of Bcl-2 proteins that capture
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BOX 1 | Extrinsic apoptosis execution. Extrinsic apoptosis is a receptor mediated process for programmed cell death. The Type I/II phenotypes for the extrinsic
apoptosis system were first described by Scaffidi et al. (1998). In that work they examined several cell lines and classified them into those that required the
mitochondrial pathway to achieve apoptosis (Type II) and those that do not (Type I). They made several interesting conclusions. They found that Type II cells had
relatively weak DISC formation, that both phenotypes responded equally well to receptor mediated cell death, that there was a delay in caspase activation in Type II
cells, and that caspase activation happened upstream of mitochondrial activation in Type I cells and downstream in Type II. More recently, XIAP has also been put
forth as a critical regulator in the choice of apoptotic phenotype. In Jost et al. (2009) they examined hepatocytes (Type II cells) and lymphocytes (Type I cells) under
different conditions to examine the role XIAP plays in Type I/II determination. They made several observations upon Fas ligand or Fas-antibody induced apoptosis
such as higher levels of XIAP in Type II cells and higher caspase effector activity in XIAP/Bid deficient mice versus apoptosis resistant Bid-only knockouts. In all, they
concluded that XIAP is the key regulator that determines the choice of pathway. Extrinsic apoptosis is initiated when a death inducing member of the tumor necrosis
factor (TNF) superfamily of receptors (FasR, TNFR1, etc.) is bound by its respective ligand (FasL, TNF-α, etc.), setting off a sequence biochemical events that result in
the orderly deconstruction of the cell (Ashkenazi and Dixit, 1998). The first stage of this sequence is the assembly of the DISC at the cell membrane ¬ and the
subsequent activation of Caspase-8. Upon ligand binding and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD (Fas-associated
protein with death domain), is recruited to the receptors cytoplasmic tail (Boldin et al., 1995; Kischkel et al., 2000; Sprick et al., 2000). FADD, in turn, recruits
Caspase-8 via their respective death effector domains (DEDs), thus completing DISC formation (Kischkel et al., 2000; Sprick et al., 2000). Other DISC components
could also be included here, such as the regulator cFlip (Krueger et al., 2001). Once recruited, proximal Procaspase-8 monomers dimerize, inducing their
autoproteolytic activity and producing active Caspase-8 (Martin et al., 1998; Salvesen and Dixit, 1999; Boatright and Salvesen, 2003). After Caspase-8 activation the
apoptotic signal can progress down two distinct pathways that both lead to the activation of Caspase-3 and the ensuing proteolysis of downstream targets. One
pathway consists of a caspase cascade in which active Caspase-8 directly cleaves and activates Caspase-3  (Stennicke et al., 1998), while another, more complex
pathway is routed through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic Bcl-2 family protein Bid in the cytosol, which then
migrates to the mitochondria ® where it initiates mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic factors that lead to

(Continued)
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BOX 1 | Continued
Caspase-3 activation (Li et al., 1998; Luo et al., 1998). MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria
¯. After Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial membrane, such as Bax, that subsequently
self-aggregate into membrane pores and allow exportation of Cytochrome-c and Smac/DIABLO to the cytosol (Desagher et al., 1999). Bid and Bax are examples of
pro-apoptotic proteins from the Bcl-2 family, all of which share BH domain homology (Kelekar and Thompson, 1998). Other members of this family act as MOMP
regulators; the anti-apoptotic Bcl-2, for example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly binds and inhibits its target, Bcl-2 (Oltval
et al., 1993; Yang et al., 1995; Letai et al., 2002; Leber et al., 2007). Many other pro- and anti-apoptotic members of the Bcl-2 family have been discovered and
together regulate MOMP (Kale et al., 2018). Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage of
PARP ³, a proxy for cell death in the analyses here (Nicholson et al., 1995; Tewari et al., 1995). XIAP (X-linked inhibitor of apoptosis protein) is an inhibitor of
Caspase-3 and has been proposed to be a key regulator in determining the Type I/II apoptotic phenotype of a cell (Jost et al., 2009). XIAP sequesters Caspase-3 but
also contains a ubiquitin ligase domain that directly targets Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 activating
Caspase-9 residing within the apoptosome complex (Huang et al., 2001; Suzuki et al., 2001; Shiozaki et al., 2003). Apoptosome formation is initiated by
Cytochrome-c exported from the mitochondria during MOMP °. Cytochrome-c induces the protein APAF-1 to oligomerize and subsequently recruit and activate
Caspase-9, thus forming the complex (Zou et al., 1999). Another MOMP export, the protein Smac/DIABLO ±, binds and inhibits XIAP, working in tandem with
Cytochrome-c to oppose XIAP and carry out the apoptosis inducing activity of the Type II pathway (Adrain et al., 2001). Finally, Procaspase/Caspase-6 constitutes a
feed forward loop between Caspase-3 and Caspase-8 ² (Cowling and Downward, 2002).

the behavior of activators, inhibitors, effectors, and sensitizers.
We also eliminated intermediate states for Cytochrome c
and Smac to streamline effector caspase activation, and we
added an explicit FADD molecule, an adapter protein in the
death-inducing signaling complex (DISC), to achieve a more
realistic representation of signal initiation. Overall, EARM
v2.1 is comprised of 16 chemical species at non-zero initial
concentrations, 50 total chemical species, 62 reactions, and 62
kinetic parameters. The modified model was recalibrated to
recapitulate the time-dependent concentration trajectories of
truncated Bid, Smac release from the mitochondria, and cleaved
PARP analogous to the approach reported previously (Spencer
et al., 2009) (Supplementary Figure S1). The modified EARM,
and all derivative models, were encoded in PySB. All simulations
were run using the mass action kinetics formalism as a system
of ordinary differential equations (ODEs) using the VODE
integrator in SciPy within the PySB modeling framework. All data
results, representative models, and software are distributed with
open-source licensing and can be found in the GitHub repository
https://github.com/LoLab-VU/BIND.

Expected Value Estimation
The expected value for a quantifiable outcome is, by definition,
the integral of an objective function that represents that
outcome over the normalized distribution of parameters. This
is analogous to the estimation of Bayesian evidence where a
likelihood function is likewise integrated over a normalized
distribution. We can thus use existing, established, Bayesian
evidence estimation methods and software to estimate expected
values by simply substituting the objective function for the
likelihood function in the integral calculation. The remainder of
this section and the next provide an overview of the evidence
estimation methods and tools that we have repurposed for
expected value calculations.

Bayesian evidence is the normalizing term in a Bayesian
calculation and typically provides a measure for model
comparison with regard to their fit to experimental data. It is
expressed as:

P (D|M) =

∫
L (D|θ, M) P(θ|M)dθ (1)

Where M is the model under consideration, D is the
experimental data, θ is a specific set of parameter values,
L (D|θ, M) is the likelihood function describing the fit of the
data to the model under those parameter values, and P (θ|M)
is the prior distribution of parameters. An efficient method for
evidence calculation is nested sampling (Skilling, 2006). This
method simplifies the evidence calculation by introducing a prior
mass element dX = P(θ|M)dθ that is estimated by (Xi−i − Xi)
where Xi = e−i/N , i is the current iteration of the algorithm, and
N is the total number of live points. The evidence is then written
as:

Z =
1∫

0

LdX ≈
∑
i=1

Li (Xi−1 − Xi) (2)

Initialization of the algorithm is carried out by randomly
selecting an initial population of parameter sets (points in
parameter space) from the prior distribution, scoring each one
with the likelihood function, and ranking them from Lhigh to Llow.
At each iteration of the algorithm a new set of parameter values
is selected and scored. If that score is higher than Llow, then it
is added to the population, at the appropriate rank, and Llow is
removed from the population and added to the evidence sum (2).

Nested Sampling Software
All expected value estimates in this work are calculated with
MultiNest, a nested sampling-based algorithm designed for
efficient evidence calculation on highly multimodel posterior
distributions (Feroz et al., 2009, 2013). MultiNest works by
clustering the live points (population of parameter sets) and
enclosing them in ellipsoids at each iteration. The enclosed space
then constitutes a reduced space of admissible parameter sets.
This lowers the probability of sampling from low likelihood
areas and evaluating points that will only be discarded. The
evidence estimate is accompanied by an estimate of the evidence
error. The algorithm terminates when the presumed contribution
of the highest likelihood member of the current set of live
points, LhighXi is below a threshold. Here, we use a threshold
of 0.0001 and a population size and 16,000 unless otherwise
noted. The population size of 16,000 was found to be an
acceptable compromise between precision and computational
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austerity for the model sizes and in silico experiments performed
in this study. See (Feroz et al., 2009, 2013), for more details
on the MultiNest algorithm. We use MultiNest with the Python
wrapper PyMultiNest (Buchner et al., 2014), which facilitates the
integration with PySB into the parameter sampling pipeline.

Multimodel Exploration Analysis
We carried out an analysis analogous to knockout experiments to
investigate the contribution of different network components to
the overall dynamics of the apoptosis execution network.

We broke down the EARM network into six subnetworks
and compared their likelihood of achieving apoptosis across
increasing concentrations of the regulator XIAP. A standard
proxy for apoptosis execution is cleavage of the protein PARP. We
therefore define the proportion of cleaved PARP, relative to total
PARP, as a metric for effective apoptosis execution. We defined
the objective function that represents the amount of cleaved
PARP as:

Objmultimodel =
cPARP
tPARP

(3)

where cPARP is the amount of PARP that has been cleaved
and tPARP is the total amount of PARP in the system.
When this objective function is substituted into Eq. (1) in
place of the likelihood function, we obtain the expected
value, the average over the chosen prior parameter range, for
the proportion of PARP that has been cleaved at the end
of the in silico experimental simulation. We compare PARP
cleavage for different subnetworks and regulatory conditions
only in qualitative terms and as a relative measure of the
expected outcome.

Pathway Flux Analysis
We also explored the effect of molecular regulators of Type I vs.
Type II execution relative to the apoptosis signal flux through
the network, as we have done in previous work (Shockley et al.,
2019). Briefly, signal flux is defined as the chemical reaction flux
in units of molecules per unit time, that traverses through a
given pathway. In the apoptosis network there are two potential
pathways that can lead to Caspase-3 activation and subsequently
PARP cleavage. In the direct caspase pathway initiator caspases,
like Caspase-8, directly cleave and activate effector caspases, like
Caspase-3. By contrast, in the mitochondrial pathway, effector
caspases are activated via the apoptosome, and are dependent
on MOMP. Therefore, the dominant pathway responsible for
Caspase-3 activation defines the route of the signal. To estimate
the flux through one of these pathways, we define the objective
function as:

Objpathway =

T∑
t=0

∑t
0 C3pathway∑t

0 C3total
×
(
cParpt − cParpt−1

)
(4)

where t represents time in seconds,
t∑
0

C3pathway is the amount

of Caspase-3 activated via the target pathway up to time

t,
t∑
0

C3total is the total Caspase-3 activated up to time

t, and
t∑
0

C3caspase/
t∑
0

C3total is the proportion of activated

Caspase-3 that was produced via the target pathway up to time
t.
(
cParpt − cParpt−1

)
is the total PARP that has been cleaved,

and activated, by Caspase-3 from time t − 1 to time t.Thus, at
any given time t we can estimate the amount of Caspase-3 that
has been activated through a specific pathway. Multiplication of
these two terms returns an estimate for the amount of PARP
cleaved via the specific pathway at time t. Summing over T then
returns an estimate for the total apoptosis signal flowing through
the target pathway. Like the PARP cleavage objective function,
the signal flux objective substituted into Eq. (1) produces an
estimate of the average flux over a defined prior distribution.
We estimated this quantity over increasing concentrations of the
molecular regulator XIAP, but also at high and low levels of the
DISC components FADD and Caspase-8. The total signal flux
was estimated by summing the flux estimate for both the direct
caspase and mitochondrial pathways.

Parameter Ranges and Initial Conditions
The prior distribution takes the form of a set of parameter ranges,
one for each reaction rate parameter. The ranges used here span
four orders of magnitude around generic reaction rates deemed
plausible (Aldridge et al., 2006) and are specific to the type of
reaction taking place. The ranges of reaction rate parameters, in
Log10 space, are 1st order forward: [−4.0, 0.0], 2nd order forward:
[−8.0, −4.0], 1st order reverse: [−4.0, 0.0], catalysis: [−1.0, 3.0].
These ranges were also used in the calibration of the base model.
Where possible, initial conditions were either collected from the
literature (Eissing et al., 2004; Dai et al., 2018) or taken from
a previous model of extrinsic apoptosis (Aldridge et al., 2011;
Lopez et al., 2013). Because the baseline model was designed to
concur with Type II apoptotic data (see above), literature derived
initial conditions were based on Type II Jurkat or Hela cell lines
(Supplementary Table S1).

Expected Value Ratios
Evidence estimates are often used to select between two
competing models by calculating the Bayes factor (i.e., the ratio
of their evidence values). This provides a measure of confidence
for choosing one model over another. We can likewise use
the ratios of expected values to gain additional insights into
the dynamical relationship between network components. To
facilitate construction of expected value ratios (EVR) with a
continuous and symmetric range, we define them as:

EVR =

{
−

Z2
Z1
+ 1 if Z1 < Z2

Z1
Z2
− 1 if Z1 > Z2

(5)

where Z1 and Z2 are the expected value estimates for two
networks under comparison.

Computational Resources
Because of the high computational workload necessary for
this analysis, a wide range of computational resources were
used. The bulk of the work was done on the ACCRE cluster
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at Vanderbilt University which has more than 600 compute
nodes running Intel Xeon processors and a Linux OS. As
many as 300 evidence estimates were run in parallel on this
system. Additional resources included two local servers, also
running Intel processors and a Linux OS, as well as a small
local four node cluster running Linux and AMD Ryzen 1700
processors. A detailed breakdown of CPU time can be found
in the results section. In all, expected value estimates for
14 different networks/initial conditions were made across the
range of XIAP concentrations. We estimate all 14 runs would
take ∼9 days each on a typical university server with 32
cores/64 threads.

RESULTS

Overview: A Bayesian-Inspired Approach
to Explore Mechanistic Hypotheses
Our overarching goal is to understand the mechanisms and
dynamics of biochemical networks responsible for cellular
commitment to fate, given incomplete or unavailable data.
We take a probabilistic approach, similar to those used
in Bayesian evidence-based model selection and multimodel
inference, to compare model subnetworks and pathways
with respect to apoptotic signal execution under various
in silico experimental conditions and enable the generation
of hypotheses regarding the underlying mechanisms of signal
processing. Using this approach, we’ve employed two distinct
but complimentary strategies as displayed in Figure 1 (Note
that the base network in Figure 1 is a simplified version
of the network used for demonstration in the results. From
top to bottom the four nodes correspond to signal initiation
at the death inducing signaling complex (DISC), export of
proapoptotic factors from the mitochondria, inhibition of the
antiapoptotic protein XIAP, and catalysis/inhibition of PARP.
See Box 1 for a detailed description of the model used in
this work.)

The first is Multimodel Exploration Analysis (Figure 1,
left path), wherein the network model is deconstructed into
biologically relevant subnetworks and the probability of each
subnetwork achieving apoptosis, under various regulatory
conditions, is estimated via the calculation of an expected
value for a quantifiable proxy of apoptosis. This differs
from traditional model selection and multimodel inference
applications where models are typically ranked based on
their fit to experimental data and high-ranking models may
be averaged to obtain a composite model (Burnham and
Anderson, 2002; Xu et al., 2010; Symonds and Moussalli,
2011; Aitken and Akman, 2013; Eydgahi et al., 2013; Pullen
and Morris, 2014). Here, we already have a model that
captures key features of programmed cell death execution.
Instead, we use the differences in expected values for a
quantity that is representative of apoptosis to construct
a composite picture of mechanistic evidence for apoptosis
execution. To achieve this, we first tailor the objective
function to represent signal execution strength, as measured
by cleaved PARP concentration at the end of the simulation.

The expected value derived from this objective function
therefore describes the likelihood that the signal is effectively
transmitted through a given network. It should be noted
that Bayesian evidence, and by extension our expected value
calculation, inherently incorporates model complexity as the
objectives are integrated over normalized prior distributions
(MacKay and Kay, 2003; Feroz et al., 2009). As we will see,
comparison of changes in signal strength through relevant
subnetworks allows inferences to be made on the effect of
the perturbed network regulator as well as various network
components on the overall dynamics of the system. We focus
primarily on understanding how Bayesian evidence for the
caspase pathway compares to that of the complete network
as these are most relevant for the analysis of Type I/II
execution modes. This analysis will inform on how network
components contribute to overall signal execution and provide
mechanistic insights about the sensitivity of PARP cleavage to
subnetwork components.

The second strategy is Pathway Flux Analysis (Figure 1,
right path), where we retain the complete network structure but
instead tailor the objective functions to measure biochemical
reaction flux through either the direct caspase or mitochondrial
pathways. We primarily consider the influence of the apoptosis
inhibitor XIAP on regulatory dynamics and phenotypic fate
but also consider the regulatory effect of the death inducing
signaling complex (DISC) and the anti-apoptotic protein Bcl-
2, all of which have been found to be relevant to Type I vs.
Type II execution in different cell types (Scaffidi et al., 1998;
Jost et al., 2009). This analysis will inform on how molecular
regulators modulate biochemical flux through the network
and their influence on apoptosis completion as measured
by PARP cleavage.

Decomposition of the Extrinsic
Apoptosis Network and Reductive
Analysis of the Effects of XIAP
To investigate the effect of network substructures on apoptosis
signaling, we build a composite description of system dynamics
by observing variations in signal throughput, represented
by expected values of PARP cleavage, between subnetworks
(Figures 2A–F) relative to changes in regulatory conditions.
We consider relative changes in expected PARP cleavage
as the number of XIAP molecules is increased where a
higher value indicates a stronger average signal over the
prior range of parameter values. XIAP was varied from 0 to
200,000 molecules per cell in increments of 250 to explore
how changes in XIAP affect the likelihood of apoptosis
execution. For subnetworks that include the mitochondrial
pathway, Bcl-2 (an anti-apoptotic protein) was eliminated,
to explore Type I vs. Type II activity independent of
inhibitors that could confound signal throughput, and more
closely simulate a cell that is “primed” for death (Certo
et al., 2006). All other initial values were fixed at the
levels shown in Supplementary Table S1. In the absence
of XIAP all six subnetworks have PARP cleavage estimates
greater than 0.98 (Figure 2A: 0.993, Figure 2B: 0.998,
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Figure 1 | General workflow for the analysis of network dynamics using trends in expected values. The target network is first deconstructed into subnetworks that
effectively represent in silico knockouts (Note that the base network here is a simplified version of the network used for demonstration of the methodology. Briefly, the
four nodes from top to bottom represent the death inducing signaling complex, the mitochondria, XIAP and PARP.) A model for each subnetwork and each
incremental set of regulatory conditions is then created and passed to an algorithm for estimation of the expected value for an aspect of signal transduction. The
expected value is calculated via integration of a user-defined objective function that quantifies that aspect of signal transduction over a range of parameter values
(the prior). The trends in the expected values over changing regulatory conditions are then compared to make qualitative inferences regarding network dynamics. In a
complimentary method, the full model is retained but the objective function is targeted to different pathways. Inferences on network dynamics can again be made via
comparison of the trends in the expected values.
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Figure 2C: 0.992, Figure 2D: 0.981, Figure 2E: 0.998, Figure 2F:
0.981, Supplementary Table S2) indicating a robust apoptotic
signal for each across the allowed range of parameters.
The log-expected value version of Figure 2G along with
estimated errors generated by MultiNest are displayed in
Supplementary Figure S2.

The results in Jost et al. (2009) imply that the cellular
level of XIAP determines the preferred apoptosis pathway with
higher levels specific to Type II cells and lower levels specific
to Type I. To hypothesize a possible mechanistic explanation
for this behavior we compared the expected PARP cleavage,
over increasing concentrations of XIAP, for the direct caspase
activation network against both the complete network and the
isolated mitochondrial pathway network (Figures 2A,G green;
Figures 2E,G orange; Figures 2F,G blue, respectively). This
mimics reported experimental strategies to study Type I/II
phenotypes and allows us to gauge the effect of XIAP on networks
with and without a mitochondrial component (Scaffidi et al.,
1998; Jost et al., 2009).

As XIAP levels increase we see differential effects on all
subnetworks in the form of diverging expected value estimates,
indicating differences in the efficacy of XIAP induced apoptotic
inhibition. PARP cleavage values for the isolated caspase pathway
(Figure 2G green) diverge from the complete network (Figure 2G
orange) and mitochondrial pathway (Figure 2 blue) showing
a steeper initial decline that diminishes as XIAP continues to
increase. PARP cleavage values for the caspase pathway falls to
0.5 at an XIAP level of roughly 32,000. However, the complete
network and mitochondrial pathways require XIAP levels nearly
threefold higher with PARP cleavage reaching 0.5 at around
92,000 and 95,000, respectively.

Because the direct caspase activation pathway (Figure 2G
green) is representative of the Type I phenotype, the
disproportionate drop in its expected PARP cleavage as
XIAP concentration increases is consistent with experimental
evidence showing XIAP-induced transition from a Type I to
a Type II execution mode (Jost et al., 2009). The complete
network, containing the full mitochondrial subnetwork, and
mitochondrial only pathway are also affected by XIAP but
exhibit resistance to its anti-apoptotic effects, a difference that
is most prominent at moderate levels of the inhibitor. This
suggests a dependence on mitochondrial amplification for
effective apoptosis as XIAP increases from low to moderate
levels. At higher levels of XIAP the PARP cleavage for
the caspase pathway level off and the gaps between it and
the two mitochondrial containing networks narrow. The
disproportionate effect of XIAP inhibition of apoptosis
on the caspase pathway suggests that the mechanism for
XIAP induced transition to a Type II pathway can be
attributed to differential inhibition of the apoptotic signal
through the isolated caspase pathway vs. a network with
mitochondrial involvement.

The next two highest trends in expected values after that of
the direct caspase network belong to the networks representing
direct caspase activation plus mitochondrial activation and
mitochondrial activation alone (Figure 2G purple and brown).
For most of the range with XIAP below 100,000 these two

networks have largely overlapping PARP cleavage trajectories,
despite the fact that the former has twice as many paths
carrying the apoptotic signal. Near an XIAP level of 100,000
the two trends diverge as the decrease in PARP cleavage for the
mitochondrial activation only network accelerates. This could
be explained by XIAP overwhelming the apoptosome at these
higher levels. The apoptosome is an apoptosis inducing complex
(via Caspase-3 cleavage) consisting of Cytochrome c, APAF-
1, and Caspase-9, and is an inhibitory target of XIAP. As
XIAP increases past 125,000 the mitochondrial activation only
PARP cleavage values fall below even the solo direct caspase
values, possibly due to the two-pronged inhibitory action of
XIAP at both the apoptosome and Caspase-3. An interesting
observation here is that the addition of the direct caspase
pathway to the mitochondrial activation pathway does not
appear to increase the likelihood of achieving apoptosis for
lower values of XIAP.

PARP cleavage values for the network representing direct
caspase activation plus mitochondrial inhibition of XIAP are
in red in Figure 2G. Below an XIAP level of 100,000 these
values are consistently above the PARP cleavage values for
the network representing direct caspase plus mitochondrial
activation. Note that while direct caspase activation does not
appear to increase the likelihood of achieving apoptosis when
added to the mitochondrial activation pathway (Figure 2G
purple) the amplification of the direct caspase activation via
mitochondrial inhibition of XIAP leads to a higher likelihood
than solo activation through the mitochondria. This suggests
the possibility that the primary mechanism for mitochondrial
apoptotic signal amplification, under some conditions, may
be inhibition of XIAP, with direct signal transduction a
secondary mechanism. Above an XIAP level of 100,000, the
direct caspase with XIAP inhibition PARP cleavage values drop
to levels roughly in line with the values for direct caspase
activation plus mitochondrial activation, possibly due to the
fact that Smac, the mitochondrial export that inhibits XIAP,
is also set to 100,000 molecules per cell. Both, however,
remain more likely to attain apoptosis than direct caspase
activation alone.

The two subnetworks with the highest expected values
for apoptotic signal execution are the complete network and
the isolated mitochondrial pathway (Figure 2E orange and
Figure 2F blue). As previously mentioned, both of these networks
contain the full mitochondrial pathway implying that this
pathway supports resistance to XIAP inhibition of apoptosis.
Between XIAP levels of 0 to 100,000 the two trends track very
closely, with the mitochondrial only pathway showing a slight
but consistent advantage for apoptosis execution. The average
difference between an XIAP level of 20,000 and 80,000 is roughly
0.014, meaning we expect the average PARP cleavage to favor
the mitochondrial only pathway by about 1.4 percentage points,
which may seem unremarkable. Context matters however, and
the context here is that the complete network has potentially
twice the bandwidth for the apoptotic signal, namely the addition
of the more direct caspase pathway. Together, this raises the
possibility that under some conditions the caspase pathway is
not a pathway but a sink for the apoptotic signal. In such
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Figure 2 | Extrinsic apoptosis subnetworks and the likelihood of achieving apoptosis. (A) The direct caspase subnetwork. (B) The direct caspase + mitochondrial
activation subnetwork. (C) The direct caspase + mitochondrial inhibition of XIAP subnetwork network. (D) The mitochondrial activation subnetwork. (E) The
complete network. (F) the mitochondrial subnetwork. (G) Trends in expected values for each of the networks in panels (A–F) over a range of values for the apoptosis
inhibitor XIAP and for an objective function that computes the proportion of PARP cleavage (a proxy for cell death) at the end of the in silico experimental simulation.

a scenario, the signal through the caspase pathway would get
lost as Caspase-3 is degraded by XIAP. Not until the signal
through the mitochondrial pathway begins inhibiting XIAP
could the signal proceed. Around the 100,000 level of XIAP

the PARP cleavage trend for the mitochondrial pathway crosses
below that for the complete network. This could be due to
the parity with Smac, components of the apoptosome, or a
combination of the two.
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Apoptosis Signal Strength Dictates the
Signal Route Through the Network
The results in Scaffidi et al. (1998) indicate a strong phenotypic
dependence on the strength of the apoptosis signal. Here, we
examine hypotheses made in that work and the interplay between
the DISC and XIAP regulatory axes. We again increase XIAP
from 0 to 200,000 molecules in increments of 250, but this time
at a low number of DISC complexes by lowering the initial values
of both the scaffold protein FADD and the initiator Caspase-
8, from 130,000 to 100 molecules per cell. In addition to the
Multimodel Exploration Analysis approach used in the previous
section, we also use the Pathway Flux Analysis approach using
the signal flux objective function (see section “Methods”). In
this way we attain a holistic view of network dynamics that
incorporates both network structure and signal flux crosstalk
from all possible pathways. Additional analysis of caspase and
mitochondrial pathway signal flux over a range of values for both
XIAP and Bcl-2 is displayed in Supplementary Figure S3 and
interpreted in Supplementary Text S1.

Figure 3A displays the PARP cleavage expected values for the
direct caspase activation pathway and complete network (from
Figure 2G) along with their low DISC counterparts. Two things
are immediately apparent. PARP cleavage for the caspase pathway
with a low number of DISC molecular components is lower
across the entire range of XIAP concentrations. The complete
network, on the other hand, shows almost no difference under
low DISC conditions at lower values of XIAP. This supports
the hypothesis that mitochondrial involvement is necessary to
overcome weak DISC formation and that weak signal initiation
constitutes a Type II trait (Scaffidi et al., 1998).

Figures 3B,C show expected values for signal flux through
the caspase pathway and complete network, for high and low
numbers of DISC components, respectively. At higher DISC
values, signal flux through the caspase pathway is consistently
higher than the flux through the mitochondrial pathway. At
lower DISC values the signal flux through the mitochondrial
pathway exceeds the flux through the caspase pathway. These
results shed interesting mechanistic observations in the context
of a previously proposed hypothesis stating that mitochondrial
activation is downstream of Caspase-8 activation in Type I cells
and upstream in Type II cells. If a weaker initial apoptosis
cue does indeed push the signal through the mitochondrial
pathway the initial activation of Caspase-8 would be weak and the
amplifying activity of the mitochondria would ramp up the signal
before Caspase-8 could directly activate Caspase-3. On the other
hand, strong initial activation that pushes the signal through the
caspase pathway would activate both Caspase-8 and Caspase-3
before MOMP becomes fully active. Also notable is the nearly
identical trajectories of the total signal flux through the low and
high DISC models. The average difference over the range of XIAP
was only 0.011 (Supplementary Table S3). This is consistent with
observations that both Type I and Type II cells respond equally
well to receptor mediated apoptosis (Scaffidi et al., 1998).

Overall these results set up three mechanistic explanations
for apoptosis execution and the signal flux schematic for each
is displayed in Figures 4A–C, respectively. On one end, strong

signal initiation and low XIAP results in the independence of
apoptosis from the mitochondrial pathway. This behavior is
consistent with Type I cells like the SKW6.4 cell lines (Scaffidi
et al., 1998). Under this scenario our results imply that most
of the signal flux is carried through the caspase pathway and
we hypothesize that control of apoptosis is dominated by that
pathway. On the other end of the spectrum weak signal initiation
and moderate to high levels of XIAP result in a dependence
on the mitochondrial pathway. Such behavior is consistent with
Type II cells like Jurkat (Scaffidi et al., 1998). In this case our
results strongly indicate that most of the signal flux is carried
through the mitochondrial pathway and we hypothesize that
apoptosis execution is dominated by that pathway. In between
these two extremes is the case with strong signal initiation, and
moderate to high levels of XIAP levels with increased apoptotic
dependence on mitochondrial activity versus the low XIAP case.
Such a scenario that is consistent with MCF-7 cell that are known
to have traits of both phenotypes (Scaffidi et al., 1998). In this
case, we found that most of the apoptotic signal is carried through
the caspase pathway despite the dependence on the mitochondria
and we hypothesize that the mitochondrial pathway acts to allow
the apoptotic signal through the caspase pathway.

Expected Value Ratios and XIAP
Influence on Type I/II Apoptosis
Phenotype
Model selection methods typically calculate the evidence ratios,
or Bayes factors, to choose a preferred model and estimate
the confidence of that choice (Burnham and Anderson, 2002;
Symonds and Moussalli, 2011). When comparing changes in
likelihood of an outcome as regulatory conditions are altered
we can similarly use ratios of expected values to provide
additional information about evolving network dynamics under
regulatory perturbations. To characterize the effect of XIAP on
the choice of Type I or II apoptotic phenotype we calculated
the expected value ratios (Figure 5A), for each value of
XIAP between the caspase pathway and both the complete
network and mitochondrial pathway (from Figure 2G). In these
calculations, the denominator represents the caspase pathway so
that higher values favor a need for mitochondrial involvement.
An interesting feature of both the complete and mitochondrial
expected value ratios is the peak and reversal at a moderate level
XIAP (Figure 5B). This reflects the initially successful inhibition
of the caspase pathway that decelerates relatively quickly as
XIAP increases, and a steadier rate of increased inhibition on
networks that incorporate the mitochondrial pathway. The ratios
peak between 45,000 and 50,000 molecules of XIAP (more than
double the value of its target molecule Caspase-3 at 21,000) and
represent the optimal level of XIAP for the requirement of the
mitochondrial pathway and attainment of a Type II execution.
Given the near monotonic decline of the expected values for both
pathways, representing increasing suppression of apoptosis, the
peak and decline in the expected value ratios could represent a
shift toward complete apoptotic resistance. Our results therefore
complement the observations in Aldridge et al. (2011) where a
similar outcome was observed experimentally.
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Figure 3 | Expected values for PARP cleavage and pathway flux at low and high DISC component values. (A) Expected values for PARP cleavage for the caspase
pathway and complete network under both low and high (from Figure 2G) DISC conditions (100 and 130,000 molecules per cell of FADD and Caspase-8,
respectively), over a range of XIAP values. (B) Expected values for signal flux through both pathways as well as the total signal flux under high DISC conditions.
(C) Expected values for signal flux through both pathways as well as the total signal flux under low DISC conditions.

A common technique to study apoptosis is to knockdown
Bid, overexpress Bcl-2, or otherwise shut down MOMP induced
apoptosis through mitochondrial regulation. This strategy was
used in Ashkenazi and Dixit (1998), Jost et al. (2009), to
study the role of XIAP in apoptosis and in the work of
Aldridge et al. (2011) to explore Type I vs. Type II execution
in different cell lines. Taking a similar approach, we set Bcl-2
levels to 328,000 molecules per cell, in line with experimental
findings (Dai et al., 2018), to suppress MOMP activity and
recalculated the PARP cleavage expected values and their
ratios (Figures 5C,D, Supplementary Table S5). Under these
conditions PARP cleavage for the mitochondrial pathway drop

well below that of the direct caspase pathway, which is reflected
in the expected value ratios trend as a shift into negative territory
and indicate that the caspase pathway is favored. PARP cleavage
for the complete network under MOMP inhibition is shifted
closer to that for the caspase pathway at higher concentrations
of XIAP but is still higher throughout the full range of XIAP.
The peak in the associated expected value ratios is flattened
as the level of XIAP increases from low levels, suggesting that
increasing XIAP is less likely to induce a transition to a Type II
phenotype in a system with an already hampered mitochondrial
pathway. We note that complete inhibition of MOMP would
result in uninformative mitochondrial pathway results. PARP
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Figure 4 | Signal flux schematics. (A–C) Schematic of signal flux, through the network under high DISC/low XIAP (A), high DISC/moderate XIAP (B), and low
DISC/moderate XIAP conditions (C). *Note that although the signal flux under high DISC/low XIAP conditions favors the direct caspase pathway, the independence
of apoptosis on the mitochondria (see Figure 3A) under these conditions implies that the signal is easily shifted to the caspase pathway in the absence of
mitochondrial involvement.

cleavage expected values for the complete network would be
indistinguishable from those for the direct caspase pathway
and the complete/caspase ratios would simply flatline. However,
our analysis shows that isolation of active biologically relevant
subnetworks and direct comparison under changing molecular
regulatory conditions, using trends in expected values, enables
the extraction of information regarding pathway interactions and
differential network dynamics.

Precision vs. Computational Cost
Increasing the precision of the expected value estimates and
tightening their trendlines, is accomplished by increasing the
number of live points in the nested sampling algorithm. The
trade-off is an increase in the number of evaluations required
to reach the termination of the algorithm and an accompanying
increase in total computation time. Figures 6A,B display the
required number of evaluations for the direct caspase and
complete network at population sizes of 500, 1000, 2000, 4000,
8000, and 16,000, when run with the PARP cleavage objective
function. For both models the number of evaluations roughly
doubles for every doubling in population size. Figures 6C,D
are the average estimated errors calculated by the MultiNest
algorithm over each population size for the direct caspase and
complete networks, respectively. As expected, error estimates
fall roughly as n−1/2 (Handley et al., 2015), signifying clear
diminishing returns as the number of live points is increased. The
average CPU process times, as estimated by Python’s time.clock()
method, are given in Figures 6E,F for the direct caspase and
complete networks, respectively. Despite the greater number of

required evaluations for the direct caspase network the average
clock times for the complete network is significantly higher. At
a population of 16,000 the caspase network had an average clock
time of 11,964 s compared to 76,981 for the complete network.
Data for Figure 6 can be found in Supplementary Table S6.

Ultimately, the choice of population size for the methods we
have laid out here will depend on the networks to be compared,
the objective function, and how well the trends in the expected
values must be resolved in order to make inferences about
network dynamics. For example, at a population size of 500 the
trend in the PARP cleavage expected values for the direct caspase
pathway is clearly discernable from that for the mitochondrial
pathway and the complete network, but the latter two are largely
overlapping (Supplementary Figure S4A). At higher population
levels, however, two distinct mitochondrial and complete PARP
cleavage trends become apparent (Supplementary Figure S4K).
If expected value ratio trends are desired then the choice of
population size must take into consideration the amplification of
the noise from both expected value estimates (see Supplementary
Figures S4B,D,F,H,J,L) for complete/caspase PARP cleavage
expected value trends).

DISCUSSION

Characterizing information flow in biological networks, the
interactions between various pathways or network components,
and shifts in phenotype upon regulatory perturbations is a
standing challenge in molecular biology. Although comparative
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Figure 5 | Trends in expected value ratios under increasing levels of the apoptotic inhibitor XIAP for an inhibited and uninhibited mitochondrial pathway. (A) Expected
value trends for the caspase pathway (green), mitochondrial pathway (blue), and complete network (orange) with no MOMP inhibition (from Figure 2G). (B) Trends
for the mitochondria/caspase (blue) and the complete/caspase (orange) expected value ratios from the trends in panel (A). (C) Expected value trends for the
caspase pathway (green), mitochondrial pathway (blue), and complete network (orange) with MOMP inhibitory protein BCL-2 at 328,000 mol. per cell. (D) Trends for
the mitochondria/caspase (blue) and the complete/caspase (orange) evidence ratios from the trends in panel (C).

analysis of signal flow within a network is possible with current
computational methods, the dependence of physicochemical
models on unknown parameters makes the computational
examination of each network component highly dependent on
costly experimentation.

To take advantage of the enormous amount of existing
knowledge encoded in these physicochemical networks without
the dependence on explicit parameter values we take a
probabilistic approach to the exploration of changes in network
dynamics. By integrating an objective function that represents
a simulated outcome over parameter distributions derived from
existing data we obtain the likelihood of attaining that outcome

given the available information about the signaling pathways. The
qualitative exploration of network behavior for various in silico
experimental setups and regulatory conditions is then attainable
without explicit knowledge of the parameter values. Although
this probabilistic modeling approach is Bayesian inspired, it is a
departure from strictly Bayesian methodologies. Evidence values
are a relative measure of how well a model explains the data and
are used as a comparative metric for model selection (Burnham
and Anderson, 2002; Skilling, 2006; Feroz et al., 2009; Symonds
and Moussalli, 2011; Feroz et al., 2013). The expected values
calculated in this work are based solely on a given network and
prior distribution; data does not directly come into play. There
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Figure 6 | Precision vs. computational cost. (A,B) Average number of evaluations before termination of the MultiNest algorithm over a range of population sizes for
the caspase pathway and complete network, respectively. (C,D) Average of error estimates from MultiNest for each population size and the caspase and complete
networks. (E,F) Average estimated CPU clock time over each population size for the caspase and complete networks, respectively. *MultiNest was unable to
estimate the error at XIAP = 0.

is of course a place for data, if it exists, in the estimation of
the prior parameter distributions used to calculate the expected
values. Approximate Bayesian Computation, for example, can

estimate parameter distributions when a given model is too
complex to be analyzed analytically, as is typical for complex
biological systems (Toni et al., 2009; Toni and Stumpf, 2010). We
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demonstrate the utility of the probabilistic modeling approach
when applied to the regulation of extrinsic apoptosis. Networks
that incorporate an active mitochondrial pathway displayed a
higher resistance to apoptotic inhibition from increasing levels of
XIAP, consistent with experimental evidence that XIAP induces
a Type II phenotype (Jost et al., 2009). Also in line with
experimental evidence (Scaffidi et al., 1998) are the results that
suggest low/high signal initiation is consistent with Type II/I
phenotype, respectively, and that both types achieve apoptosis
equally well. The probabilistic methodology presented here has
the potential to predict which proteins are potentially relevant to
phenotypic outcomes and reduce the set of candidates for further
perturbation experiments. Such a workflow would ultimately
result in a mapping of relevant protein concentrations to those
phenotypic outcomes. Moreover, by using objective functions
that represent various quantitative aspects of network dynamics a
more complete picture of the causal mechanisms for phenotypic
outcomes can be hypothesized. For example, combining the end-
product formation of cleaved PARP with the pathway flux of
the apoptotic signal we hypothesized not only the conditions
(regarding DISC component and XIAP concentrations) for
which Type I/II or a combination of phenotypes exist, but also
the roles played by both the proteins and the pathways to elicit
those phenotypic responses.

A potential limitation of this probabilistic approach to the
study network dynamics is the computational cost. Several
factors affect the run time of the algorithm including the
size of the model, the objective function, and the desired
precision. Fortunately, reducing the resolution (the number of
in silico experiments for which an expected value is estimated)
and the precision (the population size) can drastically reduce
the cost and in many cases the method will still be viable.
One aspect of the method that is severely restrictive is the
number of model components that can be varied in the same
run since the computational cost increases exponentially with
each additional variable. Reasonable parameter distributions
must also be chosen, preferably based on existing data.
Here, we were able to use generic but biologically plausible
ranges with uniform distributions to produce results that
were qualitatively consistent with previous experimental results.
These in silico generated qualitative results allow us to make
mechanistic hypotheses from existing data over a period of
weeks rather than the months or years that would be required
to attain this information with experimental approaches. Our
results therefore support probabilistic approaches as a suitable
complement to experimentation and a shift from purely
deterministic models with a single optimum parameter set
to a probabilistic understanding of mechanistic models of
cellular processes.

CONCLUSION

In this paper, we have developed a probabilistic approach to the
qualitative analysis of the network dynamics of physicochemical

models. It is designed to incorporate all available knowledge
of the reaction topology, and the parameters on that topology,
and calculate the likelihood of achieving an outcome of interest.
Inferences on network dynamics are then made by repeating this
calculation under changing regulatory conditions and various
in silico experiments. We tested the method against a model of the
extrinsic apoptosis system and produced qualitative results that
were consistent with several lines of experimental research. To
our knowledge this is the first attempt at a probabilistic analysis
of network dynamics for physicochemical models and we believe
this method will prove valuable for the large-scale exploration
of those dynamics, particularly when parameter knowledge and
data are scarce.
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Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides
regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the
emergent spatiotemporal patterning in a tissue through ligand-receptor interactions
among transmembrane molecules of neighboring cells, as seen in embryonic
development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch
signaling is also implicated in several aspects of cancer progression, including
tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review
experimental and computational models that help understand the operating principles
of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms
of spatial patterning via canonical lateral inhibition and lateral induction mechanisms,
including examples from angiogenesis, inner ear development and cancer metastasis.
Next, we analyze additional layers of complexity in the Notch pathway, including the
effect of varying cell sizes and shapes, ligand-receptor binding within the same cell,
variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we
discuss some recent evidence of mechanosensitivity in the Notch pathway in driving
collective epithelial cell migration and cardiovascular morphogenesis.

Keywords: Notch, Delta, Jagged, lateral inhibition, lateral induction, spatial pattern, mathematical modeling, cell-
cell signaling

INTRODUCTION

Notch signaling is central in cell fate decisions and therefore it is one of the most well-conserved
transduction pathways in metazoans (Bray, 2016). In its simpler form, the signaling cascade
includes only a limited number of well-conserved steps, including ligand binding to the Notch
transmembrane receptor, release of the Notch intracellular domain (NICD) in the cytoplasm, and
downstream regulation of NICD on its target genes (Figure 1; Bray, 2016; Kovall et al., 2017;
Sjöqvist and Andersson, 2019). Despite this simplicity, Notch regulates a multitude of different
biological processes including cell differentiation, proliferation and death (Bray, 2016).

Each of the abovementioned steps in this cascade raises unanswered questions that would
improve our understanding of several developmental processes and may also provide key insights
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FIGURE 1 | Overview of the Notch transduction pathway. (A) A newly produced Notch molecule undergoes a first cleavage by PC5/furin and then attaches to the
cell membrane as a transmembrane receptor. (B) The Notch transmembrane receptor binds to a ligand at the surface of a neighbor cell. (C) Pulling forces originated
in both cells expose the Negative Regulatory Region (NRR) of the receptor, hence enabling a cleavage by ADAM. (D) Afterward, the receptor undergoes two
successive cleavages by γ-secretase, thus leading to the release the Notch Intracellular Domain (NICD) in the cytoplasm. (E) NICD is transported to the cell nucleus.
(F) NICD transcriptionally regulates several target genes in cooperation with other co-activators such as CSL and Mastermind (Mam).

to alleviate many pathological conditions, including cancer (Li
et al., 2014; Bray, 2016; Kovall et al., 2017; Siebel and Lendahl,
2017; Sjöqvist and Andersson, 2019). Here, we explicitly focus on
the role of Notch signaling in coordinating cell fate decisions and
patterning at a multicellular level, and how various experimental
and computational models can be integrated to elucidate the
underlying dynamical principles of pattern formation. Due to
its multi-cellular nature, Notch signaling offers an opportunity
to understand how cell-fate decision in individual cells may be
relayed to generate emergent multi-cellular dynamics. Different
Notch ligands can orchestrate different principles of multicellular

spatial patterning via different positive and negative feedback
regulation between NICD and its transcriptional targets (Bray,
2006). For instance, Notch signaling can coordinate a divergent
cell fate between two neighboring cells, a process known as
lateral inhibition (Bray, 2016). Moreover, Notch can modulate
the opposite process, the lateral induction (Hartman et al.,
2010; Petrovic et al., 2014), by coordinating a similar cell state
among neighbors.

In this review, we offer a bird’s eye view on how to interpret
cell-level and tissue-level dynamics with simple concepts such as
lateral inhibition and lateral induction, discuss the limitations
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of these models, and highlight a novel set of questions that
require integrating experimental investigation with concepts
from quantitative mechanistic modeling. In doing so, we bring
together the analysis of several biological systems as well as
theoretical modeling approaches that highlight the emergence of
common themes in the Notch pathway. For the sake of simplicity,
technical details of the underlying biology and mathematical
models have been occasionally omitted, and relevant literature
has been suggested. Furthermore, given the extensive set of topics
covered in this review, we have focused on certain experimental
and/or theoretical models that are representative of a particular
system, and pointed the interested readers to relevant reviews for
in-depth discussions of specific areas of research.

First, we review some aspects of the Notch signaling cascade
that are necessary to understand Notch-driven pattern formation.
It is followed by a discussion of various modeling approaches
that can be used to understand the operating principles of
Notch. After these two introductory sections, we discuss the
principles of Notch-driven patterning. We analyze how Notch
signaling gives rise to divergent cell fate – lateral inhibition –
and convergent cell fate – lateral induction – among neighboring
cells. Experimental evidence and theoretical modeling have
contributed to understanding the competition and synergy
between these patterning mechanisms in various physiological
and pathological systems, including angiogenesis, inner ear
development and cancer metastasis. Moreover, we review the
oscillatory dynamics of Notch signaling that can arise due to
coupling with other signaling pathways, for instance, during
somitogenesis. Further, we examine the role of various molecular
and morphological features that introduce additional layers of
complexity to the canonical Notch signaling outcomes. The
scenarios discussed here include the role of cell shape and
packing geometry, cis-interactions between molecules within
the same cell, mechanisms that alter the binding affinity
between ligand and receptor paralogs, and beyond-nearest
neighbor signaling through filopodia. In the final section, we
review evidence pointing to a role for mechanosensitivity in
assisting Notch-driven cell-fate decision. Relevant examples
discussed here include collective epithelial cell migration and
cardiovascular morphogenesis.

OVERVIEW OF NOTCH SIGNALING

In this section, we discuss the main components and steps of the
Notch signaling cascade. We will avoid excessive details on the
molecular structure of the Notch receptor and ligands that are
not required for the topics discussed in this review.

The main steps of the Notch signaling cascade are very well
conserved across several organisms and include production and
targeting of the Notch receptor to the cell membrane, ligand-
receptor binding, conformational rearrangement of the receptor,
release of the intracellular domain (NICD) and downstream
transcriptional regulation (Figure 1). First, a newly produced
Notch receptor molecule is glycosylated by the enzymes O-fut
and Rumi, and successively subjected to proteolytic cleavage
by the PC5/furin at site 1 (S1) (Kopan and Ilagan, 2009).

Afterward, the mature Notch molecule attaches to the cell
surface as a transmembrane receptor (Figure 1A). The signaling
is initiated with the binding of an extracellular ligand to the
transmembrane Notch receptor (Figure 1B). Typically, the ligand
is a transmembrane protein at the surface of a neighboring cell
(juxtacrine signaling), but it can occasionally be a soluble ligand
in the extracellular microenvironment (paracrine signaling)
(D’Souza et al., 2010). In particular, two classes of ligands, referred
to as Delta-like and Jagged-like, can bind to the Notch receptors.
The ligand-receptor binding and forces originated by endocytosis
induce a conformational change in the structure of the Notch
receptor. This modification exposes a previously shielded region
of the receptor, the Negative regulatory region (NRR). Following
this conformational change, the receptor sequentially undergoes
a cleavage by the enzymes ADAM at site 2 (S2, Figure 1C) and
two cleavages by γ-secretase at sites 3 and 4 (S3–S4, Figure 1D;
Kopan and Ilagan, 2009), resulting in the release of the NICD
in the cytoplasm (Figures 1B,C). The NICD translocates to the
cell nucleus, where it regulates several target genes together
with cooperating transcriptional cofactors such as CSL and
Mastermind (Mam) (Figures 1E,F; Bray, 2016).

Notably, NICD regulates the transcription of the Notch
receptor and its ligands, either in a direct or indirect manner.
Specifically, NICD promotes the transcription of Hey/Hes1
(Shimojo et al., 2011) – an inhibitor of Delta – while directly
activating Notch and Jagged (Manderfield et al., 2012). Therefore,
Notch signaling introduces a biochemical feedback between
neighboring cells that coordinates their cell fate decision
(Shaya and Sprinzak, 2011; Sjöqvist and Andersson, 2019). The
implications of these biochemical feedbacks in multicellular
patterning are the subject of the section about “Spatiotemporal
Patterning Guided by Notch Signaling.”

Although the main steps of the signaling are quite general,
there are specific aspects that differ from one organism to
another, or even from cell to cell – these will be the focus of
the section on “Non-canonical Modulation of Notch Signaling.”
First, the signaling depends on cell-cell contact area because
physical contact is required for juxtacrine signaling (Shaya et al.,
2017). We will discuss how cell size modulates Notch signaling
and plays a role in determining cell fate. Furthermore, ligands
and receptors can bind within the same cell, thus leading
to degradation of the ligand-receptor complex without release
of NICD (referred as cis-inhibition). Despite not leading to
NICD release, cis-inhibition plays a pivotal role by sequestering
ligands and receptors that would otherwise contribute to active
signaling (Celis and de Bray, 1997; Sprinzak et al., 2010).
Third, different model organisms have different number of
ligand and receptor subtypes. Drosophila melanogaster –where
Notch was firstly extensively characterized – has one type of
Notch receptor and two types of ligands (Delta and Serrate,
equivalent of Jagged). Conversely, most mammalian organisms
have four Notch paralogs (Notch1, Notch2, Notch3, Notch4),
three Delta-like ligands (Dll1, Dll3, Dll4) and two Jagged-like
ligands (Jagged1, Jagged2). Table 1 offers a comparison of the
main components of the signaling between several popular
model organisms. Different pairs of ligand and receptor subtypes
possess different binding affinities and have been even associated
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with different biological functions (Bray, 2016; Sjöqvist and
Andersson, 2019). Finally, the signaling can be occasionally
extended beyond nearest neighbors via filopodia that introduce
transient contacts between second or third-nearest neighbor cells,
as see for instance in hair cell patterning during Drosophila wing
development (Cohen et al., 2010).

Further details on the signaling cascade will not be considered
here; additional information can be found in several excellent
reviews (Kopan and Ilagan, 2009; Bray, 2016; Kovall et al.,
2017; Sjöqvist and Andersson, 2019). Here, we focus on
generic principles of multicellular patterning obtained via Notch
signaling as a whole.

MATHEMATICAL FORMALISM TO
DESCRIBE NOTCH SIGNALING

In this section, we briefly overview different classes of theoretical
models that have been applied to Notch signaling.

Many mathematical models aim at reconstructing the
dynamics of mutually interacting biochemical species and/or
genes in the Notch pathway with ordinary differential equations
(ODEs). In these models, each chemical species/gene is described
by a variable (X), which can either represent a concentration or
copy number. In many cases, since molecular copy numbers are
large, X is treated as a continuous variable that obeys an ODE of
the form:

dX
dt
= Kprod − 0Degr (1)

In this equation, Kprod represents any biochemical process that
regulates the production of X, potentially including constitutive
transcription, transcriptional activation or inhibition, translation
and any other post-translational interaction that might be
relevant in a specific system. Transcriptional regulation of NICD
on the Notch receptors and ligands is typically described with Hill
functions:

Kprod = K0

1+ λ
(

NICD
S0

)n

1+
(

NICD
S0

)n (2)

In this expression, K0 is the basal transcription rate in absence of
NICD, S0 is a threshold concentration of NICD, λ is a fold-change
and n is a coefficient that regulates how steeply transcription
changes as a function of NICD. At low NICD (NICD� S0), there
is only constitutive production (Kprod = K0). Conversely, at high
NICD (NICD� S0), the transcription rate is scaled by a fold-
change (Kprod = K0λ). Therefore, λ < 1 implies a decrease of
transcription rate (inhibition), while λ > 1 (activation) implies
an increase of transcription rate (Figure 2A). Depending on the
model, slightly different mathematical definitions might be found
for this function.

0Degr generically represents a loss term. Loss due to molecule
degradation and dilution is usually modeled with a linear
function 0Degr = γX, where γ is the inverse half-life of X. In
the specific case of Notch signaling, intracellular signaling is
coupled with ligand-receptor binding (Figure 2B). Therefore,
X can represents a receptor or ligand that binds to another

ligand/receptor and degrades after NICD release. This is often
modeled with a chemical reaction term, thus 0Degr = kXY + γX,
where Y represents the concentration (or copy number) of a
ligand or receptor that binds to X, and k is the ligand-receptor
binding rate constant.

Therefore, a network of N interacting biochemical species
or genes, such as the intracellular signaling network sketched
in Figure 2B, can be described by a collection of variables
(X1,X2, . . . , XN) and a set of N ODEs of the form of Eq. 1. In
such system of equations, the production term for Xi (K(i)

prod)
describes the regulation on Xi due to interactions with all other
species in the network.

It is worth mentioning that biochemical and gene regulatory
networks are sometimes modeled with Boolean, rather than
continuous, variables. A Boolean variable can only assume two
states X = 0, 1 corresponding to an inactive or active chemical
species/gene, respectively. At any given time, the state of a
variable (X) is determined by the incoming signal from all other
chemical species/genes that interact with X.

These models of intracellular dynamics can be generalized to
a multicellular scenario by arranging cells in a discrete lattice
(Figure 2C). In these models, the intracellular signaling dynamics
is still described by a set of ODEs. In the specific case of
Notch signaling, the biochemical circuits within each cell are
coupled by ligands-receptors binding between neighbors (see
again Figure 2B). These lattices can have different geometries
(square, hexagonal) or can be disordered to study the effect of cell
size and shape (Formosa-Jordan and Ibãnes, 2009; Boareto et al.,
2015a; Shaya et al., 2017).

Lattice model, however, assume a rigid arrangement of cells
on a grid, and cannot take into account biophysical processes
including cell migration and cell growth. Biochemical signaling
and cell-level behavior can be integrated in agent-based models
(Figure 2D). In agent-based models, space is discretized into
small volumes, and each cell is represented by the collection of
grid points sharing the same kind. This modeling approach has
been successfully applied, for instance, in the context of sprouting
angiogenesis where cells modify their morphology and migrate to
give rise to new blood vessels (Bentley et al., 2008).

Finally, a second possibility to couple biochemical signaling
with cell-level dynamics is provided by off-lattice models
(Figure 2E). In off-lattice models, the membrane of a cell is
described by a set of N points connected together according
to a pre-defined rule, such as elastic springs (Du et al., 2015).
Therefore, the motion of these connected membrane points
defines the volume occupied by a cell. In the context of
Notch signaling, off-lattice model must further include ligand-
receptor binding between neighbors. Stopka et al. (2019) recently
developed an off-lattice, multicell model of Notch signaling where
membrane points of neighboring cells share adhesion junctions
(modeled as elastic springs). Therefore, the number of shared
junctions between neighbors modulates the amount of signaling
between cells (Stopka et al., 2019).

In both agent-based and off lattice models, the signaling
dynamics within each cell can still be described by a set of
ODEs. One important difference is that “static” lattice models

Frontiers in Physiology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 929126

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00929 July 29, 2020 Time: 17:40 # 5

Bocci et al. Cell Patterning via Notch Signaling

FIGURE 2 | Overview of mathematical methods to study Notch signaling. (A) A positive Hill function (λ > 1) describes transcription in presence of an activator that
binds to DNA. When the concentration of transcription factor is high, the Hill function relaxes to a constant larger than 1. Conversely, for transcriptional inhibition, a
negative Hill function (λ < 1) relaxes to a constant smaller than 1. (B) Models of Notch signaling dynamics integrate intracellular signaling (indicated by the blue
network and interconnections) with ligand-receptor binding. (C) In a lattice model, cells are arranged in a fixed grid. Each position in the grid is identified as a cell,
and ligands and receptors belonging to neighboring cells can bind. (D) In an agent-based model, space is divided into small fixed regions, and a cell is described by
a set of contiguous space regions with the same cell identity (represented here as the color). (E) In an off-lattice model, a cell is described by the position coordinates
of a set of membrane points. Membrane points of a cell are connected, for instance with elastic springs (continuous black lines). Cell-cell junctions are modeled as
binds between pairs of membrane points of neighboring cells (dashed black lines).

assume fixed cell volumes; therefore, molecule concentration and
copy number are equivalent descriptions. Conversely, Agent-
based and off-lattice models allow changes in cell volume, thus
requiring adjustment of molecular concentrations.

SPATIOTEMPORAL PATTERNING
GUIDED BY NOTCH SIGNALING

In this section, we review experimental systems that exemplify
two well-known patterning mechanisms enabled by Notch
signaling: lateral inhibition and lateral induction. While lateral
inhibition promotes opposite cell fates via biochemical negative
feedbacks between the Notch receptor and Delta ligands,
lateral induction promotes similar cell fates by positive
feedback between Notch and Jagged ligands. Moreover, we
review mathematical models that elucidate these patterning
mechanisms on idealized, ordered lattices. Experiments and
theoretical models help decoding the emergent outcomes of
interactions between lateral inhibition and lateral induction
mechanisms; specifically, we examine three biological processes
that exhibit various degrees of patterning: angiogenesis, inner
ear development and epithelial-mesenchymal transition in

cancer metastasis. Lastly, we discuss temporal oscillations
of Notch observed during somitogenesis as an example of
spatiotemporal patterning.

Biochemical Mechanisms of Lateral
Inhibition and Lateral Induction
Historically, Notch signaling has been first characterized in
Drosophila melanogaster as a mechanism that induces opposite
cell fates among nearest neighbors (Heitzler and Simpson, 1991;
Celis and de Garcia-Bellido, 1994; Celis and de Bray, 1997;
Huppert et al., 1997; Simpson, 1997; Buceta et al., 2007). The
establishment of divergent phenotypes among two neighboring
cells, or lateral inhibition, relies on binding of the Notch receptor
to ligands of the Delta-like family (Delta in Drosophila; Dll1,
Dll3 and Dll4 in mammals – see Table 1) presented at the
cell surface of a neighboring cell (Bray, 2006; Andersson et al.,
2011). Upon engaging of Delta with the transmembrane Notch
receptor, the intracellular domain of Notch (NICD) is cleaved
by enzymes and translocates to the cell nucleus. Here, NICD
activates Hey/Hes1, which in turn inhibits Delta (Shimojo et al.,
2011; Bray, 2016; Sjöqvist and Andersson, 2019; Figure 3A).
This negative feedback amplifies small initial differences in ligand
and receptor concentrations among nearly equivalent neighbors

Frontiers in Physiology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 929127

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00929 July 29, 2020 Time: 17:40 # 6

Bocci et al. Cell Patterning via Notch Signaling

TABLE 1 | List of Notch molecular components, examples of biological processes regulated by Notch signaling, and references to examine in depth Notch signaling for
various organisms.

Organism Main components Example of biological process References

Drosophila Melanogaster
(fruitfly)

Notch
Delta
Serrate

Wing disk formation, bristle patterning Bray, 2016; Sjöqvist and
Andersson, 2019

Caenorhabditis elegans
(roundworm)

Lin-12, glp-1
Apx-1
Lag-2

Vulval precursor cell specification Greenwald, 1998

Danio rerio (Zebrafish) Notch 1, 2
Delta A, B, C, D
Jagged 1, 2

Somitogenesis, artery and vein
specification

Lawson et al., 2001; Venzin
and Oates, 2019

Gallus gallus domesticus
(chicken)

Notch 1, 2
Delta-like 1, 4
Jagged/Serrate 1, 2

Inner ear development Neves et al., 2013

Mus musculus (house
mouse)

Notch 1, 2, 3, 4
Delta 1, 3, 4
Jagged 1, 2

Inner ear development, vascular
smooth muscle cell development

Bray, 2016; Sjöqvist and
Andersson, 2019

Homo sapiens Notch 1, 2, 3, 4
Delta 1, 3, 4
Jagged 1, 2

Inner ear development, vascular
smooth muscle cell development

Bray, 2016; Sjöqvist and
Andersson, 2019

to establish opposite cell states. The cell with higher levels
of Delta can more effectively inhibit Delta in its neighbor,
hence assuming a (low Notch, high Delta) or Sender phenotype,
while forcing the neighbor to an opposite (high Notch, low
Delta) or Receiver phenotype (Collier et al., 1996; Shaya and
Sprinzak, 2011) (the green and orange cells in Figure 3A). This
basic principle of differentiation regulates cell fate in several
developmental and physiological processes. Interesting examples
besides Drosophila’s development include angiogenesis (Benedito
et al., 2009; Benedito and Hellström, 2013), spinal cord patterning
in zebrafish (Appel and Eisen, 1998; Givan et al., 2001; Huang
et al., 2012), development of neuroblast cells in early neurogenesis
(Skeath and Carroll, 1992; Campos-Ortega, 1993; Homem and
Knoblich, 2012), and vulval development in C. elegans (Fisher
et al., 2007; Louisa et al., 2020). Thus, the Notch-Delta system can
be regarded as a two-cell ‘toggle switch’ (Gardner et al., 2000) that
enables opposite cell fates and possible switching among them
under the influence of biological noise.

Despite being initially characterized as a driver of cell
differentiation, Notch signaling can induce a convergent cell
phenotype among neighbors through lateral induction (Bray,
2016; Sjöqvist and Andersson, 2019). A positive biochemical
feedback between the Notch receptor and ligands of the
Jagged/Serrate family establishes similar cell phenotypes that are
spatially propagated to neighbors during the development of
the inner ear (Lewis et al., 1998; Kiernan et al., 2001, 2006)
and vascular smooth muscle cell (Manderfield et al., 2012).
The Jagged family in mammals includes two paralogs (Jag1,
Jag2), while Drosophila presents a single Serrate subtype (Bray,
2016; Sjöqvist and Andersson, 2019; see Table 1). Ligands
of the Jagged/Serrate family are directly activated by NICD
(Manderfield et al., 2012). Therefore, Notch-Jagged signaling
between neighbors activates a positive feedback that establishes
phenotypes with (high Notch, high Jagged) (the purple cells in
Figure 3B), occasionally referred to as hybrid Sender/Receiver

phenotypes to highlight that both cells send and receive signals
(Boareto et al., 2015a). Unless otherwise stated, green and orange
colors denote high-Delta (Sender) and high-Notch (Receiver)
phenotypes, respectively. Conversely, purple coloring indicates
high-Jagged (hybrid Sender/Receiver) cells.

It is important to stress that positive and negative biochemical
feedbacks that minimize or amplify initial differences are often
assisted by a spatial and/or temporal regulation of Notch ligands
and receptors (discussed in more detail by Bray, 2016). For
instance, in the development of the D. melanogaster wing
imaginal disc, the ligand Serrate is expressed only by cells on
the dorsal side due to spatial confinement of the upstream
transcription factor Apterous (Kim et al., 1995). This sharp
boundary creates a stripe of Notch-active cells on the ventral side
that leads to tissue growth thereafter (Kim et al., 1995).

Theoretical Exploration of the
Notch-Delta-Jagged Circuit
Over the last two decades, theoretical models helped
understanding the biochemical dynamics leading to lateral
inhibition and lateral induction as well as the consequences of
these signaling modes at the cell population level. In the first
model of Notch-Delta lateral inhibition, Collier et al. (1996)
hypothesized that activation of Delta stimulates Notch in the
neighboring cells, while activation of Notch restricts Delta within
the same cell (Figure 4A). In this model, the homogeneous state
where neighbors express the same levels of Notch and Delta is
stable for weak biochemical feedback, while cells differentiate
into a Sender and a Receiver for strong feedbacks (Collier et al.,
1996). When generalized to a spatial distribution of cells, cells
tend to arrange in a ‘salt-and-pepper’ pattern where Senders are
surrounded by Receivers and vice versa (Collier et al., 1996).
Therefore, cell patterning in the model depends on the geometric
arrangement of cells. While Senders and Receivers can perfectly

Frontiers in Physiology | www.frontiersin.org 6 July 2020 | Volume 11 | Article 929128

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00929 July 29, 2020 Time: 17:40 # 7

Bocci et al. Cell Patterning via Notch Signaling

FIGURE 3 | Biochemical feedbacks give rise to lateral inhibition and lateral induction. (A) During lateral inhibition, a high-expressing Delta Sender cell (green)
suppresses the expression of Delta in its neighbors, hence enforcing a (low-Delta, high-Notch) or Receiver state. Detailed circuit on bottom: Delta ligands of the
Sender cell activate Notch receptors in the Receiver. The released NICD activates Hey/Hes1, which in turn suppresses the production of Delta (pointed by the light
shading of Delta promoter). Conversely, Notch receptors are not activated in the Sender cells; thus, Delta is freely expressed. (B) During lateral induction,
neighboring cells mutually promote a similar hybrid Sender/Receiver state. Detailed circuit on bottom: upon activation of Notch receptors, NICD transcriptionally
activates Notch and Jagged, hence establishing a high Notch, high Jagged hybrid Sender/Receiver state. In both panels, the color shading in the top highlights the
two cells shown in the detailed circuit in the bottom.

alternate on a square lattice, patterns on hexagonal lattices
typically feature Senders surrounded by six Receivers, hence
leading to a 3-to-1 Receiver/Sender ratio (Figure 4B). This
patterning arises because contacts between Senders represent a
more pronounced instability (Teomy et al., 2019). While contacts
between Receiver cells results in the absence of signaling, two
Sender cells dynamically compete until one of them eventually
become a Receiver (Teomy et al., 2019). This arrangement is well
reflected, for example, in the avian inner ear, where high-Delta
hair cells are completely surrounded by low-Delta supporting
cells (Goodyear and Richardson, 1997).

Further, some mathematical models have encapsulated the
ability of Notch signaling to drive both divergent and convergent
cell fates. A model developed by Boareto and colleagues considers
the transcriptional activity of NICD that inhibits Delta and
activates Jagged (Figure 4C). In this simplified representation,
Delta and Jagged generically represent the two classes of
ligands (Boareto et al., 2015a). In this model, the positive
feedback between Notch and Jagged can drive the cells away
from lateral inhibition, instead promoting a convergent hybrid
Sender/Receiver state. Therefore, if the relative contribution
of Notch-Delta signaling is large as compared to that of

Notch-Jagged, two neighboring cells fall into lateral inhibition.
If Notch-Jagged signaling is dominant, however, the cells fall
into the convergent ‘hybrid Sender/Receiver’ configuration with
similarly high levels of Notch and Jagged (Boareto et al.,
2015a). Therefore, modulating the balance between Notch-Delta
and Notch-Jagged signaling in the model leads to transition
between salt-and-pepper patterns and homogeneous patterns
(Figure 4D). This trend is reminiscent of the dynamical behavior
of an intracellular “toggle switch” coupled with self-activation,
where the relative strengths of mutual inhibition and self-
activation can drive different cell fates (Jolly et al., 2015).

Interplay of Lateral Inhibition and Lateral
Induction Described by Experiments and
Mathematical Models
Despite leading to opposite outcomes, lateral inhibition and
lateral induction can take place at consecutive developmental
steps, such as during inner ear development. Alternatively,
they represent different outcomes that are selected based on
signaling cues in the extracellular environment, such as during
angiogenesis or tumor progression. In this section, we review
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FIGURE 4 | Patterns predicted by models of Notch-Delta and Notch-Delta-Jagged signaling. (A) Schematic of the Notch-Delta cell-cell signaling model proposed by
Collier et al. (1996). (B) A typical solution of the model of Collier and collaborators on a hexagonal lattice with Senders (green) surrounded by Receivers (red).
(C) Model of the Notch-Delta-Jagged circuit proposed by Boareto et al. (2015a). Solid black arrows in the cell nucleus indicate transcriptional action of NICD.
Dashed black lines indicate transport of Notch, Delta and Jagged molecules to cell surface, where they can bind to ligands and receptors of a neighbor cell. (D) In a
model of the Notch-Delta-Jagged circuit, increasing the cellular production rate of Jagged destabilizes an alternate pattern of Senders and Receivers in favor of a
homogeneous array of hybrid Sender/Receiver. Each row represents the pattern on a different one-dimensional chain of cells with increasing production rate of
Jagged. Chains of cells with low production of Jagged show an alternation of Senders and Receivers, while chains with higher Jagged production rates show
progressively more hybrid Sender/Receiver cells.

experiments and mathematical models that raise interesting
questions about the interplay between lateral inhibition and
lateral induction in three specific contexts: angiogenesis, inner
ear development, and epithelial-mesenchymal transition during
cancer metastasis.

Angiogenesis
Angiogenesis – the growth of new blood vessels from existing
ones – is triggered by the hypoxia-induced signal VEGF (Vascular
Endothelial Growth Factor). Secreted VEGF molecules bind to
VEGF receptors (VEGFR) in the endothelial cells at the boundary
of an existing blood vessel (Benedito and Hellström, 2013).
Activation of VEGFRs in turn leads to transcriptional activation
of the Delta subtype Dll4, hence inducing differentiation between
a tip cell with high Dll4, and a stalk cells with low Dll4 by lateral
inhibition (Holger et al., 2003; Benedito and Hellström, 2013).
Subsequently, tip cells develop filopodia and migrate toward
the VEGF gradient, while stalk cells proliferate to support the
formation of the new vessel (Figure 5A, top).

Mathematical models suggest that tip-stalk differentiation
can be understood as an example of lateral inhibition where
external VEGF inputs activate Notch-Dll4 signaling (Bentley
et al., 2008; Katie et al., 2014). Moreover, computational
models suggest that tip-stalk selection is highly kinetic,
and the typical timescale to commit to a specific cell fate
varies considerably based on conditions in the extracellular
environment as well as intracellular signaling dynamics
(Venkatraman et al., 2016).

A binary model of Notch-Delta driven tip-stalk
differentiation, however, cannot fully explain some experimental
observations (Benedito and Hellström, 2013). For instance,
Dll4 can occasionally act as a brake on sprouting angiogenesis
by inhibiting endothelial tip formation (Suchting et al., 2007).
Conversely, Jagged1 – that usually promotes lateral induction –
assists vessel development in mouse models where Notch-Dll4
signaling is antagonized by the glycosylation of Notch by
Fringe (Benedito et al., 2009). In addition, lateral inhibition
typically leads to patterns with alternate cell fates, while
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FIGURE 5 | Physiological and pathological angiogenesis. (A) Top: physiological angiogenesis is driven by cell differentiation between Tip (i.e., Sender, green) cells
and Stalk (i.e., Receiver, orange) cells by Notch-Dll4 signaling. Bottom: lack of differentiation can lead to hybrid Tip/Stalk cells (purple) and disordered angiogenesis
as seen during tumor development. (B) In a model of two cells communicating via Notch-Delta-Jagged signaling, Kang et al. (2019) predicted a transition from
Tip-Stalk differentiation to hybrid T/S-hybrid T/S “de-differentiation” triggered by a threshold dose of TNF-α signal that activates Jagged.

tip cells are typically separated by more than one stalk cell
(Benedito et al., 2009).

Various models have been developed to explain deviations
from classical Notch-Delta driven angiogenesis. Venkatraman
et al. (2016) showed that regulators of Notch signaling such
as lunatic fringe can slow down the Tip-Stalk differentiation
process, hence giving rise to metastable partial Tip/Stalk
states (Venkatraman et al., 2016). To explain sparse patterns
where Tips are separated by multiple Stalks, Koon et al.,
integrated a standard model of Notch-Delta lateral inhibition
with intracellular heterogeneity of Notch concentration and
tension-dependent binding rate of the Notch-Delta complex
(Koon et al., 2018). Interestingly, the addition of intracellular
heterogeneity introduces states with intermediate levels of
Notch and Delta, thus giving rise to pattern with multiple
stalks separating consecutive Tips. Boareto et al. generalized
their earlier computational model of the Notch-Delta-Jagged
signaling to include VEGF-driven activation of Delta. This
model predicts bistability between a Tip phenotype (i.e.,
Sender) and the Stalk phenotype (i.e., Receiver) when Jagged
is weakly expressed (Boareto et al., 2015b). High expression
of Jagged, however, stabilizes a homogeneous solution with
hybrid Tip/Stalk (i.e., hybrid Sender/Receiver) cells (Figure 5A,
bottom). In this model’s interpretation, lateral induction between
hybrid Tip/Stalk cells can prevent a binary categorization of
migrating and proliferating cells, thus potentially disrupting
vessel development (Boareto et al., 2015b).

To elucidate the interplay between Dll4 and Jag1 during
angiogenesis experimentally, Kang and colleagues exposed
human endothelial cells to both VEGF signal and the pro-
inflammatory cytokine Tumor Necrosis Factor (TNF) that
activates Jag1 in vitro (Kang et al., 2019). Strikingly, the
combination of VEGF and low TNF dosage gives rise to

longer vessels. At a critical threshold of TNF dosage, however,
opposite outcomes (i.e., either robust vessel formation or no
vessel formation) were observed in experimental replicates.
Finally, TNF dosages above the critical dosage consistently
prevented vessel formation (Kang et al., 2019). Mathematical
model focusing on the activation of Notch-Delta and Notch-
Jagged signaling driven by VEGF and TNF, respectively, suggests
a dose-dependent role for Jagged (Kang et al., 2019). While
high levels of Jagged can lead to hybrid Tip/Stalk cells and
disruption of angiogenesis, low Jagged activity acts synergistically
with Delta to refine the alternate pattern of tips and stalks, hence
contributing to more robust angiogenesis (Figure 5B). Therefore,
increasing TNF dosage can lead to a switch in the role of Jagged
from pro-angiogenesis to anti-angiogenesis (Kang et al., 2019).

The dynamics of Tip-Stalk differentiation receives several
signaling inputs besides VEGF and TNF. Weinstein et al.
(2017) developed a Boolean model of a large regulatory
network governing endothelial cell behavior during angiogenesis.
This model explores the crosstalk between Notch and several
other signaling pathways in the cell as well as the cell
microenvironment. It correctly recapitulates the molecular
signatures of Tip and Stalk endothelial cells, and offers a
platform to integrate signaling crosstalk in a large circuit with the
simplification of a Boolean model (Weinstein et al., 2017).

In a pathological context, cancer cells can stimulate the
sprouting of new blood vessels in the tumor microenvironment
to supplement tumor growth (Kerbel, 2008; Weis and Cheresh,
2011). Typically, tumors exhibit irregular vascular networks that
prevent efficient drug delivery (Koganehira et al., 2003; Jain,
2005), and even facilitate passive metastasis by engulfing cancer
cells (Bockhorn et al., 2007; Fang et al., 2015). The ability
of cancer to induce vasculature makes tumor angiogenesis a
potential therapeutic target to halt tumor progression. Strikingly,
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antitumor drugs that target Dll4, however, do not reduce tumor
angiogenesis overall. Instead, anti-Dll4 drugs may result in a
higher number of newly formed blood vessels with reduced
functionality and chaotic architecture (Kerbel, 2008). Lateral
induction of the hybrid tip/stalk phenotype has been proposed as
a potential explanation to this paradoxical finding. As anti-Dll4
drugs tilt the balance toward Notch-Jagged signaling, the lack of
tip-stalk differentiation amplifies promiscuous cell differentiation
and leaky angiogenesis (Boareto et al., 2015b).

As we gain a better understanding of the complex
spatiotemporal dynamics of normal and tumor angiogenesis,
the advantages and disadvantages of combining drugs targeting
angiogenesis with other standard-of-care therapies demand
further investigation. Limited exposure to vasculature potentially
protects the tumor from therapeutic agents that directly target
cancer cells. Thus, perhaps counterintuitively, a transient
renormalization of the tumor vasculature, timely synchronized
with antitumor drugs, could serve as a potential strategy to
alleviate tumor progression (Thurston et al., 2007).

Due to the strong coupling between signaling and cell
mechanics observed during angiogenesis, several mathematical
models have explored the connection between molecular
mechanisms and cell- and organ-level behaviors. Further
information on these models, which are not discussed here, are
reviewed by Qutub et al. (2009).

Inner Ear Development
Lateral induction and lateral inhibition operate progressively
at different stages of the inner ear development to turn an
initially homogeneous population of non-sensory cells into a
refined mosaic of cells with specific phenotypes. The inner
ear is composed of hair cells that convert external stimuli
into electrical signals, and supporting cells that provide tissue
scaffolding, maintain a stable electrochemical environment, and
occasionally differentiate to replenish the hair cell population
after an injury (Kiernan et al., 2005; Neves et al., 2013). During the
prosensory cell specification phase, Notch activates Jag1, which
in turn sustains Notch in prosensory cells via lateral induction
(Eddison et al., 2002; Daudet and Lewis, 2005; Daudet et al.,
2007). Thus, the activation of Notch and Jag1 not only establishes
the hair cell phenotype, but also propagates it through lateral
induction up to several cell diameters (Hartman et al., 2010).
Later, in the hair cell differentiation phase, Notch-Dll1 signaling
establishes the final pattern where hair cells (i.e., the Senders)
are surrounded by supporting cells (i.e., the Receivers) (Eddison
et al., 2002; Daudet and Lewis, 2005; Daudet et al., 2007). For
further insights on the role of Notch signaling in the inner ear
development, a thorough review is offered by Neves et al. (2013).
Interestingly, Petrovic et al. (2014) argued with experiments and
mathematical modeling that Jag1 acts synergistically with Dll1
during the hair cell differentiation phase in enforcing a robust
lateral inhibition by acting as a competitive inhibitor for Dll1.
Similar to the model of Notch-driven angiogenesis proposed by
Kang et al. (2019), a dose-dependent role for Jagged is suggested
in inner ear development. While high levels of Jagged lead to a
homogeneous state where cells attain a hybrid Sender/Receiver
fate, a weak expression of Jagged can act synergistically with

Dll1 to refine the alternate pattern of Sender and Receivers. In
the presence of a dominant Notch-Delta signaling, additional
Jagged tends to compete with Delta over binding Notch receptors,
resulting in a greater activation of NICD, and thus suppression
of Delta, in Receiver cells (Petrovic et al., 2014). In this case, the
ability of Jag1 to establish a convergent cell fate is negligible as
compared to the cell differentiation promoted by Delta. When
the signaling through the Notch-Jagged “branch” of the pathway
becomes too strong, however, lateral induction dominates the
patterning (Figure 6). Interestingly, the dose-dependent role of
Jagged is only observed in mathematical models of extended two-
dimensional lattices. For instance, Boareto et al. (2015a) showed
that Notch-Delta signaling robustly give rise to salt-and-pepper
patterns of Sender and Receivers on a one-dimensional chain
(see Figure 4D again). In the two-dimensional lattice cells have
a higher number of nearest neighbors – and thus potentially
contradictory external inputs to process – hence increasing the
probability of mistakes, or Sender-Sender contacts, in the pattern.

Epithelial-Mesenchymal Transition and Cancer
Metastasis
Metastases represents the most critical step during tumor
progression. Typically, cancer cells invade the circulatory system,
reach anatomically distant sites and give rise to a secondary
tumor (Gupta and Massagué, 2006). These cells can migrate
individually as well as collectively as multi-cellular clusters
with varying sizes depending on cancer type, stage and patient
individualities (Cheung and Ewald, 2016; Jolly et al., 2017;
Bocci et al., 2019b).

Generally, epithelial cancer cells partially or completely lose
their cell-cell adhesion and acquire motility by undergoing
the epithelial-mesenchymal transition (EMT) (Nieto et al.,
2016). EMT can be activated by signaling cues in the tumor
microenvironment in a cell autonomous manner as well as by
Notch signaling. Activation of Notch signaling can be suppressed
by EMT-inhibiting microRNAs such as miR-34 and miR-200
(Brabletz et al., 2011; de Antonellis et al., 2011; Bu et al.,
2013; Bocci et al., 2019d). Notch signaling, however, can induce
EMT by activating the EMT-inducing transcription factor SNAIL
(Niessen et al., 2008; Sahlgren et al., 2008; Figure 7A).

An effort to elucidate the coupled dynamics of Notch signaling
with the EMT gene regulatory network (Boareto et al., 2016)
suggests that Delta-driven and Jagged-driven EMT can have
different consequences at the level of multi-cellular patterning
in a cancer tissue. While cells undergoing Notch-Delta-driven
EMT are typically surrounded by epithelial cells, Notch-Jagged-
driven EMT enables clustering among cells undergoing EMT
(Figure 7B), hence potentially facilitating the formation of
migrating multi-cellular cohorts in a tissue (Boareto et al., 2016).

Besides, Jag1 can also stabilize a hybrid
epithelial/mesenchymal (E/M) cell phenotype (Boareto et al.,
2016). Such hybrid E/M phenotype(s) can partially maintain
cell-cell adhesion while gaining motility, and can invade as
circulating tumor cell clusters (CTC clusters) that have elevated
metastatic potential (Cheung and Ewald, 2016; Pastushenko and
Blanpain, 2018; Sha et al., 2018; Jia D. et al., 2019). Experimental
observations support this proposed role of Notch-Jagged
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FIGURE 6 | Proposed role of Jagged dosage in Notch-driven cell fate. From left to right: in absence of Jagged (N-D), Sender and Receiver are the only accessible
states in an abstract phenotypic landscape; a low Jagged dosage (N-D + low Jagged) increases the stability of Sender and Receiver states (indicated by the higher
barrier in the landscape), as seen in inner ear development and angiogenesis; when both Notch-Delta and Notch-Jagged signaling are active (N-D≈N-J), a third
hybrid Sender/Receiver state becomes accessible; an overwhelmingly strong Notch-Jagged signaling (N-J�N-D) stabilizes the hybrid Sender/Receiver as the only
accessible state.

FIGURE 7 | Role of Notch signaling during Epithelial-Mesenchymal Transition. (A) Proposed coupling between the Notch-Delta-Jagged circuit and the core EMT
regulatory network proposed by Boareto et al. (2016). (B) Mathematical modeling of the Notch-EMT circuit predicts patterns where hybrid epithelial/mesenchymal
and mesenchymal cells are mostly surrounded by epithelial cells in presence of dominant Notch-Delta signaling (left) and patterns with clusters of hybrid E/M cells in
presence of dominant Notch-Jagged signaling (right). In this figure, green, yellow and red represent epithelial, hybrid epithelial/mesenchymal and mesenchymal cells,
respectively. The figure is adapted from Boareto and collaborators with permission from the published under a creative common license (Boareto et al., 2016).
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signaling, although mostly through indirect evidence. First,
CTC clusters from patients have a high expression of Jagged
and co-express epithelial and mesenchymal markers, indicative
of a hybrid epithelial/mesenchymal phenotype (Aceto et al.,
2014; Jolly et al., 2017). Conversely, single CTCs mostly lack
Jagged expression (Jolly et al., 2017). Second, Jag1 was identified
as among top 5 differentially expressed genes in cells positive
for K14, a marker for cluster-based migration (Cheung et al.,
2013). Generalizations of this framework identified additional
biochemical pathways that act as “phenotypic stability factors”
(PSFs) and stabilize hybrid E/M phenotype by coupling to the
core Notch-EMT circuit. Examples include NUMB, NF-kB and
IL-6 (Bocci et al., 2017, 2019a). Consistently, overexpression of
PSFs such as NUMB correlates with a worse patient survival
in various cancer types (Jia et al., 2015; Bocci et al., 2017,
2019a,e). Recently, the epigenetic landscape and transition
dynamics during EMT have been unraveled with a stochastic
dynamical modeling approach (Li et al., 2016; Li and Balazsi,
2018; Jia W. et al., 2019). These models suggest the presence
of multiple intermediate hybrid E/M states and indicate
plausible transition routes between EMT phenotypes in the
noisy cellular epigenetic landscape (Li et al., 2016; Li and
Balazsi, 2018). Certainly, understanding how Notch signaling
affects the stability and transitions between EMT phenotypes
from a landscape perspective is an exciting future direction for
theoretical modeling.

To metastasize, migrating cancer cells need the proliferation
potential and resistance to therapies typical of cancer stem cells
(CSCs). Typically, cells undergoing a partial or complete EMT
also show traits of CSCs (Mani et al., 2008; Grosse-Wilde et al.,
2015; Pastushenko et al., 2018; Bocci et al., 2019c). Mathematical
modeling of the gene regulatory networks underlying EMT,
Notch and stemness suggests that Notch-Jagged signaling can
promote a “window of opportunity” where cancer cells exist in
a hybrid E/M, stem-like phenotype with aggravated metastatic
potential (Bocci et al., 2018a; Nie, 2018). Consistent with this
prediction, CSCs display enhanced levels of Notch and Jagged
across several cancer types including glioblastoma, pancreatic
cancer, colon cancer and breast cancer (Wang et al., 2009;
Sikandar et al., 2010; Zhu et al., 2011; Yamamoto et al., 2013).
Moreover, the glycosyltransferase Fringe which promotes Notch-
Delta interactions over Notch-Jagged is reported as a tumor
suppressor in multiple cancers (Xu et al., 2012; Yi et al., 2013;
Zhang et al., 2014). Furthermore, it was recently shown in vitro
that knockdown of Jag1 inhibits the formation of tumor emboli
in hybrid E/M inflammatory breast cancer (IBC) – a rare
but highly aggressive form of breast cancer that moves largely
collectively through clusters (Jolly et al., 2017) – cells SUM149
(Bocci et al., 2019a).

Notch signaling can also regulate spatiotemporal pattern
formation at the level of a tumor tissue. Analysis of breast
cancer tissues highlighted subsets of mesenchymal CSCs at the
tumor invasive edge, while subsets of hybrid E/M CSCs were
largely localized in tumor interior (Liu et al., 2014). A recent
computational model developed by Bocci et al. suggests that
Notch-Jagged signaling may contribute to generating this spatial
heterogeneity. In the presence of a diffusive EMT-inducing signal

such as TGF-β, Notch-Jagged signaling, but not Notch-Delta
signaling, can give rise to large populations of CSCs. CSCs
subsets at the tumor invasive edge are highly exposed to EMT-
inducing signals and have a higher likelihood of undergoing
EMT, whereas CSCs in the tumor interior are less exposed to
EMT-inducing signals and hence retain a hybrid E/M phenotype
(Bocci et al., 2019a). Given the varying metabolic profiles of these
CSC subsets (Luo et al., 2018), such patterning is reminiscent
of spatial self-organization of metabolically diverse phenotypes
in other contexts such as bacterial colonies (Bocci et al., 2018b;
Varahan et al., 2019).

Finally, the transition to a mesenchymal phenotype is
not exclusive to epithelial cells. Besides undergoing tip-stalk
differentiation in sprouting angiogenesis, endothelial cells can
alternatively undergo Endothelial-to-Mesenchymal Transition
(EndMT) (Lamouille et al., 2014). While tip-stalk differentiation
maintains cell-cell adhesion, EndMT leads to the detachment of
endothelial cells. The underlying circuitry associated with these
different transition routes involves Notch, the EMT network,
and other pathways such as HIF1-alpha and TGF. Recently, this
large circuit has been modeled as a Boolean network, offering
suggestions about the specific signaling features that distinguish
the two transitions (Weinstein et al., 2020).

Oscillations and Synchronization as
Seen in the Somite Segmentation Clock
So far, we discussed mechanisms of spatial patterning. Due to
its crosstalk with other signaling pathways, however, Notch can
exhibit non-trivial temporal patterns. As an example, here we
discuss somite segmentation, a well-known example of Notch
oscillatory dynamics. During somite segmentation, the embryo’s
body axis is segmented into somites – blocks of epithelial cells
that later give rise to vertebrae and tissues in the adult body
(Andrew et al., 2012). Segmentation is organized by a precise
spatiotemporal clock. Traveling waves of gene expression move
along the body axis and stop at the location of a following
segmentation event (Andrew et al., 2012).

Oscillations in gene expression are generated in a cell
autonomous manner via an autoregulatory negative feedback by
Hes/Her proteins. Upon protein productions, Hes/Her molecules
dimerize and suppress their own transcription (Lewis, 2003;
Monk, 2003). The delay between transcription and protein
synthesis gives rise to oscillations in Hes/Her gene expression
(Figure 8) with a period of about 2–3 h (Hirata et al., 2002;
Shimojo et al., 2008). This model, however, is not sufficient
to explain how oscillations maintain a precise cell to cell
synchronization in time and space.

Several experimental observations suggest a role for Notch-
Delta signaling in synchronizing oscillations in neighboring cells,
due to the biochemical coupling between the Notch and Hes/Her
pathways. As previously discussed, NICD transcriptionally
activates the family of Hes/Her molecules, which in turn,
represses Delta (Shimojo et al., 2011; Bray, 2016; Sjöqvist
and Andersson, 2019). Therefore, self-sustained oscillations of
Hes/Her can potentially propagate to Notch (Figure 8). Zebrafish
models indicate a periodic expression of Delta ligands during
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FIGURE 8 | The coupling between Notch-Delta and Hes/Her signaling synchronize temporal oscillations during somitogenesis. Hes/Her can autonomously give rise
to sustained oscillations by self-inhibition of Hes/Her protein. The coupling between Hes/Her and Notch-Delta signaling synchronizes oscillations between neighbors.

somite segmentation (Jiang et al., 2000), while mouse models
show oscillations of Notch, Delta and NICD (Huppert et al., 2005;
Bone et al., 2014; Shimojo et al., 2016).

Notch-Delta binding potentially provides information about
the phase of the Hes/Her clock in neighbors. Mathematical
modeling of the Notch-Hes/Her circuit developed by Lewis and
colleagues (Lewis, 2003; OZbudak and Lewis, 2008) suggests that
(i) oscillation can be self-sustained by the autoregulatory Hes/Her
feedback loop, but (ii) Notch-Delta progressively couples and
eventually synchronizes the clocks of neighboring cells (Lewis,
2003; OZbudak and Lewis, 2008). In other words, each cell can
be viewed as an independent biochemical oscillator, and the
exchange of ligands through the Notch receptor synchronizes
the oscillations of the different cells (Shimojo and Kageyama,
2016; Figure 8). This model is supported by observation in
Zebrafish mutants that do not express Notch and Delta. In
these mutants, segmentation is defective, and cells are arranged
in heterogeneous patterns of high Hes/Her and low Hes/Her
indicative of asynchrony in the cell population (Riedel-Kruse
et al., 2007; Delaune et al., 2012).

It remains unclear whether Notch’s unique role is to ensure
robust temporal correlation among neighbors. While it is
generally accepted that Hes/Her self-inhibition is sufficient to
generate temporal patterns, a number of studies in mouse
models suggest that Notch might be required for oscillations.
For further details, a comprehensive review on the role of
Notch signaling in the somite segmentation clock is offered by
Venzin and Oates (2019).

NON-CANONICAL MODULATION OF
NOTCH SIGNALING

In the previous section, we discussed mechanisms of lateral
inhibition and lateral induction guided by biochemical feedbacks
between Notch and its ligands. In this section, we review

mechanisms that modulate Notch signaling besides canonical
positive and negative transcriptional feedbacks. These include
dependence on cell-cell contact area and cell packing geometry,
binding between receptors and ligands within the same cell,
specificity in the affinity between receptor and ligand paralogs,
and mechanisms enabling signaling beyond nearest neighbor.
From a phenomenological standpoint, these mechanisms can be
viewed as additional features beyond the simple nearest neighbor
signaling mechanism.

Variability of Cell Packing and Contact
Area
In the previous section, we developed a geometrical intuition
on lateral inhibition that is based on alternate arrangement of
Sender and Receiver cells. Mathematical modeling of Notch-
Delta signaling helps understand these patterning dynamics on
idealized ordered lattices. For instance, Notch-Delta signaling
leads to a very specific pattern where Senders are surrounded
by six Receivers on a perfect hexagonal lattice (see Figure 4B).
Disordered lattices with variable cell sizes and number of nearest
neighbors can lead to deviations from the standard “salt-and-
pepper” pattern.

The development of the basilar papilla, the avian equivalent
of the mammals’ organ of Corti, exemplifies how fluctuations in
cell arrangement modulate lateral inhibition. The fully developed
basilar papilla consists of a hexagonal mosaic where Sender
cells (i.e., hair cells) are surrounded by six Receiver cells (i.e.,
supporting cells) (Goodyear and Richardson, 1997). Goodyear
and Richardson found experimental evidence of dynamic cell
rearrangement in the early development of the basilar papilla
in a seminal study (Goodyear and Richardson, 1997). At
earlier developmental stages (6–7 days), cell packing in the
papilla is irregular and features cells with variable size and
shape. Consequently, the number of nearest neighbors fluctuate
between 3 and 8 cells (Goodyear and Richardson, 1997). This
underdeveloped mosaic allows occasional contacts between hair
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cells. Later on, cell packing relaxes toward a precise hexagonal
mosaic and the “mistakes” in the patterning are corrected
(Goodyear and Richardson, 1997).

The size of shared contact area between neighbors is expected
to fine-tune Notch signaling. Shaya and collaborators investigated
the relation between cell size and cell fate by integrating
experimental and computational methods (Shaya et al., 2017).
By incorporating live-cell imaging reports to track the activity
of Notch and Delta, they showed that signaling between pairs
of nearest neighbors correlates with their cell-cell contact area.
Smaller cells produced Delta at a higher rate and eventually
became hair cells, while larger cells generally committed to a
non-hair, supporting phenotype (Shaya et al., 2017). This result
was reproduced by a mathematical model that generalized the
seminal Notch-Delta model of Collier et al. (1996) to a disordered
lattice with variable cell size (Shaya et al., 2017; Figure 9). In
the simplest model of lateral inhibition, Senders are selected
from a homogeneous population by spontaneous breaking of
symmetry and amplification of initial differences in protein
levels (Collier et al., 1996). Instead, this experiment shows that
the fluctuations of cell size contribute to cell fate selection by
introducing a weightage factor in the extent of Notch signaling
between neighbors (Shaya et al., 2017).

Cis-Interactions
Although Notch has evolved as a cell-cell signaling mechanism,
receptors and ligands can bind within the same cell. Ligand-
receptor binding within the same cell, or cis-interaction, does
not lead to downstream signaling, but rather to ligand-receptor
complex degradation (cis-inhibition) (Celis and de Bray, 1997;
Micchelli et al., 1997; Del Alamo et al., 2011). Despite not
contributing to signaling, cis-inhibition can compete with the
canonical Notch pathway by sequestering Notch receptors and
ligands (Figure 10A).

Sprinzak et al. (2010) used time-lapse microscopy to evaluate
Notch activation in response to external Delta ligands (standard
trans-activation) and endogenous Delta (cis-interaction). While
Notch receptors trans-activate gradually in response to external
Delta, the response to indigenous, cis-Delta is sharp (Figure 10B).
Therefore, cis-inhibition silences Notch signaling when the
intracellular Delta exceeds a threshold concentration (Sprinzak
et al., 2010). This mechanism improves the robustness of lateral
inhibition by further inactivating Notch in Sender cells. The
authors further employed mathematical modeling to evaluate
the behavior of an ensemble of kinetic models of Notch-Delta
signaling with randomized parameters. Compared to a control
model lacking cis-inhibition, models with cis-interactions yield
lateral inhibition over a much broader parameter range by further
refining defects in the patterning of Sender and Receiver cells
(Sprinzak et al., 2011). The role of cis-inhibition, however, is not
just restricted to proof-reading, but can rather be pivotal for cell-
fate decision. For instance, loss of cis-inhibition compromises cell
fate specification during the development of photoreceptors in
Drosophila (Miller et al., 2009).

Although cis-interactions are mostly known to degrade
Notch signaling without any contribution to signaling,
experiments recently reported cell autonomous activation

of Notch, such as in the cases of Drosophila bristle precursor
cells and cell cycle regulation in T cells (Coumailleau et al.,
2009; Guy et al., 2013). These experiments raise interesting
questions about the competition between intracellular and
intercellular signaling in modulating cell fate decisions.
Nandagopal and colleagues engineered a synthetic system
where cells constitutively express Notch while production of
Delta is controlled experimentally (Nandagopal et al., 2019).
Interestingly, extremal expression of Delta silenced Notch
activity, whereas intermediate Delta expression maximized
cis-activation (Nandagopal et al., 2019). To rationalize
these observations, the authors developed various classes
of mathematical models where cis-interactions can lead to
either cis-activation or cis-inhibition with different rates.
Interestingly, the non-monotonic response of Notch as a
function of Delta concentration could only be reproduced by
models with higher-order interactions and formation of clusters
with multiple ligands and receptors (Nandagopal et al., 2019).
Indeed, oligomerization of Notch receptors and ligands has been
reported in the Notch pathway (Bardot et al., 2005; Nichols et al.,
2007; Nandagopal et al., 2018).

Given the role of cis-inhibition in enforcing robust lateral
inhibition, it can be postulated that a switch from cis-inhibition
to cis-activation would compromise precise cell patterns of
Sender and Receiver cells. Formosa-Jordan and Ibanes (2014)
investigated the implication of Notch-Delta cis-activation in a
disordered multicellular lattice model with variable cell size
and shape. Compared to the mathematical model by Shaya
et al. (2017) discussed in the previous section, the authors
did not focused explicitly on the correlation between cell
size and cell fate, but rather on how cis-activation biases
patterns of Senders and Receivers. Their mathematical model
confirms that cis-activation prevents robust lateral inhibition
and instead introduces disordered patterns (Formosa-Jordan and
Ibanes, 2014). Specifically, in presence of strong cis-activation,
cell dynamics is predominantly cell-autonomous, rather than
driven by nearest neighbors. Hence, cis-activation progressively
increase the fraction of high-Delta Sender cells in the lattice
model (Figure 10C). Indeed, cis-activation introduces a negative
intracellular feedback where Delta ligands in the Sender cell
promote their own inhibition by activating Notch receptors,
hence driving the system away from the target Sender state with
(low Notch, high Delta).

Specificity in Ligand-Receptor Binding
Affinity
The number of Notch receptor and ligand subtypes varies
considerably in different species (see Table 1). Typically,
mammals have four different paralogs of the Notch receptor
(Notch1–4), three Delta-like ligands (Dll1, Dll3, Dll4), and two
Jagged ligands (Jag1, Jag2). Although the effect on the receiving
cell is identical (i.e., NICD release), interactions through different
ligand-receptor pairs can lead to differences in the downstream
signaling cascade (Bray, 2016; Sjöqvist and Andersson, 2019).

First, binding affinities depend on the molecular structure.
For instance, Notch1 has a greater affinity to Dll4 than to Dll1
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FIGURE 9 | Mathematical modeling predicts a correlation between cell size and fate. Mathematical model of Notch-Delta signaling on a disordered lattice developed
by Shaya et al. (2017) suggests that larger cells assume a Receiver phenotype and smaller cells assume a Sender phenotype. Left: a typical spatial patterning of
Senders (green) and Receivers (red) predicted by mathematical modeling. Right: cells with large perimeter tend to become Receivers while cells with smaller
perimeter tend to become Senders.

FIGURE 10 | Cis-activation destabilizes the ordered lateral inhibition pattern. (A) Binding of Notch and Delta molecules within the same cell leads to the degradation
of the receptor-ligand complex without downstream signaling. (B) In a time-lapse microscopy experiment by Sprinzak et al. (2010), the concentration of Delta (red)
gradually decays exponentially due to dilution and cell division. Conversely, the activity of Notch (green) is turned on sharply when the concentration of Delta
decreases below a threshold. This panel is adapted from Sprinzak et al. (2010). (C) In a model of Notch-Delta signaling on a disordered lattice developed by
Formosa-Jordan and Ibanes (2014), increasing the rate of cis-activation progressively disrupts lateral inhibition patterns. Left: in absence of cis-activation,
Notch-Delta signaling gives rise to a pattern where Senders (green) are surrounded by Receivers (orange). For increasing levels of cis-activation, cell fate becomes
cell autonomous and the fraction of Senders progressively increases (rightmost plots).
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and Jag1 (Luca et al., 2017a). Moreover, different ligand-receptor
pairings can lead to different dynamical responses in the receiving
cell. For instance, Nandagopal and colleagues proposed that
Notch1 can dynamically discriminate the ligands Dll1 and Dll4
in mouse and hamster cells (Nandagopal et al., 2018). Namely,
while Dll4 activates Notch1 in a sustained manner, Dll1 gives rise
to pulses of Notch1 activity (Nandagopal et al., 2018). Differences
arise also in the ligand ability to cis-inhibit Notch receptors. For
instance, Dll4 but not Dll1, can efficiently cis-inhibit Notch1 in
mice cells (Preuße et al., 2015), reminiscent of the greater Notch1-
Dll4 affinity observed in trans-activation (Luca et al., 2017a).
Moreover, the ligand Dll3 typically does not trans-activate any
of the four Notch subtypes but only contributes to cis-inhibition
(Ladi et al., 2005; Chapman et al., 2011).

Mechanisms that modify the binding affinity between the
various subtypes of receptor and ligand can potentially result in a
shift in cell fate by introducing an asymmetry between Delta and
Jagged ligands. One such well-characterized mechanism is the
glycosylation by Fringe proteins that results in a conformational
change in the extra cellular domain of the Notch receptor (Jane
and Wu, 1999; Nadia and Rana, 2011). Glycosylation typically
decreases the binding affinity of Notch with Jagged ligands both
in trans- and cis-interactions (Hicks et al., 2000; Ladi et al., 2005;
Hou et al., 2012; LeBon et al., 2014). Mathematical modeling
of the Notch-Delta-Jagged signaling suggests that Fringe can
stabilize the Sender and Receiver cell states by restricting the
binding between Notch and Jagged, while loss of Fringe may tilt
the balance toward Notch-Jagged signaling and lateral induction
(Jolly et al., 2015; Figure 11A).

Interactions Beyond Nearest Neighbor
Through Filopodia
Although the Notch pathway is primarily designed as a pairwise
signaling mechanism among nearest neighbors, beyond nearest
neighbors’ interactions are occasionally enabled by filopodia.

Filopodia can extend up to several cell diameters and thus
introduce contacts beyond nearest neighbor (Joussineau et al.,
2003; Eom et al., 2015; Huang and Kornberg, 2015; Figure 11B).
For instance, in the bristle patterning of Drosophila, the sensory
organ precursor cells (SOPs) with high Delta (i.e., the Sender
cells) are separated by 4–5 receiver cells. This spacing, much
larger than typically observed in lateral inhibition systems, is
explained by dynamically rearranging filopodia that can give rise
to transient contacts among non-neighbor cells (Cohen et al.,
2010). This signaling between cells that are not adjacent to one
another has been interpreted as a source of noise that refines the
patterning (Cohen et al., 2010).

Filopodia-driven signaling raises questions on how Notch can
be effective when cells communicate through a small contact area.
Khait et al. (2016) reported that the diffusion coefficient of Dll1
can vary over an order of magnitude (0.003–0.03µm3/s) from cell
to cell in hamster ovary cells (Khait et al., 2016). Based on this
experimental finding, the authors developed a kinetic theoretical
model including ligand-receptor binding at cell surface and
lateral diffusion of Notch and Delta molecules across the cell
surface. This framework highlights opposite regimes of signaling.

When the radius of the shared contact area between cells (b) is
larger than the typical diffusion length scale (λ), diffusion effects
are negligible and the signaling depends on only the contact area.
In the opposite regime (λ > b), however, the signaling strongly
depends on the influx of Delta ligands in the contact area but
only weakly on the size of the contact area (Khait et al., 2016;
Figure 11C). Diffusion coefficients in filopodia are larger by up
to a 10-fold than in bulk membrane, possibly explaining how
thin filopodia can still play an important role in Notch signaling
(Khait et al., 2016).

INDICATIONS OF A ROLE FOR
MECHANOSENSITIVITY IN NOTCH
SIGNALING

Activating Notch signaling requires mechanical pulling on the
ligand-receptor complex leading to NICD cleavage. Therefore,
the signaling operates optimally within a certain range of
mechanical constraints (Meloty-Kapella et al., 2012; Wang and
Ha, 2013; Chowdhury et al., 2016). In contexts such as collective
epithelial migration and cardiovascular morphogenesis, cells
continuously adapt their shape, tensions and stresses. It can
be speculated that these biophysical factors add a further
layer of regulation on Notch-driven patterning. While the
role of mechanosensitivity is more quantitatively understood
at the molecular scale of ligand-receptor interaction, its
consequences on multicellular patterning are still largely
unexplored. The following two sections offer recent evidence
suggesting a role for mechanosensitivity in leader-follower
differentiation during collective epithelial cell migration and
cardiovascular morphogenesis.

Lateral Inhibition and Mechanics Select
Leader and Follower Cells During
Collective Epithelial Cell Migration
Collective cell migration is commonly observed in physiological
and pathological processes, including morphogenesis, wound
healing and cancer metastasis. Collectively migrating cells
conserve their cell-cell adhesion through several mechanisms,
such as adherens junctions (Friedl and Mayor, 2017; Barriga
et al., 2018). Typically, some cells at the front of the migrating
cell layer assume a distinct morphology characterized by an
enlarged size and ruffling lamellopodia, and are labeled as
“leaders” at the migration (Yang et al., 2016). In a typical
scratch assay that mimics wound healing, the mechanical
injury at the boundary can generate a gradient of activation
of several signaling pathways, with the strongest response in
cells adjacent to the boundary and gradually decreasing in
the inner region (Riahi et al., 2014; Figure 12A). Reminiscent
of branching angiogenesis, the differentiation between leader
and follower cells is regulated by the Notch-Delta pathway.
Specifically, approximately 25% of the cells at the leading edge
are leaders with high expression of Dll1. Conversely, cells with
low Dll1 and high Notch1 become followers (Riahi et al., 2015).
Interestingly, approximately 10% of cells transiently increase
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FIGURE 11 | Effect of Fringe glycosylation and filopodia on Notch signaling. (A) A mathematical model of Notch-Delta-Jagged signaling by Jolly et al. (2015) predicts
a switch in cell fate due to Fringe glycosylation. The effective potential of a two-cell model depicts the probability for the two cells to assume specific levels of Notch
(N1 and N2, respectively). A control model without the effect of Fringe glycosylation (left) exhibits a single dominant minimum where both cells are hybrid
Sender/Receiver with same Notch levels. Conversely, a model with Fringe modifies the landscape and introduces two separate states corresponding to
Receiver-Sender (N1�N2) and Sender-Receiver (N1�N2). (B) Through filopodia, Sender cells (green) can potentially inhibit the Sender state in cells beyond nearest
neighbors. (C) Schematic representation of the regimes of Notch-Delta signaling predicted by mathematical modeling by Khait et al. (2016). Left: when cells share a
large contact area, diffusion of Delta ligands is negligible. Right: when the contact area is small, such as in the case of contact through filopodia, the signaling
depends crucially on the diffusion of Delta ligands. Panel (A) is adapted from Jolly et al., with permission from the published under a creative common license (Jolly
et al., 2015).

Dll1 after wounding but ultimately become followers, showing
that the leader-follower differentiation is regulated in a highly
dynamical manner by the Notch1-Dll1 pathway (Riahi et al.,
2015), similar to the dynamical balance of tip-stalk decision-
making in angiogenesis (Jakobsson et al., 2010).

Notably, leader-follower selection depends on feedback
loops among Notch signaling and mechanical stresses. Indeed,
receptor-ligand binding and the conformational change in the
Notch1 domain thereafter require maintaining the receptor-
ligand bond for enough time, which might be jeopardized by

forces applied to the receptor or ligand (Luca et al., 2017a,b),
as can happen in the presence of mechanical injury during
wound healing. Mechanical stresses inhibit the expression of
Dll1 and prevent the selection of leader cells. Comparing the
spatial distribution of mechanical forces and Dll1 expression
suggests that the reduction of cellular stress at the boundary
allows an effective Notch1-Dll1 signaling and leader-follower
selection via lateral inhibition and gives rise to the observed
gradient of Notch activation (Riahi et al., 2015). In the classic
lateral inhibition scenario, Senders and Receivers are selected by
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FIGURE 12 | Leader-Follower differentiation and turnover during collective epithelial migration. (A) Notch-Dll1 signaling differentiates cells that become leaders of the
migration (green) and cells that become followers (orange). Notch-Dll1 signaling is more active toward the wound-cell layer interface (indicated by the black dashed
line at the right end) and progressively inactivates far from the interface. (B) In strands of cells that migrate collectively, leaders have higher glucose uptake (left).
Invasion halts in absence of a clear leader (center). The invasion continues after replacement of the leader cell (right). The red arrow points to a cell that is initially a
follower and eventually emerges as the new migration leader. The black arrow points to a leader cell that is later substituted by a new leader.

stochastic fluctuations from competing cells that are initially in
a similar cell state. A recent experiment showed via monolayer
stress microscopy that mechanical interactions among followers
cells behind the leading edge determine the selection and
emergence of the leader cells at the leading edge (Vishwakarma
et al., 2018). In other words, this finding suggests that follower
cells decide the leader, not the other way around as has been a
long-held belief. Another recent study shows that a leader cell
maintains its foremost spatial position for only a finite period of
time; later, some followers can replace the leader cells that have
consumed most of their energy, indicating a dynamic turnover or

relay mechanism (Figure 12B; Zhang et al., 2019). Such metabolic
regulation is likely to be connected to Notch signaling; future
investigations addressing the coupling between signaling, energy
consumption and mechanics will be crucial to elucidate the
dynamical principles of collective cell migration.

Mechanosensitivity of Notch Signaling in
Cardiovascular Morphogenesis
Evidence of Notch mechanosensitivity in leader-follower
cell specification has been observed in a mouse model
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of retinal angiogenesis, where the Notch1-Dll4 pathway
regulates the density of tip cells that give rise to new
capillaries from the existing vasculature (Wang et al., 2017).
Although lateral inhibition is known to regulate tip/stalk
differentiation during branching morphogenesis, this study
showed that the tip/stalk differentiation heavily relies on
the intercellular tension between cells in the blood vessel
(Wang et al., 2017). Similarly to observations in collective
epithelial cell migration, tension between cells restricts
Notch1-Dll4 signaling and compromises tip cell selection
(Wang et al., 2017). Overall, the density of tip cells and new
branches was found to negatively correlate with the degree
of mechanical stress, suggesting that Notch signaling might
be tuned optimally at an intermediate range of intracellular
tension that guarantees a proper angiogenic response, but
limits the number of new branches (Wang et al., 2017).
Interestingly, intercellular tension regulates the Notch-
Delta and Notch-Jagged pathways differently in the context
of human cardiovascular morphogenesis. Laminar shear
stress decreases the expression of Dll4 in human umbilical
vein endothelial cells (HUVEC) – as observed in mouse
angiogenesis – but also increases the expression of Jagged1,
and overall potentiates the signaling between endothelial cells
(Driessen et al., 2018).

In the context of cardiovascular morphogenesis, the
expression of Notch3, Jagged2 and multiple Notch targets
decrease when a higher strain is imposed to vascular smooth
muscle cells (VSMCs) (Loerakker et al., 2018). Incorporating the
dependence of Notch expression on strain into a computational
model shows that the mechanosensitivity of Notch signaling
is key in regulating the thickness of the vascular wall. In fact,
a switch in cell patterning was observed in a model with
an increasing number of VSMCs corresponding to the wall
thickness (Loerakker et al., 2018). For a short chain of cells
(i.e., thin wall), most cells assumed a Sender state with high
Delta. Conversely, thick walls exhibited a chain of cells in
a Sender/Receiver state with high Notch and Jagged levels
(Loerakker et al., 2018).

The coupling between Notch signaling and mechanical
forces is not unidirectional: Notch signaling can, in turn,
regulate the function of vascular barriers that separate blood
from tissues. For instance, Notch drives the assembly of
adherens junctions in a non-canonical mechanism (i.e., not
via transcriptional regulation of E-Cadherin levels) (Polacheck
et al., 2017). Consistently, reduction of Notch1 due to shear
stresses leads to destabilization of adhesion junctions and
proliferation of endothelial cells (Mack et al., 2017). Therefore,
Notch1 can potentially act as a mechanosensor by regulating
the response of endothelial cells based on intercellular stresses,
mechanical injuries, and angiogenic signals (Mack et al., 2017).
Therefore, while intercellular stresses might fine-tune Notch-
Delta/Jagged signaling leading to new vessels, Notch signaling
can, in turn, influence the defects in the structure of the
vascular barrier by coordinating cell-cell adhesion. Future
investigations integrating the interplay between Notch signaling,
biomechanical aspects of mechanosensitivity, and the role of
cell packing geometry will be valuable in elucidating the

emergent dynamics of tissue-level pattern formation in different
biological contexts.

OPEN QUESTIONS AND FUTURE
DIRECTIONS

Notch signaling is one of the most ubiquitous transduction
pathways in vertebrates. Despite the variety of biological systems
and processes, both physiological and pathological, that Notch
signaling regulates, its structure and function are incredibly
well-conserved.

Notch signaling has drawn incredible attention from the
physics and mathematics community because, besides regulating
cell-fate at a single cell level, it offers fertile ground to dissect
the principles of spatiotemporal pattern formation in a tissue. To
the eye of a physicist/mathematician, Notch signaling gives rise
to the modes of lateral inhibition and lateral induction similarly
to a system of spins that align together or in opposition in a
magnet. However, unlike magnetism, these different outcomes
of cell states emerge from underlying molecular interactions
that are often non-linear and can be separated in time-scale
as well. The geometrical intuition about Notch patterning via
lateral inhibition and lateral induction provides a key to interpret
experimental observations in physiological processes such as
embryonic development and angiogenesis (Shaya and Sprinzak,
2011; Bray, 2016; Sjöqvist and Andersson, 2019). For example,
lateral inhibition correctly predicts alternate patterning where
hair cells (i.e., Senders) are surrounded by supporting cells
(i.e., Receivers) and make up about 25% of the total cell
fraction, such as in the cases of inner ear development and
collective epithelial cell migration (Goodyear and Richardson,
1997; Riahi et al., 2014). Likewise, lateral induction describes
well the propagation of similar cell fate observed, for instance,
during inner ear development (Petrovic et al., 2014). More
investigations, however, will be needed to truly test how well these
simple models of biochemical kinetics and feedback loops capture
the signaling and patterning dynamics emerging from Notch at a
quantitative level.

Moreover, most of the theoretical efforts toward
understanding the operating principles of Notch have focused
on deterministic models. Cell-to-cell variability, however, can
arise due to both stochasticity in the intracellular biochemical
signaling (intrinsic noise) and fluctuations of other cellular
components and/or in the extracellular environment (extrinsic
noise) (Swain et al., 2002). Following a parallel between
Notch and other patterning mechanisms driven by nearest
neighbor signaling, such as the Ising model for a magnet, we
speculate that stochastic fluctuation could play a relevant role
in guiding, accelerating and/or disrupting ordered patterns
(Rudge and Burrage, 2008).

Additional factors such as cell size and shape, affinity of
ligand subtypes, molecular interactions within the same cell,
and filopodia modulate the signaling. These mechanisms can be
generally seen as details that add further complexity to the simple
nearest neighbor’s communication mechanism. For example, it is
still not completely understood how trans- and cis-interactions
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integrate to establish cell fate. Cis-interactions between receptor
and ligands of the same cell can typically lead to mutual
degradation (Celis and de Bray, 1997; Micchelli et al., 1997; Del
Alamo et al., 2011). Recent evidence, however, suggests a role for
cis-activation in the Notch pathway for multiple pairs of receptor
and ligand subtypes (Nandagopal et al., 2019). Therefore, many
context-specific signaling differences and their possible impact on
spatiotemporal tissue dynamics deserve finer attention.

Moreover, early experimental findings suggest a role for
mechanosensitivity in modulating Notch. The effects of
extracellular forces on Notch activation are more quantified
at the single molecule level (Meloty-Kapella et al., 2012;
Wang and Ha, 2013; Chowdhury et al., 2016); it remains
unclear, however, how these effects propagate at the level
of multicellular patterning. On the experimental side, novel
technologies that allow to probe the spatiotemporal Notch
dynamics are starting to provide quantitative insights on
the mechanochemical feedbacks between cell-cell signaling
and cell mechanics (Riahi et al., 2015; Vishwakarma et al.,
2018). On the other hand, integrating aspects of biochemical
signaling, mechanical regulation and their interconnections
is an important future challenge where theoretical and
computational models can assist experimental design and
vice versa.

Notch signaling has also received attention as a therapeutic
target to curb cancer progression (Li et al., 2014; Siebel and
Lendahl, 2017). While theoretical modeling of signaling and
regulatory dynamics typically adopts modular approaches that
treat different signaling modules as independent blocks, Notch
seems to be implicated in several hallmarks of cancer progression,
including drug-resistance, leaky/chaotic angiogenesis and
enhanced invasion and metastasis (Li et al., 2014; Siebel and
Lendahl, 2017). Jag1 is highly expressed in circulating tumor cell
clusters with higher metastatic potential (Jolly et al., 2017) and
by cancer cells that resist to drugs (Boareto et al., 2016; Yang
et al., 2019). Generally speaking, cells that highly express Jagged
seem to be associated with a more plastic and undifferentiated
state such as hybrid epithelial/mesenchymal and/or a stem-like
phenotype (Wang et al., 2009; Sikandar et al., 2010; Zhu et al.,
2011; Yamamoto et al., 2013; Bocci et al., 2019a). Therefore,
quantifying the role of interconnections between Notch and
other hallmarks of cancer invasion will be a crucial challenge
at the crossing point between theoretical modeling, biology
and data science.

Another exciting direction concerns the widespread
development of single cell sequencing techniques. Recently,
Notch signaling has been studied at the single cell resolution
in Zebrafish development, hematopoiesis and cancer stem cells
(Mark et al., 2019; Tikhonova et al., 2019; Annika et al., 2020).
For instance, it has been observed that downregulation of Notch
ligands Dll1 and Dll4 in the bone marrow correlates with
premature activation of a myeloid transcriptional program in
hemopoietic stem cells (Tikhonova et al., 2019). While these
studies provide detailed information on the transcriptional
dynamics of Notch, they still lack the spatial resolution necessary
to elucidate the underlying patterning mechanisms. Certainly,
our understanding of Notch signaling will benefit from future
developments in the field of single cell sequencing to account for
spatial patterning.

Overall, insights from experimental and theoretical models
continue to unravel the operating principles of Notch signaling,
a master regulator of spatiotemporal cell patterning in
development and tumor progression.
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A Guard Cell Abscisic Acid (ABA)
Network Model That Captures the
Stomatal Resting State
Parul Maheshwari1* , Sarah M. Assmann2 and Reka Albert1,2*

1 Department of Physics, Penn State University, University Park, PA, United States, 2 Department of Biology, Penn State
University, University Park, PA, United States

Stomatal pores play a central role in the control of carbon assimilation and plant
water status. The guard cell pair that borders each pore integrates information from
environmental and endogenous signals and accordingly swells or deflates, thereby
increasing or decreasing the stomatal aperture. Prior research shows that there is a
complex cellular network underlying this process. We have previously constructed a
signal transduction network and a Boolean dynamic model describing stomatal closure
in response to signals including the plant hormone abscisic acid (ABA), calcium or
reactive oxygen species (ROS). Here, we improve the Boolean network model such
that it captures the biologically expected response of the guard cell in the absence
or following the removal of a closure-inducing signal such as ABA or external Ca2+.
The expectation from the biological system is reversibility, i.e., the stomata should
reopen after the closing signal is removed. We find that the model’s reversibility is
obstructed by the previously assumed persistent activity of four nodes. By introducing
time-dependent Boolean functions for these nodes, the model recapitulates stomatal
reopening following the removal of a signal. The previous version of the model predicts
∼20% closure in the absence of any signal due to uncertainty regarding the initial
conditions of multiple network nodes. We systematically test and adjust these initial
conditions to find the minimally restrictive combinations that appropriately result in
open stomata in the absence of a closure signal. We support these results by an
analysis of the successive stabilization of feedback motifs in the network, illuminating
the system’s dynamic progression toward the open or closed stomata state. This
analysis particularly highlights the role of cytosolic calcium oscillations in causing and
maintaining stomatal closure. Overall, we illustrate the strength of the Boolean network
modeling framework to efficiently capture cellular phenotypes as emergent outcomes of
intracellular biological processes.

Keywords: stomatal closure, guard cell, Boolean network, Boolean model, memory, signal transduction

INTRODUCTION

Stomatal pores on the surfaces of leaves play an important role in allowing uptake of CO2 for
photosynthesis and water vapor loss in transpiration. Guard cell pairs surround these stomatal
pores and control their aperture by dynamic shrinking and swelling. Guard cells respond to
numerous environmental signals, including light of different wavelengths and ambient CO2. In
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response to drought and other desiccating stresses, the plant
produces the hormone abscisic acid (ABA), which induces
stomatal closure. The process of stomatal closure in response
to ABA involves the activity of many guard cell ion transport
proteins, enzymes, and small molecules. There has been
significant previous research involving experiments and
theoretical and computational analyses to understand this
complex process (Li et al., 2006; Ma et al., 2009; Sun et al., 2014).

Given the complex interactions among the many intracellular
components of guard cells, network-based dynamic models
constitute an efficient method for understanding the system.
Dynamic models represent each intracellular component by
a qualitative (discrete) or quantitative state variable, which
describes the component’s abundance or activity. Dynamic
models also describe how the interactions and regulatory
relationships among components (represented as directed edges
in the network) change each component’s state variable. Discrete
dynamic models are simpler to create than quantitative models
(which need extensive parameterization) yet they are rich enough
to recapitulate and predict cellular behavior. The simplest type
of discrete dynamic model is the Boolean model, wherein each
node in the network is assumed to be either in the ON (1) or the
OFF (0) state and each node state evolves in time according to its
update function. The update function of a node is a logic function
of the states of the regulators of the node and is expressed with the
AND, OR, and NOT logic operators.

We have previously published network-based discrete
dynamic models elucidating the process of stomatal response to
various signals, including ABA and light of different wavelengths
(Li et al., 2006; Sun et al., 2014; Gan and Albert, 2016; Albert
et al., 2017; Maheshwari et al., 2019). These models use extensive
iterations between experiments and model simulations. They
capture the state corresponding to open or closed stomata
as stable final states (attractors) of the dynamical system and
they recapitulate almost all experimental results regarding
knockout and constitutive activation of various nodes of the
network. These models identify important mediators of stomatal
closure induced by ABA or by external supply of mediators of
ABA-induced closure (such as Ca2+). They also identify the
various subnetworks that determine the different attractors
of the network. These subnetworks, called stable motifs, form
generalized positive feedback loops that once stabilized, maintain
the constituent nodes in a fixed state (Zañudo and Albert, 2013).
The most recent model (Maheshwari et al., 2019) identifies single
nodes and combinations of nodes that are sufficient to drive
the system to a particular attractor. The model also elucidates
various crucial feedback loops that ensure the coordination
between different components of the network.

The model of Maheshwari et al. (2019) however, does not
recapitulate a few cases where the biological response is open
stomata. In the model, stomatal closure is an attractor that is
not reversible by the removal of the closure-inducing signal.
In contrast, the biological reality in a situation of providing a
closure-inducing signal for a limited period is gradual opening
of the stomata following removal of the signal (Cummins et al.,
1971). Furthermore, this model predicts∼20% closed stomata in
the absence of any signal (see Figure 3 of Maheshwari et al., 2019)

while the biological reality is that the stomata remain open in
the absence of any closure-inducing signal. Here, we present two
different modifications of the network model of Maheshwari et al.
(2019) such that it recapitulates the expected stomatal behavior
in these situations. The first modification corresponds to revising
certain assumptions of sustained activities for four nodes in the
model. Instead of assuming persistent activity, we incorporate a
short-term memory effect for these four nodes, where the node’s
update function also considers the previous states of its regulator
node. To understand the trajectories that lead to the open or
closed stomata attractors, we construct the motif succession
diagrams for the model version with persistent activity of these
nodes as well as for the model version with short-term memory.
The second modification corresponds to narrowing down the
initial conditions used in the model simulations to ensure that
the model recapitulates the open stomata state in the absence of
any signal. This analysis elucidates the sensitive dependence of
stomatal closure on the initial condition of six nodes whose pre-
stimulus states are currently unknown. We use network analysis
and causal logic (Maheshwari and Albert, 2017) to reveal the
pathways by which these six nodes can lead to stomatal closure.

MATERIALS AND METHODS

Background Information on the Boolean
Model of ABA-Induced Stomatal Closure
Multiple iterations of experimental and computational research
have led to a successful Boolean network model of ABA
induced stomatal closure (Li et al., 2006; Albert et al., 2017;
Maheshwari et al., 2019). The model relies on extensive literature
curation to integrate the signaling components, interactions and
mechanisms that underlie ABA-induced stomatal closure. The
first version of the network model, containing 40 signaling
components (Li et al., 2006), successfully recapitulated knockout
phenotypes observed at that time and predicted many new
phenotypes. One such prediction, regarding the importance
of pH changes in ABA induced closure, was experimentally
tested and validated in Li et al. (2006). The model later was
expanded to 84 nodes based on new experimental results,
for example concerning the identity of ABA receptors (Albert
et al., 2017). The model was compared to a full complement
of phenotypes observed by wet-bench experimentation and
achieved a high degree of agreement. Several predictions of
the model with regard to reactive oxygen species, cytosolic
Ca2+, and heterotrimeric G-protein signaling were confirmed
experimentally in Albert et al. (2017). For ease of simulation and
understanding, this larger network model was later reduced to 49
signaling components in a way that preserves the outcomes of the
model (Maheshwari et al., 2019).

A significant insight obtained via this model was the
recognition of a feedback-rich core that complements a canonical
linear ABA signaling pathway. Sustained presence of ABA leads
to ABA binding to RCAR/PYR1/PYL receptors (short for soluble
pyrabactin resistance 1/pyrabactin resistance 1-like regulatory
component of ABA receptor). This leads to the inhibition of
the clade-A protein phosphatase 2Cs (PP2Cs), which relieves
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inhibition of the serine-threonine kinase OPEN STOMATA 1
(OST1). Kinase activity of OST1 results in reactive oxygen
species (ROS) production, which in turn enhances Ca2+ uptake
through the membrane (represented as the node CaIM in the
model). This Ca2+ uptake, combined with Ca2+ release from
intracellular stores (CIS), leads to cytosolic Ca2+ oscillations,
which, together with the sustained presence of ABA, lead to
production of phosphatidic acid (PA), ROS, and activation of
phospholipase D delta (PLDδ). These three components form a
positive feedback loop and hence they maintain their activation
(Sierla et al., 2016). The cytosolic Ca2+ oscillations directly or
indirectly also lead to activation of mitogen-activated protein
kinases 9 and 12 (MPK9/12), calcium-dependent protein kinases
3 and 21 (CPK3/21), and depolymerization of microtubules.
The ABA signal propagates through these various nodes and
feedback loops to ultimately trigger opening of anion channels
at the guard cell membrane (Kollist et al., 2014), leading to anion
efflux. Anion efflux induces membrane depolarization, which in
turn drives K+ efflux through depolarization-activated outward
K+ channels (Ache et al., 2000; Hosy et al., 2003). Solute loss
drives the osmotic efflux of water through aquaporins (Grondin
et al., 2015), resulting in guard cell deflation and stomatal closure
(Roelfsema and Hedrich, 2005). The 84-node network of ABA
induced closure can be found as Figure 1 of R. Albert et al. (2017)
and the reduced, 49-node version as Figure 1 in Maheshwari
et al. (2019). In the version presented here in Figure 1, we
incorporate further visual simplifications to ease understanding;
we note that our analyses were done on the 49-node network of
Maheshwari et al. (2019). The node names used in this paper are
the abbreviated node names used in Maheshwari et al. (2019); the
full names are indicated in Supplementary Table S1.

Multiple methods of analysis of the Boolean model have been
used to understand the dynamics and outcomes of the system
under different scenarios. One method is to specify the signal
(usually, ABA) and the initial states of various components
of the network and simulate the trajectory of the system
over a given number of time-steps (∼50) using the software
library BooleanNet (Albert et al., 2008). The initial condition
corresponds to the information available on open stomata (see
Supplementary Table S2). As there is no biological information
available from the experimental literature about the pre-stimulus
state of multiple nodes [there are 17 such nodes in the 49-
node model of Maheshwari et al. (2019)], these nodes were
started in a randomly selected initial condition. At each time-
step, the nodes of the system are updated (i.e., their states are
recalculated) in a randomly selected order (Wang et al., 2012).
This is an appropriate update scheme for the stomatal closure
network since the timescales of the internal processes are largely
unknown. During each simulation, each node in the network
changes state one or multiple times and after sufficient time,
the system settles down into an attractor. Generally, an attractor
can be a fixed point (steady state) or a set of states that repeat
indefinitely (a complex attractor, corresponding to a sustained
oscillation). The Boolean model of ABA-induced closure yields
a complex attractor in which most of the nodes (40 out of
49) have a stationary state. Due to the stochasticity introduced
by the update method and by the initial node states, a large

number (∼2000) of replicate simulations are run. The outcome
of the model is summarized as the percentage of simulations in
which the node Closure is in the state 1 (ON) at each time step,
which we refer to as the percentage of closure. To characterize
a whole time-course of closure in response to ABA or another
signal, the cumulative percentage of closure (CPC) is defined
as the sum of the percentage of closure over the course of
the simulation (usually 50 time steps). The external supply or
constitutive activation of a node is implemented as a sustained
ON state, the knockout of a node as a sustained OFF state,
and the time-course of a thus-perturbed system is compared to
that of the wild-type system (see Section “Simulation of Node
Constitutive Activation”).

A useful analytical tool for obtaining the system trajectories
and attractors of the ABA network is to identify stable
motifs, which are generalized positive feedback loops that
maintain an associated state of their constituent nodes (see
Section “Stable Motifs and Oscillating Motifs” and Zañudo
and Albert, 2013). For example, the positive feedback between
PA, ROS and PLDδ determines a stable motif that ensures
the sustained ON state of these nodes. Each stable motif
can yield the stabilization of further nodes in the network,
trapping the system’s state into a subset of the state space.
One can follow an iterative procedure where the influence
of each stable motif is used to reduce the network and
one then finds the stable motifs in the reduced network.
Some of these secondary stable motifs are dependent on
certain conditions such as the prior stabilization of a node.
For this reason, they are called conditionally stable motifs
(see Section “Stable Motifs and Oscillating Motifs” and
Deritei et al., 2019). The ABA-induced closure network also
contains a negative feedback loop formed by the nodes
Ca2+

c and Ca2+ATPase (see Figure 1), which under certain
conditions (e.g., in the presence of ABA) induces the sustained
oscillation of these nodes and of a few nodes regulated
by them. This negative feedback loop is an example of a
conditional oscillating motif (see Section “Stable Motifs and
Oscillating Motifs”).

Starting from a signal and obtaining the consecutive
(conditionally) stable motifs and (conditional) oscillating motifs
gives us the motif succession diagram, which reflects the system’s
trajectories and identifies the system’s attractors (see Section
“Stable Motif Succession Diagrams of the Stomatal Closure
Model Versions”). Another complementary approach is to use
causal logic analysis to find long-range causal dependencies (i.e.,
sufficient or necessary subgraphs) or cyclic causal dependencies,
which correspond to stable motifs (Maheshwari and Albert,
2017). This method was used to identify the logic backbone of
the ABA-induced closure process. For example, ABA is sufficient
for the activation of the node pHc (meaning an increase in
the cytosolic pH level) and also sufficient for deactivation of
the AtRAC1 protein (Maheshwari and Albert, 2017). Causal
logic analysis can also be used to find the causal effect of a
node perturbation and to identify certain interventions that can
independently drive the network into a certain attractor. For
example, causal logic indicates that the sustained ON state of the
node ROS is a driver of a stable motif corresponding to stomatal
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FIGURE 1 | Simplified version of the network that forms the basis of the Boolean model of ABA induced stomatal closure. This network is reduced from the 49-node
network in Maheshwari et al. (2019) using methods of causal logic reduction (Maheshwari and Albert, 2017) and binary transitive reduction (Albert et al., 2007); it
preserves all the relationships among nodes of the 49-node network via edges or paths. Each edge that terminates in an arrow indicates an activating relationship
and each edge that terminates in a black circle indicates an inhibitory relationship. This reduced network is presented here just for ease in visualization; all the
analysis in this work was conducted on the 49-node network presented in Figure 1 of Maheshwari et al. (2019). This network contains positive feedback loops, i.e.,
cycles of directed edges that contain no or an even number of inhibitory edges, for example ROS – • ABI1 – • OST1→ ROS. It also contains negative feedback
loops, i.e., cycles of directed edges that contain an odd number of inhibitory edges, for example Depolarization→ KOUT→ K+ efflux – • Depolarization. This
network has two strongly connected components (SCCs) i.e., subnetworks in which every pair of nodes is connected by at least two paths of opposite direction.
These two SCCs are represented in orange and light blue colors. Nodes of the orange SCC can reach the nodes of the light blue SCC via paths; the nodes linking
these two SCCs are shown in a mix of orange and light blue colors. The signal ABA reaches all the nodes of the network. The out-component of this network leads
from the two SCCs to the Closure node and is represented in pink color.

closure in the absence of ABA (Maheshwari and Albert, 2017).
Indeed, experimental results demonstrate that providing H2O2
leads to stomatal closure (Zhang et al., 2001; Kwak et al., 2003).

Overall, the results in Albert et al. (2017) illustrate a
comprehensive process of model construction from causal
relationships, model analysis through simulations and
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network-based methods, model validation, and use of the model
to make novel predictions. Most of the discrepancies between
model results in Albert et al. (2017) and experimental data
involve the model’s inability to recapitulate closure in response
to the constitutive activation of a node that is causally sufficient
for Ca2+

c oscillations. This observation inspired the prediction
of a possible Ca2+ regulation of PP2C activity. Following a
systematic analysis, Maheshwari et al. (2019) confirm, both
in silico and experimentally, that Ca2+ directly or indirectly (via
the activation of PA production) inhibits the PP2C ABSCISIC
ACID INSENSITIVE 2 (ABI2). The thus-updated model resolves
the previous discrepancies. The analysis in Maheshwari et al.
(2019) also identifies the stable motif associated with stomatal
closure in the absence of ABA, the drivers of this motif, and
the causal relationships between various non-canonical closure
signals. The basis of our present analysis is the two versions of
the model reported in Maheshwari et al. (2019), which we will
refer to as Model1 and Model2. The difference between the two
models is that in Model1 PA is assumed to inhibit ABI2 while in
Model2 Ca2+

c is assumed to inhibit ABI2.

Methods
Boolean Update Functions
In a Boolean model the future state of a node is determined
by the current state of its upstream regulators and is expressed
as a Boolean update function. In the following we will use
a simple notation convention for Boolean update functions:
represent the state of each node by the name of the node and
mark the future state with an asterisk. A node with a single
regulator is characterized by one of two types of single variable
Boolean functions: identity and negation. Identity is used for
positive regulators. Denoting the regulator (and its state) by X
and the target node by Y, the Boolean update function of Y
is Y∗ = X, meaning that the target Y is adopting the state of
the regulator X as its future state. Negation, expressed using
the Boolean operator “not,” is used for negative regulators. The
Boolean update function of Y is Y∗ = not X, meaning that the
target Y adopts the opposite state as the regulator. Notice that
in both cases the future state of Y depends only on the state of
its regulator X.

For nodes that have more than one regulator, the “or”
operator is used if a particular state of any of the regulators can
independently activate the target; the “and” operator is used if a
particular state of each of the regulators is needed for activation.
The choice of the most appropriate operator to use is determined
by experimental evidence. Our analysis uses the Boolean update
functions constructed in Albert et al. (2017), and then simplified
in Maheshwari et al. (2019). Supplementary Table S3 indicates
the simplified update functions of each node (as in Maheshwari
et al., 2019) and experimental literature supporting it.

Including Memory in Boolean Update Functions
In most of the Boolean update functions used in models of
biological systems the regulators of the target node do not include
the node itself, which means that the future state of the node
does not depend on its current state. In contrast to differential
equation-based models, for which the change in a molecule’s

concentration is described by explicit synthesis term(s) and
degradation term(s) (Tyson and Novak, 2020), the degradation
in Boolean models is implicit. For example, the update function
Y∗ = X implies that the off state of X triggers the off state of Y
regardless of whether Y was on before. In cases where there is
a known mechanism for positive self-regulation of a target node
and/or there is evidence that the target node’s activity is longer-
lived than the activity of its activators, it is justified to include the
target node as its own self-activator. Applying this modification
to the previous example yields X∗ = Y or X, which implies that X
will stay in the on state after achieving it for the first time.

There were four such cases in the model of ABA-
induced closure (Albert et al., 2017; Maheshwari et al., 2019),
namely CPK3/21, MPK9/12, vacuolar acidification and the
depolymerization of microtubules. All four of these nodes are
activated by an increase in the cytosolic calcium level (Ca2+

c).
However, Ca2+

c elevation cannot be maintained indefinitely
because it would lead to precipitation of calcium-phosphates,
which would be toxic to the cell. It is also well-documented
that Ca2+

c oscillates during the process of stomatal closure
(Staxén et al., 1999). Yet, there is no evidence that these four
nodes would have an oscillatory pattern, or decrease when the
cytosolic Ca2+

c level decreases, during ABA induced stomatal
closure. On the contrary, their sustained activation is necessary
to achieve sustained anion efflux and stomatal closure. Thus,
in Albert et al. (2017) it was assumed that the activity of these
four nodes decays very slowly or not at all. This assumption
was supported by a specific mechanism in case of three of the
four nodes (see Supplementary Text S1). The assumption was
implemented by including the state of the node in its own update
function, connected by the “or” operator to the state of Ca2+

c. For
example, the update function of CPK3/21 is CPK3/21∗ = Ca2+

c or
CPK3/21. According to this function, the next state of CPK3/21
equals 1 (ON) if Ca2+

c is currently 1, or if the current state
of CPK3/21 is 1. Once CPK3/21 turns on, it will stay on the
whole duration of validity of the model, which represents the
30−60 min needed to achieve closure in response to ABA. We
refer to this assumption as the assumed persistent activity of
these four nodes.

Here, we study a longer process that consists of stomatal
closure induced by ABA, then reopening following the removal of
the signal. We therefore introduce an alternative implementation
of slow decay of the activity of these four nodes: we include
past states of Ca2+

c in their update function. For example,
CPK3/21∗ = Ca2+

c(t) or Ca2+
c(t−1) or Ca2+

c(t−2) where t is the
current time step. This function indicates that the next state of
CPK3/21 equals 1 if Ca2+

c is currently ON or has been ON in
the last two time steps. We refer to this implementation as short-
term memory. The duration of the short-term memory (in units
of a time step) is an adjustable parameter.

Simulation of Node Constitutive
Activation
The constitutive activation (CA) of a node is simulated by
setting its state to ON and keeping it fixed to ON throughout
the entire simulation – this can be thought of as equivalent
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to providing a biomolecule in non-limiting quantity or, for an
enzyme, providing the enzyme in non-limiting quantity and in
the active state, during an experiment. These in silico mutations
are categorized into different response categories (defined in
Maheshwari et al., 2019) by their steady state percentage of
closure and by their cumulative percentage of closure (CPC)
values. In the simulations in the absence of ABA, we refer to
the scenario where no node is kept constitutively active as the
baseline. Significantly increased response is the case when the
percentage of closure reaches 100%. Slightly increased response
is the case when the final percentage of closure is higher than
the baseline but less than 100%. Close to baseline is the case
when the percentage of closure and CPC are within two standard
deviations of the respective baseline values. As described in
Section “Recapitulating the Open Stomatal State in the Absence
of a Signal,” baseline percentages of closure can be non-zero.

Evaluation of Consistency Between
Simulation and Experiment
We group the experimental response categories into two
broad classes: close to baseline response, which indicates a
stomatal aperture that is not statistically significantly different
from wild type in the absence of a signal, and increased
response (decreased aperture compared to wild type). Slightly
or significantly increased response compared to baseline are
considered consistent with experimental observation of increased
response (decreased aperture compared to the wild type) in
the absence of ABA. Close to baseline response is considered
consistent with a stomatal aperture measured in the absence of
ABA that is not statistically significantly different from or is
greater than that of the wild type.

Stable Motifs and Oscillating Motifs
A stable motif of a Boolean dynamical system is a generalized
feedback loop that maintains an associated state of its constituent
nodes regardless of the state of nodes outside of the feedback
loop. Stable motifs were first defined using the expanded network,
a network that encodes the causal relationships between node
states (as incorporated in the update functions). The expanded
network consists of two virtual nodes for each node (one for each
of the two possible states) and composite nodes that embody
AND gates among two or more node states. A stable motif is a
subgraph of an expanded network that satisfies four properties:
(1) it is strongly connected (there is a path between every pair
of nodes in the subgraph), (2) it is consistent (all represented
states can be simultaneously satisfied), (3) it is composite-closed
(if a composite node is in the subgraph, so too are all its virtual
node parents), and (4) it is minimal (it contains no non-trivial
subgraphs satisfying the first three properties). Stable motifs can
also be defined using the causal logic formalism of Maheshwari
and Albert (2017) i.e., a cyclic sufficient subgraph, necessary
subgraph, or both sufficient and necessary subgraph determines a
stable motif. After the nodes of a stable motif adopt the associated
state, they will stay in that state. This may induce other nodes
to adopt fixed states as well. Thus, a stable motif determines
a region of the state space from which dynamical trajectories

cannot escape. In this so-called trap space, a subset of the nodes
have a fixed state; for this reason this trap space is also referred to
as a partial fixed point.

Another important class of expanded network subgraph is
the oscillating motif. Like stable motifs, oscillating motifs are
strongly connected, composite-closed subgraphs of the expanded
network. Unlike stable motifs, however, oscillating motifs violate
the consistency criterion in that every virtual node in the
subgraph has its negation in the subgraph as well. Intuitively,
oscillating motifs arise from negative feedback loops, while stable
motifs arise from positive feedback loops. An oscillating motif
will likely (but not always) correspond to a complex attractor in
which the nodes represented in the oscillating motif oscillate.

A weaker version of stable motifs was defined by Deritei et al.
(2019) and named conditionally stable motif. A conditionally
stable motif is a consistent, strongly connected component of
the expanded network that is not composite closed. The virtual
nodes that are parent nodes of composite nodes included in
the conditionally stable motif serve as the conditions. In other
words, the conditionally stable motif is a generalized positive
feedback loop that maintains an associated state as long as
one or more nodes outside of the feedback loop are in a
specific state. As long as these parent nodes are in that specific
state, the conditionally stable motif behaves like a stable motif.
Conditional oscillating motifs can be defined analogously as
strongly connected, consistency-violating, not composite-closed
subgraphs of the expanded network.

Motif Succession Diagram Analysis
In general, the stable motif succession diagram is determined
by following these steps. First, the system’s stable motifs are
determined. For every stable motif, the corresponding node states
are substituted into the Boolean regulatory functions and the
network is iteratively reduced. Then, the stable motifs of the
reduced network are determined; these may be stable motifs or
conditionally stable motifs of the original network. This process
is repeated until the network cannot be reduced anymore. Nodes
remaining in the network may oscillate in the attractor(s), while
the nodes that were reduced due to the influence of a stable motif
will take the associated fixed values. The stable motif succession
diagram encapsulates all successions of stable motifs found by
this process. For more details, see Zañudo and Albert (2013),
where a Java implementation is also provided.

In this paper, we perform motif succession diagram analysis
for two assumptions regarding the nodes CPK3/21, MPK9/12,
Microtubule Depolymerization and Vacuolar Acidification. The
first assumption is persistence of these four nodes, as described in
Section “Including Memory in Boolean Update Functions.” The
second assumption is short term memory for these four nodes;
their corresponding motif succession diagrams are detailed
in Section “Stable Motif Succession Diagram Analysis of the
Network with Short-term Memory.” We generate the stable
motif succession diagrams for these networks primarily using the
Stable Motif code provided in Zañudo and Albert (2013) and
supplementing those results by theoretical analysis. The different
signal conditions are set by setting the state of the signal node
(e.g., ABA or Ca2+) to ON or OFF and reducing the network
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with that setting. We augmented these diagrams with our analysis
of each conditional oscillatory motif, including identification of
its condition and of the nodes whose state stabilizes due to the
establishment of this motif. We use the causal logic framework
from Maheshwari and Albert (2017) to aid in this analysis.

RESULTS

Stable Motif Succession Diagrams of the
Stomatal Closure Model Versions
As described in Section “Including Memory in Boolean Update
Functions” and Supplementary Text S1, the original model
of ABA-induced closure (Albert et al., 2017; Maheshwari
et al., 2019) includes the assumption that the activity of four
nodes regulated by the cytosolic calcium level (Ca2+

c), namely
CPK3/21, MPK9/12, Vacuolar Acidification and Microtubule
Depolymerization, decays very slowly or not at all. The
assumption was implemented by introducing their current state
in the update function of these nodes. For example, the update
function of CPK3/21 is CPK3/21∗ = Ca2+

c or CPK3/21. The
assumed persistence of the activity of CPK3/21 constitutes a
stable motif: once activated, CPK3/21 maintains its ON state
regardless of the rest of the nodes. An analogous stable motif
also exists for each of the other three nodes. These stable
motifs appear as self-loops on the four nodes in Figure 1. We
determined the succession diagrams of stable and oscillating
motifs in three cases: absence of ABA, presence of ABA, and
externally provided Ca2+. In this section, we present examples
of stable motif succession diagrams of Model1 and describe the
changes observed in Model2.

ABA OFF Case
As reported in Maheshwari et al. (2019), in the absence of ABA
there are 17 attractors. Of these attractors, only one, denoted
A0, corresponds to closed stomata. The attractors A1 to A16
are highly similar and are consistent with open stomata (see
Supplementary Table S4). These attractors differ in the state of a
few nodes that can be stabilized in either the ON or OFF state or
can oscillate, while still corresponding to the biologically known
information on open stomata.

The network in the ABA = 0 case has 6 stable motifs, 4 of which
correspond to the persistent ON states of CPK3/21, MPK9/12,
Microtubule Depolymerization, and Vacuolar Acidification. The
remaining 2 stable motifs, which we denote openM1 and openM2,
represent the simultaneous OFF state of more than 10 nodes (see
Figures 2A,B).

There also are 5 conditionally stable motifs (CSMs). Four
of these represent the persistent OFF state of each of the four
self-regulating nodes. The OFF state of CPK3/21, MPK9/12,
and Microtubule Depolymerization are conditioned on either
openM1 or openM2. The OFF state of Vacuolar Acidification
is conditioned on openM1 (it is part of openM2). The fifth
CSM, shown in Figure 1C, expresses the self-sustained activity
of PLDδ, PA, ROS, S1P, OST1, and pHc together with the
sustained inactivity of ABI1 and ABI2. This CSM is dependent
on the condition that the Vacuolar Acidification = 1 stable motif

is activated. There are two conditional oscillating motifs. The
first is made up by the nodes Ca2+

c and Ca2+ATPase, both of
which oscillate as long as CIS = 1 or CaIM = 1. The second
motif comprises the oscillations of the K+ efflux, KOUT and
Depolarization nodes, conditioned on KEV = 1. We refer to
this latter motif as K+ oscillation. These motifs are presented
in Figure 2.

The stabilization of the CSM shown in Figure 1C ensures the
establishment of sustained Ca2+

c oscillations. Indeed, if either
of the positive regulators of Ca2+

c is stabilized in its active
state, the negative feedback between Ca2+

c and Ca2+ATPase
makes both of them oscillate (as characterized in detail in
Supplementary Text S2 of Maheshwari et al., 2019). The CSM
shown in Figure 1C includes the sustained ON state of the
node ROS, which is sufficient for the node CIS. The CSM also
includes the sustained OFF state of ABI2, which in combination
with the ON state of ROS is sufficient for the node CaIM.
Thus, the stabilization of the CSM leads to Ca2+

c – Ca2+

ATPase oscillations. As a result of these oscillations, most nodes
directly downstream of Ca2+

c, i.e., PLC, PLDδ, QUAC1, TCTP,
V-ATPase, DAG, and InsP3/6, also oscillate. Their oscillation
periods are given in Supplementary Table S4 and explained
in Maheshwari et al. (2019). The remaining two nodes directly
regulated by Ca2+

c, namely CPK3/21 and MPK9/12, persist in
their ON state after first turning on. The oscillations of TCTP
stabilize the Microtubule Depolymerization = 1 motif. Altogether,
the stabilization of the CSM leads indirectly to the sustained
ON state of Microtubule Depolymerization (via sustained Ca2+

c
oscillation), and to the sustained ON state of H2O Efflux (via the
sustained ON state of multiple nodes downstream of the CSM).
The activation of H2O Efflux and Microtubule Depolymerization,
in turn, leads to stomatal closure. Since this CSM drives the
network into an attractor corresponding to closed stomata (see
Supplementary Table S4), we will refer to it as closureM.

In conclusion, any system trajectory that (i) involves the
stabilization of the stable motifs Vacuolar Acidification = ON,
CPK3/21 = ON, MPK9/12 = ON, Microtubule
Depolymerization = ON, closureM, and the Ca2+

c – Ca2+

ATPase conditional oscillating motif, and (ii) satisfies the
restrictions that Vacuolar Acidification = ON establishes before
closureM and closureM stabilizes before the Ca2+

c – Ca2+

ATPase motif, reaches the closure attractor A0. Figure 3A shows
two of the possible trajectories to the closed stomata attractor A0
when the first motif to stabilize is Vacuolar Acidification = ON,
the second motif to stabilize is MPK9/12 = ON and the third
motif to stabilize is CPK3/21 = ON. Figure 3A also illustrates
that if the Vacuolar Acidification stable motif is already locked
in then the system’s trajectories may bifurcate. In one branch the
closure motif stabilizes, leading to the closure attractor A0. In the
other branch the openM1 stable motif stabilizes, which leads to
the open stomata attractor A1.

Figure 3B denotes two possible motif successions that
contain the stable motif openM1 and lead to an attractor that
corresponds to open stomata. In both successions, the first
motif to stabilize is Microtubule Depolymerization = ON, the
second motif to stabilize is MPK9/12 = ON, and the third
motif is CPK3/21. openM1 is the condition for the CSMs
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FIGURE 2 | Stable and oscillating motifs observed in the absence of ABA. (A) Stable motif associated with open stomata attractors; we refer to this motif as
openM1. (B) Stable motif associated with open stomata attractors; we refer to this motif as openM2. (C) Conditionally stable motif associated with the closed
stomata attractor A0; we refer to this motif as closureM. The condition for this conditionally stable motif is the ON state of Vacuolar Acidification. In panels (A–C), the
white background indicates the ON state of the node and the gray background means OFF state of the node. (D) Conditional oscillatory motif associated with
closed stomata. This motif plays a role in both the presence and absence of ABA. The condition for the activation of this motif is the ON state of either of CIS or
CaIM, and it yields a sustained oscillation of Ca2+

c and Ca2+ ATPase (represented as a gray-white background). (E) Conditional oscillatory motif, K+ oscillation, that
exists in the absence of any signal. The condition for the activation of this motif is KEV = ON. Since Vacuolar Acidification is sufficient for KEV, the ON state of
Vacuolar Acidification is sufficient to establish this conditional oscillating motif, leading to sustained oscillation of its constituent nodes.

Vacuolar Acidification = OFF, CPK3/21 = OFF, MPK9/12 = OFF,
and Microtubule Depolymerization = OFF. Hence, a possible
system trajectory involving openM1 can have both the OFF state
and ON state of the four self-regulating nodes after openM1
is established, while it can have only their ON state before
openM1. Any trajectory that contains openM1 and the Vacuolar
Acidification = ON motif leads to the establishment of the
conditional oscillating motif K+ oscillation. These cases give
rise to open stomata attractors that have the K+ efflux, KOUT
and Depolarization nodes oscillating. Trajectories that contain
openM1 and the Vacuolar Acidification = OFF motif lead to open
stomata attractors in which K+ efflux, KOUT and Depolarization
are off. As a result, this case has many possible trajectories and
hence leads to a complex succession diagram, one branch of
which is displayed in Figure 3B.

Figure 3C denotes a possible succession diagram leading to an
open stomata attractor that involve the stabilization of openM2.
The Vacuolar Acidification = ON motif is mutually exclusive
with openM2. Similar to the case of openM1, the OFF states
of CPK3/21, MPK9/12 and Microtubule Depolymerization are
CSMs with openM2 as the condition. Hence, a possible system

trajectory involving openM2 can have either the ON or OFF
state of the three self-regulating nodes after openM2 but it can
have only their ON state before openM2. Figure 3C shows the
case when the first motif to stabilize is MPK9/12 = ON and the
second is CPK3/21.

ABA ON Case
In the presence of ABA, the network has four stable motifs. Three
of these express the self-sustained activity of CPK3/21, MPK9/12,
and Microtubule Depolymerization, respectively; these were
stable motifs in the absence of ABA as well. The self-loop of
Vacuolar Acidification does not appear as a stable motif because
the ON state of Vacuolar Acidification is indirectly determined
by ABA and does not need self-stabilization. The fourth motif is
a cycle that sustains the ON state of PLDδ, PA, and ROS. This
cycle is a subset of the closureM motif; the rest of the nodes
of this motif are stabilized by ABA. There is also an oscillatory
motif comprised of Ca2+

c and Ca2+ ATPase. It is the same
as the conditional oscillating motif in the ABA = OFF case,
however, in the ABA = ON case, it is not conditional anymore,
because the sustained presence of ABA leads to the ON state
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FIGURE 3 | Motif succession diagrams of Model1 in the absence of ABA and any other closure signal. Stable motifs are shown with oval symbols and attractors are
indicated by rectangles. Each dashed directed line between two motifs indicates that the system states in which the first motif has established and any nodes driven
by it have stabilized admit the second motif as next to activate. The dashed directed line converging into an attractor symbol indicates that the succession of stable
motifs ensures the system’s convergence into the respective attractor. (A) shows a subset of the succession diagram that converges to the attractor A0,
corresponding to closure of the stomata in the absence of ABA (see Supplementary Table S4). The stable motif characteristic to this attractor is the conditionally
stable motif closureM. (B,C) show a subset of the succession diagram corresponding to a sample of the 16 attractors that describe open stomata in the absence of
ABA (see Supplementary Table S4). Each possible trajectory in this case contains exactly one of the stable motifs openM1 and openM2. (B) describes some of
the trajectories containing openM1 while C describes some of the trajectories containing openM2. (A) also indicates the existence of bifurcations in the system’s
trajectory due to the mutually exclusive motifs closureM and openM1. If closureM stabilizes the system converges into the attractor A0, and if openM1 stabilizes the
system converges into attractor A1. The diagram encodes node states into the background color of the stable motif symbols. When referring to single nodes, white
background indicates the ON state of the node, gray background means the OFF state of the node, and gray-white background represents oscillating nodes. Since
in the openM1 and openM2 stable motifs all nodes are OFF (see Figure 2), we use a gray background color for these stable motifs. We use white background to
represent the locking in of the closureM motif and represent the oscillating nature of the K+ oscillation motif by a gray-white background. The conditionally stable
motifs are marked by thick boundaries.

of CaIM, which fulfills the condition for Ca2+
c – Ca2+ ATPase

oscillations. The stabilization of these four motifs, in any order,
leads to the sole attractor reachable in this case. As expected, and
consistent with the knowledge that ABA is sufficient for stomatal
closure, this attractor corresponds to closed stomata. It differs
from the closure attractor A0 reached in the absence of ABA
in the state of five nodes whose state is determined solely by
ABA: RCARs, V-PPase, Actin reorganization (which are ON in
the presence of ABA and OFF in its absence) and PEPC, AtRAC1
(which are OFF in the presence of ABA and ON in its absence).
A subset of the motif succession diagram for this case is presented
in Figure 4A.

Externally Provided Ca2+ as Signal
In the absence of ABA, external Ca2+ can be simulated either as
the fixed ON state of the Ca2+

c node or as the fixed ON state

of the CaIM node, which represents calcium influx through the
membrane. In the case of fixed ON state of the Ca2+

c node the
stable motifs in the network corresponding to closed stomata
(i.e., the four self-regulating nodes and the closureM motif) are
quickly stabilized, because Ca2+

c is a driver node for all of them.
Thus, any initial condition leads to an attractor corresponding
to closed stomata. This attractor is slightly different from the
attractor corresponding to closure induced by ABA in that there
are no oscillating nodes (see Supplementary Table S4). In fact,
the effect of fixed ON state of Ca2+

c is slightly stronger than the
effect of the sustained presence of ABA, which leads to sustained
Ca2+

c oscillations. This is because the fixed ON state of Ca2+
c

drives the network into a closed stomata attractor in fewer time
steps than the sustained presence of ABA.

When the external Ca2+ is simulated as the fixed ON
state of the CaIM node, the network has all of the motifs
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FIGURE 4 | Motif succession diagram of Model1 in the presence of a closure inducing signal. As in Figure 3, stable motifs are shown with oval symbols and
attractors are indicated by rectangles. Each dashed directed line between two motifs indicates that the system states in which the first motif has established and any
nodes driven by it have stabilized admit the second motif as next to activate. The dashed directed line converging into an attractor symbol indicates that the
succession of stable motifs ensures the system’s convergence into the respective attractor. White background indicates the ON state of the corresponding node and
white-gray background indicates oscillating nodes. (A) Motif succession diagram in the sustained presence of ABA when the first motif to stabilize is the PA = 1,
PLDδ = 1, ROS = 1 stable motif. The top trajectory is the case when the oscillatory motif stabilizes into oscillations after the PA-PLDδ-ROS motif stabilizes; as a result
of the Ca2+

c – Ca2+ ATPase oscillations, the motifs CPK3/21 = 1, MPK9/12 = 1, and Microtubule Depolymerization = 1 stabilize directly and hence the system
stabilizes in the closed stomata attractor. The middle and bottom trajectories represent the case when the second motif to stabilize is CPK3/21 = 1. The complete
succession diagram covers all possible trajectories that start with stabilization of one or more of the four stable motifs (in any order), followed by the activation of the
oscillatory motif, after which the system always stabilizes into the closed stomata attractor. (B) Motif succession diagram when external Ca2+ is simulated as the
fixed ON state of the CaIM node when the first three motifs to stabilize are Vacuolar Acidification = ON, MPK9/12 = ON, and CPK3/21 = ON.

associated with the closed stomata attractor in the absence of
ABA, i.e., the four stable motifs corresponding to persistent
activity, the ClosureM motif and the oscillatory motif containing
Ca2+

c and Ca2+ ATPase (whose condition is now satisfied).
The succession diagram of this case, shown in Figure 4B, is
very similar to the one shown in Figure 3A except that the
Ca2+

c – Ca2+ ATPase oscillating motif is not a conditional
motif anymore and can hence form a trajectory by appearing
in any order with the four stable motifs. The closureM
motif is still a conditionally stable motif. Figures 3B,C are
not possible in this case since the ON state of CaIM is
incompatible with the openM1 and openM2 motifs. In other
words, the only attractor possible in this case is the closed
stomata attractor A0.

The stable motifs and the succession diagram of Model2, i.e.,
the network model in which Ca2+

c directly inhibits ABI2, are
the same as those of Model1 in the presence of ABA and in the
presence of external calcium. There are some small differences

between the models in the absence of ABA, which are described
in Supplementary Text S2.

Relaxation to Resting State After
Removing the Signal
According to our analysis of the model in Maheshwari et al.
(2019), stomatal closure involves the stabilization of four
stable motifs, the ClosureM conditionally stable motif (whose
condition is the Vacuolar Acidification stable motif) and a Ca2+

c
− Ca2+ATPase conditional oscillating motif (whose condition
is satisfied by the ClosureM motif, see Section “Stable Motif
Succession Diagrams of the Stomatal Closure Model Versions”).
The four stable motifs stay in their associated state once
stabilized. Even if the signal is taken away in the model, these
stable motifs still stay stabilized, and so do the conditional
motifs (since their condition is still satisfied), keeping the
simulated stomata closed. Figure 5 shows a simulation of Model1,
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indicating that removal of the signal (ABA) does not lead
to re-opening of the simulated stomata. This is not accurate
since the biological reality is the reopening of the stomata after
ABA is removed (Cummins et al., 1971). Here, we resolve this
discrepancy by making the activity of certain nodes less persistent
than assumed in Albert et al. (2017) and Maheshwari et al. (2019).

As described in Section “Including Memory in Boolean
Update Functions,” the model currently assumes persistent
activity of CPK3/21, MPK9/12, Microtubule Depolymerization
and Vacuolar Acidification, which form stable motifs (see
Figure 3). These stable motifs make the closure attractor
irreversible, which is not biologically accurate. Hence, we
considered the possibility of decreasing the persistence of these
nodes, i.e., we assumed that the state of the target node is
sustained only for a few time steps after its regulator (e.g., Ca2+

c)
turns off, after which the target node goes back to the OFF state.
We implement this short-term memory by storing the state of the
regulator in the past few timesteps (see Figure 6). Specifically, we
use auxiliary nodes to remember the past states of the regulator
(e.g., Ca2+

c); these auxiliary nodes are always updated before the
rest of the nodes are updated.

We use the ranked asynchronous update of the BooleanNet
software library, in which the nodes are classified as rank 1,
2, . . . and during each timestep, nodes of rank 1 are updated
first (according to a random order among these nodes), followed
by nodes of rank 2, and so on. We designate the auxiliary
nodes corresponding to the largest memory as rank 1, the
auxiliary nodes with next largest memory as rank 2, and so
on. The regular nodes of the network have the lowest rank
(highest numerical value). For example, when Microtubule
Depolymerization considers the last five timesteps of TCPT,
CPK3/21 and MPK 9/12 consider the last three timesteps of
Ca2+

c and Vacuolar Acidification considers the last two timesteps
of V-ATPase (as in Figure 7), the auxiliary nodes TCTP_5, Ca_3
and V-ATPAse_2 have rank 1, the auxiliary nodes TCTP_4, Ca_2
and V-ATPase_1 have rank 2, the auxiliary nodes TCTP_3 and
Ca_1 have rank 3, the auxiliary node TCTP_4 has rank 4, the
auxiliary node TCTP_5 has rank 5 and all the regular nodes have
rank 6. The Boolean update functions for this case are given in
Supplementary Text S3.

We implemented short-term memory effect for the four nodes
and explored various durations for each of them to identify cases
which show efficient closure in response to ABA and efficient re-
opening of the stomata after ABA is removed. The analysis of
these durations, described in Supplementary Text S4, indicates
that a memory of three timesteps ensures the persistent ON state
of CPK3/21 and MPK9/12, while the persistence of Microtubule
Depolymerization or Vacuolar Acidification would be ensured
for a memory of six timesteps. We found that the best result
is exhibited by the model version where Vacuolar Acidification
considers the last 2 time-steps of V-ATPase, CPK3/21 and
MPK9/12 each consider the last 3 time-steps of Ca2+

c, and
Microtubule Depolymerization considers the last 5 time-steps
of TCTP. Figure 7 shows the re-opening of stomata after the
removal of ABA with these parameters. The assumed memory
effect is weakest for the node Vacuolar Acidification; for two
timesteps memory the probability of the ON state of this node

is 85% (see Supplementary Text S4). This node is required to
be in the ON state for the stabilization of the closureM motif
and the turning off of this node contributes to reopening of
the stomata. The larger memory duration of three timesteps
ensures the persistence of CPK3/21 and MPK9/12 activity. The
five timestep memory of Microtubule Depolymerization yields a
97% probability of its ON state. Overall, these memory durations
ensure close to 100% closure in response to ABA, followed by
reopening after the loss of the ABA signal.

Stable Motif Succession Diagram
Analysis of the Network With Short-Term
Memory
In the updated model with short term memory, the nodes
CPK3/21, MPK9/12, Microtubule Depolymerization and
Vacuolar Acidification do not form stable motifs anymore.
Indeed, their future state is strictly independent of their own
current state and is solely determined by their regulators’ current
and past states. Since these nodes no longer form motifs, the
stable motif succession diagram is modified. However, the
short-term memory effect needs to be strong enough to ensure
that in the presence of a signal (for example, ABA or external
calcium) there is a system trajectory in the succession diagram
that leads to the closed stomata attractor. This is possible as
ABA or external calcium causes Ca2+

c oscillations, which are
sufficient to maintain these four nodes in their ON state if the
memory duration is sufficiently large (see Supplementary Text
S4 and Figure 8).

ABA OFF Case
In the absence of ABA, similar to the case described in Section
“Stable Motif Succession Diagrams of the Stomatal Closure
Model Versions,” Model1 has two stable motifs, openM1 and
openM2; these motifs are given in Figure 2. The stabilization of
either of these two stable motifs causes a fixed OFF state of Ca2+

c,
which in turn leads to a fixed OFF state of CPK3/21, MPK9/12,
Microtubule Depolymerization and Vacuolar Acidification. This
leads to an open stomata attractor (see Supplementary Table S4).
The presence of only two motifs leads to the possibility of just two
trajectories, depicted in Figure 8A.

ABA ON Case
In the presence of ABA, Model1 has two motifs, one of which
is a stable motif comprised of PA = 1, PLDδ = 1 and, ROS = 1,
and other is the oscillating motif consisting of Ca2+

c and Ca2+

ATPase. This oscillating motif is the same as the one described in
the ABA = ON case in Section “Stable Motif Succession Diagrams
of the Stomatal Closure Model Versions,” and as in that case the
condition of this motif is satisfied since ABA indirectly activates
CaIM. The sustained oscillations of Ca2+

c are sufficient to fix
the ON state of CPK3/21 and MPK9/12 if their memory is three
or more time steps; they will fix Microtubule Depolymerization
and Vacuolar Acidification if their memory is six or more time
steps (see Supplementary Text S4). Stabilization of these two
motifs (in either order) leads to the closed stomata attractor when
the memory duration is large enough (see Figure 8B). If the
memory duration is smaller, the system instead converges into
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FIGURE 5 | Simulated stomatal closure is maintained after removal of ABA. The state of the node ABA (vertical line symbols) is ON for 30 time-steps and is then
OFF. The closureM conditionally stable motif (downward pointing triangles) establishes in less than 15 timesteps and remains stable despite the loss of ABA. The
percentage of closure (star symbols) increases to 100% and stays at this value even after the signal is removed. The circles represent the percentage of the ON state
of Ca2+

c which after a fast increase fluctuates around 50% since Ca2+
c oscillates with approximately equal ON and OFF time periods. The biological expectation is

that after the signal is removed the states of ROS, Closure, and Ca2+
c should go to OFF eventually.

an attractor where many nodes, including Closure, oscillate (see
Supplementary Table S4). After ABA is removed, the condition
for the conditional oscillating motif of Ca2+

c and Ca2+ ATPase
is no longer satisfied. Hence, the oscillating motif ceases to exist
and the Ca2+

c oscillations decay, which leads to the fixed OFF
state of CPK3/21, MPK9/12, Microtubule Depolymerization and
Vacuolar Acidification. This in turn leads to an open stomata
attractor (see Supplementary Table S4).

Externally Provided Ca2+ as the Signal
Similar to Section “Stable Motif Succession Diagrams of the
Stomatal Closure Model Versions,” we considered two methods
of simulating external Ca2+. With Ca2+

c fixed in the ON state,
the states of CPK3/21, MPK9/12, Microtubule Depolymerization
and Vacuolar Acidification are fixed in the ON state too. This
leads to activation of the closureM motif, as described in Section
“Relaxation to Resting State After Removing the Signal,” and
hence the network stabilizes in a closed stomata attractor. When
external Ca2+ is simulated as fixed ON state of CaIM, the
Ca2+

c – Ca2+ ATPase oscillating motif establishes. Indeed,
experiments confirm that high external Ca2+ leads to sustained
oscillations in Ca2+

c (Jeon et al., 2019). The sustained oscillations
of Ca2+

c in the model lead to sustained ON state of CPK3/21,
MPK9/12 if their memory is three or more time steps, and
to sustained ON state of Microtubule Depolymerization and

Vacuolar Acidification if their memory is six or more time
steps. The sustained ON state of Vacuolar Acidification leads
to establishment of the closureM motif. The percentage of
simulations in which the closureM motif stabilizes is always
less than the percentage of ON state of Vacuolar Acidification
and it increases as the memory duration is increased – see
Supplementary Figure S7. Once the closureM motif stabilizes, it
leads the system to the closed stomata attractor.

The stable motifs and the succession diagram of Model2 with
the short-term memory effect are the same as those of Model1
in the presence of ABA or in the presence of external calcium.
Similar to the case described in Section “Stable Motif Succession
Diagrams of the Stomatal Closure Model Versions,” there are
some small differences between the models in the absence of
ABA, which are described in Supplementary Text S2.

Recapitulating the Open Stomatal State
in the Absence of a Signal
The model in Maheshwari et al. (2019) yields ∼20% closed
stomata in simulated wild type guard cells that did not receive any
closure signal. We refer to the cumulative percentage of closure
(CPC) obtained in the simulation of unstimulated wild type
cells as baseline. The biological expectation is that the baseline
percentage of closure should be 0. We determined the baseline
percentage of closure in the updated Model1 that has short term
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FIGURE 6 | Considering memory of the states of regulator nodes instead of persistent activity. (A) In Maheshwari et al. (2019), the nodes CPK3/21, MPK9/12,
Vacuolar Acidification, and Microtubule Depolymerization have a persistence term in their update function to maintain them in a fixed ON state when Ca2+

c

oscillates. (B) Replacing persistent activity with short-term memory. The update function of each of the four nodes combines with an “OR” function the states of their
respective regulator (Ca2+

c, TCTP, or V-ATPase) at the current and previous two time-steps.

memory instead of persistent activity of CPK3/21, MPK9/12,
Microtubule Depolymerization, and Vacuolar Acidification. We
found that the percentage of closure approaches 0 after a long
time; however, there is a non-zero transient level of closure (see
Figure 9), and thus a non-zero baseline CPC. While this is a
significant improvement compared to the final percentage of
∼20% reported in Maheshwari et al. (2019) and further supports
the replacement of persistent activity with short-term memory,
this is still not an accurate recapitulation of the biological
expectation. Hence, in this section, we explore ways to achieve
zero cumulative percentage of closure to better recapitulate the
biological expectation.

In Maheshwari et al. (2019), seventeen nodes of the network
were initialized randomly because of the lack of experimental
evidence regarding their state in open stomata. These nodes
are indicated in Supplementary Table S2. We reported in
Maheshwari et al. (2019) that the non-zero baseline percentage of
stomatal closure can be attributed to the initial condition. When
certain nodes are initialized randomly and by chance their initial
state is the same as their state in the closed stomata attractor, then
the initial state essentially acts as a transient (single timestep)
closure signal, which may in certain cases lead to the activation

of the closureM motif. As we see in Figure 7, after a closure
signal is removed, the percentage of closure, activation of the
closureM motif, and Ca2+

c oscillations reduce over time. We
observe a similar behavior in Figure 9 where, as a result of the
initial condition the percentage of closure, motif stabilization
and Ca2+

c oscillations initially increase, and then reduce to less
than 5% after 100 timesteps. The peak of transient percentage of
closure, motif stabilization or Ca2+

c oscillations is much lower
in Figure 9 than Figure 7 because the probability of activation
of the ClosureM motif due to the initial condition is much lower
than the probability of activation due to an ABA signal sustained
for 30 timesteps. Hence, we hypothesized that the model would
yield zero cumulative percentage of closure (CPC) if all of these
seventeen nodes were initiated in the state opposite to their state
corresponding to closed stomata. This “furthest from closure”
initial condition indeed resulted in zero CPC in both Model1 and
Model 2 (that is, both when PA inhibits ABI2 and when Ca2+

c is
assumed to directly inhibit ABI2).

The “furthest from closure” initial condition assumes a
particular state for each of the 17 nodes that were initialized
randomly (Maheshwari et al., 2019). Since the pre-stimulus state
of none of these nodes was measured experimentally, the validity
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FIGURE 7 | Stomatal re-opening after removal of the signal in the updated Model1. The signal, ABA (vertical lines) is set to fixed ON state for the first 30 time-steps
and then set to fixed OFF state for 70 time-steps. The closureM conditionally stable motif (downward triangles) is stabilized within the first 10 time-steps and it slowly
destabilizes after ABA is set to the OFF state. The state of the node Closure, depicted by the star symbols, shows a similar behavior i.e., it starts decreasing after the
signal is removed. The state of the node Ca2+

c, depicted by the circle symbols, is oscillating in the presence of ABA and it slowly transitions to the OFF state after
ABA is fixed to OFF state.

FIGURE 8 | Succession diagram for Model1 with short term memory. (A) Stable motif succession diagram in the absence of ABA and any other closure-inducing
signal. Regardless of the duration of the memory, this case always leads to an open stomata attractor. (B) Motif succession diagram in the presence of ABA. The
system can reach two different attractors depending on whether the memory duration is large enough. When the memory duration is large enough, sustained Ca2+

c

oscillations can sustain the ON state of the nodes CPK3/21, MPK9/12, Microtubule Depolymerization, and Vacuolar Acidification. With small memory duration these
nodes oscillate instead of stabilizing; as a result, the node corresponding to stomatal closure also oscillates. See Supplementary Text S3 for details on the
sufficient memory durations and Supplementary Table S4 for these attractors. The dashed edges denote logic succession with certainty while the dotted edges
denote the variant outcomes depending on the memory duration.

of each of these assumptions is unknown. To reduce the chance
of incorrect assumptions, we next explore the possibility of
minimizing the number of nodes for which such assumptions
are made while still ensuring a zero baseline CPC. We use
logical analysis and simulations to find this minimal restriction
on initial conditions. In Model1, i.e., the model version where
PA inhibits ABI2 through an edge, we find that in order to
obtain a baseline CPC of zero, the initial states of 6 of the

17 randomly initialized nodes need to be the opposite of their
state corresponding to closed stomata. These six nodes and
their corresponding states are cADPR = OFF, GHR1 = OFF,
AtRAC1 = ON, PLC = OFF, PLDδ = OFF, and DAG = OFF. All of
these nodes affect the closureM conditionally stable motif directly
or indirectly. The nodes PLDδ and DAG are sufficient activators
of the node PA, which is an internal driver node of closureM (if
Vacuolar Acidification has already stabilized in the ON state). The
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FIGURE 9 | Transient closure observed in Model1 in the absence of ABA when using short-term memory instead of node persistence. Due to the random initial
conditions of the 17 nodes, the closureM motif temporarily stabilizes in ∼29% of the simulations (downward triangles) and there is a non-zero level of Ca2+

c

oscillations, which in turn lead to up to ∼20% transient closure. Eventually, the percentage of closure reduces to less than 5%.

remaining four nodes, i.e., cADPR, GHR1, AtRAC1, and PLC,
promote either Ca2+ influx through the membrane (CaIM) or
Ca2+ release from intracellular stores (CIS), hence promoting
Ca2+

c oscillations – see the purple nodes in Figure 10. Ca2+
c

is an external driver of closureM (Maheshwari et al., 2019),
as it can induce the ON state of the Vacuolar Acidification
node (the condition of the closureM motif) and induce the ON
state of PA, the ON state of pHc and the OFF state of ABI2.
Since these 3 nodes form a 3-node driver of this conditionally
stable motif, the ON state of Ca2+

c leads to stabilization of
closureM (Maheshwari et al., 2019). Sustained oscillations of
Ca2+

c can also lead to the stabilization of the closureM motif if
the relationship between the Ca2+

c = ON period and the short-
term memory of Vacuolar Acidification is such that the Vacuolar
Acidification = ON condition is satisfied (see Maheshwari et al.,
2019, Supplementary Text S3, and Supplementary Figure S7).
Hence if any of these four nodes are initialized in their state
corresponding to stomatal closure, there is a chance of indirectly
stabilizing the closureM motif and to transiently driving the
system to closure.

In Model2, i.e., the model version where the inhibition of
ABI2 happens through a direct edge from Ca2+

c, we found
that a baseline CPC of zero is achieved when the initial state
of just four of the 17 nodes is specified and the remaining
13 are initialized randomly. These four nodes are shown in

purple background in Figure 10; their corresponding states are
cADPR = OFF, GHR1 = OFF, AtRAC1 = ON and PLC = OFF.
These four nodes are a subset of the six nodes we identify in the
case of Model1; specifically, they are the nodes that can promote
Ca2+

c oscillations. Since in Model2 Ca2+
c directly inhibits ABI2,

the initial conditions that promote Ca2+
c have a slightly higher

likelihood of leading to closure. In Model2 PA is not an internal
driver of the closureM motif (Maheshwari et al., 2019), thus the
initial state of nodes DAG or PLDδ does not play a role in
promoting the stabilization of this motif and hence promoting
closure. In summary, Model2 requires fewer restrictions than
Model1 to avoid the activation, in the absence of ABA, of the
closureM conditionally stable motif.

We evaluated the agreement of these model versions, sampling
their respective sets of initial conditions that correspond to
zero baseline closure percentage, with the extant experimental
evidence for the effects of constitutive activation of nodes
(e.g., whether constitutive activation of a node induces a
significant decrease in stomatal aperture, see Section “Evaluation
of Consistency Between Simulation and Experiment”). The
model-indicated effects of constitutive activation of single nodes
fall into three categories: close to baseline response (which in
this case means a CPC of zero), slightly increased response, and
significantly increased response (which in this case leads to a
final closure percentage of 100%). In Model1, i.e., the model
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FIGURE 10 | The initial condition of six nodes can lead to temporary closure
by helping establish Ca2+

c oscillations and the closureM conditionally stable
motif. Four of these six nodes, cADPR, GHR1, AtRAC1, and PLC,
represented in purple, regulate one of the two processes (CIS or CaIM) that
yield Ca2+

c elevation. For example, the two-edge path between AtRAC1 and
CaIM indicates that AtRAC1 inhibits the reorganization of the actin
cytoskeleton that otherwise would contribute to Ca2+ influx (CaIM). Ca2+

c

elevation, in turn, has some probability of causing Ca2+
c oscillations due to

the negative feedback loop formed by Ca2+
c and Ca2+

c ATPase. These
oscillations have a potential to drive the network to the closed stomata
attractor. The remaining two nodes, PLDδ and DAG, represented in green,
affect the closureM motif, indicated by the edges that start from PLDδ and
DAG, respectively, and end in the node that stands for the closureM motif.
Both nodes are direct regulators of PA, which is an internal driver of the motif,
thus their activity has a chance of locking in the closureM motif. The
stabilization of the closureM motif is sufficient for sustained Ca2+

c oscillations,
indicated by the path mediated by CIS. The cumulative effect of sustained
Ca2+

c oscillations and of the closureM motif leads to stomatal closure (see
Section “Stable Motif Succession Diagrams of the Stomatal Closure Model
Versions”). Hence, initiating any of these six nodes in their states
corresponding to stomatal closure leads to a non-zero percentage of stomatal
closure, at least transiently.

version where PA directly inhibits ABI2, the simulations agree
with experimental observations in 14 instances and they disagree
in 3 instances (see Table 1 and Supplementary Table S5).
The instances of agreement include six cases in which the
model and experiments agree in observing closure (decreased
stomatal aperture) in case of constitutive activation of the
corresponding node and 8 cases in which neither the model
nor experiments observe closure. The instances of agreement
include the constitutive activation of CaIM, which happens in
experiments where Ca2+ is provided externally (see last entry
of Table 1). The experimental observation of Ca2+

c oscillations,
as well as stomatal closure, in response to the presence of
external Ca2+ (Jeon et al., 2019) also supports the model
prediction that the sustained Ca2+

c oscillations are sufficient for
stomatal closure.

Conversely, Model1 yields a zero percentage of closure in
case of constitutive activity of S1P and pHc (as neither S1P
nor pHc can independently stabilize the closureM motif) while
a decreased aperture was observed experimentally. In case of

PLDα constitutive activity Model1 yields slightly higher than
baseline closure (as PLDα leads to PA production, which is an
internal driver of the closureM motif) while experiments did not
observe a statistically significant decrease in stomatal aperture.
In the “furthest from closure” initial condition (when nodes
are initialized in the state opposite their state corresponding to
stomatal closure) there are 13 cases of agreement and four cases
of disagreement. The 13 cases of agreement include four cases of
significantly increased closure and nine cases of close to baseline
closure. In addition to S1P and pHc, there is also disagreement
for external supply of PA and NO, where the model yields close
to baseline response but a higher than baseline degree of closure
was observed experimentally. Similar to the case of S1P and pHc,
PA and NO cannot independently stabilize the closureM motif.
They can however stabilize the motif in a fraction of cases when
initial conditions are favorable.

In Model2, i.e., the model version where Ca2+
c directly

inhibits ABI2, we found the same instances of agreement (13)
and disagreement (4) as for the “furthest from closure” initial
conditions of Model1 (see Supplementary Table S6). The reason
for the cases of disagreement between experimental results and
simulation results remains the same as for Model1: none of S1P,
NO, PA, or pHc can stabilize the closureM motif. Each of them
can only activate the motif as part of a two- or three-node driver
set (e.g., the two-node driver set of PA and Vacuolar Acidification
and the three-node driver set of S1P, Vacuolar Acidification, and
PLDδ). The same categories of responses to node constitutive
activations, and thus the same cases of disagreement, were found
for the “furthest from closure” initial condition and for the least
restrictive initial condition that yields a baseline percentage of
closure of zero.

We next sought to determine whether initiating one or more
nodes of the previously restricted sets, i.e., (cADPR, GHR1,
AtRAC1, PLC) or (cADPR, GHR1, AtRAC1, PLC, PLDδ, DAG),
respectively, in a random state would still maintain near-zero
baseline closure while increasing the percentage of closure when
S1P, NO, PA or pHc is constitutively activated. We indeed
found this to be the case. A few slightly less restricted initial
conditions in Model1 lead to a non-zero but small value of
transient baseline closure (see Supplementary Table S7). These
cases show improved agreement with experiments regarding
node constitutive activation compared to the least restricted
initial condition summarized in column 2 of Supplementary
Table S6. Specifically, the constitutive activation of pHc is now in
the slightly increased category, in agreement with experimental
results, while its categorization in Supplementary Table S6 as
yielding close to baseline response disagreed with experiments.
The node pHc alone is not sufficient to be a driver of the closureM
motif; however, it can contribute to 2-node or 3-node drivers
when combined with the initial activity of DAG or PLDδ. When
the system starts in an initial state that includes DAG or active
PLDδ there is a non-zero probability of the closureM motif
stabilizing and leading to the closed stomata attractor.

In Model2, we found initial conditions where the
simulations of node constitutive activations include fewer
cases of disagreement with experimental results than the initial
conditions that ensure a CPC of zero, but these initial conditions
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TABLE 1 | Comparison between experimental results and simulation results in Model1 with short-term memory for constitutive activation of nodes in the absence of ABA.

Node that is
constitutively active

In silico response when using the initial
condition furthest from closure

In silico response when using the
least restricted initial condition

Experimentally observed response

TCTP Close to baseline Close to baseline Close to baseline (Kim et al., 2012)

ROP11 Close to baseline Close to baseline Close to baseline (Li et al., 2012)

Microtubule
Depolymerization

Close to baseline Close to baseline Close to baseline (Jiang et al., 2014)

PLDα Close to baseline Slightly increased Close to baseline (Mishra et al., 2006)

PA Close to baseline Slightly increased Increased (Jacob et al., 1999)

NO Close to baseline Slightly increased Increased (Desikan et al., 2002)

S1P Close to baseline Close to baseline Increased (Ng et al., 2001; Coursol et al., 2003)

AtRAC1 Close to baseline Close to baseline Close to baseline (Lemichez et al., 2001)

H+ ATPase Close to baseline Close to baseline Close to baseline (Wang et al., 2014)

PP2CA Close to baseline Close to baseline Close to baseline (Kuhn et al., 2006)

ABI1 Close to baseline Close to baseline Close to baseline (Allen et al., 1999)

ABI2 Close to baseline Close to baseline Close to baseline (Allen et al., 1999)

cADPR Significantly increased Significantly increased Increased (Joudoi et al., 2013)

InsP3/6 Significantly increased Significantly increased Increased (Gilroy et al., 1990)

ROS Significantly increased Significantly increased Increased (Zhang et al., 2001; Kwak et al., 2003)

CaIM Significantly increased Significantly increased Increased (Jeon et al., 2019)

We performed 500 simulations over 50 time-steps in each setting. The cumulative percentage of closure (CPC) for the WT simulation (where no node was constitutively
activated) was 0.0. Each row of the table indicates the node that is constitutively active, the response category obtained from the model for two different initial conditions,
and the experimentally observed response. There are three response categories: close to baseline, slightly increased compared to baseline, and significantly increased
compared to baseline (see Section “Evaluation of Consistency Between Simulation and Experiment”). The second column corresponds to the furthest from closure
initial condition, where the 17 nodes with unknown pre-stimulus state are initialized in the opposite of the state they achieve in the closure attractor. The third column
corresponds to the least restricted initial condition that gives zero baseline closure percentage and CPC, in which six nodes, namely cADPR, GHR1, AtRAC1, PLC, PLDδ,
DAG are initiated in the opposite of the state they achieve in the closure attractor and 11 nodes are initialized randomly. The fourth column lists the experimentally observed
responses for each of the node constitutive activation with the corresponding literature references. The experimental responses have two categories: close to baseline
and increased response (i.e., decreased aperture). When using the furthest from closure initial condition there are 13 cases of agreement with experiments and 4 cases
of disagreement. When using the least restricted initial condition there are 14 cases of agreement and 3 cases of disagreement. All the differences between results lie in
the constitutive activation of PLDα, PA, S1P and NO. Supplementary Table S6 indicates the CPC values of each case.

also result in a CPC that is significantly higher than zero. For
example, random initialization of PLC yields a higher than
baseline closure in case of constitutive activation of each of S1P,
PA, and pHc, with the only remaining disagreement being NO.
The trade-off for this regained agreement of the simulated node
constitutive activation with experiments is an increase in the
baseline percentage of closure and CPC: the peak percentage
of closure is 3% and the CPC is 1.91. In conclusion, it is not
possible to simultaneously ensure a zero baseline percentage
of closure and recapitulate closure in response to constitutive
activity of S1P or pHc given our current knowledge of the
biological resting/open stomata state. The node initializations
that help achieve better agreement with experimental data
on node constitutive activations also increase the baseline
percentage of closure.

DISCUSSION

We present ways to improve the Boolean model of ABA-induced
stomatal closure by Maheshwari et al. (2019) to recapitulate
biological expectations regarding stomata remaining in an open
state in the absence of closure signals, or relaxing back to the
open stomata state following the loss of closure signals. We find
that modifying the assumed persistent activity of four nodes to
a short-term memory effect helps recapitulate re-opening of the
stomata after the closure signal is removed. The implementation

of such short-term memory still yields transient closure in the
absence of any closure signal; thus we also identify different
combinations of initial conditions that minimize this transient
closure. We find that the percentage of stomatal closure is
sensitive to the initial states of certain nodes. This highlights
the significance of these internal nodes and the importance of
experimentally determining the resting states (or open stomata
states) of these nodes.

Motivated by the incorporation of timing in Boolean modeling
in Thakar et al. (2007), we replaced the assumed persistent
activity of four nodes, i.e., CPK3/21, MPK9/12, Microtubule
Depolymerization, and Vacuolar Acidification, with a function
that considers the cumulative effect of the current and the
past states of their regulator. We show that this short-term
memory effect of an oscillating regulator, for example, Ca2+

c,
helps these four nodes maintain the persistent activity necessary
to ensure stomatal closure in response to closure-inducing
signals. This assumption brings the model closer to biological
reality by exhibiting reopening of the stomata after the closure-
inducing signal is removed. We perform a systematic study
of the effect of varying memory durations on the extent of
stomatal closure and the rate of reopening upon removal of the
signal. Our analysis of the increase in the percentage of ON
state of a node for larger memory duration can be extended
to other patterns of oscillations of the regulator node and
hence it will be useful in various other Boolean models of
biological networks.
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Our analysis demonstrates that motif succession diagrams
provide a powerful means to present and understand the
system trajectories, highlighting the points of no return
in the system’s dynamics and identifying the various
attractors the system can lead to. In this work, we present
the motif succession diagram of the stomatal closure
network, which integrates and summarizes previous
research on this network (Li et al., 2006; Albert et al.,
2017; Maheshwari et al., 2019). This succession diagram
highlights the key role of oscillating motifs, drawing
attention to the significance of oscillations in this network.
This advances our understanding of node oscillations in
the context of a biological system modeled as a Boolean
network. Seeking motivation from recent work (Deritei
et al., 2019), we also identify conditionally stable and
conditional oscillating motifs and differentiate them from
their condition-free counterparts.

The motif succession diagram is also an effective measure
of the consequences of short-term versus long-term memory.
Comparing Figure 8A with Figure 3, we can see that short-
term memory eliminates the trajectories that would yield
a closure attractor in the absence of ABA and reduces the
variability of the open stomatal attractors. Another way to
illustrate the qualitative difference between short-term and
long-term memory is through a bifurcation diagram (Tyson
and Novak, 2020), which indicates the steady state value(s)
of the node Closure for different values of ABA. As described
in Supplementary Text S5, an on-off-on sequence of ABA
yields an irreversible switch in the status of closure in case
of persistent activity of CPK3/21, MPK9/12, Microtubule
Depolymerization and Vacuolar Acidification, while short-
term memory of the same nodes yields reversible closure.
Comparing Figure 8B with Figure 4, we can see that short-
term memory leads to an attractor in which the Closure node
oscillates in the presence of ABA. The fact that oscillating
stomatal apertures have not been observed experimentally
in response to ABA suggests that the biological persistence
of vacuolar acidification, microtubule depolymerization
and of the activity of CPK3/21 and MPK9/12 is essential
to the control of oscillations. This also highlights the
importance of characterizing and quantifying the biological
mechanisms underlying the persistence of these nodes (see
Supplementary Text S1).

This work and our previous research on stable motifs
(Zañudo and Albert, 2013; Steinway et al., 2014; Albert et al.,
2017; Zanudo and Albert, 2015; Maheshwari et al., 2019;
Rozum and Albert, 2018; Gan and Albert, 2018; Deritei et al.,
2019) contributes to the broader field of investigation that
connects positive feedback loops, multistability, cell fates and
phenotypes (Thomas and Ari, 1990; Huang, 2007; Hari et al.,
2020). Specifically, single or intersecting positive feedback
loops form stable motifs or conditionally stable motifs.
Mutually exclusive stable motifs determine distinct attractors
(distinct phenotypes). For example, in the model studied
here the openM1 stable motif and closureM conditionally
stable motif are mutually exclusive (see Figure 3A). The
stabilization of one of two mutually exclusive stable motifs

at the expense of the other represents a bifurcation in the
system’s trajectory toward a specific phenotype. The specific
example in this work is the possibility of a trajectory
toward closed stomata in the absence of ABA. Such a
bifurcation can be viewed as a cellular decision point. Our
work suggests a mechanism of cellular plasticity (phenotype
switching): destabilization of the conditionally stable motif
that underlies the phenotype by deactivating its condition.
As seen in previous work (Deritei et al., 2019), stable
motifs that are condition-free within the context of one
model can become conditionally stable motifs in a broader
model that encompasses the original model but includes more
regulators and processes.

Our analysis of initial conditions of 17 nodes with uncertain
states found that it is not possible to simultaneously have
a baseline cumulative percentage of closure of 0 and also
recapitulate the experimentally observed closure for constitutive
activation of pHc, PA, NO or S1P (Jacob et al., 1999; Ng
et al., 2001; Desikan et al., 2002; Coursol et al., 2003;
Mishra et al., 2006; Gonugunta et al., 2008). This discrepancy
suggests that the actual guard cell resting/open state does
not correspond to the state farthest from the state associated
with stomatal closure. In order to ensure optimal response
over a range of conditions, certain nodes have to already be
“primed” (be in their state associated with stomatal closure)
prior to receiving the closure stimulus. The effectiveness of
such priming has been documented in the case of Ca2+

c
stimulus: when guard cells were pre-exposed to ABA or CO2,
elevated Ca2+

c strongly activated S-type anion channels by
shifting their Ca2+

c sensitivity to lower levels (Israelsson et al.,
2006; Hubbard et al., 2012; Laanemets et al., 2013). This
suggestion is also in accordance with previous experimental
observations that the cellular changes underlying stomatal
closure (e.g., induced by ABA) are not simply the reverse of
the processes underlying stomatal opening (e.g., induced by
light) (Assmann, 1993; Wang et al., 2001; Yin et al., 2013;
He et al., 2018). Such “flexible” nodes may provide important
portals for regulation by other stimuli to which multisensory
guard cells also respond, including not only CO2 concentrations
but also blue and red light, humidity, and pathogens (Sun
et al., 2014; Murata et al., 2015; Assmann and Jegla, 2016;
Engineer et al., 2016).
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Hypoxia-inducible factor-1 (HIF-1) is the key regulator of cellular adaptive response to

hypoxia. Accumulating evidence shows that HIF-1 induces some non-coding RNAs

(ncRNAs) including lncRNAs and miRNAs to modulate its own activity, enclosing

several feedback loops. How the two classes of ncRNAs are orchestrated in the

HIF-1-dependent adaptive response to hypoxia is poorly understood. By selecting

lincRNA-p21 and miR-155 as the representatives, we develop an integrated model of

the HIF-1 network comprising interlinked positive and negative feedback loops to clarify

the interplay between the two ncRNAs in the hypoxic response. By numerical simulations,

we find that coordination of lincRNA-p21 and miR-155 shapes the adaptive dynamics of

HIF-1α: lincRNA-p21 induction in the early phase stimulates the upregulation of HIF-1α

via stabilizing it, while miR-155 induction in the late phase promotes the recovery of

HIF-1α via enhancing the degradation of its mRNA. Moreover, HIF-1α-induced PHD2

plays an auxiliary role in the decline of HIF-1α. In addition, lincRNA-p21 and miR-155

modulate each other via regulating HIF-1α activity. Together, lincRNA-p21 and miR-155

coordinate in modulating HIF-1α dynamics, and our work may shed light on the role for

ncRNAs in the cellular adaptation to hypoxia.

Keywords: hypoxia, HIF-1α, lincRNA-p21, miR-155, adaptive dynamics, feedback loop

1. INTRODUCTION

Hypoxia plays significant roles in human physiology and diseases including cancer (Koh and
Powis, 2012). Hypoxia-inducible factor-1 (HIF-1) is the key mediator of the cellular adaption to
hypoxia (Schofield and Ratcliffe, 2004). HIF-1 is a heterodimer composed of an oxygen-dependent
α-subunit (HIF-1α) and a constitutively expressed nuclear β-subunit (HIF-1β) (Wang et al., 1995).
Under normoxia, HIF-1α is hydroxylated by prolyl hydroxylases (PHDs) on Pro402 and Pro564,
and these modifications facilitate the binding of HIF-1α to VHL (von Hippel-Lindau), promoting
the ubiquitin-dependent proteasomal degration of HIF-1α (Ohh et al., 2000; Jaakkola et al., 2001).
In addition, the hydroxylase factor inhibiting HIF-1 (FIH-1) hydroxylates HIF-1α on Asn803 to
repress its transcriptional activity via preventing the recruitment of coactivator p300/CBP (Mahon
et al., 2001). Upon hypoxia, PHDs and FIH-1 are deactivated so that HIF-1α is stabilized and
translocates to the nucleus to form a transcriptional complex with HIF-1β (Maxwell et al., 2001).
Activated HIF-1 induces hundreds of genes involved in glycolysis, angiogenesis, cell survival, and
metastasis (Harada et al., 2007; Semenza, 2009, 2012; Zeng et al., 2015). Moreover, HIF-1α itself
shows adaptive dynamics in the hypoxic response (Stiehl et al., 2006; Minamishima et al., 2009). It
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has been reported that tight control of transient HIF-1α
dynamics is essential for cell survival in hypoxia (Ginouvés et al.,
2008; Henze et al., 2010; Bagnall et al., 2014). The detailed
mechanism underlying the adaptive dynamics of HIF-1α in
hypoxia is unclear.

MicroRNAs (miRNAs), especially HIF-1-inducible miRNAs,
also play significant roles in cellular response to hypoxia (Serocki
et al., 2018). For example, HIF-1-targeted miR-210 is shown
to regulate cellular metabolism or angiogenesis during hypoxia
(Chan et al., 2009; Li et al., 2016). miR-155 is induced by HIF-1
in multiple cell lines (Xie et al., 2015). It was found that miR-
155 contributes to the descending of HIF-1α in the late phase
by enhancing the degradation of HIF-1α mRNA, enclosing a
negative feedback loop (Bruning et al., 2011). Moreover, HIF-1
upregulates the expression of PHD2 or PHD3 to promote HIF-
1α degradation, compensating for repression of PHD activity
in hypoxia (Minamishima et al., 2009; Bagnall et al., 2014). An
intriguing question is whether miR-155 and PHDs play distinct
roles in the downregulation of HIF-1α.

Long non-coding RNAs (lncRNAs) are also involved in the
hypoxic response by regulating HIF-1 activity (Chang et al.,
2016). LincRNA-p21 represses the degradation of HIF-1α by
blocking the VHL-HIF-1α interaction, enclosing a positive
feedback loop (Yang et al., 2014). As a result, HIF-1α amplifies
its own activation and induces Glut1 and LDHA to facilitate
glycolysis in hypoxic cells (Yang et al., 2014). Thus, there exist
several HIF-1α-centered negative and positive feedback loops
involving PHDs, miR-155, and lincRNA-p21. It is a challenge to
clarify how these interlinked feedback loops interplay in shaping
HIF-1α dynamics under distinct hypoxic conditions.

A series of theoretical models have been developed to explore
the mechanism for the regulation of HIF-1α dynamics (Kohn
et al., 2004; Qutub and Popel, 2006; Dayan et al., 2009; Nguyen
et al., 2013). Kohn et al. explored the mechanism for the switch-
like response of HIF-1 to hypoxia (Kohn et al., 2004). Qutub
et al. characterized the effects of micro-environmental factors,
such as ascorbate, iron, and PHD, on the hydroxylation of HIF-
1α (Qutub and Popel, 2006). Nguyen et al. clarified the regulation
of HIF-1α stability and activity by FIH-1 (Nguyen et al., 2013).
We have explored the interplay between HIF-1α and p53 upon
hypoxia in several models (Zhou et al., 2015; Wang et al., 2019;
Ye et al., 2019). Although miRNAs-mediated HIF-1α regulation
has been involved in somemodeling studies (Bruning et al., 2011;
Fábián et al., 2016), how HIF-1-targeted miRNAs and lncRNAs
are orchestrated to regulate HIF-1α is less understood. It is
feasible to select miR-155 and lincRNA-p21 as the representatives
since they are both expressed at least in HeLa cells (Bruning et al.,
2011; Yang et al., 2014). It is promising to clarify how the crosstalk
between miR-155 and lincRNA-p21 modulates HIF-1α dynamics
upon hypoxia by modeling.

Here, we develop a model of the HIF-1 signaling network
including lincRNA-p21 and miR-155 to explore how different
ncRNAs coordinate to mediate the adaptive response of HIF-
1α to hypoxia. Our results show that lincRNA-p21 and miR-
155 are induced in different phases of the response to shape
the adaptative dynamics of HIF-1α. LincRNA-p21 induction in
the early phase stabilizes HIF-1α by blocking its degradation,

whereas miR-155 is induced in the late phase to downregulate
HIF-1α via enhancing HIF-1α mRNA degradation. Moreover,
miR-155 and PHD2 cooperate to facilitate the recovery of HIF-
1α. We found that lincRNA-p21 and miR-155 compete with
each other to modulate HIF-1α dynamics. Together, HIF-1
sequentially induces lincRNA-p21 and miR-155 to facilitate the
cellular adaption to hypoxia.

2. MODELS AND METHODS

2.1. Overview of the Model
We built an integrated model of the HIF-1 network in response
to hypoxia, focusing on the role of lincRNA-p21 and miR-155 in
shaping HIF-1 dynamics (Figure 1). For simplicity, subcellular
compartmentalization is not considered. Given the constitutive
expression of HIF-1β in the hypoxic response (Wang et al.,
1995), the dimerization of HIF-1α and HIF-1β is ignored, and
HIF-1 heterodimer is not distinguished from HIF-1α thereafter.
The model is mainly composed of two modules responsible for
oxygen sensing and feedback regulation of HIF-1α.

The stability and activity of HIF-1α is controlled by the
sensors of oxygen, PHDs, and FIH-1, respectively. In our model,
PHD2 is considered the representative of PHDs as it is the
primary oxygen sensor among the three PHD isoforms (Berra
et al., 2003; Takeda et al., 2006). We consider two forms of
PHD2: PHD2 (inactive form) and PHD2ac (active form); FIH-1
is divided into FIH-1 (inactive form) and FIH-1ac (active form).
Upon hypoxia, PHD2 and FIH-1 are deactivated, leading to
the stabilization and activation of HIF-1α (Jaakkola et al., 2001;
Mahon et al., 2001). It is assumed that the total amount of PHD-
2, PHD2tot, is HIF-1α-dependent (Stiehl et al., 2006), whereas
that of FIH-1, FIH-1tot, is supposed to be a constant since its
expression is independent of HIF-1α.

HIF-1α protein is produced by the translation of HIF-
1α mRNA (HIF-1αm). Three forms of HIF-1α protein
are considered, i.e., HIF-1α (unhydroxylated), HIF-1α-aOH
(asparagine-hydroxylated), andHIF-1α-aOHpOH (hydroxylated
at both proline and asparagine sites). In other words, HIF-
1α-aOHpOH is proline-hydroxylated form while HIF-1α and
HIF-1α-aOH are proline-unhydroxylated forms. Of note, the
hydroxylation steps are supposed to be irreversible (Schofield and
Ratcliffe, 2004; Chan et al., 2005). Although the hydroxylation
of HIF-1α by FIH-1 represses its transcriptional activity via
preventing the recruitment of co-activator p300 (Lando et al.,
2002), we assume that HIF-1α with asparagine-hydroxylation
alone is of partial transcriptional activity (Dayan et al., 2006;
Chan et al., 2016). Thus, it is assumed both HIF-1α and HIF-
1α-aOH can induce miR-155, lincRNA-p21, and PHD2. miR-
155 regulates HIF-1α posttranscriptionally by promoting the
degradation of HIF-1α mRNA (Bruning et al., 2011), while
lincRNA-p21 can promote the stabilization of HIF-1α (Yang
et al., 2014). Together, two negative and one positive feedback
loops are interlinked to regulate HIF-1α.

2.2. Details of the Model
The network model is described by a set of ordinary differential
equations. The key points for the equations are listed as follows.
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FIGURE 1 | Schematic diagram of the model for HIF-1α network in response to hypoxia mediated by non-coding RNAs. HIF-1α is hydroxylated by PHD2 and FIH-1

upon hypoxia. HIF-1α-aOH and HIF-1α separately represent partially and fully activated form of HIF-1α, and both promote the induction of lincRNA-p21, miR-155,

and PHD2. LincRNA-p21 enhances the stabilization of HIF-1α, while miR-155 promotes the degradation of HIF-1α mRNA, thereby enclosing interlocked positive and

negative feedback loops, respectively. FIH-1 also modulates the degradation of HIF-1α. Dashed lines denote gene expression. Solid arrow-headed lines represent

transitions between proteins. Circle-headed and bar-headed lines denote promotion and inhibition of enzymatic reactions, respectively.

The production rate of HIF-1α mRNA is assumed to be a
constant, while its degradation rate is described by Michaelis-
Menten dynamics depending on miR-155 level (Equations 1–
2). The oxygen-dependent activation of PHD2 and FIH-1 is
described by Michaelis-Menten kinetics (Equations 3, 4, 9, and
10). In addition, the disassociation constant of FIH-1 for oxygen
is markedly lower than that of PHD2 for oxygen (Koivunen et al.,
2004), thus the threshold level of oxygen in FIH-1 activation is set
to be much smaller than that in PHD2 activation (see Table S2).
The hydroxylation of HIF-1α by PHD2ac and FIH-1ac is also
depicted by Michaelis-Menten kinetics (Equations 5–7).

Given the disassociation constant of FIH-1 for oxygen is
much lower than that of PHD2, HIF-1α should be preferentially
asparagine-hydroxylated by FIH-1 (Koivunen et al., 2004). It has
been identified that proline-hydroxylation promotes the oxygen-
dependent degradation of HIF-1α (Ivan et al., 2001). For the
above two reasons, HIF-1α hydroxylated at proline residues
alone is omitted. In addition, we assumed that there exists a
PHD2-independent degradation of unhydrxoylated HIF-1α that
is repressed by FIH-1ac since asparaginyl hydroxylation may

protect HIF-1α from oxygen-independent degradation (Nguyen
et al., 2013) (Equation 5).

The induction rates of miR-155, lincRNA-p21, and PHD2 by
HIF-1α and HIF-1α-aOH are all characterized by Hill functions
(Equations 8, 11, and 12). Moreover, lincRNA-p21 can further
the stabilization of HIF-1α by blocking its interaction with
VHL that acts as a ubiquitin E3 ligase for HIF-1α degradation
(Yang et al., 2014). For simplicity, the processes of the VHL-
HIF-1α interaction and HIF-1α ubiquitination are not explicitly
considered, and the degradation rate of HIF-1α is depicted
by Michaelis-Menten kinetics depending on lincRNA-p21 levels
(Equations 5–7). We assume that the rate constant for the
degradation of proline-unhydroxylated HIF-1α is much lower
than that for proline-hydroxylated HIF-1α (i.e., kdhif ≪ kdhifpoh)
since VHL mainly interacts with proline-hydroxylated HIF-1α
for oxygen-dependent degradation (Ivan et al., 2001) (Equations
5–7). Nevertheless, we still consider the effect of lincRNA-
p21 on the stabilization of proline-unhydroxylated HIF-1α via
blocking the binding of VHL. Moreover, the effect of lincRNA-
p21 on the interaction between VHL and HIF-1α may be
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not significantly affected by hydroxylation (Yang et al., 2014).
Thus, the Michaelis constants of lincRNA-p21 for repressing
the degradation of proline-hydroxylated HIF-1α (jdhifpoh) and
proline-unhydroxylated HIF-1α (jdhif) are assumed to be equal.

2.3. Methods
The concentration of each species is represented by [.],
corresponding to a state variable in rate equations in
Supporting Material. The relative value of the oxygen level
is adopted, and 1 represents 1% O2 in the model. The reactions
concerned with hydroxylation or activation are described by
Michaelis-Menten kinetics. The depiction of variables and their
initial values are listed in Table S1. All the initial values of the
variables are set to be their steady states under normoxia. The
standard values of the parameters are listed in Table S2. The
unit of time is minutes and the units of parameters are decided
so that the concentration of proteins or RNAs is dimensionless.
The ordinary differential equations were solved numerically by
Oscill8 (http://oscill8.sourceforge.net/) with adaptive time steps.
The bifurcation diagrams were also plotted using Oscill8.

3. RESULTS

3.1. Overview of HIF-1α Dynamics Upon
Hypoxia
We first display the dependence of the total level of HIF-1α,
[HIF-1αtot], onO2 level by bifurcation diagram (Figure 2A). The
response curve is divided into several parts by four bifurcation
points including two saddle-node bifurcation points (S1 and S2)
and two Hopf bifurcation points (H1 and H2). The two branches
separated by S1 and S2 correspond to the low and high states of
[HIF-1αtot]. With decreasing O2 levels, the stable level of HIF-
1αtot increases slowly. The steady states of [HIF-1αtot] become
unstable for O2 levels between H1 and S1. [HIF-1αtot] switches
to high stable states in this regime and its stable- state level rises
continuously until it reaches the maxima around 0.1% O2, then
drops to low levels under severe hypoxia, which is qualitatively
in accordance with the experimental data (Jiang et al., 1996). In
addition, the high steady states of [HIF-1αtot] exhibit instability
for O2 levels between H2 and S2.

Under different O2 levels, the temporal dynamics of [HIF-
1αtot] are shown in Figure 2B. For mild hypoxia (3% O2),
[HIF-1αtot] keeps at low levels; for moderate hypoxia (1% O2),
[HIF-1αtot] exhibits adaptive dynamics, which is related to the
existence of Hopf bifurcation points; for severe hypoxia (0.05%
O2), [HIF-1αtot] eventually reaches a high level; for anoxia (0%
O2), [HIF-1αtot] shows a smaller pulse and drops to lower levels
finally. Of note, when O2 level is between H1 and S1 (0.3% O2),
[HIF-1αtot] first climbs to a very high level and then settles down
to a fairly high level (Figure S1), consistent with the instability of
low steady states (see Figure 2A).

As mentioned above, FIH-1 preferentially hydroxylates HIF-
1α and can maintain its activity at lower oxygen levels than
PHD2 (Koivunen et al., 2004). As a result, PHD2 and FIH-1 are
deactivated sequentially under aggravating hypoxia. Our results
show that [HIF-1α-aOH] and [HIF-1α] are predominant under
moderate and severe hypoxia, respectively (Figure 2C). For

moderate hypoxia, [HIF-1α-aOH] exhibits pulsatile dynamics
and is much higher than [HIF-1α], while fully activated HIF-1α
becomes dominant under severe hypoxia. Therefore, HIF-1α is
progressively activated in response to hypoxia.

As shown in Figure 2A, [HIF-1α] drops markedly under
anoxia, consistent with experimental results (Jiang et al., 1996).
Figure 2D shows the bifurcation diagrams of [HIF-1αtot] vs.
O2% with or without FIH-1-mediated degradation. The two
diagrams are separable only in severe hypoxia and anoxia,
which means that FIH-1 protects HIF-1α from degradation
only under such conditions. HIF-1α accumulates markedly and
its level decreases mildly in the absence of FIH-1-mediated
degradation. The marked decline of [HIF-1α] should result
from FIH-1 deactivation that facilitates HIF-1α degradation
under severe hypoxia or anoxia. Our results may provide a
plausible mechanism for the regulation of HIF-1α degradation
independent of PHDs.

3.2. HIF-1α-Induced lincRNA-p21
Modulates the Adaptive Dynamics of
HIF-1α Through a Positive Feedback Loop
HIF-1α induces lincRNA-p21 to promote its own stabilization
(Yang et al., 2014), and how the latter modulates the adaptive
dynamics of HIF-1α is investigated in the following. To
further verify our model, we compare the simulation results
for [lincRNA-p21] at 24h with the experimental results for
different O2 levels (Yang et al., 2014). LincRNA-p21 is indeed
markedly evoked in hypoxia, showing good agreements with the
experimental data (Figure 3A). Both [HIF-1αtot] and [lincRNA-
p21] exhibit adaptive dynamics at 1% O2 in the standard
parameter setting, and the results are well consistent with
experimental data (Yang et al., 2014) (Figures 3B,C). When
HIF-1α-dependent lincRNA-p21 expression is removed, [HIF-
1tot] remains at rather low levels, meaning that lincRNA-p21
induction is crucial for the accumulation of HIF-1α in the
ascending phase. In addition, given translation inhibition and
the high initial level of HIF-1αtot, lincRNA-p21 knockout makes
[HIF-1αtot] decay much faster compared with the normal case
at 1% O2 (Figure 3D). These results show that lincRNA-p21
upregulates HIF-1α by repressing its degradation (Yang et al.,
2014; Meng et al., 2018). Together, lincRNA-p21 is required for
the adaptive dynamics of HIF-1α.

Given lincRNA-p21 is induced by HIF-1α, we further explore
the effect of lincRNA-p21 induction rate on HIF-1α adaptation
to hypoxia. Since HIF-1α-aOH is predominant under moderate
hypoxia (Figure 2C), we only consider the effect of HIF-1α-aOH-
dependent induction rate of lincRNA-p21 (ksLAp21a) on HIF-
1α dynamics (Figures 4A,B). At 1% O2, as mentioned above,
[HIF-1αtot] displays adaptive dynamics; for ksLAp21a = 0, HIF-
1α cannot be evoked; for rather large ksLAp21a (0.08), although
[HIF-1αtot] rises more sharply in the early phase, it settles at
fairly high levels instead of dropping to low levels (Figure 4A).
Therefore, proper expression of lincRNA-p21 is required for the
prefect adaptation of HIF-1α to hypoxia.

The peak during the temporal evolution of [HIF-1αtot], HIF-
1αpeak, is selected as another indicator to show the effect of
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FIGURE 2 | HIF-1α dynamics under different hypoxic conditions. (A) Bifurcation diagrams of [HIF-1αtot] vs. O2%, in the default parameters setting. The stable and

unstable steady states are indicated by solid and dashed lines, respectively. The saddle-node bifurcation points are marked with S1 and S2, while the Hopf bifurcation

points are labeled with H1 and H2. (B) Time courses of [HIF-1αtot] for 3% (blue), 1% (red), 0.05% (green), and 0% O2 (orange). The initial values of all the species are

set to be their steady states at 21% O2 in the simulation of the dynamics of the species (the same below). (C) Time courses of [HIF-1α] (solid) and [HIF-1α-aOH]

(dashed) in moderate hypoxia (1.2% O2) or severe hypoxia (0.04% O2). (D) Bifurcation diagrams of [HIF-1αtot] vs. O2 level for kdhiffih=0.0032 (black) or 0 (red). Notably,

kdhiffih is designated as FIH-1-related degration rate of HIF-1α. The types of bifurcation points are similar to Figure 2B.

lincRNA-p21 abundance on HIF-1α dynamics. We find that the
induction rate of lincRNA-p21, ksLAp21a, affects HIF-1 induction
in a switch-like way (Figure 4B). For small ksLAp21a, HIF-
1αpeak keeps rather small. But when ksLAp21a is increased and
exceeds some threshold, HIF-1αpeak rises sharply. With further
increasing ksLAp21a, HIF-1αpeak rises continuously. Thus, the
peak of [HIF-1αtot] is remarkably modulated by lincRNA-p21
abundance. To explain these results, we plot the bifurcation
diagram of [HIF-1αtot] vs. ksLAp21a with miR-155 knockout at
1% O2 (Figure 4B). Due to the HIF-1α-lincRNA-p21 positive
feedback loop, the steady state of [HIF-1αtot] exhibits bistability
with varying ksLAp21a and the threshold of ksLAp21a is very close
to that in the curve of HIF-1αpeak. For ksLAp21a exceeding the
threshold, the steady state of [HIF-1αtot] is close to HIF-1αpeak

and increases monotonically with increasing ksLAp21a. Therefore,
HIF-1α is augmented by its target lincRNA-p21 in the rising
phase in response to hypoxia.

We further analyze how lincRNA-p21-mediated HIF-1α
stabilization affects its dynamics. The thresholds of lincRNA-
p21 for repressing the degradation of proline-hydroxylated and

-unhydroxylated HIF-1α are represented by jdhifpoh and jdhif,
respectively. [HIF-1αtot] remains at rather low levels when jdhif
is enlarged markedly (Figure 4C). Inhibiting the stabilization
of proline-unhydroxylated HIF-1α by lincRNA-p21 markedly
influences [HIF-1αtot] since both HIF-1α and HIF-1α-aOH are
destabilized remarkably in this case. In contrast, for very large
jdhifpoh, [HIF-1αtot] still exhibits adaptive dynamics perfectly
which is close to the case in the standard parameter setting. The
proline-hydroxylated HIF-1α-aOHpOH is rather unstable due to
inhibition of its stabilization via lincRNA-p21. Therefore, HIF-
1α induces lincRNA-p21 to facilitate its own accumulation in the
adaptive response to moderate hypoxia.

HIF-1α adapts to moderate hypoxia while it remains at rather
high levels under severe hypoxia (see Figure 2B). The effect of
lincRNA-p21 induction rate on HIF-1α dynamics is investigated.
Since lincRNA-p21 is mainly induced by un-hydroxylated HIF-
1α in this case, we only consider the influence of the production
rate of lincRNA-p21, ksLAp21, on HIF-1α dynamics (Figure 4D).
In the default case, HIF-1α stays at high levels after a slight
decrease at 0.1%O2. For increased ksLAp21, HIF-1αtot rises to
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FIGURE 3 | LincRNA-p21 is required for the adaptive dynamics of HIF-1α. (A) Comparison of [lincRNA-p21] at 24 h for different O2 levels between simulation (circle)

and experiment (black square). The experimental data are retrieved from Yang et al. (2014). (B,C) Time courses of [HIF-1αtot] (B) and [lincRNA-p21] (C) with normal

lincRNA-p21 expression (solid, ksLAp21 = 0.08 and ksLAp21a = 0.05) and knockout (dashed, ksLAp21 = 0 and ksLAp21a = 0) at 1% O2. Black squares denote the

experimental data for [HIF-1αtot] and [lincRNA-p21] with normal lincRNA-p21 expression, retrieved from Yang et al. (2014). (D) With inhibited protein synthesis (kthif =

0), time courses of [HIF-1αtot] with normal lincRNA-p21 expression (solid, ksLAp21 = 0.08 and ksLAp21a = 0.05) and knockout (dashed, ksLAp21 = 0 and ksLAp21a = 0)

under 1% O2. Of note, the initial state refers to the transient state at 24 h under 1% O2 in the standard parameter setting.

higher levels. For smaller ksLAp21, [HIF-1αtot] can exhibit an
adaptive pulse with a lower amplitude. However, for very small
ksLAp21, HIF-1α is hardly induced. Together, lincRNA-p21 is also
required for HIF-1 accumulation under severe hypoxia and its
induction rate can modulate the dynamic modes of HIF-1α.

3.3. HIF-1α Induces miR-155 to Promote Its
Own Recovery in the Late Phase
It has been reported experimentally that HIF-1α-induced miR-
155 can promote the recovery of HIF-1α in several cell
lines (Bruning et al., 2011). The time courses of [HIF-1αtot],
[miR-155], and [HIF-1αm] in hypoxia (1% O2) are shown
in Figure 5A. HIF-1αtot rises and induces miR-155, which
promotes the degradation of HIF-1α mRNA so that both HIF-
1α mRNA and HIF-1αtot exhibit adaptive dynamics with some
phase difference. As a result, miR-155 also drops to basal levels
in the late phase, well consistent with the experimental data
(Bruning et al., 2011; Wan et al., 2014). Next we explore the
effect of HIF-1α-aOH-dependent induction rate of miR-155
(ksmiR1551a) on the adaptive response of HIF-1α to hypoxia
(Figure 5B). For decreased ksmiR1551a, the adaptive property of

[HIF-1αtot] dynamics weakens remarkably: HIF-1αtot reaches
a slightly higher peak and maintains at rather high levels
finally. For increased ksmiR1551a, [HIF-1αtot] still exhibits adaptive
dynamics while the peak and the width of the dynamic curves
reduce gradually and [HIF-1αtot] only rises slightly for very
large ksmiR1551a (Figure 5B). Together, miR-155 can facilitate the
recovery of HIF-1α levels in the late phase.

In addition to miR-155, HIF-1α-induced PHD2 may also

contribute to the adaptation of HIF-1α to hypoxia (Stiehl et al.,
2006; Henze et al., 2010; Bagnall et al., 2014). We further

explore the potential interplay between miR-155 and PHD2 in
regulating HIF-1α dynamics (Figure 5C). Knockout of either
miR-155 or PHD2 ismimicked by setting the correspondingHIF-

1α-dependent induction rates to zero. At 1% O2, [HIF-1αtot]

still shows adaptive dynamics with a higher peak in the case
of PHD2 knockout. With miR-155 knockout, [HIF-1αtot] settles
at a plateau instead of showing adaptation, consistent with the
experimental results (Bruning et al., 2011). In the case of both
miR-155 and PHD2 knockout, [HIF-1αtot] stays at higher levels
persistently compared to the case of miR-155 knockout alone.
Therefore, our results suggest that miR-155 is required for the
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FIGURE 4 | HIF-1α induces lincRNA-p21 to promote its own accumulation in hypoxia. (A) Time courses of [HIF-1αtot] at 1% O2 for different HIF-1α-aOH-dependent

lincRNA-p21 induction rates: ksLAp21a = 0.08 (dashed), 0.05 (solid, default), and 0 (dash-dotted). (B) The curve of HIF-1αpeak (black) vs. ksLAp21a at 1% O2; the

bifurcation diagram of [HIF-1tot] (red) vs. ksLAp21a at 1% O2 with miR-155 knockout (ksmiR1551 = 0 and ksmiR1551a = 0). HIF-1αpeak denotes the maximal of [HIF-1αtot] on

individual simulation trials. (C) Time courses of [HIF-1αtot] at 1% O2 in the following cases: jdhifpoh = 0.3 and jdhif = 0.3 (solid); increasing jdhifpoh to 100 (dashed);

increasing jdhif to 100 (dash-dotted). (D) Time courses of [HIF-1tot] at 0.1% O2 for different HIF-1α-dependent lincRNA-p21 synthesis rates: ksLAp21 = 0.12 (dashed),

0.08 (solid, default), 0.035 (dotted), and 0 (dash-dotted).

adaptive dynamics of HIF-1α while PHD2 mainly contributes to
the suppression of HIF-1α accumulation.

It is intriguing to investigate the effect of miR-155 abundance
on HIF-1α dynamics in severe hypoxia. We show the above
effect of miR-155 by plotting the curves of [HIF-1αtot] dynamics
for various ksmiR1551 (the induction rate of miR-155 by
unhydroxylated HIF-1α) at 0.1% O2 (Figure 5D). As shown
previously, HIF-1αtot stays at high levels in the default case. For
smaller ksmiR1551, [HIF-1αtot] rises to higher levels; for larger
ksmiR1551, [HIF-1αtot] stays at lower levels; for further increased
ksmiR1551, [HIF-1αtot] cannot keep at high levels and drops to
basal levels, exhibiting adaptive dynamics (Figure 5D). Together,
miR-155 modulates HIF-1α dynamic modes markedly under
severe hypoxia, and its overexpression can transform HIF-1α
dynamics to adaptive mode.

3.4. Crosstalk of lincRNA-p21 and miR-155
in Shaping HIF-1α Dynamics
Since both lincRNA-p21 and miR-155 are involved in HIF-
1α-centered feedback loops, there may exist crosstalk between
them in modulating HIF-1α dynamics. The dynamic curves of

[lincRNA-p21], [miR-155], and [HIF-1αtot] are plotted together
to show their temporal evolution during the hypoxic response
(Figure 6A). LincRNA-p21 and miR-155 are separately induced
by HIF-1α so that lincRNA-p21 stimulates the rising of HIF-1α
in the early phase while miR-155 renders the recovery of HIF-1α
in the late phase. With decreased ksLAp21a, lincRNA-p21 settles
at low state instead of showing adaptive dynamics (Figure 6B).
As a result, [HIF-1αtot] stays at rather low levels and miR-155 is
not inducedmarkedly without enoughHIF-1α. Our results reveal
that sufficient induction of lincRNA-p21 by HIF-1α is required
for subsequent induction of miR-155 and recovery of HIF-1α.

We further explore how lincRNA-p21 and miR-155 interplay
to modulate the adaptive dynamics of HIF-1α. We compare
the dynamics of [HIF-1αtot] by increasing the induction rates
of lincRNA-p21 and (or) miR-155 (Figure 6C). For increased
ksLAp21a, lincRNA-p21 counteracts the recovery of HIF-1α
by miR-155, and [HIF-1αtot] maintains at moderate levels
in the late phase. When ksmiR1551a is also enlarged, [HIF-
1αtot] restores prefect adaptation to hypoxia. Likewise, with
increasing ksmiR1551a alone, overexpressed miR-155 suppresses
the stabilization of HIF-1α by lincRNA-p21 and [HIF-1αtot] only
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FIGURE 5 | HIF-1α-induced miR-155 promotes the recovery of HIF-1α in the late phase of the adaptive response. (A) Time courses of [HIF-1αtot], [miR-155], and

[HIF-1αm] from top to bottom at 1% O2, and the experimental data (retrieved from Bruning et al., 2011; Wan et al., 2014) are denoted by the black squares. (B) Time

courses of [HIF-1αtot] at 1% O2 for different HIF-1α-aOH-dependent miR-155 induction rates: ksmiR1551a = 0.0006 (blue), 0.0012 (red, default), 0.0036 (green), and

0.007 (brown). (C) Time courses of [HIF-1αtot] at 1% O2 with miR-155 and PHD2 double knockout (dotted, ksmiR1551 = 0, ksmiR1551a = 0, ksphd1 = 0, and ksphd1a = 0),

miR-155 knockout (dash-dotted, ksmiR1551 = 0 and ksmiR1551a = 0), PHD2 knockout (dashed, ksphd1 = 0 and ksphd1a = 0), and normal miR-155 and PHD2 expression.

(D) Time courses of [HIF-1αtot] at 0.1% O2 for different HIF-1α-dependent miR-155 induction rates: ksmiR1551 = 0.0006 (dotted), 0.0024 (solid, default), 0.012

(dashed), and 0.04 (dash-dotted).

shows a small pulse. We also show the effects of decreasing
ksLAp21a and/or ksmiR1551a on HIF-1α dynamics (Figure 6D).
When ksmiR1551a alone is decreased, [HIF-1αtot] stays atmoderate
levels; while decreasing ksLAp21a alone, it only rises to low
levels; adaptive dynamics of [HIF-1αtot] reappears in the case of
decreasing both ksLAp21a and ksmiR1551a. Together, lincRNA-p21
and miR-155 cooperate in shaping HIF-1α dynamics and their
balance is critical for the perfect adaptation of HIF-1α to hypoxia.

4. CONCLUSION AND DISCUSSION

We have built a network model to probe how HIF-1α-targeted
lincRNA-p21 and miR-155 coordinate to regulate the adaption of
HIF-1α to hypoxia.We found that lincRNA-p21 andmiR-155 are
sequentially induced during hypoxia. LincRNA-p21 promotes the
rising of HIF-1α by stabilizing it in the early phase, whilemiR-155
promotes the recovery of HIF-1α in the late phase by facilitating
the degradation of its mRNA. Moreover, there exists a delicate
balance between lincRNA-p21 and miR-155 in shaping HIF-1α
dynamics: variation in the adaptive dynamics of HIF-1α due to

changes in the expression of either ncRNA can be counteracted
by changing the expression of the other.

It has been shown that both HIF-1α and lincRNA-p21 exhibit

adaptive dynamics in response to hypoxia (Yang et al., 2014).
How they are down-regulated in the late phase of the response is
not well-elucidated. We proposed that HIF-1α-induced miR-155
may contribute to the recovery of HIF-1α and lincRNA-p21
to low levels. In addition, we also reveal that lincRNA-p21

promotes the rising of HIF-1α in the early phase via stabilizing
it. Furthermore, we indicate that the stabilization of partially

activated proline-unhydroxylated HIF-1α by lincRNA-p21
plays a dominant role in promoting HIF-1α accumulation.

Therefore, coordination of HIF-1α-centered positive and
negative feedback loops ensures the adaptive adaption of HIF-1α
to hypoxia.

We assumed that lincRNA-p21 can repress the degradation of

proline-unhydroxylated HIF-1α. The assumption is supported

by the experimental evidence that HIF-1α induces lincRNA-p21

to stabilize the proline-unhydroxylated HIF-1α by disrupting

the interaction with VHL and enhances its own transcriptional
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FIGURE 6 | Interplay between lincRNA-p21 and miR-155 in the adaptative dynamics of HIF-1α. (A) Time courses of [lincRNA-p21] (dotted), [miR-155] (dash-dotted),

and [HIF-1αtot] (solid) at 1% O2 in the default case. (B) Time courses of [lincRNA-p21] (dotted), [miR-155] (dash-dotted), and [HIF-1αtot] (solid) at 1% O2 with

decreased lincRNA-p21 induction rate (ksLAp21a = 0.02). (C) Time courses of [HIF-1αtot] at 1% O2 with the standard parameter setting (solid, ksLAp21a = 0.05 and

ksmiR1551a = 0.0012), increased lincRNA-p21 induction rate alone (dotted, ksLAp21a = 0.07, ksmiR1551a = 0.0012), increased miR-155 expression alone (dashed, ksLAp21a
= 0.05 and ksmiR1551a = 0.005), and both increased lincRNA-p21 and miR-155 expression (dash-dotted, ksLAp21a = 0.07 and ksmiR1551a = 0.005). (D) Time courses of

[HIF-1αtot] at 1% O2 for the default case (solid, ksLAp21a = 0.05 and ksmiR1551a = 0.0012), decreased miR-155 expression alone (dotted, ksLAp21a = 0.05 and ksmiR1551a =

0.0007), decreased lincRNA-p21 expression alone (dashed, ksLAp21a = 0.043 and ksmiR1551a = 0.0012), and both decreased lincRNA-p21 and miR-155 expression

(dash-dotted, ksLAp21a = 0.043 and ksmiR1551a = 0.0007).

activity remarkably (Yang et al., 2014). It has been reported
that two forms of proline-unhydroxylated HIF-1α, i.e.,
unhydroxylated HIF-1α and HIF-1α with asparaginyl-
hydroxylation alone, can transactivate the target genes (Dayan
et al., 2006). Moreover, given proline-hydroxylated HIF-1α
loses its transcriptional activity and prolyl-hydroxylation is
considered to be irreversible (Schofield and Ratcliffe, 2004;
Chan et al., 2005), lincRNA-p21-dependent accumulation of
proline-hydroxylated HIF-1α has no contribution to induction
of target genes. Therefore, it is plausible to assume that
lincRNA-p21 enhances the transcriptional activity of HIF-
1α by stabilizing the proline-unhydroxylated forms. It has
been reported that lincRNA-p21 promotes HIF-1α-dependent
glycolysis via inducing several target genes (Yang et al., 2014).
Nevertheless, the interaction between HIF-1α and VHL is
rather weak, and the detailed mechanism underlying the
upregulation of HIF-1α activity by lincRNA p21 is to be
further investigated.

Our work reveals that miR-155 and PHD2 play non-
redundant roles in promoting HIF-1α recovery in hypoxia. Our
results show that PHD2 mainly modulates the peak level of HIF-
1α in the adaptive dynamics, consistent with the modeling results
reported by Fábián et al. (2016). On the other hand, it has been
suggested that PHD2 mainly regulates HIF-1α in the early phase
in contrast to miR-155 (Bruning et al., 2011). We proposed that
HIF-1α-miR-155 and HIF-1α-PHD2 negative feedback loops
play the main and auxiliary role respectively in adaptive response
of HIF-1α to hypoxia. Nevertheless, PHD2 may play a significant
role in the adaptive dynamics of HIF-1α in some other cell
lines (Ginouvés et al., 2008; Bagnall et al., 2014). Therefore,
the roles of PHD2 and miR-155 may be context-dependent or
cell-type specific.

LincRNA-p21 and miR-155 regulate HIF-1α positively and
negatively in the separate phases to ensure the adaptive dynamics.
They should be induced and predominate in the early and late
phase of the response, respectively (Bruning et al., 2011; Yang
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et al., 2014). There may exist a delicate balance between lincRNA-
p21 and miR-155 in shaping HIF-1α dynamics. For increased
lincRNA-p21 expression, dominance of miR-155 is weakened
in the late phase so that HIF-1α cannot return to low levels
entirely. Increased miR-155 expression also impairs the balance
between it and lincRNA-p21, suppressing HIF-1α accumulation.
Therefore, when the expression of either one is changed, the
other needs to be varied in the same direction to guarantee
the perfect adaptation of HIF-1α to hypoxia. In addition, under
severe hypoxia, enhancing lincRNA-p21 induction impairs the
balance in the regulation of HIF-1α, so HIF-1α settles down at
relatively high levels. We propose that repressing lincRNA-p21
or increasing miR-155 expression may facilitate the adaptation of
HIF-1α under serious hypoxia.

It has been indicated that tight control of transient HIF-
1α dynamics is crucial for cell survival (Bagnall et al., 2014).
LincRNA-p21 and miR-155 have the potential to modulate
cellular outcome in the hypoxic response since they can
modulate the dynamic modes of HIF-1α. On one hand,
knocking down lincRNA-p21 may be a rational strategy for
repressing tumorigenesis as lincRNA-p21 can promote HIF-1α
accumulation and facilitate the adaptation of tumors to hypoxia
(Yang et al., 2014; Koyasu et al., 2018). Indeed, lincRNA-p21
knockdown induces G2/M phase arrest and promotes apoptosis
to enhance the radiosensitivity of SMMC7721 and U251MG cells
in hypoxia (Shen et al., 2017). Moreover, it has been reported
that lincRNA-p21 knockout abrogates the migration and survival
of mesenchymal stem cells by hypoxia preconditioning (Meng
et al., 2018). On the other hand, miR-155 mediates proliferation
suppression of non-small cell lung cancer cells in radiotherapy via
decreasing the expression of HIF-1α (Zhu et al., 2019). miR-155
deficiency results in upregulated HIF-1α expression, promoting
the growth of solid tumors (Wang et al., 2015). In addition,
a recent study showed that targeting the temporal dynamics
of HIF-1α-induced tumor-secreted microenvironmental factors
can halt tumor migration (Singh et al., 2019). Lehmann et al.
revealed that hypoxia can induce a HIF-1α-dependent transition

from collective-to-amoeboid dissemination in epithelial cancer
cells (Lehmann et al., 2017). Kang et al. proposed that HIF-1α and
several microRNAs including miR-34, miR-145, and miR-200,
may play critical roles in epithelial to mesenchymal transition
and cancer metastasis (Kang et al., 2019). Thus, we predict that
modulating HIF-1α dynamics or activity by changing lincRNA-
p21 or miR-155 expression may affect cancer migration and
dissemination remarkably. Together, more attention should be
paid to the treatment strategy of cancer by targeting lincRNA-p21
and miR-155 in the future.
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Colorectal cancer (CRC) has been most extensively studied for characterizing genetic 
mutations along its development. However, we still have a poor understanding of CRC 
initiation due to limited measures of its observation and analysis. If we can unveil CRC 
initiation events, we might identify novel prognostic markers and therapeutic targets 
for early cancer detection and prevention. To tackle this problem, we establish the 
early CRC development model and perform transcriptome analysis of its single cell 
RNA-sequencing data. Interestingly, we find two subtypes, fast growing vs. slowly 
growing populations of distinct growth rate and gene signatures, and identify CCDC85B 
as a master regulator that can transform the cellular state of fast growing subtype 
cells into that of slowly growing subtype cells. We  further validate this by in vitro 
experiments and suggest CCDC85B as a novel potential therapeutic target that may 
prevent malignant CRC development by suppressing stemness and uncontrolled 
cell proliferation.

Keywords: colorectal cancer, adenomatous polyposis coli, single cell transcriptomics, gene regulatory network, 
CCDC85B, systems biology, master regulator analysis

INTRODUCTION

Colorectal cancer (CRC) has been most extensively studied for characterizing genetic 
mutations along its development. Loss of adenomatous polyposis coli (APC) is considered 
as the first step of CRC development, which is followed by mutations of other driver 
genes such as KRAS and TP53 (Fearon and Vogelstein, 1990; Powell et  al., 1992). Gene 
alterations of APC abrogate its binding with β-catenin and result in β-catenin release, 
which in turn brings about hyper-activity of the canonical Wnt signaling pathway and 
failure of the cell-cell adhesion regulation (Valenta et  al., 2012). The disruption of APC 
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TABLE 1 | Sequences of siRNAs.

siRNA name Target gene Sense siRNA sequence (5'-3') Antisense siRNA sequence (5'-3')

siCCDC85B-1 CCDC85B GAGGUUCGAAGCUCCUAGU ACUAGGAGCUUCGAACCUC
siCCDC85B-2 CCDC85B GAUUGGCUGUCCUUCCAUA UAUGGAAGGACAGCCAAUC
siPTTG1-1 PTTG1 AGCACCAGAUUGCGCACCU AGGUGCGCAAUCUGGUGCU
siPTTG1-2 PTTG1 GUUGAAUUGCCACCUGUUU AAACAGGUGGCAAUUCAAC

ultimately leads to dysfunction in maintaining the homeostasis 
of cellular regulation and results in more chances of other 
genetic alterations. Our understanding of CRC progression 
has been advanced over last few decades, but we  still do 
not know much about its initiation process starting from 
APC deficiency. This is because there are limited measures 
for observation and analysis of cancer initiation events. If 
we unveil CRC initiation events, we might be able to identify 
novel prognostic markers and therapeutic targets for early 
cancer detection and prevention (Kaufman et  al., 2016).

In order to investigate the cancer initiation process, we need 
to utilize a tool that can monitor instantaneous and delicate 
changes of the transcriptomic landscape during the initiating 
events. Single cell RNA sequencing (scRNA-seq) can fulfill this 
demand by dissecting gene expressions at each individual cellular 
resolution. Several studies on development and oncology 
exemplified that we can capture heterogeneity in cell fate decision 
or drug response using scRNA-seq (Maamar et  al., 2007; 
Huang, 2009; Eldar and Elowitz, 2010; Petropoulos et al., 2016).

As it is not possible to analyze or understand all uncountable 
miniscule changes at an mRNA level captured by scRNA-seq, 
it is essential to find out a few key genes that might be primarily 
responsible for controlling the cell phenotypes. Such genes, 
called “master regulators,” trigger a series of gene regulation 
events which ultimately lead to critical changes in gene regulatory 
networks (Califano and Alvarez, 2017). We  note that recent 
progresses in systems biology show the importance of unraveling 
the gene regulatory network and the causal relationships among 
the gene regulations to properly understand the complex 
biological phenomena (Schmidt et  al., 2005; Kim and Cho, 
2006; Park et  al., 2006; Kim et  al., 2007, 2011; Kwon and 
Cho, 2007; Murray et  al., 2010). Previous studies report that 
master regulator analysis can successfully identify crucial genes 
for maintaining and controlling cancer gene regulatory networks 
(Wang et  al., 2009; Campbell et  al., 2016).

In this study, to understand the earliest events in CRC 
initiation, we  establish an early CRC development model by 
disrupting APC in the normal human colorectal epithelial cell 
with shRNA and conduct scRNA-seq. Interestingly, we  find 
two subtypes, fast growing vs. slowly growing populations of 
distinct growth rate and gene signatures. We  focus on how 
they work differently at the transcriptomic level and conduct 
master regulator analysis. As a result, we  find CCDC85B as 
a master regulator that can transform the cellular state of fast 
growing subtype cells into that of slowly growing subtype cells. 
We  further validate this by in vitro experiments and suggest 
a novel therapeutic strategy that may prevent malignant CRC 
development by suppressing stemness and uncontrolled 
cell proliferation.

MATERIALS AND METHODS

Cell Culture
Immortalized human colon epithelial cells (HCEC), 1CT and 
its wild type APC depleted version, 1CT-A cells are generously 
provided by Jerry W. Shay (University of Texas, Dallas, TX, 
United  States). 1CT and 1CT-A cells are cultured in basal X 
media (DMEM: M199, 4:1; WelGENE Inc., Gyeongsan, Korea), 
supplemented with epidermal growth factor (20 ng·ml−1; Thermo 
Fisher Scientific, Waltham, MA, United  States), hydrocortisone 
(1  mg·ml−1), insulin (10  mg·ml−1), transferrin (2  mg·ml−1), 
sodium selenite (5 nM; all from Sigma, Deisenhofen, Germany), 
2% FBS, and antibiotics (100 units·ml−1 of penicillin, 100 μg·ml−1 
streptomycin, and 0.25 μg·ml−1 of Fungizone; Life Technologies 
Corp., Carlsbad, CA, United States). Cells are cultured at 37°C 
in a humidified atmosphere containing 5% CO2.

Transfection and Transduction of shRNA
For lentivirus production, HEK 293T cells are transfected with 
shRNA targeting APC (shAPC; TRCN0000244294, Sigma) and 
packaging mix (pLP1, pLP2, and pLP/VSVG) using Lipofectamine 
(Invitrogen, Waltham, MA, United  States), according to 
manufacturer’s protocols. Then viral supernatants are collected 
and applied to target cells with polybrene (4  μg·ml−1; Sigma). 
Infected cells are selected with puromycin (500 ng·ml−1; Sigma) 
before harvest. 1CT cells infected with scrambled shRNA (shScr) 
are prepared as control samples, and their culture periods are 
matched with the shAPC samples.

Transfection of siRNA
Control siRNA (siControl), CCDC85B siRNA (siCCDC85B-1 
and siCCDC85B-2), and PTTG1 siRNA (siPTTG1-1 and 
siPTTG1-2) oligonucleotides (BIONEER Corporation, Daejeon, 
South Korea) are synthesized in a sense-antisense duplex form 
(Table  1). Primer sequences for ASCL2, CCDC85B, CCNE1, 
and CCNA2 were referred from OriGene Technologies, Inc. 
(Rockville, MD, United States). For siRNA transfection, mixture 
of siRNAs and RNAiMAX (Thermo Fisher Scientific) with final 
concentration of 2  μM is applied to the target cell on the 
60  mm culture dish, following the manufacturer’s protocol. 
After 24  h, transfected cells are subcultured into 24-well plates 
and 60  mm culture dish for growth curve check and RNA 
harvest, respectively.

Total RNA Extraction and qRT-PCR
Total RNA is extracted from cells by using RNA-spin™ Total 
RNA Extraction Kit (iNtRON Biotechnology, Gyeonggi, South 
Korea), according to the manufacturer’s protocol, and treated 
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with RNase-free DNase I  (Thermo Fisher Scientific) to remove 
contaminating genomic DNA. cDNA is then synthesized from 
total RNA by reverse transcription (RT) using a DiaStar RT 
kit (Solgent, Daejeon, Korea) and the PCR system (Veriti 96-well 
Thermal Cycler; Applied Biosystems, Waltham, MA, 
United  States). Quantitative reverse transcription PCR (qRT-
PCR) analysis is performed using the QuantStudio 5 real-time 
PCR system (Applied Biosystems) with the corresponding 
primers (Table  2).

Bulk RNA Sequencing
RNA sequencing experiments are performed using tools from 
the commercial microarray service Ebiogen, Inc. (Seoul, Korea). 
Total RNA is extracted from 1CT and 1CT-A cells using 
RNA-spin™ (iNtRON) according to the manufacturer’s 
instructions. The isolated RNA is amplified and subjected to 
cDNA microarray (Ebiogen).

Single Cell RNA Sequencing
HCEC-1CT cells infected with shAPC and their matched cells 
infected with shScr are harvested at 3- and 7-days after 
transduction, and stored on ice in PBS before the single cell 
library preparation. scRNA-seq is performed using the 10x 
Genomics Chromium V3 kit, following the manufacturer’s 
protocol (Zheng et  al., 2017). We  align the scRNA-seq dataset 
along hg38 with CellRanger 3.0.0, and process with Seurat 3.1 
R toolkit (Butler et  al., 2018; Stuart et  al., 2019). We  perform 
initial quality control with Seurat, following the standard 
preprocessing workflow for scRNA-seq data (Ilicic et al., 2016). 
Dying cells and multiplets are excluded under the assumption 
that unhealthy cells tend to have either very few genes (<200) 
or low unique feature counts (<500; Supplementary Figure S1 
and Supplementary Table S1).

For batch correction, we use ComBat from surrogate variable 
analysis (sva) package (Johnson et  al., 2007; Leek et  al., 2012) 
on Trimmed Mean of M-values (TMM) normalized data. In 
addition, we  check the consistency of the batch correction 
results by comparing the results of ComBat and the different 
method called canonical correlation analysis (CCA; 
Supplementary Figure S10).

Then we  additionally conduct data imputation using deep 
count autoencoder (DCA) in order to denoise scRNA-seq 

datasets (Eraslan et  al., 2019), and compare the scRNA-seq 
datasets before and after denoising process with DCA 
(Supplementary Figure S8). By using another data imputation 
tool, Adaptively-thresholded Low Rank Approximation (ALRA), 
we  check the consistency of the imputation performance 
(Linderman et  al., 2018; Supplementary Figure S9).

Single cell gene expression levels are scaled, so that the 
mean is equal to zero and the variance is equal to one, and 
the effects of cell cycle heterogeneity are ruled out by cell 
cycle score regression according to Seurat manual.

Clustering of Fast Growth and Slow 
Growth Subpopulations
We perform unsupervised clustering of single cell dataset 
using shared nearest neighbor (SNN) modularity optimization 
using FindClusters function of Seurat with resolution of one. 
These clusters are visualized using uniform manifold 
approximation and projection (UMAP) dimensionality 
reduction (McInnes et  al., 2018).

We assign cell cycle score to each cell using the 
CellCycleScoring function of Seurat, which quantifies G2M 
and S phase scores of single cells based on the scoring strategy 
and the cell cycle marker genes suggested from previous studies 
(Kowalczyk et  al., 2015; Tirosh et  al., 2016). Then, each cell 
is classified as a cell in G2M, S, or G1 phase according to 
its cell cycle score.

The arrest signature score of each cell is quantified with 
AddModuleScore of Seurat along the cell cycle arrest related 
gene sets extracted from MSigDB (Subramanian et  al., 2005; 
Liberzon et  al., 2011, 2015). It is the gene set from Gene 
Ontology (GO) term, GO_REGULATION_OF_CELL_CYCLE_
ARREST, that shows the most general coverage (Ashburner 
et  al., 2000; The Gene Ontology Consortium, 2019). This gene 
set comprises 107 genes related with any process that modulates 
the rate, frequency, or extent of cell cycle arrest, the process 
in which the cell cycle is halted during one of the normal 
phases. Single cells are labeled as “arrested (Arr)” if their arrest 
signature scores are ranked higher than one-fifth of those of 
the whole single cells, otherwise labeled as “non-arrested (NArr).” 
If the ratio of Arr cells to NArr cells in a cluster is over 0.8 
or less 0.2, then the cluster is labeled as “Arr” or “NArr,” 
respectively. A cluster with the average APC expression level 

TABLE 2 | Sequences of qRT-PCR primers.

Target gene Forward primer sequence (5'-3') Reverse primer sequence (5'-3')

β actin AGAGCTACGAGCTGCCTGAG AGCACTGTGTTGGCGTACAG
APC GCCCACGAATTCTAAAACCA TTGTCCTGCCTCGAGAGATT
MYC GTCAAGAGGCGAACACAC TTGGACGGACAGGATGTA
CCDC85B TCATGCAGGAGGTGAATCGGCA AGTCCAGGAAGCAGCAGAGGTC
PTTG1 GGACCCCTCAAACAAAAACA GAGAGGCACTCCACTCAAGG
CCNA2 CTCTACACAGTCACGGGACAAAG CTGTGGTGCTTTGAGGTAGGTC
CCNB1 TTGGTGTCACTGCCATGTTT CCGACCCAGACCAAAGTTTA
CCND1 GCTGCGAAGTGGAAACCATC CCTCCTTCTGCACACATTTGA
CCNE1 TGTGTCCTGGATGTTGACTGCC CTCTATGTCGCACCACTGATACC
LGR5 CTCCCAGGTCTGGTGTGT GAGGTCTAGGTAGGAGGTGAAG
ASCL2 CGCCTACTCGTCGGACGA GCCGCTCGCTCGGCTTCCG
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smaller than the first tertile is labeled as “low APC,” otherwise 
it is labeled as “high APC.” Then a cluster with both “low 
APC” and “Arr” is defined as slow growth subpopulation (SG) 
and clusters with “low APC” and “NArr” are defined as fast 
growth subpopulations (FG).

In addition, we  investigate on differential markers of the 
identified clusters using FindMarkers function in Seurat package 
(Butler et  al., 2018; Stuart et  al., 2019), by setting log fold 
change threshold to 0.25 (Supplementary Table S3). We  also 
characterize the cell type change of shAPC single cell RNA-seq 
samples with differentially expressed genes (DEGs) between 
1CT and 1CT-A to examine whether there is any new cell 
type appeared, but no distinctive patterns are observed. The 
DEGs between 1CT and 1CT-A are determined with two-fold 
change and 0.01 cutoff of value of p using two-tailed t-test.

Characterization of Slow Growth 
Subpopulation
Apoptosis signature scores of SG cells are measured in the 
same way as the arrest signature score described in “Clustering 
of Fast Growth and Slow Growth Subpopulation” section, 
according to the cell apoptosis related gene set, GO_
EXECUTION_PHASE_OF_APOPTOSIS (Ashburner et al., 2000; 
The Gene Ontology Consortium, 2019).

Stemness signature scores of SG cells are quantified using 
TCGAanalyze_Stemness function provided by TCGAbiolinks 
R toolkit, which generates mRNAsi stemness index described 
in the previous study (Malta et al., 2018). The stemness signature 
used here is PCBC_stemSig which is the default stemness 
signature obtained using the data from Progenitor Cell Biology 
Consortium (PCBC). We analyze whether there are subclusters 
within FG or SG along with the signature score, but the groups 
along with signatures are not clearly discriminated in the 
activity inference (Supplementary Figure S7).

Protein Activity Inference Using VIPER
meta-Virtual Inference of Protein-activity by Enriched Regulon 
(metaVIPER) analysis is conducted to investigate the master 
regulators which control the fate determination of FG and SG 
(Alvarez et  al., 2016). Since the single cell dataset lacks a 
tissue context, we use here metaVIPER which infers a regulatory 
network without tissue-specific regulatory information (Ding 
et  al., 2018). First, the network of CRC cell is inferred using 
the patient expression dataset obtained from The Cancer Genome 
Atlas (TCGA) by the RTN package (Fletcher et al., 2013; Castro 
et  al., 2016). Then, metaVIPER analysis is performed upon 
this CRC network with inputs composed of those genes of 
interest. The input gene lists used here are the list of DEGs 
between FG and SG (1.5-fold change, p  <  0.01), and regulon 
lists generated by single-cell regulatory network inference and 
clustering (SCENIC).

Reconstruction of Gene Regulatory 
Networks Using SCENIC
Single-cell regulatory network inference and clustering analysis 
is performed to generate the gene regulatory networks of SG 

and FG as described in the original paper using pySCENIC 
version 0.9.19 (Aibar et  al., 2017). The corresponding auxiliary 
datasets used for SCENIC analysis are human cisTarget of 
100  bp down, 500  bp up, and 10  kb up and down with the 
genome version of hg38, human TF binding motif provided 
by cisTargetDB of version 9, and the list of curated human 
TF comprising 1,390 genes. The resulting regulon lists are 
collected and used for the metaVIPER analysis to compute 
the activity difference between SG and FG.

Selection of Targets
Target candidates generated from metaVIPER are filtered by 
t-test between SG and FG (p < 0.01). Then hierarchical clustering 
is performed with these genes to select a gene group 
downregulated in SG. The candidates are ranked along with 
the difference of average activity and expression level between 
SG and FG. The candidates of the top largest difference are 
selected for the next step analysis. At this point, since the 
expression level shows less clear discrimination between SG 
and FG, the threshold for expression difference is set to 
be  one-third while that for activity difference is set to 
be  one-sixth.

Next, the filtered target candidates are screened by how 
they are closely related to APC under the rationale that the 
target should cover the effect of APC in order to keep SG. 
Therefore, we investigate the shortest path length between APC 
and the target candidate by using the input list comprising 
APC, CTNNB1, WNT, candidate itself and its downstream 
target gene list produced by SCENIC in STRING DB version 
11 (Szklarczyk et  al., 2019). In addition, how much target 
genes a candidate shares with APC is quantified from the 
gene regulatory network inferred from CRC patients in TCGA 
database described in “Protein Activity Inference Using VIPER” 
section.

Then, interactions within target candidates are explored by 
MINDy to reconstruct a network composed of candidate TFs 
and their modulators (Wang et  al., 2009). The most densely 
connected TF with others is considered as the most important 
master regulator.

Networks are visualized using Cytoscape version 3.7.1 
(Shannon et  al., 2003).

RESULTS

Slowly Growing and Fast Growing 
Subpopulations Are Found From the 
scRNA-seq Dataset of APC-Deficient 
Normal Colon Epithelial Cells
In order to investigate complex events occurring during the 
cancer initiation, we establish an early CRC development model, 
perform scRNA-seq, and analyze the scRNA-seq dataset 
(Figure  1). scRNA-seq is conducted at 3- and 7-days after 
transduction of shAPC or shScr on HCEC-1CT (1CT) cells. 
We  examine the relative gene expression levels of APC and 
its downstream targets by performing qRT-PCR of remaining 
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FIGURE 1 | The scheme of single cell RNA-sequencing (scRNA-seq) experiment and analysis. scRNA-seq experiment and analysis comprise five steps: 
single cell experiment, preprocessing, clustering, interaction inference, and in vitro validation. Samples for scRNA-seq are prepared by transduction of shRNA 
targeting APC (shAPC) or scrambled shRNA (shScr) in HCEC-1CT cells, and scRNA-seq is performed using 10x chromium platform. Then we take 
preprocessing steps such as alignment, initial quality control, and data imputation. The single cell data points are clustered, and each cluster is scored 
according to gene signatures. Then, interactions within distinct clusters are inferred using Virtual Inference of Protein-activity by Enriched Regulon (VIPER) 
and single-cell regulatory network inference and clustering (SCENIC) to produce master regulators for the clusters. These master regulators are validated 
using siRNA transfection in 1CT-A cells.
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FIGURE 2 | Clustering of slow growth and fast growth subpopulation in scRNA-seq dataset. (A) Relative adenomatous polyposis coli (APC) gene 
expression of single cell samples in quantitative reverse transcription PCR (qRT-PCR). (B) APC gene expression of single cell samples in scRNA-seq dataset. 
(C) Growth curve of HCEC-1CT with shScr and shAPC transduction during the short initial period of time (~7 days after transduction). The shAPC samples 
grow slightly slower than shScr samples. (D) Growth rate of HCEC-1CT with shScr and shAPC transduction (16 days after transduction). The shAPC 
samples grow faster than shScr samples. Distribution of arrest signature after APC knockdown (E) at day 3 scRNA-seq dataset and (F) at day 7 scRNA-
seqe dataset. (G) Unsupervised clustering of scRNA-seq dataset. (H) APC gene expression level of scRNA-seq dataset. (I) Binarized arrest signature score 
of scRNA-seq dataset. (J) Cluster labels of scRNA-seq dataset. The criteria are designated to each cluster according to the combination of the APC level 
and arrest signature score: HFG for APC High and Fast Growth; LFG for APC Low and Fast Growth; LSG for APC Low and Slow Growth; and None for the 
remainders.
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cells after single cell library preparation (Figure  2A and 
Supplementary Figure S2A), as well as by investigating the 
expression levels from scRNA-seq (Figure 2B and Supplementary 
Figure S2B). We  confirm that the level of APC is dropped 
to at least 50% in shAPC samples compared to shScr samples 
in both bulk and single cell data.

Interestingly, we find that APC knockdown of 1CT decreases 
the cell growth mildly during a short initial period of time 
(about 7  days elapsed after shAPC transduction; Figure  2C) 
but eventually increases the cell growth at a later time (16 days 
elapsed after shAPC transduction; Figure 2D). This relationship 
between depletion of APC and the relatively slow cell growth 
is partially supported by a previous study reporting that APC 
loss drives the growth arrest or senescence program in the 
premalignant renal tumor (Cole et  al., 2010). Since this trend 
is not observed in bulk qRT-PCR results (Figure 2C), we assume 
that it might be  originated from rare and hard-to-observe 
events during CRC initiation.

To check out this assumption, we  initially analyze changes 
in the arrest signature score between APC deficient cells and 
others, and find that the arrest signature score is increased 
in shAPC samples compared to that of shScr samples 
(Figures  2E,F and Supplementary Figure S3). This shift of 
the arrest signature score appears in both day3 and day7 
samples, and becomes clearer in day 7 samples.

In order to figure out the source of driving this increased 
arrest signature in APC downregulated cells, we  investigate 
the characteristics of clusters in shAPC single cell samples by 
assuming that there might be  a subpopulation responsible for 
this phenomenon. Eleven clusters are identified and labeled 
according to four criteria (HFG for APC High and Fast Growth; 
LFG for APC Low and Fast Growth; LSG for APC Low and 
Slow Growth; and None for the remainders) based on arrest 
signature and APC level (Figures  2G–J and Supplementary 
Table S2). There are one cluster of HFG (Cluster 7), three 
clusters of LFG (Clusters 2, 5, and 8), and one cluster of LSG 
(Cluster 9). It is remarkable that the population of LSG is 
about one-sixth of LFG population, which is the reason why 
bulk analysis could not capture the characteristics originated 
from LSG (Supplementary Table S4 and Supplementary 
Figure S2A). Since our interest lies on the cells affected by 
APC downregulation, we exclude the HFG cluster in downstream 
analysis and take only LFG and LSG for further analysis. The 
labels of LFG and LSG are shortened hereafter as FG (Fast 
Growth) and SG (Slow Growth), respectively.

SG and FG Have Different Phenotypical 
Characteristics and Gene Regulatory 
Networks
We further examine the characteristics of SG and FG to see 
whether they actually differ in phenotypical biological processes 
such as apoptosis and stemness besides the arrest signature. 
As a result, we  find that SG has a higher apoptosis signature 
and a lower stemness signature than FG (Figure  3A and 
Supplementary Figure S4), implying that SG has a fate to go 
through apoptosis without developing further malignancy.

Since SG is assumed to eventually diminish while FG is 
to progress into advanced cancer, we perform master regulator 
analysis to identify transcription factors that can drive FG to 
SG such that the majority of APC deficient cells undergo 
apoptosis. We  perform metaVIPER (Alvarez et  al., 2016; Ding 
et  al., 2018) analysis with 848 DEGs between 1CT and its 
wild type APC depleted version, HCEC-1CT-A (1CT-A), and, 
as a result, we  find 412 master regulators present in either 
SG or FG.

For further master regulator analysis, we  examine the gene 
regulatory networks of FG and SG using SCENIC (Aibar et al., 
2017) in order to determine whether the two subpopulations 
have differently organized gene regulation structures. Here, 
we  define SG regulons and FG regulons as those genes shared 
by both regulons inferred from SCENIC and the master regulators 
found from DEG metaVIPER. It turns out that FG regulons 
comprise seven transcription factors such as E2F7, FOXN2, 
TFAP4, FOXK2, NFIX, RARA, and HMGA1 (Figure  3B), 
whereas SG regulons comprise nine transcription factors such 
as ARNTL2, YBX1, ZNF513, HINFP, PPARG, TEF, TEAD4, 
ZNF766, and NR1D1 (Figure  3C).

We expand the list of regulons up to 1,411 genes by merging 
SG regulons, FG regulons, and their target genes. Then, 
we  perform metaVIPER again with this list of regulons to 
find out the master regulators that can drive FG into SG 
(Figure  3D). Genes downregulated in SG with statistical 
significance (two-tailed t-test, p  <  0.05) are taken and they 
are filtered again according to the level of difference in their 
expressions and activities across SG and FG (Figures  4A,B).

CCDC85B and PTTG1 Are the Most 
Important Master Regulators Responsible 
for the Difference Between SG and FG
In order to narrow down the final targets, we  examine the 
interactions between APC and target candidates or within target 
candidates (Figures  4A,B). First, the shortest path lengths 
between candidates and APC are investigated using STRING 
DB (Szklarczyk et  al., 2019), resulting in three groups of genes 
which have any connection to APC: HDAC2, RUVBL1, and 
RUVBL2 for a length of two; CCDC85B, ELOB, ELOC, ILF2, 
PFN1, and PTTG1 for a length of three; DNTTIP2 and PA2G4 
for a length of four (Figure  4C). In addition to the shortest 
path lengths, we investigate the number of genes which candidates 
share with APC, and CCDC85B is found to be  one of the 
most densely APC regulon sharing genes (Figure  4D).

Since HDAC2 is known to have many redundant functions, 
it is classified as a less attractive marker for early cancer 
development (Jurkin et  al., 2011). Considering that 1CT cell 
line has hTERT manipulation, genes related with telomerase 
such as RUVBL1 and RUVBL2 might be  screened as 1CT 
context specific targets. Therefore, the genes with the length 
of three are considered as more promising targets instead of 
those with the length of two, and their interactions via 
modulators are probed using Modulator Inference by Network 
Dynamics (MINDy; Wang et al., 2009; Figure 4E). As a result, 
we  find that only CCDC85B and PTTG1 have a direct 
cross-modulation relationship among six candidate genes.  
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Assuming that tightly bound master regulators are more likely 
to control the biological process that is distinct in each of 
SG and FG, we  conclude that CCDC85B and PTTG1 can 
be  the final target candidates.

Since CCDC85B and APC share 124 genes (Figure  4F) 
and their shared genes are participants of essential biological 

processes such as regulation of macromolecule biosynthetic 
process and regulation of RNA metabolic (Supplementary 
Table S5), we  select CCDC85B as a primary target candidate.

To validate that CCDC85B and PTTG1 are relevant with 
the characteristics of SG, the correlation between their expressions 
or activities and the apoptosis or arrest signature are further 

A

B

D

C

FIGURE 3 | Differently organized gene regulatory networks of slow growth subpopulation (SG) and fast growth subpopulation (FG). (A) Apoptosis and stemness 
signature scores of SG and FG. Gene regulatory networks of (B) FG and (C) SG. (D) Master regulator analysis heatmap for SG and FG. SG and FG have different 
patterns of master regulator expressions.
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investigated (Supplementary Figures S5, S6). Both activity and 
expression of CCDC85B have a negative correlation with arrest 
and apoptosis signature scores, implying that its downregulation 

might slow down the cell cycle. The relationship of the expression 
or activity of PTTG1 and the score of apoptosis or arrest is 
similar to that of CCDC85B.
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FIGURE 4 | Prioritization of target candidates according to interactions with APC and the interactions among the candidates. (A) Gene expression levels and (B) 
protein activity levels of target candidates. (C) The shortest path length from each target candidate to APC. (D) Ratio of shared regulons between target candidates 
and APC. (E) Modulatory interactions within six target candidates. (F) Shared target genes of CCDC85B and APC.
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FIGURE 5 | Growth curve and gene expression level after CCDC85B or PTTG1 interference in 1CT-A cells. Growth rate of 1CT-A cells after interfering with (A,C) 
CCDC85B or (B,D) PTTG1. Relative gene expression levels of 1CT-A cells after interfering with (E) CCDC85B or (F) PTTG1.

In vitro Knockdown of CCDC85B Shows 
Significant Influences on Both Stemness and 
Cell Cycle as Predicted by Network Analysis
To validate whether the candidate targets can actually interrupt 
cancer progression, we perform in vitro knockdown of CCDC85B 
and PTTG1 using siRNA and examine the changes of the 
growth rate and transcriptomic levels. The cell growth rate of 
1CT-A is dramatically decreased with the transfection of siRNA 
targeting CCDC85B (siCCDC85B; Figures  5A,C). The relative 
mRNA levels of APC and MYC are not affected by siCCDC85B 
transfection, whereas those of CCDC85B and PTTG1 are 
decreased a lot (Figure  5E). We  investigate the changes in 
the level of various cyclins to figure out which cyclins CCDC85B 
has affected. Since siCCDC85B decreased the relative mRNA 
levels of Cyclin A2 and Cyclin B1, we can infer that CCDC85B 

might act on G2/M phase (Figure 5E). Interestingly, it coincides 
with the cell phase where the majority of SG stays in our 
single cell data (Supplementary Table S2).

Next, we  examine the effects of PTTG1 interference using 
siRNA (siPTTG1) in 1CT-A on cell cycle and stemness since 
PTTG1 is considered to function with CCDC85B according 
to MINDy analysis. The cell cycle is arrested by siPTTG1 
transfection, and the primarily affected cyclins are Cyclin A2 
and Cyclin B1 as in the case with the siCCDC85B results 
(Figures  5B,D). siPTTG1 transfection reduces only PTTG1 
significantly not CCDC85B, whereas siCCDC85B transfection 
reduces the level of both CCDC85B and PTTG1. We  need to 
note that stemness markers for colon cells such as LGR5 and 
ASCL2 show a non-significant change when PTTG1 is perturbed 
unlike CCDC85B perturbation experimental results (Figure 5F).

188

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Choi et al. Cell-Fate Transition in Colon-Cancer Development

Frontiers in Genetics | www.frontiersin.org 11 October 2020 | Volume 11 | Article 570546

DISCUSSION

In this study, we investigate master regulators the downregulation 
of which can lead to suppression of early CRC progression by 
analyzing scRNA-seq data. We establish the early CRC development 
model by interfering with APC using shRNA in normal colon 
epithelial cells, 1CT, and then we  conduct scRNA-seq to capture 
small and heterogeneous changes that occur during the earliest 
events in CRC initiation. Since increment of arrest signature 
after APC downregulation is observed, we  assume that there 
might be  subpopulations responsible for this shift. We  find out 
two subpopulations with different growth rates, and define one 
subpopulation with a relatively slow cell cycle as the slow growth 
subpopulation (SG) and the other with a relatively fast cell cycle 
as the fast growth subpopulation (FG). Through further analysis, 
we  find that SG and FG differ in their organization of gene 
regulatory networks, as well as cell growth rates. Interestingly, 
SG has a low stemness signature and a high apoptosis signature, 
whereas FG has a high stemness signature and a low apoptosis 
signature. Although there is no direct experimental evidence 
presented in this study, it is highly likely that SG eventually 
goes through apoptosis instead of developing malignancy by 
acquiring stemness contrasting to the opposite fate of FG. Hence, 
we  presume that transforming the FG into the SG might be  a 
useful strategy of restraining early CRC development as it pursues 
diminishing the cell population of a malignant fate.

From the master regulator analysis, we  identify CCDC85B and 
PTTG1 as the two most promising master regulators that can 
discriminate SG and FG and validate that both can lower cell 
growth rates by knockdown experiments using siRNA. In particular, 
knockdown of CCDC85B lowers the expression level of stemness 
markers such as ASCL2 and LGR5  in addition to the level of 
cyclins, whereas knockdown of PTTG1 lowers only the expression 
level of cyclins. Both CCDC85B and PTTG1 affect Cyclin A2 
and Cyclin B1, which are known to act at G2/M phase. This 
might be  a predictable result since PTTG1 is previously reported 
to act as a master regulator that controls the cell cycle at G2/M 
phase (Quereda and Malumbres, 2009; Liang et  al., 2011). It is 
noteworthy that HDAC2 is one of the differential master regulators 
between SG and FG besides CCDC85B and PTTG1, since it 
implies that chromatin regulation plays a role in the discrimination 
of SG and FG. Considering that APC is known for its contribution 
in the chromosomal instability seen in many colon cancer cells, 
it seems natural for chromatin regulation to appear as one of 
the controlling mechanism of the earliest events of cancer 
development. A further study on this relationship between chromatin 
regulation and characteristics of SG and FG would add more 
value to the understanding on the earliest events in CRC initiation.

We infer that CCDC85B regulates stemness and cell cycle 
via β-catenin and PTTG1, respectively, based on literature 
survey and our own experiments. It is known that CCDC85B 
is overexpressed in the tumor sample of non-small cell lung 
cancer patients and that CCDC85B takes a crucial part in 
activation of β-catenin (Feng et  al., 2019). Therefore, we  can 
infer the decreased level of colon epithelial stemness markers 
after CCDC85B knockdown might be a result of the decreased 
active β-catenin induced by CCDC85B knockdown.

We show that CCDC85B knockdown decreases the relative 
mRNA expression levels of both CCDC85B and PTTG1, and 
that CCDC85B and PTTG1 has similar effects on the identical 
cell cyclins such as Cyclin A2 and Cyclin B1. Thus, we  can 
infer that CCDC85B affects cell cyclins through PTTG1.

In summary, we  suggest CCDC85B as a novel potential 
therapeutic target for restraining early CRC progression by 
lowering both the cell growth rate and stemness through the 
regulation of PTTG1 and β-catenin.
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The Waddington landscape provides an intuitive metaphor to view development as a

ball rolling down the hill, with distinct phenotypes as basins and differentiation pathways

as valleys. Since, at a molecular level, cell differentiation arises from interactions among

the genes, a mathematical definition for the Waddington landscape can, in principle, be

obtained by studying the gene regulatory networks. For eukaryotes, gene regulation is

inextricably and intimately linked to histone modifications. However, the impact of such

modifications on both landscape topography and stability of attractor states is not fully

understood. In this work, we introduced a minimal kinetic model for gene regulation

that combines the impact of both histone modifications and transcription factors. We

further developed an approximation scheme based on variational principles to solve

the corresponding master equation in a second quantized framework. By analyzing the

steady-state solutions at various parameter regimes, we found that histone modification

kinetics can significantly alter the behavior of a genetic network, resulting in qualitative

changes in gene expression profiles. The emerging epigenetic landscape captures the

delicate interplay between transcription factors and histone modifications in driving

cell-fate decisions.

Keywords: gene expression noise, minimum action, chromatin state, gene network, self-regulating gene

1. INTRODUCTION

A little more than five decades ago, Waddington introduced the metaphor to view cellular
differentiation into distinct lineages and cell types as a sequence of transitions among basins in a
landscape, wherein basins indicate stable phenotypes (Waddington and Kacser, 1957). The appeal
of this metaphor to intuition has inspired efforts of theoretical formulation at the molecular level by
studying genetic networks formed by transcription factors (TF) (Sasai and Wolynes, 2003; Hornos
et al., 2005; Kærn et al., 2005; Walczak et al., 2005a,b; Xu and Tao, 2006; Goldberg et al., 2007; Kim
and Wang, 2007; Shahrezaei and Swain, 2008; Cao et al., 2010; Venegas-Ortiz and Evans, 2011;
Wang et al., 2011, 2014; Zhang et al., 2013; Zhang and Wolynes, 2014; Lv et al., 2015; Chen et al.,
2016; Qiu et al., 2020). These studies highlighted the importance of gene expression noise in driving
the transition among steady states. Noise is a manifestation of the inherent stochasticity of chemical
reactions and arises in gene regulatory networks as a result of protein production/degradation and
TF binding/unbinding. Noise, or fluctuation, is non-negligible due to the finite number of protein
molecules and the single molecule nature of DNA. Stochastic noise and network topology together
define the epigenetic landscape, much like the one envisioned by Waddington, that quantifies the
stability of various cell-defining gene expression levels or patterns.
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For eukaryotic organisms, in addition to transcription
factors, epigenetic marks such as DNA methylation and histone
modifications also play essential roles in regulating gene
expression (Lister et al., 2009; Lu et al., 2009; Artyomov et al.,
2010; Krishnakumar and Kraus, 2010; Margueron and Reinberg,
2010; Mariani et al., 2010; Andrew Angel, 2011; Miller-Jensen
et al., 2011; Furey and Sethupathy, 2013). They are known to
affect local chromatin packaging and global genome organization
(Zhou et al., 2011; Schlick et al., 2012; Rowley and Corces,
2018; Parsons and Zhang, 2019; Qi et al., 2020; Xie et al.,
2020), which in turn can regulate DNA accessibility to regulatory
proteins. Furthermore, DNA methylation directly impacts the
DNA binding affinity of transcription factors (Tate and Bird,
1993; Zhou et al., 2016; Flavahan et al., 2019). Importantly, the
chemical modifications themselves may give rise to steady states
independent of the TF-centric genetic network. For example,
modification of nucleosomes recruits enzymes affecting the
neighboring nucleosomes, causing them to be similarly modified
(Bannister and Kouzarides, 2011). Many elegant theoretical
attempts have demonstrated how such interactions can bring
about collective changes of many nucleosomes and allow them to
exhibit distinct multistable states (Dodd et al., 2007; Sedighi and
Sengupta, 2007; David-Rus et al., 2009; Micheelsen et al., 2010;
Sneppen and Mitarai, 2012; Dayarian and Sengupta, 2013; Jost,
2014; Sood and Zhang, 2020). Therefore, it is crucial to account
for the dynamics and regulation of epigenetic modifications
when constructing the landscape for cellular differentiation
in eukaryotes.

Many research groups have studied the interplay between
genetic and epigenetic switches in regulating gene expression.
For instance, generalized genetic networks that couple each
gene to a binary or ternary variable representing the collective
histone states have been used as models for stem cells to
account for epigenetic degrees of freedom, albeit in a coarse
grained fashion (Artyomov et al., 2010; Binder et al., 2013;
Sasai et al., 2013; Ashwin and Sasai, 2015; Huang and Lei,
2018; Folguera-Blasco et al., 2019). These studies found a
significant dependence of the probability landscape of protein
expression computed from stochastic simulations on chromatin
state dynamics. Similarly coarse-grained treatment of epigenetic
switches was shown to introduce hysteresis (Bhattacharyya
et al., 2020) and homeorhesis (Matsushita and Kaneko, 2020)
to the dynamics of gene regulatory networks. Notably, Zhang
et al. (2019) explicitly considered the modification of individual
nucleosomes and studied the impact of suchmodifications on the
probability landscape of a single self-activating gene and a pair of
mutually repressive genes. However, the lack of analytical results
has made the sensitivity analysis of the computed landscape
with respect to parameter values, which may vary along cell
differentiation, numerically challenging.

In this work, we investigate the combined impact of
TF binding and epigenetic modifications in regulating the
expression of a self-activating gene. Rather than coarse-
graining the epigenetic switch into a binary or ternary
variable, we explicitly account for the dynamical modification of
individual nucleosomes. The variational approach (Eyink, 1996;
Sasai and Wolynes, 2003) was used to compute steady-state

probability distributions from deterministic equations and avoid
computationally intensive stochastic simulations. Moreover, we
generalize the typically used Poisson ansatz to better treat
systems with particle conservation constraints, such as our
epigenetic switch, that are more naturally described using
SU(2) than Bosonic operators (Sood and Zhang, 2020). The
approach enabled a convenient exploration of the model’s
steady-state behavior across a wide range of parameters. Our
study suggests that fast, random perturbations to individual
histone modifications lead to the formation of a poised,
uncommitted chromatin state, which in turn can drive noisy
gene expression seen in stem cells. As the rate of such
random perturbations decreases and the role of cooperative
modifications of nucleosome prevails, the system transitions to a
bistable regime resembling a differentiated state. The transition
goes through an activated state with high gene expression,
highlighting the robustness of the network in activating gene
expression due to the feedback between genetic and epigenetic
switches. We further compared variational results with stochastic
simulations and discussed potential improvements in the
accuracy of the variational method.

2. MODEL

We consider a simplified model of eukaryotic gene regulation
that accounts for TF binding/unbinding as well as histone
modifications. The model couples the regulatory network of a
self-activating gene with an epigenetic switch that can lead to
active and repressive chromatin states.

For self-activating genes, their protein products bind with the
promoter to upregulate the transcription rate. As illustrated in
Figure 1, proteins are produced and destroyed with rates of g and
k, respectively. The protein production rate is further dependent
on whether the gene’s promoter is bound by TF (state 0) or not
(state 1), and we have g1 < g0 since the proteins are activators.
Here TFs correspond to gene transcription products, and they
bind to the promoter with rate h as dimers. The corresponding
unbinding rate is f . Binding rate depends on protein copy
number np as well as the number of modified nucleosomes nx as
detailed in Equation (3) below. Self-activating genes are known to
occur both as isolated entities (Ptashne et al., 1980; Johnson et al.,
1981; Hasty et al., 2000; Rosenfeld et al., 2002) and as common
motifs of larger interacting networks (Ralston and Rossant, 2005;
Loh et al., 2008; Orkin and Zon, 2008). They have been the subject
of extensive theoretical study as models of cellular differentiation
(Sasai and Wolynes, 2003; Hornos et al., 2005; Walczak et al.,
2005a,b; Xu and Tao, 2006; Goldberg et al., 2007; Kim and
Wang, 2007; Shahrezaei and Swain, 2008; Venegas-Ortiz and
Evans, 2011; Wang et al., 2011; Zhang et al., 2013; Zhang and
Wolynes, 2014). The epigenetic switch concerns a cluster of N =
60 nucleosomes, each of which can exist in a modified (X) or
unmodified (Y) state. The kinetics of chromatin system can be
described with the non-linear dynamics given below

X + X + Y
s1 ,s0−−→ 3X, Y + Y + X

z−→ 3Y , (1)
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FIGURE 1 | Illustration of the kinetic model that couples the regulatory

network of a self-activating gene with the reaction network of histone

modifications. The gene is auto-regulatory as the protein produced by the

gene (red circles) binds to the promoter region (yellow) with rate h and unbinds

with rate f . Depending on whether the regulatory protein is bound (State 0) or

unbound (State 1), the rate of protein production is g0 or g1. Proteins degrade

with rate k. Conversions between modified (X) and unmodified (Y)

nucleosomes can occur “randomly” (irrespective to the status of other

nucleosomes) with a basal rate q. Nucleosome modifications can also occur

more cooperatively with rate of z and s.

X
q
−→ Y , Y

q
−→ X. (2)

The inter-conversion between modified and unmodified
nucleosomes can either proceed via Equation (1) that requires
a pair of similarly modified nucleosomes to alter the state of a
nucleosome, or via noisy conversion (Equation 2) with first-
order kinetics. The former is meant to account for nucleosomes
being actively interconverted by modifying and removing
enzymes recruited by the similarly modified nucleosomes in
their vicinity. It is this recruitment that forms the positive
feedback in the system (Dodd et al., 2007; Micheelsen et al., 2010;
Xie and Zhang, 2019; Sood and Zhang, 2020). s, z, and q are the
rate constants of the corresponding reactions.

The coupling between the genetic and epigenetic switch is
achieved by introducing a dependence of protein binding rate on
the number of modified nucleosomes, i.e.,

h(np, nx) = ho
np(np − 1)

1+ exp
(

−0.5(nx − 35)
) . (3)

This dependence is motivated by the realization that actively
modified chromatin (nx > 35) exists in a more open state
that is more accessible to regulatory proteins. The particular
expression [1 + exp(−0.5(nx − 35))]−1 as the probability for
chromatin being open is typical of a two state system, assuming
that the energetic difference between open and closed chromatin
depends linearly on the number of modified nucleosomes.

Furthermore, the recruited conversion rate of unmodified to
modified nucleosomes depends on TF binding with s0 >

s1, assuming that TFs can attract modification enzymes to
chromatin. The values for the kinetic parameters were set relative
to the degradation rate k as g1 = 4, g0 = 65, ho = 1, f =
100, s1 = 8, s0 = 10s1, z = 8. The random histone modification
rate, q, was varied over a wide range of values as detailed below.
We used k = 1s−1, though changing this value will not affect the
steady state distributions and only renormalizes the timescale in
the model.

We carried out stochastic simulations of the kinetic model
using the Gillespie algorithm (Gillespie, 1977). Each plot shown
in Figure 2 was obtained from averaging over 100 independent
105-second-long simulations. These trajectories were initialized
with random configurations, and the number of modified
nucleosomes and protein molecules along each trajectory was
recorded at every second. We then combined the values from all
trajectories to estimate the steady state probability distributions,
Pss. For the plots shown in Figure 3 we used q = 10 and
set nx = 40 and np = 20 at t = 0. 200 independent
trajectories were performed to produce the average numbers
recorded at every 0.5 s.

3. THEORY

We reformulated the master equation describing the dynamical
evolution of the kinetic network as an imaginary time
Schrödinger equation

∂t |9(t)〉 = � |9(t)〉 . (4)

The state vector |9(t)〉 =
(

91(t)
90(t)

)

is a superposition of

all possible configurations weighted with their corresponding
probabilities such that 9i(t) =

∑

np ,nx
Pi({np, nx}; t) |np, nx〉

for i = 0, 1. The two components correspond to the DNA
state with regulatory proteins unbound (state 1) or bound (state
0), respectively. This reformulation makes use of a second
quantization based method (the Doi-Peliti approach), which has
been successfully employed in the study of reaction-diffusion
processes (Lee and Cardy, 1995), gene switches (Sasai and
Wolynes, 2003; Zhang and Wolynes, 2014), and other systems
(Täuber, 2014). In previous work, we applied the Doi-Peliti
approach to the epigenetic switch using operators that are a
representation of the SU(2) algebra (Sood and Zhang, 2020). The
SU(2) algebra allows us to treat the constraint of conservation of
particle in number in a mathematically elegant and convenient
way. When coupled to the self-activating gene, the stochastic
Hamiltonian for the system described in Figure 1 is given by

� = g(a†
p − 1)+ k(ap − a†

pap)+ s[J+n̂
2
x − n̂

2
xn̂y] (5)

+ z[J−n̂
2
y − n̂

2
y n̂x]+ q[J− − n̂x]+ q[J+ − n̂y]

+
(

−h(n̂p, n̂x) f
h(n̂p, n̂x) −f

)

,
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FIGURE 2 | Comparison between the probability distributions obtained from the variational approach and from stochastic simulations. (A–C) Steady state probability

distributions for the number of modified nucleosomes computed using the variational method (black solid line) and from stochastic simulations (red dots) for q = 100

(A), 10 (B), and 0.5 (C). (D–F) Steady state probability distributions for the number of protein molecules computed using the variational method (black solid line) and

from stochastic simulations (red dots) for q = 100 (D), 10 (E), and 0.5 (F). (G–I) Steady state probability distributions as a function of both number of proteins and

modified nucleosomes computed using the variational method for q = 100 (G), 10 (H), and 0.5 (I), showing two, one and two fixed points, respectively.

where g =
(

g1 0
0 g0

)

, s =
(

s1/N
3 0

0 s0/N
3

)

, z =
(

z/N3 0
0 z/N3

)

,

k =
(

k 0
0 k

)

, q =
(

q/N 0
0 q/N

)

, and h(n̂p, n̂x) =
n̂p(n̂p−1)

1+exp(−0.5(n̂x−35))
. The operator a†

p creates a protein molecule

when it acts on a state, a†
p |np, nx〉 = |np + 1, nx〉, whereas ap

serves to remove a protein molecule when acting on the same
state, ap |np, nx〉 = np |np − 1, nx〉. J+ converts an unmodified
nucleosome to a modified one by acting on a state, J+ |np, nx〉 =
(N − nx) |np, nx + 1〉, while J− acts to convert a modified
nucleosome to an unmodified one, J− |np, nx〉 = nx |np, nx − 1〉.
n̂p denotes the number operator, as its action on a ket gives
the number of protein molecules, n̂p |np, nx〉 = np |np, nx〉. In a
similar fashion, n̂x gives the number of modified nucleosomes
when it acts on a ket, n̂x |np, nx〉 = nx |np, nx〉, and n̂y gives
the number of unmodified nucleosomes, n̂y |np, nx〉 = (N −
nx) |np, nx〉. n2 = n(n− 1) denotes the falling factorial.

Exact solutions to Equation (4) are difficult to obtain.
Instead, we make use of an approximate, yet succinct and
powerful, variational approach originally introduced by Eyink
(Eyink, 1996; Alexander and Eyink, 1997). First, we realize that

the imaginary time Schrödinger equation is equivalent to the
functional variation of the following action Ŵ with respect to 8,
i.e., δŴ

δ8
= 0 for

Ŵ =
∫

dt 〈8|∂t − �|9〉 . (6)

By designing trial functions for 8 and 9 parameterized with
αL = α1

L,α
2
L, · · · ,α

K
L and αR = α1

R,α
2
R, · · · ,α

K
R , minimizing the

action leads to a set of ordinary differential equations,

K
∑

l=1

[

〈

∂8

∂αm
L

〉

∂9

∂αl
R

dαl
R

dt
−

〈

∂8

∂αm
L

∣

∣

∣

∣

�

∣

∣

∣

∣

9

〉

]

αm
L =0

= 0, (7)

form = 1, · · · ,K. (8)

Also, we demand (to stay true to the probabilistic interpretation)
〈8(αL = 0)〉9(αR) = 1. The variational approach was first
applied with great success to stochastic gene regulatory networks
by Sasai andWolynes (2003). In its original formulation, Poisson
distributions were used as trial functions, with the Poisson mean
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FIGURE 3 | Dynamical trajectories determined from the variational approach agree well with stochastic simulations in favorable regimes. (A) Time evolution of the

average number of modified nucleosomes computed using the variational method (black solid line) and stochastic simulations (red dots). (B) Time evolution of the

average number of modified nucleosomes computed using the variational method (black solid line) and stochastic simulation (red dots). We used q = 10, M = 60,

and set c1p1 = 0, c0p0 = 20, c1t1 = 0, c1t0 = 0.66 as the initial values when solving the deterministic equations (Equation 11).

being the variational parameter. Since protein molecules can
be approximately treated as products of a birth-death process,
the probability distribution to find np molecules should be
Poisson at large t (Sasai and Wolynes, 2003). Furthermore, the
stochastic Hamiltonian for genetic networks consists of only
Bosonic operators, the coherent states of which correspond to
Poisson distributions. In this work, we exploit the symmetry
imposed on the system by particle number constraints to derive
a new variational trial function for the chromatin switch. As
shown in the Supplementary Material, an excellent candidate is
the binomial distribution function since the coherent states for
the SU(2) operators in our stochastic Hamiltonian are binomial
(Fu and Sasaki, 1997, 1998). Taken together, we can thus use the
following ansatz as variational functions for the coupled genetic
and epigenetic switch

|9〉 =





c1 exp
(

p1(a
†
p − 1)

)

(1− θ1)
N exp

(

θ1
1−θ1

J+
)

|0, 0〉

c0 exp
(

p0(a
†
p − 1)

)

(1− θ0)
N exp

(

θ0
1−θ0

J+
)

|0, 0〉



 ,

(9)

and

〈8| =
(

〈0, 0|eapeJ− exp
(

α1 + λ
(p)
1 ap + λ

(x)
1 J−

)

〈0, 0|eapeJ− exp
(

α0 + λ
(p)
0 ap + λ

(x)
0 J−

))

. (10)

The set of variational parameters is αR = {c1, c0, p1, p0, θ1, θ0}.
Here c1(c0) represents the probability of the DNA being in state 1
(state 0), while p1(p0) and Nθ1(Nθ0) represent the mean number
of proteins and modified nucleosomes when DNA is in state 1

(state 0). αL = {α1,α0, λ
(p)
1 , λ

(p)
0 λ

(x)
1 , λ

(x)
0 } are the corresponding

conjugate variables.
Plugging (10) and (9) into (7), we obtain the following set of

variational equations

dc1

dt
= c0f − c1

〈

h(np, nx)
〉

1
(11a)

dc0

dt
= −c0f + c1

〈

h(np, nx)
〉

1
(11b)

c1
dp1

dt
+ p1

dc1

dt
= c1g1 − c1kp1 + c0fp0 − c1

〈

nph(np, nx)
〉

1

(11c)

c0
dp0

dt
+ p0

dc0

dt
= c0g0 − c0kp0 − c0fp0 + c1

〈

nph(np, nx)
〉

1

(11d)

Nθ1
dc1

dt
+ Nc1

dθ1

dt
= c1

( s1

N3

) 〈

n
2
x(N − nx)

〉

1

− c1

( z1

N3

)

〈

(N − nx)
2(nx)

〉

1

+ c1
q

N
(−〈nx〉1 + 〈N − nx〉1)

+ c0fNθ0 − c1
〈

nxh(np, nx)
〉

1

(11e)

Nθ0
dc0

dt
+ Nc0

dθ0

dt
= c0

( s0

N3

) 〈

n
2
x(N − nx)

〉

0

− c0

( z0

N3

)

〈

(N − nx)
2(nx)

〉

0

+c0
q

N
(−〈nx〉0 + 〈N − nx〉0)− c0fNθ0

+ c1
〈

nxh(np, nx)
〉

1
.

(11f)

The angular brackets represent ensemble averaging
over protein numbers and modified nucleosomes, i.e.,

〈·〉i =
∑

np ,nx
· e

−pi

np!
p
np
i

(N
nx

)

θ
nx
k
(1 − θk)

N−nx . We also make

the simplifying approximation for the average binding rate

as
〈

h(np, nx)
〉

=
〈

np(np−1)

1+exp(0.5(nx−35))

〉

≈ 〈np(np−1)〉
1+exp(0.5(〈nx〉−35))

.

Numerical integration of Equation (11) yields the
time evolution of the variational parameters αR, from
which the probability distributions can be determined
using Equation (9).

We solved Equation (11) using scipy.integrate.odeint()
module in python with a time step of 0.01 s. The initial
conditions were varied and individual trajectories were
integrated for 105 s till convergence to obtain the steady
state results.
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4. RESULTS

Using the variational equations, we studied the dependence
of steady-state solutions on the rate of noisy histone mark
modification, q. For comparison, we carried out stochastic
simulations of the kinetic network using the Gillespie algorithm
(Gillespie, 1977) at selected q-values. The noisy modification
rate and, in particular, its relative value to the rate for recruited
conversions is an important parameter for cell differentiation.
For example, recruited conversions arise due to the diffusion
of histone-modifying enzymes from modified nucleosomes
to the nearby unmodified ones. The more open chromatin
conformation seen in stem cells with larger inter-nucleosome
distances (Gaspar-Maia et al., 2011; Mas et al., 2018) will,
therefore, suppress recruited conversions in favor of the noisy
ones. As cells differentiate, chromatin will becomemore compact,
and the importance of noisy conversions will decline. Previous
studies of isolated epigenetic switches (Dodd et al., 2007;
Micheelsen et al., 2010; Sood and Zhang, 2020) also found q as
an important parameter that controls the onset and maintenance
of bistability in the epigenetic switch.

In Figure 2, we show the probability distributions obtained
from stochastic simulations and from the variational approach
at q = 100, 10, and 0.5. We notice that the Binomial ansatz
introduced in the Theory section captures the distribution for
the number of modified nucleosomes with quantitative accuracy
(Figures 2A–C). The Poissonian ansatz also performs well for the
distribution of protein numbers at small and medium q values,
though deviations from stochastic simulations are apparent at
large q (Figures 2D–F). The inconsistency between the two
distributions in that regime is mainly due to underestimating the
population of intermediate states that bridge the high and low
gene expression values by the variation method.

In addition to steady-state solutions, the time evolution of
observables, such as the mean number of proteins and modified
nucleosomes, can be determined using the variational approach
as well. As shown in Figure 3, in parameter regimes where the
effect of fluctuations is not too drastic, the dynamical trajectories
determined using Equation (11) are in quantitative agreements
with those computed using stochastic simulations.

Given its reasonable performance, we next applied the
variational approach to study the network model’s steady-state
behavior at a broader range of q-values. As already mentioned,
q is an important variable that might be tuned along the
developmental axis for cell differentiation. For large q values,
chromatin stabilizes in an undecided state with roughly half the
nucleosomes modified (active) and the other half carrying no
modification (repressive). The corresponding protein expression
is noisy with a broad probability distribution. Stochastic
simulations further support a significant mixing between “on”
and “off” gene states, and an unambiguous assignment of either
state is not warranted (Figure 2D). When the value for q is
quenched, we observe the emergence of a coherent epigenetic
state along with coherent gene expression. Therefore, both
switches are turned on and the combined system exhibits a single
attractor. At even lower values of q, both the epigenetic and gene
switch exhibit bistability.

We note that the chromatin state changes described above
differs from that of an isolated epigenetic switch studied
previously (Sood and Zhang, 2020). There, we saw a shift from a
unimodal probability distribution indicating an equal admixture
of modified and unmodified nucleosomes to a symmetric
bimodal probability distribution as the value for q is quenched.
The appearance of a single coherent epigenetic state in Figure 4 is
a result of the coupling with the gene switch in our model, which
breaks the symmetry between active and repressive chromatin
states. The coupling works both ways. In an isolated gene switch,
a single state with high gene expression is not expected either.
Modulating the kinetics of TF binding to the promoter only
resolves a broad probability distribution exhibiting no coherent
gene expression to a bistable state with high and low levels of gene
expression (Walczak et al., 2005a).

5. DISCUSSION

We introduced a kinetic model that couples a genetic network
with an epigenetic switch to study the combined role of
transcription factors and histonemodifications in regulating gene
expression. An approximation scheme based on the variational
approach was further developed to obtain steady-state solutions.
This method is unencumbered by the complexity associated with
numerical simulations and more detailed analytical calculations.
It would be a useful tool for exploratory studies of the parameter
space and identifying regions of interest. While we focused our
analysis on a single gene, the variational method can be relatively
easily generalized to networks with multiple interacting genetic
and epigenetic switches that provide more realistic modeling of
stem cell differentiation (Zhang and Wolynes, 2014).

We explored the behavior of the network model across a wide
range of parameters. Our model exhibits a poised state for the
gene switch at high q, where the chromatin system contains
an equal admixture of modified and unmodified nucleosomes.
The network in this parameter regime appears to qualitatively
capture the behavior of chromatin and gene expression in
undifferentiated stem cells. In particular, stem cells are known
to exhibit bivalent chromatin with both activating and repressive
marks (Bernstein et al., 2006; Vastenhouw and Schier, 2012) and
noisy gene expression profiles (Kar et al., 2017).We point out that
the exact definition of bivalent chromatin remains controversial,
and multiple mechanisms have been proposed for its formation
(Azuara et al., 2006; Sneppen and Ringrose, 2019; Lim and
Meshorer, 2020). Additional studies are needed to determine
whether the stochastic conversion observed here is the key driver
for the observed chromatin bivalency.

Upon quenching q, the gene is activated along with a
concomitant resolution of the chromatin state. The coupling
between the two switches reinforces the stability of the active
state and can lead tomore robust upregulation of gene expression
upon cell differentiation. It also ensures that the genetic and
epigenetic switches are always in sync. We observe at most
two steady states representing active chromatin with high gene
expression and repressive chromatin with low gene expression.
We note that the inactive state only becomes stable at minimal
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FIGURE 4 | Variation of the steady state probability distribution for the number of proteins (A) and modified nucleosomes (B) as a function of the noisy histone

modification rate, q.

q values, arguing for strong noise suppression for gene silencing.
Its limited stability may explain the presence of DNAmethylation
on top of histone modifications to safeguard the silent state
against perturbations that might arise from fluctuation in protein
concentration or histone marks during cell division.

The strong dependence of the landscape tomography on q
shown in Figure 4 suggests that the histone modification rate
may act like a knob to be tuned along the developmental axis
to facilitate cellular differentiation. Of course, the presented
landscape is probably too crude a simplification to be termed
the Waddington landscape since many additional factors that
contribute to the stability of gene expression patterns could be
varied along the developmental axis as well.

In favorable regimes, the variational approach produces
results of quantitative accuracy. The discrepancy between the
probability distribution obtained from stochastic simulations and
the variational method in the high q region can be attributed
to the fact that the Poisson ansatz does not sufficiently account
for the variance and the effect of fluctuations which become
increasingly important as the value for q increases. This situation
can be remedied by going beyond the Poisson ansatz, and
utilizing the superposition ansatz as described in Ohkubo (2008).
Mathematically, this wouldmean tomodify our ansatz as follows,

|9〉

=





∫ ∞
0 dp1 F (p1; {λ(1)j }) c1 exp

(

p1(a
†
p − 1)

)

(1− θ1)
N exp

(

θ1
1−θ1

J+
)

|0, 0〉
∫ ∞
0 dp0 F (p0; {λ(0)j }) c0 exp

(

p0(a
†
p − 1)

)

(1− θ0)
N exp

(

θ0
1−θ0

J+
)

|0, 0〉



 .

(12)

This new “superposition ansatz” is constructed by the
superposition of the coherent states (i.e., Poisson distribution) as
defined in (12), where now F serves as the variational function.
Hence, the real probability distribution is obtained by the
superposition of the Poisson distributions of mean pi weighed

by the distribution F with parameters {λ(i)j }. We anticipate that

doing so can not only improve the agreement between theory
and simulation but can in principle allow for the computation of
time evolution of other interesting quantities such as variance,
and covariance in addition to means. However, in general the
choice of an appropriate F is a non-trivial problem, and thus
has been avoided in this text in favor of a clearer exposition.
The choice of appropriate variational functions can be guided
by the work done on exact solutions of the master equations
of genetic switches (Hornos et al., 2005; Shahrezaei and Swain,
2008; Ramos et al., 2011).
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The highly controlledmigration of neutrophils toward the site of an infection can be altered

when they are trained with lipopolysaccharides (LPS), with high dose LPS enhancing

neutrophil migratory pattern toward the bacterial derived source signal and super-low

dose LPS inducing either migration toward an intermediary signal or dysregulation

and oscillatory movement. Empirical studies that use microfluidic chemotaxis-chip

devices with two opposing chemoattractants showed differential neutrophil migration

after challenge with different LPS doses. The epigenetic alterations responsible for

changes in neutrophil migratory behavior are unknown. We developed two mathematical

models that evaluate the mechanistic interactions responsible for neutrophil migratory

decision-making when exposed to competing chemoattractants and challenged with

LPS. The first model, which considers the interactions between the receptor densities of

two competing chemoattractants, their kinases, and LPS, displayed bistability between

high and low ratios of primary to intermediary chemoattractant receptor densities.

In particular, at equilibrium, we observe equal receptor densities for low LPS (<

15ng/mL); and dominance of receptors for the primary chemoattractant for high LPS (>

15ng/mL). The second model, which included additional interactions with an extracellular

signal-regulated kinase in both phosphorylated and non-phosphorylated forms, has an

additional dynamic outcome, oscillatory dynamics for both receptors, as seen in the

data. In particular, it found equal receptor densities in the absence of oscillation for

super-low and high LPS challenge (< 0.4 and 1.1 <LPS< 375 ng/mL); equal receptor

densities with oscillatory receptor dynamics for super-low LPS (0.5 < LPS< 1.1ng/mL);

and dominance of receptors for the primary chemoattractant for super-high LPS (> 376

ng/mL). Predicting the mechanisms and the type of external LPS challenge responsible

for neutrophils migration toward pro-inflammatory chemoattractants, migration toward

pro-tolerant chemoattractants, or oscillatory movement is necessary knowledge in

designing interventions against immune diseases, such as sepsis.

Keywords: neutrophil migration, mathematical model, lipopolysaccharide (LPS), bistability, cellular decision-

making
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1. INTRODUCTION

Researchers have recently challenged the dogma that innate
immunity is the same at every challenge. It has been shown
that macrophages are able to develop different kinds of memory
depending on the type of priming they encounter via epigenetic
reprogramming (Yuan et al., 2016a,b). For instance, they can
develop a memory phenotype that leads them to be less reactive
or even tolerant to a challenge, or they can develop a memory
phenotype that leads them to have an enhanced response to
a challenge. This same concept has recently been shown by
us for neutrophil migratory decision-making, and it is thought
that the response is influencing the outcomes of infectious
diseases. For example, in sepsis or COVID-19 infection, the
immune system overreacts because of underlying low-grade
inflammation that primes neutrophils into choosing between
tolerant and inflammatory migratory phenotypes (Alves-Filho
et al., 2005, 2010). As a result, neutrophils can migrate to healthy
organs and unleash their anti-microbial arsenal in healthy tissue,
leading to organ failure in the lungs, kidney, or heart. The
mechanisms underlying trained innate immunity have not been
fully elucidated, with epigenetic modifications playing a key role
in the induction of innate memory or training (Pillay et al., 2010;
Demaret et al., 2015). In this study we investigate innate memory
in the context of neutropil migratory decision-making.

The ability of neutrophils to migrate plays a pivotal role
in a cell’s ability to clear infections and resolve inflammation.
During infection and inflammation, chemoattractants are
released, signaling and activating neutrophils in the bloodstream.
Neutrophils must be able to precisely migrate within the tissue

to the specific site of infection, without being diverted toward

other locations, in a process called chemotaxis. Chemotaxis is
a highly regulated process that involves activation of various

pathways and downstream polarization of the cell (Kolaczkowska
and Kubes, 2013). The first step in chemotaxis is recognition of
chemoattractants by the cell. Cells have specific receptors on their
surface for various chemoattractants. These chemoattractant
receptors are G protein-coupled receptors (GPCRs), which are
regulated by a variety of G protein-coupled receptor kinases
(GRKs) (Murphy, 1994; Dianqing, 2005). When bound by a
specific agonist, in this case a chemoattractant, the GPCRs
undergo phosphorylation, which unbinds the G proteins and
desensitizes the receptor. This leads to internalization of the
receptor, activation of downstream signaling pathways, and
activation of cellular responses, such as cell polarization and
chemotaxis (Murphy, 1994; Dianqing, 2005; Futosi et al., 2013).
After internalization, receptors can be recycled back to the
cell surface, where they can again be bound by the receptor’s
agonist. This process is crucial in chemotaxis, as it allows
the cell to continue sensing the chemoattractant and migrate
in its direction (Neel et al., 2005). Most chemoattractant
receptors are similar in their response to ligand-binding; however
there are slight differences in the activated signaling pathways
(Heit et al., 2002, 2008). Within the tissue, neutrophils are
exposed to several chemoattractants at once, originating from
pathogens, cells within the tissue, the endothelium, and several
other sources (Kolaczkowska and Kubes, 2013). Cells must

prioritize these signals to properly clear the pathogen. It has
been hypothesized that neutrophils have an internal hierarchy,
where chemoattractants derived from bacterial sources and
the complement system, such as fMLP and C5a (Heit et al.,
2002; Petri and Sanz, 2018), take precedent over intermediary
chemoattractants, such as LTB4 and IL-8, which are secreted by
other immune cells. This leads to neutrophils migrating toward
end-target chemoattractants over intermediary chemottractants
in a competitive environment (Heit et al., 2002, 2008;Wang et al.,
2016b), allowing neutrophils to prioritize an invading pathogen.
This hierarchy is thought to occur through the activation of
differing signaling pathways, where end-target chemoattractants
signal through p38 MAPK and intermediary chemoattractants
signal through PI3K (Heit et al., 2002, 2008).

The highly controlled migration of neutrophils toward the
site of an infection, as well as their dynamic interaction with
pathogens, can be altered when they are pre-conditioned with
Lipopolysaccharides (LPS) to induce endotoxin priming. In
previous work, we showed that training with high dose LPS
(100 ng/mL) enhances neutrophil migration toward the end-
target, bacterial derived, source signal fMLP. By contrast, training
with super-low dose LPS (1 ng/mL) alters neutrophil migratory
phenotypes, which either migrate toward the intermediary signal
LTB4 or become dysregulated and exhibit oscillatory migratory
patterns (Jones et al., 2016; Boribong et al., 2019). While the
empirical data shows that neutrophils trained with LPS change
migratory phenotype, it does not give information on the
molecular mechanisms responsible for the difference in behavior.
The migratory decision-making process is finely governed
by complex signaling networks that dynamically receive and
interpret molecular and cellular signals from outside and
within. The intrinsic complexity of immune cell decision-making
processes has created difficulty for experimental immunologists
to determine the mechanisms of disease, in spite of expansive
experimental studies with conventional reductionist cellular and
molecular approaches. It is increasingly recognized that cross-
disciplinary studies combining experimental and mathematical
modeling approaches are critically required.

In this study, we investigate the molecular mechanisms
of neutrophil migratory decision-making in the presence of
competing chemoattractants and external challenge with LPS,
by building deterministic mathematical models of interaction
between two chemoattractant receptors, Formyl Peptide
Receptor 1 (FPR1) and Leukotriene B4 Receptor 1 (BLT1), and
key molecules involved in their regulation. We are interested
in determining the relationship between the receptor dynamics
and migration pattern, and in quantifying the LPS dose
resulting in neutrophils migration toward a pro-inflammatory
chemoattractant, toward a pro-resolution chemoattractant, or
in neutrophils dysregulation and oscillation (Fan and Malik,
2003; Liu et al., 2012; Byrne et al., 2014). The model will
qualitatively match the experimental results of our previous
work, where stimulation with a super-low concentration of
LPS will result in greater BLT1 over FPR1, and stimulation
with a high concentration of LPS will result in greater FPR1
over BLT1 (Boribong et al., 2019). We construct a model with
bistable behavior, with the motif for bistability coming from the
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FIGURE 1 | Schematic representation of the GRK2 and GRK5 mutual inhibition.

non-linear mutual inhibition of GRK2 and GRK5 (see Figure 1).
The dual inhibition leads to the activation of different signaling
pathways (p38/JNK vs. ERK), leading to differences in functional
neutrophil migration (Davenport et al., 2020). Both GRK2 and
GRK5 have been demonstrated to be critical mediators of the
molecular alterations that occur in the inflammatory disorders,
but the complex mutual inhibition interaction has largely been
ignored (Philipp et al., 2014). Mathematical models have been
used before to model cellular decision-making (Day et al., 2006;
Kadelka et al., 2019), neutrophil chemotaxis (Ionides et al., 2004;
Postma and van Haastert, 2016; Bayani et al., 2020), immune
responses (Reynolds et al., 2006; Fischer, 2008; Nelson et al.,
2009; Vodovotz et al., 2009) and bistable dynamics (Ciupe et al.,
2007, 2018; Leber et al., 2016).

2. METHODS

2.1. Mathematical Model of Migratory
Decision-Making
We developed a novel system of differential equations based
on diagram in Figure 2, which describes the interactions
between [LPS], kinases [GRK2] and [GRK5], the receptor for
end-target chemoattractant fMLP, [FPR1], and the receptor for
intermediary chemoattractant LTB4, [BLT1]. Priming by LPS
occurs through activation of both GRK2 and GRK5 (Prossnitz
et al., 1995; Arraes et al., 2006; Sorriento et al., 2008; Wang
et al., 2016a). For simplicity, we model linear effects of LPS on
the kinases’ activity. In particular, we assume that the GRK2
activation occurs at rate cw + aw[LPS], with cw and aw being the

FIGURE 2 | Network diagram for model (1).

LPS-independent and LPS-dependent activation rates. Similarly,
GRK5 activation occurs at rate cf + af [LPS], with cf and af being
the LPS-independent and LPS-dependent activation rates. The
two kinases mutually inhibit one another. We model inhibition
of GRK2 via GRK5 at rate 1/(bfw + [GRK5]n) and inhibition
of GRK5 via GRK2 at rate 1/(bwf + [GRK2]), where bfw and
bwf are the mutual inhibition rates of GRK2 by GRK5 and
GRK5 by GRK1, respectively. n is the cooperativity coefficient.
We assumed increased cooperativity in GRK2 inhibition by
GRK5, but not the inhibition of GRK5 by GRK2. The results
are preserved if the same cooperativity is included in the GRK5
inhibition by GRK2 (not shown). We assume GRK2 and GRK5
decay at per capita rates dw and df , respectively, with GRK5
decay being modeled in a density dependent manner, with the
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FIGURE 3 | Empirical data: (A) Ratio of fMLP/LTB4 cell migration, and (B) number of cells that oscillate (change direction at least three times) while migrating toward

fMLP (green) and LTB4 (red) vs. LPS concentration in ng/mL. Data reproduced from Boribong et al. (2019).

GRK5 value where the decay is half-maximal being given by
parameter bf .

The chemoattractant receptors FPR1 and BLT1 internalize
from the plasma membrane into the cell via phosphorylation
(Magalhaes et al., 2012; Mócsai et al., 2015). We assume
that the number of receptors on a cell is conserved and,
through the process of dephosphorylation, the receptors are
recycled and brought back to the surface of the cell. Thus,
we have conservation laws of the total number of the
receptor equalling the sum of the non-phosphrylated and
phosphorylated receptor, [FPR1]total = [FPR1] + [FPR1p]
and [BLT1]total = [BLT1] + [BLT1p]. The process of
receptor phosphorylation and dephosphorylation is modeled
using Hill-type functions. In particular, FPR1 is produced
through dephosphorylation, modeled by a Michaelis-Menten
term a1([FPR1]total − [FPR1])/(JF1 + [FPR1]total − [FPR1]),
where a1 is maximal production and JF1 is the receptor quantity
where dephosphorylation is half-maximal. Similarly, FPR1 is lost
through phosphorylation, which is enhanced in the presence of
GRK2 (Wang et al., 2016a).Wemodel this by aHill-type function
a2[FPR1][GRK2]/(JF2 + [FPR1]), where a2 is the maximal
rate and JF2 is the receptor quantity where phosphorylation
is half-maximal.

BLT1 is produced through dephosphorylation, modeled by
a Michaelis-Menten term b1([BLT1]total − [BLT1])/(JB1 +
[BLT1]total − [BLT1]), where b1 is the maximal production rate
and JB1 is the receptor quantity where dephosphorylation is
half-maximal. BLT1 is lost through phosphorylation, which is
enhanced in the presence of both GRK2 and GRK5 (Gaudreau
et al., 2002; Chen et al., 2004). We model this by a Hill-type
function [BLT1](b2[GRK2]+ b3[GRK5])/(JB2 + [BLT1]), where
b2 are b3 are maximal decay rates and JB2 is the receptor quantity
where phosphorylation is half-maximal. We assume a single LPS
dose, after which LPS decays exponentially at a rate dL (Kadelka
et al., 2019). The dynamical system describing these interactions

is given by:

d[GRK2]

dt
=

cw + aw[LPS]

bfw + [GRK5]n
− dw[GRK2],

d[GRK5]

dt
=

cf + af [LPS]

bwf + [GRK2]
− df

[GRK5]

bf + [GRK5]
,

d[FPR1]

dt
=

a1([FPR1]total − [FPR1])

JF1 + [FPR1]total − [FPR1]

− a2[GRK2]
[FPR1]

JF2 + [FPR1]
,

d[BLT1]

dt
=

b1([BLT1]total − [BLT1])

JB1 + [BLT1]total − [BLT1]
− (b2[GRK2]

+ b3[GRK5])
[BLT1]

JB2 + [BLT1]
,

d[LPS]

dt
= −dL[LPS].

(1)

We are interested in determining the ratio between the cells
that migrate toward the primary and those that migrate
toward the intermediary chemoattractants given, as a proxy,
by the ratio of their receptors FPR1/BLT1, when initial LPS
is varied.

2.1.1. Experimental Data

In previous research, we used a microfluidic competitive
chemotaxis-chip device to measure the migratory decision-
making process of dHL-60 cells, a model neutrophil cell
line, 5 h after they were pre-challenged with super-low-
dose (1 ng/mL) and high-dose (100 ng/mL) of LPS in
the presence of two competing chemoattractants, LTB4 and
fMLP (Boribong et al., 2019). Challenging the cells with
a super-low dose of LPS resulted in fMLP/LTB4 ratio of
0.8672. Challenging the cells with a high dose of LPS
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TABLE 1 | Parameters and initial conditions used in model 1.

Parameter Description Value References

cw [LPS]-independent [GRK2] activation 15

aw [LPS]-dependent [GRK2] activation 1

dw [GRK2] degradation 0.69 Penela et al., 1998; Luo and Benovic, 2003

bfw [GRK2] inhibition by [GRK5] 5× 10−4

cf [LPS]-independent [GRK5] activation 1

af [LPS]-dependent [GRK5] activation 1

df [GRK5] degradation 0.33 Wu et al., 2012

bwf [GRK5] inhibition by [GRK2] 0.13

bf [GRK5] where degradation is half-maximal 1

n Hill coefficient 3

ai , i = {1, 2} phosphorylation and dephosphorylation rates 166 Leoni et al., 2015

bi i = {1, 2, 3} phosphorylation and dephosphorylation rates 20

Ji , i = {F1, F2,B1,B2} values where phosphorylation is half-maximal 1 Gaudreault et al., 2005

[FRP1]total Total [FRP1] receptors 40, 000 Schneider et al., 2012

[BLT1]total Total [BLT1] receptors 13, 333 Schneider et al., 2012

dL [LPS] loss 0.1 Kadelka et al., 2019

Initial conditions Description Value References

[GRK2](0) Initial [GRK2] value 0.75 Arraes et al., 2006

[GRK5](0) Initial [GRK5] value 0.5 Arraes et al., 2006

[FPR1](0) Initial [FPR1] value 40,000 Schneider et al., 2012

[BLT1](0) Initial [BLT1] value 13,333 Schneider et al., 2012

[LPS](0) Initial [LPS] value Varied Boribong et al., 2019

(100 ng/mL) resulted in fMLP/LTB4 ratio of 10.2646 (see
Figure 3A).

2.1.2. Parameter Values

There are approximately 40, 000 FPR1 and 13, 333 BLT1
receptors on each neutrophil (Schneider et al., 2012). We
therefore set initial conditions to [FPR1](0) = 40, 000 and
[BLT1](0) = 13, 333. The reported GRK2/GRK5 ratio is 1.5
(Arraes et al., 2006). We choose initial conditions [GRK2](0) =
0.75 and [GRK5](0) = 0.5, to preserve this ratio. The reported
GRK2 half-life varies between 60 min in HEK, COS-7, Jurkat, C6
glioma cells (Penela et al., 1998) and 20–24 h in undifferentiated
HL-60 cells (Luo and Benovic, 2003). We choose a shorter
half-life of 1 h, which corresponds to the GRK decay rate
dw = log(2)/1 = 0.69 per hour. The reported GRK5 life-span is
3 h (Wu et al., 2012), which corresponds to the GRK5 decay rate
df = 1/3 = 0.33 per hour. The FPR1’s phosphorylation half-life
is 15 s (Leoni et al., 2015). We choose both the phosphorylation
and dephosphorylation rates based on this value, a1 = a2 =
log(2) × 3, 600/15 = 166 per hour. BLT1 phosphorylation’s
half-life is 120 s (Gaudreault et al., 2005). We choose both
the phosphorylation and dephosphorylation rates based on this
value, b1 = b2 = b3 = log(2)× 3, 600/120 = 20 per hour. As in
our previous work (Kadelka et al., 2019), the LPS degradation
rate is dL = 0.1 per day. For simplicity, we fix most unknown
parameters at one, aw = cf = af = bf = JF1 = Jf 2 = JB1 =
JB2 = 1. Moreover, cw = 15, bfw = 5 × 10−4, bwf = 0.13 and
n = 3. The parameter values are summarized in Table 1.

2.2. Mathematical Model of Oscillatory
Movement
We coupled system (1) with an oscillator describing the dynamics
of non-phosphorylated and phosphorylated extracellular
signal-regulated kinases (ERK), [ERK] and [ERKp], that are
participating in an autocatalytic reaction with the help of
intermediate non-phosphorylated and phosphorylated enzymes,
[E] and [Ep] (see Figure 7). We assume that [ERK] activation is
LPS-dependent and occurs at rate k1[LPS]. The phosphorylated
[ERKp] decays at rate k2. The phosphorylated enzyme [Ep]
follows the following reaction:

d[Ep]

dt
= kE1[ERKp]

[E]

JE1 + [E]
−

kE2[Ep]

JE2 + [Ep]
, (2)

where kEi are the dephosphorylation and phosphorilation rates
and JEi are the phosphorylation and dephosphorylation half-
maximal rates, i = {1, 2}. If we assume chemical equilibrium,
[Ep]+ [E] = 1, and k3 = kE2/kE1, we obtain that:

[Ep] =
X −

√

X2 − 4(k3 − [ERKp])[ERKp]JE2

2(k3 − [ERKp])

=
2JE2[ERKp]

X +
√

X2 − 4(k3 − [ERKp])[ERKp]JE2

= G([ERKp], k3, JE1, JE2) (3)
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where X = k3 − [ERKp] + k3JE1 + JE2[ERKp] and
G([ERKp], k3, JE1, JE2)) is the Goldbeter-Koshland function
(Goldbeter and Koshland, 1981). Hence, the phosphorylation
of [ERK] occurs at rate (k0s + k0G([ERKp], k3, JE1, JE2))[ERK].
Lastly, the LPS is constant at all times LPS=[LPS](0), to account
for positive long-term [ERK] levels. The model is given by
the system:

d[ERK]

dt
= k1[LPS]− (k0s + k0G([ERKp], k3, JE1, JE2))[ERK],

d[ERKp]

dt
= (k0s + k0G([ERKp], k3, JE1, JE2))[ERK]− k2[ERKp],

d[GRK2]

dt
=

cw + aw[ERKp]

bfw + [GRK5]n
− dw[GRK2],

d[GRK5]

dt
=

cf + af [ERKp]

bwf + [GRK2]
− df

[GRK5]

bf + [GRK5]
,

d[FPR1]

dt
=

a1([FPR1]total − [FPR1])

JF1 + [FPR1]total − [FPR1]

− a2[GRK2]
[FPR1]

JF2 + [FPR1]
,

d[BLT1]

dt
=

b1([BLT1]total − [BLT1])

JB1 + [BLT1]total − [BLT1]
− (b2[GRK2]

+ b3[GRK5])
[BLT1]

JB2 + [BLT1]
.

(4)

2.2.1. Experimental Data

Experimental results reported that neutrophils treated overnight
with LPS may lose their ability to move up the chemoattractant
gradient, become disoriented, and display oscillatory behavior
(Boribong et al., 2019). Moreover, the highest number of cells to
display such oscillatory behavior occurs following LPS exposure
with super-low dose (1 ng/mL) (see Figure 3B) (Boribong et al.,
2019).

2.2.2. Parameter Values

We assume that initially [ERK](0) = 5 and [ERKp](0) = 0.1.
Kinase [ERK] is produced at rate k1 = 0.3 and phosphorylated
at rate k0s = 0.01. Kinase [ERKp] is lost at rate k2 = 1.
Enzyme [E] is phosphorylated, in the presence of [ERK], at rate
k0 = 0.4 and dephosphorylated at rate k3 = 0.3. The processes
are modeled usingMichaelis-Menten terms, with densities where
phosphorylation/ dephosphorylation are half-maximal being set
to JE1 = JE2 = 0.005. All other parameters and initial conditions
are as in model (1). The new parameter values are summarized in
Table 2.

3. RESULTS

3.1. Bistable FPR1 and BLT1 Dynamics
We evaluated neutrophil migration between end-target
chemoattractant fMLP and intermediary chemoattractant LTB4
by developing model (1), which considers the interaction
between the chemoattractants’ receptors, [FPR1] and [BLT1],
the receptors’ kinases, [GRK2] and [GRK5], and [LPS]. We

TABLE 2 | Parameters and initial conditions used in model 2.

k0 [ERK]-dependent [E] phosphorylation 0.4

k1 [LPS]-dependent [ERK] activation 0.3

k2 [ERKp] degradation rate 1

k3 [ERK]-independent [E] dephosphorylation 0.3

k0s [ERK] phosphorylation rate 0.01

Ji , i =
{E1,E2}

values where phosphorylation is half-maximal 0.005

Initial

conditions

Description Value References

[ERK](0) Initial [ERK] value 5

[ERKp](0) Initial [ERKp] value 0.1

quantified the [FPR1]/[BLT1] ratio for different [LPS] doses
under the dynamics of system (1), and parameters/initial
conditions given in Table 1. Since the experimental data has
collected ratios of cell migration 5 h after LPS challenge, we first
quantified [FPR1]/[BLT1] at time t = 5.

Model (1) exhibits bistable behavior between high and low
[GRK2] concentrations (low and high [GRK5] concentrations),
with low [LPS] priming leading to high [GRK2] production
and high [LPS] priming leading to low [GRK2] production (see
Figure 4B). Five hours following challenge with super-low-dose
(1 ng/mL) LPS, model (1) predicts the presence of a small
number of receptors, which are distributed equally among FPR1
and BLT1, [FPR1]/[BLT1](5) = 1 (see Figure 4A, solid lines).
Under our abstraction this means that, following challenge with
1 ng/mL LPS, an equal number of neutrophils migrated toward
the fMLP and LTB4 gradients. Conversely, 5 h following high-
dose challenge (100 ng/mL) LPS, model (1) predicts the presence
of a large number of receptors of both types, with [FPR1]
exceeding [BLT1] by one fold, i.e, [FPR1]/[BLT1](5) = 10 (see
Figure 4A, solid lines). Under our abstraction this means that a
large number of neutrophils have migrated in both directions,
with ten times more neutrophils migrating toward fMLP than
LTB4. These [FPR1]/[BLT1] ratios are similar to the fMLP/LTB4
ratios observed in the experimental data (Boribong et al., 2019)
(see Figure 3A). We further quantified the [FPR1]/[BLT1] ratio
past the 5 h in the experiment. For the [LPS](0) = 1 ng/mL LPS
challenge, [FPR1]/[BLT1](t) = 1 for all t ≥ 5. By contrast, for
the [LPS](0) = 100 ng/mL LPS challenge, the [FPR1]/[BLT1](t)
ratio becomes larger and larger as t increases, with the majority
of cells favoring the primary fMLP gradient (not shown).

To determine the relationship between the LPS challenge
dose and the FPR1/BLT1 ratio, we derived a graph that
quantifies [FPR1]/[BLT1](5), 5 h following cell priming, as
a function of the [LPS] dose, predicted by model (1) and
parameter values/initial conditions in Table 1. We found that
the experimental observation for the super-low-dose (1 ng/mL)
LPS, [FPR1]/[BLT1](5) = 1, is preserved for all challenges
with LPS values lower than 3.9 ng/mL. For 4 − 6.7 ng/mL LPS
challenge, [BLT1] exceeds [FPR1] at t = 5 h, but the two
receptors will eventually reach identical levels at equilibrium.

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 12 | Article 633963206

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ciupe et al. Models of Neutrophil Decision-Making

FIGURE 4 | Theoretical results: Dynamics of (A) [FPR1] (green) and [BLT1] (red) and, (B) [GRK2] (purple) and [GRK5] (pink) for [LPS](0) = 1 ng/mL (solid lines) and

[LPS](0) = 100 ng/mL (dashed lines) as given by model (1). Parameters and initial conditions are given in Table 1.

FIGURE 5 | FPR1/BLT1 at time t = 5 h, as given by model (1) vs. initial LPS

dose.

Lastly, the [FPR1]/[BLT1](5) ratio grows larger than one and
keeps increasing for LPS dose > 6.7 ng/mL, eventually reaching
the experimental prediction of ten, [FPR1]/[BLT1](5) = 10,
for high-dose LPS challenge (100 ng/mL) (see Figure 5) and
increasing further as time passes or for higher challenge
(not shown).

3.2. Long-Term Results and Motifs of
Bistability
We have chosen the parameters in model (1) such that the
[FPR1]/[BLT1](5) ratio matches the observed fMLP/LTB4 data
(Boribong et al., 2019).We are interested in determining how this
balance can be broken and which interactions are responsible for
the bimodal switch between equal [FPR1] and [BLT1] values and

dominant [FPR1] values. The results presented at t = 5 h are
transient results. At equilibrium, the [FPR1]/[BLT1] ratio is 1 for
LPS < 15 ng/mL and as large as 107 for LPS= 100 ng/mL. This
indicates that all [BLT1] molecules have been down regulated,
and only [FPR1] molecules remain on the surface of neutrophils.
This is due to the large non-LPS activation rate of [GRK2]
protein, cw = 15. If we either increase the cw value to cw = 28
or decrease it to cw = 5, we maintain the [FRP1]/[BLT1] ratio
5 h after super-low-dose (1 ng/mL) and high-dose (100 ng/mL),
[FPR1]/[BLT1](5), if we simultaneously decrease the inhibition
rate of [GRK5] to 5 × 10−4 or increase it to 0.25, respectively
(see Figure 6). The range of LPS initial conditions that lead
to identical [FPR1] and [BLT1] distribution decrease as cw
decreases, with the [FPR1]/[BLT1](5) = 1 prediction being lost
for cw = 5 (see Figure 6, red curves). The results are insensitive
to the LPS decay rate, or to [FPR1] and [BLT1] values where
phosphorylation and dephosphorylation levels are half-maximal
(not shown). These results suggests that the bimodal switch
between the [FPR1]/[BLT1] levels is due to mutual inhibition of
GRK2-GRK5 kinases. To confirm this, we removed the inhibition
factors, by replacing (cw + aw[LPS])/(bfw + [GRK5]n) with
(cw + aw[LPS])/bfw and (cf + af [LPS])/(bwf + [GRK2]) with
(cf + af [LPS])/bwf . When the mutual inhibition is removed,
the equilibrium [FPR1]/[BLT1] levels are constant, and equal to
1,500, regardless of the size of LPS stimulus.

3.3. Molecular Mechanisms of Cell
Oscillatory Migration
Experimental results reported that neutrophils treated overnight
with LPS may loose their ability to move up the chemoattractant
gradient, become disoriented, and display oscillatory behavior
(Boribong et al., 2019). Moreover, the highest number of cells to
display such oscillatory behavior occurs following LPS exposure
with low dose of 1 mg/ml (see Figure 3B) (Boribong et al., 2019).
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FIGURE 6 | FPR1/BLT1 at time t = 5 h, as given by model (1), for cw = 28,

bwf = 5× 10−4 (black stars); cw = 15, bwf = 0.13 (blue stars); and cw = 5,

bwf = 0.245 (red stars).

To determine the molecular mechanisms responsible for the
oscillations, we extended the bistable system (1), by coupling it
with an activator-inhibitor oscillatory model for the dynamics
of non-phosphorylated and phosphorylated extracellular signal-
regulated kinases, [ERK] and [ERKp], and two auxiliary enzymes,
[E] and [Ep] based on diagram (7), model (4) and parameter
values/initial conditions in Tables 1, 2. Moreover LPS is fixed
at its initial condition. Under the chosen parameters, we obtain
long-term oscillatory movement for all populations, for constant
super-low-challenge LPS (1 ng/mL), as predicted by the data
(Boribong et al., 2019) (see Figures 8A–C). Interestingly, the
oscillatory behavior is maintained for a short LPS range, (0.5-1.1)
ng/mL; and corresponds to equal distribution of [FPR1] and
[BLT1] receptors. If we either lower the constant LPS challenge
to < 0.4ng/mL or increase it to 1.2 − 375ng/mL, we obtain
equal density of [FPR1] and [BLT1] receptors, but no oscillations
(see Figures 8D–F). If the LPS constant challenge is increased
further, to > 376ng/mL, [FPR1] receptors dominate the outcome
(see Figures 8G–I). While the switch between low and high
[FPR1]/[BLT1] ratio observed in the constant high dose LPS
challenge is due to mutual inhibitions of [GRK2] and [GRK5]
kinases, as observed in model (1), the oscillatory dynamics are
due to the oscillatory dynamics of the [ERK] and [ERKp] kinases.
This oscillatory behavior can be broken by either increasing
or decreasing the constant LPS challenge. Such information
can inform interventions, as dysoriented neutrophil movement
is not desirable and has been shown to have negative effects
during pathogenic infections. Dysregulated neutrophil response
to infection can lead to sepsis and end-organ failure and is a
leading cause of death worldwide (Reddy and Standiford, 2010;
Shen et al., 2017).

4. DISCUSSION

In this study, we developed compartmental mathematical models
of molecular interactions that govern neutrophil migratory

FIGURE 7 | Diagram for model (4).

patterns when exposed to competing chemoattractants and
challenged with external stimuli. When the models were
restricted to the interactions between the chemoattractants’
receptors, their kinases, and LPS, we predicted a bistable switch
between two states: one in which the densities of the two
chemoattractant receptors, FPR1 and BLT1, are equal and one
in which the receptors for the primary chemoattractant, FPR1,
dominate. We hypothesized that the two states correspond to
two states observed experimentally: equal migration toward
the primary and intermediary chemoattractants, fMLP
and LTB4, and predominant migration toward the primary
chemoattractant, fMLP (Boribong et al., 2019). The experimental
data connected the differential migratory outcomes with the
magnitude of the external LPS challenge, with super-low 1 ng/mL
LPS leading to equal migration toward both chemoattractants
and high 100 ng/mL LPS leading to ten times higher migration
toward fMLP, 5 h after challenge. In the mathematical model, the
external signal corresponds to the initial condition for variable
LPS. Our model was calibrated to match the experimental data
5 h after stimuli, with [FPR1]/[BLT1](5) = 1 for [LPS](0) = 1
and [FPR1]/[BLT1](5) = 10 for [LPS](0) = 100. Furthermore, 5
h after LPS challenge, we obtain equal levels of FPR1 and BLT1
receptors for all initial conditions [LPS](0) < 3.7 ng/mL and
increasingly more FPR1 than BLT1 receptors when the initial
condition for LPS increases, with ten times more FPR1 than
BLT1 receptors when [LPS](0) = 100 ng/mL. When we run the
model to equilibrium, however, we obtain equal FPR1 and BLT1
receptors for an even larger range of LPS initial conditions, < 15
ng/ml; and dominant FPR1 levels for LPS> 16 ng/mL. This
implies that not just the challenge dose, but the duration of the
experiment may influence the quantitative outcomes.

We investigated the molecular interactions that are
responsible for the bistable outcomes and found that when
the mutual inhibition of GRK2 and GRK5 kinases is either
removed, or the balance is broken, the model is no longer
bistable. Instead, when run to equilibrium, it settles into a state
where FPR1 receptors dominate the outcome, indicative of
predominant migration toward the primary chemoattractant.
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When the models were expanded to add the interaction
with the ERK signaling pathways under constant LPS challenge,
we obtained a third dynamical state, where we have equal
FPR1/BLT1=1, but the equilibrium is lost, and the FPR1 and
BLT1 receptors oscillate between two values. We assume this to
be indicative of neutrophil oscillation which, in the experimental
setup, is equivalent to cells changing direction (Boribong et al.,
2019). We investigated how changes in the constant LPS dose
affect the outcomes and found that, at equilibrium, FPR1 and

BLT1 receptors are equal and non-oscillating for both super-
super-low (< 0.5 ng/mL) and high dose (1.1, 375 ng/mL) LPS;
are equal and oscillating for super-low dose (0.5–1.1 ng/mL)
LPS; and FPR1 outnumbers BLT1 for super-high dose (> 376
ng/mL) LPS. The non-asymptotic dynamics are due to the
oscillatory behavior of phosphorylated and non-phosphorylated
ERK molecules, who undergo an auto-catalytic interaction with
two undefined enzymes. We have modeled the interaction using
an activation-inhibition motif, with similar dynamics being

FIGURE 8 | Theoretical results: Dynamics of [ERK] and [ERKp] (A,D,G); [GRK2] and [GRK5] (B,E,H); and [FPR1] and [BLT1] (C,F,I), as given by model (4) for

[LPS](0) = 1 ng/mL (A–C); [LPS](0) = 100 ng/mL (D–F); and [LPS](0) = 400 ng/mL (G–I).

FIGURE 9 | FPR1/BLT1 at time t = 5 h, as given by model (1), for (Left) cw = 10 (blue stars), cw = 15 (black stars), cw = 20 (red stars); (Middle) n = 1 (blue stars),

n = 3 (black stars), n = 5 (red stars); and (Right) af = 0.1 (blue stars), af = 1 (black stars), af = 3 (red stars).
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obtained if the oscillations are induced by a substrate depletion
motif (Tyson et al., 2003). Further work is needed to determine
the nature of enzyme or their regulation. We are currently
working to validate the model by retrieving neutrophils from our
microfluidic device post-migration and quantifying FPR1, BLT1,
GRK2, and GRK 5 levels by Droplet DigitalTM PCR (ddPCRTM).

Our models are limited by the presence of many unknown
parameters. While we strived to match the empirical data, the
results are mostly qualitative. Similar results can be obtained with
many different parameters sets. For example, cw only slightly
influences the FPR1/BLT1 ratio at t = 5 h (see Figure 9,
left panel), while the cooperativity coefficient n and the LPS-
dependent GRK5 production af have drastic effects on the
size of the ration (see Figure 9, middle and right panels). The
unchanging factors, however, are the motifs of bistability, which
are induced by the dual inhibition of the G-protein kinases;
the oscillatory motifs, which are induced by the oscillatory ERK
dynamics; and the influence of external stimuli on outcomes.

In conclusion, we developed mathematical models for the
molecular interactions responsible for neutrophils migratory
phenotypes, calibrated them against empirical data, and used
their dynamics to determine the external stimuli ranges that
account for neutrophils migration toward a pro-inflammatory
chemoattractant, a pro-tolerant chemoattractant, or oscillatory
dynamics indicative of dysorientation and loss of function.
Understanding the relationship between neutrophils’ dynamics
and themechanisms responsible for their movement is important
for preventing and predicting immune disorders. Activation
markers in neutrophils are potential biomarkers for the diagnosis
and prognosis of sepsis. Septic patients can be screened for

neutrophil markers, such as GRK 2/5, FPR1, and BLT1, and
this predictive model can guide patient treatment. In the
future, we plan to expand this model to include more complex
signaling from themicroenvironment and aim to predict not only
dysfunctional migration in neutrophils, but even the probability
of cells accumulating in specific organs, such as the lung or
kidney. We can use these predictive models to define optimal
patient treatment and to identify immunotherapeutic targets (i.e.,
small molecule inhibition, microRNAs, gene therapy) to promote
directional neutrophil migration.
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Single-cell RNA sequencing (scRNA-seq) data provides unprecedented information on
cell fate decisions; however, the spatial arrangement of cells is often lost. Several
recent computational methods have been developed to impute spatial information
onto a scRNA-seq dataset through analyzing known spatial expression patterns of
a small subset of genes known as a reference atlas. However, there is a lack of
comprehensive analysis of the accuracy, precision, and robustness of the mappings,
along with the generalizability of these methods, which are often designed for specific
systems. We present a system-adaptive deep learning-based method (DEEPsc) to
impute spatial information onto a scRNA-seq dataset from a given spatial reference
atlas. By introducing a comprehensive set of metrics that evaluate the spatial mapping
methods, we compare DEEPsc with four existing methods on four biological systems.
We find that while DEEPsc has comparable accuracy to other methods, an improved
balance between precision and robustness is achieved. DEEPsc provides a data-
adaptive tool to connect scRNA-seq datasets and spatial imaging datasets to analyze
cell fate decisions. Our implementation with a uniform API can serve as a portal with
access to all the methods investigated in this work for spatial exploration of cell fate
decisions in scRNA-seq data. All methods evaluated in this work are implemented as
an open-source software with a uniform interface.

Keywords: spatial gene expression atlas, scRNA-seq data, spatial information imputation, deep learning, metric
learning, comprehensive evaluation metric

INTRODUCTION

While cells of a biological system have access to the same genetic blueprint, they navigate
through different developmental paths toward various cell fates. These diverse fate programs
of cells are controlled by their own states, interactions with spatially neighboring cells, and
other environmental cues (Guo et al., 2010). To decipher the processes of cell fate acquisitions,
observations of the transcriptomics with single-cell resolution in spatial context are desired.
The advent of sophisticated single-cell RNA sequencing (scRNA-seq) techniques now allows
investigation of the transcriptomic landscape of tens of thousands of genes across tissues at the
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resolution of individual cells (Rosenberg et al., 2018; Svensson
et al., 2018). However, a drawback to scRNA-seq methods is
the necessity of dissociating the sample in question, thereby
destroying any spatial context which can be crucial to the
understanding of cellular development and dynamics (Yuan
et al., 2017). In current common workflows of scRNA-seq data
analysis, unsupervised clustering of cells is carried out, followed
by identifying marker genes associated with each cell cluster
(Luecken and Theis, 2019). While the list of marker genes for
each cell cluster can be screened for genes associated with known
spatial regions to estimate the spatial origin of the cluster, the
spatial arrangement of individual cells remains unclear (Kiselev
et al., 2019; Luecken and Theis, 2019). Several existing methods
attempt to impute a pseudospatial or pseudotemporal axis onto
the data (Joost et al., 2016; Puram et al., 2017; Pandey et al., 2018;
Wang et al., 2019); however, little related to physical space is
immediately discernible from scRNA-seq data alone.

The loss of spatial information in scRNA-seq data can be
partially mitigated by referring to spatial staining data (Sprague
et al., 2006; Fowlkes et al., 2008). Another promising solution is
the emerging spatial transcriptomics methods such as osmFISH
(Codeluppi et al., 2018), MERFISH (Moffitt et al., 2018), seqFISH
(Shah et al., 2016), seqFISH+ (Eng et al., 2019), STARmap
(Wang et al., 2018), and Slide-seq (Rodriques et al., 2019) that
obtain in situ spatial expression patterns. Compared to scRNA-
seq, current spatial techniques often cover fewer cells or genes
or with a suboptimal resolution and depth. It is therefore a
trending theme to combine the strengths of both methods to
achieve a high coverage and individual-cell resolution while
retaining the spatial arrangement (Yuan et al., 2017; Kiselev
et al., 2019). Due to these differences among the scRNA-seq and
spatial techniques, and biological systems, it is challenging to
derive a generally applicable computation method to integrate the
two kinds of data.

Several recent computational methods have been developed
to impute spatial data onto existing scRNA-seq datasets through
analyzing known spatial expression patterns of a small subset
of genes, termed a “spatial reference atlas.” Seminal methods
were developed independently by Achim et al. (2015) and Satija
et al. (2015) and were applied to the Platynereis dumerilii brain
and zebrafish embryo, respectively, using binarized reference
atlases derived from in situ hybridization (ISH) images. DistMap,
another method that uses a binarized ISH-based reference
atlas, was developed by Karaiskos et al. (2017) and applied to
the Drosophila embryo. Achim et al. (2015) use an empirical
correspondence score between each cell-location pair based
on the specificity ratio of genes. Satija et al. (2015) (Seurat
v1) fits a bimodal mixture model to the scRNA-seq data and
then projects cells to their spatial origins using a probabilistic
score. DistMap applies Matthew’s correlation coefficients to
the binarized spatial imaging and scRNA-seq data to assign
a cell-location score (Karaiskos et al., 2017). Several methods
have also been developed which use spatial reference atlases
directly measuring the RNA counts that are comparable to
scRNA-seq data without binarization (Peng et al., 2016; Halpern
et al., 2017). More recently, computational methods have been
developed for imputing gene expression in spatial data (Lopez
et al., 2019), transferring cell type label from scRNA-seq data

to spatial data (Zhu et al., 2018; Dries et al., 2019; Andersson
et al., 2020), de novo spatial placement of single cells (Nitzan
et al., 2019), and inferring spatial distances between single cells
(Cang and Nie, 2020).

In addition to the methods designed specifically for integrating
spatial data and scRNA-seq data, other computational methods
have been developed recently for general data integration.
Such methods focus on the general task of integrating RNA
sequencing datasets obtained from the same biological system
through different technologies, in situ data being one possibility
among many, into one large dataset offering a more complete
description of the system under study. These methods include
newer versions of Seurat (Butler et al., 2018; Stuart et al.,
2019), LIGER (Welch et al., 2019), Harmony (Korsunsky et al.,
2019), and Scanorama (Hie et al., 2019) which are mainly
based on correlation analyses and matrix factorizations. Another
more specific task is to transfer high-level information such
as cell types between datasets. Many machine learning- and
deep learning-based methods have been developed for this
task by formulating a supervised learning problem with the
high-level information being the target (Kiselev et al., 2018;
Lieberman et al., 2018; Lopez et al., 2018; Wagner and Yanai,
2018; Tan and Cahan, 2019; Boufea et al., 2020; Hu et al., 2020;
Ma and Pellegrini, 2020).

Since the spatial characteristics of different biological systems
could be significantly different, we aim to develop a system-
adaptive method specifically designed for imputing spatial
information onto scRNA-seq data. To this end, unlike other
spatial integration methods that use predefined algorithms for
computing scores, we learn a specialized correspondence score
between cells and locations for a given biological system. This
can then be regarded as a general metric learning task (Kulis,
2013). In addition to linear methods that learn a pseudometric
(Weinberger and Saul, 2009), there has been increasing interest
in applying deep learning to metric learning (Kaya and Bilge,
2019; Chicco, 2020). These methods are mostly designed for
cases where the pair of data points to be compared are in the
same space. Though the common genes from the spatial data
and scRNA-seq data are used here, directly treating them as in
the same space may cause inaccuracy due to differences in the
original datasets such as scaling and noise.

Here we develop a system-adaptive deep learning-based
method (DEEPsc) for imputing spatial data onto scRNA-seq
data. A DEEPsc network accepts a low-dimensional feature
vector corresponding to a single position in the spatial reference
atlas along with a corresponding feature vector of the gene
expression of a single cell and returns a likelihood the input
cell originated from the input position. The network is trained
and validated using positions in the spatial reference atlas
as simulated scRNA-seq data. The network is also validated
through the task of predicting the scRNA-seq data from the
spatial reference atlas or the other way around. In addition,
we implemented several strong baseline methods using different
norms and linear metric learning for benchmark comparison. We
further develop a comprehensive measure, which was previously
lacking, for evaluating how well a given method maps scRNA-
seq data to known spatial origins, called a performance score.
This score contains three components that measure the accuracy,
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precision, and robustness of a method, respectively. Using this
score on four biological systems, we show that DEEPsc maintains
a comparable accuracy to four existing methods while achieving
a better balance between precision and robustness.

RESULTS

A Deep-Leaning Based Method to
Connect scRNA-seq Datasets and
Spatial Imaging Data
Given any spatial reference atlas consisting of binary or
continuous gene expression levels for a biological system on a
set of locations with known spatial coordinates, and a scRNA-seq
dataset consisting of binary or continuous gene expression levels
for the same biological system, we introduce a Deep-learning
based Environment for the Extraction of Positional information
from scRNA-seq data (DEEPsc) to impute the spatial information
onto the scRNA-seq data.

In DEEPsc, we first select a common set of genes from the
reference atlas and scRNA-seq data, then perform dimensionality
reduction via principal component analysis (PCA) on the
reduced reference atlas to shorten training time (Figure 1A).
The scRNA-seq data is then projected into the same PCA space
on which we learn a metric for comparison between cells and
spatial positions. The DEEPsc network accepts a concatenated
feature vector for a single cell and a single position and returns
a likelihood the input cell originated from the input position. The
network contains two fully connected hidden layers with N nodes
each, where N is the number of principal components kept from
PCA, and a single node in the output layer. Sigmoid activation
functions are applied to each node, including the output node,
so that the resulting output is in [0, 1] and can be interpreted as
a likelihood that the input cell originated from the input spatial
position. To train the DEEPsc network, we use the spatial position
feature vectors as simulated scRNA-seq data for comparison
(Figure 1B). Each simulated cell is compared pairwise with every
position in the spatial reference atlas; if the simulated cell is an
exact match to a given position, the target output is 1 (a high
likelihood of origin), and if the simulated cell and chosen position
are not an exact match, the target output is 0 (a low likelihood
of origin). Training is terminated when the error on a randomly
chosen validation set is no longer improving.

After training the DEEPsc network, a feature vector associated
with an actual cell from the scRNA-seq data is fed in as input and
compared to each position in the reference atlas individually. We
display the results as a heatmap on the schematic diagram of the
biological system, choosing the spatial position with the largest
likelihood of origin according to DEEPsc as the determined
origin of the cell. This process is repeated for each cell in the
scRNA-seq dataset to assign spatial origins of all cells (Figure 1C).

Quantifying Spatial Mapping
Performance
Each of the highlighted methods to impute spatial data onto
scRNA-seq data, including DEEPsc, can be essentially boiled

down to the following: For some tissue with a well-defined
standard spatial structure, given known binary or continuous
expression levels of G genes at each of P spatial locations
(the reference atlas), calculate a correspondence score, S, of
how similar each of C cells in an scRNA-seq dataset is
to each of the P positions in the atlas. That is, define a
function, S : [0, 1]G

× [0, 1]G
→ [0, 1], such that S(ci, pj); i =

1, 2, . . . , C; j = 1, 2, . . . , P; which describes the likelihood that
cell ci originated from position pj, based on the similarity of the
expression vectors of the cell and position.

To quantify how well a given method performs for a given
spatial reference atlas, we use the reference atlas itself as simulated
single cell data; that is, we generate a simulated scRNA-seq
dataset with C = P cells, each an exact copy of a reference
atlas position. This allows us to treat the simulated scRNA-
seq data as having a known spatial origin, against which we
can compare the output of each method. We define a system-
adaptive, comprehensive performance score, consisting of three
penalty terms: accuracy, which determines whether or not the
known spatial origin was given a high likelihood of origin;
precision, which determines whether or not other locations were
given low likelihoods of origin; and robustness, which determines
how sensitive a mapping method is to random noise in the input
data. Each penalty term is represented by a number in [0, 1],
with 0 being no penalty and 1 being a worst-case scenario. The

performance score is defined as E = 1
P

P∑
i=1

Ei, where

Ei = 1−
1
3


1− Si.i︸ ︷︷ ︸
Accuracy

+

∣∣∣∣∣∣∣∣
1−

∑P
j=1 Si,j

P − 1︸ ︷︷ ︸
Precision

∣∣∣∣∣∣∣∣+
(
1− σ∗

)4︸ ︷︷ ︸
Robustness


,

Si,j = S(ci, pj) is the correspondence score of cell ci to position pj,
and Ei is interpreted as the error in the mapping of cell ci. The
quantity σ∗ in the robustness term is calculated by determining
the accuracy and precision penalty terms with no Gaussian
noise added to the input data, then calculating the same two
penalties with various levels of Gaussian noise with standard
deviation σ ∈ [0, 1]. The quantity σ∗ is defined to be the level of
Gaussian noise required to raise the mean of the accuracy and
precision penalties by 0.1 from their values with no added noise,
or σ∗ = 1, whichever is smallest. The exponent of four in the
robustness term was chosen empirically such that the robustness
term does not dominate the performance score, keeping in mind
that expression levels are normalized to [0, 1] before calculating
the correspondence scores, so e.g., σ

∗

= 0.5 means a method
requires noise on the order of half of the expression levels to raise
the precision and accuracy penalties by 0.1. The performance
score has a range of [0, 1], where a performance score of E = 1
represents an ideal mapping that maps a cell to its known location
with high confidence, to all other locations with low confidence,
and does so in a manner robust to noise. An illustration of each
term in the performance score is shown in Figure 2.
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FIGURE 1 | The general workflow of training and implementing DEEPsc. (A) Given a spatial reference atlas of gene expression levels for some biological system and
a scRNA-seq dataset, genes common to both are selected, and dimensionality of the data is reduced (e.g., by PCA, UMAP). Each spatial position in the reference
atlas and each cell in the scRNA-seq dataset is associated with a feature vector in the reduced space. (B) The DEEPsc architecture takes as input the feature
vectors of one single cell and one spatial position, returning a likelihood between 0 (low likelihood) and 1 (high likelihood) that the cell originated from the spatial
position. A DEEPsc network is trained using the spatial position feature vectors as simulated scRNA-seq data. The target output is a 1 (high likelihood of origin) if the
simulated input cell matches the input position, and 0 (low likelihood of origin) if they do not match. (C) Once the DEEPsc network is sufficiently trained, a feature
vector associated with a cell in the scRNA-seq dataset can be fed into the network with each spatial position individually. The resulting likelihoods are displayed as a
heatmap depicting the likelihood of origin of the cell from each position. The position with the highest likelihood is chosen as the origin of the cell. This process is
repeated for each cell in the scRNA-seq dataset.

FIGURE 2 | Explanation of the terms constituting the performance score. In each hypothetical mapping heatmap, the known location of the input cell is highlighted
in black. (A) The accuracy score measures whether or not the known location receives a high likelihood; the precision score measures whether or not other locations
receive low likelihoods. (B) The robustness score measures how much the accuracy and precision scores change if random noise is added to the input cell.
A mapping method which is accurate, precise, and robust is given a high performance score while a mapping method that lacks in any or all of the three areas is
given a lower performance score.
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This performance score is limited by the fact that it relies on
ground truth knowledge of the spatial origin of a single cell/spot
to determine the performance of a given mapping method.
However, this ground truth knowledge is not available for
actual scRNA-seq data. To more directly quantify the mapping
performance on actual scRNA-seq datasets, we use a measure of
predictive reproducibility, obtained from a k-fold cross validation
scheme, in which we randomly split the common genes in the
reference atlas and scRNA-seq data into k folds and calculate
the correspondence score for each method using all but one
fold. The correspondence scores are then used as coefficients in
a weighted sum to predict the value of the dropped-out genes
in each fold for each cell (scRNA-seq predictive reproducibility)
or each spatial position (atlas predictive reproducibility) and
determine the error in the predicted expression level. The
predicted expression of gene k in cell ci is computed as ĉ(k)

i =
P∑

j=1
S(k)

i,j p(k)
j /

P∑
j=1

S(k)
i,j and the predicted expression of gene k in

position pj is computed as p̂(k)
j =

C∑
i=1

S(k)
i,j c(k)

i /
C∑

i=1
S(k)

i,j where S(k)
i,j

is the correspondence score between cell ci and position pj

with genes in folds not containing gene k and c(k)
i and p(k)

j
are the known expression values of gene k from the scRNA-
seq and the spatial atlas data, respectively. To accommodate the
sparsity of data, we compute the predictive reproducibility scores
separately for cells or positions with zero expression values and
with positive expression values. For example, we measure the
predictive reproducibility for the task of reproducing gene k in
scRNA-seq data on cells with zero expression using R(k)

sc_zero =

1−
∑

i∈I(k)
sc_zero

∣∣∣ĉ(k)
i − c(k)

i

∣∣∣ /|I(k)
sc_zero| where I(k)

sc_zero = {i : c
(k)
i = 0}.

Taking the average over all common genes results in a single score
Rsc_zero, and in the same manner, we define Rsc_nonzero, Ratlas_zero,
and Ratlas_nonzero. When producing predictive reproducibility
scores, we use the same k-fold split across all methods to ensure a
fair comparison.

Comparisons of Multiple Methods Using
Simulated scRNA-seq Data
Using the performance score, we benchmarked the methods
developed by Achim et al. (2015) and Satija et al. (2015) (Seurat
v1), Karaiskos et al. (2017) (DistMap), and Peng et al. (2016)
together with our DEEPsc method and applied them to four
different biological systems: the zebrafish embryo (Satija et al.,
2015), the Drosophila embryo (Karaiskos et al., 2017), the murine
hair follicle (Joost et al., 2016), and the murine frontal cortex,
downloaded from the 10x Genomics Spatial Gene Expression
Datasets. The reference atlas for the zebrafish embryo contains
the binarized expression of 47 genes on 64 spatial bins that
assemble half of the hemisphere of the 6hpf embryo (Satija
et al., 2015). The Drosophila embryo reference atlas contains 84
genes on 3,039 spatial positions (Karaiskos et al., 2017). The
spatial reference atlas generated with the Visium technology
(Ståhl et al., 2016) for the murine frontal cortex contains 32,285
genes on 961 spatial positions (a subset presenting the frontal

cortex from the original data), from which we kept 2755 genes
from the 3,000 most variable genes in spatial data that are also
present in scRNA-seq data. Segmenting a standard diagram of
the follicle into 233 spatial positions and using FISH imaging
of eight genes identified as spatially localized (Joost et al.,
2016), we manually defined a continuous reference atlas for
the follicle (section “Materials and Methods”). For mapping
methods requiring a binary reference atlas, we defined a cutoff
expression of 0.2 to be considered on in this follicle reference
atlas of follicle. We further implemented several baseline methods
for benchmark comparisons, including several methods using
predefined metrics where the correspondence score S is defined
to be the 2-norm, infinity norm, or mean percent difference in
the space of common genes between the input cell and spatial
position. We also implemented a large margin nearest neighbor
(LMNN) method that learns a linear metric (section “Materials
and Methods”). Figure 3 shows a scatter plot of the penalty
terms constituting the performance score of each implemented
method on each of the four biological systems, as well as the
average for each method across all four systems. Table 1 includes
the numerical values for each penalty term, as well as the
calculated performance score for each method. Figure 4 includes
example heatmaps of simulated cells for each of the biological
systems. The penalty terms for the individual locations are shown
in Figure 5.

The majority of methods were able to project the simulated
scRNA-seq cells to their known spatial origins with high accuracy.
Specifically, Seurat v1 and DistMap achieve high performance
scores in the zebrafish embryo and Drosophila embryo datasets
that they were originally applied to, respectively. Designed to
be a system-adaptive method, DEEPsc has the best average
performance score across the four datasets (Table 1). Moreover,
while some methods are stronger in terms robustness or
precision, DEEPsc attains a balance between robustness and
precision (Figure 3). This balance is especially important when
investigating the impact of cellular spatial neighborhood on
cell fate acquisition. It is desired to narrow down the inferred
spatial neighborhood (precision) and at the same time reduce
the sensitivity to noise (robustness). The high precision and
robustness of DEEPsc is consistently observed across all locations
in the dataset (Figure 5). Finally, it is worth mentioning that
DEEPsc has a significantly higher robustness in the follicle dataset
which has the smallest number of genes and is the noisiest among
the four datasets.

Applications to Real scRNA-seq
Datasets
We now map actual scRNA-seq data for each system and calculate
the predictive reproducibility for each method (Table 2 and
Figure 6). For the follicle, the scRNA-seq data contains 1,422
cells with 26,024 genes measured containing the eight genes in
the spatial atlas (Joost et al., 2016). For the Drosophila embryo,
we used the scRNA-seq dataset with 1,297 cells and 8,924 genes
among which all the 84 spatial genes are present (Karaiskos et al.,
2017). For the Zebrafish embryo, there are 1,152 cells and 11,978
genes in the scRNA-seq dataset with all the 47 spatial genes
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FIGURE 3 | Summary of the robustness, precision, and accuracy scores of the implemented methods on four different biological systems (A), as well as the simple
average across all four (B). These scores are each defined to be one minus the corresponding penalty term in the performance score, so that a higher score is
better. Since most methods have near perfect accuracy scores, the x-axis shows a mean of the precision and accuracy scores. The y-axis shows the robustness
scores for each method. Due to memory constraints, we were unable to run Seurat v1 on the cortex dataset.

included (Satija et al., 2015). For the murine frontal cortex, we
used the scRNA-seq dataset provided by the Allen Institute (Tasic
et al., 2016), generated with SMART-Seq2, which contains 14,249
cells and 34,617 genes, from which a set of 2,755 genes were
found to be present in the top 3,000 highly variable genes in
spatial atlas. These four datasets cover different situations. The
follicle data contains a moderate number of locations, and the
cells form well-defined layered structures such that there could
be long and thin spatial regions that contain the same cells. The
zebrafish embryo spatial data has a suboptimal resolution such
that each spatial location consists of multiple cells. This data
helps to evaluate the methods in treating coarse spatial atlases.
The Drosophila embryo data contains rich spatial characteristics.
There is a well-defined global ventral-dorsal/anterior-posterior
coordinate system. Locally, there is also a striped pattern in the
lateral side of the embryo. The frontal cortex data examines
spatial gene expression at the transcriptomics level, and functions
as a demonstration that DEEPsc is able to maintain a high
performance on high-dimensional datasets.

For the baseline models, we linearly normalized each gene
in the log-normalized scRNA-seq dataset onto the interval
[0, 1]. Continuous spatial atlases with expression values in the
[0, 1] range were used for the follicle, Drosophila embryo, and
murine frontal cortex systems, the latter two having been linearly
normalized to [0, 1] in the same fashion as the scRNA-seq data.
Since a continuous spatial atlas for Zebrafish embryo is lacking,
we applied a spatial convolution to the binary atlas and added
a small amount of Gaussian noise to simulate a continuous
atlas. The 2-norm, Inf-norm, percent difference, and LMNN
baseline models are then applied to the vectors of the commonly
expressed genes in the spatial atlas and scRNA-seq data. For

DEEPsc, we first applied a PCA reduction to the spatial atlas, and
then applied the same linear transformation to the normalized
expression values of the common genes in the scRNA-seq data.
The feature vectors for the locations in the spatial atlas and
the cells in the scRNA-seq data in the PCA space were then
fed to the neural network. For the four existing methods, we
followed the procedure as described in the associated original
publications, scaling the resulting correspondence scores to [0, 1]
for direct comparison with baseline methods. For all the methods,
we compute the predictive reproducibility by iterating over all
common genes, attempting to reconstruct the expression of
one gene using the k-fold cross validation scheme described
in the previous section. We used k = 4 for the follicle and
Drosophila embryo dataset, and k = 5 for the zebrafish embryo
and cortex dataset.

DEEPsc has a comparable accuracy compared to other
methods, and it also has a consistent performance across different
systems (Table 2 and Figure 6). This consistent performance
further demonstrates the system-adaptive advantage of DEEPsc
and the benefit of using adaptive metrics over predefined ones.
We also notice that similar to the simulated case, DEEPsc also
achieves a balance between precision and robustness in the
case of real scRNA-seq data. For example, while it exhibits
high precision by mapping the example cell to a specific local
spot in the Zebrafish embryo or a local strip in Drosophila
embryo, it also robustly maps a cell to the entire outer bulge
of the follicle instead of only part of it (Figure 7). The
high precision ensures that we can resolve the heterogeneity
in the spatial environment and further relate them to the
heterogeneity in cell fates. The high robustness prevents the
identification of false correlations. Overall, DEEPsc achieves a
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TABLE 1 | Numerical values of each of the three constituent terms of the
performance score, as determined from simulated scRNA-seq data for each
biological system, as well as the average across all systems.

Method Accuracy Precision Robustness Performance
(Author) Term Term Term Score

Follicle

(Achim) 0.0043 0.3484 0.4116 0.7452

Seurat v1 (Satija) 0.0795 0.1076 0.5704 0.7475

DistMap (Karaiskos) 0.0043 0.4076 0.3723 0.7386

(Peng) 0.0000 0.5118 0.4439 0.6814

2-norm (baseline) 0.0000 0.3255 0.2686 0.8020

Inf-norm (baseline) 0.0005 0.2299 0.3613 0.8028

% difference (baseline) 0.0000 0.2829 0.8722 0.6150

LMNN (baseline) 0.0000 0.0002 0.8455 0.7181

DEEPsc (ours) 0.0272 0.2684 0.1904 0.8380

Zebrafish

(Achim) 0.0000 0.4645 0.2516 0.7613

Seurat v1 (Satija) 0.0000 0.0156 0.0604 0.9747

DistMap (Karaiskos) 0.0000 0.3989 0.0000 0.8670

(Peng) 0.0000 0.4296 0.0000 0.8568

2-norm (baseline) 0.0000 0.2902 0.0003 0.9302

Inf-norm (baseline) 0.0000 0.0536 0.1588 0.9292

% difference (baseline) 0.0000 0.4249 0.0095 0.8552

LMNN (baseline) 0.0000 0.0315 0.1689 0.9332

DEEPsc (ours) 0.0339 0.1281 0.0230 0.9383

Drosophila

(Achim) 0.0000 0.3407 0.0759 0.8611

Seurat v1 (Satija) 0.6605 0.0848 0.0000 0.7516

DistMap (Karaiskos) 0.0000 0.3496 0.0024 0.8827

(Peng) 0.0000 0.4313 0.0000 0.8562

2-norm (baseline) 0.0000 0.2310 0.0130 0.9186

Inf-norm (baseline) 0.0000 0.0006 0.1671 0.9441

% difference (baseline) 0.0000 0.3597 0.0013 0.8797

LMNN (baseline) 0.0000 0.0052 0.0987 0.9653

DEEPsc (ours) 0.0087 0.0179 0.1827 0.9303

Cortex

(Achim) 0.0000 0.6357 0.0859 0.7594

Seurat v1 (Satija) – – – –

DistMap (Karaiskos) 0.0000 0.4778 0.0000 0.8407

(Peng) 0.0000 0.4400 0.0000 0.8533

2-norm (baseline) 0.0000 0.3008 0.1546 0.8482

Inf-norm (baseline) 0.0000 0.0006 0.3042 0.8984

% difference (baseline) 0.0000 0.4332 0.3817 0.7284

LMNN (baseline) 0.0000 0.0143 0.3376 0.8827

DEEPsc (ours) 0.0000 0.1167 0.0289 0.9515

Average

(Achim) 0.0011 0.4473 0.2063 0.7818

Seurat v1 (Satija) 0.1850 0.0693 0.2103 0.8246

DistMap (Karaiskos) 0.0011 0.4085 0.0937 0.8323

(Peng) 0.0000 0.4532 0.1110 0.8119

2-norm (baseline) 0.0000 0.2869 0.1091 0.8748

Inf-norm (baseline) 0.0001 0.0712 0.2479 0.8936

% difference (baseline) 0.0000 0.3752 0.3162 0.7696

LMNN (baseline) 0.0000 0.0128 0.3627 0.8748

DEEPsc (ours) 0.0175 0.1328 0.1063 0.9145

For each term, a value closer to zero signifies lower error. For the performance
score, a value closer to one indicates a better performing method. The best method
for each term is bolded for each system.

high predictive reproducibility across all cells in the scRNA-
seq dataset.

Comparison of Dimensionality Reduction
Methods
Dimension reduction is a crucial initial step of DEEPsc.
A dimension reduction method that can be trained on one
dataset and deterministically applied to another is needed
due to the separated training and predicting steps. Here,
we explore two different representative dimension reduction
methods in the linear and nonlinear categories, PCA and
Uniform Manifold Approximation and Projection (UMAP;
McInnes et al., 2018). To compare these two methods, we
trained several networks with varying amounts of added noise
on the reference atlases of the four studied biological systems
(Figure 8). We compared PCA (8 principal components),
UMAP30 (n_components = 8, n_neighbors = 30), and UMAP5
(n_components = 8, n_neighbors = 5). While on the follicle system
all three reduction methods performed virtually identically,
on all three other systems PCA outperformed the other
reduction methods by achieving a higher robustness score while
maintaining similar accuracy.

DISCUSSION

We have developed the DEEPsc framework, which trains a deep
neural network using the known expression levels of a small
subset of genes in a spatial context, then imputes that spatial
information onto a non-spatial scRNA-seq dataset. Instead of
using a predefined metric, DEEPsc finds a metric adaptive to data.
This framework is system-adaptive and designed to be robust
to noise. DEEPsc consistently performs at or above the level
of several existing methods across all four biological systems
studied herein, including systems for which existing methods
were originally developed (Figure 3 and Tables 1, 2), based
on our comprehensive performance measure. While DEEPsc
achieves comparable accuracy and precision to other methods, it
is significantly more robust to noise.

The source of DEEPsc’s ability to perform well across multiple
biological systems is likely the generality of its neural network
architecture and the multiple checks for robustness employed
during training on the reference atlas. The various parameters for
training a DEEPsc network, though chosen empirically, appear
to translate to multiple systems effectively, so we expect DEEPsc
to continue to perform well across more biological systems
in future study.

One notable weakness of DEEPsc is the significant amount of
training time required to produce a final mapping. While most
existing reference atlas methods simply involve a deterministic
calculation to produce a mapping, DEEPsc requires an initial
training, and the training time depends on the number of
locations in the spatial atlas. The training process of DEEPsc can
be effectively accelerated by iterating over a subset of possible
location pairs. Due to the dimension reduction step, DEEPsc
can still be trained efficiently on datasets with large amount
of genes, for example, the spatial transcriptomics data on the
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FIGURE 4 | Example mappings of simulated single cells produced by various existing methods on four different biological systems, with DEEPsc mappings for
comparison. The simulated input cell for the murine follicle system corresponds to position 228. For the Zebrafish system (for which Seurat was introduced), the
simulated input cell corresponds to position 34. For Drosophila (for which DistMap was introduced), the simulated input cell corresponds to position 1982. For the
murine frontal cortex, the simulated input cell corresponds to position 458. Each known position is highlighted in black in each of the heatmaps.

murine frontal cortex. Though the predefined metrics including
the 2-norm and inf-norm perform well in terms of accuracy and
precision, they are less robust to noise. This is further the case for
LMNN as it tries to amplify any small variations. This drawback
in robustness is mitigated by DEEPsc by controlling the balance
between precision and robustness.

Learning a metric from high-dimensional datasets can be
generally useful for analysis and integration of omics datasets.
A future research interest is to decrease training time in
such framework by developing a better method for reducing
the size of the training set to a small, targeted fraction of
relevant examples, particularly for very large atlases such as
those derived from spatial transcriptomics assays. Since the size
of the training set can increase quadratically with the number
of positions in the atlas, it is beneficial to develop a more
efficient training pipeline. We have developed a method of
sparsifying the training set (section “Materials and Methods”),
so that its size only increases linearly with the number of
positions in the atlas, though further improvement may be
warranted. The largest atlas studied here was that of Drosophila
(P = 3039), the training of which took several hours even with
the sparsified training set. Typical numbers of distinct spatial
locations in a spatial transcriptomics dataset can be orders of
magnitude larger.

DEEPsc aside, the performance score we have created can
serve as a comprehensive measure of mapping performance for
future work. The performance score is able to be calculated
for any mapping method that assigns a likelihood of origin
from each spatial location, particularly within the reference
atlas framework. It is not dependent on any specific system
or mapping method, and the individual terms which constitute
it allow for a detailed analysis and comparison of various
methods. Potential improvements might include incorporating
some amount of spatial awareness into the calculation. Currently
each spatial position is treated as completely independent
from every other spatial position, so the precision term, for
example, can yield unintuitive results if a method maps a
cell, for example, with high probability to two positions on
opposite sides of a system and low probability everywhere else,
compared to a different method mapping the same cell with
high probability to five positions in a tightly clustered, spatially
compact region of the system. If, for example, the various
correspondence scores for each position with high probability
were weighted by their physical distance from other cells with
high probability, this term might more accurately reflect the
intuitive idea of precision. Other improvements might include
simplifying the calculation of the robustness term to require fewer
intensive calculations.

Frontiers in Genetics | www.frontiersin.org 8 March 2021 | Volume 12 | Article 636743219

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636743 March 17, 2021 Time: 20:33 # 9

Maseda et al. DEEPsc: scRNA-seq Spatial Mapping

FIGURE 5 | Heatmap representation of the various components of the performance score on a per position basis in (A) the follicle system, (B) the Zebrafish, (C) the
Drosophila embryo, and (D) the murine frontal cortex. We were unable to run Seurat v1 on the Drosophila embryo and cortex data due to memory constraint. The
penalty terms for each simulated cell, including robustness, were computed individually and plotted as a heatmap.

CONCLUSION

DEEPsc achieves an accuracy comparable to several existing
methods while attaining improved precision and robustness. It
also has a more consistent performance across the four different
biological systems tested thanks to the system-adaptive design.
As spatially resolved gene expression data becomes more readily
available, our method will serve as a useful tool to infer spatial
origins from non-spatial scRNA-seq data.

Additionally, our comprehensive performance score and the
collection of reproductions of previously developed methods
in a single software framework will serve as useful tools for
future comparisons of spatial mapping methods. This systematic
approach to imputing spatial information to scRNA-seq data is
crucial to studying the spatial impact on cell fate dynamics.

MATERIALS AND METHODS

Data Preparation for DEEPsc
Given a matrix of scRNA-seq read counts where each row is a
different gene and each column is a different cell, and a matrix
representing a spatial reference atlas where each row is a different
gene and each column is a different spatial position, we first select
common genes by eliminating rows in each corresponding to
genes not in the other matrix. Once we have eliminated genes not

in common, we are left with a number of cells (C) × number
of genes (G) matrix for the scRNA-seq data and a number of
positions (P) × number of genes (G) matrix for the spatial
reference atlas.

We then apply dimensionality reduction to the atlas in the
form of a PCA projection, selecting a user-configurable number
of principal components to serve as feature vectors. We find in
our analysis that keeping the top eight principal components
yields satisfactory results. The same PCA coefficients are used to
project the scRNA-seq matrix into these principal components.
After projection, both matrices are normalized by dividing by the
largest element in each, so that the elements are all in [0, 1].

For the comparisons in section “Comparison of
Dimensionality Reduction Methods,” we use the UMAP
implementation by Meehan et al. (2021), found on the
MATLAB Central File Exchange at https://www.mathworks.
com/matlabcentral/fileexchange/71902. Specifically, we ran
the run_umap() function on the spatial reference atlas with
n_dimensions = 8 and n_neighbors = 30 or n_neighbors = 5 for
UMAP30 and UMAP5, respectively.

Training a DEEPsc Network
To train the DEEPsc network, we use the spatial position feature
vectors themselves as simulated scRNA-seq data. The training
data is a set of P2 vectors of length 2N, where N is the reduced
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TABLE 2 | Predictive reproducibility of each method for real scRNA-seq data.

Method (Author) Follicle Zebrafish Drosophila Cortex Average

Rsc_zero

(Achim) 0.8772 0.5537 0.7798 0.8019 0.7531

Seurat v1 (Satija) 0.8335 0.6842 – – 0.7589

DistMap (Karaiskos) 0.8404 0.6641 0.7850 0.8055 0.7738

(Peng) 0.8219 0.6375 0.7859 0.8092 0.7636

Two-norm (baseline) 0.8017 0.6973 0.7874 0.8114 0.7745

Inf-norm (baseline) 0.8641 0.6180 0.7807 0.8141 0.7692

% difference (baseline) 0.8357 0.5657 0.7790 0.8079 0.7471

LMNN (baseline) 0.8254 0.6795 0.7917 0.8120 0.7772

DEEPsc (ours) 0.8344 0.7335 0.7961 0.8165 0.7951

Rsc_nonzero

(Achim) 0.7495 0.7698 0.8126 0.6693 0.7503

Seurat v1 (Satija) 0.7640 0.6975 – – 0.7308

DistMap (Karaiskos) 0.7705 0.7619 0.8103 0.6685 0.7528

(Peng) 0.7801 0.7663 0.8114 0.6680 0.7565

Two-norm (baseline) 0.7891 0.7386 0.8083 0.6667 0.7507

Inf-norm (baseline) 0.7496 0.7636 0.8128 0.6695 0.7489

% difference (baseline) 0.7740 0.7721 0.8115 0.6690 0.7567

LMNN (baseline) 0.7730 0.7477 0.8117 0.6643 0.7492

DEEPsc (ours) 0.7352 0.7026 0.8080 0.6691 0.7287

Ratlas_zero

(Achim) 0.7680 0.9042 0.9264 0.8360 0.8587

Seurat v1 (Satija) 0.7681 0.9088 – – 0.8385

DistMap (Karaiskos) 0.7674 0.9005 0.9259 0.8374 0.8578

(Peng) 0.7707 0.9006 0.9267 0.8406 0.8597

Two-norm (baseline) 0.7681 0.9003 0.9278 0.8411 0.8593

Inf-norm (baseline) 0.7623 0.9050 0.9259 0.8343 0.8569

% difference (baseline) 0.7714 0.9035 0.9261 0.8438 0.8612

LMNN (baseline) 0.7677 0.8937 0.9289 0.8359 0.8566

DEEPsc (ours) 0.7881 0.9148 0.9257 0.8415 0.8675

Ratlas_nonzero

(Achim) 0.7598 0.6658 0.8523 0.5124 0.6976

Seurat v1 (Satija) 0.7570 0.6776 – – 0.7173

DistMap (Karaiskos) 0.7584 0.6709 0.8527 0.5127 0.6987

(Peng) 0.7570 0.6682 0.8530 0.5135 0.6979

Two-norm (baseline) 0.7582 0.6755 0.8530 0.5135 0.7001

Inf-norm (baseline) 0.7583 0.6745 0.8534 0.5130 0.6998

% difference (baseline) 0.7573 0.6669 0.8524 0.5134 0.6975

LMNN (baseline) 0.7573 0.6764 0.8564 0.5129 0.7008

DEEPsc (ours) 0.7724 0.7079 0.8527 0.5125 0.7114

A value closer to one signifies higher predictive reproducibility. A missing entry
signifies that we were not able to run the relevant method on the given dataset.
The best method for each term is bolded for each system.

dimensionality of the reference atlas. The first N components
correspond to a feature vector of one position in the reference
atlas (functioning as a simulated cell) and the last N components
correspond to some other position in the reference atlas. Each
simulated cell is compared pairwise with every position in the
spatial reference atlas; if the simulated cell is an exact match
to a given position, the target output is chosen to be 1 (a high
likelihood of origin), and if the simulated cell and chosen position
are not an exact match, the target output is chosen to be 0 (a low
likelihood of origin).

The DEEPsc architecture is an artificial neural network with
2N inputs, two fully connected hidden layers with N nodes
each and a single node in the output layer. Sigmoid activation
functions are attached to each node, including the output node,
so that the resulting output is in [0, 1] and can be interpreted
as a likelihood that the input cell originated from the input
spatial position. To preserve robustness and avoid overfitting the
training data, a layer of Gaussian noise is added to the simulated
cells so that the network is pushed to learn complex nonlinear
relationships among the spatial positions in the reference atlas
rather than simply activate when an exact match is encountered.
This Gaussian noise layer allows the user to configure the
standard deviation of the added noise, as well as to configure
the probability that any noise will be added in a given training
epoch. We find empirically that a noise level of about 0.10 and
a probability of 0.5 yield reasonable robustness to noise, though
this may vary from system to system.

Since the training data will naturally consist of many more
non-matches than matches, and thus the target data will contain
many more zeros than ones, we use a novel custom objective
function,

L (Y, T) =

P∑
i=1

(
yi − ti

)2 1
1.001− ti

where yi is the network’s predicted output and ti is the target
output (ti = 1 if exact match and ti = 0 if not), to more heavily
penalize the network when it gives a false negative (low likelihood
when it should be high) than when it gives a false positive (high
likelihood when it should be low). This acts to counteract the
tendency of the network to “learn” to simply return 0 for every
single input and “ignore” any comparably rare training data with
ti = 1.

To further account for the sparsity of exact matches in the
training set, we split it into a test and validation set, the former
consisting of a configurable fraction of the inputs corresponding
to exact matches as well as a configurable multiple of the
inputs corresponding to non-matches. If trainFrac = 0.9 and
trainingMultiple = 99, for example, 90% of the exact matches will
be added to the training set and 99x more non-matches will be
added, so that the exact matches make up 1% of the training
set. The rest of the inputs are reserved for the (generally much
larger) validation set. This is beneficial in reducing training time
because it allows us to train with a much smaller fraction of the
P2 input vectors, giving preference to the exact matches. Indeed,
this reduces the size of the actual training set to scale linearly with
the size of the atlas rather than quadratically.

Training is performed in MATLAB using the trainNetwork()
function in the Deep Learning Toolbox (The Mathworks, Inc,
2019a), for which we implemented the above-described custom
network layers. Since the input data is already normalized
in preprocessing, we disable the default normalization of
trainNetwork(). We use the default Glorot (Xavier and Yoshua,
2010) initialization of weights and biases in the fully connected
layers. We then train each network for a maximum of 50,000
epochs of standard gradient descent with a learning rate of
η = 0.01, shuffle the order of the data each epoch, and use
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FIGURE 6 | Ridgeline plots of the zero (A) and nonzero (B) scRNA-seq predictive reproducibility of individual cells in the scRNA-seq datasets and zero (C) and
nonzero (D) atlas predictive reproducibility of individual positions in the spatial atlas for the four studied systems. We were unable to run Seurat v1 on the Drosophila
embryo and cortex data due to memory constraints.

FIGURE 7 | Example mappings of real single cells produced by various existing methods on four different biological systems, with DEEPsc mappings for
comparison. The input cell for the murine follicle system is cell 710 from the Joost dataset. For the Zebrafish system (for which Seurat v1 was introduced), the input
cell is cell 877 from the scRNA-seq dataset (Satija et al., 2015). For Drosophila (for which DistMap was introduced), the input cell is cell 130 from the scRNA-seq
dataset (Karaiskos et al., 2017). For the murine frontal cortex, the input cell is cell 885 from the Allen reference dataset (Tasic et al., 2016).
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FIGURE 8 | A comparison of the performance of DEEPsc networks using different dimensionality reduction methods on each of the biological systems for various
levels of added noise during training. We compare principal component analysis (PCA) to Uniform Manifold Approximation and Projection (UMAP) with
n_neighbors = 30 (UMAP30) and n_neighbors = 5 (UMAP5). Each of these methods reduce the dimensionality of the initial dataset to n_dimensions = 8. These
scores are each defined to be one minus the corresponding penalty term in the performance score, so that a higher score is better. Since most methods have near
perfect accuracy scores, the x-axis shows a mean of the precision and accuracy scores. The y-axis shows the robustness scores for each method.

the ADAM optimization method (Kingma and Ba, 2014) with
the default parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. In
addition to the custom objective function layer we describe above,
trainNetwork() by default adds an L2-regularization term to the
loss with a regularization factor of λ = 0.0001. We monitor
the RMSE of the validation set throughout training and manually
stop training if it is no longer improving before the maximum
number of epochs has been reached. The trainNetwork()
function also allows for parallel computation via the Parallel
Computing Toolbox (The Mathworks, Inc, 2019b), which is
highly recommended but not strictly required for training.

Creating a Reference Atlas for the
Murine Follicle
To create a spatial reference atlas for the murine follicle system,
we patterned the spatial coordinates of each position in the atlas
off of a standard diagram of a mouse follicle found in Figure 1 of
Joost et al. (2016). We constructed a Voronoi diagram around

each of the cell centers and made manual adjustments to the
vertices as we saw fit aesthetically. We then selected the eight
genes in the atlas from the systematic staining catalog made
available by Joost. We chose the genes based on a combination
of high image quality and spatial diversity. Gene expression
levels in [0, 1] were chosen manually to best represent the
images, though to eliminate any implicit bias we also added
a small level of Gaussian noise to the atlas. For all methods
requiring a binary atlas, we chose a cutoff of 0.2 to represent “on”
expression in this atlas.

Large Margin Nearest Neighbor Baseline
To implement a LMNN baseline for benchmarking comparison,
we used code from the MATLAB Toolbox for Dimensionality
Reduction found at https://lvdmaaten.github.io/drtoolbox/ and
modified it for our uses. Specifically, we used the lmnn() function
in the “techniques” subfolder, and modified the code to set
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mu = 1, i.e., to remove the “pull” term, as well as setting
the number of targets to 1 (the point itself) and treating
all other points as imposters. Further, we modified the slack
variables to enforce a minimum separation of

√
D, where D is

the dimensionality of the space (D = G for our applications).
For the numerical experiments of the LMNN method with
the cortex dataset, a PCA dimension reduction (50 PCs) was
performed before applying LMNN to accommodate the large
number of genes.
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through Synapse ID (syn15665609) (Karaiskos et al., 2017);
(4) mouse frontal cortex spatial data: downloaded from 10x
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genomics.com/spatial-gene-expression/datasets/1.1.0/V1_Mouse
_Brain_Sagittal_Anterior); (5) mouse frontal cortex scRNA-seq

data: downloaded from (https://www.dropbox.com/s/
cuowvm4vrf65pvq/allen_cortex.rds?dl=1) (Tasic et al., 2016); (6)
follicle scRNA-seq data and spatial imaging data from which the
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Feed-forward loops (FFLs) are among the most ubiquitously found motifs of reaction

networks in nature. However, little is known about their stochastic behavior and the variety

of network phenotypes they can exhibit. In this study, we provide full characterizations

of the properties of stochastic multimodality of FFLs, and how switching between

different network phenotypes are controlled. We have computed the exact steady-state

probability landscapes of all eight types of coherent and incoherent FFLs using the

finite-butter Accurate Chemical Master Equation (ACME) algorithm, and quantified

the exact topological features of their high-dimensional probability landscapes using

persistent homology. Through analysis of the degree of multimodality for each of a set of

10,812 probability landscapes, where each landscape resides over 105–106 microstates,

we have constructed comprehensive phase diagrams of all relevant behavior of FFL

multimodality over broad ranges of input and regulation intensities, as well as different

regimes of promoter binding dynamics. In addition, we have quantified the topological

sensitivity of the multimodality of the landscapes to regulation intensities. Our results

show that with slow binding and unbinding dynamics of transcription factor to promoter,

FFLs exhibit strong stochastic behavior that is very different from what would be

inferred from deterministic models. In addition, input intensity play major roles in the

phenotypes of FFLs: At weak input intensity, FFL exhibit monomodality, but strong

input intensity may result in up to 6 stable phenotypes. Furthermore, we found that

gene duplication can enlarge stable regions of specific multimodalities and enrich the

phenotypic diversity of FFL networks, providing means for cells toward better adaptation

to changing environment. Our results are directly applicable to analysis of behavior of

FFLs in biological processes such as stem cell differentiation and for design of synthetic

networks when certain phenotypic behavior is desired.

Keywords: systems biology, feed forward loop, gene regulatory network, network motif, stochastic reaction

network, persistent homology, ACME algorithm
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1. INTRODUCTION

Cells with the same genetic make-ups can exhibit a variety of
different behavior. They can also switch between these different
phenotypes stochastically. This phenomenon has been observed
in bacteria, yeast, and mammals such as neural cells (Acar
et al., 2005; Choi et al., 2008; Guo and Li, 2009; Gupta et al.,
2011). The ability to exhibit multiple phenotypes and switching
between them is the foundation of cellular fate decision (Schultz
et al., 2007; Cao et al., 2010; Ye et al., 2019), stem cell
differentiation (Feng and Wang, 2012; Papatsenko et al., 2015;
Zhang et al., 2019), and tumor formation (Huang et al., 2009;
Shiraishi et al., 2010).

Cells exhibiting different phenotypes have different patterns
of gene expression. Single-cell studies demonstrated that isogenic
cells can exhibit different modes of gene expression (Shalek et al.,
2013), indicating that distinct phenotypes are encoded in the
wiring of the genetic regulatory networks (Liang andQian, 2010).
This phenomenon of epigenetic control of bimodality in gene
expression by network architecture is well-known and has been
extensively studied in earlier works of phage-lambda (Arkin et al.,
1998; Ptashne, 2004; Zhu et al., 2004a,b; Cao et al., 2010).

Understanding multimodality in gene regulatory networks
and its control mechanism can provide valuable insight into
how different cellular phenotypes arises and how cellular
programming and reprogramming proceed (Lu et al., 2007).
Much of current knowledge of multimodality is derived
from analysis of networks with feedback loops or cooperative
interactions (Siegal-Gaskins et al., 2009). However, recent studies
suggest that multimodality and phenotype switching can also
arise from slow promoter binding, which may result in distinct
protein expression levels of long durations (Feng and Wang,
2012; Thomas et al., 2014; Chen et al., 2015; Duncan et al., 2015;
Terebus et al., 2019). Nevertheless, the nature and extent of this
type of bimodality is not well-understood.

In this work, we study the network modules of feed-

forward loops (FFLs) and characterize the stochastic nature
of their multimodalities. FFLs are one of the most prevalent

three-node network motifs in nature (Alon, 2006) and play
important regulatory roles (Lee et al., 2002; Shen-Orr et al.,
2002; Boyer et al., 2005; Mangan et al., 2006; Tsang et al., 2007;
Ma et al., 2009; Sorrells and Johnson, 2015). They appear in
stem cell pluripotency networks (Boyer et al., 2005; Papatsenko

et al., 2015; Sorrells and Johnson, 2015), microRNA regulation
networks (Tsang et al., 2007; Re et al., 2009; Ivey and Srivastava,
2010), and cancer networks (Re et al., 2009). The behavior of FFLs
has been studied extensively using deterministic ODE models.
These studies revealed important functions of FFLs in signal
processing, including sign-sensitive acceleration and delay pulse
generation functions, and increased cooperativity (Mangan and
Alon, 2003; Ma et al., 2009). FFLs are also found to be capable
of maintaining robust adaptation (François and Siggia, 2008; Ma
et al., 2009) and detecting “fold-changes” (Goentoro et al., 2009).

However, analysis based on ODEs is limited in its ability
to characterize probabilistic events, as they do not capture
bimodality in gene expression that arises from slow promoter
binding (Vellela and Qian, 2009). The stochastic behavior of

FFLs is not well-characterized: Basic properties such as the
number of different phenotypes FFLs are capable of exhibiting,
the conditions required for their emergency, their relative
prominence, and the sensitivity of different phenotypes to
perturbations are not known.

Our stochastic FFL models are based on processes of
Stochastic Chemical Kinetics (SCK), which provides a general
framework for understanding the stochastic behavior of reaction
networks. Quantitative SCK modeling can uncover different
network phenotypes, the conditions for their occurrence, and
the nature of the prominence of the stability peaks. However,
analysis of stochastic networks is challenging. First, models
based on stochastic differential equations such as Fokker–
Planck and Lagenvin models may be inadequate due to their
Gaussian approximations. This is further compounded by the
limited number of simulation trajectories that can be generated.
These difficulties are reflected in the reported failure of a
Fokker–Planck model in accounting for multimodality in the
simple network model of single self-regulating gene at certain
reaction rates (Duncan et al., 2015). Second, the widely used
Stochastic Simulation Algorithm (Gillespie simulations) can
generate SCK trajectories (Gillespie, 1977), but are challenged
in capturing rare events and in computing efficiency. There
are also difficulties in assessing convergency and in estimating
computational errors (Cao and Liang, 2013). Third, even if
the probabilistic landscape can be accurately reconstructed
with acceptable accuracy, detecting topological features such as
peaks in high-dimensional probability landscapes and assessing
their objectively prominence at large-scale remains an unsolved
problem.

To characterize the stochastic behavior of FFLs using models
based on SCK processes, our approach is to solve the underlying
discrete Chemical Master Equation (dCME) using the ACME
(Accurate Chemical Master Equation) algorithm (Cao et al.,
2016a,b), and to obtain the exact probability landscapes of all 8
varieties of FFLs.

Aided by the computational efficiency of ACME, we are
able to explore the behavior FFLs under broad conditions
of synthesis, degradation, binding, and unbinding rates of
transcription factors genes binding. Furthermore, we analyze the
topological features of the exactly constructed high-dimensional
probability landscapes using persistent homology, so the number
of probability peaks and the prominence measured by their
persistence are quantified objectively. These techniques allow
us to examine details of the number of possible phenotypic
states at different conditions, as well as the ranges of conditions
enabling phenotypic switching. With broad exploration of the
model parameter space, we are able to construct detailed phase
diagrams of multimodalities under different conditions.

Our results reveal how FFL network behaves differently under
varying strengths of regulations intensities and the input. In
addition, we characterize quantitatively the effects of duplication
of genes in the FFL network modules. We show gene duplication
can significantly affect the diversity of multimodality, and can
enlarge monomodal regions so FFLs can have robust phenotypes.
The results we obtained can be useful for analysis of phenotypic
switching in biological networks containing the FFL modules.
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FIGURE 1 | Representation and the types of feed-forward loop (FFL) network: (A) General wiring and corresponding 3-node schematic representation of an FFL

module containing three genes a, b, and c expressing three proteins A, B, and C. Protein A regulates the expressions of genes b and c through binding to their

promoters. Protein B regulates the expression of gene c through promoter binding. (B) The FFL modules can be classified into eight different types.

Coherent/incoherent FFLs are on the left/right, respectively.

They can also be used for construction of synthetic networks with
the goal of generating certain desired phenotypic behavior.

2. MODELS AND METHODS

2.1. Architecture and Types of
Feed-Forward Loop Network Modules
2.1.1. Overview

FFLs consists of three nodes representing three genes, each
expresses a different protein product (Figure 1A). An FFL
regulates the network output from the left input node toward
the right output node via two paths; the direct path from the
left node to the right node, and the indirect path from the left
to the right node via an intermediate buffer node. As each of the
three regulations can be either up- or downregulation, there are
altogether 23 = 8 types of FFL.

2.1.2. Network Architecture

Specifically, we denote the three genes of an FFL module as a, b,
and c, which expresses protein products A, B, and C at constant
synthesis rate of sA, sB, and sC, respectively (Figure 1A). Proteins
A, B, and C are degraded at rate dA, dB, and dC, respectively.
Both proteins A and B function as transcription factors and can
bind competitively to the promoter of gene c and regulates its
expression. As the promoter of gene c can bind to either protein
A or B, but not both, this type of regulation is known as the “OR”
gate. In addition, protein A can bind to the promoter of gene b
and regulate its expression. Specifically, protein A can bind to
the promoter of gene c at rate rAc to form complex cA, which
dissociates at rate f Ac . cA expresses protein C at a rate k3-fold over
the basal rate of sC. Similarly, protein B can bind to the promoter
of gene c at rate rBc to form complex cB, which dissociates at rate
f Bc . cB expresses protein C at a rate k2-fold over the basal rate of
sC. Furthermore, proteinA binds to the promoter of gene b at rate
rA
b
to form gene–protein complex bA, which dissociate at rate f A

b
.

Upon binding protein A, bA expresses protein B at a rate k1-fold
over the basal rate of sB.

The biochemical reactions of our FFL model are summarized
below:

b+ A
rA
b→ bA; bA

f A
b→ b+ A;

c+ A
rAc→ cA; cA

f Ac→ c+ A;

c+ B
rBc→ cB; cB

f Bc→ c+ B;

a
sA→ a+ A; A

dA→ ∅;

b
sB→ b+ B; bA

sB∗k1→ bA+ B; B
dB=1→ ∅;

c
sC→ c+ C; cB

sC∗k2→ cB+ C; cA
sC∗k3→ cA+ C; C

dC→ ∅.

Here, we set rA
b
= rAc = rBc = 0.005 s−1, f A

b
= f Ac = f Bc = 0.1 s−1,

dA = dB = dC = 1 s−1, and sA = sB = sC = 10 s−1. All reaction
rate constants are of the unit s−1, while coefficients k1, k2, and
k3 are ratio of reaction rates and therefore unitless. The ratios
k1, k2, and k3 can take different values so the network represents
different types of FFLs.

2.1.3. Types of FFL Modules

Depending on the nature of the regulations, namely, whether
each of regulation intensities k1, k2, and k3 is ≥ 1 (activating)
or < 1 (inhibiting), there are 23 = 8 types of FFLs. These
FFLs are classified into two classes, the coherent FFLs and the
incoherent FFLs (Figure 1B) (Alon, 2006). A FFL is termed
coherent (C1, C2, C3, C4 in Figure 1B), if the direct effect of
protein A on the gene c has the same sign (positive or negative)
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TABLE 1 | Parameter ranges for eight types of feed-forward loop (FFL) model.

FFL type k1 range k2 range k3 range

C1 (1.0 3.0] (1.0 5.0] (1.0 5.0]

C2 [0.025 1.0) (1.0 5.0] (0.025 1.0]

C3 (1.0 3.0] [0.025 1.0) [0.025 1.0)

C4 [0.025 1.0) [0.025 1.0) (1.0 5.0]

I1 (1.0 3.0] [0.025 1.0) (1.0 5.0]

I2 [0.025 1.0) [0.025 1.0) [0.025 1.0)

I3 (1.0 3.0] (1.0 5.0] [0.025 1.0)

I4 [0.025 1.0) (1.0 5.0] (1.0 5.0]

as its net indirect effect through protein B. Taking the FFL model
C1 (Figure 1B) as an example, protein A activates gene b, and
protein B activates gene c, with an overall effect of “activation.”
At the same time, the direct effect of product of gene a protein
A is also activation of gene c. Therefore, C1 is a coherent FFL.
When the sign of the indirect path of the regulation is opposite
to that of the direct path, we have incoherent FFLs (I1, I2, I3, I4
in Figure 1B). Taking the FFL model I1 as an example, the effect
of the direct path is positive, but the overall effect of the indirect
path is negative. As can be seen from Figure 1B, all incoherent
FFLs have an odd number of edges of inhibition.

2.1.4. Model Parameters

In order to explore broadly the behavior of all types of FFLs, we
construct FFL models over the parameter space of a wide range
of possible combinations of k1, k2, and k3, representing all 8 types
of FFLs. The regulation intensity is set to values based on values
reported in (Bu et al., 2016; Tej et al., 2019). We then altered
the regulation intensities by about 10-fold to study the general
behavior of different types of FFLs at the steady state. We take
parameter values of k1 ∈ {0.025, 0.1, 0.4, 0.8, 1.5, 2.1, 2.4, 3.0},
k2 ∈ [0.025, 5.0] with step size of 0.25, k3 ∈ [0.025, 5.0] with
step size of 0.25. In addition, for the input intensity, the values
are selected based on the analysis of abundance pattern reported
in (Momin and Biswas, 2020). We take sA ∈ {3.0, 10.0}s−1, rAc
and rBc ∈ {0.5, 2, 8, 16}s−1 for one and two copies of genes b
and c. Details of the relationship of FFL types with k1, k2, and
k3 are listed in Table 1. Over this parameter space, we study
the behavior of all 8 types of FFLs. Overall, we constructed a
total of 10,812 examples of FFLs and computed the steady-state
probability landscape for each of them.

2.2. Computing Probability Landscape
Using ACME
2.2.1. Exact Computation of Probability Landscape of

FFLs

Consider a well mixed system of reaction with constant volume
and temperature. This system has n species Xi, i = 1, 2, · · · , n,
in which each particle can participate in m reactions Rk, k =
1, 2, · · · ,m. A microstate of the system at time t, x(t) is a
column vector representing the copy number of species: x(t) =
(x1(t), x2(t), · · · , xn(t))T , where the values of copy numbers are
non-negative integers. The state space � of the system includes
all the possible microstate of the system from t = 0 to infinity,

� = {x(t)|t ∈ [0,∞)}. In this study, the size of the state space
is |�| = 657, 900 when genes b and c are single-copy, and
|�| = 686, 052 and 1, 289, 656 when there are two copies of gene
b and c, respectively.

The reaction Rk of the system takes the form of

Rk : c1kX1 + c2kX2 + · · · + cnkxn
rk−→ c′1kX1 + c′2kX2 + · · · + c′nkxn

which brings the system from a microstate x to a new microstate
x+ sk, where sk is the stoichiometry vector and is defined as

sk = (c′1k − c1k , c
′
2k
− c2k , · · · , c

′
2k
− c2k ).

In a well mixed system, the propensity function of reaction
k, Ak(x) is given by the product of the intrinsic reaction rate
constant rk and possible combinations of the relevant reactants
in the current state x.

Ak(x) = rk

n
∏

l=1

(

xl

clk

)

With the above definitions, the dCME of a network model of
the SCK processes consists of a set of linear ordinary differential
equations defining the changes in the probability landscape over
time at each microstate x. Denote the probability of the system at
a specific microstate x at time t as p(x, t) ∈ R[0,1], the probability
landscape of the system over the whole state space � as p(t) =
{p(x(t))|x(t) ∈ �}, the dCME of the system can be written as the
general form of

dp(x, t)

dt
=

m
∑

k=1

[Ak(x− sk)p(x− sk, t)− Ak(x)p(x, t)],

where x and x− sk ∈ �.
The steady-state probability landscapes is obtained by solving

the dCME directly. The exact solution is made possible by using
the the ACME algorithm (Cao et al., 2016a,b). The ACME
algorithm eliminates potential problems due to inadequate
sampling, where rare events of very low probability is difficult
to estimate using techniques such as the stochastic simulation
algorithm (SSA) (Gillespie, 1977; Kuwahara and Mura, 2008;
Daigle et al., 2011; Cao and Liang, 2013).

2.3. Identification of Multimodality by
Persistent Homology
Despite its simple architecture, FFLs have a 9-dimensional
probability landscape: There are three genes (a, b, and c), three
proteins (A, B, and C), and three bound genes bA, cA, and
cB (i.e., gene b bound to protein A, gene c bound to either
protein A or protein B). Because of the high dimensionality, it
is challenging to characterize the topological structures of their
probability landscapes; restricting networks to only “on” and “of”
state separately makes it difficult to gain insight into the overall
behavior of the network.

There have been studies that analyze d-dimensional
probability landscape by examining its projection onto 1-d
or 2-d subspaces (e.g., 2-d heatmaps or contour plots) (Bu et al.,
2016; Dey and Barik, 2021). However, projected probability
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surface on lower dimensional space often no longer reflects the
topology of the original space, with results and interpretations
likely erroneous or misleading (Manuchehrfar et al., 2021).
Finding peak states by examining distinct local maxima is
equivalent to locating hypercubes that are critical points of
Morse index of d in the d-dimension state space. While, local
maxima may be identified by comparing its probability value
with those of all of its neighbors, all peaks regardless their
prominence will be identified. As numerical calculation may
introduce small errors, peaks of tiny magnitude will be included.
It is non-trivial to decide on a proper threshold to filter them out.

Persistent homology provides a powerful method that can
characterize topological features of high-dimensional probability
landscapes (Edelsbrunner et al., 2002; Carlsson, 2009). Here,
we use newly developed cubic complex algorithm to compute
homology groups1 and quantitatively assess the exact topology
of the 9-dimensional probability landscape.

2.3.1. Homology Groups

We use homology groups from algebraic topology to characterize
the probability landscape. Homology group provides an
unambiguous and quantitative description on how a space
is connected. It returns a set of algebraic groups describing
topological features of holes of various dimensions in the
space. The rank of each i-th groups counts the number of
linearly independent holes in the corresponding ith dimension.
For example, Rank(H0) counts the number of connected
components (0th dimensional holes).

2.3.2. Persistent Homology

Persistent homology measures the importance of these
topological features (Edelsbrunner et al., 2002), and has been
applied in studies of chemical compounds and biomolecules (Xia
and Wei, 2014, 2015; Xia et al., 2015). Here, we focus on
the topological features of probability peaks, including their
appearance and disappearance. They are measured by persistent
homology of the 0-th homology group. Specifically, we take the
probability p(x) as a height function, and construct a sequence of
topological spaces using thresholds {ri} for p(x):

1 = r0 > r1 > r2 > · · · > rin−1 > rin = 0, (1)

The superlevel sets {Xi} has Xi = {x ∈ X|p(x) ≥ ri},
which corresponds to the threshold ri. The sequence {Xi} gives
a sequence of subspaces, which is called filtration:

∅ ≡ Xi0 ⊂ Xi1 ⊂ Xi2 ⊂ · · · ⊂ Xin−1 ⊂ Xin ≡ �, (2)

As the threshold changes, the peak of a probability landscape
emerges from the sea-level at a specific threshold, which is
the birth time of the corresponding 0-homology group in the
filtration. It disappears as an independent component when
merged with a prior peak at a particular threshold, which is called
the death time. When the sea-level recedes to the ground level at
p(x) = 0, only the first peak remains.

1Tian, W., Manuchehrfar, F., Wagner, H., Edelsbrunner, H., and Liang, J. (2021).

Persistent homology and moment of probability landscapes of stochastic reaction

networks and their changes.

2.3.3. Persistent Diagram of Multimodality in

Probability Landscape

We keep track of the probability peaks by recording the birth
and death times of their corresponding 0-homology groups
throughout the filtration. This relationship is depicted by the
two-dimensional persistent diagram.

For the ith probability peak, when the threshold r reaches the
value rb(i), the probability peak appears. We call this value the
birth probability pb(i) = rb(i) of peak i. When the threshold r is
lowered to a value rd(i), this peak is merged to an existing peak.
We call this value the death probability pd(i) = rd(i) of peak i.
The persistence of peak i is defined as:

pers(i) ≡ pb(i)− pd(i). (3)

The persistent diagram plots peak i using the birth probability
pb(i) as the y-coordinate and the death probability pd(i) as the
x-coordinate. The number of dots on the persistent diagram
corresponds to the number of probability peaks. Those that are
further off the diagonals are the more prominent probability
peaks as their persistences are larger.

3. RESULTS

3.1. Multimodality and Persistent
Homology of FFLs
For each FFL network, we first compute its probability landscapes
p = p(xA, xB, xC, xa, xb, xc, xbA, xcA, xcB) at the steady-state under
various conditions of model parameters. Here, xA, xB, and xC are
copy numbers of proteins A, B, and C, respectively; xa, xb, and xc
are copy numbers of genes a, b, and c, respectively; xbA and xcA
are copy numbers of genes b and c bound by protein A; xcB is the
copy number of gene c bound by protein B.

Our results show that the 8 types of FFLs can exhibit up
to six different phenotypes of mono- and multimodality at
different conditions in the parameter spaces we investigated. An
illustration of these six different types of multimodality is shown
in Figure 2.

We further computed their 0-th homology groups at varying
sea level of probability. The number of peaks, the birth, and death
probability associated with each peak in Figure 2 are shown in
the persistent diagrams of Figure 3.

3.1.1. Behavior of FFLs From Stochastic Models

Differ From Deterministic ODE Models

The behavior of FFL network modules revealed from our
stochastic models are fundamentally different from that of
deterministic models of ordinary differential equations (ODEs).
ODE models are based on kinetics of law of mass action and
are used to calculate the mean concentrations of A, B, and C
at equilibrium state. However, they do not provide accurate
pictures on the degree of multimodality. For example, the steady-
state ODE solutions with respect to different gene occupancy for
mass action kinetics show that there are at most six phenotypic
states (see Supplementary Material for more details). However,
as there are no probabilistic considerations, conclusions drawn
from ODE models can be problematic.
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FIGURE 2 | Examples of multimodality exhibited by feed-forward loop (FFL) network motifs. The steady-state probability landscape can exhibit up to 6 different

multimodes. The illustrative examples are as follows: 1 peak (red), coherent FFL of type C1 when k1 = 1.2, k2 = 1.2, and k3 = 1.2; 2 peaks (yellow), either in protein B

with coherent FFL of type C1, where k1 = 3.0, k2 = 1.2, and k3 = 1.2, or in protein C with coherent FFL of type C1, where k1 = 1.2, k2 = 6.0, and k3 = 6.0; 3 peaks

(green), coherent FFL of type C1, where k1 = 1.2, k2 = 6.0, and k3 = 3.6; 4 peaks (light-blue), coherent FFL of type C1 exhibits two peaks for protein B and two

peaks for protein C, where k1 = 3.0, k2 = 6.0, and k3 = 6.0; and 6 peaks (purple), coherent FFL of type C1 exhibit two peaks for B and three peaks for C, where

k1 = 3.0, k2 = 6.0, and k3 = 3.6.

FIGURE 3 | Persistent diagrams (PDs) of feed-forward loop (FFL) network modules of Figure 2 exhibiting different multimodalities. Red: The probability landscape

with monomodality. Yellow: These two PDs depict the two steady-state landscapes exhibiting bimodality. Green, light blue, and purple: These three PDs depict the

landscape exhibiting tri-modality, 4-modality, and 6-modality, respectively.

An example of the diverging results between ODE and
stochastic models is shown in Figure 4A for an FFL of C1
type. The mean values of C obtained from the ODE model
(vertical blue line) and the expectation computed from the
probability landscape (vertical purple line) diverge from each
other (Figure 4A). There are three different phenotypic states
by the ODE model (green lines, Figure 4A), which are different
from the bimodal probability distribution obtained from the SCK
model (Figure 4A).

A further example is provided by the FFL of type I1. Here,
the ODE model predicts the existence of three phenotypes
at k1 = 2.7, k2 = 0.4, and k3 = 1.8 (Figure 4B, green
vertical lines). However, the stochastic model shows that
there is only one stability peak. Although the mean value
of C obtained from the ODE model and the expected C
value computed from the probability landscape largely
overlap, the ODE model provides no information on
phenotypical variability. Overall, stochastic models provide
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FIGURE 4 | Comparing feed-forward loop (FFL) behavior by Accurate Chemical Master Equation (ACME) and by deterministic ordinary differential equation (ODE)

models. (A) shows the results of FFL of C1 type for (k1, k2, k3) = (2.4, 4.5, 1.8). The exact results obtained using ACME exhibit bimodality in protein C (red curve), while

trimodality is predicted by the deterministic ODE model (green vertical lines). The mean copy number from ACME (purple vertical line) is also different from the that

from ODE (blue vertical line). (B) shows the results of FFL of I1 type for (k1, k2, k3) = (2.4, 0.4, 1.8). The exact results obtained using ACME exhibit monomodality in

protein C (red curve), while deterministic ODE model predicts trimodality (green vertical lines), even though the mean copy number of protein C are the same between

ACME and ODE models (purple and blue vertical lines, respectively).

accurate and rich information that are not possible with ODE
models.

3.1.2. Behavior of FFLs From Exact Solution to dCME

by ACME Can Be Differ From That by Stochastic

Simulation Algorithm

Results from simulations using SSA may differ from the exact
solution to dCME obtained using ACME.We illustrate this using
two incoherent FFLs, one at (k1, k2, k3) = (3.0, 0.5, 5.0) of I1-
FFL (Figures 5A–C) and another at (k1, k2, k3) = (0.1, 2.75, 5.0)
(Figures 5D–F) of the I4-type FFL. The exact steady-state
probability landscape of the I1-FFL network computed using
ACME is multimodal, exhibiting two peaks in protein B and
two peaks in protein C (Figure 5A). However, these peaks are
not definitive when 30,000 reaction trajectories up to 2,500 s are
simulated using SSA (upper plots, Figures 5B,C). Bimodality in
proteins B and C becomes only definitive when simulation time
is extended to 5,000 s (lower plots, Figures 5B,C).

The exact steady-state probability landscape of the I4-FFL
network computed using ACME exhibits tri-modality in protein
C and bimodality in protein B (Figure 5D). However, tri-
modality is not clearly captured when the reaction trajectories
are < 2, 500 s (upper plot, Figure 5E), and becomes definitive
only after 5,000 s (lower plot, Figure 5E). In addition, bimodality
in protein B is not captured, even when the reaction trajectories
are at 5, 000 s (upper and lower plot, Figure 5F).

3.2. Phase Diagrams of Multimodality in
FFLs
Current studies of stochastic networks are limited to their
behavior under a few selected conditions. Here, we explore the
multimodality of all eight types of FFLs under broad conditions
of synthesis, degradation, binding, and unbinding as outlined in
Table 1. This is made possible by the efficiency of the multi-finite

buffer ACME algorithm. The analysis using persistent homology
further allows us to quantitatively characterize the exact topology
of the landscape. Together, we are able to obtain the full phase
diagrams on the phenotype of multimodality of FFLs at different
combinations of parameter values (Figure 6).

Altogether, we compute 10,812 probability landscapes of the
8-types of FFL modules. Depending on the values of k1, k2, and
k3, each phase diagram shown depicts the behavior of four types
of FFLs, one for each of the four quadrants formed by the two
straight lines of k2 = 1 and k3 = 1 (Figure 6), with the type
of FFL labeled accordingly. The specific types also depend on
k1, which is listed at the top of each plot (Figure 6). As a result,
we have gained comprehensive and accurate characterization of
the multimodality phenotypes of this type of important network
modules.

3.2.1. Monomodality

As shown in Figure 2, the steady-state probability landscape of
the FFL at k1 = k2 = k3 = 1.2 exhibits one probability peak.
At this condition, it is a coherent FFL of type C1. The projected
distributions of B and C exhibit monomodality and has only one
peak (Figure 2, red) when the values of intensities k1, k2, and k3
are close to 1.0 (Figure 6). Overall, there is only one phenotypic
state when the regulations intensities in FFL are weak.

3.2.2. Bimodality

The steady-state probability landscape of FFLs can exhibit two
types of bimodality (colored yellow in Figure 2). The first type
occurs when k1 < 0.4 or k1 > 2.4, with bimodality in protein
B while monomodality in protein C. This is illustrated as green
regions in Figure 6 shown at the two top-left and the two bottom
right phase diagrams where k1 ∈ {0.025, 0.1, 2.4, 3.0}. That is, if
the regulation intensities of k1 and k2 are about two-fold different
either way, bimodality in B arises.
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FIGURE 5 | Comparing landscapes from Accurate Chemical Master Equation (ACME) and reaction trajectories from the stochastic simulation algorithm (SSA). (A)

Probability surface projected onto the (B,C)-plane for the feed-forward loop (FFL) with (k1, k2, k3) = (3.0, 0.5, 5.0). There is bimodality in both proteins B and C. (B,C)

The reaction trajectories computed from SSA corresponding to condition in (A) for proteins C and B, respectively. The upper plots are for 2,500 s and lower plots are

for 5,000 s. SSA does not capture the bimodality of proteins B and C until 2,500 s. (D) The probability surface projected onto (B−C) plain for FFL with

(k1, k2, k3) = (0.1, 2.75, 5.0). There is tri-modality in protein C and bimodality in protein B. (E,F) Corresponding reaction trajectories in proteins C and B, respectively.

Upper plots are for the results for 2,500 s and lower plots are for 5,000 s. SSA does not capture tri-modality of protein C until 2,500 s. In addition, SSA fails to capture

bimodality in protein B.

The second type of bimodality occurs when 0.4 ≤ k1 <

2.4, where protein C exhibit bimodality while monomodality
is maintained in B. This is illustrated as green regions in
the remaining phase diagrams of Figure 6, where k1 ∈
{0.4, 0.8, 1.5, 2.1}.

3.2.3. Tri-modality

The steady-state probabilistic landscape of FFL can exhibit tri-
modality (green, Figure 2). There are three possible phenotypes
in protein C while monomodality in protein B is maintained.
Trimodal regions are colored red in the phase diagrams of
Figure 6. They arise when the difference in rates k2 and k3 is at
least about two-fold and 0.4 ≤ k1 ≤ 2.1.

3.2.4. Multimodality

The steady-state probability landscape of the FFL can exhibit 4
to 6 probability peaks (orange, purple, and green, respectively,
in Figure 2). Landscapes with 4 modes have bimodality in both
protein B and protein C. Those with 5 modes has bimodality
in B and tri-modality in C. Landscapes with 6 modes exhibit
bimodality in B and tri-modality in C. Inspection on the
conditions indicates that when the regulations are strong; i.e.,
when k1, k2, and k3 ≥ 2.1, FFLs exhibit very well-defined
multimodality peaks. However, when the regulation intensity

k1 is weak, the steady-state probability landscape exhibits
multimodality only when the other two regulation intensities,
namely, k2 and k3 are strong. As shown in Figure 6, there are two
groups of FFLs based on the characteristics of the multimodality
they exhibit: One group consists of FFLs of C2, C4, I1, and
I3 types, where tri-modality of output protein C always exists,
as long as k2 and k3 are at least about two-fold different. The
other group consists of FFLs of C1, C3, I2, and I4 types where
the signs of the regulations that the output node C receives
from B and A are the same (both activation or both inhibition).
Tri-modality occurs when the regulations k2 and k3 have very
distinct values.

Overall, protein B can exhibit either mono- or bimodality,
and protein C can exhibit mono-, bi-, or tri-modality on the
probability landscape.

3.3. Increasing Input Intensity Amplifies
Multimodality in FFL
To understand how input intensity affect the response of FFL
networks, we examine their behavior under different input
conditions. Specifically, we examine how different synthesis
rate sA of protein A affects the number of modes in proteins
B and C.
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FIGURE 6 | Phase diagrams of multimodality of Feed-forward loop (FFL) network modules based on 10,812 steady-state probability landscapes at different condition

of regulation intensities for all 8 types of FFL network modules. Monomodality occurs when 0.4 ≤ k1 ≤ 2.1 and k2, k3 intensities are moderate, i.e., 0.4 ≤ k1 ≤ 3

(blue region when k1 = 0.4, 0.8, 1.5, and 2.1). Bimodality may occur for different combinations of regulation intensities. When k1 intensity is either very high (2.4 ≤ k1)

or very low (k1 ≤ 0.1), bimodality occurs when k2, k3 intensities are moderate, i.e., 0.4 ≤ k1 ≤ 3. When k1 intensity is moderate (0.4 ≤ k1 ≤ 2.1), bimodality occurs

when at least one of the other regulation intensities k2 or k3 is high. Tri-modality occurs when k1 is moderate (0.4 ≤ k1 ≤ 2.1) and either k2 or k3 is moderate.

Multimodality occurs when k1 is low or high (k1 ≤ 0.4 or k1 ≥ 2.1), and at least either k2 or k3 is high. Color scheme (vertical bar): Blue, green, red, orange, purple,

and brow represent regions with one, two three, four, five, and six peaks, respectively.

We first carry out computations and broadly survey the
behavior of FFLs at strong input intensity, where sA is set to 10.0.
The values of k2 and k3 are sampled broadly, and k1 is tested for
three different values of k1 = 0.8, 2.1, and 2.4. The results are
summarized in Figure 7 (top row). We then similarly survey the
behavior of FFLs at decreased synthesis intensity of protein A,
with sA = 3.0 (Figure 7, bottom row).

There are clear changes in the mode of multimodality of FFLs.
At k1 = 0.8 and k1 = 2.1 (Figure 7, left and center columns),
when protein A synthesis rate sA is reduced from 10.0 (top) to
3.0 (bottom), regions with one (blue) and three (red) peaks are
reduced. In addition, certain areas of the tri-stable (red) regions
become bimodal (green).

At larger k1 = 2.4 (Figure 7, right column), the FFLs

exhibits dramatic changes in the modes of multimodality when
synthesis rate sA of protein A is reduced from 10.0 (top) to 3.0

(bottom). Inmany regions, one ormore stability peaks disappear.

There are regions with two peaks at sA = 10.0 that become

monomodal. There are also regions of six peaks that become
those of four peaks. This is due to the loss of one stability

peak from three in protein C. In addition, large regions with

four peaks (orange) disappear and become either regions with
two peaks (green) or with three peaks (red). Overall, we can
conclude that high-input intensity represented by high sA rate
for protein A induces changed phenotypes of multimodality
in FFLs.

3.4. Binding and Unbinding Dynamics Are
Critical for Multiple Phenotypic Behavior
Results obtained so far are based on the assumption of slow
binding (rA

b
= rAc = rBc = 0.005) and unbinding (f A

b
=

f Ac = f Bc = 0.1) reactions, which we call the generic case. When
the FFL network slowly switches between phenotypic states, the
process of synthesis degradation of protein C has sufficient time
to converge to equilibrium at each phenotypic state of gene c. An
important questions is how slow the promoter dynamics need
to be for FFLs to exhibit multiple phenotypes, without feedback
loops or cooperatively.

To answer this question, we explore the behavior of FFLs
under different binding and unbinding dynamics of gene c for
an FFL of type I1. In this case, protein A activates protein B and
protein C, while protein B inhibits protein C (see Figure 1B).
With slow binding kinetics as described above, the output C of
this FFL exhibits three stability peaks. These are at the expression
level of protein C of (1) C = 0, corresponding to the condition
when gene c is inhibited by B, (2) C = 9, corresponding to the
basal level of C expression, and (3) C = 49, when C expression is
activated by A. We then fix the regulation intensities at k1 = 3.0,
k2 = 0.025, and k3 = 5.1, and examine how the number
of phenotypic states is affected by gene c binding dynamics
(Figure 8).

We first set the binding affinities between gene c and
protein A and between gene c and protein B to the same
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FIGURE 7 | Effects of input intensity on multimodality of Feed-forward loops (FFLs). The phase diagrams of the number of stability peaks in the steady-state

probability landscapes at strong input intensity sA = 10.0 (top row) and weak input intensity sA = 3.0 (bottom row) for different k2 and k3 at three different conditions

of k1 = 0.8, 2.1, and 2.4. Color scheme (vertical bar): Blue, green, red, orange, purple, and brown represent regions with one, two, three, four, five, and six peaks,

respectively.

values, and change them together to n-fold of the generic case,
where n ∈ {0.5, 2, 8, 16}. For slower binding and unbinding
dynamics (yellow line for n = 0.5, Figure 8A), the modes
of the distribution of the output of protein C are even better
distinguished. However, when both binding and unbinding rates

are increased to n = 8 fold (green line), the probability peak at
C = 9, which corresponds to basal level of C expression, merges

with the probability peak at C = 0. At n = 16, the distribution of
C is bimodal.

We then keep the biding affinity between gene c and protein

A unchanged and alter only the binding affinity between gene

c and protein B by n-fold, where n ∈ {0.5, 2, 8, 16}. When
the binding affinity increases (e.g., n = 8), the probability

peak at C = 9 disappears, while the probability peak at high

copy number of C = 49 robustly remains, although with less
magnitude (Figure 8B).

When only the biding affinity between gene c and protein

A is altered while that between gene c and protein B is held

constant (Figure 8C), the probability peak at the basal level of
C expression (C = 9) diminishes when the binding affinity
increases (e.g., n = 8). However, the probability peak at C = 49
becomes more prominent. At n = 8, the distribution of C is
tri-modal. At n = 16, it becomes bimodal. This indicates that
multiple phenotypes arise in FFLs when the unbinding rate is
about an order of magnitude smaller than the expression rate of
the protein.

3.5. Gene Duplication Can Enrich
Phenotypic Diversity and Enlarge Stable
Regions of Specific Multimodality of FFLs
Gene duplication provides a basic route of evolution (Lynch
and Conery, 2000) and is an important driver of phenotypical
diversity in organisms (Conrad and Antonarakis, 2007). Here, we
study how gene duplication affects the phenotypes of FFLs.

We examine how duplication of gene c and separately
duplication of gene b affect the behavior of the FFL network
modules. With two copies of gene c, there can be six possible
states of gene c activation. Depending on whether the promoter
sites of both copies of gene c are free or occupied by either protein
A or protein B, we have for both c genes to have unoccupied,
protein A bound, or protein B bound promoter site. This can be
denoted as a triplet (c, cA, cB), which can take any of the possible
values of (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), and (0, 1, 1).
For the case when there are two copy number of gene B, there are
three possible states of gene b activation, depending on whether
the promoter site of both copies of gene b are free or occupied by
protein A. This can be denoted as a duplicate (b, bA), which can
take any of the possible values of (2, 0), (1, 1), or (0, 2).

The phase diagrams of the number of modes of stability peaks
are shown in Figure 9, when there is only one copy of both gene
b and gene c (first row), when there are two copies of gene c
but one copy of gene b (second row), and when there are two
copy number of gene b but one copy of gene c (third row). The
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FIGURE 8 | Effect of binding dynamics on the modality of protein C in the feed-forward loop (FFL) network of type I1, with (k1, k2, k3) = (3.0, 0.025, 5.1). (A) Effects

when binding affinity between gene c and both protein A and protein B are altered by n-fold, where n ∈ {0.5, 2, 8, 16}. At slower binding (yellow line), the modes of

distribution of protein C are well-distinguished. However, when the binding and unbinding rates increased to 8 (green line), the peak at C = 9 disappears. At n = 16,

bimodality is observed in protein C. (B) Effects when only the binding affinity of gene c and protein B is altered by n-fold, where n ∈ {0.5, 2, 8, 16}. When the binding

affinity of gen c and protein B increases, the peak at C = 9 disappears, while the peaks at C = 49 robustly remains. However, the peak at C = 49 becomes less

significant. (C) Effects when only the binding affinity of gen c and protein A is altered by n-fold, where n ∈ {0.5, 2, 8, 16}. At high binding affinity, the peak at C = 9

disappears while the peak at C = 49 becomes more prominent.

conditions are k1 = 0.025, 0.8, 1.5, and 2.4, for different values of
k2 ∈ [0.1, 5] and k3 ∈ [0.1, 5], where there are slow binding and
unbinding (rA

b
= rAc = rBc = 0.005, f A

b
= f Ac = f Bc = 0.1). Each

phase diagram in Figure 9 consists of 400 steady-state probability
landscapes with a total 12× 400 = 4, 800 landscapes. This broad
range of parameters allow us to study all 8 different modules of
FFL network and the effects of gene c and gene b duplications.

We examine the behavior of FFL in three different regimes
of k1: (1) When k1 ≪ 1.0 (Figure 9, first column), the bimodal
regions (green) expands when there are two copies of gene c
(second row), but there are no significant changes when there are
two copies of gene b (third row). The overall size of multimodal
regions increases in both cases. (2) When k1 ≈ 1.0 (Figure 9,
second and third columns), the duplication of gene c (second
row) expands the regions with three stability peaks and reduces
regions with two peaks. In contrast, the duplication of gene b
(third row) has no significant effects on multimodality. (3) When
k1 = 2.4 (fourth column), duplication of gene c (second row)
expands regions with two and six stability peaks. Duplication
of gene b (third row) reduces the region with four peaks and
expands the region with five peaks.

These results show that introducing additional copy of gene
b or gene c not only can enrich different phenotypic behavior
but can also increase the stability of specific phenotypic states,
namely, enlarge regions of particular phenotypes by uniting
previously different phenotypic regions together. Overall, gene
duplication can increase phenotypic diversity, and enlarge
stability regions of specific multimodal states.

Bacterial cells have fast binding and unbinding dynamics (Ali
Al-Radhawi et al., 2019), and it is unlikely that the occurrence
of multiple copies of the same gene in FFLs plays significant
roles in stochastic multimodality. In contrast, mammalian cells
have slower promoter dynamics (Forger and Peskin, 2003).
Gene duplication in FFLs may provide a natural mechanism
for enriched multimodality with enhanced stochastic phenotypic

switching. This is reflected in reduced monomodal regions,
and enlarged multimodal regions where there are 4 (orange), 5
(purple), and 6 (brown) phenotypic states of the outputC (second
and third row in Figure 9).

Assuming that initially both copies of the gene were
functioning, but subsequently one gene copy lost its biochemical
function due to mutations, we can expect two opposite types of
scenarios to occur: If regulation intensities are strong (k2 and
k3 are large), one of the phenotypic states becomes lost (e.g.,
green region becomes light blue, and orange region becomes
red, Figure 9). If regulation intensities are weak, the duplication
of gene c or gene b can lead to enlargement of the region of
monomodality. It can also lead to the appearance of new regimes
where there are a larger number of multimodality modes (orange,
purple, and green regions in Figure 9). That is, gene duplication
can create new stable states, leading to an enlarged number
of high probability states. This, however, occurs only in FFL
modules with strong regulations intensities. FFL modules with
low regulation intensities instead lose phenotypical diversity and
become more robust in monomodality with enlarged region in
the parameter space.

4. DISCUSSION

Gene regulatory networks (GRNs) play critical roles in defining
cellular phenotypes but it is challenging to characterize the
behavior of GRNs. Although GRNs may consist of dozens
or more of genes and proteins, their functions often can be
defined by smaller sub-networks called network motifs. How
small network motifs are responsible for complex properties such
as the maintenance of multi-phenotypic behavior or modules
is poorly understood. Current widely practiced approach is
studying network motifs using deterministic models. However,
this approach imposes restrictions on the types of network motifs
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FIGURE 9 | Phase diagram of the effects of gene duplication on multimodality of feed-forward loops (FFLs). First row: Phase diagrams of the modality of stability

peaks when there are one copy of gene c and one copy of gene b. Second row: Phase diagrams when there are one copy of gene b and two copies of gene c. Third

row: Phase diagram, when there are two copy of gene b and one copy of gene c. The first, second, and third columns are for k1 = 0.025, 1.5, and 2.4, respectively.

Color scheme (vertical bar): Blue, green, red, orange, purple, and brown represent regions with one, two, three, four, five, and six peaks, respectively.

capable of exhibiting multimodal phenotype to mostly feedback
networks.

In this study, we examined the FFL network motifs, one of
the most ubiquitous three-node network motifs. Although their
deterministic behavior is well-studied, with great understanding
of their functions such as signal processing and adaptations
gained, their stochastic behavior remains poorly characterized.

Here, we showed the direct regulation path from the input
node to the output node and the indirect path through the
intermediate buffer node provide the necessary architecture
for distinct multiple modalities. Phase diagrams of FFL in
Figure 6 show that FFLs of various types can exhibit different
multimodality. At large copy numbers and large volume, our
model of stochastic reaction kinetics are the same as those
based on mass action kinetics (Kurtz, 1971, 1972; Vellela
and Qian, 2007), where ordinary differential equation (ODE)
models are appropriate. When ODE models are applied to
enzyme–substrate reactions, they can be further approximated

by Michaelis–Menten kinetics, with the additional assumption
that the substrate is in instantaneous chemical equilibrium with
the enzyme–substrate complex. When ODE models are applied
to the reaction of one receptor and n identical simultaneously
binding ligands, we arrive at the Hill equation, with the
coefficient n phenomenologically characterizing cooperativity.
These kinetic models based on ODE approximations, however,
are not applicable to the current study, as we are examining
strong stochasticity arising at low copy number of molecules,
where ODE models are not valid.

FFLs play important roles in gene regulatory networks. For
example, it is shown that several I1-FFL sub-networks control the
process of Bacillus subtilis sporulation (Eichenberger et al., 2004;
Mangan et al., 2006). In addition, C1-FFL network is found to
be present in the L-arabinose (ara) utilization system of E. coli,
where araBAD is the target (gene c) activated by the intermediate
gene araC and the input gene CRP. Gene araC is also activated by
CRP. Therefore, they form a 3-node C1 type FFL (Mangan et al.,
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2003). Results in this work can help to gain understanding of the
behavior of these different types of FFLs found in gene regulatory
networks.

In addition, we have shown that input intensity affects the
multimodal behavior of various types of FFLs. Examples shown
in Figure 7 demonstrate that at high k1 values, input intensity
dramatically changes the multimodality as shown in the phase
diagrams. Our results are consistent with previous findings that
input intensity is an important factor in determining output
intensity of FFLs (Mangan et al., 2003; Goentoro et al., 2009; Lin
et al., 2018). Here, we further demonstrated that input intensity
is also important in determining the modality of the steady-state
behavior of FFLs.

In mammalian cells, slow dynamics of transcription factor
binding to promoter is often observed (Dermitzakis and Clark,
2002; Hager et al., 2009; Lickwar et al., 2012; Tuǧrul et al., 2015;
Hasegawa and Struhl, 2019). This is likely due to the complex
process of chromatin regions opening up so they become
accessible and the slow nature of events such as promoter,
enhancer, and mediator binding. These physical processes result
in highly stochastic behavior of networks. Stochastic models
have demonstrated that complex multimodality phenotypes can
naturally arise from stochastic fluctuations when genes have
distinct expression levels, a phenomenon widely observed in
mammalian cells (Cao et al., 2018). We showed that binding and
unbinding dynamics are critical for multi-phenotypic behavior.
For an I1-FFL with (k1, k2, k3) = (3.0, 0.025, 5.1), Figure 8
highlighted that binding and unbinding rates affect multiple
peaks in protein C.

Results of this study indeed showed that once stochastic
fluctuations between distinct expression levels due to slow
promoter dynamics are considered, FFLs can exhibit complex
multimodal phenotypes. When the expression levels of the
output gene (gene c) at the inhibited, basal, and activated states
are well-separated, three distinct phenotypes arise. Combined
with two additional possible phenotypes of different levels of
gene b expression, we can have up to six modalities for FFLs.
Furthermore, high intensity of input amplifies multimodality
in FFLs, suggesting that the FFL architecture are favored for
maintaining multiple phenotypic states. In addition, we find
that regulation intensities are key determinants of specific
stochastic behavior of FFLs, which could be tuned in order
to obtain any desired phenotypic behavior between 1 and 6
stability modes.

Our study also revealed the roles of gene duplication.
When there are two copies of gene c, while one in principle
could expect 2 × 6 = 12 different phenotypes for the
output protein C. This is, however, not observed, as the
regulation intensities or reaction rates are not well-separated.
In contrast, instead of further increase in multimodality beyond
six, we observe the expansion of the area of monomodality,
resulting from the connectedness of regions of expression
with different rates that are merged together. Our results
showed that duplication of gene b and gene c not only can
enrich different phenotypic behavior but can also increase the
stability of certain phenotypic states, while decreasing others
(Figure 9). We showed that in general, gene duplication can

enrich phenotypic diversity. The presence and functional roles
of gene duplication are well-known (Hurles, 2004). For example,
in human-induced pluripotent stem cells (HiPSCs), chromosome
12 duplication leads to significant enrichment of cell cycle related
genes (Mayshar et al., 2010), in which FFL sub-networks play
important roles. This abnormality results in increase in the
tumorigenicity of HiPSCs. Our findings may also shed light
on how gene duplication affects cellular adaptation to changing
environment (Kondrashov, 2012): As the support regions of
monomodality are enlarged, smaller fluctuations in regulation
intensities will not switch cells with duplicated genes to a different
phenotypic state. Thus, gene duplication may help to stabilize
the behavior of the network, so cells are better adapted to a
changing environment.

Analysis of stochastic behavior of FFLs reported here have
implications in a variety of biological problems. For example,
the stem cell regulation network consisting of pluripotency
transcription factors Oct4 and Nanog maintain pluripotency
against differentiation (Boyer et al., 2005; Chickarmane et al.,
2006; Papatsenko et al., 2015; Lin et al., 2018). A component of
this network can be abstracted as an FFL: Nanog participates as
the intermediate node (gene b, which is activated by Oct4 (gene
a), and both regulate the expression of genes associated with the
onset of differentiation or pluripotency (gene cs). In addition,
regulation networks in hematopoietic stem cells are formed by
two FFL networks involving β globin, GATA-1, EKLF, and FOG-
1. In each network, FOG-1 and EKLF function as the intermediate
genes (gene b) and are activated by GATA-1 (gene a), while all of
them activate β globin (gene c) (Swiers et al., 2006). Moreover,
in other stem cell differentiation networks, there are several sub-
networks that exhibit behaviors of different types of FFLs. For
example,Klf4 (gene a) activates Pou5f1 (gene b) and inhibits Sox2
(gene c), while Pou5f1 activated Sox2 (Onichtchouk et al., 2010;
Okawa et al., 2016), as in the C3-type FFL (Figure 1).

In summary, we have constructed and analyzed the exact high-
dimensional steady-state probability landscapes of FFLs under
broad conditions and have constructed their phase diagrams
in multimodality. These results are based on 10,812 exactly
computed probability landscapes and their topological features
as measured by persistent homology. With slow binding and
unbinding dynamics of transcription factor binding to promoter,
FFLs exhibit strong stochastic behavior that is very different
from deterministic models, and can exhibit from 1 up to 6
stability peaks. In addition, input intensity play major roles in
the phenotypes of FFLs: At weak input intensity, FFLs exhibit
monomodality, but strong input intensity may result in up to 6
stable phenotypes. Furthermore, we found that gene duplication
can enrich the diversity of FFL network phenotypes and enlarge
stable regions of specific multimodalities.

Results reported here can be useful for constructing synthetic
networks, and for selecting model parameters, so a particular
desirable phenotypic behavior can materialize (Jones et al., 2020).
Our results can also be used for analysis of behavior of FFLs
in biological processes such as stem cell differentiation and for
design of synthetic networks with desired phenotype behavior.
We hope results reported here for different types of FFL can be
tested experimentally.
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Heterogeneity among individual patients presents a fundamental challenge to effective 
treatment, since a treatment protocol working for a portion of the population often fails 
in others. We hypothesize that a computational pipeline integrating mathematical modeling 
and machine learning could be used to address this fundamental challenge and facilitate 
the optimization of individualized treatment protocols. We tested our hypothesis with the 
neuroendocrine systems controlled by the hypothalamic–pituitary–adrenal (HPA) axis. 
With a synergistic combination of mathematical modeling and machine learning (ML), this 
integrated computational pipeline could indeed efficiently reveal optimal treatment targets 
that significantly contribute to the effective treatment of heterogeneous individuals. What 
is more, the integrated pipeline also suggested quantitative information on how these key 
targets should be perturbed. Based on such ML revealed hints, mathematical modeling 
could be used to rationally design novel protocols and test their performances. We believe 
that this integrated computational pipeline, properly applied in combination with other 
computational, experimental and clinical research tools, can be used to design novel and 
improved treatment against a broad range of complex diseases.

Keywords: neuroendocrine dysfunction, stress, depression, machine learning, computational psychiatry, 
computational modeling, post-traumatic stress disorder

INTRODUCTION

Proper response to stress signal is essential to maintain the physiological and psychological 
health. Upon the stimulation by stress signals, the corticotropin-releasing hormone (CRH) is 
released from the hypothalamus and results in the release of adrenocorticotropic hormone (ACTH). 
Through the circulation system, ACTH then travels to the adrenal glands, binds to ACTH 
receptors, and stimulates the secretion of corticosteroids such as cortisol. Cortisol then stimulates 
the increases of glucose concentration in the blood to provide energy to cope with the stresses. 
The proper functioning of this hypothalamic–pituitary–adrenal (HPA) axis is important for 
physiological response to stress (Tsigos and Chrousos, 2002; Dunlop and Wong, 2019); while 
the dysregulation of the HPA axis is closely associated with stress order, such as post trauma 
stress disorder (PTSD) and depression (Bisson et  al., 2015; Yehuda et  al., 2015; Shalev et  al., 
2017). If the dysregulated dynamics of the HPA axis is reversed and the normal dynamics and 
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function of the HPA axis were restored, it might help with 
treating stress disorders (Ronaldson et  al., 2018; Menke, 2019).

However, the effective restoration of HPA function is challenged 
by the heterogenous dynamics of the dysregulated axis in patients 
with stress disorders. For example, in patients with PTSD, both 
lower cortisol levels and higher cortisol have been reported. In 
patients with other stress disorders, the cortisol levels are also 
reported to be bimodal (Yehuda et al., 1995; Gold and Chrousos, 
2002; Bremner et  al., 2007; Meewisse et  al., 2007).

To cope with this challenge of heterogeneity and facilitate 
the optimization of treatment protocols that can effectively 
restore HPA axis dynamics, we  explored the potential of an 
integrated computational pipeline that combines mathematical 
modeling and machine learning. The computational model 
incorporates several feedbacks controlling the HPA axis, with 
which we  can computationally scanned the effects of potential 
targets. Machine learning analysis of the random scanning 
results then revealed the effective targets and how these targets 
should be  perturbed. These ML derived insights aided us to 
design novel, optimized treatment protocols, which could 
be  further tested with mathematical models.

Our analysis demonstrated a “proof of concept” that an 
integration of mathematical modeling and machine learning 
can be  used to efficiently explore a heterogeneous patient 
population and facilitate the design of optimized treatment 
protocols. In the discussion, we  have also commented on the 
strength and limitation of this computational pipeline and 
envisioned how it could be  used together with other tools to 
improve clinical treatments of complex diseases.

MATERIALS AND METHODS

Time Series Simulation
Simulations were carried out using the ordinary differential 
equations built following the standard formula. All parameter 
values were randomly selected from uniform distributions of 
broad ranges. Time series simulations were performed using 
XPPaut,1 the simulated data were then plotted using Matlab.2 
The detailed simulation protocols for each figure was described 
along with the figure.

Classification Tree Analysis
Tree models were run using the model parameters in addition 
to the steady state values for model components. Trees were 
computed in R3 using the rpart2 algorithm.

Random Forest Analysis
Random Forest analysis was carried out with the value change 
of parameters as input features and the outcome (effective or 
non-effective) as prediction targets. The analysis was performed 
using the standard package in R (see footnote 3). Permutation 
feature importance were scaled to the maximum (100%) and plotted.

1 http://www.math.pitt.edu/~bard/xpp/xpp.html
2 https://www.mathworks.com
3 https://www.r-project.org/

Implementation of Treatments
All treatments were implemented as transient changes of the 
model parameters. In the random against random targets, a 
random target parameter is chosen and then either increased 
or decreased by a value between zero and 10. In the targeted 
treatments, the parameters with the top rank were decreased.

Selection of Parameter Ranges
If the ranges of parameter changes were too small (i.e., 5 or 
10%), the small changes of parameters result in mostly 
homogeneous behaviors and the sampling of heterogeneous 
response was computationally inefficient. With trails and errors 
in preliminary exploration, we  chose all parameters randomly 
from uniform distributions that ranged 10-fold up and down 
their basal values (10–1,000%) to sample heterogenous responses 
efficiently. Since the patient behavior of interest were already 
covered by the current ranges, the ranges of the parameter 
changes were not further expanded.

RESULTS

A Mathematical Model Integrated One 
Negative Feedback and Two Positive 
Feedbacks Controlling the HPA Axis
The HPA axis is characterized by a negative feedback: after 
the increase of the stress signal results in the sequential release 
of corticotropin-releasing hormone (CRH), adrenocorticotropic 
hormone (ACTH), and cortisol, the activated glucocorticoid 
receptors then represses both CRH and ACTH. This negative 
feedback has been implemented in previous mathematical 
models (Gudmand-Hoeyer et al., 2014; Bangsgaard and Ottesen, 
2017; Stanojević et  al., 2018a).

In addition, the glucocorticoid receptor is characterized by 
a positive feedback that potentially results in bistable switching 
(Sriram et  al., 2012). Meanwhile, Kim et  al. (2016) proposed 
the positive feedback regulating corticotropin-releasing hormone 
(CRH) could also result in switch like behavior.

Our current mathematical model has integrated the above 
mentioned negative and positive feedbacks to generate complex 
and heterogeneous dynamics, which serve as ideal tests to examine 
whether our analysis pipeline works. Since both the machine 
learning tools and modeling tools in our pipeline are applicable 
to systems with additional components, we  expect that our 
analysis pipeline will be  able to continue to provide useful and 
realistic insights even if the model of the HPA axis is expanded 
to incorporates more regulatory details than these three feedbacks.

Facilitating the Exploration of Heterogeneity 
With a Standard Model Formula
The heterogeneity of different individuals could be implemented 
with different model structures, different model parameter 
values, or both. However, it would be computational expensive 
to explore the heterogeneity by composing a different set of 
mathematical equations for every single individual. In order 
to facilitate the exploration of heterogeneity and reduce the 
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computational expense of the computational pipeline, we  have 
adopted a standard formula to describe the model structure. 
In this way, we  can simply change the parameter values to 
explore the heterogeneity between individuals.

In this standard formula, the dynamics of each model 

component (x) is described as: dX
dt

F Xi
i i i= −( )t , with 

F
e

i Wi
=
+ −

1
1 s  and W R R Xi i

j
i
j

j= +∑0
· .

In which, τi describes the time scale of the component 
change, Fi describes the steady state level of the component, 
and Wi descries the net regulation received by the component.

In this formula, a positive Ri
j  specifies an activating effect, 

while a negative Ri
j  specifies an inhibitory one. Ri0  sums 

effects that origin from all other components not explicitly 

incorporated in the model, and this parameter can be replaced 
with additional regulatory terms when the model is expanded. 
Additional elaboration of this approach and its dynamical 
properties are available in the literature (Mjolsness et  al., 
1991; Tyson and Novak, 2010) and our previous publication 
(Ballweg et  al., 2018).

By changing the values of the regulatory parameters (Rs), 
we could conveniently explore the nature (activation or inhibition) 
as well as the strength of the interactions between the model 
components. The model simulations then allowed us to explore 
the dynamical properties of the HPA axis that resulted from the 
different interactions. The parameters explored in this work and 
the interaction they regulated have been illustrated in Figure  1, 
the regulatory roles of the parameters are described in Table  1. 
The ordinary differential equations and the initial values of the 
model parameters are recorded in the Supplementary Table  1.

FIGURE 1 | The structure of the current model. An elevation of the stress signal results in the sequential release of CRH, ACTH, and Cortisol. Cortisol activates GR, 
which then inhibits both CRH and ACTH, forming the negative feedback. Two positive feedback loops regulate CRH and GR. The black arrows indicate activation, 
and the red lines with dot heads indicate inhibition. The regulatory parameters (capital R) and the time series parameters (lower case ts) are labeled near the 
reactions they control. The subscripts describe the identities of the regulated components, and the superscripts describe the regulating components (0 if not 
specified). The full names of the components, as well as the modeling justifications, are elaborated in the text.
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Fractional Development of Stress 
Disorders Within Heterogeneous 
Individuals
With the standard model formula, we then mimicked a population 
of heterogeneous individuals by assigning random values to 
the control parameters. The dynamical simulations of the models 
represented the dynamical responses of these individuals to 
stress signals.

A transient elevation of the stress signal (Figure  2A) 
was applied to every individual within the heterogeneous 
population. In response to this increase of the stress signal, 
the cortisol levels were transiently elevated in almost all 
individuals. For the control population, the cortisol levels 
returned to base line after the stress signal decreased 
(Figure  2B), representing the return to the physiological 
homeostasis. On the other hand, the cortisol levels sustained 
at either lower or higher levels represented patients with 
stress disorders (Figures  2C,D).

An analysis with the classification and regression tree (CART) 
provided an overview of features (including both model 
component and parameters) characterizing these three different 
populations (Figure  2E). The high cortisol patients are 
characterized by high levels of CRH and ACTH, which makes 
mechanistic sense since CRH and ACTH promote cortisol 
release in the HPA axis. The lower cortisol patients, on the 
other hand, are characterized by low ACTH and high level 
of GR. The high level of GR in these patients repress their 
cortisol release.

The simulated dynamics indicates that the systems changes 
might be  sustained even after the decrease of stress signal, 
which is a hallmark of post trauma stress disorder (PTSD). 
Upon the exposure to transient traumatic events, the symptoms 
in PTSD patients could sustain for a long time. Many military 
personnel suffer from stress disorder years after departing from 
the battle field (O'Toole et  al., 2009; Marmar et  al., 2015; 
Armenta et  al., 2018).

Our simulations used a strong stress signal, which was 
necessary to trigger cortisol disorders. If the stress signal 
were reduced, less simulated individuals developed cortisol 
disorder. Meanwhile, even for the strong stress signal used 
in our simulation, no all the affected individuals developed 
cortisol disorder. Rather, a large portion of the stimulated 
individuals (>50%) could recover their physiological cortisol 
levels after the stress disappears. The low percentage of stress 
disorder development was also reported in the literature. The 
World Health Organization World Mental Health Surveys 
reported a cross-national lifetime prevalence rate of 3.9% 
(Koenen et  al., 2017); while a National Epidemiologic Survey 
reported a lifetime prevalence rate of 6.1% in the United States 
(Goldstein et  al., 2016).

Our simulations indicated that the heterogeneous levels 
of cortisol, either lower or higher, might naturally emerge 
after heterogenous individuals were stimulated with stress 
signal. The heterogenous cortisol levels in the patient 
populations were consistent to the literature reports (Yehuda 
et  al., 1995; Gold and Chrousos, 2002; Bremner et  al., 2007; 
Meewisse et  al., 2007). The heterogeneous levels of cortisol 
made sense when we examined the structure of the mathematical 
model. The level of cortisol was regulated by a combination 
of two positive feedbacks and one negative feedbacks. The 
positive feedbacks allowed the model to have the potential 
to generate different attracting stable steady states, which 
potentially could explain the distinction between the higher 
cortisol population, the lower cortisol population, and 
the control.

Meanwhile, the negative feedback had the potential to generate 
sustained oscillations (one example illustrated in Figure  2D). 
The regulation and dysregulation of the oscillatory dynamics 
of cortisol might also play a role in the response to stress 
stimulation (Kalafatakis et  al., 2018; Stanojević et  al., 2018b; 
Lightman et  al., 2020).

With the intervened positive and negative feedbacks, the 
current model has been able to mimic the complex, heterogeneous 
dynamics of different individuals who develop stress disorder, 
hence we proceed to use the current model to test our integrated 
computational pipeline.

Random Scanning of Treatment Targets
We first selected around 30,000 patients with lower pathological 
cortisol and subjected them to for potential treatments that 
were applied on the control parameters. Since we  lacked both 
qualitative information (what targets should be  targeted) as 
well as quantitative information (to what levels should the 
targets be  changed), we  randomly selected an individual 
parameter target and changed its level randomly and transiently 
(details in Materials and Methods). Five representative 
trajectories of effective treatments were illustrated in Figure 3A. 
These five individuals started with normal, physiological levels 
of cortisol. After transient stimulation by the stress signal 
(applied around time 20), their cortisol levels were decreased 
to lower, pathological levels. After the effective treatments, 
their cortisol levels were restored to normal, physiological  ones. 

TABLE 1 | The matrix of model parameters.

Regulator 8 Regulatory parameters

Stress signal RSS
CRH

CRH RCRH
CRH RCRH

ACTH

ACTH RACTH
COR

Cortisol RCOR
GR

GR RGR
CRH RGR

ACTH RGR
GR

Component CRH ACTH Cortisol GR

8 Component specific parameters

Background
0RCRH

0RACTH
0RCOR

0RGR

Time scale tsCRH tsACTH tsCOR tsGR
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On the contrary, the cortisol levels were not restored in five 
individuals representing patients receiving ineffective treatments 
(Figure  3B).

Such bimodal responses were also observed in around 30,000 
individuals whose pathological cortisol levels were higher than 
their physiological ones. In five representing individuals whose 

A B

C

E

D

FIGURE 2 | Sampling the heterogenous response triggered by stress signal. Identical model structure and different values of all parameters are used to 
simulate the heterogenous response to stress signal. In response to a transient elevation of the stress signal (around time 20, A), the cortisol levels in the 
control population (B) returned to normal levels after transient elevation, representing the healthy population who do not develop neuron endocrine 
disorder after stress. On the contrary, the levels of cortisol decreased and were sustained lower in patient populations who were characterized by lower 
pathological levels of cortisol (C). The cortisol levels were elevated and remained higher in patients whose pathological cortisol levels were higher after 
stress (D). (E) Classification Tree. The different colors of different nodes indicate the types of dominant populations: red nodes indicates that most 
individual in the node had higher cortisol after stress; green nodes indicates that most individuals were characterized by lower levels of cortisol; blue 
nodes indicate the ones with most individuals from the control population. In the top node, individuals from these three populations were of identical 
number, and the node is labeled red.
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cortisol levels were sustained higher after the transient stress 
signal, effective treatment restored their cortisol levels to 
physiological ones (Figure 3C). On the other hand, the cortisol 
levels remained higher after ineffective treatments (Figure 3D).

Treatments against random targets were effective in small 
portions of the patients but ineffective in the majorities of 
the treated individuals. For our pipeline, even the ineffective 
treatments provided important information on how the system 
responded to perturbations. Hence, proceeded to apply machine 
learning analysis on the simulation data that included both 
effective and ineffective treatments. In the future, we  envision 
that our pipeline could potentially be  applied to the clinical 
data that combined effective and ineffective treatments, to 
improve the design of clinical trials and treatment protocols.

Improving the Treatment Protocols
The individual responses to random treatments were binary 
(Effective vs. Non-Effective), and such binary data were fed 
into the Random Forest (RF) analysis. RF identified the most 
influential factors that distinguished the effective treatments 
from the non-effective ones. By computing the consequential 
error resulted from permuting features, the RF analysis also 
ranked the relative importance of all potential the targets.

The RF analysis revealed that for individuals whose 
pathological cortisol levels were lower, the changes of RGR0  
and RGRGR  were most important for effective treatments 

(Figure  4A). Furthermore, the analysis with decision tree 
provided quantitative information on how the targets should 
be  changed (Figure  4B). In the treatments that sufficiently 
decreased the level of RGRGR , most of them would be  effective 
(node on the bottom left in Figure  4B); similarly, most of 
the treatments that decreased the level of RGR0  were also 
effective (2nd node from left on the bottom of Figure  4B).

These RF identified targets, RGR0  and RGRGR , make mechanistic 
sense in the context of the model structure. A positive feedback 
controlling GR might result in pathological steady state with 
lower cortisol levels. Hence, it is reasonable to expect that the 
pathological states could be  reverted by targeting the key 
parameters that control the positive feedback. On the basis of 
these qualitative and quantitative information, we  designed 
targets treatments against the top targets, RGR0  or RGRGR . 
Simulation showed that transient decrease of these two targets 
were able to effectively treat patients whose pathological cortisol 
levels were lower. These patients were characterized with lower 
levels of cortisol after their stimulation by transient stress signal 
(applied around time 20). Then, their cortisol levels were 
restored by the transient decrease of RGR0  or RGRGR  applied 
around time 60 (Figures  4C,D).

Similarly, RF analysis indicated that RCRH0  and RCRHCRH  were 
the top targets in patients whose pathological cortisol levels 
were higher (Figure  5A). The decision tree analysis suggested 
that these two targets should be decreased in effective treatments 
(Figure 5B), and rationally designed treatments based on such 

A B

C D

FIGURE 3 | Sampling effective and non-effective treatments. In this random scanning, one parameter is randomly perturbed around time 40. The effective 
treatments, which restored the cortisol distorted by the stress signal, were shown in panels (A,C). On the other hand, the non-effective treatments, which failed to 
restore the cortisol levels, were shown in panels (B,D).
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information could effectively restore the levels in these patients. 
After stimulation by transient stress signal (applied around 
time 20), cortisol levels were sustained higher in these individual 
patients. Then, RCRH0  and RCRHCRH  were transiently decreased 
around time 60, the cortisol levels were decreased and remained 
low (Figures  5C,D).

It was encouraging that the treatments effects were sustained 
even though the treatments against these highly ranked targets 
were only transient. In clinical terms, this means that it would 
be  possible to fully cure the patients suffering stress disorder 
if the correct targets were identified and perturbed.

Hence, starting with scanning treatments against random 
targets, machine learning analysis with the scanning results 
could lead us to rationally design novel and improved treatments. 
What is more, since the machine learning analysis revealed 
more than one target that could contribute to the effective 
treatments, it would be  plausible to design multiple effective 
treatments and select the practical ones based on 
clinical constrains.

DISCUSSION

Heterogeneity within individual patients underlies partial 
responses to treatment and calls for the design of personalized 

and optimized treatment protocols. In this work, we  have 
demonstrated the performance of a computational pipeline that 
integrated mathematical modeling and machine learning. The 
pipeline was able to address this fundamental challenge of 
heterogeneity: starting with little qualitative clue (target 
identification) and quantitative clue (perturbation strength), the 
pipeline was able to deliver rational designs of effective treatment 
plans that clearly answered “what to targets?” and “how much 
to change?”

With such “proof of principle,” we  hope that the 
computational pipeline could be  integrated into clinical 
practice to design novel and more effective treatments for 
complex diseases. We  envision that after clinical data were 
fed into this analysis pipeline, it would lead to insights that 
are clinically applicable.

Two theoretical approaches, one driven by data and the 
other based on mechanism, have been widely applied in the 
field of systems biology and quantitative systems pharmacology. 
In this work, we  have illustrated that these two approaches 
could be  integrated together to achieve synergistic effects 
(Figure  6): the machine learning methods could be  used to 
efficiently extract insights from heterogeneous behaviors, while 
the mechanistical models could be  used to design mechanistic 
and dynamical protocols that are directly translatable on the 
basis of the machine learning revealed insight.

A B

C D

FIGURE 4 | Machine learning analysis revealed that the key parameters controlling the GR positive feedback were associated with effective treatments for patients 
with lower cortisol levels. (A). Random forest analysis ranked the targets based on their association with the effective treatments in patients whose pathological 
cortisol levels were lower. (B). Decision tree analysis indicated that these parameters were decreased in effective treatments. (C,D) Time series simulations illustrated 

how the decrease of 0RGR  or RGR
GR  restored the cortisol levels in patients with lower pathological cortisol levels.
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The machine learning methods could help modeling to 
be  more efficient. It would be  computationally expensive to 
carry out a comprehensive scanning with all possible targets 

and all possible perturbation values, in comparison, a random 
scanning followed by machine learning analysis in our work 
was able to efficiently yield hints on some top ranked targets 
and how they should be  perturbed. Meanwhile, modeling puts 
the insights extracted with machine learning back into the 
mechanistic context and could help designing novel protocols 
directly translatable to clinical practice.

Consistent with its purpose of showing a “proof of principle,” 
the current model has represented the heterogeneous patient 
populations only with the qualitative changes (either lower or 
higher) of their cortisol levels. As the next step, it would 
be  beneficial to fit the model parameters with cortisol levels 
observed in individual patients (Bangsgaard and Ottesen, 2017), 
so that the heterogeneous models could represent individual 
patients in quantitative details.

With the continuous contribution from the communities 
of systems biology and quantitative systems pharmacology, 
we  expect the simplified model would be  expanded to more 
realistic, multi-scale ones that include more biochemical, 
genetic, epigenetic, molecular, cellular, and neurological details. 
This process would be  time and effort consuming; however, 
the overall process could be  facilitated by taking advantage 
of the existing models that have been developed to describe 
HPA axis and its role in stress orders. For example, our 
current work has been benefiting from the modeling works 

A B

C D

FIGURE 5 | Machine learning analysis revealed that parameters controlling the CRH positive feedback were associated with effective treatments for patients with 
higher cortisol levels. (A) Random forest analysis ranked the targets based on their association with the effective treatments in patients whose pathological cortisol 
levels were higher. (B) Decision tree analysis indicated that these key parameters should be decreased for the treatments to be effective. (C,D) Time series 

simulations illustrated how the decrease of 
0RCRH  or RCRH

CRH  restored the cortisol levels in patients who had higher levels of cortisol after stress stimulation.

FIGURE 6 | The integration between machine learning and mathematical 
modeling might result in synergistic effect. ML methods can facilitate the 
analysis of both real data and simulated data generated by mathematical 
models; while mathematical models can test hypothesis provided by ML 
models and reveal mechanistic insights.
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or Sriram et  al. (2012) and Kim et  al. (2016). We  envision 
the further expansion of the current model will also be  able 
to utilize many other modeling works in the field of 
computational psychiatry, such as the PKA-PP2A model of 
fear conditioning (Yang et  al., 2010), the model for protein 
kinase M feedback (Ogasawara and Kawato, 2010), and the 
modeling work on the positive feedback loop controlling 
brain-derived neurotrophic factor (BDNF; Bambah-Mukku 
et al., 2014; Zhang et al., 2016). The incorporate of additional 
regulatory pathways might result in the co-existence of even 
more attractors, which would further increase the heterogeneous 
subtypes of stress disorder patients. Combination of different 
machine learning algorithms, including those used here, 
promises to facilitate the analysis of these additional subtypes.

In addition, we  expect that the expanded models of stress 
disorders will also integrate multi-scale neural circuits within 
the corresponding regions of the brain (Smith, 2005), the 
pharmacokinetics of various drugs such as the selective serotonin 
reuptake inhibitors sertraline (Zoloft) and paroxetine (Paxil; 
Alhadab and Brundage, 2020; Heydorn, 1999), as well as the 
pharmacodynamic effect of these drugs such as the serotonin 
production and regulation (Best et  al., 2010).

Though it is going to be time consuming and effort consuming 
to develop such realistic models with elaborated biological and 
pharmaceutical control details, we  expect that the effort will 
eventually pay off and the realistic models will make contributions 
of clinical significance. For example, the realistic models may 
be  able to guide us to further understand the genetic and 
biochemical basis of different patients whose cortisol levels 
are either lower or higher when developing depression; these 
models may point out to optimized targets for patients who 
are not responding to the currently available treatments; also, 
comprehensive models will have the potential to aid us to 
examine whether novel treatments would result in undesired 
side effects or toxicities in healthy, control populations.

Computational psychiatry promises to address some of the 
hard challenges faced by psychobiological researchers, and 
encouraging results have been accumulating along this direction 
(Ferrante and Gordon, 2021; Huys et  al., 2021). From a 
methodological perspective, we  have tested an integrated 
computational pipeline (ICP) that combines computational 
modeling and machine learning and shown “proof of principle” 
that this pipeline could be  used to aid with the design of 

novel treatment protocols which can effectively restore 
neuroendocrine dysregulation in a population of heterogeneous 
individuals. We expect that the further expansion of the model 
as well as this pipeline would be able to deliver more clinically 
useful insights for psychological disorders.

What is more, this computational framework of integrated 
modeling and machine learning can be readily applied to other 
research areas beyond neuroendocrine and psychological 
disorders. The field of computational medicine and quantitative 
systems pharmacology have already started to integrate 
complimentary tools to achieve greater benefits (Hutchinson 
et al., 2019; Zhang et al., 2019; Benzekry, 2020), and we believe 
that the broader application of our pipeline will contribute to 
the design of novel and effective treatments for a board range 
of complex diseases.
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