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Probing the Druggablility on the 
Interface of the Protein–Protein 
Interaction and Its Allosteric 
Regulation Mechanism on the Drug 
Screening for the CXCR4 Homodimer
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Modulating protein–protein interactions (PPIs) with small drug-like molecules targeting it 
exhibits great promise in modern drug discovery. G protein-coupled receptors (GPCRs) are 
the largest family of targeted proteins and could form dimers in living biological cells through 
PPIs. However, compared to drug development of the orthosteric site, there has been 
lack of investigations on the druggability of the PPI interface for GPCRs and its functional 
implication on experiments. Thus, in order to address these issues, we constructed a 
novel computational strategy, which involved in molecular dynamics simulation, virtual 
screening and protein structure network (PSN), to study one representative GPCR 
homodimer (CXCR4). One druggable pocket was identified in the PPI interface and one 
small molecule targeting it was screened, which could strengthen PPI mainly through 
hydrophobic interaction between the benzene rings of the PPI molecule and TM4 of the 
receptor. The PSN results further reveals that the PPI molecule could increase the number 
of the allosteric regulation pathways between the druggable pocket of the dimer interface 
to the orthostatic site for the subunit A but only play minor role for the other subunit 
B, leading to the asymmetric change in the volume of the binding pockets for the two 
subunits (increase for the subunit A and minor change for the subunit B). Consequently, 
the screening performance of the subunit A to the antagonists is enhanced while the 
subunit B is unchanged nearly, implying that the PPI molecule may be beneficial to 
enhance the drug efficacies of the antagonists. In addition, one main regulation pathway 
with the highest frequency was identified for the subunit A, which consists of Trp1955.34–
Tyr190ECL2–Val1965.35–Gln2005.39–Asp2626.58–Cys28N-term, revealing their importance in 
the allosteric regulation from the PPI molecule. The observations from the work could 
provide valuable information for the development of the PPI drug-like molecule for GPCRs.

Keywords: target, GPCR dimer interface, druggability, regulation mechanism, computation
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InTRODUCTIOn
In living cells, only a few proteins perform their biological 
functions independently, and the vast majority (more than 80%) 
of proteins function through interacting with other molecules 
(Keskin et al., 2016; Wang et al., 2018b). It is estimated that 
there are approximately 130,000 to 650,000 protein–protein 
interactions (PPIs) in the human interactome (Venkatesan 
et  al., 2009; Sheng et al., 2015; Tortorella et al., 2016), and 
targeting protein–protein interactions (PPIs) with small drug-
like molecules (Sheng et al., 2015; Shin et al., 2017; Han et al., 
2018) become one of the most promising methods in modern 
drug discovery (Li et al., 2017; Tang et al., 2019a; Tang et al., 
2019b). If drugs could strengthen the PPI interaction or damage 
it, the function of PPI will be inevitably influenced. With 
increasing understanding of PPIs, significant progress has been 
made for investigations on PPI small drug-like molecules (Wells 
and McClendon, 2007; Jubb et al., 2012; Song et al., 2016; Shin 
et al., 2017). It was observed that the PPI molecules commonly 
have larger molecular weight, higher hydrophobicity, and lower 
solubility than most of traditional drug molecules (Villoutreix 
et al., 2012; Wang et al., 2018b). In previous studies, most of the 
drugs bind a targeted protein and inhibit it to form functional 
complexes with its binding partners, in turn influencing the 
downstream signals. For example, small molecule LEDGINs 
could block the interaction between HIV-1 integrase and human 
LEDGF/p75 so that it could inhibit HIV replication(Reddy 
et al., 2014). The peptidemimics MAIT was found to inhibit the 
migration of colorectal cells by disrupting APC–Asef interaction 
(Jiang et al., 2017). Although researches on strengthening PPI 
interaction are very limited with respect to inhibiting one, it is 
also highly valuable for some specific proteins. For example, ISD 
could strengthen the interaction between Neph1 and ZO-1 so 
that it could prevent podocyte injury and preserve glomerular 
filtration function (Sagar et al., 2017).

G protein-coupled receptors (GPCRs) are the largest 
membrane protein families with more than 800 members, 
which play key roles in various signal transductions. 
Approximate 50 percent of drugs target them (Rosenbaum 
et al., 2009; Venkatakrishnan et al., 2013; Lao et al., 2017). 
Monomers have long been recognized as functional units of 
GPCR signaling (Whorton et al., 2007; Maurice et al., 2011). 
However, recently increasing biochemical and biophysical 
evidences have indicated that the GPCR dimers and oligomers 
also exist in living biological cells (Ferré et al., 2014; Navarro 
et al., 2018; Pediani et al., 2018), which could significantly 
affect the signal transduction process of GPCRs like receptor 
activation, internalization, ligand binding and coupling with 
G protein (Huang et al., 2013; Xue et al., 2015; Damian et al., 
2018). Some experimental works already found that positive or 
negative cooperativity exists between the two subunits of the 
GPCR dimer (Maurice et al., 2011). For example, when the 
ligand binds to one of the subunits, it will increase or decrease 
the binding affinity of another subunit to the ligand (Gherbi 
et  al., 2015; Liu et al., 2017). Therefore, the GPCR dimers 
possess unique pharmacological profiles, being potential drug 
targets for the discovery of novel drugs.

Chemokine receptors are members of family A GPCRs, 
which regulate cell migration in development, immune system 
function and inflammatory diseases, thus being important 
therapeutic targets (Kufareva et al., 2014; Van Hout et al., 2018). 
CXCR4 is one of 23 known human chemokine receptors, which 
plays a key role in leukocyte trafficking, hematopoiesis, organ 
development and cancer metastases (Zweemer et al., 2014). It 
was revealed that CXCR4 is associated with more than 23 types 
of cancers (Wu et al., 2010; Nguyen et al., 2018). CXCR4 and 
related CC chemokine receptor 5 (CCR5) are not only the key 
regulators of signal transduction, but also involve in the entry 
of HIV-1 virus as coreceptors of HIV-1 into leukocytes (Shaik 
et al., 2019). Several observations suggested that the dimer may 
be the minimal functional units of the chemokine receptors and 
CXCR4 was demonstrated to form homo- or hetero-dimers 
(Percherancier et al., 2005; Muñoz et al., 2012). In 2010, the 
crystal structure of the CXCR4 homo-dimer (PDBID: 3ODU) 
was resolved (Wu et al., 2010). Chemotaxis assay shows that 
the migration index of T-REx-293 cells stably transfected with 
CXCR4 gene changes with the oligomeric status of CXCR4, 
indicating a correlation between the functions and the oligomeric 
status of CXCR4 (Lao et al., 2017). These findings clearly indicate 
that the polymerization of GPCRs could affect the structure 
and the function of the receptors. Therefore, it is also valuable 
to design small drug-like molecules targeting PPIs of GPCRs, 
which are beneficial to their therapeutic effects, to enhance their 
polymerization. However, the investigations on drug-like small 
molecules targeting the interface to enhance PPIs have been 
lacked so far. Thus, many questions have been remained to be 
unclear. For example, is the PPI interface druggable for GPCRs 
like CXCR4? What drugs could target the interface? How does the 
drug regulate the dimerization and the structure of the receptor, 
in turn influence its drug efficacy? In fact, these questions mainly 
involve in microscopic structure changes of the receptor upon 
the ligand bound the PPI interface. Therefore, it is highly desired 
to introduce computational techniques to assist the experiments 
to probe these issues.

Molecular dynamics (MD) simulation could acquire the 
structural evolution of proteins at the atomic level. Therefore, it 
become a powerful tool to study the structural and functional 
mechanisms for biological systems (Xue et al., 2018), including 
GPCRs. However, previous MD researches on GPCRs were 
mainly focused on the GPCR monomers, including their 
structures (Liang et al., 2017; Zhang et al., 2018a), interactions 
with ligands (Bai et al., 2014; Sader et al., 2018), activation 
mechanisms (Miao et al., 2015; Stanley et al., 2016), water 
channels (Yuan et al., 2013; Yuan et al., 2015) and so on. In 
contrast, the studies on GPCR oligomers by MD are very limited, 
mainly concerning the self-assembly behavior (Provasi et al., 
2015), activation mechanisms (Kim et al., 2017), interaction of 
dimers (Petersen et al., 2017). Recently, our group probed the 
effect of the dimerization on the activation and ligand-binding 
for some GPCRs (Wang et al., 2018a; Zhang et al., 2018b; Zhang 
et al., 2019). Based on our previous studies on the mechanism 
of GPCR dimers, we hope to further probe the druggability of 
their PPI interfaces and its regulation mechanism on the drug 
function of the receptor, using molecular dynamics simulation, 
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virtual screening and protein structure network. Herein, we 
selected the CXCR4 dimer (PDBID:3ODU) as a representative 
of the GPCR dimers, which is sole crystal-structure of the GPCR 
dimers resolved for the chemokine receptors so far. Ultimately, 
we screened one ligand, which could significantly enhance the 
dimer interaction, and revealed its regulation mechanism on 
the drug binding for the orthosteric site. The observations could 
provide valuable information for the development of the GPCR 
PPI drugs.

MATeRIAlS AnD MeTHODS

Workflow
Figure 1 shows the entire workflow. Considering the protein 
flexibility, 300 ns MD is first carried out for the crystal structure 
of CXCR4 homo-dimer. Then, according to the root-mean-
square-deviation (RMSD) of residues of the dimer interface, 
eight representative conformations are obtained through 
clustering. The druggable pocket of the dimer interface is 
identified by FTmap. Based on the pocket, ligands targeting 
the PPI interface are screened, and then 1us MD simulations 
are performed for the four representative complexes of the 
dimer bound by the PPI ligand. Finally, we discussed the 
effect of the ligand on the dimerization and the screening 
performance of the orthostatic site to antagonists, and revealed 
its regulation mechanism.

System Preparation
X-ray crystal structure of CXCR4 dimer with a resolution of 2.5 
Å was obtained from PDB bank (PDBID: 3 ODU) (Wu et al., 
2010). We removed ligands and other non-essential components 
used for crystallizing and purification, including T4 lysozyme 
(T4L) inserted between transmembrane (TM) helices V and 
VI at the cytoplasmic side of the receptor, small isothiourea 
derivative (IT1t). In addition, crystal water molecules outside the 
receptor were also deleted. But the crystal water molecules inside 
the receptor were retained. All protein residues were set to the 
standard CHARMM protonation state under physiological pH. 
The receptor was inserted into a palmitoyl-oleoyl-phosphatidyl-
choline (POPC) (Filizola et al., 2006) bilayer. Then, water 
molecules were added to the system, which was described by 
the TIP3P model. The whole system was neutralized with 0.15M 
NaCl by CHARMM-GUI (Lee et al., 2015). According to the 
tertiary structure information of the protein system, the two 
subunits were manually added with two disulfide bonds between 
Cys28N-term and Cys2747.25, Cys1093.25, and Cys1865.50.

MD Simulation
All molecular dynamics simulations were performed by the 
sander module of AMBER 16 (Case et al., 2016). The MD 
trajectories were analyzed using the correlation analysis module 
of AMBER 16 and VMD, as well as some other specific trajectory 
analysis softwares. Ff14SB force field (Maier et al., 2015) was used 
for the receptor and the lipid14 force field (Dickson et al., 2014) 
was utilized for the POPC lipids. Twenty thousand step energy 
minimization was performed to eliminate bad contacts in the 
initial structures. After the minimization, the entire system was 
heated from 0 K to 310 K within 250 ps, then 5 ns NVT pre-
equalization was performed at 310 K temperature. Finally, 300 ns 
and 1 us simulations were carried out using the NPT ensemble at 
300 K and 1 bar for the apo dimer system and the dimer bound 
the PPI ligand, respectively. The cutoff distance of 10 Å was set 
for nonbonded interactions and the electrostatic interaction 
was computed by the particle mesh Ewald (PME) algorithm 
(Essmann et al., 1995). The SHAKE algorithm (Berendsen et al., 
1984) was used to constrain all hydrogen-containing bonds. The 
time step was 2-fs and trajectories were saved at interval of 10 ps 
for further analysis.

Clustering Analysis
For the last 200 ns trajectory of the apo dimer system, clustering 
was carried out using the k-means algorithm (Han and Zhang, 
2009; Li et al., 2014) embedded in the ptraj module of the 
AmberTools package in terms of RMSD of the backbone atoms of 
136 residues of TM5-TM6/TM5-TM6 interface (Wu et al., 2010). 
Consequently, eight classes were obtained (vide in Supplement 
1) and the center of each class was selected as a representative 
conformation for subsequent analysis.

FTMap Analysis
FTmap analysis (Kozakov et al., 2015) was performed in order 
to identify the druggable pocket in the dimer interface, using FIGURe 1 | Computational workflow.
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FTMap computational map server. The server probes small 
molecule binding sites using CSM method (Dennis et al., 2002), 
which places molecular probes on a protein surface to identify 
the most favorable binding positions. The eight representative 
structures from the clustering above were individually computed 
using this server (www.ftmap.bu.edu). Pymol (Janson et al., 
2016) was utilized to inspect visually the results.

Virtual Screening
A ligand set was constructed by a focused chemical compound 
collection (iPPI-lib) with a total of 51,232 ligand molecules, 
which was tuned to target PPIs. The PPI-specific database was 
provided by MTiOpenScreen (Labbé et al., 2015). First, the 
initial drug-like compounds containing 384,372 PubChem 
molecules was selected and collected. Then PPI-HitProfiler 
(Reynès et al., 2010) was used to select PPI-friendly compounds. 
Finally, these molecules were aggregated by Cluster Molecule 
Protocol (Accelrys Pipeline Pilot v8.5), resulting in 51,232 
drug-like molecules in the final iPPI-lib. Approximately 
4,000 molecules (including isomers) were obtained through 
preliminary screening of MTiOpenScreen, and further docking 
evaluations were performed using Autodock 4.2 (Morris et al., 
2009). All docking input files were prepared by AutoDockTools 
1.5.6 (Sanner, 1999) package, and Lattice files for active sites 
were generated by the AutoGrid 4.2. In order to cover the 
ligand-binding site, the box site was set to 75 Å × 75 Å × 75 Å 
with 0.375 Å spacing. The dockings with the flexible ligand and 
the rigid receptor were performed by AutoDock 4.2. To ensure 
the accuracy of the result, each ligand was done by 100 docking 
calculations separately, and 1,000,000 energy evaluations were 
carried out using Lamarck genetic algorithm for each docking 
calculation. We selected the docking pose with the lowest 
binding energy as the best binding mode for further analysis. 
The ROC (Metz, 1978) plot was used to assess virtual screening 
performance, which is a curve of true-positive rates versus 
false-positive rates. They could be calculated in terms of the 
following equations. 

 
TPR TP

TP FN
=

+( )  (1)

 
FPR FP

FP TN
=

+( )  (2)

Where TP (true positive) and FN (false negative) refer to the 
number of active substances in positive and negative classes, 
respectively. FP (false positive) and TN (true negative) refer to the 
number of decoys in positive and negative classes, respectively. 
The AUC is the area under the receiver operating characteristic 
curve (Hanley and McNeil, 1982). The larger AUC value, the 
better the performance of the receptor in screening the active 
molecules from the decoys. For example, when the AUC value is 
0.5, it represents random screening. When the AUC value is 1, the 
receptor has the strongest ability to screen the active molecules. 
The AUC value could reflect the affinity of the receptor to a class 

of active molecules in the ligand set. Therefore, it has been widely 
used to characterize the performance of virtual screening.

MMPBSA
As accepted, molecular Mechanics Poisson-Boltzmann surface 
area (MM/PBSA) (Sun et al., 2014; Sun et al., 2018; Wang et al., 
2019; Weng et al., 2019) is a versatile method to calculate the 
binding free energy ΔGbinding between two molecules in terms of 
equation (3).

 
G G G Gbinding complex receptor ligand= − +( )  (3)

Herein, Gcomplex, Greceptor and Gligand denote the free energies of 
the complex, receptor, and ligand, respectively, which could be 
calculated by MMPBSA.py.MPI algorithm (Miller III et al., 2012) 
of the SANDER module [vide equations (4)–(6)].

 G E G TS= + −gas sol  (4)

 E E E Egas int ele vdw= + +  (5)

  G G Gsol = +psolv npsolv  (6)

The gas phase energy (Egas) is calculated by the internal energy 
(Eint), the electrostatic interaction energy (Eele) and van der 
Waals interaction energy (Evdw) in equation (5). Gsol denotes the 
solvation energy, which consists of polar solvation energy (Gpsolv) 
and the nonpolar solvation (Gnpsolv) [vide equation (6)]. Gpsolv 
could be obtained by solving the Poisson-Boltzmann equation 
while Gnpsolv could be estimated by γ×SASA. Herein, γ uses 0.0072 
kcal Å-2 value and SASA denotes the solvent-accessible area of the 
molecular. The dielectric constants are set to be 1 for the receptor 
interior and 80 for the external water. T represents absolute 
temperature and S is the total conformational entropy. Similar 
to many computational studies (Niu et al., 2017; Tu et al., 2018), 
the contribution of entropy is not considered in the calculation of 
free energy since we mainly concern with the relative change of 
the binding energy, rather than its absolute value.

Protein Structure network
Protein structure network (PSN) (Kannan and Vishveshwara, 
1999) could exhibit the structure of proteins as an interaction 
network. In PSN, residues are served as nodes. If the percentage of 
interaction [vide equation (7)] between the two nodes is greater 
than or equal to a given cutoff, the two nodes are connected to 
one edge.

 

I
n

N N
ij

ij

i j

= 100         (7)

In equation (7), Iij represents the percentage of interaction 
between nodes i and j, and nij represents the pair number of side 
chain atoms within a given distance cut-off range (the default 
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cutoff is 4.5 Å). Ni and Nj are the normalization factors of residue 
i and j, respectively. Based on the network, we could gain insight 
into inter-residue communication, which play a vital role for 
proteins to execute their biological functions. Consequently, 
PSN has been successfully applied to study unfolding, stability 
and allosteric interaction (Brinda and Vishveshwara, 2005; 
Vishveshwara et al., 2009; Gao et al., 2016).

In addition, the shortest paths between pairs of nodes could 
be obtained through searching PSN by Dijkstra’s algorithm 
(Dijkstra, 1959), which considers the PSN node inter-
connectivities and residue correlated motions. The dynamic 
cross-correlation (DCC) (McCammon and Harvey, 1988) could 
be evaluated along an MD trajectory, in which DCC values (Cij) 
are computed in terms of equation (8):

 

C
r t r r t r

r t r r t r
ij

j j

i j j

l l

l

=
( ) −( ) ( ) −( )

( ) −( ) ( ) −(2 2 2 2 ))
           

 (8)

i and j denotes atoms or residues, and ri(t) and rj(t) are the 
corresponding position vectors at time t. r  means the ensemble 
average over a period time. DCC could characterize the extent of 
atom or residue movement correlations within a range from 1.0 
to -1.0, where 1.0 indicates completely correlated displacements 
and -1.0 denotes completely anti-correlated displacements. Cross 
correlation analysis and PSN were performed using Wordom 
software (Seeber et al., 2011).

ReSUlTS AnD DISCUSSIOn

Prediction of the Druggable Pocket in the 
Interface of the CXCR4 Dimer Based on 
Representative Conformations
The crystal structure is not completely equal to the functional 
conformation due to the flexibility of protein, which play a 

crucial role in the protein function. Thus, we first performed 
300 ns MD simulation to obtain representative conformations 
for the apo dimer. Figure 2 shows the root-mean-square-
deviation (RMSD) of the backbone atoms with respect to its 
crystal structure for the dimer. It can be seen that the RMSD 
values present minor fluctuations after 100 ns. Thus, we used 
the k-means algorithm to cluster the last 200 ns trajectories, 
based on RMSD of the backbone atoms of 136 residues of the 
dimer interface (Wu et al., 2010). Consequently, eight classes of 
the conformations were obtained, as shown in Supplement 1. 
Figure 3 shows the proportion of conformations for each class 
and populations of the a and b classes are significantly higher 

FIGURe 2 | Changes in RMSD values of backbone atoms for the apo CXCR4 dimer along with simulation time (left) and its distribution (right).

FIGURe 3 | The proportion of the eight representative conformations 
obtained by clustering in the last 200-ns trajectory for the apo CXCR4 
dimer. One druggable pocket was identified by FTmap only for four types of 
conformations a, b, d, and g.
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than the other classes. The center of each class was selected as 
representative conformation to probe its druggability with the 
aid of FTmap method. Only one druggable pocket was identified 
in the dimer interface for the classes a, b, d, and g, which account 
for 72% conformations of the last 200 ns trajectories, thus being 
highly representative. Furthermore, the druggable pockets in the 
dimer interfaces are highly similar for the four classes, which 
are mainly involved in Trp1955.34, Val1985.37, Phe1995.38 of the 
subunit A, Val1975.36, Gln2005.39, Phe2015.40, Ile2596.55, Ser2606.56, 
Ser2636.59, and Leu2676.63 of subunit B. It was revealed from the 
CXCR4 crystal structure that the residue Trp1955.34, Val1975.36, 
Val1985.37, Phe2015.40, and Leu2676.63 play an important role in the 
dimerization of dimer (Wu et al., 2010). Thus, it can be assumed 
that a ligand targeting the pocket could significantly influence 
the dimerization of CXCR4.

Screening Potential ligands to the 
Druggable Pocket in the Dimer Interface
The ligand set was constructed by a focused chemical compound 
collection (iPPI-lib) with a total of 51,232 ligand molecules, 
which were docked to the four representative conformations of 
the a, b, d, and g classes. The complex with the lowest binding 
energy was selected as the best binding mode for each of the four 
classes. Consequently, four small molecules (vide in Figure 4) 
were screened for the four representative conformations, which 

present best binding. The ligands 1, 2, 3, and 4 correspond to 
the conformations a, b, d, and g, respectively. Table 1 lists 
some important physicochemical properties calculated by the 
SwissADME (Daina et al., 2017) for the four small molecules. 
It can be seen that their molecular weights are between 340 and 
500. LogP values are between 3 and 5. LogS values are between -5 
and -6. These properties are in line with those of the PPI drugs 
reported. Furthermore, the four molecules satisfy “Rule-of-Five” 
proposed by Lipinski (Lipinski et al., 1997; Lipinski, 2004), which 
indicates MW≤500, Log P≤5, N or O ≤10, NH or OH≤5, maybe 
potential drugs.

FIGURe 4 | Chemical structural formulas of four ligands (ligand 1 binds to conformational a, ligand 2 binds to conformational b, ligand 3 binds to conformational d, 
ligand 4 binds to conformational g).

TABle 1 | Properties of the four ligands targeting the PPI interface.

ligands MW 
(g/mol)a

logPb logSc TPSA(Å2)d lipinskie

CBMicro_026776(1) 341.45 4.82 –5.64 20.31 Yes
CHEMBL2133598(2) 400.51 4.64 –5.82 49.41
CHEMBL2136779(3) 434.92 3.90 –5.05 71.94
CHEMBL1895118(4) 439.56 4.43 –5.66 77.21

aMolecular weight.
bLipid-water partition coefficient.
cAqueous solubility.
dTopological polar surface area.
eRule-of-five.
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effect of the Four ligands on the  
CXCR4 Dimerization
In order to probe the impact of the four ligands on the dimerization 
of CXCR4, we further performed 1us MD simulation for the four 
dimer conformations, the interfaces of which were docked by 
the individual ligand. The centroid distance and the contact area 
between the two subunits of the CXCR4 dimer were calculated 
based on the 1 us trajectory, as shown in Figure 5. It can be seen 
from Figure 5 that only the ligand 1 targeting the conformation 
a reduces the centroid distance between the two subunits and 
increases their contact area, suggesting enhanced dimerization. 
However, an opposite trend is presented for the conformations 
b and d. For the conformation g, the two parameters change 
little. The observations indicate that the ligand 1 could enhance 
the dimerization of CXCR4 while the ligands 2 and 3 disfavor 
the dimerization. The ligand 4 only plays a negligible role in 

the dimerization. Since our objective is to search the PPI ligand 
enhancing the dimerization, we only focused on the ligand 1 in 
the following analysis.

Interaction energy Between the ligand 1 
and the CXCR4 Dimer
In order to estimate the interaction strength between the dimer 
and the ligand, the binding free energy between them was 
calculated using the MM-PBSA method, based on the last 100 
ns trajectory, as shown in Table 2. The ΔGbinding value is -46.77 
kcal/mol and van der Waals interaction is main driving force, as 
judged from -46.18 kcal/mol of ΔEvdw. In the other words, van der 
Waals interaction devotes main contributions for the interaction 
between the CXCR4 dimer and the ligand 1.

To identify important residues contributed to the ligand 
binding, we decomposed the binding free energy into the 

FIGURe 5 | Variations of the contact area and the centroid distance between the two protomers along with simulation time for the CXCR4 dimer with and without 
the ligand targeting the PPI interface (A) Corresponds to conformation a, (B) Corresponds to conformation b, (C) Corresponds to conformation d, (D) corresponds 
to conformation g).
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corresponding residue. Figure 6 shows residues with binding 
energy less than -1 kcal mol-1, including residues Phe2015.40, 
Ile2045.43, and Phe2646.60of the subunit A, residues Ile1694.58, 
Pro1704.59, Ile1734.62, Val1985.37, and Phe1995.38of the subunit 
B. To identify important groups of the ligand contributed to 
the binding, we also calculated the interaction between the 
CXCR4 dimer and the ligand using protein–ligand interaction 
analysis software (PLIP) (Salentin et al., 2015). Figure 7 shows 
the interaction mode between the CXCR4 dimer and the ligand 
1 before the simulation and after that. Herein, the snapshot of 
the lowest energy in the last 100 ns MD trajectory was selected 
as representative conformation for calculating the binding 

mode after the simulation. It can be seen from Figure 7 that the 
benzene ring of the small molecule devotes main contribution to 
the hydrophobic interaction between the ligand and the dimer, 
indicating the importance of the benzene group of the ligand in 
enhancing PPI. A comparison of the interaction modes in Figure 
7 indicates that TM5 mainly contributes to the binding before the 
simulation while TM4 also devotes to the binding besides TM5 
after 1us simulation. Thus, it should be the interaction between 
TM4 and the ligand that drives the two subunits closer.

effect of ligand 1 on Drug Screening of 
Orthosteric Site
Since the existing drugs targeting CXCR4 are mainly antagonists, 
we, herein, focused the impact of the PPI ligand on the selectivity 
of the orthosteric site to the antagonists. One ligand set was 
constructed. The active molecules are extracted from the ZINC 
database (Irwin et al., 2012), GPCR-ligand database (Okuno 
et al., 2007) and PubChem database (Kim et al., 2015). The decoys 
stem from the DUD-E database (Mysinger et al., 2012). The ratio 
of decoys to the active molecules (N activity/N decoy) is 1:36. 
Consequently, the ligand set contains 1,480 small molecules (40 
antagonists and 1,440 decoys). The ligand set was docked to the 
orthosteric site of the receptor (Wu et al., 2010; Venkatakrishnan 
et al., 2013; Qin et al., 2015), which consists of Lys251.19, Cys281.22, 
Arg301.24, Asp972.64, His1133.29, Asp1714.60, Cys1865.25, Asp1875.26, 
Asp2626.58, Glu2777.28, His2817.32, and Glu2887.32. Figure 8 shows 
the receiver operating characteristic (ROC) curve and the area 
(AUC) under the ROC.

It can be seen that the screening performance of the subunit 
A increases with the simulation time (AUC=0.4661 at 100 ns, 
AUC=0.6711 at 500 ns, and AUC=0.7329 at 1,000 ns). However, 
there is little change for the subunit B (AUC=0.6698 at 100 ns, 
AUC=0.6612 at 500 ns, and AUC=0.6503 at 1 us). In addition, we 

TABle 2 | The binding free energy (in kcal mol-1) between the CXCR4 dimer and 
the ligand 1.

Components energy (kcal/mol)

ΔEvdw
a –46.18 ± 2.86

ΔEele
b –3.28 ± 1.20

ΔEint
c 0.00 ± 0.00

ΔEgas
d –49.46 ± 3.15

ΔGnpsolv
e –4.38 ± 0.20

ΔGpsolv
f 7.07 ± 1.11

ΔGsolv
g 2.69 ± 1.08

ΔGbinding
h –46.77 ± 2.82

aNon-bonded van der walls contribution from MM force field.
bNon-bonded electrostatic energy as calculated by the MM force field.
cInternal energy arising from bond, angle, and dihedral terms in the MM force 
field.
dTotal gas phase energy.
eNonpolar contribution to the solvation free energy.
fPolar contribution to the solvation free energy calculated.
gSolvation free energy.
hBinding energy.
ΔEgas = ΔEele + ΔEvdw+ ΔEint, ΔGsolv = ΔGnpsolv + ΔGpsolv, ΔGbinding = ΔEgas + ΔGsolv

FIGURe 6 | Per-residue decomposition of the binding free energy for the CXCR4 dimer.
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also compared the drug screening performance of the orthosteric 
site between the CXCR4 dimer bound the PPI ligand and one 
without the ligand, as shown in Figure 9. Similarly, the PPI ligand 
improves the screening performance of the subunit A but nearly 
has no effect on the subunit B, exhibiting asymmetric regulation. 
The asymmetric effect was also observed for the activation and 
the ligand binding for some GPCR dimers (Han et al., 2009; Liu 
et al., 2017).

In order to probe the origin of the asymmetric impact of the 
PPI molecule on the ligand binding of the orthosteric site for the 
two subunits, we calculated the pocket volumes of the orthosteric 
sites of CXCR4, as shown in Figure 10. It is clear that the PPI 
ligand significantly increases the volume of the orthosteric 
pocket for the subunit A but plays a minor role in the subunit B, 
which should contribute to the asymmetric screening.

The Allosteric Pathway for the Regulation 
Impact of the PPI Molecule on the ligand 
Binding of the Orthosteric Site
In order to probe how the PPI molecule regulates the ligand 
binding of the orthosteric site of the receptor, we used the protein 
structure network to identify the allosteric pathway between the 

druggable pocket in the dimer interface and the orthosteric site 
of the two subunits. The residues consisted of the two types of the 
binding pockets are served as the starting and ending nodes in the 
PSN calculation, respectively, based on the last 100 ns equilibrium 
trajectory. Table 3 lists the number of main pathways with 
frequency higher than 30%. Compared to the dimer without the 
PPI small molecule, the binding of the PPI molecule significantly 
increases the number of the pathway for the subunit A while 
there is little change for the subunit B. The observation suggests 
that the PPI ligand enhances the role of the interface in regulating 
the orthosteric site of the subunit A but only plays minor role 
for the subunit B. As a result, the volume of the orthosteric 
pocket is increased for the subunit A while the slight change is 
observed for that of the subunit B. In order to identify important 
residues in the allosteric regulation pathway, we searched the 
shortest pathway with the highest frequency between the PPI 
pocket and the orthosteric pocket for the subunit A. It can be 
seen from Figure 11 that the pathway is composed of Trp1955.34–
Tyr190ECL2–Val1965.35–Gln2005.39–Asp2626.58–Cys28N-term. As 
revealed above, Trp1955.34 is an important residue contributed 
to the binding of the PPI ligand. Residue Tyr190ECL2 locates in 
ECL2, which was revealed to be switch for the ligand binding 
in the orthosteric site (Scarselli et al., 2007; Arkin et al., 2014). 

FIGURe 7 | The comparison of binding modes between the CXCR4 dimer and the PPI ligand before (Top) and after (Bottom) 1us simulation. (A) 2D diagram of 
binding mode between the CXCR4 dimer and the ligand (yellow represents residues from the subunit A, green represents residues from the subunit B). (B) 3D 
diagram of binding mode between the CXCR4 dimer and the ligand, blue for residues, orange for the ligand. Hydrophobic and π-π interactions are represented by 
different lines.

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 131013

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Druggability of CXCR4 Homodimer InterfaceShen et al.

10

Residue Gln2005.39 plays a specific role in the dimerization of 
CXCR4 dimer (Altwaijry et al., 2017). The residues Cys2747.25 
and Cys28N-term bind closely through disulfide bonds, which 
play an important role in the formation of entrance to the ligand 
binding pocket at orthosteric site (Wu et al., 2010; Pawig et al., 
2015). Residue Asp2626.58 is an important residue for the binding 
of orthosteric site ligands (Wu et al., 2010; Qin et al., 2015). It 
can be seen that most of the residues composed of the allosteric 
pathway are associated with the ligand binding, which should 
be the reason why the PPI ligand significantly affect the ligand 
binding pockets, in turn influence its screening performance to 
the ligands. Although there is no report on the importance of the 
residue Val1965.35 of this pathway, our observations suggest that 
the residue Val1965.35 is also important for the ligand binding of 
the dimer and should be concerned by experiments. In addition, 
we also searched the shortest pathway with the highest frequency 
between the PPI pocket and the orthosteric pocket of the subunit 
B, as shown in Supplement 2. The pathway is composed of 
Ile269ECL3–Phe2646.60–Ile270ECL3–Ile2656.61–Glu2777.28, only 
Glu2777.28 of which was reported to be the pocket residue of the 
orthosteric site (Wu et al., 2010; Venkatakrishnan et al., 2013; Qin 
et al., 2015). Compared to the pathway of the subunit A, there 
are fewer residues involved in the ligand binding for that of the 

subunit B, which should contribute to the observation above that 
the PPI ligand plays a minor role in influencing the screening 
ability of the subunit B to the antagonists.

COnClUSIOnS
PPIs offer a rich source of novel drug targets. As the largest 
family of drug-targeted proteins, it was evidenced that GPCRs 
could form the dimers through the protein–protein interaction. 
Unfortunately, the drugs targeting the PPI interface of the 
GPCR dimers have not been explored so far. In the work, 
we utilized molecular dynamics simulation coupled with the 
virtual screening and the protein structure network to probe the 
druggability in the PPI interface of CXCR4 homodimer and its 
regulation mechanism on the receptor structure and the drug 
screening ability of the orthosteric site.

One druggable pocket is identified in the PPI interface. One 
small molecule is screened from the PPI drug-like small molecule 
dataset which could enhance the dimerization mainly through 
hydrophobic interactions between the benzene rings of the PPI 
molecule and TM4 of the receptor. The enhancement of PPI by 
the small molecule changes the screening performance of the 

FIGURe 8 | Effects of the PPI ligand on the screening performance of the orthosteric site to the antagonists for the subunit A (top) and the subunit B (bottom).
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two subunits to the antagonists targeting the orthosteric pocket. 
One subunit exhibits an enhanced screening performance to the 
antagonists while the minor change is observed for the other 
subunit, exhibiting an asymmetric cooperativity. The structural 
analysis indicates that the negative cooperativity should be 
attributed to the asymmetric change in the orthosteric pocket 

volumes induced by the binding of the PPI molecule, which leads 
to the significant increase in the pocket volume of the subunit A 
but only plays a minor role for the subunit B.

The results of PSN reveal that the number of the regulatory 
pathways from the PPI pocket to the orthosteric pocket is 
significantly increased for the subunit A while a minor change 

FIGURe 9 | Comparison of the screening performance for the orthosteric sites of the subunit A and the subunit B between the apo CXCR4 dimer (red lines) and the 
CXCR4 dimer bound by the PPI ligand (purple lines).

FIGURe 10 | Comparison of volumes for the orthosteric pockets of the subunit A and the subunit B between the apo CXCR4 dimer (red lines) and the CXCR4 
dimer bound by the PPI ligand (purple lines).

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 131015

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Druggability of CXCR4 Homodimer InterfaceShen et al.

12

is observed for the subunit B, which should contribute to the 
asymmetric change of the binding pockets between the two 
subunits. In addition, one main regulatory pathway from the PPI 
binding site to the pocket of the subunit A is identified, revealing 
that the PPI ligand molecule allosterically regulates the structural 

change of the orthosteric pocket of the subunit A mainly through 
the pathway consisted of Trp1955.34–Tyr190ECL2–Val1965.35–
Gln2005.39–Asp2626.58–Cys28N-term. These residues were revealed to 
significantly contribute to the dimerization and the ligand binding 
to the PPI interface and the orthosteric site. Consequently, the PPI 
small molecule could significantly regulate the dimerization and 
the screening ability of the orthosteric site to the ligands.

It is first time revealed the druggability of the GPCR dimer 
interface and its role in influencing the drug recognition ability of 
the orthosteric site. Since the antagonists of CXCR4 are used to treat 
CXCR4-related diseases like AIDS and some cancers, it is reasonable 
to assume that the PPI molecule identified from the work should 
enhance their drug efficacies. In addition, the strategy proposed by 
the work could be applied to probe the other GPCR PPI drugs.
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Aqueous solubility is an important physicochemical property of compounds in

anti-cancer drug discovery. Artificial intelligence solubility prediction tools have scored

impressive performances by employing regression, machine learning, and deep learning

methods. The reported performances vary significantly partly because of the different

datasets used. Solubility prediction on novel compounds needs to be improved, which

may be achieved by going deeper with deep learning. We constructed deeper-net

models of ∼20-layer modified ResNet convolutional neural network architecture, which

were trained and tested with 9,943 compounds encoded by molecular fingerprints.

Retrospectively tested by 62 recently-published novel compounds, one deeper-net

model outperformed four established tools, shallow-net models, and four human experts.

Deeper-net models also outperformed others in predicting the solubility values of a

series of novel compounds newly-synthesized for anti-cancer drug discovery. Solubility

prediction may be improved by going deeper with deep learning. Our deeper-net models

are accessible at http://www.npbdb.net/solubility/index.jsp.

Keywords: aqueous solubility, deep learning, artificial intelligence, compounds, chemical, anti-cancer drug

discovery

INTRODUCTION

Aqueous solubility is an important physicochemical property of compounds in anti-cancer drug
discovery and development, impacting pharmacokinetic properties and formulations (1, 2). To
facilitate solubility assessment, a number of artificial intelligence (AI) solubility prediction tools
have been developed by employing regression and modeling (3, 4), machine learning (5–9), and
deep learning (10–12) methods. These tools have scored impressive performances with high R2

(e.g., 0.62–0.97) and low RMSE (e.g., 0.29–0.89) values (5, 13). However, the reported performances
vary significantly, even among the same tools, partly because of the different datasets used. For
instance, the reported R2 and RMSE values of MOE software V2010.10 are 0.62 and 0.51 (8)
and those in a 2014 publication are 0.27 and 1.05 (14). The reported R2 and RMSE values of
QikProp software V1.6, V2.1, and V3.2 are 0.9 and 0.8 (6), 0.95 and 0.63 (15), and 0.45 and 0.86
(8), respectively.

AI solubility prediction tools may be critically tested by newly-published novel compounds.
Tested by 62 novel compounds published since November 2017 (Methods section), four established
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tools MOE V2016.0802, QikProp QP18 and CIQP18, and
AlogGPS V2.1 scored significantly lower R2 (<0.2) and higher
RMSE (0.814–1.162) values (Results section) than the typically-
reported values (5, 6, 8, 14, 15). Our own-developed deep
learning model of typically-employed shallow-net architecture
(Methods section), trained and tested with 9,943 compounds,
also scored lower R2 (0.307) and higher RMSE (0.739) values
(Results section). Hence, there is a need for improved solubility
prediction particularly on novel compounds to promote oral
anti-cancer drug development. In AI field, deep learningmethods
with distinguished learning capabilities (16) [which has been
proved by prediction of CRISPR-Cpf1 guide RNA activity
(17) and prediction of protein-ligand binding affinity (18)]
are useful for this task, but their potential has yet to be
fully realized.

The published deep learning solubility prediction models
are primarily shallow-nets (3–7 layers) (10–12). Deep learning
performances have been routinely enhanced by going deeper
(adding more layers to shallow-nets) (19–21). Although
performances can also be enhanced by going wider (22), it
may be practically easier to develop deeper-nets by tapping
into the well-established architectures that require fewer
parameters (19–21). The depth of deeper-nets or the width of
wider-nets is constrained by the limited number of compounds
with experimental solubility data. The architecture with
fewer parameters, convolutional neural networks (CNN),
is therefore preferred. A question is whether the superior
local-feature learning capability of CNN can adequately learn
molecular features of compounds. To fit with the local-
feature learning capability of CNN, compounds are better
represented by substructure-encoded molecular fingerprints
(23) instead of molecular descriptors used for solubility
prediction by previously-developed deep learning models
(10–12). Molecular fingerprints are vectors with individual
components encoding specific sub-structures of molecules.
Hence, the superior local-feature learning capability of CNN
is expected to be useful for capturing the key sub-structural
elements and their combinations contributing the solubility
of molecules.

We constructed N-layer CNN models (N = 14, 20,
and 26) using 9,943 compounds and based on a residual
network (ResNet) architecture (20), which are significantly
deeper than the previously-developed 3–7 layers shallow-net
models (10–12). The solubility prediction capability of our
deeper-net models was tested by retrospective prediction of
the experimental solubility of 62 recently-published novel
compounds beyond the training and testing compounds. These
performances were compared with those of four established
tools, shallow-net models and four human experts. Our
deeper-net models and others were further tested by a real
anti-cancer drug discovery project with a series of novel
compounds newly-synthesized for discovering FLT3 inhibitors.
These compounds were considered difficult for solubility
estimation by medicinal chemistry experts, which are ideal
for rigorous test of solubility prediction models. Our models
are accessible at http://www.npbdb.net/solubility/index.jsp for
supporting broader tests.

MATERIALS AND METHODS

Data Collection and Processing
A total of 10,166 compounds with experimental aqueous
solubility value were collected from ChemIDplus database (24)
and Pubmed (9, 25, 26) literature search up to November
2017. Another 62 recently-published novel compounds with
experimental aqueous solubility value (Supplementary Figure 1,
6 representative compounds in Figure 1) were collected from
PMC database (27–31) search using keyword combination
of “novel”, “new,” and “solubility” and under the following
criteria: published between November 2017 and May 2018, and
solubility measured at room-temperature and around pH 7.0.
For the 10,166 compounds, their SMILES strings (which encode
sub-structures), InChIKeys (chemical structure identifiers) and
aqueous solubility values were collected from the searched
sources. For the 62 novel compounds, their structures were
drawn from literature-reported structures by using ChemDraw
18.0 and then converted to the SMILES strings by using
RDKit1. Solubility S values in different units (e.g., µg/mL,
mg/mL, and mg/L) were converted to mol/L and transformed
into logS (in logarithmic units) values. The SMILES strings
were converted to canonical SMILES strings for consistency by
using Open Babel (32). Duplicates were removed by InChIKeys
comparisons. The canonical SMILES of the remaining non-
redundant 9,943 compounds (Supplementary Table 1, the basic
physical properties detailed in Supplementary Table 2) and
the 62 novel compounds were converted into the Pubchem
molecular fingerprints (which encode sub-structures by 881 bits)
using PaDEL (33).

Established Tools and a Deep Learning
Model of Typically-Employed Shallow-Net
Architecture for Solubility Prediction
Solubility prediction performances were comparatively
evaluated with respect to four established software tools
[MOE V2016.08022, QikProp 2018-4 QP18 and CIQP183, and
AlogGPS V2.1 based on an artificial neural network method (5)].
The deep learning model was developed based on a typically-
employed shallow-net deep neural network (DNN) architecture
for solubility prediction (11), which is a 4 hidden-layers DNN
(Supplementary Figure 2) with the network architecture and
parameter sets re-constructed based on the literature descriptions
(11) with the following minor variations: the activation function
was changed from SReLU to ReLU and the compounds were
represented by pubchem molecular fingerprints instead of fp6
molecular fingerprints. The numbers of nodes of the hidden
layers are 512, 1,024, 2,048, and 4,096. The parameters of L2
regularization and dropout regularization are 0.001 and 0.5. The
9,943 compounds were randomly divided into 90% training and
10% testing datasets for training the DNNmodel.

1http://www.rdkit.org/
2http://www.chemcomp.com/index.htm
3 https://www.schrodinger.com/QikProp
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FIGURE 1 | The molecular structures and experimental solubility S values of six recently-published novel compounds.

Development of Deep learning Models of
Deeper-Net Architecture for Solubility
Prediction
The deeper-net models were based on the ResNet architecture
(20) with the usual matrix forms of the ResNet layers, filters
and feature maps replaced by vector forms. The numbers of
layers N are 14, 20 (Figure 2), and 26 (Supplementary Figure 3)
(N-1 CNN layers and 1 fully-connected layer). The vector
forms were used because the inputs are 881-dimensional vectors
(Pubchem fingerprints) instead of matrices of image pixel values.
These CNN models were trained by the 10-fold cross validation
method used for the development of two shallow-net deep
learning solubility predictionmodels (10, 12). In the 10-fold cross
validation method, the 9,943 compounds were randomly divided
into 10 sets of approximately equal sizes, with each set used
once as a testing dataset, and the remaining 9 sets as training
dataset for training the CNNmodels. The CNN hyperparameters
were optimized based on the overall performance of the 10
training/testing datasets. These hyperparameters include loss
function, kernel sizes, number of filters, stride lengths, number
of fully-connected hidden layers, number of neurons of the
fully-connected layer, activation function, optimizer, learning
rate, weight initialization, regularization, batch size, and epochs.
Multiple activation functions (Sigmoid, ReLU, Softmax) were
evaluated in both activation layers and the activation arguments
of all forward layers. The weight initialization was uniform. L2
regularization was added by small amounts of L2 weight decay.
A solubility value regression model was trained by least squares

fit (−R2 = −(1 − (
∑n−1

i=0

(

yi − ŷi
)2

/
∑n−1

i=0 (yi − y)2))) between
the predicted (ŷi) and experimental (yi) solubility values of the
n training compounds as the loss function of the output of our
deeper-net models.

Performance Evaluation Metrics
The solubility prediction performances of the developed deep
learning models were assessed by two metrics used in the

evaluation of previously-developed shallow-net deep learning
models (10, 12). One is the R2 value, where R is the Pearson
correlation coefficient defined by:

R2 = 1−

∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − y)2

The second is the root mean squared error RMSE defined by:

RMSE =

√

∑n−1
i=0 (yi − ŷi)

2

n

where ŷi is the predicted and yi is experimental solubility values
of the training compounds.

In statistics, R2, the coefficient of determination, is the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s). It is a statistical
measure used in a regression model to indicate that how well
the model fits the data. Theoretically, it denotes a goodness-of-
fit indicator that can vary from –∞ to 1. The closer the R2 value
is to 1, the better the model fits the data, and vice versa. The
other metric, RMSE, is the square root of the average of squared
errors. It is a statistical measure of the differences between the
values predicted by a model and the true values. RMSE is always
non-negative, and the value closer to 0 indicates the better fit to
the data.

Chemical Synthesis and Experimental
Aqueous Solubility Determination
In one of our drugs discovering projects toward antitumor
therapeutics, a series of novel FLT3 inhibitors were designed
and synthesized using the structure-based drug design methods.
The aqueous solubilities (pH = 7) of these compounds were
measured using the modified shake flask method and RP-HPLC
(34, 35). Each compound was added into a 1.5mL Eppendorf
tube containing Milli-Q water (1mL) to form the precipitates at
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FIGURE 2 | The architecture of the 20-layer CNN ResNet-like deep learning model. (A) A CNN ResNet-like deep learning model with 20 parameter layers. The

“conv1d x,y” is a 1D convolution layer with x kernel sizes and y filters. And the curvy arrows are the shortcut connections. The shortcut connection with a parameter

layer increases dimensions. The different color means different layer class in the architecture. “Green” means the first layer, “white” means the last layer, “gray” means

the parameter layer of the shortcut connection, and the others mean the residual layers. The color change of the residual layers from purple to blue to yellow indicates

the tensor dimension change from 9 to 18 to 36. (B) The shortcut connection in the architecture of CNN ResNet-like deep learning model. Shortcut connections

simply perform identity mapping by skipping one or more layers (20). Their outputs are added to the outputs of the stacked layers without extra parameter and

computational complexity.
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25◦C. Then the mixture was subjected to a solubility-equilibrium
stage. The tube was shook at 300 rpm at 25◦C for 24 h. The
precipitate was separated by centrifugation at 23,000 g for 20min.
Subsequently, 0.25mL of supernatant was transferred into a
1mL Eppendorf tube, and it was centrifuged again with the
same settings used above. The supernatant was then used for
HPLC analysis. An Agilent 1260 Infinity LC system (Agilent
Technologies, Inc., Santa Clara, California) was used. For HPLC
conditions, a ZORBAX SB-C18 column (5µM, 4.6 × 150mm;
Agilent), a flow rate of 0.8 mL/min for mobile phase, a UV
wavelength of 250 nM and a column temperature of 30◦C were
used. The sample was injected automatically by a mechanical
arm and separated by a constant mixture of methanol/PBS (pH
5.6), 90:10. For each compound, a standard curve consisting of
four concentrations was established. The synthetic methods of all
but compound SC5 and SC6 have been published in literatures
(36–39). The synthetic methods of SC5 and SC6 are described in
Supplementary Method 1.

RESULTS

The Training of the Deeper-Net Models and
Solubility Prediction Performance
Evaluation
Using 9,943 compounds and 10-fold cross validation method,
three deeper-net models of 14-, 20-, and 26-layer were developed.
The ranges and the optimal hyperparameter values for the 20-
layer model (which is the top performing model based on the
loss function R2 values) are given in Supplementary Table 3.
The 10-fold cross validation performances of the 14-, 20-, and
26-layer models are R2 = 0.72–0.78, 0.74–0.79, and 0.72–0.79,
and RMSE= 0.988–1.144, 1.006–1.112, 1.015–1.151, respectively
(detailed in Supplementary Table 4). In spite of different depths,
these models performed similarly well, possibly because the
superior predictive capability of these deeper-net models cannot
be fully tested by 1-fold (1/10) testing datasets. The test by novel
compounds may be better for probing the predictive capabilities.
The reported 10-fold cross validation performances of the two
previously-developed shallow-net models are R2 = 0.86–0.92 and
0.90–0.92, and RMSE = 0.58–0.79 and 0.45–0.50, respectively
(10, 12), which are substantially better than those of our deeper-
net models. It is noted that our datasets (testing 994 compounds,
training 8,949 compounds) are significantly larger than those of
the two previously-developed shallow-net models (testing 102–
287 and 129–154 compounds, training 923–2,586 and 1,161–
1,537 compounds, respectively) (10, 12). Caution is needed
in a direct comparison of the performance statistics of these
models. The significantlymore diverse testing datasets may partly
contribute to the lower performance statistics. But the more
diverse training datasets likely lead to more robust prediction
capability than the less diverse training datasets. Because of the
inaccessibility of the previously-published shallow-net models,
it is impossible to test these models on a common set of
diverse compounds. Therefore, these models were tested on
the 62 newly-published novel compounds and a series of novel

compounds from our anti-cancer drug discovery project with
solubility measured for the first time in this work.

Prediction of the Solubility Values of
Literature-Reported Novel Compounds by
the Deeper-Net Models in Comparison
With the Established Tools and
Shallow-Net Models
The solubility prediction capability of our deeper-net models
was tested by the 62 newly-published novel compounds. We
also trained 1-layer DNN model, 6-layer DNN model, and
8-layer ResNet-like model as our shallow-net models. The
testing results of these models are included in Table 1, and
the predicted logS values of these models with respect to
experimental logS values are in Supplementary Table 5. Based
on the R2 and RMSE values, the 20-layer deeper-net model
(R2 = 0.412, RMSE = 0.681) performed substantially better
than all the other models including the four established
tools and the shallow-net models (R2 in the range of <0.2
to 0.307, RMSE = 0.739–0.982). The R2 and RMSE values
of four established tools, shallow-net and deeper-net deep
learning models were evaluated by the bootstrap sampling
method. The mean, standard deviation and 95% confidence
interval of R2 and RMSE values for 10,000 bootstrap samples
of 62 recently-published novel compounds were detailed in
Supplementary Table 6. Judged by the percent of predicted logS

TABLE 1 | Performance on the logS prediction of 62 recently-published novel

compoundsa.

Model R2 RMSE PCT-10-foldb (%)

Established tools

MOE V2016.0802 <0.2 0.908 74.2

QikProp 2018-4 QP18 <0.2 0.926 69.4

QikProp 2018-4 CIQP18 <0.2 1.162 54.8

AlogGPS V2.1 0.160 0.814 77.4

Shallow-net deep learning model of a

typically-employed architecture for

solubility prediction

4-layer DNN model 0.307 0.739 80.7

Shallow-net deep learning models developed

in this work

1-layer DNN model 0.086 0.849 72.6

6-layer DNN model 0.264 0.762 79.0

8-layer ResNet-like model <0.2 0.982 66.1

Deeper-net deep learning models developed

in this work

14-layer ResNet-like model 0.133 0.827 74.2

20-layer ResNet-like model 0.412 0.681 82.3

26-layer ResNet-like model 0.075 0.854 77.4

aThe performance of the established tools, and the shallow-net and deeper-net deep

learning models in the prediction of experimental logS values of 62 recently-published

novel compounds. The best performance values are in bold font.
bPercent of predicted logS value within 10-fold of experimental value.
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TABLE 2 | Performance on the solubility category predictiona.

Human expert or established tool Percent of 62 compounds with

correct classification (%)

Deep learning model Percent of 62 compounds with

correct classification (%)

Expert 1 6.5 4-layer DNN model 79.0

Expert 2 8.1 1-layer DNN model 79.0

Expert 3 11.3 6-layer DNN model 82.3

Expert 4 74.2 8-layer ResNet-like model 80.7

MOE V2016.0802 91.9 14-layer ResNet-like model 87.1

QikProp 2018-4 QP18 85.5 20-layer ResNet-like model 85.5

QikProp 2018-4 CIQP18 87.1 26-layer ResNet-like model 83.9

AlogGPS V2.1 82.3

aThe performance of human experts, the established tools, and the shallow-net and deeper-net deep learning models in the prediction of solubility category of 62 recently-published

novel compounds. The solubility categories are practically insoluble or insoluble (<0.1 g/L), slightly soluble (0.1–10 g/L), soluble (10–100 g/L), and freely soluble (>100 g/L).

FIGURE 3 | The molecular structures and experimental solubility S values (in mg/mL) of the five synthetic novel compounds for a drug discovery project with solubility

values measured for the first time by this work.

values within 10-fold of experimental value, all but one model
achieved high performances (66.1%), suggesting the usefulness
of both established tools and deep learning models for accessing
solubility categories. Nonetheless, the 20-layer deeper-net model
substantially outperforms all other models. These suggested
that going deeper with deep learning at appropriate depth
may give rise to significantly improved solubility prediction on
novel compounds. The lower R2 and RMSE values of the 26-
layer model (R2 = 0.075, RMSE = 0.854) over the 20-layer
model indicated signs of overfitting in going further deeper
beyond∼20-layer.

Comparison With Human Experts in
Coarse-Grained Classification of the
Solubility Categories of the
Literature-Reported Novel Compounds
Four human experts in medicinal chemistry were selected from
the China Pharmaceutical University using the criterion of a
recent machine vs. human comparative solubility prediction

study (9), i.e., a human expert is someone with medicinal
chemistry expertise working or studying in a university.
These four experts include one assistant professor and three
PhD students. They were tasked to conduct coarse-grained
classification of the aqueous solubility of the 62 novel compounds
at room temperature into one of the following categories:
practically insoluble or insoluble (<0.1 g/L), slightly soluble
(0.1∼10 g/L), soluble (10∼100 g/L), and freely soluble (>100
g/L). The classification performance of these four experts
together with those of the established tools, and shallow
and deeper-net models are in Table 2. All tools and models
achieved high classification accuracies of 79.0–91.9%, which
significantly outperformed the human experts (6.5–74.2%).
These indicated the more superior capability of both established
tools and deep learning models over human experts in
coarse-grained classification of the solubility categories on
novel compounds. However, no definite conclusion could be
deduced on which was better between the established tools
and the deep learning models. No improving trend was
found with the increasing of the deep learning models’ depth.
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It seemed that the coarse-grained classification method was
not discriminative enough to differentiate the capabilities of
the established tools and deep learning models as revealed
by the more quantitatively-precise evaluations of R2 and
RMSE values.

Solubility Prediction of a Series of Novel
Compounds From a Real Anti-cancer Drug
Discovery Project
A series of 17 novel compounds were synthesized by using
the method described in Supplementary Method 1 and the
published literatures (36–39) for discovering FLT3 inhibitors.
These compounds are structurally novel based on SciFinder
search. They are difficult for solubility estimation based on
our surveys with medicinal chemistry experts. The solubility
values of these 17 compounds (Supplementary Figure 4) were
experimentally measured using the method described in the
Methods section. We were unable to determine the exact
solubility values for 12 compounds because they are insoluble
below 1.0000E-2 mg/mL in neutral water. Hence, only the
remaining five compounds (Figure 3) with exact experimental
solubility values were used for testing our deeper-net models
and other models. Partly because of the novelty and low
number of compounds, the R2 values of all models are well
below statistically meaningful values. Hence only the RMSE
values and the percent of predicted logS values within 10-fold
of experimental value were used for performance evaluation
(Table 3). Judged by the RMSE values, the deeper-net models
substantially outperformed all other models, with the 26-
layer model as the best one in spite of minor level of
overfitting. This further indicated the advantage of going deeper
for improved solubility prediction. Judged by the percent of
predicted logS values within 10-fold of experimental value, the
majority of the models (including 14- and 20-layer deeper-
net models) achieved equally good performances (60%) with
the 26-layer model as the best one (80%). This again showed
that both the established tools and deep learning models
are useful for rough estimation of the solubility values of
novel compounds.

DISCUSSIONS

Like successful applications of deep learning methods in
other fields (19–21), the superior learning capability of
deeper-net models may be exploited to improve solubility
prediction of novel compounds, including those compounds
considered by medicinal chemistry experts as difficult for
solubility estimations. To better explore the learning capability
of deeper-net architectures, the molecular representations
of the compounds may be selected for conforming to
these architectures. Specifically, the superior local-feature
learning capability of the CNN architectures may be better
exploited by using the substructure-encoded molecular
fingerprints for representing compounds. Our studies
consistently scored the substantially better solubility prediction

TABLE 3 | Performance on the logS prediction of 5 novel compoundsa.

Model RMSE PCT-10foldb (%)

Established tools

MOE V2016.0802 2.293 <20

QikProp 2018-4 QP18 2.717 20

QikProp 2018-4 CIQP18 2.308 20

AlogGPS V2.1 1.073 60

Shallow-net deep learning model of a typically-employed

architecture for solubility prediction

4-layer DNN model 1.325 60

Shallow-net deep learning models developed in

this work

1-layer DNN model 1.502 60

6-layer DNN model 1.494 40

8-layer ResNet-like model 1.646 60

Deeper-net deep learning models developed in

this work

14-layer ResNet-like model 0.982 60

20-layer ResNet-like model 0.811 60

26-layer ResNet-like model 0.689 80

aThe performance of the established tools, and the shallow-net and deeper-net deep

learning models in the prediction of experimental logS values of 5 novel compounds

(quantitative values measured in this work). The best performance value is in bold font.
bPercent of predicted logS value within 10-fold of experimental value.

performances of the deeper-net deep learning models on
novel compounds than the established tools and shallow-
net models. Nonetheless, the prediction performance of the
deeper-net models on novel compounds is affected by the
limited number of 9,943 compounds for training these models.
Solubility prediction capability of the deeper-net methods
may be further enhanced with the expanded experimental
solubility data and by means of algorithm development.
Our novel approach may find broader applications in the
development of high-performance deep learning models for the
prediction of various pharmacodynamic, pharmacokinetic, and
toxicological properties.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related
death and has an extremely poor prognosis. Thus, identifying new disease-associated
genes and targets for PDAC diagnosis and therapy is urgently needed. This requires
investigations into the underlying molecular mechanisms of PDAC at both the systems
and molecular levels. Herein, we developed a computational method of predicting cancer
genes and anticancer drug targets that combined three independent expression
microarray datasets of PDAC patients and protein-protein interaction data. First,
Support Vector Machine–Recursive Feature Elimination was applied to the gene
expression data to rank the differentially expressed genes (DEGs) between PDAC
patients and controls. Then, protein-protein interaction networks were constructed
based on the DEGs, and a new score comprising gene expression and network
topological information was proposed to identify cancer genes. Finally, these genes
were validated by “druggability” prediction, survival and common network analysis, and
functional enrichment analysis. Furthermore, two integrins were screened to investigate
their structures and dynamics as potential drug targets for PDAC. Collectively, 17 disease
genes and some stroma-related pathways including extracellular matrix-receptor
interactions were predicted to be potential drug targets and important pathways for
treating PDAC. The protein-drug interactions and hinge sites predication of ITGAV and
ITGA2 suggest potential drug binding residues in the Thigh domain. These findings
provide new possibilities for targeted therapeutic interventions in PDAC, which may have
further applications in other cancer types.

Keywords: pancreatic ductal adenocarcinoma, drug targets, support vector machine–recursive feature elimination,
protein-protein interactions, structural dynamics, integrins
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
malignant solid tumors (Bailey et al., 2016). PDAC is difficult to
treat due to the stage of diagnosis, severe cachexia and poor
metabolic status, the resistance of cancer stem cells (CSCs) to
current drugs, and the marked desmoplastic response that
facilitates growth and invasion, provides a physical barrier to
therapeutic drugs, and prevents immunosurveillance (Al Haddad
and Adrian, 2014). PDAC is also a drug-resistant disease, and the
response of pancreatic cancer to most chemotherapy drugs is
poor. Until now, most of research effort in PDAC has been
directed at identifying the important disease-driving genes and
pathways (Waddell et al., 2015). These studies have shown that
KRAS, CDKN2A, TP53, and SMAD4 are the four most common
driver genes in PDAC (Carr and Fernandez-Zapico, 2019). With
the development of multi-omics data, a series of new regulators
that are strongly correlated with survival have been proposed to
be PDAC biomarkers (Rajamani and Bhasin, 2016; Mishra et al.,
2019), including genes (e.g., IRS1, DLL1, HMGA2, ACTN1, SKI,
B3GNT3, DMBT1, and DEPDC1B) and lncRNAs (e.g., PVT1 and
GATA6-AS). The integrated transcriptomic analysis of five
PDAC datasets identified four-hub gene modules, which were
used to build a diagnostic risk model for the diagnosis and
prognosis of PDAC (Zhou et al., 2019). Integrated genomic
analysis of 456 PDAC cases identified 32 recurrently mutated
genes that aggregate into 10 pathways: KRAS, TGF-b, WNT,
NOTCH, ROBO/SLIT signaling, G1/S transition, SWI-SNF,
chromatin modification, DNA repair, and RNA processing
(Bailey et al., 2016). Previous treatments for pancreatic cancer
have focused on targeting some of these PDAC-associated
pathways, including TGFb (Craven et al., 2016), PI3K (Conway
et al., 2019), Src (Parkin et al., 2019), and RAF!MEK!ERK
(Kinsey et al., 2019) and NFAT1-MDM2-MDMX (Qin et al.,
2017) signaling, as well as cell-cell communication within the
tumor microenvironment (Shi et al., 2019). The discovery of
novel drug targets provides extremely valuable resource towards
the discovery of drugs. Although the human genome comprises
approximately 30,000 genes, proteins encoded by fewer than 400
are used as drug targets in disease treatments. A range of
therapeutic targets in PDAC have been proposed, including
suppressing the abovementioned genes and pathways (Tang
and Chen, 2014). However, the current drug targets for PDAC
will not be 100% effective due to the heterogeneous nature of the
disease. To tackle this challenge, a complete understanding of the
molecular mechanism of PDAC is urgently needed.

Improving PDAC therapy will require a greater knowledge of
the disease at both the systems and molecular levels. At the
systems level, protein-protein interaction (PPI) networks provide
a global picture of cellular function and biological processes
(BPs); thus, the network approach is used to understand the
molecular mechanisms of disease, particularly in cancer (Conte
et al., 2019; Sonawane et al., 2019). Some proteins act as hub
proteins that are highly connected to others, thus cancer drug
targets can be predicted by hubs in PPI networks (Li et al., 2018;
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Lu et al., 2018; Zhu et al., 2019). However, there are some
conflicting results that suggest disease genes or drug targets
have no significant degree of prominence (Mitsopoulos et al.,
2015), but higher betweenness, centrality, smaller average
shortest path length, and smaller clustering coefficient (Zhao
and Liu, 2019). Recent advances in systems biology have led to a
plethora of new network-based methods and parameters for
predicting essential genes (Li et al., 2019), disease genes, and drug
targets (Csermely et al., 2013; Vinayagam et al., 2016; Zhang
et al., 2017; Fotis et al., 2018; Liu et al., 2018). Additionally, the
structural annotation of PPI networks that has highlighted key
residues has enriched the fields of both systems biology and
rational drug design (Kar et al., 2009; Winter et al., 2012). The
prediction of binding sites, allosteric sites, and genetic variations
based on systems-level data is critical for suggesting therapeutic
approaches to complex diseases and personalized medicine
(Duran-Frigola et al., 2013; Yan et al., 2018). Combined with
PPI network analysis, molecular docking studies of target genes
can further help to find drug molecules and protein-drug
interactions for lung adenocarcinoma (Selvaraj et al., 2018).

Together with advances in “-omics” data, including gene
expression and PPI data, machine learning (ML), and artificial
intelligence (AI) techniques are powerful tools that can assess
gene and protein “druggability” from such massive and noisy
datasets (Kandoi et al., 2015; Zhavoronkov, 2018). As the most
used ML method, support vector machine (SVM) has been used
for cancer genomic classification or subtyping, which may be
useful for obtaining a better understanding of cancer driver genes
and discovering new biomarkers and drug targets (Huang et al.,
2018). ML-based methods have been applied to study PDAC for
different purposes. By applying ML algorithms to proteomics
and other molecular data from The Cancer Genome Atlas
(TCGA), two subtypes of pancreatic cancer can be classified
(Sinkala et al., 2020). A meta-analysis of PDAC microarray data
could help predict biomarkers that can be used to build AI-based
computational predictors for classifying PDAC and normal
samples (Bhasin et al., 2016), as well as predicting sample
status (Almeida et al., 2020). To predict and validate novel
drug targets for cancer, including PDAC, a ML-based classifier
that integrates a variety of genomic and systems datasets was
built to prioritize drug targets (Jeon et al., 2014).

In this study, we developed a computational framework that
integrates various types of high-throughput data, including
transcriptomics, interactomics, and structural data, for the
genome-wide identification of therapeutic targets in PDAC. A
novel centrality metric, referred to as SVM-REF and Network
topological score (RNs), was proposed for the identification of
disease genes and drug targets. This method incorporates gene
expression and network topology information from ML and PPI
analyses. Moreover, the predicted genes were validated by
“druggability” prediction, survival, and comparative network
analyses, as well as functional enrichment analysis. Finally, the
structural and dynamic properties of two integrins (ITGAV and
ITGA2) as drug targets were investigated. The workflow of these
methods is shown in Figure 1.
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MATERIALS AND METHODS

Identification of DEGs
In this study, three independent PDAC expression microarray
datasets with 184 pancreas samples (95 cancer and 89
nonmalignant samples) were used. The datasets were obtained
from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). Details of each dataset are listed in Table 1. The
GSE15471 dataset included 36 PDAC samples and matching
normal pancreas samples from pancreatic cancer patients in
Romania (Badea et al., 2008). There were also matched samples
in the GSE28735 dataset, which contains gene expression profiles
of 45 matched pairs of pancreatic tumor and adjacent non-tumor
tissues from PDCA patients in Germany (Zhang et al., 2012;
Zhang et al., 2013). The GSE71989 dataset contained expression
profiles of eight normal pancreas and 14 PDAC tissues (Jiang
et al., 2016). The normalized data were downloaded from GEO
and then analyzed to identify DEGs using t-tests, with p-values
adjusted by the Benjamini-Hochberg method. Only genes with
adjusted p-values < 0.01 and |FC| > 1.5 were chosen as DEGs.
Frontiers in Pharmacology | www.frontiersin.org 331
Gene Prioritization Pipeline
Disease genes and drug targets usually have large degree in PPI
networks, but there is no single network parameter that can
accurately predict them (Li et al., 2016). Protein targets do not
exert their function in isolation; rather they are affected by
interactions within their PPI network, which are governed by
protein localization and environment. In the same way,
topological information from PPI networks alone is not
enough to identify disease genes and drug targets without
biological information. To overcome these limitations, we
developed a new three-step pipeline to identify cancer-related
genes that may be candidate drug targets in PDAC. The pipeline
integrated information from gene expression data and local and
global topological characteristics of genes in PPI networks.

Step 1: For each gene expression dataset, we employed SVM
methods based on a Recursive Feature Elimination (SVM-RFE)
algorithm (Guyon et al., 2002), which is an embedded method to
specifically deal with gene selection for cancer classification
(Bolón-Canedo et al., 2014), rank DEGs, and select the most
relevant features (Jeon et al., 2014). SVM-RFE can remove
redundant features (genes) to generalize performance,
implement backward feature elimination, search an optimal
subset of genes, and provide a ranking for each gene. We
ranked genes by SVM-RFE score (Rs), according the following
formula:

RS =
1 + nð Þ − ri

n
,

where n is the number of DEGs and ri is the rank of gene i.
Step 2: A PPI network of DEGs was constructed with the

STRING database (von Mering et al., 2003; Szklarczyk et al.,
2017) using scores > 0.9. The topological parameters degree and
shortest path length for each gene in the PPI network were
TABLE 1 | Information on the included GEO datasets.

Accessions Platforms Samples
(tumor vs.
non-tumor
tissues)

References

GSE15471 Affymetrix Human Genome
U133 Plus 2.0 Array

36 vs. 36 (Badea et al., 2008)

GSE28735 Affymetrix Human Gene 1.0
ST Array

45 vs. 45 (Zhang et al., 2012;
Zhang et al., 2013)

GSE71989 Affymetrix Human Genome
U133 Plus 2.0 Array

14 vs. 8 (Jiang et al., 2016)
FIGURE 1 | The computational pipeline proposed in this work included three steps. Overall, a machine learning method was used to identify DEGs in PDAC, which
were then combined with two parameters of the PPI network to define a new score that predicted disease genes and drug targets in PDAC. All potential targets
were then further verified by other bioinformatics analyses and investigated by a “druggability” analysis of structural and dynamic properties.
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calculated. The degree (K) of a node in the PPI network is the
number of links attached to that node, which is one of the
measures of centrality of a node in the network. The average path
length (L) of node v in the network is the average length of the
shortest paths between v and all other nodes and was defined as:

Lv =
Sn
v≠id v,   ið Þ
n − 1

,

where d(v,i) is the length of the shortest path between nodes v
and I, and n is the node number in the network.

Step 3: Finally, we incorporated Network topological
properties into Rs and defined a new score (RNs) for each gene as:

RNs =
L*Rs

K
:

Accordingly, this new RNs score (SVM-RFE and Network
topological score) considers the cancer status of each gene by
including information about gene expression and two levels of
topological features in PPI networks, namely, degree K indicates
the importance of the node, while the shortest path length L
shows the effects from other nodes. The code for gene
prioritization is freely available on GitHub for download at:
https://github.com/CSB-SUDA/RNs.

PPI Network Analysis
Once the PPI network was constructed, two other analyses were
performed. The first analysis was the calculation of two commonly
used centrality parameters: betweenness and closeness centrality.
The betweenness centrality (BC) (Freeman, 1977) of node v was
defined as:

BCv = Si≠j,i≠v,j≠v

givj
gij

,

where givj is the number of the shortest paths from i to j that pass
through node v, and gij is the number of shortest paths from i to j.

The closeness (CC) of node v is the reciprocal of the average
shortest path length, which was calculated as:

CCv =
n − 1

Sv≠id (v, i)
:

Proteins are often incorporated into modules that can be
shared between several different cellular activities. The second
analysis was module detection of PPIs by integrating a Gaussian
network (GN) algorithm (Newman and Girvan, 2004) and
functional semantic similarity (Wang et al., 2007). In general,
this involved using the GN algorithm to detect the module of PPI
networks, and then applying functional semantic similarity to
filter links. Thus, the genes in the detected modules not only had
topological similarity, but also functional similarity.

Survival Analysis
To evaluate the prognostic value of candidate genes, a survival
analysis was performed using data from the human protein atlas
(Uhlen et al., 2017), which contains gene expression data and
clinical information of 176 pancreatic cancer patients. P-values <
0.01 were considered significantly correlated with overall survival.
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Functional Enrichment Analysis
Functional enrichment analysis, including cellular component
(CC), molecular function (MF), and BP, from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of
genes was performed using the R package cluster Profiler (Yu
et al., 2012). Terms with adjusted p-value < 0.05 were
considered significant.

Structural Modeling and
“Druggability” Analysis
The protein structures of potential drug targets were retrieved
from the Protein Data Bank (PDB) if they were available. The
Swiss model (Waterhouse et al., 2018) and I-TASSER (Roy et al.,
2010) were used for the structural modeling of genes if protein
structures were unavailable. We choose the Swiss model when
the sequence similarity between searched models was >30%;
otherwise, we used I-TASSER, which predicts protein structure
using modeling by iterative threading assembly. Based on model
structures, Fpocket (Le Guilloux et al., 2009) was used to detect
druggable pockets and calculate “druggability” scores, which
were based on several physicochemical descriptors on a
genomic scale. The pocket with the highest score in the entire
PDB was defined as the reference druggable score. The score of
each pocket was classified as: 0.0–0.5: non-druggable; 0.5–0.7:
druggable; and 0.7–1.0: highly druggable.

Molecular Docking and GNM Modeling
To study the interactions and binding mode of small molecules
with the potential drug targets, molecular docking was
performed using AutoDock 4.2 (Khodade et al., 2007). The
target, drug, and related disease information were collected
from the Drug Bank database (Version 5.0) (Wishart et al.,
2018) and the Therapeutic Target Database 2020 (Wang et al.,
2020). A normal mode analysis of the GN model (GNM) was
performed to investigate collective dynamics via the DynOmics
online tool (Danne et al., 2017). The default cutoff distance of 7.3
Å between GNM model nodes was used.
RESULTS AND DISCUSSION

Identification of Disease Genes and Drug
Targets in PDAC
From the three datasets GSE28735, GSE71989, and GSE15471,
we identified 3,079, 1,225, and 2,257 DEGs between PDAC and
adjacent tissues, respectively. The top 10 genes with the smallest
p-values are marked in Figure 2. In GSE28735, 1,724 genes
showed increased expression in PDAC tissues, while 1,355 genes
showed decreased expression (Figure 2A). In GSE71989, 766
genes were upregulated and 459 genes were downregulated in
PDAC tissues compared with normal tissues (Figure 2B). In
GSE15471, 1713 genes were overexpressed, while 544 genes
showed decreased expression in tumor tissues (Figure 2C).
Together, there were 313 common DEGs between PDAC and
adjacent tissues in all three datasets (Figure 2D).
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Additionally, we evaluated gene expression as an input feature
for ML and selected the most relevant genes for PDAC using
SVM-RFE (Almeida et al., 2020), which provided a ranking for
the genes. Then, each DEG was assigned an Rs value (see
Materials and Methods), which was used to further rank all
genes. As an illustration, the top 100 Rs values of the DEGs in
each dataset are listed in Table S1. This shows that there is little
overlap of results between the different datasets. This means that
calculating Rs based on SVM-RFE can provide information for
classification, but not enough for ranking.

The DEGs were next mapped to the STRING database, which
yielded a PPI network with 144 genes and 440 links (Figure 3).
Then, degree and shortest path length of each gene in the
network were calculated. Finally, we ranked the genes
according to our designed score RNs, which integrated these
two topological parameters and was based on gene expression
profile. The top 20 genes predicted based on at least two datasets
were considered potential drug targets. As shown in Table 2 and
Table S2, eight genes (ADAM10, TIMP1, MATN3, PKM, APLP2,
ACTN1, CALU, and VCAN) were identified in all three datasets,
and nine genes (LGALS1, ITGA2, BST2, MFGE8, ITGAV, EGF,
Frontiers in Pharmacology | www.frontiersin.org 533
APOL1, ALB, andMSLN) were identified in two of three datasets.
We propose that genes predicted by at least two datasets could
serve as disease genes and/or drug targets. Taken together, 17
genes predicted by RNs score are listed in Table 3, and most have
been previously reported to be PDAC-associated genes. There
are only four that have not been previously associated with
PDAC. This suggests that our metric RNs is useful for identifying
novel disease genes and drug targets.

It is also useful to compare our results predicted by RNs with
other common network parameters. The genes predicted by
calculating betweenness and closeness centrality are also listed
in Table S2. Among our 20 predicted potential drug targets, six
and nine were also found by betweenness and closeness
centrality, respectively. Notably, ADAM10, ACTN1, and
TIMP1 were in all three lists, which suggested they had
important roles in PDAC. Moreover, two other genes (ITGAV
and ITGA2) were in the top 20 of two datasets, which suggested
they should be investigated. Overall, compared with the top 20
genes predicted by these two common network parameters, our
RNs parameter identified more extracellular matrix (ECM)
proteins, including integrins and collagens. The other
A B

C D

FIGURE 2 | Differentially expressed genes (DEGs) between PDACs and normal tissues. (A–C) Volcano plot of −log10 (FDR) vs. log2 (fold change) of DEGs in the
three datasets. (D) Venn diagram with the number of overlapping DEGs from the different datasets.
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interesting finding was that four common genes (ALB, EGF,
ITGA2, and VCAN) were identified by isolating the nodes with
large degrees (hubs) in PPI network construction based on other
PDAC GSE datasets (Lu et al., 2018).

Survival analysis was also performed to evaluate whether the
expression of our 17 identified candidates was related to the
prognosis of PDAC. Using Kaplan-Meier analysis with the log-
rank test for 176 pancreatic cancer patients from the human
protein atlas (Uhlen et al., 2017), we found that higher expression
levels of 11 genes were significantly correlated with decreased
overall survival (p < 0.01, Figure 4). For the eight genes identified
in all three datasets, five (ADAM10, PKM, APLP2, CALU, and
VCAN) were associated with poor prognosis when highly
expressed. The other six highly expressed genes (LGALS1,
ITGA2, BST2, ITGAV, APOL1, and MSLN) associated with
Frontiers in Pharmacology | www.frontiersin.org 634
poor prognosis that were identified in two of three datasets are
shown in Table 2. Accordingly, the survival analysis showed
significant prognostic values for most of the predicted genes.

Characterization of Predicted Drug
Targets for PDAC
Table 3 shows the genes predicted above shortlisted based on our
RNs criteria. After searching the drug bank, these 17 predicted
genes were classified into two types: 11 genes were drug targets,
while six were non-drug targets. We also annotated drug targets
in the drug bank by their related drugs and diseases. It should be
noted thatMSLN was the only proven drug target for PDAC, and
there are many drugs that inhibit ALB. Thus, we concluded that
these two genes had been studied widely and would not give us
more insight regarding discovering new targets. Considering the
potential of other predicted genes as drug targets for PDAC, we
performed functional and “druggability” annotations for all.
Among the 15 genes, 11 (ADAM10, TIMP1, EGF, APLP2,
ITGAV, VCAN, ITGA2, PKM, APOL1, ACTN1, and BST2)
have been reported to be contributing factors in PDAC
invasion, growth, or metastasis, which indicated that our
pipeline had good performance for finding potential drug
targets for PDAC.

The protease ADAM10 was predicted as the highest ranked
gene, and it has been reported that ADAM10 influences the
TABLE 2 | Identified potential drug targets for PDAC.

In three
datasets

ADAM10, TIMP1, MATN3, PKM, APLP2, ACTN1, CALU, VCAN

In two of
three
datasets

LGALS1, ITGA2, BST2, MFGE8, ITGAV, EGF, APOL1, ALB, MSLN

In only one
dataset

COL5A1, CTNNA1, MX1, COL1A2, COL6A3, SPARC, IFI27,
SDC1, FN1, PLAU, PLAUR, IGFBP3, FBN1, COL1A1, COL3A1,

ITGB5, ITGA5, MX2
FIGURE 3 | Potential drug targets in the PPI network. The genes that were predicted by our pipeline are marked with red labels. The node size denotes the average
RNs of the gene in two or three datasets.
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FIGURE 4 | Kaplan-Meier survival curves of overall survival from the human protein atlas datasets for potential drug targets divided by high (red) or low (green)
expression level.
TABLE 3 | List of prioritized protein targets with their drug target information and “druggability” features.

Gene RNs Drug
targets*

Drug(s)# Disease(s)# PDB DS

ADAM10 5.34 Yes XL784 Solid tumor/cancer, Breast
cancer

6BE6 0.694

TIMP1 4.79 No NA NA 1LQN 0.839
EGF 4.77 Yes Sucralfate, Tesevatinib, Alpha-Aminobutyric Acid,

Cholecystokinin
Oral mucositis, Vulnerary template: 5GJE 0.968

MATN3 3.31 No NA NA template: 6BXJ 0.545
CALU 3.17 No NA NA template: 2Q4U 0.677
APLP2 3.12 Yes Zinc, Zinc acetate, Zinc chloride NA 5TPT 0.912
ITGAV 3.08 Yes Abituzumab,

Levothyroxine
Colorectal cancer, Solid tumour/

cancer
3IJE 0.663

VCAN 3.05 Yes Hyaluronic acid NA template: 4CSY NA
LGALS1 3.03 Yes Thiodigalactoside, 1,4-Dithiothreitol, Mercaptoethanol,

Artenimol
NA 3W59 NA

ITGA2 3.027 No NA NA Templates: 3K71, 4NEH,
3K6S

0.672

ALB 2.85 Yes Gadobenate Dimeglumine, Glycyrrhizic acid, Patent Blue,
(365 drugs)

Hemophilia, Schizophrenia 4BKE 1.000

PKM 2.82 Yes Pyruvic acid,
L-Phospholactate, 2-Phosphoglycolic Acid, et al.

Pain, Renal cell carcinoma; 6GG5 0.996

MFGE8 2.54815 No NA NA template: 4DEQ NA
APOL1 2.52 Yes Zinc, Zinc acetate, Zinc chloride NA template: 5J2L 0.503
ACTN1 2.45 Yes Copper, Human calcitonin NA template: 4D1E 0.673
BST2 2.31 No NA NA 3MQB 0.821
MSLN 2.0 Yes Amatuximab Ovarian/Pancreatic cancer 4F3F 0.727
Frontiers in
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progression and metastasis of cancer cells, as it promotes PDAC
cell migration and invasion (Gaida et al., 2010). Inhibiting
ADAM10 could be a novel approach for natural killer (NK)
cell-based immunotherapy (Pham et al., 2017). Tissue inhibitor
of metalloproteinases-1 (TIMP-1) correlated with tumor
progression, and elevated levels of TIMP-1 in tumor tissue and
peripheral blood were associated with poor clinical outcomes in
numerous malignancies, including PDAC (Prokopchuk et al.,
2018). The third gene was epidermal growth factor (EGF), which
was a common disease gene for many cancers, and EGF
mutations were associated with PDAC (Grapa et al., 2019).
Amyloid precursor-like protein 2 (APLP2) affects the actin
cytoskeleton and also increases PDAC growth and metastasis
(Pandey et al., 2015). ITGAV (Villani et al., 2019), VCAN
(Skandalis et al., 2006), and ITGA2 (Nones et al., 2014) are
matrix proteins that have been shown to contribute to pancreatic
cancer cell migration, invasion, and metastasis. PKM2 is one of
the isoforms of pyruvate kinase muscle isozyme (PKM) and
promotes the invasion and metastasis of PDAC through the
phosphorylation and stabilization of PAK2 (Cheng et al., 2018).
The final three genes, APOL1 (Liu et al., 2017), ACTN1
(Rajamani and Bhasin, 2016), and BST2 (Grutzmann et al.,
2005) have previously been reported to be effective biomarkers
for PDAC.

Although 11 genes were already known drug targets,
“druggability” annotations based on protein structures can
improve our knowledge and understanding of the mechanisms
of proteins as drug targets. The “druggability” of proteins is a
measure of their ability to bind drug-like molecules based on
Frontiers in Pharmacology | www.frontiersin.org 836
molecular shapes. For the “druggability” of all 17 genes, we first
obtained their structural modes by retrieved data from the PDB
database or homology modeling. The PDB codes of proteins or
their templates are listed in Table 3. Then, Fpocket was used to
compute all possible pockets and their corresponding
“druggability score” (DS). The “druggability” of the protein
was defined as the DS of the highest scoring pocket. As
expected, most of the predicted proteins were druggable (DS ≥
0.5), except VCAN, IGALS1, and MFGE8. ALB had the largest
DS (1.00), which can partially explain why so many ALB
inhibitors exist. Among the six non-drug targets, TIMP1,
ITGA2, and BST2 were predicted as highly druggable (DS ≥
0.5), which meant that these three genes had the structural
abilities to be drug targets. In particular, the non-drug target
ITGA2 had a larger DS than ITGAV, suggesting that a more
detailed structural comparison between these two integrin
proteins is needed.
Identification of Functional Modules
and Pathways
Within PPI networks, cancer targets interact with different
modules to perform biological functions. A module within a
network is defined a set of nodes that are densely connected
within subsets of the network but may not all directly interact
with each other. To get further insight into the topological and
biological functions of potential targets, we performed module
detection in the PPI network using a GN algorithm and
functional semantic similarity. As shown in Figure 5, we
FIGURE 5 | Four modules were discovered within PPI networks. Genes that were predicted in at least two datasets are marked red, while genes that were
predicted in only one dataset are marked blue.
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identified four modules (the pink, yellow, green, and blue nodes)
and labeled the genes that were predicted in at least two datasets
(red) or in only one dataset (blue). Except PKM and ACTN1, 15
of the 17 predicted genes were detected by the modular analysis
and are included in these four modules. The top module (pink)
was formed of 19 genes, including the most of our predicted
genes (12/17, ADAM10, CALU, ALB, APLP2, MSLN, LGALS1,
TIMP1, MATN3, VCAN, EGF, MFGE8, and APOL1). Most of
these genes have been previously reported as disease genes in
PDAC or drug targets in other cancers. Another three predicted
genes were included in two other modules, while ITGAV and
ITGA2 were detected in the second largest module (yellow).
Although there were only two predicted genes, this module
deserves more attention, as it primarily contains two types of
gene targets: integrins (ITGA5, ITGA3, ITGB5, ITGA2, and
ITGAV) and collagens (COL6A3, COL11A1, COL1A1,
COL10A1, COL5A1, COL1A2, and COL3A1). Research into
integrins and collagens and their interactions may provide
more insights into the molecular mechanisms of PDAC.

We next performed an enrichment analysis on genes in the
PPI network (Figure 6 and Table 4). The genes were enriched for
the GO terms related to extracellular structure and matrix, such
as extracellular structure and matrix organization in BP, ECM in
CC, and ECM structural constituent and binding in MF. Table 4
shows the top 10 most significantly enriched KEGG pathways.
Most of the pathways are associated with cancer, such as ECM-
Frontiers in Pharmacology | www.frontiersin.org 937
receptor interaction, focal adhesion, and proteoglycans in cancer.
Moreover, integrins were enriched in most of the carcinogenesis-
associated pathways, such as focal adhesion, which play essential
roles in important BPs, including cell motility, proliferation, and
differentiation. Interestingly, several altered molecular pathways
were identified, which suggests that genes in the secondary
module were involved in these pathways. These modules and
pathways not only contained integrins, but also another group of
collagens. In particular, two predicted integrins (ITGAV and
ITGA2) were involved in nine out of the top 10 pathways, while
the top four pathways (ECM-receptor interaction, focal
adhesion, proteoglycans in cancer, and human papillomavirus
infection) also contained collagens, especially COL1A1 and
COL1A2. Except for these pathways, the list of integrins and
collagens was used to define the traditional cancer-related PI3K/
AKT pathway. It was previously known that collagen is a major
component of the tumor microenvironment that participates in
cancer fibrosis, which can influence tumor cell behavior through
integrins (Xu et al., 2019). Our results indicated that ITGAV,
ITGA2, and their interactions with COL1A1 and COL1A2 may
play important roles in PDAC, suggesting they could serve as
potential drug targets. For example, the predicted genes and their
interactions were highlighted in the ECM-receptor interaction
pathway (Figure S1). This systems biology evidence of gene
cluster- and pathway-based distributions suggested that targeting
several key genes together could be a more promising approach.
FIGURE 6 | Top 10 enriched GO terms in biological processes, cellular components, and molecular functions.
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ITGAV and ITGA2 as Potential Drug
Targets for PDAC
By combining SVM-RFE, PPI network, and survival analysis, 11
out of 17 candidate genes have been predicted as biomarkers in
pancreatic cancer patients. Among them, two integrins of
ITGAV and ITGA2 were further screened as two potential
drug targets according to the following evidences: 1) Both
ITGAV and ITGA2 are involved in all PDAC-related pathways
include ECM-receptor interaction and focal adhesion pathways,
suggesting that ITGAV and ITGA2 may play an important role
in PDAC progression; 2) Based on the druggability criteria,
ITGAV and ITGA2 have relatively high DS. In addition,
ITGAV is already a drug target for other cancer. Due to the
structural similarity, ITGA2 can also be considered as a potential
drug target; 3) Current experimental data suggest that several
other integrins are overexpressed in various cancer types, being
Frontiers in Pharmacology | www.frontiersin.org 1038
involved in tumor progression through tumor cell invasion and
metastases. For example, the therapeutic potential of ITGA5 in
the PDAC stroma has been proved efficacy (Kuninty et al., 2019).
Collectively, our data together with some know results point
towards ITGAV and ITGA2 as two potential drug targets for
PDAC. Thus, the emerging understanding of their structural
properties will guide the development of new strategies for
anticancer therapy.

Integrins are transmembrane receptors that are central to the
biology of many human pathologies. Classically, integrins are
known for mediating cell-ECM and cell-cell interaction, and they
have been shown to have an emerging role as local activators of
TGF-b , influencing cancer, fibrosis, thrombosis, and
inflammation (Raab-Westphal et al., 2017). Integrins are
composed of a and b subunits to form a complete signaling
molecule. Their ligand binding and some regulatory sites are
extracellular and sensitive to pharmacological intervention, as
proven by the clinical success of seven drugs that target integrins
(Hamidi et al., 2016). Although peptides and small molecules are
generally designed to target integrin ab dimers, the individual
integrin a subunits may also be therapeutic targets. ITGAV
always bind with five b subunits that form receptors for
vitronectin, cytotactin, fibronectin, fibrinogen, and laminin.
ITGAV has mostly been investigated for its role in malignant
tumor cells and tumor vasculature (Xiong et al., 2001; Xiong et al.,
2009). ITGAV recognizes the Arg-Gly-Asp (RGD) sequence in a
wide array of ligands at the interface between the a and b subunits
(Xiong et al., 2002). ITGA2 forms with b1 and belongs to the
collagen receptor subfamily of integrins (Emsley et al., 2000).

The structure of ITGAV was taken from chain A of the x-ray
structure of complete integrin aVb3 (PDB code: 3IJE). It
contains a b-propeller domain of seven 60-amino-acid repeats,
and three other domains including the Thigh, Calf-1, and Calf-2
domains (Figure 7A). The PDB repository contains no crystal
structure for full-length ITGA2. The highest sequence similarity
between ITGA2 and searched models (PDB code: 5ES4) was
28%, so we employed I-TASSER to generate a composite model
of ITGA2 based on several templates. A subsequent analysis of
the structure of ITGA2 revealed similar domain structures with
ITGAV but with the addition of an I domain (Emsley et al., 1997)
and a WKp GfFkR helix tail, which may suggest more drug-
targeting possibilities for ITGA2. Based on the structures of
ITGAV and ITGA2, Fpocket was used to detect their druggable
pockets. For ITGAV, there were two highly druggable pockets,
both located within the b-propeller domain. The largest
druggable pocket was located on the outer side of the b-barrel,
consisted of Val192, Lys104, Ala189, Asp132, Val188, Ala189,
Asp167, Leu130, Gln187, Glu190, Lys135, Val137, and Gln131,
and had a DS of 0.663 (Figure 7A). The second largest druggable
pocket was located at the hole of the b-barrel, consisted of Trp93,
Leu111, Gln156, Phe159, Pro110, Ala96, Phe21, Tyr406, Tyr224,
and Phe278, and had a DS of 0.599 (Figure S2A). For ITGA2,
only one highly druggable pocket was found at the b-propeller
domain and had a DS of 0.92. This pocket consisted of His416,
Phe162, His414, Ser159, Phe156, Leu417, Ser161, Val409,
TABLE 4 | Top 10 enriched KEGG pathways (integrins and collagens are
marked in bold).

KEGG term Gene(s) Count Adjust
p-value

ECM-receptor
interaction

COL1A1, COL1A2, COL6A3, COMP,
FN1, ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2,
SDC1, SDC4

15 2.62E-11

Focal adhesion ACTB, ACTN4, ACTN1, BIRC3,
COL1A1, COL1A2, COL6A3, COMP,
EGF, FLNA, FN1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5,
LAMB3, LAMC2, PDGFRB

20 2.67E-11

Proteoglycans
in cancer

ACTB, COL1A1, COL1A2, FLNA,
FN1, ITGA2, ITGA5, ITGAV, ITGB5,
LUM, MMP9, MSN, PLAU, PLAUR,
SDC1, SDC4, EZR, WNT2, WNT5A

19 2.97E-10

Human
papillomavirus
infection

CCNA2, COL1A1, COL1A2,
COL6A3, COMP, EGF, FN1, HLA-F,
ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2, MX1,
PDGFRB, PKM, PRKCI, STAT1,
WNT2, WNT5A

23 4.12E-10

Regulation of
actin
cytoskeleton

ACTB, ACTN4, ACTN1, CFL1,
CHRM3, EGF, FN1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5, MSN,
PDGFRB, EZR, ARPC1B

17 8.45E-10

Arrhythmogenic
right ventricular
cardiomyopathy
(ARVC)

ACTB, CTNNA1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5, JUP

9 1.25E-05

PI3K-Akt
signaling
pathway

COL1A1, COL1A2, COL6A3, COMP,
EGF, EPHA2, FN1, IL2RG, ITGA2,
ITGA3, ITGA5, ITGAV, ITGB4,
ITGB5, LAMB3, LAMC2, PDGFRB

17 3.87E-05

Amoebiasis ACTN4, ACTN4, ACTN1, COL1A1,
COL1A2, COL3A1, FN1, CXCL8,
LAMB3, LAMC2

9 1.03E-04

Hypertrophic
cardiomyopathy
(HCM)

ACTB, ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, TPM4

8 3.01E-04

Small cell lung
cancer

BIRC3, CKS2, FN1, ITGA2, ITGA3,
ITGAV, LAMB3, LAMC2

8 3.01E-04
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Leu396, Lys411, Leu158, Gln157, Leu394, Ala160, Leu417,
Asp155, Asp392, Val381, Gly415, and Ser413 (Figure 7B).

Despite progress in the development of drugs that target
different integrins, there are only two clinical approved drugs in
the drug bank for ITGAV (Levothyroxine and Antithymocyte
immunoglobulin) (Table 3). Thymoglobulin is a polyclonal
antibody, while Levothyroxine is currently the only approved
small molecule that targets ITGAV. The small ligand
Levothyroxine was docked to the two druggable pockets in
ITGAV to study the stability of the complex and protein-drug
interactions. When docked to the largest druggable pocket,
Levothyroxine formed hydrogen bonds with Asp167, Thr134,
Lys135, and Val192, and a hydrophobic interaction with Ala189,
and the binding free energy was −8.3 kcal/mol (Figure 7C). For
the other pocket, hydrogen bonds were formed between
Levothyroxine and Phe21, Trp93, Ala96, and Pro110 with the
binding free energy of −10.08 kcal/mol (Figure S2B). We further
docked Levothyroxine to ITGA2 at its druggable pocket. The
binding free energy of −9.09 kcal/mol suggested a good
interaction between ITGA2 and Levothyroxine, with the
potential binding sites at Phe162, Lys411, Asp392, and Leu158
(Figure 7D).
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To determine residues that play a key role in the global
dynamics of ITGAV and ITGA2, we performed a GNM analysis.
GNM analysis provides information on the mechanisms of
collective movements intrinsically accessible to the structure,
which usually enable structural changes relevant to function
(Bahar et al., 2010). The most discriminative feature in
dynamic analysis is hinge prediction, which are expected to be
sites for drug development (Sumbul et al., 2015). We predicted
hinges sites by the minima of corresponding GNM slow modes.
By applying GNM to ITGAV (Figure 7E), GNM mode 1
highlights the hinge region located in the Thigh domain,
especially at Asn455, Ser471, Arg553, and Gly594, which are
located at the interface between the Thigh and Calf-1 domains.
We also note that the b-propeller domain became the major
hinge region in GNM mode 2, while Ile286, Asn287, Asp352,
Phe377, Ser389, Thr413, Asp414, Pro421, and Tyr436 have
minimal fluctuations. Hinge sites located at the b-propeller
domain in GNM mode 2 may correspond to pocket sites, as
the first and second largest druggable pockets were within the b-
propeller domain. For ITGA2 (Figure 7F), both GNM modes 1
and 2 highlighted the same hinge regions within the b-propeller
domain and the Thigh domain, with critical positioning of
A

B

C

D

E

F

FIGURE 7 | Structures and dynamics of ITGAV and ITGA2. (A) The structure of ITGAV including the b-propeller, Thigh, Calf-1, and Calf-2 domains, and the most
druggable pocket (purple), which is located along the outer side of the b-barrel. (B) The binding poses by docking Levothyroxine into the most druggable pocket of
ITGAV. Levothyroxine and interacting residues are represented as colored sticks. (C) The structure of ITGA2 including the I-, b-propeller, Thigh, Calf-1, and Calf-2
domains, and the most druggable pocket (purple), which is located at the hole of the b-barrel; the binding pose with Levothyroxine and this pocket is shown in (D).
(E) The shapes of first and second GNM modes of ITGAV. The minimum of the shapes indicate the hinge region, which corresponds to the structure in dark blue.
Mode 1 predicts Asn455, Ser471, Arg553, and Gly594 within the Thigh domain are hinge sites (red arrows). (F) The shape of the first GNM mode of ITGA2, where
the region of Phe681 to Ser737 within the Thigh domain was predicted to contain hinge sites (red circle).
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Phe681 to Ser737. Accordingly, our GNM modeling suggested
that both the b-propeller domain and the Thigh domain play
important roles in modulating the collective movements of
ITGAV and ITGA2. The b-propeller domain has been
indicated to be a druggable domain by pocket detection. Here,
some hinge sites located within the Thigh domain offer other
reasonable starting points for inhibitor design.
CONCLUSIONS

In this study, we developed a computational framework that
integrated ML (SVM-RFE), biomolecular networks (PPI network
analysis), and structural modeling analysis (homology modeling,
molecular docking, and GNM modeling) to help future drug
targets for PDAC. The core of the new method was that we
defined a new score, termed RNs, based on cancer-related
information from gene expression data and topological
information obtained from PPI network analysis. Research
using three GEO datasets (GSE28735, GSE71989, and
GSE15471) yielded 17 genes (ADAM10, TIMP1, MATN3,
PKM, APLP2, ACTN1, CALU, VCAN, LGALS1, ITGA2, BST2,
MFGE8, ITGAV, EGF, APOL1, ALB, and MSLN) that were
predicted to be potential drug targets. The survival and
“druggability” analysis of these genes showed that most of the
identified genes had poor survival associations and good DS
values, further providing evidence that they can be used as
therapeutic targets in PDAC. The important roles of integrins
as well as their interactions with collagens were highlighted by
combining network modules and KEGG pathway analysis, in
term of four pathways, ECM-receptor interaction, focal adhesion,
proteoglycans in cancer, and human papillomavirus infection
pathways. By focusing on ITGAV and ITGA2, we identified
druggable pockets, drug binding sites, and hinge sites that are
potential sites for designing small molecules. In summary, this
new methodology will provide new avenues for discovering drug
targets in PDAC and other cancers.

Of course, our method in this work has some limitations.
Firstly, our method only used SVM-REF to the gene expression
data to rank the DEGs. With the growth of other omics data, we
need to apply our method by including more kinds of data, such as
RNA-Seq data for PDAC (Raphael et al., 2017), which will make
Frontiers in Pharmacology | www.frontiersin.org 1240
our method more practical. Secondly, our method just combined
the systems level analysis of PPI construction and analysis and the
molecular level analysis of “druggability” prediction, and thus, the
drug target prediction needs some structural research experience
to some extent. To address this, the real integration of structure
knowledge into PPI networks is still needed.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.
AUTHOR CONTRIBUTIONS

WY, XYL, and GH analyzed the data and wrote the manuscript.
XYL and WY conducted the SVM calculation and network
analysis. FW assisted in network analysis. FX and SH
conducted the structural modeling and docking. XL assisted in
molecular docking. WY, FX, and GH conceived and designed all
experiments, and interpreted all results. GH revised the
manuscript. All authors contributed to the work.
FUNDING

This study was supported by the National Natural Science
Foundation of China (31872723), the Project of State Key
Laboratory of Radiation Medicine and Protection, Soochow
University (No. GZK1201902), and a project funded by the
Priority Academic Program Development (PAPD) of Jiangsu
Higher Education Institutions
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2020.
00534/full#supplementary-material
REFERENCES

Al Haddad, A. H., and Adrian, T. E. (2014). Challenges and future directions in
therapeutics for pancreatic ductal adenocarcinoma. Expert Opin. Invest. Drugs
23 (11), 1499–1515. doi: 10.1517/13543784.2014.933206

Almeida, P. P., Cardoso, C. P., and de Freitas, L. M. (2020). PDAC-ANN: an
artificial neural network to predict pancreatic ductal adenocarcinoma based on
gene expression. BMC Cancer 20 (1), 82. doi: 10.1186/s12885-020-6533-0

Badea, L., Herlea, V., Dima, S. O., Dumitrascu, T., and Popescu, I. (2008).
Combined gene expression analysis of whole-tissue and microdissected
pancreatic ductal adenocarcinoma identifies genes specifically overexpressed
in tumor epithelia. Hepatogastroenterology 55 (88), 2016–2027.

Bahar, I., Lezon, T. R., Yang, L. W., and Eyal, E. (2010). Global dynamics of
proteins: bridging between structure and function. Annu. Rev. Biophys. 39, 23–
42. doi: 10.1146/annurev.biophys.093008.131258
Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., et al.
(2016). Genomic analyses identify molecular subtypes of pancreatic cancer.
Nature 531 (7592), 47–52. doi: 10.1038/nature16965

Bhasin, M. K., Ndebele, K., Bucur, O., Yee, E. U., Otu, H. H., Plati, J., et al. (2016).
Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic
adenocarcinoma classifier. Oncotarget 7 (17), 23263–23281. doi: 10.18632/
oncotarget.8139
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Renal cell carcinoma (RCC) is the most common type of kidney cancer. Increasingly

evidences indicate that extracellular vesicles (EVs) orchestrate multiple processes in

tumorigenesis, metastasis, immune evasion, and drug response of RCC. EVs are lipid

membrane-bound vesicles in nanometer size and secreted by almost all cell types into

the extracellular milieu. A myriad of bioactive molecules such as RNA, DNA, protein,

and lipid are able to be delivered via EVs for the intercellular communication. Hence,

the abundant content of EVs is appealing reservoir for biomarker identification through

computational analysis and experimental validation. EVs with excellent biocompatibility

and biodistribution are natural platforms that can be engineered to offer achievable drug

delivery strategies for RCC therapies. Moreover, the multifaceted roles of EVs in RCC

progression also provide substantial targets and facilitate EVs-based drug discovery,

which will be accelerated by using artificial intelligence approaches. In this review,

we summarized the vital roles of EVs in occurrence, metastasis, immune evasion,

and drug resistance of RCC. Furthermore, we also recapitulated and prospected the

EVs-based potential applications in RCC, including biomarker identification, drug vehicle

development as well as drug target discovery.

Keywords: renal cell carcinoma, extracellular vesicles, exosomes, biomarkers, drug targets, drug vehicles,

artificial intelligence, machine learning

INTRODUCTION

Renal cell carcinoma, or RCC for short, is one of the most common type of urological cancers
that represents ∼90% of all kidney malignancies (1). According to updated data provided by the
World Health Organization, over 400,000 people were diagnosed with kidney cancer worldwide
in 2018, accounting for nearly 3% of all cancers (2). It has been estimated that there will be about
74,000 new cases and 15,000 deaths associated with kidney cancer in the United States in 2020
(3). The 5-year survival rate among RCC patients increased for decades due to the improvement
of early-detection techniques and targeted-therapies. The current overall 5-year survival rate of
RCC is 75%, decreasing to 70% among patients with regional metastases and 12% among patients
with distant metastases (4). Still around one-third of patients diagnosed with RCC had metastases
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(5). The most common metastatic sites of RCC are lungs, bone,
brain, lymph node, and livermight also be involved (6). Surgery is
the mainstay curative treatment for localized RCC (7). However,
around 40% RCC patients will suffer tumor recurrence after
curative surgical resection (8). For patients who present with
metastatic RCC or relapses after local therapy, typically require
systemic treatment. The current landscape of systemic therapies
are consist of small molecule kinase inhibitors, cytokines, and
monoclonal antibodies, including checkpoint inhibitors, which
have been tested as first-line or second-line therapies (9).

Extracellular vesicles (EVs) are nanometer sized vesicles
composed of a lipid bilayer membrane packaging a wealth of
bioactive molecules such as RNA, DNA, protein, and lipid.
Currently, EVs can be broadly divided into two main types based
on the mechanism of biogenesis: one is exosomes which originate
from the endosomal system and another one is microvesicles
that directly shed from the plasma membrane (10). As Thery
et al. mentioned in a review, both exosomes and microvesicles
may be co-isolated due to the overlapping characteristics
between these two forms of EVs and the limitations of current
isolation methods. Therefore, the term exosomes is generally
used in literatures to designate a mixed population of EVs
without adequate characterization of the intracellular origin (11).
Hereafter, we chose to use the generic term “EVs” in this review
independent of the term used in the original articles.

With the nanoscale size and double-layered lipid membrane
appropriately protecting the cargoes from degradation, EVs
stably exist in blood, urine, saliva, and many other kinds of
biological fluids. Accumulating evidences indicate that EVs traffic
between donor and recipient cells are fundamental phenomenon
of the intercellular information exchange, especially in tumor
microenvironment (TME). EVs within TME are emerging as
crucial contributor to carcinogenesis, angiogenesis, premetastatic
niche (PMN) formation, dysfunction of immune system and
the dissemination of anti-cancer drugs resistance, adding
novel dimension to the complexity of TME (12). Thus, the
contents of tumor-derived EVs may be applied as abundant
sources to biomarker discovery identified by experimental and
computational methods. In addition, EVs with naturally excellent
biocompatibility and biodistribution are ideal materials to be
exploited or engineered which may offer us achievable drug
delivery strategies for cancer therapies (13). Furthermore, it is
increasingly clear that mechanisms of EVs biogenesis, secretion
and uptake could also provide promising targets for cancer
therapy (14).

The past decades have witnessed unprecedented research
progresses of EVs, especially for the roles of EVs in different
malignant tumors. Nevertheless, to the best of our knowledge,
few researchers paid close attention to the roles of EVs in
urological malignancies, especially for RCC (15–22). There is
still no comprehensive summary highlighting the EVs-based
potential applications in RCC either. Hence, this review serves
to introduce the latest research progresses in the burgeoning
field of EVs, recapitulate the multifaceted functions of EVs in
RCC progression. Accordingly, we will also give a perspective
of the potential applications of EVs in RCC identified by both
experimental and computational methods.

BIOLOGICAL FEATURES OF EVS AND
RESEARCH TECHNIQUES

Biogenesis, Secretion and Uptake of EVs
The biogenesis of two EVs subtypes are different as shown in
Figure 1. Diameter of microvesicles range from 50 to 1,000 nm
but can up to 10µm in the case of oncosomes, which refers
to cancer cells-derived microvesicles that contain oncogenic
molecules (10, 23). Microvesicles are generated through the
direct budding and fission of the cytoplasmic membrane
then released into the extracellular space (24). Exosomes
originate from multivesicular bodies (MVBs) within endosomal
system, ranging from 30 to 150 nm. The endosomal membrane
invaginate intraluminal vesicles (ILVs) in the lumen during the
mature process of early endosomes into late endosomes orMVBs.
The endosomal sorting complex required for transport (ESCRT)
machinery plays critical role in this process (10, 25). Moreover,
members of the Rab GTPases family, including Rab27a/b, Rab11,
and Rab35, are essential coordinators for MVBs trafficking
and exosomes secretion (26, 27). The last step of secretion
requires the fusion of MVBs with plasma membrane. This
process primarily is mediated by soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNAREs) and
synaptotagmin family members to release ILVs as exosomes (28).
Several studies have also found that Ca2+ may be involved in the
activation of SNAREs (29, 30).

Once secreted into the extracellular milieu and absorbed by
recipient cells, EVs cargoes can be transmitted to recipient cells
to induce functional responses and confer new properties then
result in phenotypic changes (10). This EVs-mediated interaction
requires docking at the plasma membrane of recipient cells via
several mediators such as clathrin, tetraspanins, and integrins to
activate surface receptors and signaling pathways, being followed
by vesicle endocytosis or membrane fusion of recipient cells
(10, 31–33). The secretion processes of EVs are evolutionarily
conserved among eukaryotes, bacteria, and archaea, which lay
the foundation for interspecies transfer of genetic molecules via
EVs (34). However, the whole process of exosomes biogenesis and
secretion may be influenced by the heterogeneity of donor and
recipient cells, different physiological or pathological conditions,
making the detailed mechanisms remains elusive (35, 36).

EVs Composition
Diverse bioactive molecules such as RNA, DNA, proteins, and
lipids can be packaged into EVs and secreted out of cell
membrane at both local regional and systemic levels (37). A
“routine passenger” of EVs is RNA. Both mRNA and microRNA
(miRNA) could be loaded and transported through EVs then
functioned in recipient cells (38–40). Besides, numerous long
non-coding RNA (lncRNA) could also be transferred via EVs,
inducing signals and phenotypes changes in a variety of cells
in TME (41, 42). Furthermore, more than 1,000 circular RNA
(circRNA) were identified in EVs derived from human serum.
Interestingly, several circRNAs were highly enriched in EVs
compared to the donor cells, which may provide more achievable
applications in biomarker discovery (43, 44). Other RNA species
were also detected in EVs by RNA deep sequencing analysis,
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FIGURE 1 | Schematic diagram of the biological features of EVs. (A) Biogenesis, secretion and uptake of EVs. During the process of early endosome mature into

MVBs, the endosomal membrane invaginate ILVs in the lumen of donor cells, which mediated by the ESCRT machinery. MVB fuse with cell surface and release ILVs

as exosomes or degrade in lysosomes. Protein members of Rab GTPases, SNAREs, and synaptotagmin family play vital roles in MVBs trafficking and exosomes

secretion. Microvesicles originate from the plasma membrane of donor cells directly. There are three ways to uptake EVs and induce biological functions in recipient

cells: fusion with membrane of recipient cells directly, internalization by endocytosis, or activation of ligand-receptor signaling. (B) Representative structure and

composition of EVs. EVs are nanometer sized vesicles composed of a lipid bilayer membrane. Size of exosomes range from 30 to 150 nm, Diameter of microvesicles

range from 50 to 1,000 nm but can up to 10µm in the case of oncosomes. EVs package various bioactive molecules such as RNA, DNA, proteins, and lipids.

Transmembrane including integrins and tetraspanins are also contained in EVs.

including transfer RNA, ribosomal RNA and piwi-interacting
RNA (44, 45).

The presence of DNA within EVs also provide novel insights
into the cellular homeostasis and open another intriguing mode
of intracellular communication (46). It has been reported that
EVs secretion removed various length of chromosomal DNA
fragments which were harmful to normal human cells (47).
Moreover, studies demonstrated that retrotransposon elements,
oncogene amplifications, and other functional DNA fragments
that reflected the genetic status of the parent tumor cells were
found in EVs (48, 49). Notably, these transposable elements could
be encapsulated and transferred from tumor cells to normal

cells (50). Thereby it can be inferred that tumor-derived EVs
may function as novel mediators of horizontal gene transfer and
make contribution to tumor evolution in local or systematical
level (51).

As a consequence of the biogenesis, EVs derived from
different cell types contain substantial cytosolic proteins, such
as Rab GTPase, SNAREs, and Annexins (52). Tetraspanins is
a highly conserved family of transmembrane proteins which
have been found in EVs from diverse cell types. It is believed
that tetraspanins interact or coordinate with other proteins and
involve in membrane compartmentalization (53). Members of
this family, including CD9, CD63, and CD81, consist part of
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the most abundant proteins in EVs, thus commonly be used
as protein markers for EVs characterization (54). In addition,
increasing evidences have demonstrated the presence of several
transporters and enzymes in EVs with full activity (55–57). Thus,
it can be inferred that the change of EVs components can be
connected with the in vivo fate of drugs.

EVs Isolation and Characterization
Since research field of EVs has achieved high-speed development
in the past few decades, many techniques have been used to
isolate and characterize EVs. At present, the frequently used
techniques for EVs isolation can be summarized into five broad
categories: differential ultracentrifugation (UC), polymer-based
precipitation, particle size-based techniques, immunological
capture, and microfluidic techniques (58). As one of the most
traditionally and widely used method, differential UC is suitable
for most sources of EVs, even though it is laborious, time-
consuming, and inaccessible. Several commercial isolation kits
are developed based on above theories and techniques to
isolate EVs more efficiently and precisely. However, according
to results of a recent benchmark study, a large quantity of
non-vesicular contaminants may be co-isolated by these kits.
While the purity of EVs isolated by differential UC was much
higher than commercial kits (59). More recently, microfluidic-
based platforms have generated heightened interest. Based on
specific capture of the surface marker or the specific size and
density of EVs subsets, microfluidic-based platform can provide
advantages such as low consumption, ready portability, with
high throughput, and high precision (60). Since there is still
no consensus on a “gold standard” method for EVs isolation
and purification, comparison study is still needed to analyze the
parameters of EVs isolated by different methods. According to a
global survey in 2015 conducted by the International Society for
Extracellular Vesicles (ISEV), around 81% of respondents chose
differential UC as their primary isolation method, around 59% of
respondents used a combination methods of differential UC with
other techniques (61). In terms of EVs characterization, multiple
techniques based on biophysics and molecular biology have been
developed and applied. Three of the most common methods
are western blotting for identification of specific protein marker,
electron microscopy for detection of structural information and
nanoparticle tracking analysis for quantification of EVs size and
concentration, respectively. Generally speaking, two or more
complementary methods are necessary to assess the results of
separation methods as ISEV recommended (62).

ROLES OF EVS IN RCC

EVs is employed by tumor cells to deliver bioactive molecules
directing to not only tumor cells but also tumor-associated
cells including fibroblasts, endothelial cells, immune cells, and
cancer stem cells (CSCs) (63, 64). Reciprocally, EVs derived from
non-tumor cells also have influence on tumor progression in
TME. Therefore, these multidirectional communications via EVs
make TME becoming a more complex network, which draw
accumulating attention of researchers in recent years. Herein we
reviewed the latest studies about roles of EVs in carcinogenesis,

cancer metastasis, immune evasion, and drug resistance of RCC
(Figure 2).

Tumorigenesis
EVs secreted by different cells in TME may make contributions
to RCC progression and development. Jiang et al. revealed
that EVs secreted by RCC cell line OS-RC-2 could inhibit
hepaCAM expression, a tumor suppressor frequently lost in
various types of human cancers, and promote cell proliferation
in a p-AKT-dependent pathway (65). By use of cell culture and
nude mice xenograft model, Du et al. claimed that EVs released
by human Wharton’s jelly mesenchymal stem cells induced HGF
expression, activated AKT and ERK1/2 signaling pathways, then
promoted the proliferation and aggressiveness of RCC cells both
in vitro and in vivo (66). By using next-generation sequencing,
Song et al. found the levels of EVs-contained miR-30c-5p in
RCC cell lines 786-O and ACHN were significant lower than that
in human renal proximal tubular cell line HK-2. Consistently,
the expression pattern of miR-30c-5p was significant different
in urinary EVs from healthy controls and patients of clear cell
RCC (ccRCC), which is the predominant RCC type. Heat-shock
protein 5 was identified as a direct target of miR-30c-5p. Gain-
of-function study showed that overexpression of miR-30c-5p
inhibited ccRCC progression both in vitro and in vivo (67).
Considered together, these data suggest that EVs may transfer
various cargoes between heterogeneous cells within TME, initiate
the critical regulation of the tumorigenesis to support the growth
of RCC cells.

Hypoxia is one of the distinguishing features of TME in
many solid tumors including RCC. Carbonic anhydrase IX
(CAIX), a cellular hypoxia biomarker that overexpress in RCC
with von Hippel-Lindau (VHL) gene mutation, is involved in
proliferation and transformation of RCC cells (68). It has been
revealed that abundant CAIX proteins were detected in EVs
released from RCC cell lines. Result of in vitro angiogenesis
assays demonstrated that hypoxic RCC cells could release EVs
containing CAIX and promote the migration and tube formation
abilities of human umbilical vein endothelial cells (69). Several
researchers have also provided direct evidences that hypoxia not
only regulated the tumorigenic potential of epithelial cells, but
also contributed to EVs production of tumor cells in response
to low pH and oxidative stress (70, 71). Wang et al. reported that
acute hypoxia condition induced by CoCl2 treatment upregulated
miR-210 expression in EVs which derived from both normal
renal cells and RCC cells, especially for metastatic RCC cell
line (72). Interestingly, EVs secreted by hypoxic cells are more
easily absorbed by hypoxic cells (73). Hitherto, there is limited
knowledge about the mechanism of how hypoxia orchestrate
the biogenesis and secretion of EVs. Nevertheless, it can be
concluded that hypoxia-induced EVs derived from stromal and
tumor cells are crucial mediator in the process of tumorigenesis
and TME rebuilding.

Tumor Metastasis
Recent years, numerous investigations have revealed the
significant influence of EVs on both regional and distant
metastatic processes, including coagulation, vascular leakiness,

Frontiers in Oncology | www.frontiersin.org 4 May 2020 | Volume 10 | Article 72446

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qin et al. Extracellular Vesicles in RCC

FIGURE 2 | Schematic diagram of the biological features of EVs. (A) Circulating EVs in blood contain potential biomarkers of RCC. (B) Circulating EVs in urine contain

potential biomarkers of RCC. (C) RCC-derived EVs and mesenchymal stem cells-derived EVs promoted the tumorigenesis of RCC cells. (D,E) Migration ability of RCC

cells and angiogenesis of human umbilical vein endothelial cells and could be improved by hypoxic RCC cells released EVs containing CAIX, CD103-positive or

CD105-positive RCC CSCs-derived EVs. (F) RCC cells-derived EVs and RCC CSCs-derived EVs facilitated the immunosuppression of immune cells. (G) Sunitinib

treatment induced RCC cells secreted EVs delivering lncARSR to increase the drug resistance of RCC cells.

reprogram of stromal recipient cells, and formation of PMN
(74). However, the roles of EVs in RCC metastasis are still
need to be unraveled. It has been shown that MMP-9 and
CXCR-4 are closely associate with tumor metastasis and highly
express in different cancer types. Chen et al. revealed that
expression levels of these two proteins were upregulated after
co-cultured RCC cell line 786-O with EVs shed from itself,
which resulted in the improvements of the migration and
invasion abilities and suppression of the adhesion ability (75).
Camussi’s team identified a subset of tumor-initiating cells
expressing mesenchymal stem cell marker CD105 from human
RCC specimens in a previous work. They found that EVs
released by renal CD105+ CSCs could trigger angiogenesis both
in vitro and in vivo, and enhanced the lung metastases induced
by injection of renal tumor cells intravenously. Furthermore,
mRNAs and miRNAs implicating in tumor progression and
metastasis were identified through molecular characterization of
EVs (76). Subsequently, Camussi et al. reported that renal CSCs-
derived EVs could stimulate persistent phenotypical changes in
mesenchymal stem cells in vitro and support the tumor growth

and vascularization when co-injected with RCC cells in vivo (77).
Their conclusions unveiled that EVs shed from a subtype of renal
CSCs may play critical roles in the TME modification, PMN
formation, and metastasis of RCC in lung, which is one of the
most common site of RCC metastasis.

Recently, Wang et al. demonstrated that CD103+ CSCs,
another subtype of renal CSCs, could release EVs enwrapping
miR-19b-3p and deliver to RCC cells to initiate epithelial-
mesenchymal transition (EMT) via suppressing the expression
of PTEN. Quantitative detection of expression changes of EMT
markers such as N-cadherin, Vimentin and Twist showed that
CD103+ CSCs EVs derived from RCC patients with lung
metastasis presented significant effects on EMT. Notably, results
of flow cytometry quantification also showed that the ratio of
CD103+ EVs over total EVs was higher in blood samples of
RCC patients with lung metastasis than non-metastasis patients
(78). Therefore, it can be inferred that EVs-contained CD103
may be involved in the organotropism of RCC. Additionally,
previous work suggested that tetraspanins and integrins were
also associated with metastasis organotropism (79, 80). Typically,
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integrins α6 and αv were closely relevant to lung and liver
metastases, respectively (33). Since lung and liver are common
sites for RCC metastasis, we can believe that integrins α6 and
αv may present in RCC-derived EVs and address these EVs
to specific organs. Hence these endogenous surface molecules
of EVs provide us crucial clues to understand the complex
mechanism of tumor metastasis. It will be promising to develop
indicators of metastatic prognosis and selective target-binding
therapeutics for RCC treatment through unraveling the functions
these transmembrane proteins.

Immune Evasion
In the past decade, the deep comprehension of communication
between the immune cells and malignant tumor cells in TME
has become a popular research field. Emerging investigations
advocated that EVs are active players in this scenario (81).
However, this interaction can be hijacked by tumor cells to
facilitate immune evasion and stick many anti-cancer therapeutic
strategies. Studies showed that the activation of T cells and the
differentiation processes of monocytes to dendritic cells (DC
cells) were both impaired by EVs derived from renal CD105+

CSCs (82). This immune inhibitory effect was mediated by HLA-
G, an antigen highly overexpressing in RCC and facilitating to
immunosuppression (83). HLA-G blockade markedly relieved
the inhibitory effect of EVs on DC cells differentiation. It has
also been verified that EVs purified from RCC cell line ACHN
contained Fas ligand and contributed to apoptosis of Jurkat T
lymphocyte and immune evasion of RCC cells. These effects
could be rescued by soluble Fas treatment (84). Natural killer
(NK) cells are crucial player in the innate immune system,
possessing strong abilities to control and kill tumor cells. Xia
et al. found that EVs derived from primary RCC cells contained
TGF-β, a major immunosuppressive cytokine. Co-culturing these
EVs with NK cells exacerbated the dysfunctions of NK cells
in a TGF-β/SMAD-dependent manner (85). Furthermore, Diao
et al. elucidated that Hsp70 protein was more enriched in
EVs than that in whole-cell lysates of Renca cells which is a
cancer cell line of murine kidney. EVs-contained Hsp70 triggered
the phosphorylation of Stat3 through regulating TLR2-MyD88
pathway and impeding the activity of the myeloid-derived
suppressor cells (86). Considered together, these conclusions
suggest that RCC cells may secrete EVs to interfere the immune
system and support evasion of innate immune surveillance.
Potential drug targets or biomarkers of the immunotherapy can
be developed by clarifying the detailedmechanism of intercellular
communication between cancer cells and immune cells.

Immunotherapy is one of the most promising therapeutic
approach in multiple cancer types including RCC. Immune
checkpoint protein inhibitors, especially antibodies against
programmed cell death-1 (PD-1) and its ligand programmed
death-ligand 1 (PD-L1), have elicited anti-cancer effects and
long-lasting alleviation in melanoma, lymphoma, bladder cancer,
non-small-cell lung cancer, RCC, and many other malignancies
(87). However, only limited subset of patients exhibited durable
response to immunotherapies. The total respond rate of anti-
PD-1/PD-L1 therapy is merely around 10–30% (88). Previous
studies have identified EVs-contained PD-L1 in diverse sources,

including plasma of head and neck cancer glioblastoma, and
melanoma patients as well as culture medium of breast cancer
cell lines (89–94). A recent work demonstrated that EVs could
support tumor growth by carrying PD-L1 and suppressing T
cell activation in draining lymph nodes. Genetic blockade of
EVs-contained PD-L1 induced long-term and systemic anti-
tumor effects (95). Most recently, several novel methods were
developed to quantitate the PD-L1 level in EVs. These newly
approaches were higher in sensitivity, time-saving, and easily
operated compared with ELISA-based canonical methods (96,
97). However, to the best of our knowledge, yet still no research
focus on the PD-L1 in RCC-derived EVs. Above findings
enlighten us that inhibition of EVs-contained PD-L1 may be
an alternative therapy for RCC treatment, especially for RCC
patients that are resistant to anti-PD-L1 antibodies. Meanwhile,
EVs-carried molecules represented by PD-L1 may serve as
reliable biomarkers for immunotherapies.

Drug Resistance
Accumulating evidences corroborate that EVs make non-
negligible contributions to the resistance of anti-cancer drugs.
The horizontally intercellular transmit of drug resistance are
mediated by EVs cargoes including drug-efflux transporters,
miRNAs, lncRNAs (98). Corcoran et al. established and
characterized docetaxel-resistant variants of two prostate
cancer cell lines by a serial assays including cross-resistance,
morphology, multi-category phenotypes, and EVs secretion.
They revealed that EVs released from docetaxel-resistant
prostate cancer cells subverted sensitive cells to docetaxel-
resistant phenotype through the involvement of EVs delivering
multidrug resistance protein 1. Consistent results were presented
when co-cultured docetaxel-sensitive prostate cancer cells with
serum-derived EVs from prostate cancer patients before and
after commencing docetaxel treatment (99). As a vital organ for
the elimination and reabsorption of therapeutic drugs, kidney
contain various drug transporters in proximal tubules. Thereby
the variability of renal drug transporters will impact the processes
of drug disposition (100). However, there is still no study focus
on the drug resistance in RCC mediated by EVs-contained
drug transporters.

Since several receptor tyrosine kinases relevant to
angiogenesis and homeostasis of TME are overexpressed
predominantly due to inactivation of VHL gene in ccRCC,
inhibitors targeted receptor tyrosine kinases such as sunitinib
have become the one of first-line therapies for RCC treatment
(101). However, the clinical benefit of sunitinib treatment in
ccRCC patients is limited due to inherent or acquired resistance.
As such, the biological basis for resistance to sunitinib therapy
and the clinical approach in this setting is of heightened interest
of investigators (102). Qu et al. obtained sunitinib-resistant
RCC cells through cycles of sunitinib treatment to nude mice
with serial xenografts. Then lncRNA required for sunitinib
resistance in RCC was identified by three rounds of screening
sequentially. Firstly, lncRNA expression profiles between
parental and sunitinib-resistant RCC cells was compared by
lncRNA microarray. Then they established patient-derived
xenograft models of RCC and mimic sunitinib therapy. Eight
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lncRNA candidates were consequently selected to loss-of-
function analysis by RNAi in sunitinib-resistant RCC cells.
LncARSR was eventually identified as a highly abundant lncRNA
in sunitinib-resistant ccRCC cells, which could favor sunitinib
resistance via competitively binding both miR-34 and miR-449
to improve AXL and c-MET expression. More interestingly,
lncARSR could be secreted and delivered via EVs to transform
the phenotype of recipient cells from sunitinib-sensitive to
sunitinib-resistant and lead to the dissemination of sunitinib
resistance (103). Overall, it is valuable to clarify the various
mechanisms of anti-cancer drugs resistance mediated by EVs,
which may further help us to identify desirable biomarkers that
can be used in drug response and identify novel targets to restore
therapeutic approaches.

CLINICAL IMPLICATIONS OF EVS IN RCC

Recent years, many reviews have summarized the clinical
implications of EVs in a variety of cancer types. Since the
composition of the original cells can be reflected in the cargoes
of EVs in a real-time mode, the initial interest of clinical
implications is to find vital biomarkers from this favorable
reservoir. EVs are natural nanoscale vesicles as ideal engineering
platform owing to their unique advantages such as low toxicity
and long-term stability in biofluids (104). EVs-based drug target
discovery is also draw considerable attention of researchers due
to recent findings. Moreover, RCC is still a malignant tumor
with unpredictable progression, limited effective therapies and
poor clinical prognosis. The progresses of clinical application
of EVs in RCC is also relatively lag behind than that in other
cancer types. Accordingly, the demonstrated and conceivable
clinical implications of EVs in RCC will be discussed here from
following aspects.

EVs-Derived Biomarkers for RCC
Owing to the encapsulation by vesicle membrane, the bioactive
molecules within EVs are free from degradation by exogenous
nucleases or proteases and stable in biological fluids (15).
These abundant content which may be reliable biomarkers
for prediction of RCC progression have been extensively
investigated. Previously, Zhao et al. reported that the expression
level of miR-210 was differentially higher in primary RCC tissues
of 32 patients than non-tumor renal parenchymas. Results of
receiver operating characteristic (ROC) analysis also showed that
ccRCC patients and healthy individuals could be discriminated
by the average level of cell-free miR-210 in serum (105). They
assessed expression levels of three miRNAs (miR-210, miR-1233,
and miR-15a) in serum-derived EVs in a follow-up work. Results
of ROC analysis showed that it was feasible to use miR-210
and miR-1233 but not miR-15a as diagnostic biomarkers (106).
Consistently, a recent study confirmed the expression level of
miR-210 in serum-derived EVs was significantly higher in RCC
patients than healthy controls (72). Similarly, expression level
of miR-224 was also overexpressed in cancer tissues of ccRCC
patients (107, 108). The level of serum EVs-contained miR-224
was significantly correlated with progression-free survival (PFS)
or overall survival (OS) of ccRCC patients (109). Moreover, a

study evaluated the possibility of miRNAs from plasma-derived
EVs for RCC prognosis by RNA sequencing. Results of Kaplan-
Meier analysis confirmed the correlations of three miRNAs with
OS of RCC patients, including miR-let-7i-5p, miR-26a-1-3p, and
miR-615-3p (110).

Urine as a dynamic biofluid is also a promising source for
RCC biomarker development rather than a waste product of
body. Urinary EVs can be released from every renal epithelial cell
type facing the urinary tract. Therefore, the cargoes of urinary
EVs may be accessibly real-time signals for renal dysfunction.
However, only few researchers attempted to find bioactive
molecules from urinary EVs and these snapshots need to be
further characterized (18). Study reported that combinations
of urinary EVs-derived miRNAs (miR-449a, miR-34b-5p, or
miR-486-5p with miR-126-3p) had the power to distinguish
healthy controls, patients with benign renal tumors, and patients
with early-stage or advanced ccRCC (111). It has also claimed
that the level of miR-30c-5p within the urinary EVs was
significantly decreased in ccRCC patients but not in other
urological malignancies samples (67). In addition, differential
levels of miR-150 and miR-205 were found in EVs isolated from
786-O and HK-2 cell lines (112). Our previous work showed
that the lost expression of organic cation transporter 2 were
partly due to the downregulation by miR-489-3p and miR-630.
Interestingly, miR-489-3p and miR-630 were more abundant in
EVs than donor cells (113, 114). Therefore, these findings of
fundamental work may also have translational value to provide
clues for RCC biomarker discovery in a certain extent.

In addition to miRNAs, other content of EVs also have
potential to be developed as biomarkers for RCC. As mentioned
above, lncARSR was elucidated as a mediator of the transmission
of sunitinib resistance, which could be enwrapped and delivered
through EVs. Qu et al. further revealed that circulating lncARSR
could be utilized as indicator to predict sunitinib response in
RCC patients (103). Moreover, Palma et al. reported that the
mRNA levels of GSTA1, CEBPA, and PCBD1 genes in urinary
EVs were lower in RCC patients than that in control subjects and
this pattern backed to normal level after 1 month of nephrectomy
(115). In 2012, Boccio et al. established a hyphenated micro LC-
Q-TOF-MS platform to profile the lipid repertoire of human
urinary EVs. A comparative analysis for lipid content in urinary
EVs purified from RCC patients and healthy subjects was
performed for the first time (116). Similarly, a proteomics study
in 2013 reported that the protein composition of urinary EVs
was substantially different in RCC patients and control subjects.
Results presented for the first time that considerable number of
proteins were significantly enriched in RCC patients, including
Ceruloplasmin, Podocalyxin, Dickkopf related protein 4, MMP9
and CAIX (117). A recent work reported that Azurocidin was
highly enriched in EVs isolated from tumor tissues of ccRCC
patients than adjacent normal tissues. Importantly, Azurocidin
content was also significantly higher in serum EVs from ccRCC
patients compared to healthy controls (118). These tentative
work provided valuable indications for exploiting potential
mRNA, lipid, and protein biomarker for RCC from urinary
EVs. Taken together, it can be concluded that multiple EVs
cargoes derived from different kinds of biofluids are promising
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non-invasive biomarkers for early diagnosis and treatment of
RCC. The potential biomarkers derived from EVs which have
been validated in clinical samples of RCC are listed in Table 1.

EVs-Based Drug Vehicles and Targets in
RCC
The biological characteristics make EVs can be harnessed
as vehicles for therapeutic agents to improve curative effect.
Numerous clinical and preclinical trials have suggested that these
EVs-based drug vehicles and therapies are promising, feasible
and well-tolerated (119–121). There are two basic approaches
to load cargoes into EVs: exogenous loading and endogenous
loading. Exogenous modification can be achieved after collection
of EVs, with encapsulation of small molecules, proteins, and
RNAs into or onto EVs via diverse methods including co-
incubation, electroporation, and sonication (121). Tian et al.,
developed a tumor-targeting EVs from mouse immature DC
cells expressing a well-characterized EVs membrane protein
(Lamp2b) fused to integrin αv-specific iRGD, which is a new
tumor-homing and penetrating peptide. After loaded with
doxorubicin via electroporation, this delivery platform showed
high efficiency in tumor-targeting and doxorubicin delivery to
integrin αv-positive breast cancer cells both in vitro and in
vivo (122). Wan et al. developed a nucleolin-targeting aptamer
AS1411 which covalently conjugated to cholesterol-PEG and
anchored onto membrane of mouse DC cells. Subsequently, EVs
were obtained from this modified DC cell model and loaded with
paclitaxel by sonication. Results of cancer treatment in xenograft
nude mice showed that engineered EVs enhanced therapeutic
efficacy with low systemic toxicity (123). We can believe that
along with the detailed mechanism of EVs-mediated metastasis
organotropism are being clarified, EVs are promising material to
achieve drug-targeting delivery for cancer treatment. However,
the immune responses are need to be considered seriously.
Additionally, the production yield is also a challenge for applying
engineered EVs in tumor-targeting delivery.

Alternatively, cargo of EVs can be endogenously loaded
through genetically manipulating the donor cells to overexpress
bioactive molecules and employed as EVs-based vaccines or
imaging tools. With significant higher level in surface of RCC
cells than normal renal cells, RCC-associated antigen G250 could
be served as one of the therapeutic targets (124). EVs containing
G250 or other RCC-specific antigens may be novel approaches
to develop EVs-based cancer vaccines for RCC treatment. It has
been shown thatmodified RCC cells released EVs expressing both
glycolipid-anchored-IL-12 and G250, which efficiently promoted
the proliferation of antigen-specific cytotoxic T lymphocytes and
enhanced cytotoxic effects (125). Notably, there is a risk ofmixing
pathogens such as viruses with EVs since these nanometric
vesicles have similar biophysical properties (126). Hence a
standard operating procedure is very necessary when isolate EVs
as cancer vaccine. By combining a Cre recombinase-based system
with high-resolution fluorescence imaging techniques, Zomer
et al. realized the visualization of intracellular EVs exchange
within local and distant tumor sites in vivo. Results showed
that less malignant tumor cells presented heightened migratory

ability after taken up the EVs released by highly malignant
tumor cells (127). Moreover, several other molecular imaging
strategies have also been utilized to monitor and determine
the biodistribution of EVs in vivo, including bioluminescence,
nuclear, and magnetic resonance imaging techniques (128).
These interesting findings and advanced techniques make it
clear that EVs-based modification can be used to achieve the
phenocopying of tumor cells and visualize cancer development
process in vivo in the future.

Drugs targeting vital steps in formation, release or uptake
of EVs may also be served as effective adjuvants for cancer
treatment. Datta et al. utilized quantitative high throughput
screen assay to find active compounds targeting the formation
and release of EVs in prostate cancer cells. Totally five and six lead
compounds were validated as potent inhibitors and activators,
respectively (129). In another review, two groups of candidate
drugs were broadly classified according to the mechanisms of
modulating EVs biogenesis or secretion. One is compounds
that specifically inhibit EVs trafficking, including calpeptin,
manumycin A, and Y27632. Another group is compounds
that specifically disrupt lipid metabolism, including pantethine,
imipramine, and GW4869 (130). Interestingly, Ortiz et al.
identified that reserpine, a commonly used anti-hypertensive
drug since 1955, could alter the fusion process of lipid membrane
and then inhibit PMN formation that was induced bymelanoma-
derived EVs. Their findings indicated that tumor-derived EVs
could “educate” healthy cells to facilitate tumor metastasis.
Meanwhile agents like reserpine can interfere this education
process and play a defensive role on EVs uptake. Thus, it is
valuable to repurpose these drugs as adjuvant treatment for
metastatic cancer therapy (131). More recently, sulfisoxazole, an
oral antibacterial drug approved by US FDA, was screened out
as inhibitor of EVs secretion in breast cancer cells. Through
targeting endothelin receptor A, sulfisoxazole promoted the
degradation of ESCRT-dependent MVB, suppressed biogenesis
and secretion of EVs, as well as significantly inhibited the growth
and metastasis of breast cancer cells without notable toxicity
(132). These important findings enlighten us drug repurposing
can be harnessed as approaches to block EVs functions in
tumor progression.

Potential Application of Artificial
Intelligence in EVs Research
Artificial intelligence (AI) refers to the simulation of human
intelligence in machines. AI approaches have the potential to
enhance the qualitative interpretation of cancer imaging by
expert clinicians in three main tasks: computer-aided detection
of tumor sites, characterization of intra-tumor heterogeneity and
variation, as well as temporal monitoring of tumor changes
(133). As a specific subset of AI approaches, machine learning
(ML) are able to interpret complex data and leverage the
detailed information to make accurate prediction or decision.
Studies have demonstrated that deep learning frameworks can be
applied to distinguish major subtypes of RCC using histological
or computed tomography images (134, 135). Similarly, ML
algorithms also have the power to analyze a substantial

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 72450

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qin et al. Extracellular Vesicles in RCC

TABLE 1 | EVs derived potential biomarkers with clinical significance for RCC.

Type EVs

source

EVs cargoes Analysis method Cohorts Clinical significance Year References

Lipid Urine LysoPE etc. 196

differential signals

microLC-Q-TOF-

MS

8 ccRCC patients, 8

HS

48 differential lipidomes (22 upregulated

and 26 downregulated in RCC)

2012 (116)

lncRNA Plasma Circulating lncARSR qRT-PCR 71 advanced ccRCC

patients, 32 HS

Differentiated ccRCC patients from healthy

controls; High lncARSR levels in

pre-therapy correlated with PFS

independent of clinical characteristics

2016 (103)

mRNA Urine GSTA1, CEBPA,

PCBD1

Microarray,

qRT-PCR

46 RCC patients (33

with ccRCC), 22 HS

Significant lower in ccRCC patients than

HS and increased to normal level 1 month

after nephrectomy

2016 (115)

miRNA Plasma miR-let-7i-5p,

miR-26a-1-3p,

miR-615-3p

RNA-sequencing,

qRT-PCR

44 and 65 metastatic

RCC patients for

screening and validate

cohort, respectively

Low levels correlated with poor OS of

mRCC patients, independent of age,

gender, tumor grade, stage at diagnosis,

coagulative necrosis, or sarcomatoid

differentiation

2017 (110)

Serum miR-1233, miR-210 qRT-PCR 82 ccRCC patients, 80

HS

Both significant higher in ccRCC patients

than HS independent of gender, age, or

ccRCC grade

2018 (106)

Serum miR-210 Microarray,

qRT-PCR

45 pre-operative and

35 post-operative

ccRCC patients, 30 HS

Significant higher in ccRCC patients than

HS, and in pre-operative than

post-operative samples

2019 (72)

Serum miR-224 qRT-PCR 108 ccRCC patients High level correlated with shorter PFS,

CSS and OS of ccRCC patients

2017 (109)

Urine miR-126-3p Microarray,

qRT-PCR

81 ccRCC patients, 33

HS

Differentiated ccRCC patients from HS 2016 (111)

Urine miR-126-3p combined

miR-449a

Microarray,

qRT-PCR

81 ccRCC patients, 33

HS

Differentiated ccRCC patients from HS

Urine miR-126-3p combined

miR-34b-5p

Microarray,

qRT-PCR

81 ccRCC patients, 33

HS

Differentiated ccRCC and small renal

masses (pT1a, ≤4 cm) patients from HS,

respectively

Urine miR-126-3p combined

miR-486-5p

Microarray,

qRT-PCR

24 benign renal tumor

patients, 33 HS

Differentiated benign patients from HS

Urine miR-30c-5p RNA-sequencing,

qRT-PCR

70 early-stage ccRCC

patients, 30 HS

Significant lower in early-stage ccRCC

patients than HS

2019 (67)

Protein Urine Matrix

metalloproteinase 9,

Ceruloplasmin,

Podocalyxin, Dickkopf

related protein 4,

Carbonic anhydrase IX

LC-MS/MS,

western blotting

9 ccRCC patients, 9

HS

Significant higher in ccRCC patients than

HS

2013 (117)

Urine Aquaporin-1,

Extracellular matrix

metalloproteinase

inducer, Neprilysin,

Dipeptidase 1,

Syntenin-1

LC-MS/MS,

western blotting

9 ccRCC patients, 9

HS

Significant lower in ccRCC patients than

HS

Serum CD103 Flow cytometry 76 and 133 metastatic

or non-metastatic

ccRCC patients,

respectively

Higher ratio of CD103+ EVs over total EVs

in samples of metastatic patients than

non-metastatic patients

2019 (78)

Serum Azurocidin LC-MS/MS 19 ccRCC patients, 10

HS

Significant higher in ccRCC patients than

HS

2018 (118)

Tissue Azurocidin LC-MS/MS 20 paired tumor and

adjacent normal tissues

of ccRCC patients

Significant higher in ccRCC patients than

HS

amount of images that are produced by EVs purification and
characterization processes. Studies showed that these biophysical
parameters of EVs could be assessed by ML algorithms to

identify the subpopulation of EVs or even further predict
the original donor cells (136, 137). Due to the incredible
amount of EVs and the need for downstream analysis during
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each study, multiparameter results of EVs characterization are
particularly amenable to ML algorithms. A preliminary work of
Borgovan et al. reported that ML algorithms could distinguish
the heterogeneous EVs derived from blood samples with healthy
or leukemic phenotypes based on data sets collected from a
nanoparticle tracking analysis, thus improved the accurate of EVs
classification (138).

At present, one of the most challenges in the field of
biomarker discovery is how to decipher the huge amount of
garbled information within EVs. AI approaches are becoming
trustworthy solutions to this given problem as they are able to
modelize complicated network and leverage valuable information
within observed data to accurately estimate and predict new
samples. Early in 2003, Won et al. had identified five protein
biomarkers of serum by using a mass spectrometry-based protein
profiling and AI analysis and then successfully differentiated
RCC from healthy subjects and other urological diseases (139).
Moreover, Zheng et al. developed a novel diagnosis tool to predict
early-stage RCC patients which depended on a biomarker cluster
that was identified by serum metabolomics method and ML
algorithms (140). Meanwhile, unprecedentedly massive data of
EVs are also being generated by various “omics” technologies
including genomics, transcriptomics, proteomics, metabolomics,
glycomics, and lipidomics (141). Several online databases have
been established to categorize the RNAs, lipids, proteins, and
metabolites within EVs, which have been summarized in Table 2

(142–151). These integrative resources will favor researchers to
outline the landscape of EVs in cancer progression and identify
relevant biomarkers more quickly and more accurately.

Integrating EVs-derived biomarkers with ML algorithms to
analyze patterns in massive data sources such as gene expression,
protein expression, or digital pathology data may obtain a higher
diagnostic efficacy of the diagnosis. Chen et al. profiled four
surface biomarkers including HER2, GPC-1, EpCAM, and EGFR
from serum-derived EVs through DNA points accumulation
for imaging in nanoscale topography. They implemented

an integrated platform combining EVs identification with
quantitative analysis and accurately differentiated pancreatic
cancer and breast cancer from unknown samples (152).
Additionally, advanced techniques such as microfluidic make it
possible to separate EVs on a single chip. In a previous study, Ko
et al. developed a multichannel microfluidic platform combining
with ML algorithms that specifically isolated EVs from clinical
plasma samples, quantitatively detected the RNA profile inside of
EVs, and distinguished pancreatic cancer patients with healthy
controls (153). They subsequently exploited another workflow
that integrated a magnetic capture system with RNA sequencing
and ML algorithms. This system purified a subpopulation of
EVs and identified a panel of 11 miRNAs from EVs which
could classify distinct cancer states in a transgenic mouse
model (154). Thus, it is also a feasible strategy to combine
upstream isolation methods with downstream ML algorithms to
realize the development of “on-a-chip” platform for systemically
purification and determination of EVs-derived biomarkers.

Moreover, AI approaches promises to make great strides in
almost all stage of drug discovery, including target validation,
biomarker identification, and analysis of clinical trial information
(155). Since the drug data sets are becoming dynamic,
heterogeneous and large scale, state-of-the-art AI approaches
such as deep learning and innovative modeling methods provide
new answers to efficacy and safety evaluations of drug candidates
based on big data modeling and analysis (156). Donner et al.
reported a novel method for computational drug repositioning
by taking advantage of neural network. They revealed previously
unnoticed functional relationships between different compounds
based on denoise gene expression data rather than structural
similarity (157). Hence AI approaches can build bridges between
abundant data sources from high-throughput experiments with
gene expression profiles and massive drug candidates. The
information of EVs content is also increasingly rich in data.
Meanwhile the downstream effects of EVs in cancer progression
are non-linear. It is reasonable to assume that the ability of AI

TABLE 2 | EVs related online databases.

Database Publish date Overview Update date References

EVmiRNA 2019 Comprehensive miRNA expression profiles in 462 EVs small

RNA-sequencing datasets from 17 tissues/diseases

2019 (142)

EVpedia 2013 High-throughput datasets of EVs components (proteins, RNAs, and lipids)

from prokaryotic and eukaryotic EVs

2013 (143)

EV-TRACK 2017 Experimental parameters of EV-related studies 2019 (144)

ExoCarta 2009 Identified contents (protein, mRNA, miRNA, and lipids) of exosomes in

multiple organisms from 286 studies

2016 (145)

exoRBase 2018 Exosomal RNA (circRNA, lncRNA, and mRNA) derived from

RNA-sequencing data analyses of human blood

2019 (146)

Exosome Gene Ontology

Annotation Initiative

2015 GO annotations of human exosomal proteins 2015 (147)

Plasma Proteome Database 2014 Annotation of 318 identified proteins of EVs from plasma 2014 (148)

Urinary Exosome Protein

Database

2004 Mass spectrometry data of 1,160 proteins derived from urinary exosomes

isolated from healthy human volunteers

2009 (149, 150)

Vesiclepedia 2012 Compendium of molecular data (lipid, RNA, and protein) identified in

different classes of EVs from 1,254 studies

2019 (151)
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to mining valuable information presents new opportunities for
novel target identification and validation for EVs-based anti-
cancer therapies. Therapeutic Target Database (TTD, http://db.
idrblab.org/ttd/) has been established to integrate information
of early drug candidates and therapeutic targets that contain
expanded knowledge of target regulators such as miRNAs,
transcription factors and other interacting proteins (158).
Database with molecular information about drugs such as
DrugBank (https://www.drugbank.ca/) include comprehensive
data of the influence of hundreds drugs on metabolite levels,
gene expression levels and protein expression levels, enabling
us to find more connections of EVs content changes with
drugs (159). Altogether, these important approaches may provide
novel research tools to fundamental studies of EVs biology and
translational studies of EVs-based therapies. Clearly, more work
is need to be deployed in this scenario to figure out the completed
mechanisms of EVs biogenesis, secretion and uptake, which may
reward us valuable drug targets by using advancedAI approaches.

PROSPECTS

EVs are attracting increasing attention in cancer research due
to its various roles in intracellular communication during
cancer progression. However, RCC is relative unnoticed in
this research hotspot compared with other cancer types. In
this review, we recapitulated the roles and clinical implications
of EVs in RCC. Diverse bioactive molecules carried by EVs
regulate almost all processes of RCC, such as tumorigenesis,
metastasis, immunosuppression, and drug resistance. Due to
the unique function of kidney in urinary system, both blood
and urine are valuable biofluids with abundant EVs, which are
readily accessible sources for biomarkers discovery. Moreover,

multiple potential applications can be developed to provide novel
strategies for diagnosis and treatment of RCC, including but not
limited to EVs-based cancer vaccine, in vivo imaging technique,
targeted drug delivery system, and drug discovery. But it is
noteworthy the detailed mechanisms and effects of EVs on RCC
progression are still to be further clarified. The gaps between
digital analysis and experimental validation are still need to be
solved. Meantime there are still a variety of challenges for the
clinical use of EVs in RCC. Standard operating procedure for
EVs isolation, quantification, and analysis are still deficiency,
especially for biofluids sample. The stability and the unknown
side effects of EVs-based therapy must to be considered and
assessed. Moreover, High-quality data sets are required in terms

of the AI-aided drug target discovery based on EVs. Taken
together, extensive work need to be launched to make a better
understanding of roles of EVs in RCC progression and make the
potential clinical utilities for EVs in RCC therapies come true.
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Background:miRNAs and genes can serve as biomarkers for the prognosis and therapy
of cervical tumors whose metastasis into lymph nodes is closely associated with disease
progression and poor prognosis.

Methods: R software and Bioconductor packages were employed to identify differentially
expressed miRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R
detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from
the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was
established to select prognostic miRNA biomarkers. Online tools such as TargetScan and
miRDB predicted target genes, and overlapping DEGs and target genes were defined as
consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment and Gene Ontology (GO) function annotations were performed to discern
the potential functions of consensus genes. STRING and Cytoscape screened key genes
and constructed a regulatory network.

Results: A combination of four miRNAs (down-regulated miR-502 and miR-145, up-
regulated miR-142 and miR-33b) was identified as an independent prognostic signature
of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG
pathways and 19 GO function annotations including the cAMP signaling pathway, the
plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The
module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and
WDHD1 are key genes that significantly correlate with cervical cancer lymph node
metastasis.

Conclusions: This study demonstrates that a four-miRNA signature can be a prognostic
biomarker, and seven key genes are significantly associated with lymph node metastasis
in cervical cancer patients. These miRNAs and key genes have the potential to be
therapeutic targets for cervical cancer. Among them, twomiRNAs (miR-502 andmiR-33b)
and two key genes (PTPRC and CDH5) were first reported to be potential novel
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biomarkers for cervical cancer. The current study further characterizes the progression of
lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel
diagnostic indicator and therapeutic targets for future clinical treatments.
Keywords: cervical cancer, miRNA, key gene, prognostic signature, lymph node metastasis
INTRODUCTION

Worldwide, cervical cancer is the fourth most common female
malignancy with an extremely high morbidity and mortality rate
(Cohen et al., 2019). According to the World Health
Organization (WHO), there were 569,874 new cases of cervical
tumors in 2018, accounting for 3.2% of all new cancer cases in
that same year (Bray et al., 2018). Most cervical tumors are
attributed to recurrent HPV infections. Aberrant expression of
oncoproteins encoded by HPV genetic material, such as E6 and
E7, partially leads to epigenetic instability, which affects the
carcinogenesis and metastasis of cervical cancer (Doorbar, 2006).

MicroRNAs (miRNAs) are associated with the development
of a wide range of cancers, including cervical cancer (Park et al.,
2017). miRNAs are a group of non-coding, single-stranded RNA
molecules that are approximately 22 nucleotides (nt) in length
and encoded by endogenous genes (Bartel, 2004; Chen and Kang,
2015). Abnormally expressed miRNAs regulate various
biological processes such as apoptosis, proliferation, and
metabolism (Zhang et al., 2007; Lee and Dutta, 2009).
Moreover, miRNA dysregulation plays a critical role in cancer
progression and metastasis in multiple cancers, including
cervical cancer (Gómez-Gómez et al., 2013; Huang et al.,
2017). For example, Yao et al. (Yao et al., 2018) demonstrated
that decreased expression of HPGD by miR-146b-3p induced
proliferation, migration, and anchorage-independent growth of
cervical cancer cells by activating the STAT3 and AKT signaling
pathways. This indicated that miRNAs may be clinically
applicable as potential biomarkers and therapeutic targets.
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Tumor metastasis is the leading cause of death for most
cervical cancer patients. It generally involves complex processes
such as extracellular matrix degradation, lymphangiogenesis,
angiogenesis, clonal growth at secondary sites, etc. (Zhang
et al., 2015). The metastasis and invasion of tumor cells
through blood and lymph nodes are crucial processes in the
progression of cervical cancer (Dai et al., 2017). Newly formed
lymphatic vessels are comprised of endothelial cells that are not
tightly connected. Therefore, cervical cancer cells can easily
invade this endothelial layer and metastasize to lymph nodes
(Zhang et al., 2015). In addition, the poor prognosis of cervical
cancer patients is correlated with high invasiveness and diffuse
lymph node metastasis (Wang et al., 2016). Lymph node
metastasis is the main metastatic pathway and the most critical
factor in the prognosis and recurrence of cervical cancer cases
(Huang and Fang, 2018). However, a detailed understanding of
the specific signatures and molecular mechanisms of lymph node
metastasis is lacking. Therefore, the search for a reliable
lymphatic signature is important in determining malignant
metastasis, and it also provides information that can guide the
clinical treatment of cervical tumor patients.

Many have proposed conducting a large-scale systematic
analysis of miRNAs, genes, and clinical data using
bioinformatics to further characterize the functions of miRNAs
and genes in certain disease states, clarify their potential as
disease-related signatures, and discover new disease biomarkers
and drug targets (Liang et al., 2017). Researchers can obtain
tumor data from public databases and conduct differential
expression, survival, and prognosis analyses as well as target
gene prediction and functional characterization using R language
(Sepulveda, 2020), TargetScan (Agarwal et al., 2015), miRDB
(Wong and Wang, 2015), DAVID (Huang et al., 2009), etc. With
these tools, tumor biomarkers can be screened, and their
mechanism of action can be further elucidated. For example,
Liang et al. (Liang et al., 2017) identified a three-miRNA
signature (miR-145, miR-200c, and miR-218-1) that is a
prognostic factor of cervical tumors by conducting Cox
univariate and multivariate analyses on differentially expressed
miRNAs screened from clinical samples in TCGA database.

In this study, we conducted a multi-step analysis using
various R language packages on clinical samples downloaded
from the TCGA (Tomczak et al., 2015) and GEO (Barrett et al.,
2007) databases to identify DEMs and DEGs. A Cox
proportional hazard regression model was then established to
determine potential prognostic biomarkers from the available
DEMs. Subsequently, the target genes of the miRNAs biomarkers
were predicted by the TargetScan and miRDB online tools and
the consensus genes were further determined based on overlap
between DEGs and these target genes. Finally, MCODE (Bader
May 2020 | Volume 11 | Article 544
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and Hogue, 2003) software in Cytoscape (Shannon et al., 2003)
was used to identify key genes related to lymph node metastasis
caused by early-stage cervical tumors. Together, the prognostic
miRNAs and key genes mined in this study will provide new
insights in elucidating the molecular mechanisms of cervical
cancer and contribute to finding new therapeutic targets and
prognostic biomarkers for cervical cancer patients.
MATERIALS AND METHODS

Data Preparation and Differential
Expression Analysis
The expression profiles and clinical data for 310 samples were
obtained from TCGA (https://portal.gdc.cancer.gov/) database
on July 27, 2018. These samples included 307 primary solid
cervical cancer tissue samples and three normal tissue samples.
Even though this study used many more cancer samples than
normal samples, previous studies by Yang et al. (2019), Zeng
et al. (2018), etc. have demonstrated that appropriate prognostic
models with diagnostic indicators and clinically significant
therapeutic targets can be obtained with similar unbalanced
sample sets. DEMs were analyzed using the edgeR (Robinson
et al., 2010), gplots (Li S. et al., 2020), and limma (Ritchie et al.,
2015) R language packages (Version 3.5.1) according to the
screening criteria of |log2FC| > 1 and Padj < 0.05. The
GSE7410 expression profile data from 24 samples were
obtained from the GEO (https://www.ncbi.nlm.nih.gov/geo/)
database. The samples included 19 early-stage cervical tumor
tissues with lymph node metastasis and five healthy cervical
tissues. DEGs were analyzed using GEO2R based on the
screening criteria of |log2FC| > 1 and Padj < 0.05.

Establishment of a Cox Proportional
Hazard Regression Model
TheCoxproportional hazard regressionmodel (George et al., 2014)
was established to analyze the association between DEMs and
overall survival. The survival package was used in the univariate
and multivariate Cox analyses of DEMs (Liang et al., 2017).
miRNAs with P < 0.05 as calculated by the univariate Cox
analysis were considered strongly correlated with overall patient
survival. The multivariate Cox analysis used stepwise regression to
screen a prognostic model based on the Akaike information
criterion (AIC) value (Vrieze, 2012), where the model with the
smallest AIC value contains the smallest number of miRNAs that
best predict cervical cancer patient prognosis. miRNAs with P <
0.05 as calculated by the multivariate Cox analysis were considered
as independent prognostic factors.

Prognostic Model Construction
Using the results of the multivariate Cox analysis, the risk score
was calculated as follows: Risk Score = Exp (miRNA1) × b1 + Exp
(miRNA2) × b2 +… + Exp (miRNAn) × bn. The patients were
divided into low- and high-risk groups based on their median
risk score. A risk score curve was plotted to demonstrate the risk
score differences according to the model. A survival status map
Frontiers in Pharmacology | www.frontiersin.org 360
was plotted to demonstrate the survival status of each sample. A
heatmap was plotted to demonstrate the expression level
differences of the four prognostic miRNAs in the low- and
high-risk groups. A survival curve was plotted to demonstrate
the 5-year survival in high- and low-risk groups. And an ROC
curve of the model was constructed to determine its predictive
ability. A model with an AUC value larger than 0.7 possesses a
strong prediction function.

Target Gene Prediction
TargetScan and miRDB predicted the target genes of miRNAs
obtained from themultivariateCox analysis. Target genes thatwere
predicted by both tools were considered target genes of those
miRNAs. And the consensus genes were further obtained from
the overlap between DEGs related to lymph node metastasis and
candidate target genes from the prognosis miRNAs.

KEGG Pathways and GO Function
Annotation Enrichment Analysis
To further understand the underlying biological significance of
DEMs and DEGs, DAVID (https://david.ncifcrf.gov/) produced
KEGG pathway (Kanehisa and Goto, 2000) enrichment and GO
functional annotations (Ashburner et al., 2000) of the consensus
genes using P < 0.05 as a demarcation criterion. The pathways or
annotations with the smallest P-value or the largest count value
were considered as key KEGG pathways and GO function
annotations. GO function annotations include three parts:
biological process (BP), cellular component (CC), and molecular
function (MF).

PPI Network Construction and Module
Analysis
STRING(http://string-db.org) (Szklarczyket al., 2017) analyzed the
consensus genes and obtained protein interaction data. Proteins
with aminimum required interaction score greater than or equal to
0.400 were selected to construct the PPI (protein-protein
interaction) network, and nodes with network interruption were
hidden. The combined score was imported into Cytoscape software
(Version 3.7.1, https://cytoscape.org/). The Molecular Complex
Detection (MCODE) plug-in in Cytoscape calculated the
MCODE score and selected the significant modules of key genes
using the screening criteria of Degree Cut-off = 2,Haircut on, Node
Score Cut-off = 0.2, k-core = 2, and Max. Depth = 100. Moreover,
the logFC value of genes in the interaction network was also
imported into Cytoscape to show the up/down regulation status.

Network Visualization
Regulatory relationship data were imported into Cytoscape along
with miRNAs, key genes, consensus genes, key KEGG pathways,
and GO functional annotations. The visualization network was
performed with Cytoscape to explore the potential regulatory
relationship among them.

Analysis Procedure
Figure 1 shows the analysis procedure of the data mining
processes that was used to screen tumor biomarkers and key
genes in this study. It was based on the extensive use of R
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language and various online analytical tools. We first obtained
DEMs and DEGs using R language and GEO2R, respectively, by
analyzing cervical cancer-related miRNAs and gene expression
profiles downloaded from TCGA and GEO databases. A
prognostic model was constructed via Cox analysis to detect key
miRNAs to form a best-available prognostic signature whose target
genes were predicted by TargetScan andmiRDB. Subsequently, we
performed KEGG pathway and GO annotation analyses using
DAVID to clarify the function of the consensus genes from the
overlap between DEGs and the predicted target genes of key
miRNAs. Furthermore, STRING and MCODE selected key genes
among consensus genes. Finally, we constructed amiRNAs-Genes-
Pathways and Annotations network to elucidate potential
regulatory mechanisms. The approach described here is a feasible
protocol to identify potential tumor biomarkers and key genes.
RESULTS

miRNA and Gene Differential Expression
Analyses
A total of 110 DEMs were obtained after analyzing miRNA
expression profiles from TCGA with R language using Padj < 0.05
Frontiers in Pharmacology | www.frontiersin.org 461
and |log2FC| > 1 as screening criteria. Among them, 64 miRNAs
were significantly down-regulated, and 46 miRNAs were
significantly up-regulated (Table S1). At the same time, 1840
DEGs related to early cervical cancer lymph node metastasis
were identified by analyzing the GSE7410 expression profile with
GEO2R using Padj < 0.05 and |log2FC| > 1 as screening criteria.
Among them, 1,298 genes were significantly down-regulated,
and 542 genes were significantly up-regulated (Table S2). The
volcano map illustrates the significant differences and
distribution of the fold change in DEMs and DEGs (Figure 2).

miRNA-Based Signature Identification as a
Prognostic Biomarker
A total of 15 miRNAs related to patient survival were obtained
from 110 DEMs using univariate Cox analysis (P < 0.05)
(Table 1). Four miRNAs related to patient prognosis (miR-
502, miR-142, miR-145, and miR-33b) were further screened
from the above 15 miRNAs by multivariate Cox analysis
(Table 2). Among them, miR-502 and miR-145 were down-
regulated, and miR-142 and miR-33b were up-regulated in
cervical cancer tissues. The multivariate Cox analysis
demonstrated that these four miRNAs could be used as
independent prognostic factors in cervical cancer (P < 0.05).
A

B

C A B

A B

C D

FIGURE 1 | Analysis procedure of the data mining process used to screen tumor biomarkers and key genes in this study. It includes specific bioinformatics
methods, data processing tools, and partial research results.
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Application of a Cox Proportional Hazard
Regression Model in Disease Prognosis
The prognostic model consisting of four miRNAs was
constructed by multivariate cox analysis. The formula of the
model was defined as follows: Risk score = (Exp (miR-502) ×
(−0.676) + Exp (miR-145) × (−0.290) + Exp (miR-142) ×
(−0.297) + Exp (miR-33b) × (−0.209)). The survival risk score
Frontiers in Pharmacology | www.frontiersin.org 562
based on the four miRNAs was calculated by the model formula
and divided patients into low- (154 samples) and high-risk (153
samples) groups according to their median risk score. The risk
score curve demonstrates that the risk score of individuals in the
low-risk group is small and consistent while the risk score of
individuals in the high-risk group is larger and rises significantly
(Figure 3A top). The survival status map demonstrates that
A B

FIGURE 2 | Volcano plot of DEMs (A) and DEGs (B). The abscissa represents the log2 transformation value of the differential expression fold change between the
cervical cancer samples and the normal samples. The larger the | logFC | value is, the greater the fold change is. The ordinate represents the -log10 transformation
value of the FDR value. The larger the -log10 transformation value is, the more significant the difference is. Green dots represent significantly down-regulated miRNAs
or genes. Red dots represent significantly up-regulated miRNAs or genes.
TABLE 1 | Univariate analysis of cervical cancer patients.

miRNA HR z P

miR-502 0.47295993 −4.710714692 2.47E-06
miR-142 0.726460896 −3.311319458 0.000928571
miR-362 0.634317782 −3.089446858 0.002005296
miR-101-2 0.70026668 −2.832903633 0.004612729
miR-101-1 0.699830285 −2.831809241 0.004628545
miR-145 0.753658772 −2.628062686 0.008587269
miR-1468 0.71581814 −2.570507809 0.010154954
miR-204 0.852831645 −2.377156425 0.017446688
miR-140 0.633673302 −2.368455333 0.017862537
miR-33b 0.803090114 −2.212258218 0.026948828
miR-126 0.700379333 −2.186430538 0.028784121
miR-218-1 0.815625887 −2.121987729 0.033838769
miR-504 0.757023197 −2.003615093 0.045111308
miR-99a 0.879776376 −1.986775064 0.046947329
miR-331 0.691475709 −1.965107538 0.049401792
May 2020 | Volume 11
Bolded miRNAs are the prognostic miRNAs.
TABLE 2 | Multivariate analysis of cervical cancer patients.

Coef Exp (Coef) Se (Coef) z P

miR-502 −0.676 0.509 0.156 −4.33 1.50E-05
miR-142 −0.297 0.743 0.106 −2.82 0.0049
miR-145 −0.29 0.748 0.101 −2.87 0.0042
miR-33b −0.209 0.811 0.101 −2.07 0.0382
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individuals in the low-risk group have low mortality rates, and
individuals in the high-risk group have a short survival time
(most survived for less than 5 years) (Figure 3A middle). The
heatmap demonstrates that low miRNA expression levels are
associated with high-risk scores, and high miRNA expression
levels are associated with low-risk scores (Figure 3A bottom).
These all demonstrate the reliability of the prognostic model in
classifying high- and low-risk groups. And the survival curve
demonstrates that the survival rate in the low-risk group is
notably higher than in the high-risk group (P = 3E-06; low-
risk group: 80.3%, 95% CI = 71.3–90.4%; high-risk group: 51.6%;
95% CI = 41.6–64.0%) (Figure 3B). The time-dependent ROC
curve analysis indicates that this prognostic model has a high
level of credibility, sensitivity, and specificity with an AUC value
of 0.766 (Figure 3C).

Target Gene Prediction for the Four
Prognostic miRNAs
The prediction results combined with TargetScan and miRDB
identified 267 target genes of miR-502, 423 target genes of miR-
145, 370 target genes of miR-142, and 279 target genes of miR-
33b (Figure S1). After excluding 111 repetitive target genes co-
regulated by multiple miRNAs, 1,228 target genes of the four
prognostic miRNAs were obtained. Moreover, 94 consensus
genes (Table 3) were identified from the overlap between 1840
DEGs (Table S3) and 1228 target genes (Table S4).

KEGG Pathway and GO Function
Annotation Details of Consensus Genes
Enrichment analyses produced 7 KEGG pathways and 19 GO
function annotations from the consensus genes using the
screening criteria of P < 0.05 (Figure 4). Consensus genes
Frontiers in Pharmacology | www.frontiersin.org 663
enriched in each pathway or function annotations were
showed in Table S5. KEGG pathways involving insulin
secretion, cAMP signaling, adrenergic signal ing in
cardiomyocytes, leukocyte transendothelial migration, etc. were
mainly enriched. Among them, the insulin secretion pathway
had the smallest P-value, and this pathway is associated with five
consensus genes (P = 1.05E-03). The cAMP signaling pathway
had the largest number (count = 6) of involved consensus genes,
and its P-value was 3.87E-03. BP GO annotations involved in
neuron migration, positive regulation of the G2/M mitotic cell
cycle transition, extracellular matrix disassembly, cell adhesion,
etc. were mainly enriched. The annotation with the smallest P-
value in the BP involved neuron migration (P = 2.07E-03), and it
correlated with five consensus genes. The largest number of
related consensus genes involved cell adhesion (count = 7), and
its P-value was 3.03E-02. And GO annotations in CC involving
the plasma membrane, actin cytoskeleton, postsynaptic density,
etc. were mainly enriched. The annotation with the smallest P-
value in the CC was an integral component of the plasma
membrane (P = 6.92E-03), and it involved 15 consensus genes.
The largest number of linked consensus genes involved the
plasma membrane (count = 28), and its P-value was 4.33E-02.
Furthermore, GO annotations in MF involving heparan sulfate
6-O-sulfotransferase activity were mainly enriched and had a P-
value of 1.98E-02 and two associated consensus genes.

Identification of Key Modules Using a
Cluster Analysis of Protein-Protein
Interactions
The interaction network presents protein-protein interactions,
the strength of the interactions within the protein modules
(Figure 5A), and up/down regulation conditions of the
A B

C

FIGURE 3 | Construction of a prognostic model based on a 4-miRNA signature. (A) From top to bottom: the risk score curve, survival status map, and expression
heatmap between the low- and high-risk groups. The color bar shows the relative miRNA expression value with red indicating high expression and green indicating
low expression. (B) Survival curve for the low- and high-risk groups. (C) The ROC curve for survival predictions.
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involved genes (Figure 5B). It consists of 52 nodes and 59 edges.
Two important modules with MCODE scores greater than 2.0
were screened by MCODE and included seven key genes:
CXCL12, IGF1, PTPRC, and CDH5 (Figure 5C); RAD51B,
REV3L, and WDHD1 (Figure 5D). Among them, CXCL12,
IGF1, CDH5, RAD51B, and REV3L were significantly down-
regulated whileWDHD1 and PTPRC were notably up-regulated.
It is worth to note that we also performed topology parameters
analysis of PPI and obtained the same seven key genes above
Frontiers in Pharmacology | www.frontiersin.org 764
(Figure S2). The readers who are interested in this process can
read the supplementary TopologyParametersAnalysis.doc.

Visualization Network of MiRNAs-Genes-
Pathways and Annotations
The visualization network demonstrated that seven key genes are
regulated by four miRNAs and are involved in seven key KEGG
pathways and GO functional annotations (Figure 6). WDHD1
and CDH5 are regulated by miR-502; RAD51B and REV3L are
TABLE 3 | Consensus genes of four prognostic miRNAs discovered in the overlap between predicted target genes and DEGs related to cervical cancer lymph node metastasis.

miRNA Consensus Genes

miR-502 ATP1A2 DLGAP2 FILIP1L C12orf54 TLR6
DAPK1 DCLK1 DONSON SLIT3 WDHD1
FBN2 DCUN1D5 CHST11 SLC7A14 LAMA3
BCL7A CDH5 ZNF471 CNTN2 PLXNA4
COL10A1 DOK6 GLP1R PGM5 SYNPO2
EML6 MLLT6 ACSS3 HS6ST2 NUDT10
RCC2 PHOX2B SAMD4B

miR-142 GDNF ZFPM2 TRIM36 NBEA IGF1
FOXO4 FAM199X HDLBP TMTC1 GK
BNC2 REV3L SLC2A13 PDLIM5 SP2
TNRC18 SACS ST6GALNAC3 EGLN3 RTN1

miR-145 MMP16 ITGBL1 SEMA6A ACTB HS6ST1
REV3L ZFP14 SLC38A11 TNFRSF11B PAQR9
ST6GALNAC3 TUFT1 ARHGAP6 CREB3L2 GATC
HTRA1 KLHL3 TPM3 KCNA6 GXYLT1
EBF1 HTR1F RAD51B ZRANB3 SLITRK4
RAPGEF4 DGKB

miR-33b LRP8 PRAMEF17 GPR173 SEMA7A MMP16
ATP1A2 TENM3 CACNA1C DSC3 SECISBP2L
HMGB3 PTPRB ABHD2 GDNF PTPRC
CMTR2 CXCL12 PRICKLE2 ARMC8
May 2020 | Volume 11
FIGURE 4 | Bar graph illustrating the enrichment analysis. The abscissa represents the number of consensus genes involved in KEGG pathways or GO function
annotations. The ordinate represents items of the primary KEGG pathways or GO function annotations.
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A B

C D

FIGURE 5 | Diagram of the protein-protein interaction network. The dark and light shading of the lines between solid circles indicates high and low interaction
relationships, respectively, which is represented by the Combined Score. (A) The color of solid circles representing protein targets is distinguished by the MCODE
score value. The blue circles are protein targets with an MCODE score value of 0, and these proteins did not participate in the construction of the key module. The
dark and light orange circles are protein targets with a high MCODE score value of 3.000 and 2.000, respectively, and these proteins participated in the construction
of the key module. (B) The color of solid circles representing protein targets is distinguished by the logFC value. The green circles are protein targets with a low
logFC value and represent significantly down-regulated genes. The red circles are protein targets with a high logFC value and represent significantly up-regulated
genes. (C) A module was constructed using the four protein targets with MCODE score values of 3.000. (D) A module was constructed using the three protein
targets with MCODE score values of 2.000.
FIGURE 6 | MiRNAs-Genes-Pathways and Annotations visualization network denoting the relationships between miRNAs, consensus genes, key genes, key KEGG
pathways, and GO functional annotations. Yellow solid circles represent miRNAs, blue solid circles represent consensus genes, red solid circles represent key genes,
and green solid circles represent KEGG pathways and GO functional annotations.
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regulated by miR-145; REV3L and IGF1 are regulated by miR-
142; and CXCL12 and PTPRC are regulated by miR-33b. The
enrichment analysis of the consensus genes showed that there
was no key gene enrichment in the key KEGG pathways, while
CXCL12, IGF1, CDH5, and PTPRC were involved in the key GO
functional annotations. Specifically, CXCL12 was enriched in
neuron migration and cell adhesion of BP. CDH5 was enriched
in cell adhesion of BP. IGF1, together with CDH5 and PTPRC,
were enriched in the plasma membrane of CC. PTPRC was
enriched in the integral component of the plasma membrane
of CC.
DISCUSSION

Cervical carcinoma is one of the most common malignancies in
females. Approximately 90% of cervical cancers occur in low-
and middle-income countries. Lymph node metastasis and
recurrence are the main manifestations in cervical cancer
patients with a poor prognosis (Cohen et al., 2019). miRNAs
collectively regulate thousands of human cancer-related, protein-
coding genes and regulate many important biological processes
that facilitate cancer development (i.e. cell growth, invasion, and
apoptosis) (Lu et al., 2005). Therefore, miRNAs have become a
hotspot of tumor research in the past decade. To identify novel
and reliable prognostic biomarkers and important regulatory
genes related to cervical cancer and lymph node metastasis, this
study first identified 110 DEMs and 1840 DEGs, separately, from
expression profiling and clinical data uploaded into TCGA and
GEO databases, respectively. Next, a cancer prognosis model
based on four prognostic miRNAs (miR-502, miR-145, miR-142,
and miR-33b) was established using univariate Cox, multivariate
Cox, and survival analyses. Subsequently, 1,228 target genes were
predicted using TargetScan and miRDB, and 94 consensus genes
were obtained from the overlap of DEGs and predicted target
genes. Finally, seven key genes related to lymph node metastasis
(i.e. CXCL12, IGF1, PTPRC, CDH5, RAD51B, REV3L, and
WDHD1) were identified using STRING and Cytoscape.

According to the prognostic model, the expression levels of
miR-502 and miR-145 were down-regulated, and the expression
levels of miR-142 and miR-33b were up-regulated in cervical
cancer. Among these four miRNAs, miR-145 and miR-142 have
been reported that they were related to cervical cancer in
previous experimental studies.

Previous studies have shown that the down-regulation of
miR-145 is closely related to cervical cancer and its lymph node
metastasis. Azizmohammadi et al. (2017) used qRT-PCR and a
multivariate Cox analysis to demonstrate that the expression of
miR-145 is reduced in cervical cancer tissues. They also showed
that reduced expression of miR-145 is related to lymph node
metastasis (P = 0.02), advanced Federation International of
Gynecology and Obstetrics (FIGO) stage (P = 0.007), and
vascular invasion (P = 0.026), which confirms miR-145’s
potential as a prognostic biomarker for the early detection of
cervical cancer (Azizmohammadi et al., 2017). Ma et al. (2019)
demonstrated that miR-145 is also down-regulated in cervical
Frontiers in Pharmacology | www.frontiersin.org 966
tumor cells, and up-regulation of miR-145 reduces cell
proliferation by directly suppressing its target gene, FSCN1. Shi
et al. (2012) also showed miR-145 is decreased in cervical cancer
cells, and increasing miR-145 expression enhances chemo-
sensitivity and inhibits invasion and migration by enhancing
p53. The above experimental results are consistent with our
prediction that the expression of miR-145 is suppressed in
cervical cancer cells.

While our prognostic model predicted that miR-142
expression is increased, existing experimental studies illustrated
that miR-142 expression is decreased in cervical cancer cells. Li
et al. (2017) revealed that when compared with normal tissue,
miR-142 expression is lower in cervical cancer cells and
correlates with a poor prognosis. Deng et al. (2015)
demonstrated that miR-142-3p is down-regulated in cervical
tumors. The overregulation of miR-142-3p inhibits the
expression of its target gene, FZD7, and further halts the
proliferation and invasion of cervical cancer (Deng et al.,
2015). Xia et al. (2018) reported that Metformin, an anti-
cancer drug, up-regulates miR-142-3p expression in cervical
cancer cells. They also showed that Metformin inhibits the
invasion and migration of tumor cells by decreasing the
sponge effect of MALAT1, up-regulating the expression of
miR-142, and down-regulating the expression of the target
gene, HMGA2 (Xia et al., 2018). These three studies showed
that miR-142 is a tumor suppressor gene. Thus, the decreased
expression of miR-142 in cervical cancer cells is contrary to our
results from the data mining calculation that shows an increase
in its expression. We do not know the reason(s) for this
contradiction, but it should be clarified in the future.

Although no experiment has demonstrated a correlation
between miR-502 and miR-33b in cervical cancer, studies have
shown that the down-regulation of miR-502 and up-regulation
of miR-33b are involved in other types of cancer. Sun et al. (2014)
demonstrated that miR-502, which is down-regulated in breast
cancer cells, suppresses early apoptosis by targeting TRAF2 and
restraining the NF-kB signaling pathway. Furthermore, Li et al.
(2009) demonstrated that the activation of NF-kB results in a
lower tumor grade, larger tumor volume, higher invasiveness,
and increased metastasis in cervical cancer tissues. Therefore,
miR-502 may affect cervical cancer lymph node metastasis by
participating in the NF-kB signaling pathway. Zhang et al. (2019)
showed that the up-regulation of miR-33b inhibits the Wnt/b-
catenin signaling pathway by decreasing ZEB1 expression and
promoting endometriosis. Although endometriosis is a common
and benign disease, it has similar characteristics to malignancies
including cell proliferation, invasion, metastasis, and recurrence.
Also, Ramachandran et al. (2012) showed that abnormal
activation of the Wnt/b-catenin pathway is common in
cervical tumors, which may enhance proliferation and prevent
apoptosis of cervical cancer cells. Therefore, up-regulation of
miR-33b may affect the proliferation and apoptosis of cervical
cancer cells by inhibiting the Wnt/b-catenin signaling pathway.
To summarize, miR-502 and miR-33b might be involved in
cervical cancer formation through distinctive ways as explained
above, but such speculation needs to be experimentally validated.
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To date, one computational paper exploring the relationship
between cervical cancer and the expression of miRNA through
data mining has been published. Liang et al. (2017) constructed a
three-miRNA signature containing miR-145, miR-200c, and
miR-218-1 by processing miRNA data from TCGA database.
Their study demonstrated that the expression of miR-145 is
significantly decreased in cervical tumor tissues. Furthermore,
they found that the expression levels of miR-142 and miR-33b
are up-regulated (Liang et al., 2017). This study provided results
consistent with ours regarding the expression levels of miR-145,
miR-142, and miR-33b. It is worth noting that although the
expression of miR-142 was experimentally shown to be down-
regulated in cervical cancer cells, as we mentioned previously,
this earlier computational study circumstantially confirms the
results of our research.

According to our predictions, among the seven key genes
involved in early-stage cervical cancer lymph node metastasis,
CXCL12, IGF1, RAD51B, REV3L, and CDH5 are down-regulated,
and WDHD1 and PTPRC are up-regulated. Table 4 compares
the expression of these seven key genes in cervical cancer, other
cancers, and lymph node metastasis as reported in previous
experimental studies and our calculated results. The decreased
expression of CXCL12 in cervical cancer cells and its role in
lymph node metastasis was confirmed in previous experiments
(Yadav et al., 2016), and the decreased expression of IGF1 and
the increased expression of WDHD1 were also experimentally
validated in cervical cancer cells but only in lymph node
metastasis of other cancers (Serrano et al., 2006; Kümmel
et al., 2007; Huang et al., 2008; Zhou et al., 2016; Liu et al.,
2019). Interestingly, the expression of RAD51B is also decreased
in cervical cancer cells, but experiments showed that its
expression is increased in other cancer lymph node metastases
(Cheng et al., 2016; Hang et al., 2016). In addition, REV3L
expression is increased in cervical cancer cells and lymph node
metastases of other cancers in the laboratory, which is
inconsistent with our prediction results (Yang et al., 2015; Zhu
et al., 2016). Finally, PTPRC and CDH5 have not been previously
reported to be associated with cervical cancer or its lymph node
metastasis. While experiments demonstrate that PTPRC
expression is increased in other cancers and their lymph node
metastases (Collette et al., 2007; Camacho et al., 2018), CDH5 is
up-regulated in other cancers but down-regulated in lymph node
metastasis of colorectal cancer (Tacconi et al., 2015; Hung et al.,
2016; Higuchi et al., 2017).
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CXCL12 is the ligand for the G-protein coupled receptor-like
chemokine (C-X-C motif) receptors 4 and 7. It affects many
cellular processes such as immune monitoring, inflammatory
response, tumor growth, and metastasis (Colamussi et al., 2001;
Yadav et al., 2016). Yadav et al. (2016) demonstrated that
CXCL12 expression is absent in cervical cancer. They also
illustrated that CXCL12 silencing enables cells to evade
apoptosis and leads to the progression and metastasis of
cervical cancer (Yadav et al., 2016). Meanwhile, Müller et al.
(2001) reported that CXCR4 is usually highly expressed in tumor
tissues, and the CXCR4/CXCL12 axis could prevent breast tumor
lymph-node metastasis and lung metastasis when CXCR4 is
neutralized. Thus, CXCL12 can act as a tumor suppressor in
lymph node metastasis of cervical and other cancers, and it might
inhibit tumor progression through the CXCR4/CXCL12 axis.

IGF1 is a cytokine that mediates cell growth and development
(Macaulay, 1992). Serrano et al. (2006) reported low serum IGF1
expression in cervical cancer cells, and reduced expression of
IGF1 is associated with an increased risk of cervical cancer.
Huang et al. (2008) showed that lower levels of IGF1 can
effectively predict survival in patients with cervical cancer.
Furthermore, they found that a combination of increased
carcinoembryonic antigen (CEA) levels and decreased IGF1
levels is significantly associated with an increased risk of death
and could accurately predict patients with a poor prognosis.
Though no experiment is available to confirm that IGF1 is
involved in cervical cancer lymph node metastasis, Kümmel
et al. (2007) reported that in breast tumor patients, plasma
IGF1 expression is increased after dose-intensified
chemotherapy, and they showed a more prominent increase in
IGF1 expression in patients with positive lymph nodes than
other patients. WDHD1, also known as AND1, is involved in
signal transduction, pre-mRNA processing, replication,
transcription, cytoskeleton assembly, chromosome assembly,
etc. (Park et al., 2012). Zhou et al. (2016) showed that
WDHD1 is up-regulated in primary human keratinocytes and
spontaneously immortalized human foreskin keratinocytes cells
expressing oncogene E7 in HPV-induced carcinogenesis. They
also showed that WDHD1 can increase E7-induced G1
checkpoint abolit ion and duplication. They further
demonstrated that the polyploidy ratio of cells expressing E7 is
significantly reduced after knocking down WDHD1 with siRNA
(Zhou et al., 2016). Although the role of WDHD1 in cervical
cancer lymph node metastasis has not been explained, Liu et al.
TABLE 4 | The expression of key genes reported from previous experimental studies.

CXCL12 IGF1 WDHD1 RAD51B REV3L PTPRC CDH5

Cancer ▼ ▼ ▲ ▼ △
LNM ▼ △ △
May 20
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up-regulated in cervical cancer, agreed with our calculated result.

down-regulated in cervical cancer, agreed with our calculated result.

up-regulated in cervical cancer, disagreed with our calculated result.

up-regulated in other cancers, agreed with our calculated result in cervical cancer.

down-regulated in other cancers, agreed with our calculated result in cervical cancer.

△ up-regulated in other cancers, disagreed with our calculated result in cervical cancer.
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(Liu et al., 2019) found that miR-494 can inhibit EMT and lymph
node metastasis of cholangiocarcinoma (CCA) cells by targeting
overexpressed WDHD1. In summary, IGF1 and WDHD1 are
likely connected with cervical cancer lymph node metastasis.

RAD51B is one of the RAD51 gene families involved in
homologous recombination-mediated DNA repair (Thacker,
2005; Nagathihalli and Nagaraju, 2011). Hang et al. (2016)
demonstrated that RAD51B is a tumor suppressor gene in
cervical cancer cells, which is consistent with our prediction.
They further showed that the miRNA binding sites of RAD51B
genetic variants in cervical cancer cells may increase tumor
susceptibility, and RAD51B is vital in gauging the cervical
cancer risk of individuals and improving the effectiveness of
preventive intervention (Hang et al., 2016). Currently, there are
no reports that demonstrate RAD51B affects cervical cancer
lymph node metastasis, but Cheng et al. (2016) showed that
the overexpression of RAD51B in gastric cancer cells is
significantly associated with lymph node metastasis (P =
0.001), advanced stage (P = 0.009), and invasive differentiation
(P = 0.022), and it may act as a potential signature for early
detection and poor prognosis. RAD51B expression in gastric
cancer with lymph node metastasis is contrary to our prediction:
it tended to represent the particularity of RAD51B expression in
cervical cancer lymph node metastasis. The specific reasons for
this contradiction need to be further clarified.

REV3L encodes the protein representing the catalytic sub-unit
of Polz, and inhibiting REV3L expression enables cancer cells to
tolerate DNA damage and stunted growth (Knobel et al., 2011).
Yang et al. (2015) showed that overexpression of REV3L
promotes proliferation and colony formation and inhibits
cervical cancer cell sensitivity to cisplatin. Thus, REV3L could
be a potential therapeutic target for cervical cancer treatment.
Zhu et al. (2016) also showed that REV3L is significantly up-
regulated in esophageal squamous cell carcinoma tissues, and it
positively correlates with lymph node metastasis (P <0.05) and
clinical stage (P < 0.05). Additionally, overexpression of REV3L
increases the expression levels of cyclin D1 and survivin, which
work together to promote the growth and invasion of esophageal
cancer cells (Zhu et al., 2016). These results demonstrate that
REV3L is closely linked to cervical cancer lymph node metastasis.
However, these REV3L experimental results are inconsistent with
the inferences obtained from our data mining analysis. The
specific reasons behind this contradiction need to be clarified.

PTPRC, also known as CD45, is a key regulator of cell growth,
differentiation, mitosis, and carcinogenic transformation
(Rheinländer et al., 2018). Camacho et al. (2018) showed that
PTPRC is significantly overexpressed in head and neck squamous
cell cancer cells, and tumor samples overexpressing PTPRC have
significantly higher tumor-infiltrating lymphocytes (TIL) scores
than tumor samples expressing low levels of PTPRC, leading to a
poorer prognosis. Collette et al. (2007) noted that the expression of
PTPRC plays a critical role in determining the signal transduction
and proliferation response of human myeloma cells to growth
factors such as IL-6 and IGF1. IL-6 and IGF1 separately induced
CD45+ and CD45- myeloma cell colony formation through the
MAPK/ERK signaling pathway in which CD45 is critical for
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myeloma proliferation (Collette et al., 2007). In addition, many
experimental studies reported that the MAPK/ERK signaling
pathway is crucial in cervical cancer formation. For example, Li
et al. (2018) demonstrated that MAPK/ERK signaling pathway
activation promotes cervical cancer cell proliferation. Tao et al.
(2018) illustrated that miR-497 acts as a tumor suppressor by
blocking the MAPK/ERK signaling pathway in cervical cancer
cells. Furthermore, Wang et al. (2020) showed that the anti-
cancer drug sclareol targets the MAPK/ERK signaling pathway
and induces cervical cancer cell apoptosis and cell cycle arrest.
Therefore, considering these observations, we can speculate that
PTPRC and IGF1 may negatively regulate the occurrence and
development of cervical cancer and its lymph node metastasis by
affecting the MAPK/ERK signaling pathway.

CDH5, also known as VE-cadherin, represses endothelial cell
apoptosis and participates in endothelial cell growth contact
inhibition (Cavallaro et al., 2006). Abnormal CDH5 was found in
cancer cells. Hung et al. (2016) and Higuchi et al. (2017)
demonstrated that CDH5 is over-expressed in lung cancer and
gastric cancer, respectively. However, Tacconi et al. (2015)
demonstrated that CDH5 is down-regulated in colorectal
cancer, and is negatively associated with its lymph node
metastasis. They found that up-regulated VEGFC/VEGFR3
reduces CDH5 expression, enhances permeability, and
increases trans-endothelial migration. Thus, it promotes
lymphatic vessel density and colorectal cancer lymph node
metastasis (Tacconi et al., 2015). Furthermore, Chaudary et al.
(2011) demonstrated that suppressing the over-expression of
VEGFC/VEGFR3 in cervical cancer cells inhibits proliferation
and cervical cancer lymph node metastasis. We suspect that the
over-expression of VEGFC/VEGFR3 restrains CDH5 in cervical
cancer cells and further promotes lymph node metastasis. But
this assumption needs to be further studied.

Table 3 shows that eight targeting relationships are available
between four prognosis miRNAs and seven key genes.
Specifically, miR-502 targets WDHD1 and CDH5, miR-145
targets REV3L and RAD51B, miR-142 targets REV3L and
IGF1, and miR-33b targets CXCL12 and PTPRC. Among these
relationships, miR-145-REV3L and miR-142-IGF1 have been
reported previously. Chen et al. (2019) demonstrated that miR-
145 can directly regulate the expression of REV3L in esophageal
squamous cell carcinoma (ESCC) cells using a dual luciferase
reporter assay and Western blot analysis. Also, low levels of miR-
145 augmented REV3L mRNA and protein expression in ESCC.
Xiong et al. (2018) showed that eight out of 12 target gene
prediction programs including TargetScan and miRDB predicted
the miR-142-IGF1 relationship. Subsequently, they suggested
that decitabine exerts its therapeutic effect on hepatocellular
carcinoma by inhibiting miR-142 DNA methylation, which
enhances miRNA expression and further down-regulates the
target genes of miR-142-5p such as IGF1 (Xiong et al., 2018). To
summarize, the above studies demonstrated target/regulatory
relationships between miR-145-REV3L and miR-142-IGF1.
The remaining six regulatory relationships have yet to be
reported, which might lay the foundation for future research
on cervical and other cancers with lymph node metastasis.
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In the key KEGG pathways and GO functional annotations of
key gene enrichment, it had been reported that cell adhesion and
integral component of the plasma membrane were closely related
to tumor proliferation and metastasis. For example, Mierke
(2008) showed that the integrity of the endothelial barrier is
preserved by a complex balance of cell adhesion factors. Once the
integrity is compromised, tumor cells can metastasize through
blood vessels or lymphatic channels (Mierke, 2008). More
importantly, Zheng et al. (2017) suggested that the CXCR4/
CXCL12 axis plays a role in reducing the adhesion ability of
colon cancer cells by regulating the Akt and IGF1R signaling
pathways. Therefore, the key gene CXCL12, enriched in cell
adhesion, may lead to cervical cancer lymph node metastasis by
affecting cell-cell adhesion. In addition, protein components of
the cell membrane are involved in cell signal transduction, cell
interaction, and other important steps in the process of cancer
cell metastasis (Lund et al., 2009). Most of the key molecules
involved in the signaling pathway are distributed in the cell
membrane. PTPRC, as a transmembrane tyrosine phosphatase, is
expressed in all leukocytes, and it is involved in lymphocyte
immunity against tumor cells (Tchilian et al., 2001). Therefore,
we speculate that PTPRC, which is enriched in an integral
component of the plasma membrane, may be an important
signal molecule in cervical cancer metastasis. Moreover, it may
be involved in a new approach to studying the mechanism of
cervical cancer lymph node metastasis.
CONCLUSION

By data-mining differentially expressed miRNAs and genes along
with other clinical information in a multi-step analysis, we
obtained a prognostic model of cervical cancer with lymph
node metastasis containing four miRNAs and seven genes. We
showed that four miRNAs (miR-502, miR-145, miR-142, and
miR-33b) are independent and common prognostic biomarkers
for patients with cervical cancer, and seven proteins (CXCL12,
IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHD1) are key
genes significantly related to lymph node metastasis. Among
them, miR-145, miR-142, CXCL12, IGF1, and WDHD1 have
been confirmed, while miR-502, miR-33b, PTPRC, and CDH5
are reported, here, for the first time. Also, the expression levels
and/or roles of miR-142, miR-33b, RAD51B, REV3L, and CDH5
in cervical cancer lymph node metastasis need further
clarification. In summary, our study may improve our
Frontiers in Pharmacology | www.frontiersin.org 1269
understanding of the progression and lymph node metastasis
mechanism of cervical cancer, and, therefore, provide a novel
diagnostic indicator and therapeutic targets for future
clinical treatments.
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F.-X., et al. (2018). Prognostic value of CD45 transcriptional expression in head
and neck cancer. Eur. Arch. Oto-Rhino-Laryngol 275 (1), 225–232.
doi: 10.1007/s00405-017-4806-2

Cavallaro, U., Liebner, S., and Dejana, E. (2006). Endothelial cadherins and tumor
angiogenesis. Exp. Cell Res. 312 (5), 659–667. doi: 10.1016/j.yexcr.2005.09.019

Chaudary, N., Milosevic, M., and Hill, R. P. (2011). Suppression of vascular
endothelial growth factor receptor 3 (VEGFR3) and vascular endothelial
growth factor C (VEGFC) inhibits hypoxia-induced lymph node metastases
in cervix cancer. Gynecol. Oncol. 123 (2), 393–400. doi: 10.1016/
j.ygyno.2011.07.006

Chen, L., and Kang, C. (2015). miRNA interventions serve as ‘magic bullets’ in the
reversal of glioblastoma hallmarks. Oncotarget 6 (36), 38628–38642.
doi: 10.18632/oncotarget.5926

Chen, Q., Hou, J., Wu, Z., Zhao, J., and Ma, D. (2019). miR-145 Regulates the
sensitivity of esophageal squamous cell carcinoma cells to 5-FU via targeting
REV3L. Pathol. Res. Pract. 215 (7), 152427. doi: 10.1016/j.prp.2019.04.019

Cheng, Y., Yang, B., Xi, Y., and Chen, X. (2016). RAD51B as a potential biomarker
for early detection and poor prognostic evaluation contributes to
tumorigenesis of gastric cancer. J. Int. Soc. Oncodevelopmental Biol. Med. 37
(11), 14969–14978. doi: 10.1007/s13277-016-5340-3

Cohen, P. A., Jhingran, A., Oaknin, A., and Denny, L. (2019). Cervical cancer.
Lancet (London England) 393 (10167), 169–182. doi: 10.1016/S0140-6736(18)
32470-X

Colamussi, M. L., Secchiero, P., Gonelli, A., Marchisio, M., Zauli, G., and Capitani,
S. (2001). Stromal derived factor-1 alpha (SDF-1 alpha) induces CD4+ T cell
apoptosis via the functional up-regulation of the Fas (CD95)/Fas ligand
(CD95L) pathway. J. Leukocyte Biol. 69 (2), 263–270.

Collette, M., Descamps, G., Pellat-Deceunynck, C., Bataille, R., and Amiot, M.
(2007). Crucial role of phosphatase CD45 in determining signaling and
proliferation of human myeloma cells. Eur. Cytokine Network 18 (3), 120–
126. doi: 10.1684/ecn.2007.0095

Dai, Y., Tong, R., Guo, H., Yu, T., and Wang, C. (2017). Association of CXCR4,
CCR7, VEGF-C and VEGF-D expression with lymph node metastasis in
patients with cervical cancer. Eur. J. Obstetrics Gynecol. Reprod. Biol. 214,
178–183. doi: 10.1016/j.ejogrb.2017.04.043

Deng, B., Zhang, Y., Zhang, S., Wen, F., Miao, Y., and Guo, K. (2015). MicroRNA-
142-3p inhibits cell proliferation and invasion of cervical cancer cells by
targeting FZD7. J. Int. Soc. Oncodevelopmental Biol. Med. 36 (10), 8065–
8073. doi: 10.1007/s13277-015-3483-2

Doorbar, J. (2006). Molecular biology of human papillomavirus infection and
cervical cancer. Clin. Sci. (London Engl: 1979) 110 (5), 525–541. doi: 10.1042/
CS20050369
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New drug discovery has been acknowledged as a complicated, expensive, time-
consuming, and challenging project. It has been estimated that around 12 years and
2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug
development pipeline. How to reduce the research cost and speed up the development
process of new drug discovery has become a challenging, urgent question for the
pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a
powerful, and promising technology for faster, cheaper, and more effective drug design.
Recently, the rapid growth of computational tools for drug discovery, including anticancer
therapies, has exhibited a significant and outstanding impact on anticancer drug design,
and has also provided fruitful insights into the area of cancer therapy. In this work, we
discussed the different subareas of the computer-aided drug discovery process with a
focus on anticancer drugs.

Keywords: anti-cancer, CADD, drug discovery, AI, computational methods
INTRODUCTION

Up to now, cancer remains a global and serious public health challenge. It is estimated that there are
more than 200 different types of cancer, generally named according to the tissue where the cancer
was recognized for the first time. Cancer is considered to be one of the significant causes for death in
the 21st century and the most critical obstacle for the increase of global life expectancy. According to
an analysis by the world health organization (WHO) in 2015, cancer is the second leading cause of
death for patients younger than 70 years old in 91 countries and the third or fourth leading cause of
death among 22 other countries (Yan et al., 2019). Moreover, a global increase of 18.1 million new
cancer cases and 9.6 million cancer-related deaths have been reported in a previous study (Bray
et al., 2018), especially 70% of the death caused by cancer occur in low-income and middle-income
countries. The fast growth of the cancer incidence and mortality has turned out to be global health
challenges. How to reduce the cancer-related death rate has attracted significant attention from the
government, society, medical industry, as well as scientific communities, expecting the rapid
development of effective and safe drugs for cancer treatment.

Despite of the impressive progress in biotechnologies and further understandings of the disease
biology, the development of new, practical and innovative small molecule drugs remains an
arduous, time-consuming, and expensive project, which requires collaborations from many
expertise in multidisciplinary fields, including medicinal chemistry, computational chemistry,
biology, drug metabolism, clinical research, etc. Furthermore, it has been illustrated that the
in.org May 2020 | Volume 11 | Article 733172
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successful discovery and development of a new drug costs 12
years, and expensive investment (Kapetanovic, 2008). Thus,
novel drug development strategies with a reduced cost of time
and money, as well as an enhanced efficiency are in high
demand, which would contribute to a significant improvement
in global health and life expectancy. Since the successful
development of HIV protease inhibitor Viracept in the USA in
1997, which was the first drug design fully driven by its target
structure (Kaldor et al., 1997), computational methods have
served as an essential tool in drug discovery projects and have
been a cornerstone for new drug development approaches. This
makes the drug developmental process faster and cheaper.
Recently, the fast growth in computational power, including
massively parallel computing on graphical processing units
(GPUs), the continuous advances in artificial intelligence (AI)
tools (Chan et al., 2019; Yang et al., 2019), have translated
fundamental research into practical applications (Zhavoronkov
et al., 2019) in the drug discovery field. This attracted
considerable attention for their outstanding performance on
providing new promising perspectives and solutions to
overcome life-threatening diseases.

In this review, we aim at providing an overview of different
subjects of the computational-method-aided new drug discovery
processes in general, and anti-cancer therapy discovery in
particular. We reviewed some of the most representative
examples and clarified fundamental principles by exploring
studies on anticancer drug designs with the help of
Frontiers in Pharmacology | www.frontiersin.org 273
computational methods. A workflow of computational drug
discovery is explained in Figure 1.
ANTI-CANCER DRUG TARGET
PREDICTION

Human contains approximately 30,000 genes, among which
around 6,000 to 8,000 sites are estimated as potential
pharmacological targets. However, less than 400 encoded
proteins have been proved to be effective for drug development
until now (Drews, 2000; Chen et al., 2016). Cancer, compared to
many other human diseases, now has a plethora of potential
molecular targets for therapeutic development (Lazo and
Sharlow, 2016). Traditional drug discovery mainly follows the
paradigm of “one molecule - one target - one disease”, without
considering the interactions between drugs and proteins.
However, an important fact that many complex diseases are
relevant to a variety of target proteins (Hopkins, 2008;
Yamanishi et al., 2008; Chen et al., 2012) has been overlooked.
Furthermore, unexpected drug functions derived from off-targets
are an accidental and uncontrollable activities because of the
“poly-pharmacological” properties of certain drugs, which might
result in undesirable side effects. Those are particularly
pronounced for cancer drugs. On the other hand, there are
some positive examples that benefit from the different pathways
targeted by one given molecule. For example, sildenafil (viagra)
FIGURE 1 | A workflow for drug discovery: from target identification to drug approval.
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was developed to treat angina, but now it is used for erectile
dysfunction therapy (Ghofrani et al., 2006). There are several
drugs, including anticancer drugs, whose corresponding target
proteins (both primary and non-target) remain yet unidentified
or unknown (Takarabe et al., 2012). Furthermore, some
attractive and potentially effective cancer targets remain
outside of the scope of pharmacological regulation. Some of
these targets such as phosphatases, transcription factors, and
RAS family members have been described as undruggable, as
they lack effective enzymatic active sites (Lazo and Sharlow,
2016). To make the full use of known drugs to treat new
indications, the characterization of all potential new ligand
binding sites has been illustrated as a key point in drug
repositioning and repurposing. Therefore, new and highly
qualitative bioinformatic target prediction methods are
required for the accurate prediction of drug targets.

Up to now, a wide range of drug target interactive web
servers has been established, providing a series of drug-target
databases and prediction tools (see Tables 1 and 2).
Moreover, various computational approaches have been
used to study potential interactions between proteins and
drugs. In particular, network-based models and ML-based
models have emerged as important tools. A review by Chen
et al. summarizes several available computational models for
this application (Chen et al., 2016). Interestingly, a method
proposed by Campillos et al. that uses the similarity of drug
side effects to determine whether multiple drugs could
interact with the same target proteins attracted our
attention (Campillos et al., 2008). Based on this research,
Frontiers in Pharmacology | www.frontiersin.org 374
Takarabe et al. took advantage of the US FDA's adverse event
reporting system (AERS) to define the pharmacological
similarity of all potential medicines and developed a novel
system to predict large-scale interactions between unknown
drug-targets (Takarabe et al., 2012). Notably, AERS was
employed to predict interactions between drugs and targets
for the first time. In 2010, Klipp et al. summarized several
available computational models for network-based drug-
target prediction (Klipp et al., 2010). Moreover, various
biological data settings, including structures of bioactive
compounds, sequences of target proteins, and information
of ligand-target interactions, have been combined. A series
o f mach ine learn ing-based approaches have been
demonstrated as efficient tools in detecting relationships
among drug structures and corresponding target proteins
from a large amount of data, such as supervised learning
method (Srivastava et al., 2014), bipartite graph learning
method (Li and Chen, 2013), bipartite local model (Yildirim
et al., 2007), and so on. A recent review by Mayr et al.
compared the predictive performance of deep learning with
other prediction approaches for multiple drug targets in the
comparative studies of composite target prediction methods.
As a result, feed-forward neural networks were identified
with better performance in drug target prediction than other
methods (Mayr et al., 2018).

As above, since a large number of compounds and vigorous
efforts are abandoned and wasted due to the off-target effects
during the classical drug development procedure, a greatly
enhanced development of target prediction in new drug
exploration exhibited attractive advantages and further
expansion in this area are still highly desirable
STRUCTURE-BASED DRUG DISCOVERY

Structure-based strategy relies on the known structural
information to define the interaction effect between bioactive
compounds and the corresponding receptors. (Wang et al.,
2000). With the development of biomolecular spectroscopic
technologies such as X-ray crystallography and nuclear
magnetic resonance (NMR), remarkable progress has been
made in this field, leading to considerable improvements in
our structural understanding of the drug target. Taking
advantages of the three-dimensional structure of the proteins,
new ligands could be rationally designed to trigger therapeutic
effects. Hence, structure-based design (SBD) could provide
critical insights into new drug design and development via
discovering and optimizing the initial lead compounds (Prada-
Gracia et al., 2016; Lu et al., 2018a). The high affinity ligand
regulates validated drug targets selectively to influence specific
cellular activit ies , ult imately achieving the desired
pharmacological, and therapeutic effects (Urwyler, 2011).
Capoten (captopril), the first ACE (angiotensin-converting
enzyme) inhibitor, was one of the first successful examples of
using structural information to optimize drug designs in the
1980s (Anthony et al., 2012). Since this study, structure-based
TABLE 1 | Drug-target database.

Databases Websites

DrugBank https://www.drugbank.ca/
TTD http://bidd.nus.edu.sg/group/ttd/ttd.asp
MATADOR http://matador.embl.de/
SuperTarget http://insilico.charite.de/supertarget/
TDR targets http://tdrtargets.org/
PDTD http://www.dddc.ac.cn/pdtd/
ChEMBL https://www.ebi.ac.uk/chembldb
STITCH http://stitch.embl.de/
BindingDB http://www.bindingdb.org/
CancerDR http://crdd.osdd.net/raghava/cancerdr/
DCDB http://www.cls.zju.edu.cn/dcdb/
TABLE 2 | Computational tools for target prediction.

Computational tools Websites

SEA https://omictools.com/sea-2-tool
Pharmmapper http://www.lilab-ecust.cn/pharmmapper/
Chemmapper https://omictools.com/chemmapper-tool
Tide http://sysbio.molgen.mpg.de/tide
DINIES http://www.genome.jp/tools/dinies/
SuperPred http://prediction.charite.de/
SwissTarget Prediction http://www.swisstargetprediction.ch/
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drug development started to serve as a novel and powerful
algorithm and technique to promote faster, cheaper, and more
effective drug development. In the past decade, extensive efforts
have been made to promote the strategy of SBD, more and more
successful applications played important roles in new medical
research (Debnath et al., 2019; Hong et al., 2019; Mendoza et al.,
2019; Itoh, 2020; Tondo et al., 2020).

Molecular Docking
Molecular docking is a typical structure-based protocol in
rational drug design by studying and predicting the binding
patterns and interaction affinities among the ligand and receptor
biomolecules (Ferreira et al., 2015). It could be categorized as
rigid docking and flexible docking according to the flexibility of
the ligands involved in the computational process (Halperin
et al., 2002; Dias and De Azevedo, 2008). The rigid docking
method is a binding model which only considers the static
geometrical, physical, and chemical complementarity between
the ligand and the target proteins, while ignores the flexibility
and the induced-fit theory (Salmaso and Moro, 2018). In general,
the rigid docking, which is fast and highly effective, is applied to
the high throughput virtual screening with a large number of
small-molecule databases to be time-efficient. While the flexible
docking method considers more detailed and accurate
information. With the rapid improvement of computing
resources and efficiency, flexible docking methods developed
continuously and became more easily accessible. There are
different types of software available for docking, such as Glide,
FlexX, DOCK, AutoDock, Discovery Studio, Sybyl, etc.

The molecular docking process is mainly composed of three
steps. First, the structures of small molecules and target proteins
should be prepared in advance. In this step, abundant
experimentally solved structures are available in the open access
PDB database (http://www.rcsb.org), which can be used to
understand many physiological processes based on the crystal
structures, and also for homologous template models if docking
structures are of interest. Second, it can act as an engine for
predicting conformations, orientations, and positional spaces in
the ligand binding site (Mathi et al., 2018). Conformational search
algorithms carry out this task to predict the conformations of
binary complexes by applying the methods of systematic and
stochastic search. Systematic search techniques include: (i)
Exhaustive search; (ii) Fragmentation; (iii) Conformational
Ensemble. On the other hand, stochastic methods include: (i)
Monte Carlo (MC) methods; (ii) Tabu search methods; (iii)
Evolutionary Algorithms (EA); (IV) Swarm optimization (SO)
methods (Ferreira et al., 2015). Finally, these programs evaluate
the putative binding-free energy, which associates the scoring
function to determine which compounds are more likely to bind
to targets during the molecular docking (Huang et al., 2010).
There are four essential types of scoring functions, including: (i)
Consensus scoring functions (ii) Empirical scoring functions; (iii)
Knowledge-based scoring functions; (iv) Force-field based scoring
functions (Kortagere and Ekins, 2010). Furthermore, new scoring
capabilities have been developed, for example (i) machine learning
technologies; (ii) interactive fingerprints; (iii) quantum
mechanical scores (Yuriev et al., 2015).
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Structure-Based Pharmacophore Mapping
With the development in the past decades, the pharmacophore
mapping method has been considered as one of the most useful
technology during the process of drug discovery. All kinds of
structure-based approaches have been conducted to improve
pharmacophore modeling, which has been widely used for
virtual screening, de novo design as well as lead optimization
(Yang, 2010; Lu et al. , 2018a). The structure-based
pharmacophore (SBP) is another useful method. Based on the
availability of ligand structures, SBP modeling methods can be
cataloged into two types: target-ligand complex-based methods
and target-binding site-based (without ligand) methods (Pirhadi
et al., 2013). The approach based on the target-ligand complex can
conveniently locate the ligand-binding pocket of the protein and
assess the main ligand-protein interactions. This is exampled by
LigandScout (Wolber et al., 2006), Pocket v.2 (Chen and Lai, 2006),
and GBPM (Ortuso et al., 2006). It is worth noting that they cannot
be used to the situations where ligands are unknown. The
macromolecule (without ligand)-based method implemented in
Discovery Studio (Lu et al., 2018b) is an obvious example which is
not dependent on the ligands and the receptor-ligand interactions.
The LUDI program (Bohm, 1992) defines the interactions within
the binding site as pharmacological characteristics. Although this
purely SBP method has the advantage of describing the entire
interaction capability of a binding pocket, the main limitation of
this method is that the derived interaction maps typically involve
many unprioritized interaction features.
LIGAND-BASED DRUG DISCOVERY

Similarity Searching
The main principle and motivation behind the ligand-based
approaches in drug discovery is a concept known as molecular
similarity; based on this principle, molecules tend to perform
similar biological effects due to the high structural similarity
(Zhavoronkov et al., 2019). In other words, ligand-based drug
discovery methods rely on the structural information of the active
ligand that interacts with the target protein, and such a compound
with interesting biological properties can be used as a query
template in identifying and predicting new chemical entities
with similar properties. Since only the structure of the known
active small molecules are required, this methodology is
considered as an indirective protocol for drug discovery. It offers
an option when the 3D target protein structure is unknown or
cannot be predicted. Hence, this approach is commonly applied to
screen novel ligands with interesting biological activities in silico
and to optimize the biological activities of ligands to improve drug
pharmacokinetics including Adsorption, Distribution,
Metabolism, Excretion, Toxicity (ADMET) properties.

This simple and most widely used technique is based on
molecular descriptors. Physicochemical properties (e.g.,
molecular weight, logP, Energy of high occupied molecular
orbital (EHOMO), Energy of lowest unoccupied orbital
(ELUMO), charges), as well as 2D fingerprint and 3D shape-
similarity searches can be introduced as coordinates to represent
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the reference compounds. The 2D fingerprint (Molprint2D and
Unity 2D) and 3D shape similarity methods (MACCS),
extended-connectivity fingerprints (ECFP), rapid overlay of
chemical structures (ROCS), and Phase Shape, are more often
used for molecular representation in virtual screening (Rush
et al., 2005). For example, Bologa et al. (2006) applied 2D
fingerprint and 3D shape-similarity methods to identify novel
agonists of the estradiol receptor family receptor GPR30 (Bologa
et al.). Furthermore, both methods have been successfully
applied in virtual screenings, and both technology have
exhibited better performance against a number of targets than
docking methods in terms of the scalability and computational
time. However, the main problem of the similar methods is their
preference for input molecules and the difficulty in deciding
which input structures to be used (Hu et al., 2012).

Ligand-Based Pharmacophore Mapping
Another more precise approach in comparison with the molecular
descriptors is the pharmacophore-based approach, in which a
pharmacophore model (PH4) is developed based on a group of
active compounds. The IUPAC (International Union of Pure and
Applied Chemistry) pointed out that a pharmacophore is “a
collection of spatial and electronic characteristics necessary to
ensure optimal supramolecular interactions with specific
biological targets and to trigger (or block) their biological
reactions” (Buckle et al., 2013). Thus, structural overlap of key
molecular features derived from active compounds or a binding site
in space are used as a pattern to represent the most probable
chemical characteristics. The newly identified molecules that match
and show a high complementation to the developed
pharmacophore are likely to be active against the target protein of
interests. Therefore, they can be selected as candidates for more
further investigations. This approach has become a key
computational strategy to promote and guide drug discoveries in
the absence of macromolecular structures (Chao et al., 2007).

The process of pharmacophore modelling can be summarized as
following: (i) Selection of a training set of ligands (active and inactive
compounds). (ii) Molecular preparation (low energy conformations).
(iii) Ligand alignment/superimposition and pharmacophore model
generation. (iv) Validation of pharmacophore models (Chiang et al.,
2009). Ligand-based pharmacophoremodeling highly depends on the
availability of a good training set of compounds manifesting the same
binding mode.

QSAR Modeling
QSAR (Quantitative Structure Activity Relationship) is another
ligand-based approach that relies on analyzing the biological
activities of drugs using various molecular descriptors (MDs) or
fingerprints (FPs). These models mathematically describe how
the activities response to the targets according to the ligand's
structural characteristics. QSAR was obtained by calculating the
correlations between the properties of the ligand binding agent
and the biological activity measured by experiments. Different
ML and deep learning (DL) approaches have also been applied to
develop QSARmodels (Mendenhall and Meiler, 2016): including
Support Vector Machine (SVM), Random Forest (RF),
Frontiers in Pharmacology | www.frontiersin.org 576
Polynomial Regression (PR), Multi Linear Regression (MLR),
Artificial Neural Network (ANN). Unlike the pharmacophore
models, QSAR models can measure biological activities
quantitatively and can even find positive or negative effects
according to certain characteristics of the molecule on its activity.

QSAR has been applied to many other molecular design
purposes, such as predicting the new molecule analog activity,
optimizing lead, and predicting new structural leads in drug
discovery. In the classical 2D-QSAR approaches, the biological
activity is related to physical and chemical features consisting of
steric, electronic, and hydrophobic characters of drugs, and the
relationships are represented as mathematical equations (Hansch
and Fujita, 1964). More advanced 3D-QSAR approaches, such as
comparative molecular field analysis (Cramer et al., 1988) and
molecular similarity indexes in a comparative analysis (Klebe
et al., 1994), are based on the force field calculations. The
structural information of molecules is needed, and developed
models are represented in 3D contour maps facilitating the
visualization and interpretation.
USING MD SIMULATION TO FIND NEW
DRUG BINDING SITES

Many important biological events rely on the information of
protein-ligand complex interactions. The recognition and
characterization of LBP is the key to understand the function of
endogenous ligands and synthetic drug molecules. GPCRs perform
an important role in a variety of physiological processes. GPCRs are
a class of commonly used targets in drug discovery (Conn et al.,
2009). Recent discovery indicated that beside binding to orthosteric
sites, ligands could bind to different allosteric sites that are far away
from the targeted binding pockets (Tautermann, 2014; Flock et al.,
2015; Devree et al., 2016). Unfortunately, the position of such
allosteric pocket is unclear without the information of
experimental structures, and predicting the existence of such sites
could facilitate the discovery of new drugs (Tautermann, 2014). A
recent overview described the progresses in important
computational tools for the prediction of functional sites, such as
3DLigandStie (http://www.sbg.bio.ic.ac.uk/~3dligandsite/),
COACH-D (http://yanglab.nankai.edu.cn/COACH-D/), or
SiteMap (https://www.schrodinger.com/sitemap), and many
others. However, these reported tools often create multiple
possible ligand binding sites, and sometimes it is not easy for the
user to confirm which active pocket is real one for the compound
binding. To overcome this limitation, methods based on molecular
dynamics (MD) have been developed in recent years. For example,
the supervised MD is an efficient approach for precise sampling and
the identification of ligand-binding sites (Sabbadin andMoro, 2014;
Deganutti et al., 2015; Cuzzolin et al., 2016). The conventional long-
timescale MD has also been successfully applied for new drug
binding sites (Chan et al., 2018). Similarly, a study by Chan et al.
(2020) reported that an additional sodium ion, which located in the
vicinity of the orthosteric binding site, by MD simulations (Chan
et al., 2020). MD could also be applied for the recognition of the
allosteric sites involved in protein kinases (Tong and Seeliger, 2015),
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Ras proteins (Hancock, 2003), and Staphylococcus aureus Sortase A
(Mazmanian et al., 1999). As above, information obtained fromMD
predictions provides new opportunities of drug discovery.
ARTIFICIAL INTELLIGENCE IN ANTI-
CANCER DRUG DISCOVERY

Computational drug design has successfully promoted the discovery
of several new anticancer drugs, which has become a milestone in
this area. Gefitinib (Muhsin et al., 2003), Erlotinib (Grunwald and
Hidalgo, 2003), Sorafenib (Wilhelm et al., 2006), Lapatinib (Wood
et al., 2004), Abiraterone (Jarman et al., 1998), Crizotinib (Butrynski
et al., 2010) are all approved drugs that have been discovered based
on computational drug methods. Until now, the anticancer drug
research is rapidly progressing: computational, and AI methods are
generating new promising results. As an example, SR13668 is
optimized from indole-3-carbinol (I3C) using PH4 design.
SR13668 has shown a strong effect on different cancers in phase I
(Chao et al., 2007). Recently, Rodrigues et al. have successfully
identified a potent inhibitor for 5-lipoxygenase by using machine
learning (ML)-based method which was developed from
physicochemical and pharmacophore characteristics (Reker et al.,
2014; Rodrigues et al., 2018). With the arrival of AI, the design of
anticancer drugs in silico has undergone unprecedented changes,
and state-of-the-art deep learning approaches have the potential to
produce the excellent chemical properties needed for newmolecules
(Gomez-Bombarelli et al., 2018). Similarly, Jann et al. have
developed the first ML-based anti-cancer compound generator
using variational autoencoders (VAEs) and have demonstrated
Frontiers in Pharmacology | www.frontiersin.org 677
that the compound production may be selective toward molecules
with high predicted inhibition to a specific cancer (Born et al., 2019).
This implied that models could be developed to yield drug
candidates with highly desired efficacy (IC50) against a target of
interest. This breakthrough could transform the design of anticancer
drugs in silico by taking advantage of the bimolecular features of the
disease to improve the success rate of lead compound discovery.
SUCCESSFUL STORIES OF
COMPUTATIONAL DRUG DISCOVERY

Computational methods have proved to play an essential role in
modern drug discovery. Since computational methods could cover
almost all stages of the drug discovery pipeline, the applications of
computational methods in anticancer drug discoveries have shown
great advantages in terms of the required investment, resources, and
time. More recently, computational methods have become a potent
and powerful tool in several successful cases of anticancer drug
development. Herein, we list several successful applications of
computational methods for small molecule drugs, which have been
applied to cancer treatment or are at later stages in the clinical trial.

The development of Crizotinib is a successful example of applying
structure-based design techniques (Cui et al., 2011; Kung et al., 2015).
Crizotinib has been considered as a selective and potent cMet/ALK
dual inhibitor, which was approved by FDA in 2011 (Cui et al., 2013).
c-Met, also known as HGFR (hepatocyte growth factor receptor), and
its corresponding natural ligandHGF (hepatocyte growth factor) play
a critical role in different cell activities (Christensen et al., 2005). The
over-expression of c-Met protein has been often detected in human
A

B

C

SCHEME 1 | Successful applications of computational methods in anti-cancer drug discovery.
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cancers (including SCLC and NSCLC) (Bottaro et al., 1991; Liu et al.,
2008), and abnormal function of c-Met signaling was observed in
various solid and blood tumor cancers. Thus, c-MET is an attractive
and promising oncology target.

The investigation started with evaluating a series of 3-substituted
indolin-2-ones, a potent class of kinase inhibitors, indolin-2-one
derivatives for c-MET inhibition. Among the derivatives,
compound 1 (PHA-665752, Scheme 1) showed strong activity
against the c-MET autophosphorylation process and the
corresponding biological activations both in vitro and in vivo.
However, the bad drug-like characteristics of compound 1 (PHA-
665752) limited its further study. The co-crystal structure analysis of
compound 1 with the kinase domain of c-MET elucidated the key
inhibitor binding site, presenting opportunities for more efficient
drug designs. In combination with re-designing the central rings of
compound 1 (PHA-665752), a new set of 5-substituted 3-
benzyloxy-2-aminopyridine series has been developed. Among
these newly designed derivatives, compound 2 displayed
promising inhibition against c-MET. It is noted that lipophilic
efficiency (LipE) was employed as the parameter for the binding
effectiveness to monitor the progress of optimization. To further
improve the c-Met inhibitory potency, a docked structure of
compound 2 with the c-Met kinase domain was carried out to
guide the application of structure-based design techniques.
Followed by optimization of 3-benzyloxy group, the functional
group at 5-position of the 2-aminopyridine, and examination of
the chiral center, crizotinib (PF-02341066) with effective tumor
growth inhibition and good drug performance has been achieved
(see Scheme 1A). Moreover, Crizotinib has demonstrated
remarkable clinical efficacy on c-MET gene amplification against
lung cancer, lymphoma, and esophageal cancers (Cui et al., 2011;
Lennerz et al., 2011; Schwab et al., 2014).

In 2012, Axitinib (AG-013736) was approved by the FDA as as a
new therapy for advanced renal cell carcinoma (Meadows and
Hurwitz, 2012) to treat VEHG. Axitinib was developed with a
structure-based drug design strategy and served as an inhibitor by
binding to the VEGF kinase domain in the DFG-out conformation
(Kania, 2009; Kania et al., 2016). The VEGF (vascular endothelial
growth factor) family functions as important regulators of many
signaling networks which involves in angiogenesis. VEGF signaling
was identified in tumor cells, and the VEGF signaling plays a crucial
role in the development of malignant diseases. As the key receptors
of VEGF, VEGFRs serve as ligands in the VEGF signaling network.
The VEGF receptors are known as a class of the tyrosine kinases
(RTKs), including VEGFR-1 (also called FLT1), VEGFR-2 (also
called FLK1 and KDR) and VEGFR-3 (also called FLT4). Blocking
the action of VEGFRs with a pan kinase inhibitor against VEGFR-1,
VEGFR-2, and VEGFR-3 has been proved to be an efficient way of
anti-angiogenic drug development.

During the developmental process, the crystal structure of
phosphorylated construct (p-VEGFR2D50), the resolved
structures of inhibitor–VEGFR2D50 (unphosphorylated kinase)
complexes, and robust SAR provided important guidance to the
rational drug design (Kania, 2009). Combining with the complex
structure information, a collection of compounds has been
evaluated, generating pyrazoles 3 and benzamide 4 as the starting
Frontiers in Pharmacology | www.frontiersin.org 778
point for the drug design. Further efforts have been made by the
modeling of pyrazole 3 into the ligand-free p-VEGFR2D50
structure to modify the conformation of pyrazole 3 further,
leading to the generation of indazole compounds as novel kinase
inhibitors. Among these derivatives, compound 5 with a styryl
functional group at the 3-position of the indazole ring was
identified to exhibit potent inhibitory effect (Ki of 0.3 nM), with
a high level of LipE and LE. The crystal structure of VEGFR2D50
with compound 5 revealed the detailed enzyme-ligand mode,
showing the indazole core binding to the “open” DFG-in
conformation of VEGFR2D50. Superimposing the other two
VEGFR2D50– inhibitor co-crystal complex structures
demonstrated a more precise 3D structure of the key binding
sites for the induction of the DFG-out conformation. Inspired by
the superposition result, a chimera design protocol was applied for
the subsequent design to capture the above described inhibitor
interactions, giving access to 6–sulfur linked indazole compound 6
and the corresponding amide analogs. Further studies on the
overlay of VEGFR2D50 bound co-crystal structures of benzamide
4 and indazole 6 demonstrated that an additional amide group on
the orthosteric site of S-phenyl group would help to make the two
important hydrogen bonds with the hydrogen bonding groups
from Glu885 and Asp1046 of VEGFR2D50 and provide highly
potent inhibitors. Further applying the truncation strategy
generated axitinib (AG-013736) (see Scheme 1B), which
exhibited a remarkable improvement on cellular potency,
desirable physiochemical, and PK properties. Very recently,
axitinib (Inlyta®), in combination with pembrolizumab
(KEYTRUDA®), was approved as the first-line anticancer drug
against renal cell carcinoma (RCC)(Atkins et al., 2018).

Heat shock protein 90 (HSP90) has direct and essential effects
on the correct performance of different proteins with their
activation, conformation, stabilization, and localization
functions, whose alterations are associated with cancer
development. Thus, HSP90 has become a promising target for
cancer treatment (Whitesell and Lindquist, 2005; Pearl and
Prodromou, 2006; Sharp and Workman, 2006; Workman et al.,
2007). The biological functions of HSP90 have been identified.
Its crystal structures indicated that HSP90 has four functional
domains: a middle domain, an N-term domain, ATP/ADP-
binding domain, and a C-term dimerization domain (Pearl and
Prodromou, 2006). Based on the structural information of
HSP90, a high-throughput screening was conducted which
generated the active drug inhibitor: compound 7 (CCT018159)
(Cheung et al., 2005; Smith et al., 2006; Sharp et al., 2007). The
subsequently obtained co-crystal structure of HSP90-compound
7 (CCT018159) complex revealed that further modification of
compound 7 (CCT018159) by replacing or adding certain
functional groups could improve the pharmacokinetic
properties. Moreover, replacing the methyl group to an amide
group (VER-49009), changing pyrazolyl ring to isoxazole
aromatic ring (VER-50589), and modifying some other
chemical groups (see Scheme 1C) led to a potent effect in
animal cancer models. Followed by toxicology and safety
evaluation, Luminespib (NVP-AUY922) has been proved to be
a strong HSP90 inhibitor which is now in clinical trials. More
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TABLE 3 | The list of FDA-approved anticancer drugs in recent 3 years from the National Cancer Institute database.

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Alpelisib Breast cancer PI3K inhibitor 2019
(Markham, 2019a)

Cladribine Hairy cell leukemia Adenosine deaminase inhibitor 2019
(Bryson and Sorkin,
1993)

Darolutamide Prostate cancer Androgen receptor inhibitor 2019
(Markham and
Duggan, 2019)

Entrectinib Non-small cell lung cancer
and Solid tumors

Tyrosine kinase inhibitor 2019
(Al-Salama and
Keam, 2019)

Erdafitinib Urothelial carcinoma FGFR tyrosine inhibitor 2019
(Markham, 2019b)

Fedratinib
Hydrochloride

Myelofibrosis Tyrosine kinase inhibitor 2019
(Zhang et al., 2014)

Selinexor Multiple myeloma Nuclear export inhibitor 2019
(Syed, 2019)

Zanubrutinib Mantle cell lymphoma Bruton's tyrosine kinase inhibitor 2019
(Syed, 2020)

Abemaciclib Breast cancer Cyclin-dependent kinase inhibitor 2018
(Kim, 2017b)

Apalutamide Prostate cancer Androgen receptor inhibitor 2018
(Al-Salama, 2019)

Binimetinib Melanoma MEk1 and MEK2 inhibitor 2018
(Shirley, 2018)

Dacomitinib Non-small cell lung cancer Oral kinase inhibitor 2018
(Sidaway, 2018)

(Continued)
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TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Duvelisib Chronic lymphocytic
leukemia (CLL) and follicular
lymphoma (FL)

PI3K Kinase inhibitor 2018
(Blair, 2018)

Encorafenib Colorectal cancer and
Melanoma

BRAF Kinase inhibitor 2018
(Shirley, 2018)

Gilteritinib
Fumarate

Acute myeloid leukemia Tyrosine kinase inhibitor 2018
(Dhillon, 2019)

Glasdegib
Maleate

Acute myeloid leukemia Hedgehog pathway inhibitor 2018
(Shaik et al., 2019)

Iobenguane I
131

Pheochromocytoma Radioactive therapeutic agent 2018
(Giammarile et al.,
2008)

Ivosidenib Acute myeloid leukemia Isocitrate dehydrogenase-1 (IDH1) inhibitor 2018
(Dhillon, 2018)

Larotrectinib
Sulfate

Solid tumors Tropomyosin-related kinase (Trk) inhibitor 2018
(Gajdosik, 2017)

Lorlatinib Non-small cell lung cancer Tyrosine kinase inhibitor 2018
(Su et al., 2019)

Talazoparib
Tosylate

Breast cancer Poly (ADP-ribose) polymerase (PARP) inhibitor 2018 (Eskiler, 2019)

Acalabrutinib Chronic lymphocytic
leukemia, small lymphocytic
lymphoma, and mantle cell
lymphoma

Bruton's tyrosine kinase inhibitor 2017
(Markham and
Dhillon, 2018)

(Continued)
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recently, Luminespib, a drug in phase one clinical trials,
exhibited positive results for patients with ALK rearrangements
(Felip et al., 2018). Luminespib (NVP-AUY922) also exhibited
potent anti-tumor activity in lung adenocarcinomas targeting
EGFR exon 20 insertion mutations and cellular models in a
confirmatory clinical trial (Jorge et al., 2018; Piotrowska et al.,
2018). Moreover, Luminespib (NVP-AUY922) serves as one of
Frontiers in Pharmacology | www.frontiersin.org 1081
the components in anticancer combination therapies, which are
now at different stages of clinical trials (Garcia-Carbonero et al.,
2013; Rong and Yang, 2018). To depict how computational drug
discovery facilitates to the development of anticancer drugs, we
listed the FDA-approved anticancer drug in recent 3 years which
was obtained from National Cancer Institute database (Heller,
1951) in Table 3.
TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Brigatinib Non-small cell lung cancer Anaplastic lymphoma kinase (ALK) and epidermal
growth factor receptor (EGFR) kinase inhibitor

2017
(Markham, 2017a)

Copanlisib
Hydrochloride

Follicular lymphoma Phosphoinositide 3-kinase (PI3K) inhibitor 2017
(Markham, 2017b)

Enasidenib
Mesylate

Acute myeloid leukemia Isocitrate dehydrogenase-2 inhibitor 2017
(Gras, 2017)

Midostaurin Acute myeloid leukemia Synthetic indolocarbazole multikinase inhibitor 2017
(Kim, 2017a)

Neratinib
Maleate

Breast cancer Receptor tyrosine kinases (RTKs), Human
epidermal growth factor receptor 2 (HER2; ERBB2),
and Human epidermal growth factor receptor
(EGFR) inhibitor

2017
(Kotecki et al.,
2019)

Niraparib
Tosylate
Monohydrate

Recurrent epithelial ovarian,
fallopian tube and primary
peritoneal cancer

Poly (ADP-ribose) polymerase (PARP) inhibitor 2017
(Mittica et al., 2018)

Ribociclib Breast cancer Cyclin-dependent kinase (CDK) inhibitor 2017
(Syed, 2017)
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CONCLUSION AND PERSPECTIVE

Cancer has become a tangible threat to human health. About 9.6
million people are estimated to die from the various forms of
cancer each year, according to a statistic report (Collaborators,
2019). Cancer has become the second-largest disease that causes
human death (Reimann et al., 2020). However, developing a new
drug molecule costs 12 years and 2.7 billion USD on average
(Hauser et al., 2017). The drug development for cancer even
becomes more complicated, especially considering the molecular
pharmacology is still not well understood. Hence, the discovery
and development of new drugs is considered very expensive and
time-consuming. In this respect, computational methods could be
constructive for performing different tasks including protein-
interaction network analysis, drug-target prediction, binding site
prediction, virtual screening, and many others. All these
innovative methods could considerably facilitate the anti-cancer
drug discovery. In recent years, with the advance of AI, more
Frontiers in Pharmacology | www.frontiersin.org 1182
sophisticated methods, such as retro-synthetic routine plan, drug
scaffold generation, drug binding affinity predictions, were
developed. The useful predictions generated by computational
models combined with experimental validations could further
speed up the anti-cancer drug development.
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Pharmacological Relevance: Paclitaxel (PTX) is currently the only botanical drug that
can control the growth of cancer cells. Paclitaxel is widely used in the treatment of breast
cancer, ovarian cancer, uterine cancer, non-small cell lung cancer and other cancers.

Aim: Folate receptor and integrin avb3 are highly expressed on the surface of human breast
cancer cells MCF-7. Folic acid and arginine-glycine-aspartate (Arg-Gly-Asp, RGD) tripeptide
sequence have a high affinity for folate receptor and integrin avb3, respectively. To enhance
the effect on breast cancer, we constructed the folate acid and RGD peptide dual-targeted
(MSNs-NH2-FA-RGD) drug-carrier based on mesoporous silica nanoparticles.

Methods: The structure of mesoporous nanocarriers was characterized by Fourier
transform infrared spectroscopy, nitrogen adsorption-desorption analysis, transmission
electron microscopy, laser particle size analyzer, and thermogravimetric analysis.
Paclitaxel was chosen as the model drug. The targeting-ability was verified by
observing the uptake of mesoporous carriers loaded with rhodamine in MCF-7, MCF-
10A, and HeLa cells using a fluorescence microscope. The cytotoxicity of the blank carrier
MSNs-NH2-FA-RGD and the efficacy of the drug carrier PTX@MSNs-NH2-FA-RGD were
assessed by cell experiments.

Results: The characterization showed successful construction of a dual-targeted
mesoporous silica nanocarrier. Obvious differences were detected in the fluorescence
intensity of the three cell lines. The results of the pharmacological tests indicated that the
blank nanoparticles do not cause any apparent toxicity on these cells. The IC50 of free PTX
and PTX@MSNs-NH2-FA-RGD on MCF-7 cells line treated for 48 h were 35.25±2.57
ng·ml-1 and 22.21±3.4 ng·ml-1 respectively, which indicated that the inhibitory efficacy of
PTX@MSNs-NH2-FA-RGD on MCF-7 was 1.6 times than that of free PTX.

Conclusions: The dual-targeted nanocarrier MSNs-NH2-FA-RGD could target breast
cancer cells, and sever as a potential candidate in future of drug development.

Keywords: mesoporous silica, active targeted, folic acid, RGD peptide, MCF-7 cells, paclitaxel
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INTRODUCTION

Breast cancer seriously harms women's health. Statistics show
that 1.2 million women worldwide suffer from breast cancer each
year, and 500,000 women die from breast cancer (Raviv, 2004).
In recent years, the patient population has shown a trend of
being younger. Traditional chemotherapy exposes many issues,
such as poor specificity by chemotherapeutics, drug resistance
caused by repeated and large doses of multi-drugs, and side
effects to normal tissues. Fortunately, the treatment has received
widespread attention in the medical community. Many
researchers have put a lot of effort into targeted treatment
field. With in-depth research, nanocarriers are found to play
an increasingly important role in targeted therapy. Owing to
passive or active targeted delivery of drugs, the nanocarriers have
shown great potential in improving drug concentration and
bioavailability in tumor sites (Darvishi and Farahmand, 2017).

Mesoporous silica nanoparticles (MSNs) are unique among
numerous inorganic nanomaterials due to their good
biocompatibility, high load capacity, and uniform adjustable
pore size (Song et al., 2007; Kazuki et al., 2013). By modifying
the surface of MSNs with different substances and groups, the
MSNs carrier can be endowed with the ability of targeting and
stimulate-responsive, avoiding the early leakage of drugs and
increasing the concentration of drugs at the lesion sites. The
surface of MSNs could also be easily functionalized with a variety
of targeted groups, such as antibody (Zhang et al., 2015; Tao
et al., 2016), protein (Pourjavadi and Tehrani, 2016), peptides,
and small molecules (Alejandro et al., 2014). Kazuki et al (Kazuki
et al., 2013) wrapped the peptide Ac-(VKVS)4E-NH2 on the
surface of MSNs. The conformation of Ac-(VKVS)4E-NH2

changed in different pH environments, controlling the
exposure and coverage of the mesoporous orifice, thereby the
carrier system showed pH-dependent release behavior. Xue et al.
(2011) utilized the supramolecular force between benzimidazole
Frontiers in Pharmacology | www.frontiersin.org 287
and b-cyclodextrin, choosing fluorescent dye Hoechst 33342 as
model cargo, to construct a cyclodextrin-based silica pH
controlled release system. This carrier exhibits an acid-
responsive ability to release drugs and induce cancer cell
apoptosis in human pancreatic cancer cell PANC-1.
Martinez-Carmona et al., (2018) modified the targeted ligand
plant lectin concanavalin (ConA) on MSNs to enable the
nanocarrier to specifically recognize human osteosarcoma
cells. Tian et al., (2016) utilized iron-binding glycoprotein
(Tf) not only as an entrant into the target sites but also as a
blocking agent to inhibit the release of the drug before entering
the tumor cells. He et al., (2012) functionalized MSNs with
nucleic acid sequence polyadenylic acid and loaded with
coralyne and near-infrared photothermal dye indocyanine
green (ICG), constructing a nano-therapy platform combining
chemical and photothermal therapy.

Folic acid receptors (FR) and integrin avb3 have the
characteristic of expression specificity, that is, they are highly
expressed on the surface of tumor cells but not expressed on the
surface of normal cells. RGD peptide is a type of short peptide
containing arginine-glycine-aspartate (Arg-Gly-Asp, RGD)
peptide sequence, which is the smallest unit that can be
recognized by integrin avb3 (Hee Dong et al., 2010; Porta
et al., 2013). Folic acid (FA) and RGD peptides have strong
affinity for FR and integrin avb3, so FA and RGD peptides are
often used as targeted modification groups. There have been
studies on separately grafting FA or RGD peptide onto
mesoporous silica carriers. In this experiment, for the first
time, we grafted both FA and RGD peptide on the surface of
MSNs as shown in Figure 1, constructing a dual-targeting
nanocarrier MSNs-NH2-FA-RGD. Modifying folic acid groups
(NHS-PEG-FA) and RGD peptide groups (NHS-PEG-RGD)
onto the surface of MSNs endows the carrier with the ability to
actively target cancer sites, and the PEG long chains enhance the
in vivo stability of the carrier.
FIGURE 1 | Schematic illustration of preparation process of MSNs-NH2-FA-RGD.
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Paclitaxel (PTX) is a tetracyclic diterpenoid compound with
potent effects on cancers, such as breast cancer, colon cancer,
bronchial cancer, and endometrial cancer. PTX could specifically
bind to different sites of the tubules and aggregate the
microtubules, thereby inhibiting the normal reorganization of
the microtubule network and interfering with the cell mitosis. It
is one of the most energetic anti-tumor drugs since doxorubicin
(Ren et al., 2005). However, PTX has low bioavailability and
extremely poor solubility (water solubility of 0.006 g·L-1), which
brings some difficulties to clinical application (Lv et al., 2014).
We chose PTX as a model drug to evaluate the drug loading of
MSNs-NH2-FA-RGD@PTX. Loading PTX of nanometer-sized
into MSNs-NH2-FA-RGD would not only solve the problem of
poor solubility but also significantly improve bioavailability. FR
and integrin avb3 are highly expressed on the surface of MCF-7
cells but not on the surface of human normal breast epithelial
cells MCF-10A, and human cervical cancer cells HeLa only
express FR on the surface (Shen et al., 2011). Cell experiments
were used to evaluate the biocompatibility, anti-cancer efficacy
and cellular uptake of nanocarriers.
MATERIALS AND METHODS

Materials
Cetyltrimethylammonium bromide (CTAB), 3-aminopropyltrietho
xysilane (APTES), tetraethylorthosilicate (TEOS), and rhodamine
(RhB) were purchased from Aladdin Chemical Reagents (Shanghai,
China,). Folic acid polyethylene glycol succinimidyl activated ester
(FA-PEG-NHS, PEG= 2000) and RGD tripeptide polyethylene
glycol succinimidyl activated ester (RGD-PEG-NHS, PEG= 2000)
were purchased from Pengshuo Biotechnology Co., Ltd (Shanghai,
China). Paclitaxel (purity ≥ 98 %) was purchased from Ruifensi Co.,
Ltd (Chengdu, China). Lysotracker green DND-22 was obtained
from Invitrogen Life Technologies Corporation (Tianjing, China).
Other reagents and solvents were provided by Dingguo reagent
company (Beijing, China). All the chemical reagents used in this
experiment were of analytical grade and used without
further purification.

Characterization
The mesoporous structure and morphology of the nanoparticles
were characterized by transmission electron microscopy (TEM)
(Tecnai G2 F30, USA) at an accelerated voltage of 300 kV. The
dispersing agent is water and the dispersions are stabile in 12 h.
Nitrogen adsorption-desorption analysis at 77 K was carried out
on an adsorption analyzer (ASAP 2460, Micromeritics, USA).
Zeta potential and particle diameter experiments were performed
at 25 °C using Malvern ZetaSizer Nano-S90. The Fourier
transform infrared (FTIR) spectra were obtained on an FTIR
spectrometer (Nexus, Thermo Nicolet, USA). Thermogravimetric
analysis (TGA) was performed by a Thermo Gravimetric Analyzer
(STA8000, Perkin Elmer, USA) under N2 atmosphere at a heating
rate of 10 °C·min-1. All fluorescence spectra were obtained on a
Frontiers in Pharmacology | www.frontiersin.org 388
fluorescence microscope (Hitachi F-7000 FL Spectrophotometer).

Preparation of MSNs-NH2-FA-RGD
3 g CTAB was solubilized in 1440 ml of deionized water in three-
necked flask heated to 80°C in an oil bath. Then the temperature
of the CTAB solution was adjusted to 80°C before adding 10.5 ml
sodium hydroxide aqueous solution (2.0 mol·L-1), followed by
dropwise addition of 15 ml TEOS under vigorous stirring. After 2
h, the resultant product was collected by filtration using a suction
pump and rinsed with ethanol. To remove the surfactant
template CTAB, the product was calcined at 550°C for 4 h in a
muffle furnace to obtain MSNs.

The introduction of aminopropyl groups through the post-
grafting process was conducted by dispersing 0.9 g MSNs in 90
ml toluene, followed by the addition of 434 ml APTES. The mixture
was refluxed and stirred at 90°C in an oil bath for 6 h, followed by
centrifugation with 10000 rpm for 15min and washing with ethanol
and distilled water at room temperature. The resultant product was
dried to a constant weight under vacuum to obtain MSNs-NH2.

An equivalent of 40 mg of NHS-PEG-FA was dispersed by
ultrasonication in 50 ml dimethyl sulfoxide (DMSO), and the pH
of the system was adjusted to be alkaline by triethylamine. Then,
200 mg of MSNs-NH2 was mixed in DMSO by then magnetic
stirring for 4 h. The solids were collected by centrifugation and
washing with ethanol. After drying under a vacuum atmosphere,
MSNs-NH2-FA was obtained. MSNs-NH2-FA-RGD was
synthesized similarly. 200 mg of MSNs-NH2-FA was dispersed
in DMSO-triethylamine with 40 mg of NHS-PEG-RGD. After 4
h, the reaction product was collected by centrifugation, washing,
and vacuum drying.

Preparation of Drug-Loaded Nanocarriers
10 mg PTX and 20 mg MSNs-NH2-FA-RGD were ultrasonically
dispersed in 20 ml absolute ethanol and magnetically stirred for
24 h at room temperature to load the drug. Subsequently, the
PTX-loaded MSNs-NH2-FA-RGD (denoted as PTX@MSNs-
NH2-FA-RGD) was collected by suction filtration, with the
surface adsorbed PTX washed away by phosphate-buffered
saline (PBS) (pH=7.4). PTX@MSNs-NH2-FA-RGD were
collected after vacuum drying.10 mg drug-loaded particles was
placed in a volumetric flask with methanol, followed by
sonication for 1 h and analysis by high-performance liquid
chromatography (HPLC). Drug loading rate (%) and
entrapment rate (%) were calculated by HPLC at maxima
wavelength of 229 nm using the following equation which was
quoted from the Pharmacopoeia of the People's Republic of
China:

Drug loading rate = (W1 −W2)=Wnanocarriers � 100%

Encapsulation rate = (W1 −W2)=W1 � 100%

whereW1,W2 andWnanocarriers represented the weight of PTX
added, the weight of PTX in supernatant and the weight
of nanocarriers.
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RhB-Labeled Nanocarriers
RhB was used as a guest molecule to evaluate the ability of
targeting tumor sites because of its fluorescence properties. 200
mg of MSNs-NH2, MSNs-NH2-FA, and MSNs-NH2-FA-RGD
nanoparticles were mixed in the ethanol solution of RhB (0.4
mg·ml-1) for 4h. After centrifugation for 15 min at room
temperature with 10000 rpm, the solid particles were dried in
vacuum to constant weight. The RhB-labeled mesoporous silica
nanoparticles were termed as RhB@MSNs-NH2, RhB@MSNs-
NH2-FA, RhB@MSNs-NH2-FA-RGD, respectively.

Cell Culture
The cell culture tests were performed using HeLa, MCF-7, and
MCF-10A cells purchased from the American Type Culture
Collection (Manassas, VA, USA). MCF-7 cells and HeLa cells
were cultured in RPMI 1640 medium with 10% heat-inactivated
fetal bovine serum (FBS). MCF-10A cells were cultured in
DMEM/F12 medium with 5 % horse serum, 10 mg·ml-1 insulin,
20 ng·ml-1 EGF, 100 ng·ml-1 cholera toxin, and 0.5 mg·ml-1

hydrocortisone. All cells were cultivated in an incubator with
5 % CO2 at 37°C.

Cell Uptake and Location
Collect HeLa, MCF-7, and MCF-10A cells in the logarithmic
growth phase and seed them in 96 wells at a density of 6 × 104,
6 × 104, and 1.5 × 105 cells/ml. After the cells were incubated for 24
h, aspirate the medium. The cells were incubated with RhB@MSNs-
NH2, RhB@MSNs-NH2-FA, and RhB@MSNs-NH2-FA-RGD (20
µg·ml-1) for 4 h. Each well was washed three times with cold PBS to
remove the nanoparticles not internalized into the cells and then the
cell morphology was fixed with 4% paraformaldehyde for 5 min.
Subsequently, the nucleus was stained with DAPI for 5 min, while
lysosomes were identified using the dye named Lysotracker.
Fluorescence microscopy of fluorescein-labeled cells was
performed with an Imaging System equipped with three Led
Lights Cubes (BioFlux 1000Z, USA, Fluxion Biosciences).

In Vitro Toxicity Test of Blank Carrier
The CCK- 8 method was used to determine the toxicity of the
blank nanocarrier MSNs-NH2-FA-RGD to MCF-7 cells. Collect
MCF-7 cells in the logarithmic growth phase and seed them in 96
wells at a density of 6 × 104 cells/ml. After the cells were
incubated for 24 h, we aspirated the medium and added 100 ml
of complete medium containing different concentrations of
MSNs-NH2-FA-RGD (concentrations of 20, 40, 80, and 160
mg·ml-1) to each well. Cultivate MCF-7 cells in a constant
temperature incubator for 24 h or 48 h. Measure the
absorbance of each well at 450 nm by micro plate reader
(Thermo scientific, USA) and calculate the inhibition rate.

In Vitro Antitumor Drug Efficacy
Collect MCF-7 cells in the logarithmic growth phase and seed
them in 96 wells at 6 × 104 cells/ml. Configure the complete
medium for PTX@MSNs-NH2-FA-RGD and free PTX to
Frontiers in Pharmacology | www.frontiersin.org 489
different concentrations (based on the PTX concentration as a
quantitative basis, and set the concentration gradient to 10, 30,
100, 300, 1000 ng·ml-1). After culturing MCF-7 cells for 24 h,
aspirate the medium and add complete medium with different
concentrations of PTX mentioned above. Cultivate MCF-7 cells
in constant temperature incubator for 24 h and 48 h. Measure the
absorbance of each well at 450 nm by a microplate reader
(Thermo scientific, USA) and calculate the inhibition rate.
RESULTS AND DISCUSSION

Preparation and Characterization of
MSNs-NH2- FA-RGD Nanocarrier
TEM images showed that the MSNs and MSNs-NH2-FA-RGD
nanoparticles were spherical, with smooth surface and even
distribution (Figures 2A, B). After modification, the ordered
mesopores could still be directly observed from Figure 2B, which
proved that modified process would not affect the mesoporous
structure of them. The laser particle size analyzer showed that the
average particle sizes of MSNs and MSNs-NH2-FA-RGD were
188.6 nm (PDI= 0.267) and 204.1 nm (PDI= 0.269), respectively
(Figure 2C). Zeta potential of MSNs in distilled water was -18.4 ±
4.30 mV. Because of the amino group on the surface, zeta potential
of MSNs-NH2 was reversed to 25.6 ± 3.8 mV after the process of
amination. Due to the PEG long chains on the targeted group
covering the positive charge of MSNs-NH2, the positive potential of
MSNs-NH2-FA, and MSNs-NH2-FA-RGD have decreased to
24.4 ± 7.36 mV and 22.9 ± 3.9 mV, respectively (Figure 2D).

Figure 3A showed the FT-IR spectra of a) MSNs, b) MSNs-
NH2, c) MSNs-NH2-FA, and d) MSNs-NH2-FA-RGD. As
shown in curve (a), the strongest absorption peak at 1083
cm-1 was the symmetric stretching vibration peak of Si-O-Si.
3400 cm-1 and 1640 cm-1 were the stretching vibration peak
and bending vibration peak of Si-OH, respectively, indicating
that there were hydroxyl groups with different bonds and
states on the surface of SiO2. In the curve (b), the stretching
vibration peak of the methylene group at 2926 cm-1 and the
bending vibration peak of the amino group at 1470 cm-1 both
indicated that the amination process was successful. In the
curve (c), the C=O vibration absorption peak and the O=C-N-
H absorption peak at 1737 cm-1 and 1556 cm-1 indicated that
FA was grafted on the surface. The new absorption peak at
1538 cm-1 in curve (d) was assigned to the amide bond which
was affected by the RGD peptide and shifted to the direction of
short wave number. The process of modification was
quantified by TGA analysis. Figure 3B showed the
thermograms of a) MSNs, b) MSNs-NH2, c) MSNs-NH2-FA,
and d) MSNs-NH2-FA-RGD. According to analysis of Pyris
software, the weight loss from room temperature to 800°C of
MSNs, MSNs-NH2, MSNs-NH2-FA, and MSNs-NH2-FA-
RGD were 4.4%, 14.51%, 19.04%, and 24.37%, respectively.
Weightlessness in different temperature ranges represents
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different meaning (Pourjavadi and Tehrani, 2014). Take
MSNs as an example, the weight loss below 200°C was
2.03%, causing by absorbed water in the air, and the
proportion of this part of weightlessness can be directly read
on the graph through the software. The weightlessness
between 200°C and 800°C could be attributed to the
removal of organic groups. The weightlessness of MSNs
above 200°C was 2.37 %, which could be indicated as the
incomplete removal of CTAB. After deducting the proportion
of CTAB and absorbed water, the weightlessness between 200°
C to 800°C of MSNs-NH2, MSNs-NH2-FA, and MSNs-NH2-
FA-RGD were 10.30%, 14.17%, and 18.56%, respectively. And
the graft ratios of the amino group, FA, and RGD peptide were
about 7.93%, 3.87%, and 4.39%.

Figure 4 showed the nitrogen adsorption-desorption isotherms
and the corresponding pore size distributions of the MSNs, MSNs-
Frontiers in Pharmacology | www.frontiersin.org 590
NH2, MSNs-NH2-FA, and MSNs-NH2-FA-RGD. Textural
parameters were listed in Table 1. It could be observed that the
adsorption amount of N2 increased slowly when P/P0 was less than
0.25 from the adsorption isotherms of MSNs, because the
adsorption of N2 on the surface of the sample channel occurred
in single-molecule and multi-molecular layers. When P/P0 was
between 0.25-0.4, the adsorption amount of N2 raised sharply. A
steep platform peak was observed on the adsorption isotherm curve
with the reason that N2 could cause capillary condensation in the
sample channel at low temperature, indicating that there was
ordered mesoporous structure and uniform pore size distribution
in the MSNs sample. When P/P0 was between 0.4-0.95, the curve
was relatively flat, due to the adsorption of N2 on the outer surface.
When P/P0 was more than 0.95, the curve appeared a small jump,
the reason was that the capillary condensation caused by the pores
between the particles. With the introduction of FA and RGD
FIGURE 2 | TEM images of (A) MSNs and (B) MSNs-NH2-FA-RGD. (C) Particle size distribution of MSNs and MSNs-NH2-FA-RGD in deionized water. (D) Zeta
potential of MSNs, MSNs-NH2, MSNs-NH2-FA, and MSNs-NH2-FA-RGD in deionized water.
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peptide, the relative pressure value P/P0 of the steep peak decreased,
and the specific surface area, pore volume and pore size of MSNs-
NH2, MSNs-NH2-FA, and MSNs-NH2-FA-RGD also decreased,
proving that the amino group, NHS-PEG-FA and NHS-PEG-RGD
covered on the surface of MSNs.

Drug Loading Efficiency
In order to estimate the ability of drug-loading of MSNs-NH2-
FA-RGD, PTX was chosen as the model drug. The loading and
entrapment efficiency were estimated at 18.7% and
85.2%, respectively.

In Vitro Cytotoxicity of Blank Nanoparticles
A safe and effective nanocarrier system is a prerequisite to in vivo
therapy. Therefore, we explored the in vitro cytotoxicity of
FIGURE 4 | Nitrogen adsorption-desorption isotherms of MSNs, MSNs-NH2,
MSNs-NH2-FA, and MSNs-NH2-FA-RGD.
A B

FIGURE 3 | FTIR spectra (A) and thermograms (B) of MSNs (a), MSNs-NH2 (b), MSNs-NH2-FA (c), and MSNs-NH2-FA-RGD (d).
TABLE 1 | The nitrogen adsorption-desorption parameters of different
functionalized MSNs samples.

Samples Surface area
(m2/g)

Pore size
(nm)

Pore volume
(cm3/g)

MSNs 1203.41 3.77 1.13
MSNs-NH2 659.34 3.09 0.51
MSNs-NH2-FA 514.86 3.07 0.40
MSNs-NH2-FA-RGD 426.68 3.03 0.40
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MSNs-NH2-FA-RGD nanoparticles. As shown in Figure 5,
MSNs-NH2-FA-RGD did not show any cytotoxicity compared
with the blank control group at any of the concentrations used,
even incubated after for 48 h, demonstrating that MSNs-NH2-
FA-RGD nanoparticles had excellent cytocompatibility.

Cell Uptake Assay
Firstly, we evaluated the cytotoxic potential of MSNs-NH2,
MSNs-NH2-FA, and MSNs-NH2-FA-RGD at 20 µg·ml-1 in
HeLa, MCF-7, and MCF-10A cells for 24 h. The above three
Frontiers in Pharmacology | www.frontiersin.org 792
blank nanoparticles did not exert any apparent toxicity on the
viability of these cells from Figure 6.

As shown in Figure 7, the three nanocarriers RhB@MSNs-
NH2, RhB@MSNs-NH2-FA, RhB@MSNs-NH2-FA-RGD
showed no red RhB fluorescence in MCF-10A cells, indicating
that MCF-10A cells hardly took up these three nanocarriers.
Because of an excessive amount of FR on the surface, HeLa cells
could specifically uptake the nanocarriers modified with FA
groups. As shown in Figure 8 , the red fluorescence
representing nanocarriers coincided with the green lysosome
region, proving that RhB@MSNs-NH2-FA and RhB@MSNs-
NH2-FA-RGD were endocytosed and distributed in the
cytoplasm of HeLa cells, but the fluorescence was not
significantly different. There was no obvious fluorescence in
the RhB@MSNs-NH2 group. Figure 9 showed that compared
with RhB@MSNs-NH2, RhB@MSNs-NH2-FA, and RhB@
MSNs-NH2-FA-RGD showed obvious red fluorescence in
MCF-7 cells, and RhB@MSNs-NH2-FA-RGD had the strongest
fluorescence intensity in them. This indicated that targeted
modification with FA and RGD peptides enhanced the
enrichment of nanocarriers in MCF-7 cells, and the double-
targeted effect of modification was better, fully highlighted the
advantages of receptor-mediated targeting.

In Vitro Antitumor Drug Efficacy
Figure 10 showed the inhibition rate of MCF-7 cells by PTX
and PTX@MSNs-NH2-FA-RGD at different concentrations
after 24 h and 48 h. MSNs-NH2-FA-RGD had no significant
inhibitory effect on MCF-7 cells, therefore the toxic effects of
PTX@MSNs-NH2-FA-RGD on MCF-7 cells were all from
PTX. The experimental results showed that both free PTX
and PTX@MSNs-NH2-FA-RGD showed inhibitory effects on
MCF-7 cells, and the inhibitory effects were concentration-
dependent and time-dependent. At 24 h of incubation, the
A B C

FIGURE 6 | Cell viability of HeLa (A), MCF-7 (B) and MCF-10A (C) cells after 24 h incubation with MSNs-NH2, MSNs-NH2-FA and MSNs- NH2-FA-RGD at 20
µg·ml-1.
FIGURE 5 | Cell viability of MCF-7 cells incubation with MSNs-NH2-FA-RGD
at different concentrations (µg·ml-1) after 24 h and 48 h.
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inhibitory effects of PTX@MSNs-NH2-FA-RGD and free PTX
on MCF-7 cells did not show significant difference (P> 0.05).
But after 48 h, it could be clearly seen that PTX@MSNs-NH2-
FA-RGD had stronger inhibitory effect on MCF-7 cells. The
IC50 of free PTX and PTX@MSNs-NH2-FA-RGD on MCF-7
cells line treated for 48 h were 35.25 ± 2.57 ng·ml-1 and 22.21 ±
3.4 ng·ml-1, respectively, which indicated that the inhibitory
efficacy of PTX@MSNs-NH2-FA-RGD on MCF-7 was 1.6
times than that of free PTX.
Frontiers in Pharmacology | www.frontiersin.org 893
CONCLUSION

Based on the verification of a series of chemical and cell
experiments, we synthesized FA and RGD dual-targeted
nanocarrier MSNs-NH2-FA-RGD. RhB@MSNs-NH2-FA-RGD
exhibited excellent fluorescence property in vitro. The
fluorescence microscopy experiment illustrated that RhB@
MSNs-NH2-FA-RGD had a higher cellular uptake by MCF-7
cells and HeLa cells than MCF-10A cells via receptor-mediated
FIGURE 8 | Fluorescence microscopy images of HeLa cells incubation with RhB@MSNs-NH2, RhB@MSNs-NH2-FA, and RhB@MSNs-NH2-FA-RGD for 4 h. Blue
fluorescence field: nucleus; green fluorescence field: cytoplasm; red fluorescence field: a dye used to label nanocarriers. Scale bar: 20 mm.
FIGURE 7 | Fluorescence microscopy images of MCF-10A cells incubation with RhB@MSNs-NH2, RhB@MSNs-NH2-FA, and RhB@MSNs-NH2-FA-RGD for 4 h.
Blue fluorescence field: nucleus; green fluorescence field: cytoplasm; red fluorescence field: a dye used to label nanocarriers. Scale bar: 20 mm.
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endocytosis. In addition, The IC50 of free PTX and PTX@MSNs-
NH2-FA-RGD for 48h were 35.25 ± 2.57 ng·ml-1 and 22.21 ± 3.4
ng·ml-1, respectively. The killing capacity of PTX@MSNs-NH2-
FA-RGD to MCF-7 cells was 1.6 times than that of free PTX,
indicating that PTX@MSNs-NH2-FA-RGD had higher
antitumor activity. The animal experiments are under going.
These results indicated that MSNs-NH2-FA-RGD could target
breast cancer cells, and sever as a potential candidate in future of
drug development.
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Alejandro, B., Montserrat, C., and Marıá, V. R. (2014). Advances in mesoporous
silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin.
Drug Del. 12 (2), 319. doi: 10.1517/17425247.2014.953051

Darvishi, B., and Farahmand, L. (2017). Majidzadeh-A K. Stimuli-Responsive
Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for
Triple Negative Breast Cancer.Mol. Ther-Nucl. Acids 7, 164–180. doi: 10.1016/
j.omtn.2017.03.007

He, D., He, X., Wang, K., Chen, M., Jie, C., and Zhao, Y. (2012). Reversible stimuli-
responsive controlled release using mesoporous silica nanoparticles
functionalized with a smart DNA molecule-gated switch. J. Mater. Chem. 22
(29), 14715–14721. doi: 10.1039/c2jm32185h

Hee Dong, H., Mangala, L. S., JeongWon, L., Mian, M. K. S., Hye Sun, K., Deyu, S.,
et al. (2010). Targeted gene silencing using RGD-labeled chitosan
nanoparticles. Clin. Cancer Res. 16 (15), 3910–3922. doi: 10.1158/1078-
0432.CCR-10-0005

Kazuki, M., Masahiro, H., Takatoshi, K., Kenji, N., and Katsuya, K. (2013). Design
of a nanocarrier with regulated drug release ability utilizing a reversible
conformational transition of a peptide, responsive to slight changes in pH.
Phys. Chem. Chem. Phys. 15 (27), 11454–11460. doi: 10.1039/c3cp50916h

Lv, F., Cao, J., Zhang, J., Qian, J., Peng, W., Sun, S., et al. (2014). Phase I and
pharmacokinetic study of polymeric micelle-formulated paclitaxel in adult
Chinese patients with advanced solid tumors. Cancer Chemother. Pharmacol.
73 (6), 1173–1179. doi: 10.1007/s00280-014-2452-6

Martinez-Carmona, M., Lozano, D., Colilla, M., and Vallet-Regi, M. (2018).
Lectin-conjugated pH-responsive mesoporous silica nanoparticles for
targeted bone cancer treatment. Acta Biomater. 65, 393–404. doi: 10.1016/
j.actbio.2017.11.007

Porta, F., Lamers, G. E., Morrhayim, J., Chatzopoulou, A., Schaaf, M., Dulk, H. d.,
et al. (2013). Folic acid-modified mesoporous silica nanoparticles for cellular
and nuclear targeted drug delivery. Adv. Healthc. Mater. 2 (2), 281–286. doi:
10.1002/adhm.201200176

Pourjavadi, A., and Tehrani, Z. M. (2014). Mesoporous Silica Nanoparticles
(MCM-41) Coated PEGylated Chitosan as a pH-Responsive Nanocarrier for
Triggered Release of Erythromycin. Int. J. Polym. Mater. Polym. Biomater. 63
(13), 692–697. doi: 10.1080/00914037.2013.862534

Pourjavadi, A., and Tehrani, Z. M. (2016). Mesoporous silica nanoparticles with
bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum
albumin (HSA): A pH-sensitive carrier for gemcitabine delivery. Mat. Sci.
Eng. C-Mater. 61, 782–790. doi: 10.1016/j.msec.2015.12.096

Raviv, Z. (2004). MEK5 and ERK5 are localized in the nuclei of resting as well as
stimulated cells, while MEKK2 translocates from the cytosol to the nucleus
upon stimulation. J. Cell Sci. 117 (9), 1773–1784. doi: 10.1242/jcs.01040

Ren, Y., Wei, Y., and Zhao, F. (2005). Application of paclitaxel in glaucoma
filtration surgery. J. Diffcult Complicated cases. 2005 (06), 328–330.

Shen, Z., Li, Y., Kohama, K., Oneill, B., and Bi, J. (2011). Improved drug targeting
of cancer cells by utilizing actively targetable folic acid-conjugated albumin
nanospheres. Pharmacol. Res. 63 (1), 51–58. doi: 10.1016/j.phrs.2010.10.012

Song, S. W., Hidajat, K., and Kawi, S. (2007). pH-controllable drug release using
hydrogel encapsulated mesoporous silica. Chem. Commun. 2007 (42), 4396–
4398. doi: 10.1039/b707626f

Tao, L., Song, C., Huo, C., Sun, Y., Zhang, C., Li, X., et al. (2016). Anti-CD155 and anti-
CD112 monoclonal antibodies conjugated to a fluorescent mesoporous silica
nanosensor encapsulating rhodamine 6G and fluorescein for sensitive detection
of liver cancer cells. Analyst 141 (16), 4933–4940. doi: 10.1039/C5AN01908G

Tian, Y., Guo, R., Jiao, Y., Sun, Y., Shen, S., Wang, Y., et al. (2016). Redox stimuli-
responsive hollow mesoporous silica nanocarriers for targeted drug delivery in
cancer therapy. Nanoscale Horiz. 1 (6), 480–487. doi: 10.1039/C6NH00139D

Xue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., et al. (2011).
pH-Operated Mechanized Porous Silicon Nanoparticles. J. Am. Chem. Soc. 133
(23), 8798–8801. doi: 10.1021/ja201252e

Zhang, Y., Guo, J., Zhang, X. L., Li, D. P., Zhang, T. T., Gao, F. F., et al. (2015).
Antibody fragment-armed mesoporous silica nanoparticles for the targeted
delivery of bevacizumab in ovarian cancer cells. Int. J. Pharm. 496 (2), 1026–
1033. doi: 10.1016/j.ijpharm.2015.10.080

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yan, You, Li, Liu, Guo, Zhang, Liu, Tong, Ding and Wang. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2020 | Volume 11 | Article 898

https://doi.org/10.1517/17425247.2014.953051
https://doi.org/10.1016/j.omtn.2017.03.007
https://doi.org/10.1016/j.omtn.2017.03.007
https://doi.org/10.1039/c2jm32185h
https://doi.org/10.1158/1078-0432.CCR-10-0005
https://doi.org/10.1158/1078-0432.CCR-10-0005
https://doi.org/10.1039/c3cp50916h
https://doi.org/10.1007/s00280-014-2452-6
https://doi.org/10.1016/j.actbio.2017.11.007
https://doi.org/10.1016/j.actbio.2017.11.007
https://doi.org/10.1002/adhm.201200176
https://doi.org/10.1080/00914037.2013.862534
https://doi.org/10.1016/j.msec.2015.12.096
https://doi.org/10.1242/jcs.01040
https://doi.org/10.1016/j.phrs.2010.10.012
https://doi.org/10.1039/b707626f
https://doi.org/10.1039/C5AN01908G
https://doi.org/10.1039/C6NH00139D
https://doi.org/10.1021/ja201252e
https://doi.org/10.1016/j.ijpharm.2015.10.080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 31 July 2020

doi: 10.3389/fonc.2020.01282

Frontiers in Oncology | www.frontiersin.org 1 July 2020 | Volume 10 | Article 1282

Edited by:

Feng Zhu,

Zhejiang University, China

Reviewed by:

Liang Cheng,

Harbin Medical University, China

Shikha Kumari,

University of Nebraska Medical

Center, United States

*Correspondence:

Daiwei Wan

dv19880114@163.com

Qiaoming Zhi

strexboy@163.com

Ye Xu

xu_shirley021@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Pharmacology of Anti-Cancer Drugs,

a section of the journal

Frontiers in Oncology

Received: 20 March 2020

Accepted: 19 June 2020

Published: 31 July 2020

Citation:

Xu Z, Gao G, Liu F, Han Y, Dai C,

Wang S, Wei G, Kuang Y, Wan D,

Zhi Q and Xu Y (2020) Molecular

Screening for Nigericin Treatment in

Pancreatic Cancer by

High-Throughput RNA Sequencing.

Front. Oncol. 10:1282.

doi: 10.3389/fonc.2020.01282

Molecular Screening for Nigericin
Treatment in Pancreatic Cancer by
High-Throughput RNA Sequencing

Zhihua Xu 1†, Guanzhuang Gao 1†, Fei Liu 2, Ye Han 1, Chen Dai 1, Sentai Wang 1,

Guobang Wei 1, Yuting Kuang 1, Daiwei Wan 1*, Qiaoming Zhi 1,3* and Ye Xu 3*

1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China, 2Department of

Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China, 3Department of Colorectal Surgery,

Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China

Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has

been proved to exhibit promising anti-cancer effects on a variety of cancers. Our

previous study investigated the potential anti-cancer properties in pancreatic cancer (PC),

and demonstrated that nigericin could inhibit the cell viabilities in concentration- and

time-dependent manners via differentially expressed circular RNAs (circRNAs). However,

the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA

in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying

mechanism from the perspective of lncRNA and mRNA.

Methods: The continuously varying molecules (lncRNAs and mRNAs) were

comprehensively screened by high-throughput RNA sequencing.

Results: Our data showed that 76 lncRNAs and 172mRNAs were common differentially

expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics

analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and

trans-regulation predictions and protein-protein interaction (PPI) network, were applied

to annotate the potential regulatory mechanisms among these coding and non-coding

RNAs during the nigericin anti-cancer process.

Conclusions: These findings provided new insight into the molecular mechanism of

nigericin toward cancer cells, and suggested a possible clinical application in PC.

Keywords: nigericin, high-throughput sequencing, long non-coding RNA, bioinformatics, pancreatic cancer

INTRODUCTION

Ductal adenocarcinoma of the exocrine pancreas, commonly known as pancreatic cancer (PC), is
a highly aggressive malignancy with few effective therapies. At the time of diagnosis, −20% of PC
patients are considered eligible for surgery and of these, about a half undergoes successful resection
(1). But unfortunately, a majority of patients with PC are diagnosed at advanced stages, at which
patients can hardly receive surgical R0 resection (2) with a 5-years survival rate of 3% and a median
survival of <6 months (3–5). In spite of significant advances in surgical care, chemotherapy and
radiotherapy, no effective systemic therapy for the aggressive pathology of this cancer is available.

96

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01282
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01282&domain=pdf&date_stamp=2020-07-31
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dv19880114@163.com
mailto:strexboy@163.com
mailto:xu_shirley021@163.com
https://doi.org/10.3389/fonc.2020.01282
https://www.frontiersin.org/articles/10.3389/fonc.2020.01282/full
http://loop.frontiersin.org/people/934126/overview


Xu et al. Nigericin Treatment in Pancreatic Cancer

One of the reasons for the treatment failures is due to resistance
to chemotherapy or radiotherapy (6). Thus, novel therapeutic
agents are needed to treat PC and improve the overall survival
of patients with this disease.

Up to date, standard treatments for cancer involve
chemotherapy with anti-tumor antibiotic. Adriamycin, an
orally administered DNA alkylating agent, has been the
most potent chemotherapy applied in clinic, in addition to
surgical excision. Bleomycin had been emerged as another vital
chemotherapeutic agent in many types of cancer, including
Hodgkin lymphoma (7), testicular cancer (8), and squamous-
cell carcinoma (9). In the previous study, we firstly identified
salinomycin as a novel identified cancer stem cells (CSCs)
killer in gastric cancer cells (10). Afterwards, we also found
that salinomycin could specifically target on cisplatin-resistant
colorectal cancer cells by accumulating reactive oxygen
species (11). Recently, Moxifloxacin and ciprofloxacin induced
cell apoptosis and S-phase arrest via ERK activation in PC
(12). Similar anti-cancer influences of antibiotic on PC cells
were found also in recent literatures. In 2012, Yadav et al.
demonstrated that gatifloxacin possessed anti-proliferative
activity against PC cell lines by causing S/G2 phase cell cycle
arrest without induction of apoptosis through p21, p27, and
p53 dependent pathway (13). They also investigated the effect
of moxifloxacin and ciprofloxacin on survival and proliferation
of PC cell lines, and found that both were able to suppress
the proliferation of PC cells and induce apoptosis through the
similar mechanism (12).

Nigericin is a monocarboxylic polyether antibiotic potassium
ionophore that is widely used as a coccidiostatic agent in
chickens (14). In 1972, the effects of nigericin on intracellular
pH, glycolysis, and K+ concentration of ehrlich ascites tumor
cells were firstly reported (15). Since then, emerging evidence
confirmed the promising anti-cancer activity of nigericin in a
variety of cancers, including prostate cancer (16), nasopharyngeal
carcinoma (17), bladder cancer (18), chronic lymphocytic
leukemia cells (19), and lung cancer (20). In 2004, Vaupel
et al. reported that nigericin could inhibit breast cancer stem
cells at least 100 times more effectively than paclitaxel in
mice (21). Zhou et al. demonstrated that nigericin could
suppress the colorectal cancer metastasis through inhibition of
epithelial-mesenchymal transition (EMT) (22). Recently, our
study explored the circular RNA (circRNA) expression profiles
after nigericin exposure on PC cells through bioinformatics
method, and discussed the potential function of nigericin in PC
(23). However, our knowledge of nigericin, which correlates with
long non-coding RNA (lncRNA) and mRNA in PC, has not been
studied yet.

In this study, we attempted to ascertain the specific
activities of nigericin on human PC cell lines and investigate
its possible molecular mechanism in PC. The continuously
varying molecules (lncRNAs and mRNAs) were displayed by the
high-throughput sequencing. Through analyzing the aberrant
expressions of lncRNAs and mRNAs as well as their potential
relationships, the molecular mechanisms of nigericin treatment
on PC were discussed.

MATERIALS AND METHODS

Cell Culture and Reagents
Human PC cell lines (PANC-1) were purchased from Shanghai
Institute of Biochemistry and Cell Biology at the Chinese
Academy of Sciences (Shanghai, China). Cells were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (FBS, Gibco) at 37◦C
in a humidified incubator containing 5% CO2. Cells were in the
logarithmic phase of growth for all experiments. Nigericin was
purchased from Sigma Aldrich (USA). The stock solutions (100
mmol/L) were prepared with dimethyl sulfoxide (DMSO) and
stored at−20◦C.

High-Throughput RNA Sequencing
Analysis
PANC-1 cells were exposed to a proper concentration of
nigericin (5 µmol/L) according to the results of 50% inhibitory
concentration (IC50) for different time periods (0, 8, 16, or
32 h), and then total RNA was extracted from cells, respectively.
The quantity and integrity of total RNAs were measured by
the NanoDropTM ND-2000 (Thermo Fisher Scientifc, Scotts
Valley, CA, USA) and Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA), respectively. lncRNAs and
mRNAs were quantitatively analyzed by Shanghai OE Biotech
(Shanghai, China). After removal of ribosomal RNA and then
constructing a library, a high-throughput RNA sequencing was
performed. The clean reads were aligned to the reference genome
by Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/manual.
shtml). For unmapped reads, the junctions were picked out
using back-splice algorithm. Finally, lncRNAs and mRNAs were
verified with software developed by Shanghai OE Biotech, which
were considered as the reference sequence for further analysis.

Differentially Expressed lncRNA and mRNA
Screen and Clustering Analysis
Differentially expressed lncRNAs and mRNAs were detected
by the negative binomial distribution test based on the DESeq
package. These lncRNAs and mRNAs with statistical significance
were screened with p < 0.05, false discovery rate (FDR) <0.05
and fold change (FC) more than 2.0. Difference integration
analysis (Venn analysis) was used to show the often characteristic
elements among these 3 compared groups (0 vs. 8 h, 0 vs. 16 h,
0 vs. 32 h). The common differentially expressed lncRNAs and
mRNAs were showed in pies with different colors. The non-
supervised hierarchical clustering of the differentially expressed
lncRNAs andmRNAs was used in the form of heat map to display
the expression patterns of the differential lncRNAs and mRNAs
between different groups.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR) Validation
Total RNA from cell lines was extracted using Trizol solution
(Invitrogen, USA) and converted into cDNA by using M-MLV
reverse transcriptase (Invitrogen, USA). The quantities and
qualities of isolated RNAs were evaluated using absorbance
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measurements at 260 and 280 nm. Then reverse transcription
(RT) was performed in a 20 µl reaction system using the
ReverAid First Stand cDNA Synthesis (Thermo Scientific,
Mountain View, CA, USA). RT-PCR with SybGreen I (Generay
Bio Co., Shanghai, China) was performed using the 7500
real-time PCR system (Applied Biosystems, Hayward, CA,
USA) with the follow program: initial denature at 95◦C for
10min, followed by 40 cycles of 95◦C for 10 s and 60◦C for 60 s.
β-actin was used as control. Results were harvested in three
independent wells. The sequences of primers were listed as
follows: LINC00667:6 (F: 5′CCCGACTTTTTGATGCAGGC3′;
R: 5′CCCGACTGTTTCCTACCCAC3′), Lnc-HMGN1-1:12 (F:
5′GATCATGGCTCTCTCTGCCA3′; R: 5′AGCTGTTACATA
CGGCCCAC3′), Lnc-LRRC24-2:1 (F: 5′GATTCGCTGGAC
GATCGCA3′; R: 5′CCTGTAAAGGGAACGCGTCA3′), Lnc-
AC007952.1.1-3:1 (F: 5′GCGAGAAAGGTTTTCGCCTC3′;
R: 5′ACAATAGGAGGTGCCACACA3′), Lnc-CCNB1IP1-
1:2 (F: 5′TGTCCCTTGGGAAGGTCTGA3′; R: 5′CCCG
TTCTCTGGGAACTCAC3′), GADD45A (F: 5′GAGAGCAGAA
GACCGAAAGGA3′; R: 5′CACAACACCACGTTATCGGG3′),
HBP1 (F: 5′TCATCACCATTGGAAGGAGGA3′; R: 5′TTGCAC
CATCCCAAATCATCA3′), SESN2 (F: 5′AAGGACTACC
TGCGGTTCG3′; R: 5′CGCCCAGAGGACATCAGTG3′),
KIF20A (F: 5′TTGAGGGTTAGGCCCTTGTTA3′; R:
5′GTCCTTGGGTGCTTGTAGAAC3′), TOP2A (F: 5′ACCAT
TGCAGCCTGTAAATGA3′; R: 5′GGGCGGAGCAAAATAT
GTTCC3′), and β-actin (F: 5′CCTGTACGCCAACACAGTGC3′;
R: 5′ATACTCCTGCTTGCTGATCC3′).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analysis
GO analysis was conducted to construct meaningful annotations
of genes and gene products in a wide variety of organisms
through DAVID database (http://david.abcc.ncifcrf.gov). Our
GO analysis provided the ontology of defined terms which
represented gene product properties, and covered three domains:
cellular components, biological process and molecular function.
The top 10 enriched GO terms, which were derived from
the common differentially expressed mRNAs and ranked by
enrichment score, were presented. KEGG pathway analysis was
also adopted to map differentially expressed mRNAs in different
biological pathways. The top 20 enriched pathways among
the four groups ranked by enrichment score were calculated
and shown.

lncRNA-mRNA Co-expression Network
To elucidate the potential functions of differentially expressed
lncRNAs and explore the relationships between common
differentially expressed lncRNAs and mRNAs, the lncRNA-
mRNA co-expression network was constructed. For each
differentially expressed lncRNA, we calculated the Pearson
Correlation of its expression value with the expression value
of each differentially expressed mRNA. It was considered to
be correlated when the P-value of the correlation coefficient of
lncRNAs and mRNAs’ expression value was not higher than 0.05,

and the absolute value of correlation was not <0.7. A total of 66
lncRNAs andmRNAs were selected to generate the networkmap.

Cis- and Trans-Regulation Predictions
As previous studies defined, a cis-regulator is the one that
exerts its functions on the neighboring genes which were
located at the same chromosome. lncRNAs are showed that
they can regulate gene expressions in a cis-manner (24, 25).
The cis-regulation regions in this study were identified by the
following procedures. For each common differentially expressed
lncRNA, we identified the mRNAs as “cis-regulated mRNAs”
when: (1) the mRNAs loci were within 100 k windows up- and
downstream of the given lncRNA. (2) the Pearson Correlation of
lncRNA-mRNA expressionwas statistically significant (p-value of
correlation ≤0.05).

For trans-regulation prediction, we focused on the manner
that lncRNAs played their functions via transcription factors
(TFs). The TF-lncRNA and TF-lncRNA-gene network were
constructed, respectively. For each differentially expressed
lncRNAs, the coding genes co-expressed with them were
calculated, and the significance of the gene enrichment in each
TF entry was calculated using the hypergeometric distribution
test method. The result of the calculation returned a p-
value that was enriched for significance. A small p-value
indicated that gene has been enriched in the TF entry. We
calculated the intersection of lncRNAs co-expressed gene sets
with target gene sets of transcription factor/chromatin regulated
complex, and calculated the degree of enrichment of the
intersection through hypergeometric distribution method. Then
we obtained the TFs which were significantly associated with
lncRNAs, and identified possible transcription factor/chromatin
regulated factors that might play a combined regulatory role
with lncRNAs. Subsequently, we used the analysis results of
hypergeometric distribution to visualize the network diagram.
Through the hypegeometric distribution calculation, each
lncRNA gotmultiple TF-lncRNA relationship pairs, and each TF-
lncRNA pair was the results of enrichments of multiple genes.
According to the p-value from small to large sort, the top 200 lines
of regulatory relationships were used to construct the TF-lncRNA
binary relationship network, and the top 10 lines of regulatory
relationships were applied to construct the TF-lncRNA-gene
ternary relationship network.

Protein-Protein Interaction (PPI) Network
Construction
The Search Tool for the Retrieval of Interacting Genes (STRING,
http://string.embl.de/) database was used to construct the PPI
network of the common differentially expressed mRNAs. The
PPI network was subsequently visualized using Cytoscape.
Confidence score ≥0.7 was set as the cut-off criterion, and
Molecular Complex Detection (MCODE) was conducted to
screen modules of PPI network with degree cutoff = 2, node
score cutoff = 0.2, k-core = 2, and max. depth = 100. In
addition, a sub-network was constructed by selecting several
candidate mRNAs.
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FIGURE 1 | Differentially expressed lncRNA profile by sequencing. (A) The cluster heatmap showed all differentially expressed lncRNAs at different time points (0, 8,

16, and 32 h). (B,C) The volcano and scatter plots presented differentially expressed lncRNAs between different compared groups (0 h vs. 8 h, 0 h vs. 16 h, 0 h vs.

32 h), respectively. (D,E) Venn analysis analyzed the common differentially expressed lncRNAs among the three compared groups, and described them as a cluster

heatmap.

Statistical Analysis
Statistically significant differences among groups were estimated
by the Student’s t-test using SPSS 19.0 software (SPSS Inc.). P <

0.05 was considered to be statistically significant.

RESULTS

Differentially Expressed lncRNA and mRNA
Profile by Sequencing
The global expression profile of lncRNAs at 4 different time
points (0, 8, 16, and 32 h) was determined by a custom sequencing
platform. In total, 118,314 lncRNAs were detected, and hundreds
of lncRNAs showed differential expressions in each group of
different time points (Figure 1A). Three compared groups were
set according to the nigericin-treated time points (0 vs. 8 h,
0 vs. 16 h, 0 vs. 32 h). Compared to the 0 h group, 538 days-
regulated lncRNAs (more than 2 folds) were found in 8 h, of
which 301 lncRNAs were up-regulated and 237 ones were down-
regulated. Similarly, 408 lncRNAs were differentially expressed
in 16 h group with 291 up-regulated and 117 down-regulated
ones, compared to the 0 h group. With the change of treatment
time at 32 h, 387 differential lncRNAs were up-regulated, and 159
ones were down-regulated. All differentially expressed lncRNAs
with statistical significance were selected with p < 0.05, FDR <

0.05, and FC > 2.0 (Figures 1B,C). Venn analysis was used to
determine the common differentially expressed lncRNAs among
the three compared groups. Our data confirmed that 76 common
dys-regulated lncRNAs including 49 up-regulated and 27 down-
regulated ones might participate in the process of nigericin
damage (Figures 1D,E). To systematically predict the function
of lncRNAs, lncRNA subgroup analyses were performed. These

lncRNAs were widely distributed on all chromosomes except for
sex chromosome X (Figure 2A). Moreover, we adapted specific
probes for these lncRNAs to classify several kinds of lncRNAs.
Among these dys-regulated lncRNAs, there were 71.1% sense-
overlapping, 23.7% intergenic, 1.3% intronic, 1.3% bidirectional,
1.3% antisense, and 1.3% undefined (Figure 2B).

Besides, the global expression profile of mRNAs was also
observed. Among the 98,121 coding transcripts examined,
hundreds of coding transcripts were differentially expressed at
different time points (Figure 3A). Three compared groups were
also set as described above. A total of 2,468 mRNAs exhibited
significant differential expression between the 0 and 8 h group,
in which 1,282 mRNAs were up-regulated and 1,186 ones were
down-regulated. For 0 vs. 16 h group, 616 mRNAs were up-
regulated and 1,000 ones were down-regulated. Similarly, for 0 vs.
32 h group, 918 mRNAs were up-regulated and 1,082 ones were
down-regulated (Figures 3B,C). All the differentially expressed
mRNAs with statistical significance were screened with p < 0.05,
FDR < 0.05, and FC > 2.0. Venn analysis was also used to
determine the common differentially expressed mRNAs among
the three compared groups (0 vs. 8 h, 0 vs. 16 h, and 0 vs. 32 h).
The results showed that 172 mRNAs were common up-regulated
and 85 ones were down-regulated (Figure 3D). As shown in
Figure 3E, the common dys-regulated mRNAs were evaluated by
the hierarchical clustering analysis.

Validation of Sequencing Data by qRT-PCR
To ensure that our results were reliable, we assessed the
expressions of 5 lncRNAs and 5 mRNAs between the 0 and 32 h
group by qRT-PCR. Our results showed that the LINC00667:6
and lnc-HMGN1-1:12 were both up-regulated at 32 h, compared
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FIGURE 2 | Distribution and classification of the common differentially expressed lncRNAs. (A) The circos plot showed the distribution of lncRNAs on human

chromosomes. The outermost layer of circos plot was chromosome map of the human genome (the black and white bars were chromosome cytobands, the red bars

represented centromeres). The larger inner circle (blue) represented all differentially expressed lncRNAs at different time points, and the smaller inner circle (red)

indicated the 76 common differentially expressed lncRNAs with fold change > 2.0, p < 0.05 and FDR < 0.05. (B) These 76 common differentially expressed lncRNAs

were classified into 6 types, including sense-overlapping, intergenic, intronic, bidirectional, antisense and undefined.

FIGURE 3 | Differentially expressed mRNA profile by sequencing. (A) The cluster heatmap showed all differentially expressed mRNAs at different time points (0, 8, 16,

and 32 h). (B,C) The volcano and scatter plots presented differentially expressed mRNAs between different compared groups (0 vs. 8 h, 0 vs. 16 h, 0 vs. 32 h),

respectively. (D,E) Venn analysis analyzed the common differentially expressed mRNAs among the three compared groups, and described them as a cluster heatmap.

to the 0 h group, whereas other 3 lncRNAs (lnc-LRRC24-2:1, lnc-
AC007952.1.1-3:1, and lnc-CCNB1IP1-1:2) were down-regulated
(Figure 4A, ∗P < 0.05). Meanwhile, we also chose 5 random
cancer-related genes for mRNA detection, and found that
GADD45A, HBP1, and SESN2 were significantly up-regulated,
whereas KIF20A and TOP2A were down-regulated, compared to
the 0 h group (Figure 4B, ∗P < 0.05). These data were consistent

well with the sequencing data, which demonstrated the high
reliability and validity of the sequencing expression results.

GO and KEGG Pathway Analysis
According to the common differentially expressed mRNAs
among the three compared groups (0 vs. 8 h, 0 vs. 16 h,
0 vs. 32 h), the GO biological processes classification was
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FIGURE 4 | Validation of sequencing data by qRT-PCR. (A) The expressions of 5 lncRNAs between the 0 and 32 h group were detected by qRT-PCR. (B) The

expressions of 5 mRNAs between the 0 and 32 h group were also determined by qRT-PCR (*P < 0.05).

calculated. The top 10 GO biological processes such as uridine
catabolic process, nucleotide catabolic process and regulation
of interleukin-6 biosynthetic process were involved in the
nigericin damage. Meanwhile, the top 10 cellular components
and molecular functions were also analyzed and presented
in Figure 5A. KEGG pathway analysis for the common
differentially expressed mRNAs was used to elucidate the
pathways related to these mRNAs. Our data showed that
differentially expressed mRNAs were significantly enriched
in top 20 KEGG signaling pathways, including Aldosterone-
regulated sodium reabsorption, Circadian rhythm, Mismatch
repair, Drug metabolism-other enzymes, TNF signaling pathway,
Transcriptional misregulation in cancers, TGF-beta signaling
pathway, PI3K-Akt signaling pathway and so on (Figure 5B).

The corresponding p-value and enrichment score of the top
20 enrichment pathways were shown in Figure 5C. Using the
results of KEGG enrichment analysis of genes, the network
between all KEGG pathways and their corresponding genes
was analyzed. One hundred sixty-nine pathways and 94
genes were included, and some genes involved in multiple
KEGG pathways could be found to provide auxiliary reference
for selection of candidate genes. For instance, PRKCA was
found to participate in 60 KEGG pathways, including mTOR
signaling pathway, PI3K-Akt signaling pathway, MicroRNAs in
cancer, Choline metabolism in cancer, Wnt signaling pathway,
MAPK signaling pathway, Pancreatic secretion, VEGF signaling
pathway, Ras signaling pathway, Pathways in cancer and so
on (Figure 6).
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FIGURE 5 | GO and KEGG pathway analysis of the common differentially expressed mRNAs. (A) GO analysis was conducted and covered three domains: cellular

components, biological process and molecular function. The top 10 enriched GO terms were presented. (B) KEGG pathway analysis was also adopted and the top

20 enriched pathways were calculated and shown. (C) P-value and enrichment score of the top 20 enriched pathways were included and shown.

Construction of Coding and Non-coding
Co-expression Network
Common differentially expressed mRNAs (five up-regulated
and five down-regulated ones, respectively), which were proved
to implicate in multiple biological processes including cell
cycle, apoptosis, angiogenesis and metastasis, were selected to
build this network (Figure 7). The network implied a complex

relationship that one gene could correlate with multiple lncRNAs

and one lncRNA might also regulate numerous mRNAs in
different ways. As shown in Figure 7, up-regulated lnc-AGRN-

2_9 was positively correlated with HBP1, GADD45A, SIK1, and

SESN2, and negatively associated with TOP2A, CKAP2, while

these mRNAs were implicated in apoptosis. Meanwhile, down-
regulated SSX2IP, which was involved in tumorigenesis and
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FIGURE 6 | The network between KEGG pathways and their corresponding genes was analyzed, in which 169 pathways and 94 genes were included.

metastasis, was negatively correlated with lnc-SMARCA4-1_2,
lnc-EIF2A-3_1, lnc-SLC25A3-3_1, lnc-ANGPTL1-6_1,
lnc-ARHGEF2-3_4, lnc-CDK5R1-5_1, and LINC00667_6.

The co-expression network might imply the potential regulatory
mechanisms between lncRNAs and mRNAs in the nigericin
anti-cancer process.
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FIGURE 7 | Construction of coding and non-coding co-expression network. (A) Common differentially expressed mRNAs (five up-regulated and five down-regulated

ones, respectively) were selected to construct the network with their co-expressed common differentially expressed lncRNAs. The network consisted of 66 nodes and

221 connections. (B) The cis result of the coding and non-coding co-expression network.

Cis-Regulating Function Prediction of
lncRNAs
We constructed the correlated expression networks to elucidate
the relationship between the common differentially expressed
lncRNAs and their co-expressed adjacent coding genes. Among

all the 76 common differentially expressed lncRNAs, only
6 lncRNAs were found to own neighboring protein-coding

genes, and these 6 lncRNAs’ potential cis-regulation networks

were described in Figure 8A. However, each lncRNA had only

one nearby coding gene. For example, lnc-AGRN-2_3 and
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MPV17L, lnc-AGRN-2_9 and MPV17L, lnc-AL669831.1-11_4
and LOC102724984, lnc-C9orf82-2_1 and ADAMTS1, lnc-GLI1-
2_4 and KIF5A, lnc-SLC25A3-3_1 and UNC50 were shown in
Figure 8B. The networks might furnish valuable clue for these
lncRNAs with nearby coding genes.

Trans-Regulation of lncRNAs (TF-lncRNA
and TF-lncRNA-Gene Network)
Despite the prevalence of lncRNA-mediated cis-regulation,
examples of trans-acting lncRNAs have also been reported
(25, 26). For trans-regulation prediction, we constructed a co-
expression network combined by these common differentially
expressed lncRNAs with TFs. With a threshold of P < 0.01 and
FDR < 0.01, the top 200 closest relationships were selected,
while we constructed a TF-lncRNA binary network. The network
showed that 44 up-regulated lncRNAs were found to correspond
to 31 TFs, and 27 down-regulated lncRNAs corresponded to
12 TFs (Figures 9A,B). Moreover, we introduced target genes
to build TF-lncRNA-gene ternary network. 10 up-regulated
lncRNAs correspond to 3 TFs and 283 target genes, while six
down-regulated lncRNAs were found to associate with 3 TFs and
125 target genes (Figure 10). Interestingly, up to 14 dys-regulated
lncRNAs were regulated by 5 TFs, such as MYC, TAF1, E2F4,
STAT1, and STAT2. The results implied that these TFs might also
participate in the nigericin anti-cancer damage.

PPI Network Construction
As shown in Figure 11, a total of 152 genes of the 257 common
differentially expressed genes were filtered into the PPI network
containing 152 nodes and 644 edges. The nodes with high degrees
were defined as hub proteins in the PPI networks and degree
>10 was set as the cut-off criterion. In this network, a total of
12 nodes were selected as hub proteins, including TOP2A, MYC,
ANAPC1, FBXW7, KIF20A, MTOR, CREB1, EXO1, MELK,
NEDD4L, RACGAP1, and HERC2. The most significant hub
proteins were TOP2A (degree = 40) and MYC (degree = 21).
This network exhibited the interactions among these genes which
might play a significant role in the nigericin treatment.

DISCUSSION

Recently, the anti-cancer effect of nigericin has drawn increasing
attentions, and its molecular mechanisms toward cancer cells
were gradually discovered. A newly study by Yakisich et al.
demonstrated that nigericin might be used in a co-therapy model
of lung cancer in combination with other chemotherapeutic
agents (27). Coincidentally, our lab also implied that Wnt/β-
catenin signaling might have an essential role in colorectal
cancer progression, and nigericin exerted anti-cancer effects
on colorectal cancer cells by directly targeting the β-catenin
destruction complex (28). Furthermore, our recent study has
proved the potential toxicity of nigericin on human PC, and
revealed the molecular mechanism of nigericin toward PC
cells from the perspective of circRNA (23). However, the
knowledge of nigericin needs to be further elucidated from
multiple perspectives.

Along with the deepening of research on PC, numerous
lncRNAs have shown to be essential for the tumorigenesis and
progression by serving as tumor oncogenes or suppressors. In
2016, Li et al. found that long non-coding RNA metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1)
could facilitate the advanced progression of PC by promoting
autophagy in vitro (29). lncRNA myocardial infarction-
associated transcript (MIAT) was found remarkably increased
in PC tissues and cell lines, and PC patients with high MIAT
levels had poor prognosis than those with low MITA levels
(30). In contrast, Lnc-PCTST might exhibit as a potential tumor
suppressor in PC, which inhibited cell proliferation, invasion,
tumorigenesis and EMT by modulating TACC-3 (31). To further
explore the anti-cancer mechanism of nigericin, we used high-
throughput and bioinformatics methods to predict the changes
of coding and non-coding RNAs when cells were exposed to
the drug.

Firstly, the global expression profile of lncRNAs and mRNAs
for four different nigericin-treated time points was determined
by a custom sequencing platform. By venn analysis, our data
confirmed that 76 common dys-regulated lncRNAs including 49
up-regulated and 27 down-regulated ones might participate in
the process of nigericin damage. These lncRNAs were widely
distributed on all chromosomes except for sex chromosome X.
Meanwhile, the common differentially expressed mRNAs among
the 3 compared groups were also found, in which 172 mRNAs
were common up-regulated and 85 ones were down-regulated.
Subsequently, we chose 5 random lncRNAs and 5 cancer-related
genes for PCR detection between the 0 and 32 h group. The
data were consistent well with our sequencing data, which
demonstrated the high reliability and validity of the sequencing
expression results. Of these common differentially expressed
mRNAs, GADD45A was found to be variously expressed in cell
lines derived from PC, and adenoviral-mediated expression of
GADD45A (Ad-G45a) in these cells resulted in apoptosis via
caspase activation and cell-cycle arrest in the G2/M phase (32).
HMG-box transcription factor 1 (HBP1) had been described as
a negative regulator of the Wnt/β-catenin signaling in many
cancers, including breast cancer (33), osteosarcoma (34), glioma
(35), and colorectal carcinoma (36). A recent study by Chan
also indicated that HBP1 acted as a direct downstream target of
FOXO1, and potently suppressed the phenotypes of oral cancer
(37). Besides, other 3 validated genes (SESN2, SIK1, and KIF20A)
were also proved to influence the proliferation, migration and
invasion of PC cells (38–41). These results might provide clues
to the potential mechanisms of nigericin in PC.

Next, we conducted GO and KEGG pathway analyses to
uncover the roles of these common differentially expressed
mRNAs after nigericin treatment. The top 10 GO biological
processes such as uridine catabolic process, nucleotide catabolic
process and regulation of interleukin-6 biosynthetic process were
found in the nigericin damage. Meanwhile, the differentially
expressed mRNAs were significantly enriched in top 20
KEGG signaling pathways, including Aldosterone-regulated
sodium reabsorption, Circadian rhythm, Mismatch repair,
Drug metabolism-other enzymes, TNF signaling pathway,
Transcriptional misregulation in cancers, TGF-beta signaling
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FIGURE 8 | Cis-regulation prediction of lncRNAs. (A) Among the 76 common differentially expressed lncRNAs, 6 lncRNAs were found to own neighboring

protein-coding genes coding genes. The potential cis-regulation network was described. (B) The location and distances between lncRNAs and their nearby coding

genes on the chromosome were presented.
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FIGURE 9 | Trans-regulation prediction of lncRNAs (TF-lncRNA binary network). (A) Among the 76 common differentially expressed lncRNAs, 44 up-regulated

lncRNAs were found to correspond to 31 TFs. (B) 27 down-regulated lncRNAs corresponded to 12 TFs.
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FIGURE 10 | Trans-regulation prediction of lncRNAs (TF-lncRNA-gene ternary network). Target genes were introduced to build TF-lncRNA-gene ternary network. 10

up-regulated lncRNAs correspond to 3 TFs and 283 target genes, while 6 down-regulated lncRNAs were found to associate with 3 TFs and 125 target genes.

pathway, PI3K-Akt signaling pathway and so on. Moreover, the
network between all KEGG pathways and their corresponding
genes was also analyzed. These nigericin-related pathways have
been also reported in PC. For example, the PI3K/Akt signaling
pathway is related with PC metastasis. Tanno et al. showed
that increased insulin-like growth factor I receptor expression
induced by active Akt markedly enhanced the invasiveness of
human PC cells (42). A recent review from Murthy et al.
also described the role of PI3K signaling in PC development
and progression (43). In 2014, Zhu et al. provided valuable
baseline information regarding the TGF-β pathway in PC,
which could be utilized in targeted therapy clinical trials (44).
These involved non-coding RNAs (lncRNAs and mRNAs) and
GO/KEGG analyses might partly explain the phenomena that
nigericin had the anti-cancer properties.

To better understand the mechanisms of nigericin in PC
cells, we built the co-expression network between lncRNAs

and mRNAs. The network implied a complex relationship
that one gene could correlate with multiple lncRNAs and one
lncRNA might also regulate numerous mRNAs in different
ways. For instance, up-regulated lnc-AGRN-2_9 was positively
correlated with HBP1, GADD45A, SIK1, and SESN2, and
negatively associated with TOP2A, CKAP2, while these mRNAs
were implicated in tumorigenesis (32, 37–41, 45). The co-
expression network might imply the potential regulatory
mechanisms between lncRNAs and mRNAs in the nigericin
anti-cancer process.

It has been known that lncRNAs can cis-regulate the co-
expressed and nearby coding genes (24). In this study, we
constructed a cis-regulated network with the criterion that
coding genes located at 100 k bp upstream and downstream
of lncRNAs on the chromosome. Our results showed that
6 of 76 common differentially expressed lncRNAs possessed
cis-regulated genes, and each of the 6 lncRNAs only had
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FIGURE 11 | Protein-protein interaction (PPI) network. A total of 152 common differentially expressed genes (103 up-regulated genes and 49 down-regulated ones)

were filtered into the network complex. The lines represented the interaction relationship among these genes.

one neighboring protein-coding gene. For example, we found
that lnc-AGRN-2_3 and lnc-AGRN-2_9 shared the same cis-
regulated gene MPV17L, which indicated that these two
lncRNAs might play a similar role. Lnc-C9orf82-2_1 cis-
regulated ADAMTS1, and Masui et al. also suggested that
ADAMTS1 was a potential biomarker to detect early-stage PCs
(46). UNC50 has long been recognized as a Golgi apparatus
protein in yeast, and is involved in nicotinic receptor trafficking
in Caenorhabditis elegans. In 2015, Fang et al. found that
UNC50 was correlated with G1/S transition and proliferation in
hepatocellular carcinoma via the influencing epidermal growth

factor receptor trafficking (47). Interestingly, our data showed
that UNC50was involved with the nigericin damage, which could
be cis-regulated by lnc-SLC25A3-3_1. These results revealed the
prevalence of lncRNA-mediated cis-regulations on nearby genes
during the nigericin damage.

On the other hand, previous reports have indicated that
lncRNAs are capable of binding to a specific site or sequence,
including TFs, to achieve trans-regulation functions. We
constructed a TF-lncRNA binary network combined by these
common differentially expressed lncRNAswith TFs. The network
showed that 44 up-regulated lncRNAs were found to correspond
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to 31 TFs, and 27 down-regulated lncRNAs corresponded to
12 TFs. Furthermore, we introduced target genes to build
TF-lncRNA-gene ternary network. 10 up-regulated lncRNAs
correspond to 3 TFs and 283 target genes, while 6 down-regulated
lncRNAs were found to associate with 3 TFs and 125 target genes.
Interestingly, up to 14 dys-regulated lncRNAs were regulated by
5 TFs, such as MYC, TAF1, E2F4, STAT1, and STAT2. Recent
evidence strongly suggests that these 5 TFs potentially regulate
the expression of target genes in PC or other cancers. For
instance, Valenti et al. found that Mutp53 and E2F4 proteins
formed a transcriptional repressive complex that assembled onto
the regulatory regions of BRCA1 and RAD17 genes inhibiting
their expressions in head and neck squamous cell carcinoma
(48). Guerrero-Zotano et al. identified 18 of the 20 E2F4 target
genes, and suggested a potential benefit of adjuvant CDK4/6
inhibitors in patients with ER+ breast cancer who failed to
respond to preoperative estrogen deprivation (49). STAT1, which
is a member of the family of signal transducers and transcription
activators, corresponded to lymph node metastasis, advanced
stage, tumor dedifferentiation and poor prognosis in patients
with PC (50). A study from Seshacharyulu et al. also confirmed
STAT1 as a key regulator through down-regualtion of MUC4
in PC (51). Thus, our cis- and trans-regulation predictions
might provide a deep insight into the involved lncRNAs in
nigericin treatment.

Finally, a PPI network with common differentially expressed
genes, in which 12 hub proteins were identified, including
TOP2A, MYC, ANAPC1, FBXW7, KIF20A, MTOR, CREB1,
EXO1, MELK, NEDD4L, RACGAP1, and HERC2. The most
significant hub proteins were TOP2A and MYC. TOP2A could
induce tumor development and progression in many cancer
types, including PC (52), prostate cancer (53) and breast cancer
(54). In 2016, a phase II study by Tarpgaard et al. found
that metastatic colorectal cancer (mCRC) patients, who were
refractory to treatment with oxaliplatin-based chemotherapy,
had TOP2A gene amplification in their tumor cells (55).
Similarly, human estrogen receptor-positive breast cancer cells
typically displayed elevated levels of Myc protein due to
overexpression of MYC mRNA (56). Other studies had also
identified the abnormal expression of MYC-binding protein
(MYCBP) during tumorigenesis in multiple types of cancer,
such as gastric cancer (57), colon cancer (58), and PC (59).
Therefore, this core PPI network exhibited the associations

between these interested genes, which might provide useful clues
for the mechanism analysis of nigericin in PC.

CONCLUSION

In summary, our experiments further investigated the
anti-cancer properties of nigericin in PC. In light of the high-
throughput RNA sequencing analysis, we comprehensively
characterized the potential contributions of lncRNAs
and mRNAs after nigericin exposure. Additionally, the
bioinformatics analyses, including GO and KEGG analysis,
coding and non-coding co-expression network, cis- and trans-
regulation predictions and PPI network, were applied to annotate
the potential regulatory mechanisms among these coding and
non-coding RNAs during the nigericin anti-cancer process. Our
data provided new insight into the molecular mechanism of
nigericin toward cancer cells, and suggested a possible clinical
application in PC.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found below: the NCBI
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra,
PRJNA543685).

AUTHOR CONTRIBUTIONS

ZX conceived the project and wrote the manuscript. QZ and YX
reviewed the manuscript. All authors participated in experiment
and data analysis.

FUNDING

This study was supported by grants from the National
Science Foundation of China (81802340, 81902805), the Suzhou
Gusu Medical Youth Talent (GSWS2019032), the Project
of Invigorating Health Care through Science, Technology
and Education, Jiangsu Provincial Medical Youth Talent
(QNRC2016723) and National Natural Science Foundation of
China (8180100710).

REFERENCES

1. Benson AB III. Adjuvant therapy for pancreatic cancer: one small step

forward. JAMA. (2007) 297:311–3. doi: 10.1001/jama.297.3.311

2. Siegel R,Ma J, Zou Z, Jemal A. Cancer statistics, 2014.CACancer J Clin. (2014)

64:9–29. doi: 10.3322/caac.21208

3. Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer - science driving

clinical progress. Nat Rev Cancer. (2005) 5:459–67. doi: 10.1038/nrc1630

4. Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor

R, et al. Tumor markers in pancreatic cancer: a European Group

on Tumor Markers (EGTM) status report. Ann Oncol. (2010) 21:441–

7. doi: 10.1093/annonc/mdp332

5. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer.

Lancet. (2011) 378:607–20. doi: 10.1016/S0140-6736(10)62307-0

6. Pramanik KC, Fofaria NM, Gupta P, Ranjan A, Kim SH, Srivastava

SK. Inhibition of β-catenin signaling suppresses pancreatic tumor growth

by disrupting nuclear β-catenin/TCF-1 complex: critical role of STAT-3.

Oncotarget. (2015) 6:11561–74. doi: 10.18632/oncotarget.3427

7. Gobbi PG, Federico M. What has happened to VBM (vinblastine, bleomycin,

and methotrexate) chemotherapy for early-stage Hodgkin lymphoma? Crit

Rev Oncol Hematol. (2012) 82:18–24. doi: 10.1016/j.critrevonc.2011.04.003

8. Altena R, Fehrmann RS, Boer H, de Vries EG, Meijer C, Gietema

JA. Growth differentiation factor 15 (GDF-15) plasma levels increase

during bleomycin- and cisplatin-based treatment of testicular cancer

patients and relate to endothelial damage. PLoS ONE. (2015)

10:e0115372. doi: 10.1371/journal.pone.0115372

9. Kumar SM, Biswas S, Sarkar S, Mandal SS, Biswas J. Analytical study on the

efficacy of neoadjuvant chemotherapy using a combination of methotrexate,

Frontiers in Oncology | www.frontiersin.org 15 July 2020 | Volume 10 | Article 1282110

https://doi.org/10.1001/jama.297.3.311
https://doi.org/10.3322/caac.21208
https://doi.org/10.1038/nrc1630
https://doi.org/10.1093/annonc/mdp332
https://doi.org/10.1016/S0140-6736(10)62307-0
https://doi.org/10.18632/oncotarget.3427
https://doi.org/10.1016/j.critrevonc.2011.04.003
https://doi.org/10.1371/journal.pone.0115372
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Nigericin Treatment in Pancreatic Cancer

bleomycin, and cisplatin in the management of advanced squamous cell

Carcinoma of the buccal mucosa. Indian JMed Paediatr Oncol. (2017) 38:345–

8. doi: 10.4103/ijmpo.ijmpo_123_17

10. Zhi QM, Chen XH, Ji J, Zhang JN, Li JF, Cai Q, et al. Salinomycin

can effectively kill ALDH(high) stem-like cells on gastric cancer. Biomed

Pharmacother. (2011) 65:509–15. doi: 10.1016/j.biopha.2011.06.006

11. Zhou J, Li P, Xue XF, He SB, Kuang YT, Zhao H, et al. Salinomycin

induces apoptosis in cisplatin-resistant colorectal cancer cells

by accumulation of reactive oxygen species. Toxicol Lett. (2013)

222:139–45. doi: 10.1016/j.toxlet.2013.07.022

12. Yadav V, Varshney P, Sultana S, Yadav J, Saini N. Moxifloxacin and

ciprofloxacin induces S-phase arrest and augments apoptotic effects of

cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer.

(2015) 15:581. doi: 10.1186/s12885-015-1560-y

13. Yadav V, Sultana S, Yadav J, Saini N. Gatifloxacin induces S and G2-phase

cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS ONE. (2012)

7:e47796. doi: 10.1371/journal.pone.0047796

14. Shavit N, Dilley RA, San Pietro A. Ion translocation in isolated

chloroplasts. uncoupling of photophosphorylation and translocation

of k+ and h+ ions induced by nigericin. Biochemistry. (1968)

7:2356–63. doi: 10.1021/bi00846a043

15. Poole DT, Butler TC, Williams ME. The effects of nigericin, valinomycin,

and 2,4-dinitrophenol on intracellular pH, glycolysis, and K + concentration

of Ehrlich ascites tumor cells. Biochim Biophys Acta. (1972) 266:463–

70. doi: 10.1016/0005-2736(72)90102-2

16. Mashima T, Okabe S, Seimiya H. Pharmacological targeting of constitutively

active truncated androgen receptor by nigericin and suppression of hormone-

refractory prostate cancer cell growth. Mol Pharmacol. (2010) 78:846–

54. doi: 10.1124/mol.110.064790

17. Deng CC, Liang Y, Wu MS, Feng FT, Hu WR, Chen LZ, et al. Nigericin

selectively targets cancer stem cells in nasopharyngeal carcinoma. Int J

Biochem Cell Biol. (2013) 45:1997–2006. doi: 10.1016/j.biocel.2013.06.023

18. Zanke BW, Lee C, Arab S, Tannock IF. Death of tumor cells after intracellular

acidification is dependent on stress-activated protein kinases (SAPK/JNK)

pathway activation and cannot be inhibited by Bcl-2 expression or interleukin

1β-converting enzyme inhibition. Cancer Res. (1998) 58:2801–8.

19. Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA. Salinomycin

inhibits Wnt signaling and selectively induces apoptosis in chronic

lymphocytic leukemia cells. Proc Natl Acad Sci USA. (2011) 108:13253–

7. doi: 10.1073/pnas.1110431108

20. Varnes ME, Bayne MT, Menegay HJ, Tuttle SW. Effect of the K+/H+

ionophore nigericin on response of A549 cells to photodynamic

therapy and tert-butylhydroperoxide. Free Radic Biol Med. (1993)

15:395–405. doi: 10.1016/0891-5849(93)90039-W

21. Vaupel P. Tumor microenvironmental physiology and its

implications for radiation oncology. Semin Radiat Oncol. (2004)

14:198–206. doi: 10.1016/j.semradonc.2004.04.008

22. Zhou HM, Dong TT, Wang LL, Feng B, Zhao HC, Fan XK, et al.

Suppression of colorectal cancer metastasis by nigericin through inhibition

of epithelial-mesenchymal transition. World J Gastroenterol. (2012) 18:2640–

8. doi: 10.3748/wjg.v18.i21.2640

23. Xu ZH, Shen JQ, Hua SB, Wan DW, Chen Q, Han Y, et al. High-

throughput sequencing of circRNAs reveals novel insights into

mechanisms of nigericin in pancreatic cancer. BMC Genomics. (2019)

20:716. doi: 10.1186/s12864-019-6032-3

24. Guenzl PM, Barlow DP. Macro lncRNAs: a new layer of cis-

regulatory information in the mammalian genome. RNA Biol. (2012)

9:731–41. doi: 10.4161/rna.19985

25. Hung T, Chang HY. Long noncoding RNA in genome regulation:

prospects and mechanisms. RNA Biol. (2010) 7:582–5. doi: 10.4161/rna.7.5.

13216

26. Peng BY, Liu AF, Yu XW, Xu EW, Dai JB, Li MC, et al. Silencing of lncRNA

AFAP1-AS1 suppressed lung cancer development by regulatorymechanism in

cis and trans. Oncotarget. (2017) 8:93608–23. doi: 10.18632/oncotarget.20549

27. Yakisich JS, Azad N, Kaushik V, O’Doherty GA, Iyer AK. Nigericin decreases

the viability of multidrug-resistant cancer cells and lung tumorspheres

and potentiates the effects of cardiac glycosides. Tumour Biol. (2017)

39:1010428317694310. doi: 10.1177/1010428317694310

28. Liu F, Li W, Hua SB, Han Y, Xu ZH, Wan DW, et al. Nigericin

exerts anticancer effects on human colorectal cancer cells by

inhibiting wnt/β-catenin signaling pathway. Mol Cancer Ther. (2018)

17:952–65. doi: 10.1158/1535-7163.MCT-17-0906

29. Li L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, et al. Long noncoding

RNA MALAT1 Promotes aggressive pancreatic cancer proliferation and

metastasis via the stimulation of autophagy.Mol Cancer Ther. (2016) 15:2232–

43. doi: 10.1158/1535-7163.MCT-16-0008

30. Li TF, Liu J, Fu SJ. The interaction of long non-coding RNA MIAT and miR-

133 play a role in the proliferation and metastasis of pancreatic carcinoma.

Biomed Pharmacother. (2018) 104:145–50. doi: 10.1016/j.biopha.2018.05.043

31. Wang YD, Ding XY, Hu H, He Y, Lu ZP, Wu PF, et al. Long non-

coding RNA lnc-PCTST predicts prognosis through inhibiting progression

of pancreatic cancer by downregulation of TACC-3. Int J Cancer. (2018)

143:3143–54. doi: 10.1002/ijc.31657

32. Li YF, Qian HL, Li X, Wang HJ, Yu J, Liu YJ, et al. Adenoviral-mediated

gene transfer of Gadd45a results in suppression by inducing apoptosis

and cell cycle arrest in pancreatic cancer cell. J Gene Med. (2009) 11:3–

13. doi: 10.1002/jgm.1270

33. Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J,

Unanue V, et al. Alterations of the HBP1 transcriptional repressor

are associated with invasive breast cancer. Cancer Res. (2007) 67:6136–

45. doi: 10.1158/0008-5472.CAN-07-0567

34. Sun XH, Geng XL, Zhang J, Zhao HX, Liu Y. miR-155 promotes the growth

of osteosarcoma in a HBP1-dependent mechanism.Mol Cell Biochem. (2015)

403:139–47. doi: 10.1007/s11010-015-2344-z

35. Yan ZY, Wang JP, Wang C, Jiao YB, Qi WG,s Che SS. miR-96/HBP1/Wnt/β-

catenin regulatory circuitry promotes glioma growth. FEBS Lett. (2014)

588:3038–46. doi: 10.1016/j.febslet.2014.06.017

36. Lee MF, Hsieh NT, Huang CY, Li CI. All trans-retinoic acid

mediates MED28/HMG box-containing protein 1 (HBP1)/β-catenin

signaling in human colorectal cancer cells. J Cell Physiol. (2016)

231:1796–803. doi: 10.1002/jcp.25285

37. Chan CY, Huang SY, Sheu JJ, Roth MM, Chou IT, Lien CH, et al.

Transcription factor HBP1 is a direct anti-cancer target of transcription

factor FOXO1 in invasive oral cancer. Oncotarget. (2017) 8:14537–

48. doi: 10.18632/oncotarget.14653

38. Donadelli M, Dalla Pozza E, Costanzo C, Scupoli MT, Piacentini P, Scarpa

A, et al. Increased stability of P21(WAF1/CIP1) mRNA is required for

ROS/ERK-dependent pancreatic adenocarcinoma cell growth inhibition

by pyrrolidine dithiocarbamate. Biochim Biophys Acta. (2006) 1763:917–

26. doi: 10.1016/j.bbamcr.2006.05.015

39. Taniuchi K, Furihata M, Saibara T. KIF20A-mediated RNA granule transport

system promotes the invasiveness of pancreatic cancer cells. Neoplasia. (2014)

16:1082–93. doi: 10.1016/j.neo.2014.10.007

40. Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, et al. Kif20a

inhibition reduces migration and invasion of pancreatic cancer cells. J Surg

Res. (2015) 197:91–100. doi: 10.1016/j.jss.2015.03.070

41. Pei YF, Yin XM, Liu XQ. TOP2A induces malignant character of pancreatic

cancer through activating β-catenin signaling pathway. Biochim Biophys Acta.

(2018) 1864:197–207. doi: 10.1016/j.bbadis.2017.10.019

42. Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT

activation up-regulates insulin-like growth factor I receptor expression

and promotes invasiveness of human pancreatic cancer cells. Cancer Res.

(2001) 61:589–93. doi: 10.1016/S0016-5085(08)80193X

43. Murthy D, Attri KS, Singh PK. Phosphoinositide 3-kinase signaling

pathway in pancreatic ductal adenocarcinoma progression, pathogenesis, and

therapeutics. Front Physiol. (2018) 9:335. doi: 10.3389/fphys.2018.00335

44. Javle M, Li Y, Tan DF, Dong XQ, Chang P, Kar S, et al. Biomarkers of TGF-

β signaling pathway and prognosis of pancreatic cancer. PLoS ONE. (2014)

9:e85942. doi: 10.1371/journal.pone.0085942

45. Zhang R, Xu J, Zhao J, Bai JH. Proliferation and invasion of colon cancer

cells are suppressed by knockdown of TOP2A. J Cell Biochem. (2018) 5:113–

20. doi: 10.1002/jcb.26916

46. Yi JM, Guzzetta AA, Bailey VJ, Downing SR, Neste LV,

Chiappinelli KB, et al. Novel methylation biomarker panel for

the early detection of pancreatic cancer. Clin Cancer Res. (2013)

19:6544–55. doi: 10.1158/1078-0432.CCR-12-3224

Frontiers in Oncology | www.frontiersin.org 16 July 2020 | Volume 10 | Article 1282111

https://doi.org/10.4103/ijmpo.ijmpo_123_17
https://doi.org/10.1016/j.biopha.2011.06.006
https://doi.org/10.1016/j.toxlet.2013.07.022
https://doi.org/10.1186/s12885-015-1560-y
https://doi.org/10.1371/journal.pone.0047796
https://doi.org/10.1021/bi00846a043
https://doi.org/10.1016/0005-2736(72)90102-2
https://doi.org/10.1124/mol.110.064790
https://doi.org/10.1016/j.biocel.2013.06.023
https://doi.org/10.1073/pnas.1110431108
https://doi.org/10.1016/0891-5849(93)90039-W
https://doi.org/10.1016/j.semradonc.2004.04.008
https://doi.org/10.3748/wjg.v18.i21.2640
https://doi.org/10.1186/s12864-019-6032-3
https://doi.org/10.4161/rna.19985
https://doi.org/10.4161/rna.7.5.13216
https://doi.org/10.18632/oncotarget.20549
https://doi.org/10.1177/1010428317694310
https://doi.org/10.1158/1535-7163.MCT-17-0906
https://doi.org/10.1158/1535-7163.MCT-16-0008
https://doi.org/10.1016/j.biopha.2018.05.043
https://doi.org/10.1002/ijc.31657
https://doi.org/10.1002/jgm.1270
https://doi.org/10.1158/0008-5472.CAN-07-0567
https://doi.org/10.1007/s11010-015-2344-z
https://doi.org/10.1016/j.febslet.2014.06.017
https://doi.org/10.1002/jcp.25285
https://doi.org/10.18632/oncotarget.14653
https://doi.org/10.1016/j.bbamcr.2006.05.015
https://doi.org/10.1016/j.neo.2014.10.007
https://doi.org/10.1016/j.jss.2015.03.070
https://doi.org/10.1016/j.bbadis.2017.10.019
https://doi.org/10.1016/S0016-5085(08)80193X
https://doi.org/10.3389/fphys.2018.00335
https://doi.org/10.1371/journal.pone.0085942
https://doi.org/10.1002/jcb.26916
https://doi.org/10.1158/1078-0432.CCR-12-3224
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Nigericin Treatment in Pancreatic Cancer

47. Fang Z, Zhou LN, Jiang SM, Cao LH, Yu L. UNC50 prompts

G1/S transition and proliferation in HCC by regulation of

epidermal growth factor receptor trafficking. PLoS ONE. (2015)

10:e0119338. doi: 10.1371/journal.pone.0119338

48. Valenti F, Ganci F, Fontemaggi G, Sacconi A, Strano S, Blandino G, et al.

Gain of functionmutant p53 proteins cooperate with E2F4 to transcriptionally

downregulate RAD17 and BRCA1 gene expression. Oncotarget. (2015)

6:5547–66. doi: 10.18632/oncotarget.2587

49. Guerrero-Zotano AL, Stricker TP, Formisano L, Hutchinson KE,

Stover DG, Lee KM, et al. ER(+) breast cancers resistant to

prolonged neoadjuvant letrozole exhibit an E2F4 Transcriptional

program sensitive to CDK4/6 inhibitors. Clin Cancer Res. (2018)

24:2517–29. doi: 10.1158/1078-0432.CCR-17-2904

50. Sun Y, Yang SS, Sun N, Chen JQ. Differential expression of STAT1 and

p21 proteins predicts pancreatic cancer progression and prognosis. Pancreas.

(2014) 43:619–23. doi: 10.1097/MPA.0000000000000074

51. Kunigal S, PonnusamyMP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-

γ and retinoic acidmediated induction ofMUC4 in pancreatic cancer requires

E2F1 and STAT-1 transcription factors and utilize different signaling cascades.

Mol Cancer. (2012) 11:24. doi: 10.1186/1476-4598-11-24

52. Tsiambas E, Karameris A, Tiniakos DG, Karakitsos P. Evaluation of

topoisomerase IIa expression in pancreatic ductal adenocarcinoma: a pilot

study using chromogenic in situ hybridization and immunohistochemistry on

tissue microarrays. Pancreatology. (2007) 7:45–52. doi: 10.1159/000101877

53. de Resende MF, Vieira S, Chinen LT, Chiappelli F, Fonseca FP, Guimaraes

GC, et al. Prognostication of prostate cancer based on TOP2A protein

and gene assessment: TOP2A in prostate cancer. J Transl Med. (2013)

11:36. doi: 10.1186/1479-5876-11-36

54. An X, Xu F, Luo RZ, Zheng QF, Lu JB, Yang YH, et al. The prognostic

significance of topoisomerase II alpha protein in early stage luminal breast

cancer. BMC Cancer. (2018) 18:331. doi: 10.1186/s12885-018-4170-7

55. Tarpgaard LS, Qvortrup C, Nygard SB, Nielsen SL, Andersen DR,

Jensen NF, et al. A phase II study of Epirubicin in oxaliplatin-

resistant patients with metastatic colorectal cancer and TOP2A gene

amplification. BMC Cancer. (2016) 16:91. doi: 10.1186/s12885-016-

2124-5

56. Tian X, Chakrabarti A, Amirkhanov NV, Aruva MR, Zhang KJ, Mathew

B, et al. External imaging of CCND1, MYC, and KRAS oncogene mRNAs

with tumor-targeted radionuclide-PNA-peptide chimeras. Ann N Y Acad Sci.

(2005) 1059:106–44. doi: 10.1196/annals.1339.038

57. Gong LJ, Xia YJ, Qian ZY, Shi J, Luo JG, SongGY, et al. Overexpression ofMYC

binding protein promotes invasion and migration in gastric cancer. Oncol

Lett. (2018) 15:5243–9. doi: 10.3892/ol.2018.7944

58. Jung HC, Kim K. Identification of MYCBP as a β-catenin/LEF-

1 target using DNA microarray analysis. Life Sci. (2005)

77:1249–62. doi: 10.1016/j.lfs.2005.02.009

59. Hata T, Suenaga M, Marchionni L, Das AM, Yu J, Shindo K, et al.

Genome-wide somatic copy number alterations and mutations in high-

grade pancreatic intraepithelial neoplasia. Am J Pathol. (2018) 188:1723–

33. doi: 10.1016/j.ajpath.2018.03.012

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xu, Gao, Liu, Han, Dai, Wang, Wei, Kuang, Wan, Zhi and Xu.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Oncology | www.frontiersin.org 17 July 2020 | Volume 10 | Article 1282112

https://doi.org/10.1371/journal.pone.0119338
https://doi.org/10.18632/oncotarget.2587
https://doi.org/10.1158/1078-0432.CCR-17-2904
https://doi.org/10.1097/MPA.0000000000000074
https://doi.org/10.1186/1476-4598-11-24
https://doi.org/10.1159/000101877
https://doi.org/10.1186/1479-5876-11-36
https://doi.org/10.1186/s12885-018-4170-7
https://doi.org/10.1186/s12885-016-2124-5
https://doi.org/10.1196/annals.1339.038
https://doi.org/10.3892/ol.2018.7944
https://doi.org/10.1016/j.lfs.2005.02.009
https://doi.org/10.1016/j.ajpath.2018.03.012~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Pharmacology | www.frontiers

Edited by:
Weiwei Xue,

Chongqing University, China

Reviewed by:
Esra Gov,

Adana Science and Technology
University, Turkey

Shuyan Li,
Lanzhou University, China

*Correspondence:
Gurudeeban Selvaraj

gurudeeb99@haut.edu.cn
Dong Qing Wei

dqwei@sjtu.edu.cn

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 05 January 2020
Accepted: 28 May 2020
Published: 31 July 2020

Citation:
Nangraj AS, Selvaraj G, Kaliamurthi S,

Kaushik AC, Cho WC and Wei DQ
(2020) Integrated PPI- and WGCNA-

Retrieval of Hub Gene Signatures
Shared Between Barrett's Esophagus

and Esophageal Adenocarcinoma.
Front. Pharmacol. 11:881.

doi: 10.3389/fphar.2020.00881

ORIGINAL RESEARCH
published: 31 July 2020

doi: 10.3389/fphar.2020.00881
Integrated PPI- and WGCNA-
Retrieval of Hub Gene Signatures
Shared Between Barrett's Esophagus
and Esophageal Adenocarcinoma
Asma Sindhoo Nangraj1, Gurudeeban Selvaraj2*, Satyavani Kaliamurthi2,
Aman Chandra Kaushik1,3, William C. Cho4 and Dong Qing Wei1,2,5*

1 The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science
and Biotechnology, Shanghai Jiao Tong University, Shanghai, China, 2 Center of Interdisciplinary Sciences-Computational
Life Sciences, Henan University of Technology, Zhengzhou, China, 3 Wuxi School of Medicine, Jiangnan University, Wuxi,
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Esophageal adenocarcinoma (EAC) is a deadly cancer with high mortality rate, especially
in economically advanced countries, while Barrett's esophagus (BE) is reported to be a
precursor that strongly increases the risk of EAC. Due to the complexity of these diseases,
their molecular mechanisms have not been revealed clearly. This study aims to explore the
gene signatures shared between BE and EAC based on integrated network analysis. We
obtained EAC- and BE-associated microarray datasets GSE26886, GSE1420,
GSE37200, and GSE37203 from the Gene Expression Omnibus and ArrayExpress
using systematic meta-analysis. These data were accompanied by clinical data and
RNAseq data from The Cancer Genome Atlas (TCGA). Weighted gene co-expression
network analysis (WGCNA) and differentially expressed gene (DEG) analysis were
conducted to explore the relationship between gene sets and clinical traits as well as to
discover the key relationships behind the co-expression modules. A differentially
expressed gene-based protein–protein interaction (PPI) complex was used to extract
hub genes through Cytoscape plugins. As a result, 403 DEGs were excavated,
comprising 236 upregulated and 167 downregulated genes, which are involved in the
cell cycle and replication pathways. Forty key genes were identified using modules of
MCODE, CytoHubba, and CytoNCA with different algorithms. A dark-gray module with
207 genes was identified which having a high correlation with phenotype (gender) in the
WGCNA. Furthermore, five shared hub gene signatures (SHGS), namely, pre-mRNA
processing factor 4 (PRPF4), serine and arginine-rich splicing factor 1 (SRSF1),
heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-Box Helicase 9 (DHX9),
and origin recognition complex subunit 2 (ORC2), were identified between BE and EAC.
SHGS enrichment denotes that RNA metabolism and splicosomes play a key role in
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esophageal cancer development and progress. We conclude that the PPI complex and
WGCNA co-expression network highlight the importance of phenotypic identifying hub
gene signatures for BE and EAC.
Keywords: bioinformatics analysis, Barrett's esophagus, hub gene signature, esophageal adenocarcinoma,
weighted gene co-expression network analysis, protein–protein interaction
1http://www.ncbi.nlm.nih.gov/geo
2https://www.ebi.ac.uk/arrayexpress/
3https://portal.gdc.cancer.gov/
INTRODUCTION

Esophageal cancer is a deadly cancer considering its high
mortality rate, with 572,034 newly diagnosed cases and 508,585
deaths in 2018 (Bray et al., 2018). Esophageal cancer is classified
into two subcategories: esophageal adenocarcinoma (EAC; distal
esophagus) and esophageal squamous cell carcinoma (ESCC;
proximal esophagus). It starts from the esophageal epithelium,
the innermost layer of the esophagus (Rustgi and El-Serag, 2014).
Esophageal cancer is a very complex disease, as its various
subtypes have different risk factors, time trends, and
geographic patterns (Analysis et al., 2017) (Montgomery et al.,
2014; Lordick et al., 2016). According to the geographic
variation, EAC is more common in economically advanced
regions than in low-income countries (Chai et al., 2019). The
common risk factors of EAC are age, male sex, obese,
gastroesophageal reflux disease (GERD), cigarette smoking,
and diet (low in vegetables and fruits). Cook et al. (2014)
report some common symptoms like vomiting/nausea and
heartburn in EAC and GERD. Besides, Barrett's esophagus
(BE) is considered as a precursor for EAC. BE is a metaplastic
transformation from the normal squamous mucosa of the
esophagus to a columnar lining; its presence conveys a 30–40-
fold increased risk of EAC (Schneider and Corley, 2015). The
tumor development is a step-by-step process that comprises
constant changes from erosive esophagitis to non-dysplastic
BE, low-grade dysplasia, high-grade dysplasia, adenocarcinoma
in situ, and finally invasive adenocarcinoma (Anaparthy and
Sharma, 2014). Due to poor prognosis, over 40% of patients are
diagnosed with high-grade dysplasia. Additionally, the 5-year
survival rate is less than 20% despite the advances in diagnosis
and treatment (Tramontano et al., 2017). Certainly, surgical
therapy has improved the patient's survival yet it is not suitable
for advanced-stage cancer patients (Davies et al., 2014).

Thus, it is essential to discover biomarkers that can lead to the
discovery of medication. Microarray analysis of gene expression
profiles is a common practice for identifying key hub genes and
key pathways (Wei et al., 2018; Sadhu and Bhattacharyya, 2019).
In the current era of integrated bioinformatics, acquiring data is
not an issue; rather, normalization seems to be a tough job
(Campain and Yang, 2010). Considering all of these notions, we
designed an integrated study to find key hub genes associated
with BE and EAC. First, we extracted BE- and EAC-associated
microarray datasets from the Gene Expression Omnibus (GEO)
and ArrayExpress using systematic meta-analysis as well as
RNA-seq data from TCGA. Preprocessing and normalization
were conducted for further analysis. DEGs were identified using
linear models for microarray data (LIMMA) algorithm. Meta-
in.org 2114
analysis was performed using a network analysis tool. We
analyzed functional and pathway enrichment of DEGs.
Additionally, a protein–protein interaction (PPI) network was
constructed to study the associations between the DEGs and to
recognize target genes using different modules of Cytoscape
software. Weighted gene co-expression network analysis
(WGCNA) was conducted by the construction of the co-
expression network to find a correlation between modules and
clinical traits. Furthermore, clinically significant modules were
identified. Finally, key hub genes were identified and validated
using immunohistochemistry and survival analysis.
MATERIALS AND METHODS

Data acquisition, Preprocessing, and
Normalization
The microarray datasets were systematically extracted from the
GEO1 (Edgar et al., 2002) and the ArrayExpress2 database (Brazma
et al., 2003). The gene expression profiles based on RNA-sequencing
were additionally obtained from The Cancer Genome Atlas
(TCGA)3 (Zhu et al., 2014). The framework of this study is
shown in Figure 1. For microarray profiles, we selected four
datasets (GSE26886, GSE1420, GSE37200, and GSE37201)
available by October 2019 (Kimchi et al., 2005; Silvers et al., 2010;
Wang et al., 2013; Lin et al., 2015). The GEO accession number,
sample size, description, platform, expression data, and references
are extracted from each identified dataset (Table 1). The TCGA
portal was accessed in October 2019, 184 esophageal cancer samples
were retrieved. The tab-delimited text (.txt) files of microarray
datasets were obtained from the GEO database. The Network
Analyst (NA) web interface for integrative biological network
analysis was employed for background correction preprocessing,
normalization, probe identification, and meta-analysis of the
datasets (Xia et al., 2015). The input files were prepared as per the
description of the tool (first line #Name (sample ID); second line
#class (sample type); genes in the rows and samples in the columns).
We applied two different methods to normalize the datasets: first,
variance stabilizing normalization (VSN), which improves DEG
detection and reduces false-positive errors (Konishi, 1985), and
second, quantile normalization, which can make two distributions
equal in statistical methods (Hansen et al., 2012). The processed
datasets were used for subsequent microarray meta-analysis.
July 2020 | Volume 11 | Article 881
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DEG Identification and Meta-Analysis
Differential gene expression analysis was performed with the R
package LIMMA (linear models for microarray data), which is
embedded in NA (Ritchie et al., 2015). Each gene expression was
calculated based on the false discovery rate (FDR; p < 0.05) using the
Benjamini–Hochberg method and t-test. In addition, the microarray
Frontiers in Pharmacology | www.frontiersin.org 3115
meta-analysis between EAC and BE samples was performed using
combined effect size (ES). The combined ES is the difference between
two group means divided by standard deviation, which is
comparable across different studies. It can be calculated by two
types of models, namely fixed-effect models (FEM) and random-
effect models (REM). In FEM, the calculated effect size in each study
FIGURE 1 | Schematic flow diagram of the study. GEO, Gene Expression Omnibus; IHC, Immunohistochemistry; WGCNA, weighted gene co-expression network
analysis; TCGA, The Cancer Genome Atlas; PPI, Protein-protein interaction.
TABLE 1 | Relevant information about selected microarray datasets.

GSE Acc.
No.

No. of
Samples

Platform Description Country PMID

GSE26886 21 vs 20 AHG-U133 Plus
2.0 Array

Gene expression profiling of Barrett's esophagus, adenocarcinoma, esophageal squamous
epithelium, and squamous cell carcinoma

Germany 23514407

GSE1420 8 vs 8 AHG-U133A Array Barrett's esophagus, Barrett's-associated adenocarcinomas and normal esophageal epithelium USA 15833844
GSE37200 15 vs 31 AHG-U133A Array Gene expression profiling of Barrett's esophageal tissues and esophageal adenocarcinoma USA 26068949
GSE37201 22 AHG-U133A Array Barrett's esophageal tissues and esophageal adenocarcinoma USA 20332323
July 2020 | Vo
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is supposed to arise from an original true effect size plus
measurement error. In REM, each study further contains a
random effect that can incorporate unknown cross-study (different
platforms) heterogeneities in the model. The FEM or REM can be
chosen based on statistical heterogeneity estimated using Cochran's
Q tests (Cochran, 1950). The method typically gives a lower number
of DEGs but more confidence (Selvaraj et al., 2018).

Cochran's Q test equation:

Cochran0s Q test equation :  T = k(k� 1)
o
k

j=1
(X ·j −

N
K= )2

o
b

i−1
Xi·(k − Xi · )

where k is the number of samples; X · j is the column total for the
jth sample; b is the number of genes; Xi · is the row total for the ith

gene; N is the grand total.

Gene Ontology and Pathway Enrichment
Analysis
We used ClueGO v2.5.3, a Cytoscape4 plugin, for function and
pathway enrichment analysis of DEGs (Bindea et al., 2009; Kohl
et al., 2011). A list of DEGs or hub genes were provided as input
into ClueGO with select specific parameters, for example,
species, such as Homo sapiens, ID type—Entrez gene ID,
different enrichment functions—biological process or cellular
component or molecular function or KEGG pathways, for the
analysis. Each enrichment was calculated based on the
Bonferroni method (kappa score 0.96; cutoff value p < 0.005).

PPI Network Construction and Module
Extraction
The search tool for retrieval of interacting genes/proteins
(STRING)5 (Szklarczyk et al., 2017) is a database that is used to
construct the PPI network. Currently, the database consists of
18,838 human proteins with 25,914,693 core network interactions.
In this study, we constructed the PPI network from identified DEGs
using the STRING interactome. The highest confidence interaction
score was set to 0.9, which reduces the number of false-positive
interactions (Bozhilova et al., 2019). Molecular complex detection
(MCODE) is a Cytoscape plugin used to identify the finest clusters.
MCODE calculates accurate correlation levels as well as identifying
essential PPI network modules (Shannon et al., 2003). In addition,
other add-ins of Cytoscape, namely, CytoHubba and CytoNCA,
were employed to discover the highest linkage hub genes in the
network (Chen et al., 2009; Tang et al., 2015).

WGCNA Analysis
The WGCNA package was employed to construct a gene co-
expression network using a variant set of genes (12,701 genes).
The analysis was performed based on the package instructions
(Langfelder and Horvath, 2008). The connection strength between
each pair of nodes was calculated using the adjacency matrix aij.
4https://cytoscape.org/
5https://string-db.org/
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Zij = cor bi, bj
� �� �

aij = Zijb

While vectors (bi and bj) were expression values for genes,
Pearson's correlation coefficient of gene i and j and aij were
represented as the connection strength between genes. The soft-
thresholding power of b = 9 was used to ensure scale-free
topology. The hierarchical clustering of the weighting
coefficient matrix was used to define the modules. The
functional modules in the co-expression network with defined
genes, the topological measure (TOM) indicating the
concurrence in shared adjacent genes, was calculated as

TOMi, j =
SN
K=1Ai,j :Ak,j + Ai,j

min Ki,Kj

� �
+ 1 − Ai,j

where A is the weighted adjacency matrix described in the above
formula. TOM-based dissimilarity measures with a minimum
size of 100 for the gene dendrogram and average linkage
hierarchical clustering were performed, and similar expression
profiles were divided into the same gene modules using the
dynamic tree cut package.

Identification of Clinically Significant
Modules
Eigengene and gene significance methods were used to identify
modules that were correlated with clinical traits of the GSE37200
microarray data set. The first principal component of each gene
module and the expression of the module eigengene were defined
as representative of the whole gene set and were described in the
first eigengene module. The association between module
eigengenes and clinical trait was used to calculate and identify
the significant clinical module. Second, the gene significance was
described as a mediated p-value of each gene in the linear
regression between expression and clinical traits. Furthermore,
the module significance was described as the average the gene
significance of all genes associated with the module. The average
absolute gene significance was defined as module significance. It
was calculated to incorporate clinical traits into a co-expression
network (Langfelder and Horvath, 2008).

Survival Analysis and Validation of SHGS
The SHGS were identified from the modules of WGCNA and the
PPI network using an interactive Venn diagram. The R package
survival was employed to calculate Kaplan–Meier (KM) survival
plots with hazard ratio (HR) and log-rank tests of hubs, which was
implemented in the OSeac6 (consensus survival analysis for EAC)
web interface. OSeac retrieved the gene expression profiles and
clinical data including TNM (Stage I, II, III, and IV), gender (male
and female), race (White, Black, and African American), and grade
(G1, G2, G3, and GX) of 198 patients from TCGA and GEO. We
analyzed the overall survival rate of the shared gene signature as an
input and obtained the plot from the tool (Wang et al., 2020). The
Human Protein Atlas7 was used to validate the immunohistochemistry
of SHGS (Uhlén et al., 2005; Uhlen et al., 2017).
6http://bioinfo.henu.edu.cn/EAC/EACList.jsp
7https://www.proteinatlas.org/

July 2020 | Volume 11 | Article 881

https://cytoscape.org/
https://string-db.org/
http://bioinfo.henu.edu.cn/EAC/EACList.jsp
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Nangraj et al. BE and EAC Hub Genes
RESULTS

Physiognomies of Selected Studies
We collected a total of 682 studies from the GEO and
ArrayExpress database up to October 2019. In all, 678 datasets/
studies that did not satisfy the inclusion criteria were excluded.
Finally, four potential studies were selected (Supplementary
Figure 1). Among the four selected studies, three were
conducted on the Affymetrix human genome U133A platform
and one was performed on the Affymetrix human genome U133
plus 2.0 platform, which included 125 samples in total chosen in
this study. In each study, EAC samples were compared with the
adjacent BE samples. The dataset GSE37200 was used to
construct a co-expression network with the relevant clinical
trait information. After preprocessing and normalization, the
GSE37200 dataset with 22,284 genes was further processed, and
variant genes (12,701) were selected for WGCNA studies.

Identification of DEGs and Enrichment
Analysis
In total, 403 DEGs were obtained through microarray meta-
analysis, which include 169 downregulated and 234 upregulated
genes. A heatmap is a simple yet effective way to compare the
content of multiple major gene lists. Major DEGs across all the
datasets were represented in red, orange, and yellow in a
heatmap. Gray indicates that the respective gene is not present
in the gene list (Supplementary Figure 2). Table 2 illustrates the
top 10 upregulated and downregulated DEGs. Monocyte
differentiation antigen CD14 (CD14), ribose 5-phosphate
isomerase A (RPIA), tumor necrosis factor superfamily
member 11 (TNFSF11), plexin D1 (PLXND1), major histo-
compatibility complex, class II DM beta (HLA-DMB), and
Frontiers in Pharmacology | www.frontiersin.org 5117
spliceosome-associated factor 3, and U4/U6 recycling protein
(SART3) were highly expressed upregulated genes, whereas
fucosyltransferase 2 (FUT2), SECIS binding protein 2 like
(SECISBP2L), COP9 signalosome subunit 4 (COPS4), gelsolin
(GSN), and glutathione peroxidase 3 (GPX3) were highly
expressed downregulated genes. According to the gene
ontology (GO) terms BP, MF, and CC, downregulated genes
were significantly enriched in the mitotic cell cycle process, sister
chromatid segregation, antigen processing, presentation of
peptide antigen via MHC class I, chromosomal region, and
MHC class I protein binding, whereas retinol dehydrogenase
activity and fucosyltransferase activity were highly enriched in
upregulated genes associated with EAC (Figures 2A–C). In
KEGG, pathway enrichment demonstrated that the
upregulated genes were enriched for viral myocarditis, cell
cycle, DNA replication, and AGE-RAGE signaling pathways in
diabetic complications. Downregulated genes were associated
with pathways involved in fatty acid degradation,
glycosphingolipid biosynthesis, and amino sugar and
nucleotide sugar metabolism (Figure 2D).

WGCNA and Clinically Significant Module
Identification
A dendrogram of samples (GSE37200) with clinical trait was
clustered using the average linkage method and Pearson's
correlation method (Figure 3A). Co-expression analysis was
carried out to construct the co-expression network. In this study,
the power of b = 9 (scale-free R2 = 0.95) was selected as the soft-
thresholding parameter to ensure a scale-free network (Figure 3B).
A dendrogram of all differentially expressed genes was clustered
based on a dissimilarity measure (1-TOM) (Supplementary Figure
3). A total of 39 modules were identified through hierarchical
TABLE 2 | Top ten up- and downregulated genes.

S.No. Gene Gene name Combined ES P-value

Upregulated genes

1 CD14 Monocyte differentiation antigen CD14 1.2948 4.98E-08
2 RPIA Ribose 5-phosphate isomerase A 1.1376 4.63E-08
3 TNFSF11 Tumor necrosis factor super family member 11 1.1229 3.66E-08
4 PLXND1 Plexin D1 1.1223 3.60E-08
5 HLA-DMB Major histo-compatibility complex, class II, DM beta 1.1168 3.97E-08
6 SART3 Spliceosome associated factor 3, U4/U6 recycling protein 1.1142 4.06E-08
7 OSBPL3 Oxysterol binding protein like 3 1.1119 4.79E-08
8 PRAF2 PRA1 domain family member 2 1.1117 4.61E-08
9 PILRB Paired immunoglobin like type 2 receptor beta 1.1078 4.67E-08
10 RGS16 Regulator of G protein signaling 16 1.1064 4.79E-08
Downregulated genes

1 FUT2 Fucosyltransferase 2 -1.1095 4.67E-08
2 SECISBP2L SECIS binding protein 2 like -1.111 4.52E-08
3 COPS4 COP9 signalosome subunit 4 -1.1148 4.79E-08
4 GSN Gelsolin -1.117 4.04E-08
5 GPX3 Glutathione peroxidase 3 -1.1185 3.87E-08
6 ADH1A Alcohol dehydrogenase 1A (class I), alpha polypeptide -1.1271 4.39E-08
7 CORO2A Coronin 2A -1.2074 4.67E-08
8 ACADS Acyl-CoA dehydrogenase short chain -1.2157 3.57E-08
9 RCAN2 Regulator of calcineurin 2 -1.2172 5.07E-08
10 CLEC3B C-type lectin domain family 3 member B -1.2316 3.73E-08
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clustering. Light green (eigengene value = 0.41), dark gray
(eigengene value = 0.62) and Sienna3 (eigengene value = 0.46)
modules appeared to have the highest association with age, gender,
and ethnicity. There was no module–trait relationship associated
with tumor stage, denoted as NA in Figure 3C. Therefore, the dark
graymodule having the highest association with gender was selected
as the clinically significant module for further analysis. There were
207 phenotypic genes identified in the dark-gray module (Figure
3D). In Supplementary Figure 4, the hierarchical clustering
dendrogram of the eigengene network represents the relationships
among the modules and the clinical trait weight.

Identification and Validation of Hub Genes
The PPI network was constructed with 403 DEGs using the
STRING database. The interactive relationships between the key
genes in the whole network were determined using the Cytoscape
plugins (MCODE, Cytoscape, and CytoHubba). There are two
clusters: 82 nodes and 938 edges in cluster 1, and 20 nodes and
168 edges in cluster 2, which were identified from MCODE based
Frontiers in Pharmacology | www.frontiersin.org 6118
on a scoring system (cutoff k-score = 12). In addition, the data were
imported into another plugin, CytoHubba, which helped to identify
104 key genes through five different calculation methods, namely,
EPC, MCC, DMNC, MNC, and Stress. Then, the two clusters were
imported into the CytoNCA plugin, which helped to identify 40 key
genes using five different algorithms, namely, betweeness, closeness,
degree, eigenvector, and subgraph. We securely conceive that the
key genes are the intersections between the PPI network and the
dark-gray module with 207 genes (Supplementary Table 1) highly
correlated with phenotype (gender) from the WGCNA analysis
(Figures 4A, B). Finally, five SHGS, namely, pre-mRNA processing
factor 4 (PRPF4), serine and arginine rich splicing factor 1 (SRSF1),
heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-
box helicase 9 (DHX9), and origin recognition complex subunit 2
(ORC2), are identified between BE and EAC. Pathway enrichment
demonstrated that all the SHGS are involved in the metabolism of
RNA, and its molecular functional terms include cell cycle, DNA
binding, DNA topoisomerase binding, pre-mRNA splicing, and
RNA helicase activity (Figure 5).
A
B

D

C

FIGURE 2 | Gene ontology and pathway enrichment analysis. (A) Biological process analysis. (B) Cellular component analysis. (C) Molecular function analysis.
(D) KEGG pathway analysis.
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Survival Analysis and
Immunohistochemistry
Kaplan–Meier plots demonstrated that the prognostic impact of the
SHGSwas identified frommodules of the PPI network complex and
WGCNA. The results revealed that high expression of HNRNPM
and SRSF1 was associated with poor overall survival of BE and EAC
patients (p < 0.05). Moreover, high expression of PRPF4, DHX9,
and ORC2 was correlated with longer overall survival of BE and
EAC patients (Figure 6). In addition, we plotted a gender-based
survival curve to determine the correlation of WGCNA modules.
The hazard ratio (HR) and 95% confidence interval were as follows
in males: PRPF4 (HR =1.08; 95%CI – 0.46 ± 2.48; p = 0.865); SRSF1
(HR =3.08; 95%CI – 1.49 ± 6.37; p = 0.002); HNRNPM (HR =3.295;
95%CI – 1.54 ± 7.02; p = 0.002); DHX9 (HR =1.39; 95%CI – 0.64 ±
2.48; p = 0.404); ORC2 (HR =1.25; 95%CI – 0.58 ± 2.72; p = 0.564).
Further, in female cases PRPF4 (HR =0.39; 95%CI – 0.03 ± 3.89; p =
0.421); SRSF1 (HR =1.49; 95%CI – 0.20 ± 10.79; p = 0.689);
HNRNPM (HR =8.06; 95%CI – 0.82 ± 79.01; p = 0.073); DHX9
(HR =0.38; 95%CI – 0.04 ± 3.89; p = 0.424); ORC2 (HR =3.24; 95%
CI – 0.20 ± 51.91; p = 0.4061). The results clearly demonstrated that
the high expression of SHGS correlated to the poor prognosis of
male compared to female. Furthermore, immunohistochemical
slides of the Human Protein Atlas database indicated that the
protein expressions of SHGS were drastically higher in cancerous
tissues compared with in adjacent normal tissues, as shown in
Figure 7. Therefore, these SHGS were all key genes that play an
initiative role and might have a tendency to co-express.
DISCUSSION

EAC is an obstinate type of cancer, which has a high mortality
rate because of poor prognosis, metastatic rate, and treatment
resistance (Tatarian and Palazzo, 2019). EAC usually arises from
a premalignant variation in the lining of the esophagus known as
BE (Thrift, 2016). Unfortunately, the treatment and diagnosis of
EAC and BE are limited due to the lack of precise molecular
targets. Therefore, we designed this study to explore SHGS
between EAC and BE to improve the diagnosis and prognosis
status of the patients. There are numerous advanced technologies
that can quantify the enormous amount of transcripts in a
parallel manner. Microarray and data mining are well-known
approaches for cancer biomarker discovery (Selvaraj et al., 2019).
Nevertheless, a single microarray dataset is not enough to deal
with this obstinate disease. However, a comprehensive analysis of
a number of microarray datasets with different platforms can
assist with identifying the molecular mechanism of EAC and BE.
Therefore, we selected four different microarray datasets to
identify SHGS and the associated pathways between BE and
EAC. Moreover, WGCNA is a powerful tool for searching
effective biological mechanisms and key genes from gene
expression microarrays. It provides module construction and
correlation analysis within the gene expression data to determine
the associations between genes. It also elucidates the biological
significance of a gene module to provide insights into molecular
and pathological characteristics in many diseases. All these
characteristics make it a robust, reliable, and significant
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method for analysis of large-scale data. There is no prior research
employing WGCNA to do gene co-expression network analysis
with BE and EAC. To explore SHGS, we decided to construct a
gene co-expression network with relevant clinical trait
information from the GSE37200 dataset.

Phenotype variants like age, gender, and ethnicity are factors that
are intensively involved in the prognosis and diagnosis of BE and
EAC (Ford et al., 2005; Runge et al., 2015). EAC usually appears at
Frontiers in Pharmacology | www.frontiersin.org 8120
the later stage of life, but it may start at a young age in the form of
BE. Earlier studies have reported that male patients with BE are at
low risk of malignant progression and predominantly die due to
causes other than EAC (Sikkema et al., 2010). There are studies
reported that there is a marked male prevalence of EAC with a
male-to-female ratio of 9:1 due to sex hormone factors. Androgen
exposure may increase the risk of EAC compared to estrogen (Xie
and Lagergren, 2016; Kim et al., 2016). Furthermore, geographically
A B

FIGURE 4 | (A) Venn diagram demonstrates overlapping genes of the DEG-PPI network and WGCNA. (B) DEG-PPI network complex (upregulated genes showed
in green; downregulated genes showed in red).
FIGURE 5 | Pathway enrichments of SHGS. PRPF4, SRSF1, HNRNPM, and DHX9 are keys genes in the RNA metabolic pathway. These genes especially are
involved in the preprocessing of capped intron-containing pre-mRNA and regulation of mRNA stability by proteins that bind AU-rich elements. (Image extracted from
the Reactome pathway analyzer).
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White people, especially White Americans, are at higher risk than
other ethnicities (Schneider and Corley, 2015). A comprehensive
study from January 2006 to December 2017 reported that high risk
of male patients with esophageal diseases in the province of
Madinah in Saudi Arabia is due to a variety of factors, including
inflammatory disorders, infection, and neoplastic condition (Albasri
et al., 2019). In addition, genomic analysis by restriction fragment
length polymorphism indicated that the highest frequencies of Y-
chromosomal haplogroups are associated with BE and EAC in
White males (Westra et al., 2020). Recent case–control studies
demonstrate that gastroesophageal reflux disease in male patients
is highly associated with the development of BE in Germany
(Schmidt et al., 2020). These reports supported the present results,
indicating that predicted dark gray modules with the highest
association with gender must have a clinically significant module.

Two types of biological materials, namely, GO and KEGG
pathway data, are key to understanding the disease mechanism.
CD14 acts as a co-receptor with toll-like receptors (TLRs) to
identify evading pathogens and improve the immune system. It
is reported that TLRs 1-10 are expressed in the normal
esophagus and that there is a high association of TLRs 4, 5,
and 9 with BE and EAC (Kauppila and Selander, 2014).
TNFSF11 is a key regulator of interactions between T cells and
dendritic cells, which regulate the T-cell-dependent immune
response and enhance bone-resorption in hypercalcemia of
malignancy (Luan et al., 2012). Somja et al. (2013) observed
that both metaplastic and malignant lesions of the esophagus are
infiltrated by regulatory T cells. They concluded that soluble
Frontiers in Pharmacology | www.frontiersin.org 9121
factors secreted by epithelial cells during the EAC or BE
influence tumor progression through tolerogenic dendritic
cells, which can be a potential therapeutic tool. In addition,
different cohort studies have reported that GSN is a serum
glycoprotein biomarker used as a diagnostic tool for EAC and
BE (Shah et al., 2015; Shah et al., 2018). Glycosphingolipid
biosynthesis is an important pathway that can produce cell-
surface glycans. These glycans are altered in the development
from BE into EAC, with specific changes in lectin binding
patterns. This binding is a key marker in endoscopic
visualization of high-grade dysplastic lesions (Bird-Lieberman
et al., 2012). These reports suggest that the predicted GO terms
and pathways of DEGs are highly associated with EAC and BE.

We have identified five different SHGS (PRPF4, SRSF1,
HNRNPM, DHX9, and ORC2) between EAC and BE. PRPF4,
SRSF1, and HNRNPM are U4/U6 small nuclear ribonucleoprotein
Prp4, serine and arginine-rich splicing factor 1, and heterogeneous
nuclear ribonucleoprotein M coding genes, respectively. These
genes play an important role in pre-mRNA splicing and
spliceosome assembly (Bertram et al., 2017). Pre-mRNA splicing
is key to the pathology and has a substantial role in generating
multiple oncogenic and tumor-suppressor proteins after the post-
transcriptional process. Splicing is of different types such as amino
acid addition, exon skipping, frame shift, intron retention, promoter
usage, truncated C-terminus, and 5′-SS, which have various clinical
applications including proliferation, metastasis, drug resistance, and
radiotherapy (Guo et al., 2015; Di et al., 2019). In addition, there are
studies reporting splicing signatures associated with the prognosis of
FIGURE 6 | The prognostic value of hub genes in BE and EAC patients (Kaplan–Meier plot).
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esophageal cancer (Lin et al., 2018; Mao et al., 2019). Through the
splicingmechanism, PRPF4, SRSF1, andHNRNPM regulate the cell
proliferation, migration, and invasion in different cancers, including
lung cancer (Choi, 2012; Chang and Lin, 2019), breast cancer
Frontiers in Pharmacology | www.frontiersin.org 10122
(Anczuków et al., 2015; Sun et al., 2017; Park et al., 2019),
cutaneous squamous cell carcinoma (Zhang et al., 2018),
hepatocellular carcinoma (Tu et al., 2019), esophagus dysplasia
(Varghese et al., 2015; Fitzgerald et al., 2018), gastric cancer (Wu
FIGURE 7 | Immunohistochemistry of the five hub genes based on the Human Protein Atlas. (A) Protein levels of PRPF4 in normal tissue (staining: high; intensity:
strong; quantity: >75%). (B) Protein levels of SRSF1 in normal tissue (staining: high; intensity: strong; quantity: >75%). (C) Protein levels of SRSF1 in tumor tissue
(staining: high; intensity: strong; quantity: >75%). (D) Protein levels of HNRNPM in normal tissue (staining: high; intensity: strong; quantity: >75%). (E) Protein levels of
DHX9 in normal tissue (staining: high; intensity: strong; quantity: >75%). (F) Protein levels of ORC2 in normal tissue (staining: not detected; intensity: low; quantity:
<25%).
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et al., 2019), cervical cancer (Dong et al., 2019), and Ewing's sarcoma
(Passacantilli et al., 2017).

DHX9 is an ATP-dependent RNA helicase A coding gene
involved in DNA replication, transcriptional activation, post-
transcriptional RNA regulation, mRNA translation, and RNA-
mediated gene silencing (Capitanio et al., 2017). Knockdown of
ATP-dependent RNA helicase inhibited the expression of b-
catenin, c-Myc, and cyclin D1 in esophageal cancer cells through
suppressing the Wnt/b-catenin signaling pathway (Ma et al.,
2017). In addition, ATP-dependent RNA helicase was reported
to dysregulate distinct steps of mRNA and pre-ribosomal RNA
metabolism in cancer cells (Awasthi et al., 2018). ORC2 is an
origin recognition complex subunit 2 coding gene binding
origins of replication (Shen et al., 2012). It can bind to
different histone trimethylation proteins and stabilize leucine-
rich repeat and WD repeat-containing protein 1 (LRWD1)
through protecting it from ubiquitin-mediated proteasomal
degradation (Chan and Zhang, 2012). Studies demonstrated
that increased expressions of certain histone-mediated proteins
correlate with advanced TNM stages, tumor grade, metastatic
potential, and decreased overall and disease-free survival of
patients with esophageal cancer (Schizas et al., 2018). This
supportive information enhances the understanding of why the
predicted DHX9, HNRNPM, ORC2, PRPF4, and SRSF1 genes
are highly correlated to EAC and BE progression and act as
potential biomarkers for diagnosis as well as prognosis.
CONCLUSION

This network pharmacology-based study provides new insights
into BE and EAC patients for their diagnosis and prognosis. The
results of microarray dataset-based PPI networks and WGCNA
exhibited that the dark-gray module had the maximum
association with EAC and BE, with the identification of five
SHGS, namely PRPF4, SRSF1, HNRNPM, DHX9, and ORC2.
The WGCNA-based gene co-expression network indicated that
the relationships between co-expressed genes and clinical trait
(gender of the patient) were associated with the progression of
esophageal cancer. SHGS enrichment denotes that the RNA
metabolic and spliceosome pathways play an essential role in
the development and progress of esophageal cancer. Survival
analysis demonstrates that the high expression of HNRNPM and
SRSF1 in esophageal cancer might be a poor prognostic marker.
The co-expression modules were established to preserve a
reliable expression relationship independent of phenotype and
may share similar biological functions. This approach shares the
limitations of other data mining methods: the results of WGCNA
can technically be biased due to tissue contamination or artifacts.
To enhance the reliability of the WGCNA results, immuno-
histochemical data from the Human Protein Atlas were used for
confirmation. However, we could not obtain all the related IHC
data of tumor and adjacent normal samples for each gene due to
the database constraint. These findings may support new
therapeutic targets and potential useful for the advancement of
prognostic biomarker evaluation.
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Bird-Lieberman, E. L., Neves, AndréA., Lao-Sirieix, P., O'donovan, M., Novelli,
M., Lovat, L. B., et al. (2012). Molecular imaging using fluorescent lectins
permits rapid endoscopic identification of dysplasia in Barrett's esophagus.
Nat. Med. 182, 315. doi: 10.1038/nm.2616

Bozhilova, L. V., Whitmore, A. V., Wray, J., Reinert, G., and Deane, C. M. (2019).
Measuring rank robustness in scored protein interaction networks. BMC
Bioinf. 20 (1), 446. doi: 10.1186/s12859-019-3036-6

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 68
(6), 394–424. doi: 10.3322/caac.21492

Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena,
N., et al. (2003). ArrayExpress—a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res. 31 (1), 68–71. doi: 10.1093/
nar/gkg091

Campain, A., and Yang, Y. H. (2010). Comparison study of microarray meta-
analysis methods. BMC Bioinf. 111, 408. doi: 10.1186/1471-2105-11-408

Capitanio, J. S., Montpetit, B., and Wozniak, R. W. (2017). Human Nup98
regulates the localization and activity of DExH/D-box helicase DHX9. Elife
6, e18825. doi: 10.7554/eLife.18825

Chai, T., Shen, Z., Zhang, P., Lin, Y., Chen, S., Zhang, Z., et al. (2019). Comparison
of high risk factors (hot food, hot beverage, alcohol, tobacco, and diet) of
esophageal cancer: A protocol for a systematic review and meta-analysis.
Medicine 98 (17), e15176. doi: 10.1097/MD.0000000000015176

Chan, K. M., and Zhang, Z. (2012). Leucine-rich repeat andWD repeat-containing
protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9
of histone H3 and maintains heterochromatin silencing. J. Biol. Chem. 287
(18), 15024–15033. doi: 10.1074/jbc.M111.337980

Chang, H.-L., and Lin, J.-C. (2019). SRSF1 and RBM4 differentially modulate the
oncogenic effect of HIF-1a in lung cancer cells through alternative splicing
mechanism. BiochimicaetBiophysicaActa (BBA)-Mol. Cell Res. 1866 (12),
118550. doi: 10.1016/j.bbamcr.2019.118550

Chen, S.-H., Chin, C.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., and Lin, C.-Y. (2009).
“cyto-Hubba: A Cytoscape plug-in for hub object analysis in network biology”,
in 20th International Conference on Genome Informatics. (Pacifico Yokohama,
Japan: Imperial College Press).

Choi, S.-Y. (2012). Identification of PRPF4 as a novel cancer promoter through
AKT signaling in lung cancer. AACR; Cancer Res. 72 (8 Suppl), 4174–4174.
doi: 10.1158/1538-7445.AM2012-4174

Cochran, W. G. (1950). The comparison of percentages in matched samples.
Biometrika 373/4, 256–266. doi: 10.1093/biomet/37.3-4.256

Cook, M. B., Corley, D. A., Murray, L. J., Liao, L. M., Weimin Ye, F., Gammon,
M. D., et al. (2014). Gastroesophageal reflux in relation to adenocarcinomas of
Frontiers in Pharmacology | www.frontiersin.org 12124
the esophagus: a pooled analysis from the Barrett's and Esophageal
Adenocarcinoma Consortium (BEACON). PloS One 9 (7), e103508. doi:
10.1371/journal.pone.0103508

Davies, A. R., Gossage, J. A., Zylstra, J., Mattsson, F., Lagergren, J., Maisey, N., et al.
(2014). Tumor stage after neoadjuvant chemotherapy determines survival after
surgery for adenocarcinoma of the esophagus and esophagogastric junction.
J. Clin. Oncol. 32 (27), 2983–2990. doi: 10.1200/JCO.2014.55.9070

Di, C., Zhang, Q., Chen, Y., Wang, Y., Zhang, X., Liu, Y., et al. (2019). Function,
clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death
Differ. 267, 1181–1194. doi: 10.1038/s41418-018-0231-3

Dong, M., Dong, Z., Zhu, X., Zhang, Y., and Song, L. (2019). Long non-coding
RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via
interaction with SRSF1. Exp. Mol. Pathol. 111, 104322. doi: 10.1016/
j.yexmp.2019.104322

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository. Nucleic Acids
Res. 30 (1), 207–210. doi: 10.1093/nar/30.1.207

Fitzgerald, R. C., Varghese, S., Newton, R., and Wernisch, L. “Methods and means
for dysplasia analysis.” U.S. Patent Application 15/747,117, filed July 26, 2018.

Ford, A. C., Forman, D., Reynolds, P.D., Cooper, B. T., and Moayyedi, P. (2005).
Ethnicity, gender, and socioeconomic status as risk factors for esophagitis and
Barrett's esophagus. Am. J. Epidemiol. 162 (5), 454–460. doi: 10.1093/aje/
kwi218

Guo, W., Wang, C., Guo, Y., Shen, S., Guo, X., Kuang, G., et al. (2015). RASSF5A, a
candidate tumor suppressor, is epigenetically inactivated in esophageal
squamous cell carcinoma. Clin. Exp. Metastasis 32 (1), 83–98. doi: 10.1007/
s10585-015-9693-6

Hansen, K. D., Irizarry, R. A., andWu, Z. (2012). Removing technical variability in
RNA-seq data using conditional quantile normalization. Biostatistics 13 (2),
204–216. doi: 10.1093/biostatistics/kxr054

Kauppila, J. H., and Selander, K. S. (2014). Toll-like receptors in esophageal cancer.
Front. Immunol. 5, 200. doi: 10.3389/fimmu.2014.00200

Kim, Y. S., Kim, N., and Gwang Ha, K. (2016). Sex and gender differences in
gastroesophageal reflux disease. J. Neurogastroenterol. Motil. 22 (4), 575. doi:
10.5056/jnm16138

Kimchi, E. T., Posner, M. C., Park, J. O., Darga, T. E., Kocherginsky, M., Karrison,
T., et al. (2005). Progression of Barrett's metaplasia to adenocarcinoma is
associated with the suppression of the transcriptional programs of epidermal
differentiation. Cancer Res. 65 (8), 3146–3154. doi: 10.1158/0008-5472.CAN-
04-2490

Kohl, M., Wiese, S., and Warscheid, B. (2011). “Cytoscape: software for
visualization and analysis of biological networks.” in Data mining in
proteomics (Humana Press), 291–303.

Konishi, S. (1985). Normalizing and variance stabilizing transformations for
intraclass correlations. Ann. Inst. Stat. Math. 37 (1), 87–94. doi: 10.1007/
BF02481082

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinf. 9 (1), 559. doi: 10.1186/1471-2105-
9-559

Lin, J., Myers, A. L., Wang, Z., Nancarrow, D. J., Ferrer-Torres, D., Handlogten, A.,
et al. (2015). Osteopontin (OPN/SPP1) isoforms collectively enhance tumor
cell invasion and dissemination in esophageal adenocarcinoma. Oncotarget 6
(26), 22239. doi: 10.18632/oncotarget.4161

Lin, P., He, R. Q., Ma, F. C., Liang, L., He, Y., Yang, H., et al. (2018). Systematic
analysis of survival-associated alternative splicing signatures in gastrointestinal
pan-adenocarcinomas. EBioMedic ine 34, 46–60. doi : 10.1016/
j.ebiom.2018.07.040

Lordick, F., Mariette, C., Haustermans, K., Obermannová, R., and Arnold, D.
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The multitude of multi-omics data generated cost-effectively using advanced high-
throughput technologies has imposed challenging domain for research in Artificial
Intelligence (AI). Data curation poses a significant challenge as different parameters,
instruments, and sample preparations approaches are employed for generating these big
data sets. AI could reduce the fuzziness and randomness in data handling and build a
platform for the data ecosystem, and thus serve as the primary choice for data mining and
big data analysis to make informed decisions. However, AI implication remains intricate for
researchers/clinicians lacking specific training in computational tools and informatics.
Cancer is a major cause of death worldwide, accounting for an estimated 9.6 million
deaths in 2018. Certain cancers, such as pancreatic and gastric cancers, are detected
only after they have reached their advanced stages with frequent relapses. Cancer is one
of the most complex diseases affecting a range of organs with diverse disease
progression mechanisms and the effectors ranging from gene-epigenetics to a wide
array of metabolites. Hence a comprehensive study, including genomics, epi-genomics,
transcriptomics, proteomics, and metabolomics, along with the medical/mass-
spectrometry imaging, patient clinical history, treatments provided, genetics, and
disease endemicity, is essential. Cancer Moonshot℠ Research Initiatives by NIH
National Cancer Institute aims to collect as much information as possible from different
regions of the world and make a cancer data repository. AI could play an immense role in
(a) analysis of complex and heterogeneous data sets (multi-omics and/or inter-omics), (b)
data integration to provide a holistic disease molecular mechanism, (c) identification of
diagnostic and prognostic markers, and (d) monitor patient’s response to drugs/
treatments and recovery. AI enables precision disease management well beyond the
prevalent disease stratification patterns, such as differential expression and supervised
classification. This review highlights critical advances and challenges in omics data
analysis, dealing with data variability from lab-to-lab, and data integration. We also
describe methods used in data mining and AI methods to obtain robust results for
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precision medicine from “big” data. In the future, AI could be expanded to achieve ground-
breaking progress in disease management.
Keywords: multi-omics, artificial intelligence (AI), data integration, cancer biomarkers, patient stratification
INTRODUCTION

Artificial intelligence (AI) is a branch of computer science with
enhanced analytical or predictive capabilities to perform
interdisciplinary tasks that otherwise require human intellect.
AI has intensive problem-solving capabilities including
prediction, data scalability, dimensionality, and integration,
reasoning about their underlying phenomena and/or big data
transformation into clinically actionable knowledge, based on
the learning from model data sets. The learning capacity is
maximized by improving the prediction task based on
problem-specific measurements of performance. Particularly,
machine learning (ML) and deep learning (DL)-based
approaches were gaining recognition and emerged as key
components in biomedical data analysis, driven by health care
data availability and rapid progress of analytics techniques (Jiang
et al., 2017; Saltz et al., 2018; Huang et al., 2020; Ibrahim et al.,
2020). AI is currently used to automate the information
extraction, summarize the electronic medical records or
hand-written doctor notes, integrate health records, and store
information in cloud scaling (big data storage) (Bedi et al., 2015;
Chang et al., 2016; Miotto et al., 2016; Osborne et al., 2016;
Garvin et al., 2018; Syrjala, 2018) AI has immense potentials to
contribute significantly at every stage of cancer management
ranging from reliable early detection, stratification,
determination of infiltrative tumor margins during surgical
treatment, response to drugs/therapy, tracking tumor evolution
and potential acquired resistance to treatments over time,
prediction of tumor aggressiveness, metastasis pattern, and
recurrence (Bi et al., 2019).

Cancer is a major cause of death worldwide, accounting for an
estimated 9.6 million deaths in 2018. Cancers can originate from
various organs viz. lung, breast, kidney, represent phenotypic
diversity like cell surface markers, molecular mutations (p53,
PTEN, ER), demonstrate varied growth rate and apoptosis based
on the cancer microenvironment and status of blood supply,
and its aggressive nature. Also, cancer has a diverse disease
progression mechanism and the effectors ranging from gene-
epigenetics to a wide array of metabolites. Cancer/tumor being
highly heterogeneous in terms of inter-tumor heterogeneity
(cancers from different patients) and intra-tumor heterogeneity
(within a single tumor) impose challenges for both detection,
treatments, and recurrence. Medical decisions for cancer
treatment should consider not only its variegated forms with
the evolution of disease but also the individual patient’s
condition and their ability to receive and respond to treatment.
Certain cancers, such as pancreatic and gastric cancers, are
detected only after they have reached their advanced stages
with frequent relapses. Integration of “multi-omics” (genomics,
in.org 2128
epi-genomics, transcriptomics, proteomics, and metabolomics),
and “non-omics” (medical/mass-spectrometry imaging, patient
clinical history, treatments, and disease endemicity) data could
help overcome the challenges in the accurate detection,
characterization, and monitoring of cancers. AI could play an
immense role in the analysis of complex and heterogeneous data
sets, particularly from multi-omics and inter-omics approaches
and data integration to provide a holistic disease molecular
mechanism, identification of novel dynamic diagnostic and
prognostic markers and enable precision cancer management,
well beyond the prevalent disease stratification patterns such as
differential expression, and supervised classification (Figure 1).
Advanced computational analyses could also augment a global
interpretation and automation of the cancer patient radiographs
that most commonly relies upon visual evaluations and hence
differ in disease assessments. Cancer Moonsho℠ Research
Initiatives by NIH National Cancer Institute aims to collect as
many omics and non-omics information as possible from
different regions of the world to create a national ecosystem
for sharing and analyzing cancer data (Cancer Moonshot -
National Cancer Institute, 2016). The project will help develop
human tumor atlas, predict response to standard treatments,
optimize guidelines for systematic cancer prediction and
treatments, and identify ways to overcome drug resistance to
improve (i) current understanding of cancer, (ii) enable new
strategies/technologies for cancer characterization, (iii) early
detection of tumors/cancer, and (iv) extend therapies to more
patients in a personalized manner (Cancer Moonshot - National
Cancer Institute, 2016). The large multidimensional biological
data sets (including individual variability in genes, function, and
environment) generated, and/or compiled for the fulfillment of
this cross-border project require advanced computational
analysis, and AI certainly could be one of the key plays.

Recently AI is successfully applied to tumor image
segmentation, identify, and quantify the rate and amount of
mitosis (Romo-Bucheli et al., 2017), screening mutations
(Coudray et al., 2018), auto-detect and classify benign nuclei
from cancer cells (Sirinukunwattana et al., 2016; Xu et al., 2016),
protein alignments and spatial localization (Saltz et al., 2018),
predicting unknown metabolites, precision medicine matching
trials (Korbar et al., 2017; Coudray et al., 2018), drug repurposing
(Aliper et al., 2016), liquid biopsies and pharmacogenomics
based cancer screening/monitoring and predicting the patient
outcomes (Cohen et al., 2018; Low et al., 2018), drug discovery
(Abadi et al., 2017; Yu P. et al., 2017) and so on. AI has
outperformed pathologists and dermatologists in diagnosing
metastatic breast cancer (Low et al., 2018) and melanoma
(Bejnordi et al., 2017). Conversely, multi-omics data has
immense potentials to identify the caveat in the current
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AI-based cancer diagnostics, stratification, mutant identification,
treatment, and drug repurposing approaches, which could
advance precision oncology research (Li et al., 2018). However,
we have limited knowledge in the multi-omics and inter-omics
data analysis and availability of algorithms (Buchhalter et al.,
2014). This review highlights the current AI application in data
integration, advancement, scope, and challenges in oncology
research and clinical use. The reports mostly cover the articles
published in the last two decades (2000–2020).
IMPLICATIONS OF ARTIFICIAL
INTELLIGENCE IN CANCER
MULTI-OMICS

Advancements inmultidimensional “omics” technologies ranging
from next-generation sequencing to the mass spectrometry have
led to a plethora of information. AI mediated data integration
obtained from different “-omics” platforms such as genomics,
epigenomics, transcriptomics, proteomics, and metabolomics
enables the understanding of complex biological systems by
describing nearly all biomolecules ranging from DNA to
metabolites. Multi-omics researches have diverse applications in
veterinarymedicine (LiQ. et al., 2015),microbiology (Zhang et al.,
2010), agriculture science (Van Emon, 2016), biofuel (Rai et al.,
2016), and biomedical sciences (More et al., 2015; Hasin et al.,
2017; Awasthi et al., 2018; Patel et al., 2019) including oncology
(see Table 1).

Genomics
Genomics data analysis relies on the nucleotide sequences,
including expressed sequence tags (ESTs), cDNAs, and gene
arrangements on the respective chromosomes. Rapid advances
in the next‐generation sequencer (NGS) (Paolillo et al., 2016) and
in silico computational algorithms have led to high-throughput
data generation for whole genomes sequencing (WGS) and
Frontiers in Pharmacology | www.frontiersin.org 3129
epigenomes. WGS comprehensively explores all types of
genomic alterations in cancer and provides information on the
repertoire of driver mutations and mutational signatures
(including non‐coding regions) in cancer genomes, which
remain widely unexplored. Ley et al. reported the first-ever
WGS analysis of cancer (cytogenetically normal acute myeloid
leukemia, AML) (Ley et al., 2008), merely 6 months post-
publication of the first human whole-genome sequence
(Wheeler et al., 2008). Since then several cancer genomics
databases and projects including The Cancer Genome Atlas
(TCGA) (Wang Z. et al., 2016), the International Cancer
Genome Consortium (ICGC) (Zhang J. et al., 2019), Catalog of
Somatic Mutations in Cancer (COSMIC) (Forbes et al.,
2015), Cancer Genomic Hub (CGHub) (Wilks et al., 2014),
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) (Therapeutically Applicable Research to
Generate Effective Treatments (TARGET)), cBioPortal (Gao et al.,
2013), MethyCancer (He et al., 2008), UCSC Cancer Genomics
Browser (Goldman et al., 2013) and moonshot project (Cancer
Moonshot - National Cancer Institute, 2016) have surfaced (also
see Table 2). Data accessibility has further led to the development
of tools and resources to facilitate the rapid detection and analysis
of biologically relevant genomic outcomes (Cerami et al., 2012;
Gao et al., 2013; Gonzalez-Perez et al., 2013; Rubio-Perez et al.,
2015; Chakraborty et al., 2018). WGS is thus a powerful tool to
understand cancer genomics that typically contains unpredictable
numbers of point mutations, fusions, and other aberrations. In
contrast, targeted approaches like whole-exome sequencing
(WES) are easier to analyze but miss out information of
untranslated, intronic, and intergenic regions, which might have
an impact on the molecular pathogenesis of cancer (Nik-Zainal
et al., 2016). However, there are several associated limitations: (i) a
vast majority of cancer genomics efforts remain focused around
targeted approaches viz. WES (Morris et al., 2017) (ii) many of the
genomics data reported lacks a comprehensive clinical annotation
required for linking genomic events to specific cancer types,
prognoses, and treatment responses (Robinson et al., 2017) (iii)
most of the preliminary studies are performed on untreated
cancers, and thus do not provide insight into the response to
treatment regimens (Robinson et al., 2017). Integrating the cancer
genomics data with clinical physiology data could, therefore, be
expected to better define cancer biology and responses to
treatments. Several studies have integrated genomics and non-
omics cancer data (see Table 1). Histopathological images
integration with genomics helps retrieves better information on
cancer tissue architecture, which is generally compromised in
molecular assays, rendering this rich information underused
(López de Maturana et al., 2019). AI algorithms classify breast
cancers using prognostic factors to quantitative image (Yuan et al.,
2012) and the public data set (TCGA) (Yuan et al., 2012). AI
algorithms to integrate (multi-) omics data with the pathology
images has been successfully extended to develop predictive
models for prostate cancer (Robinson et al., 2015), renal cell
carcinoma (Schoof et al., 2019), low-grade glioma (Brat et al.,
2015), and non-small cell lung cancer (Yu et al., 2016). Alongside
integrating the multi-omics data from different platforms,
FIGURE 1 | Components of omics data analytics.
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TABLE 1 | Comprehensive list of Artificial Intelligence-based omics and non-omics investigations in oncology.

# Type of
omics

Data type AI Tools/analysis Type of cancer References

1 Non-omics Clinicopathological DL Genetic algorithm and Pearson’s correlation coefficient Oral (Chang et al., 2011)
2 Clinicopathological DL Neural network Colorectal (Bottaci et al., 1997)
3 Clinicopathological DL Decision tree, artificial neural network (ANN), support vector machine (SVM)

and logistic regression
Colorectal (Wang et al., 2019)

4 Clinicopathological DL ANN and Cox regression Gastric (Zhu et al., 2013)
5 Clinicopathological DL Cox proportional hazard and ANN Gastric (Biglarian et al., 2011)
6 Sonographic

images
DL Deep convolutional neural network (DCNN) Thyroid (Li X. et al., 2019)

7 MR images DL Faster region-based convolutional neural networks (Faster R-CNN) Metastatic
lymph nodes

(Lu Y. et al., 2018)

8 Dermoscopic
images

DL Convolutional neural networks (CNN) Melanoma (Haenssle et al., 2018)

9 Digital
Mammography
DREAM

DL Faster region-based convolutional neural networks (Faster R-CNN) Breast (Ribli et al., 2018)

10 Clinicopathological ML Neural networks, decision trees, and logistic regression Breast (Delen et al., 2005)
11 Clinicopathological ML ANN, SVM, and semi-supervised learning Breast (Park et al., 2013)
12 Clinicopathological ML Extreme Learning Machine (ELM), Neural networks and Genetic algorithm Prostate (Jović et al., 2017)
13 Clinicopathological ML Two-stage fuzzy neural network Prostate (Kuo et al., 2015)
14 Clinicopathological ML Linear regression, Decision Trees, Gradient Boosting Machines, and Support

Vector Machines
Lung (Lynch et al., 2017)

15 Radiomics ML Decision tree, AdaBoost, algorithm, RUSBoost algorithm, matthews
correlation coefficient (MCC)

Gliomas (Lu C. F. et al., 2018)

16 MR images &
Clinicopathological

ML SVM, bagged SVM, K-nearest neighbor (KNN), adaptive boosted trees
(AdaBoost), random forest (RF), and gradient boosted trees (GBT)

Bladder (Hasnain et al., 2019)

17 Single omics Genomics DL Prognosis-enhanced neural networks (ENN), SVM, and probabilistic-
enhanced NN (PENN)

Pan Cancer (Vasudevan and
Murugesan, 2018)

18 Proteomics DL SVM and C4.5 Breast (Karsan et al., 2005)
19 Proteomics DL Deep Learning neural network (DLNN) Myeloid

Leukemia
(Liang et al., 2019)

20 Metabolomics DL multiple logistic regression (MLR) and alternative decision tree (ADTree) Breast (Murata et al., 2019)
21 Genomics ML SVM, genetic algorithm, log-rank test, and Cox hazard regression model Ovarian (Lu et al., 2019)
22 Genomics ML Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), and

Pathway based Deep Clustering model (PACL)
GBM and
ovarian cancer

(Mallavarapu et al.,
2019)

23 Metabolomics ML SVM, Naive Bayes, Partial Least Square Discriminant Analysis (PLS-DA),
LASSO, RF, KNN, and C4.5

Colonic (Eisner et al., 2013)

24 Metabolomics ML RF, SVM, recursive partitioning and regression trees (RPART), linear
discriminant analysis (LDA), prediction analysis for microarrays (PAM), and
generalized boosted models (GBM)

Breast (Alakwaa et al., 2018)

25 Non-omics
and single
omics

MR images and
genomics

DL Residual convolutional neural network (RCNN) Gliomas (Chang et al., 2018)

26 Clinicopathological
and genomics

DL DNN, Multi modal Deep Neural Network by integrating Multiulti-dimensional
Data (MDNNMD) and receiver operating characteristic (ROC)

Breast (Sun et al., 2018)

27 Clinicopathological
and genomics

ML Ensemble models-SVM, ANN, KNN, ROC, and calibration slope (CS). Breast (Zhao et al., 2018)

28 Clinicopathological
and genomics

ML SVM, and ROC Prostate (Zhang et al., 2017)

29 Histopathology
images and
proteomics

ML RF and CNN Kidney (Azuaje et al., 2019)

30 Multi-omics Epigenetics,
genomics, and
transcriptomics

DL Hierarchical integration deep flexible neural forest framework (HI-
DFNForest), KNN, SVM, RF, and multi-grained cascade forest (gcForest)

BRCA, GBM,
and OV

(Xu et al., 2019)

31 Epigenetics and
transcriptomics

DL Unsupervised feed-forward, nonrecurrent neural network, Cox proportional
hazards (Cox-PH) model, K-means clustering, SVM algorithm, concordance
index, Log-rank P-value of Cox-PH regression, Brier score, and ANOVA test
F values

Liver (Chaudhary et al.,
2018)

32 Epigenetics and
transcriptomics

DL OmiVAE, k-means clustering, support vector machine, Variational
autoencoder (VAE), PCA, t-SNE, KPCA, and UMAP

Pan cancer (Zhang X. et al., 2019)

33 Epigenetics and
transcriptomics

DL DeepProg, Autoencoder, Cox-PH model, Gaussian mixture model,
concordance index, and Wilcoxon rank-sum test

Pan cancer (Poirion et al., 2019)

34 Genomics,
transcriptomics,
and proteomics

ML Generic model, gene-specific model, RF, Random Forest Regressor, and
trans-tissue model, Wilcoxon signed-rank test

Breast and
ovarian

(Li H. et al., 2019)
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transcriptomics, proteomics, and metabolomics with genomics
could consolidate molecular information. Wu P. et al., 2019
integrated the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) mass spectrometry-based proteomics data for selected
breast, colon, and ovarian tumors with TCGA into the cBioPortal
(cBioPortal for Cancer Genomics) to support easy exploration and
integrative analysis of the proteomic data sets in the context of the
clinical and genomics data from the same tumors (Wu P. et al.,
2019). Considering the diversity of cancer genomes and
phenotypes, cataloging and interpretation of the abundant
mutation, particularly non‐coding and structure variants, could
be performed with confidence via integrating clinicopathological
information along with transcriptomics, and epigenomics to
decide the precise treatments that will produce the best results
for the cancer patients.

Transcriptomics
Transcriptome denotes the active genes as well as long-
noncoding RNA, short RNAs such as microRNAs, small nuclear
RNAs in a defined physiological condition. The system-
wide transcriptomic analysis evaluates overall transcripts in
a metabolic process, while the targeted approach provides
information regarding known genes. Differential expression of
protein-coding RNA could provide insight into the disease
mechanism, as well as integrated with genomics and proteomics
to discover novel genes and their functional relevance.While non-
coding RNAs have regulatory functions in several metabolic
diseases, neurological disorders, and cancer. Transcriptome
is directly co-related to any epigenomic change that
manifests cancer, hence the integration of epigenomics and
transcriptomics data could extend our understanding of cancer
biology such studies are reported in breast (Robinson et al., 2015),
prostate cancer (Varambally et al., 2002; Bhasin et al., 2015), head
and neck squamous cell carcinoma (HNSCC) (Kelley et al., 2017).
Also, the transcriptomics and epigenomics data integration
approach opens-up avenues to know more about the promoter
crosstalk through a shared enhancer (Eun et al., 2013) and
dynamic switching of promoter and enhancer domains (Sohni
et al., 2015).Moarii et al. used a large data set of 672 cancerous and
healthy methylomes gene expression and copy number profiles
from TCGA and performed a meta-analysis to clarify the
interplay between promoter methylat ion and gene
expression in normal and cancer samples (Moarii et al., 2015).
Vantaku et al. demonstrated a novel approach for the unbiased
integration of transcriptomics, metabolomics, lipidomics, and
data to robustly predict high-grade patient survival and
discovery of novel therapeutic targets in bladder cancer
(Vantaku et al., 2019).

Proteomics
Proteomic profiles reveal cellular/molecular responses to
(epi-) genomics, and environmental alterations, and their
feedback responses. Post-translation modifications, including
phosphorylation, glycosylation, ubiquitination, nitrosylation,
enrich the protein repertoire (protein isoforms), and impacts
protein functions like transport, enzymatic activity, and
Frontiers in Pharmacology | www.frontiersin.org 5131
intracellular signaling pathways in cancer. Classifying specific
protein isoforms provide unmatched clinical sensitivity and
specificity. Various tissue and plasma proteomics studies are
performed (Peng et al., 2018) to screen and diagnose cancers
including colorectal (Tsai et al., 2012; Fayazfar et al., 2019;
Thorsen et al., 2019), breast(Mishra et al., 2015), liver (Yang
et al., 2013), oral (Lai et al., 2010) and so on. MS has applications
beyond disease diagnostics and could be extended to monitor the
feedback responses towards therapy, identify drug toxicity, and
discovering new biomarkers. High-quality data sets are obligatory
for clinical MS. Hence improvements in MS-instrument quality
and robustness, automated sample processing, robust data
analysis pipelines, and online automation (cloud computing) to
synchronize results, data sets, and data portability have
contributed to expanding the use and impact of MS in cancer
research. Also, to deal with the variations in the proteomics data
sets across the globe, Proteomics Standards Initiative (PSI) from
theHuman ProteomeOrganization (HUPO) has setup guidelines
for sample collection viz. selecting appropriate disease controls,
categorizing disease and sub-disease status (Maes et al., 2015),
storage to rule-out pre-analytical variables (including patient and
instrumental factors) that contribute to a large extent of variation,
calibrating MS instrument for data-quality assurance, data
reporting for untargeted (Martıńez-Bartolomé et al., 2014) and
targeted (Abbatiello et al., 2017) analysis. An amalgamation of
proteomics data with (epi-)genomics, transcriptomics,
metabolomics, and cancer histopathological images using
AI gives confidence in the data or metabolic pathways
identification. Proteomics investigation of breast cancer
contoured more than 12,000 proteins and 33,000 phospho-sites.
Proteogenomic analysis associated DNA mutations (data
obtained from TCGA) to protein signaling to pinpoint the
genetic drives of cancer, and revealed new signaling pathways
for the breast cancer subtypes with specific mutations (PIK3CA
and TP53) and identified two candidate markers (SKP1 and
CETN3) in basal-like breast cancer (Mertins et al., 2016). Liu
et al., integrated transcriptome (RNA-seq) and proteome (data-
independent acquisition, DIA) data to co-relating RNA splicing
links isoformexpressionwithproteomediversity thatmayhelp for
studying the perturbations associated with cancer (Liu et al.,
2017). MS imaging (MSI) is yet another advancement in MS
that enables visualization of tumor microenvironmental
biochemistry and empowers tumor biology investigation to an
entirely novel biochemical perspective, thereby potentially leading
to the identification of a new pool of cancer biomarkers (Bi et al.,
2019). High-throughput MSI analysis is a powerful tool for
biomarker identification in a spatial manner, tracking drugs and
its metabolites, imaging drug-response at cellular-level. MSI tool
was used to identify unique region-of-interest–specific
biomarkers (lipid signature) and therapeutic targets to classify
colorectal cancer and subtyping in non-small cell lung cancer
(Kriegsmann et al., 2016). MSI also finds application in the
identification of prognostic signatures beyond classical
histology. Proteins and protein isoforms associated with patient
survival in four different high-grade sarcoma subtypes (Lou et al.,
2017) and colorectal adenocarcinoma (Hinsch et al., 2017) were
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identified. In gastric adenocarcinoma, native glycan fragments
detected by MALDI-FT-ICR mass spectrometry imaging were
linked to patient prognosis (Kunzke et al., 2017). CombiningMSI
with histology enables the extraction of molecular profiles from
specific regions of tissue or histopathological entities, implying
MSI can facilitate intelligent knife (iKnife) in sorting tumors
during surgery with high sensitivity and specificity (Balog et al.,
2013). Certainly, MS-based analysis, along with histopathological
diagnosis, can show a stronger association with the clinical
outcome (Huber et al., 2014). Recently MSI data is combined
with other imaging data like fluorescence in situ hybridization,
tissue microarrays, confocal Raman spectroscopy, and MRI, for
example, MRI and MSI imaging data were collated to analyze
brain pathophysiology (Porta Siegel et al., 2018). Combing
vasculature staining (using an anti-CD31 antibody) and MSI
could help attain a better picture of vascularization as well as
vessel characteristics. However, with emerging MS technologies,
there are still challenges in its clinical application including
nonoptimized raw data preprocessing, imprecise image co-
registration, and limited pattern recognition capabilities due
to lack of reference spectra database (Addie et al., 2015).
Nevertheless, efforts/measures are taken towards the successful
implementation of MS technology for diagnosis of cancer
biomarkers translatable to clinical setting. Additionally, the
imaging data could be integrated with LC/GC-MS, the
workhorse technique of proteomics workflow that includes the
extraction of total proteins/peptides, fractionation, and deep
proteomic analysis. Delcourt et al., combined MSI and top-
down microproteomics to detect potential protein markers in
serous ovarian cancer (Delcourt et al., 2017). Using LC-MS and
peptide fractionation Kulak et al. achieved deep coverage of
cellular proteomes with sub-microgram sample input (Liebl,
1967). Further the cancer signature biomarkers could be used to
stratify patients according to subtype,metastatic risk, progression,
recurrence, and treatment response. Lately single-cell proteomics
is gaining importance to bring comprehensive insights into the
cancer heterogeneity, clonality to metastasis or to capture
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information from rare/mutated cells (Doerr, 2019). Using a
quantitative single-cell proteomics approach Schoof et al.,
characterized an acute myeloid leukemia hierarchy (Schoof
et al., 2019).

Metabolomics
Metabolomics is a systematic analysis of small molecules (<1kD)
within cells, biofluids, tissues, or organisms involved in primary
or secondary metabolic processes. Metabolites (small molecules)
are highly diverse classified into multiple categories: amino acids,
lipids, nucleotides, carbohydrates, and organic acids. Metabolite
repertoire changes significantly during the process of normal
growth and development and/or exposure to stress, allergens,
and disease conditions (Bertini et al., 2009; Lin et al., 2011;
Veselkov et al., 2011), which relates strongly to the final clinical
phenotype. Metabolomics thus enhances our molecular
understanding of disease mechanisms, progression, response
to drugs/treatments, and recurrence probability. Typical
metabolomics analysis workflow comprises of metabolite
extractions, separation by liquid/gas chromatography, capillary
electrophoresis and ion mobility, detection by mass spectrometry
(MS), or nuclear magnetic resonance (NMR) spectroscopy and
data analysis. MS applications in metabolomics have increased
exponentially since the discovery and development of soft
ionization tools like electrospray ionization (ESI) and matrix-
assisted laser desorption ionization (MALDI). Several
separation-free MS techniques including direct infusion-MS,
MALDI-MS, mass spectrometry imaging (MSI), and direct
analysis in real-time mass spectrometry are gaining popularity.
The advantages of separation-free mass spectrometry are
reduced sample volume requirements and minimization of the
analytical variation. Untargeted metabolomics approaches are
ideally used for hypothesis development, as it simultaneously
identifies several unknown/known metabolites and quantifies.
However, diverse physical and chemical properties and wide
concentration ranges of the metabolites, biological variations
(Heinemann et al., 2014), and identification of the unknown
TABLE 2 | List of cancer genomics databases.

# Cancer genomic database name Cancer alteration types Organisms Public data

1 The Cancer Genome Atlas (TCGA) Copy number, mutation, methylation, gene expression, miRNA expression Human Yes
2 The International Cancer Genome

Consortium (ICGC)
Mutation Human Yes

3 Catalog of Somatic Mutations in Cancer
(COSMIC)

Mutation Human No

4 cBio Cancer Genomics Portal Copy number, mutation, methylation, gene expression, miRNA
expression, protein, phosphorylation

Human Yes

5 MethyCancer Methylation Human Yes
6 MutaGene Mutation Human Yes
7 Moonshot project Copy number, gene expression Human Yes
8 Integrative Oncogenomics Cancer Browser

(IntOGen)
Copy number, mutation, gene expression Human Yes

9 Mouse Retrovirus Tagged Cancer Gene
Database

Mutation Mouse Yes

10 Mouse Tumor Biology Database Copy number, mutation, methylation, gene expression Mouse No
11 OncoDB.HCC Copy number, gene expression, QTL Human, mouse, rat No
12 UCSC Cancer Genomics Browser Copy number, mutation, gene expression, miRNA Human, mouse, rat Yes
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compounds based on the MS/MS fragmentation patterns impose
challenges for untargeted metabolomics. For a long time,
researchers have identified the unknows in the biological
samples by complementing the MS/MS fragmentation with
public repository or standards, which leads to the identification
of a very limited number of metabolites, while a majority of the
potentially useful information in MS/MS data sets remains
uncurated. Molecular networking like GNPS has proved to be
very useful in cataloging the uncurated MS/MS data sets via a
spectral correlation and visualization approach that can detect
sets of spectra from related molecules even when the spectra
themselves are not matched to any known compounds (Wang
M. et al., 2016). ML in combination with data mining algorithms
(supervised and unsupervised) like principal component analysis
or hierarchical clustering has transformed metabolomics studies
like analyzing several variables/treatments simultaneously
(Duan et al., 2005; Bertini et al., 2009; Guan et al., 2009).
Particularly unsupervised data mining allows extracting
meaningful relationships between samples with less risk
of human bias. Metabolomics is applied in biomarker
identification for diagnosis, monitoring, and prognosis of
several diseases(Alvarez et al., 2017; Chorell et al., 2017; Perng
et al., 2017; Patel et al., 2019), particularly those impacting
metabolic functions, such as cancer. Metabolomic biomarkers
for several cancers including colorectal (Ma et al., 2012; Nishiumi
et al., 2012; Manna et al., 2014; Yamazaki, 2015) pancreatic
(Zhang et al., 2012), lungs (Koutros et al., 2013; Li et al., 2014;
Zhuang et al., 2016), breast (Cui et al., 2016; Li et al., 2020),
gastric (Ikeda et al., 2012), ovarian (Zhang et al., 2013), and
prostate (Koutros et al., 2013; Mondul et al., 2014; Kelly et al.,
2016) have been reported. Despite numerous ongoing studies,
limited metabolomics biomarkers reach clinical trials,
implying improvements in experimental designs, data analysis
with reduced false discovery rates, pinpointing molecules
accountable for metabolic aberrations, and data interpretation
is needed. Besides, we also must overcome interlaboratory
variability by generalizing the protocols that are robust and
adaptable to enhance reproducibility. Indeed, MS-based
metabolomics biomarker discoveries have entered the new
realms of MSI that present intuitive metabolites distribution in
tissues or cells. MSI is performed in two modes, namely, imaging
(Stoeckli et al., 2001) to correlate with histology and profiling, to
know the overall metabolites (Cornett et al., 2006). MSI alone or
in conjunction with (immuno-)histochemistry (IHC) enhances
our understanding of complex heterogeneous cancer metabolic
reprogramming with spatial information and facilitate the
discovery of potential metabolic vulnerabilities that might be
targeted for tumor therapy. MSI suffers some technical
limitations like area of detection limits, instrument sensitivity
at the high spatial resolution, ion suppression, matrix effects, and
data analysis, particularly normalization and background
correction, but has tremendous potential to improve cancer
diagnostics. Huang et al. developed a graphical data processing
pipeline for MSI based spatially resolved metabolomics (Huang
et al., 2019), which could achieve multivariate statistical results in
an intuitive and simple way as well as discovery low-abundant
Frontiers in Pharmacology | www.frontiersin.org 7133
but reliable biomarkers in heterogeneous tumors. MSI has been
employed to different cancers including brain (Jarmusch et al.,
2016; Clark et al., 2018), breast (Guenther et al., 2015;
Abdelmoula et al., 2016; Angerer et al., 2016; Wang S. et al.,
2016; Torata et al., 2018; Vidavsky et al., 2019), lung (Calligaris
et al., 2015; Li T. et al., 2015; Carter et al., 2017; Holzlechner et al.,
2018), ovarian (Dória et al., 2016; Briggs et al., 2019), prostrate
(Wang et al., 2017), esophageal (Guo et al., 2014; Abbassi-Ghadi
et al., 2016; Sun et al., 2019a), colon (Hiraide et al., 2016; Inglese
et al., 2017), oral (Uchiyama et al., 2014; Bednarczyk et al., 2019),
skin (Xu et al., 2017; Margulis et al., 2018), adrenal gland (Sun
et al., 2019b) and gastrointestinal stromal tumors (Abu
Sammour et al., 2019) for spatial metabolomics analysis. MSI
is also used to determine the metabolite changes in the 3D
osteosarcoma cell culture model upon drug treatments
(Palubeckaitė et al., 2020). MSI has been used to investigate
tumor biopsy tissues for hypoxia (Chughtai et al., 2013; Jiang
et al., 2015), driver of tumor resistance to radiotherapy or
chemotherapy, and lipid distributions (Inglese et al., 2017;
Paine et al., 2019). Esteva et al., employed deep convolutional
neural networks (CNNs)-representing a diverse class of multi-
layer artificial neural networks, pre-trained on millions of images
representing more than 1000 generic image classes to automate
the classification of skin cancers (Esteva et al., 2017). The same
approach could be extrapolated for analyzing the images
captured by MSI for better cancer management. Inglese et al.
recently developed a new computational multimodal pipeline
Spatial Correlation Image Analysis (SPACiAL) to integrate MSI
molecular imaging data with multiplex IHC. The pipeline allows
comprehensive analyses of metabolic heterogeneity, thereby
increasing the efficiency and precision for spatially resolved
analyses of specific cell types (Inglese et al., 2017).
CONSIDERATION AND CHALLENGES
FOR AI-MEDIATED MULTI-OMICS DATA
INTEGRATION

AI-mediated clinical cancer research has attained new heights for
its unpreceded learning capabilities to process complex data. ML
and deep learning (DL) are the subset of artificial intelligence
that enables computers to learn with data without being
explicitly programmed. AI analytical skills are primarily due to
image recognition, computer vision, data integration, decision
making, and natural language processing. AI could thus self-
adapt, synchronize qualitative and quantitative information, and
validate clinical results obtained from multiple platforms.
However, AI applications in oncology research still is infancy
and must overcome several challenges (Figure 2).

Data Integration: A Major Challenge in
Precision Oncology
A major challenge in precision oncology is to integrate data
generated from multiple types of omics to predict biomarkers or
phenotypic outcomes (tumor/normal, early/late stage, survival,
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etc.). Machine learning tasks consist of three key steps in order to
develop a computational model for biological data integration
and analysis: (i) selection and pre-processing of data set, (ii)
selection of algorithm and identify the ways to train it for
development of a prediction model, and (iii) validation of the
model in another data set (Figure 3).
Input Data Selection and Pre-Processing
Input data for most of the models consists of gene expression
data, copy number alteration, epigenomics, proteomics, and
single nucleotide mutations data sets. However, an integrated
data analysis strategy combines various omics modalities, and
this amalgamation of different types of data could help to develop
promising prognostic models. Multi-platform data integration
relies on (a) advances in sample extraction and processing
technologies; (b) the availability of sufficiently large, matched,
and carefully annotated data sets for multi-omics data; (c)
molecular and physiologically characterized and graded tumor/
cancer data set; (d) data sets with more informative images
compared to present databases, e.g., the TCGA image collection
(Yu K.-H. et al., 2017) for better 3D-fitting of in vivo imaging and
ex vivo data. The first step in ML analysis is pre-processing of a
defined data set(s). It requires normalization, noise filtration, and
feature selection when more than one data sets are combined.
Normalization becomes an essential step to eliminate biases
during the analysis of different data sets that are merged.
Selection of defined features is a critical phase in the success of
an algorithm in classification, regression, and pattern recognition
(Vougas et al., 2019).
Selection of Algorithm/Prediction Model and
Data Integration
Algorithms are trained through optimizing the parameters to
reach an ideal model. k-fold cross-validation (KF-CV) is widely
used for optimizing without capturing the noise of data so that
the results of statistical analysis can be generalized to an
independent data set (Gao et al., 2019). Several studies on
statistical methods and algorithms for data integration are
reported (Huang et al., 2017; Perakakis et al., 2018; Zeng and
Lumley, 2018; Wu C. et al., 2019). Standard machine learning
techniques are supervised and unsupervised learning. Supervised
learning requires algorithms to be provided with labeled inputs
(e.g., omics data) and the desired output (e.g., the presence of a
disease or not). In unsupervised learning, data are not labeled,
and the algorithm is trained to look for naturally occurring
pattern to correspond with the output. Another category that is
more common in multi-omics studies is semi-supervised
learning, where unlabelled data is used in conjunction with
small labeled input. Briefly, multi-omics data integration
consists of (a) dimension reduction: to reduce complexity, a
number of factors are condensed to fewer variables (called
components). (b) Clustering: Grouping input variables with
common characteristics in same clusters, (c) density estimation
to assess the distribution of input variables in specific space, and
Frontiers in Pharmacology | www.frontiersin.org 8134
(d) regression to estimate the relationships among variables and
for developing predictive models.
Testing the Prediction Models
Building amodel that fits data beyond the current predictivemodel
is the ultimate goal of training a candidate computational model.
This can be tested by implementing a candidate predictive model
to blind data sets. If the model is for developing tools to identify
precision and personalized therapies for individual cancer patients,
panels from clinical data sets should be preferentially used. A
trained model that fails to generalize might be because of
overfitting or underfitting (Dietterich and Bakiri, 1995). In the
case of overfitting, noise, or random fluctuations are picked up in
the training data, which negatively impact the model’s ability to
generalize. Overfitting of a trained model is a major issue in
machine learning. In underfitting, the underlying structure of a
particular data set is not captured in a set of in silico pipeline. The
predictive model’s capacity to make predictions understandable or
interpretable to humans is another key requirement, i.e., the higher
the complexity of the model, the more challenging interpretability
becomes (black box models). This could be achieved at different
levels of data processing and abstraction, however the development
of methods for interpretingMLmodels is at a relatively early stage,
particularly for precision oncology (Castelvecchi, 2016). Enhancing
the interpretability will allow users to peer into the hidden layers of
themodel anddetermine how exactly the predictions aremade on a
case-to-case basis.

Deep Neural Networks: For Multi-Omics
Data Integration
Deep neural networks (DNNs) are a subset of machine
learning, which is gaining popularity in precision medicine.
Today’s complex multi-omics data might be challenging to
analyze with traditional machine learning algorithms. DNNs
algorithms can integrate multi-omics data with better sensitivity,
specificity, and efficiency. Moreover, DNNs have the advantage
of integrating other sources of information such as medical
images or clinical health records, which is a pre-requisite for
personalized medicine. Sakellaropoulos et al. designed the DNNs
model, which could capture pathways that linked gene
expression with drug response and showed that DNNs are
better than other traditional machine learning algorithms.
Also, DNNs predicted drug response and survival in a large
clinical cohort (Sakellaropoulos et al., 2019). Deep learning is still
an emerging area in biomedical field, their effectiveness is not
always guaranteed. Cancer multi-omics data integration is done
using various approaches: unsupervised cancer subtyping to
show patient survival (Ramazzotti et al., 2018), graph-based
integration to integrate copy number aberration, epigenome,
and transcriptome data sets for ovarian cancer clinical
outcome prediction (Kim et al., 2015) and integration DNA
methylation and matched imaging data to predict glioblastoma
disease progression (Klughammer et al., 2018). However,
rigorous mathematical foundations for emerging DNNs
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architectures are still lacking (Martorell-Marugán et al., 2019).
One of the most challenging and futurist modules of the data-
integration is combining multi-omics and non-omics data
(imaging, biochemical/molecular profile data, clinical
symptoms). Yu et al., associated omics data of lung cancer
patients with the histopathology data to determine the patient
survival rate (Yu K.-H. et al., 2017).
Frontiers in Pharmacology | www.frontiersin.org 9135
Machine Learning for Drug Response
Prediction in Precision Oncology
Applications
Identification of a panel of biomarkers that are associated with
treatment responses is imperative for the precision oncology
approach. Machine learning algorithms are being developed for
prediction to drug response using response-predictive biomarkers
FIGURE 2 | Artificial Intelligence-mediated oncology workflow and challenges.
FIGURE 3 | Considerations for major stage of Machine Learning based analysis in oncology.
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through integrative analysis of multi-omics data (Ali and
Aittokallio, 2019). Drug sensitivity prediction models,
which are entirely based on gene expression profile, are
less trustworthy compared to those which are based on
integrated multi-omics profiling. Input data type, noise ratio,
dimensionality, data complexity, and heterogeneity, are
the crucial factors for drug response prediction model
development. Sometimes, it is difficult to understand prediction
models due to the dominance of gene expression profile data sets,
which can be decreased by a two-stage method, called TANDEM
(Aben et al., 2016). Bayesian efficient multiple kernel learning
(BEMKL) is another drug response prediction model based on
multi-omics data. It was the top-performing model in the
National Cancer Institute - Dialogue for Reverse Engineering
Assessment and Methods (NCI-DREAM7) Drug Sensitivity
Prediction Challenge (Costello et al., 2014). Currently, the
majority of data in repositories that are publicly available
represent a significant set of data that are derived using cell
lines treated with different doses of drugs and a large number of
compounds. Some of these widely used data sets are: (i) The
genomics of Drug Sensitivity in Cancer (GDSC), (ii) Cancer Cell
Line Encyclopedia (CCLE), and (iii) National Cancer Institute
drug screening panel (NCI-60). It is essential to understand that
data extracted from clinical samples are ideal for the development
of favorable drug prediction models. Heterogeneous properties of
cancers make in silico analysis for molecular matching using
cancer cell lines challenging in clinical settings (Hanahan and
Weinberg, 2011; Turajlic et al., 2019). Importantly, the
interplay of tumor-microenvironment that determines cancer
development and response to drug treatment cannot be
recapitulated using cancer cell lines model, and therefore,
molecular changes associated with clinical cancers are diverse
than in cancer cell lines (Wu and Dai, 2017). Lack of reliable
resources for input data set stalled the success of creating drug
prediction models. There is an urgent need to evaluate in silico
technologies like transfer learning (TrLe) methods employing
different ML algorithms and applications that utilize predictive
feature (very complex non-linear relationships between features)
learned in cell line trained model to build a newmodel or leverage
information from auxiliary data not directly belonging to the
problem being handled, that can be used in real clinical settings.
Several studies have executed TrLe approach and tested and
trained machine learning model for data obtained from clinical
samples (Daemen et al., 2013; Turki et al., 2018). Turki et al. used
TrLe-based approach to transfer patterns learned in breast and
lung cancer patient data sets to predict drug sensitivity of multiple
myeloma patients (Turki et al., 2018). Daemen et al. used breast
cancer cell lines data for training model and tested on clinical data
sets derived from TCGA (Daemen et al., 2013). Similarly, the
Geeleher group built a training model on gene expression data
sets extracted from Cancer Genomics Project and tested them on
TCGA data sets from non-small-cell-lung cancers (NSCLC)
(Geeleher et al., 2014). Using an elastic net model on to B-cell
lymphoma cell lines, Falgreen et al. identified gene signatures that
are associated with the development of resistance to drug
(cyclophosphamide, doxorubicin, and vincristine) in diffuse
Frontiers in Pharmacology | www.frontiersin.org 10136
large B-cell lymphoma (Falgreen et al., 2015). Sevakula et al.
transfer learning for molecular cancer classification using DNN
(Sevakula et al., 2019).

Machine Learning in Biomarker Discovery
and Patient Classification
The identification of the disease biomarkers from -omics data
does not only facilitate the stratification of patient cohorts but
also provides early diagnostic information to improve patient
management and prevent adverse outcomes. Coudray et al.
applied CNN on whole-slide images obtained from The Cancer
Genome Atlas to accurately and automatically classify subtypes
of lung cancer, namely adenocarcinoma (LUAD) and squamous
cell carcinoma (LUSC) and normal lung tissue (Coudray et al.,
2018). Likewise, Huttunen et al., automated classification of
multiphoton microscopy images of ovarian tissue (Huttunen
et al., 2018). Further, they reported a prediction performance
comparable to that obtained by pathologists. Brinker et al.,
automated dermoscopic melanoma image classification using
CNN and showed its superiority over both junior and board-
certified dermatologists (Brinker et al., 2019). Molecular profiling
of carcinoma using circulating cell-free DNA is another
approach for sub-dividing patients in risk factors (Kaseb et al.,
2019). It has the advantage of being a noninvasive panel of
biomarkers based on the multi-omics approach to increase the
accuracy compared to biomarker-based on single omics data. For
instance, protein biomarkers found in small sample sizes in the
discovery cohort may be prone to achieve over-fitting and
overinterpretation of proteomic data. Combined analysis of
genomics with proteomics data sets led to the identification of
novel therapeutic targets such as altered PI3K pathway in
hormone receptor-positive breast cancer (Stemke-Hale et al.,
2008). Transcriptomics with proteomics data sets analysis leads
to the identification of gonadotropin-releasing hormone (GnRH)
signaling pathway in glioblastoma that was not interpreted with
single omics data set (Jayaram et al., 2016). Similarly, integrated
analysis of DNA copy number alteration, with gene expression
data in breast cancer patients led to understand the biology of
cancer type and promoted to identify novel therapeutic
interventions (Curtis et al., 2012). Four unique urinary
biomarkers were identified in an integrated transcriptomic and
metabolomics data analysis that was more reliable than single
omics data analysis (Nam et al., 2009). Integrated proteogenomic
characterization of paired tumor and adjacent liver samples
identified alterations of the liver-specific proteome and
metabolism. Biomarkers and patients’ subgroups with distinct
features in metabolic reprogramming, microenvironment
dysregulation, cell proliferation, and potential therapeutics
were identified (Gao et al., 2019).
CONCLUDING REMARKS AND OUTLOOK

Cancer refers to a compendium of related diseases with
uncontrolled dividing and spreading cells. More than 100s of
different types of cancers are known. Cancer will be the leading
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cause of mortality in developed countries by 2030 (Centre for
Disease Control). Cancer treatments are challenging due to its
heterogenicity (temporal and spatial), high recurrence, and low
median survival rate causing millions of deaths every. The
molecular understanding of tumor biology has notably
changed cancer treatment paradigms during the past 15 years.
Still, the success of cancer therapeutics in clinical trials is the
lowest of all major diseases. Future cancer treatments thus vouch
for tailoring personalized therapies and targeting components of
the tumor microenvironment. Accurate early diagnosis and
prognosis of cancer greatly increases the chances for successful
treatment and patient’s survival rate. Present cancer diagnosis
relies on the clinician’s judgment based on their knowledge and
clinical experience, which certainly cannot be guaranteed
accurate diagnosis. This aspect points to the variability of the
human brain to integrate large amounts of sample data. AI (ML
and deep learning) is extremely proficient at handling vast
amounts of complex nonlinear data (multi-omics and non-
omics) generated during cancer treatments and researches,
fault tolerance, parallel distributed processing, learning, and
decision-making capabilities to improve oncologic care.
AI could thus not only integrate various aspects of the clinical
diversity but also helps to address the current lack of objectivity
and universality in expert systems. Various researches showed
impressive diagnostic and prognosis performance of AI using
ML (Esteva et al., 2017; Ferroni et al., 2019; Jiang and Xu, 2019).
Yoon et al. showed the potential of AI models for personalized
oncology treatments that can estimate individualized treatment
effects based on the analysis of counterfactual clinical outcomes
(Yoon et al., 2018). ML algorithms (supervised or unsupervised
learning) guided by clinicians could unravel the hidden
molecular patterns within the data sets (multi-omics and non-
omics) to support discovery of biomarkers (diagnostic,
prognostic, recovery, and recurrence), candidate therapeutic
targets associated with a specific patient group, and clinically
relevant subtypes without explicit programming in clinical
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setups. Clinicians’ roles are inevitable in selecting the training
data sets and multiple combinations of parameters necessary for
building a classification ML model to address specific research
questions. In turn, AI can help train junior physicians in clinical
diagnosis and decision making. Expanding AI applications from
pattern recognition capacity to dealing with multiple data
modalities, insufficient data, evaluation of selective and
predictive performance, guiding the learning process, and fine-
tune models via feedback could revolutionize the cancer
managements. Another step forward towards AI mediated
clinical application is the development of ML pipelines that
not only automate the design and evaluation of algorithms but
also delineate the clinician the reasoning underlying the model
predictions. This is a crucial step considering the fact although
AI has learning potential but is in its infancy and cannot be left
unattended. Yet another aspect is the extrapolation of the models
generated using the cell line data to the patients, as the majority
of the previous studies are performed on cell lines or limited
small patient sample size, and the portability of the models
generated in one cancer to another. AI has come long way but
still it must achieve several landmarks: (a) non-reproducible
results, (b) population heterogeneity, (c) instrument-variation,
(d) lab-to-lab variation, (e) data normalization, (f) cross-
compare results by different studies, (g) simulate results in
vitro to clinics, (h) personalize, and (i) cost-effectiveness.
Taken together, advancements in AI-based clinical cancer
research will remarkably improve cancer prognosis and
diagnosis with precision, resulting in enhanced prediction rates
and patient survival.
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López de Maturana, E., Alonso, L., Alarcón, P., Martıń-Antoniano, I. A., Pineda,
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Background: Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal

malignancy with a poor prognosis. Although studies have shown metabolic

reprogramming to be linked to ESCC development, no prognostic metabolic biomarkers

or potential therapeutic metabolic targets have been identified.

Method: The present study investigated some circulating metabolites associated

with overall survival in 276 curatively resected ESCC patients using liquid

chromatography/mass spectrometry metabolomics and Kaplan-Meier analysis.

Tissue metabolomic analysis of 23-paired ESCC tissue samples was performed to

discover metabolic dysregulation in ESCC cancerous tissue. A method consisting of

support vector machine recursive feature elimination and LIMMA differential expression

analysis was utilized to select promising feature genes within transcriptomic data from

179-paired ESCC tissue samples. Joint pathway analysis with genes and metabolites

identified relevant metabolic pathways and targets for ESCC.

Results: Four metabolites, kynurenine, 1-myristoyl-glycero-3-phosphocholine

(LPC(14:0)sn-1), 2-piperidinone, and hippuric acid, were identified as prognostic

factors in the preoperative plasma from ESCC patients. A risk score consisting of

kynurenine and LPC(14:0)sn-1 significantly improved the prognostic performance of

the tumor-node-metastasis staging system and was able to stratify risk for ESCC.

Combined tissue metabolomic analysis and support vector machine recursive feature

elimination gene selection revealed dysregulated kynurenine pathway as an important

metabolic feature of ESCC, including accumulation of tryptophan, formylkynurenine,

and kynurenine, as well as up-regulated indoleamine 2,3-dioxygenase 1 in ESCC

cancerous tissue.
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Conclusions: This work identified for the first time four potential prognostic

circulating metabolites. In addition, kynurenine pathway metabolism was shown to be

up-regulated tryptophan-kynurenine metabolism in ESCC. Results not only provide a

metabolite-based risk score system for prognosis, but also improve the understanding

of the molecular basis of ESCC onset and progression, and as well as novel potential

therapeutic targets for ESCC.

Keywords: esophageal squamous cell carcinoma (ESCC), metabolomics, risk score, prognosis, diagnosis,

indoleamine 2, 3-dioxygenase 1 (IDO1), artificial intelligence

INTRODUCTION

Esophageal cancer (EC), a common gastrointestinal malignancy,
ranks as the sixth leading cause of cancer death worldwide
(1–3). EC is the fifth most common cancer and the fourth
leading cause of death in China (4). Esophageal squamous cell
carcinoma (ESCC) is the predominant histological subtype of
EC in China (5, 6). Surgical resection with lymphadenectomy
is the main treatment for ESCC (7). However, despite advances
in surgical management and multidisciplinary treatment of
ESCC, prognosis remains poor (8). Currently, tumor-node-
metastasis (TNM) staging system is used for ESCC prognosis,
even though staging components such as lymph node metastasis,
invasion depth, and differentiation are not obtained during
surgery but commonly determined postoperatively. Therefore,
there is an urgent need for non-invasive and convenient
biomarkers that may assist the clinical decision-making and
provide novel insights into tumorigenesis and biology of
ESCC (9).

Metabolic reprogramming is an oncogene-driven mechanism
that alters the metabolism of cancer cells. It supports tumor
proliferation and anabolic growth and is considered as an
essential hallmark of cancer (10). Metabolomics, in which
small-molecule metabolites are identified and quantified,
is the closest “omics” to phenotype (11). Compared to
other wide-ranging forms of analysis, metabolomics is more
sensitive to alterations of biochemical homeostasis, providing
comprehensive and direct information regarding cell status
and treatment response. Metabolomic analysis requires a little
sample material and preparation time (11). A growing body
of literature demonstrates that monitoring cellular metabolites
may not only provide promising biomarkers, but may also
help to identify involved biological processes (11–13). For
example, diagnostic and prognostic cancer biomarkers have been
recently investigated in lung, colorectal, and breast cancers by
different metabolomic approaches (14–16). Metabolomics, the
study of altered metabolites accompanying cancer-associated
metabolic reprogramming, is an emerging field that can
contribute to the identification of novel cancer biomarkers
and the discovery of potential drugs for prevention and
therapy (17).

Previous metabolomic studies have demonstrated various
metabolic alterations in patients with ESCC including
changes in amino acids, glucose, lipids, organic acids,
nucleotides, and fatty acids (18–21). Though many promising

serum/plasma metabolites have been found to be diagnostic
biomarkers for ESCC (18, 22, 23), no metabolite with
prognostic value has been identified, nor has a potential
metabolic therapeutic target been recognized. Gu et al.
found serum D-mannose to be a novel prognostic biomarker
for patients with esophageal adenocarcinoma (the main
histological subtype in the USA). Those results encouraged
us to investigate potential ESCC prognostic circulating
metabolites by a combination metabolomics and survival
analysis (24).

Despite the advantages of metabolomics, limitations for
clinical application need to be considered. Due to the dynamic
and sensitive nature of the metabolome, clinical metabolomic
studies in particular, must be designed based on a relatively
large sample size to reduce unwanted excessive variability,
and results validated by multiple models or sample types
(25). Thus, the aim of the present study was to discover
metabolic biomarkers and potential metabolic therapeutic
targets for ESCC with the following design improvements.
(1) Plasma metabolic profiling was conducted on a relatively
large sample size (n = 276). (2) Prognostic metabolites were
discovered by survival analysis. (3) Integrative bioinformatics
and metabolomics were used to discover metabolic features
and potential therapeutic target enzymes for ESCC (Figure 1).
Our results will assist clinicians in management of ESCC
patients, as well as contribute to an understanding of the
mechanisms underlying ESCC tumorigenesis, and possibly offer
novel therapeutic targets.

MATERIALS AND METHODS

Chemicals and Reagents
Acetonitrile (high-performance liquid chromatography (HPLC)
grade) and Methanol (HPLC) were purchased from Tedia (Ohio,
USA). Formic acid (HPLC) was purchased from Roe Scientific
Inc. (Delaware, USA). Distilled water was from Wahaha Group
Co., Ltd. (Hangzhou, China). L-kynurenine (purity > 98%),
L-tryptophan (purity > 98%), and hippuric acid (purity >

98%) were purchased from Sigma-Aldrich (Missouri, USA).
L-phenylalanine (purity > 98%), 2-piperidinone (purity >

98%), and LPC(14:0)sn-1 (purity > 98%) were purchased from
Aladdin Reagent Co. Ltd. (Shanghai, China). Rabbit anti-
indoleamine 2, 3-dioxygenase 1 (IDO1) polyclonal antibody
(13268-1-AP) was purchased from Proteintech Group, Inc.
(Hubei, China).
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FIGURE 1 | Flowchart of this study.

Study Patients and Samples
Group 1: the preoperative fasting plasma samples, using
the di-potassium salt of ethylenediaminetetraacetic acid as
anticoagulant, were collected from 276 patients recruited after
histopathologic confirmation of ESCC and radical resection
at Zhejiang Cancer Hospital (Hangzhou, China), from May
2010 to December 2012. Clinicopathological features and
preoperative biochemical parameters were obtained. Participants
were followed until December 2017, evaluating overall survival
(OS) from surgery to the date of death or of the last follow-
up visit. Group 2: a total of 23-pairs of matched cancerous
and normal tissue samples were used for tissue metabolomic
study. Normal tissues were collected from the distal edge of the
resected tissues, at more than 2 cm from the solid tumor border.
Group 3: a total of 31-pairs of matched cancerous and normal
tissue samples were assessed by immunohistochemistry (IHC).
All samples collected in this study were stored at −80◦C until
analysis. Demographic and clinicopathologic characteristics of
the patients are reported in Table 1.

The study protocol was performed in accordance with
the declaration of Helsinki, approved by the Research Ethics
Committee of Zhejiang Cancer Hospital, China, with written
informed consent obtained from all individuals.

Plasma-Based Metabolomic Analysis
Sample Preparation
Plasma samples were from Group1 (Table 1). Plasma samples
(50 µL) were thawed on ice and immediately mixed with 200
µL of ice-cold acetonitrile. After mixing by vortex for 1min,
the mixture was centrifuged at 16,200 g for 15min at 4◦C. The
supernatant (150 µL) was transferred into a fresh tube and
lyophilized. The residues were resuspended by adding 80 µL
of 25% acetonitrile in water and mixed by vortex for 1min.
After centrifugation at 16,200 g for 15min at 4◦C, 60 µL of the
supernatant was transferred into the sample bottle. A supernatant
aliquot of 10 µL was used for liquid chromatography-mass
spectrometry (LC-MS) analysis.

Quality control (QC) samples were prepared by pooling
the re-dissolved sample with an equal amount (15 µL) and
periodically analyzed throughout the complete analytical run to
monitor signal drift.

LC-MS Analysis
LC-MS analysis was conducted as previously described
(26). The Ultimate 3000 UHPLC system (Dionex, Idstein,
Germany), linked to a Q Exactive orbitrap mass Spectrometer
(Thermo Fisher Scientific, Bremen, Germany), was used.

Frontiers in Oncology | www.frontiersin.org 3 August 2020 | Volume 10 | Article 1545146

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Metabolic Features of ESCC

TABLE 1 | Demographic and clinicopathologic characteristics of study patients.

Parametersa Group 1b Group 2b Group 3b

n = 276 n = 23 (paired) n = 31 (paired)

Sex

Male 232 19 3

Female 44 4 28

Age

Mean age, yr 60.8 ± 7.1 59.7 ± 7.3 62.0 ± 6.7

BMI

Median(range) 22 (16-30) 22 (17-27) 22 (16-28)

Smoking habit

No 79 8 10

Yes 197 15 21

Alcohol consumption

No 88 10 10

Yes 188 13 21

Tumor thrombus

No 191 16 20

Yes 85 7 11

Neural invasion

No 153 16 21

Yes 123 7 10

Tumor grade

Well 15 1 3

Moderately 186 14 16

Poorly 75 8 12

N stage

0 101 11 12

1 99 8 13

2 49 3 5

3 27 1 1

T stage

1 12 3 4

2 49 3 3

3 213 17 24

4 2 - -

TNM stage

1 23 4 4

2 85 7 9

3 144 11 17

4 24 1 1

aN stage, T stage, and TNM stage were determined according to the American Joint

Committee on Cancer, 8th edition. bGroup 1: Preoperative plasma samples from 276

patients with ESCC were used for plasma metabolomics. Group 2: 23-pairs of matched

cancerous and normal tissue samples were used for tissue metabolomic study. Group

3: 31-pairs of matched cancerous and normal tissue samples were assessed by

IHC analysis.

Separation was performed on an ACQUITY UPLC HSS T3
column (2.1mm × 100mm × 1.8µm, Waters, MA, USA)
at 35◦C, with a mobile phase consisting of 0.1% formic acid
and acetonitrile. The gradient is reported in Table S1. Full
mass scan mode was used for all the samples and data-
dependent MS/MS acquisition mode was utilized for the

identification of QC samples. Detailed parameters are listed
in Table S2.

Metabolomic Analysis
Raw data were converted to mzXML format using
MSconvert program (http://proteowizard.sourceforge.net/
download.html). The R package XCMS (version 3.3.2) was
utilized for data preprocessing, including retention time
alignment, peak detection, and peak matching. R packageMetaX
(version 1.4.16) was used to remove peaks with more than 20% of
zero values in all samples or the peaks with coefficient of variation
values >30% in QC. Peaks were corrected with the QC-robust
LOESS signal correction algorithm. All the detected ions in each
sample were normalized to the sum of the peak area defined
as 100,000 (27). Thermo Scientific Compound Discoverer 3.0
software (Thermo Fisher Scientific, USA) combined with the
METLIN (http://metlin.scripps.edu) and the HMDB (http://
www.hmdb.ca/) databases were used for metabolite annotation
by comparison of MS fragmentation information. Standard
substances were used to verify prognostic metabolites.

Survival Analysis With Regard to Circulating

Metabolites
Once relative concentrations of circulating metabolites were
obtained by metabolomic analysis, Kaplan-Meier curves were
performed to identify associations between metabolite levels
and OS, with median split and log-rank test. Cox proportional
hazards regression test was also performed for each metabolite
to calculate the hazard ratio (HR) value. Factors with P-
values < 0.05 were considered to have prognostic significance.
Multivariate Cox proportional hazards regression was analyzed
to estimate independent and significantly prognostic circulating
metabolites. With the independently prognostic metabolites,
a risk score was derived by summation of each metabolite
level multiplying their corresponding coefficient according to Li
et al. (28).

Tissue-Based Metabolomic Analysis
Sample Preparation and LC-MS Analysis
Tissue samples were from Group 2 (Table 1). Approximately
20mg of tissue was transferred into a 1.5mL tube with immediate
addition of 400 µL of ice-cold methanol and two steel balls
(diameter: 2mm). Homogenization was performed with a
Tissuelyser (2min, 30Hz). After centrifugation at 16,200 g for
15min at 4◦C, 200 µL of the supernatant was transferred into a
fresh tube, to which was added with 200 µL of water followed
by lyophilization. Reconstitution, analysis protocols as well as
QC sample preparation were conducted by the same methods
used for plasma-based metabolomics. The LC-MS analysis and
metabolomic analysis protocols were the same as that for plasma-
based metabolomics.

Metabolomic Analysis
Relative concentrations of ion features were obtained from
metabolomic data with the same protocol as that for plasma-
based metabolomics. Unsupervised principal component
analysis (PCA) was conducted to assess the trends for all
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samples. Supervised partial least squares discriminant analysis
(PLS-DA) was performed to identify the most discriminating
ion features between ESCC cancerous tissues and non-cancerous
counterparts based on variable importance in projection (VIP)
values. Finally, ions with VIP> 1, Benjamini–Hochberg adjusted
p-value (FDR) < 0.05, and |log2(Fold change)| > 0.585 were
defined as differential ion features. Metabolite annotation
was performed using the above method. Receiver operating
characteristic (ROC) curve analysis was used to evaluate the
diagnostic significance of metabolites, in order to distinguish
ESCC cancerous and non-cancerous tissues.

Bioinformatic Analysis
The ESCC microarray dataset (GSE53625) was generated
using the Agilent-038314 CBC Homo sapiens lncRNA+mRNA
microarray V2.0 (http://www.genomics.agilent.com/) deposited
in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/) and processed as described previously (9). Briefly,
probe re-annotation was performed based on the previous study
(29). For genes with multiple probes, mean expression was
calculated and used. LIMMA (R package version 3.38.3) was
used to analyze differentially expressed genes (DEGs) and genes
with |log2(Fold change)| > 1 and FDR < 0.05 were considered
to be DEGs. The differential DEGs were further ranked by
support vector machine recursive feature elimination (SVM-
RFE) algorithm proposed according the Huang et al. (30).
Briefly, the SVM-RFE computes the ranking weights for all
DEGs and sorts the DEGs according to weight vectors as the
classification basis. SVM-RFE conducted an iteration process
of the backward removal of DEGs as follows: (1) use the
current dataset to train the classifier; (2) calculate the ranking
weights for all DEGs; (3) eliminate the DEG with the smallest
weight. The above iteration process repeats until there is only
one DEG remained in the dataset, and the implementation
result provides a list of DEGs in the descending order of
weight. Top 500 genes were selected as features for further
analysis. Additionally, the metabolic feature genes were obtained
through searching on KEGG (31). Then, pathway analysis
was conducted by searching genes and metabolites together
by KEGGMapper Search (https://www.genome.jp/kegg/mapper.
html). The metabolism pathway/module for both hits from gene
and metabolite was considered to be of potential importance.

IHC Analysis
Tissue sections (4µm thick) were dewaxed and rehydrated
through graded alcohols. IHC staining with IDO1 antibodies
was performed according to the manufacturer’s instructions. The
results were analyzed using a semiquantitative method (32), with
the immunohistochemical score calculated by multiplying the
percentage of positive cells by staining intensity.

Statistical Analysis
Statistical analysis was performed using SPSS 16.0 software
(USA) and R software (http://www.r-project.org/). Normality of
the variables was tested by Shapiro-Wilk normality test. Unpaired
Wilcoxon rank-sum test, and Kruskal-Wallis test were used
for comparison of two or more than two groups of data. The

correlation between circulating metabolites and other variables
was calculated by Kendall rank or Spearman’s rank correlation.
ROC analysis and ROC comparisons were performed by R
package pROC (version 1.15.3). A two-tailed p value < 0.05 was
considered statistically significant.

RESULTS

Identification of Circulating Prognostic
Metabolites for ESCC
For plasma-based metabolomic profiling study (Group 1), a
total of 4,121 metabolic features in electrospray ionization
positive mode and 3,046 in electrospray ionization negative
mode were extracted from the metabolomic data. A total of 129
ion features were annotated with metabolites (Tables S3, S4).
Survival analysis aided identification of four metabolites with
p values < 0.05: kynurenine, LPC(14:0)sn-1, 2-piperidinone,
and hippuric acid. Higher plasma levels of kynurenine,
2-piperidinone, and hippuric acid correlated with shorter
survival, while higher levels of LPC(14:0)sn-1 correlated
with longer survival (Figures 2A–D, Table 2). Moreover,
Multivariate Cox regression analysis of the four metabolites
indicated that kynurenine and LPC(14:0)sn-1 to be independent
factors suitable for metabolite-based risk score calculation
(Table 2).

These four prognostic metabolites were compared with
chromatograms and spectra of reference substances. A
representative identification of kynurenine is shown in
Figure S1, while the identification of the other three metabolites
is illustrated in Figure S2.

In order to clarify the potential influence of demographic
factors on these prognostic circulating metabolites, multivariate
Cox regression was performed for each of the four metabolites
with age, sex, smoking habit, and alcohol consumption.
Result demonstrated that kynurenine (HR: 1.37, p = 0.040),
LPC(14:0)sn-1 (HR: 0.618, p = 0.00229), hippuric acid (HR:
1.423, p = 0.021) were independent prognostic factors,
while 2-piperidinone (HR: 1.35, p = 0.054) was not an
independent factor.

Potential Relationships Among Prognostic
Metabolites, Clinicopathologic Features,
and Biochemical Parameters
Analysis of the four circulating metabolites indicated that
kynurenine was significantly positively correlated with the
other three metabolites, while 2-piperidinone positively
correlated with hippuric acid (Table S5). The four metabolites
were assessed for correlations with clinicopathologic features
including sex, age, body mass index (BMI), smoking habit,
alcohol consumption, tumor grade, tumor thrombus, neural
invasion, T stage, N stage, and TNM stage. The following
biochemical parameters were also included in the correlation
analysis: glycyl proline dipeptidyl aminopeptidase (GPDA),
alanine aminotransferase (ALT), gamma-glutamyltransferase
(GGT), prealbumin (PA), albumin (ALB), triglyceride (TG),
total cholesterol (TC), low density lipoprotein cholesterol, high
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FIGURE 2 | Kaplan-Meier survival curves for ESCC patients stratified by the four circulating metabolites by a median-split. (A) Kynurenine; (B) LPC(14:0)sn-1; (C)

2-Piperidinone; (D) Hippuric acid. Log-rank test was used, p < 0.05 was considered significant.

TABLE 2 | Prognostic circulating metabolites in ESCC plasma.

Metabolites Features in LC/MS KMd Cox regressione

m/za RT (min)b Ionc p value p

value

HR (95%CI)

2-Piperidinone 100.07629 3.9 Positive 0.035 0.2 1.22 (0.90-1.67)

Kynurenine 209.09222 3.9 Positive 0.029 0.035 1.40 (1.03-1.91)

LPC(14:0)sn-1 468.30879 8.9 Positive 0.0026 0.0019 0.61 (0.45-0.84)

Hippuric acid 178.05156 5.2 Negative 0.02 0.11 1.29 (0.95-1.76)

am/z, mass/charge number; bRT, retention time; cmass spectrometer scan types; dKM,

Kaplan-Meier; eCox regression analysis of 2-piperidinone, kynurenine, LPC(14:0)sn-1 and

hippuric acid, and HR, hazard ratio.

density lipoprotein cholesterol. The results of this analysis
showed that: (1) Kynurenine levels were positively correlated
with N stage and GGT levels, while a negative correlation was
found with tumor grade and ALB levels. (2) LPC(14:0)sn-1
levels were positively correlated with GPDA, ALT, PA, and TG
levels, and negatively correlated with age. (3) 2-piperidinone
levels were positively correlated with GGT levels, BMI, and
alcohol consumption, while it was negatively correlated with TC
levels. (4) Hippuric acid levels were positively correlated with
GPDA levels and negatively correlated with GGT, ALT, and PA
levels (Table S6).

Metabolite-Based Risk Score Improves
Prognostic Performance
Cox proportional hazards regression analysis showed kynurenine
and LPC(14:0)sn-1 regression coefficients of 0.41 and −0.52,
respectively. A risk score was attributed to each patient by
adding the plasma level of each metabolite multiplied by the
corresponding regression coefficient: risk score = (0.409 × level
of kynurenine −0.522 × level of LPC (14:0)sn-1) (28). The risk
score of all cases was calculated according to this formula and
the patients were stratified into low-risk and high-risk groups,
by applying the median-split method. Risk score efficiently
stratified ESCC risk (Figure S3) independent of TNM or N stage
(Table S7).

Area under the curve (AUC) of ROC curves for 5-year
survival status prediction was calculated and compared using
the method established by DeLong et al. (33). When combined
with the risk score staging classification, the prediction accuracy
of the conventional TNM stage and N stage was significantly
improved from 0.650 (95% confidence interval (CI): 0.583-
0.718) to 0.692 (95% CI: 0.628-0.756; p = 0.015), and from
0.665 (95% CI: 0.599-0.731) to 0.694 (95%CI: 0.630-0.750; p =

0.042), respectively (Figures 3A,B). Moreover, log-rank analysis
of Kaplan-Meier curves related to the metabolite-based risk
score groups demonstrated that the calculated risk score was
able to significantly improve the prediction of clinical outcome
in patients with ESCC, classified according to the stages TNM
II (p = 0.028), TNM III (p = 0.008), N1 (p = 0.024), and
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FIGURE 3 | Metabolite-based risk score improves prognostic performance for ESCC patients. (A) Combination of risk score with TNM stage (B), or with N stage (G)

significantly improved the predictive accuracy of 5-year survival rate. ESCC cases classified according to TNM II (C), TNM III (D), N1 (F), and N2 (G) stages were

significantly stratified by risk score. Cases from N0 (E) showed a trend for stratification by risk score. DeLong test for AUC in ROC curves and log-rank test for

Kaplan-Meier survival curves were assessed, p < 0.05 was considered significant.

N2 (p = 0.022; Figures 3C,D,F,G), while for N0 classification
a statistically non-significant (p = 0.086) trend to stratification
based on the risk score was observed (Figure 3E).

Tissue-Based Metabolomics Reveals
Altered Kynurenine Pathway in ESCC
Both PCA and PLS-DA analysis with the extracted 4,856 ion
features showed a significant metabolic shift between ESCC
cancerous and normal tissues (Figures 4A,B), with a total
of 1,697 differential ion features were selected (Figure 4C).
There were 26 differential metabolites were annotated
that could significantly separate the cancerous and normal

tissue samples (Figure 4D). However, analysis identified only
kynurenine and LPC(14:0)sn-1 of the four prognostic circulating
metabolites. Significantly higher levels of kynurenine and
LPC(14:0)sn-1 were observed in cancerous tissues compared
with normal counterparts (Figures 4E,F). Interestingly, when
other molecules involved in tryptophan-kynurenine metabolism
were investigated, the levels of tryptophan and formylkynurenine
were also found to be higher in cancerous tissues (Figures 4G,H).
Although hippuric acid was not detected by tissue metabolomic
analysis, phenylalanine, a potential parent metabolite of hippuric
acid, was found at higher levels in cancerous tissues (Figure 4I).
ROC curve analysis showed that tissue formylkynurenine
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FIGURE 4 | Changes in metabolites between ESCC cancerous (CT) and normal tissues (NT). (A) PCA and (B) PLS-DA analysis with all ion features. (C) Differential ion

features were defined as |log2(Fold change)| > 0.585 and FDR < 0.05. (D) Heatmap analysis with 26 differential metabolites. Accumulation of kynurenine (E),

LPC(14:0)sn-1 (F), tryptophan (G), formylkynurenine (H), and phenylalanine (I) was observed in ESCC cancerous tissues compared to normal equivalents. ROC

curves of these metabolites showed the potential diagnostic value for ESCC (J).
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levels had the best diagnostic performance (max AUCROC:
0.957), followed by kynurenine (AUCROC:0.947), LPC(14:0)sn-
1 (AUCROC: 0.875), phenylalanine (AUCROC: 0.856), and
tryptophan (AUCROC: 0.762) (Figure 4J). Taken together, tissue-
based metabolomics inferred altered kynurenine pathway to be
the most significant feature of ESCC.

IDO1 Up-Regulation in ESCC
After LIMMA differential expression analysis, a total of 2,856
DEGs were screened (Figure 5A). After SVM-RFE ranking,
the top 500 genes were then selected as feature genes,
including 46 metabolic genes (Figure 5B). The 46 metabolic
feature genes were able to separate the cancerous and normal
tissues (Figure 5C). Pathway analysis of both the 46 DEGs
and the above 26 metabolites identified the top 10 metabolic
pathways, in which fatty acid degradation ranked first in
total hits/gene hits, and tryptophan metabolism had the
most metabolite hits (Figure 5D). By module analysis, two
potential modules, kynurenine pathway (metabolite: tryptophan,
formylkynurenine, kynurenine, and gene: IDO1) and pyrimidine
biosynthesis (metabolite: uridine monophosphate (UMP) and
uridine diphosphate (UDP); gene: CMPK2), were identified by
criteria (1) with both gene and metabolite hits, and (2) direct
interaction between gene and metabolite (Figure 5E). Based
on these results: (1) Kynurenine in plasma was associated
with OS of patients with ESCC. (2) Significant accumulation
of tryptophan, kynurenine, and formlykynurenine was found
in ESCC cancerous tissue. (3) Upregulation of IDO1 mRNA,
which was the 209th feature in the 2856 DEGs by SVM-RFE
ranking, and the 18th one in the 46 metabolic feature genes,
was found in cancerous compared to normal tissues with a high
level of statistical significance (Figure 5F). Consistent with these
observations, IHC analysis demonstrated significantly higher
levels of IDO1 in cancerous tissues compared to paired normal
counterparts (Figures 5G,H). Collectively, kynurenine pathway
is an important metabolic feature of ESCC, with IDO1 as a
potential therapeutic target.

DISCUSSION

The present study revealed that circulating kynurenine,
LPC(14:0)sn-1, 2-piperidinone, and hippuric acid were
prognostic factors for ESCC. A kynurenine and LPC(14:0)sn-1
based risk score significantly improved the prediction accuracy
of the current TNM staging system in ESCC. Up-regulated
tryptophan pathway metabolism, including the accumulation
of tryptophan, formylkynurenine, and kynurenine, as well as
increased expression of IDO1, were identified as the most
significant metabolic features of ESCC.

Circulating-metabolite-based prognostic models have
previously been shown to have its promising clinical applications
in several cancers, such as glioblastoma (34), non-small cell lung
cancer (35), and esophageal adenocarcinoma (24). However,
the previous metabolomic studies of ESCC solely focused on
the diagnostic value of the metabolites and rarely assessed their
prognostic significance. This study is the first to investigate
the prognostic value of plasma metabolites in ESCC and

found several metabolic biomarkers as well as established
a metabolite-based risk score for ESCC. For this study, a
combination of circulating metabolomic profiling and survival
analysis was used to develop a prognostic approach for ESCC,
which identified the kynurenine and LPC(14:0)sn-1 based risk
score to have prognostic significance for ESCC. By use of the
risk score, ESCC patients were stratified by risk within the
same TNM stage (TNM II and III) or the same N stage (N1
and N2). As such, the risk score may assist clinical decision-
making, leading to a better prognosis for ESCC patients. It
is important to note that due to the limited sample size of
TNM subgroups, TNM I (n =23) and TNM IV (n = 24),
it was unavailable to evaluate its risk stratification for these
subgroups. Further, for N0 classification, a trend based on risk
score was observed that was not statistically significant (p =

0.086) (n = 101). Future analysis with larger cohorts is essential
to determine the clinical significance of the risk score for
these subgroups.

Kynurenine was the most interesting circulating biomarker
identified by this study. It is one of the main metabolites
of tryptophan metabolism, which is related to immune
homeostasis, and is correlated with cancer initiation and
development (12). Previously, Cheng et al. found the ratio of
kynurenine/tryptophan in plasm to be significantly increased in
ESCC, and correlated with lymph node metastasis. However,
the relationship between kynurenine levels and their survival
outcome were not considered (18). To the best of our knowledge,
our study is the first to identify circulating kynurenine as a
prognostic factor for ESCC, in which higher levels of kynurenine
were correlated with poorer OS, and higher N stage and
tumor grade levels. Our study and the previous study by
Cheng at al. collectively indicate that circulating kynurenine is
a promising unfavorable prognostic biomarker for ESCC. The
negative correlation of kynurenine levels with survival outcomes
is consistent with the immune suppressor role of kynurenine in
cancers, in which many cancers enhance kynurenine levels by
up-regulating IDOs activity, resulting in escape from immune
clearance (36).

Our tissue-based metabolomics revealed up-regulated
kynurenine pathway is a significant feature of ESCC,
including the accumulation of kynurenine, tryptophan, and
formylkynurenine. Significant accumulation of tryptophan and
kynurenine in ESCC was reported previously by Tokunaga et al.
(23) and Zhang et al. (22), respectively, with this study the first
to identify up-regulated formylkynurenine in ESCC. The fold
change of formylkynurenine in ESCC was 11.9 and displayed the
best diagnostic performance in this study. Formylkynurenine
is the direct metabolite of tryptophan mediated by IDO, with
increased accumulation of formylkynurenine resulting in the
production of the immune suppressive metabolite, kynurenine
(fold change of 5.7), in ESCC cancer tissue. Therefore, up-
regulated kynurenine pathway not only explained (at least
partially) the increased serum kynurenine levels in ESCC
patients reported by Cheng et al. (18), but also implied an
important role for kynurenine in ESCC progression. In addition
to the metabolite level, our bioinformatics analysis and IHC
staining analysis demonstrated the key rate-limiting enzyme,
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FIGURE 5 | IDO1 expression in ESCC. (A) Volcano plot of 2856 DEGs with |log2(Fold change)| > 1 and FDR < 0.05 for transcriptomic data from 179 paired ESCC

tissue samples from GEO microarray data (GSE53625), red dot: up-regulated gene, blue dot: down-regulated gene. (B) Schematic diagram for feature metabolic

gene selection process. (C) Heatmap with 46 feature metabolic genes, NT: normal tissue, CT: cancerous tissue. (D) Top 10 metabolism pathways with both hits for

gene and metabolite (cpd). (E) Significantly altered metabolic modules with both hits for gene and metabolite, UMP, uridine monophosphate; UDP, uridine

diphosphate. (F) mRNA expression of IDO1 was significantly increased in ESCC cancerous tissues compared to normal counterparts. (G) IHC analysis of IDO1 protein

expression showing significant up-regulation in cancerous tissues compared to normal counterparts. (H) Representative IHC staining of IDO1 in cancerous and

matched equivalents, Magnification: 400×.
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IDO1, to be significantly up-regulated in ESCC, which could
be a potential therapeutic target for ESCC. Recently, Liu et al.
found that kynurenine could up-regulate PD-1 expression on
tumor infiltrating T cells through the IDO-kynurenine-AhR
pathway (37). The significant accumulation of kynurenine in
ESCC suggests that IDO1 inhibitors in combination with other
immunotherapies (such as anti-PD-1/anti-PD-L1) may be useful
as future therapeutics for ESCC.

LPC(14:0)sn-1, another prognostic circulating metabolite, is a
form of lysophosphatidylcholine, in which a phosphorylcholine
moiety occupies a glycerol substitution site. Since there are
co-existence of LPC(14:0)sn-1 with myristic acid at the C-1
position (sn-1) and LPC(14:0)sn-2 with myristic acid at C-2
position (sn-2) in plasma and these two LPC(14:0)s have the same
molecular weight and similar retention time by chromatography,
it is crucial to identify LPC(14:0)sn-1 with standard compound.
Xu et al. previously reported the down-regulation of plasma
LPC(14:0) in ESCC, but they did not clarify the exact position
of myristic acid in LPC(14:0) since the study only employed
database searches. We believe our study is the first to identify
LPC(14:0)sn-1 as a potential prognostic biomarker for ESCC.
In the previous study by Xu et al. LPC(14:0) was shown to
be a diagnostic plasma metabolite for ESCC. Our study for
the first time identified the prognostic potential of circulating
LPC(14:0)sn-1 for ESCC in that patients with higher levels had
longer OS. Our tissue-based metabolomic analysis detected a
significant accumulation of LPC(14:0)sn-1 in cancerous tissue,
indicating up-regulated lipidmetabolism in ESCC (at least within
the lysophosphatidylcholine metabolism pathway). Kamphorst
et al. demonstrated cancer cells to directly uptake and use
lipids from circulation by macropinocytosis (38, 39). We
propose that alterations in circulating LPC(14:0)sn-1 might be
associated with enhanced lipid consumption by cancer cells.
However, the reason why ESCC patients with lower LPC(14:0)sn-
1 have poorer OS is unknown, and further study is needed
to explore the potential biological functions of LPC(14:0)sn-1
in ESCC.

2-piperidinone and hippuric acid are the other two prognostic
circulating metabolites only detected in plasma in this study. 2-
piperidinone was previously found to be decreased in plasma
of patients with ovarian cancer (40), but first identified
in ESCC. Hippuric acid is formed by the conjugation of
benzoic acid with glycine and it is an end-product of
phenylalanine metabolism (41). Since increased uptake of
phenylalanine was observed in ESCC cancerous tissues, a
potential relationship between phenylalanine metabolism and
changes in circulating hippuric acid can be postulated. However,
neither 2-piperidinone nor hippuric acid were detected by
tissue analysis, which suggests that the two metabolites may
not have originated from cancer cells. The detailed origin
and biological activity of these two metabolites requires
further investigation.

Nevertheless, limitations of this study must be considered.
First, the biological activity of the four circulating prognostic
metabolites, in particular kynurenine and LPC(14:0)sn-1, has not
been clarified. Additionally, there are limitations in metabolite
annotation and identification, which is a common problem for

all metabolomic studies. Future efforts are required to resolve this
issue for the entire field.

In conclusion, after identification of potential candidates
for circulating prognostic metabolites, and validation by risk
score based on plasma levels and correlation coefficients,
kynurenine and LPC(14:0)sn-1 were identified as two circulating
metabolite biomarkers with prognostic potential. The identified
risk score significantly improved prediction accuracy of
the TNM staging system and allowed better stratification
of ESCC clinical risk. This study demonstrated kynurenine
pathway dysregulation in ESCC, which was accompanied by
upregulation of IDO1. These observations provide novel insights
into the molecular mechanisms of ESCC tumorigenesis
and the possible identification of therapeutic targets
for ECSS.
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Interleukin-1 receptor associated kinase-1 (IRAK1) exhibits important roles in
inflammation, infection, and autoimmune diseases; however, only a few inhibitors have
been discovered. In this study, at first, a discriminatory structure-based virtual screening
(SBVS) was employed, but only one active compound (compound 1, IC50 = 2.25 µM)
was identified. The low hit rate (2.63%) which derives from the weak discriminatory
power of docking among high-scored molecules was observed in our virtual screening
(VS) process for IRAK1 inhibitor. Furthermore, an artificial intelligence (AI) method,
which employed a support vector machine (SVM) model, integrated information of
molecular docking, pharmacophore scoring and molecular descriptors was constructed
to enhance the traditional IRAK1-VS protocol. Using AI, it was found that VS of IRAK1
inhibitors excluded by over 50% of the inactive compounds, which could significantly
improve the prediction accuracy of the SBVS model. Moreover, four active molecules
(two of which exhibited comparative IC50 with compound 1) were accurately identified
from a set of highly similar candidates. Amongst, compounds with better activity
exhibited good selectivity against IRAK4. The AI assisted workflow could serve as an
effective tool for enhancement of SBVS.

Keywords: virtual screening, artificial intelligence, machine learning, IRAK1, inhibitors

INTRODUCTION

In the process of drug discovery, hunting for lead compounds is not only a starting point, but also a
very challenging task. With the emergence of comprehensive chemical databases, high throughput
screening (HTS), and virtual screening (VS) have been employed for finding lead compounds from
known chemicals (1). As a complementary approach to HTS (2), VS filters chemicals through
ligand- or structure-based approaches by taking advantages of high-performance computers,
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overcomes some shortcomings of HTS, and remarkably reducing
the time, money, and resources involved (3, 4). However, some
problems still exist in the individual VS method. For example, the
scoring functions of virtual screening are not accurate enough to
predict the protein-ligand binding affinity and this leads to a high
rate of false results, which needs combined strategies to improve
prediction accuracy in a sequential or parallel manner (5, 6).

In recent years, artificial intelligence (AI) has offered new
opportunities in drug discovery. The AI techniques that have
displayed superior performances (7, 8) in finding new active
chemicals include Naive Bayes, support vector machine (SVM),
random forest (RF), feed-forward artificial neural networks
(ANNs), and deep neural network approaches. It has been
reported that the hit rate of VS can be significantly improved
by combining AI methods. For example, Leong et al. developed
an accurate ensemble docking scheme, which established a
SVM based on combinatorial docking features and molecular
descriptors to predict N-methyl-D-aspartate-receptor GluN1-
ligand binding affinity (9). Tian et al. integrated ensemble
molecular docking and complex-based pharmacophore searching
using Naive Bayesian classification and recursive partitioning,
which were of great significance in the discovery of novel ROCK
inhibitors and increased the VS hit rate to 28.95% (10). Hence,
the application of AI in VS seems promising.

Interleukin receptor associated kinase-1 (IRAK1) is a
downstream member of the serine-threonine kinase interleukin
receptor associated kinase (IRAK) family. Once the IL1-Rs
and toll-like receptors (TLRs) are activated, IRAK4 is recruited
to form the signaling complex with myeloid differentiation
primary-response gene 88 (MyD88) and then IRAK1 is
phosphorylated, which plays a crucial role in inflammation,
infection, and autoimmune diseases (11). Researchers found that
the suppression of IRAK1, either by inhibitors or RNAi, has
potent activity against Waldenström’s macroglobulinemia (12),
myelodysplastic syndrome (13), and certain subtypes of acute
myeloid leukemia (14). However, IRAK1 selective inhibitors are
rare, and most of the compounds that inhibit IRAK1 are also
IRAK4 inhibitors. The benzimidazole derivative 1 shown in
Figure 1 is commonly used in bio-experiment (15). In addition,
researchers found that the anaplastic lymphoma kinase (ALK)
inhibitor 2 (16), and Pacritinib (17), the JAK/FLT3 inhibitor 3,
could be potent inhibitors of IRAK1.

As a continuation of our virtual screening work which
identified new inhibitors targeting NIK, CHK1, Akt, etc. (18–24).
In this study, we performed a traditional VS procedure to identify
potential inhibitors of IRAK1. Using a well-designed screening
process, only one compound (compound 1, IC50 = 2.25 µM)
was discovered, which was far from satisfactory. Considering
the advantages of AI in VS, we further established a machine-
learning model that combines multiple docking, complementary
pharmacophore mapping, and molecular descriptors on the basis
of a traditional VS workflow to increase the enrichment rate
among high- scoring compounds. Training data consisted of
IRAK1 inhibitors and decoys that were prepared for SVM,
XGBOOST, and LGBM models. Finally, we used the SVM model
that exhibited the best accuracy, to validate the activities of
molecules in the post-docking stage and found that it significantly

improved the performance of traditional VS and excluded over
half of the false positive candidates which was predicted positive
in VS but showed no activities in bioassay. Moreover, four other
active compounds (compound 2, IC50 = 2.32 µM; compound 3,
IC50 = 2.48 µM; compound 4 IC50 = 18.04 µM; and compound
5 IC50 = 23.75 µM) were identified from a series of highly similar
compounds by utilizing this model, which demonstrated that
the integrated VS strategy enhanced by AI was promising in the
process of drug discovery.

MATERIALS AND METHODS

Evaluation of the Docking Method
Crystal structure of human wild type IRAK1 (PDB ID: 6BFN)
with its inhibitor (DL1) was downloaded from RCSB Protein
Data Bank. Each chain of the protein was prepared separately
including the removal of water, alternate position of residues,
the addition of hydrogens, the assignment of bond orders,
the optimization of H-bonds and the restrained minimization
of energy using Schrödinger’s Protein Preparation Wizard.
The receptor grids were generated using the Receptor Grid
Generation module and all preparation parameters were set
to default. The inhibitors were re-docked into their receptors
to calculate the root mean square deviation (RMSD) value
and compared with their original structure. Furthermore, 594
inhibitors with known IC50 values were collected from the
ChEMBL database (Supplementary Table S1) and 150 potent
inhibitors were selected after structural clustering to generate
a decoy dataset using the DUD-E database (25). All 150
inhibitors and 9200 decoys were prepared using the Ligprep
module to generate the possible ionization states and three-
dimensional conformations. Lastly, the compounds were docked
separately to the prepared chains of 6BFN using the SP and
XP patterns in the Ligand Docking module. Similarly, the
compounds and proteins were docked using AutoDock after
preparation via AutoDockTools with a grid size of 54 points. The
docking scores were collected to calculate the p-value after the
docking process.

Pharmacophore Construction
The best conformation of 6BFN_B re-docking complex was
applied to construct the pharmacophore model for ligand-based
VS. The pharmacophore containing at most 7 features and a
receptor-based excluded volume shell was created using Develop
Pharmacophore Model in the Schrödinger module, with the
method set to E-Pharmacophore.

Virtual Screening
A database containing 1.5 million compounds was downloaded
from ChemDiv and was filtered using Lipinski’s Rule-of-Five
before commencing the process of VS. Molecules which passed
the filter were further aligned to the established pharmacophore
model in the Ligand Screening module of Schrödinger so
that all compounds with similar structural features could be
considered for the next step. After the preparation in Ligprep,
the molecules preserved were docked in Ligand Docking module
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FIGURE 1 | Examples of compounds with IRAK1 inhibitory activity.

under standard precision (SP) and default parameters. The
top-scoring compounds were subjected to extra precision (XP)
docking in order to exclude the molecules that were low-ranking
in the XP mode. The compounds which underwent the entire
screening protocol were clustered based on their structural
similarity and selected manually for the bioactivity test.

IRAK1 Bioactivity Test
Mobility shift assay was applied to test the bioactivity of the
candidates at a concentration of 20 µM using Staurosporine
as the positive control. All compounds were dissolved in 100%
DMSO to yield a final concentration of 2 mM. IRAK1 kinase and
kinase substrate (including ATP) were dissolved in 1 × Kinase
buffer. A mixture of 250 nL of the test compound and 10 µL
kinase solution were centrifuged at 1000 rpm for 30 s and
incubated for 10 min at 25◦C in a 384-well white plate. The
plate was centrifuged at 1000 rpm and incubated for 60 min after
the addition of 15 µL kinase solution (including ATP). Finally,
30 µL stop buffer was added to terminate the reaction and the
conversion rate was evaluated using ELIASA (Caliper EZ Reader,
Perkin Elmer) to calculate the rate of inhibition.

SVM-Assisted Selection and Bioactivity
Test
Machine Learning Dataset
An inhibitor dataset and a decoy dataset made up the training
set of the machine- learning model. The inhibitors of IRAK1
were collected from ChEMBL Database and 150 potent inhibitors
were extracted after a structural clustering. For the decoy dataset,
150 chemicals were randomly selected from the single-target
compounds database of ChEMBL. Compounds in the training set
were prepared and docked into each chain of 6BFN using Glide-
SP, Glide-XP, and AutoDock. All docking parameters used were
the same as those in the evaluation process.

A group of novel pharmacophore models were generated
using the 3D QSAR Pharmacophore Generation module of
Discovery Studio Client 2.5 using the 594 inhibitors found in
the ChEMBL Database. H-bond acceptors, H-bond donors,
hydrophobic molecules, and aromatic compounds were

considered and the upper limit of each feature was set to 5. For
every molecule, at most 255 conformations were generated to
find the best conformation and the maximum pharmacophores
was set to 10. Since the pharmacophore models were built, the
best conformations of compounds in the training dataset were
generated and mapped to the pharmacophores flexibly in the
Ligand Pharmacophore Mapping module of Discovery Studio
Client 2.5. The fit value of each molecule was extracted. The
compounds that failed to map onto the pharmacophore model
were assigned fit values that were set to 0 uniformly.

PaDEL v2.20 was used to calculate the 1D and 2D descriptors
of the compounds in the inhibitor and decoy sets. Salts
were removed and the nitro groups were standardized before
the calculation.

Data Preprocessing
In this study, we conducted data pre-processing including index
elimination and data normalization. We collected almost 1460
indices to represent each molecule, which is large for any machine
learning model to analyze. Thus, we used several approaches
to eliminate some indices. This process mainly consisted of the
following 4 steps:

(1) Counting: We counted the value of each index. Some of the
indices on the condition were excluded if more than 90%
molecules had the same value which indicates that there is
no crucial significance of such indices.

(2) Correlation analysis: The correlation values of all indices
were calculated between any pairs. If the value was larger
than 0.85, one of the pairs was excluded because of their
high collinearity.

(3) T-test analysis: Then we calculated the T-test scores for
the means of two indices. This test assumed that the
populations had identical variances by default.

(4) Principal components analysis (PCA): Finally, we utilized
PCA for dimensionality reduction.

After conducting these four steps, only 244 of the 1460 indices
remained. Then, the normalization on the basis of mean and
standard deviation of a batch was conducted.
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Model Construction
In this paper, we constructed three traditional machine learning
models including SVM, LGBM, and XGBoost using Scikit-
learn package.

(1) Support vector machine (26) is one of the most commonly
used binary classification model. Its basic principle is to
defy a linear classifier in the feature space with the largest
spacing. In this study, we set C as 1, using a kernel function
of RBF. RBF was calculated as follows:

RBF = exp(−γ |u− v|2)

Besides, we used “degree 3, coef 0” for the kernel function.
We used the shrinking heuristic and probability methods.
When training error was less than 1e-3, we stopped
further training.

(2) LightGBM is a gradient boosting framework, based on a
histogram decision tree algorithm. Using leaf-wise growth
strategy with depth limitation, LightGBM model can yield
better performance and prevent overfitting. In this study,
we used the gbdt boosting method and set the learning rate
as 0.1 in order to prevent overfitting. We constructed the
classifier with 10 leaves, with “max depth 3” and “minimum
child samples 31.”

(3) XGBoost uses depth-wise strategy. It first ranks all features
according to their values using a pre-sorted algorithm
and then splits samples. However, pre-sorted algorithm
may cause additional memory space. In this study, an
XGBoost model with 150 estimators, max depth 3, and
minimum child weight 1 was conducted. We randomly
selected 80% of samples and 80% of features to build a
decision tree and used binary logistic function to learn and
update parameters.

Metrics
In this study, to compare the performance of different models,
we utilized the area under the curve (AUC) and accuracy (ACC)
as metrics. AUC was defined as the area of the receiver operating
characteristic (ROC) Curve, which was defined by true positive
rate (TPR) and false positive rate (FPR). The TPR and FPR are
given by:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Where TP, FP, TN, and FN were true positives, false positives, true
negatives and false negatives, respectively. AUC and ACC were
computed using the following equations.

AUC =
∫ 1

x=0
TPR

(
FPR−1 (x)

)
dx

ACC =
TP + TN

TP + TN + FP + FN

Prediction and Bioassay
Similarity search was carried out using the MolPort database.
Ten chemicals, whose Tanimoto similarity was larger than 0.8
compared with compound 1, were collected along with their
multiple docking scores, pharmacophore scores, and molecular
descriptors. These data were processed using the best model to
predict their inhibition toward IRAK1. Candidates in the last
stage of virtual screening procedure were also predicted similarly.

Lastly, compounds derived using the similarity search were
bought from TargetMol and their inhibition rate was tested
using the method described above. The dose-effect curve (all
compounds were dissolved in DMSO and diluted 10-fold from
100 µM to 1 nM) was fitted to calculate the IC50 value.

Molecular Dynamics Simulation
The binding mode of compound 1 was confirmed using
molecular dynamics simulation. The parameter files of
compound 1 were generated in antechamber module of
Amber and was combined with 6BFN_B under ff99SB and gaff
force field. After six chloride ions were added, the neutralized
system was solvated in a tetrahedral box of TIP3P and the
distance between box boundary and IRAK1 protein was set to
10.0 Å. At first, the energy of the entire system was relaxed using
three steps: the hydrogen atoms, chloride ions, and water were
optimized using 2500 steps of steepest descent minimization
and 2500 steps of conjugate gradient minimization; the side
chains of the protein, chloride ions, and waters were relaxed
using 2500 steps of steepest descent minimization and 2500
steps of conjugate gradient minimization; the system was
minimized using 2500 steps of steepest descent minimization
and 2500 steps of conjugate gradient minimization. The system
was heated to 300 K in 100 ps and equilibrated for 100 ps in
NPT mode (temperature = 300 K; pressure = 1 atm) with the
heavy atoms of the complex being restrained. Then, the whole
system was equilibrated in NPT mode for 100 ps. Lastly, a five
nanosecond MD simulation was carried out and the binding
energy was decomposed.

RESULTS

Virtual Screening
In order to select the most effective screening method, we
evaluated the performance of different proteins and molecular-
docking software. For each monomer of the IRAK1 crystal
structure (6BFN_A and 6BFN_B from protein data bank) (27),
we docked the original ligand into the binding pocket to evaluate
the reproducibility of several frequently-used docking methods.
We then shortlisted 150 potent IRAK1 inhibitors and used
9200 random decoys to judge whether the docking methods
and protein chains could distinguish the inhibitors from decoys
effectively. As seen in Table 1, the RMSD value for each docking
approach was less than 1, which indicated that all approaches
could reproduce the structure of each complex accurately. The
best capabilities of discrimination power were exhibited by
6BFN_B coupling with Glide SP and Glide XP, which reached
the smallest p-value of 10−32 (Supplementary Figure S1).
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TABLE 1 | Evaluation of docking methods.

PDB_ID Method RMSD Docking score p_value

6BFN_A AutoDock 0.5755 −10.0 8.92E−27

6BFN_B AutoDock 0.5665 −9.9 4.79E−26

6BFN_A Glide_SP 0.4728 −9.8 2.24E−30

6BFN_B Glide_SP 0.9543 −9.3 6.87E−32

6BFN_A Glide_XP 0.4742 −6.8 5.27E−32

6BFN_B Glide_XP 0.9438 −6.4 4.60E−32

The ROC curve and the AUC are shown in Figure 2. Since
the performances of the docking methods used in our study
were not adequately satisfactory, we established a pharmacophore
model to filter out molecules that we did not wish to pursue
beyond the docking process. According to the conformation
of the 6BFN_B re-docking results, we analyzed the binding
mode of the IRAK1 inhibitor (Figure 3A) and constructed
a pharmacophore, which contained a hydrogen-bond donor,
a hydrogen-bond acceptor, and an aromatic ring, using the
Develop Pharmacophore Model of Schrödinger which is suitable
for the preliminary virtual screening and saving the time costs of
calculation (Figure 3B).

We collected 1.5 million chemicals from the ChemDiv
database. Firstly, compounds in the database were pre-processed
using a filter which could exclude chemicals that did not conform
to the Lipinski’s rule of five (28). Next, we screened the remaining
1.2 million compounds in the established pharmacophore model
and 56,000 molecules having a structure similar to that of the
IRAK1 inhibitor were preserved. Glide SP docking was applied
and all docked compounds were ranked by their docking scores.
We selected the first 506 molecules for Glide XP docking in order
to eliminate the compounds with lower docking scores. Thus,

we obtained 353 molecules that possessed both, high docking
scores and different docking precision. These compounds were
clustered according to their molecular fingerprints. The most
representative 43 candidates (38 compounds were purchasable)
from each cluster were selected for biological assay (Figure 3C).

Biological Evaluation
To test whether the selected molecules were active, kinase activity
experiments were carried out using the mobility shift assay,
in which staurosporine was chosen as the positive control.
Each compound was dissolved in DMSO at a concentration
of 20 µM and used in the assay (Supplementary Table S2).
Compound 1 (Y041-8246) showed a moderate inhibition rate
(85.5% at 20 µM) compared to staurosporine (IC50 = 59.29 nM;
Supplementary Figure S2). The screening hit rate was 2.63%
(1/38). The Tanimoto similarities between compound 1 and
the known IRAK1 inhibitors were below 0.34, thus indicating
that this was a new structure which bears benzofuran scaffold
for IRAK1 inhibition. Moreover, structure clustering of IRAK1
inhibitors collected from ChEMBL was performed, the result
indicated that benzofuran derivatives were different from any of
these scaffolds (Supplementary Figure S3).

Establishment of Machine Learning
Model
Considering the unsatisfactory performance of the traditional VS
method with a hit rate of 2.63% in this study, which could not
completely meet the demand of drug discovery, we attempted
to find a better approach to discriminate lead compounds
from a set of high-scored compounds. Ten molecules from the
MolPort database1 whose Tanimoto similarities were higher

1www.molport.com

FIGURE 2 | ROC curve of different combination of receptors (6BFN_A, 6BFN_B) and docking software (Glide SP, XP, and AutoDock).
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FIGURE 3 | (A) Binding mode of the ligand (DL1) in 6BFN_B; (B) Pharmacophore model; and (C) Work flow of virtual screening.

than 0.8, when compared with compound 1, were chosen
to be further studied. In order to take the pharmacophore
and structural information into consideration, we calculated
multiple docking scores, complementary pharmacophore
mapping scores, and molecular descriptors (Figure 4).
The molecules in the training set consisted of 150 potent
IRAK1 inhibitors and 150 decoys (Supplementary Table S3).
Their docking scores were obtained using AutoDock (29),
Glide SP, and Glide XP toward 6BFN_A and 6BFN_B,
respectively. In this model, since it was need to construct
different pharmacophore models according to known ligands,
Discovery Studio was employed and all selected molecules
were then mapped to pharmacophores to calculate their fit
values, which demonstrated their extent of conformity to
the pharmacophore models. The one- and two-dimensional
molecular descriptors were calculated using PaDEL (30) to
complement the physicochemical properties. Lastly, 6 docking
scores, 9 fit values, and 1444 molecular descriptors were obtained
for each compound.

Based on the characteristics of the data, we employed several
traditional machine learning methods for activity prediction.
In this section, we describe how data pre-processing was
performed and the three machine-learning models for activity
prediction was constructed. Considering the inactivity of most
molecules, we used ACC and AUC to measure the performance
of each model. For a fair comparison, we divided the 300
molecules into 5 groups to conduct a 5-fold cross validation.
For the final test, all parameters were selected based on the best
ACC performance of models on validation sets. All models were
developed using python 3.7.3 with TensorFlow deep learning
library and all experiments were constructed on an NVIDIA
GeForce GTX 1080Ti GPU.

In this study, we compared the performance of each model
using data with different inputs. The mean AUC and ACC
scores of different models on 5-fold validation sets are shown
in Table 2, different inputs (docking scores, pharmacophore
mapping scores, and molecular descriptors) are presented in the
first column and simply denoted as DS, PS, and MD, respectively.
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FIGURE 4 | Construction of training dataset.

That is to say, the AUC and ACC results of different models in
the first row are obtained by models receiving docking scores,
pharmacophore mapping scores and molecular descriptors at
the same time, while results in the last row are obtained by
models merely receiving molecular descriptor. Obviously, a
slight improvement of AUC or ACC is observed when docking
and pharmacophore information were taken into consideration.
Besides, it is notable in each row that SVM outperforms all
the other two models. Therefore, we use SVM with all the
three kind of inputs as the final model, denoted as SVM
(DS+PS+MD). Table 2 and Figure 5 illustrate the performance
of each combination of model and input data.

TABLE 2 | Comparison of our three traditional machine-learning models for
activity prediction.

Model SVM LGBM XGBoost

Data AUC ACC AUC ACC AUC ACC

DS+PS+MD 0.8889 0.78 0.8022 0.75 0.8522 0.77

PS+MD 0.8933 0.75 0.8044 0.72 0.8633 0.78

MD 0.8767 0.77 0.8267 0.73 0.8178 0.70

SVM-Model Can Identify Active
Compounds Accurately
To verify the practicality of the SVM (DS+PS+MD) model, we
predicted the activity of molecules at later stages of VS (Figure 6).
Among the molecules exhibiting superior docking scores in
Glide SP and Glide XP, our model identified 51.78% selected
from Glide SP, and 56.66% from Glide XP docking as inactive.
Among the 38 candidates whose inhibitory had been tested, 21
inactive chemicals were accurately identified. Although there also
existed several inactive candidates that were classified as active,
compound 1 was picked precisely.

Ten compounds in the MolPort database with a Tanimoto
similarity greater than 0.8 as compared to compound 1 were
collected. Since almost all multiple docking scores appeared
similar and very close (Table 3), the docking software was unable
to yield accurate results. When the training information of these
compounds was fed into the SVM model, the results classified
two compounds as inactive, although one of them had the best
average docking score. The decrease in the exclusion rate from
50 to 20% indicated that this model was competent to identify
the structural features of IRAK1 inhibitors, which could thus help
computational chemists select lead compounds more accurately.
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FIGURE 5 | ROC curves of different combination of models and input data. (A) corresponds to feed model with data containing DS, PS, and MD; (B) for PS and
MD; and (C) for data with MD only.

FIGURE 6 | SVM model performance on IRAK1 VS candidates (top scoring compounds derived from Glide SP docking, Glide XP docking, visual selection, and SVM
prediction).
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Next, the activities of these compounds were tested. Ten
candidates were bought from TargetMol and their IC50s were
determined. The initial concentration was set to 100 µM and a
serial 10-fold dilution was made to 1 nM. Compounds 2 (Y041-
7950) and 3 (Y041-6433) exhibited similar IRAK1 inhibition and
their IC50 values were determined to be approximately 2 µM.
Additionally, two other chemicals showed weaker inhibition and
their IC50 values were determined to be 18.04 µM (compound
4: 11570480 from Otava Database) and 23.75 µM, (compound
5: Y041-7951), respectively (Figure 7 and Supplementary
Figure S2). We further tested the activity against IRAK4 of
the three most potent IRAK1 inhibitors such as compound 1,
2, and 3. The result indicated that all the compounds showed
extreme low inhibitory activities against IRAK4, which IC50s
were > 100 µM (Supplementary Figure S4). The compounds
bearing benzofuran scaffold were demonstrated an over 40-fold

selectivity to IRAK4, showing its potential to be developed as
selective IRAK1 inhibitor. When these compounds were used
in our model, it accurately predicted the results that were
determined earlier in the similarity search results. The AI model
proved to be an effective tool in this prediction.

Molecular Dynamics Simulation
Since the active compounds share same scaffold, the most potent
compound 1 was chosen for the analysis of binding mode with
IRAK1. In order to analyze the most stable binding pattern, we
performed 5 ns molecular dynamics simulation of compound 1
using AmberTools (31). As seen in Figure 8, the RMSD value of
the IRAK1 backbone and the ligand reached equilibration after
3 ns and 1 ns simulation, respectively. The average RMSF value
of compound 1 was 2.47 Å, indicating a stable binding pattern.
Compound 1 formed two hydrogen bonds with the H-bond

TABLE 3 | Detailed information of compounds predicted by SVM model (compound ID; docking scores from Glide SP, Glide XP, and AutoDock; average docking scores;
predicted labels and IC50 values).

Comp_ID SP_A SP_B XP_A XP_B AD_A AD_B AVG AI_Pred IC50/µ M

2 −10.25 −10.39 −11.06 −11.07 −8.1 −8.1 −9.83 1 2.32

3 −10.22 −10.28 −10.92 −10.91 −9 −9 −10.06 1 2.48

4 −9.51 −7.27 −10.58 −10.68 −11.7 −11.7 −10.24 1 18.04

5 −10.32 −10.52 −11.25 −11.88 −9.4 −9.4 −10.46 1 23.75

6 −9.95 −10.12 −11.84 −11.03 −11.2 −11.2 −10.89 0 NAa

7 −9.9 −9.93 −11.81 −11.01 −7.9 −7.9 −9.74 0 NA

8 −9.26 −9.66 −10.26 −10.53 −9.9 −9.9 −9.92 1 NA

9 −9.66 −9.6 −11.26 −11.57 −10 −10 −10.35 1 NA

10 −9.7 −9.33 −10.95 −10.95 −10.1 −10.1 −10.19 1 NA

11 −9.36 −6.19 −8.65 −8.89 −9.4 −9.4 −8.65 1 NA

aNA = No Activity.

FIGURE 7 | Structure of compound 1 and those predicted using SVM (compounds 2–11).
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FIGURE 8 | Analysis of MD simulation. (A) root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of the IRAK1 backbone during MD
simulation; (B) 3D-plot of the complex; (C) length of the hydrogen bond (compound 1_O-Leu_291_H, compound 1_C = O-Lys_239_N); and (D) plot of free energy
decomposition.

donors from LYS_239 and LEU_291, and also formed stable
Van der Waals interaction through hydrophobic or hydrophilic
amino acid residues such as ILE_218, PHE_294, LEU_347, and
ASP_358. The lengths of the H-bonds and MM-GBSA free energy
confirmed that the hydrogen bond between compound 1 and
LYS_239 was more stable and contributed significantly to the
formation of the complex.

DISCUSSION AND CONCLUSION

In this study, we discovered a novel IRAK1 inhibitor (compound
1) through traditional virtual screening and also obtained four
similar compounds which exhibited good to moderate IRAK1
activity in the AI-aided selection process. As the screening
power of docking-based virtual screening was significantly
weak (hit rate = 2.63%) to select hit compounds from highly
scored molecules, an AI-based discriminatory virtual screening
protocol was conducted to assist the final selection procedure of
virtual screening.

The major strength of this protocol is a comprehensive
integration of activity-related factors through machine learning.
Comparing with other machine learning studies (9, 10), this
research integrated both protein-ligand binding information,
ligand-based pharmacophore information and molecular
physiochemical properties into an SVM classifier which can yield

satisfactory performance without the requirement of a great
deal of known inhibitors. Since diverse receptor structures and
pharmacophores were considered, more reliable judgments can
be made after dimension reduction and model training. Whereas,
there still exists some limitations in the screening process. For
example, since the virtual screening targeted a specific binding
pocket, it was possible that some positive compounds showing
different interaction mode would be excluded. It is necessary to
further combine virtual screening with different AI methods for
improving its prediction ability more accurately.

Experiments showed that this SVM model can effectively
exclude over 50% of the inactive compounds in virtual screening
and retain the most promising candidates, which can improve
the hit rate prominently in the last phase of VS. Moreover,
four molecules were successfully predicted using this model,
from a set of compounds that were similar to compound 1.
The model displayed better discriminatory power among highly
similar candidates.

The identified compounds all bear benzofuran scaffold, which
was different from other IRAK1 inhibitors. The acetamide
group seems important in maintaining the inhibitory activity
of compounds, such as the IC50 values of compound 1 vs
compound 7, compound 2 vs compound 9, and compound
4 vs compound 11. Moreover, compound 1, 2, and 3 were
demonstrated an over 40-fold selectivity to IRAK4, showing its
potential to be developed as selective IRAK1 inhibitor. The results
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provide valuable knowledge for further optimization and
development of IRAK1 inhibitors and demonstrate that AI can
assist VS strategy in a sequential manner for identifying new
IRAK1 inhibitors.
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Glycogen synthase kinase-3b (GSK3b) is associated with various key biological
processes, and it has been considered as a critical therapeutic target for the treatment
of many diseases. However, it is a big challenge to develop ATP-competition GSK3b
inhibitors because of the high sequence homology with other kinases. In this work, a novel
parallel virtual screening strategy based on multiple GSK3b protein structures, integrating
molecular docking, complex-based pharmacophore, and naive Bayesian classification,
was developed to screen a large chemical database, the 50 compounds with top-scores
then underwent a luminescent kinase assay, which led to the discovery of two GSK3b
inhibitor hits. The high screening enrichment rate indicates the reliability and practicability
of the integrated protocol. Finally, molecular docking and molecular dynamics simulation
were employed to investigate the binding modes of the GSK3b inhibitors, and some “hot
residues” critical to GSK3b affinity were highlighted. The present study may provide some
valuable guidance for the development of novel GSK3b inhibitors.

Keywords: glycogen synthase kinase-3 beta inhibitor, GSK3b, virtual screening, molecular docking,
pharmacophore, naive Bayesian classification, molecular dynamics simulation
INTRODUCTION

Glycogen synthase kinase-3 (GSK3) is an evolutionarily very conserved serine/threonine kinase that
is ubiquitous in mammalian eukaryotic cells, and it presents a broad spectrum of cellular functions,
like cell division, differentiation, transcription, apoptosis, and so on (Frame and Cohen, 2001; Hu
et al., 2018). GSK3 contains two functionally distinct isoforms, a and b, and these two isoforms
share a 98% sequence identity within the active domain (MacAulay and Woodgett, 2008). Among
them, GSK3b has received more attention because of its central role in the regulation of many
important metabolic and signaling proteins, structural proteins and transcription factors, that
depicts GSK3b as a promising target for the treatment of cancer, neurodegenerative diseases,
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neuropsychiatric diseases, and other major diseases (Cohen and
Frame, 2001; Osolodkin et al., 2013; O’Leary and Nolan, 2015;
Maqbool and Hoda, 2017; Abdul et al., 2018). Therefore, a
certain number of GSK3b inhibitors with different kinds have
been discovered in last decades (Wagman et al., 2004; Maqbool
and Hoda, 2017), and some have been pushed into the clinical
trials (Wu et al., 2019). GSK3b inhibitors can be roughly
classified into two categories: non-ATP competition and ATP
competition inhibitors (Force and Woodgett, 2009; Swinney
et al., 2016; Dey et al., 2017; Saura et al., 2017). These two
types of inhibitors represent two different focuses on the
development of GSK3b inhibitors: affinity and selectivity. non-
ATP inhibitors binding to the ATP outside area usually contain
higher selectivity but lower affinity to GSK3b, but ATP inhibitors
acting to ATP pocket are just the opposite. Nowadays, a large
number of ATP competition GSK3b inhibitors have been
developed, but no selective GSK3b inhibitor has been FDA
approved so far (Sahin et al., 2019). As mentioned above,
GSK3b show a 98% sequence identity to GSK3a, besides,
GSK3b share a highly conserved sequence in many other
kinases, such as cyclin-dependent kinases (CDK) (Bax et al.,
2001), that makes it challenging to develop selective GSK3b
inhibitors. Therefore, the application of appropriate methods for
developing high selective GSK3b inhibitors has become critical
and urgent.

As is known to all, traditional lead kinase inhibitors discovery
based on experimental systems is an expensive, inefficient and
lengthy process because of its screening against a broad panel of
diverse kinases. As a counterpart to experimental high-
throughput screening, virtual screening (VS) is able to virtually
screen large compound databases and has become a good choice
for the discovery of novel inhibitors (Hou and Xu, 2004; Amaro
and Li, 2010). VS based on molecular docking has received more
Frontiers in Pharmacology | www.frontiersin.org 2170
and more attention (Tanrikulu et al., 2013). For conventional VS,
only one protein structure is used in most docking programs, and
the protein almost performs the “rigid” structure to maintain
optimum efficiency of VS. Thus, integrated strategies for VS in a
parallel manner may be the most appropriate to balance the
efficiency and precision of VS, and some successful cases in the
field of kinase inhibitor development have been reported
(Bajorath, 2002; Holliday et al., 2011; Tian et al., 2014; Fan and
Huang, 2017; Zhou et al., 2018). Among them, naive Bayesian
analysis, a machine learning algorithm, has been widely applied
to drug discovery processes such as high-throughput VS,
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties evaluation, and SAR (structure-activity
relationship) analysis (Liu, 2004; Chen et al., 2011; Ekins et al.,
2019). Bayesian analysis is a well-known statistical algorithm and
it could scale linearly with the number of samples comparing
with traditional fitting methodologies, thus, Bayesian analysis
could be fast and easily automated to process large amounts of
data (Rogers et al., 2005; Tian et al., 2013a). Moreover, the
Bayesian model focuses on the more important features of
samples, and then assigns greater weight to the characteristics
to distinguish the “good” samples from the large amounts of
sample, that would significantly lead to a higher quality
enrichment (Klon et al., 2004; Rogers et al., 2005). In this
study, we present an efficient and reliable predictive strategy
for parallel Bayesian machine learning-VS integrating molecular
docking and complex-based pharmacophore based on multiple
GSK3b proteins (the workflow is illustrated in Figure 1), 50
potential inhibitors of GSK3b were purchased and some
compounds with potent GSK3b inhibitory activity were
confirmed by a series of biochemical studies. Finally, the
GSK3b binding mechanisms of these inhibitors were well
analyzed through molecular docking and molecular dynamics
FIGURE 1 | The workflow of this study.
September 2020 | Volume 11 | Article 566058
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simulation. It could provide some important guidance for the
discovery of promising GSK3b inhibitors from a huge chemical
database for the treatment of related diseases.
METHODS AND MATERIALS

Preparation of GSK3b Complexes and
Validation Dataset
A total of 54 crystallographic structures of GSK3b complexes were
retrieved from the RCSB Protein Data Bank (PDB) (Berman et al.,
2000). Firstly, the residues within 10 Å of each apo-ligand were
reserved and structurally aligned with STAMP algorithm in VMD
(Figure S1) (Humphrey et al., 1996; Tian et al., 2014). Secondly,
the root-mean-square deviation (RMSD) values from the
alignment were used to create a phylogenetic tree through the
phylogenetic tree module of VMD (Figure S2). And then, these
complexes could be classified eight types according to the
differences of the GSK3b structures. Finally, eight representative
complexes with the highest resolution within each type were
chosen, namely, 1Q3W (Bertrand et al., 2003), 1Q4L (Bertrand
et al., 2003), 2OW3 (Zhang et al., 2007), 3L1S (Arnost et al., 2010),
4B7T (Tahtouh et al., 2012), 4J71, 4NM3 (Stamos et al., 2014) and
4PTG (Sivaprakasam et al., 2015) (highlighted in red in
Figure S2).

In order to evaluate the “screening power” of these eight
protein structures, a validation dataset was built, including the
known GSK3b inhibitors and non-inhibitors. The non-
duplicated GSK3b inhibitors with definite biological activity
were obtained from the BindingDB database (Liu et al., 2007),
and the non-inhibitors were randomly selected from the
ChemDiv database through the Find Diverse Molecules module
in Discovery Studio 3.5 (DS3.5), and the ratio of non-inhibitors
versus inhibitors was set to 1:20. At last, 800 inhibitors and
16,000 non-inhibitors were chosen for further study.

Molecular Docking Procedure
The crystallographic structures of eight GSK3b complexes
were employed as initial receptors for VS. Molecular docking
simulations were carried on by the Glide module in Schrodinger
(Friesner et al., 2006). First, each complex was prepared using the
Protein Preparation Wizard in Schrodinger, to remove
crystallographic water molecules, add hydrogen atoms, assign
protonated states, assign partial charges. Afterward, each complex
was minimized with the OPLS-2005 force field until the RMSD
reached a maximum value of 0.3 Å. The compounds in the
validation set were processed through the LigPrep protocol in
Schrodinger with the default parameters set. Finally, a bounding
box of size 10 × 10 × 10 Å was generated with the co-crystallized
ligand as centroid using the Receptor Grid Generation module for
each system.

Subsequently, the “scoring power” was evaluated to estimate
the docking precision of these eight systems. The crystallized
ligand was first extracted from each GSK3b complex, and then
re-docked into the corresponding binding site, the RMSD
between the docking pose and crystallographic conformation
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of the inhibitors was calculated. On the other hand, the
“screening power” was also investigated. All molecules in the
validation dataset were docked into the binding site of each
protein with the Standard Precision (SP) or Extra Precision (XP)
scoring modes. The student ’s t-test was used to measure the
difference in the distribution of docking scores between active
inhibitor and non-inhibitors.

Pharmacophore Procedure
The eight crystal GSK3b structures were also used as the initial
receptors for complex-based pharmacophore models. First, the
proteins were prepared through the prepare protein module in
DS3.5 to add polar hydrogen, remove water molecules, repair the
broken chain, and add the CHARMm field with the default
parameters. Second, all molecules in the validation set were
prepared through the prepare ligands module in DS3.5. Then,
the Receptor-Ligand Pharmacophore Generation (RLPG) module
was employed to generate the complex-based pharmacophore
models for eight GSK3b complexes (Hou et al., 2012). A set
of pharmacophoric features were identified from each system
(Sutter et al., 2011), including hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), hydrophobic (HYD), negative
ionizable (NI), positive ionizable (PI), and ring aromatic (RA)
features of ligands. And the parameters were kept as the default
setting except for the minimum number of the pharmacophore
features was set to 3.

The selectivity of the pharmacophore model is evaluated
through genetic function approximation (GFA) scoring
function (Rogers and Hopfinger, 1994; Meslamani et al., 2012).
For each complex structure, the generated models are ranked
according to their selectivity scores evaluated by the GFA model,
and thus 10 top-ranked pharmacophore models would be
produced, and feature(S) was defined as the pharmacophore
features with the highest selectivity. Besides, in order to
investigate the capability of each model to distinguish between
inhibitors and non-inhibitors, a validation set containing 800
active GSK3b inhibitors and 16,000 non-inhibitors mentioned
above was constructed. The pharmacophore features of the
pharmacophore model with the best discrimination between
inhibitors and non-inhibitors were set to feature(D), and the
area under receiver operating characteristic (ROC) curve (AUC)
was calculated to evaluate this discrimination capability.
Moreover, the molecules in the validation set were all mapped
onto the pharmacophore models to generate the fit values.

Naive Bayesian Classification
Consequently, naive Bayesian classification (NBC) based on
multiple protein structures was employed to evaluate the
screening accuracy. This machine learning approach has been
proved to significantly increase the hit rate of virtual screening
(Tian et al., 2013b; Li et al., 2014). First, the data matrix consists
of above docking scores (from molecular docking) and fit values
(from pharmacophore) were used as the independent variables
(X); and 1/0 was used as the response variable (Y), in which 1
presents inhibitor and 0 means non-inhibitor. Then, NBC
was developed using the Create Bayesian Model module in
DS3.5 (Hou et al., 2012) to distinguish the inhibitors from
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non-inhibitors. The prediction precision of each classifier was
evaluated by the AUC value for discriminating the GSK3b
inhibitors from non-inhibitors. Finally, the best Bayesian
classifier was utilized to re-score the compounds.

Integrated Virtual Screening
The docking-VS was performed to screen the ChemDiv database
(approximately 2,000,000 compounds). First, each compound
was docked into the binding pockets of eight GSK3b with
corresponding scoring modes. Then, 10,000 compounds with
the best docking scores were obtained and then mapped onto the
pharmacophore models generated from the GSK3b complexes.
Afterward, 2,000 compounds with the best fit values were chosen
and then to re-screening with the best Bayesian classifier. Last,
the 100 compounds with top-ranked by the Bayesian scores were
assessed the drug-likeness by Filter by Lipinski and Veber Rules
module in DS3.5. Finally, 50 compounds were purchased from
ChemDiv for subsequent GSK3b inhibitory assay in vitro.

Kinase Assay
GSK3b kinase activity was measured by ADP-Glo Kinase Assay
system from Promega (Product code V1991) (Auld et al., 2009;
Zegzouti et al., 2009; Cho et al., 2011), which is a non-
radioisotope, homogeneous, ADP quantitative kit based on a
luminescent kinase assay. Compounds were initially tested in
triplicate at 20 µM, and then, those molecules which contain an
inhibitory activity greater than 50% were chosen to further test in
a nine-point dose curve with 2-fold serial dilution starting from
40 µM (three times). The assay protocol was listed as below:
GSK3b protein was firstly incubated with 1mg/ml of the peptide
substrate, second, the test compounds were added into
the solution for 60 min at 25°C with a GSK3b reaction buffer,
which contained 40 mM Tris (pH = 7.5), 20 mM MgCl2, 0.1mg/
ml BSA, 50 mM DTT, and 50 mM ATP. The assays were done in
384-well white plates with a total reaction volume of 5 ml per
well. Then, the reactions were terminated through the
introduction of 5 ml ADP-Glo reagent assay, and the assay
plate was incubated for 40 min. Finally, 10 ml of kinase
detection buffer was added to convert ADP to ATP and
introduce luciferase and luciferin to detect ATP.

Promiscuity Assessment
The promiscuity of Cpd49 was evaluated by an online program,
Badapple (http://pasilla.health.unm.edu/tomcat/badapple/
badapple). the simplified molecular input line entry specification
(SMILES) formats of Cpd49 was entered into the input box and the
results would be generated automatically.

Molecular Docking and MD
The 3D structure of compound22 (Cpd22) and Cpd49 were
sketched using maestro, LY2090314 was retrieved from the
PubChem Compound database. All these inhibitors were
prepared by the Ligprep module with the OPLS-2005 force field
in Schrodinger. The crystal structure of GSK3b with the highest
resolution, 1Q4L, and the crystal structure of GSK3a, 2DFM (Wang
et al., 2019), were prepared as the initial receptors for the molecular
docking through the Protein Preparation Wizard module. The grid
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file of the GSK3b protein was generated following the step in
Chapter 2.2, and that of GSK3a was generated with the specified
residues, Val101, Pro102, and Arg107 (hinge region), as centroids.
Then Cpd22, Cpd49, and LY2090314 were respectively docked into
the GSK3b protein, and Cpd49 was docked into the GSK3a protein
using theGlidemodule (XPmode), and the best-docked structure of
Cpd49 in the GSK3b-ligand system was chosen for the following
MD simulation.

The Cpd49 with the best bioactivity was conducted to MD
with Desmond package in Schrodinger (Chapon, 2014), and the
docked GSK3b/Cpd49 complex was chosen as the initial system.
All amino acid interactions in the protein were modeled with the
OPLS-2005 force field. The simulation system was solvated in a
10 Å orthorhombic box with periodic boundary condition, and
built with the 3-Point Transferable Inter-molecular Potential
(TIP3P) water model. Afterward, the whole system was
neutralized with salt concentrations of 0.15 M of Na+ ions.
Before MD simulation, the system was minimized with OPLS-
2005 force field. And then, the 200-ns MD was performed using
the NPT ensemble under a target temperature of 310 K and a
target pressure of 1 atm, the energy and atomic coordinate
trajectory recording interval were set to 20 ps. Thereafter, the
RMSD and protein-ligand contacts were all calculated with the
Simulation Interaction Diagram protocol in Desmond package.
RESULTS AND DISCUSSION

Validation of Docking-Based Virtual
Screening
To investigate the prediction capability and reliability of molecular
docking, the screening ability, including “scoring power” and
“screening power”, was evaluated. Scoring power shows the
reliability of the docking program, namely, whether it can
predict the real binding conformation between inhibitors and
proteins (Shen et al., 2020). Herein, the RMSD between docking
pose and crystallographic structures was calculated to reveal this
“power” and RMSD ≤ 2.0 Å was used as a criterion. Firstly, the
original ligands of eight GSK3b complexes were extracted and
then re-docked into the corresponding binding pocket of the
protein. The RMSD values were calculated and the values were
summarized in Table 1. Generally, the docking program, whether
SP mode or XP mode, basically reproduces the experimental
conformation (all RMSD values ≤ 2.0 Å), indicating the eight
chosen protein structures all satisfy the docking accuracy with
Glide module.

Next, the screening power was estimated using the Student’s t-
test (P-value), which was conducted to assess the different
distributions between the inhibitors and non-inhibitors under SP
or XP score modes (Shen et al., 2020). As shown in Table 1 and
Figure 2, the molecular docking can effectively distinguish the
inhibitors form non-inhibitors, the P-values of eight complexes all
far lower than 0.05, except the SP mode of 4B7T. However,
discrimination for certain structures still exhibits significant
different sampling powers (Figure 2). For instance, the P-value of
the SP mode for 2OW3 is 2.958 ×10−69, while that for 4B7T is only
September 2020 | Volume 11 | Article 566058
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0.172 (Table 1). In general, the XP scoring mode exhibited more
accurate determination than the SP scoring mode (Figure 2).
Therefore, it is necessary to choose an appropriate docking mode
for a specific protein structure to ensure docking prediction
accuracy. In summary, our molecular docking model based on
the eight GSK3b structures with Glide could fulfill the requirement
of satisfactory docking. Thus, the docking-based VS with the
multiple structures would be a reliable tool for the development
of potential GSK3b inhibitors.
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Validation of Pharmacophore-Based
Virtual Screening
Eight complexes of GSK3b were employed to generate the
pharmacophore models, and the models were ranked through
the selective scores detected by the GFA algorithm. The results
were tabulated in Table 2. The prediction capacity of each
pharmacophore model to distinguish the inhibitors and non-
inhibitors was evaluated with the AUC values, and it indicates
that the models contain satisfactory prediction power when
AUC > 0.7 (Tian et al., 2013b). According to Table 2, feature
(S) and feature(D) were analyzed and compared.

Generally speaking, a pharmacophore model with a higher
selectivity score shows a stronger prediction power. But as shown
in Table 2, we found that most models with the high selectivity
score contain a poor discrimination power, such as 4NM3
(AUC < 0.7). Some models, especially the feature(D) of 2OW3,
with a low selective score, show a fair inhibitor selectivity on the
contrary. It seems that the pharmacophore models using feature
(D) are more suitable for our VS protocol. Therefore, to
simultaneously avoid a high rate of false positives and find
more active GSK3b inhibitors, 1Q4L and 2OW3 models with
feature(D) were chosen to perform pharmacophore-based VS
(AUC > 0.7, Table 2).
TABLE 1 | Scoring power and screening power of the eight GSK3b protein
structures.

Complex P-value RMSD (Å)

SP XP SP XP

1Q3W 2.079×10−23 2.532×10−39 0.72 0.58
1Q4L 0.016 6.899×10−36 0.88 0.43
2OW3 2.958×10−69 1.841×10−76 1.25 0.93
3L1S 3.348×10−18 6.093×10−72 0.69 0.58
4B7T 0.172 1.388×10−33 1.45 1.06
4J71 0.019 3.203×10−22 0.62 0.43
4NM3 1.502×10−41 0.040 1.33 1.14
4PTG 3.026×10−20 1.439×10−30 1.65 1.34
Bolded data: better discrimination.
A B

D E F

G IH

C

FIGURE 2 | (A–H) Eight GSK3b complexes have better ability to distinguish known inhibitors and non-inhibitors under SP or XP docking accuracy; (I) AUC value of
Bayesian model constructed based on docking score or integrating docking scores and pharmacophore fit values.
September 2020 | Volume 11 | Article 566058

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhu et al. Integrated Screening to GSK3b Inhibitors
Naive Bayesian Classifiers With Multiple
GSK3b Structures
As described above, two protocols based on molecular docking
and pharmacophore were respectively optimized for the
following VS. In order to further improve the hit rate of
screening, a parallel virtual screening based on multiple
structures integrating molecular docking and pharmacophore
was built and the prediction capabilities were evaluated by NBC
model. The flow diagram of the model generation process is
revealed in Figure 1. The data matrix consists of all the docking
scores and fit values of the compounds in the validation dataset
for each complex. According to the above results, the docking
mode with a higher P-value and/or pharmacophore model with a
fair AUC value should be selected as the independent variables to
build the NBC models (bolded in Tables 1 and 2). Firstly, the
prediction power based on the chosen docking score was
estimated and the AUC = 0.774 (Figure 2I), this value was
slightly better than that of the above pharmacophore. But when
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the model combined the docking scores and fit values, the
accuracy was significantly improved, the classifier achieved an
AUC of 0.833, indicating that the VS integrating a machine
learning based on multi-conformational GSK3b could effectively
highlight the active GSK3b inhibitors.

GSK3b Inhibition Assay
To determine the GSK3b inhibitory activity of those hit
molecules from VS, we performed GSK3b inhibition assays
based on ADP-Glo method, in which LY2090314 (Atkinson
et al., 2015; Gray et al., 2015; Kunnimalaiyaan et al., 2018) was
used as the reference compound. The 50 compounds were tested
at the initial concentration of 20 mM. The results of the GSK3b
inhibitory activities of these hits are shown in Figure 3A. Among
the tested compounds, Cpd22 showed effective inhibiting GSK3b
activity 57.6% and Cpd49 inhibiting GSK3b activity 58.5% at the
concentration of 20 mM, respectively. Afterward, the GSK3b
inhibition potency (IC50) of Cpd22 and Cpd49 was identified,
TABLE 2 | The selectivity scores and AUC values of feature(S) and feature(D).

ID Feature(S)a Selectivity score AUC Feature(D)a Selectivity score AUC

1Q4L AADHHN 11.701 0.612 ADHN 9.3532 0.711
4NM3 AADNNN 14.964 0.502 AADNNN 14.964 0.502
3L1S AADHHH 10.447 0.595 AADHH 8.9325 0.657
2OW3 ADHHH 8.5895 0.604 DHH 5.5599 0.709
4B7T AAHH 5.7496 0.514 AHH 4.2348 0.567
4PTG ADH 5.3541 0.544 AHH 4.4406 0.564
4J71 ADH 4.8740 0.601 ADH 4.8740 0.601
1Q3W AAD 5.0798 0.694 AAD 5.0798 0.694
Septemb
er 2020 | Volume 11 | Article 5
aA, hydrogen-bond receptor; D, hydrogen-bond donor; H, hydrophobic; N, negative charge.
Bolded data: better discrimination.
A

B DC

FIGURE 3 | (A) Preliminary screening results of 50 compounds with enzyme experiments; (B) Cpd22 and Cpd49 concentration gradient results; (C, D) 2D structure
diagram of Cpd22 and Cpd49.
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both compounds could potentially inhibit the activity of GSK3b,
with IC50 of 15.49 mM and 9.34 mM, respectively (Figure 3B).
The 2D structures of the two inhibitors are illustrated in Figures
3C, D, and both compounds present new scaffolds.
Frontiers in Pharmacology | www.frontiersin.org 7175
PAINS Assessment for Cpd49
Cpd49 with the better bioactivity was then investigated whether it
could be categorized as a PAINS compound. PAINS refer to a series
of promiscuous compounds specifically binding to different
macromolecular targets and leading to misleading false-positive
results in experimental assays (Baell and Holloway, 2010).
The assessment results from Badapple prediction were shown in
Table 3. The cyclopropane of Cpd49 exhibits a moderate pScore
value with 185 and shows a “True” inDrug result. While the
tetrahydroindazole group presents a low pScore value with a
“False” result inDrug database. Besides, the scaffold3 generated no
pScore and the inDrug result is “False”. These results indicate
Cpd49 would be a GSK3b selective inhibitor.

Molecular Docking Analysis
To elucidate the binding mode of inhibition of GSK3b by Cpd22
and Cpd49, the two inhibitors were docked to the crystal structure
1Q4L. The docking scores were −9.032 kcal/mol for GSK3b/
Cpd22, and −9.566 kcal/mol for GSK3b/Cpd49. The interactions
between the inhibitors and GSK3b have respectively illustrated in
Figure 4. The docking results indicated that Cpd22 and Cpd49
interact with GSK3b in the same position, in which residues Ile62,
Val70, Ala83, Val110, Asp133, Tyr134, Val135, Thr138, Arg141,
Leu188, Cys199, and Asp200 constructed the binding pocket
and interacted with the inhibitors. Meanwhile, hydrophobic
interactions were formed with residues Ile62, Val70, Ala83,
TABLE 3 | The pScore and inDrug values from Badapple prediction.

Compound Scaffold
Number

Scaffold Structure pScorea inDrugb

Cpd49 1 185 True

2 83 False

3 None False
apScore values, <100 (low), no indication; 100–300 (moderate), weak indication of
promiscuity; >300 (high), strong indication of promiscuity.
binDrug, True, means it was found in the drug data base; False, means not found.
A B

DC

FIGURE 4 | 2D presentations of the interactions between GSK3b and (A) Cpd22; (B) Cpd49; (C) LY2090314; (D) 2D presentations of the interactions between
GSK3a and Cpd49 (H-bonds colored in magenta).
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Val110, Tyr134, Val135, Leu188, and Cys199 (shown in black lines
in Figures 4A, B), which was consistent with the analytical results
from our previous research. These residues are important to
stabilize the binding affinity between the inhibitors and GSK3b
(Zhu et al., 2019). In addition, there are several key hydrogen
bonds (H-bond) were formed in both complexes. Figure 4A
showed that Cpd22 formed four H-bonds with Ile62, Val135,
and Arg141. For Cpd49, Val135 formed two H-bonds with the
pyrazole and nitro group, and Asp133 also formed an H-bond.
These H-bond interactions could maintain the specific binding
interactions between the ligand and GSK3b (Zhao et al., 2017).
Herein, LY2090314, as a positive control, was also docked into the
GSK3b protein, and the result was illustrated in Figure 4C. Similar
to Cpd49, LY2090314 formed the two H-bond interactions with
Asp133 and Val135 of GSK3b (Figure 4B). Moreover, the
carbonyl group of LY2090314 formed an H-bond with Arg141,
similarly, the Arg141 of GSK3b also form H-bond with the
carbonyl group of Cpd22 (Figure 4A). That may be the reason
why LY2090314 contains more potent bioactivity than Cpd22 and
Cpd49, because of the more H-bond interactions with GSK3b.
Finally, Cpd49 was chosen to investigate the interaction with
GSK3a, Figure 4D shows that the binding pose of Cpd49 in the
binding site of GSK3a is almost same with that in GSK3b, it is not
surprised because of the high sequence identity between GSK3a
and b. Although Cpd49 formed three H-bonds with GSK3a, the
docking score, -6.783 kcal/mol, was far lower than GSK3b,
indicating that Cpd49 preferred to bind with GSK3b.

Molecular Dynamic Simulations Analysis
To explore the dynamic binding process of the studied inhibitor,
Cpd49 with the best bioactivity was submitted to 200-ns MD.
Firstly, the backbone RMSD of the complex was calculated and
the result illustrated in Figure S3. The plot showed that the
system reached equilibrium after 200 ns simulation. In order to
understand the mechanism of ligand adaptation in binding space
of GSK3b, the per-residue contributions in ligand binding were
calculated and the key residues-inhibitor interactions were
rendered in Figure 5A. As the appears at first glance, several
residues formed the strong hydrophobic interactions with
Cpd49, including Ile62, Ala83, Tyr134, and Leu188, these
residues could form the strong non-polar interactions with
GSK3b selective inhibitors, which make the dominating force
for the high GSK3b affinity (Zhu et al., 2019), meanwhile,
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Asp133 and Val135 form strong H-bonds with Cpd49, these
hydrogen bond interactions are significantly important for the
specific GSK3b binding of the selective inhibitors (Figure 5B),
which is consistent with the docking analysis discussed above.
However, Val135 exhibits more favorable contributions to
Cpd49 than Asp133. As shown in Figure 5C, the pyrazole
group of Cpd49 was closer to Val135 and then formed two H-
bonds with Val135. it can be perceived Val135 is a critical residue
for selective binding to GSK3b. As shown in Figure 5C, Cpd49
was sandwiched between residues Ala83 and Leu188, and
encompassed by residues Ala83 above and residues Leu188
below, that formed strong non-polar interactions which highly
improved the binding affinity to GSK3b for Cpd49. Overall, the
above results prove that Asp133, Val135, Ala83, and Leu188 may
be the key residues for inhibitor binding.

Moreover, four X-ray crystallographic structures of GSK3b
complexes, including AMP-PNP (PDB ID 1PYX) (Bertrand
et al., 2003) and three inhibitors under clinical investigation
(Xu et al., 2019), Alsterpaullone (PDB ID 1Q3W) (Bertrand
et al., 2003), AZD2858 (PDB ID 4ACD) (Berg et al., 2012), and
CHIR-99021 (PDB ID 5HLN) (Wagner et al., 2016), were chosen
to compare to the binding configuration of Cpd49/GSK3b
complex. The crystal structure of GSK3b/AMP-PNP was
illustrated in Figure 6A. The adenine of AMP-PNP forms two
H-bonds with Asp133 and Val135, respectively. Asp133 and
Val135 are two key hinge residues, which plays a critical role in
the GSK3b specific binding for a selective inhibitor (Pandey and
DeGrado, 2016). As shown in Figure 5C, the tetrahydroindazole
group of Cpd49 could mimic the adenine of ATP to form the key
H-bonds with Asp133 and Val135. Similar H-bond interactions
occur in AZD2858 and CHIR-99021 systems (Figures 6B, C).
Besides, the oxygen atom of the ribose could hydrogen bond to
Gln185, and the phosphate group of AMP-PNP could form the
H-bonds with Lys85 and Lys183, respectively (Figure 6A)
(Bertrand et al., 2003). The H-bond with Lys85 is also formed
in AZD2858 system, which is caused by the internal hydrogen
bond on the pyrazine ring (Figure 6B) (Berg et al., 2012), while
these interactions all lose in Cpd49/GSK3b system, which may
result in lower bioactivity of Cpd49. On the other hand, the
hydrophobic interaction is important for the GSK3b affinity. In
AMP-PNP system, these residues consist of Ile62, Val70, Ala83,
Val110, Leu132, Tyr134, and Leu188 (Bertrand et al., 2003), and
Cpd49 could form the similar non-polar interactions, especially
A B C

FIGURE 5 | (A) the Cpd49-GSK3b residues interaction spectrum; (B) 2D presentations of the MD simulation interactions between GSK3b and Cpd49; (C) 3D
presentations of the MD simulation interactions between GSK3b and Cpd49.
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with Ile62, Ala83, Tyr134, and Leu188 (Figure 5A). The binding
mode of Alsterpaullone/GSK3b shows in Figure 6D. First,
Alsterpaullone forms two H-bonds with Val135, but unlike
Cpd49 system, Alsterpaullone forms a water bridge with
Asp133, and the other two water bridges also form between
Alsterpaullone and Thr138/Gln185 (Bertrand et al., 2003).
Similar to AMP-PNP and AZD2858, Alsterpaullone also could
form a strong H-bond with Lys85 (Figure 6D). Second,
Alsterpaullone also forms strong van der Waals interactions
with GSK3b, especially Ile62 and Val70, so is in the CHIR-
99021 system (Figure 6C) (Wagner et al., 2016), while Cpd49
loses that interaction with Val70 (Figure 5A). Thus, all these
extra interactions discussed above may lead to the higher GSK3b
binding affinity for Alsterpaullone than Cpd49
CONCLUSION

In the present study, a parallel VS strategy based onmultiple GSK3b
protein structures was developed to screen against a large chemical
library, in which the NBCmodel combining molecular docking and
Frontiers in Pharmacology | www.frontiersin.org 9177
pharmacophore show a reliable prediction capability. After a series
of biochemical studies, two GSK3b inhibitor hits (Cpd22 and
Cpd49) were identified from 50 virtual screened compounds, that
highlights the high prediction accuracy and the robust reliability of
the integrated machine learning-based VS. Besides, the binding
modes between GSK3b and two inhibitors were identified by
molecular docking, and some key residues critical to GSK3b
selectivity were highlighted through MD simulation. We hope
that this study would provide some guidance for the virtual
screening or design of novel GSK3b inhibitors.
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Tumor immunotherapy is considered to be a highlight in cancer treatment in recent years.
Indoleamine 2,3-dioxygenase 1 (IDO1) is closely related to the over expression of many
cancers, and is therefore a promising target for tumor immunotherapy. To search for novel
IDO1-targeting therapeutic agents, 22 icotinib-linked 1,2,3-triazole derivatives were
prepared and evaluated for their inhibitory activity against IDO1. The structures of the
prepared compounds were confirmed with1H NMR, 13C NMR and HRMS. IDO1 inhibitory
activity assay results indicated that 10 of those compounds showed remarkable inhibitory
activity against IDO1, among which compound a17was the most potent with IC50value of
0.37 mM. The binding model between the prepared compounds and IDO1 was studied
with molecular modeling study. The current study suggested that icotinib-1,2,3-triazole
derivatives could be used as potential inhibitors that preferentially bind to the ferrous form
of IDO1 through the formation of coordinate bond with the haem iron.

Keywords: icotinib, 1,2,3-triazole, indoleamine 2,3-dioxygenase 1, inhibitor, immunotherapy
INTRODUCTION

Tumor immunotherapy is an emerging field in tumor treatment. Studies show that indoleamine 2,3-
dioxygenase 1 (IDO1) is the initial and rate-limiting enzyme that catalyzes the metabolism of
tryptophan along the kynurenine pathway outside the human liver (Chen et al., 2019), and plays an
important role in regulating the body’s innate and adaptive immunity by catalyzing tryptophan
metabolism (Takikawa et al., 1986; Takikawa, 2005). In the tumor microenvironment, tumor cells
can induce IDO1 over expression, which causes the depletion of local tryptophan and the
accumulation of metabolites such as kynurenine, thereby activating GCN2 and AHR signaling
pathways, inhibiting T cell proliferation, and inducing apoptosis (Muller et al., 2005). Additionally,
the original T cells are stimulated to differentiate into regulatory T cells, thus mediating tumor
immune escape (Efimov et al., 2011). Over expression of IDO1 has been found in a variety of
malignant tumors, such as ovarian cancer, pancreatic cancer, and non-small cell lung cancer.
Therefore, IDO1 inhibitors once attracted considerable attention as potential agents for
cancer treatment.
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Several candidates are currently undergoing clinical trials, but
none of these has been approved so far, suggesting that the
identification of potent and clinically useful IDO1 inhibitors is an
open challenge. For example, epacadostat (Figure 1, 1, INCB024360)
(Yue et al., 2017), indoximod (Figure 1, 2, 1-methyl-D-tryptophan)
(Soliman et al., 2009), navoximod (Figure 1, 3, NLG-919) (Kumar
et al., 2019), EOS-200271 (Figure 1, 4, PF-06840003) (Crosignani
et al., 2017), and BMS-986205 (Figure 1, 5) have been are currently
being tested in human clinical trials. Epacadostat, developed by
Incyte, is the first highly effective and highly selective oral IDO1
inhibitor (Morgan et al., 2008; Lin et al., 2016; Lewis-Ballester et al.,
2017; Yue et al., 2017). It can effectively restore the anti-tumor
immune response in human Hela cells treated with IFN-g. Via
reversing tumor-associated immunosuppression, it can effectively
suppress kynurenineproduction. Epacadostat also increases IFN-g
production, promotes the growth of natural killer (NK) and T cells,
and reduces the number of converted regulatory T cells (Tregs)
(Dounay et al., 2015). Based on the promising results in Phase 1/2
studies, epacadostat proceeded to a Phase 3 trial (ECHO-301) in
combination with pembroluzimab in the treatment of metastatic
Frontiers in Pharmacology | www.frontiersin.org 2181
melanoma. Recent results coming from the pivotal Phase 3 trial of
ECHO-301 have shown no indication that epacadostat provides an
increased benefit compared to pembrolizumab alone, questioning
the effectiveness of IDO1 inhibitors. This failure led to the
interruption of other Phase III trials and the reconsideration of
whether some elements had been neglected in the landscape of IDO1
inhibitors (Serafini et al., 2020). Study showed that the key group
playing the active role in the epacadostat molecule was the
oxadiazole structure. The epacadostat molecule entered the heme
pocket of the IDO1, and the oxadiazole structure located directly
above the Fe ion in the heme and then interacted with it. Based on
this, a new type of IDO1 inhibitor which linked urea groups to the
oxadiazole structure was developed (Wu et al., 2017; Song et al.,
2020) (Figure 1, 6) and the compounds showed submicromolar level
of IC50 against IDO1.

1,2,3-Triazole, an N-heterocyclic building block, played a
significant role in drug design and synthesis (Majeed et al., 2013).
Many compounds containing the 1,2,3-triazole unit exhibited good
activities against inflammation, cancer, and microbes (De Souza
et al., 2020). Moreover, copper(I)-catalysedazide-alkyne
GRAPHICAL ABSTRACT |
FIGURE 1 | Chemical structures of sixIDO1 inhibitors.
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cycloaddition (CuAAC) reaction, a convenient and regiospecific
approach to 1,4-disubstituted triazoles (Thomopoulou et al., 2015),
has aroused great interest among the researchers and has been
widely used in the preparation of different bioactive molecules
(Hong et al., 2010). Compounds containing 1,2,3-triazole moiety
showed good bioactivities such as antitumor or antibacterial activity
(Röhrig et al., 2012; Mao et al., 2017). Furthermore, according to the
literature, compounds containing 1,2,3-triazole possessed promising
IDO1 inhibition (IC50 = 12.6 mM).

Encouraged by these results, we decided to study the
bioactivity of compounds bearing different 1,2,3-triazole
groups. At first, icotinib was chosen as the starting point. This
compound has been clinically used in China for the treatment of
NSCLC (Yang et al., 2017; Liang et al., 2018; Zhang et al., 2018).
We envisioned that introducing 1,2,3-triazole structure into the
molecule via conventional click reaction would give compounds
with additional benefit by the 1,2,3-triazole group, and this twin
drug approach will combine the advantages of both EGFR-TKI
and IDO1 inhibitors. Herein, we wish to present our preliminary
results on the preparation of the 1,2,3-triazole derivatives and
their in vitro inhibitory activity against IDO1.
CHEMISTRY

The synthetic strategy for the preparation of the target
compounds is illustrated in Figure 2. Copper(I)-catalysed
azide–alkyne cycloaddition between icotinib and different azido
Frontiers in Pharmacology | www.frontiersin.org 3182
compounds afforded the target compounds a1–a22. The reaction
conditions of these steps were convenient and easy to control.
The structures of some key intermediates and all target
compounds were confirmed by nuclear magnetic resonance
and high-resolution mass spectrometry experiments.
EXPERIMENTAL PROTOCOLS

Materials and Chemistry
Icotinib-1,2,3-triazole derivatives were in-house synthesized.
Icotinib and Aryl-azido compounds were purchased from
Acros Organics (Morris Plains, NJ, USA). All reagents and
solvents obtained from commercially available source were
used without further treatment. 1H NMR and 13C NMR
spectra were acquired in DMSO-d6 or CDCl3 solution with a
Bruker 600 spectrometer. Chemical shifts (d) were given in parts
per million with tetramethylsilane as internal reference and
coupling constants were expressed in hertz. High-resolution
mass spectra (HRMS) measurements were carried out using an
Bruker MicrOTOF-Q II mass spectrometer.

Hela cell line, DMEM medium and fetal bovine serum were
purchased from ATCC (Virginia, USA). Recombinant human
IFN-g was purchased from R&D systems (Emeryville, CA, USA).
The 3.05 Ntrichloroacetic acid, 4-(dimethylamino)benzaldehyde
and acetic acid were purchased from Sigma Aldrich (St. Louis,
MI, USA).
FIGURE 2 | The reaction routes to1,2,3-triazole-linkedicotinibderivatives.
September 2020 | Volume 11 | Article 579024
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General Procedure for the Synthesis of
Analogues a1–a22
General Procedure for Preparation of Compound
a1–a22
Aryl-azido (1.2mmol) and icotinib (1.0mmol)were added to 15ml
mixed solvent (water: tert-butanol =2:1). The reaction was carried
out with copper sulfate pentahydrate (0.1 mmol) and sodium
ascorbate (0.2 mmol) at 80°C. After completion of the reaction
(monitored by TLC), the mixture was extracted with
dichloromethane (15 ml×3). The combined organic phase was
washed successively with water and brine, dried over sodium
sulfate and concentrated in vacuo. The residue was purified wiht
column chromatography (CH2Cl2/MeOH=20:1) to give the desired
compound a.

{3-[1-(3-Fluoro-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine(a1): Yellow solid, Purity
96%; 1H NMR (600 MHz, DMSO-d6): d 9.66 (s, 1H), 9.38 (s, 1H),
8.56 (s, 1H), 8.44 (s, 1H), 8.23 (s, 1H), 7.98 (d, J=7.9 Hz, 1H), 7.91
(dd, J1 = 19.0Hz, J2 = 9.0Hz, 2H), 7.70 (dd, J1 = 14.8Hz, J2 = 7.8Hz,
1H), 7.65 (d, J=7.5 Hz, 1H), 7.53 (t, J=7.8 Hz, 1H), 7.39 (t, J=8.3 Hz,
1H), 7.33 (s, 1H), 4.32 (d, J=12.4 Hz, 4H), 3.79 (d, J=19.9 Hz, 4H),
3.65 (s, 4H); 13C NMR (150 MHz, DMSO-d6): 163.8, 162.1, 157.1,
156.5, 153.8, 150.3, 147.9, 140.6, 138.4, 132.4, 130.8, 129.7, 122.6,
121.0, 120.3, 119.3, 116.4, 115.8, 112.1, 110.7, 108.1, 107.9, 73.4,
70.9, 70.9, 70.5, 69.3, 68.9; HR MS (ESI) m/z: calcd for
C28H26O4N6F [M+H]+ 529.1994, found 529.2000.

{3-[1-(4-Chloro-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a2): Brown solid, Purity
97%; 1H NMR (600 MHz, DMSO-d6): d 9.37 (s, 1H), 8.59 (s, 1H),
8.44 (s, 1H), 8.30 (s, 1H), 8.04 (d, J=7.7 Hz, 2H), 7.95 (d, J=8.0
Hz, 1H), 7.74 (d, J=7.7 Hz, 2H), 7.67 (d, J=7.6 Hz, 1H), 7.53 (t, J =
7.8 Hz, 1H), 7.34 (s, 1H), 4.33 (d, J=13.2 Hz, 4H), 3.79 (d, J =
22.6 Hz, 4H), 3.65 (s, 4H); 13C NMR (150 MHz, DMSO-d6):
157.3, 156.7, 150.4, 147.9, 140.4, 135.9, 133.6, 130.8, 130.4, 129.6,
126.5, 125.7, 122.7, 122.1, 121.2, 119.5, 110.9, 73.4, 70.9, 70.5,
69.2, 68.9, 64.3, 45.9, 8.9; HR MS (ESI) m/z: calcd for
C28H26O4N6Cl [M+H]+ 545.1699, found 545.1703.

{3-[1-(4-Fluoro-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a3): White solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.70 (s, 1H), 9.31 (s, 1H),
8.62 (s, 1H), 8.43 (s, 1H), 8.25 (s, 1H), 8.04 (d, J1 = 8.4 Hz, J2 =
4.7 Hz, 2H), 7.96 (d, J=7.9 Hz, 1H), 7.66 (d, J=7.5 Hz, 1H), 7.63-
7.39 (m, 3H), 7.35 (s, 1H), 4.32 (s, 4H), 3.80 (d, J=21.6 Hz, 4H),
3.65 (s, 4H); 13C NMR (150 MHz, DMSO-d6): 162.9, 161.4,
157.2, 156.5, 150.3, 147.8, 140.5, 133.7, 130.9, 129.6, 122.9, 122.8,
122.6, 121.1, 120.5, 119.4, 117.4, 117.2, 111.9, 110.8, 73.4, 70.9,
70.9, 70.5, 69.3, 68.9; HR MS (ESI) m/z: calcdfor C28H26O4N6F
[M+H]+ 529.1994, found 529.2000.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(2-methoxy-phenyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a4): White solid, Purity
96%; 1H NMR (600 MHz, DMSO-d6): d 9.63 (s, 1H), 8.92 (s,
1H), 8.53 (s, 1H), 8.41 (s, 1H), 8.25 (s, 1H), 7.97 (d, J=8.0 Hz,
Frontiers in Pharmacology | www.frontiersin.org 4183
1H), 7.70 (d, J=7.8 Hz, 1H), 7.66 (d, J=7.6 Hz, 1H), 7.57 (t, J=7.9
Hz, 1H), 7.50 (t, J=7.8 Hz, 1H), 7.36 (d, J=8.4 Hz, 1H), 7.32 (s,
1H), 7.19 (t, J=7.6 Hz, 1H), 4.32 (d, J=13.1 Hz, 4H), 3.90 (s, 3H),
3.80 (d, J=20.7 Hz, 4H), 3.65 (s, 4H); 13C NMR (150 MHz,
DMSO-d6): 157.1, 156.4, 153.9, 152.3, 150.2, 148.1, 146.7, 140.6,
131.4, 131.2, 129.5, 126.4, 126.2, 123.9, 122.3, 121.4, 121.0,
119.2, 113.5, 112.1, 110.8, 110.3, 73.4, 70.9, 70.8, 70.5, 69.3, 68.9;
HR MS (ESI) m/z: calcd for C29H29O5N6 [M+H]+ 541.2194,
found 541.2197.

{3-[1-(2-Chloro-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a5): Yellow solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.63 (s, 1H), 9.07 (s, 1H),
8.53 (s, 1H), 8.45 (s, 1H), 8.22 (s, 1H), 7.97 (d, J=8.1 Hz, 1H), 7.82
(t, J=9.0 Hz, 2H), 7.69-7.63 (m, 3H), 7.51 (t, J=7.9 Hz, 1H), 7.32 (s,
1H), 4.31 (d, J=14.9 Hz, 4H), 3.80 (d, J=21.4 Hz, 4H), 3.65 (s, 4H);
13C NMR (150 MHz, DMSO-d6): 157.1, 156.5, 153.9, 150.2, 148.2,
147.0, 140.6, 131.1, 130.9, 129.6, 129.1, 129.0, 128.9, 124.2, 119.3,
112.2, 110.7, 110.2, 73.4, 70.9, 70.8, 70.5, 69.3, 68.9; HR MS (ESI)
m/z: calcd for C28H26O4N6Cl [M+H]+ 545.1699, found 545.1704.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-[3-(1-phenyl-1H-[1,2,3]triazol-
4-yl)-phenyl]-amine (a6): Yellow solid, Purity 97.1%; 1H NMR
(600 MHz, DMSO-d6): d 9.68 (s, 1H), 9.33 (s, 1H), 8.53 (s, 1H),
8.45 (s, 1H), 8.24 (s, 1H), 7.99 (t, J=10.1 Hz, 3H), 7.67-7.64 (m,
3H), 7.53 (q, J=7.5 Hz, 2H), 7.32 (s, 1H), 4.32 (d, J=13.6 Hz, 4H),
3.79 (d, J=20.2 Hz, 4H), 3.65 (s, 4H); 13C NMR (150 MHz,
DMSO-d6): 157.2, 156.4, 153.9, 150.2, 148.1, 147.8, 140.6, 137.1,
131.0, 130.4, 129.6, 129.2, 122.5, 121.0, 120.5, 120.2, 119.3, 112.2,
110.7, 110.3, 73.4, 70.9, 70.9, 70.5, 69.3, 68.9; HR MS (ESI) m/z:
calcd for C28H26O4NaN6 [M+Na]+ 533.1913, found 533.1915.

{3-[1-(3-Chloro-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a7): Yellow solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.70 (s, 1H), 9.41 (s, 1H),
8.68 (s, 1H), 8.44 (s, 1H), 8.28 (s, 1H), 8.13 (s, 1H), 7.99 (dd, J1 =
27.4 Hz, J2 = 8.0 Hz, 2H), 7.67 (dd, J1 = 16.5 Hz, J2 = 8.0 Hz, 2H),
7.60 (d, J=8.0 Hz, 1H), 7.53 (t, J=7.8 Hz, 1H), 7.37 (s, 1H), 4.32 (s,
4H), 3.79 (d, J=21.8 Hz, 4H), 3.65 (s, 4H); 13C NMR (150 MHz,
DMSO-d6): 157.2, 156.5, 153.7, 150.3, 147.9, 140.5, 138.2, 134.7,
132.2, 130.8, 130.1, 129.7, 129.0, 122.6, 121.1, 120.4, 120.3, 119.4,
119.0, 112.0, 110.8, 93.3, 73.4, 70.9, 70.9, 70.5, 69.3, 68.9; HR MS
(ESI) m/z: calcd for C28H26O4N6Cl [M+H]+ 545.1699,
found 545.1705.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(2-iodo-phenyl)-1H-[1,2,3]
triazol-4-yl]-phenyl}-amine (a8): White solid, Purity 98%; 1H
NMR (600 MHz, DMSO-d6): d 9.65-9.60 (m, 1H), 8.99 (s, 1H),
8.58-8.46 (m, 2H), 8.32-8.14 (m, 2H), 7.96 (d, J=10.5 Hz, 1H),
7.68-7.65 (m, 2H), 7.57-7.40 (m, 2H), 7.32 (d, J=6.1 Hz, 1H), 5.70
(m, 1H), 4.31 (s, 4H), 3.79 (d, J=25.0 Hz, 4H), 3.65 (s, 4H); 13C
NMR (150 MHz, DMSO-d6): 157.1, 156.5, 153.9, 150.3, 148.0,
147.0, 140.6, 140.3, 140.3, 140.0, 131.1, 130.2, 129.9, 129.6, 129.4,
128.6, 124.0, 122.3, 121.0, 119.2, 112.1, 110.8, 110.2, 96.5, 73.4,
70.9, 70.8, 70.5, 69.3, 68.9, 58.0; HR MS (ESI) m/z: calcd for
C28H26O4N6I [M+H]+ 637.1060, found 637.1065.
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(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(3-methoxy-phenyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a9): Brown solid, Purity 97%;
1H NMR (600 MHz, DMSO-d6): d 9.69 (s, 1H), 9.39 (s, 1H), 8.58
(s, 1H), 8.47 (s, 1H), 8.27 (s, 1H), 8.02 (d, J=7.9 Hz, 1H), 7.70 (d,
J=7.6 Hz, 1H), 7.63-7.56 (m, 4H), 7.37 (s, 1H), 7.14 (d, J=7.9 Hz,
1H), 4.36 (d, J=11.7 Hz, 4H), 3.94 (s, 3H), 3.84 (d, J=20.1 Hz,
4H), 3.70 (s, 4H); 13C NMR (150 MHz, DMSO-d6): 160.7, 157.1,
156.5, 153.9, 150.3, 148.1, 147.8, 140.6, 138.2, 131.4, 131.0, 129.6,
122.5, 121.0, 120.2, 119.3, 114.9, 112.4, 112.2, 110.7, 110.2, 106.1,
73.4, 70.9, 70.9, 70.5, 69.3, 68.9, 56.1; HR MS (ESI)m/z: calcd for
C29H28O5N6Na [M+Na]+ 563.2013, found 563.2017.

{3-[1-(4-Bromo-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a10): White solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.63 (s, 1H), 9.36 (s, 1H),
8.53 (s, 1H), 8.44 (s, 1H), 8.22 (s, 1H), 7.97 (d, J=8.6 Hz, 3H), 7.86
(d, J=8.6 Hz, 2H), 7.65 (d, J=7.6 Hz, 1H), 7.52 (t, J=7.9 Hz, 1H),
7.32 (s, 1H), 4.32 (d, J=11.2 Hz, 4H), 3.79 (d, J=20.5 Hz, 4H), 3.65
(s, 4H); 13C NMR (150 MHz, DMSO-d6): 157.1, 156.5, 153.9,
150.3, 148.1, 148.0, 140.6, 136.3, 133.3, 130.8, 129.6, 122.5, 122.4,
121.8, 121.0, 120.2, 119.3, 112.2, 110.7, 110.2, 73.4, 70.9, 70.9,
70.5, 69.3, 68.9; HR MS (ESI) m/z: calcd for C28H25O4N6BrNa
[M+Na]+ 611.1013, found 611.1020.

{3-[1-(2-Bromo-phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a11): Yellow solid, Purity
97%; 1H NMR (600 MHz, DMSO-d6): d 9.64 (s, 1H), 9.04 (s, 1H),
8.54 (s, 1H), 8.45 (s, 1H), 8.22 (s, 1H), 7.97 (d, J=8.0 Hz, 2H), 7.77
(d, J=7.8 Hz, 1H), 7.71-7.65 (m, 2H), 7.60 (dd, J1 = 17.2 Hz, J2 =
9.5 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 7.32 (s, 1H), 4.32 (d, J=10.4
Hz, 4H), 3.79 (d, J=21.8 Hz, 4H), 3.65 (s, 4H); 13C NMR (150
MHz, DMSO-d6): d 157.1, 156.5, 153.9, 150.2, 148.1, 146.9, 140.6,
136.7, 134.1, 132.6, 130.9, 129.6, 129.5, 129.2, 124.2, 122.4, 121.0,
119.5, 119.3, 112.1, 110.8, 110.2, 73.4, 70.9, 70.8, 70.5, 69.3, 68.9;
HR MS (ESI) m/z: calcd for C28H25O4N6BrNa [M+Na]+

611.1013, found 611.1021.
(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-

cyclododeca[b]naphthalen-4-yl)-{3-[1-(4-trifluoromethyl-
phenyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-amine (a12): White solid,
Purity 99%; 1H NMR (600 MHz, DMSO-d6): d 9.69 (s, 1H), 9.48
(s, 1H), 8.45 (s, 1H), 8.36 (s, 1H), 8.25 (d, J=8.0 Hz, 2H), 8.04 (d,
J=8.0 Hz, 2H), 7.97 (d, J=7.5 Hz, 1H), 7.68 (d, J=7.4 Hz, 1H), 7.53
(t, J=7.6 Hz, 1H), 4.32 (s, 4 H), 3.79 (d, J=19.9 Hz, 4H), 3.64 (s,
4H); 13C NMR (150 MHz, DMSO-d6): 156.7, 156.3, 150.4, 148.1,
140.7, 139.9, 130.7, 129.9, 129.3, 129.1, 128.8, 127.8, 125.2, 123.4,
122.6, 121.6, 121.1, 120.9, 120.4, 119.4, 110.9, 73.4, 70.9, 70.9,
70.5, 69.3, 68.9; HR MS (ESI) m/z: calcd for C29H26O4N6F3 [M+
H]+ 579.1962, found 579.1972.

{3-[1-(2-Fluoro-benzyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a13): Yellow solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.99 (s, 1H), 9.05 (s, 1H),
8.93 (s, 1H), 8.73 (t, J=1.8 Hz, 1H), 8.61 (s, 1H), 8.36 (d, J=7.3 Hz,
1H), 7.99 (d, J=7.7 Hz, 1H), 7.89-7.82 (m, 3H), 7.73-7.66 (m,
3H), 6.16 (s, 2H), 4.73 (d, J=16.9 Hz, 4H), 4.23-4.18 (m, 4H), 4.07
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(s, 4H); 13C NMR (150 MHz, DMSO-d6): 161.8, 160.2, 157.5,
156.9, 154.3, 150.6, 148.5, 147.5, 140.9, 131.7, 131.7, 129.9, 125.8,
123.7, 122.6, 122.5, 121.2, 119.5, 116.6, 116.5, 112.6, 111.1, 110.6,
73.8, 71.4, 71.3, 70.9, 69.7, 69.3, 48.0; HRMS (ESI) m/z: calcd for
C29H28O4N6F [M+H]+ 543.2151, found 543.2158.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(2-methyl-benzyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a14): Yellow solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.61 (s, 1H), 8.70 (s,
1H), 8.56 (s, 1H), 8.31 (s, 1H), 8.25 (s, 1H), 7.93 (d, J=8.0 Hz,
1H), 7.57 (d, J=7.6 Hz, 1H), 7.45 (t, J=7.9 Hz, 1H), 7.37 (s, 1H),
7.28-7.21 (m, 3H), 7.16 (d, J=7.5 Hz, 1H), 5.68 (s, 2H), 4.31 (s,
4H), 3.78 (d, J=24.3 Hz, 4H), 3.64 (s, 4H), 2.36 (s, 3H); 13C NMR
(150 MHz, DMSO-d6): 157.1, 156.4, 153.7, 150.3, 147.0, 140.5,
136.8, 134.6, 131.4, 130.9, 129.5, 129.2, 128.8, 126.8, 122.1, 120.9,
119.1, 112.3, 110.8, 73.4, 70.9, 70.9, 70.5, 69.3, 68.9, 51.7, 19.2;
HRMS (ESI) m/z: calcd for C30H31O4N6 [M+H]+539.2401,
found 539.2406.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(4-methyl-benzyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a15): Brown solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.59 (s, 1H), 8.61 (s,
2H), 8.30 (s, 1H), 8.24 (s, 1H), 7.93 (d, J=8.0 Hz, 1H), 7.55 (d,
J=7.6 Hz, 1H), 7.45 (t, J=7.9 Hz, 1H), 7.35 (s, 1H), 7.28 (d, J=7.7
Hz, 2H), 7.21 (d, J=7.7 Hz, 2H), 5.61 (s, 2H), 4.31 (s, 4H), 3.79
(d, J=23.8 Hz, 4H), 3.65 (s, 4H), 2.30 (s, 3H); 13C NMR (150
MHz, DMSO-d6): 157.1, 156.5, 153.7, 150.3, 147.1, 140.5, 138.0,
133.5, 131.4, 129.8, 129.5, 128.5, 122.1, 121.9, 120.8, 119.1,
112.3, 110.8, 73.4, 70.9, 70.9, 70.5, 69.3, 68.9, 53.3, 21.2; HRMS
(ESI) m/z : calcd for C30H31O4N6 [M+H]+ 539.2401,
found 539.2408.

(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-{3-[1-(2-iodo-benzyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a16): Yellow solid, Purity
96%; 1H NMR (600 MHz, DMSO-d6): d 9.61 (s, 1H), 8.57 (d,
J=16.0 Hz, 2H), 8.32 (s, 1H), 8.21 (s, 1H), 7.95 (dd, J1 = 13.5 Hz,
J2 = 8.0 Hz, 2H), 7.58 (d, J=7.6 Hz, 1H), 7.45 (dd, J1 = 14.9 Hz, J2
= 7.5 Hz, 2H), 7.32 (s, 1H), 7.17-7.13 (m, 2H), 5.70 (s, 2H), 4.31
(s, 4H), 3.79 (d, J=23.6 Hz, 4H), 3.65 (s, 4H); 13C NMR (150
MHz, DMSO-d6): 157.1, 156.5, 153.7, 150.2, 147.9, 147.0, 140.5,
140.0, 138.4, 131.3, 130.8, 130.2, 129.5, 129.4, 122.5, 122.1, 120.9,
119.1, 112.0, 110.8, 110.3, 99.7, 73.4, 70.9, 70.8, 70.5, 69.3, 68.9,
58.0; HRMS (ESI) m/z: calcd for C29H28O4N6I [M+H]+

651.1211, found 651.1220.
{3-[1-(3-Bromo-benzyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-

(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a17): White solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.59 (s, 1H), 8.68 (s, 1H),
8.53 (s, 1H), 8.32 (s, 1H), 8.20 (s, 1H), 7.93 (d, J=8.0 Hz, 1H), 7.62
(s, 1H), 7.56 (d, J=6.9 Hz, 2H), 7.46 (t, J=7.9 Hz, 1H), 7.38 (d,
J=4.4 Hz, 2H), 7.31 (s, 1H), 5.69 (s, 2H), 4.31 (s, 4H), 3.79 (d,
J=22.7 Hz, 4H), 3.65 (s, 4H); 13C NMR (150 MHz, DMSO-d6):
157.1, 156.5, 153.8, 150.3, 148.0, 147.2, 140.5, 139.1, 131.6, 131.5,
131.2, 129.5, 127.6, 122.4, 122.3, 122.1, 120.8, 119.1, 112.1, 110.7,
110.3, 73.4, 70.9, 70.8, 70.5, 69.3, 68.9, 52.7; HRMS (ESI) m/z:
calcd for C29H28O4N6Br [M+H]+ 603.1350, found 603.1356.
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[3-(1-Benzyl-1H-[1,2,3]triazol-4-yl)-phenyl]-(7,8,10,11,13,14-
hexahydro-6,9,12,15-tetraoxa-1,3-diaza-cyclododeca[b]
naphthalen-4-yl)-amine (a18): Brown solid, Purity 95%; 1H
NMR (600 MHz, DMSO-d6): d 9.60 (s, 1H), 8.66 (s, 1H), 8.51
(s, 1H), 8.32 (s, 1H), 8.21 (s, 1H), 7.93 (d, J=7.9 Hz, 1H), 7.56 (d,
J=7.6 Hz, 1H), 7.47-7.35 (m, 6H), 7.31 (s, 1H), 5.67 (s, 2H), 4.31
(s, 4H), 3.81-3.76 (m, 4H), 3.65 (s, 4H); 13C NMR (150 MHz,
DMSO-d6): 157.1, 156.4, 153.9, 150.2, 148.1, 147.1, 140.5, 136.5,
131.4, 129.5, 129.3, 128.7, 128.4, 122.1, 122.1, 120.8, 119.1, 112.1,
110.7, 73.4, 70.9, 70.9, 70.5, 69.3, 68.9, 53.5; HR MS (ESI) m/z:
calcd for C29H29O4N6 [M+H]+ 525.2245, found 525.2254.

{3-[1-(2-Bromo-benzyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-
(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a19):White solid, Purity
98%; 1H NMR (600 MHz, DMSO-d6): d 9.59 (s, 1H), 8.62 (s, 1H),
8.51 (s, 1H), 8.32 (s, 1H), 8.20 (s, 1H), 7.94 (d, J=8.3 Hz, 1H), 7.73
(d, J=7.8 Hz, 1H), 7.57 (d, J=7.5 Hz, 1H), 7.45 (dd, J1 = 14.4 Hz,
J2 = 7.4Hz, 2H), 7.35 (t, J=7.7 Hz, 1H), 7.31 (s, 1H), 7.26 (d, J=7.7
Hz, 1H), 5.76 (s, 2H), 4.31 (s, 4H), 3.79 (d, J=23.7 Hz, 4H), 3.63
(s, 4H); HR MS (ESI) m/z: calcd for C29H27O4N6BrNa [M+Na]+

625.1169, found 625.1178.
(7,8,10,11,13,14-Hexahydro-6,9,12,15-tetraoxa-1,3-diaza-

cyclododeca[b]naphthalen-4-yl)-{3-[1-(3-methoxy-benzyl)-1H-
[1,2,3]triazol-4-yl]-phenyl}-amine (a20): Yellow solid, Purity
97%; 1H NMR (600 MHz, DMSO-d6): d 9.72 (s, 1H), 8.66 (s,
1H), 8.50 (s, 1H), 8.35 (s, 1H), 8.31 (s, 1H), 7.95 (d, J=8.0 Hz,
1H), 7.55 (d, J=7.5 Hz, 1H), 7.44 (t, J=7.9 Hz, 1H), 7.35-7.28 (m,
2H), 6.98 (s, 1H), 6.93 (d, J=7.9 Hz, 2H), 5.63 (s, 2H), 4.32 (d,
J=23.7 Hz, 4H), 3.80 (s, 2H), 3.76 (s, 5H), 3.64 (s, 4H); 13C NMR
(150 MHz, DMSO-d6): 159.9, 157.1, 156.4, 153.9, 150.2, 148.1,
147.1, 140.6, 137.9, 131.3, 130.5, 129.4, 122.1, 120.7, 120.5, 119.2,
114.3, 114.0, 112.2, 110.8, 110.3, 73.3, 70.9, 70.4, 69.2, 68.8, 55.6,
53.4; HR MS (ESI) m/z: calcd for C30H30O5N6Na [M+Na]+

577.2170, found 577.2176.
{3-[1-(3,5-Dibromo-benzyl)-1H-[1,2,3]triazol-4-yl]-phenyl}-

(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-diaza-
cyclododeca[b]naphthalen-4-yl)-amine (a21): Yellow solid, Purity
97%; 1H NMR (600 MHz, DMSO-d6): d 9.62 (s, 1H), 8.71 (s, 1H),
8.51 (s, 1H), 8.33 (s, 1H), 8.22 (s, 1H), 7.93 (d, J=8.2 Hz, 1H), 7.86
(s, 1H), 7.64 (s, 2H), 7.57 (d, J=7.5 Hz, 1H), 7.46 (t, J=7.8 Hz,
1H), 7.31 (s, 1H), 5.70 (s, 2H), 4.32 (s, 4H), 3.78 (d, J=26.7 Hz,
4H), 3.65 (s, 4H); 13C NMR (150 MHz, DMSO-d6): 157.1, 156.4,
153.9, 150.2, 148.1, 147.2, 140.8, 140.5, 133.7, 131.2, 130.7, 129.5,
123.2, 122.4, 122.2, 120.8, 119.1, 112.2, 110.7, 110.2, 73.4, 70.9,
70.9, 70.5, 69.2, 68.9, 52.0; HR MS (ESI) m/z: calcd for
C29H26O4N6Br2Na [M+Na]+703.0274, found 703.0281.

(3-{1-[2-(4-Fluoro-phenyl)-ethyl]-1H-[1,2,3]triazol-4-yl}-
phenyl)-(7,8,10,11,13,14-hexahydro-6,9,12,15-tetraoxa-1,3-
diaza-cyclododeca[b]naphthalen-4-yl)-amine (a22): Brown solid,
Purity 95%; 1H NMR (600 MHz, DMSO-d6): d 9.58 (s, 1H), 8.52
(s, 2H), 8.30 (s, 1H), 8.20 (s, 1H), 7.92 (d, J=7.9 Hz, 1H), 7.51 (d,
J=7.5 Hz, 1H), 7.45 (t, J=7.8 Hz, 1H), 7.32 (s, 1H), 7.29-7.16 (m,
2H), 7.12 (t, J=8.7 Hz, 2H), 4.67 (t, J=7.2 Hz, 2H), 4.31 (s, 4H),
3.79 (d, J=21.0 Hz, 4H), 3.65 (s, 4H), 3.24 (t, J=7.2 Hz, 2H); 13C
NMR (150 MHz, DMSO-d6): 162.4, 160.7, 157.1, 156.4, 153.9,
150.2, 148.1, 148.1, 146.6, 140.5, 134.3, 131.5, 131.1, 131.0, 121.9,
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121.9, 120.7, 119.0, 115.7, 115.6, 112.2, 110.7, 110.2, 73.4, 70.9,
70.9, 70.5, 69.3, 68.9, 51.1, 35.2; HR MS (ESI) m/z: calcd for
C30H29O4N6FNa [M+Na]+ 579.2127, found 579.2134.

IDO1 Enzymatic Inhibition Assay
To perform the Hela cell based IDO1 assay, Hela cells were
seeded at 50,000 cells per well into 96-well microplate in 100 ml of
DMEM 10% fetal bovine serum 1% Penicillin-Streptomycin.
Cells were incubated at 37°C and 5% CO2 overnight.

The next day 100 ml per well of diluted inhibitor in growth
medium was added at a final concentration of 100 ng/ml human
IFN-g. Cells were incubated at 37°C in a CO2 incubator for 18 h.
The next day 140 ml of medium was moved into a new 96-well
plate and 20 ml of 3.05 N trichloroacetic acid (TCA) was added.
The plate was incubated at 50°C for 30 min to hydrolyze N-
formylkynurenine. The plate was then centrifuged at 2,500 rpm
for 10 min to remove sediments. 100 ml of supernatant per well was
transferred to another 96-well plate and mixed with 100 ml of 2%
(w/v) 4-(Dimethylamino)benzaldehyde in acetic acid. The plate was
incubated at room temperature for 10 min, the yellow color derived
from kynurenine was recorded by measuring absorbance at 480 nm
using a microplate reader (PerkinElmer, USA).

Molecular Modeling
Molecular docking studies were performed with the Glide6.6
module in Schrödinger 2015, and the IDO1 complex with Amg-1
(PDB:4pk5) was used. The Protein preparation module in
Maestro 10.1 was used to assign bond orders, add hydrogens,
create zero-order bond to metals, create disulfide bonds, delete
water molecules beyond 5 Å from het group, assign partial
charge, assign protonation states, and minimize the structure
with OPLS-2005 force field. The Ligprep3.3 module in Maestro
10.1 was used to generate stereoisomers, and the protonation
states of ligands at pH 7.0 ± 2.0 were generated with Epik3.1. For
the other parameters. the molecular interactions between ligand
and receptor were visualized with Pymol software.

Cytotoxicity Assay
Cytotoxity of the chosen compounds was evaluated by the Cell
Counting Kit-8 (CCK8, DOJINDO, Japan) assay. The cells were
seeded at a density of 2,000 cells per well into 96-well microplate
in 100 ml of growth medium. Cells were incubated at 37°C and
5% CO2 overnight. The next day, 100 ml per well of diluted
inhibitor in growth medium was added with the final
concentration from 0.1nM to 100 mM. The cells were treated
with DMSO as control. A series of dilutions were made in 0.1%
DMSO in assay medium so that the final concentration of DMSO
was 0.1% in all the treatments. Cells were incubated at 37°C and
5% CO2 for 72 h. Then, 10 ml of CCK8 was added to each well.
The plates were incubated at 37°C for 2 h, and the plates were
recorded by measuring the absorbance at 450 nm with the
reference wavelength of 630 nm using an EnVisionMultilabel
Reader (PerkinElmer). The IC50 values were calculated and
determined by the concentration causing a half-maximal
percent activity. All assays were conducted with three parallel
samples and three repetitions.
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RESULTS AND DISCUSSION

IDO1 Inhibition Study
To investigate the IDO1 inhibition activities of the synthesized
derivatives, all the new compounds and icotinib were screened
via Hela cell-based functional assay using methods described in
the literature (Yue et al., 2009; Malachowski et al., 2016; Qian
et al., 2016). BMS-986205 was also used as a positive control and
the IC50 value was tested as 0.62 nM, which is consistent with the
results previously reported by Nelp et al. (IC50 = 0.5 nM) (Nelp
et al., 2018).

As demonstrated in Table 1, IDO1 inhibitory activity showed
that several compounds exhibited higher IDO1 inhibitory activity
than icotinib, such as a4 (IC50 = 1.32mM), a6 (IC50 = 0.77mM),
a8 (IC50 = 2.50mM), a9 (IC50 = 1.41mM), a11 (IC50 = 1.00mM), a14
(IC50 = 0.79mM), a15 (IC50 = 0.59mM), a16(IC50 = 1.51mM), a17
(IC50 = 0.37mM), a18 (IC50 = 0.56mM), a19 (IC50 = 1.50mM),
a20 (IC50 = 0.76mM), a21 (IC50 = 0.68mM), and a22 (IC50 =
0.81mM), suggesting that the inhibitory activity of the compounds
against IDO1 could be enhanced upon introduction of
triazolegroups, and the triazole ring might be used as an
active group to interact with the IDO1. Carefully examining
the results also suggested that when the benzene ring bore the
same substituent, the compounds with benzyl-linked triazole
groups were generally more active than those with phenyl-
linked triazoles especially for those showing submicromolar
levels of IC50 values against IDO1.

Molecular Docking Studies
Docking experiments were then carried out to explore the
potential binding mode between the prepared compounds and
Frontiers in Pharmacology | www.frontiersin.org
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IDO1. Compounds a17 and compound a18, which showed the
best activity against IDO1, were chosen as model compounds for
the experiments. The docking results are depicted in Figure 3.
The molecular docking results suggested that a17 and a18 could
be docked into the hydrophobic site of IDO1with docking score
of -8.41 and -8.19 kcal/mol, respectively. The docking
experiments also suggested that compound a17 and a18 could
bind to the binding pocket, the triazole structure mainly located
on the top of the HEM, and one nitrogen atom tended to form a
coordination bond with the iron in the heme. The triazole ring of
a17 formed a p-p interaction with the benzene ring of
phenylalanine 163. The benzyl group at the N3 position
of 1,2,3-triazole could occupied the hydrophobic pocket
containing cysteine 129 above the heme, the backbone amino
group of glycine 261 formed a hydrogen bond with one oxygen of
the hydroxyl group, and the main chain amino group of glycine
236 formed hydrogen bonds with the benzene ring. For
compound a18, no intermolecular hydrogen bonds are formed
except for the formation of coordination bonds. These results
were generally in good agreement with previous study that
compounds containing coordinating atoms would act as
potential inhibitors of IDO1 (Röhrig et al., 2012; Tojo et al., 2014).

Compounds a3 and a12 should poor biological activity. These
two compounds contained phenyl groups with strong electron
withdrawing groups in the para position. Preliminary docking
experiments in Figure 4 suggested that due to the lack of
methylene group, insertion of the phenyl groups into the
hydrophobic pocket consisting L234 and Y126 residues was
difficult. In addition, the distance between the triazolegroup
and the HEM ion is 4.7Å and 6.5Å, respectively, which is also
consistent with the low activity of a3 and a12.

Cytotoxicity Study
Next, several compounds with submicromolar level of IDO1
inhibitory activities were chosen for further study. The results are
given in Table 2. Human renal epithelial cell (293T) was chosen
for CCK-8 assay to evaluation the bioactivity of these
compounds. As shown in Table 2, human renal epithelial cell
293T showed poor sensitivity to a6 with IC50 values of 42.79 ±
11.81 mM, and icotinib-triazole derivatives such as a15 and a21
exhibited stronger killing effects on the cell line with IC50 values
of 0.16 ± 0.05 mM and 0.74 ± 0.15 mM, respectively. Among these
compounds, a17 and a18 showed medium cytotoxic effects on
the 293T cell line, and the IC50 values of a7 and a18 on the cell
line were 3.10 ± 0.20 mM and 3.08 ± 0.59 mM, respectively.
CONCLUSION

In summary, a series of icotinib derivatives containing 1,2,3-
triazole ringsprepared and evaluated for the inhibition of IDO1.
Most of the compounds exhibited better IDO1 inhibitory
activities than the parent icotinib. For example, submicromolar
levels of IC50 were observed for compound a17 and a18, with the
IC50 value of 0.37 mM and 0.56 mM, respectively. Docking
experiments suggest that icotinib-1,2,3-triazole derivatives are
potential IDO1 inhibitors that preferentially bind to the ferrous
TABLE 1 | IDO1 inhibitory activities of compounds a1–a22.

Compd no. n R1 R2 R3 R4 IC50 (mM)

IDO1

a1 0 H F H H 4.25 ± 0.08
a2 0 H H Cl H 2.90 ± 0.37
a3 0 H H F H 18.19 ± 1.47
a4 0 OCH3 H H H 1.32 ± 0.17
a5 0 Cl H H H 4.88 ± 0.42
a6 0 H H H H 0.77 ± 0.13
a7 0 H Cl H H 2.82 ± 0.26
a8 0 I H H H 2.50 ± 0.43
a9 0 H OCH3 H H 1.41 ± 0.08
a10 0 H H Br H 2.79 ± 0.46
a11 0 Br H H H 1.00 ± 0.49
a12 0 H H CF3 H >100
a13 1 F H H H 4.62 ± 0.19
a14 1 CH3 H H H 0.79 ± 0.21
a15 1 H H CH3 H 0.59 ± 0.05
a16 1 I H H H 1.51 ± 0.11
a17 1 H Br H H 0.37 ± 0.02
a18 1 H H H H 0.56 ± 0.16
a19 1 Br H H H 1.50 ± 0.45
a20 1 H OCH3 H H 0.76 ± 0.07
a21 1 H Br H Br 0.68 ± 0.44
a22 2 H H F H 0.81 ± 0.35
icotinib 2.57 ± 0.44
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form of IDO1 by forming coordinate bond with the haem iron.
However, considering the fact that several candidates are
currently undergoing clinical trials but none of these has been
approved so far, the identification of potent and clinically useful
IDO1 inhibitors is still an open challenge. In addition, some
toxicity problem arose when triazole functionality was
introduced to icotinib, suggesting that one should be very
careful when introducing additional pharmacophores into a
known drug especially when the mode of interaction was
altered after the introduction of the additional functional
group. Ideally, the designed compounds should show
FIGURE 4 | The binding mode of compounds in complex with IDO1. Theprotein is represented by a green cartoon, while compound a3 (pink, A) and compound
a12 (yellow, B) are represented as sticks. The hydrogen bonds are colored in red dash.
FIGURE 3 | The binding mode of compounds in complex with IDO1. Theprotein is represented by a green cartoon, while compound a17 (pink, A) and compound
a18 (yellow, B) are represented as sticks. The hydrogen bonds are colored in red dash.
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TABLE 2 | Cytotoxicity of selected compounds.

Compd no. IC50 (mM)

IDO1 293T

a6 0.77 ± 0.13 42.79 ± 11.81
a14 0.79 ± 0.21 3.35 ± 0.89
a15 0.59 ± 0.05 0.16 ± 0.05
a17 0.37 ± 0.02 3.10 ± 0.20
a18 0.56 ± 0.16 3.08 ± 0.59
a20 0.76 ± 0.07 3.30 ± 1.30
a21 0.68 ± 0.44 0.74 ± 0.15
a22 0.81 ± 0.35 2.60 ± 0.17
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significant toxicity against the cancer cell on one hand, and good
safety against normal cells on the other. We are now designing
new structures using the scaffold hopping strategy, and the
results will be presented in due time.
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IDH1 mutations occur in about 20–30% of gliomas and are a promising target for the
treatment of cancer. In the present study, the performance of aIDH1R132H was verified via
glide-docking-based virtual screening. On the basis of the two crystal structures (5TQH
and 6B0Z) with the best discriminating ability to identify IDH1R132H inhibitors from a decoy
set, a docking-based virtual screening strategy was employed for identifying new
IDH1R132H inhibitors. In the end, 57 structurally diverse compounds were reserved and
evaluated through experimental tests, and 10 of them showed substantial activity in
targeting IDH1R132H (IC50 < 50 mM). Molecular docking technology showed that L806-
0255, V015-1671, and AQ-714/41674992 could bind to the binding pocket composed of
hydrophobic residues. These findings indicate that L806-0255, V015-1671, and AQ-714/
41674992 have the potential as lead compounds for the treatment of IDH1-mutated
gliomas through further optimization.

Keywords: IDH1, gliomas, molecular docking, virtual screening, docking-based virtual screening
INTRODUCTION

Isocitrate dehydrogenase 1 (IDH1) is a critical metabolic enzyme involved in the tricarboxylic acid
cycle. This enzyme catalyzes the oxidative decarboxylation of isocitrate acid to aketoglutaric (a-KG)
in an NADP+-dependent manner by using divalent magnesium ion (Jiao et al., 2016), which is
related to the progression of various tumors, including acute myeloid leukemia, gliomas, and other
solid tumors (Yan and Reitman, 2010; Yen et al., 2016).

Somatic mutations of IDH1 have been frequently identified in many types of cancer, including
approximately 80% of grade II-III gliomas, nearly 45% of secondary glioblastoma multiforme (GBM), and
33%-50% of adult primitive neuroectodermal tumors (Dang et al., 2009; Wang et al., 2013). IDH1
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FIGURE 1 | Chemical skeleton of nine representative IDH1R132H inhibitors.
FIGURE 2 | The workflow of docking-based virtual screening and bioassay for IDH1R132H inhibitor.
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mutations have also been discovered in other cancers, such as
colorectal cancer (Xu et al., 2011), acute myeloid leukemia (Parsons
et al., 2008), and prostate cancer (Hartmann et al., 2009). Key amino
acid residue Arg132 is the most commonmutation in IDH1, which is
located in the catalytic pocket (Dang et al., 2009). Specific mutations
belong to heterozygousmissensemutations and lead to a new form of
IDH1 catalytic activity, which convert a-KG into an oncometabolite
D2-hydroxyglutarate (Dang et al., 2009). The oncometabolite (D2-
HG) is associated with tumorigenesis, which impairs hematopoietic
differentiation and promotes leukemia by inducing the
hypermethylation of histone and chromatin and preventing cell
differentiation (Figueroa et al., 2010; Xu et al., 2011). Due to the
IDH1 mutation, high levels of D2-HG are created that promote the
occurrence and development of cancers, such as gliomas (Parsons
et al., 2008) and acute myeloid leukemia (Mardis et al., 2009).
Therefore, although the contribution of IDH1 mutants to
carcinogenic properties has yet to be elucidated, IDH1 mutants
have become therapeutic targets for cancer, especially AML.

Mutant IDH1 has become a very attractive therapeutic target in
the field of antitumor drug discovery, and several pharmaceutical
companies have attempted to develop novel small molecule
inhibitors against mutant IDH1. So far, several small molecule
inhibitors targeting mutant IDH1 enzymes have been developed
(see Figure 1) (Rohle et al., 2013; Davis et al., 2014; Deng et al., 2015;
Kim et al., 2015; Okoye-Okafor et al., 2015; Law et al., 2016;
Chaturvedi et al., 2017; Xie et al., 2017; Popovici-Muller et al.,
2018; Nakagawa et al., 2019; Caravella et al., 2020; Konteatis et al.,
2020). Some of these have been studied in various preclinical
models, and some are currently being evaluated in phase I/II
clinical studies for different tumor pathologies with IDH1 enzyme
mutations. AG-120 as the only mutant IDH1 inhibitor in clinic
approved by the FDA that has shown encouraging clinical benefits
with a total overall response rate of 42% for advanced hematological
malignancies (Foran et al., 2019). In light of these encouraging
finding, we employed docking-based virtual screening to identify
active hits with novel skeleton for targeting mutant IDH1.

Structure-based virtual screening is now widely used in early-
stage drug discovery (Sheisi et al., 2019), and has been applied to the
discovery of IDH1 inhibitors. To date, there have been several
attempts to identify potential IDH1 inhibitors by using structure-
based virtual screening in terms of the reported crystal structures of
the IDH1 complex (Zou et al., 2016; Zheng et al., 2017; Zou et al.,
2018). In 2016, by using a docking-based virtual screening strategy
(PDB: 4UMX), Zou et al. identified a series of IDH1 inhibitor FX-03
with IC50 values of 55.50 mM and 68.38 mM in HEK-293T cells
transfected with IDH1 R132H and IDH1 R132C, respectively (Zou
et al., 2016). Importantly, FX-03 exhibited significant selectivity
between the IDH1WT and IDH1R132H mutants. In 2017, Zheng et al.
discovered a natural product, clomifene, as an effective inhibitor
against the IDH1R132Hmutant with a Kd value of 18.45 mMby using
docking-based virtual screening (PDB: 4UMX) (Zheng et al., 2017).
They also proved that clomifene selectively inhibits mutant IDH1
activities in vitro and in vivo models. It should be noted that,
although these studies have identified several IDH1R132H inhibitors,
they used the same IDH1R132H crystal structure in structure-based
virtual screening. Considering the difference in binding mode after
Frontiers in Pharmacology | www.frontiersin.org 3192
the binding of various ligands, comparing the virtual screening
capabilities of different IDH1R132H crystal structures based on
docking-based virtual screening appears to a more reasonable
strategy to discover potential IDH1R132H inhibitors.

In the present study, the performance of docking-based virtual
screening for nine crystal structures of IDH1R132H were compared
through a combination of docking power and screening power. Two
best performing IDH1R132H complexes were employed to identify
potential IDH1R132H inhibitors with diverse structures from
ChemDiv (http://www.chemdiv.com) and Specs (http://www.
specs.net) databases. Followed by further examination and
verification, a series of compounds with novel skeleton were
addressed and could be used as IDH1R132H inhibitors. The overall
workflow was shown in Figure 2.
MATERIALS AND METHODS

Preparation of Crystal Structures and
Data Sets
The crystal structures of the IDH1R132H in complex with an
inhibitor were downloaded from the PDB database (http://www.
rcsb.org), including 4UMX, 5L57, 5L58, 5LGE, 5SUN, 5SVF,
5TQH, 6ADG, and 6B0Z. For each complex, the Protein
Preparation Wizard module in Schrödinger 2015 (Schrödinger,
LLC, New York, NY, 2015) was applied to add hydrogen and
missing side chains, remove all water molecules, assign
protonation states and partial charges through OPLS2005 force
field (Jorgensen et al., 1996), and minimize all heavy atoms until
the root-mean-square deviation (RMSD) was reached ≤0.3 Å.

To evaluate the virtual screening capability of different crystal
structures, 423 actives were directly extracted from the PubChem
database and served as a validation data set (https://pubchem.ncbi.
nlm.nih.gov/bioassay/1344832#section=Top), and their decoys,
generated by DUD•E (Mysinger et al., 2012), were considered as
a decoy data set. In total, 23,900 decoys were generated.

Evaluate the Performance of
Each Structure
In order to discover the favorable crystal structure for virtual
screening, the docking performance of each IDH1R132H structure
TABLE 1 | The summary of the docking power of molecular docking in glide for
nine IDH1R132H crystal structures.

PDB Ligand SP XP

Docking score RMSD Docking score RMSD

4UMX VVS -7.13 2.16 -7.04 2.10
5L57 6N3 -8.50 2.32 -9.23 2.56
5L58 6MX -9.38 1.56 -9.97 1.59
5LGE 6VN -6.85 0.90 -7.18 1.79
5SUN 70Q -10.31 5.12 -10.57 5.11
5SVF 70P -9.74 1.06 -12.94 0.44
5TQH 7J2 -12.75 0.95 -16.12 0.60
6ADG 9UO -5.74 0.66 -5.61 1.39
6B0Z C81 -12.53 0.45 -15.52 1.07
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was systematically evaluated. All actives and decoys were
preprepared using the LigPrep (LigPrep, Schrödinger, LLC, New
York, NY, 2015) module in the Schrödinger package. The possible
ionized states of each compound were calculated by using Epik
Frontiers in Pharmacology | www.frontiersin.org 4193
(Shelley et al., 2007) at pH= 7.0 ± 2.0. The chirality of the
IDH1R132H inhibitors with 3D structures were preserved, while
the chirality of the decoys was determined from 3D structures
based on the different combinations. The stereoisomers for each
FIGURE 3 | The distributions of Glide docking scores of validation sets for two IDH1R132H crystal structures with the best screening power.
TABLE 2 | The summary of the screening power of molecular docking in glide for nine IDH1R132H crystal structures for validation set.

PDB ID SP Precision XP Precision

p value AUC-ROC RIE EF1% EF2% EF5% EF10% EF20% p value AUC-ROC RIE EF1% EF2% EF5% EF10% EF20%

4UMX 3.51x10-100 0.53 0.37 0.47 0.35 0.33 0.33 0.43 1.16x10-45 0.88 7.5 13 14 9.3 6.2 3.9
5L57 1.84x10-6 0.7 1.06 0.95 0.95 0.95 0.97 1.4 6.15x10-8 0.76 2.15 0.71 1.3 2 2.5 2.4
5L58 5.20x10-21 0.76 2.21 0.94 2.4 2.6 1.9 2 1.81x10-15 0.82 4.52 6.8 7.3 5.3 4 2.9
5LGE 1.25x10-3 0.72 1.31 0.71 0.83 1 1.4 1.8 1.08x10-10 0.77 2.61 3.8 3.1 2.5 2.6 2.4
5SUM 5.67x10-17 0.77 1.86 0.71 1.4 1.6 1.9 2.2 2.50x10-16 0.84 3.48 0.71 1.5 3.5 4.2 3.6
5SVF 7.33x10-87 0.91 10.38 31 24 12 7.2 4 8.91x10-87 0.95 14.95 62 39 17 9 4.6
5TQH 3.14x10-106 0.92 11.82 50 30 13 7.1 4.1 6.09x10-102 0.96 15.76 74 43 18 9 4.6
6ADG 1.12x10-50 0.9 9.4 31 22 11 6.4 4 1.60x10-44 0.9 9.56 29 21 11 6.7 4
6B0Z 2.42x10-135 0.96 12.88 46 30 15 8.3 4.7 2.33x10-96 0.96 15.43 70 41 18 8.9 4.5
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ligand generated, at most, 32, and the other parameters were set to
default values. Subsequently, a grid box of each complex was
generated by using the Receptor Grid Generation module of
Schrödinger software, which was centered at the native ligand of
the complex and defined as a similar size to the native ligand space.
Finally, all chemicals in the validation set and decoy set were
docked into the binding site of each IDH1R132H complex in turn
and evaluated by using the standard precision (SP) and extra
precision (XP) scoring function of Glide. In order to choose the
best crystal structure of IDH1R132H for virtual screening, the
enrichment factor (EF) (Halgren et al., 2004) was used to
evaluate the virtual screening capability of each model, which
was defined as the following Equation:

EF
Hitsset
n

Hitsall
N

where Hitsset is the number of actives in the selected subset n of
the ranked database and Hitsall is the total number of actives in
the database. The model with the highest EF value was reserved
and used to screen potential IDH1R132H inhibitors.
Docking-Based Virtual Screening
All compounds in the ChemDiv and Specs database were first
preprocessed according to the method of the above step, and
then screened by docking-based virtual screening against two
IDH1R132H crystal structures (PDB ID: 5TQH and 6B0Z). After
the possible ionized states and tautomer were calculated at
pH=7.0 ± 2.0 by using Epik module, the chirality of each
compound was determined from 3D structures; the
stereoisomer for each ligand generated, at most, 32. The final
virtual screening library was generated to include approximately
2 million compounds, and then initially filtered by Lipinski’s
Rule, removing ligands with reactive functional groups. Finally,
docking-based virtual screening was employed by use of the high
throughput virtual screening (HTVS) scoring function, SP
scoring function, and XP scoring function of Glide in
sequence. In the screening process at each step, 10% of the
best compounds were reserved for further analysis.
Clustering Analysis
The reserved compounds after docking-based virtual screening
were structurally clustered into 30 clusters by using K-means
clustering on the MACCS structural keys in Canvas (Canvas,
Schrödinger, LLC, New York, NY, 2015), and the compound in
each cluster with the lowest docking score was selected. In the end,
60 chemicals were eventually submitted to purchase from
Topscience Co., Ltd (https://www.tsbiochem.com).
Enzymatic Assay
The primary assay was carried out in 10 mL of base buffer (10 mM
MgCl2, 20 mM Tris pH7.5, 150 mM NaCl, 0.05% (w/v) bovine
serum albumin) containing 2.5 mL of the test compound, 5 mL of
an enzyme solution (0.3 ng/mL mutant IDH1R132H), and 2.5 mL of
Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5797685194
)

a substrate solution (4 mM a-KG, 16 mM NADPH). This assay
added into a 384-well blank plate and then incubated at room
temperature for 60 min. The secondary assay, with 5 mL of base
TABLE 3 | The molecular weight and docking score for putative hits.

ID MW Docking score (kcal/mol

6470-0047 473.524 -15.53
G420-0655 460.55 -15.30
C798-1008 456.561 -15.25
E894-1127 469.539 -15.21
V004-0504 488.618 -15.17
L710-2843 447.49 -14.94
G389-1098 464.495 -14.72
S383-0082 412.438 -14.47
D103-1045 473.545 -14.45
C647-0812 484.551 -14.43
D491-0852 435.524 -14.40
V015-1671 491.426 -14.39
S733-2152 475.51 -14.37
V016-3750 453.515 -14.25
L710-0317 419.479 -14.20
L970-0181 487.529 -14.12
5782-4343 407.465 -14.11
V020-6264 478.931 -14.10
F019-2828 374.485 -14.09
M506-0358 404.44 -14.00
G741-1212 466.898 -13.96
S631-0764 421.513 -13.96
V022-0932 414.503 -13.95
D217-0418 416.454 -13.88
D336-7545 441.544 -13.78
V020-8255 472.54 -13.77
AQ-714/41674992 429.536 -13.62
M136-0372 474.949 -13.47
K781-3358 464.338 -13.39
3601-0061 426.452 -13.01
AQ-149/42126332 488.536 -15.34
V010-1281 478.555 -15.23
E867-1033 462.522 -15.14
V028-6550 490.53 -15.13
G800-0501 488.53 -15.09
C798-1007 476.979 -14.92
E894-1218 469.539 -14.81
V013-4787 435.524 -14.67
V025-9252 467.951 -14.51
AK-778/43465022 494.341 -14.45
V025-7538 496.485 -14.38
V003-2610 458.488 -14.18
K297-1090 474.576 -14.17
M136-0633 474.949 -14.11
8019-1512 410.398 -14.09
V001-8209 458.909 -14.05
F521-0664 486.526 -13.83
L487-0168 459.476 -13.78
G798-0506 434.534 -13.74
C647-0805 454.524 -13.68
J108-0614 432.478 -13.63
D349-0203 442.473 -13.62
L806-0255 457.842 -13.53
F815-0210 440.494 -13.53
C769-0129 438.54 -13.46
V020-4317 465.351 -13.40
G568-0082 454.973 -13.32
E867-0977 452.957 -13.27
V005-6943 477.534 -13.08
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buffer containing 15 mM resazurin and 0.01 unit diaphorase, was
added to the entire plate and incubated at room temperature for
10 min. Florescence was read on a SYNERGYH1 microplate reader
(BioTek) at Ex 540 Em 590. Curve fitting for dose response IC50

was done using GraphPad Prism.
RESULTS AND DISCUSSION

Performance of the Nine IDH1R132H

Complex
As a significant indicator of the docking reliability, docking power
was used to reveal the binding pose of the experiment between
small molecules and proteins, which was mainly evaluated after
Frontiers in Pharmacology | www.frontiersin.org 6195
redocking with the RMSD value of the docking pose and native
pose of the small molecule in the IDH1R132H complex. For each
IDH1R132H complex, after the native inhibitor was separated from
the corresponding complex and preprepared, it was redocked into
the original binding site. The RMSD value between the native
conformation of the inhibitor and the docked pose for each crystal
structure was respectively computed, and RMSD ≤ 2.0 Å served as
the evaluation standard to verify the docking reliability. It can be
seen from Table 1 that Glide docking could identify the near-
native pose of most inhibitors in IDH1R132H crystal structures by
using the XP or SP scoring function in Glide.

Next, screening power of glide docking was used to identify
the reported inhibitors from the decoys in nine IDH1R132H

complexes, and these were compared and calculated. In
FIGURE 4 | Inhibitory activity of the 57 candidates at 50mM. The bars indicate the inhibitory activity of chemicals targeting IDH1R132H. AG-120 at 100 nM was used
as the positive control.
TABLE 4 | The summary of the inhibition ratio of 10 candidate compounds by using virtual screening.

No. Database PDB Inhibition ratio
(%) 50 (mM)

Enzymatic

IC50 (mM)

C798-1007 ChemDiv 6B0Z 65.45±2.15 44.4±1.3
D491-0852 ChemDiv 5TQH 58.00±0.60 46.9±6.0
G568-0082 ChemDiv 6B0Z 54.30±4.30 41.9±8.0
G798-0506 ChemDiv 6B0Z 61.15±6.15 38.0±2.0
L806-0255 ChemDiv 6B0Z 66.25±3.25 28.3±2.5
V010-1281 ChemDiv 6B0Z 60.85±2.05 50.0±6.4
V015-1671 ChemDiv 5TQH 65.30±2.30 23.8±1.8
V016-3750 ChemDiv 5TQH 54.90±1.70 42.9±2.8
V025-9252 ChemDiv 6B0Z 59.15±3.75 45.5±3.1
AQ-714/41674992 Specs 5TQH 73.30±1.90 20.8±4.2
AG-120 – – 84.40±0.50 (nM) 16.7±1.7 (nM)
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contrast with the docking power of glide docking, the screening
power of each crystal structure is a more important index for the
docking-based virtual screening process. Herein, we performed
student’s t test to evaluate the significant difference between the
Frontiers in Pharmacology | www.frontiersin.org 7196
means of the two distributions of the Glide XP or SP scores for
the known actives and decoys. It can be seen from Table 2 that
molecular docking of Glide can efficiently discriminate the
IDH1R132H inhibitors from the decoys in nine complexes of
FIGURE 5 | Molecular structures of the 10 selected IDH1R132H inhibitors by using based-docking virtual screening.
November 2020 | Volume 11 | Article 579768
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IDH1R132H based on the relatively low p value. The area under
the receiver operating characteristic curve (AUC-ROC), EF, and
Robust Initial Enhancement (RIE) were also employed to
comprehensively evaluate the screening capabilities of each
crystal structure. As shown in Figure 3, the best screening
power (p value = 2.42x10-135, AUC-ROC=0.96, and RIE=
12.88) was acquired by using SP scoring function and 6B0Z
was reserved as the screening template. However, 5TQH
exhibited the best screening power (p value = 6.09x10-102,
AUC-ROC=0.96, and RIE= 15.76) in XP scoring function,
which was also retained as a screening complex. Our results
Frontiers in Pharmacology | www.frontiersin.org 8197
suggest that that it is necessary to compare the performance of
different complexes in the process of virtual screening.

Structure-Based Virtual Screening
The overall workflow of structure-based virtual screening was
shown in Figure 2. The Specs and ChemDiv database, which
consisted of more than 2,100,000 compounds, have been used for
virtual screening of small molecule databases. Firstly, Lipinski’s
rules of five was employed to filter compounds that did not meet
the criteria, and then these compounds containing PAINS
substructures were also removed. A total of 1.46 million
FIGURE 6 | IDH1R132H enzymatic inhibition of 10 identified small molecule inhibitors.
November 2020 | Volume 11 | Article 579768
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compounds were retained. According to the MACCS structural
fingerprint, residual chemicals were structurally clustered in 30
clusters via K-means clustering in Canvas, and the chemical with
the lowest docking score in each cluster was retained was
retained (see Table 3). Finally, a total of 57 chemicals were
purchased and tested based on the docking-based virtual
screening on two IDH1 complex (5TQH and 6B0Z).

IDH1R132H Enzymatic Assay
To verify the inhibitory activity of screening compounds
targeting IDH1R132H, enzyme activity assay was performed. As
shown in Figure 4, we found that 12 compounds (7, 8, 14, 23, 25,
Frontiers in Pharmacology | www.frontiersin.org 9198
33, 44, 46, 47, 52, 53, and 57) exhibited over 50% inhibition at 50
mM. These 12 ligands were submitted to determine the IC50. It
can be seen from Table 4 that 10 of them show IC50 ≤ 50 mM.
Molecular structures of the 10 selected compounds of IDH1R132H

are exhibited in Figure 5. The enzymatic curves and docking
score for these 10 compounds against IDH1R132H are depicted in
Figure 6. Tanimoto coefficient (Tc) (Willett and Winterman,
1986; Willett et al., 1986), in terms of the ECFP4 fingerprint, was
calculated to compare the structural similarity between 10
compounds and reported inhibitors. As shown in Figure S1,
we can find that putative hits have low similarity with reported
inhibitors (Tc < 0.2). Therefore, these compounds are
A B

C D

FIGURE 7 | Binding mode of identified IDH1R132H inhibitor and AG-120. (A) L806-0255. (B) V015-1671. (C) AQ-714/41674992. (D)AG-120.
November 2020 | Volume 11 | Article 579768
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structurally new and have the potential to be promising leads for
further optimizations.

Binding Mode Prediction
The binding pocket of IDH1 lies on the dimer interface and most
of the reported compounds have been shown to bind to this
allosteric site. In order to gain insight into the structural basis of
the identified IDH1R132H inhibitor, the binding mode of the three
compounds was compared with AG-120. As shown in Figure 7,
three molecules that could be docked into the binding pocket
consisted of hydrophobic residues in a similar manner to AG-
120, and formed intermolecular hydrogen bonds with key
residues, which stabilized the complex. L806-0255 and V015-
1671 form a key hydrogen bond with ILE128, which is consistent
with AG-120. In addition, V015-1671 and AQ-714/41674992
also form a key hydrogen bond with ALA111. Moreover, the
hydrophobic contacts formed between surrounded residues,
such as VAL276, SER278, SER287, ILE128, PRO118, and
compounds also contribute to enhanced binding of the small
molecule inhibitor to IDH1 R132H. Therefore, the above results
suggested that L806-0255, V015-1671, and AQ-714/41674992
could bind to IDH1R132H.
CONCLUSIONS

In the present work, we first verified the performance of
IDH1R132H by using glide-docking-based virtual screening and
discovered two crystal structures with the most credible screening
ability. Based on the best performing crystal structure, docking-
based virtual screening was performed to identify new IDH1R132H

inhibitors. A total of 57 potential hits were purchased and their
activity against IDH1R132H was addressed, and 10 of them
exhibited anti-IDH1R132H activity.
Frontiers in Pharmacology | www.frontiersin.org 10199
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Oxidative stress and oxidative damage are the common pathophysiological characteristics
in pituitary adenomas (PAs), which have been confirmed with many omics studies in PA
tissues and cell/animal experimental studies. Nuclear factor erythroid 2 p45-related factor
2 (Nrf2), the core of oxidative stress response, is an oxidative stress sensor. Nrf2 is
synthesized and regulated by multiple factors, including Keap1, ERK1/2, ERK5, JNK1/2,
p38 MAPK, PKC, PI3K/AKT, and ER stress, in the cytoplasm. Under the oxidative stress
status, Nrf2 quickly translocates from cytoplasm into the nucleus and binds to antioxidant
response element /electrophile responsive element to initiate the expressions of
antioxidant genes, phases I and II metabolizing enzymes, phase III detoxifying genes,
chaperone/stress response genes, and ubiquitination/proteasomal degradation proteins.
Many Nrf2 or Keap1 inhibitors have been reported as potential anticancer agents for
different cancers. However, Nrf2 inhibitors have not been studied as potential anticancer
agents for PAs. We recommend the emphasis on in-depth studies of Nrf2 signaling and
potential therapeutic agents targeting Nrf2 signaling pathways as new therapeutic
strategies for PAs. Also, the use of Nrf2 inhibitors targeting Nrf2 signaling in
combination with ERK inhibitors plus p38 activators or JNK activators targeting MAPK
signaling pathways, or drugs targeting mitochondrial dysfunction pathway might produce
better anti-tumor effects on PAs. This perspective article reviews the advances in oxidative
stress and Nrf2-mediated oxidative stress response signaling pathways in pituitary
tumorigenesis, and the potential of targeting Nrf2 signaling pathways as a new
therapeutic strategy for PAs.

Keywords: pituitary adenoma, oxidative stress, Nrf2, signaling pathway, biomarker, therapeutic target and drug

INTRODUCTION

Pituitary adenoma (PA) is a common intracranial neoplasm that occurs in the central regulatory
organ pituitary gland in the hypothalamic-pituitary-target organ axis system, which seriously affects
human endocrine system and health. PAs account for 10–25% of all intracranial tumors, and are
classified into benign (∼65%), invasive (∼35%), and malignant (carcinoma; only 0.1–0.2%) PAs
according to the malignancy level (Stalla et al., 2019). PAs are divided into macroadenomas
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(≥10 mm) and microadenomas (<10 mm) according to tumor
size (Lopes, 2017). They are also divided into clinically functional
and nonfunctional PAs (FPAs and NFPAs) according to the level
of hormone secretion (Zhan et al., 2016). FPAs are hormone-
secreting PAs, which result in hyperpituitarism, including
acromegaly derived from growth hormone (GH)-secreting
PAs, hyperprolactinemia derived from prolactin (PRL)-
secreting PAs, and Cushing’s syndrome derived from
adrenocorticotropin (ACTH)-secreting PAs. NFPAs are non-
hormone-secreting PAs (Qian et al., 2018). The main clinical
symptoms of PAs include inappropriate hormone secretion
syndrome, and compression of the neighboring tissues and
structures such as headache, visual field defect, and increased
intracranial pressure (Reimondo et al., 2019). PA is a multi-
factor, multi-process, and multi-consequence complex disease,
which is involved in a series of molecular alterations at the levels
of genome, transcriptome, proteome, peptidome, metabolome,
and radiome; and these molecules mutually associate and
function in a molecular network system (Zhan and Desiderio,
2010b; Hu et al., 2013; Grech et al., 2015; Cheng and Zhan, 2017;
Lu and Zhan, 2018). Thus, one must shift the research and
practice strategy from a single-factor model to a multi-
parameter systematic model for predictive, preventive, and
personalized medicine in PAs (Hu et al., 2013; Grech et al.,
2015; Cheng and Zhan, 2017). Multiomics is an effective
approach to realize this multi-parameter systematic strategy
model shift, which can establish signaling pathway systems for
in-depth understanding of molecular mechanisms of PAs,
identify molecular network-based biomarkers for prediction,
diagnosis, and prognostic assessment of PAs, and discover
signaling pathway network-based therapeutic targets for
effective treatment of PAs (Grech et al., 2015; Cheng and
Zhan, 2017; Lu and Zhan, 2018).

A series of omics analyses have been performed in PAs to
reach our long-term goals that clarify molecular mechanisms and
discover effective biomarkers and therapeutic targets for PAs
(Zhan and Desiderio, 2010a; Long et al., 2019; Cheng et al., 2019;
Wang Y. et al., 2019), including NFPA quantitative
transcriptomics (differentially expressed genes, DEGs)
(Moreno et al., 2005; Cheng et al., 2019), NFPA quantitative
proteomics (differentially expressed proteins, DEPs) (Moreno
et al., 2005), NFPA proteomic mapping (Zhan and Desiderio,
2003; Wang X. et al., 2015; Cheng et al., 2019), NFPA
nitroproteomics (Zhan and Desiderio, 2006), invasive NFPA
quantitative transcriptomics (Galland et al., 2010; Zhou et al.,
2011; Wang Y. et al., 2019), invasive NFPA quantitative
proteomics (Zhan et al., 2014b), control pituitary proteomic
mapping (Beranova-Giorgianni et al., 2002; Giorgianni et al.,
2003; Zhao et al., 2005), pituitary control nitroproteomics (Zhan
and Desiderio, 2004; Zhan and Desiderio, 2007), control pituitary
phosphoproteomics (Giorgianni et al., 2004; Beranova-
Giorgianni et al., 2006), PRL-secreting adenoma proteomics
and transcriptomics (Evans et al., 2008), and ACTH-secreting
adenoma proteomics and metabolomics (Feng et al., 2018).
Integrative analysis of these omics data has revealed some
important signaling pathway network alterations in PA
pathogenesis, including mitochondrial dysfunction, oxidative

stress, cell cycle dysregulation, and mitogen-activated protein
kinase (MAPK) signaling pathway alteration (Zhan and
Desiderio, 2010a; Long et al., 2019). Mitochondrial
dysfunction pathway network and mitochondrial dynamics (Li
and Zhan, 2019), and MAPK signaling pathway-based drug
therapeutic targets (Lu et al., 2019) have been discussed in
detailed in PAs. It is well-known that mitochondria are the
energy factories of the body, and mitochondrial metabolism is
the source of reactive oxygen species (ROS). The imbalance
between free radicals reactive oxygen/nitrogen species (ROS/
RNS) and antioxidant system leads to oxidative stress, which
plays an important role in diseases. Many studies focus on
oxidative stress system as therapeutic strategy; for example,
benfotiamine is an efficient antioxidant, which could prevent
oxidative stress in the anterior tibialis muscle and heart of mice
(Gonçalves et al., 2019). Another research shows that pancreatic
oxidative damage in the diabetic state is caused by ROS, and
scavenging the various ROS generated in the disease is one of
effective ways to treat this disease (Afolabi et al., 2018). Studies
have clearly demonstrated that mitochondrial dysfunction and
oxidative stress pathway changes operate in PAs (Zhan and
Desiderio, 2010a), and nuclear factor erythroid 2 p45-related
factor 2 (Nrf2)-mediated oxidative stress response significantly
impacts the pathogenesis of PAs and modulates the energy
metabolism reprogramming for PAs (Sabatino et al., 2018). It
is well-known that PAs can lead to abnormal hormone secretion,
which might affect oxidative stress and Nrf2 signaling in PAs; for
example, human growth hormone (hGH) can attenuate
inflammation and oxidative stress attained by Cisplatin
probably through inhibition of Nrf2/heme oxygenase 1 (HO-1)
pathway (Mahran, 2020). More studies show that Nrf2 signaling
and oxidative stress can be regulated by cortisol (Wu et al., 2019),
thyroid hormone (Mishra et al., 2019), follicle-stimulating
hormone (FSH) (Li et al., 2020), luteinizing hormone (LH) (Li
et al., 2020), GH (Mahran, 2020), ACTH (Benlloch et al., 2016),
and PRL (Ebokaiwe et al., 2020). These findings clearly
demonstrate the importance of oxidative stress in PAs. This
present review article will focus on oxidative stress response
signing pathway network in PA pathogenesis.

REDOX HOMEOSTASIS AND NRF2 AS THE
HEART OF OXIDATIVE STRESS RESPONSE

Oxidative stress is derived from the imbalance between the
upload of free radicals ROS/RNS from in vivo and in vitro
environmental approaches and the ability of endogenous
antioxidants to detoxify these ROS/RNS (Prasad et al., 2016;
Klaunig, 2018; Sajadimajd and Khazaei, 2018). It results in the
injuries of multiple biomacromolecules such as DNAs, RNAs,
proteins, and membrane lipids to significantly associate with a
wide spectrum of diseases including cancers. Many studies
demonstrate that the increased ROS/RNS productions promote
carcinogenesis development (Kudryavtseva et al., 2016; Kruk and
Aboul-Enein, 2017), and oxidative stress-medicated chronic
inflammation is the risk factor of tumorigenesis (Reuter et al.,
2010; Qian et al., 2019). The oxidative phosphorylation system in
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mitochondrial respiratory chain is the central machine that
generates ROS products such as superoxide radical (O2

.-). One
study shows that ROS levels and signs of oxidative damage are
significantly increased in PAs (Sabatino et al., 2018). One of the
most important RNS, nitric oxide (NO), is generated by inducible
nitric synthase (iNOS) in many pathogenesis conditions, which
can rapidly react with superoxide radical (O2

.-) to generate more
toxic peroxynitrite anion (ONOO-) and highly reactive hydroxyl
radical (OH.) to attack DNAs, RNAs, proteins, and membrane
lipids. iNOS has been extensively found in rat and human
pituitaries (Ceccatelli et al., 1993; Lloyd et al., 1995; Ueta
et al., 1998; Kruse et al., 2002; Pawlikowshi et al., 2003) and
has the elevated activities in PAs compared to those in controls
(Vankelecom et al., 1997; Kruse et al., 2002). Another study shows
that NO functions in the hypothalamic-pituitary-adrenocortical
axis (Riedel, 2002) by promoting the release of follicle-stimulating
hormone-releasing hormone (FSHRH) and luteinizing hormone-
releasing hormone (LHRH) from hypothalamus (McCann et al.,
2001; Pinilla et al., 2001; McCann et al., 2003), and regulating
secretion of PRL (Duvilanski et al., 1995) and GH in pituitaries
and PAs (Cuttica et al., 1997; Pinilla et al., 1999; Bocca et al.,
2000). Peroxynitrite anion (ONOO−) is a key factor in vivo that
causes protein tyrosine nitration and alters protein functions.
Nine nitrotyrosine-containing proteins have been identified in
NFPA tissues, and tyrosine nitration occurs in important
structural and functional domains to change protein functions
(Zhan and Desiderio, 2006).

With the generation of ROS/RNS, the in vivo antioxidant
detoxification system is correspondingly initiated to adapt against
the increased ROS/RNS (Valko et al., 2006; Obrador et al., 2019).
The endogenous antioxidant detoxification system is a very
complex system, including i) enzymatic antioxidants such as
superoxide dismutases (CuZnSOD and MnSOD), glutathione
peroxidase, and catalase; ii) non-enzymatic antioxidants such
as vitamin E, vitamin C, carotenoid, flavonoid, selenium, thiol
antioxidant (thioredoxin, lipoic acid, and glutathione), and
others; and iii) multiple regulatory factors [Nrf2, NF-kB
(nuclear factor kB), and AP-1 (activator protein-1), etc.] that
interact with antioxidants (Valko et al., 2006; Obrador et al.,
2019). CuZnSOD exists in most parts of cells, while MnSOD is
only found in mitochondrial matrix; and both of them are able to
effectively scavenge O2

.- and generate H2O2 (Li et al., 1995; Melov
et al., 2001; Elchuri et al., 2005). H2O2 can be scavenged by GPX’s
(glutathione peroxidases) and peroxiredoxins (thioredox-
independent peroxidases) (Chu et al., 2004; Kang et al., 2005).
Studies have found that the levels of CuZnMOD and MnSOD are
significantly lower in PAs compared to those of controls
(Kurisaka et al., 2004; Yang et al., 2012; Ilhan et al., 2018).
The abnormal activities of these antioxidant enzymes and
non-enzymatic antioxidants are directly associated with
carcinogenesis (Neumann et al., 2003; Chu et al., 2004; Harris
et al., 2015). The transcription factor Nrf2 is pivotal to the
antioxidant response, which is a sensor of oxidative stress in
redox homeostasis, and is mainly located in the cytoplasm under
basal conditions (Li and Kong, 2009; Furfaro et al., 2016a). When
the upload of free radicals ROS/RNS is increased to cause
oxidative stress, Nrf2 quickly translocates from cytoplasm into

the nucleus to initiate the antioxidant response, protecting against
oxidative/nitrative damages (Dhakshinamoorthy and Porter,
2004; Osburn et al., 2006; Mann et al., 2007; Pi et al., 2008).
The Nrf2 signaling regulatory system contains at least four
components, including Nrf2, Kelch-like ECH-associated
protein 1 (Keap1), small musculoaponeurotic fibrosarcoma
(Maf), and antioxidant response element (ARE) or electrophile
responsive element (EpRE), which in combination are necessary
for the antioxidant response (Kwak and Kensler, 2010; Furfaro
et al., 2016; de la Vega et al., 2018). Nrf2 signaling pathways
regulate multiple biological processes, including i) the
expressions of antioxidant genes, ii) ubiquitin-proteasome
system, iii) molecular chaperone/stress-response system, and
iv) anti-inflammatory response (Kwak and Kensler, 2010;
Furfaro et al., 2016). The accumulated evidence clearly
demonstrates that Nrf2 signaling pathways are involved in 12
hallmarks of cancer, including sustained proliferative signaling,
insensitivity to antigrowth signals, resistance to apoptosis,
limitless replicative potential, sustained angiogenesis, tissue
invasion and metastasis, metabolic reprogramming, avoiding
immune destruction, tumor-promoting inflammation, genome
instability, altered redox homeostasis, and proteotoxic stress (de
la Vega et al., 2018). Thereby, any decreased capability of the
antioxidant protective system in the redox homeostasis might
cause more susceptibility to carcinogen toxicity, tumor
inflammatory response, oxidative stress, and carcinogenesis
(Yates and Kensler, 2007).

MULTIUOMICS REVEALS OXIDATIVE
STRESS-RELATED PATHWAY
ALTERATIONS IN PAs
Our multiomics studies in PAs (Zhan and Desiderio, 2010a; Long
et al., 2019) clearly demonstrate oxidative stress-related pathway
changes in PAs. For example, i) Nrf2-mediated oxidative stress
response pathway is significantly changed in NFPAs with
evidence of upregulation of key molecules [upregulated DEPs:
GST (glutathione S-transferase) or GSTM2 (glutathione
S-transferase mu 2), and ERP29 (endoplasmic reticulum
protein 29], and downregulation of key molecules
[downregulated DEPs: HSP22 (heat shock protein 22), HSP27,
and HSP90 or GRP94 (94 kD glucose-regulated protein)] in this
pathway. ii) Mitochondrial dysfunction pathway is significantly
changed in NFPAs with evidence of upregulation of key
molecules [upregulated DEPs: NDUFS8 (NADH ubiquinone
oxidoreductase core subunit S8), COX6B (cytochrome c
oxidase subunit 6B), CAT (catalase), β-secret2, and ATP5B
(ATP synthase, H+ transporting mitochondrial F1 complex,
beta subunit)], and downregulation of key molecules
[downregulated DEPs: GPX4 (glutathione peroxidase 4), and
ATP5A1] in this pathway. Mitochondrial dysfunction can
increase ROS production in cancer cells to mediate tumor-
related signaling pathways and activate pro-oncogenic
signaling (Li and Zhan, 2019). iii) Oxidative phosphorylation
pathway is significantly changed in NFPAs with evidence of
upregulation of key molecules (upregulated DEPs: NDUFS8,

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 5657483

Zhan et al. Nrf2-Mediated Oxidative Stress Response Pathways

203

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


COX6B, and ATP5B) in this pathway. Mitochondrial oxidative
phosphorylation system contains mitochondrial complexes I, II,
III, IV, and V, which are the major sites that produce endogenous
ROS such as OH. and O−

2; among these, complexes I, II, and III
play a crucial role in the generation of mitochondrial ROS,
because the electrons tend to be leaky at complexes I and III,
which results in an incomplete reduction of oxygen and thus
generates a free radical such as superoxide radical (Li and Zhan,
2019). iv) Glutathione redox reaction I pathway is significantly
changed in NFPAs with evidence of downregulation of key
molecule (downregulated DEP: GPX4) in this pathway. GPX’s
(glutathione peroxidases) are important components in the
antioxidant defense system: the downregulation of GPX’s can
decrease the capability of the antioxidant defense system. v) The
superoxide radical degradation pathway is significantly changed
in NFPAs with evidence of upregulation of key molecule
(upregulated DEP: CAT) in this pathway. vi) Aryl
hydrocarbon receptor signaling is significantly changed in
NFPAs with evidence of upregulation of key molecules
[upregulated DEP: GST; upregulated DEGs: HSPCA (heat
shock protein 90 alpha family class A member 1), HSPCB
(heat shock protein 90 alpha family class B member 1), ESR1
(estrogen receptor 1), and Bax (BCL2 associated X, apoptosis
regulator)], and downregulation of key molecules
[downregulated DEPs: HSP27, HSP90 or GRP94, and TGM2
(transglutaminase 2); downregulated DEG: ESR2 (estrogen
receptor 2)] in this pathway. vii) Glucocorticoid receptor
signaling is significantly changed in NFPAs with evidence of
upregulation of key molecule [upregulated DEG: PI3K
(phosphatidylinositol 3 kinase)], and downregulation of key
molecules [downregulated DEGs: HSP70, c-Fos, CCL2 (C-C
motif chemokine ligand 2), BCL2, PRL, and POMC
(proopiomelanocortin)] in this pathway. viii) Corticotropin-
releasing hormone signaling is significantly changed in NFPAs
with evidence of upregulation of key molecules [upregulated
DEGs: CALM (calmodulin), and IP3R)], and downregulation
of key molecules [downregulated DEGs: ACTH, Nur77 (NR4A1
nuclear receptor subfamily 4 group A member 1), and c-FOS)] in
this pathway. ix) Melatonin signaling is significantly changed in
NFPAs with evidence of nitration of key molecule (PKA) in this
pathway. x) Methylglyoxal degradation III pathway is
significantly changed in NFPAs with evidence of upregulation
of key molecules [upregulated DEPs: aldose reductase or
AKR1B1(aldo-keto reductase family 1 member B)] in this
pathway. xi) AMPK signaling is significantly changed in
NFPAs with evidence of upregulation of key molecules
[upregulated DEGs: PP2C (putative protein phosphatase), and
PFK (phosphofructokinase)], and downregulation of key
molecules [downregulated DEGs: PI3K, PKA, and PDK1
(pyruvate dehydrogenase kinase 1)] in this pathway. Thereby,
these signaling pathway changes clearly demonstrate that the
disturbance in redox homeostasis, the imbalance between
generation and detoxification of free radicals ROS/RNS, results
in oxidative stress and damage in human PAs. Recently, these
findings are also confirmed with experiments in cell models and
animal models, which demonstrate that increased mitochondrial
fusion results in bigger mitochondria, increased ROS levels, and

oxidative damage in PAs, and that Nrf2 signaling pathway is
activated in PAs as an antioxidant response (Sabatino et al., 2018).
Thus, it suggests that Nrf2 is the master regulator of the cellular
antioxidant response (de la Vega et al., 2018).

NRF2-MEDIATED OXIDATIVE STRESS
RESPONSE SIGNALING PATHWAYS IN PAs

Nrf2 signaling pathway in response to oxidative stress is shown
(Figure 1). Multiple in vivo and in vitro environmental factors,
including inflammatory cytokines, prostaglandins, growth
factors, low-density lipoproteins, bacterial and viral infection,
heavy metals, ultraviolet (UV) radiation, ionizing radiation,
drugs, xenobiotics, antioxidants, oxidants, and
chemopreventive agents, cause the increased upload of free
radicals ROS/RNS and electrophiles to result in oxidative
stress (Hetland et al., 2020; Mehnati et al., 2020). The
increased ROS or electrophiles will activate the Nrf2/Keap1
complex in the cytoplasm through ERK1/2, ERK5, JNK1/2,
p38 MAPK, PKC, and PI3K-AKT signaling pathways, and
these signaling pathways will communicate with each other
(Roy Chowdhury et al., 2014; Tian et al., 2014; Wang K.-C.
et al., 2019). The activated Nrf2 is phosphorylated and separated
from Keap1 (Hambright et al., 2015; Sánchez-Martín et al., 2020).
The separated and phosphorylated Nrf2 quickly translocates into
the nucleus to interact with ARE or EpRE, which will initiate at
least five types of gene expressions to exert the corresponding
biological functions (Furfaro et al., 2016; Sánchez-Martín et al.,
2020): i) reduction of the oxidative damage via antioxidant
proteins such as NRF2, small MAF, ATF4, SQSTM1, HO-1,
PRDX1, FTL, FTH1, CAT, GPX’s, SOD, TXN, GSR, and
TRXR1 (Sun et al., 2019; Saad El-Din et al., 2020; Yu et al.,
2020); ii) detoxification andmetabolism of xenobiotics to regulate
cell survival, or production of reactive metabolites to promote
tumorigenesis via phase I and II metabolizing enzymes such as
CYP1A/2A/3A/4A/2C, FMO, GST, NQD, UGT, AFAR, EPHX1,
GCLC, GCLN, CBR4, AKR, and AOX4 (Zhao et al., 2015; Huang
et al., 2018); iii) transportation of xenobiotics and metabolites via
phase III detoxifying proteins such as SR-B1 and MRP1 (Sivils
et al., 2013; Lubelska et al., 2016); iv) repairment and removal of
the damaged proteins via chaperone and stress response proteins
such as HSP22/40/90, STIP1, PTPLAD1, HERPUD1, CCT7,
CLPP, FKBP5, PPIB, and ERP29 (Niture and Jaiswal, 2010;
Sahin et al., 2012); and v) repairment and removal of the
damaged proteins via ubiquitination and proteasomal
degradation proteins such as PSM, UB2R1, VCP, USP14, UBB,
and HIP2 (Liu et al., 2019; Song et al., 2019). This clearly
demonstrates that while the Nrf2-mediated oxidative stress
response signaling pathways are regulated by multiple factors,
Nrf2 is the essential component. In the cytoplasm, Keap1, the
main regulator of Nrf2, is a substrate adaptor protein for the
Cul3-Keap1-E3 ligase complex that ubiquinates Nrf2, marking it
for proteasomal degradation in the cytoplasm under basal
conditions (Baird and Yamamoto, 2020; Dayalan Naidu and
Dinkova-Kostova, 2020). To reduce its inhibitory effects on
Nrf2, Keap1 can be ubiquitinated for degradation, leading to
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FIGURE 1 | Nrf2-mediated oxidative stress response signaling pathways in human pituitary adenomas. AKR, Palmitoyltransferase; AKT, Protein kinase B; AOX4,
Aldehyde oxidase 4; ARE, Antioxidant response element; ASK1, Apoptosis signal-regulating kinase 1; ATF4, Activating transcription factor 4; BACH1, Transcription
regulator protein BACH1; CAT, catalase; CBP, CREB-binding protein; CBR4, carbonyl reductase 4; CCT7, T-complex protein 1 subunit eta; c-FOS, Proto-oncogene
protein c-FOS; CLPP, Caseinolytic protease; Cul3, Cullin 3-based ubiquitin E3 ligase complex; Cyp, cytochrome P; EPHX1, Epoxide hydrolase 1; EpRE,
Electrophile responsive element; ER, endoplasmic reticulum; ERK: Extracellular signal-related kinase; ERP29: endoplasmic reticulum protein 29; FKBP5, FK506-binding
protein 5; FMO, Dimethylaniline monooxygenase [N-oxide-forming]; FRA1, Fos-related antigen 1; FTH1, Ferritin heavy polypeptide 1; FTL1, ferritin light polypeptide;
GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit; GPX’s, Glutathione peroxidases; GSK3β, glycogen synthase
kinase 3β; GSR, glutathione reductase; GST, glutathione S-transferase; HERPUD1, Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain
member 1 protein; HIP2, Ubiquitin-conjugating enzyme E2 K; HO-1, heme oxygenase 1; HSP22/40/90, heat shock proteins 22, 40 and 90; JNK, Jun N-terminal kinase;
Keap1, Kelch-like ECH-associated protein 1; Maf, Musculoaponeurotic fibrosarcoma; MAPK, Mitogen-activated protein kinase; MEK, Mitogen-activated protein kinase
kinase (MAPKK); MEKK, Mitogen-activated protein kinase kinase kinase (MAPKKK); MRP1, multidrug-resistant protein-1; NQO1, NAD(P)H:quinine oxidoreductase 1;
Nrf2, Nuclear factor erythroid 2 p45-related factor 2; PERK: the double-stranded RNA (PKR)-activated protein kinase-like eukaryotic initiation factor 2 kinase; PI3K,
Phosphatidylinositol 3 kinase; PKC, protein kinase C; PPIB, Peptidyl-prolyl cis-trans isomerase B; PRDX1, peroxiredoxin 1; PSM: multiple subunits of the 20S
proteasome; PTPLAD1, 3-hydroxyacyl-CoA dehydratase 3; c-Raf, RAF proto-oncogene serine/threonine-protein kinase; Ras, GTPase Ras; ROS, reactive oxygen
species; SOD, Superoxide dismutase; SQSTM1, sequestosome-1 protein; SR-B1, Scavenger receptor class B member 1; STIP1, stress induced phosphoprotein 1;
TAK1, TGF beta-Activated Kinase 1; TXN1: thioredoxin; TRXR1, thioredoxin reductase 1; UBB, Polyubiquitin-B; UB2R1, Ubiquitin-conjugating enzyme E2 R1; UGT,
UDP glucuronosyl transferase; USP14, ubiquitin-specific peptidase 14; and VCP, valosin-containing protein. Modified from Zhan X et al. (2010) (Zhan and Desiderio,
2010a), copyright permission from BioMed Central publisher open-access article, copyright 2010; and modified from Long Y et al. (2019) (Long et al., 2019), copyright
permission from Frontiersin publisher open-access article, copyright 2019.
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an increase in Nrf2 phosphorylation (activation) (Villeneuve
et al., 2010). The phosphorylated Nrf2 can then interact with
actin to form an Nrf2/actin complex that then translocates into
the nucleus. After Nrf2 translocates into the nucleus, there are
additional regulatory systems in place that include multiple
factors such as ATF4, JUN, ERK1/2-CBP/P300, small MAF,
BACH1, c-FOS, FRA1, and c-MAF, to influence the binding
of Nrf2 and ARE/EpRE. The detailed regulatory mechanism
system of Nrf2 has been extensively reviewed (Kwak and
Kensler, 2010; Hybertson et al., 2011; Furfaro et al., 2016a; Lu
et al., 2016; Menegon et al., 2016; Taguchi and Yamamoto, 2017;
Bellezza et al., 2018; Chen and Maltagliati, 2018; de la Vega et al.,
2018; Ryoo and Kwak, 2018; Sajadimajd and Khazaei, 2018; Cloer
et al., 2019; Cuadrado et al., 2019; Qin et al., 2019) response
signaling pathways have also been studied in pituitaries and PAs.
One study shows that Nrf2, phosphorylated Nrf2 (p-Nrf2)
protein, and mRNA expressions are increased in PAs, and the
Nrf2 downstream effector HO-1 is also increased in PAs
(Sabatino et al., 2018). This clearly demonstrates the activation
of the Nrf2 signaling pathway, likely causing the extensive
surviving capability of pituitary tumor cells. The Nrf2/PTEN-
induced putative kinase protein 1 (PINK1)/Parkin pathway and
mitophagy are activated in T-2 toxin-induced toxicities in rat
pituitary GH3 cells (Deyu et al., 2018). Antioxidants
N-acetylcysteine (NAC) and vitamin E can decrease the
expressions of Nrf2 and HO-1 in rat pituitaries (Prevatto
et al., 2017). Genetically induced Nrf2 overexpression in
melanoma cells promotes tumor growth and increases
antioxidant defense in malignant cells, which can be inhibited
by anticancer agent pterostilbene (Pter, a natural dimethoxylated
analog of resveratrol) through the downregulation of pituitary
production of ACTH, plasma corticosterone, and the
glucocorticoid receptor- and Nrf2-dependent antioxidant
defense systems in growing melanomas (Benlloch et al., 2016).
Irradiation can result in oxidative damage in C57/BL6 mice via
activation of Nrf2 and HO-1 expressions, which can be blocked
by antioxidant agent pituitary adenylate cyclase-activating
polypeptide 38 (PACAP38) through inhibiting Nrf2 expression
(Li et al., 2019). Chronic restraint stress (CRS) and acute restraint
stress (ARS) can upregulate the mRNA expressions of oxidative
stress molecules (gp91phox, iNOS, and Nrf2) and inflammation-
related molecules (IL-1β, IL-6, TNFα, and TLR4) in the mouse
hypothalamus, which can be alleviated by Iptakalim (Ipt), an
ATP-sensitive potassium (K-ATP) channel opener (Zhao et al.,
2017). The loss-of-function mutations of the aryl hydrocarbon
receptor-interacting protein gene (AIP) are well-recognized in
PAs (Hernández-Ramírez et al., 2018). The aryl hydrocarbon
receptor signaling is also revealed by multiomics as an oxidative
stress-related signaling pathway in PAs (Long et al., 2019).
Further studies show that AIP interacts with antioxidants,
chaperone and stress response-related proteins, and
cytoskeletal proteins, including HSPA5, HSPA9, HSP90AA1,
HSP90AB1, HSPA8, SOD1, TUBB, TUBB2A, and NME1; AIP
variants show the impaired interaction of AIP with HSPA8,
HSP90AB1, NME1, SOD1, TUBB, and TUBB2A; AIP-mutated
PAs show the reduced expression of TUBB2A (Cuadrado et al.,
2019). The levels of MnSOD and total antioxidant capability

(TAC) are significantly decreased in GH-secreting PAs (Ilhan
et al., 2018). The frequencies of micronuclei (MN), nucleoplasmic
bridges, nuclear buds, apoptotic and necrotic cells, and plasma 8-
hydroxy-2′-deoxyguanosine (8-OHdG) levels in peripheral blood
lymphocytes are significantly increased in PRL-secreting PAs,
which indicates the increased oxidative damage in PRL-secreting
PAs (Bitgen et al., 2016). Oxidative stress and mitochondrial
dysfunction have been revealed by multiple proteomics and
nitroproteomics studies in human PAs (Zhan and Desiderio,
2010a; Zhan et al., 2013; Zhan et al., 2014a; Zhan et al., 2014b;
Wang X. et al., 2015; Long et al., 2019). Also, tumor inflammation
is an important pathophysiological characteristic in human PAs,
which is always tightly associated with oxidative stress and
chronic inflammation. The relationship among age-related
disease, chronic inflammation, and oxidative stress has also
been discussed (Pizza et al., 2011; Liguori et al., 2018; Qian
et al., 2019). Oxidative stress is also involved in the processes
of anti-proliferative effect and cell death induced by dopamine in
the pituitary tumor cells via dopamine D2 receptors through p38
MAPK, and ERK pathways (An et al., 2003). Therefore, oxidative
stress and antioxidative stress response extensively exist in PA
pathogenesis. Nrf2, as the core of oxidative stress response, could
be the novel target used to develop effective therapeutic agents for
human PAs (Kwak and Kensler, 2010; Furfaro et al., 2016; de la
Vega et al., 2018).

THERAPEUTIC STATUS TARGETING NRF2
SIGNALING PATHWAYS IN CANCERS

Nrf2 signaling, as the heart of oxidative stress response, is
extensively related to cancer pathogenesis, which has attracted
tremendous attention as possible anticancer therapeutic target.
Nrf2 signaling-based anticancer therapeutic studies have been
extensively carried out in multiple cancers, including acute
myeloid leukemia, gallbladder cancer, renal carcinoma,
pancreatic cancer, melanoma, hepatocellular carcinoma, lung
cancer, colon cancer, ovarian cancer, breast cancer, esophageal
cancer, and glioblastoma (Table 1). i) In acute myeloid leukemia,
studies found that Nrf2 activators [dimethyl fumarate (DMF),
tert-butylhydroquinone, or carnosic acid] and vitamin D
derivatives can cooperatively induce acute myeloid leukemia
cell differentiation to inhibit leukemia progression in a
xenograft mouse model via activating the Nrf2/ARE signaling
pathway (Nachliely et al., 2019). Novel pyrazolyl hydroxamic acid
derivative (4f) can inhibit Nrf2 activity to induce apoptosis of
human acute myeloid leukemia cells (Zhang et al., 2017). ii) In
gallbladder cancer, one study found that atypical protein kinase
Cι (aPKCι) can promote gallbladder tumorigenesis and
chemoresistance of anticancer agent gemcitabine by competing
with Nrf2 for binding to Keap1, implying that inhibiting the
aPKC1-Keap1-Nrf2 axis might overcome drug resistance for the
treatment of gallbladder cancer (Tian et al., 2019). iii) In renal
carcinoma, one study found that the natural product chitosan
oligosaccharide (COS) can inhibit human renal carcinoma cell
proliferation in vitro and in vivo by promoting the expressions of
Nrf2 and Nrf2 target genes such as HO-1, the modifier subunit of
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TABLE 1 | Current research status of therapeutic potentials targeting Nrf2-mediated oxidative stress response signaling pathways in different cancers.

Cancer type Experimental model Chemical reagents or
potential drugs

Possible mechanisms References

Acute myeloid
leukemia

Acute myeloid leukemia cells in a
xenograft mouse model

Nrf2 activators: dimethyl fumarate
(DMF), tert-butylhydroquinone, or
carnosic acid

Cooperate with vitamin D derivatives to
induce acute myeloid leukemia cell
differentiation to inhibit leukemia
progression in a xenograft mouse model
via activating the Nrf2/ARE signaling
pathway

Nachliely et al. (2019)

Human acute myeloid leukemia
cells

Novel pyrazolyl hydroxamic acid
derivative (4f)

Inhibit Nrf2 activity to induce apoptosis of
human acute myeloid leukemia cells

Zhang et al. (2019)

Gallbladder
cancer

Gallbladder cancer cells The aPKCι inhitors, Nrf2 activators, or
gemcitabine

Atypical protein kinase Cι (aPKCι) can
promote gallbladder tumorigenesis and
chemoresistance of anticancer agent
gemcitabine by competing with Nrf2 for
binding to Keap1, implying that inhibiting
the aPKCι-Keap1-Nrf2 axis might
overcome drug resistance for the
gallbladder cancer treatment

Tian et al. (2019)

Renal carcinoma Human renal carcinoma cells Chitosan oligosaccharide (COS) Inhibit human renal carcinoma cell
proliferation in vitro and in vivo by
promoting the expressions of Nrf2 and
Nrf2 target genes such as HO-1, the
modifier subunit of glutamate cysteine
ligase, solute carrier family 7 member 11,
glucose-regulated protein 78, protein
RNA-like endoplasmic reticulum kinase,
and cytochrome C,etc.

Zhai et al. (2019)

Pancreatic
cancer

Pancreatic cancer cells Resveratrol Enhance the sensitivity of pancreatic
cancer cells to gemcitabine via
suppressing NAF-1 expression, inducing
ROS accumulation, and activating Nrf2
signaling pathways

Cheng et al. (2018)

Melanoma Melanoma cells Nrf2 inhibitor: Brusatol (BR) The co-treatment of brusatol and UVA
irradiation can effectively inhibit
melanoma growth by regulating the AKT-
Nrf2 pathway

Wang et al. (2018)

Hepatocellular
carcinoma

Hepatocellular carcinoma (HCC)
cells

Vitamin C (VC), all-trans retinoic acid
(ATRA), ochratoxin A (OTA), bexarotene,
flavonoids (including brusatol, luteolin,
apigenin and chrysin), ruthenium (Ru)
metal complexes, ursolic acid (UA),
halofuginone, trigonelline, quercetin, and
isoniazid

Sensitize chemotherapy drugs in
hepatocellular carcinoma

Tian et al. (2018)

Mouse hepatocellular carcinoma
model

Cordycepin (CA) Activate the Nrf2/HO-1/NF-κB pathway
for its anti-hepatocarcinoma effect in
N-nitrosodiethylamine (NDEA)-induced
mouse hepatocellular carcinomas

Zeng et al. (2017)

Hep3B (human hepatoma cell) and
HL-7702 (normal human liver cell)
cell lines

Novel indazolo[3,2-b] quinazolinone (IQ)
derivatives: IQ-7 and IQ-12

Induce apoptosis and inhibit the Nrf2/
ARE signaling pathway in Hep3B cells,
and IQ-7 was suggested a degree of
specificity against cancer cells.

Zhang et al. (2016)

Liver injury mouse model Dibenzoylmethane (DBM) Protect against carbon tetrachloride
(CCl4)-induced liver injury by activating
Nrf2 signaling via JNK, AMPK, and
calcium signaling

Cao et al. (2017)

Lung cancer Lung cancer cells The potent anticancer agent:
Isodeoxyelephantopin

Induce protective autophagy in lung
cancer cells via the Nrf2-p62-keap1
pathway

Wang et al. (2017)

RAW 264.7 mouse macrophage-
like cells, in VC1 lung cancer cells,
and in the A/J model of lung cancer

Two clinically relevant classes of Nrf2
activators: DMF, and the synthetic
oleanane triterpenoids –C-28 methyl
ester of 2-cyano-3,12-dioxoolean-1,9-
dien-28-oic acid (CDDO)-Imidazolide
(CDDO-Im) and CDDO-Methyl ester
(CDDO-Me)

Activate the Nrf2 pathway as well as
regulate different subsets of Nrf2 target
genes and Nrf2-independent genes

Chian et al. (2014) and
To et al. (2015)

(Continued on following page)
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TABLE 1 | (Continued) Current research status of therapeutic potentials targeting Nrf2-mediated oxidative stress response signaling pathways in different cancers.

Cancer type Experimental model Chemical reagents or
potential drugs

Possible mechanisms References

Colon cancer SFN-treated human colon cancer
cells and non-transformed colonic
epithelial cells

Anticancer agent: Sulforaphane (SFN) Regulate the activity of antioxidant and
the detoxification of carcinogens via Nrf2
signaling to suppress human colon
cancer

Johnson et al. (2017)

1, 2-dimethyl hydrazine (DMH)-
induced mouse colon model

Taxifolin (TAX) Induce antioxidant response pathway,
enhance level of Nrf2 proteins, and act as
effective chemopreventive agent capable
of modulating inflammatory

Manigandan et al.
(2015)

Ovarian cancer Human ovarian cancer cell lines:
PEO4, OVCAR4, and SKOV3

Anti-HER2 drugs: Trastuzumab and
Pertuzumab

HER2 targeting by antibodies inhibited
growth in association with persistent
ROS generation, glutathione (GSH)
depletion, reduction in NRF2 levels, and
inhibition of NRF2 function in ovarian
cancer cell lines

Khalil et al. (2016)

Human epithelial ovarian cancer
(EOC) cell lines

Keap1 mutation reagent Activation of Nrf2 pathway in EOC seems
to be related to Keap1 mutations within
highly conserved domains of the Keap1

gene; and Nrf2 may serve as an
important therapeutic target for novel

drugs capable of preventing or reversing
resistance to chemotherapy in EOC

Konstantinopoulos
et al. (2011)

Breast cancer Breast cancer cells, and mouse
model

Target antioxidant enzymes: GCLC and
GCLM

Nrf2 serves as a key regulator in
chemotherapeutic resistance under
hypoxia through ROS-Nrf2-GCLC-GSH
pathway, and can be a potential
treatment for hypoxia-induced drug
resistance in breast cancer cells.

Syu et al. (2016) and
Song et al. (2011)

Esophageal
cancer

Esophageal squamous cancer
cells (ESCC): Ec109 and KYSE70
cells

CDDO-Me Protects the cells against oxidative stress
via inhibition of ROS generation, while
CDDO-Me at low micromolar
concentrations induces apoptosis by
increasing ROS and decreasing
intracellular glutathione levels

Wang X. et al. (2015)

Glioblastoma Glioblastoma cells Potential anti-cancer agents Targeting Nrf2 signaling for
chemotherapy and chemoresistance

Zhu et al. (2014)

Osteosarcoma Human osteosarcoma 143B and
MG63 cells

The bioengineered Nrf2-siRNA Interfere with the Nrf2 signaling pathway
to reduce the expression of NRF2-
regulated oxidative enzymes and lead to
higher intracellular ROS levels; knocking
down NRF2 with bioengineered siRNA
agent improves chemosensitivity of
cancer cells, which is related to the
suppression of NRF2-regulated efflux
ABC transporters.

Li et al. (2018)

Other cancers prostate cancer cell PC4-LN4;
colon cancer cell HCT-116; breast
cancer cells MB-MDA-231 and
MB-MDA-231-ARE-Luc

PIM kinases inhibitors Inhibit Nrf2 signaling and increase ROS to
kill hypoxic tumor cells in a HIF-1-
independent manner by controlling its
cellular localization

Warfel et al. (2016)

Mammalian cancer cells Proteasome inhibitors In response to proteasome inhibition,
several responses are activated, such as
the ALP, proteaphagy, the transcriptional
upregulation of the autophagy
Ubreceptor p62/SQSTM1, and
proteasome genes, by Nrf1 and Nrf1/
Nrf2 transcription factors, respectively.

Albornoz et al. (2019)

Mouse epidermal cells (JB6 P+), Gallic acid (GA), Z-ligustilide (LIG), and
senkyunolide A (SA)

GA, LIG, and SA in Si-Wu-Tang (SWT)
can individually or cooperatively target
the Nrf2/ARE pathway to prevent cancer.

Liu et al. (2018)

ALP, Autophagic-Lysosomal Pathway; ATRA, All-trans retinoic acid; BR, Brusatol; CA, Cordycepin; CDDO, C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; COS,
Chitosan oligosaccharide; DBM, Dibenzoylmethane; DMF, dimethyl fumarate; GA, Gallic acid; IQ, Indazolo[3,2-b] quinazolinone; LIG, Z-ligustilide; OTA, Ochratoxin A; PIM, The Proviral
Integration site for Moloney murine leukemia virus; Ru, Ruthenium; SA, Senkyunolide A; SFN, Sulforaphane; TAX, Taxifolin; UA, Ursolic acid; VC, vitamin C.
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glutamate cysteine ligase, solute carrier family 7 member 11,
glucose-regulated protein 78, protein RNA-like endoplasmic
reticulum kinase, and cytochrome C. (Zhai et al., 2019). iv) In
pancreatic cancer, one study found that anticancer agent
resveratrol enhances the sensitivity of pancreatic cancer cells
to gemcitabine via suppressing NAF-1 (nutrient-deprivation
autophagy factor-1) expression, inducing ROS accumulation,
and activating Nrf2 signaling pathways (Cheng et al., 2018). v)
In melanoma, the co-treatment of Nrf2 inhibitor (brusatol, BR)
and UVA irradiation can effectively inhibit melanoma growth by
regulating AKT-Nrf2 pathway (Wang et al., 2018). vi) In
hepatocellular carcinoma, one study found that potential Nrf2
inhibitors can sensitize chemotherapy drugs in hepatocellular
carcinoma (Tian et al., 2018). Cordycepin (CA) can activate the
Nrf2/HO-1/NF-κB pathway for its anti-hepatocarcinoma effect
in N-nitrosodiethylamine (NDEA)-induced mouse
hepatocellular carcinomas (Zeng et al., 2017). The novel
indazolo[3,2-b]quinazolinone (IQ) derivatives, IQ-7 and IQ-12,
can induce apoptosis of human hepatoma cells Hep3B and inhibit
the Nrf2/ARE signaling pathway in Hep3B cells, and IQ-7 is
suggested as a degree of specificity against cancer cells (Zhang
et al., 2016). Also, dibenzoylmethane (DBM) can protect against
carbon tetrachloride (CCl4)-induced liver injury by activating
Nrf2 signaling via JNK, AMPK, and calcium signaling (Cao et al.,
2017). vii) In lung cancer, one study found that the potent
anticancer agent isodeoxyelephantopin can induce protective
autophagy in lung cancer cells via the Nrf2-p62-keap1
pathway (Wang et al., 2017). The Nrf2 activators, DMF and
the synthetic oleanane triterpenoids, activate the Nrf2 pathway as
well as regulate different subsets of Nrf2 target genes and Nrf2-
independent genes in lung cancer (Chian et al., 2014; To et al.,
2015). viii) In colon cancer, one study found that anticancer agent
sulforaphane (SFN) can activate Nrf2 signaling to suppress
human colon cancer (Johnson et al., 2017). Also, taxifolin
(TAX) can induce antioxidant response pathway and enhance
level of Nrf2 protein, and act as effective chemopreventive agent
capable of modulating inflammation in colon cancer
(Manigandan et al., 2015). ix) In ovarian cancer, one study
found that Nrf2 can mediate the response of cancer cells to
the anti-HER2 drugs, trastuzumab and pertuzumab, in ovarian
cancer cells (Khalil et al., 2016). Also, activation of Nrf2 pathway
in ovarian cancer seems to be related to Keap1 mutations within
highly conserved domains of Keap1 gene and that Nrf2 may serve
as an important therapeutic target for novel drugs capable of
preventing or reversing resistance to chemotherapy in ovarian
cancer (Konstantinopoulos et al., 2011). x) In breast cancer, Nrf2
serves as a key regulator in chemotherapeutic resistance under
hypoxia through ROS-Nrf2-GCLC-GSH pathway and can be a
potential treatment for hypoxia induced drug resistance in breast
cancer cells (Song et al., 2011; Syu et al., 2016). xi) In esophageal
cancer, C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-
28-oic acid (CDDO-Me) can protect the cells against oxidative
stress via inhibition of ROS generation, while CDDO-Me at low
micromolar concentrations induces apoptosis by increasing ROS
and decreasing intracellular glutathione levels in esophageal
squamous cancer cells (Wang Y. Y. et al., 2015). xii) In
glioblastoma, there are many potent anti-cancer agents

targeting Nrf2 signaling for chemotherapy and chemoresistance
in glioblastoma (Zhu et al., 2014). xiii) In osteosarcoma, the
bioengineered Nrf2-siRNA can effectively interfere with the
Nrf2 signaling pathway to improve chemosensitivity of human
cancer cells (Li et al., 2018). Moreover, the PIM (proviral
integration site for moloney murine leukemia virus) kinase
inhibitors can reduce Nrf2 signaling and increase ROS to kill
hypoxic tumor cells such as prostate cancer cells (PC4-LN4), colon
cancer cells (HCT-116), and breast cancer cells (MB-MDA-231
and MB-MDA-231-ARE-Luc) (Warfel et al., 2016). One study
shows that proteasome biogenesis is dependent on the Nrf2
transcriptional factor, thus proteasome inhibitors have been
actively developed as potential anticancer drugs (Albornoz et al.,
2019). Gallic acid (GA), Z-ligustilide (LIG), and senkyunolide A
(SA) can individually or cooperatively target Nrf2/ARE pathway to
prevent cancer (Liu et al., 2018). Therefore, it can be said that
Keap1-Nrf2 signaling pathways have different roles at different
stages of cancer (Leinonen et al., 2014; Furfaro et al., 2016; de la
Vega et al., 2018). Multiple Nrf2 or Keap1 inhibitors have been
reported; and some of them are in the stages of pre- and clinical
trial towards the Nrf2 signaling for cancers. For example,
sulforaphane can target Nrf2 and the Nrf2 target genes NQO1
and GCLC to prevent oral cancer, and a preclinical trail has been
performed to study its chemopreventive activity for oral cancer
(Bauman et al., 2016). A single centre, single arm prospective phase
II clinical trial has been performed for phytosome complex of
curcumin targeting Nrf2 signaling as a the complementary therapy
of gemcitabine on pancreatic cancer (Pastorelli et al., 2018).
However, none of these Nrf2 or Keap1 inhibitors have currently
entered into real clinical applications, which suggests that the sole
inhibition of Nrf2 might not be sufficient for anticancer. A rational
combination of Nrf2 inhibitors with other chemical agents would
be a better strategy to treat cancers (Zhang et al., 2019).

POTENTIAL OF TARGETING NRF2
SIGNALING AS NEW THERAPEUTIC
STRATEGY FOR PAs
As described above, many omics studies in human PA tissues and
experimental studies in PA cells and animal models demonstrate
that oxidative stress and oxidative damage is the important
hallmark of PA pathogenesis. Nrf2-mediated oxidative stress
response signaling pathways are at the heart of oxidative stress
response, and many chemical agents targeting Nrf2 signaling
pathways have been developed and tested as potential anticancer
drugs for different cancers. This clearly demonstrates the
potential of targeting Nrf2 signaling pathways as new
therapeutic strategies for PAs. However, the use of Nrf2
signaling as a therapeutic target for PAs has not been studied.
We strongly believe that the Nrf2-mediated oxidative stress
response signaling pathways are the promising targets for
novel therapeutic strategies for PAs. Furthermore, MAPK
signaling pathways including ERK, JNK, and p38 MAPK
clearly regulate Nrf2 signaling (Figure 1). Moreover, MAPK
signaling pathways have been recognized as potential
therapeutic targets for PAs (Lu et al., 2019). The combined
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use of Nrf2 inhibitors targeting Nrf2 signaling and ERK inhibitors
[e.g., somatostatin analogs pasireotide (SOM230) and octreotide
(OCT), or dopamine] plus p38 activators (e.g., cabergoline,
bromocriptine, and fulvestrant) or JNK activators (e.g., ursolic
acid, UA) targeting MAPK signaling pathways (Lu et al., 2019)
might produce better anti-tumor effects on PAs. In addition,
oxidative stress is tightly associated with mitochondrial
dysfunctions, both operate in PAs (Zhan and Desiderio, 2010a;
Li and Zhan, 2019; Long et al., 2019). Some drugs targeting
mitochondria are also recognized as a therapeutic strategy for
PAs, including pyrimethamine, temozolomide, melatonin,
melatonin inhibitors, gossypol acetate, 18 beta-glycyrrhetinic
acid, T-2 toxin, Yougui pill, cyclosporine A, grifolic acid,
paeoniflorin, and dopamine agonists (Li and Zhan, 2019).
Therefore, the combined use of Nrf2 inhibitors targeting Nrf2
signaling and drugs targeting metochondria could be another way
to generate better anti-tumor effects on PAs.

CONCLUSION

Pituitary adenoma (PA) is a common and important disease that
occurs in the hypothalamic-pituitary-target organ axis system
and seriously affects human endocrine system and health. The
imbalance between oxidative stress and the antioxidant defense
system is an important pathophysiological characteristic in PAs,
which has been evidenced by many omics analysis in PA tissues
and experimental studies in PA cells and animal models. Nrf2
signaling is at the heart of oxidative stress response signaling
pathways. Multiple anticancer agents targeting Nrf2-mediated
oxidative stress response pathways have been developed and
tested as potential therapeutic drugs for different cancers.
However, Nrf2 signaling and targeting Nrf2 signaling as a
therapeutic strategy has not yet been extensively studied in

PAs. We strongly recommend the emphasis on in-depth
studies of Nrf2 signaling and potential therapeutic agents
targeting Nrf2 signaling pathways in PAs. Furthermore, the
combined use of Nrf2 inhibitors targeting Nrf2 signaling and
ERK inhibitors plus p38 activators or JNK activators targeting
MAPK signaling pathways, or drugs targeting mitochondria
dysfunction pathway might produce better anti-tumor effects
on PAs.
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ACTH Adrenocorticotropin

AFAR aldo-keto reductase family 7 member A2

AIP Aryl hydrocarbon receptor interacting protein gene

AKR Palmitoyltransferase AKT

AKR1B1 aldo-keto reductase family 1 member B

AKT Protein kinase B

AOX4 Aldehyde oxidase 4

AP-1 Activator protein-1

aPKCι Atypical protein kinase Cι

ARE Antioxidant response element

ARS Acute restraint stress

ASK1 Apoptosis signal-regulating kinase 1

ATF4 Activating transcription factor 4

ATP5A1 ATP synthase subunit alpha, mitochondrial

ATP5B ATP synthase, H+ transporting mitochondrial F1 complex, beta
subunit

BACH1 Transcription regulator protein BACH1

Bax BCL2 associated X, apoptosis regulator

BCL2 BCL2 apoptosis regulator

BR Brusatol

CALM calmodulin

CAT catalase

CBP CREB-binding protein

CBR4 carbonyl reductase 4

CCL2 C-C motif chemokine ligand 2

CCT7 T-complex protein 1 subunit eta

c-FOS Proto-oncogene protein c-FOS

CLPP Caseinolytic protease

COS Chitosan oligosaccharide

COX6B cytochrome c oxidase subunit 6B

c-MAF (MAF) MAF bZIP transcription factor

c-Raf RAF proto-oncogene serine/threonine-protein kinase

CRS Chronic restraint stress

Cul3 Cullin 3-based ubiquitin E3 ligase complex

Cyp cytochrome P

CYP1A cytochrome P450 family 1 subfamily A

CYP2A cytochrome P450 family 2 subfamily A

CYP2C cytochrome P450 family 2 subfamily C

CYP3A cytochrome P450 family 3 subfamily A

CYP4A cytochrome P450 family 4 subfamily A

DBM Dibenzoylmethane

DEG Differentially expressed gene

DEP Differentially expressed protein

DMF Dimethyl fumarate

EPHX1 Epoxide hydrolase 1

EpRE Electrophile responsive element

ER endoplasmic reticulum

ERK Extracellular signal-related kinase

ERK1/2 mitogen-activated protein kinase

ERK5 mitogen-activated protein kinase

ERP29 endoplasmic reticulum protein 29

ESR1 estrogen receptor 1

ESR2 estrogen receptor 2

FKBP5 FK506-binding protein 5

FMO Dimethylaniline monooxygenase [N-oxide-forming]

FPA Functional pituitary adenoma

FRA1 Fos-related antigen 1

FSH Follicle-stimulating hormone

FSHRH Follicle-stimulating hormone-releasing hormone

FTH1 Ferritin heavy polypeptide 1

FTL1 ferritin light polypeptide

GA Gallic acid

GCLC glutamate-cysteine ligase catalytic subunit

GCLM glutamate-cysteine ligase modifier subunit

GH Growth hormone

GPX4 glutathione peroxidase 4

GPX’s Glutathione peroxidases

GRP94 94 kD glucose-regulated protein

GSK3β glycogen synthase kinase 3β

GSR glutathione reductase

GST glutathione S-transferase

GSTM2 glutathione S-transferase mu 2

HERPUD1 Homocysteine-responsive endoplasmic reticulum-resident
ubiquitin-like domain member 1 protein

HIP2 Ubiquitin-conjugating enzyme E2 K

HO-1 heme oxygenase 1

HSP22/40/90 heat shock proteins 22, 40 and 90

HSP27 heat shock protein 27

HSP70 (HSPA4) heat shock protein family A member 4

HSP90 heat shock protein 90

HSP90AA1 heat shock protein 90 alpha family class A member 1

HSP90AB1 heat shock protein 90 alpha family class B member 1

HSP94 heat shock protein 94

HSPA5 heat shock protein family A (Hsp70) member 5

HSPA8 heat shock protein family A (Hsp70) member 8

HSPA9 heat shock protein family A (Hsp70) member 9
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HSPCA (HSP90AA1) heat shock protein 90 alpha family class A
member 1

HSPCB (HSP90AB1) heat shock protein 90 alpha family class B member 1

IL-1β interleukin 1 beta

IL-6 interleukin 6

iNOS Inducible nitric synthase

IP3R (ITPR1) inositol 1,4,5-trisphosphate receptor type 1

Ipt Iptakalim

JNK Jun N-terminal kinase

JNK1 (MAPK8) mitogen-activated protein kinase 8

JNK 2 (MAPK9) mitogen-activated protein kinase 9

JUN Jun proto-oncogene, AP-1 transcription factor subunit

K-ATP ATP-sensitive potassium

Keap1 Kelch-like ECH-associated protein 1

LH Luteinizing hormone

LHRH Luteinizing hormone-releasing hormone

LIG Z-ligustilide

Maf Musculoaponeurotic fibrosarcoma

MAPKs Mitogen-activated protein kinases

MEK Mitogen-activated protein kinase kinase (MAPKK)

MEKK Mitogen-activated protein kinase kinase kinase (MAPKKK)

MN Micronucleus

MRP1 multidrug-resistant protein-1

NAC N-acetylcysteine

NAF-1 Nutrient-deprivation autophagy factor-1

NDEA N-nitrosodiethylamine

NDUFS8 (NADH) ubiquinone oxidoreductase core subunit S8

NF-kB Nuclear factor kB

NFPA Nonfunctional pituitary adenoma

NME1 NME/NM23 nucleoside diphosphate kinase 1

NO Nitric oxide

NQO1 NAD(P)H:quinine oxidoreductase 1

Nrf2 Nuclear factor erythroid 2 p45-related factor 2

Nur77 (NR4A1) nuclear receptor subfamily 4 group A member 1

O2.- Superoxide radical

8-OHdG 8-hydroxy-2’-deoxyguanosine

OCT octreotide

OH hydroxyl radical

ONOO- Peroxynitrite anion

PA Pituitary adenoma

PACAP38 Pituitary adenylate cyclase-activating polypeptide 38

PDK1 pyruvate dehydrogenase kinase 1

PERK the double-stranded RNA (PKR)-activated protein kinase-like
eukaryotic initiation factor 2 kinase

PFK phosphofructokinase

PI3K Phosphatidylinositol 3 kinase

PINK1 PTEN-induced putative kinase protein 1

PKA cAMP dependent protein kinase

PKC protein kinase C

POMC proopiomelanocortin

PPIB Peptidyl-prolyl cis-trans isomerase B

PP2C putative protein phosphatase

PRDX1 peroxiredoxin 1

PRL Prolactin

PSM multiple subunits of the 20S proteasome

Pter Pterostilbene

PTPLAD1 3-hydroxyacyl-CoA dehydratase 3

Ras GTPase Ras

RNS Reactive nitrogen species

ROS Reactive oxygen species

SA Senkyunolide A

SFN Sulforaphane

SOD Superoxide dismutase

SOD1 superoxide dismutase 1

SOM230 somatostatin analogs pasireotide

SQSTM1 sequestosome-1 protein

SR-B1 Scavenger receptor class B member 1

STIP1 stress induced phosphoprotein 1

TAC Total antioxidant capability

TAK1 TGF beta-Activated Kinase 1

TGM2 transglutaminase 2

TLR4 toll like receptor 4

TNFα tumor necrosis factor alpha

TRXR1 thioredoxin reductase 1

TUBB tubulin beta class I

TUBB2A tubulin beta 2A class IIa

TXN1 thioredoxin

UBB Polyubiquitin-B

UB2R1 Ubiquitin-conjugating enzyme E2 R1

UGT UDP glucuronosyl transferase

USP14 ubiquitin-specific peptidase 14

UV ultraviolet

VCP valosin-containing protein
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