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Editorial on the Research Topic

Perturbation of RNA Binding Protein Regulation in Cancer

RNA-bind proteins (RBPs) are typically types of proteins that bind RNA to play critical roles in
development or cancer (Pereira et al., 2017; Mohibi et al., 2019). Recent studies have identified
thousands of RBPs and also revealed the dysregulation of RBPs in various kinds of cancer
types, such as mutation (Chen et al., 2019), copy number variation (Xu et al., 2019), expression
perturbation as well as perturbations of RBP-gene regulation (Zhang et al., 2020).

With the development of high throughput sequencing technology, some recent studies have
highlighted precise dysregulated RBPs in specific cancers. Lung cancer is the leading cause of deaths
worldwide and dysregulation of RBPs has been found in lung squamous cell carcinoma (LUSC).
Li et al. analyzed the gene expression and clinical information from The Cancer Genome Atlas
(TCGA) and observed 300 aberrantly expressed RBPs. These RBPs were mainly associated with
mRNA metabolic processes, RNA modification and cancer-related signaling pathways. Moreover,
they identified nine RBP genes for constructing a prognostic model in LUSC. In another study,
Zhang et al. characterized the clinical relevance of RBPs in colorectal cancer. First, 242 differentially

expressed RBPs were identified and eight RBPs were found to be related with the prognoses of
colorectal cancer patients. Four RBPs (NOL3, PTRH1, UPF3B, and SMAD6) were used to construct
the prognostic risk score model. In addition, Zhong et al. also constructed a prognostic model based
on RBP expression in kidney renal clear cell carcinoma. Furthermore, potential drugs for cancer
were predicted based on the Connectivity Map database. Moreover, RBPs were also play important
roles during cancer progression (Wang et al.).

In addition, although some targets of RBPs were identified based on computational or
experimental methods, the genome-wide RBP-gene regulatory network in cancer is largely
unknown and little is known about the synergetic interaction between RBPs and other regulators.
In recent studies, co-expression network analysis was applied to predict the function of RBPs
(Wu et al.). In the past decade, these studies about RBPs mainly focused on mutations in RBPs
or their target genes. However, it has been increasing appreciated that many driver mutations
might perturb molecular interactions or regulatory networks (Mosca et al., 2015; Yi et al., 2017).
Recently, a computational method Mutational Effect on RNA Interactome Topology (MERIT)
was proposed to analyze the RBP-gene regulatory networks across cancer types (Li et al., 2019a).
All these results provide insights into characterizing perturbed RBP-RNA regulatory networks in
cancer, as well as the genotype-phenotype relationships underlying human cancers, and RBPs are
potential biomarkers for precision medicine.
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The methylation of N6 adenosine (m6A) plays a critical role
in diverse biological processes (Li et al., 2019b). Moreover, recent
studies have revealed that RBPs also play important roles in RNA
methylation. IGF2BP3 was identified as a potential oncogene
across multiple cancer types and also play important roles in
tissue development (Xu et al., 2021; Zhang et al., 2021). These
studies provide another regulatory layer of RBPs in cancer.

In summary, RBPs play important roles in cancer
development and progression. All these integrated analysis
provided detailed knowledge of the function of the RBPs in
cancer, which will facilitate the development of rational therapies
for cancer.
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Breast cancer is the most common cancer in women, but few biomarkers are effective in
clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis,
prognosis, and therapy selection for breast cancer and have suggested the significance of
integrating molecules at different levels to interpret the mechanism of breast cancer. Here,
we collected transcriptome data including long non-coding RNA (lncRNA), microRNA
(miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma
samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We
identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished
invasive carcinoma samples from normal samples. We further constructed an
integrated dysregulated network consisting of differentially expressed lncRNAs,
miRNAs, and mRNAs and found housekeeping and cancer-related functions.
Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are
essential to maintain cell survival were found in the dysregulated network, and 10 were
correlated with overall survival. In addition, we identified two modules that stratify patients
into high- and low-risk subgroups. The expression patterns of these two modules were
significantly different in invasive carcinoma versus normal samples, and some molecules
were high-confidence biomarkers of breast cancer. Together, these data demonstrated
an important clinical application for improving outcome prediction for invasive
breast cancers.

Keywords: lncRNAs, RNA binding protein, miRNAs, integrative analysis, invasive breast carcinoma, biomarker
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INTRODUCTION

In women, breast cancer is the most commonly diagnosed cancer
and accounts for ~30% of new cancer diagnoses (Siegel et al.,
2017). Great improvements have been achieved in diagnosis,
surgery, and medical treatment for breast cancer in the past
decades. From 1989 to 2016, the death rate for breast cancer
dropped by 40% for female breast cancers in the United States.
However, it has still been the second leading cause of cancer
death in women in the last ten years (Siegel et al., 2017). Invasive
breast carcinoma accounts for about 80% of breast cancer
(Weigelt et al., 2008) and exhibits high heterogeneity in terms
of morphology, clinical features, and prognosis (Milanovic et al.,
2013), and the regulatory mechanisms at the genomic level still
thus need to be unearthed.

Many studies have investigated the pathogenesis underlying
breast cancer and have discovered diagnostic and prognostic
markers. In 2006, a study reported altered expression patterns of
microRNAs (miRNAs) during initiation and progression and
their relationship with cancer diagnosis, staging, and prognosis
(Calin and Croce, 2006). Another study investigated the
expression of deregulated miRNAs in breast cancer and found
correlations of altered miRNA expression with estrogen receptor
expression, vascular invasion, and other clinicopathological
characteristics (Iorio et al., 2005). Long non-coding RNAs
(lncRNAs) represent a new class of non-coding RNAs that are
at least 200 nucleotides in length and do not possess a clearly
defined open reading frame (Ponting et al., 2009). lncRNAs are
critical regulatory factors in cancer initiation and progression (Li
and Chen, 2013; Yang et al., 2014). The lncRNA DSCAM-AS1
holds a central position in estrogen receptor (ER)-regulated
breast cancer and modulates tamoxifen resistance and tumor
progression (Niknafs et al., 2016). Another lncRNA, MAGI2-
AS3, can target the Fas/FasL signaling pathway to suppress cell
growth in breast cancer (Yang et al., 2018b). Furthermore, a 12-
lncRNA signature has been proposed that can be used to identify
breast cancer patients at high risk of tumor recurrence, which
could be utilized in clinic (Zhou et al., 2016b). Recently, some
studies have shown that post-transcriptional regulatory networks
can be regulated by molecules at multiple levels (Wei et al., 2017;
Liu et al., 2019). By constructing a ceRNA network, a 10-lncRNA
signature has been proposed that classified patients into high-
and low-risk subgroups with significantly different survival
outcomes, highlighting the value of integrating data sets from
multiple levels (Zhou et al., 2016a). Mir-21 and lncRNA AWPPH
regulate cancer cell chemosensitivity and proliferation in triple-
negative breast cancer (Liu et al., 2019). Mir-223 promotes breast
cancer cell proliferation by targeting FOXO1 and provides a new
potential tumor marker (Wei et al., 2017). The above results
imply the significance of integrating molecules at different
regulatory levels for interpreting the mechanism of breast
cancer, especially in invasive breast carcinoma.

RNA-binding proteins (RBPs) are a type of proteins that bind
RNA through its globular RNA-binding domains (RBDs)
(Hentze et al., 2018). RBPs can bind mRNA, pre-rRNA, tRNA,
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA)
and residual ncRNA (Gerstberger et al., 2014) and can alter the
Frontiers in Genetics | www.frontiersin.org 27
fate or function of the bound RNAs during post-transcriptional
gene regulation (PTGR), which correlates with the stability,
transport, localization, and degradation of different RNAs.
They act as important participants in gene regulation (Nishida
et al., 2017) and play an important role in maintaining genome
integrity (Gerstberger et al., 2014). RBPs have been found to be
closely related to many human diseases and to be involved in a
wide range of biological processes, such as tumorigenesis,
proliferation, development, and apoptosis, by interacting with
mRNA (Frisone et al., 2015; Grammatikakis et al., 2017),
microRNA (Ciafre and Galardi, 2013), and lncRNA (Luo et al.,
2013; Schmitt and Chang, 2016). There are ~20,000 protein-
coding genes in humans, and 7.5% of genes are involved in RNA
metabolism by binding to RNA (Hentze et al., 2018). But only a
few RBPs have received intensive study.

The Cancer Genome Atlas (TCGA) project was launched in
2005 and has accelerated the comprehensive understanding of
cancer genomic profiles, thus improving diagnostic methods,
therapy standards, and preventive strategies. TCGA has released
thousands of high-throughput molecular profiles at different
levels, which help researchers better understand cancer
pathogenesis, diagnosis, and prognosis. In this study, we
integrated the expression profiles of breast cancer at multiple
levels (lncRNA, miRNA, and mRNA) across ~1,200 samples,
including 1079 invasive breast carcinoma samples as well as 104
normal samples. We identified differentially expressed lncRNAs,
miRNAs, and mRNAs and then constructing a lncRNA-miRNA-
mRNA dysregulated network, which is a power-law, small-world
network. RBPs were found in the dysregulated network, and
some of them are related to overall survival time. In addition, two
modules were identified and exhibited a correlation with the
overall survival time. Further analysis showed that these modules
have significantly different expression patterns in cancer versus
normal samples. To better understand these two modules, we
mined the literature for the molecules in each module and found
that some molecules play important roles in breast
cancer biology.
MATERIALS AND METHODS

RNA-Seq Expression Data Sets
and Pre-Processing
RNA-seq expression data sets of ~1200 patient samples were
downloaded from TCGA (https://portal.gdc.cancer.gov/),
comprising 1079 invasive breast carcinoma samples and 104
normal samples (Table S1). MRNA, lncRNA, and miRNA were
included in each sample. Using Perl scripts, we combined ~1200
files into a single profile. The lncRNA expression profile was
extracted from the profile based on the latest annotation from the
Ensembl database. The biotypes of known lncRNAs are
3prime_overlapping_ncrna, ambiguous_orf, antisense,
antisense_RNA, lincRNA, ncrna_host , non_coding,
non_stop_decay, processed_transcript, retained_intron,
sense_intronic, and sense_overlapping. The biotype of protein-
coding genes is protein_coding. In total, 19951 mRNA, 15949
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lncRNA, and 1881 miRNA were obtained from TCGA. Based on
previously published papers (Yan et al., 2015; Li et al., 2018b; Pan
et al., 2018), RNAs with expression 0 in more than 10% of
normal samples were eliminated.

Analysis of Differential Expression
Between Breast Carcinoma and
Normal Samples
Differentially expressed molecules were identified through the
use of previously reported methods (Li et al., 2015; Li et al.,
2018b). Firstly, RNAs were divided into two groups. RNAs with
an expression level equal to 0 in <30% tumor samples were
subjected to a t-test, and RNAs with an expression level equal to
0 in >30% tumor samples were subjected to a Fisher’s exact test.
For the RNAs in the first group, RNAs with a fold change larger
than 2 (or smaller than 0.5) and an adjusted p-value smaller than
0.01 were identified as differentially expressed. For RNAs in the
second group, we determined their expression in binary fashion:
ON (expressed, expression value larger than 0) and OFF (not
detected, expression value equal 0). Firstly, the frequencies of ON
and OFF in breast carcinoma and normal samples were
calculated, respectively. RNAs expressed twice more frequently
in cancer than in normal samples were marked as ‘ON in cancer’;
otherwise, RNAs were marked as ‘OFF in Cancer.’ Then, for each
RNA, the significance of the contingency between ON/OFF and
cancer/normal status was calculated by Fisher’s exact test with
adjustment for multiple testing via the Benjamini-Hochberg
method. RNAs with FDR smaller than 0.01 was used. In total,
4269 differentially expressed protein-coding genes were
identified, as well as 3057 differentially expressed lncRNAs and
367 differentially expressed miRNAs (Tables S2–S5). Validation
of the differentially expressed RNAs was performed by extracting
the expression values and normalized them based on Z-score.
After that, based on the R package ‘pheatmap,’ samples were
clustered using differentially expressed lncRNAs, miRNAs, and
mRNAs, respectively. PCA was also used to cluster the samples.

Ago CLIP-Seq-Supported miRNA
Target Sites
miRNA target sites were predicted using a target prediction
algorithm from miRanda (Betel et al., 2010) with the default
parameters. 3’UTR was used to predict target sites for mRNA,
while for lncRNA, the full length of the lncRNA transcript was
used. It has been reported that miRNAs function in the form of
ribonucleoprotein complexes, RISCs (RNA-induced silencing
complexes) (Fabian et al., 2010), and Argonaute (AGO)-family
proteins represent the best-characterized protein components
and are central to RISC function (Eulalio et al., 2008; Chekulaeva
and Filipowicz, 2009). Ultraviolet (UV) crosslinking and
immunoprecipitation (CLIP) was used to identify specific
protein-RNA interactions (Konig et al., 2012). Hence the
function of the Argonate-RNA-miRNA complex can be
verified through CLIP technology (Chou et al., 2013). Here we
downloaded AGO 1/2 CLIP-Seq datasets from starBase v2.0 (Li
et al., 2014a) and identified AGO binding sites to filter candidate
miRNA target sites. A target was reserved only if it overlapped
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with at least one AGO binding site. In total, 41632 miRNA-
lncRNA regulatory relationships were predicted, including 1176
lncRNAs and 2509 miRNAs, and 1247237 miRNA-mRNA
regulatory relationships were predicted, including 18252
protein-coding genes and 2511 miRNAs (Tables S6 and S7).

Constructing the Dysregulated lncRNA-
miRNA-mRNA Network
Based on the interactions of miRNA-lncRNA and miRNA-
mRNA, we constructed an initial lncRNA-miRNA-mRNA
network. A three-step filtering process was then performed: 1)
RNAs that were not differentially expressed were filtered; 2) the
expression of each RNA pair (miRNA-lncRNA or miRNA-
mRNA) should be significantly correlated (p-value < 0.01 and |
correlation coefficient| > 0.4) across samples based on Pearson
correlation; 3) only miRNAs that were shared by both lncRNA
and mRNA were considered. The dysregulated network was
constructed based on 876 interactions and 539 differentially
expressed molecules, including 75 miRNAs, 63 lncRNAs, and
401 protein-coding genes (Table S8). The network was
visualized using Cytoscape (Shannon et al . , 2003).
CytoCluster (Li et al., 2017), a Cytoscape plugin for cluster
analysis and visualization of biological networks, was used to
identify modules, employing the graphically based IPC-MCE
algorithm and adopting the default parameter values (0.6 as
the Threshold).

Survival Analysis
The clinical data of all of the breast cancer patients were
downloaded from TCGA. Perl scripts were used to extract the
information regarding days to last follow up and vital status
(alive or dead) for each invasive breast carcinoma patient. For
each module, the average value in each sample was used.
Modules that relate to the overall survival were identified by
clustering the samples into two classes based on K-means
Clustering. An R package, ‘survival’ was then used to 1)
construct a surv object using the function ‘Surv’ based on the
status and time, 2) create fitted survival curves with the Kaplan-
Meier algorithm, using the function ‘survfit’ based on the surv
object and class label, and 3) test for a difference between the two
survival curves using a log-rank test. P-value < 0.05 was set as the
cutoff. All reported p-values were two-sided.

Functional Enrichment Analysis
In order to investigate functional roles, GO and KEGG analyses
were performed based on protein-coding genes in the network
using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID, version 6.8) (Huang da et al., 2009; Huang
et al., 2009). Cancer hallmarks related GO terms were identified
by two previous studies (Subramanian et al., 2005; Plaisier et al.,
2012). Additionally, PANTHER (Mi and Thomas, 2009) (https://
reactome.org/) and REACTOME (Croft et al., 2011) (http://
pantherdb.org/) pathway analysis were performed. To further
investigate the functional roles, GAD, a database of genetic
association data from complex diseases and disorders, was also
used by DAVID (Huang da et al., 2009; Huang et al., 2009).
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Cancer Genes
Two cancer gene lists were used to further validate the roles in
cancer. The first one was compiled by by Mertins et al. (2016),
who collected 415 oncogenes and tumor suppressors from
UniProt (https://www.uniprot.org/) and published papers.
Another list of 524 genes that had been implicated in
malignant transformation according to a catalog of somatic
mutations in cancer (COSMIC, http://cancer.sanger.ac.uk/
cancergenome/projects/census) was collected by Uhlen et al.
(Uhlen et al., 2015). In total, 724 potentially cancer-related
genes were used (Table S9).
RESULTS

Differentially Expressed RNAs Distinguish
Invasive Breast Carcinoma From
Normal Tissues
We acquired the expression profiles of mRNA, lncRNA, and
miRNA from TCGA, which contains 1183 samples, comprising
1079 invasive breast carcinoma samples and 104 normal samples
(Table S1). Differentially expressed molecules were identified
using the method detailed in Li et al. (2018b). RNAs with an
expression level equal to 0 in <30% tumor samples were
subjected to t-test, and RNAs with an expression level equal to
0 in >30% tumor samples were subjected to Fisher’s exact test
(see Methods). In total, 4269 protein-coding genes that were
differentially expressed between invasive breast carcinoma and
normal samples were identified, including 2349 up-regulated and
1920 down-regulated genes (Tables S2 and S3). For lncRNAs,
3057 differentially expressed molecules were identified, of which
2033 were up-regulated and 1024 were down-regulated (Tables
S2 and S4). Additionally, 367 differentially expressed miRNAs
were identified. 152 miRNAs were up-regulated, and 215 were
down-regulated (Tables S2 and S5).

We validated our differentially expressed molecules by
performing unsupervised hierarchical cluster analyses for the
1179 invasive breast carcinoma samples and 104 normal samples
using the R package ‘pheatmap’ with the default distance. The
invasive breast carcinoma samples were clearly distinguished
from normal samples in terms of differentially expressed
lncRNAs, protein-coding genes, and miRNAs, respectively
(Figures 1A–C). To further check these differentially expressed
molecules, principle component analysis (PCA) analyses were
performed using the R function ‘prcomp.’ Consistent with the
unsupervised hierarchical clustering, the first two principal
components could distinguish the tumor samples from normal
samples (Figures 1D–F).

The Dysregulated Network Is a Biological
Network Performing Housekeeping and
Cancer-Related Functions
All of the differentially expressed molecules mentioned above were
used to construct the dysregulated network. We predicted miRNA
target sites for all protein-coding genes and lncRNAs based on the
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algorithm from miRanda (Betel et al., 2010), using the default
parameters (see Methods). It has been reported that miRNA
functions in the form of ribonucleoprotein complexes, RISCs
(RNA-induced silencing complexes) (Fabian et al., 2010), and
Argonaute (AGO)-family proteins represent the best-
characterized protein components and are central to RISC
function (Eulalio et al., 2008; Chekulaeva and Filipowicz, 2009).
Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP)
was used to identify specific protein-RNA interactions (Konig
et al., 2012). Hence, the function of the Argonate-RNA-miRNA
complex can be verified through CLIP technology. Candidate
miRNA and target site pairs were filtered by the AGO 1/2 CLIP-
seq data from starBase (Li et al., 2014a) (see Materials and
Methods). A total of 41632 interactions, including 2509
miRNAs and 1176 lncRNA targets, were predicted as well as
1247237 interactions between 2577 miRNAs and 18252 protein-
coding genes (Tables S6 and S7). Next, based on the three-step
filtering process (see Materials and Methods), a dysregulated
network was constructed from 876 interactions and 539
differentially expressed molecules, including 75 miRNAs, 63
lncRNAs, and 401 protein-coding genes (Figure 2A, Table S8).

It has been shown that many biological networks are small-
world networks (Latora and Marchiori, 2001; Wagner and Fell,
2001), which have also been reported to be scale-free networks
(Amaral et al., 2000). We tested whether our dysregulated
network is a scale-free network by analyzing the degree
distribution, which is one of the most important characteristics
of a scale-free network and is defined as the number of edges
incident to a node. As shown in Figure S1A, more than 88% of
nodes had less than five edges, whereas only 6% of nodes had
more than 10 edges. It fitted a power-law distribution with R2 =
0.86 and correlation = 0.99, suggesting that our network is a
scale-free network (Barabasi, 2009). In addition, most of the
shortest paths were between 4 and 6 (Figure S1B), which is
consistent with the property of a small-world network. Closeness
is a measure of how close an individual is to other individuals in a
network (Borgatti, 1995; Costenbader and Valente, 2003). The
more central a node is, the closer it is to all other nodes. As
shown in Figure S1C, the majority of nodes were highly central.
Together, these data revealed that our dysregulated network is a
scale-free and small-world network, indicating that our network
is a canonical biological network.

The functions of the dysregulated network were investigated
by using the protein-coding genes in this network to perform
functional enrichment analysis (see Methods). All top-ten
enriched gene ontology (GO) terms were related to cell cycle,
mitotic nuclear division, and nuclear division (Figure 2B). These
were all housekeeping functions for maintaining cell survival. We
further acquired all of the housekeeping genes identified by Jiang
et al. (2018) and found that 84 (21%) protein-coding genes in our
dysregulated network were housekeeping genes (Table S10). In
addition, based on a previous study (Salem et al., 2016), we
obtained a list of GO terms related to hallmarks of cancer and
found that these terms were also enriched in our network
(Figure 2C). For example, signal transduction (GO:0007165)
and positive regulation of cell proliferation (GO:0008284) are
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Self Sufficiency in Growth Signals, while negative regulation of
cell proliferation (GO:0008285) and negative regulation of cell
cycle (GO:0045786) are Insensitivity to Antigrowth Signals.
Taken together, our dysregulated network demonstrated
important and functional roles.

Moreover, we performed pathway enrichment analyses using
three different pathway databases, the Kyoto Encyclopedia of
Genes and Genomes (KEGG), PANTHER (Mi and Thomas,
2009), and REACTOME (Croft et al., 2011). For the KEGG
pathway, housekeeping and cancer-related functions were again
enriched (Figure S2A). The housekeeping functions were cell
cycle and axon guidance, and the cancer-related functions were
pathways in cancer, Melanoma, Colorectal cancer and Prostate
cancer (Figure S2A). For the PANTHER and REACTOME
pathway databases, most of the top terms were housekeeping
functions (Figures S2B, C).

To further validate their important roles in cancer, we
obtained 415 oncogenes and tumor suppressors from Mertins
et al. (2016) and 524 genes that have been implicated in
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malignant transformation from Uhlen et al. (2015). In total,
724 cancer genes were used (Table S9). 656 of them were
expressed in our dataset, and 31 were in our network (Figure
S2D). Based on a hypergeometric test, the p-value was 7.46E-05,
which suggested that our dysregulated network was significantly
enriched in cancer-related genes. We further performed
functional enrichment analysis using DAVID (Huang da et al.,
2009; Huang et al., 2009) based on the Genetic Association
Database (GAD), which is a database of genetic association data
from complex diseases and disorders. Surprisingly, breast cancer
was the most enriched term (Figure 2D), which corroborated the
important roles of our dysregulated network in cancer biology.

RBPs in Our Dysregulated Network
Next, we investigated the RBPs in our dysregulated network.
Based on published papers (Cook et al., 2011; Gerstberger et al.,
2014; Fredericks et al., 2015; Hentze et al., 2018), 58 RBPs were
found in our dysregulated network, of which 28 were upregulated
and 30 were downregulated (Table S11). To improve our
FIGURE 1 | Clustering based on differentially expressed molecules. Unsupervised hierarchical clustering of all samples based on differentially expressed lncRNAs
(A) protein-coding genes (B) and miRNAs (C). The unsupervised hierarchical clustering was performed using an R package, ‘pheatmap’ with the default distance
setting, Euclidean distance. (D–F) PCA analysis based on differentially expressed lncRNAs (D), protein-coding genes (E), and miRNAs (F). PCA analysis was
performed by the R function ‘prcomp’.
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understanding of the roles of RBP in invasive breast carcinoma,
STRING (https://string-db.org/) was used to construct a protein–
protein interaction (PPI) network (Figure 3A). Random networks
of the same size were generated by STRING, which was used to
assess whether the given network had more internal interactions
than would be expected for a random set of the same size. A small
PPI enrichment p-value indicates that the nodes are not random
and that the observed number of edges is significant. Based on
STRING, the PPI enrichment p-value was 1.0e-16, which means
that these RBPs have more interactions than would occur in a
random set. This enrichment indicated that these RBPs are at least
partially biologically connected as a group. The GO analysis
showed that all top 10 molecular function (MF) terms were
binding-related functions and the top two were poly(A) RNA
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binding and RNA binding, which further confirms that they are
RBPs (Figure 3B), and that these RBPs are involved biological
processes that are essential to maintain cell survival like cell cycle,
cell division, DNA packaging, and chromosome organization
(Figure 3C). Moreover, GAD enrichment analysis was also
performed, and it is worth noting that breast cancer was again
the most enriched term (Figure S3).

To investigate whether these RBPs were associated with
prognosis in invasive breast carcinoma patients, the overall
survival for each RBP was calculated using the R package
‘survival’ (see Methods). Ten RBPs (CDKN2A, DCAF13,
DNMT3B, EXO1, FANCI, KPNA2, RACGAP1, SORBS1,
TP63, and ZNF106) were significantly associated with overall
survival, including seven upregulated and three downregulated
FIGURE 2 | Functional analysis for the dysregulated network. (A) The dysregulated lncRNA-miRNA-mRNA network. The network was visualized using Cytoscape.
(B) The top 10 enriched GO terms. (C) The top 10 enriched cancer hallmark-related GO terms. (D) The top 10 enriched GAD terms.
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RBPs (Figures S4 and S5). Notably, some were reported to play
roles in breast cancer (see Discussion). Overexpression of
DCAF13, DNMT3B, KPNA2, EXO1, FANCI, RACGAP1, and
ZNF106 in invasive breast carcinoma patients showed poor
survival, while overexpression of CDKN2A, SORBS1, and
TP63 showed better survival (Figures S4 and S5).
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Modules in the Dysregulated Network
Relate to the Survival of Invasive Breast
Carcinoma Patients
To further investigate the roles of our dysregulated network,
CytoCluster (Li et al., 2017), a Cytoscape plugin for cluster
analysis and visualization of biological networks, was used to
FIGURE 3 | RBPs in the dysregulated network. (A) Protein–protein interaction (PPI) network of RBPs based on STRING. (B) The top 10 enriched GO MF terms.
(C) The top 10 enriched GO BP terms. BP, biological process.
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identify modules (see Methods). Subsequently, to explore the
relationship between the modules and the prognosis of patients
with invasive breast carcinoma, the overall survival for each
module in invasive breast carcinoma patients was investigated
Frontiers in Genetics | www.frontiersin.org 813
(see Methods). We found that two modules were significantly
(p < 0.05) correlated with overall survival (Figures 4A–D).
Moreover, their expression patterns in normal and invasive
breast carcinoma samples were assessed. These two modules
FIGURE 4 | Analysis of modules identified from the dysregulated network. (A, B) The two modules identified from the dysregulated network using Cytoscape with
default parameters. (C, D) Kaplan-Meier plot of survival for these two modules. (E) Expression patterns of the modules in normal and cancer samples. The average
expression value of each molecule crossing all normal/cancer samples was used.
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showed significant differences in expression patterns between
normal and invasive breast carcinoma samples (Figure 4E). Both
showed significantly lower expression in invasive breast
carcinoma samples, indicating that lower expression of these
modules contributes to the development of invasive
breast carcinoma.

In addition, to further investigate the functions of these two
modules in breast cancer, literature-mining was used for the
molecules in each module. Module 1 had 25 nodes, including
eight miRNAs, two lncRNAs, and 15 protein-coding genes.
Twenty-two of the molecules, including all of the miRNAs,
have been shown to play important roles in breast cancer. For
example, mir-195 inhibits tumor growth and metastasis in breast
cancer cells (Singh et al., 2015; Wang et al., 2016c). Mir-497
contributes to cell proliferation, migration, and invasion of
estrogen receptor alpha-negative breast cancer by targeting
estrogen-related receptor alpha (Han et al., 2016; Wu et al.,
2016b). TGFBR3 inhibits breast cancer progression through
TGF-beta signaling (Lee et al., 2010). In addition, other
molecules in module 1 such as ADAMTS5 (Fontanil et al.,
2017), ARHGAP20 (Asaduzzaman et al., 2017), C2orf88 (Lo
et al., 2015), EZH1(Liu et al., 2012), FAM13A (Goto-Yamaguchi
et al., 2018), FGF1 (Slattery et al., 2013), GNAL (Yi et al., 2009),
GRAMD3 (Boiles et al., 2015), PELI2 (Zang et al., 2017), PLSCR4
(Sahay et al., 2015), PTPN14 (Belle et al., 2015), RBMS3 (Zhu
et al., 2019a), SH3BGRL2 (Alexe et al., 2007; Wen et al., 2018),
let-7c (Fu et al., 2017), mir-100 (Jiang et al., 2016b), mir-10b
(Wang et al., 2016b), mir-125b (Wang et al., 2019a), mir-139
(Dai et al., 2017), and mir-21 (Yan et al., 2008; Yanwirasti and
Arisanty, 2017; Zhu et al., 2019b) have been reported to play
important roles in breast cancer. Module 2 had nine nodes,
including two miRNAs, five lncRNAs, and two protein-coding
genes. Five of these molecules have been shown to play
important roles in breast cancer. For example, Wang et al.,
(2019b) reported that overexpression of miR-377 correlates
with better prognosis in triple-negative breast cancer.
ADAMTS-5 may alter the cellular microenvironment, affecting
the balance between protumor and antitumor effects (Fontanil
et al., 2017). SNCA is the hub gene and is involved in promoting
tumor invasion in breast cancer (Serra-Musach et al., 2012; Dang
et al., 2016). Besides, molecules in module 2 like the lncRNAs
(HCG11) (Liu et al., 2016) and mir-195 (Singh et al., 2015; Wang
et al., 2016c) have also been reported to play roles in breast
cancer. We also performed key driver analysis (KDA) (Bin
Zhang , 2013) to identify key drivers in our network, and all of
the miRNAs from our two modules were identified as key
drivers. All of these results imply the important roles and vital
functions of these two modules in breast cancer biology.
DISCUSSION

Breast cancer is a leading type of cancer in women worldwide
(Stewart and Wild, 2014). Many improvements have been made
in diagnostic techniques, surgical skills, and medical treatments
relating to breast cancer in the past decades. However, it still
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caused 522,000 deaths in 2012 (Stewart and Wild, 2014). It is
imperative to improve the diagnosis and treatment of breast
cancer further. Therefore, the identification of cancer-related
molecules and the exact regulatory mechanism of breast cancer
initiation and development are attracting increasing attention.

It has been reported that lncRNAs and miRNAs play
important roles in breast cancer, as do protein-coding genes
(Cizkova et al., 2013; Li et al., 2014b; Kim et al., 2015; Yang et al.,
2018b). Here we integrated the expression data of lncRNA,
miRNA, and protein-coding genes based on ~1200 invasive
breast carcinoma and normal samples from TCGA. A total of
4269 differentially expressed protein-coding genes, 3057
differentially expressed lncRNAs, and 367 differentially
expressed miRNAs were identified. Based on unsupervised
hierarchical clustering and PCA, the samples from invasive
breast cancer were distinguished from the normal samples. To
construct a dysregulated network, we predicted miRNA targets
using an algorithm from miRanda (Betel et al., 2010) with the
default parameters. As mature miRNA is part of an active RNA-
induced silencing complex (RISC) (Rana, 2007) and the Ago
family is central to RISC function (Tang, 2005), AGO CLIP-Seq
data were applied to achieve highly convincing miRNA targets.
Based on the differentially expressed lncRNAs, miRNAs, and
protein-coding genes, an initial dysregulated lncRNA-miRNA-
mRNA network was built. After three-step filtering, the final
network was constructed, consisting of 876 interactions and 539
differentially expressed molecules.

Next, we analyzed this network through different aspects—
the distribution of degree, shortest path, and closeness centrality
—which showed that the dysregulated network is a scale-free,
small-world network and a meaningful biological network. To
further understand the function of the dysregulated network,
functional enrichment analysis was performed. The top-10 GO
terms showed housekeeping functions in our network.
Furthermore, terms related to cancer hallmarks were also
found, based on a previous study (Salem et al., 2016).
Enrichment analysis with three different pathway databases
supported the housekeeping and cancer-related functions in
our dysregulated network. Based on two previous studies, 716
potential cancer genes were obtained, and further analysis
showed enrichment in these cancer-related genes. Furthermore,
we found that breast cancer was the most enriched term based on
GAD, suggesting the important role of our dysregulated network
in cancer biology.

It was known that RBPs play a central role in the regulation of
gene expression, and dysregulated expression of RBPs has been
related to the development of cancers (Galante et al., 2009; Bebee
et al., 2014; Wang et al., 2015; Correa et al., 2016). In the present
study, we identified 58 RBPs in our dysregulated network, and
these were confirmed by GO BP analysis. These RBPs are
involved in biological processes that are essential to
maintaining cell survival. Based on STRING, we found that
these RBPs had more interactions among themselves than
what would be expected, indicating that they are at least
partially biologically connected. Interestingly, GAD enrichment
analysis again showed that breast cancer was the most enriched
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term. In addition, 10 RBPs were found to be associated with the
overall survival of invasive breast carcinoma patients, which
suggested that they might be associated with tumor
progression, invasion, and aggressiveness. Indeed, some have
been reported to play roles in breast cancer. TP63 is a sequence-
specific DNA binding transcriptional activator or repressor
(Zhou et al., 2016b). In breast cancer, high expression of TP63
coupled with STAT6 has been shown to be associated with longer
metastasis-free survival, indicating that TP63 could be involved
in inhibiting the migration of breast cancer cells (Papageorgis
et al., 2015). By silencing TP63 expression, breast cancer cells
acquired increasing resistance to cisplatin, suggesting its role in
drug reaction (Mendoza-Rodriguez et al., 2019). SORBS1 is an
adaptor protein, and its overexpression inhibits the invasive
capacity of tumor cells in breast cancer patients. Silencing
SORBS1 promoted EMT and weakened chemotherapy
sensitivity (Song et al., 2017). DCAF13, located in chromosome
8q22.3, has been shown to be amplified in breast cancer.
Overexpression of DCAF13 was associated with worse
prognosis and might be involved in regulating cell cycle
progression (Chin et al., 2007; Cao et al., 2017). By targeting
DNMT3b, miR-221 became involved in tumorigenicity through
regulating the stemness of breast cancer cells (Roscigno et al.,
2016). Additionally, DNMT3B helped maintain the CAF
function of promoting breast cancer malignance (Tang et al.,
2019). RBPs are important in tumor development, and their role
still needs to be explored more.

Using CytoCluster (Li et al., 2017), we identified modules that
were significantly related to the overall survival time. These two
modules had significantly different expression patterns in cancer
and in normal samples. Moreover, the literature mining revealed
that some molecules in each module play important roles in
breast cancer. In module 1, there were 25 nodes, including eight
miRNAs, two lncRNAs, and 15 mRNAs. It had been reported
that the upregulation of mir-497 inhibited cell proliferation,
migration, and invasion in breast cancer (Han et al., 2016;
Wang et al., 2016a; Wu et al., 2016b) and that mir-195
inhibited tumor growth, invasion, and metastasis by targeting
other RNAs in breast cancer (Singh et al., 2015; Wang et al.,
2016c). Importantly, mir-497 and mir-195 were the hub nodes in
this module, indicating their essential role in the module.
However, these two miRNAs were down-regulated in breast
cancer, which means that the inhibition was lost, contributing
to the development of breast cancer. Consistent with the tumor-
suppressive role of these two miRNAs, TGFBR3 was reported to
suppress breast cancer progression through TGF-beta signaling
(Lee et al., 2010), and RBMS3 and PTPN14 were also shown to
play roles in inhibiting metastasis (Belle et al., 2015; Zhu et al.,
2019a). These data imply that the function of module 1 may be to
inhibit cancer progress and metastasis and that these functional
miRNAs may affect breast cancer through TGFBR3, RBMS3, and
PTPN14. Additionally, LIPE-AS1 (lncRNA), RP11-66B24.4
(lncRNA), and CCDC50 (mRNA) have not been reported in
BRCA, but LIPE-AS1 interacted with miRNA-497 and slightly
correlated with overall survival (p = 0.075) and both RP11-
66B24.4 and CCDC50 are regulated by the two hub miRNAs,
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which suggested that they might act as main or auxiliary
regulators in the progression and metastasis of BRCA. In
module 2, mRNA ADAMTS5 was reported to play roles
during migration and invasion in breast cancer (Fontanil et al.,
2017). It also functions as a tumor suppressor by inhibiting
migration, invasion, and angiogenesis in human gastric cancer
(Huang et al., 2019). Besides, two other studies have shown that
the upregulation of ADAMTS5 promotes progression in
colorectal cancer and drives metastasis in colon and non-small
cell lung cancer (Gu et al., 2016; Yu et al., 2016). Another mRNA,
SNCA, was also reported to be involved in tumor development
by inhibiting invasion and inducing apoptosis (Li et al., 2018c;
Yan et al., 2018). Thus, the function of module 2 might relate to
cancer progression and survival. Previous studies have shown
that miRNAs may function as tumor suppressors or oncogenes
in tumor development, invasion, and metastasis. In module 2,
mir-377 is the hub node and may be the core molecule involved
in breast cancer due to its interactions with other molecules.
Moreover, mir-377 has been reported to inhibit proliferation and
metastasis in gastric cancer and pancreatic cancer (Chang et al.,
2016; Wang et al., 2017). mir-195 was also important in BRCA,
as it was shown that mir-195 could inhibit the invasion and
metastasis of breast cancer (Singh et al., 2015; Wang et al.,
2016c). lncRNA CECR7 interacts with mir-377 and had been
reported to play a role in hepatocellular carcinoma (Zhang et al.,
2015). In addition to the molecules reported to play roles in
breast cancer, some novel candidate biomarkers, which may also
be important to breast cancer, were found, but more evidence is
needed in future.

Many studies have performed integrative analyses of TCGA
breast cancer data through networks. For example, Yin et al.
(2016) focused on identifying miRNA-mRNA pairs and
constructed a miRNA target network in invasive breast
carcinoma. Li et al. (2018a) found that some of the
correlations between microRNA and target genes declined in
cancer compared to normal across multiple cancers. Wu et al.
(2016a) found two kinds of lncRNA-mRNA co-expression
patterns: 1) correlations between lncRNA-mRNA in cancer
were reversed compared to normal; 2) correlations between
lncRNA-mRNA in cancer were similar to normal. Xiao et al.
(2018) compared the differential genes between ER+ and ER-
and constructed a ceRNA network and found that some
molecules correlated with prognosis. Yang et al. (2018a)
compared the differentially expressed genes in Triple-Negative
Breast Cancer and also constructed a ceRNA network. Some
molecules correlated with prognosis were identified and
validated by qRT-PCR. Sun et al. (2019) identified eight
lncRNAs as the prognosis signature for breast cancer using a
ceRNA and WGCNA network. Gao et al. (2019) built a ceRNA
and found some prognosis-related molecules (four lncRNAs, two
miRNAs, and two mRNAs). Most studies built a ceRNA
network, which contains molecules that are not differentially
expressed. However, the integrated dysregulated network in this
study consists of differentially expressed lncRNAs, miRNAs, and
mRNAs only, and we identified RBPs and modules that can
stratify patients into high- and low-risk subgroups. Moreover,
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each module not only relates to prognosis but also contains
RNAs that have been reported to play roles in breast cancer.

It is well known that the expression of non-coding RNAs is
highly tissue- and cell-type specific, providing important clues
about their specific functions in response to contextual demands
(Mercer et al., 2008; Cabili et al., 2011; Jiang et al., 2016a). Here,
we identified patient survival-associated modules including non-
coding RNAs in invasive breast carcinoma, and this
interpretation was supported in many ways. All molecules in
the modules were differentially expressed in invasive breast
carcinoma, indicating the potential roles of these molecules.
The modules came from a scale-free biological network that
performs functions that are related to housekeeping and are
cancer hallmarks. More importantly, these two modules were
significantly correlated with overall survival. Moreover, many
papers have shown clues that molecules in our networks play
roles in the progression of breast cancer, and KDA analysis also
showed that the molecules in our networks are key drivers. Based
on these strands of evidence, our results are credible. However,
there are limitations to this study. Firstly, it is a network-based
study. Secondly, our study is only based on bioinformatics
analysis. Experiments are needed to support the identifications
of functional roles.
CONCLUSIONS

In summary, using a network-based strategy, we provided a
framework integrating miRNAs, mRNAs, and lncRNAs that
are differentially expressed in breast cancer to identify
biomarkers. Although further validation is still needed to
support the potential roles of the RBPs and two modules,
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many strands of evidence show the correlations between our
two modules and breast cancer. Overall, our dysregulated
network provides new insights into outcome prediction for
invasive breast cancers.
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RNA-binding proteins (RBPs) play important roles in regulating gene expression and
dysregulation of RBPs have been observed in various types of cancer. However, the role
of RBPs during glioma progression, and particular in Chinese patients, is only starting to
be unveiled. Here, we systematically analyzed the somatic mutation, gene expression
patterns of 2949 RBPs during glioma progression. Our comprehensive study reveals
several of highly mutated genes (such as ATRX, TTN and SETD2) and differentially
expressed genes (such as KIF4A, TTK and CEP55). Integration of the expression of
RBPs and genes, we constructed a regulatory network in glioma and revealed the
functional links between RBPs and cancer-related genes. Moreover, we identified the
prognosis spectrum of RBPs during glioma progression. The expression of a number of
RBPs, such as SNRPN and IGF2BP3, are significantly associated with overall survival of
patients in all grades. Taken together, our analyses provided a valuable RBP resource
during glioma progression, and revealed several candidates that potentially contribute to
development of therapeutic targets for glioma.

Keywords: glioma progression, RNA-binding protein, mutations, regulatory network, prognosis
INTRODUCTION

RNA-binding proteins (RBPs) play crucial roles in post-transcriptional events and perturbations in
RBP activity have been associated with various types of cancer (Pereira et al., 2017; Hentze et al.,
2018). Understanding the function of RBPs in cancer will help identifying potential prognostic and
response biomarkers for design of therapeutic targets (Bonnal et al., 2012; Kudinov et al., 2017).
Glioma is a common and aggressive type of brain tumor, which was with poor outcome and no
effective treatment by far (Ostrom et al., 2014; Reifenberger et al., 2017). Systematical dissection of
RBP functions during glioma progression will provide new insights into the underlying mechanisms
of glioma.

Comprehensive identification and annotation of human RBPs are the primary step for
investigating their functions. With the development of high throughput sequencing, numbers of
RBPs have been identified (Gerstberger et al., 2014). Several databases have curated a number of
RBPs. For example, RBPDB is a database for collection of experimentally validated RBPs (Cook
et al., 2011). ATtRACT also manually curated approximate 370 RBPs (Giudice et al., 2016).
Recently, EuRBPDB has been constructed, which is a widely-used resource for RBPs (Liao et al.,
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2019). Moreover, number of studies have found a lot of
alterations in RBPs during cancer development and
progression. Wang et al., revealed the importance of RBPs in
carcinogenesis by large-scale transcriptional profiling studies
(Wang et al., 2015). The mutational spectrum of RBPs had
been analyzed and identified a number of RBPs exhibited
significantly mutation in cancer (Neelamraju et al., 2018). Li et
al., have also decoded the genome-wide RBP mutational and
transcriptomic landscape and yielded valuable insights into the
function of RBPs (Li et al., 2019a). All these results suggest that
there are prevalent alterations of RBPs in cancer development
and progression.

RBPs have also been demonstrated to play important roles in
neurodegeneration and glioma progression (Pereira et al.,, 2017).
Numbers of RBPs have also been identified in glioma. Correa et
al. revealed the splicing regulator SNRPB as an oncogenic
candidate in glioblastoma (GBM) through functional genomics
analyses (Correa et al., 2016). RNA-binding protein PCBP2 has
been identified to modulate glioma growth by regulating FHL3
(Han et al., 2013). Moreover, Musashi1 was found to be a central
regulator of adhesion pathways in GBM (Uren et al., 2015). The
RBP IMP2 can preserve GBM stem cells by preventing let-7
target gene silencing (Pereira et al.,, 2017). Although a number of
regulatory networks have been analyzed during glioma
progression, such as microRNA-gene regulatory network (Li
et al., 2013), transcriptional regulatory network (Li et al.,
2015), competitive endogenous RNAs (ceRNAs) network (Xu
et al., 2015), we are still lack of knowledge about RBP regulatory
network during glioma progression.

To address these questions, we systematically analyzed the
genetic and transcriptomic alterations of RBPs during glioma
progression. We identified a number of RBPs with somatic
mutations, differentially expressed during glioma progression.
In addition, several RBPs associated with patient overall survival
were also identified. These RBPs regulated a number of cancer-
related genes and played important roles during glioma
progression in Chinese patients. All these results provide novel
insights into the function of RBPs in glioma.
MATERIALS AND METHODS

Collection of Human RNA-Binding
Proteins
All the human RBPs were downloaded from the EuRBPDB
database, which is a comprehensive resource for annotation of
eukaryotic RBPs. In total, there were 2,949 RBPs and these RBPs
were further classified into canonical and non-canonical RBPs.

Genetic Alteration Profiles of Glioma
The genetic alterations for Chinese glioma patients were
downloaded from Chinese Glioma Genome Atlas (CGGA).
There were 286 patients sequenced by whole-exome sequencing
(Hu et al., 2018).We directly downloaded the gene-level mutation
datasets. In this table, each row represents one gene and the
columns represent the glioma patient. The one values indicated
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that this gene was mutated in corresponding patient while zeros
indicated not mutated. In addition, we also downloaded the
clinical information of these patients from CGGA (Table S1).
The grade, gender, age, overall survival time, censor status and
isocitrate dehydrogenase (IDH) mutation status were included. In
addition, we downloaded the somatic mutations of low-grade
glioma (LGG) and GBM patients from The Cancer Genome Atlas
(TCGA) project. The overall survival and disease-free survival
time of these patients were also downloaded.

Genome-Wide Gene Expression Profile of
Glioma
Genome-wide gene expression of glioma patients were also
downloaded from CGGA (September 9, 2019). mRNA-Seq
data were used in our analyses, which included 693 patients in
total. The reads were aligned by STAR (Dobin et al., 2013) and
the expression were evaluated as RSEM (Li and Dewey, 2011).
There were 185 patients with both somatic mutations and RNA-
Seq data (Figure S1). We also downloaded the clinical
information for these 693 patients (Table S2).

Identification of Top Mutated Genes in
Glioma
To identify the genes with high mutation frequency, we
separately ranked each gene in grade II, III, and IV glioma.
The gene mutation frequency was defined as:

F gð Þ = ng
N

where ng was the number of patients with gene g mutated and N
was the total number of patients in specific grade.

Identified the Genes With Perturbed
Expression in Glioma
We used Wilcoxon’s rank sum test to evaluate the difference of
gene expression between two adjacent grades. For example, the
fold changes for comparison between grade II and III were
defined as the (average expression of genes in grade III)/
(average expression of genes in grade II). The p-values of
Wilcoxon’s rank sum test were adjusted by Benjamini–
Hochberg (BH) method. Genes with fold changes > 2 and
adjusted p-values < 0.05 were defined as up-regulated genes
and those with fold changes < 0.5 and adjusted p-values < 0.05
were defined as down-regulated genes. The comparisons were
performed between grade II vs. III, and III vs. IV.

Construction of RNA-Binding Protein–
Gene Regulatory Network in Glioma
RNA-binding proteins are key regulators of gene expression, yet
only a small fraction have been functionally characterized
(Pereira et al., 2017). It is still difficult to identify the target
genes for the majority of RBPs. Increasing studies have
demonstrated that the regulators are likely to co-express with
their target genes. Thus, we identified the co-expressed genes of
RBPs and constructed the RBP–gene regulatory network in
glioma. Here, only the cancer genes were considered and the
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cancer-related genes were downloaded from COSMIC Cancer
Gene Census (Oct 25, 2019) (Sondka et al., 2018). There are 723
genes in total. For each RBP–gene pair, we calculated the Pearson
correlation coefficient (PCC) as follows:

Rij =
1

n − 1o
n

i=1

Xi − �X
sX

� �
Yi − �Y
sY

� �

where �Xnd �Ywhere the average expression of RBP X and gene Y,
sX and sYwhere the standard error of expression of RBP and
gene. There were n patients in the analysis. All the RBP–gene
pairs with PCCs > 0.70 and p-values < 0.05 were identified to
construct the regulatory network. The network was visualized by
Cytoscape (version 3.7.1) (Shannon et al., 2003).

Identifying Clinical-Associated RNA-
Binding Proteins in Glioma
To identify the RBPs whose expression was potentially correlated
with glioma patient survival, we first divided patients in each
grade into two groups based on the median expression of each
RBP. The survival difference between two groups were evaluated
by log-rank test. The hazard ratio (HR) was also calculated. This
procedure was performed by the R package (version 3.6.1)
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(https://cran.r-project.org/web/packages/survival/index.html).
RBPs with HR > 1 and p < 0.05 were defined as risky factors and
those with HR < 1 and p < 0.05 were defined as protective factors.
RESULTS

High-Grade Glioma Patients Exhibit Poor
Prognosis and Less Isocitrate
Dehydrogenase Mutation
High-grade glioma remains incurable despite number of genetic
alterations have been revealed (Chen et al., 2016). Here, we
analyzed the 286 glioma patients sequenced by whole-exome
sequencing. We found that glioma patients in high-grade
exhibited poor prognosis (Figure 1A, log-rank p < 0.001).
Moreover, we explored the 693 patients with mRNA-Seq data.
We also found that the patients in high grade were with
significantly poorer survival (Figure 1B, log-rank p < 0.001).
Particularly, the patients in grade IV (glioblastoma, also known
GBM) were with the poorest survival (Figures 1A, B). These
results were consistent with the current knowledge, that GBM is
the most aggressive cancer.
FIGURE 1 | High grade glioma patients with poor survival and less isocitrate dehydrogenase (IDH) mutation. (A) Kaplan–Meier plot indicating survival of glioma
patients with mutation data in different grades. (B) Kaplan–Meier plot indicating survival of glioma patients with expression data in different grades. (C) The proportion
of patients with IDH mutation or wild type in different grades. Those patients were with mutation data. (D) The proportion of patients with IDH mutation or wild type in
different grades. Those patients were with expression data. ***P < 0.001.
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Next, we investigated whether there are somehow difference in
the clinical information for patients in different grades. We first
compared the ages of patients with mutation data. The average
ages for patients in grade II and III were 38.21 and 39.53 years. The
average ages for patients in grade IV were 47.56, which were
significantly older than II and III (p-values < 0.01,Wilcoxon’s rank
sum tests). Moreover, we got the similar results in the patients with
mRNA data. However, there were no significant difference
between grade II and III. IDH1 is the most commonly mutated
gene in glioma (Philip et al., 2018). We thus investigated the
mutation frequency of IDH1 in glioma patients. We found that
GBM patients were with less IDH mutation, either in the exome
sequencing cohort or the mRNA-Seq cohort (Figures 1C, D, p-
values < 0.001, Fisher’s exact test). Moreover, we analyzed the data
from TCGA project and found that patients with IDH1 mutation
exhibit better overall survival than the wide type ones in LGG and
GBM (Figures 2A, C). When considering the disease-free survival
time, we found that patients with IDH1 mutation also show better
survival in LGG and GBM (Figures 2B, D). All these results
suggest that high-grade glioma patients were older, were not likely
with IDH1 mutation and exhibited poor survival.
Frontiers in Genetics | www.frontiersin.org 423
Prevalent Somatic Mutations of RNA-
Binding Protein During Glioma
Progression
RBPs have been found to play critical roles in glioma. We thus
next investigated the genetic alterations of 2,949 RBPs in glioma
(Figure 3A). There were 1,826 (61.92%) canonical RBPs with
specific RNA binding domains, and 1,123 (38.08%) non-
canonical RBPs. Next, we calculated the number of RBPs with
different binding domains. We found that there were more than
150 RBPs with RRM_1 domains (Figure 3B). We explored
whether each patient was with RBP mutation and found that
approximate 87.10% patients in grade II, 94.50% patients in
grade III and 84.31% patients in grade IV were with RBP
mutations (Figure 3C). These results suggest that there were
prevalent somatic mutations in RBPs during glioma progression.

We next explored which RBPs were with higher mutation
frequency in different grades glioma patients. Top ranked 10
mutated genes in each grade were shown in Figure 3D. We
found that ATRX was ranked top 1 in all grades. The ATRX
status has been found to be one of the critical markers that define
the molecular classification of gliomas (Nandakumar et al., 2017).
FIGURE 2 | The survival plots for glioma patients in The Cancer Genome Atlas (TCGA) project. (A) Kaplan–Meier plot indicating overall survival of low-grade glioma
patients with isocitrate dehydrogenase 1 (IDH1) mutation or not. (B) Kaplan–Meier plot indicating disease-free survival of low-grade glioma patients with IDH1
mutation or not. (C) Kaplan–Meier plot indicating overall survival of glioblastoma (GBM) patients with IDH1 mutation or not. (D) Kaplan–Meier plot indicating disease-
free survival of GBM patients with IDH1 mutation or not.
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ATRX loss can promote tumor growth and impair DNA repair in
glioma (Koschmannetal., 2016). In total,we found thatATRX1was
mutated in approximate 30% of all glioma patients (Figure 4).
Another frequently mutated gene was TTN in all grades (Figure
3D), which was also identified previously in glioma (Panossian
et al., 2018). TTN was mutated in 6% of all glioma patients
(Figure 4). Moreover, we found that NF1 were with higher
mutation frequency in GBM, which has been used to define the
mesenchymal subtype of GBM (Verhaak et al., 2010). We also
identified several candidate genes, such as ARID1A, SETD2, FLNA
and KMT2D. In addition, we queried the PubMed and found that
Frontiers in Genetics | www.frontiersin.org 524
numbers of these genes were co-occurred with “glioma” or
“glioblastoma” in literature (Figure S2 and S3). These results
provided candidate RBPs for further functional investigation
in glioma.

Expression Perturbations of RNA-Binding
Proteins During Glioma Progression
Besides genetic alterations, evidence have suggested that the
expression of RBPs were also perturbed in cancer (Sebestyen
et al., 2016; Li et al., 2017). We next systematically analyzed the
RBP transcriptome in different grades of glioma. We identified
FIGURE 3 | The mutation spectrum of RNA-binding protein (RBP) mutations in glioma. (A) The pie chart shows the proportion of canonical and non-canonical
RBPs. (B) The bar charts shows the number of RBPs in top ranked RBP families. (C) The pie charts show the proportion of patients in different grade with RBP
mutations. Left for grade II, middle for grade III and right for grade IV. (D) Top ranked 10 genes by mutation frequency in different grades. Left for grade II, middle for
grade III and right for grade IV.
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32 up-regulated RBPs in comparison between grade II vs. III
(Figure 5A). There are more RBPs exhibited expression
perturbations when comparison between grade III and IV
(Figure 5B and Table S3). These results suggested that the
transcriptome were likely to be perturbed during the progression
from low grade to high grade. Among the top up-regulated genes
in comparison between grade II and III, we identified four
important genes, such as IGF2BP2, TTK, KIF4A and CEP55
(Figure 5C). It has been shown that IGF2BP2 was a direct target
of miR−188 in glioma, and IGF2BP2 under−expression served
tumor−suppressive roles in glioma growth and metastasis (Ding
et al., 2017). CEP55 has been found to promote cell proliferation
and inhibits cell apoptosis in glioma (Li et al., 2018b).

When we compared the transcriptome of patients in
grade III vs. grade IV, we identified 56 up-regulated genes and
Frontiers in Genetics | www.frontiersin.org 625
12 down-regulated genes (Figure 5B). Among the up-regulated
genes, we identified NNMT, LGALS3, PDLIM4, TUBA1C and
ANXA2 as top five (Figure 5D). NNMT silencing had been
shown to activate tumor suppressor PP2A and inhibits tumor
forming (Palanichamy et al., 2017). This was consistent with our
result that it was up-regulated in GBM. LGALS3 was also found
to promote GBM and was associated with tumor risk and
prognosis (Wang et al., 2019). PDLIM4 had been identified
as a gene signature associated with the clinical outcome in
high-grade gliomas (de Tayrac et al., 2011). For the down-
regulated genes, we have identified CSDC2, ZNF804B,
LIN28A and SRRM3 as candidates. However, few of these
were investigated in current studies. These results suggested
that the tumor suppressors need to be paid attention in future
glioma studies. Taken together, function analysis of these
FIGURE 4 | The mutation spectrum of top ranked RNA-binding proteins (RBPs) in glioma. Each column is one glioma patient. The blue lines indicate whether the
gene is mutated or not. The clinical information of these patients are shown on the bottom panels.
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RBPs provide insight into the transcriptome perturbations of
glioma progression.

RNA-Binding Protein Regulatory Network
During Glioma Progression
Proteins do not function isolatedly but interact with other
molecules in complex cellular networks for signal transduction
(Xu et al., 2017; Yi et al., 2017). Understanding the RBP
Frontiers in Genetics | www.frontiersin.org 726
regulatory network during glioma progression will get deep
insights into their functions. We thus identified the co-
expressed genes in glioma. Here, we focused on the cancer-
related genes (Table S4). At the PCC > 0.70 and p-adjusted <
0.05, we identified 368 regulatory interactions among 55 RBPs
and 69 genes (Figure 6A and Table S5). In this regulatory
network, several RBPs and genes were correlated with the
development and progression of glioma. For example, KIF4A
FIGURE 5 | Differentially expressed genes in glioma. (A) Volcano plot shows the differentially expressed genes between grade II and III. Red for up-regulated genes.
(B) Volcano plot shows the differentially expressed genes between grade III and IV. Red for up-regulated genes and blue for down-regulated genes. (C) Heat map for
genes that perturbed between grade II and III. (D) Heat map for genes that perturbed between grade III and IV.
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was correlated with cell cycle, G2M checkpoint (Cho et al., 2019).
Abrogation of BRCA1 had also been found to play roles in tumor
growth in glioma (Rasmussen et al., 2016). We found that the
expression of KIF4A and BRCA1 was significantly correlated
with each other in glioma (Figure 6B, R = 0.76 and p-value <
0.001), providing a functional link between RBP and gene.

Another example was RRM2 and BRIP1, which was
significantly correlated with each other in expression (Figure
6C, R = 0.93 and p-value < 0.001). RRM2 had been found to
promote the progression of human GBM and was a potential
prognostic biomarker in glioma (Li et al., 2018a; Sun et al., 2019).
BRIP1 was found to be an independent signature, which was
correlated with worse prognosis in glioma (de Sousa et al., 2017).
Our results provided a way to functionally explain the signaling
of RRM2 during glioma progression. Moreover, we also
identified the functional association between TTK and BUB1B,
KIF23 and POLQ. All these RBP–gene correlations provide
suitable ways for functional characterization of RBPs in glioma.

Prognostic Potential of RNA-Binding
Protein Regulators
RBPs are essential modulators of transcription and numbers of
RBPs have being found to be associated with the survival of
patients (Frau et al., 2013). We next identified the RBPs that
were associated with the survival of patients in different grades. We
Frontiers in Genetics | www.frontiersin.org 827
found that there were more RBPs were associated with survival in
grade III, compared with other two grades (Figure 7 and Table
S6). For the protective RBPs in glioma, 25, 425 and 28 RBPs were
only associated survival in grade II, III and IV. Three RBPs
(ARPP21, SNRPN and GLRX3) were associated with patient
overall survival in all grades (Figure 7A). SNRPN had been
found as a autism-related gene by regulating cortical and spine
development via nuclear receptor (Li et al . , 2016).
Hypermethylation of SNRPN increased as the cellular origin of
the tumors advanced in oogenesis and was closely correlated in
individual teratomas (Miura et al., 1999). We found that the high
expression of SNRPN was correlated with better overall survival in
all grade glioma patients (Figures 7B–D, log-rank p-values < 0.05).

In addition, we also identified numbers of risky RBPs in
glioma (Figure 7E). There were 8, 1,220, 12 RBPs were associated
with survival in specific grade. In total, 27 RBPs were identified as
risky factors in all grades, including BRCA1, MCM2, IGF2BP3,
KIF2C, VIM and PLOD3. High MCM2 expression was found
to be strongly associated with poor overall survival in patients
with high-grade glioma in our current study, as well as previous
studies (Hua et al., 2014). Recently, IGF2BP3 has been identified
as a potential oncogene across multiple cancer types (Li et al.,
2019b). We found that the high expression of IGF2BP3 was
significantly associated with poor prognosis in all three grades
(Figure 7F–H, log-rank p-values < 0.05). These results provided
FIGURE 6 | RNA-binding protein (RBP)–gene regulatory network in glioma. (A) The RBP–gene regulatory network in glioma. Red for RBPs and green for target
genes that were related to cancer. (B) Scatter plot shows the correlation between KIF4A and BRCA1 in glioma. (C) Scatter plot shows the correlation between
RRM2 and BRIP1 in glioma.
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more evidence for the oncogene roles of IGF2BP3 in cancer.
Taken together, our analyses provided a prognostic spectrum for
RBPs during glioma progression.
DISCUSSION

In this study, we systematically analyzed the genetic and
transcriptome alterations of RBPs during glioma progression.
The top mutated RBPs in different grades of glioma patients were
identified and several of them had been found to play important
roles in glioma or other cancers. Moreover, we compared the
transcriptome and identified the differentially expressed RBPs.
We found that there were more RBPs exhibited expression
perturbations during the transition from grade III to IV. These
results suggested that the transcriptome was greatly perturbed in
the progression of high-grade glioma. Our regulatory network
and prognosis analysis also revealed several important
candidates for functional characterization in future experiments.

Although several candidate RBPs were identified in our
current study, there are a lot of work need to do for
investigating the detail functional ways of these RBPs. RBPs
have been found to regulate alterative splicing (AS) and
influences the expression of genes (Fei et al., 2017). Alterations
of AS are emerging as important signatures in cancer (Liu et al.,
2017). The mutation of RBPs generally impair the recognition of
regulatory sites, and affecting the splicing of multiple genes.
However, it is still difficult to determine the targets for the
majority of RBPs. The best method for identifying the targets
Frontiers in Genetics | www.frontiersin.org 928
of RBPs is CLIP-Seq, but there are limited number of data
currently. With the development of sequencing technology,
such as CLIP-Seq, we will get more details about the function
of RBPs. Moreover, RBPs can also interact with noncoding
RNAs. Identifying the cell type specific RBP interactome will
yield novel insight into the function of RBPs.

Moreover, we identified an important RBP IGF2BP3 during
glioma progression. Beside RBP, this genes also an epigenetic
regulator, which can affect the fates of mRNA in an m6A-
dependent manner (Bi et al., 2019). These results suggest that
m6A might also play important roles during glioma progression.
Several studies have emerged to reveal the function of m6A in
glioma (Dixit et al., 2017; Zhang et al., 2017). But we are still lack
of knowledge about the landscape of m6A alterations in glioma,
particular in Chinese cohort. Moreover, we are not sure to what
extent RBPs can regulate m6A. Is it just one case or general
regulation? With the increasing data of RBP regulation as well as
other epigenetic data, we will get deep insight into this regulatory
layer in cancer.

In summary, our comprehensive analyses dissect the potential
function of RBPs during glioma progression. Understanding the
functions of candidate RBPs identified in this study will provide
insight into the underlying mechanisms of glioma progression.
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Lung cancer is the leading cause of cancer-related deaths worldwide. Dysregulation
of RNA binding proteins (RBPs) has been found in a variety of cancers and is
related to oncogenesis and progression. However, the functions of RBPs in lung
squamous cell carcinoma (LUSC) remain unclear. In this study, we obtained gene
expression data and corresponding clinical information for LUSC from The Cancer
Genome Atlas (TCGA) database, identified aberrantly expressed RBPs between tumors
and normal tissue, and conducted a series of bioinformatics analyses to explore the
expression and prognostic value of these RBPs. A total of 300 aberrantly expressed
RBPs were obtained, comprising 59 downregulated and 241 upregulated RBPs.
Functional enrichment analysis indicated that the differentially expressed RBPs were
mainly associated with mRNA metabolic processes, RNA processing, RNA modification,
regulation of translation, the TGF-beta signaling pathway, and the Toll-like receptor
signaling pathway. Nine RBP genes (A1CF, EIF2B5, LSM1, LSM7, MBNL2, RSRC1,
TRMU, TTF2, and ZCCHC5) were identified as prognosis-associated hub genes by
univariate, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier
survival, and multivariate Cox regression analyses, and were used to construct the
prognostic model. Further analysis demonstrated that high risk scores for patients were
significantly related to poor overall survival according to the model. The area under
the time-dependent receiver operator characteristic curve of the prognostic model
was 0.712 at 3 years and 0.696 at 5 years. We also developed a nomogram based
on nine RBP genes, with internal validation in the TCGA cohort, which showed a
favorable predictive efficacy for prognosis in LUSC. Our results provide novel insights
into the pathogenesis of LUSC. The nine-RBP gene signature showed predictive
value for LUSC prognosis, with potential applications in clinical decision-making and
individualized treatment.

Keywords: lung squamous cell carcinoma, RNA-binding proteins, prognostic signature, survival analysis,
bioinformatics
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INTRODUCTION

Lung cancer is one of the most commonly diagnosed diseases and
the leading cause of cancer-related deaths worldwide (Siegel et al.,
2019). Lung squamous cell carcinoma (LUSC) accounts for 30%
of lung cancer cases, resulting in about 0.4 million deaths each
year worldwide (Siegel et al., 2013). Despite advances in diagnosis
and treatment of lung cancer over the past few decades, there
remains a lack of effective therapies for patients, underscoring
the demand for novel treatment methods. Owing to differences in
genetic and epigenetic changes among different subtypes of lung
cancer, effective treatment targets of adenocarcinoma may not be
suitable for LUSC (Wang et al., 2019). Therefore, a systematic
study to explore the differentially expressed genes in LUSC is
required to identify potential diagnostic markers and therapeutic
targets for LUSC.

RNA binding proteins (RBPs) are proteins that interact with
various types of RNA and are ubiquitously expressed in cells
(Masuda and Kuwano, 2019; New et al., 2019; Otsuka et al.,
2019). A total of 1542 RBPs have been identified by high-
throughput screening in human cells, representing 7.5% of all
protein coding genes (Gerstberger et al., 2014). These RBPs
affect post-transcriptional events in cells and modulate cell
physiology, and are therefore involved in multiple biological
processes including RNA splicing, mRNA stability, export to
the cytoplasm, localization, and protein translation (Masuda
and Kuwano, 2019; Nahalka, 2019). Given that RPBs perform
various critical functions in post-transcriptional events, it is
unsurprising that alterations in RBPs are closely related to the
initiation and progression of many human diseases. However, the
roles of RBPs in the origin and development of cancer remain
relatively unexplored.

In recent years, genome-wide analysis has indicated that
many RBPs show dysregulated expression in tumors relative
to adjacent normal tissues, and that their expression is
associated with patient prognosis (Chen et al., 2019; Cooke
et al., 2019; Zhang et al., 2019). It is well-known that the
dysregulation of RBPs in cancer cells is mainly caused by
genomic alterations, microRNA-mediated regulation, epigenetic
mechanisms, and post-translational modifications (Gerstberger
et al., 2014). Previous studies have linked known cancer drivers
to RBP dysregulation. For example, the oncogene crabp2 interacts
with the RBP HuR to promote metastasis of lung cancer cells
by regulating integrin β1/FAK/ERK signaling (Wu et al., 2019).
Transforming growth factor-β (TGF-β) induces the expression of
RNA-binding motif protein 38 (RBM38) in breast cancer, which
promotes epithelial-to-mesenchymal transition by regulating the
zonula occludens-1 transcript (Wu et al., 2017). The forkhead
box K2 protein (FOXK2) promotes colorectal cancer metastasis
by upregulating mRNA expression of zinc finger E-box binding
homeobox 1 (ZEB1) (Du et al., 2019). Taken together, these
studies indicate that the RBPs are closely related to the occurrence
and development of human tumors. However, only a small
fraction of RBPs have been studied intensively and found to have
key roles in cancers to date. Therefore, we collected all relevant
LUSC data from The Cancer Genome Atlas (TCGA) database
and performed the present systematic analysis to examine the

potential molecular functions and clinical significance of RBPs
in LUSC. We identified multiple differentially expressed RBPs
associated with LUSC, which provide new insight into the
pathogenesis of the disease. Some of them may serve as potential
biomarkers for diagnosis and prognosis.

MATERIALS AND METHODS

Data Preprocessing and Identification of
Differentially Expressed RBPs
RNA sequencing data of 501 LUSC samples and 49 normal
lung tissue samples with corresponding clinical information were
downloaded from TCGA.1 The raw data were preprocessed
using the DESeq2 package.2 Differentially expressed RBPs were
identified based on a false discovery rate < 0.05 and |log2 fold
change (FC)|≥ 1. All differentially expressed RBPs had an average
count value more than 1.

GO and KEGG Functional Enrichment
Analyses
The biological functions of these differently expressed RBPs were
systematically investigated by gene ontology (GO) enrichment,
which comprised three terms: molecular function, biological
process, and cellular component. The Kyoto Encyclopedia of
Genes and Genomes database (KEGG) was used to detect
potential biological pathways of differentially expressed RBPs. All
GO and KEGG pathway enrichment analyses were carried out
using the WebGestalt (WEB-based Gene SeT AnaLysis Toolkit3)
(Liao et al., 2019) with a P-value less than 0.05 and gene
number more than 5.

Protein–Protein Interaction Network
Construction and Module Screening
The protein–protein interactions (PPIs) among all differentially
expressed RBPs were detected using the START (Search Tool
for the Retrieval of Interacting Genes4) (Szklarczyk et al., 2019),
and their network was constructed with the Cytoscape 3.7.0
software. Subsequently, the key modules were screened from the
PPI network with scores >7 and node counts >5 by using the
MCODE (Molecular Complex Detection) plug-in in Cytoscape.
The cytoHubba plug-in was used to select hub genes. P < 0.05
was considered to indicate a significant difference.

Hub RBPs Expression Validation and
Efficacy Evaluation
The Human Protein Atlas (HPA) database5 (Uhlen et al.,
2017) was used to detect the expression of 10 hub genes
at a translational level. Receiver operating characteristic
(ROC) curves were constructed with the GraphPad Prism 7.0

1https://portal.gdc.cancer.gov/
2http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
3http://www.webgestalt.org/
4http://www.string-db.org/
5http://www.proteinatlas.org/
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software to calculate the ability to discriminate between normal
and tumor tissue.

Copy-Number Alterations and Mutation
Analysis of Hub RBPs
The copy-number alteration and mutation data for all hub RBPs
from the PPI network were identified using segmentation analysis
and the GISTIC algorithm in cBioPortal6 (Gao et al., 2013). Next,
we carried out a co-expression analysis of all hub RBPs. Then we
constructed a network including all hub genes and the 50 most
frequently altered neighbor genes.

Prognosis-Related RBP Selection
The differentially expressed RBPs were subjected to a univariate
Cox regression analysis using the survival package in R. A log-
rank test was used to select the significant prognosis-related
candidate RBPs, and the least absolute shrinkage and selection
operator (LASSO), a widely used machine learning algorithm,
was used to further predict the prognostic significance of
candidate RBPs (iteration equal 1000) (Jiang et al., 2018). We also

6https://www.cbioportal.org/

used a Kaplan–Meier test to evaluate the prognostic value of each
candidate RBP identified by LASSO; the RBPs with P-value less
than 0.05 were considered to be true prognosis-related RBPs.

Prognostic Model Construction and
Evaluation
Based on the selected prognosis-related RBPs genes, we
developed a multivariate Cox proportional hazards regression
model to predict the prognosis of LUSC patients (Jiang et al.,
2017). In this model, the risk score of each sample was calculated
according to the following formula:

Risk score =
n∑

i=1

Expi βi,

where β represents the regression coefficient, and Exp represents
the gene expression value.

To evaluate the performance of this prognostic model, LUSC
patients from the TCGA with a survival time greater than 1
month were divided into low- and high-risk subgroups according
to the median risk score, and the difference in overall survival
(OS) between the two subgroups was compared by a log-rank

FIGURE 1 | Framework for analyzing the RBPs in LUSC.
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TABLE 1 | GO and KEGG pathway analysis results for differentially expressed
RBPs.

Expression GO term P-value

Up-regulated RBPs

Biological processes Cellular amide metabolic process <0.001

RNA processing <0.001

ncRNA metabolic process <0.001

RNA modification <0.001

Ribonucleoprotein complex biogenesis <0.001

Molecular function RNA binding <0.001

Catalytic activity, acting on RNA <0.001

Structural constituent of ribosome 8.34e-14

Nuclease activity 1.33e-9

Cellular component Nucleolus <0.001

Mitochondrial matrix <0.001

Sm-like protein family complex <0.001

Ribonucleoprotein complex <0.001

KEGG pathway RNA degradation 2.34e-12

Ribosome biogenesis in eukaryotes 1.27e-11

mRNA surveillance pathway 2.33e-10

Spliceosome <0.001

Down-regulated RBPs

Biological processes mRNA metabolic process 5.93e-10

RNA processing 3.31e-7

Defense response to virus 3.57-7

Regulation of translation 7.47e-7

Molecular function RNA binding <0.001

Poly-pyrimidine tract binding 5.66e-8

Translation regulator activity 4.28e-8

Cellular component Ribonucleoprotein complex 7.9078e-8

Endolysosome membrane 0.0000033273

RNA cap binding complex 0.0000041529

KEGG pathway TGF-beta signaling pathway 0.001

Toll-like receptor signaling pathway 0.0018

mRNA surveillance pathway 0.02

test. Besides, the SurvivalROC R package was used to construct
a ROC curve for prognostic performance of this model, and we
drew a nomogram plot to forecast the likelihood of OS using the
rms R package. Additionally, 69 LUSC patient samples from the
GSE73403 dataset7 were used as a validation cohort to confirm
the predictive value of the prognostic model.

RESULTS

Selection of Differentially Expressed
RBPs in LUSC
The workflow of this study is illustrated in Figure 1.
RNA sequencing data for LUSC and corresponding clinical
information were downloaded from the TCGA database.
A total of 501 LUSC samples and 49 normal lung samples
were analyzed. The DESEq2 software packages were used to
preprocess these data and detect the differentially expressed

7https://www.ncbi.nlm.nih.gov/gds/?term=GSE73403

RBPs. In total, 1542 RBPs (Gerstberger et al., 2014) were
analyzed in this study, of which 300 met our inclusion
criteria (adj P < 0.05, |log2FC| ≥ 1.0), comprising 59
downregulated and 241 upregulated RBPs. The expression
distribution of these differentially expressed RBPs is shown in
Supplementary Figure S1.

Functional Enrichment Analysis of the
Differentially Expressed RBPs
To explore the potential functional and molecular mechanisms
of the identified RBPs, they were divided into two groups based
on their expression level. Then we carried out GO and pathway
analysis for these differentially expressed RBPs using the online
tool WebGestalt. Upregulated differentially expressed RBPs were
significantly enriched in biological processes associated with
the cellular amide metabolic process, RNA processing, RNA
metabolic process, RNA modification, and ribonucleoprotein
complex biogenesis (Table 1). The downregulated differentially
expressed RBPs were notably enriched in the mRNA metabolic
process, RNA processing, defense response to virus, and
regulation of translation (Table 1). The molecular function
analysis showed that, among the differentially expressed RBPs,
the upregulated RBPs were significantly enriched in RNA
binding catalytic activity, acting on RNA, structural constituent
of ribosome, and nuclease activity (Table 1), whereas the
downregulated RBPs were significantly enriched in RNA binding,
poly-pyrimidine tract binding, and translation regulator activity
(Table 1). In regard to the cellular component, the upregulated
RBPs were mainly enriched in the nucleolus, mitochondrial
matrix, Sm-like protein family complex, and ribonucleoprotein
complex, and downregulated RBPs were mainly enriched
in the ribonucleoprotein complex, endolysosome membrane,
and RNA cap binding complex (Table 1). Moreover, we
found that downregulated differentially expressed RBPs were
mainly enriched in the TGF-beta signaling pathway, Toll-like
receptor signaling pathway, and mRNA surveillance pathway,
whereas upregulated RBPs were significantly enriched for
RNA degradation, ribosome biogenesis in eukaryotes, mRNA
surveillance pathway, and the spliceosome (Table 1).

PPI Network Construction and Key
Module Screening
We constructed a protein–protein co-expression network using
Cytoscape software and the STRING database, in order to
better understand the potential molecular functions of these
differentially expressed RBPs in LUSC. This PPI network
contained a total of 167 nodes and 771 edges (Figure 2A).
Then we screened the hub genes by computing degree and
betweenness, and obtained 10 candidate genes: MRPL15,
MRPL13, MRPL4, MRPL3, MRPL24, MRPS12, MRPL11,
MRPL21, MRPL36, and MRPL47. Subsequently, we further
analyzed the co-expression network to detect potential critical
modules by using the plug-in MODE in Cytoscape, and
determined the top two significant modules. Module 1 included
18 nodes and 147 edges (Figure 2B), and module 2 consisted
of 14 nodes and 91 edges (Figure 2C). The GO and pathway
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FIGURE 2 | PPI network and module analysis. (A) PPI network for RBPs; (B) critical module 1 in PPI network; (C) critical module 2 in PPI network.

analyses showed that the genes from module 1 were mainly
enriched in mitochondrial translation, mitochondrial gene
expression, and cellular protein complex disassembly, whereas
the genes in module 2 were significantly enriched in spliceosomal
snRNP assembly, mRNA splicing, mRNA metabolic process,
and RNA processing.

Hub Gene Expression Validation
To further determine the expression of these hub genes in LUSC,
we used immunohistochemistry results from the Human Protein
Atlas database to show that MRPL15, MRPL13, MRPL4, MRPL3,
MRPL24, MRPS12, MRPL11, MRPL21, MRPL36, and MRPL47
were significantly increased in lung cancer compared with
normal lung tissue (Figure 3). Furthermore, we used ROC curve
analysis to evaluate the efficacy of 10 hub genes to discriminate
between carcinoma tissue and normal lung tissue. The area under
the curve (AUC) of hub genes MRPL15 (AUC = 0.9585, 95%
CI: 0.9376–0.9795, P < 0.0001), MRPL13 (AUC = 0.9480, 95%
CI: 0.9111–0.9849, P < 0.0001), MRPL4 (AUC = 0.9578, 95%

CI: 0.9407–0.9749, P < 0.0001), MRPL3 (AUC = 0.9943, 95%
CI: 0.9896–0.9991, P < 0.0001), MRPL24 (AUC = 0.9415, 95%
CI: 0.9158–0.9672, P < 0.0001), MRPS12 (AUC = 0.9862, 95%
CI: 0.9758–0.9966, P < 0.0001), MRPL11 (AUC = 0.9393, 95%
CI: 0.9062–0.9724, P < 0.0001), MRPL21 (AUC = 0.934, 95%
CI: 0.9074–0.9608, P < 0.0001), MRPL36 (AUC = 0.9835, 95%
CI: 0.9718–0.9953, P < 0.0001), and MRPL47 (AUC = 0.9845,
95% CI: 0.9751–0.9939, P < 0.0001) were all greater than 0.9,
indicating that the hub genes had higher diagnostic accuracy for
LUSC (Figure 4).

Mutation and Copy-Number Alteration
Analysis of Candidate Hub Genes in
LUSC Patients
Mutation and copy-number alteration (CNA) analyses of the hub
genes MRPL15, MRPL13, MRPL4, MRPL3, MRPL24, MRPS12,
MRPL11, MRPL21, MRPL36, and MRPL47 were carried out
using the cBioPortal online tool for LUSC (TCGA, Provisional).
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FIGURE 3 | Validation of protein expression of hub genes in normal lung tissue and LUSC using the HPA database. (A) MRPL15; (B) MRPL13; (C) MRPL4;
(D) MRPL3; (E) MRPL24; (F) MRPS12; (G) MRPL11; (H) MRPL21; (I) MRPL36; (J) MRPL47.

FIGURE 4 | ROC analysis of 10 hub RBPs based on the TCGA dataset. (A) MRPL15; (B) MRPL13; (C) MRPL4; (D) MRPL3; (E) MRPL24; (F) MRPS12;
(G) MRPL11; (H) MRPL21; (I) MRPL36; (J) MRPL47.
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The results showed that these 10 hub genes were altered
in 178 samples out of 511 LUSC patients (35%). Two or
more alterations were found in 68% of the LUSC samples
(121 samples) (Figures 5A,B). The amplification of MRPL47
was the most frequent copy-number alteration among these
10 hub genes. Then we constructed an interaction network
containing 60 nodes, which comprised 10 hub genes and
the 50 most frequently altered neighbor genes (Figure 5C).
We also found that mitochondrial translation-related genes,
including GFM1, MTIF2, MTRF1, MRPS10, MRPS11, MRPL1,
MRPL9, and PTCD3, were closely associated with alterations of
the 10 hub genes.

Prognosis-Related RBP Screening
Of the 300 differentially expressed RBPs, 54 were associated
with prognosis as confirmed by univariate Cox regression
analysis (Supplementary Table S1). Then we conducted a LASSO
regression analysis to obtain the RBP genes with the best potential

prognostic significance; 13 RBP genes, A1CF, F4, DQX1, EIF2B5,
GEMIN2, LSM1, LSM7, MBNL2, PABPC3, RSRC1, TRMU, TTF2,
and ZCCHC5, were selected (Supplementary Figure S2). To
further determine the RBPs with the greatest potential prognosis
ability, a Kaplan–Meier test for OS was used to identify nine
RBP-coding genes, A1CF, EIF2B5, LSM1, LSM7, MBNL2, RSRC1,
TRMU, TTF2, and ZCCHC5 (Figure 6).

Prognosis-Related Genetic Risk Score
Model Construction and Validation
The nine RBPs were analyzed by multiple stepwise Cox regression
to construct a predictive model (Table 2). The risk score of each
LUSC patient was computed according to the following formula:

Risk score = (0.0218 ∗ ExpMBNL2)+ (−0.0134 ∗ ExpLSM1)

+ (2.4069 ∗ ExpA1CF)+ (−0.0067 ∗ ExpEIF2B5)

FIGURE 5 | Hub RBP expression and alteration analysis in LUSC. (A) Mutation frequency of hub genes; (B) mutation frequency of each gene; (C) interaction
network.
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FIGURE 6 | Prognostic value of key nine RBPs in LUSC. (A) LSM1; (B) MBNL2; (C) A1CF; (D) EIF2B5; (E) TTF2; (F) TRMU; (G) LSM7; (H) ZCCHC5; (I) RSRC1.

+ (−0.0550 ∗ ExpTTF2)+ (−0.0557 ∗ ExpTRMU)

+ (−0.0066 ∗ ExpLSM7)+ (1.3639 ∗ ExpZCCHC5)

+ (−0.0132 ∗ ExpRSRC1)

To assess the predictive ability of this model, we divided
424 LUSC patients into high- and low-risk groups for survival
analysis according to the median risk score. Patients in the
high-risk subgroup had a significantly lower OS rate than those
in the low-risk subgroup (Figure 7A). Then we performed a
time-dependent ROC analysis to further evaluate the prognostic
performance of the nine-RBP gene signature; the AUC of the
ROC curve for OS was 0.712 at 3 years and 0.696 at 5 years
(Figure 7B). The expression heat map and survival status of
patients with the nine-RBP gene biomarker in the low- and high-
risk subgroups are shown in Figure 7C. These results reveal that
our prognostic model had moderate sensitivity and specificity.
Furthermore, we assessed whether the nine-RBP gene signature

predictive model has similar prognostic ability in other LUSC
patient cohorts; the same risk assessment formula was utilized to
the GSE73403 datasets. The results indicated that patients with

TABLE 2 | Multivariate Cox regression analysis to identify prognosis-related hub
RBPs.

Gene Coef Exp (coef) Se (coef) z Pr(>| z|)

LSM1 −0.0134 0.9867 0.0062 −2.1820 0.0291

MBNL2 0.0218 1.0220 0.0114 1.9120 0.0558

A1CF 2.4069 11.0993 1.8701 1.2870 0.1981

EIF2B5 −0.0067 0.9933 0.0054 −1.2340 0.2171

TTF2 −0.0550 0.9465 0.0513 −1.0710 0.2844

TRMU −0.0557 0.9458 0.0532 −1.0460 0.2955

LSM7 −0.0066 0.9934 0.0079 −0.8410 0.4004

ZCCHC5 1.3639 3.9115 1.7583 0.7760 0.4379

RSRC1 −0.0132 0.9869 0.0223 −0.5920 0.5536
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FIGURE 7 | Risk score analysis of nine-gene prognostic model in TCGA LUSC cohort. (A) Survival analysis according to risk score; (B) ROC analysis; (C) heat map
and survival status of patients.

high-risk score had poorer OS than those with low-risk score in
the GSE73403 cohorts (Figures 8A–C).

In order to construct a quantitative model for LUSC prognosis,
we combined the nine-RBP marker to build a nomogram plot
(Figure 9A). This allowed us to calculate the estimated survival
probabilities of LUSC patients at 3 and 5 years by plotting a
vertical line between the total point axis and each prognosis axis.
We constructed calibration plots, which showed that there was
good conformity between the predicted and observed outcomes
(Figures 9B,C). We also calculated the concordance index for
OS in the TCGA and GSE16011 cohorts, which were 0.69
and 0.66 respectively. In addition, we evaluated the prognostic
value of different clinical features in 335 patients with LUSC by
conducting a univariate regression analysis. The results indicated
that age, smoking, stage, distant metastasis, and risk score were
related to OS of LUSC patients (P < 0.01) (Table 3). However, we

only found that age, smoking, and risk score were independent
prognostic factors related to OS through multiple regression
analysis (Table 3).

DISCUSSION

Malignant tumors are characterized by uncontrolled cell growth,
which is mainly due to the dysregulated expression of cancer
driver genes that regulate cell proliferation and differentiation.
This includes gain of function mutations of oncogenes and
functional deletion alterations of tumor-suppressor genes, or
disabling of genome maintenance genes (Masuda and Kuwano,
2019; Zhou et al., 2019). Many studies have reported that RBPs
show dysregulated expression in various human cancers (Dong
et al., 2019; Soni et al., 2019; Velasco et al., 2019). However, little

Frontiers in Genetics | www.frontiersin.org 9 March 2020 | Volume 11 | Article 18539

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00185 March 3, 2020 Time: 19:28 # 10

Li et al. RNA Binding Proteins in LUSC

FIGURE 8 | Risk score analysis of nine-gene prognostic model in GSE73403 LUSC cohort. (A) Survival analysis according to risk score; (B) ROC analysis; (C) heat
map and survival status of patients.

is currently known about the expression patterns and roles of
RBPs in LUSC. In the present study, we integrated TCGA RNA
sequencing data for LUSC and identified differentially expressed
RBPs between cancer and normal tissue. We systematically
investigated relevant biological pathways and constructed PPIs
for these RBPs. Then, we performed survival analyses, ROC
analyses, and copy-number alterations analyses to explore the
potential biological functions and clinical values of the hub RBPs.
We also screened key prognosis-related RBPs and constructed
a risk model to predict LUSC prognosis based on a nine-
RBP gene signature.

The biological functions and pathway enrichment analysis of
these differentially expressed RBPs showed that the upregulated
RBPs were significantly enriched in the cellular amide metabolic
process, RNA processing, RNA metabolic process, RNA

modification, RNA degradation, ribosome biogenesis, and
mRNA surveillance pathway. The downregulated RBPs were
mainly enriched in the mRNA metabolic process, RNA
processing, regulation of translation, TGF-beta signaling
pathway, and Toll-like receptor signaling pathway. In recent
years, a large number of studies, have reported the role of
aberrant RNA metabolism and RNA processing in various
diseases (Li et al., 2017, 2018; Li S. et al., 2019; Li Y. et al., 2019).
RNA processing factors were shown to have increased expression
in poorly differentiated non-small-cell lung cancer cells (Geles
et al., 2016). The TGF-beta signaling pathway is a classical
tumorigenesis-related pathway; it exerts dual and opposing
roles in oncogenesis, inhibiting cell proliferation in early tumors
and inducing tumor progression and metastasis in advanced
cancer (Seoane and Gomis, 2017; Batlle and Massague, 2019).
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FIGURE 9 | Nomogram and calibration plots of nine RBPs. (A) Nomogram to predict 3- and 5-year OS in the TCGA cohort. (B,C) Calibration plots of the nomogram
to predict OS at 3 and 5 years.

Previous studies have shown that RBPs can interact with the
TGF-beta signaling pathway to regulate lung carcinogenesis
(Kim et al., 2016; Bai et al., 2019). These results suggest that
RBPs can affect the growth of tumor cells by regulating multiple
biological processes, such as the TGF-beta signaling pathway,
RNA metabolism, and RNA processing.

Subsequently, we obtained 10 hub RBPs by constructing a
PPI network: MRPL15, MRPL13, MRPL4, MRPL3, MRPL24,
MRPS12, MRPL11, MRPL21, MRPL36, and MRPL47. These hub
RBPs are mitochondrial ribosomal proteins that are essential for
maintaining mitochondrial functions. Impaired mitochondrial
functions such as apoptosis and oxidative phosphorylation
are found in most cancers, however, their mechanisms are
unclear (Koc et al., 2015; Lee et al., 2017; Lin et al., 2019).
Lee et al. (2017) found that suppressed MRPL13 expression
increased hepatoma cell invasiveness. Koc et al. (2015) proposed
that defects in mitochondrial function in head and neck
squamous cell carcinoma might be caused by a decrease in

MRPL11 expression. Shi et al. (2015) revealed that MRPL21
was significantly overexpressed in esophageal squamous cell
carcinoma (ESCC) and could be used as a candidate prognostic

TABLE 3 | The prognostic effect of different clinical parameters.

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95%CI P-value

Age 1.03 1.01–1.08 0.003 1.04 1.02–1.08 <0.001

Gender 1.19 0.81–1.75 0.380 1.21 0.82–1.80 0.333

Smoking 0.80 0.67–0.94 0.009 0.73 0.61–0.87 <0.001

Stage 1.24 1.01–1.51 0.036 1.50 0.93–2.41 0.0956

T 1.22 0.99–1.54 0.095 1.02 0.74–1.41 0.910

M 2.74 1.01–7.44 0.049 1.01 0.26–3.99 0.985

N 1.08 0.85–1.37 0.542 0.83 0.53–1.29 0.400

Risk score 1.93 1.55–2.40 <0.001 2.06 1.64–2.59 <0.001
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biomarker. Although little is known about the relationship
between mitochondrial ribosomal proteins and LUSC, our results
indicate that impaired mitochondrial function is an important
cause of LUSC, and further evaluation of potential roles of the
10 differentially expressed hub mitochondrial ribosomal proteins
in LUSC may be worthwhile.

In addition, the prognosis-related hub RBPs were screened
using univariate Cox regression analysis, LASSO regression
analysis, Kaplan–Meier test, and multiple Cox regression
analysis. We finally determined nine RBP-coding genes: A1CF,
EIF2B5, LSM1, LSM7, MBNL2, RSRC1, TRMU, TTF2, and
ZCCHC5. High expression of LSM1, EIF2B5, TTF2, TRMU,
LSM7, and RSRC1 was associated with a good prognosis in
patients with LUSC, whereas that of A1CF,MBNL2, and ZCCHC5
were related to poor prognosis. Next, the nine RBPs were used
to construct a risk model by multiple stepwise Cox regression
analysis to predict prognosis in LUSC patients. The ROC curve
of the prognostic model showed that the nine-RBP genes
signature had moderate performance for predicting OS at 3 years
(AUC = 0.712) and 5 years (AUC = 0.696). A nomogram was
constructed to enable practitioners to predict 3-, and 5-year OS
of LUSC patients. According to the outcomes predicted by our
model, patients with high risk scores have a poor prognosis,
suggesting that they may need an adjusted treatment plan and
individualized treatment.

Overall, our study provides novel insights into the role
of RBPs in the tumorigenesis and progression of LUSC.
Furthermore, our prognostic model showed good predictive
performance with regard to survival, which may contribute
to the development of new prognostic indicators for LUSC.
Furthermore, the RBP-related gene marker showed a pivotal
biological background, which demonstrates that these RBPs
could be used in clinical adjuvant treatments. Nevertheless,
our study had several limitations. First, our results were only
based on single-omics (RNA sequencing); patients may exhibit
heterogeneity owing to the different features of other omics
data platforms. Moreover, our prognostic model was built on
the TCGA LUSC dataset and was not validated with a clinical
patient cohort; a prospective study should be performed to
verify the results. Finally, the lack of some clinical characteristics
in the datasets from TCGA may have decreased the statistical
effectiveness and reliability of the multivariate stepwise Cox
regression analysis.

CONCLUSION

We investigated the expression, potential functions, and
prognostic values of aberrantly expressed RBPs via a series of
bioinformatics analysis in LUSC. These RBPs were associated
with oncogenesis, development, invasion, and metastasis. A nine-
RBP coding gene prognostic model was developed that could
act as an independent prognostic signature for LUSC. To
the best of our knowledge, this is the first report of the
establishment of an RBP-associated prognostic model for LUSC.
These findings provide important insight into the pathogenesis
of LUSC, which may contribute to clinical decision-making and
individualized treatment.
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Autophagy is a self-degradation process that maintains homeostasis against stress in
cells. Autophagy dysfunction plays a central role in the development of tumors, such
as colorectal cancer (CRC). In this study, autophagy-related differentially expressed
genes, their downstream functions, and upstream regulatory factors including RNA-
binding proteins (RBP) involved in programmed cell death in the CRC were investigated.
Transcription factors (TFs) and miRNAs have been shown to mainly regulate autophagy
genes. Interestingly, we found that some of the RBP in the CRC, such as DDX17,
SETDB1, and POLR3A, play an important regulatory role in maintaining autophagy
at a basal level during growth by acting as TFs that regulate autophagy. Promoter
methylations showed negative regulations on differentially expressed autophagy gene
(DEAG), while copy number variations revealed a positive role in them. A proportional
hazards regression analysis indicated that using autophagy-related prognostic signature
can divide patients into high-risk and low-risk groups. Autophagy associated FDA-
approved drugs were studied by a prognostic network. This would contribute to the
identifications of new potential molecular therapeutic targets for CRC.

Keywords: autophagy, colorectal cancer, regulatory network, RNA-binding proteins, biomarkers

INTRODUCTION

Colorectal cancer (CRC) is a common digestive tract tumor (Chisanga et al., 2016). Among all
cancer types, it is the third leading cause of death in the world. The overall 5-year survival rate of
CRC patients is less than 40%, and the occurrence of CRC is consistently rising (Yang et al., 2015).
However, the prognosis and therapy for CRC have not been significantly improved. Therefore, a
proper selection of patients for aggressive treatment is necessary, new therapeutic strategies and
prediction of prognosis of CRC is urgently needed.

Autophagy has been found to be associated with a variety of clinically relevant diseases, such as
CRC. In the past ten years, autophagy has received extensive attention as a new treatment method.
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Several studies indicate that the autophagy function plays a
critical role in the development, maintenance, and progression of
CRC (Yang et al., 2015; Katheder et al., 2017). The dysregulation
of autophagy function disrupts the physiological processes and
has been implicated in the pathogenesis of multiple diseases
(Thorburn et al., 2014). Early efforts reported that there are
relationships between multidimensional factors and autophagy
function. BECN1 plays a key role in the autophagic process,
its expression is found to be regulated by transcription factors
(TFs), miRNAs, the abnormal methylation of the promoter
region, and copy number variation (CNV) of the associated
chromatin regions (Mei et al., 2016). In addition, RNA-binding
proteins (RBP) play a key role in many processes as TF, including
cellular differentiation, autophagy, apoptosis, and DNA repair
(Gerstberger et al., 2014; Williams et al., 2019). For instance,
some researches have shown that CELF2 RNA-binding protein
regulates autophagy-mediated CRC cell death (New et al., 2019).
Furthermore, Kudinov AE et al. found that MSI2 RNA-binding
protein as a regulator of progenitor cell is elevated in colorectal
adenocarcinomas and that its loss of function inhibits the growth
of CRC cells (New et al., 2019). In the past decade, autophagy as
a new therapeutics has attracted extensive attention. Increasing
evidence indicates that autophagy function is crucial to tumor
cell survival in CRC patients undergoing anticancer treatment
(Roy and Debnath, 2010). Despite this, the potential values of
some novel prognostic biomarkers related to autophagy function
have not been thoroughly investigated. This study will focus on
the potential prognostic roles of autophagy-related genes in CRC
and will offer new targets for the treatment of CRC. Further
understanding of the functional role of autophagy in CRC
pathogenesis will allow us to improve the disease management.

In this study, the function of autophagy genes in four stages
of CRC was investigated through the performance of functional
enrichment analysis of the downstream RNAs. The upstream
regulatory factors of autophagy genes were also identified in
each stage by integrating multi-omics data in TCGA. Some key
autophagy-related differentially expressed genes associated with
the prognosis of CRC were identified through univariate Cox
proportional hazards regression model. Then the mappings were
drawn between FDA-approved drugs and their related autophagy
gene. These findings not only shed light on the central functional
role of autophagy-related genes in CRC, but may also contribute
to the identification of molecular biomarkers in CRC and the
development of clinical therapeutic modality.

MATERIALS AND METHODS

Colorectal Cancer Patient Cohorts
Gene and miRNA expression data, methylation data, and the
clinical data of CRC patients were downloaded from TCGA1

(Cancer Genome Atlas Research Network, 2008). There are 328
colon carcinoma (COAD) samples and 105 rectal carcinomas
(READ) samples. Combined with clinical information, there are
41 normal patients, 45 stage I patients, 111 stage II patients, 83

1 http://cancergenome.nih.gov/

stage III patients, and 39 stage IV patients in COAD samples.
And there are 10 normal patients, 12 stage I patients, 28 stage
II patients, 33 stage III patients, and 15 stage IV patients in
READ samples. The corresponding CNV data were obtained
from the Cancer Cell Line Encyclopedia2 (Barretina et al., 2012).
Additionally, a cohort of 177 COAD patients and 196 READ
patients from the GEO database (GSE17536 and GSE87211)
(Smith et al., 2010; Hu et al., 2018) was used as an independent
external test set.

Autophagy Genes, Interaction Data,
RNA-Binding Proteins, and Transcription
Start Sites
Autophagy genes were collected from the cell death proteomics
database3 (Arntzen et al., 2013). A total of 1776 experimentally
confirmed genes were used for the subsequent analysis. Protein-
protein interactions were retrieved from the Human Protein
Reference Database (HPPD)4 (Keshava Prasad et al., 2009).
The TF that targeted the autophagy genes were acquired from
ChIPBase5 (Zhou et al., 2017). The 2949 RBP were downloaded
from the EuRBPDB6 (New et al., 2019). The miRNA-gene
targeted interaction was formed through the integration of
miRecords7 (Xiao et al., 2009), DIANA-TarBase8 (Vlachos et al.,
2015), and miRTarBase9 (Chou et al., 2018) databases.

The transcription start sites (TSS) of autophagy genes were
downloaded from GENCODE (Harrow et al., 2012). The mean of
the methylation level for CG sites in autophagy gene transcription
promoter regions was used as the methylation level of the
autophagy genes.

Construction of Regulatory Networks
and the Influence of Regulators on the
Differentially Expressed Autophagy Gene
The significant differentially expressed autophagy gene (DEAG)
and regulated gene pairs were obtained through the calculation of
their linear correlation based on the expression data (P < 0.05).
Linear regression was then used to calculate the significant
TFs and miRNAs that targeted the DEAG based on known
TF/miRNA-gene interaction (P < 0.05). The significant influence
of CNVs or gene promoter methylations was denoted by the
linear correlation between gene expression and their own CNVs
or gene promoter methylations level (P < 0.05).

Statistical Analysis
The relationship between DEAGs expression level and
patient survival was evaluated by the Cox regression analysis.
Multivariate Cox regression analysis was used to fit the selected

2www.broadinstitute.org/ccle
3http://celldeathproteomics.uio.no./
4http://www.hprd.org/
5http://rna.sysu.edu.cn/chipbase/
6http://eurbpdb.syshospital.org/
7http://miRecords.umn.edu/miRecords
8http://www.microrna.gr/tarbase
9http://miRTarBase.mbc.nctu.edu.tw/
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FIGURE 1 | Differentially expressed genes in the four stages. (A,B) Represent the Venn diagrams of differentially expressed autophagy genes and non-autophagy
genes respectively in four stages of COAD. (C,D) Represent the Venn diagrams of differentially expressed autophagy genes and non-autophagy genes respectively
in four stages of READ.

DEAGs (Lossos et al., 2004). The risk score of each patient was
calculated with the estimated regression coefficient as the weight
(Zhou et al., 2016). It was calculated as follows:

Risk_score =
n∑

i=1

βi × EXPgene(i)

where βi is the Cox regression coefficient of gene i in the
training set, and n is the number of survival related genes.
The sensitivity and specificity of survival gene risk prediction
were compared using the time-dependent receiver operating
characteristic (ROC) curves, and the optimal patient stratified
cutoff value was determined in the discovery cohort. Patients
were divided into high risk group and low risk group in
accordance with the above stratification cutoff. Kaplan–Meier
survival analysis and log-rank test were performed to compare
survival differences. Cox proportional risk regression was used
for multivariate analysis to test whether the autophagy gene

signature was independent of other clinic-pathological factors.
The Cox proportional risk regression model was used to estimate
the hazard ratio (HR) and the 95% confidence intervals (CI).

RESULTS

Construction of DEAG Regulatory
Network
Genome-wide analysis of mRNA expression was performed
to identify differentially expressed mRNAs, and the autophagy
genes were extracted. There were 1097, 1136, 1087, and 1069
DEAGs between the normal and each stage (I, II, III, and
IV) cancer samples in COAD. There were 495, 624, 683, and
463 DEAGs in READ (P < 0.05). It was found that a large
proportion of the DEAGs were shared among the four stages
(Figures 1A,C). Used Chi-square Test, we found the four stages
significantly shared the majority of the DEAGs. The P-values
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FIGURE 2 | Analysis of DEAG regulatory network in COAD. (A) The distribution of the degree of DEAG regulatory network in stage I. (B) The distribution of the
degree of DEAG regulatory network in stage II. (C) The distribution of the degree of DEAG regulatory network in stage III. (D) The distribution of the degree of DEAG
regulatory network in stage IV. (E) Significantly enriched KEGG pathways of common DEAGs. (F) Significantly enriched KEGG pathways of the DEAGs in every stage.

of each stage of COAD are 0.03601, 0.09514, 0.00041, and
0.00014, respectively. Genes which appeared in three, two and
single stages were infrequent. By contrast differentially expressed
non-autophagy genes that only appeared in a single stage were
most common (Figures 1B,D). We identified 12079, 12453,
12222, and 12048 differentially expressed genes between the
normal and each stage (I, II, III, and IV) cancer samples in
COAD. And there were 7970, 9241, 9364, and 7402 differentially
expressed genes in READ. The autophagy genes were extracted,
there were 1097, 1136, 1087, and 1069 DEAGs in COAD and
495, 624, 683, and 463 DEAGs in READ. So differentially
expressed non-autophagy genes were 10982, 11317, 11135, and
10979 in COAD and 7475, 8617, 8681, and 6939 in READ.
These results imply that autophagy genes play an important role
during the development and progression of CRC. Whereas a
few autophagy genes, which were expressed differently in specific
stages of cancer, reflect that these genes play a different role in
different stages.

To study the regulation ability of the DEAGs, the regulatory
network was constructed by the linear regression method
(Supplementary Figures S1, S2). Through network topology
analysis, it was discovered that the networks exhibit power law
degree distribution. This illustrates the scale-free and small-world
nature of these networks, which makes them similar to the
general biological network (Figures 2A–D and Supplementary
Figures S3A–D). In conclusion, many pieces of evidence indicate
that specific DEAGs and their regulatory subnetwork in each of

the cancer stages can better represent the function of autophagy
genes in its own stage.

Functional enrichment analysis for KEGG pathway was
performed on the common DEAGs and the specific DEAGs
through the use of DAVID 6.8 bioinformatics tool (Huang
et al., 2009). Common DEAGs in COAD were enriched in 22
KEGG pathways (P < 0.05), including ribosome, spliceosome,
proteasome, propanoate metabolism, and fatty acid metabolism
(Figure 2E). In READ, there were spliceosome, methane
metabolism, fatty acid metabolism, and propanoate metabolism
(Supplementary Figure S3E). This is consistent with the findings
of Y. Boglev et al. Genetic mutations associated with ribosomal
production provide a powerful stimulus to autophagy in affected
tissues, allowing them to escape cell death. Autophagy is a specific
response to damage in ribosome organisms (Boglev et al., 2013).
However, the influence of DEAGs in each distinct stage was found
to be a little different (Figure 2F and Supplementary Figure
S3F). Stage I and stage II were analogous, and stage III and stage
IV were analogous. This reflects that the genes in stage I and
stage II play a similar role, and the genes in stage III and stage
IV play a similar role.

Analysis of DEAG Regulatory Mechanism
With Multi-Omics Data
Along with the development and maturation of the new
generation sequencing technology, more and more multi-omics
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FIGURE 3 | The influence of different level factors. (A,B) Show the proportion of DEAGs regulated by CNVs, methylation, miRNAs, TFs, and composite factors in
COAD and READ respectively. (C,D) Show the influence of methylation and CNV to DEAGs in COAD and READ respectively. Yellow boxes represent the number of
autophagy genes influenced by methylation, while green boxes represent the number of autophagy genes influenced by CNVs. The lighter color represents negative
regulation, and the deeper color represents positive regulation.

data could be obtained. This study primarily analyzed the impacts
of CNVs, gene promoter methylations, miRNAs, and TFs on
the expression of DEAG. To investigate the extent of influence,
the percentage of DEAG regulated by each factor and the
combination of multiple factors was calculated (Figures 3A,B,
the detailed percentage of different factors for each stage was
added to Supplementary Table S3). The majority of DEAGs
are regulated by TFs. This is possibly due to a large amount
of TFs present in the cells. The next major factor is miRNA,
which negatively influenced these genes. A small number of
DEAGs were affected by their own promoter CNVs and gene
promoter methylations. Furthermore, a certain proportion of
the DEAGs was subjected to a comprehensive regulation of
multiple factors. Around 20% are jointly regulated by two
factors. So, the DEAGs regulated by any two factors were

thoroughly investigated (Figure 4 and Supplementary Figure
S4). There are no doubts that TF and miRNA synergistically
influenced a large portion of the DEAGs, which may be
a result of their relatively large quantity. The influence of
CNVs and gene promoter methylations cannot be ignored.
Hypermethylation of gene promoter generally has a negative
influence on genetic expression, and the CNVs generally has a
positive influence (Figures 3C,D). This pattern is consistent with
the pre-transcriptional regulation of the gene.

Prognostic Value of the Biomarker for
Survival Prediction
To further validate the prognostic performance, a univariate Cox
proportional hazards regression model was used to evaluate the
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FIGURE 4 | The influence of any two factors to DEAGs in the four stages of COAD. The numbers represent the proportion of the DEAGs regulated by each pair of
upstream regulators in stage I (A), II (B), III (C), and IV (D). The darker color represents a larger effect.

association between the DEAGs expression levels and overall
survival (OS). The 281 COAD patients were divided randomly
into a train dataset (n = 140) and an internal test dataset
(141). It was found that nine genes were significantly associated
with OS in the train dataset (P < 0.01). Using the regression
coefficients estimated in the multivariate Cox regression analysis
as weights, the risk score for each patient in the train dataset
was calculated by a linear combination of the expression levels
of the nine-gene. These scores were classified into high-risk
group (n = 70) and low-risk group (n = 70) with the median
risk score as the cutoff point. The result showed that patients
in the high-risk group exhibited poor OS compared with those
in the low-risk group (log rank P < 0.05) (Figures 5A,D).

A time-dependent ROC curves analysis performed on the nine-
gene and the area under curve (AUC) was achieved at 0.924
(Figure 5G). These genes can effectively stratify patients into
different risk groups, which suggests that they may play essential
roles in COAD. Internal test datasets were used to evaluate
the prognostic value of the nine-gene signatures in predicting
survival (Figures 5B,E,H) and a GEO dataset (Figures 5C,F,I).
Patients of the internal test dataset and GEO dataset were divided
into high-risk group and low-risk group with accordance to
the same nine-gene signature score model derived from the
train dataset. As in the train dataset, OS of high-risk group
was significantly worse than that of the low-risk group (log
rank P < 0.01). These results demonstrated that the nine
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FIGURE 5 | The prognostic value of the nine genes signature in COAD. (A–C) Show the Kaplan–Meier survival curves for the train (A), test (B), and GEO datasets
(C). The red and green lines represent the high-risk and low-risk patients respectively. P-value means log rank P. (D–F) Show the detailed risk score distribution of
patients in the train (D), test (E), and GEO datasets (F). (G–I) Show the ROC curves and AUCs of the nine gene signature predicting patients’ five-year survival in the
train (G), test (H), and GEO datasets (I).

genes were potential prognostic biomarkers for the prediction of
tumor risk in COAD.

The univariate and multivariate analysis indicated that the
nine-gene module biomarker was significantly associated with
the OS of the COAD patients in the train and internal test
dataset (Table 1). Additionally, the multivariate analysis also
demonstrated that the designation of high-risk and low-risk
groups remained statistically significant in the independent
GEO dataset. In conclusion, these analyses demonstrated the
capacity of the nine-gene biomarkers for COAD, and its ability
to add value in the prognostic setting. This process was then

systematically executed on the study of READ (Supplementary
Figure S5), there are fifteen-gene biomarkers for READ.

Molecular Signatures of Prognostic
Biomarkers
To investigate the clinical implications of the molecular
signatures, we focused on the nine genes of COAD. There
are six therapeutic targets of FDA-approved drugs through
their associated TFs. SLC25A1 maintains mitochondrial integrity
and bioenergetics in tumor cells. It prevents mitochondrial
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TABLE 1 | Univariate and multivariate Cox regression analysis in the COAD.

Variables Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Train dataset

Nine genes 2.795 1.894–4.125 2.258e-07 2.394 1.617–3.546 1.32e-05

Stage

I,II 1(reference) 1(reference)

III,IV 2.307 0.880–6.052 0.0892 2.639 0.742–9.390 0.134

Age 1.009 0.974–1.045 0.624 1.023 0.985–1.062 0.235

Tumor weight 1.004 1.001–1.006 0.005 1.004 1.000–1.006 0.028

Test dataset

Nine genes 2.718 1.389–5.321 0.004 2.532 1.179–5.437 0.0172

Stage

I,II 1(reference) 1(reference)

III,IV 2.753 1.094–6.928 0.032 4.002 1.435–11.16 0.008

Age 1.015 0.981–1.050 0.396 1.021 0.984–1.06 0.264

Tumor weight 1.002 1.000–1.003 0.022 1.001 0.999–1.003 0.1001

GEO dataset

Nine genes 2.718 1.774–4.165 4.384e-06 2.578 1.65–4.03 3.19e-05

Stage

I,II 1(reference) 1(reference)

III,IV 4.2199 2.387–7.459 4.065 2.285–7.234 1.85e-06

Age 1.006 0.988–1.025 0.492 1.017 0.999–1.037 0.0612

damage and circumvents mitochondrial depletion via autophagy,
hence promoting proliferation (Catalina-Rodriguez et al., 2012).
Several evidences implicate that SLC25A1 plays a role in cancer
progression. High levels of SLC25A1 expression are associated
with poor prognosis in lung cancer and estrogen receptor
negative breast cancer (Georgiades et al., 1988; Jiang et al.,
2017). In ovarian cancer patients, SLC25A1 mRNA levels are
also associated with resistance to platinum-based chemotherapy,
and blocking CTP function enhances sensitivity of cultured
ovarian carcinoma cells to platinum (Georgiades et al., 1988;
Jiang et al., 2017).

There were 41 FDA-approved drugs related to the six
therapeutic targets, and they were connected by four TFs
(Figure 6A). Ethanolamine derivatives of eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) have recently been
found to induce autophagy by activating PPARG in human breast
cancer cells (Rovito et al., 2015; Garay-Lugo et al., 2016). The
PPARG gene is related to malignancy, which plays a vital role
in the pathogenesis of multiple cancers in some clinical studies
and animal models (Wang et al., 2015). AR plays a negative role
in regulating the autophagy induced by celastrol, and it inhibits
autophagy by transactivating mir-101 in prostate cancer cells
(Guo et al., 2015). ESR1 is essential for sexual development as well
as reproductive function and is involved in inducing autophagy of
toxins (Chen and Xia, 2014; Tan et al., 2016).

These drugs can perform three types of treatment, including
targeted therapy, hormone therapy, and chemotherapy. The
Current studies have shown that the exposure to PT and
balsalazide effectively inhibited the proliferation of human colon
cancer HCT116 cells via inhibiting NF-κB activity and inducing
apoptotic cell death. These suggest that the simultaneous

administration of PT and balsalazide may provide a novel option
for the treatment of colon cancer (Kim et al., 2015). The published
evidence indicates that sulfasalazine prevents the development of
dysplasia and CRC in patients with IBD (Eaden, 2003).

The distribution of four regulators was investigated on
the six therapeutic targets in distinct stages (Figure 6A). It
was found that each factor had stronger effects at different
stages of cancer. In principle, their effects are present in stage
II, III and IV, but there was almost no effect in stage I.
A comprehensive network was constructed by integrating the
upstream regulators and downstream regulated genes of the
nine genes of COAD (Figure 6B and Supplementary Table
S1). In final, we found that RBP play very important regulatory
factors regulated autophagy-mediated CRC cell death in DEAG
regulatory network (Supplementary Table S2). For example,
DDX17 RNA-binding protein that regulated autophagy genes
SLC25A1 and TRMT112 in the COAD is also important for
the autophagy regulatory network. Similarly, POLR3A RNA-
binding protein that acted as TFs performed the task of regulating
autophagy genes in the READ (Supplementary Table S2).
Prognosis biomarkers show the different regulation modes. It
was found that more than half of the genes were regulated
by TF, which existed in several stages. Then this process was
systematically executed on the study of READ (Supplementary
Figure S6 and Supplementary Table S1).

DISCUSSION

Autophagy is associated with both tumorigenic and tumor
progression in CRC (Lin et al., 2014). However, the clinical
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FIGURE 6 | Molecular Signatures and upstream and downstream network of nine biomarkers in COAD. (A) The mapping between FDA-approved drugs and their
related genes (left) and the influence of four factors to the nine genes (right). The blue, green and orange lines represent targeted therapy, chemotherapy and
hormone therapy respectively. Square, top triangle, diamond and bottom triangle represent the regulation of TF, miRNA, methylation and CNV on related genes in
four stages. (B) Upstream and downstream network. The thickness of the line represented the quantity of interactions in these stages. The yellow and purple
triangles (inside the four panel squares) represent that the nine genes are affected by their own methylation and CNV. Each panel in the four-panel squares
represents each of the four cancer stages (top left is stage I, top right is stage II, bottom left is stage III, and bottom right is stage IV).
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significance and autophagy function in CRC remains unclear.
In this study, we have revealed the expression signatures of
autophagy genes regulated by multiple factors, which include TF,
miRNA, promoter methylation, and CNV. Some studies have
demonstrated that RNA binding proteins as TFs play a key role
in the development and function of CRC (New et al., 2019).
RNA binding proteins regulate the expression of thousands of
transcripts and are crucial for the regulation of CRC cellular
processes, such as RNA splicing, modifications, transport, and
translation (Kudinov et al., 2017; Chatterji and Rustgi, 2018).
For instance, Zhou B et al. found that APOBEC3G, EEF1A2,
EIF5AL1, and CELF3 as RNA binding proteins may provide
a good prospect for the clinical diagnosis and treatment of
patients with CRC metastasis (Zhou and Guo, 2018). As other
examples, PTBP1 RNA binding protein that associated with
tumor metastasis in CRC tissues directly interacts with autophagy
gene ATG10 and regulates ATG10 expression level (Zhou and
Guo, 2018). Therefore, research on the regulation of autophagy
to improve clinical outcomes is becoming increasingly important.
In conclusion, some novel prognostic biomarkers associated with
autophagy in CRC should be further investigated in the future.

Autophagy genes are the key components of the autophagy-
mediated regulatory network. They are implicated in the
occurrence and development of CRC (Hao et al., 2017). We
have systematically validated the autophagy genes of differential
expression, through data comparison of diverse stages for CRC.
Our findings were consistent with previous reports that the
signature of autophagy genes changes with different expression
variation in the progression of CRC. We further analyzed
the potential functional implication of autophagy genes that
were specifically expressed in various periods and found that
the enriched biological processes and pathways of these genes
play essential roles in diverse stages of CRC. Even more, our
results showed that multiple factors that regulate DEAGs are
significantly different. The TF and miRNAs that regulate the
autophagy genes had a very low overlap in various stages of
CRC. Therefore, the modulation of autophagy genes as potential
prognostic biomarkers in CRC should be further researched.

To identify potential prognostic biomarkers in CRC, we
evaluated the associations between expression levels of DEAGs
and the survival of the patient by employing the Cox regression
analysis (Lossos et al., 2004). Multiple evidences show that
SLC25A1 overexpression is associated with poor prognosis
of lung cancer and estrogen receptor-negative breast cancer
(Georgiades et al., 1988). These genes have a strong prognostic
ability and are independent of clinical factors. As significant
prognostic factors in four stages of CRC, the signature of
autophagy genes will have important effects on cancer-related
biological processes. However, this observation should be

interpreted with caution, because there are many uncertainties
in the upstream regulatory factors of autophagy. Alterations in
various molecular levels could cause expression dysregulation of
autophagy genes (Hao et al., 2017). Therefore, further efforts are
required to elucidate the corresponding contributions of various
factors in the expression signatures of the autophagy gene of
CRC (Wang et al., 2016). Also, it is essential that we continue
to explore the biological functions of autophagy in the context of
different interactions.

In summary, we identified the potential prognostic
biomarkers in CRC and described their signatures in several
stages of CRC. Along with the development of cancer
clinical management approaches, this study will make a
significant step toward transforming them from preclinical to
clinical assessments.
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Alternative splicing alterations can contribute to human disease. The ability of an RNA-
binding protein to regulate alternative splicing outcomes can be modulated by a variety
of genetic and epigenetic mechanisms. In this study, we use a computational framework
to investigate the roles of certain genes, termed modulators, on changing RBPs’
effect on splicing regulation. A total of 1,040,254 modulator-mediated RBP-splicing
interactions were identified, including 137 RBPs, 4,309 splicing events and 2,905
modulator candidates from TCGA-KIRC RNA sequencing data. Modulators function
categories were defined according to the correlation changes between RBPs expression
and their targets splicing outcomes. QKI, as one of the RBPs influencing the most
splicing events, attracted our attention in this study: 2,014 changing triplets were
identified, including 1,101 modulators and 187 splicing events. Pathway enrichment
analysis showed that QKI splicing targets were enriched in tight junction pathway,
endocytosis and MAPK signaling pathways, all of which are highly associated with
cancer development and progression. This is the first instance of a comprehensive study
on how alternative splicing outcomes changes are associated with different expression
level of certain proteins, even though they were regulated by the same RBP. Our
work may provide a novel view on understanding alternative splicing mechanisms in
kidney cancer.

Keywords: alternative splicing, RNA-binding protein, modulation, cancer, dysregulation

INTRODUCTION

Renal cell carcinoma (RCC) is a common malignancy, representing 4.2% of all new cancer cases,
with about 73,820 new cases and 14,770 deaths estimated for 2019 in the United States (Siegel et al.,
2019). RCC is radiotherapy- and chemotherapy-resistant, and surgery remains first-line therapy
(Hsieh et al., 2017; Yin et al., 2019). Despite early surgical treatment, 30% of patients with a localized
tumor eventually develop metastases, and 2 years survival rate of patients with metastatic kidney
renal clear cell carcinoma (KIRC) is less than 20% (Mickisch, 2002; Janzen et al., 2003). Therefore,
identification of underlying molecular mechanisms and metastatic potential of KIRC are essential
for improvements in early diagnosis and treatment.

Dysregulation of alternative splicing (AS) is widely considered a new hallmark of cancer and its
products are acknowledged as potentially useful biomarkers (Ladomery, 2013). Recent estimates
indicate that nine out of every 10 human genes undergo AS in a cell type- or condition-specific
manner to create distinct RNA transcripts from the same pre-mRNA molecule (Wang et al., 2008).
The key role of AS is further confirmed by the linkage of splicing regulation to numerous human
diseases, including neurological disorders and many types of cancer (Scotti and Swanson, 2016).
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Regulation of AS is a complicated process in which numerous
interacting components are at work, including cis-acting
elements and trans-acting factors, complicated by the functional
coupling between transcription and splicing (Wang et al., 2015).
Corruption of the process may lead to disruption of normal
cellular function and eventually disease. Thus, understanding
the regulatory patterns that control AS events has the potential
not only to give valuable molecular insights but also to provide
solutions for various diseases.

AS events are largely controlled by RNA-binding proteins
(RBPs) that recognize specific regulatory sequences embedded
in the pre-mRNA transcripts (Gerstberger et al., 2014).
However, splicing complexes are intricate molecular machines
that process tens to hundreds of RNA target genes. At any
given time, depending on the context and cellular stimuli,
an RBP will affect only a subset of its RNA target genes.
This specificity is often provided by a certain factors we
named as “modulators,” such as signaling proteins, microRNAs,
lncRNAs that control RBPs activity through several different
mechanisms, including: expression level (Payne et al., 2018),
protein stability and turnover (Garcia-Maurino et al., 2017),
nuclear/cytoplasmic localization (Di Liegro et al., 2014), altered
protein interactions (Jankowsky and Harris, 2015), and co-
transcriptional regulation (Shukla and Oberdoerffer, 2012).
Modulators help a cell combine different external signals and
make complex downstream decisions. Elucidating their function
is necessary for understanding and controlling cell’s response to
external stimuli at transcriptional level.

With the increased availability of large data sets derived
from high-throughput experiments and computer algorithms,
investigating complex transcriptional dysregulation between
RBPs and AS events in complex diseases is now possible.
Recently, the ENCODE project published eCLIP data sets for
150 RBPs across K562 and HepG2 cell types (Van Nostrand
et al., 2016; Yee et al., 2019). Technological advances have
made it possible to define the comprehensive target networks of
individual RBPs with high accuracy by integrating global splicing
profiles upon depletion of each RBP and genome-wide maps
of in vivo, direct protein-RNA interactions (Zhang et al., 2010;
Weyn-Vanhentenryck et al., 2014).

In this study, we established a computational method for
dissecting the relationship among RBPs, alternatives splicing
events and a kind of proteins that may influenced the splicing
regulation effect of RBPs. Our method is unique in its ability
to discover how alternative splicing outcomes is changing
when modulator expression is different, even though they were
regulated by the same RBP. It is the first time in which a triplet
describing the relationships among modulators, RBPs and the
outcomes of their alternative splicing targets is reported. The
triplet contains three objects: a specific RBP, a splicing target
regulated by RBP, and a modulator candidate that may change
splicing regulation of the RBP. This method was applied to RCC
using TCGA-KIRC dataset to identify modulator-dependent
RBPs and their targets splicing outcomes in kidney cancer.
QKI, as one of the key RBPs in this study, has the greatest
number of influenced splicing events. Functional enrichment
analysis showed that the inferred QKI modulators were highly

associated with regulation progress of some hallmark cancer
genes, including ARMH4, LINC01268, PDP2, LAPTM4B, and
CD7. The results showed that different expression of modulators
was associated with the changing roles of RBPs on regulating
their targets alternative splicing outcomes. We expect that
such integrated analysis could reveal the roles of RBPs and
provide novel insights into understanding alternative splicing
mechanisms in kidney cancer.

MATERIALS AND METHODS

Identify Alternative Splicing Events and
Gene Expression
Paired-end RNA sequencing data from 480 RCC patients was
downloaded from The Cancer Genome Atlas Kidney Renal Clear
Cell Carcinoma (TCGA-KIRC). The percentage of inclusion
(PSI) of spliced events were derived using Mixture of Isoforms
(MISO) (Lee et al., 2013). A PSI value was computed for every
identified event in each sample, and the original AS events
were further processed to generate high-confidence events by
retaining events with a PSI value greater than 0.1 in at least
100 samples from 480 (∼21% samples in total). Then, events
that occurred in both the curated and TCGA datasets were
retained to form the final set of AS events. In this study,
we only focused on skipped exon (SE) alternative splicing
events. We defined an altered skipped exon as any exon of
a transcript excluding the first and the last exons. Finally,
we only kept the events that at least 100 patients’ have PSI
value and coefficient of variation (CV) of PSI was larger than
0.1. Gene differential expression analysis was performed using
edgeR (Robinson et al., 2010), and CPM was used to estimated
gene expression.

Identify RBPs Targets Using eCLIP Data
We used crosslinking immunoprecipitation (CLIP) data for
150 RBPs profiled in eCLIP peaks (Van Nostrand et al., 2016)
downloaded from ENCODE in bed format (Consortium Encode
Project, 2012). The peaks in two immortalized human cell types,
K562 and HepG2, were filtered by peak enrichment larger than
8 (log2FC ≥ 3) and p < 10−5 as recommended (Van Nostrand
et al., 2016). Since the agreement between peaks in two replicates
was moderate (the median Jaccard distance 25 and 28% in K562
and HepG2, respectively), we took the union of peaks between
the two replicates in both cell lines and then pooled the resulting
peaks. We defined an RBP-binding splicing event as the region
upstream 300 base pairs of the exon to downstream 300 base
pairs of the exon.

Genomes and Transcript Annotations
February 2009 assembly of the human genome (hg19,
GRCh37) was download from Genome Reference Consortium
(Church et al., 2011). The respective transcript annotation v19
was download from GENCODE website (Harrow et al., 2012).
Transcript annotations were parsed to extract positions of
introns and exons.
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Gene Function and Categories Analysis
Functional enrichment analysis was carried out via the
hypergeometric test using the clusterProfiler R package. We used
Human Gene Ontology annotation provided by Gene Ontology
(GO) Consortium (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017). GO terms enrichment with adjusted p< 0.01
and KEGG pathway enrichment with adjusted p< 0.05. The gene
types we discussed in this study including immune related genes,
which were download from IMMPORT database1 and TRRUST
v2 database.2 The lncRNA gene type annotation was based on
biomaRt software suite in R.

Construction Modulator-RBP-Splicing
Triplets in KIRC
The probabilistic model is similar to Li et al. (2017)
as follows:

Ytarget = β0 + β1Xrbp + β2Xm + β3XrbpXm + ε (1)

where, the Xrbp, Xm, and Ytarget are the gene expression of RBP
and its modulator, and the splicing outcomes of the affected
target gene, respectively. Xrbp and Xm represent the effect of
RBP and modulator, respectively, on target by themselves alone
(main effects), while β3 represents the effect of their interaction.
If an RBP and modulator interaction influences target splicing
outcomes, we expect β3 to be non-zero.

We divide rank-ordered expression values of a gene by tertiles
and further discretize the triplets using:

x′ =


1 if x is in upper tertile
NULL if x is in middle tertile
0 if x is in lower tertile

(2)

Values are ranked and transformed by tertials as follows,
and coefficients are estimated from the differences in observed
proportions of frequencies:

(1) Splice events are ranked according to PSI.
(2) RBP is ranked by its expression.
(3) Each modulator is ranked by their expression.

After discretization, we only consider the eight bins, where
none of the genes has “NULL” value, covering ∼33% of the
samples. This simple strategy has been shown to maximize
entropy among groups and the selection of significant triplets’
method can be found in Babur et al. (2010).

Statistical Analysis and Software
The data were analyzed and visualized using R statistics software
version 3.4.1 and ggplot2 package. Correlations were assessed
using Pearson correlation test. Survival curves were generated by
the Kaplan Meier method using the median H-score as the cutoff,
and differences were analyzed with the log-rank test.

1https://www.immport.org
2https://www.grnpedia.org

RESULTS

Category of Modulator Action
We developed a framework to infer the modulators of RBPs
whose expression strongly correlates with changes of a RBP’s
effect on regulating targets splicing outcomes. Here, the
transcriptional activity of a RBP was evaluated by the Pearson
correlation between the expression level of RBPs and its target
splicing outcomes. A schematic diagram of work-flow is provided
in Figure 1.

The proposed method takes five inputs: gene expression
profiles, an RBP of interest, a list of modulator candidates,
splicing profiles, and RBPs’ binding information. Candidate
modulators may include all genes satisfying the criteria. In
addition, the expression of the modulator candidates and RBPs
were required to be statistically independent. Each possible
triplet was then independently tested using the PCCs (Pearson
correlation coefficients) estimator, and by comparing 1PCCs we
defined the subtype of modulation categories. False positives
were controlled using appropriate statistical thresholds. Three
possible modes of modulator action were identified, depending
on whether RBP-splicing correlation increased or decreased as a
function of the modulator abundance.

Category of Modulator Action
For each triplet, three possible modes of modulator action
were identified depending on whether RBP-splicing correlation
increased or decreased as a function of the modulator abundance.
The three models are “attenuates splicing,” “enhances splicing,”
and “‘inverts splicing.” Among them, attenuates/enhances
splicing modes including two sub-types: attenuates/enhances
exon exclusion and attenuates/enhances exon inclusion; inverts
splicing mode means that the mode of modulator switches from
exon inclusion to exon exclusion or from exon exclusion to
exon inclusion. These cases and details interpretations are listed
in Table 1.

Identify Modulators of QKI in Kidney
Cancer
We applied the proposed method for identifying modulators for
150 RBPs. 14,707 exons were selected from 42,485 annotated
skipped exons that are derived using the gene structures
of ENSEMBL database. We identified 1,040,254 significant
modulator-mediated triplets from 40,623,520 potential
modulator-RBP-splicing interactions at FDR ≤ 0.01 using
TCGA-KIRC data. The potential interactions consisted of 137
RBPs, 4,309 splicing events, and 2,905 modulator candidates.
Among these RBPs, 13 RBPs were filtered out as the PSI
distribution among 480 patients did not meet our criteria (the
PSI coefficient of variation should be larger than 0.1). RNA-
binding protein Quaking (QKI) had the greatest number (68.9%,
199 out of 289) of modulated spliced exons.

We identified 2,014 Modulator-QKI-Splicing triplets.
The triplets include 1,101 modulators and 187 splicing
events corresponding to 130 genes. According to the
correlation between QKI expression and its target splicing
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FIGURE 1 | A schematic diagram of workflow. Briefly, the dataset in this study derived from TCGA-KIRC and ENCODE ECLIP-Seq, hg19 was used as reference
gene annotation from Ensemble. Each triplet contains three object: RBP, target and a modulator. Gene expression level is the input of RBP and modulator
candidates, splicing outcomes (PSI value) is used to estimate the splicing level of target. Data filtering criteria as follows: (1) log2 (CPM) ≥ 1 (2) remove events with
“NA” samples > 100 (3) CV(PSI) > 0.1. Then using the linear regression model to predict triplets. Only the triplets with significant β3 p-value will be considered and
selected to the following analysis. Finally, for each triplet, we group the samples into “low” and “high” groups based on the expression level of modulator (bottom/top
33% samples) in the specific triplet, and we compare the Pearson correlation coefficient values of RBP expression and target PSI value in two groups, identify the
modulator function categories.

TABLE 1 | Categories of modulator mediated RBP regulations on splicing targets.

Modulation category PCClow PCChigh 1PCCs Subtype mode

Attenuates splicing – (EE) – (EE) | PCClow | > | PCChigh | or p-value.high > 0.05 Attenuates exon exclusion (AEE)

Enhances splicing – (EE) – (EE) | PCClow | < | PCChigh | or p-value.low > 0.05 Enhances Exon exclusion (EEE)

Inverts splicing + (EI) – (EE) Exon inclusion to exclusion (ExonIE)

Inverts splicing – (EE) + (EI) Exon exclusion to inclusion (ExonEI)

Enhances splicing + (EI) ++(EI) | PCClow | < | PCChigh | or p-value. Low > 0.05 Enhances EI (EEI)

Attenuates splicing + +(EI) +(EI) | PCClow | > | PCChigh | or p-value.high > 0.05 Attenuates EI (AEI)

“+” and “−” signs in the columns indicate positive and negative values of Pearson correlation coefficient. “EE” represents exon exclusion, and “EI” means exon inclusion.
The modulation categories of “attenuates splicing.” “enhances splicing” or “inverts splicing” only refer to the roles of RBP on specific alternative spliced exon.

outcomes, six modulator sub-categories were identified,
including 450 triplets in “Attenuates_Exon_Exclusion,”
226 triplets in “Attenuates_Exon_Inclusion,” 517
triplets in “Enhances_Exon_Exclusion,” 406 triplets
in “Enhances_Exon_Inclusion,” 218 triplets in
“Exon_Exclusion_to_Inclusion,” and 197 triplets in
“Exon_Inclusion_to_Exclusion” (Figure 2A).

Furthermore, we observed that most modulators affected
multiple splicing targets were multimodal, and the same
modulator may play opposite roles on different QKI targets.
For example, ARMH4 inverts the splicing activity of QKI on
its target CLTC: the inclusion of CLTC’s spliced exon was
correlated with increasing expression of QKI when ARMH4
is lowly expressed, while such association was inversed when
ARMH4 is highly expressed. However, ARMH4 played enhanced
exon inclusion role on QKI-STIM1 pair when its expression
level changed from low to high. In another case, while the
modulator KRT17 influenced 11 splicing targets of QKI, the
role of KRT17 on these splicing outcomes changed among

EEE, ExonIE, and ExonEI. The observation indicated that the
distinct modulation patterns were triplets dependent rather than
depending on specific RBPs or target genes. Our findings support
this complexity in modulators typically had many target-specific
effects. These findings suggested that more complex models are
needed to better elucidate that how splicing is regulated.

Hence, we clustered modulators by their regulation patterns,
yielding distinct groups of modulators that mediated splicing
dysregulation in specific patterns (Figure 2B). For instance, the
modulators in cluster 1–2 tend to reverse the QKI activity on
regulating splicing targets’ outcomes, whereas those modulators
in cluster 4 and cluster 6 tend to enhance QKI splicing activity.
In conclusion, these modulators may work as antagonistic or
coactivators to mediate QKI splicing activity.

Among these modulator-mediated triplets, we noticed that
many modulators regulate the same QKI splicing targets, this
may be because some of the modulators co-express or play
similar functions in related pathways. As the result showed
in Figure 2C, modulators were grouped into several clusters
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FIGURE 2 | Identify modulators of QKI in KIRC. (A) Six mode sub-categories according to the correlation between QKI expression and its target splicing outcomes.
The number in the pie chart means the percentage of each sub-categories. AEI indicates attenuates the exon inclusion, AEE indicates attenuates exon exclusion,
EEI indicates enhances exon inclusion, EEE indicates enhances exon exclusion, ExonIE indicates reverses exon inclusion to exon exclusion, ExonEI indicates reverse
exon exclusion to inclusion. (B) Modulators clusters by their regulation patterns. Six clusters were grouped according to modulator sub-categories. (C) Correlation
heatmap of QKI modulators. The redder the color the higher correlation between two modulators. The values in the matrix were the normalized gene expression of
modulators. (D) KEGG enrichment analysis of QKI modulators. (E) Modulators categories according to gene biotypes and features, including immune genes,
transcription factors and lncRNAs.

according to their expression’s correlation. This may be a
potential reason why the spliced outcome of same target could
be influenced by many modulators. In addition, the pathway
enrichment results shown that these modulators were highly
enriched in categories which were known to be associated
with cancer development and progression, including cytokine-
cytokine receptor interaction, Th1 and Th2 cell differentiation,
and cell adhesion molecules (Figure 2D).

Furthermore, we classified the modulators of QKI according
to gene biotypes and features, including immune related genes,
transcription factors and lncRNAs (Figure 2E). The types of
categories provide a framework for understanding many types of
dysregulation on splicing.

Functional Analysis of QKI Modulators
To confirm the QKI-splicing-modulator triplet signatures
as independent predictors, we selected six inferred
modulator-influenced triplets to compare the association
among QKI-splicing-modulators. The modulators we focused
on were obtained from the analysis result 3.3, including immune
genes (CCL3, HLA-F, AGER), transcription factors (ARMH4,
STAT4), and lncRNAs (LINC01268).

As an example, immune gene AGER as a modulator of QKI,
who shown differentially expressed level between cohort and

normal samples in KIRC, played inverts exon exclusion role
on regulating the splicing outcomes of GABRE. Comparing
the two patterns in different groups, when the expression of
modulator AGER is low, the PCCs between QKI expression
and GABRE splicing level (PSI) is −0.1, while such correlation
inverts to 0.32 in another group whose AGER expression
high. Similar pattern we found that the correlation between
QKI and its splicing target STIM1 was lost from 0.45 to
no significant correlation when the modulator immune gene
HLA-F expression differentially in two groups. Meanwhile,
LINC01268 as modulator played attenuated effect on regulating
QKI splicing activity. The correlation between QKI and target
CTNND1 was −0.54 in LINC01268 expressed low group, while
such correlation gone when LINC01268 expression becomes
high (Figure 3).

To investigate the association between dysregulated target
splicing outcomes and kidney cancer, we performed survival
analysis and compared the expression level of these modulators
in kidney tumor samples and normal samples based on TCGA-
KIRC dataset. Results shown that most of the modulators
were differentially expressed between tumor and normal
samples and overall survival associated. Although KRT17 as
one of the modulators we inferred did not show too much
differentially expressed, the clinical information obtained from
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FIGURE 3 | Relationships among QKI-modulator-target. The blue means the samples in modulator expression low group (expression in bottom 33%), the red means
the samples in modulator expression high group (expression in top 33%). The correlation value is the Pearson correlation between expression level of QKI and the
splicing outcomes of its targets. No correlation means the statistical p-value of correlation is not significant (p-value cutoff setup as 0.01).

TCGA indicated that gene expression in kidney cancer was
significantly associated with overall survival outcomes. The gene
expression levels and survival analysis of top 10 modulators
who has the most influenced targets of QKI were compared
(Figures 4A,B).

KEGG enrichment analysis revealed that these target genes
were enriched in categories known to be related to cancer
development and progression (Figure 4C), such as tight junction
pathway, transcriptional mis-regulation in cancer, endocytosis,
and MAPK signaling pathway. The top enriched GO terms of
these influenced target genes were associated with transcriptional
regulation progress, including RNA splicing, cell growth and
protein binding (Figures 4D–F). The results were reasonable
as QKI regulated its target mainly on splicing level, once
the expression of QKI was perturbed by the modulators,
the roles of QKI on its targets, including binding, splicing,
cellular development and transcriptional regulation would be
influenced consequently.

In addition, cancer-relevant modulators were identified
though tumor associated gene list from the Network of Cancer
Genes (NCG, v6.0) database (Repana et al., 2019) and Tumor
suppressor gene database (TSGene v2.0) (Zhao et al., 2016),
separately (Figure 4G). The 2,372 tumor diver genes obtained
from NCG including 711 known cancer genes and 1,661
candidate cancer genes. Among them, 149 genes overlapped with
tumor diver genes, almost reaching 13% (149/1,179) of total
numbers of modulators we inferred in this study. Meanwhile,
approximately 7% (77/1,179) modulators were tumor suppressor
genes, and the gene type was protein coding gene.

Analysis the Splicing Outcomes of
CTNND1 Influenced by Modulators in
Kidney Cancer
In this study, we found that the spliced outcome of the 20th
exon of CTNND1 has the most inferred modulators, including
30 lncRNAs and 80 protein coding RNAs. The corresponding
AS event is “chr11:57582866: 57582972: + @ chr11: 57583387:
57583473: + @ chr11:57583769: 57586652:+.” Previously study
reported that CTNND1 encodes a member of the Armadillo
protein family, which function in adhesion between cells and
signal transduction (Zhu et al., 2012), multiple CTNND1
isoforms are expressed in cells via alternative splicing, only
full-length CTNND1 promotes invasiveness (Yanagisawa et al.,
2008). Two modulation categories were identified including 107
attenuates exon exclusion (AEE), 7 enhances exon exclusion
(EEE). The alternative spliced exon of CTNND1 and some of it’s
in each category are shown in Figure 5A.

For example, TNFRSF14 as one of modulators of QKI
attenuates the splicing regulation on the 20th exon exclusion of
CTNND1. We found that, in TNFRSF14 expression low group,
the correlation between QKI expression and CTNND1 PSI is
−0.38 (p = 1.7e−05), while such correlation is lost when in
TNFRSF14 expression high group (correlation = 0.001, p = 0.98).
This indicated that high expression of modulator TNFRSF14 may
play negative effect on changing the splicing activity of QKI.
In addition, we found that LAPTM4B, as another modulator of
QKI, played enhanced exon exclusion role on regulating the 20th
exon splicing outcome when it expression is high (Figure 5B).

Frontiers in Genetics | www.frontiersin.org 6 March 2020 | Volume 11 | Article 26560

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00265 March 24, 2020 Time: 15:59 # 7

Wang et al. Splicing Effecting RBPs Regulation in KIRC

FIGURE 4 | Functional analysis of QKI modulators. (A) Expression levels of top10 modulators in KIRC tumor tissues (red boxes) compared with normal tissues (gray
boxes). (B) survival analysis of top10 modulators. The red line means the modulator expression is high, the green line means the modulator is expression low.
Modulator is grouped according to the median value of its expression level. (C–F) KEGG pathway and GO enrichment analysis, including biological process (BP),
cellular component (CC) and molecular function (MF). (G) Cancer-relevant modulators identification according to Network of Cancer genes (NCG) and Tumor
suppressor gene (TSGene) database. (*The top10 modulators were selected based on the number of their influenced splicing targets).

Thus, the results showed that differentially expressed modulators
indeed changed the role of QKI on regulating CTNND1’s splicing
outcomes, and we believed that this kind of regulation may
provide important insights for study dysregulation of splicing
outcomes associated with various diseases.

DISCUSSION

Alternative splicing alterations may confer a selective advantage
to the tumor, such as angiogenesis (Amin et al., 2011),
proliferation (Bechara et al., 2013), cell invasion (Venables et al.,
2013), and avoidance of apoptosis (Izquierdo et al., 2005).
Some splicing mRNA isoforms could change the reading frame,

resulting in the generation of different protein isoforms with
diverse functions and/or localizations (Sutandy et al., 2018). One
of the traditional methods to estimate the functions of mRNAs or
protein is comparing the difference of gene expression level (Kim
et al., 2014; Lorthongpanich et al., 2019; Xu et al., 2019).

However, not all detected alternative splicing events might
necessarily result in mRNAs or proteins expression level
changing. In addition, global description of alternative splicing
networks and demonstration of their functional consequences
have now emerged as one of the biggest challenges of the field
(Baralle and Giudice, 2017). By integrating gene expression
profile with splicing outcomes of alternative splicing events may
be one of the possible ways to study the functional consequences
for most of the identified splicing events.
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FIGURE 5 | CTNND1 splicing outcomes influenced by modulator expression in KIRC. (A) Examples of modulators in each mode sub-categories, including exon
exclusion to inclusion (ExonEI), exon inclusion to exclusion (ExonIE), enhances exon exclusion (EEE) and attenuates exon exclusion (AEE). (B) Four modulators
influence splicing outcomes of CTNND1, including TNFRSF14, ARMH4, LAPTM4B, and ODF3B. The red means the samples in modulator expression high group
(top 33%), the blue means the samples in modulator expression low group (bottom 33%). The x-axis is the expression level of QKI, y-axis is splicing outcome (PSI
value) of CTNND1.

In this study, we established a computational method for
identification the modulators whose expression is associated
with changing the targets splicing outcomes of RBPs in KIRC.
Previously, several computational methods have been developed
to identify modulators associated with transcription factors
(TFs) regulation activity on expression level (Wang et al.,
2009; Babur et al., 2010; Li et al., 2016, 2017), these studies
discussed the transcriptional activities of TFs can be influenced
by the expression level of modulators. Our method is unique
in its ability to discover how alternative splicing outcomes is
changing when modulator expression is different, even though
they were regulated by the same RBP. And the method aimed at
dissecting the effects of disruption in RBPs and hopefully it could
provide insight into studying alternative splicing networks during
development, cell differentiation, and in disease.

During tissue development and cell differentiation specific
RBPs are finely regulated at their expression levels, localization,
their own splicing, mRNA stability, and translation efficiency
(Baralle and Giudice, 2017). RBPs bind to cis-elements promoting
or inhibiting splice site recognition, hence RBP expression
coordinates alternative splicing networks during development.
We focused on 150 RBPs in this study, and only 137 RBPs
remained in the final analysis due to there was no splicing targets
of them within our criteria. Three possible modes of modulator
actions were defined in this study, depending on the correlation
changes between RBP and its target splicing outcomes when
modulator expression is different. Among these RBPs, we found
that QKI had the greatest number of influenced spliced exons
(68.9%, 199 out of 289), and 2,014 Modulator-QKI-Splicing
triplets were finally identified focused on QKI. Results showed
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that most modulators affected multiple splicing targets were
multimodal, and the same modulator may play opposite roles on
different QKI targets.

For example, high expression level of modulator ADAM8
enhanced QKI role on regulating ACSF2 exon exclusion,
while it enhanced target FMNL2 exon inclusion in regulating
splicing outcomes. Another example, low expression level of
AJM1 modulated QKI attenuated exon exclusion on regulating
CTNND1 splicing outcomes, while such modulation role
changed into enhanced exon inclusion when the target became
ATF2. The detailed information about the modulators roles in the
triples could be found in Supplementary Table S1.

Pathway enrichment results showed that all these influenced
splicing target events of QKI were enrolled in cancer
development and progression related pathways, including tight
junction pathway, transcriptional mis-regulation in cancer,
endocytosis, and MAPK signaling pathways. This evidence
indicated that these alternative spliced events played crucial roles
in kidney cancer, and changes the splicing outcomes of them may
result in dysregulation in alternative splicing networks.

Among all these influenced splicing events, CTNND1
attracted more attention as the splicing outcomes of the 20th
exon has the most inferred modulators. Previously study reported
that CTNND1 was a tumor-driver gene, whose alternative
splicing was related to cell invasion and metastasis (Yanagisawa
et al., 2008). In addition, CTNND1 (p120) consists of central
ARM domain flanked by the N-terminal regulatory (NTR) and
C-terminal tail region (CTR) (Ishiyama et al., 2010), and the
20th exon of CTNND1 is in CTR region. Thus, different splicing
outcomes of CTNND1 may influence the domain function,
resulting in the generation of different protein isoforms with
diverse functions.

We identified 114 inferred modulators of QKI-CTNND1
pair, including 30 lncRNAs and 80 protein-coding RNAs. Han
et al. (2016) reported that MALAT1 may play as a tumor-
suppressor gene in gliomas, and high MALAT1 expression
linked to cell proliferation and metastasis. In our results,
we noticed that high expression of modulator MALAT1
tended to attenuate QKI regulation role on splicing the 20th
exon exclusion in CTNND1. The correlation between QKI
expression and CTNND1 PSI was −0.51 (p = 4.3e−09) in
MALAT1 expression low group, and such correlation changed
into −0.20 (p = 0.02) in MALAT1 expression high group.
LINC00174 as another inferred modulator had been reported
that it exerted a tumorigenesis role in glioma. LINC00174
knockdown inhibited cell proliferation, migration, invasion and
glycolysis (Shi et al., 2019). We found that, when LINC00174
expression is low, the correlation between QKI expression
and splicing outcomes of CTNND1 is −0.37 (p = 2.6e−05),

while such correlation was lost (r = −0.07, p = 0.44)
when LINC00174 expression became high. These evidences
showed that regulation of alternative splicing outcomes is
a complex progress, it different splicing consequence not
only associated with RBP but also associated with other
proteins expression.

Although the established model in this study and the
corresponding results appear helpful for understanding the
alternative splicing regulation, there are some limitations. First,
many proteins tended to show similar expression pattern, certain
RBP-target pairs may have more than two inferred modulators,
these results may contain certain false positive modulators. In
addition, the function and mechanism of how modulator changes
the RBPs regulation on their target splicing outcomes need to
be further studied by experiments, for example, modulator co-
expressed or physically interacted with RBPs, and this is a long
way for us to go. Finally, we expect that our study could provide
novel insights for understanding the dysregulation of alternative
splicing in cancer.
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Accumulating evidence show that Poly C Binding Protein 1 (PCBP1) is deleted in
distinct types of tumors as a novel tumor suppressor, but its tumor suppression
mechanism remains elusive. Here, we firstly describe that downregulation of PCBP1
is significantly associated with clinical ovarian tumor progression. Mechanistically,
PCBP1 overexpression affects various autophagy-related genes expression at various
expression levels to attenuate the intrinsic cell autophagy, including the autophagy-
initiating ULK, ATG12, ATG7 as well as the bona fide marker of autophagosome,
LC3B. Accordingly, knockdown of the endogenous PCBP1 in turn enhances autophagy
and less cell death. Meanwhile, PCBP1 upregulates p62/SQSTM1 via inhibition
p62/SQSTM1 autophagolysome and proteasome degradation as well as its mRNA
stability, consequently accompanying with the caspase 3 or 8 activation for tumor
cell apoptosis. Importantly, clinical ovary cancer sample analysis consistently validates
the relevance of PCBP1 expression to both p62/SQSTM1 and caspase-8 to overall
survival, and indicates PCBP1 may be a master player to repress tumor initiation.
Taken together, our results uncover the tumorigenic mechanism of PCBP1 depletion
and suggest that inhibition of tumor cell autophagy with autophagic inhibitors could be
an effective therapeutical strategy for PCBP1-deficient tumor.

Keywords: PCBP1, p62/SQSTM1, autophagy, apoptosis, ovary cancer, colon cancer, caspase-8

Abbreviations: 3-MA, 3-Methyladenine; Act D, Actinomycin D; ANOVA: Analysis of Variance; A 5TG, Autophagy-related
gene; CQ, Chloroquine diphosphate salts; IHC, I b mmunohistochemistry; KD: knock down; LC3B, Microtubule-associated
protein Light Chain 3B; OCs, Ovarian cancer specimens; p62, p62/SQSTM1; PARP, Poly (ADP-ribose) polymerase; PCBP1,
Poly C Binding Protein 1; PFA, Paraformaldehyde; RT-PCR, Reverse transcriptase-polymerase chain reaction; SDS-PAGE,
SDS-polyacrylamide gel electrophoresis.
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INTRODUCTION

Poly C binding protein 1 (PCBP1) as an RNA binding protein
is widely involved in different gene regulatory levels, which
include gene transcription, translation, RNA transportation
splicing and posttranscription (Giles et al., 2003; Nishinakamura
et al., 2007; Ravikumar et al., 2010; Wang et al., 2010, 2018,
2019; Tripathi et al., 2016; Zhang et al., 2017a,b; Ishii et al.,
2018; Shi et al., 2018; Zhao et al., 2019). Recently, PCBP1 as a
novel tumor suppressor is characterized to be downregulated
in many cancer types on inhibition of tumor formation and
metastasis (Guo and Jia, 2018), including gastric cancer (Ji
et al., 2017) and thyroid cancer (Ji et al., 2017). We have
uncovered that PCBP1 delays the translation of metastatic
PRL-3 which is broadly downregulated in variety of tumors,
indicating that PCBP1 could be a potential tumor suppressor
(Wang et al., 2010). In 2017, Jiani Guo et al. (2017) reported
that PCBP1 mediates drug resistance in colorectal cancer. It
was reported that PRL-3 enhances autophagy and promotes
cell proliferation under nutrient-efficient and nutrient-poor
conditions (Huang et al., 2014). Following this information,
we then disclosed that PCBP1, as the suppressor of PRL-3,
can really inhibit the starvation-induced autophagy of tumor
cells to block tumorigenic initiation, independent of PRL-
3 (Zhang et al., 2016), but we still do not know whether
PCBP1 participates in the normal basal autophagy process
in the nutrition-efficient situation. We recently showed that
PCBP1 also increases cell cycle inhibitor, p27Kip1 expression
via its RNA binding capability to repress tumor cell cycle
progression (Shi et al., 2018). Together with the previously
mentioned, PCBP1 seems to work on multiple facets to inhibit
tumor initiation and progression, but the underlying detailed
mechanism remains elusive.

Autophagy is an evolutionally conserved process, in which
the double-membrane vesicles (autophagosomes) initiated from
multiple autophagy-related gene (ATG) products swallow and
digest the damaged cytoplasmic organelles or proteins through
lysosome-dependent degradation. Autophagy is putatively
known as a cytoprotective response to cell stress for cell survival
from cell death under stresses (Degenhardt et al., 2006; Villa
et al., 2017). In contrast, this process could contribute to cell
demise (autophagic cell death) when last too long time or works
on overdose (Mizushima, 2007; Maiuri et al., 2010; Bialik et al.,
2018). Many stresses can induce autophagy, which are composed
of starvation, hypoxia and rapamycin inductions (Klionsky
et al., 2012). Microtubule-associated protein Light Chain 3B
(LC3B) is well known as the mammalian homolog of yeast Atg8.
During autophagy, the LC3B protein undergoes modification
from LC3B I to LC3B II served as a hallmark of formation
(Klionsky et al., 2012). The p62/SQSTM1 (p62) protein is
a link formed between LC3B II and autophagic substrates.
p62 usually incorporates into the integrated autophagosome
and can be subsequently degraded in autolysosomes, when
autophagy process fully accomplishes (Bjorkoy et al., 2005;
Pankiv et al., 2007). Thus, initiative autophagic flux can be
indicated by LC3B-II amount and the accomplishment by
p62 degradation status, respectively (Klionsky et al., 2012).

The current results indicated that autophagy has dual roles
in either promoting tumor initiation or inhibiting tumor
progression (Levine, 2007; Mizushima, 2007; Galluzzi et al.,
2015; Singh et al., 2018). Generally, tumor cells in tumor mass
center are lack of nutrition, thus have higher autophagic flux
than those in tumor margin regions, to prevent their death
(Degenhardt et al., 2006). From another way, autophagy also
exists in dying cells to result in the eventual cell death through
the excessive consumption of cellular components (Janku
et al., 2011; Young et al., 2012; Huang et al., 2013). Thus,
roles of autophagy in tumorigenesis are highly dependent on
pathological and physiological conditions of cell context and
microenvironment. So far, it remains elusive whether PCBP1
modulates and participates in tumor cell autophagy in the
nutrition-efficient condition.

Apoptosis is a form of programmed cell death and
characterized by the cascade activation of caspases (Fulda
and Debatin, 2006; Li and Yuan, 2008; D’Arcy, 2019).
Caspase-8 is an initiator caspase in apoptosis. The auto-
activation of caspase-8 starts from its oligomerization and self-
cleavage. Subsequently, the activated caspase-8 facilitates the
activation of pro-caspase-3, which is an executioner caspase,
and promotes the apoptotic cleavage of poly (ADP-ribose)
polymerase (PARP) for apoptosis (Kruidering and Evan, 2000).
Recent reports suggested that cross talking between autophagy
and apoptosis can coordinately regulate cell fate (Wu et al.,
2014). As mentioned above, PCBP1 can suppress tumorigenesis,
but we still also do not understand if it is related to
tumor cell death.

Our results suggest that PCBP1 not only downregulates
autophagic flux in the starvation conditions by suppressing
LC3B expression as previously reported (Zhang et al., 2016),
but also coordinately represses multiple autophagic genes
expression, including ULK1, ATG7, ATG12 and p62 to
suppress tumor cell autophagy initiation and commitment, and
eventually to enhance tumor cell apoptosis. Thus, the expression
states of PCBP1, p62 and Caspase-8 could be predictive
biomarkers, and the anti-autophagic approaches would be
potential therapeutical strategy for patients with silence of PCBP1
and high autophagic flux.

MATERIALS AND METHODS

Cell Culture and Treatment. Human
Ovarian Cancer Cell Lines
SK-OV3 and A2780, Chinese hamster ovarian cell line (CHO),
human colorectal cancer cell lines DLD-1 and HCT-116
were purchased from the ATCC company and maintained as
previously reported by our group (Shi et al., 2018). Unless
otherwise specified, chloroquine diphosphate salts (CQ, 50 µM
24 h, Sigma-Aldrich), 3-Methyladenine (3-MA, 3 µM, 12 h,
Selleck, China), actinomycin D (Act D, 0.5 µg/ml, Biosharp,
8 h or 12 h) and MG132 (20 µM, 12 h, Sigma-Aldrich) was,
respectively, dissolved in PBS or DMSO, and used to inhibit
autophagic degradation, terminate the novel transcription or
inhibit protein degradation.
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DNA Constructs and Transfection
The A2780-PCBP1, DLD-1-PCBP1, HCT-116-PCBP1, and
SK-OV3-PCBP1 stable cell lines were established as previously
described (Wang et al., 2010). Four specific shRNA constructs
as previously described (Zhang et al., 2016) for knockdown
of PCBP1. The cell transfections were performed out
with the Lipofectamine 2000 reagent (Invitrogen) as the
manufacturer’s instructions.

Antibodies and Western Blots (WB)
Antibodies were used against the following: PCBP1 (Cat No.
sc-137249, Santa Cruz, WB 1:500); p62/SQSTM 1 (Cat No.
5114, Cell Signaling Technology (CST), WB 1:1000); LC3B
(Cat No. 3868, CST, WB 1:1000, IF 1:200); Caspase-8 (Cat
No.13423-1-AP, Protein Tech, China, WB 1:500); Caspase-
3 (Cat No. 9662, CST, WB 1:1000); PARP (Cat No. 9542,
CST, WB 1:1000); c-caspase-3 (Cat No. 9661, CST, WB
1:1000); ULK1 (Cat No.4773, CST, WB 1:1000); c-PARP (Cat
No. 9541, CST, WB 1:1000); ATG7 (Cat No.8558, CST, WB
1:2000); ATG12 (Cat No.4180, CST, WB 1:1000); ATG5 (Cat
No.2630S, CST, WB 1:1000); β-Actin (Cat No.4967, CST,
WB1:2000); anti-mouse HRP-labeled secondary antibody (Cat
No. 7076S, CST, WB 1:2000), GAPDH (Cat No. CW0101A,
CW Bio-tech, China, WB 1:2000) and anti-mouse HRP-labeled
secondary antibody (Cat No. 7076S, CST, WB 1:2000). The
western blots protocols were followed as previously reported
by our group (Zhang et al., 2016). Protein band intensity was,
respectively, quantified and analyzed with densitometry by using
Image J software.

Calculating Densitometry of
Immunoblots
The quantitative densitometry of immunoblots was carried out
as previously described (Zhang et al., 2016). Protein band
intensity was respectively quantified and analyzed by using
Image J software. Relative protein levels were calculated using
densitometry values for GAPDH or β-actin as calibrators and
shown under the protein bands.

Immunofluorescence Microscopy
For immunofluorescence, cells were seeded and grown on cover
slips. And then, cells were washed in 1 X PBS and fixed in
4% paraformaldehyde (PFA). After permeabilization with 0.2%
Triton X-100 (Biosharp), cells were probed with LC3B primary
antibodies (CST, Cat No. 3868, IF 1:200) followed by anti-
rabbit Alexa Fluor 594. Subsequently, cells were incubated with
DAPI and mounted. Cells were observed by LSM710 confocal
microscopy (Carl Zeiss AG).

Autophagy Assays
Autophagic flux was detected based on the amount of
endogenous LC3B puncta, and validated with p62 protein level
for autophagy completion. Cells were pre-treated with 50 µM
CQ and DMSO for indicated time, respectively. The autophagy
assay protocols are followed as previously reported by our group
(Zhang et al., 2016).

Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR)
5 µg of RNA was reverse transcribed to cDNA by using M-MLV
Reverse Transcriptase (Promega, Cat No. M1705) following the
manufacturer’s instruction. Gene-specific primers used for RT-
PCR amplification of p62, ULK1, ATG 12, ATG 7, PRL-3 and
internal control GAPDH were listed in Supplementary Table 1.
The RT-PCR amplification is performed by using GoTaq R© DNA
polymerase (Promega, Cat No. M3005) in the amplification
system, according to the manufacturer’s protocol. DNA band
intensity was quantified with densitometry via Image J software.

Flow Cytometry Apoptosis Analysis
To investigate the impact of PCBP1 overexpression on the
tumor cell apoptosis, A2780-PCBP1 and A2780-GFP cells were
seeded and cultured overnight, followed with treatment of 3
µM Paclitaxel or DMSO for 27 h, respectively. Next, adherent
cells were trypsinized with 0.25% EDTA-free trypsin and stained
with an APC-conjugated Annexin V and 7-ADD kit (KeyGEN
BioTECH, China) following the manufacturer’s instructions. The
percentage of apoptotic cells were quantified by flow cytometer
(Gallios, Beckman, United States).

mRNA Stability Assay
A2780-PCBP1 or GFP control cells were treated with DMSO
and 0.5 µg/ml Act D (Biosharp) for 8 and 12 h, respectively.
Five microgram of RNA was used for cDNA synthesis, and
the transcript abundances of p62 mRNAs and GAPDH mRNA
controls were quantified via semi-quantitative RT-PCR. The
primers of p62 and GAPDH for RT-PCR was provided
(Supplementary Table 1).

Ribosome Profiling of Autophagy Genes
Ribosome profiling protocols were followed as previously
reported by our group (Shi et al., 2018). ULK1, ATG12, ATG7,
PRL3, GAPDH mRNA was detected by qRT-PCR with the
primers (Supplementary Table 1) as above.

Cell Proliferation Assay
Cells were seeded in 96-well plates in triplicates and cultured
overnight. Then, cell culture medium was replaced with 100
µl serum-containing media with or without CQ treatment at
the indicated time points. After treatments, cell counting kit-8
(CCK8) reagent (BB-4202-1, Best Bio, China) was added in each
well (10 µl per well) and the cells were incubated for another
2 h. The absorbance at 450 nm of each well was measured
by enzyme-labeling instrument (Multiskan G0; Thermo Fisher
Scientific, Inc.).

Immunochemistry (IHC) Analyses of
PCBP1, p62, and Caspase 8 Expressions
in Ovary Tumor Samples
Human freshly frozen colon tumor tissues were collected from
Sun Yat-sen University Cancer Center, under their Standard
Experimental Ethics Protocol and approved by Sun Yat-sen
University Research Ethics Committee. Three ovary tissue arrays
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were purchased from Xi ’an Ailina Biotechnology Co., Ltd.,
under their Standard Experimental Ethics Protocol. These tissue
arrays were stained with anti-PCBP1 (1:200 dilution, Abcam,
United States), anti-p62 (1:200 dilution, Sanying Biotechnology
Co., Ltd., Wuhan, China) and anti-Caspase-8 (1:200 dilution,
Protein Tech, China) antibodies, respectively. Immunochemistry
protocol and the semi-quantitative score was followed as
previously reported by our group (Shi et al., 2018). The semi-
quantitative score is presented as Score = SI (staining intensity)
x PP (percentage of positive cells), in which SI was determined
as ten levels including 0 (negative); 1; 2; 3; 4; 5 (Supplementary
Figure 1). Likewise, PP was defined as 0, < 5%; 0.2, 6%–30%;
0.5, 31%–70%; and 1.0, > 70% positive cells. As an example,
the relative score in Supplementary Figure 1 based on IRS are
determined as 0, 1, 2, 3, 4, and 5.

Statistical Analysis
Statistical analyses were performed by GraphPad Prism software
(Version 5.00). Unless otherwise specified, the unpaired t-
tests and Analysis of Variance (ANOVA) analysis were used
to compare two groups and multiple groups, respectively.
P < 0.05 were considered as significant. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

RESULTS

PCBP1 Is Downregulated and Negatively
Related to Tumor Malignancy in Ovarian
Tumors
We previously reported that PCBP1 is broadly downregulated
in lung and colon cancers (Wang et al., 2010). PCBP1
downregulation promotes cell proliferation and tumorigenicity
of ovarian cancer cells both in vitro and in vivo (Zhang et al.,
2016; Shi et al., 2018). To further confirm the clinical relevance
of PCBP1 to ovarian cancer progression, we examined PCBP1
expression state by immunohistochemistry (IHC) in 90 cases
of ovarian cancer, compared with the 10 corresponding cancer
adjacent ovarian tissues among them. Our IHC results were
scored (Supplementary Figure 1) and indicated that PCBP1 was
more detectable in cancer adjacent tissues than ovarian cancer
samples (Figures 1A,B). Among ovarian cancer cases, according
to tumor node metastasis (TNM) classification, PCBP1 levels
were especially lower in pT3 group (tumor with micro-metastasis
of extra pelvic peritoneum confirmed by microscope) vs. pT1/2
group (tumor with or without pelvic spread) (Figures 1C,D),
as well as the late clinical stage (stage III and IV) vs. early
clinical stages (stage I and II) based on clinicopathologic
features (Figures 1E,F). Statistically significant decreased PCBP1
expression was also found in ovarian cancer samples with positive
lymph node and distant metastasis statues, compared with those
with negative status (Figures 1G,H). Moreover, we summarized
the correlation between PCBP1 expression and clinicopathologic
variables of patients with ovarian cancer (Table 1). In addition,
our immunohistochemical staining results also suggested that
PCBP1 protein expression is significantly decreased in tumor

regions of colorectal cancer compared with the paired fresh
normal tissues (Supplementary Figure 2; Shi et al., 2018). The
overall analysis showed that low PCBP1 levels were significantly
associated with tumor stages (p< 0.01), clinical stages (p< 0.05),
lymph node and distant metastasis (p < 0.05).

PCBP1 Inhibits the Basal Intrinsic
Autophagy in Tumor Cells
Although we have shown that PCBP1 inhibits autophagy to
repress cell proliferation in nutrition-deficient condition via
downregulation of LC3B, a key gene of autophagy degradation
(Zhang et al., 2016), but it is still not well understood that whether
PCBP1 is also involved in the intrinsic basal autophagy regulation
to impair tumorigenesis. To thoroughly answer this question,
we conducted immunoblotting and showed that, compared with
the control cells transfected with empty GFP vector, GFP-PCBP1
overexpression an obviously decreased the expression of LC3B I
and LC3B II in A2780, DLD-1, HCT-116, and SK-OV3 cells from
different tissue origin in nutrient-rich condition (Figure 2A).
These results also indicate the existence of intrinsic autophagy
event in various tumor cells, which could be regulated by PCBP1
overexpression. To investigate the fundamental function of
PCBP1 in the basal autophagy regulation, immunofluorescence
staining is performed and further validated the reduced
aggregated LC3B puncta by PCBP1 overexpression upon an
autophagy degradation inhibitor, chloroquine (CQ) treatment in
both A2780 and DLD-1 cells under nutrition-rich conditions
(Figure 2B). The LC3B puncta intensity in a cell is quantified
and results demonstrate that PCBP1 overexpression cells have
dramatically less LC3B puncta intensity than the parent control
cells (Figure 2C). In addition, we noted that the quantified
results of LC3B puncta intensity in Figure 2C did not significant
decrease in the PCBP1 overexpression group compared with the
control group, but the immunoblotting results in Figure 2A
showed a significant decrease in LC3B expression. We think that
the possible reason is due to the sensitivity of LC3B antibody
that is not so sensitive for immunofluorescence detection,
in comparison to immunoblotting detection. In line to this,
immunoblotting results indicated that PCBP1 overexpression
downregulates both types of LC3B I and II expression in
full-nutrition situation, compared with its GFP control cells
(Figure 2D, lane 1 vs. 2 and lane 5 vs. 6). Whereas, upon CQ
treatment, LC3B levels were not completely recovered to the
control GFP level (Figure 2D, lane 3 vs. lane 4 and lane 7 vs.
lane 8), which is consistent with our previous results that PCBP1
downregulates LC3B expression independently of autophagic
degradation (Zhang et al., 2016).

To verify if endogenous PCBP1 really participate in basal
autophagy regulation, endogenous PCBP1 was knocked down
with 4 specific shRNAs in A2780, CHO, and HCT-116
cells with relatively high PCBP1 expression (Supplementary
Figures 3A,B). Immunofluorescence staining revealed the
increased aggregation of LC3B puncta intensity by deletion of
endogenous PCBP1 upon CQ treatment in both CHO and
HCT-116 cells under nutrition-efficient conditions (Figure 2E).
CHO cells are relatively normal cells compared with the ovarian
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FIGURE 1 | PCBP1 expression is negatively related to ovary cancer progression. (A) Representative immunohistochemistry (IHC) analysis of PCBP1 expression in
the paired adjacent normal tissues (N) and their ovarian tumor samples (T). (B) Statistical analysis of PCBP1 expression between normal and tumor tissues detected
in (A). (C) Representative PCBP1 expression level in pT1/2 tumors (with or without pelvic spread) vs. pT3 tumor (with micro-metastasis of extra pelvic peritoneum
confirmed by microscope). (D) Statistical comparison of PCBP1 expression between the pT1/2 tumors and the pT3 tumors detected in (C). (E) Representative
PCBP1 expression in tumor samples with different tumor progression (clinical stages). (F) Statistical analysis of PCBP1 expression with tumor progression (clinical
stages). (G) Representative PCBP1 expression in primary tumor samples and the metastatic tumor samples. (H) Statistical analysis of PCBP1 expression between
the primary and metastatic ovary cancer samples. All IHC images are photographed with 200X amplification. Scale bars equal to 100 µm. *P < 0.05; **P < 0.01;
***P < 0.001.
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TABLE 1 | PCBP1 expression and clinicopathologic characteristics of ovarian
cancer patients.

PCBP1

Characteristics Low Median High p-value

Pathology

Adjacent – 1 9 < 0.0001

Tumor 70 13 7

Ages

= 46 23 5 5 0.6748

>46 47 9 11

Tumor stage

T 1+2 19 8 4 0.0062

T 3+4 44 5 2

Clinical stage

I + II 46 13 5 0.0317

III + IV 16 – –

Metastasis

Negative 49 13 5 0.0177

Positive 22 1 –

t-test was used. PCBP1 low means IHC score as 1 and 2; Median, 3; High, 4 and
5. Refer to Supplementary Figure 1A.

cancerous cells. Therefore, the results from CHO cells can
evidently indicate the intrinsic autophagy event in normal ovary
cells (tissues) to further show the general information. Likewise,
deletion of PCBP1 robustly boosted the modified LC3B-II
accumulation, which indicated as the ratio of LC3B-II to GAPDH
in A2780 cell line (Supplementary Figure 3C, lane 1 vs. lane 2) in
nutrition-rich conditions. After CQ treatment, LC3B levels were
still more than the control level, demonstrating downregulation
effect of LC3B by PCBP1 deletion (Supplementary Figure 3C,
lane 3 vs. lane 4, lane 5 vs. lane 6). In this study, although the
ovary cancer here is focused, the consistent results observed in
CHO cell line and two colon cancer cell lines could to suggest the
general observation of PCBP1 in autophagy modulation. Taken
together, our results verified that PCBP1 downregulates LC3B
expression to result in basal autophagy inhibition.

PCBP1 Upregulates p62/SQSTM1
Through Inhibiting Its Autophagic
Degradation
Considering that LC3B expression can be suppressed by PCBP1
(Zhang et al., 2016), and it may not suitable to evaluate
the influence of basal autophagic flux by PCBP1 with LC3B
accumulation. In addition, autophagy is a complex, dynamic
process, and LC3B-II accumulation just reflects the autophagic
initiation, not the performance outcome (Ravikumar et al.,
2010). Thus, p62/SQSTM1 (p62) was used to examine PCBP1’s
influence in the basal autophagic flux, as p62 is the well-known
substrate of autophagic degradation. According to this concept,
we determined p62 level and western blotting results presented
that, compared with the GFP control cells, p62 expression was
robustly increased in various types of PCBP1-overexpressing
cells under normal condition (Figure 3A). Quantification of p62

also confirmed a significantly higher p62 expression in PCBP1
overexpressing A2780 and DLD-1 cells compared with their
GFP control cells, respectively (Figure 3B). On the contrary,
endogenous PCBP1 depletion evidently decreased p62 protein
level in A2780 cell line, HCT-116 cell line and CHO cell lines
(Figure 3C). When inhibiting the autophagy completion with
CQ, p62 level could be almost restored back to that of the parental
control cells in DLD-1 cells, but not in A2780 (Figure 3D)
exceptionally. Accordingly, CQ treatment similarly reversed p62
level in the PCBP1 depletion cells back to that in normal GFP
control level (Figure 3E), suggestive of the p62 regulation by
PCBP1 is at least an autophagy-dependent manner.

p62 Is Also Upregulated via Proteasome
Degradation Inhibition and mRNA
Stabilization by PCBP1
Comparing p62 protein level between the CQ inhibited parental
control cells and PCBP1-overexpressing cells, it seems that
p62 could be modulated not only by the autophagy-dependent
degradation, since CQ treatment did not restore p62 expression
back to the normal level. We further investigated which other
mechanism may be involved in p62 regulation. We treated
cells with Act D or MG132 to block the novel mRNA
transcription or protein proteasome degradation, respectively.
Immunoblots showed that, after MG132 (a known proteasome
inhibitor) treatment, p62 expression was obviously increased
in the GFP cells, but not in GFP-PCBP1 overexpressing cells,
compared with the corresponding control groups (Figure 4A),
indicating PCBP1 can somehow inhibit proteasome-mediated
p62 degradation. As PCBP1 is an RNA-binding protein as we
have shown, we further carried out a semi-quantitative RT-
PCR detection of p62 mRNA level, and our results indicated
that PCBP1 overexpression led to more p62 mRNA amount,
whereas endogenous PCBP1 knock down resulted in less
p62 mRNA, compared with control cells (Figure 4B). To
further clarify whether p62 mRNA amount alteration is due
to its mRNA stability or transcriptional activation, we first
blocked the novel mRNA synthesis with Act D treatment and
detected stability of the newly synthesized p62 mRNA and its
protein expression. Results showed that compared with that
of control cells, PCBP1 delayed the degradation efficiency of
the nascent p62 mRNA (Figure 4B). In addition, we knocked
down the ATG5 expression in both DLD-1 GFP and PCBP1-
overexpressing cells to reduce autophagic degradation and
demonstrated that p62 protein was still high in the PCBP1-
overexpressing cells, presenting the similar ratio to p62 mRNA
level (Figure 4C). Altogether, the above results showed the
authentic cause of p62 upregulation by PCBP1 is resulted
from the multiple events, including the inhibitions of p62
autophagic and proteasome-mediated degradations, as well as the
stabilized p62 mRNA level.

PCBP1 Coordinately Regulates Multiple
Autophagy Genes on Translational Level
Given PCBP1 as an RNA-binding protein, it is involved in various
levels of gene expression regulations, including transcription,
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FIGURE 2 | PCBP1 Overexpression represses autophagy. (A) Immunoblots of PCBP1, LC3B I and II in PCBP1-overexpression (GFP-PCBP1) and the GFP control
cells. β-actin is used as an internal loading control. (B) Immunofluorescence staining of LC3B puncta in both A2780 and DLD-1 cells with or without CQ treatment
for 24 h. GFP-PCBP1 cells are in green, while parent control cell are not green. Cells counterstained with DAPI are shown in blue. White arrows point LC3B puncta
(Red) in the parental control cells without GFP-PCBP1 transfection (not green), while the red arrows point LC3B puncta in GFP-PCBP1-transfected cells (green).
Bars equal to 25 µm. (C) Quantifications of LC3B puncta intensity per cell in B are presented as histograms (mean ± SD). Parent group indicates the parent control
cells without GFP-PCBP1 (not green), while the PCBP1 group indicates the cells with transfected GFP-PCBP1 (green). **P < 0.01; ***P < 0.001, n = 5.
(D) Immunoblots of LC3B I, II in A2780 and DLD-1 cells with PCBP1 and GFP overexpression. Upon CQ or DMSO (control) treatment for 24 h, cells were analyzed.
Immunoblot intensity ratio of LC3B II to GAPDH were, respectively, quantified and normalized, and indicated in each lane. (E) Immunofluorescence staining of LC3B
puncta in both A2780 and DLD-1 cells with or without CQ treatment for 24 h. PCBP1 knockdown (KD) cells are in green, while parent control cells are not green.
Cells counterstained with DAPI are in blue. White arrows point LC3B puncta (Red) in the PCBP1 KD cells, while the red arrows point LC3B puncta in the parental
control cells. Scale bars in (B,E) equal to 25 µm.
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FIGURE 3 | PCBP1 inhibits autophagy completion. (A) Immunoblots of p62 and GAPDH in the PCBP1 overexpression (GFP-PCBP1) and the GFP control cells by at
least two independents. (B) Statistical analysis of p62 expression in PCBP1 overexpressing cells, compared with the GFP control cells by at least three independent
immunoblots. ∗∗p < 0.01. (C) Western blots of p62 in the indicated endogenous PCBP1 knockdown cells. Four GFP-confused shRNAs against PCBP1 were
transfected into cells to establish the PCBP1 knockdown cells, while the GFP empty vector-transfected cells are control cells. (D) Immunoblots of p62 in A2780 and
DLD-1 cells with PCBP1 and GFP overexpression. Upon CQ or DMSO (control) treatment for 24 h, cells were analyzed by at least two independents.
(E) Immunoblots of p62 in A2780 and HCT-116 cells with PCBP1 knock down (KD) by at least two independents. GAPDH is used as an internal loading control, and
the expression ratio of p62 to GAPDH was quantified and normalized, and indicated under each lane.

splicing, translation and RNA stability (Giles et al., 2003; Wang
et al., 2010; Zhang et al., 2010; Shi et al., 2018). To determine
whether PCBP1 can regulate the autophagy-related genes at
different levels, such as at the translational level, we conducted the
gene expression analysis by PCBP1 overexpression as well as the
ribosome profiling analyses of these genes’ translational status.
Ribosome profiling results showed that PCBP1 clearly repressed
ULK, ATG12, ATG7 translational efficiency, compared the
known PCBP1 translationally repressed metastatic phosphatase
PRL-3 (Wang et al., 2010), whereas the housekeeping gene
GAPDH as an internal control was not affected (Figure 5A). In
addition, the ATG12 and ATG7 were observed in our PCBP1-
bound mRNA pool by immunoprecipitation (Supplementary
Figure 4). To confirm the results, we did immunoblots
and showed that these autophagy-related protein levels were
clearly decreased accordingly (Figure 5B), validating the
translational influence of PCBP1 in autophagy-initiating genes
expression. Taken together, all above results suggested that

PCBP1 represses autophagy through multiples target genes at
various regulation levels.

PCBP1 Coordinately Favors Tumor Cell
Apoptosis
Given that autophagy plays different roles in tumorigenic
outcome, to examine tumor cell fate upon autophagy retardation
by PCBP1 in the normal culture conditions, we analyzed the
apoptotic status of cells with PCBP1 aberrant overexpression.
In line with our previous observation (Zhang et al., 2016),
compared with the parent control cells, the PCBP1 aberrant
expression obviously increased the cleaved-caspase-8 (c-caspase-
8), cleaved-caspase-3 (c-caspase-3), and cleaved-PARP (c-PARP)
levels in DLD-1 cells, as well as in A2780 cells with the exception
of the caspase-8, which may be due to the cell type context
specificity. Those results consistently suggested that PCBP1 could
instinctively drive cell apoptosis, while suppressing autophagy
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FIGURE 4 | PCBP1 enhance p62 expression in multiple levels. (A) Immunoblots of p62 and LC3B in the indicated GFP-PCBP1 cells as well as their parental cells
treated without (Control) or with Actinomycin D (ActD) or MG132, respectively. (B) Semi-quantitative RT-PCR analysis of p62 mRNA stability (upper panel) in A2780
cells with endogenous PCBP1 knockdown (KD) or PCBP1 overexpression (PCBP1), compared with control cells (GFP) by at three independents. GAPDH is used as
an internal control, and the ratio of p62 mRNA level to GAPDH was quantified, normalized and indicated under each lane. *P < 0.05. (C) Immunoblot of p62 protein
level in DLD-1 cells with or without ATG5 knockdown by at least two independents. GAPDH was used as an internal loading control.

(Figure 6A). On the contrary, the instinct apoptotic signals
attenuated in both PCBP1 depletion cells (Figure 6B). Upon
autophagy blockade with CQ treatment in nutrient-sufficient
condition, the apoptotic status was increased at the relative
level in the parental cells which is similar to that in PCBP1-
overexpressing cells (Figure 6C), demonstrating that the high
level of p62 induced by PCBP1 can somehow enhance apoptosis.
This observation is in line with the notion that p62 is indeed
involved in cell death regulation (Zhang et al., 2016; Tao et al.,
2020). To confirm the physiological outcome, we conducted
cell proliferation assay and showed that PCBP1 overexpression
delayed cell proliferation in normal condition, compared with
the control cells; while inhibition of intrinsic autophagy with
CQ treatment in both the parental control cell and PCBP1
overexpressing cells efficiently repressed the cell proliferation,
further indicating this intrinsic autophagy benefits to cell
proliferation (Supplementary Figure 5). Apoptosis analysis also

showed overexpression of PCBP1 could even favor tumor cell
apoptosis in normal culture condition (Figure 6D). Together, our
results clearly demonstrated that PCBP1 coordinately inhibits
intrinsic tumor cell autophagy and favors cell apoptosis for
tumorigenesis inhibition.

Clinicopathological Correlation of
PCBP1, p62, and Caspase-8 in Ovarian
Cancer
To validate if there is a general clinicopathological correlation
between PCBP1 and p62, p62 expression was examined with
IHC in another set of the serial sections of ovarian tissues.
IHC results revealed that p62 was similarly detectable in
ovarian cancer adjacent tissues, and subdued in ovarian tumor
samples (Figure 7A and Supplementary Figure 6A). Moreover,
similar to PCBP1 expression pattern in ovarian sample, we
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FIGURE 5 | PCBP1 translationally enhance autophagy genes expression. (A) Polyribosome profiling of the indicated autophagy-promoting genes in A2780 cells with
GFP-PCBP1 overexpression as well as the control GFP cells. As PRL-3 is translationally repressed by PCBP1 (Wang et al., 2010), it is used as positive control,
GAPDH as a negative control. (B) Immunoblots of the indicated autophagy-promoting genes in various cell types with GFP-PCBP1 expression, compared with their
GFP cells by at least two independents.

observed statistically significant p62 expression decrease in
ovarian cancer samples vs. the adjacent samples (Figure 7B).
However, there was no difference between pT3 group (tumor
with micro-metastasis of extra pelvic peritoneum confirmed by
microscope) vs. pT1/2 group (tumor with or without pelvic
spread) tumors (p = 0.5920) (Figure 7C), late clinical stage
(stages III and IV) vs. early clinical stages (stages I and II)

(p = 0.8129) based on clinical features (Figure 7D), positive
lymph node and distant metastasis statues vs. those with negative
status (p = 0.9531) (Supplementary Figure 6B). Furthermore, we
also observed that p62 is consistently higher in PCBP1 positive-
adjacent tissue, while consistently lower in pT1 (without pelvic
spread) and pT3 tumor tissue with downtrend (Figure 7A). To
thoroughly validate the relationship between PCBP1, p62 and
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FIGURE 6 | PCBP1 overexpression enhances caspases activation for apoptosis. (A) Immunoblots of p62, PARP and caspases and their cleaved forms in A2780
and DLD-1 cells with PCBP1 and GFP overexpression at least two independents. (B) Immunoblots of p62, PARP and caspases and their cleaved forms in A2780
and HCT-116 cells with endogenous PCBP1 knockdown (KD), compared with A2780 and HCT-116 GFP controls by at least two independents. (C) Upon CQ
treatments for 24 h, immunoblots of PARP, caspases and their cleaved forms in A2780 and DLD-1 cells with PCBP1 and GFP overexpression at least two
independents. Arrows point and show the molecular weight of each protein. The cleaved forms of these proteins are shown as c-protein. (D) Flow cytometric
analyses of the percentages of apoptotic cells in A2780 cells with PCBP1 overexpression, compared with the A2780 GFP control cells by at least two independents.
Overall percentages of apoptotic cells are defined as the sum of Annexin-V positive cells.
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FIGURE 7 | Relevance of PCBP1 to p62 and caspase 8 in ovary cancers. (A) Representative immunohistochemistry (IHC) analysis of p62 expression in the paired
adjacent normal tissues and their ovarian tumor samples. pT1, tumor without pelvic spread; pT3, tumor with micro-metastasis of extra pelvic peritoneum confirmed
by microscope. (B) Statistical comparison of p62 expression between normal and tumor tissues detected in (A). (C) Statistical comparison of p62 expression
between the pT1/2 group (tumors with or without pelvic spread) and the pT3 group (tumors with micro-metastasis of extra pelvic peritoneum confirmed by
microscope). (D) Statistical analysis of p62 expression with tumor progression (clinical stage). (E) Representative PCBP1, p62 and caspase 8 expressions in a same
ovary tumor sample with clinical stage IV. All images in are photographed with 200X amplification. Scale bars on equal to 100 µm. *P < 0.05; **P < 0.01; ns, no
significance.

apoptosis in tumor samples, we use the same batch of ovary
cancer samples to check these 3 protein expressions at same
time (Figure 7E and Supplementary Figure 6C). IHC results
also showed that PCBP1 expression was positively correlated

with p62 expression (Supplementary Figure 6D, R2 = 0.506)
and Caspase-8 expression levels (Supplementary Figure 6E,
R2 = 0.447) in ovarian tumor samples, respectively. In line with
the above observation, the correlation analysis indicated that p62
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is positively correlated with Caspase-8 as well (Supplementary
Figure 6F, R2 = 0.598), which is upregulated in ovarian tumor
adjacent tissues and is downregulated in ovarian tumor tissues.
Overall, we found that PCBP1, p62, and Caspase-8 expression
levels were correlated with each other in ovarian cancers
(Figure 7 and Supplementary Figure 6).

DISCUSSION

Accumulating evidence indicates that autophagy has complicated
effects in tumorigenesis, which are dependent on the tumor
developmental stage. For instance, it is documented that
autophagy induction is well correlated to the worse prognosis in
ovarian carcinoma (Zhao et al., 2014), but other study in turn
indicates that autophagy accompanies higher overall survival
of the ovary cancer patient, as high autophagic flux could
sensitize the tumor cells to chemotherapy (Valente et al., 2014).
Considering our previous result (Zhang et al., 2016), we assume
that that once cells get transformed, the intrinsic autophagy
would promote tumor cell survival in both nutrition-efficient
and -deprived conditions, as long as the autophagy level (or
intensity) is not too high. PCBP1 may naturally suppress or
balance the intrinsic basal cell autophagy for cell homeostasis
maintenance, as PCBP1 can affect various autophagy-related
genes expression at the different autophagic stages, including the
autophagy initiation-related genes ULK, ATG12 and ATG7, the
autophagosome formation, LC3B, the autophagosome-lysome
fusion, p62 in nutrient-efficient condition (Figure 5), which
is usually characterized in the nutrient-deficient condition. As
PCBP1 expression is shown to be broadly reduced in many
types of tumor (Guo and Jia, 2018), our results here further
demonstrate that PCBP1 represses intrinsic autophagic levels
in both ovary tumors and colon tumors, indicating that p62
would be an general accompanying marker for other types of
PCBP1-depleted tumors.

As an RNA-binding protein, PCBP1 can modulate multiple
genes expressions on different expression levels, including RNA
stability, RNA folding, splicing, translation, etc. Coordination
regulation is also a conserved and efficient regulatory strategy
to control expression of genes involved in sustaining organism

homeostasis upon environmental changes. PCBP1, likely as
a critical multifaceted gene may generally conduct such
coordinated function via its RNA binding feature. Whether all
these autophagy-related genes share a conserved RNA-binding
sequence would be further investigated.

Currently, it is recognized that the exact role of autophagy
in tumor progression is attributed to the component in tumor
cells, tumor stages, physiological and tumor microenvironment
(Levine, 2007; Mizushima, 2007; Galluzzi et al., 2015). At the
early stages of tumorigenesis, when tumor vascular supply is
limit, autophagy serves as a pro-survival mechanism for tumor
cell by consuming its own unnecessary materials (Degenhardt
et al., 2006; Levine, 2007; Huang et al., 2014). In line with this,
our results thus have shown that for the tumor progression, in
some circumstances, PCBP1 expression is inevitably repressed to
induce relatively high autophagic level (Figures 1B, 7B).

Our results also demonstrate that there is no obvious PCBP1
expression difference among tumors from stage I + II groups to
stage III + IV groups, but the clear deference between tumors
and normal tissues (Figure 1F). Similarly, p62 expression is
evidently reduced in tumors, compared with the normal tissues,
but no clear alteration among tumors, regarding tumor stages
and metastatic states (Figures 7B–E), indicating that PCBP1-p62
signaling axis may play repressive role only in the tumor initiation
stage. Thus, PCBP1 would be an early tumor suppressor gene.
However, the PCBP1 knock out animal model would be useful
to validate whether a spontaneous tumorigenesis will occur along
with aging. In addition, PCBP1 not only functions via autophagy,
but other manners to interfere with tumor progression, for
example, tumor cell cycle modulation (Shi et al., 2018), as tumor
cell cycle can be modulated by particular autophagy during
cancer development and by therapy (Zheng et al., 2019).

Interplay between autophagy and apoptosis is another
complex phenomenon. Recent study disclosed that p62 plays
a bridge role in autophagy and apoptosis through its adaptor
protein feature (Moscat and Diaz-Meco, 2009). p62, as a substrate
of autophagy, is usually used as a marker to examine autophagy
completion status. Because p62 contains several interaction
domains to many signaling molecules for their proteasomal
degradation (Bardag-Gorce et al., 2005; Moscat and Diaz-
Meco, 2009; Zheng et al., 2019), monitoring p62 degradation

FIGURE 8 | Schematic model of PCBP1 in regulating p62/SQSTM1 to repress tumor progression.
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thus cannot accurately evaluate the exact autophagic flux or
autophagy outcome. In line with this notion, our results here
show more evidence that p62 can be regulated by three different
ways by PCBP1, including inhibitions of both autophagy- and
proteasome-mediated p62 degradation, as well as increase p62
mRNA stability (Figures 4, 8), which further indicates that p62
is not an ideal marker for detection of autophagy maturation.
On the other hand, it is known that p62 can associate with
caspase-8 and the subsequent apoptotic pathway (Jin et al., 2009;
Yan et al., 2019). Likewise, our results here explain the reason
why PCBP1 downregulation or depletion would be an important
strategy to tumor cell survival by downregulations of p62 and
caspase-8 (Figure 7 and Supplementary Figure 6). Whether this
hypothesis is valid, future work needs to be further studied in the
appropriate tumor models.

Overall, our results provide a potential concept that autophagy
inhibition could be an efficient strategy to induce malignant
tumors to undergo apoptotic cell death, when PCBP1 depletion.
In line with our results, it is reported that inhibition of autophagy
with both 3-MA and CQ leads to apoptosis in both ovarian and
colorectal cancer cells (Huang et al., 2014; Lu et al., 2014; Tang
et al., 2015).

In summary, combining our current and previous results,
we conclude that PCBP1 plays a coordinate role in inhibiting
tumorigenesis via blocking autophagy, and in turn promoting
tumor cell apoptosis (Figure 8). Therefore, inhibition of the
autophagy in PCBP1-depleted tumors could be a promising
therapeutic strategy.
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FIGURE S1 | Scores of PCBP1, p62, and caspase 8 expression based on IHC
staining intensity.

FIGURE S2 | PCBP1 protein expression in the paired adjacent normal and tumor
regions of human colorectal cancer. (A) Representative IHC staining of PCBP1
protein expression in the paired adjacent normal and tumor regions of colorectal.
Scale bars are equal to 50 µm. (B) Statistical analysis of PCBP1 in 10 paired fresh
normal and malignant tissues of colorectal tissues. The paired Student’s t-test was
carried out to check the group difference. p-values are shown.

FIGURE S3 | Endogenous PCBP1 knockdown increases autophagic flux. (A)
Immunoblots of PCBP1 in the A2780, SKOV3, DLD-1, and HCT-116 cell lines. (B)
Immunoblots of PCBP1 by the specific siRNA transfection. (C) Western blots of
LC3 B in the indicated cells with GFP-PCBP1 (PCBP1) and the GFP-expressing
control cells. GAPDH is used as a loading control. Protein bands’ intensity ratio of
LC3II to GAPDH were quantified and normalized, and shown under each
lane, respectively.

FIGURE S4 | Genes precipitated in PCBP1 antibody-mediated RNA IP. The
bound mRNAs are identified by RNA sequencing. Copy number of each gene is
indicated in Y-axis, and the total number of PCBP1-bound mRNAs are shown in
X-axis. –Autophagy-related ATG7 and ATG 12 are shown in the lower panel in red.

FIGURE S5 | (A,B) CCK8 cell proliferation analyses of A2780 (A) and DLD-1 (B)
cells with exogenous PCBP1 in the absence or presence of autophagic inhibitor
CQ at 50 µM. Data presented are mean ± SD. NS, No Significance; *P < 0.05;
**P < 0.01; ***P < 0.001, n = 3.

FIGURE S6 | Relevance of PCBP1 to p62 and caspase 8 in ovary cancers. (A)
Representative immunohistochemistry (IHC) analysis of p62 expression in the
paired adjacent normal tissues and ovarian tumor samples. All images are
photographed with 200X amplification. Scale bars in Supplementary
Figures 6A,E equal to 100 µm. (B) Statistical comparison of p62 expression
between primary and metastatic tumor tissues. (C) Representative
immunohistochemistry (IHC) analysis of PCBP1, p62, and caspase 8 expressions
in the same typical patient stages I–III. All Images are photographed with 200X
amplification. Scale bars equal to 100 µm. (D) Correlationship of PCBP1
expression to p62. (E) Correlationship of PCBP1 expression to caspase-8. (F)
Correlationship of p62 expression to caspase-8. (G) Correlationships among
PCBP1, p62, and caspase 8 expressions in 90 ovary tumor samples.

TABLE S1 | Primers used for RT-PCR amplification in this study.
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RNA-binding proteins (RBPs) are a kind of gene regulatory factor that presents a
significant biological effect in the initiation and development of various tumors, including
bladder cancer (BLCA). However, the RBP-based prognosis signature for BLCA has not
been investigated. In this study, we attempted to develop an RBP-based classifier to
predict overall survival (OS) for BLCA based on transcriptome analysis. We extracted
data of BLCA patients from The Cancer Genome Atlas database (TCGA) and UCSC
Xena. Finally, a total of 398 cases without missing clinical data were enrolled and six
RBPs (FLNA, HSPG2, AHNAK, FASTKD3, POU5F1, and PCSK9) associated with OS of
BLCA were identified through univariate and multivariate Cox regression analysis. Online
analyses and immunohistochemistry validated the prognostic value and expression
of six RBPs. Risk scores were calculated to divide patients into high-risk and low-
risk level, and patients in the high-risk group tended to have a poor prognosis. In
addition, the receiver operating characteristic (ROC) curve analysis was performed to
assess the prognostic value of RBPs, and the area under the curve (AUC) values
were 0.711 and 0.706, respectively, in the training set and validating set. The findings
were further validated in an external validation set. Subsequently, the 6-RBP-based
signature and pathological stage were used to construct the nomogram to predict
the 3- and 5-years OS of BLCA patients. Also, this 6-RBP-based signature was
highly related to recurrence-free survival of BLCA. Weighted co-expression network
analysis (WGCNA) combined with functional enrichment analysis contributed to study
the potential pathways of six RBPs, including keratinocyte differentiation, RHO GTPases
activate PNKs, epithelial tube morphogenesis, establishment or maintenance of cell
polarity, and so on. In summary, the 6-RBP-based signature holds the potentiality to
serve as a novel prognostic predictor of OS for BLCA.

Keywords: bladder cancer, RNA-binding proteins, overall survival, recurrence-free survival, prognosis

Abbreviations: AUCs, Area under the curves; BLCA, Bladder cancer; circRNAs, Circular RNAs; DEGs, Differently expressed
genes; DERBPs, DEGs coding for RNA-binding proteins; FD, Fold change; FDR, False discovery rate; GEO, Gene Expression
Omnibus; HPA, Human Protein Atlas; HR, Hazard ratio; lncRNAs, Long non-coding RNAs; MIBC, Muscle-invasive bladder
cancer; miRNAs, MicroRNAs; NMIBC, Non-muscle-invasive bladder cancer; OS, Overall survival; RBPs, RNA-binding
proteins; RFS, Recurrence-free survival; ROC, Receiver operating characteristic; TCGA, The Cancer Genome Atlas; WGCNA,
Weighted co-expression network analysis.
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INTRODUCTION

Bladder cancer (BLCA) is the 10th most prevalent cancer and
the most frequently diagnosed malignancy of the urinary system
all over the world (Bray et al., 2018). It has been estimated that
there will be 81,440 cases of newly diagnosed BLCA and 17,980
people will die for BLCA in 2020 in the United States (Siegel
et al., 2020). Non-metastatic BLCA is separated into non-muscle-
invasive bladder cancer (NMIBC) and muscle-invasive bladder
cancer (MIBC) and approximately 70% of BLCA patients belong
to NMIBC when initially diagnosed (Dobruch et al., 2016). MIBC
patients have a more favorable prognosis than those with locally
advanced and metastatic BLCA due to the limited effects of
surgery on advanced BLCA. In addition, BLCA is the cancer with
high recurrence and about half of patients after radical surgery
relapse and present with metastases (Alfred Witjes et al., 2017).
However, no specific symptoms appeared in the early stage of
tumor, which makes it urgent to develop novel biomarkers to
predict the survival of BLCA.

RNA-binding proteins (RBPs) are a kind of key factors
regulating the process of tumorigenesis, and each step that led
to the initiation of malignancy may involve one or more RBPs.
Mechanisms of RBPs regulation have been identified in cancer
cells, including alternative splicing, polyadenylation, stability,
subcellular localization, and translation (Pereira et al., 2017).
Post-transcriptional regulation is an essential way of promoting
or suppressing oncogenesis. RBPs can interact with other proteins
and coding or non-coding RNA to form the ribonucleoprotein
complexes. For example, RBPs can interact with microRNAs
(miRNAs) (Liang et al., 2020), long non-coding RNAs (lncRNAs)
(Jiang et al., 2020), and circular RNAs (circRNAs) (Chen et al.,
2019) to affect tumor progression.

Initial assessment of BLCA has been explored in recent times.
In clinical practice, lncRNAs, miRNAs, and clinicopathological
factors including TNM stage and lymph node status have been
gradually used to assess BLCA prognosis. Recently increasing
researches have revealed that RBPs were associated with the
prognosis of patients (Busa et al., 2007; Vo et al., 2012). Therefore,
we aimed to identify a number of RBPs as potential biomarkers
based on transcriptome analysis to predict the outcome of
BLCA. We constructed a 6-RBP-based classifier for OS by
using the multivariable Cox regression, which could optimize
the predictivity of the current TNM staging system. Patients
with gene sequencing data from the GSE13507 database were
adopted as the external validation. In addition, this 6-RBP-based
classifier was also highly relevant to recurrence-free survival
(RFS) in BLCA. Our results demonstrated that the 6-RBP-based
classifier could be used as reliable prognostic predictors of BLCA
survival and recurrence.

MATERIALS AND METHODS

Data Acquisition
The TCGA database was used to obtain transcriptome profiling
data of tumor and normal tissues. Then, 19 normal samples
and 411 BLCA samples were obtained. The matrix of mRNA

expression was extracted separately by annotations using
Gencode (GENCODE v 26) GTF file. Those genes whose
expression was “zero” in 90% of BLCA patients were eliminated.
Clinical data were downloaded from the UCSC Xena website1.
To analyze the correlation of gene expression signatures with the
OS of BLCA patients, we filtered out samples without clinical
survival information; then, we selected a total of 398 patients
and these patients were divided into training (n = 265) and
validating set (n = 133) randomly at a 2:1 ratio for further analysis.
Microarray study and its clinical information (GSE13507) in
Gene Expression Omnibus (GEO) database2 (n = 165) were
extracted, profiled by the Illumina human-6 v2.0 expression
BeadChip platform. A total of 1348 genes coding for RBPs
including those with high confidence for RNA binding and those
annotated as RNA binding in Ensembl were summarized from
the published literature (Baltz et al., 2012; Castello et al., 2012;
Kwon et al., 2013; Cunningham et al., 2015).

Analysis of Differentially Expressed
Genes
We used the R package edgeR to obtain differentially expressed
genes (DEGs), where | log2 fold change (FC)| >1, P <0.05,
and false discovery rate (FDR) <0.05 were used as the cutoffs.
Then, we filtered the DEGs coding for RNA-binding proteins
(DERBPs). R package “heatmap” was performed to display the
selected six DERBPs.

1https://xena.ucsc.edu/
2http://www.ncbi.nlm.nih.gov/geo/

FIGURE 1 | Study flowchart showing the process of constructing the
6-RBP-based signature to predict overall survival (OS) of bladder cancer
(BLCA).
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FIGURE 2 | Screening for differentially expressed genes in bladder cancer (BLCA). (A) Volcano plot of differentially expressed genes in the TCGA-BLCA cohort. The
red dot represented the upregulated gene, while the green dot represented the downregulated gene. (B) Forest plot exhibited the hazard ratios (HRs) with 95%
confidence interval (95% CI) of prognostic RBPs in BLCA on the basis of the multivariate Cox regression result.

Data Processing and Risk Score
Calculation
The DERBPs were subjected to univariable Cox regression
analysis to select DERBPs that were associated with OS of
BLCA patients. We selected those DERBPs with P <0.001 into
multivariable Cox regression to obtain the coefficients. Then, six
DERBPs significantly correlated with OS were identified to build
up the prediction model weighted by their coefficients. A risk
score formula for OS was constructed, and each patient had been
assigned a risk score according to this risk score formula that was
a linear combination of the expression levels of the significant
DERBPs weighted by their respective Cox regression coefficients.
Then, we divided patients into low-risk group and high-risk
group according to the median risk score.

Weighted Co-expression Network
Analysis (WGCNA)
Considering our risk score model was built based on the
expression of six RBPs, we constructed a weight co-expression
network of risk score gene with DEGs in BLCA to explore the
biological function by the R package “WGCNA” (Langfelder and
Horvath, 2008). We selected 3 as the soft thresholding power
to produce a scale-free network and the enrolled genes were
hierarchically clustered into 16 modules, where the red module
was found to be most relevant to risk score.

Pathway Enrichment Analysis
In order to explore the potential functions of the 6-RBP signature,
genes in the red module were picked up for enrichment analysis.
Pathway enrichment was conducted using an online web tool
“Metascape3.” The significance threshold of FDR for significantly
enriched biological processes and pathways was set at 0.05.

3http://metascape.org/

Statistical Analysis
We use Chi-squared test or Fisher’s exact test to measure
the difference between training and validating sets and the
relationship between clinical data and risk score. Both univariable
and multivariable Cox regression analysis were performed using
the R package “survival.” The Kaplan–Meier survival curve
was drawn to demonstrate the relationship between DERBPs
and OS or RFS. The log-rank test was constructed to test the
significance of the difference between the two groups. ROC
analysis was performed to measure prognostic accuracy. All
statistical tests were two-sided, and P <0.05 was considered
statistically significant. All analyses were performed in SPSS
version 25.0 (SPSS Inc., Chicago, IL, United States) or R version
3.5.24 with the following packages: “edgeR” (Robinson et al.,
2010), “glmnet,” “gplot,” and “survivalROC.”

RESULTS

Data Source and Processing
As shown in Figure 1, we obtained 19 normal samples and
411 BLCA samples from TCGA database, and 4456 DEGs
with | Log2FC| >1 and FDR <0.05 were identified using
edgeR (Figure 2A). A total of 1348 genes coding known or
predicted RBPs were matched with the 4456 DEGs and then
109 RBPs remained. After that, univariate Cox regression was
performed to choose factors to predict prognostic of patients and
12 DERBPs with P <0.001 were retained for further analysis.
Clinical characters of BLCA patients were downloaded from the
UCSC database, and these cases were randomly divided into
training set (n = 265) and validating set (n = 133) at a 2:1 ratio.
There were no significant differences in age, gender, pathological

4http://www.r-project.org/
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TABLE 1 | Clinical features of BLCA patients in the training and validating sets.

Features Training set
(n = 265)

Validating set
(n = 133)

Pearson χ2 P

Age (years), n (%)

≤70 138 (52.1) 72 (54.1)

>70 127 (47.9) 61 (45.9) 0.151 0.698

Gender, n (%)

Male 189 (71.3) 100 (75.2)

Female 76 (28.7) 33 (24.8) 0.666 0.414

Pathological stage, n (%)

I + II 85 (32.1) 41 (30.8)

III + IV 180 (67.9) 92 (69.2) 0.064 0.801

Histologic grade, n (%)

Low 13 (4.9) 7 (5.3)

High 252 (95.1) 126 (94.7) 0.024 0.878

Diagnosis subtype, n (%)

Non-papillary 175 (66.0) 96 (72.2)

Papillary 90 (34.0) 37 (27.8) 1.538 0.215

BLCA, Bladder cancer. Bold values are significant to p < 0.05.

stage, histologic grade, and diagnosis subtype between two
sets (Table 1). Then, we identified six DERBPs, which were
strongly associated with OS of BLCA by multivariate Cox
regression analysis in the training set (Figure 2B), and the
detailed information of these RBPs including FLNA (Filamin
A), HSPG2 (Heparan Sulfate Proteoglycan 2), AHNAK (AHNAK
Nucleoprotein), FASTKD3 (FAST Kinase Domains 3), POU5F1
(POU Class 5 Homeobox 1), and PCSK9 (Proprotein Convertase
Subtilisin/Kexin Type 9) were listed in Table 2. Among these
genes, higher expression of HSPG2, AHNAK, and PCSK9 was
associated with decreased survival. On the contrary, higher
expression of FLNA, FASTKD3, and POU5F1 was related to
increased survival.

Validation the Prognostic Value and
Expression of Six RBPs
To further explore the prognostic value of six RBPs in BLCA,
the Kaplan–Meier plotter was used to determine the relationship
between six RBPs and OS. Five of the six RBPs (AHNAK,
HSPG2, PCSK9, POU5F1, and FASTKD3) were identified. Results
of log-rank test demonstrated that the high expressions of
AHNAK, HSPG2, and PCSK9 were associated with the low
OS, while the high expression of POU5F1 and FASTKD3 was

associated with the high OS of BLCA patients (Figure 3). To
further validate the expression of these RBPs in BLCA, we
analyzed immunohistochemistry data from the Human Protein
Atlas (HPA) database5 to show that FLNA, FASTKD3, and
POU5F1 were significantly decreased in BLCA compared with
normal urinary bladder tissue (Figures 4A–C). Besides, the
staining level of HSPG2 was increased in BLCA (Figure 4E).
However, the staining level of AHNAK was relatively reduced
in normal urinary bladder tissue and the result of PCSK9
protein expression was not detectable (Figure 4D). These results
showed that expression of each of the six RBPs was related to
prognosis of BLCA.

Development and Validation a
6-RBP-Based Classifier to Predict OS of
BLCA
To assess the ability of the 6-RBP-based model predicting survival
of BLCA, we created a risk score according to the expression
of six RBPs as follows: Risk score = (3.50 ∗ expression value
of HSPG2) + (1.74 ∗ expression value of AHNAK) + (0.35 ∗
expression value of PCSK9) - (1.49 ∗ expression value of FLNA)
- (1.45 ∗ expression value of FASTKD3) - (0.28 ∗ expression
value of POU5F1). Then, we calculated risk score according to
this formula and cases were divided into high-risk and low-risk
group based on the cutoff of median risk score (Figure 5A).
The mortality was higher in the high-risk group than that in the
low-risk group [HR: 2.274 (95% CI: 1.562–3.312), p < 0.001].
Moreover, HSPG2, AHNAK, and PCSK9 were highly expressed
in the high-risk group, while FLNA, FASTKD3, and POU5F1
were highly expressed in the low-risk group. Results in the
validating set were consistent with findings described above
(Figure 5B). Kaplan–Meier curves revealed that patients in the
high-risk group had shorter OS than those in the low-risk group
(p < 0.001) in the training set (Figure 5C), and this result was
further confirmed in the validating set (p < 0.001) (Figure 5D).

We also extracted BLCA samples from the GSE31507 database
(n = 165) to validate the ability of the 6-RBP-based classifier
predicting OS of BLCA. Results were compatible with that in the
training and validating set derived from TCGA database. Patients
in the high-risk group had shorter OS than those in the low-risk
group (p = 0.014) (Figure 6A). We also found that our 6-RBP-
based classifier performed well in predicting 5-year OS of BLCA

5https://www.proteinatlas.org/

TABLE 2 | Six RBPs significantly associated with the OS of BLCA patients in the training set.

Gene symbol ENSG ID Coefficient P HR HR (95% CI)

FLNA ENSG00000196924 −1.48536 0.11 0.23 0.037–1.4

HSPG2 ENSG00000142798 3.504967 0.004 33.28 3.011–367.8

AHNAK ENSG00000124942 1.743093 0.133 5.71 0.587–55.6

FASTKD3 ENSG00000124279 −1.44735 0.106 0.24 0.041–1.4

POU5F1 ENSG00000204531 −0.27992 0.054 0.76 0.569–1.0

PCSK9 ENSG00000169174 0.346457 0.013 1.41 1.074–1.9

BLCA, Bladder cancer; OS, Overall survival; HR, Hazard ratio; 95% CI, 95% Confidence interval. Bold values are significant to p < 0.05.
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FIGURE 3 | Kaplan–Meier analysis for overall survival (OS) of bladder cancer (BLCA) patients based on the mRNA expression of AHNAK (A), HSPG2 (B), PCSK9
(C), POU5F1 (D), and FASTKD3 (E).

FIGURE 4 | Validation of the expression of RNA-binding proteins (RBPs) in bladder cancer (BLCA) and normal tissues in the Human Protein Atlas (HPA) database.
(A) FLNA, (B) FASTKD3, (C) POU5F1, (D) AHNAK, and (E) HSPG2.
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FIGURE 5 | Construction of the 6-RBP-based risk model of bladder cancer (BLCA). (A) The 6-RBP-based risk score distribution, living status of BLCA patients, and
heatmap of six RBP expression profiles in the training set. (B) The 6-RBP-based risk score distribution, living status of BLCA patients, and heatmap of six RBP
expression profiles in the validating set. (C,D) Kaplan–Meier analysis for overall survival (OS) of BLCA patients based on the risk stratification in the training set (C)
and validating set (D).

(AUCs = 0.721) (Figure 6B). The mortality was higher in the
high-risk group than that in the low-risk group (Figure 6C).

Correlation Between RBPs Classifier and
Clinicopathologic Characteristics
As shown in Table 3, clinicopathologic characteristics age
(p = 0.032), pathological stage (p < 0.001), histologic

grade (p = 0.011), and diagnosis subtype (p = 0.002)
showed significant differences between the high-risk
group and low-risk group in the training set. Only age
(p = 0.046), pathological stage (p = 0.002), and histologic
grade (p = 0.007) displayed distinct differences in the
validating set. Patients with high pathological stage and
histologic grade were prone to get a high-risk score in two
sets (Figure 7).
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FIGURE 6 | Further validation of the 6-RBP-based risk model in the GSE13507 dataset. (A) Kaplan–Meier analysis for overall survival (OS) of bladder cancer (BLCA)
patients based on the risk stratification. (B) Receiver operating characteristic (ROC) analysis for OS prediction including 1–, 3–, and 5–years of BLCA patients.
(C) The living status of BLCA patients.

Prognostic Value of RBPs Classifier for
Assessing Overall Survival
The 6-RBP-based classifier, age, and pathological stage were
significantly related to the OS in the univariate Cox regression
analysis. After the multivariate Cox regression analysis of the
abovementioned factors, the 6-RBP-based classifier model and
pathological stage were retained to be dependable factors for OS
in the training set. Except for age, similar results were observed
in the validating set (Table 4). Our result showed that the 6-RBP-
based classifier was an independent prognostic factor for OS in
BLCA in two sets.

In order to evaluate the capabilities of the 6-RBP-based
signature to predict OS of BLCA, we plotted the ROC curves
and AUC was also calculated in both cohorts. AUC values in the
training set and validating set were 0.711 and 0.706, respectively,
which showed that the RBP-based classifier model had an obvious
better predictive accuracy compared with the TNM staging (0.670

and 0.674, respectively, in the training set and validating set)
(Figures 8A,B). In consideration of the role of TNM staging
in clinical practice, we combined the RBP-based model and
TNM staging to predict OS of BLCA. AUC values of this joint
prediction model in the training and validating set were 0.753
and 0.728, indicating that this model was more accurate than
models enrolled in RBPs or TNM staging solely. Subsequently,
the 6-RBP-based risk score and pathological stage were used to
construct the nomogram to predict the 3- and 5-year OS of BLCA
patients (Figure 8C).

Prognostic Value of the RBP-Based
Classifier for Assessing RFS
We further explored whether this 6-RBP-based classifier was
related to RFS of BLCA. As shown in Table 5, univariate and
multivariate Cox regression analysis was conducted to identify
prognostic factors for RFS. Finally, outcomes of univariate and
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TABLE 3 | Clinicopathological characteristics of the 6-marker-based classifier with OS in the training set and validating set.

Features Training set (n = 265) Validating set (n = 133)

Low risk (n = 133) High risk (n = 132) P Low risk (n = 67) High risk (n = 66) P

Age (years), n (%)

≤70 78 (29.4) 60 (22.6) 42 (31.6) 30 (22.6)

>70 55 (20.8) 72 (27.2) 0.032 25 (18.8) 36 (27.1) 0.046

Gender, n (%)

Male 101 (38.1) 88 (33.2) 52 (39.1) 48 (36.1)

Female 32 (12.1) 44 (16.6) 0.095 15 (11.3) 18 (13.5) 0.514

Pathological stage, n (%)

I + II 58 (21.9) 27 (10.2) 29 (21.8) 12 (9.0)

III + IV 75 (28.3) 105 (39.6) <0.001 38 (28.6) 54 (40.6) 0.002

Histologic grade, n (%)

Low 11 (4.2) 2 (0.8) 7 (5.3) 0 (0)

High 122 (46.0) 130 (49.1) 0.011 60 (45.1) 66 (49.6) 0.007

Diagnosis subtype, n (%)

Non-papillary 76 (28.7) 99 (37.4) 45 (33.8) 51 (38.3)

Papillary 57 (21.5) 33 (12.5) 0.002 22 (16.5) 15 (11.3) 0.193

OS, Overall survival. Bold values are significant to p < 0.05.

FIGURE 7 | The risk score was associated with histological grade and pathologic stage of bladder cancer (BLCA). (A,B) Boxplot of risk score in patients with
different histological grade in the training set (A) and validating set (B). (C,D) Boxplot of risk score in patients with different pathologic stage in the training set (C) and
validating set (D).
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TABLE 4 | Univariate and multivariate Cox regression analysis of the 6-marker-based classifier with OS in the training set and validating set.

Features Univariate COX Multivariate COX

HR (95% CI) P HR (95% CI) P

Training set

Age (>70 vs. ≤70) 1.519 (1.049, 2.200) 0.027

Gender (Male vs. Female) 0.831 (0.562, 1.231) 0.356

Pathological stage (III + IV vs. I + II) 2.210 (1.387, 3.521) 0.001 1.826 (1.135, 2.937) 0.013

Histologic grade (High vs. Low) 1.942 (0.477, 7.899) 0.354

Diagnosis subtype (Papillary vs. Non-papillary) 0.674 (0.441, 1.028) 0.067

6-marker-based classifier (High risk vs. Low risk) 1.738 (1.435, 2.103) <0.001 1.636 (1.342, 1.995) <0.001

Validating set

Age (>70 vs. ≤70) 1.853 (1.106, 3.105) 0.019 1.861 (1.084, 3.195) 0.024

Gender (Male vs. Female) 0.916 (0.508, 1.649) 0.769

Pathological stage (III + IV vs. I + II) 2.573 (1.301, 5.089) 0.007 2.497 (1.234, 5.052) 0.011

Histologic grade (High vs. Low) 1.278 (0.019, 8.561) 0.394

Diagnosis subtype (Papillary vs. Non-papillary) 0.571 (0.280, 1.163) 0.123

6-marker-based classifier (High risk vs. Low risk) 3.781 (2.117, 6.754) <0.001 3.166 (1.751, 5.727) <0.001

OS, Overall survival; HR, Hazard ratio; 95% CI, 95% Confidence interval. Bold values are significant to p < 0.05.

multivariate analysis indicated that pathological stage and the
6-RBP-based classifier were independent risk factors of RFS in
BLCA patients. Survival analysis revealed that the RFS of patients
in the high-risk group were considerably shorter than that in the
low-risk group (Figure 8D). Our results demonstrated that this
6-RBP-based classifier could also be used as a reliable prognostic
predictor of BLCA recurrence.

Pathway Enrichment Analysis of DERBPs
To explore the biological function of the 6-RBP signature in
BLCA, the WGCNA method was performed to choose genes
associated with risk score. Sixteen modules were identified
by hierarchical clustering analysis, and the red module was
significantly associated risk score (Figure 9A). In addition,
genes in the red module served to perform pathway enrichment
analysis. Results of enrichment analysis showed that genes
were mostly enriched in keratinocyte differentiation, and
RHO GTPases activate PNKs, epithelial tube morphogenesis,
establishment or maintenance of cell polarity, and so on,
suggesting that these pathways were correlated with the disease
progression of BLCA with high-risk score (Figures 9B,C).

DISCUSSION

RBPs were regarded acting as amplifiers of oncogenic driver
mutations. Increasing literature demonstrated that RBPs were of
vital importance in the initiation, development, and recurrence
of multi-malignancies. For instance, LIN28B overexpression
promoted tumorigenesis and metastasis of colon cancer via
repressing the level of let-7 microRNAs (King et al., 2011). RBPs
also played a critical role in the initiation of BLCA. It was
reported that HuR was upregulated in the BLCA tissue compared
with adjacent normal tissue and it could promote BLCA
progression by competitively binding to the long non-coding
HOX transcript antisense RNA with miR-1 (Yu et al., 2017).

RBPs also exhibit potentiality as novel biomarkers. Pancreatic
ductal adenocarcinoma patients with higher levels of ESRP1
showed longer survival than those with low ESRP1 expression
(Ueda et al., 2014). In conclusion, RBPs can regulate the biology
of cancer and hold potential as novel biomarkers.

Diverse models to predict the outcome of BLCA have been
created, including miRNA-based signature (Hofbauer et al., 2018;
Yin et al., 2019), clinical character-based nomogram (Zhang
et al., 2019), and lncRNA-based model (Wang et al., 2020). Parts
of them performed well in predicting the survival of BLCA.
However, no RBP-based classifier for predicting survival in BLCA
has been established. RBPs are a subset molecule of regulating
progression and development of malignancies. Considering the
limited capabilities of single RBP for prediction prognosis, we
constructed a predicted model based on mRNA expression
of six RBPs by univariate and multivariate Cox regression
analysis. Patients were divided into two categories based on the
median-risk score and high-risk patients have shorter survival
than low-risk patients, suggesting that our model displayed
powerful strength to forecast the OS for BLCA. Clinicopathologic
characteristics including age, pathological stage, and histologic
grade were associated with the expression of six RBPs and
patients with high stage or grade tended to get high-risk
score. Our 6-RBP-based classifier with AUCs being 0.711 and
0.706 in the training and validating sets presented a strong
ability to predict OS of BLCA. In addition, TNM stage is
the most commonly used index to assess the treatment way
and outcome of BLCA. We also combined the 6-RBP-based
signature together with TNM stage to assess the prognosis and
the AUCs showed that this model was more accurate than the
6-RBP-based model. Furthermore, we explored the efficiency of
the 6-RBP-based classifier in predicting RFS of BLCA. Results
showed that pathological stage and the 6-RBP-based classifier
were independent factors of RFS in BLCA patients and patients in
the low-risk group showed a significantly longer RFS than those
in the high-risk group.
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FIGURE 8 | Estimate the predictive ability of RBP-based classifier to predict survival in bladder cancer (BLCA) patients. (A,B) The receiver operating characteristic
(ROC) for TNM stage only, the RBP-based risk score (BLCARBP6), and the RBP-based risk score combined with TNM stage for overall survival (OS) in the training
set (A) and validating set (B). (C) Nomogram to predict the 3- and 5-years OS. (D) Kaplan–Meier analysis for recurrence-free survival (RFS) of BLCA patients based
on the risk stratification.

Six prognosis-related RBPs including FLNA, HSPG2, AHNAK,
FASTKD3, POU5F1, and PCSK9 were selected to build a classifier.
It has been confirmed that FLNA was downregulated in BLCA
tissue and overexpression of FLNA repressed migration, invasion,
and migration of BLCA by regulating autophagy (Wang et al.,
2018). AHNAK downregulated in BLCA performed accurately
on discriminating between benign urothelial lesion and bladder
urothelial carcinoma using voided-urine liquid-based cytology
(Lee et al., 2018). In addition, low expression of POU5F1 was

associated with shorter cancer-related survival and might be
a novel biomarker for BLCA (Chang et al., 2008). However,
functions of HSPG2, FASTKD3, and PCSK9 in BLCA have not
been explored yet. These confirmed or predicted prognosis-
related RBPs support evidence that our model is capable of
assessing the outcome of BLCA.

In order to explore the biological function of the 6-RBP
signature, we performed WGCNA and pathway enrichment
analysis. Results showed that those genes relevant to risk
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TABLE 5 | Univariate and multivariate Cox regression analysis of the 6-marker-based classifier with RFS in TCGA database.

Features Univariate COX Multivariate COX

HR (95% CI) P HR (95% CI) P

Age (>70 vs. ≤70) 1.117 (0.802, 1.557) 0.513

Gender (Male vs. Female) 0.857 (0.596, 1.232) 0.404

Pathological stage (III + IV vs. I + II) 2.879 (1.810, 4.578) <0.001 2.623 (1.643, 4.187) <0.001

Histologic grade (High vs. Low) 3.345 (0.826, 13.544) 0.091

Diagnosis subtype (Papillary vs. Non-papillary) 0.642 (0.431, 0.956) 0.029

6-marker-based classifier (high risk vs. low risk) 1.911 (1.365, 2.677) <0.001 1.696 (1.207, 2.382) 0.002

RFS, Recurrence-free survival; TCGA, The Cancer Genome Atlas; HR, Hazard ratio; 95% CI, 95% Confidence interval. Bold values are significant to p < 0.05.

FIGURE 9 | Pathway enrichment analysis of the RBPs signature. (A) Weighted co-expression network analysis (WGCNA) plot was performed to cluster genes
associated with the 6-RBP-based risk score, and the data of the risk score were added to construct the eigengene adjacency heatmap. (B) Pathways associated
with the 6-RBP-based signature were enriched by Metascape. (C) The histogram of the top 10 enriched pathways associated with the 6-RBP-based risk score. The
abscissa was the value of -Log10P, and the longitudinal axis denotes different enrichment pathways, sorted by the value of -Log10P.
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score were mainly enriched in keratinocyte differentiation, and
RHO GTPases activate PNKs, epithelial tube morphogenesis,
establishment or maintenance of cell polarity, etc. Interestingly,
we compared pathways predicted with annotations of these
six RBPs in GeneCards6 and found that HSPG2 acted as
an anti-angiogenic and anti-tumor peptide that inhibited
endothelial cell migration and collagen-induced endothelial
tube morphogenesis. Angiogenesis is thought to be a critical
procedure of promoting BLCA progression and associated
with poor survival (Bochner et al., 1995; Roudnicky et al.,
2017). Among these prognostic RBPs, HSPG2 demonstrated
an anti-angiogenesis effect via binding to α2β1 integrin and
interacting with VEGFR2 at the surface of endothelial cells
(Woodall et al., 2008; Goyal et al., 2012; Poluzzi et al., 2016).
A previous study has demonstrated that the breakdown of cell
polarity programs could promote the occurrence of aggressive,
invasive tumors (VanderVorst et al., 2018). In BLCA, BMP4
could induce monocyte/macrophage polarization toward M2
phenotype macrophages, which promoted the progression of
BLCA (Martinez et al., 2017). FLNA also regulated cell polarity
by interacting with FilGAP, a Rac-specific GTPase-activating
protein (Nakamura et al., 2009), but this mechanism had not been
elucidated in BLCA. Exact mechanisms of these RBPs remain
largely unknown and more research is required to investigate
their roles in BLCA.

CONCLUSION

In conclusion, we identified six RBPs associated with prognosis of
BLCA and constructed the 6-RBP-based classifier to help clinical
decision, while optimizing the predictive ability of the current
TNM staging system. This study takes the initiative report that
the RBP-based classifier could predict the prognosis in human

6 https://www.genecards.org/

BLCA. Nevertheless, large-scale, multi-center, and prospective
studies are necessary to confirm our results before the 6-RBP-
based signature can be applied in the clinic.
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Cumulative studies have shown that RNA binding proteins (RBPs) play an important
role in numerous malignant tumors and are related to the occurrence and progression
of tumors. However, the role of RBPs in kidney renal clear cell carcinoma (KIRC) is
not fully understood. In this study, we first downloaded gene expression data and
corresponding clinical information of KIRC from the Cancer Genome Atlas (TCGA)
database, International Cancer Genome Consortium (ICGC), and Gene Expression
Omnibus (GEO) database, respectively. A total of 137 differentially expressed RBPs
(DERBPs) were then identified between normal and tumor tissue, including 38
downregulated and 99 upregulated RBPs. Nine RBPs (EIF4A1, RPL36A, EXOSC5,
RPL28, RPL13, RPS19, RPS2, EEF1A2, and OASL) were served as prognostic genes
and exploited to construct a prognostic model through survival analysis. Kaplan-
Meier curves analysis showed that the low-risk group had a better survival outcome
when compared with the high-risk group. The area under the curve (AUC) value of
the prognostic model was 0.713 in the TCGA data set (training data set), 0.706 in
the ICGC data set, and 0.687 in the GSE29609 data set, respectively, confirming a
good prognostic model. The prognostic model was also identified as an independent
prognostic factor for KIRC survival by performing cox regression analysis. In addition,
we also built a nomogram relying on age and the prognostic model and internal
validation in the TCGA data set. The clinical benefit of the prognostic model was
revealed by decision curve analysis (DCA). Gene set enrichment analysis revealed
several crucial pathways (ERBB signaling pathway, pathways in cancer, MTOR signaling
pathway, WNT signaling pathway, and TGF BETA signaling pathway) that may explain
the underlying mechanisms of KIRC. Furthermore, potential drugs for KIRC treatment
were predicted by the Connectivity Map (Cmap) database based on DERBPs, including
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several important drugs, such as depudecin and vorinostat, that could reverse KIRC
gene expression, which may provide reference for the treatment of KIRC. In summary,
we developed and validated a robust nine-RBP signature for KIRC prognosis prediction.
A nomogram with risk score and age can be applied to promote the individualized
prediction of overall survival in patients with KIRC. Moreover, the two drugs depudecin
and vorinostat may contribute to KIRC treatment.

Keywords: kidney renal clear cell carcinoma, differentially expressed RBP, protein-protein interaction network,
survival analysis, nomogram, drugs

INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
cancers in people and mainly classified as three types: kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), and malignancies of the chromophobe. It
has been reported that about 14,240 people died and 62,700
newly validated patients with kidney cancer were discovered
in the United States in 2016 (Siegel et al., 2015). According
to morphology, RCC can be mainly divided into three
subtypes: KIRC, KIRP, and malignancies of the chromophobe
(Fernandez-Pello et al., 2017; Foshat and Eyzaguirre, 2017).
Among them, KIRC accounts for about 70%–80% kidney
carcinoma. Moreover, KIRC patients have no obvious symptoms
in the early stage, and about 30% of KIRC cases show
metastasis when it is detected because of the sophisticated
KIRC tumorigenesis in advanced stages (Ezz El Din, 2016; Zhao
et al., 2016). Although some well-known biomarkers of KIRC,
such as VHL/HIF, PI3K/Akt/mTOR, and Ras/Raf/MEK/ERK,
have been identified, the underlying molecular mechanism
of KIRC still remains uncertain (Elfiky et al., 2011; Colbert
et al., 2015). Regarding the KIRC treatment, PD-1/PD-L1
blocking agents have been approved in the treatment of
KIRC and in inhibiting the immune checkpoint have achieved
some progress (Hahn et al., 2020). However, some patients
still respond poorly, showing resistance to progress (Stein
et al., 2020). Thus, it is necessary to reveal the underlying
mechanism of KIRC to develop effective drugs or methods for
its diagnosis and treatment.

RNA binding proteins (RBPs) are a class of proteins
that interact with multiple types of RNAs. At present, it
is reported that nearly 1500 RBPs were identified in the
human genome (Gerstberger et al., 2014). The RBPs play
a crucial role in preserving the physiological balance of
cells, especially in the process of cell development and
stress response (Masuda and Kuwano, 2019). Given the
importance of post-transcriptional regulation, abnormal
RBPs could lead to numerous human diseases. A previous
study reveals that aberrant RBPs are associated with the
occurrence and development of disease or cancers. For example,
SRF1 and HuR can mediate post-transcriptional events to
control the occurrence and progression of cardiovascular
diseases (de Bruin et al., 2017). HuR can control mRNA
stability to boost proliferation and metastasis of gastric cancer
(Xie et al., 2019).

Currently, the potential role of RBP in KIRC is not fully
understood, and a comprehensive functional study of RBP
will help us fully understand its importance in the occurrence
and development of KIRC. Thus, we firstly downloaded RNA
sequencing data and the corresponding clinical information
of KIRC from the TCGA, GEO, and ICGA databases. We
then identified disregulated RBPs between normal and tumor
tissue and systematically explored their prognostic values and
molecular mechanisms in KIRC. Our study validated several
prognostic RBPs that elevate our knowledge of the molecular
mechanisms underlying KIRC.

MATERIALS AND METHODS

Data Processing
We downloaded the read count of KIRC, including 72 normal
and 539 tumor tissues with its corresponding clinical information
from TCGA1 (Table 1). In order to identify DERBPs, we
employed the edgeR R package to perform analyses (Robinson
et al., 2010). The DERBPs were screened with the cutoff: | log
fold change (FC)| ≥ 1 and false discovery rate (FDR) < 0.05.
Moreover, we also downloaded 91 KIRC samples as a validation
data set from the ICGC2.

KEGG Pathway, GO Enrichment Analysis,
GSEA Enrichment, and PPI Network
Construction
The potential function of the DERBPs was further applied to
GO enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis using clusterProfiler R package (Yu
et al., 2012). Both p and FDR values less than 0.05 were
statistically significant. To further screen the key module for
RBPs, the DERBPs were uploaded to the STRING database3 first
(Szklarczyk et al., 2019). The Cytoscape software was further
employed to build a ppi network (Smoot et al., 2011). The
crucial modules were screened by using the Molecular Complex
Detection (MCODE) module with the criterion score ≥ 2.
GSEA enrichment analysis was performed among different risk
groups, and a significant pathway was selected with the NOM-p
value < 0.05 and FDR < 0.05.

1https://portal.gdc.cancer.gov/
2https://icgc.org/
3http://www.string-db.org/
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TABLE 1 | Statistics of clinical information in high risk group and low risk group.

Characteristic High risk
(N = 256)

Low risk
(N = 256)

Total
(N = 512)

P value

Age <65 153 173 326 0.08082557

> = 65 103 83 186

Stage Stage I 96 160 256 3.232756e-09

Stage II 26 30 56

Stage III 73 45 118

Stage IV 61 21 82

T T1 99 161 260 4.090107e-08

T2 35 33 68

T3 112 61 173

T4 10 1 11

M M0 184 222 406 4.780686e-06

M1 58 20 78

MX 14 14 28

N N0 119 109 228 0.3058459

N1 11 5 16

NX 126 142 268

Gender Female 83 93 176 0.4023477

Male 173 163 336

Grade G1 2 9 11 2.814139e-06

G2 91 128 219

G3 109 94 203

G4 54 19 73

GX 0 6 6

Smoking 1-year 135 130 265 0.8603639

2-year 11 14 25

3-year 91 92 183

4-year 14 12 26

5-year 5 8 13

Survival Analysis
By integrating clinical information and RBP expression profiles,
we first performed univariate cox regression analysis using
the survival R package and selected those significant RBPs
with its p value smaller than or equal to 0.05. Then, in
order to increase the feasibility and reliability of the clinical
prognosis based on RBPs, we conducted a robust likelihood-
based survival analysis to further selected target RBPs by using
the Rbsurv R package (Renaud et al., 2015). The procedure
was as follows:

1. All the samples were randomly categorized into the
training set with N∗(1-p) samples and a testing data set
with N∗p samples. We fitted a gene into the training data
set and obtained its parameter estimation. Subsequently,
we estimated the log likelihood with the parameter estimate
and the validation set of samples. This evaluation was
repeated 10 times for each gene, and we obtained 10 log
likelihoods for each gene.

2. The best gene, g (Siegel et al., 2015), with the corresponding
largest mean log likelihood was selected. We then searched
the next best gene by evaluating every two-gene model

and selected an optimal one with the largest mean log
likelihood. A series of predictive models was built based on
the above procedure, and the Akaike information criterion
(AIC) value for each gene was calculated. The optimal
model was screened with the lowest AIC value. Using this
model, the prognostic RBPs were strictly selected.

After selecting most predictive genes, Multivariate cox
regression analysis was conducted on these RBPs to calculate
the corresponding coefficient. According to the coefficient, we
constructed the risk score system and the formula as follows:
Risk score = 6Coef RBPs x Exp RBPs. In the risk score formula,
the Coef RBPs represent the regression coefficients of each RBP,
and Exp RBPs is the expression level of each prognostic RBP.
Subsequently, we calculated the risk score for each patient and
further categorized the patient into a high- or low-risk score
group based on the median score. In addition, we performed
an ROC curve analysis by using the survivalROC R package to
estimate the sensitivity and specificity of the prognostic RBP
risk model4. Log-rank p < 0.05 was considered significant for
survival analysis.

Independence of the Risk Model of Other
Clinical Parameters in TCGA
In order to evaluate the independence of the risk model, we
compared clinical features, such as age, gender, grade, and
stage with the risk model using the univariate and multivariate
cox regression analyses, and p < 0.05 were considered
statistically significant.

Building and Validating a Predictive
Nomogram
A nomogram was built by including all significantly
independent prognostic factors (Iasonos et al., 2008). The
calibration plot was applied to explore the calibration and
the discrimination of the nomogram. The age, prognostic,
and combined models (age and prognostic model) were
compared with ROC and decision curve analyses (DCA)
(Vickers and Elkin, 2006).

External Validation of the Prognostic
Gene Signature
The validation data sets were downloaded from ICGC with
91 samples and GSE29609 with 39 patient samples. We
then calculated the risk score for each patient based on
the prognostic model. Then the ROC and Kaplan-Meier
analyses, respectively, were performed in the ICGA data
set. In addition, the protein expression of the prognostic
genes in the risk model was further validated in the
Human Protein Atlas (HPA, https://www.proteinatlas.org/)
(Nwosu et al., 2017). The online tool cBioportal
was used to explore the genetic alterations of the
prognostic genes5.

4https://cran.rproject.org/web/packages/survivalROC/index.html
5https://www.cbioportal.org/
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Identification of Candidate Small
Molecules
The CMap database6 was applied to predict a potential drug that
may reverse or induce the biological states of KIRC based on
the gene expression (Lamb et al., 2006). We first uploaded the
DERBPs to the CMAP in the “query” module and then searched
for small molecular drugs that may treat KIRC. The enrich scores
ranging from -1 to 1 represent the correlation level between drugs
and DERBPs. Drugs with a greater negative correlation value are
more beneficial for the treatment of KIRC. Therefore, drugs with
a score of ≤-0.75 were considered as candidate drugs for KIRC
treatment. In addition, we also performed mode-of-action (MoA)
analysis for the drugs to search for the potential mechanism.

RESULTS

Identification of DERBPs in KIRC
In the study, we collected 72 normal tissues and 539 tumors
of KIRC from TCGA database. To explore the DERBPs, we
compared the RBP gene expression between normal and tumor
tissue using the edegR R package. As a result, a total of 137
DERBPs were obtained with the cutoff: | logFC| > 1 and
FDR < 0.05, of which 38 RBPs were downregulated and 99
were upregulated. The expression distribution of these differently
expressed RBPs is shown in Figures 1A,B.

GO and KEGG Enrichment for DERBPs
In order to explore the potential function of the DERBPs,
we use the clusterProfiler R package to perform functional
enrichment analysis. As a result, these RBPs were mainly

6http://www.broadinstitute.org

enriched in translational initiation, mRNA catabolic processes,
RNA catabolic processes, nuclear-transcribed mRNA catabolic
processes, SRP-dependent co-translational protein targeting to
membrane, and co-translational protein targeting to membrane
(Supplementary Figure 1A). Moreover, we also discovered that
these RBPs were involved in ribosome and legionellosis pathways
in the KEGG result, which is consistent with the previous study
(Supplementary Figure 1B).

Construction Protein–Protein Interaction
(PPI) Network and Crucial Modules
Screening
To explore the role of DERBPs, we uploaded the RBPs to the
String database and identified a PPI network. We further used the
Cytoscape software to visualize it (Figure 2A). For the purpose of
searching the key modules from the PPI network, we used the
MCODE module to identify the important modules. As a result,
the top two important modules were acquired, which consist of
26 potential key RBPs (Figure 2B).

Identification and Selection of
Prognostic Related RBPs
In order to obtain a reliable survival result for KIRC, we first
excluded samples with a survival time less than 30 days. As
a result, a set of 26 RBPs with 512 patients were exploited
into univariate cox regression analysis, and a total of 10
significant RBPs were identified (p < 0.05) (Supplementary
Table 1). To ensure the stability and feasibility of clinical
prognosis based on 10 RBPs, we further made a selection
on the 10 RBPs using the robust likelihood-based survival
analysis. As shown in Table 2, nine genes, including EIF4A1,
RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2,

FIGURE 1 | Differentially expressed RBPs. A Heat maps of differentially expressed RBPs between tumor and normal tissues in the TCGA data set. B Volcano plot of
differentially expressed RBPs; red dots represent upregulated RBPs, and green dots represent downregulated RBPs.
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FIGURE 2 | Construction of protein–protein interaction network. A The network visualization using cytoscape for all differentially expressed RBPs. B The network of
two key modules visualized by cytoscape.

and OASL, were picked out. To systemically investigate the
relationship between these nine RBPs and prognosis of KIRC, we
developed a nine-RBP signature-based risk score based on their
cox coefficient:

Risk score = (0.005121079 ∗ EIF4A1)
+ (−0.065342266 ∗ RPL36A)
+ (−0.074842527 ∗ EXOSC5)
+ (−0.007007688 ∗ RPL28)
+ (0.003365894 ∗ RPL13)
+ (−0.000184204 ∗ RPS19)
+ (0.000510318 ∗ RPS2)
+ (0.017008893 ∗EEF1A2)
+ (0.118627759 ∗ OASL)
We then calculated the risk score for each patient based

on the risk formula and ranked them according to the risk
score. Figure 3A shows that survival time of patients with KIRC
was affected adversely with their risk score. Numerous cases
of death were related to a high-risk score, and patients with

TABLE 2 | Prognostic RBPs signature screened by performing forward selection
analysis in the TCGA dataset.

Gene ID nloglik AIC

EIF4A1 943.86 1889.73*

RPL36A 935.21 1874.43*

EXOSC5 934.78 1875.56*

RPL28 933.65 1875.3*

RPL13 933.65 1877.3*

RPS19 933.58 1879.15*

RPS2 932.74 1879.49*

EEF1A2 929.78 1875.55*

OASL 926.6 1871.2*

a low-risk score have prolonged survival time. The Kaplan-
Meier curve and log-rank test indicated that patients in the
low-risk group have a better survival time than in the high-risk
group (p < 0.01) (Figure 3B). To compare the sensitivity and
specificity of survival prediction, ROC analysis was performed
for the nine-RBP signature. As shown in Figure 3C, the area
under the curve (AUC) values reached 0.713, exhibiting a
good accuracy. In addition, to further explore the function
between the high- and low-risk group, we performed GSEA
enrichment and found several important pathways, including
the insulin signaling pathway, ERBB signaling pathway, renal
cell carcinoma, pathways in cancer, MTOR signaling pathway,
WNT signaling pathway, TGF BETA signaling pathway, and
UBIQUITIN mediated proteolysis that were enriched in the low-
risk group (Figure 4). We then assessed the alterations in nine
genes by using the cBioPortal database as shown in Figure 5, and
the RPL36A gene included six amplification samples; RPL28 and
EEF1A2 were altered in 0.6% of cases, and EXOSC5, RPS19, and
RPS2 were altered in 0.3% cases while EIF4A1 and OASL have
no mutation cases.

Independent Prognostic Role of the
Prognostic RBP Signature
To explore the independence of the signature, we compared the
clinical features including gender, age, smoking, grade, stage,
T, N, M, and RBP signature by performing univariate and
multivariate cox regression analysis. As shown in Figures 6A,B,
the age and RBP signature risk score were considered as the
independent prognostic factor (p < 0.05). Then patients were
stratified according to age (<65 and ≥65). Patients in the high-
risk group shown significantly poorer OS than those in the
low-risk group both in <65 and in ≥65 (Figures 6C,D).
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FIGURE 3 | The nine-RBP signature associated with overall survival of KIRC in the TCGA data set. A The upper panel represents the risk score distribution for each
patient, the middle panel shows the patient distribution with increasing risk value, and the lower panel represents the expression of nine prognostic RBPs. B
Kaplan-Meier curve analysis for the patients in KIRC between the high- and low-risk groups. C ROC curve analysis for the prognostic model.

FIGURE 4 | The significant pathways were enriched in the low-risk group by performing the GSEA analysis based on the gene expression.
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FIGURE 5 | Genetic alterations of the nine RBPs in KIRC patients; the data were retrieved from the cBioportal database.

FIGURE 6 | Exploring the association between clinical traits and the prognostic model. A Univariate cox regression analysis between clinical traits and prognostic
risk score. B Multivariate cox regression analysis between clinical traits and prognostic risk score. C, D The Kaplan–Meier curve shows the prognostic value of the
nine-RBP signature for KIRC patients categorized by age.

Construction of a Nomogram Based on
Prognostic Model and Clinical Features
In order to evaluate the clinical trait and prognostic model
for KIRC prognosis, we integrated the prognostic model
and age to build a nomogram (Figure 7). In addition, the
corresponding calibration plots in 1, 3, and 5 year were also
drawn, and it was discovered that the performance of the

nomogram was best in predicting 1 year OS (Figures 8A–C).
We further estimate the AUC value for the age and
prognostic model, respectively. As shown in Figures 9A–C,
the AUC values for 1-, 3-, and 5-year OS were 0.64, 0.57,
and 0.59 in age, and in the prognostic model, the AUC
value for 1-, 3-, and 5-year OS were 0.71, 0.66, and 0.69,
respectively. Interestingly, when we incorporated the age and
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FIGURE 7 | A nomogram plot was constructed on the basis of two independent prognostic factors (age and prognostic risk score) in KIRC.

FIGURE 8 | The calibration plot for internal validation of the nomogram within 1-year (A), 3-year (B) and 5-year (C), respectively.

prognostic model into a combined model, the AUC value
in 1, 3, and 5 years was increased, especially in 1-year OS
(Figures 9A–C ). Moreover, we also discovered that combining
our prognostic model with age showed some net benefit for
predicting OS (Figures 9D–F).

Validation of the Prognostic Model and
Hub RBPs
In order to validate the stability and reliability of the prognostic
model, we first downloaded 91 samples with complete clinical
information as the validation data set from the ICGC database.
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FIGURE 9 | Estimation of nomogram by performing ROC curve and DCA curve analyses within 1, 3, and 5 years, respectively. A–C ROC curves analysis of the
nomogram compared for 1, 3, and 5 years. D–F DCA curve analysis of the nomogram compared for 1, 3, and 5 years.

Using the prognostic model, we calculated the risk score for
each patient and divided patients into high- and low-risk group,
respectively. We found that patients in the high-risk group
corresponded to higher death rates (Figure 10A). The Kaplan-
Meier curve and log-rank test suggest that patients in the high-
risk group have a worse survival rate compared to the low-
risk group (p < 0.05) (Figure 10B). Moreover, the AUC for
overall survival was reached in 0.706, indicating good accuracy
(Figure 10C). Similarly, we also downloaded a GSE29609 data
set from the GEO database that included 39 samples. According
to the risk model, we also calculated the risk score for each
patient and then classified into them high- and low-risk group,
respectively. The Kaplan-Meier curve and log-rank test suggest
that patients have a significant difference between risk groups
(P< 0.05) (Supplementary Figure 2A). The ROC analysis results
indicate good accuracy of the risk model for the prognosis of
KIRC (Supplementary Figure 2B).

To further explore the prognostic value of nine hub RBPs
in KIRC, we used the Kaplan-Meier curve and log-rank test
analyses to determine the association between hub RBPs and
disease-free survival (DFS). As shown in Figure 11, the nine hub
RBPs were significantly associated with the DFS in KIRC patients,
and high expression of them corresponded to a lower survival
probability (p < 0.05). We also evaluated the expression level of
the nine hub RBPs between tumor and normal tissue. As shown
in Supplementary Figure 3, most of the hub RBPs presented

significant divergence between normal and tumor tissue except
for EEF1A2. Interestingly, these RBPs show a high expression
level in tumor tissue when compared to normal tissue.

In addition, we further explore the protein expression of nine
hub RBPs. We employed immunohistochemistry results from
the HPA database to discover that EIF4A1 was significantly
increased in kidney tumor tissue compared with normal tissue
(Supplementary Figure 4). However, the antibody staining
level of EEF1A2 and RPL36A were decreased from normal
tissue to kidney tumor tissue (Supplementary Figure 4).
Moreover, the protein expression level of EXOSC5, RPL13,
RPL28, and RPS2 were not significant between normal and
tumor tissue, and EXOSC5 and RPS19 were not detected in
the HPA database.

Related Drugs Screening for KIRC
Treatment
To identify the potential drugs for KIRC, we uploaded the
upregulated and downregulated RBPs to the CMAP database.
As a result, 27 significant candidate drugs that score ≤ -
0.50 and p value < 0.05 were considered as potential drugs
for KIRC treatment (Supplementary Table 2). The mechanism
of action for these drugs were further analyzed and are
shown in Figure 12. We can discover that these drugs were
enriched in the HDAC inhibitor, protein synthesis inhibitor,
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FIGURE 10 | The nine-RBP signature associated with overall survival of KIRC in the ICGC data set. A The upper panel represents the risk score distribution for each
patient, the middle panel shows the patients’ distribution with increasing risk value, and the lower panel represents the expression of nine prognostic RBPs. B
Kaplan-Meier curves analysis for the patients in KIRC between the high- and low-risk groups. C ROC curve analysis for the prognostic model.

adrenergic receptor antagonist, cytokine production inhibitor,
glucocorticoid receptor agonist, histamine receptor agonist,
histamine receptor antagonist, lipoprotein lipase activator, local
anesthetic, MAP kinase inhibitor, and Tricyclic antidepressant
(Figure 12). These mechanisms of action and potential
small molecule drugs might provide guidance for developing
targeted drugs for KIRC.

DISCUSSION

Disorders of RBPs have been reported in numerous malignant
tumors (Gerstberger et al., 2014; Masuda and Kuwano, 2019).
However, fewer studies have comprehensively investigated the
function and prognosis of RBPs. In the present study, we
systemically explored the prognosis and function of hub RBPs
in KIRC. A total of 137 DERBPs were identified between
tumor and normal tissue of KIRC based on the TCGA RNAseq
data. We comprehensively investigate the potential function
and pathway and construct a PPI network for these RBPs.
Furthermore, we constructed and validated a nine-RBP signature

to predict KIRC prognosis based on the cox regression coefficient
using the univariate cox regression analysis, robust likelihood-
based survival analysis, multivariate cox regression analysis, and
ROC analysis. We also identified some potential drugs that
may contribute to treatment of KIRC. These findings might
provide new insight into the pathogenesis of KIRC and potential
therapeutic targets for KIRC.

Functional enrichment analysis results reveal that the DERBPs
were mainly enriched in translation initiation, mRNA catabolic
processes, RNA catabolic processes, nuclear-transcribed mRNA
catabolic processes, SRP-dependent co-translational protein
targeting to membrane, and cotranslational protein targeting
to membrane, etc. Previous studies have demonstrated that
regulation of translation, RNA processing, and the RNA
metabolism process were the causes of the occurrence and
development of the human disease (Jain et al., 2019; Siang et al.,
2020). The KEGG analysis results indicate that the dysregulated
RBPs were enriched in Ribosome and Legionellosis, which is
consistent with previous studies (Li et al., 2020).

In addition, we constructed a PPI network for these DERBPs
and identified two key modules with 26 hub RBPs. We further
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FIGURE 11 | Disease-free survival analysis of the nine prognostic RBPs including EIF4A1 (A), RPL28 (B), RPS2 (C), RPL36A (D), RPL13 (E), EEF1A2 (F), EXOSC5
(G), RPS19 (H), and OASL (I) in the TCGA data set.

explored the association between 26 RBPs and overall survival
of KIRC by performing univariate Cox regression analysis,
robust likelihood-based survival analysis, and multivariate Cox
regression analysis. A total of nine RBPs, including EIF4A1,

RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2, and
OASL, were identified as prognostic RBPs. Among the nine
RBPs, EEF1A2, and RPL13 have been reported to be associated
with tumorigenesis and progression of kidney cancer patients
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FIGURE 12 | Oncoplot of the mechanism of action for the potential drugs.

(Pflueger et al., 2013; Wierzbicki et al., 2014). Eukaryotic
translation initiation factor 4A1 (EIF4A1) is a component of the
translation initiation complex, and a high expression level of
EIF4A1 is positively associated with poor tumor differentiation,
late T stage, lymph node metastasis, advanced TNM stage,
and poor prognosis in patients with gastric cancer (Gao et al.,
2020). Overexpression of ribosomal protein L36a (RPL36A)
has been reported to closely relate to cellular proliferation
in hepatocellular carcinoma (Kim et al., 2004). The EXOSC5
was identified as a novel prognostic marker that can promote
proliferation of colorectal cancer through activating the ERK
and AKT pathways (Pan et al., 2019). The mutation of RPL28
was associated with shorter progression-free survival and overall
survival in metastatic colorectal cancer (Labriet et al., 2019).
Markiewski et al. found that the ribosomal protein S19 (RPS19)
can contribute to generate regulatory T cells while reducing
infiltration of CD8 + T cells into tumors. When the expression
level of RPS19 is decreased, the tumor growth is impaired,
and the development of tumors is also delayed in a transgenic

model of breast cancer (Markiewski et al., 2017). The RPS2 and
OASL were considered to be a potential therapeutic target in
prostate cancer and lung cancer (Lv et al., 2018). According to
the nine genes, we built a risk model with their coefficient. The
ROC analysis results in the TCGA data set and ICGC data set
revealed that our risk model has a good performance to predict
survival of KIRC.

The GSEA result revealed many significant cancer-related
pathways for the RBP signature, of which the insulin signaling
pathway, ERBB signaling pathway, renal cell carcinoma,
pathways in cancer, MTOR signaling pathway, WNT signaling
pathway, TGF BETA signaling pathway, and UBIQUITIN
mediated proteolysis were enriched in the low-risk group, and
no significant pathway was enriched in the high-risk group.
On one hand, these results demonstrate the robust connection
of the RBP signature with tumorgenesis and progression of
KIRC. On the other hand, the results might provide promising
directions to elaborate the underlying molecular mechanisms
of the signature.
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To identify potential drugs for KIRC treatment, we obtained
27 compounds from the prediction of the CMAP database
based on the DERBPs. Among these compounds, vorinostat, a
histone deacetylase (HDAC) suppressor, has been reported to
be a promising drug in the treatment of KIRP (Pang et al.,
2019). The HDACs are a class of enzymes in the nucleus
of eukaryotic organisms that promote histone deacetylation
and, accordingly, allow histones to assemble and convert
DNA into biologically active units (Valenzuela-Fernandez et al.,
2008). According to the report, HDACs (HDAC1 and HDAC2)
are necessary for the growth and survival of RCC tumor
cells, and inhibition of HDACs might improve the response
of oncologic chemotherapy for RCC (Aggarwal et al., 2017;
Kiweler et al., 2018). Interestingly, depudecin is also an
HDAC suppressor, which contributes to inducing morphological
reversion of transformed fibroblasts and has been used to treat
neuroendocrine tumor (Kwon et al., 1998; Kunnimalaiyaan and
Chen, 2007). A recent study reports that depudecin can serve
as a candidate drug for the treatment of pituitary adenomas
(Zhou et al., 2016). The present study indicates a close reverse
mechanistic association of depudecin and vorinostat with KIRC,
suggesting that the two drugs may serve as suitable drugs
for KIRC treatment. However, the mechanism and efficacy of
the two drugs for treatment of KIRC remain to be elucidated
in future studies.

Overall, we constructed an RBP prognostic model based
on bioinformatics analysis, which have potentially substantial
clinical significance. However, several limitations need to be
pointed out. First, all the results were based on analysis, and
further experimental verification is required. Second, the data sets
did not provide complete clinical information, especially in the
validation data set, which may reduce the statistical reliability and
validity of the result.

CONCLUSION

In conclusion, our study presents the expression, function, and
prognostic potential of RBPs in KIRC. We identified a novel
nine-RBP signature for KIRC and proved that the prognostic
model can serve as an independent predictor for KIRC. To our
knowledge, this is the first attempt to develope an RBP prognostic
model in KIRC. In addition, we also identified two prospective
drugs for the treatment of KIRC.
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Ribonucleic acid-binding proteins (RBPs) are reportedly involved in tumor progression
and recurrence; however, the functions and mechanisms of action of RBPs in ovarian
serous cystadenocarcinoma (OSC) are not known. To address these issues, gene
expression profiles of OSC tissues from The Cancer Genome Atlas (TCGA) and normal
tissues from the Genotype-Tissue Expression database were compared in order to
identify RBPs that are differentially expressed in OSC. We also analyzed the biological
functions of these RBPs and their relationship to clinical outcome. There were 190 RBPs
that were differentially expressed between OSC and normal tissues, including 93 that
were upregulated and 97 that were downregulated. Five of the RBPs were used to
construct a prediction model that was evaluated by univariate and multivariate Cox
regression analyses. TCGA data were randomly divided into training and test cohorts,
and further categorized into high- and low-risk groups according to risk score in the
model. The overall survival (OS) of the high-risk group was shorter than that of the
low-risk group (training cohort P = 0.0007596; test cohort P = 0.002219). The area
under the receiver operating characteristic curve of the training and test cohorts was
0.701 and 0.638, respectively, demonstrating that the model had good predictive power.
A nomogram was established to quantitatively describe the relationship between the
five prognostic RBPs and OS in OSC, which can be useful for developing individualized
management strategies for patients.

Keywords: ovarian serous cystadenocarcinoma, RNA-binding proteins, prognostic model, overall survival,
bioinformatics

INTRODUCTION

Ovarian cancer, a common gynecologic cancer, accounts for just 3% of newly diagnosed tumors
but is the fifth leading cause of cancer-related deaths in women; this is partly attributable to
the difficulty of early diagnosis and high rates of metastasis and recurrence (Li et al., 2012;
Xiong et al., 2018). Ovarian serous cystadenocarcinoma (OSC) is the most common subtype of
ovarian cancer (60%–80% of ovarian epithelial tumors) (Li et al., 2012; Kaldawy et al., 2016).
In most cases, OSC is detected at an advanced stage and recurrence after treatment is common
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(Torre et al., 2017). There is therefore a need to clarify the
molecular mechanisms underlying OSC pathogenesis and
progression so that more effective therapeutic strategies
can be developed.

Ribonucleic acid (RNA)-binding proteins (RBPs) participate
in the formation of the ribonucleoprotein (RNP) complex for
protein synthesis (Dreyfuss et al., 2002). Over 1500 RBPs have
been identified to date (Gerstberger et al., 2014) and play a
critical role in RNA processing by regulating mRNA stability,
localization, alternative splicing, polyadenylation, and translation
efficiency (Brinegar and Cooper, 2016; Protter and Parker, 2016;
Masuda and Kuwano, 2019). Dysregulation of RBP expression
has been implicated in numerous human diseases (Brinegar and
Cooper, 2016; Newman et al., 2016). For example, mutations
in the genes encoding the RBPs Fused in sarcoma (FUS) and
TAR DNA-binding protein 43 (TDP-43) have been linked to the
pathogenesis of amyotrophic lateral sclerosis, and the proteins
were depleted from the nucleus and aggregated in the cytoplasm
in affected neurons (Brinegar and Cooper, 2016). The RBPs Elav-
like family (CELF) and Muscleblind-like (MBNL) contribute to
the pathogenesis of myotonic dystrophy by reverting to fetal
expression patterns and promoting fetal mRNA processing in
adult tissues (Brinegar and Cooper, 2016).

RBPs are also associated with cancer development, as
dysregulation of RBP expression alters the expression of
oncogenes and tumor suppression genes (Pereira et al., 2017).
Musashi 1 (MSI1) and MSI2 have been shown to increase
the levels of Myc and estrogen receptor α1 (ESR1) oncogenes
and reduce that of phosphatase and tensin homlog (PTEN) by
modulating mRNA stability and protein translation, leading to
various types of cancer (Kudinov et al., 2017). LIN-28 homolog
B (LIN28B) promotes pluripotency and plays a critical role
in colorectal carcinogenesis by interacting with microRNAs
of the let-7 family (King et al., 2011; Balzeau et al., 2017).
Quaking (QKI), a splicing factor that regulates cell proliferation,
is downregulated in lung cancer, which is associated with
poor survival (Zong et al., 2014). RNA-binding motif protein
10 (RBM10) is a regulator of alternative splicing in lung
adenocarcinoma (Hernandez et al., 2016); and human antigen
R (HuR) promotes cell dedifferentiation and proliferation by
regulating the stability of target mRNAs in hepatocellular
carcinoma (Fernandez-Ramos and Martinez-Chantar, 2015).
However, the mechanisms by which most RBPs contribute to
carcinogenesis remain unknown.

The aim of the present study was to clarify the role of RBPs
in the pathogenesis of OSC. We retrieved RNA sequencing and
clinicopathologic data for OSC from The Cancer Genome Atlas
(TCGA) database and screened for differentially expressed RBPs.
A functional analysis was also carried out in order to identify key
RBPs in OSC that can potentially serve as prognostic biomarkers.

MATERIALS AND METHODS

Data Processing
Ribonucleic acid profiles of tumor tissue from OSC patients
and normal tissues were obtained from TCGA database. For

comparison, we obtained RNA sequences of normal ovarian
tissue from the Genotype-Tissue Expression (GTEx) database.
RBPs that were differentially expressed between tumor and
normal tissues were screened using R v4.0.2 software (The R
Project, Vienna, Austria).

Kyoto Encyclopedia of Genes and
Genomes Pathway and Gene Ontology
Analyses
To determine the biological function of differentially expressed
RBPs, we used the R software packages clusterProfiler,
org.Hs.eg.db, enrichplot, and ggplot2 to carry out KEGG
and GO analyses, which included cellular component (CC),
molecular function (MF), and biological process (BP) as
functional domains. A q value or false discovery rate < 0.05 was
taken as statistically significant.

Protein–Protein Interaction Network
Construction
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) was used to investigate the interactions of RBPs.
A PPI network and visual subnetwork were constructed using
Cytoscape v3.8.0 software (https://cytoscape.org/index.html).
Functionally significant RBPs were identified using the Molecular
Complex Detection (MCODE) algorithm. RBPs with MCODE
score and node counts > 3 were deemed significant, and
P-values < 0.05 were considered statistically significant.

Prognostic Model Construction and
Validation
The survival package of R software was used for univariate
Cox regression analysis of key RBPs; candidate RBPs
were selected with the log-rank test and incorporated
into a multivariate Cox regression model. The risk score
was calculated according to the following formula: risk
score = β1 × Exp1 + β2 × Exp2 + . . . + βi × Expi. We used R
software to construct a nomogram to predict overall survival
(OS) of OSC patients. The model was validated using data from
TCGA database, which were randomly divided into training
and test cohorts. With the median risk score as the cutoff, OSC
patients were divided into high- and low-risk groups, and the
log-rank test was used to compare differences in OS between
them. P < 0.05 was considered statistically significant. Receiver
operating characteristic (ROC) curve analysis was also performed
to evaluate the predictive value of the model, which was validated
using data from the Human Protein Atlas (HPA) database.

RESULTS

Identification of Differentially Expressed
RBPs in OSC Patients
We investigated the functions and prognostic value of RBPs in
OSC patients; the flow diagram of the study is shown in Figure 1.
We downloaded RNA sequences of 379 OSC patients from TCGA
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FIGURE 1 | Flow diagram of this study.

database; 88 normal ovarian tissue samples obtained from the
GTEx database were used as a control. The RNA sequences of
1542 RBPs (Gerstberger et al., 2014) were ultimately included in
the analysis; 190 sequences encoded RBPs that were differentially
expressed between normal and tumor tissues (P < 0.05, | log2 fold
change| > 1.0), including 93 upregulated and 97 downregulated
RBPs (Figure 2). All up- or down-regulated RBP genes in OSC
has been listed in the supplementary files.

KEGG Pathway Enrichment and GO
Analyses of Differentially Expressed
RBPs
We used R software to evaluate the enrichment of the
identified RBP-encoding genes under biological processes,
metabolic mechanisms, and molecular functions. The results
of the KEGG analysis showed that the upregulated RBPs
were significantly enriched in pathways related to RNA
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FIGURE 2 | Differentially expressed RBPs in OSC. (A) Heat map. (B) Volcano plot.

transport, ribosome biogenesis in eukaryotes, and ribosome
(Figure 3A), whereas downregulated RBPs were enriched
in RNA transport, spliceosome, and ribosome (Figure 3B).
GO analysis revealed that under BP, upregulated RBPs were
mainly involved in defense response to virus, RNA catabolic
process, and non-coding RNA metabolic process. Meanwhile,
downregulated RBPs were involved in RNA splicing; RNA
splicing, via transesterification reactions with bulged adenosine
as nucleophile; mRNA splicing; and mRNA splicing via
spliceosome. Under CC, both upregulated and downregulated
RBPs were enriched in RNP granule, cytoplasmic RNP granule,
and P-body. Under MF, both upregulated and downregulated
RBPs were enriched in catalytic activity, acting on RNA, and
mRNA 3’-untranslated region (UTR) binding; upregulated RBPs
were also enriched in double-stranded RNA binding (Figure 3C),
and downregulated RBPs were enriched in translation regulator
activity and nucleic acid binding (Figure 3D).

PPI Network Construction and Key
Module Selection
To investigate the interactions of differentially expressed RBPs
and identify key RBPs related to OSC, we constructed a PPI
network using data from the STRING database and Cytoscape
software. The PPI network included 190 nodes and 493 edges.
A coexpression network was constructed using the MCODE tool
and the top 3 modules and genes were selected and visualized
according to their risk scores (Figure 4). The RBPs in the key
modules were associated with the defense response to virus,
translation, and RNA binding.

Construction of a RBP-Based Prediction
Model for OSC
We analyzed the RNA sequences of 9 RBPs selected from the PPI
network and evaluated their clinical and prognostic significance.
The results of the univariate Cox regression analysis revealed
that five of the RBPs (mitochondrial ribosomal protein L14

[MRPL14], zinc finger protein 239 [ZNF239], proteasome 20S
subunit α6 [PSMA6], poly[RC]-binding protein 3 [PCBP3], and
ribosomal protein S4 Y-linked 1 [RPS4Y1]) were related to
prognosis in OSC. To further assess their influence on OS, we
performed a multivariate Cox regression analysis and found that
the five RBPs were independent predictors of OS in OSC patients
(Figure 5). We constructed a prediction model by calculating
the risk score for each patient using the following formula: risk
score = (−0.34749 × Exp[MRPL14]) + (−0.17478 × Exp[ZNF2
39]) + (−0.47382 × Exp[PSMA6]) + (0.41487 × Exp[PCBP3]) +
(3.46278 × Exp[RPS4Y1]). A total of 379 OSC patients in
TCGA were randomly divided into training and test cohorts and
further classified into low- and high-risk subgroups according
to median risk score. To evaluate the predictive value of our
model, we performed a survival analysis of the cases. In both
the training and test cohorts, the high-risk group had shorter
OS than the low-risk group (training cohort P = 0.0007596, test
cohort P = 0.002219) (Figures 6A, 7A). The heatmap of RBP
expression, survival status, and risk scores of the low- and high-
risk subgroups of the training and test cohorts are shown in
Figures 6C–E, 7C–E. The time-dependent ROC curve analysis
showed that the area under the ROC curve of the RBP-based
risk score model was 0.701 and 0.638 for the training and test
cohorts, respectively (Figures 6B, 7B), indicating a moderate
predictive power.

Construction of a Nomogram Based on
RBPs
A nomogram was constructed to quantitatively assess the role of
the five RBPs in the prediction model for OSC patient survival
(Figure 8). Based on the multivariate Cox analysis, we assigned
scores of each variable to the scale of the nomogram, determined
the score of each variable, and calculated the total scores of the
five RBPs for each patient. The total score was normalized to a
distribution ranging from 0 to 100 and used to calculate the 1-
year, 3-year, and 5-year estimated OS rates of OSC patients.
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FIGURE 3 | KEGG pathway analysis and GO enrichment analysis of differentially expressed RBPs. The size of a dot in the KEGG analysis represents the relative
abundance of the corresponding RBP. The color represents the q value, with a darker red color indicating a smaller q value. And the color bar in the legend of GO
analysis represents the q value of the corresponding item. BP, biological process; CC, cellular component; MF, molecular function. (A) KEGG analysis of upregulated
RBPs. (B) KEGG analysis of downregulated RBPs. (C) GO enrichment analysis of upregulated RBPs. (D) GO enrichment analysis of downregulated RBPs.

We also evaluated the prognostic significance of various
clinical characteristics of OSC patients in TCGA by
Cox regression analysis. The univariate analysis showed
that risk scores were independent risk factors for OS
(training cohort P < 0.001, test cohort P = 0.010), while
age and tumor grade were unrelated to OS (Figure 9).
The multivariate regression analysis showed that risk
scores were independent prognostic factors for OS in
OSC patients (training cohort P < 0.001, test cohort
P = 0.007) (Figure 10).

Expression of Prognostic RBPs
In order to clarify the expression of the five prognostic RBPs in
OSC patients, we examined immunohistochemistry data from
the HPA database. MRPL14 was highly expressed in OSC tissue

compared to normal tissue. In contrast, the immunoreactivity
of PSMA6, PCBP3, and RPS4Y1 in OSC tissue was relatively
low (Figure 11). ZNF239 protein expression data were not
available in the HPA.

DISCUSSION

Only a small fraction of RBPs have been identified as
being related to tumor recurrence and progression, and
in most cases the mechanism of action has not been
reported. Bioinformatics approaches allow investigation
of the diagnostic or prognostic significance of changes in
RBP expression. Our study identified 190 RBPs that were
differentially expressed between OSC and normal tissues. Five
of the RBPs were used to construct a risk prediction model,
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FIGURE 4 | Protein-protein interaction network and modules analysis. (A) Protein–protein interaction network of differentially expressed RBPs. (B) Three critical
modules from PPI network. Green circles: downregulation with a fold change of more than 2. Red circles: upregulation with fold change of more than 2.

FIGURE 5 | Identification of prognosis-related RBPs by multivariate Cox regression analysis.
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FIGURE 6 | Risk score analysis of the training cohort in TCGA using the 5-gene prognostic model. (A) Survival curve for low- and high-risk subgroups. (B) ROC
curve for predicting OS based on risk score. (C) Expression heat map. (D) Risk score distribution. Patients were assigned to the training group based on risk score
for determination of median risk score. (E) Survival status. The dashed line represents the median risk score; most patients on the right side had died, revealing a
trend of greater risk of death with increasing risk score.
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FIGURE 7 | Risk score analysis of the test cohort in TCGA using the 5-gene prognostic model. (A) Survival curve for low- and high-risk subgroups. (B) ROC curve
for predicting OS based on risk score. (C) Expression heat map. (D) Risk score distribution. Patients were assigned to the training group based on risk score for
determination of median risk score. (E) Survival status. The dashed line represents the median risk score; most patients on the right side had died, revealing a trend
of greater risk of death with increasing risk score.
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FIGURE 8 | Nomogram for predicting 1-year, 3-year, and 5-year OS of OSC patients in TCGA database.

FIGURE 9 | Evaluation of the prognostic value of different clinical parameters by univariate analysis. (A) Training cohort. (B) Test cohort.

which showed moderate performance in predicting OSC
patient survival.

The results of the GO and KEGG pathway analyses revealed
that the differentially expressed RBPs were significantly enriched
in the defense response to virus as well as RNA- and
protein translation-related processes that have been linked
to the pathogenesis of various human diseases (Scotti and
Swanson, 2016; Anastasiadou et al., 2018; Grafanaki et al.,
2019). RBPs form the RNP complex that regulates RNA
stability and hence, gene expression; dysfunction of the RNP
complex can lead to cancer development and progression
(Carotenuto et al., 2019). The RBP ribonucleoprotein 1,

translational regulator 1 (LARP1) promotes ovarian cancer
progression and by altering the stability of its target mRNAs
B cell lymphoma 2 (BCL2) and BCL-2–interacting killer (BIK)
(Hopkins et al., 2016). LIN28B inhibits the apoptosis of ovarian
cancer cells and promotes cancer progression by binding to
AKT2 mRNA and increasing the expression of the protein
(Lin et al., 2018).

The PPI of the differentially expressed RBPs identified
in this study reveals an important role for these proteins
in tumorigenesis and cancer progression. Eukaryotic
translation elongation factor 1 α2 (EEF1A2) is an
oncogene that promotes ovarian carcinogenesis and
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FIGURE 10 | Evaluation of the prognostic value of different clinical parameters by multivariate analysis. (A) Training cohort. (B) Test cohort.

FIGURE 11 | Validation of prognostic RBP expression in OSC and normal
ovarian tissue using the HPA database.

inhibits apoptosis of ovarian cancer cells (Lee, 2003).
Toll-like receptor 3 (TLR3) was shown to play a dual
role in ovarian cancer by eliminating tumor cells via
upregulation of interferons and activation of natural

killer cells and also by promoting cancer development
(Husseinzadeh and Davenport, 2014).

Five of the differentially expressed RBPs, namely MRPL14,
ZNF239, PSMA6, PCBP3, and RPS4Y1, showed prognostic value
in OSC by univariate and multivariate Cox regression analyses.
MPRL14 was found to be upregulated in tumor cells and its
expression was positively correlated with the outcome of OSC
patients. Reduced ZNF239 and PSMA6 and elevated PCBP3
and RPS4Y1 levels were associated with worse prognosis. The
mitochondrial ribosomal proteins (MRPs) are the counterpart of
cytoplasmic ribosomes relating to maintain mitochondrial DNA
stability (O’Brien et al., 1999). The MRPL14 single nucleotide
polymorphism may be related to diabetic retinopathy through
steroid metabolism or insulin resistance (Lin et al., 2013).
MRPL14 is highly expressed in thyroid tumor (Jacques et al.,
2013), but does not reveal the relationship with prognosis.
In the past 5 years, no relationship between ZNF239 and
any type of tumor has been reported. The proteasome gene,
PMSA6, encodes the a1 protein, which is involved in the
formation of the outer rings of the 20s core proteasome and
is subject to post-translational regulation (Choudhary et al.,
2009; Wang et al., 2013). The location of the PSMA6 gene
occurs in a region containing microsatellites that have been
implicated in coronary artery disease (CAD) (Alsmadi et al.,
2009), type 2 diabetes mellitus (T2DM) (Sjakste et al., 2007),
Grave’s disease (Sjakste et al., 2004), asthma (Zemeckiene
et al., 2015), ankylosing spondylitis (Zhao et al., 2015), and
myocardial infarction (Liu et al., 2009). In a lung cancer study,
the expression of PSMA6 was up-regulated, and knocking
out PSMA6 could induce lung cancer tumor cell apoptosis
or the cell cycle to enter the arrest phase (Kakumu et al.,
2017). However, in our study, the expression of PSMA6 in
OSC is down-regulated, and the low expression of PSMA6 is
associated with a worse OSC prognosis, which may be due
to the different effects of PSMA6 expression on proteasome
activity. PSMA6 has carcinogenic effects in various tissue
tumors. Actually, the ubiquitination-proteasome degradation
pathway has been proved to be the key to cell survival and
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proliferation. Therefore, the detailed molecular mechanism
of PSMA6 in OSC needs to be revealed. The poly(C)
binding proteins (PCBPs), an RNA-binding protein involved
in post-transcriptional regulation, whose important functions
are mRNA activation, translation activation and translation
silencing (Makeyev and Liebhaber, 2002). A study of pancreatic
ductal carcinoma showed that the content of PCBP3 protein in
postoperative tissues was significantly related to the survival time
of patients, and the prognosis of the group with lower PCBP3
protein content was worse (Ger et al., 2018). This is consistent
with the results of our study. Otherwise, the initiation of RPS4Y1
expression is the basis of Y chromosome activation (Zhou et al.,
2019). There is currently no report on the relationship between
RPS4Y1 and tumors. However, studies about these five RBP
genes in ovarian cancer are rarely seen and the molecular link
between these five RBPs and OSC progression has yet to be
elucidated. Clinical specimen validation and follow up data of
OSC patients are also wanted in the following research. The
results of the ROC curve analysis indicated that the five RBPs
showed moderate performance in identifying OSC patients who
are at risk of progression; the nomogram model constructed to
predict 1-year, 3-year, and 5-year OS in OSC patients yielded
similar findings.

This study had some limitations. Firstly, the prediction
model was based on TCGA data and no clinical validation
or prospective clinical study was conducted; moreover,
the limited clinical information in the TCGA dataset
may have diminished the reliability of the Cox regression
analysis. Nonetheless, our model based on five RBPs
showed great potential being used to predict OSC patient

prognosis, which can inform clinical decisions and lead to
better outcomes.
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Abnormal expression of RNA binding proteins (RBPs) has been reported across various
cancers. However, the potential role of RBPs in colorectal cancer (CRC) remains
unclear. In this study, we performed a systematic bioinformatics analysis of RBPs in
CRC. We downloaded CRC data from The Cancer Genome Atlas (TCGA) database.
Our analysis identified 242 differentially expressed RBPs between tumor and normal
tissues, including 200 upregulated and 42 downregulated RBPs. Next, we found eight
RBPs (RRS1, PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1) related
to the prognoses of CRC patients. Among these eight prognosis-related RBPs, four
RBPs (NOL3, PTRH1, UPF3B, and SMAD6) were selected to construct a prognostic
risk score model. Furthermore, our results indicated that the prognostic risk score
model accurately predicted the prognosis of CRC patients [area under the receiver
operating characteristic curve (AUC)for 3- and 5-year overall survival (OS) and was
0.645 and 0.672, respectively]. Furthermore, we developed a nomogram based on a
prognostic risk score model. The nomogram was able to demonstrate the wonderful
performance in predicting 3- and 5-year OS. Additionally, we validated the clinical value
of four risk genes in the prognostic risk score model and identified that these risk
genes were associated with tumorigenesis, lymph node metastasis, distant metastasis,
clinical stage, and prognosis. Finally, we used the TIMER and Human Protein Atlas
(HPA)database to validate the expression of four risk genes at the transcriptional and
translational levels, respectively, and used a clinical cohort to validate the roles of
NOL3 and UPF3B in predicting the prognosis of CRC patients. In summary, our study
demonstrated that RBPs have an effect on CRC tumor progression and might be
potential prognostic biomarkers for CRC patients.

Keywords: colorectal cancer, RNA binding protein, prognostic model, transcriptomics, TCGA

INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers of the gastrointestinal
tract. It is the third leading cause of cancer-related death worldwide (Siegel et al.,
2020). Although surgical and adjuvant therapies have improved, the 5-year overall
survival (OS) rate of CRC patients ranges from 90 to 10% (Van Cutsem et al., 2014).
The poor prognosis of CRC is primarily due to tumor distant metastasis and recurrence
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(Roth et al., 2010; Kow, 2019). Therefore, understanding
the mechanisms that lead to CRC initiation and progression
is necessary for diagnosis, therapeutic interventions, and
prognostic prediction.

RNA binding proteins (RBPs) are a class of proteins involved
in splicing, modifications, transport, localization, stability,
degradation, and translation of RNAs (Mitchell and Parker, 2014;
Perron et al., 2018). In fact, more than 1,500 human RBPs
have been validated by high-throughput screens and experiments
(Gerstberger et al., 2014; Neelamraju et al., 2015). RBPs play
vital roles in several essential cellular processes by interacting
with their target RNAs (Moore, 2005). The target RNAs of RBPs
are diverse and include microRNAs, transfer RNAs (tRNAs),
small interfering RNA, small nucleolar RNAs, and small nuclear
RNAs (Hentze et al., 2018). Abnormally expressed RBPs regulate
the expression and function of oncogenes and tumor-suppressor
genes via post-transcriptional regulatory mechanisms across
various cancers. For example, aberrant hnRNPM expression
promoted breast cancer metastasis by controlling CD44 splice
isoform switching during epithelial–mesenchymal transition
(EMT) (Xu et al., 2014). In melanomas, CPEB4 increased
the translation of melanoma drivers MITF and RAB72A,
which helps promote tumor proliferation (Pérez-Guijarro et al.,
2016). In hepatocellular carcinoma, HuR/methyl-HuR and
AUF1 modulate MAT1A and MAT2A expression through post-
translational regulation of their messenger RNAs (mRNAs), thus
impacting tumor progression (Vázquez-Chantada et al., 2010). In
CRC, overexpression of IMP-1 increased proliferation by directly
binding to and stabilizing c-Myc (Mongroo et al., 2011).

With the rapid development of high-throughput
sequencing, researchers have have been able to perform a
systematic functional analysis of RBPs using high-throughput
bioinformatics profiling. Recent bioinformatics studies have
implied that RBPs can predict the prognosis of different
cancers, such as breast cancer, lung adenocarcinoma, glioma,
hepatocellular carcinoma, and leukemia (Li et al., 2019a,b,
2020; Saha et al., 2019; Wang K. et al., 2019,Wang Z. et al.,
2020). In this study, we downloaded CRC data from the Cancer
Genome Atlas (TCGA) database. Next, we selected differentially
expressed RBPs to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Furthermore, we identified prognostic RBPs that enable the
construction of a prognostic risk score model. Furthermore, we
built a nomogram based on the prognostic risk score model.
Finally, we explored the clinical value of these risk genes. Our
study detected that several RBPs are involved in CRC, which
might be used to predict the prognosis of CRC patients and
inhibit tumor progression in the future.

MATERIALS AND METHODS

Data Acquisition
RNA sequencing data and the corresponding clinical data
were downloaded from the TCGA database1. Overall, 568 CRC

1https://portal.gdc.cancer.gov/

patients were used to analyze the differentially expressed RBPs
in the TCGA database. Then, 489 CRC patients were selected
for clinical analyses, as these patients had complete clinical
information, including primary tumor, lymph node metastasis,
distant metastasis, clinical stage, and follow-up for at least
1 month. Additionally, we downloaded RNA-seq data of the
GSE29623 cohort from the Gene Expression Omnibus (GEO)
database2. In total, 1,542 RBPs were included in our study
(Gerstberger et al., 2014; Neelamraju et al., 2015).

Clinical Samples and
Immunohistochemistry Staining
In total, tumor and normal tissues of 44 CRC patients
were obtained from the Peking University People’s Hospital.
All tissues were histopathologically confirmed by pathologists.
This study was granted approval by the ethics committee
of Peking University People’s Hospital. Immunohistochemistry
(IHC)staining was performed according to prior published
protocols (Zhang et al., 2019). Briefly, the staining index scores
were assigned as follows: staining intensity (negative: 0; weak:
1; moderate: 2; strong: 3) and positive staining (<5%: 0; 5–
25%: 1; 26–50%: 2; 51–75%: 3; > 75%: 4). The staining index
scores were calculated by multiplying the staining intensity score
by the positive staining score, which ranged from 0 to 12. The
antibodies used in this study included anti-NOL3 (Proteintech,
United States) and anti-UPF3B (Proteintech, United States).

Functional Enrichment Analysis of
Differentially Expressed RNA Binding
Proteins
The GO and KEGG pathway analyses were performed to
analyze the biological functions of these differentially expressed
RBPs. The GO terms include biological process (BP), cellular
component (CC), and molecular function (MF).

Building a Prognostic Model
A univariate Cox regression analysis was performed to identify
prognostic RBPs. Subsequently, a multivariable Cox regression
analysis was carried out to construct a prognostic risk score
model. Furthermore, the risk score was calculated as follows:

riskscore =
n∑

i=1

coefficieent(i)∗expression(i),

where coefficient(i) and expression(i) represent the regression
coefficient and expression levels of selected genes in the
prognostic risk score model, respectively. The time-dependent
receiver operating characteristic (ROC) analysis was used to
assess the prognostic ability of the prognostic risk score model.
Then, a nomogram was built to predict the OS of CRC patients.
The calibration plot and concordance index (C−index) were used
to evaluate the performance of the nomogram.

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29623
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External Validation of the Expression and
Genetic Alterations of the Risk Genes
The TIMER database3 and the Human Protein Atlas (HPA)
database4 were utilized to explore and validate gene expression
at the transcriptional and translational level, respectively. The
cBioportal for Cancer Genomics5 was used to identify each
genetic alteration, which included four CRC studies.

Statistical Analyses
Statistical analyses were performed using the R software v3.5.1.
Kaplan–Meier analysis was used to construct survival curves,
and the log-rank test was utilized to assess the significance
of differences. T-test and Wilcoxon signed-rank test were
used to explore quantitative variables. P < 0.05 represents
statistical significance.

RESULTS

Identifying Differentially Expressed RNA
Binding Proteins in Colorectal Cancer
Figure 1A shows detailed designs of the study. We downloaded
transcriptomic files of CRC from the TCGA database
encompassing 568 tumors and 44 normal samples. The
Wilcoxon signed-rank test was applied to identify significantly
differentially expressed RBPs. The R package Limma was used to
identify differentially expressed RBPs according to the following
parameters: | log2FC| > 1 and false discovery rate (FDR) < 0.05.
Among the 1,542 RBPs, we detected 242 differentially expressed
RBPs, including 200 upregulated and 42 downregulated RBPs
between tumor and normal tissues (Figures 1B,C).

Functional Enrichment Analysis of
Differentially Expressed RNA Binding
Proteins in Colorectal Cancer
To investigate the biological significance of RBPs in CRC, we
performed GO and KEGG pathway analyses of 242 differentially
expressed RBPs using the R package clusterProfiler. We displayed
the top 10 significantly enriched GO terms (Figure 2A).
Results revealed that these differentially expressed RBPs were
significantly enriched in biological processes such as non-
coding RNA processing, ribonucleoprotein complex biogenesis,
ribosome biogenesis, and ribosomal RNA metabolism. They
were mainly located in the preribosome, nucleolar part,
small-subunit processome, 90S preribosome, and cytoplasmic
ribonucleoprotein granule. They were found to participate in
various molecular functions, including catalytic activity (acting
on RNA), catalytic activity (acting on a tRNA), ribonuclease
activity, single-stranded RNA binding, and poly(U) RNA
binding. For KEGG pathway analysis, we found that these
differentially expressed RBPs were mainly associated with
ribosome biogenesis in eukaryotes, RNA degradation, RNA

3https://cistrome.shinyapps.io/timer/
4http://www.proteinatlas.org
5http://www.cbioportal.org/

transport, mRNA surveillance pathway, and aminoacyl-tRNA
biosynthesis (Figure 2B).

Identifying Prognostic RNA Binding
Proteins in Colorectal Cancer
To assess the prognostic significance of RBPs in CRC,
we performed a univariate Cox regression analysis of 242
differentially expressed RBPs. We detected eight RBPs (RRS1,
PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1)
that were related to the prognosis of CRC patients (p < 0.05,
Figure 3A). Also, all these eight prognostic RBPs were protective
factors because CRC patients with high expression of these RBPs
had poor prognosis. The expression of eight prognostic RBPs
in tumor and normal tissues of CRC patients are shown in
Figure 3B.

Constructing a Prognostic Risk Score
Model in Colorectal Cancer
We constructed the optimum prognostic risk score model for
prediction of OS of CRC patients by using multivariate Cox
regression analysis. The identified eight prognostic RBPs were
used to construct the prognostic risk score model. Among
the eight prognostic RBPs, we identified UPF3B, SMAD6,
NOL3, and PTRH1 as risk genes in the prognostic risk score
model. Furthermore, coefficients of four risk genes are shown
in Figure 4A. We calculated the risk scores using regression
coefficient and expression levels of the risk genes according to
this equation: risk score = 0.4257 ∗ expression (UPF3B)+ 0.5463
∗ expression (SMAD6) + 0.562 ∗ expression (NOL3) + 2.368 ∗
expression (PTRH1). Then, all CRC patients were divided into
either high-risk or low-risk groups according to the risk scores.
We demonstrated that patients in the high-risk group had a
shorter OS time compared with those in the low-risk group
(Figure 4B). We measured the prognostic ability of the risk score
model through the use of an ROC analysis, which was conducted
using the R package survivalROC. Also, our results indicated that
the area under the ROC curve for 3- and 5-year OS was 0.645 and
0.672, respectively (Figure 4C). Heat map of mRNA expression
indicated that all four were upregulated in the high-risk group
(Figure 4D). Distribution of risk scores and survival status of
patients are shown in Figures 4E,F. In addition, we found a
higher percentage of deaths in the high-risk group.

We next assessed whether the four RBP-related gene models
can predict the survival prognosis of CRC patients among
additional CRC cohorts. We calculated the risk scores using the
same formula that was used in the GSE29623 cohort. The results
demonstrated that patients in the high-risk group had shorter OS
time compared with those in the low-risk group (Supplementary
Figures 1A–D), which is consistent with the TCGA CRC cohort.
The results demonstrated that the four RBP-related gene models
can accurately predict the prognosis of CRC patients.

Additionally, we explored the relationship between risk scores
and clinical features of CRC patients. These results implied
that risk scores were significantly higher in CRC patients that
have deeper tumor infiltration (Figure 4G), distant metastasis
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FIGURE 1 | Identification of differentially expressed RNA binding proteins (RBPs) in colorectal cancer (CRC). (A) Flowchart of our methods. (B) Volcano plots of
differentially expressed RBPs in CRC. (C) Heatmap plots of differentially expressed RBPs in CRC.

(Figure 4H), and lymph node metastasis (Figure 4I) and are at
a late clinical stage (Figure 4J).

Building a Nomogram Based on the
Prognostic Risk Score Model
Univariate and multivariate Cox regression analyses
demonstrated that age, clinical stage, and the risk scores
obtained from the prognostic risk score model were independent
prognostic factors of CRC patients (Figures 5A,B). Therefore,
based on these three independent prognostic factors, we
constructed a nomogram that would be able to predict 3-
and 5-year OS of CRC patients using the R package rms
(Figure 6A). The calibration plots showed that the probability
of predicting 3- or 5-year OS through nomogram agreed
with actual observation (Figures 6B,C). Furthermore, the
C-index for predicting OS through nomogram was 0.75 (95%
CI: 0.69–0.81).

Validating Clinical Value of the Four Risk
Genes in the Prognostic Risk Score
Model
To further explore the clinical value of these four risk
genes, we analyzed the relationship between expression of
these genes and clinical features of the CRC patients. The
survival curves showed that high expression of NOL3, PTRH1,
SMAD6, and UPF3B is associated with poor prognosis of
CRC patients (Figures 7A–D). We also found that NOL3
was significantly overexpressed in patients with lymph node
metastasis (Figure 7E), distant metastasis (Figure 7F), and
at a late clinical stage (Figure 7G). PTRH1 was found to
be significantly overexpressed in patients with deeper tumor
infiltration (Figure 7H). UPF3B was significantly upregulated in
patients with deeper tumor infiltration (Figure 7I), as well as late
clinical stage (Figure 7J). However, SMAD6 was downregulated
in patients with deeper tumor infiltration (Figure 7K).
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FIGURE 2 | Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed RBPs in CRC.
(A) GO terms of differentially expressed RBPs. (B) KEGG pathways of differentially expressed RBPs.

FIGURE 3 | Univariate Cox regression analysis to identify prognostic RBPs in CRC. (A) Forrest plot of univariate Cox regression analyses in CRC. (B) mRNA
expression of eight prognostic RBPs in CRC.

External Validation of the Four Risk
Genes
Consistent with results from the TCGA database, each of the four
risk genes was found to be significantly upregulated in both colon
and rectal cancer, according to the TIMER database (Figure 8).

Interestingly, we identified that the expression of these four genes
is not the same across different cancers. For instance, UPF3B is
upregulated in esophageal carcinoma, stomach adenocarcinoma,
hepatocellular carcinoma, and breast invasive carcinoma,
whereas UPF3B was downregulated in kidney chromophobe,
prostate adenocarcinoma, and thyroid carcinoma. Additionally,
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FIGURE 4 | Four RBP-related gene model to predict overall survival (OS) of CRC patients. (A) Coefficient of four risk genes identified by multivariate Cox regression
analysis. (B) OS curve for high-risk and low-risk groups in the prognostic risk score model. (C) Time-dependent receiver operating characteristic (ROC) analysis of
the prognostic risk score model.(D–F) Heat map of mRNA expression (D), distribution of risk score (E), and survival status (F) of patients in high-risk and low-risk
groups. (G–J) Relationships between risk score and T (G), N (H), M (I), and clinical stage (J). (T, primary tumor; N, lymph node metastasis; M, distant metastasis).

FIGURE 5 | Univariate and multivariate Cox regression analyses in CRC. (A) Forrest plot of the univariate Cox regression analyses in CRC. (B) Forrest plot of the
multivariate Cox regression analyses in CRC.
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FIGURE 6 | Building a nomogram predicting OS of CRC patients. (A) CRC survival nomogram.The calibration plot for predicting patient survival at (B) 3 and
(C) 5 years.

the expression of UPF3B was not found to be significantly
different in pancreatic adenocarcinoma, kidney renal clear cell
carcinoma, and kidney renal papillary cell carcinoma.

To further validate the expression of the four risk genes at the
translational level, we analyzed the protein expression of these
genes in the HPA database. The results indicated that NOL3
and UPF3B were overexpressed in CRC tumor tissues compared
with normal tissues (Figure 9A). PTRH1 expression was not
significantly different between the CRC tumor tissues and normal
tissues (Figure 9A). However, information of SMAD6 levels were
not found on the website. In addition, genetic alterations of the
four risk genes were found to rarely occur (Figure 9B).

Validation of the Clinical Significance of
NOL3 and UPF3B in Colorectal Cancer
Patients by Immunohistochemistry
We obtained 44 pairs of CRC samples from Peking University
People’s Hospital to validate protein expression of the two key

RBPs (NOL3 and UPF3B) in CRC. Immunohistochemical
staining results displayed that NOL3 and UPF3B were
upregulated in CRC tumor tissues (Figures 10A–C). In
addition, our results showed that overexpression of NOL3
and UPF3B was associated with poor prognosis of CRC
patients (Figures 10D,E). These results indicated that NOL3
and UPF3B play vital roles in predicting the prognosis
of CRC patients.

DISCUSSION

Recently, numerous studies have focused on certain
characteristics, such as autophagy and metabolic reprogramming,
to identify gene signatures that are able to predict the mortality
risk of cancer (Wan et al., 2019; Lin et al., 2020; Liu et al.,
2020). In this study, we identified four RBP-related genes
that were able to predict the OS of CRC patients. First, we
detected 242 differentially expressed RBPs from a total of
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FIGURE 7 | Relationship between the four risk genes expression and clinical features of CRC patients in The Cancer Genome Atlas (TCGA). (A–D) Survival curves of
NOL3 (A), PTRH1 (B), UPF3B (C), and SMAD6 (D). (E–G) Relationships between NOL3 expression and N (E), M (F), and clinical stage (G). (H) Relationships
between PTRH1 expression and T. (I,J) Relationships between UPF3B expression and T (I) and clinical stage (J). (K) Relationships between SMAD6 expression and
T. (T, primary tumor; N, lymph node metastasis; M, distant metastasis).

1,542 RBPs. Then, we performed univariate and multivariable
Cox regression analyses and selected four prognosis-related
RBPs to construct a prognostic risk score model. Also, results
showed that the prognostic risk score model accurately
predicted prognosis of CRC patients. Furthermore, we
built a nomogram based on independent prognostic factors
(including the risk score obtained from the prognostic risk
score model, age, and clinical stage). Also, the nomogram
performed well in predicting the 3- and 5-year OS. We
also validated the clinical value of the four risk genes and
found that they were associated with tumorigenesis, lymph
node metastasis, distant metastasis, clinical stage, and OS.
Finally, we confirmed the vital roles of NOL3 and UPF3B
in predicting prognosis of CRC patients using IHC in a
clinical cohort.

Based on four prognosis-related RBPs, we constructed a
prognostic risk score model to predict OS of CRC patients.
Some of these genes were found to be related to tumorigenesis
and progression of CRC and other malignancies. NOL3 was
strongly upregulated across multiple cancers. In particular,
NOL3 was found to be highly expressed in AML and was
associated with poor prognosis of AML patients (Carter et al.,
2011, 2019; Mak et al., 2014a,b). Overexpression of NOL3 was

also related to poor prognosis of nasopharyngeal carcinoma
patients (Wu et al., 2013). Studies also found that NOL3
promoted tumorigenesis, metastasis, and chemoresistance in
breast cancer, all of which contributed to worse patient
prognosis (Medina-Ramirez et al., 2011). NOL3 was a direct
target of miR-185 in gastric cancer (Li et al., 2014). Recent
discoveries have also identified that upregulation of NOL3 was
associated with worse prognosis among CRC patients (Mercier
et al., 2008; Tóth et al., 2016), which is consistent with our
results. Finally, NOL3 might be modulated by known cancer
signaling proteins including Ras (Wu et al., 2010) and HIF-
1 (Ao et al., 2012), and the lncRNA PCAT6 (Huang et al.,
2019), in CRC.

SMAD6, a member of the SMAD family, negatively modulates
the transforming growth factor-β signaling pathway (Jung
et al., 2013). SMAD6 is predictive of patient survival in
oral squamous cell carcinoma (Mangone et al., 2010).
SMAD6 was found to be overexpressed in glioma, and its
overexpression is associated with poor patient survival (Jiao
et al., 2018). SMAD6 correlated with poor patient survival
among non-small cell lung cancer, and its knockdown
inhibited cell proliferation and increased apoptosis in the
lung cancer cell line (Jeon et al., 2008). Our study indicated
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FIGURE 8 | Expression of the four risk genes in multiple cancers. Expression of (A) NOL3, (B) PTRH1, (C) UPF3B, and (D) SMAD6 in TIMER. *p < 0.05, **p < 0.01,
***p < 0.001.
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FIGURE 9 | Protein expression and genetic alterations of the four risk genes. (A) Representative protein level of the four risk genes in CRC tumor and normal tissues
in the Human Protein Atlas database. Data of SMAD6 are not available in this database. (B) Genetic alterations of the four risk genes in CRC in the cBioportal for
Cancer Genomics.

that overexpression of SMAD6 is related to worse patient
prognosis in CRC.

Our study identified that upregulated PTRH1 and UPF3B
correlated with worse prognosis of CRC patients. However,
we only found a few studies about these two genes in
CRC and other cancers. UPF3B, a member of the UP-
frameshift proteins, mediates nonsense-mediated mRNA
decay (Raimondeau et al., 2018). UP-frameshift proteins include

UPF1, UPF2, UPF3A, and UPF3B (Raimondeau et al., 2018).
Although UPF3B is less well-studied, we found several studies
about additional UP-frameshift proteins in cancers. UPF1
regulates tumor progression via diverse mechanisms across
different kinds of cancers, including CRC (Bordonaro and
Lazarova, 2019), hepatocellular carcinoma (Chang et al., 2016;
Zhang et al., 2017), pancreatic adenosquamous carcinoma
(Liu et al., 2014), glioblastoma (Shao et al., 2019), and
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FIGURE 10 | Clinical significance of NOL3 and UPF3B in CRC patients by immunohistochemistry (IHC). (A) IHC staining for NOL3 and UPF3B in tumor and normal
tissues of CRC patients. (B,C) Statistical analysis of NOL3 and UPF3B in tumor and normal tissues of CRC patients, respectively. (D,E) Survival curves of NOL3 and
UPF3B. *p < 0.05, **p < 0.01.

endometrial carcinoma (Xing et al., 2020). UPF3A partially
contributes to the effect of calcium homeostasis endoplasmic
reticulum protein (CHERP) in promoting tumorigenesis
in CRC (Wang Q. et al., 2019). UPF3B and other UP-
frameshift proteins can be interacted (Raimondeau et al.,
2018). These data, combined with results from our study,
suggest that UPF3B regulates tumor progression of CRC
and may represent a potential prognostic biomarker for
CRC patients. However, the mechanism of its effect in CRC
requires further study.

Although our study indicates that RBPs prominently
contribute to the prognosis of CRC patients, several limitations
need to be pointed out. First, the clinical cohort contains

fewer patients, which may lead to deviation. Additionally, the
mechanisms of how these RBPs regulate the progression of CRC
require further exploration.

CONCLUSION

In conclusion, we performed a comprehensive bioinformatics
analysis of RBPs and identified several potential prognostic RBPs
in CRC. The prognostic risk score model, including four RBPs,
is an independent prognostic factor for CRC. These four
RBPs are involved in tumorigenesis, progression, and prognosis
of CRC. RBPs represent an alternative strategy to interfere
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with tumor progression and predict the prognosis of CRC
patients in the future.
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RNA binding proteins (RBPs) play a key role in post-transcriptional gene regulation. They
have been shown to be dysfunctional in a variety of cancers and are closely related to
the occurrence and progression of cancers. However, the biological function and clinical
significance of RBPs in clear cell renal carcinoma (ccRCC) are unclear. In our current
study, we downloaded the transcriptome data of ccRCC patients from The Cancer
Genome Atlas (TCGA) database and identified differential expression of RBPs between
tumor tissue and normal kidney tissue. Then the biological function and clinical value of
these RBPs were explored by using a variety of bioinformatics techniques. We identified
a total of 40 differentially expressed RBPs, including 10 down-regulated RBPs and 30
up-regulated RBPs. Eight RBPs (APOBEC3G, AUH, DAZL, EIF4A1, IGF2BP3, NR0B1,
RPL36A, and TRMT1) and nine RBPs (APOBEC3G, AUH, DDX47, IGF2BP3, MOV10L1,
NANOS1, PIH1D3, TDRD9, and TRMT1) were identified as prognostic related to overall
survival (OS) and disease-free survival (DFS), respectively, and prognostic models for
OS and DFS were constructed based on these RBPs. Further analysis showed that
OS and DFS were worse in high-risk group than in the low-risk group. The area under
the receiver operator characteristic curve of the model for OS was 0.702 at 3 years
and 0.726 at 5 years in TCGA cohort and 0.783 at 3 years and 0.795 at 5 years in
E-MTAB-1980 cohort, showing good predictive performance. Both models have been
shown to independently predict the prognosis of ccRCC patients. We also established
a nomogram based on these prognostic RBPs for OS and performed internal validation
in the TCGA cohort, showing an accurate prediction of ccRCC prognosis. Stratified
analysis showed a significant correlation between the prognostic model for OS and
ccRCC progression.

Keywords: clear cell renal cell carcinoma, RNA binding proteins, prognostic model, survival analysis,
bioinformatics

Abbreviations: RCC, renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; RBPs,
RNA binding proteins; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold change; OS,
overall survival; DFS, disease-free survival; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating
characteristic; AUC, area under the receiver operating characteristic curve; FDR, false discovery rate.
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INTRODUCTION

Renal cell carcinoma (RCC) accounts for 2.4% of all
malignancies, with an estimated 400,000 new cases and 175,000
deaths worldwide each year (Bray et al., 2018; Siegel et al., 2018).
the clear cell renal cell carcinoma (ccRCC) is the most common
subtype of RCC, accounting for approximately 70–80% and
presents a high risk of heterogeneity and metastasis (Rini et al.,
2009; Ljungberg et al., 2019). Although surgical resection can
effectively resolve the early stage of ccRCC, 30% of patients still
have recurrence or metastasis after surgery, and the late stage of
ccRCC has a high mortality rate due to insensitivity to traditional
radiotherapy or chemotherapy (Battaglia and Lucarelli, 2015;
Moch et al., 2016; Tamma et al., 2019). Therefore, further
understanding of the molecular mechanisms of ccRCC and the
discovery of more effective molecular biomarkers are essential for
early screening, diagnosis, monitoring for metastasis, recurrence,
and quality of life in patients.

Post-transcriptional regulation of RNA is an important aspect
of gene expression regulation. RNA binding proteins (RBPs)
are a class of proteins widely expressed in cells, which form
ribonucleoprotein (RNP) complexes through binding at different
sites or random interaction with target RNA, thus strictly
regulating RNA metabolism (Iadevaia and Gerber, 2015; Hentze
et al., 2018). Currently, there are 1,542 RBP coding genes,
accounting for 7.5% of all human protein-coding genes, which
have been verified by experiments (Gerstberger et al., 2014).
These RBPs regulate a variety of biological processes including
RNA processing, splicing, mRNA stability, output, localization,
and translation, thus maintaining the physiological balance of
the cell (Masuda and Kuwano, 2019). Given this, it comes as no
surprise that RBPs dysfunction has been linked to a variety of
human diseases. Ribosomal diseases caused by ribosomal protein
and rRNA biogenic factor defects, such as Diamond–Blackfan
anemia and Shwachman–Diamond syndrome, affect the same
tissues and exhibit similar pathology precisely because RBPs bind
to the same type of RNA (Narla and Ebert, 2010). Mutations in
mRBPs or their targets in neurons lead to abnormal aggregation
of proteins or RNA, resulting in a variety of neurodegenerative
and neuromuscular diseases (Scheper et al., 2007). However, the
role of RBPs in tumor genesis and development is rare.

Some studies have shown that RBPs are abnormally expressed
in tumor tissues compared with normal tissues and are associated
with patient prognosis (Patry et al., 2003; Busà et al., 2007;
Ortiz-Zapater et al., 2011). In lung cancer, QKI inhibits tumor
cell proliferation by competing with the splicing factor SF1
(Zong et al., 2014). In melanoma, CPEB4 promotes tumor cell
proliferation by regulating polyadenylation and promoting the
translation of melanoma drivers (Pérez-Guijarro et al., 2016).
Knockdown SAM68 in breast cancer cells inhibited tumor cell
proliferation by upregulation of cell cycle inhibitors P21 and
CDKN1B/P27 (Song et al., 2010). However, in the field of ccRCC,
existing studies only described the effect of RBPs on the overall
survival (OS) of ccRCC patients (Hua et al., 2020; Zhu et al.,
2020), and few RBPs models can be used to predict the prognosis
of ccRCC patients. The development of new RBPs models has
gradually become an effective method to explore new therapeutic

targets. Therefore, in our current study, we systematically and
deeply analyzed the molecular biological function and clinical
significance of RBPs in ccRCC to promote our understanding of
ccRCC progress, and established risk score models for OS and
disease-free survival (DFS), which may provide new biomarkers
for disease diagnosis and treatment prognosis.

MATERIALS AND METHODS

Preprocessing Data and Identifying
Differential Expression RBPs
Transcriptome data of 72 normal renal tissue specimens and 539
ccRCC specimens were downloaded from The Cancer Genome
Atlas database (TCGA1). We then used the edgeR package2 to
preprocess the raw data and identify the differentially expressed
RBPs based on | log2 fold change (FC)| > 1.0 and false
discovery rate (FDR) < 0.05. We also downloaded the E-MTAB-
1980 dataset from the ArrayExpress database3 and downloaded
the transcriptome data of 436 ccRCC patients containing DFS
information from the cBioportal database4.

Function and Pathway Enrichment
Analysis
We used the WEB-based Gene Set Analysis Toolkit
(WebGestalt5) online analysis tool to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of these differentially expressed RBPs
(Liao et al., 2019). The GO terms including biological process,
cellular component, and molecular function. All analysis
results were screened according to the criteria of P < 0.05 and
gene number > 5.

Selection of Prognostic Related RBPs
To identify RBPs with important prognostic significance, we
first performed univariate Cox regression analysis of all these
differentially expressed RBPs. The least absolute shrinkage and
selection operator (LASSO) regression analysis was then used for
further screening. Finally, multivariate Cox regression analysis
was used to further screen out RBPs with important prognostic
value. A P < 0.05 was considered significant.

Construction and Evaluation of
Prognostic Model for OS
We constructed a multivariate Cox proportional hazards
regression model to predict the prognosis of ccRCC patients
based on these prognostic related RBPs. The risk score for each
patient in the model was calculated using the following formula:

Risk score =
n∑

i=1

Expiβi,

1https://portal.gdc.cancer.gov/
2http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
3https://www.ebi.ac.uk/arrayexpress/
4https://www.cbioportal.org/datasets
5http://www.webgestalt.org/
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FIGURE 1 | The research diagram for analyzing RBPs in ccRCC.

In this formula, Exp represents the expression value of each
gene, and β represents the corresponding regression coefficient.
We then divided ccRCC patients from the TCGA cohort into
low-risk and high-risk subgroups based on the median risk
score, and compared OS between the two groups to initially
assess the predictive power of the model. In addition, we
used the Survival ROC R package to establish the ROC curve
to assess the prognostic efficacy of the model and used the
rms R package to draw the nomogram to predict OS. Finally,
we divided the 539 samples in the TCGA cohort into the
training group and the validation group as internal validation
and the E-MTAB-1980 cohort with 101 sample information as
external validation to evaluate the stability and predictive efficacy
of the model.

Correlation Between Prognostic Model
for OS, Prognostic RBPs and Clinical
Parameters
To explore the clinical significance of the prognostic model in
different clinical parameters, we stratified the patients according
to the different clinical parameters and performed survival
analysis. We also explored the relationship between these eight
prognostic RBPs and clinical parameters. A P < 0.05 was
considered significant.

Gene Set Enrichment Analysis
We divided the patients into low-risk and high-risk groups
based on the median risk score of the prognostic model, and
then performed gene set enrichment analysis (GSEA) by using
GSEA_4.0.3 software6. A P < 0.05 and FDR < 0.25 were
considered to be significant differences.

Express Level and Prognostic
Significance Verification of Prognostic
Related RBPs
We used The Human Protein Atlas (HPA7) online database to
verify the protein expression levels of these prognostic related
RBPs. And the Kaplan–Meier plotter8 online tool was used to
assess the prognostic significance of these prognostic related
RBPs in ccRCC patients.

Construction and Evaluation of
Prognostic Model for DFS
Since DFS is also important for the prognosis of tumor patients,
we constructed a prognostic model for DFS. We downloaded

6https://www.gsea-msigdb.org/gsea/downloads.jsp
7https://www.proteinatlas.org/
8https://kmplot.com/analysis/
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FIGURE 2 | The expression and distribution of differentially expressed RBPs in ccRCC. (A) Heatmap of the 40 differentially expressed RBPs; (B) Volcano plot of 455
RBPs (C) visualization of the expression levels of the 40 differentially expressed RBPs.

transcriptomic data from the cBioportal database for 436 ccRCC
patients with DFS information. Then the prognostic RBPs were
screened by Cox regression analysis and LASSO regression
analysis and a prognostic model for DFS was constructed.

Statistical Analysis
R software (Version 4.0.0) was used for statistical analysis. The
differentially expressed genes in tumor tissues and normal tissues
were analyzed by “edgeR” package. Cox regression analysis was
used to screen for genes associated with prognosis. The OS and
DFS of patients were analyzed by Kaplan–Meier method and log-
rank test. The “survival ROC” package was used to analyze the
ROC curve. The “rms” package was used to draw the nomogram.
The Student’s t-test or non-parametric Mann–Whitney rank sum

test was used to compare the correlation between risk score,
prognostic genes, and clinicopathological variables. P < 0.05 was
considered statistically significant.

RESULTS

Screening Differentially Expressed RBPs
in ccRCC
The analysis process of this study was shown in Figure 1.
Transcriptome data of ccRCC patients were downloaded from
the TCGA database, including 72 normal renal tissue samples
and 539 tumor tissue samples (Supplementary Table S1). The
edger R package was used to process the data and identify the
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differentially expressed RBPs. Of the 1542 RBPs (Gerstberger
et al., 2014), 40 met our criteria (| log2 FC| > 1.0, FDR < 0.05),
including 10 down-regulated RBPs and 30 up-regulated RBPs.
Figure 2 showed the expression and distribution of these
differentially expressed RBPs.

Function and Pathway Enrichment
Analysis of These Differentially
Expressed RBPs
We performed GO and KEGG enrichment analyses for these
differentially expressed RBPs using the WebGestalt online
analysis tool to investigate the biological functions and molecular
mechanisms of these genes. The analysis results were shown
in Table 1. The biological processes analysis showed that these
RBPs were significantly enriched in RNA catabolic process,
posttranscriptional regulation of gene expression, translational
initiation, regulation of cellular amide metabolic process,
protein localization to endoplasmic reticulum, meiotic cell

TABLE 1 | KEGG pathway and GO enrichment analysis of differentially expressed
RNA binding proteins.

GO term P-value

Biological
processes

RNA catabolic process 2.81e-12
Posttranscriptional regulation of gene expression 2.34e-10

Translational initiation 3.72e-8

Regulation of cellular amide metabolic process 5.31e-8

Protein localization to endoplasmic reticulum 0.000002

Meiotic cell cycle 0.000004

Gene silencing 0.000016

Cellular process involved in reproduction in
multicellular organism

0.000034

Transposition 0.000057

Regulation of mRNA metabolic process 0.000073

Cellular
component

Polysome 3.38e-10
Ribosome 4.88e-8

Ribonucleoprotein granule 6.13e-7

Cytosolic part 0.000001

Rough endoplasmic reticulum 0.019853

Molecular
function

mRNA binding 4.25e-10
Catalytic activity, acting on RNA 2.15e-8

Structural constituent of ribosome 1.84e-7

Helicase activity 0.000052

Nuclease activity 0.000228

Translation regulator activity 0.000561

snRNA binding 0.005137

Double-stranded RNA binding 0.018541

ATPase activity 0.031468

Nucleotidyltransferase activity 0.049070

KEGG
pathway

Ribosome 1.03e-8
RNA transport 0.000494

Influenza A 0.000553

mRNA surveillance pathway 0.001136

Herpes simplex infection 0.008472

Ribosome biogenesis in eukaryotes 0.014958

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

cycle, gene silencing, cellular process involved in reproduction
in multicellular organism, transposition, and regulation of
mRNA metabolic process. The cellular component showed
that these RBPs were significantly enriched in polysome,
ribosome, ribonucleoprotein granule, cytosolic part, and rough
endoplasmic reticulum. In terms of molecular function, these
RBPs were significantly enriched in mRNA binding, catalytic
activity, acting on RNA, structural constituent of ribosome,
helicase activity, nuclease activity, translation regulator activity,
snRNA binding, double-stranded RNA binding, ATPase activity,
and nucleotidyltransferase activity. Moreover, KEGG analysis
showed that these RBPs were mainly enriched in ribosome,
RNA transport, influenza A, mRNA surveillance pathway, herpes
simplex infection, and ribosome biogenesis in eukaryotes.

Prognostic Related RBPs Selection
We performed a univariate Cox regression analysis on all these
differentially expressed RBPs and obtained 25 prognostic related
RBPs (Figure 3). We further performed LASSO regression
analysis on these 25 genes to screen the RBPs with prognostic
significance, and obtained 9 RBPs including APOBEC3G, AUH,
DAZL, DDX47, EIF4A1, IGF2BP3, NR0B1, RPL36A, and TRMT1
(Supplementary Figure S2). And multivariate Cox regression
analysis showed that 8 of the 9 RBPs, namely, APOBEC3G,
AUH, DAZL, EIF4A1, IGF2BP3, NR0B1, RPL36A, and TRMT1
independently predicted prognosis of ccRCC patients.

Prognostic Related Risk Score Model for
OS Construction and Evaluation
We used these eight genes screened from multivariate Cox
regression analysis to establish a prognostic model for OS
(Table 2). Each ccRCC patient’s risk score was calculated
according to the following formula:

Risk score = (0.0951 × Exp APOBEC3G) + (−0.1621 ×
Exp AUH) + (0.0945 × Exp DAZL) + (0.1571 × Exp
EIF4A1) + (0.1190 × Exp IGF2BP3) + (0.0998 × Exp
NR0B1) + (0.1722 × Exp RPL36A) + (0.2380 × Exp TRMT1)
Based on the median risk score, 539 ccRCC patients in the TCGA

cohort were divided into low-risk and high-risk subgroups for
survival analysis to assess the predictive power of the model.
Survival analysis showed that patients in the high-risk group
had lower OS than those in the low-risk group (P = 9.556e-
13, Figure 4A). We then performed the time-dependent receiver
operating characteristic (ROC) analysis to further evaluate the
predictive performance of the eight RBPs signature, and the area
under the ROC curve (AUC) of the model was 0.729 at 1 year,
0.702 at 3 years, and 0.726 at 5 years (Figure 4B). Figure 4C
showed the survival status of each patient in the TCGA cohort
assessed by risk score. Subsequently, to evaluate the applicability
and stability of the prognostic model for OS, these 539 ccRCC
patients in the TCGA cohort were randomly divided into a
training data set and a validation data set. We then used the same
formula to calculate the risk score of each patient to assess the
predictive performance of the model. The results showed that
patients in the high-risk group in the training data set had worse
OS than those in the low-risk group (P = 1.908e-05, Figure 5A).
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FIGURE 3 | Univariate Cox regression analysis of differentially expressed RBPs.

We found that the AUC was 0.750 at 1 year, 0.697 at 3 years,
and 0.759 at 5 years (Figure 5B). And patients in the validation
data set had similar results (Figures 5C,D). In addition, to
assess whether the model has similar predictive power in other
ccRCC patient cohorts, the same risk score formula was used
for the E-MTAB-1980 dataset. Survival analysis also showed that
patients in the high-risk group had lower OS than those in the
low-risk group (P = 0.00033, Figure 6A), and the AUC of the
model was 0.788 at 1 year, 0.783 at 3 years, and 0.795 at 5 years
(Figure 6B). And Figure 6C showed the survival status of each
patient in the E-MTAB-1980 cohort assessed by risk score. These
results showed that the signature of these eight RBPs has good
predictive performance and stability.

Next, we used the risk score in the prognostic model
as the label to explore the functional differences between
the two subgroups by conducting GSEA. The results showed
that ribosome was mainly enriched in the high-risk group
(Figure 7A), indicating that the regulation of RBPs was mainly
involved in high-risk ccRCC patients. In addition, we performed
a univariate Cox regression analysis for different clinical
characteristics of ccRCC patients to evaluate their respective
predictive significance. The results showed that age, tumor grade,
tumor stage, primary tumor location, regional lymph node
invasion, distant metastasis, and risk score were all associated
with the OS of ccRCC patients (Figure 7B). However, multiple

regression analysis showed that only age (P < 0.001), tumor
grade (P = 0.020), tumor stage (P < 0.001), and risk score
(P < 0.001) were independent prognostic factors related to OS of
ccRCC patients (Figure 7C). Moreover, to establish a quantitative
prognostic approach for ccRCC patients, we drew a nomogram
based on the risk score and other clinical variables (Figure 7D).
By drawing a vertical line between each prognosis axis and
the total point axis, we can predict the survival probability
of ccRCC patients at 1, 3, and 5 years. We also constructed
calibration curves to evaluate the predictive performance of

TABLE 2 | Multivariate Cox regression analysis to identify prognosis-related RNA
binding proteins.

Gene Coef Exp(coef) se(coef) z Pr (> | z|)

APOBEC3G 0.0951 1.0998 0.0844 1.1264 0.2600

AUH −0.1621 0.8504 0.1318 −1.2299 0.2187

DAZL 0.0945 1.0991 0.0695 1.3597 0.1739

EIF4A1 0.1571 1.1701 0.0710 2.2138 0.0268

IGF2BP3 0.1190 1.1264 0.0346 3.4376 0.0006

NR0B1 0.0998 1.1050 0.0366 2.7241 0.0064

RPL36A 0.1722 1.1879 0.1493 1.1532 0.2488

TRMT1 0.2380 1.2687 0.1632 1.4583 0.1448

Coef, coefficient.
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FIGURE 4 | Risk score analysis of the eight RBPs prognostic model for OS in the TCGA cohort. (A) Kaplan–Meier OS curve analysis; (B) time dependent ROC curve
analysis; (C) survival status of each patient.

the nomogram, and the results showed that there was high
consistency between the predicted results and the actual results
(Figures 7E–G). And we used the TCGA and E-MTAB-1980
cohorts to verify the accuracy and stability of nomogram to
expand its clinical application and availability. Survival analysis
showed that nomogram could better distinguish ccRCC patients
with low survival rates in TCGA and E-MTAB-1980 cohorts
(P < 0.001 and P = 2.32e-05, Figures 7H,J). Based on the
nomogram, the AUC in the TCGA cohort was 0.867 at 1 year,
0.806 at 3 years and 0.778 at 5 years (Figure 7I), and the AUC
in the E-MTAB-1980 cohort was 0.910 at 1 year, 0.917 at 3 years,
and 0.892 at 5 years (Figure 7K).

Prognostic Value of the Prognostic
Model for OS Stratified by Clinical
Parameters
To explore the clinical significance of the signature based on these
eight RBPs in the ccRCC patients stratified by different clinical

parameters, we stratified ccRCC patients from TCGA database
according to age, gender, grade, stage, T stage, M stage, and N
stage. Kaplan–Meier survival curve analysis showed that the OS
was significantly shorter for the ccRCC patients in the high-risk
group compared to the low-risk group ccRCC patients (Figure 8).
These results indicate that the signature of these eight RBPs can
predict the prognosis of ccRCC patients without considering
clinical parameters.

Relationship Between Prognostic Model
for OS and Clinical Parameters
We analyzed the correlation between the prognostic model
based on these eight RBPs and clinical parameters to explore
whether the prognostic model might influence the progression
of ccRCC. The results showed no significant correlation between
age and prognostic model (Figure 9A). However, the risk
score of females was significantly lower than that of male
(Figure 9B), the risk score of G1-2 was significantly lower
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FIGURE 5 | Risk score analysis of the eight RBPs prognostic model for OS in the training and validation data set. (A) Kaplan–Meier OS curve analysis in the training
data set; (B) time dependent ROC curve analysis in the training data set; (C) Kaplan–Meier OS curve analysis in the validation data set; (D) time dependent ROC
curve analysis in the validation data set.

than that of G3-4 (Figure 9C), the risk score of stage I-II
was significantly lower than that of stage III-IV (Figure 9D),
the risk score of T1-2 was significantly lower than that of T3-
4 (Figure 9E), the risk score of M0 was significantly lower
than that of M1 (Figure 9F) (The N1 in the N stage is
very small and cannot be analyzed). These results showed that
prognostic model for OS was significantly correlated with ccRCC
tumor progression.

Correlation Between Prognostic RBPs
and Clinical Parameters
Based on the above results, we also analyzed the relationship
between prognostic RBPs for OS and clinical parameters to
further investigate the role of prognostic RBPs in ccRCC. The
results showed that AUH, EIF4A1, IGF2BP3, and RPL36A
were significantly correlated with gender; APOBEC3G,
AUH, IGF2BP3, RPL36A, and TRMT1 were significantly
correlated with grade; APOBEC3G, AUH, DAZL, IGF2BP3,
RPL36A, and TRMT1 were significantly correlated with stage;
APOBEC3G, AUH, DAZL, IGF2BP3, NR0B1, RPL36A,
and TRMT1 were significantly correlated with T stage;
APOBEC3G, AUH, IGF2BP3, RPL36A, and TRMT1 were
significantly correlated with M stage. However, there was
no significant correlation between NR0B1 and these clinical
parameters (Table 3).

Express Level and Prognostic
Significance Verification of Prognostic
Related RBPs
To assess the prognostic significance of these prognostic related
RBPs in ccRCC patients, we used the Kaplan–Meier plotter online
tool to confirm the relationship between these genes and OS. The
results showed that all the eight RBPs were related to the OS
in ccRCC patients (Figure 10). Subsequently, we used the HPA
online database to verify the protein expression levels of these
prognostic related RBPs, the results showed that APOBEC3G,
EIF4A1, and TRMT1 were significantly increased in ccRCC
tissue compared with normal renal tissue (Figures 11A,D,G).
And AUH, DAZL, IGF2BP3, and RPL36A were significantly
reduced in ccRCC tissue compared with normal renal tissue
(Figures 11B,C,E,F). However, the protein expression level of
NR0B1 was not available on the HPA online database.

Construction of a Prognostic Model for
DFS
In view of the important influence of DFS on the prognosis of
ccRCC, we also constructed a prognostic model for DFS. The
expression data of 436 ccRCC patients and the corresponding
DFS information were download from the cBioportal database.
We then identified 9 prognostic RBPs including APOBEC3G,
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FIGURE 6 | Risk score analysis of the eight RBPs prognostic model for OS in the E-MTAB-1980 cohort. (A) Kaplan–Meier OS curve analysis; (B) time dependent
ROC curve analysis; (C) survival status of each patient.

AUH, DDX47, IGF2BP3, MOV10L1, NANOS1, PIH1D3, TDRD9,
and TRMT1 by univariate Cox regression analysis, LASSO
regression analysis and multivariate Cox regression analysis. We
then constructed a prognostic model for DFS based on these
nine prognostic RBPs and calculated each patient’s risk score
based on the following formula: Risk score = (0.0852 × Exp
APOBEC3G) + (−0.3683 × Exp AUH) + (0.4195 ×
Exp DDX47) + (0.1445 × Exp IGF2BP3) + (−0.2077 × Exp
MOV10L1) + (0.4206 × Exp NANOS1) + (0.7675 ×
Exp PIH1D3) + (−0.1011 × Exp TDRD9) + (0.2895 × Exp
TRMT1). Based on the median risk score, these 436 ccRCC
patients were divided into high-risk and low-risk groups for
survival analysis to assess the predictive performance of the
prognostic model. The results showed that patients in the
high-risk group had worse DFS than those in the low-risk
group (P = 1.110e-16, Figure 12A). We found that the AUC for
DFS was 0.729 at 1 year, 0.764 at 3 years, and 0.782 at 5 years

(Figure 12D). These results showed that the RBPs associated
prognostic model for DFS has good predictive performance.

In addition, we randomly divided the whole dataset into a
training data set (n = 218) and a validation data set (n = 218)
to assess the applicability and stability of the prognostic model
for DFS. We used the same formula to calculate each patient’s
risk score. Survival analysis showed that patients in the high-
risk group in the training data set had worse DFS than those in
the low-risk group (P = 1.127e-10, Figure 12B). The AUC for
DFS was 0.718 at 1 year, 0.763 at 3 years, and 0.813 at 5 years
(Figure 12E). Patients in the validation data set had similar results
(Figures 12C,F).

Moreover, the prognostic value of the prognostic model for
DFS and different clinical parameters were evaluated by Cox
regression analysis. The results indicated that the tumor grade,
tumor stage, primary tumor location, distant metastasis, and risk
score of ccRCC patients were significantly correlated with DFS
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FIGURE 7 | Construction of a nomogram and assessment the prognostic significance of different clinical characteristics in ccRCC patients. (A) Gene set enrichment
analysis comparing the high-risk and low-risk groups based on the TCGA cohort; (B) univariate Cox regression analysis of correlations between risk score for OS
and clinical parameters; (C) multivariate Cox regression analysis of correlations between risk score for OS and clinical parameters; (D) nomogram for predicting the
1- year, 3-year, and 5-year OS of ccRCC patients; (E–G) calibration curves of the nomogram to predict OS at 1, 3, and 5 years; (H) Kaplan–Meier OS curve analysis
in the TCGA cohort based the nomogram; (I) time dependent ROC curve analysis in the TCGA cohort based the nomogram; (J) Kaplan–Meier OS curve analysis in
the E-MTAB-1980 cohort based the nomogram; (K) Time dependent ROC curve analysis in the E-MTAB-1980 cohort based the nomogram.

(P < 0.001, Figure 12G). However, multiple regression analysis
revealed that tumor grade, tumor stage, and risk score were
independent prognostic factors associated with DFS (P < 0.001,

Figure 12H). These results suggested that the RBPs associated
prognostic model for DFS was also a good predictor of ccRCC
patient outcomes.
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FIGURE 8 | Kaplan–Meier survival curves analysis stratified by different clinical parameters. (A) Age ≤ 65; (B) Age > 65; (C) Female; (D) Male; (E) Grade1-2;
(F) Grade3-4; (G) Stage I-II; (H) Stage III-IV; (I) T stage1-2; (J) T stage3-4; (K) M stage0; (L) M stage1; (M) N stage0; (N) N stage1-X.

FIGURE 9 | Relationship between prognostic model for OS and clinical parameters. (A) Age; (B) Gender; (C) Grade; (D) Stage; (E) T stage; (F) M stage.
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TABLE 3 | The relationship between prognostic related RNA binding proteins and clinicopathologic parameters.

Gene Gender Grade Stage T stage M stage

Female Male G1-2 G3-4 I-II III-IV T1-T2 T3-T4 M0 M1

N 186 353 249 282 331 205 349 190 428 78

APOBEC3G t-value 1.432 5.900 5.688 5.095 4.057

P-value 0.153 <0.001 <0.001 <0.001 <0.001

AUH t-value 2.799 NA* 6.545 5.595 4.589

P-value 0.005 <0.001 <0.001 <0.001 <0.001

DAZL t-value 0.181 NA* NA* NA* 0.817

P-value 0.857 0.256 0.047 0.049 0.415

EIF4A1 t-value 2.652 0.947 1.545 1.783 0.845

P-value 0.008 0.344 0.123 0.075 0.398

IGF2BP3 t-value 2.566 6.141 NA* NA* NA*

P-value 0.011 <0.001 <0.001 <0.001 <0.001

NR0B1 t-value 0.951 0.355 NA* NA* NA*

P-value 0.342 0.723 0.087 0.030 0.569

RPL36A t-value NA* 3.359 4.685 3.871 2.464

P-value <0.001 0.001 <0.001 <0.001 0.014

TRMT1 t-value 0.526 3.356 2.443 2.059 2.225

P-value 0.599 <0.001 0.015 0.040 0.027

NA, not available. *Non-parametric Mann–Whitney rank sum test.

FIGURE 10 | Validation the prognostic value of the prognostic RBPs for OS in ccRCC by Kaplan–Meier plotter. (A) APOBEC3G; (B) AUH; (C) DAZL; (D) EIF4A1;
(E) IGF2BP3; (F) NR0B1; (G) RPL36A; (H) TRMT1.

DISCUSSION

Malignant tumor is a kind of complex heterogeneous diseases,
apart from the classic view that affect cancer or tumor suppressor
gene signal channel change decision, It has also been found to
be associated with post-transcriptional hijacking by tumor cells,
enabling them to rapidly and stably regulate protein expression

levels in response to intracellular and extracellular signaling
changes to adapt to local microenvironments (Pereira et al.,
2017). RBPs are a key player in post-transcriptional events,
participating in almost all post-transcriptional regulation,
controlling intracellular transcript metabolism and function,
and maintaining homeostasis. Multiple studies have reported
that RBPs are dysregulated in cancers and regulate cancers
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FIGURE 11 | The expression status of the prognostic RBPs proteins in ccRCC and normal renal tissues in the HPA database. (A) APOBEC3G; (B) AUH; (C) DAZL;
(D) EIF4A1; (E) IGF2BP3; (F) RPL36A; (G) TRMT1.

progression through a variety of mechanisms, including
transcriptional and posttranscriptional regulation, genomic
change, and posttranslational modification (Patry et al., 2003;
Busà et al., 2007; Ortiz-Zapater et al., 2011; Song et al., 2010; Zong
et al., 2014; Pérez-Guijarro et al., 2016). However, the expression
pattern and role of RBPs in ccRCC are rarely reported. In
this study, we systematically analyzed the transcriptome
data of ccRCC patients from TCGA database, and identified
differential expression RBPs between tumor tissue and normal
kidney tissue. We then performed functional enrichment
analysis to evaluate their biological function, and performed
univariate Cox regression analysis, LASSO regression analysis
and multivariate Cox regression analysis to screen prognostic
related RBPs and constructed a prognostic risk score model
for OS based on these RBPs. In addition, we also built a

prognostic model for DFS to predict ccRCC prognosis based on
prognostic related RBPs.

The biological function and pathway enrichment analysis
of differentially expressed RBPs showed that these genes
were significantly enriched in posttranscriptional regulation of
gene expression, translational initiation, transposition, protein
localization to endoplasmic reticulum, RNA catabolic process,
regulation of cellular amide metabolic process, regulation of
mRNA metabolic process, gene silencing, ribonucleoprotein
granule, mRNA binding, ribosome, polysome, catalytic activity,
acting on RNA, translation regulator activity, nuclease activity,
double-stranded RNA binding, nucleotidyltransferase activity,
RNA transport, and mRNA surveillance pathway, which involved
RNA processing, splicing, localization, RNA metabolism and
subsequent translation regulation. Previous studies have shown
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FIGURE 12 | The RBPs-related prognostic model for DFS. (A) Kaplan–Meier DFS curve analysis in the cBioportal cohort; (B) Kaplan–Meier DFS curve analysis in the
training data set; (C) Kaplan–Meier DFS curve analysis in the validation data set (D) time dependent ROC curve analysis in the cBioportal cohort; (E) time dependent
ROC curve analysis in the training data set; (F) time dependent ROC curve analysis in the validation data set; (G) univariate Cox regression analysis of correlations
between risk score for DFS and clinical parameters; (H) multivariate Cox regression analysis of correlations between risk score for DFS and clinical parameters.

that multiple RBPs regulatory mechanisms have been identified
in cancers, including transcriptional and posttranscriptional
regulation, genomic change, and posttranslational modification
(Patry et al., 2003; Trabucchi et al., 2009; Ishii et al., 2014; Preca
et al., 2015). In lung adenocarcinoma, splice regulator RBM10
inhibits tumor cell proliferation and Notch signaling activity
(Bechara et al., 2013). Cancer transcription factor MYC up-
regulates the mRNA expression of hnRNPA1 and hnRNPA2 in
gliomas, which promotes the synthesis of pyruvate kinase M
subtype 2 (PKM2) and participates in glycolytic transformation
(Clower et al., 2010). IMP1 has been reported to be elevated in
multiple tumors, and reduced IMP1 expression can impair the
normal transmission and local translation of adhesive and motif-
related target mRNAs (Gu et al., 2009). EIF4E is a key factor
in mRNA cycling and translation, and it has been found that
EIF4E is overexpressed in a variety of tumors and is associated
with poor prognosis (Ruggero et al., 2004). These results suggest
that RBPs may influence the occurrence and progression of
tumors by regulating multiple biological processes including
RNA processing, RNA metabolism, RNA transport, translation
regulation and mRNA surveillance pathway.

In addition, we performed univariate Cox regression
analysis, LASSO regression analysis and multivariate Cox
regression analysis on these differentially expressed RBPs,
and 8 prognostic related RBPs including APOBEC3G, AUH,
DAZL, EIF4A1, IGF2BP3, NR0B1, RPL36A, and TRMT1 were
selected. APOBEC3G, a member of the Apolipoprotein B
mRNA editing enzyme-catalyzed polypeptide (APOBEC)
family, was found to be overexpressed in renal carcinoma
tissues and cell lines (Komohara et al., 2007), consistent with
our results. Olson et al. (2018) found that this family is the
source of somatic mutations in tumor cells that drive tumor
evolution and may be associated with tumor cell recurrence,
metastasis, and treatment resistance. AUH was found to be
under-expressed in RCC and significantly associated with poorer
survival in patients (Zhang et al., 2019), which is similar to our
results. The DAZL mutation was found to be associated with
testicular cancer (Ruark et al., 2013). The main function of
EIF4A1 is to release mRNA structure in combination with other
translation factors (Qi et al., 2013). EIF4A1 has been reported
to be associated with malignant phenotypes of tumor cells,
tumor-specific survival, and susceptibility to therapeutic drugs
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(Nagel et al., 2010; Liang et al., 2014). Wei et al. (2019) found
that miR-1284 inhibited the progression of gastric cancer by
targeting EIF4A1. IGF2BP3 has been found to be overexpressed
in a variety of tumors including lung (Wang et al., 2003),
colon (Li et al., 2009), and liver cancers (Jeng et al., 2008).
Accumulating studies have shown that IGF2BP3 is a promising
prognostic factor for a variety of cancers including gastric cancer
and RCC (Kim et al., 2014; Tschirdewahn et al., 2019). NR0B1
is a member of the orphan receptor family and is normally
expressed mainly in the adrenal cortex, ovaries and support
cells (Ikeda et al., 1996). Studies have found that NR0B1 is
abnormally expressed in endometrial cancer, prostate cancer,
lung cancer and other cancers, and plays an important role (Saito
et al., 2005; Seo et al., 2007; Nakamura et al., 2009). Oda et al.
(2009) found that NR0B1 mainly affects tumor cell invasion,
colony formation and tumorigenic activity, and is related to the
malignant potential of lung adenocarcinoma. RPL36A mainly
encodes ribosomal protein L36a. Kim et al. (2004) found that
overexpression of RPL36A in hepatocellular carcinoma was
associated with enhanced cell proliferation, and RPL36A may
be a potential target for anticancer therapy for hepatocellular
carcinoma. Alshabi et al. (2019) also found that high expression
of RPL36A was associated with the tumorigenesis of glioblastoma
multiform. Nagel et al. (2010) found that TRMT1 was involved
in the activation of LYL1 in leukemia cells and thus affected the
differentiation of lymphocytes. GSEA analysis results showed
that the regulation of RBPs was mainly concentrated in patients
in the high-risk group, indicating that RBPs mainly regulates
and affects patients in the high-risk group. However, the exact
molecular mechanisms are unknown, and further exploration
of possible mechanisms may be valuable. Subsequently, we
constructed a prognostic model for OS based on these 8 RBPs
to predict the prognosis of ccRCC patients. Survival analysis
and ROC curve analysis showed that the model has good
predictive performance. We then plotted a nomogram to
establish a quantitative assessment method to predict the survival
probability of ccRCC patients. According to our prognostic
model for OS, patients with poor prognosis can be screened
out, which may be conducive to timely adjustment of treatment
regimens and individualized treatment.

Further analysis showed that the prognostic model for OS
could independently predict the prognosis of ccRCC patients
and was associated with the progression of ccRCC tumors. And
the results of Kaplan-Meier Plotter online tool analysis showed
that all 8 prognostic RBPs were related to OS in ccRCC patients.
Moreover, we constructed an RBPS-related prognostic model for
DFS, showing that this prognostic model can also independently
predict the prognosis of ccRCC patients.

Overall, our study provides new insights into the occurrence
and progress of ccRCC. In addition, the prognostic models
for OS and DFS based on prognostic RBPs have good
predictive performance, which are helpful to improve the
clinical treatment decision and monitor the prognosis of
patients. However, there are limitations in our study. First,
our study is mainly based on a single bioomics information,
and different characteristics of different platforms may lead
to patient heterogeneity. Second, the model construction

and validation of this study were designed by retrospective
analysis, and the model still needs to be validated through
a prospective clinical cohort. Moreover, the lack of clinical
prognostic information in the study analysis may reduce the
reliability of statistics. Finally, the prognostic models for OS
and DFS based on prognostic RBPs showed good predictive
performance. However, the exact molecular mechanisms of these
prognostic RBPs involved in the occurrence, progression, and
prognosis of renal cancer are still unclear, and the possible
molecular mechanism and biological function need to be
further explored.

CONCLUSION

We systematically analyzed the biological function and
prognostic value of RBPs in ccRCC by using a variety of
bioinformatics techniques. These RBPs may be involved in the
pathogenesis, progression and metastasis of tumors. For the first
time, we established prognostic risk score models for OS and DFS
based on prognostic RBPs, and revealed they are independent
prognostic factors related to OS and DFS in ccRCC patients. Our
results are helpful to understand the molecular mechanism of
ccRCC from a new perspective and to develop new prognostic
markers or therapeutic targets.
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