
EDITED BY :  Maurizio Fraziano, Roberto Nisini, Gian Maria Rossolini and 

Marco Rinaldo Oggioni

PUBLISHED IN : Frontiers in Immunology and Frontiers in Microbiology

EXPLOITING NOVEL COMBINED 
HOST- AND PATHOGEN-DIRECTED 
THERAPIES FOR COMBATING 
BACTERIAL MULTIDRUG RESISTANCE

https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/microbiology


Frontiers in Immunology 1 December 2020 | Combating Bacterial Multidrug Resistance

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-307-1 

DOI 10.3389/978-2-88966-307-1

https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org


Frontiers in Immunology 2 December 2020 | Combating Bacterial Multidrug Resistance

EXPLOITING NOVEL COMBINED 
HOST- AND PATHOGEN-DIRECTED 
THERAPIES FOR COMBATING 
BACTERIAL MULTIDRUG RESISTANCE

Topic Editors: 
Maurizio Fraziano, University of Rome Tor Vergata, Italy
Roberto Nisini, National Institute of Health (ISS), Italy
Gian Maria Rossolini, University of Florence, Italy
Marco Rinaldo Oggioni, University of Leicester, United Kingdom

Citation: Fraziano, M., Nisini, R., Rossolini, G. M., Oggioni, M. R., eds. (2020). 
Exploiting Novel Combined Host- and Pathogen-Directed Therapies for 
Combating Bacterial Multidrug Resistance. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88966-307-1

https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/journals/immunology
http://doi.org/10.3389/978-2-88966-307-1


Frontiers in Immunology 3 December 2020 | Combating Bacterial Multidrug Resistance

05 Editorial: Exploiting Novel Combined Host- and Pathogen-Directed 
Therapies for Combating Bacterial Multidrug Resistance

Roberto Nisini, Marco R. Oggioni, Gian Maria Rossolini and Maurizio Fraziano

08 From Petri Dish to Patient: Bioavailability Estimation and Mechanism of 
Action for Antimicrobial and Immunomodulatory Natural Products

Nicholas John Sadgrove and Graham Lloyd Jones

34 Colistin Combined With Tigecycline: A Promising Alternative Strategy to 
Combat Escherichia coli Harboring bla

NDM–5
 and mcr-1

Yu-Feng Zhou, Ping Liu, Chuan-Jian Zhang, Xiao-Ping Liao, Jian Sun and 
Ya-Hong Liu

45 Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy 
Against Mycobacterium tuberculosis

Ivana Palucci, Giuseppe Maulucci, Flavio De Maio, Michela Sali, 
Alessandra Romagnoli, Linda Petrone, Gian Maria Fimia, 
Maurizio Sanguinetti, Delia Goletti, Marco De Spirito, Mauro Piacentini and 
Giovanni Delogu

58 NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular 
Mycobacterium tuberculosis by Induction of Autophagy

Garima Arora, Gagandeep, Assirbad Behura, Tannu Priya Gosain, 
Ravi P. Shaliwal, Saqib Kidwai, Padam Singh, Shamseer Kulangara Kandi, 
Rohan Dhiman, Diwan S. Rawat and Ramandeep Singh

71 Clostridium butyricum Ameliorates Salmonella Enteritis Induced 
Inflammation by Enhancing and Improving Immunity of the Intestinal 
Epithelial Barrier at the Intestinal Mucosal Level

Xiaonan Zhao, Jie Yang, Zijing Ju, Jianmin Wu, Lili Wang, Hai Lin and 
Shuhong Sun

82 Developing Novel Host-Based Therapies Targeting Microbicidal 
Responses in Macrophages and Neutrophils to Combat Bacterial 
Antimicrobial Resistance

Katie Watson, Clark D. Russell, J. Kenneth Baillie, Kev Dhaliwal, 
J. Ross Fitzgerald, Timothy J. Mitchell, A. John Simpson, 
Stephen A. Renshaw and David H. Dockrell on behalf of the SHIELD 
consortium

94 Human Single-chain Variable Fragments Neutralize Pseudomonas 
aeruginosa Quorum Sensing Molecule, 3O-C12-HSL, and Prevent Cells 
From the HSL-mediated Apoptosis

Sirijan Santajit, Watee Seesuay, Kodchakorn Mahasongkram, Nitat Sookrung, 
Pornpan Pumirat, Sumate Ampawong, Onrapak Reamtong, 
Manas Chongsa-Nguan, Wanpen Chaicumpa and Nitaya Indrawattana

111 Synergistic Effect of Berberine Hydrochloride and Fluconazole Against 
Candida albicans Resistant Isolates

Jiangyan Yong, Ruiling Zu, Xiaoxue Huang, Yiman Ge and Yan Li

Table of Contents

https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/journals/immunology


Frontiers in Immunology 4 December 2020 | Combating Bacterial Multidrug Resistance

123 Toxoplasma gondii Dense Granule Proteins 7, 14, and 15 Are Involved in 
Modification and Control of the Immune Response Mediated via NF-kB 
Pathway

Fumiaki Ihara, Ragab M. Fereig, Yuu Himori, Kyohko Kameyama, 
Kosuke Umeda, Sachi Tanaka, Rina Ikeda, Masahiro Yamamoto and 
Yoshifumi Nishikawa

141 Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the 
Antimicrobial Response to Pseudomonas aeruginosa in Impaired 
Macrophages From Cystic Fibrosis Patients and Limit Airway 
Inflammatory Response

Noemi Poerio, Federica De Santis, Alice Rossi, Serena Ranucci, Ida De Fino, 
Ana Henriquez, Marco M. D’Andrea, Fabiana Ciciriello, Vincenzina Lucidi, 
Roberto Nisini, Alessandra Bragonzi and Maurizio Fraziano

154 Etiopathogenesis, Challenges and Remedies Associated With Female 
Genital Tuberculosis: Potential Role of Nuclear Receptors

Shalini Gupta and Pawan Gupta

https://www.frontiersin.org/research-topics/11116/exploiting-novel-combined-host--and-pathogen-directed-therapies-for-combating-bacterial-multidrug-re
https://www.frontiersin.org/journals/immunology


Frontiers in Immunology | www.frontiersin.

Edited and reviewed by:
Ian Marriott,

University of North Carolina at
Charlotte, United States

*Correspondence:
Maurizio Fraziano

fraziano@bio.uniroma2.it

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 12 October 2020
Accepted: 15 October 2020

Published: 04 November 2020

Citation:
Nisini R, Oggioni MR, Rossolini GM

and Fraziano M (2020) Editorial:
Exploiting Novel Combined

Host- and Pathogen-Directed
Therapies for Combating

Bacterial Multidrug Resistance.
Front. Immunol. 11:616486.

doi: 10.3389/fimmu.2020.616486

EDITORIAL
published: 04 November 2020

doi: 10.3389/fimmu.2020.616486
Editorial: Exploiting Novel Combined
Host- and Pathogen-Directed
Therapies for Combating Bacterial
Multidrug Resistance
Roberto Nisini1, Marco R. Oggioni2,3, Gian Maria Rossolini4 and Maurizio Fraziano5*

1 Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy, 2 Department of Genetics and Genome
Biology, University of Leicester, Leicester, United Kingdom, 3 Dipartimento di Farmacia e Biotecnologie, Università di
Bologna, Bologna, Italy, 4 Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy, 5 Department of
Biology, University of Rome Tor Vergata, Rome, Italy

Keywords: multidrug resistance, bacteria, host-directed therapy, pathogen-directed therapy, innate immunity

Editorial on the Research Topic

Exploiting Novel Combined Host- and Pathogen-Directed Therapies for Combating Bacterial
Multidrug Resistance

The golden age of antibiotic therapy started in 1928 with the discovery of penicillin and reached a
peak at the mid-1950s. Thereafter, antibiotic discovery and development of newmolecules gradually
declined with the parallel emergence of drug resistance of many human bacterial pathogens. These
circumstances led to the current therapeutical crisis due to antimicrobial resistance (1). Today, the
frequency and spectrum of antibiotic resistance in specific bacterial pathogens continues to increase
worryingly, with particular concerns on Mycobacterium tuberculosis and on several Gram-positive
(e.g., Streptococcus pneumoniae, Staphylococcus aureus, and enterococci) as well as Gram-negative
bacteria (e.g., Klebsiella pneumoniae, Escherichia coli, Enterobacter spp, Acinetobacter baumannii,
and Pseudomonas aeruginosa). The slow-pace of discovery of novel antimicrobial agents, the dearth
of new antibiotics already in the drug development pipeline, and the emergence and rapid diffusion
of strains resistant to last resort antibiotics, make novel therapeutic approaches an urgent need to
reduce the burden of infectious diseases. It is estimated that deaths due to antibiotic resistant
bacterial pathogens may pass from the actual 700,000 cases to about 10 million per year by 2050, if
adequate countermeasures are not undertaken.

Novel antimicrobials or antimicrobial combinations may help to overcome this global
emergence. Zhou et al. report data showing that the combined use of the antibiotics colistin and
tigecycline may represent a valuable therapeutic option against multi-drug resistant E. coli
harbouring blaNDM-5 and mcr-1 expression. Yong et al. show that berberine hydrochloride, a
commonly used traditional Chinese medicine with known antimicrobial effects, in combination
org November 2020 | Volume 11 | Article 61648615
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with fluconazole, may be an effective therapeutic option for
infections related to FLC-resistant C. albicans. Sadgrove and
Jones highlight the importance of pharmacokinetic and
pharmacodynamic analysis in the field of ethnopharmacology,
before extrapolating enteral and topical therapeutic value of
natural compounds.

However, the evolution of bacteria towards resistance to
antimicrobial agents, including multidrug resistance, is an
unavoidable phenomenon because it reflects an aspect of the
general evolution of bacteria which is unstoppable (2) and, for
many bacterial infections, drug resistant mutants are likely present
by the time antibiotic treatment starts. Nevertheless, such
infections can be successfully cleared and it is commonly
assumed that this is due to the combined action of the drug and
of the immune response, the latter facilitating clearance of the
resistant bacterial population (3). Novel anti-infectious therapeutic
approaches based on the modulation of host response (Host-
directed therapy, HDT) have been proposed to counteract the
emergence of antimicrobial resistance. HDT is defined as a
therapeutic approach based on strategies aimed at improving
innate or adaptive protective response needed for pathogen
control and/or at limiting immunopathology. In this context, the
vaccination may be considered as a prototypical host-directed
approach that counteracts antibiotic resistance and prevents
bacterial diseases (4). HDT may also comprise any drug that can
activate effector mechanisms of the antimicrobial response (ROS
generation, autophagy, phagolysosome maturation, antimicrobial
peptide production) and/or down-modulate tissue-damaging
immune responses (5).

In this special topic, Arora et al. identify a nitroso
containing pyrazolo derivative compound, which was directly
effective against M. tuberculosis, and show a synergistic effect
with isoniazid and an additive effect with other molecules.
Interestingly, this molecule is also capable of inducing
autophagy in host cells and this mechanism is demonstrated as
the major mechanism for killing of intracellular slow- and fast-
growing mycobacteria. Palucci et al. identify host trasglutaminase
2 as a possible gene target for novel host directed therapy and its
inhibition by cystamine or cysteamine promotes intracellular
killing of M. tuberculosis, and acts synergistically with a second-
line anti-TB drug amikacin. Improvement in HDT strategies may
also require studies focusing on the identification of microbial
gene products, which could be targeted by immune responses.
Thus, Santajit et al. generate a fully human single-chain variable
fragment (HuscFvs) binding to N-(3-oxododecanoyl)-L-
homoserine lactone (3O-C12-HSL) of P. aeruginosa, a quorum
sensing signalling molecule that contributes to the pathogenesis of
infection by regulating expression of bacterial virulence factors
causing intense inflammation and toxicity in the infected host. In
this study, HuscFvs is capable of neutralizing 3O-C12 -HSL
activity and preventing host cell apoptosis. Finally, Ihara et al.
demonstrate that dense granule proteins 7, 14 and 15 from type II
Toxoplasma gondii strains induced host immunity via NF-kB
activation and can limit parasite expansion.

The emergence of antimicrobial resistant strains is often caused
by an inefficient immune response, which promotes the persistence
Frontiers in Immunology | www.frontiersin.org 26
of naturally occurring MDR strains within a bacterial population.
Thus, patients with defective immune responses and that are
unresponsive to standard antibiotic treatments are often
characterized by a chronic tissue damaging inflammatory
response. In the present collection, Watson et al. suggest a
focused host-directed therapeutic approach capable of enhancing
pauci-inflammatory microbial killing in myeloid phagocytes, which
maximizes pathogen clearance while minimizing the harmful
consequences of the inflammatory responses. The combined
down-modulation of the pathogenic inflammatory response and
activation of the antimicrobial response has been described by
Poerio et al. The authors show that the treatment with apoptotic
body-like liposomes loaded with phosphatidylinositol 5-phosphate
promotes phagosome maturation, which is naturally subverted in
cells from CF patients, and intracellular bacterial killing of MDR P.
aeruginosa, while simultaneously limiting inflammatory response
both in vitro and in vivo. Immunosuppression is also an important
risk factor for extrapulmonary tuberculosis. Gupta and
Gupta discuss novel therapeutic approaches against female
genital tuberculosis, representing one of the most perilous forms
of extrapulmonary tuberculosis, and suggest that nuclear
receptors could be major new therapeutic targets and/or
diagnostic biomarkers.

An additional interesting approach, targeting local
microbiota, has been described by Zhao et al. who report the
use of Clostridium butyricum, a common human and animal gut
commensal bacterium often used as a probiotic, as a possible
treatment for Salmonella enteriditis infection. Here, C. butyricum
attenuates inflammation and epithelial barrier damage, alters
intestinal microbial composition, and increases the diversity
of bacterial communities in the intestine of Salmonella
infected chickens.

In conclusion, novel and heterogeneous therapeutic
approaches to reduce the global burden of antimicrobial
resistance have been proposed and discussed in this special
issue. Based upon these studies, we suggest that a combination
of both host- and pathogen- directed therapeutic approaches
may represent a valuable and exploitable strategy, over single
therapies, to i) control multidrug resistant infections, ii)
minimize the risk of emergence of drug resistance and iii)
reduce the time of therapy. This would, in turn, help reduce
patient management costs in low- and middle-income countries
where the social and economic impact of MDR burden has
dramatic consequences.
AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.
FUNDING

This work was supported by the Italian Cystic Fibrosis Research
Foundation (FFC#19/2019).
November 2020 | Volume 11 | Article 616486

https://doi.org/10.3389/fmicb.2019.02470
https://doi.org/10.3389/fmicb.2019.02470
https://doi.org/10.3389/fmicb.2019.03051
https://doi.org/10.3389/fimmu.2019.03042
https://doi.org/10.3389/fmicb.2020.01172
https://doi.org/10.3389/fimmu.2020.01709
https://doi.org/10.3389/fimmu.2020.00786
https://doi.org/10.3389/fimmu.2020.532225
https://doi.org/10.3389/fimmu.2020.02161
https://doi.org/10.3389/fimmu.2020.02161
https://doi.org/10.3389/fmicb.2020.00299
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nisini et al. Editorial: Combating Bacterial Multidrug Resistance
REFERENCES
1. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present

and future. Curr Opin Microbiol (2019) 51:72–80. doi: 10.1016/j.mib.2019.
10.008

2. Courvalin P. Why is antibiotic resistance a deadly emerging disease? Clin
Microbiol Infect (2016) 22:405–7. doi: 10.1016/j.cmi.2016.01.012

3. Happel KI , Bagby GJ, Nelson S . Host defense and bacter ia l
pneumonia. Semin Respir Crit Care Med (2004) 25:43–52. doi: 10.1055/s-
2004-822304

4. Tagliabue A, Rappuoli R. Changing Priorities in Vaccinology: Antibiotic
Resistance Moving to the Top. Front Immunol (2018) 9:1068. doi: 10.3389/
fimmu.2018.01068
Frontiers in Immunology | www.frontiersin.org 37
5. Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed
therapies for bacterial and viral infections. Nat Rev Drug Discov (2018) 17:35–
56. doi: 10.1038/nrd.2017.162

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Nisini, Oggioni, Rossolini and Fraziano. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
November 2020 | Volume 11 | Article 616486

https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.cmi.2016.01.012
https://doi.org/10.1055/s-2004-822304
https://doi.org/10.1055/s-2004-822304
https://doi.org/10.3389/fimmu.2018.01068
https://doi.org/10.3389/fimmu.2018.01068
https://doi.org/10.1038/nrd.2017.162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fmicb-10-02470 October 30, 2019 Time: 10:51 # 1

REVIEW
published: 31 October 2019

doi: 10.3389/fmicb.2019.02470

Edited by:
Natalia V. Kirienko,

Rice University, United States

Reviewed by:
Carlos Henrique Gomes Martins,

Federal University of Uberlândia, Brazil
Maurizio Fraziano,

University of Rome Tor Vergata, Italy
Masood Sepehrimanesh,

Gilan University of Medical Sciences,
Iran

*Correspondence:
Nicholas John Sadgrove

n.sadgrove@kew.org

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 15 August 2019
Accepted: 15 October 2019
Published: 31 October 2019

Citation:
Sadgrove NJ and Jones GL

(2019) From Petri Dish to Patient:
Bioavailability Estimation

and Mechanism of Action
for Antimicrobial

and Immunomodulatory Natural
Products. Front. Microbiol. 10:2470.

doi: 10.3389/fmicb.2019.02470

From Petri Dish to Patient:
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The new era of multidrug resistance of pathogens against frontline antibiotics has
compromised the immense therapeutic gains of the ‘golden age,’ stimulating a
resurgence in antimicrobial research focused on antimicrobial and immunomodulatory
components of botanical, fungal or microbial origin. While much valuable information
has been amassed on the potency of crude extracts and, indeed, purified compounds
there are too many reports that uncritically extrapolate observed in vitro activity
to presumed ingestive and/or topical therapeutic value, particularly in the discipline
of ethnopharmacology. Thus, natural product researchers would benefit from a
basic pharmacokinetic and pharmacodynamic understanding. Furthermore, therapeutic
success of complex mixtures or single components derived therefrom is not always
proportionate to their MIC values, since immunomodulation can be the dominant
mechanism of action. Researchers often fail to acknowledge this, particularly when
‘null’ activity is observed. In this review we introduce the most up to date theories of
oral and topical bioavailability including the metabolic processes affecting xenobiotic
biotransformation before and after drugs reach the site of their action in the
body. We briefly examine the common methodologies employed in antimicrobial,
immunomodulatory and pharmacokinetic research. Importantly, we emphasize the
contribution of synergies and/or antagonisms in complex mixtures as they affect
absorptive processes in the body and sometimes potentiate activity. Strictly in the
context of natural product research, it is important to acknowledge the potential for
chemotypic variation within important medicinal plants. Furthermore, polar head space
and rotatable bonds give a priori indications of the likelihood of bioavailability of active
metabolites. Considering this and other relatively simple chemical insights, we hope
to provide the basis for a more rigorous scientific assessment, enabling researchers
to predict the likelihood that observed in vitro anti-infective activity will translate to
in vivo outcomes in a therapeutic context. We give worked examples of tentative
pharmacokinetic assessment of some well-known medicinal plants.
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INTRODUCTION

The pharmacotherapeutic value of antimicrobial and
immunomodulatory (anti-infective) drugs critically depends on
the orchestration of properties influencing pharmacokinetics
and pharmacodynamics. In the former, the discipline of
pharmacokinetics was born out of the need to monitor and
maintain optimal physiological concentration of a drug to
achieve a positive therapeutic outcome. Optimal concentration
is above an ‘active’ threshold but below contraindicated (and
possibly toxic) levels. In clinical practice, to achieve optimal
concentration, factors under consideration include efficiency
of absorption, drug half-life and hence, dose and intervals
of drug administration. In a broader sense, characteristics
influencing pharmacokinetic fate of a specific drug critically
depend on its chemical functional groups, which are the
basis for a priori insight into the possibility of absorption or
transdermal penetration.

However, pharmacodynamics is a more preliminary step in
that the mechanism of the drug is fully or tentatively explained
and the therapeutic and/or toxicity thresholds are established.
One of the bigger challenges in pharmacodynamics is the
translation to the pharmacokinetic context, from in vitro models
to in vivo environments where several physiological processes
may compromise the presumed positive therapeutic outcomes.
The most important of these challenges include absorption
and biotransformation of ingested therapies occurring in
the liver and by the gut microbiota. Such challenges are
commonly neglected in ethnopharmacological or natural product
research, particularly those involving crude extracts as commonly
administered in herbal medicine.

After the turn of the century most of the research concerning
anti-infectives has focused on natural plant, marine or endophyte
extracts. Since this research usually starts with a bioactivity
guided fractionation of a crude extract, structural elucidation
studies commence at a relatively late stage. Ideally, the
preliminary steps taken before measuring biological activity
should involve tentative interpretation in the context of
pharmacokinetics by closer examination of polar functional
groups known to influence absorption and the number of
rotatable bonds. This is critical when therapies are ingested
and expected to act non-locally (not in the digestive tract)
and therefore require sufficiently high systemic concentration.
Understandably, since most investigations measure activity
first and compound structure second, with pharmacokinetic
interpretation as a final step, there are a plethora of published
studies reporting successful in vitro outcomes which are
naively and often uncritically extrapolated to presumed in vivo
therapeutic value.

Fortunately, by remembering only a few generic guidelines
a greater understanding of pharmacokinetics can be acquired,
empowering the researcher to more critically assess in vitro
outcomes for potential in vivo reproducibility. Thus, the
current review highlights the most common problems with the
presentation of in vitro outcomes and provides insight into how
data could be interpreted to provide more relevant conclusions
on therapeutic potential.

THE ‘DARK AGE’ OF ANTIBIOTICS

The ‘dark age’ of antibiotics is a time of resistance development
against the antibiotics discovered in the ‘golden era’ (Lyddiard
et al., 2016). Ironically, even before the ‘Waksman platform,’
which led to the discovery of most of the antibiotics in use
today, we were warned that this time would come. On receipt of
his 1945 Nobel prize for the discovery of penicillin, Alexander
Fleming made the prescient observation that the ‘thoughtless
person playing with penicillin treatment is morally responsible
for the death of the man who succumbs to infection with the
penicillin-resistant organism’ (Cheesman et al., 2017).

It could be argued that the modern techniques of molecular
docking and rational drug design have demonstrated little success
by comparison with the much less sophisticated screening
methods employed during the ‘golden era’ of antibiotic discovery
and this gives impetus to calls for a new iteration of natural
product screening in the search for new efficacious drugs
and novel drug scaffolds (Lyddiard et al., 2016). Yet another
lesson we could learn from the ‘dark age,’ and Fleming’s grim
yet accurate prediction, is to direct research efforts toward
development of combination therapy drugs, by contrast with
the monotherapy drug approach that ushered in the resistance
paradigm (Cock, 2018).

Most of the antimicrobial compounds identified as secondary
metabolites from natural products have a low degree of specificity
in their mechanisms of action (MOA) and yet the most successful
antibiotics have a high degree of specificity. This prompts the
question of whether there is a correlation between degree of
specificity and potency of drugs that are safe in human use.
If this is indeed true, then the trade-off may be that with
higher specificity and potency comes greater probability of
resistance development. Adjuvants can, in some cases, disrupt
resistance mechanisms (Cock, 2018), but combination therapies
that target two or more sites provide arguably the best strategy
for preventing further resistance development. Thus, this new
paradigm of dual-therapy drugs opens a potential niche for the
common non-specific antimicrobials found in natural product
research that could be used to complement the conventional
antibiotics that are losing potency in the unrelenting march of
microbial resistance.

PHARMACODYNAMICS OF DRUGS

Mechanism of Action (MOA) and
Structure-Activity Relationships (SAR)
Van Vuuren and Holl (2017) suggested that the criteria for
describing the levels of antimicrobial activity in natural products
be specific for types of extract, using the terms ‘moderate,’ ‘strong,’
‘very strong,’ and ‘noteworthy’. In the case of crude extracts
from medicinal plants, noteworthy activity is ascribed for activity
≤160 µg/ml, for essential oils it is ≤1000 µg/ml and for pure
compounds it is ≤16 µg/ml.

In antimicrobial research a pronounced distinction can
be made between susceptibility of Gram-negative and Gram-
positive bacteria, where Gram-negative organisms tend to be
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less susceptible on average. This is due to the presence of an
outer membrane and hydrophilic periplasmic space in Gram-
negative bacteria, which influences penetration and the fate of
antibiotics. Thus, there are many antibiotics that have specificity
for the Gram-positive organisms. For example, vancomycin is too
large to cross the outer cell membrane of Gram-negative bacteria
and thus has little to no activity against them. Furthermore,
in the context of penicillins, Gram-negative bacteria have
a privileged site for the accumulation of β-lactamases, with
increased expression in the presence of β-lactam antibiotics
(Zeng and Lin, 2013); a resistance mechanism that substantially
reduces penicillin efficacy. However, antibiotics with broad
spectrum activity have activity across both Gram-types. All such
antibiotics have α-hydrophilic groups which aid passage across
the lipophobic periplasmic space of Gram-negative bacteria
(Patrick, 2013).

For the most successful antibiotics currently in use, five main
categories of mode of action are known, which are: (1) Inhibition
of enzyme activity (antimetabolites), (2) Disruption of cell wall
synthesis, (3) Plasma membrane interference, (4) Prevention
of protein synthesis at ribosomes, and (5) Inhibition of DNA
transcription and replication. The main types of drugs used in
the pharmaceutical industry and their mechanisms are listed in
Tables 1, 2.

In most antimicrobial research protocols, such conventional
antibiotics are included in assays as a positive control, not merely
to convey a contrast of efficacy to the study but also as an
internal validation of correct execution of the protocol. More
importantly, since research on alternatives now embraces the
possibility of adjuvancy to counteract resistance mechanisms
against these frontline antibiotics, it is important to have a
clear understanding of their mechanisms to guide selection of
antibiotics for synergism-antagonism testing.

An appreciation of structure-activity relationships draws
attention to the prevalence of amine functional groups and
amine-alkaloids (Figure 1) that emerged from the ‘golden era’
as antibiotics with a high degree of specificity. This is not a
coincidence. Not only do amine groups enhance solubility whilst
retaining lipophilic character (by easy equilibration of ionized
and non-ionized forms) but they are often involved in the drug’s
binding interactions with its target through specific hydrogen
bonding and/or formation of salt bridges.

The high degree of specificity of penicillin comes from
its ability to mimic the dimer of D-alanine (D-Ala-D-
Ala), a dipeptide amine used in bacterial cell wall synthesis
(Figure 1). Other classes of antibiotics include compounds that
can disrupt protein synthesis by binding to the 30S or 50S
ribosomal subunit, preventing either the reading of mRNA,
or translocation or binding of aminoacyl-tRNA (streptomycin,
tetracycline, macrolides). At pH 7.4 (homeostatic pH), the
cationic amine groups of many classes of antibiotic give them
binding affinity to negatively charged pockets in RNA, rRNA
or auto catalytic ribozymes (Jia et al., 2013). Antimetabolite
drugs such as the sulfonamides, which mimic p-aminobenzoic
acid, bind irreversibly to dihydropteroate synthetase and prevent
biosynthesis of tetrahydrofolate. Ionic interactions of amine
groups with various negatively charged pockets in the bacterial TA
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TABLE 2 | Other frontline antibiotics (Patrick, 2013).

Group Glycopeptides Aminoglycosides Tetracyclines Macrolides Chloramphenicol Lincosamides Streptogramins

Sub-structure Polyphenolic
glycopeptides

Carbohydrate, basic
amine groups

Tetracyclic, two enols, one
amide

O-glycosylated
lactone rings

Dichloroacetamide,
nitrophenyl

Thiosugar amine Lactone macrocycles

MOA Bind to cell wall
building blocks

Inhibit protein synthesis by binding to ribosomes

Inhibition Bactericidal Bactericidal Bacteriostatic Bacteriostatic Bacteriostatic Bacteriostatic Bacteriostatic

Examples Vancomycin,
teicoplanin,
eremomycin

Streptomycin,
gentamicin C1a

Chlortetracycline,
tetracycline, doxycycline,
demeclocycline

Erythromycin,
clarithromycin,
azithromycin,
telithromycin

Chloramphenicol Lincomycin,
clindamycin

Pritinamycin, quinupristin,
dalfopristin

Group Oxazolidinones Quinolones Fluoroquinolones Aminoacridines Rifamycins Nitroimidazoles Cephalosporins

Sub-structure N-heterocycle, lactone,
fluoride

N-heterocyclic quinone Piperazine fluoride quinone Napthalenic lactone
in macrocycle

Pentene,
N-heterocycles

β-lactam with adjoining
thiohexacyclene

MOA Bind to 50S subunit Inhibit topoisomerase enzymes Intercalate with
DNA, toxic to
humans

Inhibit RNA
polymerase

Inhibit protozoa and
anaerobes

Cell wall, transpeptidase inhibition
Bactericidal

Inhibition Bacteriostatic Bactericidal Bactericidal Bactericidal Bacteriostatic Bactericidal

Examples Linezolid Nalidixic acid Cirofloxacin, enoxacin,
ofloxacin, levofloxacin,
moxifloxacin

Proflavine Rifamycin B,
rifampicin

Metronidazole,
nitrofurantoin

Cephalothin, cefalexin, cefazolin,
cefoxitin, cefuroxime, cefotaxime,
ceftazidime, ceftrioxone, cefpirome

Group Ionophores Cyclic lipopeptides Sulfonamide Sulfones

Sub-structure Macrocycle with hydrophobic semi-circle SO2NH1 SO2

MOA Act on plasma membrane, disrupt ion channels Inhibition of dihydropteroate synthetase

Inhibition Bactericidal Bactericidal Bacteriostatic Bacteriostatic

Examples Valinomycin,
gramicidin, polymyxin B

Valinomycin,
daptomycin

Sulfamethoxazole -
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FIGURE 1 | An example of the chemical structure of an aminoglycoside (Vancomycin) showing the complexity of just one of some of the frontline antibiotics. Two
structures are depicted that are representative of category 1 antimicrobials (Eryzerin C – prenylated flavonoid; Isobavachalcone – prenylated chalcone), which are
among the most potent plant derived nitrogen deficient antimicrobial compounds in nature. The prenyl group enhances lipophilicity and bacterial membrane
penetration, the adjacent phenolic OH group (on the same ring as the prenyl group) is essential for efficacy. The structural similarity of acyl-D-ala-D-ala to penicillin is
important for the specificity of penicillin since human proteins have no D-amino acids. The activity of β-lactamase against penicillin is on the β-lactam moiety, which
hydrolyzes the amide bond (Patrick, 2013).

membrane also occur, creating pores that enable hydrophilic
aminoglycosides to enter the bacterial cytoplasm. Thus, the
importance of the amine groups in specificity is evident.

Natural product screening for antimicrobial compounds
may conveniently be broken into two major categories; (1)
Nitrogen-deficient compounds constructed of C, H, and O atoms
(oxygenated hydrocarbons) or C and H only (hydrocarbons),
where generalized activity is expected. Specific modes of action
are less common but have been reported for aromatics, such
as chalcones or flavonoids (Figure 1); and (2) Nitrogenous
compounds constructed of C, H and N (and O) atoms (alkaloids,
amines, amides, anilines and imines) or C, H, S, O and N atoms
(sulfonamides), where the possibility for absolute specificity
exists. It is common for compounds in the second category to be
synthesized from natural product scaffolds in the first category.

Nitrogen Deficient Compounds
In this first category, constituting the predominant class of
compounds isolated from plant species, in most (but not
all) cases generalized activity against bacterial cell walls or

membranes is the expected outcome. It is obvious that simple
terpenes or phenylpropanoids, such as those in essential oils,
typically demonstrate only low to modest antimicrobial activity
attributable to perturbations of the lipid fraction of the cell
membrane, enhancing permeability and spilling cellular contents
or enabling entry into the cytoplasm (Trombetta et al., 2005).
While such activity is, at first blush, unimpressive, such therapies
are finding place as topical adjuvants or alternatives to antibiotics.
As alternatives, they may mitigate the selective pressure on
antibiotics and buy time before resistance development. As
adjuvants, sometimes additive or synergistic effects occur,
but also on occasion these small lipophilic compounds may
antagonize resistance mechanisms and therefore restore efficacy
of antibiotics. This is certainly the case with essential oils and
volatiles that inhibit efflux pumps, a mechanism that bacteria
have evolved to remove antibiotics from bacterial cytoplasm
(Aelenei et al., 2016).

Perhaps the two best performing nitrogen deficient
classes of antimicrobial compound with ‘noteworthy’
activity are flavonoids and chalcones (Figure 1). The most
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potent activity in the literature gives values ranging from
0.06 to 2.4 µg/ml against Gram-positive organisms for
prenylated flavonoids and chalcones such as panduratin
A and isobavachalcone respectively (Cushnie and Lamb,
2011). In terms of structure activity relationships, prenylated
isoflavones and chalcones with aromatic hydroxyl groups
adjacent to the prenyl moiety give the most pronounced
activity (Cushnie and Lamb, 2011; Mukne et al., 2011). The
prenyl group is important since it acts as a lipophilic arm
and enhances penetration into the phospholipid membrane
while the hydroxyl group accommodates the process
by interaction with the polar head group of these lipids
(He et al., 2014).

Flavonoids and chalcones are special in that multiple modes
of antimicrobial specificity have been claimed, mainly against
topoisomerases such as DNA gyrase (topo-II) in Escherichia
coli (Wu et al., 2013) and topo-IV (Mukne et al., 2011). This
activity is similar to the mechanism of action of the quinolones
and fluoroquinolones of conventional antimicrobial therapy
(Patrick, 2013).

The literature dealing with MOA of flavonoids and chalcones
is ambiguous but an examination of structural differences, such
as glycosylated and aglycone forms, indicates that a single
general MOA is unlikely, due to variations in ability to cross
cell membrane interfaces. However, the multitude of proposed
mechanisms reported in the literature may be an exaggeration,
where factors such as ‘cause and effect’ and issues of aggregation
of purified enzymes in vitro may complicate the interpretation of
data (Cushnie and Lamb, 2011). Whilst the possibility of multiple
MOAs across flavonoids or chalcones in general is realistic, more
comprehensive testing is necessary to confirm this. This should
include screening a group of flavonoids or chalcones across a
diverse range of MOA assays.

In this context it should be noted that evolutionary pressures
would likely select for biosynthesis of secondary metabolites
that confer antimicrobial activity via mechanisms unfavorable
to resistance development. Drugs with multiple MOAs yield
a similar outcome to combination therapies, in that single
mutations in microbes are unlikely to create comprehensive
resistance mechanisms against multiple targets.

Many follow-up studies have confirmed some of the MOAs
reported for flavonoids and chalcones, such as topoisomerase
inhibition (Cushnie and Lamb, 2011). Given the previous
discussion on the importance of amine functional groups, it
follows that the activity of flavonoids might be enhanced by
production of amine derivatives. The validity of this approach
was demonstrated in the synthesis of a tricyclic sulfur-amino
flavonoid, which demonstrated most impressive inhibition
of the Gram-positive species Staphylococcus aureus down to
concentrations of 0.24 µg/ml (Babii et al., 2016), with the
mechanism related to the impairment of cell membrane integrity
and cell agglutination.

Nitrogenous Compounds
As previously stated, compounds from the second category,
containing nitrogen and/or sulfur atoms, have hitherto
demonstrated the most pronounced antimicrobial activity,

with absolute specificity. These have almost exclusively been
isolated from bacteria and fungi, but some studies have
reported the isolation of such compounds from plants. Natural
quinolone alkaloids were isolated from the fruit of a species
in Rutaceae and screened for antimicrobial activity and in
some cases demonstrated noteworthy activity against Gram-
positive species. The structures differed by a homologous series
of alkyl side-chain moieties, which significantly impacted
on MIC values, with chains within the range of 9–13
carbons as yielding the most pronounced activity, as low as
4 µg/ml (Wang et al., 2013). Such a structure-activity profile
suggests that cell membrane penetration is enhanced by the
alkyl sidechain.

On Why Some Antimicrobial Agents Fail
Supply Challenges
Most antibiotics in common clinical use are of bacterial or
fungal origin. This may give the impression of the intrinsic
inferiority of plant-extracted compounds. However, this pattern
of prioritization of bacterial and fungal metabolites is more
related to logistics than efficacy per se. Microorganisms can
be cultured and are characterized by rapid growth, which
makes the supply aspect of a commercial product non-limiting.
By contrast, plant derived metabolites require long waiting
periods for maturation of plantations, followed by a complex
extraction protocol and generally low yield. This makes supply a
limiting factor. Sometimes a valuable alternative to the cultivation
of plants is realized, but only if it can be demonstrated
that microbial endophytes are responsible for the de novo
biosynthesis of the relevant plant metabolite. In this case,
the endophyte can be isolated and cultured as in classical
antibiotic production. Alternatively, genetically modified yeasts
may also be used to produce specialized metabolites provided
the yeasts themselves are not susceptible to the product or
its intermediates.

Although the supply of natural antibiotics is a major
logistical concern, de novo and semi-synthetic approaches
can also be employed to make them commercially viable
should the need arise. More fundamental challenges to the
efficacy of noteworthy antimicrobial drugs are related to
the pharmacotherapeutic obstacles encountered in vivo. Thus,
pharmacotherapeutic challenges could be related to negative side
effects, such as toxicity, or failure to translate in vitro activity into
useful therapeutic activity because of poor absorption, bacterial
resistance or biotransformation in the gut or liver.

Pharmacodynamic Challenges
Strictly in the context of pharmacodynamics, resistance
mechanisms and toxicity are the biggest problems. While
many researchers are now seeking to identify compounds
effective against resistant strains, far fewer studies employ
synergism-antagonism assays, which may lead to the discovery
of antimicrobial compounds that work in combinations. The
best example of the success of this approach comes from
the synergistic effects of clavulanic acid, a weak antibiotic
that is related to penicillin by the presence of a β-lactam
ring. Since resistance mechanisms in bacteria now include
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the induction of the enzyme β-lactamase, which cleaves the
β-lactam ring (Figure 1) and inactivates penicillin derived
antibiotics, inhibiting this enzyme restores the activity of
β-lactam antibiotics. Clavulanic acid is classified as a ‘suicide
substrate’ in that the β-lactam site is cleaved by β-lactamase in
the usual way, but the presence of an enol ether over the fused
heterocyclic ring (O in the place of S) causes the drug to bind
to the enzyme irreversibly. Thus, combinations of clavulanic
acid and β-lactam antibiotics restores the potency of these
drugs. This is currently in clinical practice with a product called
Augmentin R©, which combines amoxycillin and clavulanic acid
(Cock, 2018).

Another resistance mechanism is the aminoglycoside
riboswitch (Jia et al., 2013), which regulates expression of the
anti-aminoglycoside enzymes, aminoglycoside acetyl transferase
and glycoside adenyl transferase, in response to binding to the
aminoglycosides. The expressed enzymes modify the structures
of aminoglycosides and inactivate them (Aghdam et al., 2014).
Methods to counteract this resistance mechanism are still
under development, but some headway has been made with
the realization of unique binding activity of paromomycin,
which makes a transient hydrogen bond at 6’-OH with A17,
diminishing interactions with more important coding regions
of the riboswitch, leading to deactivation (Kulik et al., 2018).
Researchers are now looking at paromomycin derivatives as new
aminoglycoside drugs (Zárate et al., 2018).

No research has yet been published demonstrating
combinations that attenuate the riboswitch resistance
mechanism. Research has focused more on efflux inhibition, anti-
quorum sensing, anti-virulence and anti-infective mechanisms at
sub-MIC concentrations that attenuate both pathogenicity and
resistance (Cushnie and Lamb, 2011).

Pharmacokinetic Challenges
It is apparent that even the lowest MIC values achieved by
natural products is still many folds higher than the possible
systemic concentrations achieved in vivo for oral therapies
(not topical). This implies that the antimicrobial outcomes,
no matter how impressive, will not be actualized in vivo
unless other factors are taken into consideration. One neglected
area of research is to examine compound accumulation in
specific tissues. Another area of research is to redirect efforts
toward immunomodulation either in the context of stimulation
or conversely, anti-inflammatory (suppression). This aspect is
further explored in the section titled ‘routine absorption and
immunomodulatory assays.’

‘Potentiators’ to Counteract Resistance
Researchers will refer to drugs that antagonize resistance
mechanisms as the ‘potentiator’ (Cock, 2018). Thus, compounds
that have poor antimicrobial activity may nevertheless affect
the virulence or pathogenicity of microorganisms. For example,
antimicrobial assays assess activity against bacteria in planktonic
growth (as colonies) rather than as biofilms, which are formed
because of quorum sensing activities. Since the biofilm itself,
and surface adhesion, confers resistance to the immune response
and slows antibiotic activity, antagonism of quorum sensing

can reduce virulence. Flavonoids, and polyphenols such as
catechins, have demonstrated anti-quorum sensing activities.
Furthermore, other virulence and pathogenicity factors are
antagonized by many polyphenols and flavonoids, such as sortase
inhibition (another enzyme implicated in biofilm formation),
urease inhibition (for Helicobacter to survive stomach acid),
listeriolysin inhibition (for surviving phagosomes and entering
the cytosol of host cells) or neutralization of bacterial toxins
(reducing pathogenicity) (Cushnie and Lamb, 2011).

Drugs that block efflux pumps are potentiators of antibiotics.
The intracellular efflux pumps in bacteria have become
increasingly capable of excreting a wide array of antibiotics,
with the tetracyclines receiving the most attention. Many
examples of efflux inhibitors have been discovered, which
often include flavonoids and polyphenols at sub-MIC values
(Cheesman et al., 2017).

Compounds that antagonize bacterial resistance, virulence
and pathogenicity are evidently good potentiators of both
the immune system and antibiotics. Thus, they should be
seriously considered as adjuvants to conventional therapies
(Cock, 2018). However, compounds that are antagonistic of
bacterial resistance development per se have received the least
attention in antimicrobial research. For example, drugs with
multiple modes of action, or combination therapies, antagonize
resistance development by maintaining efficacy against mutant
strains that develop single resistance mechanisms.

Combination therapies can also combine bactericidal
drugs with bacteriostatic drugs to counteract resistance
development. Such combinations are also beneficial because
immunocompromised patients are fully dependent upon
the drug and it is difficult to maintain optimal plasma
concentrations of bacteriostatic drugs over the course of
the infection. Antimetabolite drugs, such as the sulfonamides,
are bacteriostatic (Patrick, 2013), but many flavonoids and
chalcones have demonstrated bactericidal activities (Cushnie and
Lamb, 2011), so this combination may achieve positive outcomes.

Sometimes combinations achieve synergistically enhanced
antimicrobial activity, which means that the MIC value is
enhanced by more than the sum of the two activities of
each drug combined (greater than the sum of its parts).
Alternatively, sometimes there are interactions that antagonize
activity. Researchers generally test for these effects in a
synergism-antagonism assay (Van Vuuren and Viljoen, 2011).
The methodology involves testing the combinations at different
ratios across different dilutions to produce a ‘fractional inhibitory
concentration index’ (6FIC). It is obvious that synergistically
enhanced activity in combinations is beneficial, but less obvious
that it has the potential for providing a wider gap between MIC
values and median lethal dose (LD50), if relevant.

Toxicity
Several methods for measuring LD50 and LC50 values are in
practice for describing a compound’s toxicity. Brine shrimp
lethality is for some researchers a first step, giving broad
implications for human contact (Sarah et al., 2017) but greater
specificity is acquired using mammalian cell lines (Ekwall et al.,
1990). It is important that drugs with potent antimicrobial
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activity have much higher toxicity concentrations as compared to
MIC values, since concentrations required to kill bacteria should
not be damaging to the host. However, when interpreting toxicity
studies, one must be aware of research that specifically tests for
toxicity against cancer cell lines without appropriate comparison
to non-cancerous cells. Obviously, high toxicity to cancer cells
but low toxicity to healthy mammalian cells is a positive outcome
in this context.

Unfortunately, without knowledge of, or access to, the
biotransformed conjugate of the drug as it would appear in the
host after metabolism, it is difficult to comment specifically on
the toxicity of a drug, if it is an ingested therapy. In antimicrobial
outcomes, some of the activity is maintained in the pre-
conjugated form, and sometimes as well after conjugation, but
toxicity after conjugation is difficult to control for. The fates of
xenobiotics after absorption and transformation provide the most
common challenges for understanding the pharmacotherapeutics
of the drug and this is the jurisdiction of pharmacokinetics.

THE CORE OF PHARMACOKINETICS:
LIPOPHILICITY, HYDROPHOBICITY AND
‘BIOAVAILABILITY’

It is no surprise that the vast majority of prospective
drug candidates are poorly soluble in aqueous solvents.
One pharmaceutical company estimates that 30% of drug
candidates have aqueous solubility at <5 µg/ml (Lipinski,
2001). While lipophilicity of a drug is an important factor
influencing absorption and distribution into the lipid membranes
characterizing many human tissues, at least some aqueous
solubility is necessary to enable distribution in and from the
human GIT. This issue is illustrated in the intestinal permeability
prediction assays, such as the caco-2 cell culture, but this problem
is replicated in the human gastrointestinal tract.

While exceptions can be made for compounds of low
aqueous solubility that are liquids at body temperature, such
as with essential oils, [indeed, melting point was considered a
contributor in earlier transdermal models (Magnusson et al.,
2004)], solid insoluble compounds are not generally bioavailable.
While aqueous solubility and lipophilicity are generally treated
as opposites, they are not exactly inversely proportional,
especially in fluorinated molecules. There are many examples of
compounds that are amphiphilic (high solubility in both), such as
saponins, but the lipophilic moiety itself is considered important
in bringing about bioavailability.

Drugs that are small and strongly lipophilic are often regarded
as having good bioavailability. In contrast, high molecular
mass drugs only have good bioavailability if they convey fewer
rotatable bonds and an optimal balance of lipophilic and
hydrophilic moieties, where lipophilic moieties enable passive
trans-membrane or trans-dermal diffusion and polar groups
enact biological interactions. In addition, polar groups enhance
aqueous solubility and prevent flocculation in the gastrointestinal
tract, which aids absorption.

Despite their considerably higher lipophilicity, their typically
small molecular size means that essential oils have good

bioavailability, but their high lipophilicity means that they
may also cross the blood-brain barrier. This outcome could
be favorable if essential oils confer immunomodulatory effects,
particularly where anti-inflammatory activities are potentially
useful. However, one of the most controversial side-effects of
some lipophilic drugs is psychoactivity. Almost all psychoactive
drugs have high lipophilicity, some of which occur in essential
oils, such as elemicin, a psychoactive phenylpropanoid that also
confers anti-inflammatory effects (Sa et al., 2014). Pre-conjugated
forms (pre-metabolized forms) of essential oils also rapidly
dissolve in the fat tissues, giving a shorter half-life in the first
instance and creating a reserve or ‘storage’ of potentially bioactive
compounds in the second instance.

Ingestion of aromatic foods over time will lead to an
accumulation of essential oils in adipose tissue. For example,
grazing on the aromatic fodder plant Penzia incana leads to
an accumulation of Artemisia-type terpenes in the fat tissue of
South Africa’s ‘Karoo Lamb,’ which confers a distinctive flavor
to the meat when roasted (Hulley et al., 2018) and prolongs the
immunomodulatory effects of components such as linalyl acetate
(Sa et al., 2013). Another example involves the bioaccumulation
of cannabinoids in fat tissues of cannabis smokers. Lipolysis
induced by exercise or starvation can provide the user with a
recycled ‘high’ (Gunasekaran et al., 2009), a side-effect that occurs
together with a range of immunomodulatory effects mediated
by agonism of cannabinoid receptors (type 2) (Olah et al.,
2017). Strains used for medicinal cannabis have higher yields of
cannabidiol and less tetrahydrocannabinol (Rom and Persidsky,
2013) to achieve more positive and less psychoactive effects.
Due to their high lipophilicity the cannabinoids have very long
half-lives, conferring immunomodulatory effects for sustained
periods after smoking.

Thus, the activity of anti-infective drugs with good tissue or
fat solubility may be prolonged as they are slowly released back
into the host’s circulation from such tissues (Patrick, 2013). The
drug is usually released from fat stores at a lower concentration as
compared to the active systemic concentration, but repeated drug
administration enhances this effect. For example, the anesthetic
thiopental is highly lipophilic, so its peak concentration is rapidly
decreased due to redistribution to more slowly perfused fatty
tissues, at which time it is slowly released from fat storage at
subanaesthetic concentrations. However, after repeated doses
the fat sink is fuller, and thiopental is then released at an
active concentration, which keeps the patient anesthetized. This
also occurs with drugs that accumulate within cells, such as
the anti-malarial drug chloroquine, which accumulates in white
blood and liver cells, reaching concentrations thousands of times
higher than in plasma.

As drugs become slightly more hydrophilic their aqueous
solubility increases and accumulation in adipose and other
body tissues becomes less relevant, but as aqueous solubility
continues further issues of absorption become prominent.
It is therefore important to be able to judge a priori the
approximate solubility character of a molecule from the number
of polar moieties, before it becomes clear if it has potential
as a drug candidate. Other important factors include numbers
of rotatable bonds and hydrogen donors/acceptors (closely
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related to polar surface area). Some rudimentary guidelines
will now be given.

INDICATIONS THAT A DRUG HAS ‘GOOD
BIOAVAILABILITY’

The classical approach used to judge the bioavailability of a drug
was ‘the rule of 5,’ which is a set of 4 guidelines that prescribe
numerical parameters as a factor of 5. Hence, 1) molecular weight
needs to be <500 Da, 2) there must be less than 5 hydrogen bond
donor groups, 3) and no more than 10 hydrogen bond acceptor
groups, 4) and a calculated log P value of less than + 5 (drug
hydrophobicity measurement) (Patrick, 2013).

Today it is clear that a substantial number of bioavailable
drugs break this rule of 5; drugs commonly referred to as ‘in
the space beyond the rule of 5’ (bRo5 space) (Doak et al.,
2014). New parameters for prediction of oral bioavailability now
acknowledge that molecular size is insignificant, provided that
the polar surface area is ≤140 Å2 and that the number of
rotatable bonds is fewer than 10 (Veber et al., 2002). Percutaneous
penetration is a different matter, where molecular size continues
to be regarded as significant, but macromolecules that are rapidly
absorbed have also been identified (Pino et al., 2012). Thus, there
are ample examples where molecules that are easily absorbed
break the modern rules.

Unlike polar surface area, the number of rotatable bonds
leading to molecular flexibility, is a parameter that is not so
intuitive. However, since molecular flexibility tends to become a
limiting factor in larger molecules (≥500 Da), a first assessment
for smaller molecules should only be for a compound’s polarity,
which is easily judged by the number of polar groups and
how polar they are.

It is relatively easy to get an approximate estimate of the
hydrophobicity of a molecule according to the number of
amides, amines, alcohols (hydroxyl), aldehydes, ketones, ethers
and acid (ester) groups attached. The order of polarity goes
amide > acid > phenol > alcohol > ketone > aldehyde >
amine > ester > ether > hydrocarbon (alkane) (Figure 2).
For example, sugar groups (glycosides) are pharmacokinetically
negative. Generally, when small molecules (≤400 Da) have six
or more hydroxyl groups the bioavailability is substantially low.
However, monoglycosides (one sugar) are more easily orally
absorbed than diglycosides (two sugars), which are better than
triglycosides (three sugars) and so on.

By contrast, amines generally have a weaker dipole moment
(lower polarity) as compared to hydroxyl groups and have higher
bioavailability. They are cationic at pH 7.4 and can interact with
the anionic components of the stratum corneum or intestinal
epithelium, enabling passage of anionic drugs (Pandey et al.,
2014). Surprisingly, small molecules with carboxylic acids and
amides are also bioavailable. Accordingly, amino acids are used
as penetration enhancers (Sarpotdar et al., 1988), and this effect
may be enhanced by esterification of the carboxylic acid moiety
(Hrabálek et al., 1994).

As the numbers of polar groups increase relative to the alkane
bonds the bioavailability decreases (Figure 3), decreasing further

as the number of rotatable groups increases. The segmentation
of molecules into hydrophilic and hydrophobic moieties can
enhance penetration across skin, but an even distribution of polar
groups on a molecule has the opposite effect. It is not clear if this
is the case for intestinal absorption but it is clear that a sugar
such as glucose illustrates this implicitly. In sugars there is a
1:1 ratio of carbon to oxygen atoms with each carbon adjacent
to an oxygen, five of which are hydroxyl groups. To counteract
poor bioavailability, sugars are actively transported in the human
digestive tract and are not absorbed across the stratus corneum.

When sugar groups are sterically oriented around a lipophilic
triterpene core, this attenuates the interaction of the molecule
with the lipid fraction of the epidermis and antagonizes
bioavailability. Tannins and saponins are model examples of this
effect (Seo et al., 2002; Seeram et al., 2004). Indeed, these two
classes of secondary metabolites arguably demonstrate the lowest
oral bioavailability in the natural product world and following
ingestion are mostly absorbed as much smaller deglycosylated
species. Whilst some saponins are absorbed orally it is generally
at a very slow rate and rather than crossing into the cell through
its plasma membrane, which is comprised by hydrophobic
phospholipids, they are either actively transported or enter portal
circulation passively by paracellular transport across the tight
junction, passing through pores between epithelial cells.

MORE ON BIOAVAILABILITY
ESTIMATION

While it is convenient to glance at a molecular structure
and make tentative predictions about its bioavailability, more
comprehensive predictions can be made by following some clear
guidelines. As previously mentioned, the number of rotatable
bonds (≤10) and polar surface area (≤140 Å2) gives the best
prediction for oral bioavailability (Veber et al., 2002) and
rotatable bonds and molecular weight (≤500 Da) for transdermal
or percutaneous ability (skin penetration) (Grice et al., 2010).
Although there is much overlap between oral bioavailability and
percutaneous penetration, the influence of polar surface area is
apparently less significant in the latter. Other differences occur
due to active transport mechanisms, which are dependent upon
the site of absorption (intestinal space or topical). In the case
of compounds that completely break the rules, such as the
macromolecules named avicins (Pino et al., 2012), pronounced
differences between oral and transdermal bioavailability are likely
(see next section).

Nevertheless, it is good to be able to accurately predict
polar surface area and the number of rotatable bonds. Polar
surface area represents the sum of all polar surface areas,
including the electronegative atoms nitrogen and oxygen, and
their attached hydrogen atoms. These estimations replace the
previous convention of the octanol/water partition coefficient
(log P). Generally, calculation of polar surface area can take
10 or more minutes per molecule, using specialized software
that generates 3D structures in silico. Since polar surface area
estimations require some time and organization, a cruder strategy
which involves counting hydrogen donator and acceptor groups
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FIGURE 2 | Polarity of functional groups, with the most polar groups as acids and amides, plus their ionic counterparts. The highest polarity groups are toward the
top left-hand side of the image, the lowest polarity groups are toward the bottom right hand side of the image. Note that amines can also be ionized.

(≤ 12) is used to create a priori estimates (Veber et al., 2002).
However, use of polar surface area is more accurate, so a faster
and more approachable method for this calculation has been
proposed by Ertl et al. (2000), which involves assigning standard
surface areas to polar groups and summing the values. Some
examples from a list of 43 by Ertl et al. (2000) are illustrated
in Figure 4 and some examples of the calculation are given
in Figure 5.

For the calculation of rotatable bonds Veber et al. (2002) was a
little vague on exclusion criteria, stating only that they are ‘defined
as any single bond, not in a ring, bound to a non-terminal heavy
(i.e., non-hydrogen) atom. Excluded from the count are amide C-N
bonds because of their high rotational energy barrier’. Other types
of bonds also have a high rotational energy barrier, which means
that most chemists also exclude thioamides, sulfonamide bonds,

the C-O in ester bonds and single bonds between aromatic groups
with three or more ortho substituents. These are illustrated
in Figure 6.

THE PHARMACOKINETIC JOURNEY:
FROM PETRI DISH TO THE SITE OF
INFECTION

Generally, the pharmacokinetic journey follows the drug up to
the site of infection, but then beyond, to the point of elimination.
The entire fate of a drug is therefore framed by the acronym
ADME, which is an abbreviation of absorption, distribution,
metabolism and elimination, as previously mentioned.
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FIGURE 3 | Solubility across a series of hydroxylated aromatics. Hydrophilicity (aqueous solubility) increase with the number of polar groups and the strength of polar
groups (see Figure 2). Methylation of OH groups significantly reduces hydrophilicity, as does esterification of acid groups. Similar outcomes occur with acetylation or
esterification with alkyl chains, with longer chains having progressively lesser hydrophilicity.

FIGURE 4 | Polar surface areas of the most common polar functional groups.

The most prominent pharmacokinetic obstacles faced by
drugs include transdermal penetration (topical therapies), acid
pH of the stomach, digestive enzymes in the human GIT or of
bacterial origin, intestinal absorption (oral therapies), first pass
metabolism, absorption into the various tissues and organs of the
body and blood brain barrier penetration (if relevant).

Thus, oral bioavailability is reflective of the amount of
drug in the system after deductions are made for all of these
factors, which includes the fraction escaping gut-wall and hepatic
elimination (El-Kattan and Varma, 2012). Giving all of these
factors some consideration, the school of bioavailability ranks
transdermal or gut-wall penetration as the leading obstacle
controlling the success of drugs proven in vitro, which alone
controls the necessary route of administration. Administration
routes can be broadly divided into enteral (sublingual, oral,

rectal) and parenteral (topical, inhaled, injection). These will now
be elaborated upon.

Parenteral: Topical Therapies
By comparison with ingestive therapies, the efficacy of topically
applied remedies for local afflictions is more often reflective
of observed in vitro outcomes, since compounds are not
digested, nor are they subjected to the first pass effect in liver
metabolism. Thus, dermal penetration is the only outstanding
pharmacokinetic parameter in play, becoming less of an obstacle
in damaged or infected tissues.

The pharmacokinetics of topically applied therapeutics is
also less complex as compared to ingested drugs. While topical
routes are often utilized for administration of systemic drugs
expected to act non-locally (e.g., nicotine patch), the following
discussion is directed at therapies that target local afflictions, such
as pathogenic microbes, infections or inflammation.

Most pathogenic organisms are superficial and easily reached
by inhibitory molecules. For example, fungal infections, such
as Trichophyton rubrum, T. mentagrophytes or T. interdigitalis
(Tinea pathologies), are superficial, since they are external to the
dermal layers and can therefore be inhibited in vivo as efficiently
as observed in vitro outcomes. By contrast, the penetration of
compounds into an abscess is difficult, even with compounds
having high bioavailability. The degree of penetration is
influenced by duration of infection and stage of encapsulation
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FIGURE 5 | Simple examples for the calculation of polar surface area.

FIGURE 6 | Examples of the types of single exocyclic bonds that are
excluded as rotatable bonds due to high rotational energy barrier. In the case
of the Ar-Ar bonds, substitution at the ortho positions creates a rotational
energy barrier. The S-N and C-N bonds of amides and the C-O bond in esters
also have energy barriers against rotation in normal physiological conditions.

(Wagner et al., 2006). Inflammation has also been implicated
in changes of drug transport efficiency, with penetration being
antagonized in many instances (Schmith and Foss, 2008).

Nevertheless, a general rule is that small molecules
(≤ 500 Da) that are lipophilic can passively cross dermal
layers. As compounds increase in polarity and size the
skin permeability substantially reduces. Some larger
hydrophilic compounds can also passively cross dermal
layers, provided that a low number of rotatable bonds
are present. In some cases, polar and apolar moieties are
sterically optimized for penetration, but this is not often
reported. For example, Pino et al. (2012) discovered that
avicins, glycosylated triterpenes (acetamide saponins) with
a molecular mass > 2000 Da, pass the dermal layers as
rapidly as smaller lipophilic molecules. The key to the
structure’s success in this regard is the combination of a
geranyl ester moiety (monoterpene), an acetamide group
and a tetrasaccharide (Figure 7), conferring both hydrophilic
and hydrophobic properties in an optimal spatial (steric)
arrangement (Pino et al., 2012).

Poorly bioavailable compounds, such as saponins, may still
find a place in topical therapies. Ruptured skin tissue, occurring
in conditions such as eczema, provides a privileged passage to
important sites. Another privileged passage follows hair follicles,
to the dermal papilla, a site of increased permeability with
high capillary networking and density of immune cells (Herman
and Herman, 2016). Sebum secretions line the inside of the

FIGURE 7 | Avicin G (Pino et al., 2012). Despite its large size and the
presence of strongly polar functional groups, Avicin G passes epidermal layers
as effectively as smaller lipophilic molecules. The steric balance of lipophilic
and hydrophilic moieties and the acetamide group is key to the saponin’s
transdermal penetrative ability.

follicle infundibulum, which may be considered a hydrophobic
barrier that can be easily breached by lipophilic or amphiphilic
compounds, such as saponins. The infundibulum may therefore
be a site for the penetration of higher molecular mass compounds
with strong detergent-like character.

The fates of compounds in topical therapies as components
of complex mixtures applied as extracts are not entirely limited
by their individual bioavailability. Other compounds, such as the
sterically balanced avicins (Pino et al., 2014) or small lipophilic
molecules, can temporarily modify the stratus corneum and
allow passive transport of molecules with intrinsically poor
bioavailability. Thus, in commenting on the pharmacokinetics
of topically applied therapies one must take note of the
presence of potential penetration enhancers in extracts. These
include high quantities of volatile terpenes (Paduch et al., 2007),
phenylpropanoids or others as described by Karande et al. (2005).

Parenteral: Injection
Due to poor oral bioavailability, or challenges related to
modifications by gut microbes, many antibiotics are injected
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rather than ingested. In the 1950’s it became common knowledge
that some antibiotics could be absorbed in the alimentary
canal, and some required intramuscular or intravenous injection
(Finland, 1958). Those that could be absorbed orally were
penicillin, erythromycin, tetracyclines, chloramphenicol and
novobiocin. Those that had poor absorption and required
injection were streptomycin, neomycin, viomycin, nystatin,
vancomycin, ristocetin and various polypeptide antibiotics.

Antibiotics that are absorbed in the intestines can also be given
by injection but common practice is to convert to sodium or
potassium salts to enhance aqueous solubility. By contrast, those
with high aqueous solubility can be injected without conversion.
Thus, except for ionized penicillin, the degree of absorption is
reflective of aqueous solubility. High aqueous solubility then
influences the drug’s ability to reach the target site within the
body. This is generally not a problem in antimicrobial research,
since most infections are extracellular.

Enteral: Oral, Stomach Acid as the First
Obstacle
At the mastication stage there is the possibility of absorption
of lipophilic compounds through the area around and under
the tongue, which is known as the sublingual route. In this
case absorbed drugs are not subjected to liver metabolism or
acid hydrolysis in the stomach. However, the sublingual route is
limited, and most patients prefer not to taste their medicines.

Orally administered drugs or therapies generally survive
mastication, but it is common practice to preserve drug contents
for release further along in the alimentary canal, by encapsulation
into a soluble capsule or fashioning into a pill with or without
a sugar coating. In most cases pills or capsules release contents
into the stomach. Sometimes stomach acids can break down
or transform drugs, particularly if electron dense hydrogen
acceptors are on the molecule. For example, the first penicillin
used clinically was unstable in stomach acid and had to
be administered intravenously. Ampicillin is an example of
a penicillin derivative that is modified to give resistance to
acid hydrolysis in the stomach, by placement of an electron-
withdrawing substituent on the α-carbon of the side chain to
draw electrons away from the carbonyl group.

Thus, depending upon acid stability, drug capsules can be
fashioned for solubility either in the stomach or upon entry
into the small intestine. Less commonly employed today, a
previously widely used enterosoluble coating came from a gum
called ‘sandarac,’ which could be made from the Australian Black
Cypress tree (Callitris endlicheri) (Sadgrove and Jones, 2014b,
2015), or the actual sandarac tree (Tetraclinis articulata).

Enteral: Oral, GIT Metabolism as the
Second Obstacle
In the intestines microbial transformations can also be a
significant challenge (the domain of pharmacomicrobiomics).
For example, although warfarin survived stomach acid, mixed
therapeutic results observed in patients were hypothesized to
be related to individual differences in the gut microbiome (Das
et al., 2016). Digoxin is another drug that is susceptible to the

microbiota, but unlike warfarin, it is consistently transformed
into a less active form (Jourova et al., 2016). To curb such effects
drugs can be administered together with a general antibiotic to
kill off the microbiome and prevent transformations. This is the
procedure for the anti-inflammatory drug sulfasalazine (Jourova
et al., 2016). Obviously, this latter procedure is undesirable.

By contrast, microbial transformations of non-active
‘prodrugs’ can in some cases create potent antimicrobial drugs.
In 1935 it was discovered that the red dye called prontosil had
antimicrobial activity in vivo, but this was not evident in vitro. It
was discovered that prontosil was metabolized by bacteria in the
small intestine into sulphanilamide by reductive removal of the
benzamine moiety. Today, many such prodrugs are known. The
most important derivatives come from ampicillin. Lipophilic
prodrugs are made by esterification with substitution groups,
such as acyloxymethyl or pthalide, to remove the potential
ionization of the carboxylate and aid absorption. The ester is
subsequently hydrolyzed in phase-1 metabolism to produce
active ampicillin.

Nearly all biotransformation reactions occur on the more
electronegative atoms, such as oxygen and nitrogen, or with
atoms that have non-bonding electron pairs, such as the former
two atoms and sulfur, or atoms conjugated to oxygen, such as
alpha-beta unsaturated ketones. Thus, in addition to alkenes and
α-alkene carbons where hydroxylation commonly occurs, these
three heteroatoms are where most of the transformations take
place (Patrick, 2013).

Intestinal passage usually reduces the size of compounds
via reductive and/or hydrolytic processes. Whilst reduction
tends to increase polarity, the overall outcome may generate
higher lipophilicity, such as by dehydroxylation or removal of
a sugar moiety (Figure 8; Jourova et al., 2016). For example,
in many instances the reductive process of hydrolysis creates
aglycone moieties of glycosides (Day et al., 2000), which sees
a substantial increase in lipophilic character of the aglycone
moiety, making systemic absorption passive (Németh et al.,
2003). This process has a most significant potential impact in
research on natural products because it is obvious yet neglected.
Other significant transformations include hydrolysis of esters and
amides, particularly peptides (Patrick, 2013).

Generally, by the time glycosides enter systemic circulation
they are present as aglycones or mono-glycosylated glycosides
(less commonly di-glycosides). Glycosides are mostly absorbed
by active mechanisms in the small intestine (Németh et al., 2003)
but larger molecules enter between cells through pores. Lipids are
digested to release free fatty acids. Alkyl esters or alkyl amides are
often cleaved but can also be absorbed intact, with combinations
of both appearing in blood plasma, such as those homologous
alkylamides from Echinacea (Matthias et al., 2007), which are
modulators of the immune system (Raduner et al., 2006).

Enteral: Absorption as the Third Obstacle
As previously mentioned, polar surface area and the number
of rotatable bonds will influence the absorption rate or
efficiency of a drug. While most absorption occurs passively, on
occasion, metabolites enter circulation via active mechanisms.
The major implication is that even strongly polar groups can be
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FIGURE 8 | The fate of complex glycosides in human digestion involves cleavage of sugar moieties, either by β-glucosidases of the small intestine (or bacteria) in the
case of saponins, such as pittoviridoside (Seo et al., 2002), or by acid hydrolysis in the stomach, such as pedunculagin (Seeram et al., 2004). Ellagic acid is
metabolized into urolithin A by gut bacteria before absorption; however, both are systemic. The pentacyclic triterpene of pittoviridoside is absorbed after hydrolysis of
the sugar and butenoic ester moieties.

absorbed, provided that there is compatibility with one of the
transport routes.

Surprisingly, even a small hydrophilic molecule, such as the
simple sugar glucose, requires active transport for absorption.
It was once thought to be passively absorbed but it has long
since been demonstrated that the Na+/glucose cotransporter is
responsible for absorption in the small intestine (Chen et al.,
2016). This has implications for mechanisms of absorption
of glycosides in general. Although they are predominantly
absorbed passively after deglycosylation (Figure 8), they can
be actively transported as monoglycosides on the hexose
transport pathway by interaction with the sugar moiety (Gee
et al., 2000). Nevertheless, the fate of glycosides that enter
the portal circulation is deglycosylation by liver metabolism,
but xenobiotics that make the first pass in metabolism may
enact biological interactions before phase-1 transformation in
the second pass.

A pharmacokinetic study of flavonoid or chalcone aglycones
and saponins in rats gives insight into the differences of
absorption from the GIT between these two types of compound.
Relatively apolar compounds, with fewer hydrogen donor and

acceptor groups, reach peak plasma concentration in 5–30 min
(Ying-Yuan et al., 2019). A similar outcome was observed with
monoglycosides. But the diglycosides demonstrated completely
different kinetics, with peak concentrations being seen after 8 h
on average. The ginsenosides specifically had long half-lives
(12–25 h) but other diglycosides were more similar to the less
polar compounds (2–11 h). This study shows that it is definitely
possible for diglycosides to enter systemic circulation, albeit
much slower by comparison with less polar compounds.

Following absorption, post-metabolized drugs can be returned
to the GIT where they are metabolized to their pre-conjugated
or phase-1 metabolized state. For example, glucuronidated
drugs enter the GIT for excretion but are cleaved by intestinal
microbes that express β-glucuronidase enzymes and reabsorbed
(Pellock and Redinbo, 2017).

Enteral: ‘First Pass’ Metabolism
The discipline of pharmacokinetics encourages us to consider
the potential biological effects of more polar conjugated drug
forms, or ‘xenobiotics,’ as they are metabolized during the body’s
elimination response by phase-1 and phase-2 enzymes, such as
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cytochrome P450 isozymes (phase-1) and/or transferase enzymes
(phase-2) such as glucuronosyltransferase. This complex series
of enzymatic transformations occurring mainly in the liver may,
depending on the chemistry of the original compounds, either
enhance or attenuate activity and/or toxicity.

Antimicrobial compounds that are absorbed (now called
xenobiotics) and become ‘first pass’ have the capacity to enact
biological effects provided they are distributed to the site of
infection. In some cases, however, a significant amount of drug
will be metabolized before becoming systemic. Phase-1 reactions
may continue the reductive and hydrolytic process started in
digestion, particularly on actively absorbed glycosides that were
absorbed from the intestine before microbial modifications.
Thus, much like the microbial processes, nitro, azo and carbonyl
groups are the most common sites for reduction, and amides,

esters and glycosides are the sites for hydrolysis (Patrick, 2013).
The predominant group of enzymes responsible for these phase-1
reactions are the cytochrome P450 isozymes.

In the liver, phase-1 reductions are less common than
oxidative processes. Oxidations typically occur on N-methyl
and aromatic groups, thiols, the terminal position of alkyl
chains and sterically favorable positions on an alicyclic moiety.
These reactions commonly put OH groups on carbon atoms
(hydroxylation) (Figure 9) and aliphatic primary amines; oxygen
anions on N-methyl groups or N-heteroaromatic rings; keto
groups on thiols, with conversion of thiol amines to sulfonamides
and so on. Such reactions are said to create a ‘handle’ for
subsequent phase-2 oxidative processes (Patrick, 2013).

Phase-2 oxidative processes use the ‘handle’ created in
phase-1 reactions (Figure 9) to attach a strongly polar group.

FIGURE 9 | Phase 1 metabolism of safrole produces a number of hydroxylated derivatives, but quercetin is less commonly derivatized at this step. Phase 2
metabolism of 1’-hydroxysafrole produces acetoxy and sulfate derivatives where the hydroxyl ‘handle’ from phase 1 metabolism is used to attach the respective
conjugates. The two most common conjugates on quercetin are a sulfate at the 3’ OH or at the 3 or 7 OH for glucuronic acid (O’Leary et al., 2003).
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These are mostly conjugation reactions catalyzed by transferase
enzymes, installing a polar group such as sulfate, O-glucuronide,
C-glucuronide, glutathione and less commonly apolar groups,
such as methyl groups or cholesterol. Conjugated xenobiotics
are usually inactive but sometimes toxic compounds are created
(Patrick, 2013).

By far the most common transferase reactions are
glucuronidation and sulfation (Figure 9), particularly with
aromatics such as flavonoids (O’Leary et al., 2003). In this
reaction glucuronic acid is conjugated to phenols, alcohols,
hydroxylamines, carboxylic acids, amides, amines and thiols.
Sulfate conjugation also occurs on phenols, alcohols and amines.
Furthermore, carboxylic acids (and cleaved esters) can be
conjugated to cholesterol or amino acids. Glutathione conjugates
form with the nucleophilic thiol group of the tripeptide moiety
by reactions with electrophilic functional groups, such as
epoxides, alkyl halides, sulfonamides, disulfides and radical
species. Glutathione conjugates can also be transformed to
mercapturic acids.

Some conjugation processes decrease the polarity of
xenobiotics, such as methylation or cholesterol esterification.
While methylation often happens in conjunction with
glucuronidation (Williamson et al., 2005), it is also possible
that some of the transformations are not specifically designed
to remove metabolites. For example, at pH 7.4 some flavonoids
are stabilized by glucuronidation, which then can be actively
transported across cell interfaces by de-glucuronidation and
re-glucuronidation at convenient locations. Less frequently,
some conjugated xenobiotics such as flavonoids and chalcones
(Williamson et al., 2005), maintain bioactivity consistent with
pre-conjugated forms. For a drug to be approved for use in
therapies it is a requirement that all the potential conjugated
forms, including enantiomers, epimers and other isomers, be
screened for biological activity, testing for efficacy or toxicity.
However, all possible conjugates will be an overestimate. In due
course the actual conjugate forms will be revealed by in vivo
studies that screen blood plasma and urine for the xenobiotics
on their exit from the host. Such studies are the only real way to
know of the relevant conjugate forms for any particular drug.

Nutraceuticals, functional foods and complementary therapies
(including Traditional Chinese Medicine, TCM) do not require
this level of approval and in vivo studies can be conducted as
a preliminary step to identify the conjugated forms, which can
be synthesized or isolated in follow-up to screen for bioactivities
and toxicity. In such pharmacokinetic studies the pre-conjugated
form of the absorbed compound is detected, together with
biotransformed derivatives representative of both phase-1 and
phase-2 metabolism.

Circulation to the Site of Infection
Once a drug enters systemic circulation it will easily go into
the fluid surrounding the various tissues, cells and organs, since
extracellular space is relatively porous, allowing passage of most
molecules that are smaller than proteins. In some cases, drugs
bind to plasma proteins and are slow to leave the systemic
circulation. In a similar way to the adipose ‘sink,’ protein bound
drugs are slowly released as plasma concentrations reduce.

In general, a drug’s lipophilicity influences its ability to
penetrate a mammalian or bacterial cell wall. For example,
streptomycin is evidently strongly polar, a consequence of the
trisaccharide moiety. To overcome the issue of absorption, and
deglycosylation in the intestines, streptomycin is therefore given
by parenteral routes, but since its mode of action is against
the bacterial ribosome, absorption across bacterial cell wall and
membrane interfaces must occur. Indeed, this is the case, with
a cationic charge in alkaline environments the aminoglycoside
interacts with the outer membrane of Gram-negative bacteria and
displaces magnesium and calcium ions, disrupting ionic bridges
and creating pores through which the drug enters the cytoplasm.

LESSONS FOR ETHNOPHARMACOLOGY

The presumed route of therapeutic application influences how
closely the outcomes of in vitro anti-infective studies will be
reflected in vivo. For example, inhaled therapies for bronchial
afflictions are expected to closely reflect in vitro outcomes,
provided only the volatiles are screened, including hydrodistilled
essential oils and/or other volatiles with moderate aqueous
solubility that dissolve into the hydrosol. In the case of ‘smoked’
therapies a wider selection of volatiles than those present
in essential oils or hydrosols are expected to be relevant.
For example, often diterpenes, amines, pyranocoumarins,
cannabinoids or drimane sesquiterpenes (Khumalo et al., 2018)
are present in acrid steamy smoke. These larger compounds
are not present in essential oils because they require higher
temperatures than those employed in hydrodistillation to
become volatile (Sadgrove et al., 2016). Furthermore, heat
derived artifacts that dramatically increase the antimicrobial
activity, such as genifuranal (Sadgrove et al., 2014a), are a rare
occurrence, but if observed should nevertheless be included in
antimicrobial assays.

In ethnopharmacology there is a pronounced difference
between topical and ingestive therapies, particularly in the
context of anti-infectives. Since it is so common for antimicrobial
therapies to demonstrate in vitro activity that is only moderate, it
is only practical to interpret contact inhibition in the context of
topical applications. Where ingestive therapies are being studied,
a failure to identify highly potent antimicrobial active compounds
encourages us to examine immunomodulatory activities in
interpreting their presumed therapeutic value.

However, ingestive therapies are inherently more complex
to interpret. Often the fate of natural products is to be judged
as toxic, due to inhibition of cytochrome P450 isozymes.
Unfortunately many natural products, nutraceuticals and herbs
are considered as either toxic or as having the potential for
negative interaction with pharmaceuticals (Sasaki et al., 2017).
Nevertheless, these studies often neglect the poor absorption
of ‘toxic’ components and fail to screen metabolized forms.
Alternatively, natural therapies that contain compounds that
confer cytochrome P450 inhibition may also be considered
as adjuvants in the context of enhancement of drug half-life.
Such adjuvancy is seen to be important in the administration
of antiretroviral therapies (Dresser et al., 2000). Thus, such
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interactions must be considered more broadly both for their
potential adverse and/or beneficial effects.

Routine Antimicrobial Assays
Two methods are commonly employed to generate in vitro
antimicrobial outcomes, the first being the disc (or disk) diffusion
assay and the second more precise method, the two-fold serial
broth dilution assay, which generates a minimum inhibitory
concentration (MIC) value in a 96-well microtiter plate.

The classical ‘disk diffusion’ is a well-established method for
screening of antibacterial activity, using an absorbent paper disk
that is loaded with an extract or purified compound and placed
on the surface of a petri dish containing a medium (usually
agar based) inoculated with a test organism. After incubation
for 24–48 h, the diameter of the clearing zone around the disk
reflects the inhibitory power of the sample. The simple disk
diffusion protocol is no longer regarded as the preferred method
but continues to be used today as a pre-screening tool to aid
prioritizing samples for the more conventional method of testing.

Thus, today the standard in vitro method for measuring
antimicrobial activity is the two-fold serial broth dilution,
minimum inhibitory concentration (MIC) assay (Eloff, 1998;
Andrews, 2000) that is now controlled by the Clinical Laboratory
and Standards Institute (CLSI, 2017). While this approach
measures bacterial inhibition of an extract or compound, the
protocol can be made more comprehensive by determining
bactericidal concentration (MBC) in subsequent steps. MBC
receives the least attention in antimicrobial research, since
most antimicrobial natural products are bactericidal, due to
generalized MOA. It is less common to find drugs that are
bacteriostatic only (like tetracycline), thus, MIC and MBC
concentrations are usually within proximal range.

The MIC assay is a serial dilution method, where the
concentration of pure compound or complex mixture screened
against microbes is successively half the previous concentration.
For example, starting at 32 µg/ml, tetracycline dilutions will be
32, 16, 8, 4, 2, 1, 0.5, 0.25 µg/ml et cetera. Problematically, it is
common for reviewers to demand standard deviations. The data
is ordinal not continuous and so standard error or deviation is
not meaningful, but it is acceptable to represent the data as an
average of individual assays. Furthermore, MIC values represent
an upper maximum, with the actual value in between the MIC
value and the next dilution.

Since data is reported as µg/ml, the MIC value is not
representative of the actual efficiency of the compound, as it
would be if represented as molarity or molecules per CFU. For
example, since bacterial cell density is diluted to approximately
5 × 105 CFU/ml, a compound with MIC value of 1 µg/ml and
mass of 444.5 g/mol inhibits with 2.7 × 109 molecules per CFU,
but for a compound with double the mass, with the same MIC
value, it is 1.4 × 109 molecules per CFU, apparently showing
double the efficiency.

It is a common fallacy that the inclusion of frontline antibiotics
as a positive control is to show the efficacy of a drug in the context
of the expected outcomes from the pharmaceutical industry, with
positive control and treatment drug as competitors for the lowest
MIC value. Whilst such a comparison is important, expected

MIC values from leading antibiotics are widely known (Andrews,
2000). The inclusion of a positive control is more about validation
of the experimental protocol as executed by the researcher by
comparing results against expected outcomes. This is to provide a
higher level of standardization and quality control to create more
realistic and confident comparisons between research outcomes
from different laboratory environments. Whilst low MIC values
are of value, it is more important to consider the toxicity of a new
drug, its pharmacokinetics and the logistics of administration.
This is because the true efficacy of an antimicrobial therapy lies in
the quantities that can be safely administered to achieve optimal
MIC plasma concentration and its ability to be circulated to the
site of infection. If it is a safe and cost-effective drug, that is easily
absorbed, such as a flavonoid, then it is theoretically better than a
drug with an exponentially lower MIC value that has a narrower
toxicity threshold.

For example, purely in the ethnopharmacological context, it
is a common mistake to judge only the activity of the molecule
in vitro and not consider its relative abundance in the extract
or raw plant material. However, from a traditional practitioner’s
perspective, high concentration of a compound with medium
activity is better than very low concentration of a compound with
noteworthy activity. An example that illustrates this concerns
the volatiles from Eremophila longifolia (Sadgrove et al., 2011),
a species that is comprised of many individual chemotypes.
Some chemotypes have extremely high yields of essential oils
(isomenthone and menthone) that have only low antimicrobial
activity, but other chemotypes have low yields of essential oils
(containing borneol and α-terpineol) that have more moderate
activity. Topical use of either chemotype will likely produce
a similar antimicrobial outcome. Systemic circulation is not
important in this context since the extracts are applied directly
to the site of infection and transdermal penetration is all that is
required. In ethnopharmacological studies, provided that active
antimicrobial ingredients (or active combinations) are extracted
by the traditional method at a higher concentration than the value
given by MIC, then bacterial or fungal inhibition is possible.

However, where systemic concentrations are relevant, such as
where oral therapies are used, it is often the case that in vitro
values are not possible, yet anecdotal accounts continue to argue
in favor of the efficacy of the botanical therapy. In such cases,
it is conceivable that other mechanisms can explain infectious
control. In this regard, there has not yet been enough interest
invested in immunomodulatory compounds.

Routine Absorption and
Immunomodulatory Assays
A vast number of assays are used to create in vitro estimates
of bioavailability and immunomodulation, but researchers often
use animal skins (pig or rat) for transdermal measurements
and human epithelial colorectal adenocarcinoma cells (Caco-
2) or jejunum ex vivo for intestinal absorptivity measurements
(Angelis and Turco, 2011).

Outcomes from animal skin models are reported as either
maximum flux (Jmax in mol/cm2 per hour) or a permeability
coefficient (Kp in cm.s−1). The permeability coefficient merely
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gives rate but of more importance is the maximum flux (Jmax)
because it denotes the quantity of drug absorbed (Grice et al.,
2010). The maximum absorbable dose (MAD) for Caco-2 and
jejunum permeability is also given as a Jmax value.

Challenges to absorptivity occur in cases of poor aqueous
solubility, which can pose a significant problem to the
intravenous and ingestive approach to drug delivery; but this
does not negate the possibility of transdermal absorption, since
solubilizing agents and penetration enhancers can be used in
topical applications. Many transdermal penetration enhancers
are known and include a long list of essential oil ingredients (Aqil
et al., 2007; Chen et al., 2015), triterpene glycosides (saponins)
(Shastri et al., 2008), other surfactants (Pandey et al., 2014),
amino acids (Sarpotdar et al., 1988) and esters of omega amino
acids (Hrabálek et al., 1994), just to name a few.

As previously mentioned, inflammation can antagonize
bioavailability of topical antimicrobial drugs, with the
encapsulated boil (abscess) being the clearest example. Thus,
anti-inflammatory activities not only favor symptomatic relief
but expedite the activity of anti-infective drugs by enhancing
tissue penetration.

Animal (in vivo) and in vitro methods are commonly
used to predict anti-inflammatory activity, either by direct
observation of inflammation or measurement of inflammatory
markers, regulatory proteins or pro-inflammatory cytokines.
This follows the deduction that inflammation can be prevented
either by inhibition of regulatory proteins or binding to pro-
inflammatory cytokines.

The most common inflammatory pathways considered in vitro
include mitogen activated protein kinase (MAPK) and nuclear
factor kappa B inhibitor alpha (IkB-α), which are activated
when phosphorylated (Harbeoui et al., 2019), leading to release
of MAPKs or nuclear factor kappa B (NF-kB) respectively,
signaling expression of pro-inflammatory cytokines such as
tumor necrosis factor-α (TNF-α) and interleukins (IL-β, IL-6).
Another inflammatory pathway is controlled by cyclooxygenase
(COX) isoenzymes, which mediate expression of the lipid-based
prostaglandins, such as prostaglandin E2 (PGE2) (Ricciotti and
FitzGerald, 2011; Nile and Park, 2013). This latter pathway is
better known in the context of arthritic pain.

Markers of inflammation also include nitric oxide (NO),
inducible isoform of nitric oxide synthase (iNOS), 15-
lipoxygenase (15-LOX) and hypoxanthine oxidase or xanthine
oxidase (HX/XO) (Nowakowska, 2007; Harbeoui et al., 2019;
Lawal et al., 2019) leading to secretion of the superoxide anion in
the latter. These are more often measured to predict the level of
inflammation, rather than explain cause and effect.

The most common in vitro anti-inflammatory biomarkers
reported in the literature describe downregulation of the
proinflammatory cytokines (TNF-α, IL-β, IL-6), markers of
inflammation (NO, iNOS, 15-LOX, HX, XO), hormones (PGE2)
or regulatory proteins (MAPKs, NF-kB, COX-2).

A common in vitro method to make such prediction uses
lipopolysaccharide (LPS) induced macrophages, such as the
RAW 264.7 cell line (Harbeoui et al., 2019) and measuring
attenuation of any of the above inflammatory markers. In
the natural product world, studies often show that species

with proanthocyanidins (Lawal et al., 2019) and chalcones
(Nowakowska, 2007) often demonstrate attenuation and may
therefore have anti-inflammatory effects, provided that the
chemical species are bioavailable in the first instance and in
the second, demonstrate the same activity in vivo. Thus, it
is important for researchers to not only be aware of in vitro
outcomes from studies of poorly bioavailable compounds, but
to take into consideration the possibility of multiple activities
of the compound. For example, often phenols (flavonoids,
chalcones) non-selectively bind to all or most free enzymes.
Without selectivity (or absolute specificity) the perception of anti-
inflammatory activity is unlikely to be vindicated in vivo because
of problems of acute toxicity, which compromise potential
therapeutic effects.

Even at the very low concentrations demonstrated in vitro
for antimicrobial or anti-inflammatory therapies, it is often the
case that the same concentrations are not reached in vivo when
administered orally. In such cases presumed efficacy may possibly
be explained by such phenomena as bioaccumulation and
concentration in source tissue (lipophilic actively transported) or
another mechanism altogether involving immunomodulation as
previously mentioned.

One exciting area of research that has not yet received enough
attention is cannabinoid receptor-2 agonism (CB2) (Rom and
Persidsky, 2013). While CB1 is associated with the psychoactive
effects of cannabis smoking, the CB2 receptor mediates
anti-inflammatory and immunomodulatory activity. However,
activation of CB2 is considered immunosuppressive rather than
the converse (Olah et al., 2017). Almost counterintuitively,
immune-stimulating compounds are generally proinflammatory
(Kang and Min, 2012; Tsai et al., 2018) but can do so at
substantially lower systemic concentrations than required for
direct antimicrobial effects. Other neglected areas of research
include insulin mediated T cell stimulation (Tsai et al., 2018)
and toll-like receptor agonism (Chen and Yu, 2016). The
latter, toll-like receptors, have 13 known types to date and are
present on various immune cells as innate pathogen recognition
defense mechanisms. Fortunately some information on toll-
like receptor agonism by natural products can be garnished
from the literature (Chen and Yu, 2016), but it is clear that
a paradigm shift in the natural products world is called for,
where natural products are screened for toll-like receptor agonists
particularly type 4, in conjunction with the continuing effort to
find antimicrobial candidates.

Ingestive Therapies
Some of the important pharmacokinetic factors introduced in
this review that are most neglected in ethnopharmacological
studies include the effects of biotransformation of ingested
therapies, synergisms and antagonisms of mixtures and the
possibility of chemical variability (chemotypes) of the botanical
species studied.

The occurrence of chemotypes in medicinal species, if not
recognized, can compromise the reproducibility of bioassays.
Plants often demonstrate high degrees of intraspecific variability
of secondary metabolites. For example, the Australian species
Eremophila longifolia, highly regarded as an anti-infective
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medicinal plant by indigenous populations, is known to
have at least 10 different chemotypes (Sadgrove and Jones,
2014a). Furthermore, species may have taxonomic issues, with
heterogeneous species aggregates complicating taxonomic
determination, which will inevitably introduce chemical
variability (Sadgrove et al., 2014b). Thus, the results of
studies that screen crude extracts without further chemical
characterization of the components can fail the test of
reproducibility in subsequent research. Alternatively, if an
active ingredient is identified the effects of chemovariability can
be elucidated and issues with reproducibility can be explained.

Where chemical studies are undertaken, as previously
mentioned researchers often measure antimicrobial activities
against compounds that are evidently not absorbed or are entirely
broken down in digestion. For example, many South African
medicinal barks, or tubers, that are high in hydrolyzable and
condensed tannins are used to target gastrointestinal pathologies
(Van Wyk et al., 2009). Tannins are non-specific protein poisons
and, at the concentrations extracted by these medicinal plants,
will not only erase the gut microbiome but will also knock out
an epidermal layer. However, only condensed tannins will get as
far as the small intestine since hydrolyzable tannins are destroyed
in the acid pH of the stomach and broken into their component
phenolic acids and sugars (Figure 8). Condensed tannins and
some phenolic acids are poorly absorbed but since the site of
infection is in the gut, gastrointestinal pathologies are easily
antagonized by these therapies.

In a similar way to tannins, ingestion of saponins above a
certain threshold can also kill off the gut microbiome before
passing out in the stool, mostly undigested. But ingestion to
achieve saponin concentration below inhibitory concentration
accommodates digestion into aglycones (Figure 8), which are
absorbed more efficiently than the saponin itself. Thus, studies
that elucidate biological roles for saponins must be considered in
the context of topical versus internal application as well as dosage.

For example, dried and pulverized leaves of the Australian
medicinal plant Pittosporum angustifolium are widely traded on
the ‘underground complementary therapies market’ with claims
of anticancer activity following ingestion (Sadgrove and Jones,
2014c) together with effective reversal of gastrointestinal
pathologies. Inspired by such claims, studies examined
cytotoxicity of the main saponins against cancer cells,
demonstrating a positive outcome (Bäcker et al., 2014a,b).
These saponins are very large, with four or more sugar units,
meaning they are barely absorbed. It is likely that the O-linked
sugars are hydrolyzed and only the aglycone is absorbed or its
monosaccharide form. Thus, it makes more sense to screen the
triterpene aglycone moieties for bioactivity, since triterpenes
generally demonstrate positive outcomes across a range of
pathologies (Yamai et al., 2009). However, at one stage herbalists
were prescribing impractically high quantities, which would kill
the microbiome, thereby preventing digestion of the saponins.
Nevertheless, if they were targeting a gastrointestinal pathology
it is useful in the short-term to ingest such high quantities.
However, chronic consumption at such high concentrations may
be contraindicated, since the microbiome has importance in
digestion and indeed in modulating the immune response.

Anti-infective compounds that are not absorbed could be
given via parenteral routes to target non-local infections.
But high systemic concentrations of saponins is likely to be
dangerous, due to the hemolytic (detergent-like) effects. Such
hemolytic effects may explain the moderate antimicrobial activity
of aqueous leaf extracts of P. angustifolium against Gram-
positive organisms, which has little relevance for pathologies
requiring absorption (Sadgrove and Jones, 2013). By contrast,
the traditional use of P. angustifolium is most commonly topical,
for amelioration of eczema where infective microorganisms
could be a comorbidity (Sadgrove and Jones, 2013). Thus,
in vitro bioassays of the saponins could be informative
for topical applications, whereas extrapolation to use as an
ingested therapy is problematic. It is therefore better to
look at possible immunomodulatory effects occurring at lower
concentrations, mediated either by the saponin itself or the
aglycone moiety.

A pharmacokinetic study of ingestion of Chinese herbs
demonstrated that the monoterpene and flavonoid glycosides
were completely absent in the serum of human candidates
and the respective free aglycones were only present in trace
amounts, with dominant conjugated forms as sulfates and
glucuronides (Figure 9; Lee Chao et al., 2006). It is common
for some flavonoids to be absorbed as glucosides, the most
prominent being quercetin-3-glucoside (Németh et al., 2003).
The mechanism of absorption is active, via the glucose carrier
SGLT-1 across the brush border membrane of the small intestine
(Wolffram et al., 2002).

A similar study of the stevia glycosides demonstrated that
only the aglycone diterpene ‘steviol’ was absorbed in both
rats and humans and was dependent upon the cleavage
process in digestion (Koyama et al., 2003), which was then
metabolized to steviol glucuronide. The steviosides are evidently
hydrolyzed by the gut microbiome, a process that requires
β-glucosidase enzymes. Although the steviosides are more
popularly known as natural alternatives to sugar for sweetening
of beverages, these diterpene glycosides have been recognized
as conferring anti-inflammatory and other immunomodulatory
effects (Boonkaewwan and Burodom, 2013), wherein the
activity of the metabolite steviol was more pronounced
than the glycoside.

Most natural glycosides contain β-glycosidic linkages, which
are easily cleaved by enzymes secreted by gastrointestinal
bacteria. However, it is also common for the host plant to
have β-glucosidase isozymes (Boonclarm et al., 2006). There
is good evidence that moderate heating of a mixture of herbs
within the range of 40–70◦C can influence flavonoid β-glycosides
and β-glucosidase, driving enzyme activity, which produces
aglycones, but the enzyme denatures at higher temperatures
(Zhang et al., 2014). In ethnopharmacological research, therefore,
care must be taken to observe subtleties in methods of preparing
traditional medicines that could produce similar effects.

Aside from the gut microbiome, the human small intestine
is one of the most significant sites for the secretion of
β-glucosidases, making it the most important site for the
absorption of flavonoid aglycones (Németh et al., 2003). As
previously stated, differences in bioactivity of compounds in their
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glycosidic Vs aglycone forms challenges the reproducibility of
antimicrobial or immunomodulatory outcomes.

The role for essential oils as anti-infective agents is
another of the problematic ethnopharmacological research areas.
Antimicrobial outcomes are naively extrapolated to pathologies
that require dangerously high systemic concentrations to
achieve contact inhibition. Generally, antimicrobial outcomes
with essential oils are expected to have implications mainly
for topical therapies, because MIC concentrations are not
realistically achieved systemically. However, essential oils confer
immunomodulatory effects at substantially lower concentrations.

Positive therapeutic outcomes may be a possibility, but a more
detailed examination of mechanism of action is necessary. In the
1960s a sweetener called safrole was added to beverages. It was
subsequently demonstrated to lead to hepatotoxicity and cancers
in mice, so its use was discontinued. Although no significant
antimicrobial activity has been attributed to the preconjugated
form of safrole, a role in immunomodulation has been identified
(Sa et al., 2014). Many essential oils, not just phenylpropanoids,
have demonstrated immunomodulatory effects (Anastasiou and
Buchbauer, 2017) emphasizing again that antimicrobial assays per
se may not wholly explain the presumed therapeutic efficacy of an
aromatic medicinal plant.

Essential oil metabolites may have lower MIC values or
may even be toxic. As previously mentioned, it is difficult to
predict how the conjugated xenobiotic will look, but insight
can be garnished from in vivo pharmacokinetic studies. For
example, studies on safrole demonstrated that the carcinogenic
compound was not actually safrole, but the phase-1 metabolites
1’-hydroxysafrole and 1’-hydroxy-2’,3’-oxide. In addition, phase-
2 metabolites 1’-acetoxysafrole and safrole-1’-sulfate, were shown
to be mutagenic (Wislocki et al., 1997). These metabolites
(Figure 9) were identified by detailed study of the urine of mice.

Knowledge of the metabolite form of sulfate esters of
coumarins is another research area that could contribute to
our understanding of the immunomodulatory activity of many
species. Most notably, not much is known of the sulfate esters
of coumarins in Pelargonium sidoides (Hauer et al., 2010), a
South African medicinal root that is now marketed out of
Germany under the name ‘Umckaloabo’. Its main therapeutic
claim is for coughs and colds, but extracts show low activity
upon screening for antimicrobial compounds against respiratory
pathogens. In this case, the putative active compounds are
possibly created during metabolism. Alternatively, anti-infective
activity may be partly or wholly explained by immunomodulatory
effects, but this requires further investigation.

The commercial success of Pelargonium sidoides as a treatment
for respiratory afflictions under the name of Umckaloabo (EPs R©

7630) is due to the efforts of Charles Henry Stevens (Brendler
and Van Wyk, 2008), who in 1897 traveled from England
to South Africa upon recommendation from his doctor to
experience relief from tuberculosis. It was believed at the time
that the clean air was the point of difference that accommodated
recovery from his affliction. After consultation with a Lesotho
sangoma he was prescribed a remedy that greatly accelerated
his recovery, or so the legend goes. As previously mentioned,
today the mechanism of this remedy has eluded researchers,

but some indication of immunomodulation is evident in vitro
(Brendler, 2009).

VITAMIN D

While it is conceivable that ‘clean air’ may have played a role
in Steven’s recovery from tuberculosis, recent studies indicate
that the ‘African sun’ is more likely to have been an important
complement to the efficacy of Umckaloabo. Vitamin D deficiency
has been correlated with incidences of infection, particularly
tuberculosis, and it is believed that supplementation or sunlight
exposure (leading to Vitamin D UV-synthesis) can promote
recovery (Gombart, 2009). However, using oral doses, clinical
trials have not demonstrated consistent outcomes (Gombart,
2009) which may be related to insufficient dose or variable
oral bioavailability (Alsaqr et al., 2015). The transdermal route
is one proposed solution, but higher oral dose can also be
useful, using rich natural sources, such as the Australian food
species Tasmannia lanceolata (Poir.) A.C. Smith (Winteraceae)
or Solanum centrale J.M. Black (desert resin: Solanaceae)
(Black et al., 2017).

The immunomodulatory effects of Vitamin D3 (from sunlight)
and Vitamin D2 (from dietary sources) starts with the phase-1
liver metabolite 25(OH)D (Figure 10), which is converted to its
active form 1,25(OH)2D by the mitochondrial 1 α-hydroxylase
enzyme, the majority of which occurs in the primary renal
tubules of the kidney (Gombart, 2009). It is postulated that
1,25(OH)2D regulates specific genes encoding for antimicrobial
peptides. To date no studies have demonstrated a bioactivity
difference between D2 and D3 forms of 1,25(OH)2D or the
effects of using transdermal routes of precursors to by-pass ‘first-
pass’ metabolism, which is inevitable in oral routes, and hence
increase the half-life of its pre-conjugated form. Furthermore,
no studies have explained or nullified the potential superiority of
UV-synthesized routes of Vitamin D.

BIOAVAILABILITY ESTIMATION IN
PRACTICE: WORKED EXAMPLES

Another ‘nitrogen deficient’ class of compound that confers
noteworthy antimicrobial activity, comparable to the chalcones
and prenylated isoflavones, is the acylphloroglucinol, such as
the synthetic PPAP 23 (MIC 1 µg/mL) (Wang et al., 2019), or
the naturally occurring hyperforin (Figure 11) from St John’s
Wort (Hypericum perforatum L. Hypericaceae) (Lyles et al.,
2017), also with an MIC value at 1 µg/mL against Staphylococcus
aureus (Reichling et al., 2001). Although today St John’s Wort
is commonly prescribed for psychological ailments, it was once
prized for topical anti-infective effects. Its efficacy was reinforced
by a doctrine of signatures comparison to human skin;

“The little holes where of the leaves of Saint John’s wort are
full, doe resemble all the pores of the skin and therefore it is
profitable for all hurts and wounds that can happen thereunto.”
Coles, William (1657). Adam in Eden, or, Natures paradise. OCLC
217197164
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FIGURE 10 | Biosynthetic precursors to Vitamin D3 (top) and D2 (bottom). Vitamin D3 and D2 differ by their alkyl substituent branching from the 5 membered ring.
This difference is also evident in the 1,25-dihydroxy derivatives, which are the active immunomodulatory forms. No research has yet elucidated salient differences in
biological functions.

FIGURE 11 | Structures with antimicrobial and immunomodulatory effects that illustrate important structural caveats related to bioavailability.

An examination of the structure of hyperforin (Figure 11)
using Veber’s descriptors (Veber et al., 2002) demonstrates that
the polar headspace of 71.44 Å2 is nearly half of the prescribed
cut off for bioavailability (140 Å2). Thus, its presence in the oil
extract used in Kosovar traditional medicine (Lyles et al., 2017) is
consistent with this observation, since low polar headspace values
correlate to increased lipophilicity. The estimation of rotatable
bonds, using the current definition, gives 11, which is above
the cut off at 10 prescribed by Veber et al. (2002). However,
some ambiguity may be experienced with single bonds to sp2
hybridized orbitals (single bond to a double bonded carbon). This
is exemplified by examination of the 5,6-trans bond (E) in vitamin
D and derivatives (Figure 10) where free rotation about the

single bond replaces trans with cis bonds, which evidently doesn’t
happen without energy input. Thus, rotation about a single bond
between two sp2 hybridized carbons does not happen. This is
slightly different to hyperforin however, since the single bond is
between a methylene and a singular sp2 orbital (not between two
sp2 hybridized carbons). Nevertheless, exclusion of these bonds
from the count of ‘free’ rotatable bonds lowers the total to 6,
which may have significant implications for the interpretation of
the bioavailability of this structure. In oral bioavailability studies
maximum plasma levels were reached in 3 h (Biber et al., 1998),
indicating good absorption, an apparent contradiction of the
bioavailability estimation, if the definition of rotatable bonds
is not tightened.
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Another area of ambiguity is on structures with alkyl or
fatty acid ester side chains. Chains longer than 10 carbons
have 10 or more rotatable bonds, theoretically but not actually
reducing bioavailability. In reality, alkyl chains are considered
to enhance bioavailability by conferring lipophilicity to one
side of the molecule. Lengths in the range of 10–15 carbons
often optimize for antimicrobial efficacy against Gram-positive
organisms. Ginkgolic acid from leaves and seeds of Ginkgo
biloba L. (Ginkgoaceae) is a good example of this (Hua et al.,
2017), with 14 rotatable bonds and polar head space of 57.53
Å2 (Figure 11). But due to poor aqueous solubility, it is
unclear how suitable topically applied ginkgolic acid would be
without adequate formulation. After ingestion by mice, plasma
concentrations were measured, confirming oral bioavailability.
With rapid metabolism and return to the bowel, ginkgolic
acid is eliminated almost exclusively in feces (Xia et al.,
2013). Nevertheless, it is advisable to exercise caution when
interpreting numbers of rotatable bonds where homologous
series of methylene carbons are present (repeating CH2 units;
i.e., -CH2-CH2-CH2- and so on), such as with alkyl or fatty
acid ester groups.

Fatty acid esters in phorbols can increase toxicity by
enhancing penetration into phospholipid membranes, the site
where the drug’s mechanisms are enacted (Goel et al., 2007).
Phorbol esters belong to a class that is reputably either toxic
or in a dramatic twist, significantly therapeutic. They are
best known for tumor promotion by activation of protein
kinase c (PKC). The standard tumor promoter that is used
as a positive control in toxicity studies is phorbol 12-
myristate-13-acetate (PMA), which as the name suggests, has a
fatty acid ester, substantially increasing hydrophobicity (Boyle
et al., 2014). The number of rotatable bonds is 17, or 4
if the myristate moiety is merely counted as one and polar
headspace is 130.36 Å2 (Figure 11). Evidently this highly
toxic bioavailable phorbol ester breaks the rules set out by
Veber et al. (2002) if it is not recognized that the number of
rotatable bonds in the fatty chain complicates the process of
bioavailability estimation.

It is ironic that in the same class of compound as PMA,
one of the most potent anticancer drugs are found, which is
now in phase-2 human clinical trials. Tigilano tiglate (EBC-46;
Figure 11) was isolated from the Australian rainforest species
Fontainea picrosperma C.T.White (Euphorbiaceae). This drug
also regulates PKC expression, but it activates a more specific
subset of isoforms compared to the previously mentioned PMA
(Boyle et al., 2014). With 8 rotatable bonds and polar headspace of
159.82 Å2 this drug is slightly more hydrophilic than is acceptable
by the guidelines proposed by Veber et al. (2002). However,
this drug is normally administered by injection directly into the
tumor mass (intratumoral).

When the immunomodulatory Polynesian drug prostratin
(Figure 11), a phorbol ester, was first isolated from a
medicinal species in Samoa (Homalanthus nutans (G.Forst.)
Guill, Euphorbiaceae), it was immediately assumed it would be
dangerous in human use, but in vitro studies demonstrated its
safety and further identified HIV activation of latently infected
CD4+ T cells and exposing them to immune response, which

reduces the pathogenicity of the HIV virus (Beans et al., 2013).
Although prostratin is normally given by infusion, with a polar
headspace of 139.59 Å2 and only 3 rotatable bonds, it is a
good candidate for the transdermal or oral route, such as in the
traditional Samoan practice. Indeed, a concept for a slow release
oral tablet has been proposed (Brown and Hezarah, 2012).

Another HIV inhibitory compound, also with antimalarial
and antibacterial properties, is the polyphenol gossypol,
which is isolated from the cotton plant (Gossypium hirsutum
Malvaceae) (Polsky et al., 1989). This drug is a dimer of
heptyl-substituted naphthalene, with aldehyde and OH
substituents (Figure 11). It is worthy of mention because
of the unconventional chiral center as the bridge of the dimer,
which is a single C-C bond. Due to the OH substitution
of the aromatic carbons adjacent to the single bond free
rotation is prevented, causing two enantiomeric forms
to exist (Keshmiri-Neghab and Goliaei, 2014). Generally,
the negative enantiomer is most cited in association with
bioactivities. Since the bridging bond is not freely rotatable, the
structure has only 4 rotatable bonds and a slightly high polar
headspace of 155.52 Å2, which may slow the rate of absorption
of this compound.

The final example is of oleuropein (Figure 11), an
immunomodulatory seco-iridoid with a sugar moiety that
is most famously derived from aerial parts of the olive tree
(Olea europaea L.) (Vezza et al., 2017). Not only is this
drug able to confer anti-inflammatory effects in the tissues
of the intestines, but it also modifies the immune response
in a positive way by increasing IFN-y production, which is
associated with higher absolute numbers of CD8 + and NK
(natural killer) cells (Magrone et al., 2018). Oleuropein has
10 freely rotatable bonds and a polar headspace of 201.67 Å2

it is unlikely to be absorbed passively in the human intestine.
However, active transport of monoglycosides occurs on the
Na+/glucose cotransporter.

Thus, while there are many valuable natural products that
break rules related to passive bioavailability, exceptions can often
be made where factors related to active transport mechanisms,
alkyl side chains, rotational energy barriers or optimal steric
placement of functional groups can influence bioavailability.
Such factors need to be given careful consideration when
bioavailability estimation is attempted.

CONCLUSION

The widespread emergence of common pathogens resistant to
frontline antibiotics has prompted an increasingly desperate
search not just for new ‘magic bullets’ but also for new strategies
to deploy and administer existing drugs. Plant secondary
metabolites provide a potential treasure trove in this regard. In
this review we have surveyed a range of pertinent investigations
from our own and other laboratories. By introducing a number
of important caveats, we warn against naive extrapolation from
in vitro laboratory results to therapies that may be available to
clinicians at some future date. Our aim is not to discourage the
very valuable work currently being undertaken, particularly in the
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ethnopharmacological domain, but rather to provide indications
based on relatively simple metabolic and chemical principles that
may sharpen and concentrate the focus of researchers in the field.
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Infections due to carbapenem-resistant NDM-producing Escherichia coli represent a
major therapeutic challenge, especially in situations of pre-existing colistin resistance.
The aim of this study was to investigate combinatorial pharmacodynamics of colistin
and tigecycline against E. coli harboring blaNDM-5 and mcr-1, with possible mechanisms
explored as well. Colistin disrupted the bacterial outer-membrane and facilitated
tigecycline uptake largely independent of mcr-1 expression, which allowed a potentiation
of the tigecycline-colistin combination. A concentration-dependent decrease in colistin
MIC and EC50 was observed with increasing tigecycline levels. Clinically relevant
concentrations of colistin and tigecycline combination significantly decreased bacterial
density of colistin-resistant E. coli by 3.9 to 6.1-log10 cfu/mL over 48 h at both
inoculums of 106 and 108 cfu/mL, and were more active than each drug alone
(P < 0.01). Importantly, colistin and tigecycline combination therapy was efficacious
in the murine thigh infection model at clinically relevant doses, resulting in >2.0-
log10cfu/thigh reduction in bacterial density compared to each monotherapy. These data
suggest that the use of colistin and tigecycline combination can provide a therapeutic
alternative for infection caused by multidrug-resistant E. coli that harbored both blaNDM-5

and mcr-1.

Keywords: carbapenem-resistant Enterobacteriaceae, carbapenem-resistance, colistin-resistance, combination
therapy, MCR-1, New Delhi metallo-β-lactamases-5

INTRODUCTION

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE), especially the New Delhi
metallo-β-lactamases (NDM)-producing Escherichia coli, have become a global therapeutic
challenge in clinical and public health settings (Perez and Bonomo, 2018). In general, isolates
carrying blaNDM tend to carry other resistance genes thus limiting treatment options (Falagas
et al., 2014; Liu et al., 2019). Currently, the polymyxin antibiotics (polymyxin B and colistin)
have reemerged as the last-line therapy against CRE. However, the clinical efficacy of polymyxin
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antibiotics has been significantly compromised by the widespread
emergence of mobile colistin resistance gene mcr-1 (Liu
et al., 2016). Worryingly, the MCR-1-producing E. coli that
coexist with NDM-1, NDM-5, and NDM-9 have been recently
reported worldwide, and these isolates possess resistance to
fluoroquinolones, sulfonamides, β-lactams, tetracycline, and
aminoglycosides (Du et al., 2016; Yao et al., 2016). Fortunately,
the level of mcr-1-mediated colistin resistance is moderate (Sun
et al., 2018), thus the use of colistin-based combinations would
be of considerable clinical significance.

Tigecycline is the first of glycylcycline class that exhibited
mainly bacteriostatic activity (Meagher et al., 2005). Of note,
the decreased clinical efficacy and increased mortality have been
previously reported regarding tigecycline monotherapy in the
treatment of severe infections (Yahav et al., 2011). Therefore,
clinicians should avoid tigecycline monotherapy to reserve it as
another last-resort drug.

In this study, we systemically investigated the activity of
colistin and tigecycline combination at the clinically achievable
concentrations in vitro and in a murine thigh infection
model against carbapenem-resistant E. coli harboring blaNDM-5,
especially in situations of pre-existing the mcr-1 gene and high
bacterial burdens. Additionally, we explored the underlying
mechanisms of this combination (Figure 1) by determination of
bacterial out-membrane integrity and tigecycline accumulation.

MATERIALS AND METHODS

Organisms, Media, and Antibiotics
Five well-described E. coli strains used in this study were
2630 (ST3902, blaNDM-5), 3112 (ST1011, mcr-1), 1320 (ST648;
blaNDM-5, mcr-1), 2610 (ST101; blaNDM-5, mcr-1), and 2121
(ST156; blaNDM-5, mcr-1) (Sun et al., 2016a,b; Zhou et al.,
2017). The E. coli strain ATCC 25922 (ST73) served as the
negative control. The organisms were grown, subcultured, and
quantified in cation-adjusted Mueller-Hinton broth (CAMHB)
and agar (MHA; Difco Laboratories, Detroit, MI, United States).
Colistin (CST), tigecycline (TGC), and other used antibiotics
were purchased from Sigma-Aldrich (Shanghai, China) and
prepared as fresh stock solutions in sterile water or medium
prior to experiments.

Combinatorial Susceptibility Testing
The MICs of colistin for each E. coli strain were determined
in the absence and presence of twofold increasing tigecycline
concentrations (0.13–0.5 mg/L) using a modified broth
microdilution method (Wiegand et al., 2008). The interaction
of this combination was evaluated in duplicate for each isolate
with a checkerboard assay (CST range 0.25–32 mg/L; TGC
range 0.015–32 mg/L). Inhibition was read visually to calculate
the fractional inhibitory concentration index (FICI), with
an FICI ≤ 0.5 deemed synergistic. In addition, cell density
was assessed using a spectrometer to estimate cell densities
for MacSynergy II analysis (Prichard and Shipman, 1990).
The MacSynergy II program uses the Bliss independence
algorithm to generate a 3-dimensional response profile of the

synergy-antagonism landscape by representing the theoretical
indifferent surface. Peaks and troughs represent synergy and
antagonism, respectively, and the extents of these were defined
using interaction volumes (µM2): <25, additive; 25 to 50, minor
but significant; 50 to 100, moderate; and >100, strong synergy or
antagonism (Deshpande et al., 2016; Lai et al., 2016). The results
were expressed as the mean interaction volumes calculated at the
95% confidence level from three independent experiments.

Assessment of Colistin-Induced
Outer-Membrane Disruption
The 1-N-phenylnaphthylamine (NPN) assay was performed
to assess bacterial outer-membrane permeability to colistin as
previously described (Buyck et al., 2012). Uptake of NPN by
E. coli cells was a measure of the degree of permeability, and
the subsequent fluorescence indicated a permeability breakdown
(Macnair et al., 2018). Thus, NPN uptake was used to
quantitatively indicate the colistin-induced outer membrane
disruption. Mid-logarithmic cultures of E. coli strains were
washed and suspended in PBS to a density of 109 cfu/mL (i.e.,
OD600nm = 1.0). Bacterial cells were added to PBS containing
NPN (10 µM) and varying concentrations of colistin in black 96-
well microplates. After 1 h of incubation at 37◦C, fluorescence
was read using an EnSight multimode plate reader (PerkinElmer,
Waltham, MA, United States) at 355 nm excitation and 405 nm
emission wavelengths. NPN uptake (%) was calculated for each E.
coli strain as described elsewhere (Macnair et al., 2018). Full NPN
uptake (100%) was achieved by adding 100 mg/L of colistin.

Intracellular Accumulation of Tigecycline
The levels of tigecycline accumulation by mcr-1-positive and -
negative E. coli strains in the absence and presence of colistin
were determined as our previously described (Chen et al., 2017).
Overnight cultures of E. coli strains were diluted to 109 cfu/mL
into CAMHB and grown in the same medium for 20 min with
10 mg/L of tigecycline alone and in combination with 2 mg/L
of colistin. Bacterial cells were collected by centrifugation at
3000× g for 10 min, washed with sterile normal saline and dried
to obtain the dry weight. Bacteria cells were lysed by sonication
for 15 min and then centrifuged at 3000 × g for 10 min to
remove the cell debris. Tigecycline concentrations in the resulting
cell extracts were determined by a LC-MS/MS method (Sun
et al., 2019; details are given in the Supplementary Material). All
experiments were performed at least five independent biological
replicates. Results were expressed as amount of tigecycline
incorporated per dry weight of bacteria.

In vitro Time-Kill Experiments
In vitro time-kill experiments were conducted to characterize
the activity of the colistin and tigecycline combination using
previously described methods (Rao et al., 2016). In brief,
overnight E. coli cultures (∼106 or 108 cfu/mL) were exposed to
colistin (2 and 8 mg/L) alone and in combination with tigecycline
(0.25 mg/L) over a period of 48 h. The choice of colistin
concentrations was based on the clinically achievable serum
steady-state concentration (Css) and peak concentration (Cmax)
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FIGURE 1 | Graphic potential mechanisms for increased activity of colistin in combination with tigecycline against E. coli harboring blaNDM-5 and mcr-1:
colistin-induced bacterial outer-membrane perturbation and tigecycline accumulation. CST, colistin; TGC, tigecycline.

in humans, while the tigecycline concentration was chosen to
simulate the average Css at the clinical dose of 50 mg every 12 h
(Van Wart et al., 2006; Tran et al., 2016; Nation et al., 2017). Serial
samples were obtained at 0, 1, 3, 6, 9, 12, 24, 27, 30, 33, and 48 h
after incubation at 37◦C. Bacterial counts were determined based
on the quantitative cultures on MHA plates. Historical time-kill
data of colistin alone for portion of study strains were obtained
from our previous report (Zhou et al., 2017).

In vitro Pharmacodynamic (PD) Analysis
The concentration-effect curves were used to quantitatively
evaluate the potency of colistin and tigecycline combination
against E. coli strains harboring blaNDM-5 and mcr-1, at initial
inoculums of 106 and 108 cfu/mL, respectively. The testing
procedure consisted of four groups, and each group included
tubes with twofold increasing concentrations of colistin from
0.5 to 16 mg/L, in the absence and presence of tigecycline
at 0.13, 0.25, and 0.5 mg/L. After 48 h of incubation, the
microbiological response was measured by the log10 change
in bacterial density vs. pre-exposure at 0 h. The relationships
between colistin concentrations and antibacterial response to
single and combination therapies were fit to the Hill sigmoid
Emax model: E = E0 + Emax × CN/(EC50

N
+ CN), where E0 is

the log10 change in bacterial count without colistin, Emax is the
maximal effect, EC50 is the colistin concentration required to
achieve 50% of Emax and N is the slope of concentration-effect
curve. The PD analysis was carried out by the non-linear least-
squares regression in WinNonlin software Version 6.1 (Pharsight,
Sunnyvale, CA, United States) (Zhou et al., 2017). The coefficient
of determination (R2) was used to estimate the variance of PD
regression analysis. Mann-Whitney test was used to compare
the parameters of Emax and EC50 between mcr-1-positive and
-negative strains. Differences of PD parameter at 106 vs. 108

cfu/mL inoculum were determined using Wilcoxon signed-rank

test in GraphPad Prism 8 software (San Diego, CA, United States)
and a P value of <0.05 was considered significant.

Murine Thigh Infection Model and
Treatment Regimens
All animal experimental protocols were approved by South
China Agricultural University (SCAU) Institutional Animal
Ethics Committee (Guangzhou, China) and performed in
accordance with the SCAU Institutional Laboratory Animal
Care and Use guidelines. Six-week-old, 25–27 g, specific-
pathogen-free, female ICR mice (Hunan SJA Laboratory Animal,
Changsha, China) were rendered neutropenic by administration
of cyclophosphamide intraperitoneally as previously described
(Zhou et al., 2018). Thigh infections with each E. coli were
produced by injecting 0.1 mL of bacterial suspension in normal
saline (106.5 and 108.5 cfu/mL). At 2 h after infection, mice were
randomized to receive (i) no therapy (control), (ii) colistin at
7.5 mg/kg intraperitoneally (i.p.) twice a day (bid), (iii) tigecycline
at 5 mg/kg subcutaneously (s.c.) bid, or (iv) combination of
colistin and tigecycline. The current usual doses of colistin (3
MIU, equivalent to 240 mg, every 8 h) and tigecycline (100 mg
initially, then 50 mg bid) were acceptable for the treatment of
severe infections in humans (Meagher et al., 2005; Docobo-Perez
et al., 2012). In this study, the drug doses in mice were selected
to mimic the pharmacokinetic profiles of human clinical doses of
300 and 200 mg, respectively (Meagher et al., 2005; Karnik et al.,
2013; Zhou et al., 2017; Zhao et al., 2018). Control and antibiotic-
treated mice were sacrificed at 24 h after start of therapy. Thigh
muscles were aseptically removed, homogenized and bacteria
were cultured quantitatively using the plate counting method,
and results were expressed as the log10 cfu/thigh. Three mice
(i.e., six thighs) were included in each group. The Mann-Whitney
U-test was used to compare bacterial densities in target tissue
between mono- and combination therapies.
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TABLE 1 | Genotype summary, in vitro antimicrobial susceptibility profiles, and MICs of colistin in the absence and presence of tigecycline at 0.13, 0.25, and 0.5 mg/L
against study E. coli strainsa.

E. coli strain Relevant genotype MIC (mg/L) CST MIC (mg/L) FIC index

AMP CTX MEM GEN CIP RIF TET TGC CST alone TGC 0.13 TGC 0.25 TGC 0.5

25922 ST73; ATCC strain 4 0.06 0.03 0.5 0.008 4 1 0.13 1 NA NA NA 0.5

2630 ST3902; blaNDM-5 256 256 64 16 256 32 128 1 0.5 0.5 0.25 0.13 0.75

3112 ST1011; mcr-1 256 128 0.13 256 128 256 64 1 8 2 2 1 0.37

1320 ST648; blaNDM-5/mcr-1 128 64 16 32 128 8 128 2 4 2 0.5 0.5 0.37

2610 ST101; blaNDM-5/mcr-1 256 256 16 64 256 256 64 1 4 2 1 1 0.5

2121 ST156; blaNDM-5/mcr-1 256 256 16 128 128 4 128 1 8 4 2 0.5 0.5

aAMP, ampicillin; CTX, cefotaxime; MEM, meropenem; GEN, gentamicin; CIP, ciprofloxacin; RIF, rifampicin; TET, tetracycline; TGC, tigecycline; CST, colistin;
NA, not applicable.

FIGURE 2 | In vitro interactions between colistin and tigecycline. (A,B) Synergism as demonstrated using MacSynergy II plots of the three-dimensional
dose-response curves. The flat plane represents the predicted indifference between antagonism and synergy. Peaks and troughs represent synergy and antagonism,
respectively. Synergy expressed as the calculated interaction volumes (µM2) at a confidence interval of 95%: <25, additive; 25 to 50, minor but significant; 50 to
100, moderate; and >100, strong synergy. (C) Colistin-induced NPN uptake (%) of mcr-1-positive and -negative E. coli strains. The data represents background
subtracted fluorescence divided by the fluorescence observed at 100 mg/L of colistin. (D) Accumulations of tigecycline in E. coli strains (dry weight) after exposure to
10 mg/L tigecycline for 20 min in the presence and absence of colistin. Data shown are the means of five independent biological replicates. ∗P < 0.05; ∗∗P < 0.01;
and ∗∗∗P < 0.001.

RESULTS

In vitro Susceptibility and Interaction
Assessment
The carbapenem-resistant E. coli strains were highly resistant
to almost all tested antibiotics (Table 1). As expected, E. coli
strain 2630 lacking mcr-1 was susceptible to colistin, with an

MIC of 0.5 mg/L in the absence of tigecycline (Table 1).
However, the strains that harbored blaNDM-5 and mcr-1 were
resistant both to meropenem (MIC ≥ 16 mg/L) and colistin
(MIC ≥ 4 mg/L). Interestingly, colistin MICs for mcr-1-positive
CRE strains decreased to 1/4 to 1/16 of the original levels as
tigecycline concentration was raised from 0 to 0.5 mg/L (Table 1).
This was confirmed using the checkerboard assay that showed
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synergistic effects of the colistin and tigecycline combination. The
FICI values varied from 0.38 to 0.5 for all except the colistin
susceptible strain 2630 (Table 1). In particular, E. coli 1320 that
carried both blaNDM-5 and mcr-1 displayed a highly significant
synergistic response to this combination across the range of drug
concentrations tested, with a clear peak at 0.5 mg/L tigecycline
and 1 or 2 mg/L colistin (Figure 2A). Different degrees of synergy
were observed for all study E. coli strains with synergy volumes
that ranged from 36.9 to 183 µM2 (Figure 2B).

Colistin-Induced Outer-Membrane
Perturbation and Tigecycline
Accumulation
Carriage of mcr-1 in carbapenem-resistant E. coli strains
increased their resistance to colistin-induced outer-membrane

disruption as expected. NPN uptake in mcr-1-harboring E. coli
was significantly less than E. coli 2630 after exposure to colistin
at 0.78 to 12.5 mg/L (Figure 2C; P < 0.05), with corresponding
colistin MIC increases from 8- to 16-fold (Table 1). The colistin
concentrations required to achieve the comparable levels of
NPN uptake increased eightfold in mcr-1-positive compared
to -negative E. coli strains. For example, 45% of NPN uptake
was observed at 0.78 mg/L colistin for colistin-susceptible E.
coli 2630, while similar NPN uptake (38% to 53%) occurred at
6.25 mg/L colistin for mcr-1-harboring strains (Figure 2C). It
seems that the additional levels of outer-membrane perturbation
in a colistin-susceptible strain can be achieved by increasing
the concentration of colistin eightfold in mcr-1-harboring E.
coli strains. Importantly, when combined with the clinically
relevant concentration of colistin at 2 mg/L, intracellular
accumulations of tigecycline markedly increased in all study E.

FIGURE 3 | Combinatorial bactericidal activity of colistin and tigecycline against mcr-1-positive and -negative E. coli strains harboring blaNDM-5. (A–L) In vitro time-kill
experiments of colistin (2 and 8 mg/L) alone and in combination with tigecycline (0.25 mg/L) against all study E. coli strains at low and high inoculums over 48 h. The
horizontal dotted line represents the limit of detection for bacterial count (40 cfu/mL). Historical time-kill data of colistin alone for potion of strains was obtained from
our previous study (Zhou et al., 2017). (M,N) The concentration-effect profiles of colistin against E. coli strains harboring both blaNDM-5 and mcr-1 (i.e., 1320, 2610,
and 2121) at low (M) and high (N) inoculums following treatment with colistin (0–16 mg/L) at fixed concentrations of tigecycline (0–0.5 mg/L). Each symbol
represents the log10 change in bacterial burdens over a 48 h study period. Data points below the line represent killing and points above the line represent growth.
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coli strains (P < 0.01; Figure 2D). Although the concentration
of 2 mg/L colistin alone was insufficient to inhibit growth of
E. coli harboring both blaNDM-5 and mcr-1 (Figures 3H-J), it
provided sufficient outer-membrane perturbation to facilitate
tigecycline uptake and subsequent tigecycline-induced growth
inhibition (Figure 2D).

In vitro Time-Kill Experiments
At a low inoculum (106 cfu/mL), colistin alone at 2 mg/L achieved
complete the bactericidal activity (>6.3-log10 reduction) over
24 h against colistin-susceptible strain 2630. The activity was
not further improved at higher colistin levels or in combination
with tigecycline (Figure 3B). Against the colistin-resistant E.
coli 1320, the clinically achievable concentrations of colistin
resulted in early bactericidal activity only, with a 1.3- to 3.2-log10
reduction in bacterial density, followed by rapid regrowth beyond
6 h. However, complete bacterial eradication was attained with
the combination of 8 mg/L colistin and 0.25 mg/L tigecycline
(Figure 3D). Similarly, in the presence of 0.25 mg/L tigecycline,
substantial killing of E. coli 2610 was achieved with >2 mg/L
colistin (Figure 3I). Interestingly, despite the lack of activity that
was observed for all colistin monotherapies against E. coli 2121,
tigecycline displayed the ability to increase killing activity over
48 h of exposure to colistin (Figure 3J).

Monotherapy with a high colistin concentration (8 mg/L) or
the combination of 0.25 mg/L tigecycline and 2 mg/L colistin
exhibited sustained bactericidal activity at the high inoculum (108

cfu/mL) of E. coli 2630 (Figure 3F). However, even the high
colistin levels of 8 mg/L were inactive for the colistin-resistant
strains, whereas in combination with 0.25 mg/L tigecycline
resulted in a 2.1- to 3.9-log10 reduction in bacterial density
(Figures 3H,K–L). Tigecycline monotherapy at 0.06 or 0.25 mg/L
performed no different from the growth control against all study
E. coli at both low and high inoculums (Figure 3).

Concentration-Effect Relationships
The concentration-effect relationship was fitted to a Hill-type
equation (R2 > 0.95), and the PD parameter of EC50 representing
colistin potency was significantly greater in mcr-1-harboring
strains compared with E. coli 2630 (P < 0.01; Table 2).
In addition, the EC50 values at 108 cfu/mL inoculum were
1.5- to 18.4-times higher than those at 106 cfu/mL inoculum
(mean = 5.3, P < 0.001). In the three strains that harbored
blaNDM-5 and mcr-1, a clear tendency toward higher Emax values
were seen with a 108 cfu/mL inoculum, whereas no significant
difference was noted at 106 cfu/mL (Table 2).

Overall, we found similar dose-dependent shifts with
increasing tigecycline levels to a lower colistin concentration
required to suppress the growth of E. coli at both inoculums
(Figures 3M,N). For example, at 106 cfu/mL, inhibition of E.
coli 2630 occurred at the colistin concentration of 0.75 mg/L and
decreased threefold to 0.25 mg/L in the presence of tigecycline
(Supplementary Figure S1C). Carriage of mcr-1 increased the
colistin concentration required for growth inhibition to 8 mg/L,
which was 11-fold greater than for E. coli 2630 (Figure 3M).
However, in combination with tigecycline from 0.13 to 0.5 mg/L,
the colistin levels for growth inhibition were only 0.75 mg/L or

TABLE 2 | Hill PD parameters describing the concentration-response profiles of
colistin (0–16 mg/L) in the presence of fixed tigecycline concentrations
(0–0.5 mg/L) at low and high inoculumsa.

TGC (mg/L) in combination 106 cfu/mL 108 cfu/mL

Emax EC50 N Emax EC50 N

PD parameters for E. coli ATCC 25922

0 −9.61 1.58 2.24 −6.46 6.19 1.94

0.03 −9.85 1.01 1.53 −8.95 4.95 1.12

0.06 −8.74 0.83 1.30 −9.09 3.47 1.40

0.13 −7.22 0.55 1.73 −9.13 2.01 1.43

PD parameters for E. coli carrying blaNDM-5 (i.e., isolate 2630)

0 −9.43 0.82 8.13 −9.11 6.75 4.68

0.13 −9.68 0.49 10.7 −9.14 5.45 3.71

0.25 −9.56 0.27 10.1 −9.17 4.98 1.18

0.50 −9.57 0.26 12.9 −9.41 2.36 1.22

PD parameters for E. coli carrying mcr-1 only (i.e., isolate 3112)

0 −5.60 5.98 2.07 −2.28 8.68 1.04

0.13 −9.48 3.96 2.55 −4.33 6.01 1.71

0.25 −9.42 2.34 2.37 −7.05 3.55 1.49

0.50 −9.30 1.05 1.84 −7.52 3.48 1.59

Mean PD parameters for E. coli carrying blaNDM-5 and mcr-1
(i.e., 1320, 2610, and 2121)

0 −6.53 7.37 5.66 −2.31 10.6 4.34

0.13 −8.23 5.50 3.97 −5.25 9.91 3.69

0.25 −9.42 2.09 2.56 −7.49 7.02 2.83

0.50 −9.36 0.80 4.17 −8.60 3.98 2.13

aEmax, maximum effect compared to the no drug control for a log10 change of
bacterial density after the 48 h study period; EC50, colistin concentration required
to achieve 50% Emax; N, slope of the concentration-effect curve.

twofold and fourfold greater than the concentration needed to
synergize with tigecycline against E. coli 2630 (Figure 3M and
Supplementary Figure S1C). It seems that the mcr-1 gene only
provided protection against colistin monotherapy, but not an
ability to resist the colistin and tigecycline combination therapy.

In vivo Efficacy of Mono- and
Combination Therapies
During thigh infection with a low initial burden, colistin
monotherapy led to decreased bacterial density by 1.62-
log10cfu/thigh for colistin-susceptible E. coli 2630, compared to
the untreated control at 0 h (Figure 4B). However, for colistin-
resistant strains, neither colistin nor tigecycline monotherapy
showed a significant reduction in bacterial density after 24 h
of therapy. Interestingly, colistin and tigecycline combination
proved efficacious, resulting in >2.0 log10cfu/thigh reduction
compared to each monotherapy (P < 0.0001, Mann-Whitney
U-test; Figures 4C–F). The high initial burden in the murine
thigh infection model was used to stimulate the severe infections
that result in high mortality, and the effectiveness of combination
therapy is a general proof of principle. Monotherapy with
colistin or tigecycline did not achieve notable antibacterial
effects against E. coli harboring blaNDM-5 and mcr-1 at the high
initial inoculum (Figure 5). Importantly, the combination of
colistin and tigecycline significantly increased killing activity
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FIGURE 4 | Efficacy of colistin and tigecycline mono- and combination therapies at 24 h against E. coli ATCC 25922 (A), 2630 (B), 3112 (C) and strains harboring
blaNDM-5 and mcr-1 (D–F) in the murine thigh infection model with a low initial burden of 106 cfu/thigh. Colistin (7.5 mg/kg i.p. bid) and tigecycline (5 mg/kg s.c. bid)
and the combination were administrated at 2 h post-infection. Horizontal lines represent the mean and standard deviation of bacterial densities for each group
(n = 6). Colistin and tigecycline combination therapy resulted in a >2.0 log10cfu/thigh reduction relative to each monotherapy (P < 0.0001, Mann-Whitney U-test).

at 24 h by 1.1- to 2.7- log10cfu/thigh reduction in bacterial
density compared to control at 0 h or >2.5-log10cfu/thigh
compared to each monotherapy (P < 0.0005, Mann-Whitney
U-test; Figures 5D–F).

DISCUSSION

Treatment options for carbapenem-resistant E. coli infections
are very limited especially if the mcr-1 gene is also present
in the infecting strains. Tigecycline and colistin are currently
the last-resort antibiotics for the treatment of severe infections
(Sun et al., 2019). However, tigecycline demonstrates mainly
bacteriostatic activity with low serum levels (Van Wart et al.,
2006). Concerns have been raised regarding the efficacy of
tigecycline monotherapy in the light of decreased clinical
success rates (Yahav et al., 2011). Indeed, in the current study,
tigecycline monotherapy did not achieve positive outcomes
in a murine thigh infection model when the study E. coli
strains harbored both blaNDM-5 and mcr-1, despite the fact
that most of strains (5/6) remained susceptible to tigecycline
except the strain 1320. Fortunately, the presence of mcr-1 only
slightly increased the MIC of colistin (Zhou et al., 2017).

Consequently, there was a compelling reason to use colistin and
tigecycline in combination.

Colistin and tigecycline combination therapy against CRE
infection had varying outcomes from synergy to indifference
(Bercot et al., 2011; Karaoglan et al., 2013; Rao et al., 2016;
Cai et al., 2017; Ku et al., 2017). In this study, combination
of clinically achievable concentration of colistin and tigecycline
produced a synergistic activity in vitro against E. coli harboring
blaNDM-5 and mcr-1, resulting in a >4.0-log10cfu/mL reduction
by 48 h. An additional in vivo synergistic effect was indeed
observed in the murine thigh model, at both low and high
inoculums. Supporting our findings, colistin displayed a similar
synergistic interaction with tigecycline for carbapenem-resistant
A. baumannii and K. pneumoniae (Pournaras et al., 2011;
Karaoglan et al., 2013; Ku et al., 2017). Data from previous
case reports also showed beneficial activity of tigecycline and
colistin combination therapy against K. pneumoniae bacteremia
(Cobo et al., 2008). Interestingly, the higher dose of tigecycline
has been shown to be associated with better synergistic
outcomes against multidrug-resistant CRE, compared with the
conventional dosing regimen (De Pascale et al., 2014; Cai et al.,
2017). In contrast, a potential trend toward antagonism was
observed at lower tigecycline concentrations (Albur et al., 2012).
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FIGURE 5 | Efficacy of colistin and tigecycline mono- and combination therapies at 24 h against E. coli ATCC 25922 (A), 2630 (B), 3112 (C) and strains harboring
blaNDM-5 and mcr-1 (D–F) in the murine thigh infection model with a high initial burden of 108 cfu/thigh. Colistin (7.5 mg/kg i.p. bid) and tigecycline (5 mg/kg s.c. bid)
and the combination were administrated at 2 h post-infection. Horizontal lines represent the mean and standard deviation of bacterial densities for each group
(n = 6). Colistin and tigecycline combination therapy resulted in a >2.5 log10cfu/thigh reduction relative to each monotherapy (P < 0.0005, Mann-Whitney U-test).

Of note, previous studies that used this combination employed
different methods, and the isolates were not well-described
genotypically, making the results difficult to generalize. Here,
we demonstrated increased activity of colistin in combination
tigecycline against E. coli strains that harbored blaNDM-5 and mcr-
1, including the pandemic clonal complex ST648 (Hornsey et al.,
2011). The clinical impact of infections due to colistin-resistant
NDM-5-producing E. coli is currently unknown, but our findings
provide an alternative approach to combat such resistant strains.
In support of this view, a recent report indicated that colistin
and tigecycline combination was able to prevent the emergence
of high-level resistance to these antibiotics (Cai et al., 2017).

The potentiation effect of this combination is most likely
related to their different mechanisms of action at separate
bacterial targets. Tigecycline acts in the cytoplasm by binding to
the ribosomal complex that requires drug to enter the bacterial
cells first (Bauer et al., 2004). In general, uptake of tigecycline
across the bacterial cell wall and cytoplasmic membrane includes
two ways: passive diffusion and an energy-dependent active
transport system (Schnappinger and Hillen, 1996; Chopra and
Roberts, 2001). In Gram-negative bacteria, the cell wall is

surrounded by the outer-membrane and tigecycline moves
through membranes via porin channels in the absence of colistin
(Roberts, 2003). Colistin resulted in bacterial outer-membrane
disruption and instable regions in cytoplasmic membrane
that may facilitate tigecycline passive accumulation (Macnair
et al., 2018). Supporting this speculation, our NPN uptake
and intracellular tigecycline accumulation assays demonstrated
that exposure to colistin did promote tigecycline uptake and
subsequent tigecycline-induced growth inhibition independent
of mcr-1 expression. This scenario has been reported for colistin
in combination with minocycline, the prodrug of tigecycline
(Liang et al., 2011). However, the precise details of how
colistin affects the energy-dependent transport of tigecycline
still remain unclear.

Owing to the paucity of novel antibiotics, colistin-
based combination therapy was therefore regarded as an
alternative approach to combat colistin-resistant CRE infections.
A synergistic effect of colistin with amikacin, rifampicin, and
osthole has been reported (Lagerback et al., 2016; Liu X. et al.,
2016; Zhou et al., 2017, 2019). However, systemic administration
of colistin is associated with nephrotoxicity despite the fact that
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toxicity is dose-dependent and reversible on discontinuation of
treatment (Biswas et al., 2012). Therefore, the clinical utility
of colistin should be prudent when used in combination with
other nephrotoxic antibiotics such as gentamicin and amikacin.
Previous nephrotoxicity studies in mice indicated that only mild
kidney damage was observed until an accumulated dose of
72 mg/kg colistin, and suggested an acceptable colistin single dose
ranges within 40 mg/kg in mice (Cheah et al., 2015; Roberts et al.,
2015). Therefore, the much lower colistin dose (7.5 mg/kg) that
used in this study should be safe for mice by comparison. In
fact, many previous studies have employed 7.5 mg/kg colistin to
carry out in vivo efficacy studies in mice (Liu et al., 2016; Zhou
et al., 2017; Macnair et al., 2018). In the present study, tigecycline
demonstrated bactericidal activity against E. coli harboring
blaNDM-5 and mcr-1 when combined with the clinically relevant
concentration of colistin at 2 mg/L, which is considered as the
appropriate partnered concentration to avoid renal impairment
(Tran et al., 2016). Importantly, the combination of tigecycline
with colistin we studied here may allow lower colistin dose
sparing regimens that reduce nephrotoxicity for treating colistin-
resistant CRE infections. Previous comparative observational
studies also showed a lower-than-expected toxicity for tigecycline
and colistin combination therapy (Zhang et al., 2013). Even
patients with kidney disease could benefit from colistin-based
combination therapy, when provided with a lower daily dose
of colistin achieving comparable efficacy (Falagas et al., 2006;
Biswas et al., 2012). In addition, a retrospective cohort study
indicated that colistin is a valuable antibiotic with acceptable
nephrotoxicity (<7%) and considerable efficacy that depends on
daily dose (Falagas et al., 2010).

Our investigation has several limitations. For example, the
combination was evaluated in a small number of strains despite
the different clonal types. In addition, the murine thigh model
is a local infection model, and additional study is needed to
evaluate the usefulness of this combination in the clinical setting.
Moreover, based on our current results, we do not know whether
the colistin-induced increased accumulation of tigecycline in
bacterial cells is “drug specific” or more broad range for other
antibiotics. Although this is beyond the scope of this study, future
studies should examine this potential mechanism.

In summary, this study demonstrated increased activity of
colistin and tigecycline combination against E. coli harboring
blaNDM-5 and mcr-1. Importantly, a potentiation effect occurred
at the clinically relevant concentrations of colistin and tigecycline,
and was efficacious in the murine thigh infection model.
In addition, we demonstrated for the first time that colistin
permeabilization of the bacterial outer-membrane facilitates

the uptake of tigecycline, contributing to increased activity of
the combination.
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Host-directed therapies (HDTs) are emerging as a potential valid support in the treatment

of drug-resistant tuberculosis (TB). Following our recent report indicating that genetic

and pharmacological inhibition of transglutaminase 2 (TG2) restricts Mycobacterium

tuberculosis (Mtb) replication in macrophages, we aimed to investigate the potentials

of the TG2 inhibitors cystamine and cysteamine as HDTs against TB. We showed that

both cysteamine and cystamine restrictedMtb replication in infected macrophages when

provided at equimolar concentrations and did not exert any antibacterial activity when

administered directly on Mtb cultures. Interestingly, infection of differentiated THP-1

mRFP-GFP-LC3B cells followed by the determination of the autophagic intermediates pH

distribution (AIPD) showed that cystamine inhibited the autophagic flux while restricting

Mtb replication. Moreover, both cystamine and cysteamine had a similar antimicrobial

activity in primary macrophages infected with a panel of Mtb clinical strains belonging

to different phylogeographic lineages. Evaluation of cysteamine and cystamine activity in

the human ex vivo model of granuloma-like structures (GLS) further confirmed the ability

of these drugs to restrictMtb replication and to reduce the size of GLS. The antimicrobial

activity of the TG2 inhibitors synergized with a second-line anti-TB drug as amikacin in

humanmonocyte-derived macrophages and in the GLSmodel. Overall, the results of this

study support the potential usefulness of the TG2-inhibitors cysteamine and cystamine

as HDTs against TB.

Keywords: tuberculosis, transglutaminase 2, host-directed therapy, Mycobacterium tuberculosis, macrophage,

MDR-TB

INTRODUCTION

Tuberculosis (TB) is a leading cause of death worldwide with 10 million new TB cases and 1.6
million deaths in 2017 alone (1). The emergence and spread of Mycobacterium tuberculosis (Mtb)
strains resistant to the two most common drugs isoniazid and rifampicin (multidrug-resistant
Mtb, MDR-TB) are a cause of major concern. Among the half million cases of MDR-TB
estimated in 2017, 8.5% are expected to have a pattern of extensively drug resistant-TB (XDR-TB),
defined as the additional non-susceptibility to fluoroquinolones and an injectable drug (1). Drug
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regimens for MDR-TB patients are much more complex and
toxic compared to those commonly administered to patients with
drug-susceptible TB and consist in the combined administration
of at least four drugs for up to 20 months (2, 3). Despite the
introduction of new drugs, therapeutic regimens of MDR-TB
and XDR-TB patients show poor success rates that rarely exceed
50% in high-burden countries (4). Moreover, these regimens are
very expensive; combining direct and indirect costs, in EU states
and the US, the average cost for an MDR-TB patient is five to
six times higher than a drug-susceptible patient and increases
up to 20 times for XDR-TB (2, 5). These high costs associated
with the treatment of drug-resistant TB pose a major burden
to many countries, with relevant health, social, and economic
consequences (2).

There is an urgent need of improved treatment options for
TB, and the introduction of the new drugs delamanid and
bedaquiline, while widening the therapeutic options, has already
led to the emergence of Mtb strains resistant to these drugs (6),
frustrating the hopes of scientists, public health authorities, and
patients. In the last few years, also thanks to new insights in
TB pathogenesis, several host-directed therapies (HDTs) have
been proposed as adjunct therapy against TB and primarily
against the drug-resistant forms that do not respond to the
available treatments (7–9). Some of these HDTs are based on the
repurposing of old drugs which have already shown a good safety
record in previous clinical trials (7, 8), as is the case formetformin
(10), statins (11), and other drugs (12). These treatments may
enhance the host antimicrobial defenses or provide beneficial
effects by interfering with the mechanisms exploited by the
pathogen to persist in host tissues or by lessening inflammation
and reducing tissue damage. These beneficial effects of HDTs
can synergize with the anti-TB regimens, resulting in improved
clinical outcomes and reduced risk for emergence of drug
resistance, and may lead to shorter anti-TB regimens.

Transglutaminase 2 (TG2) is a pleiotropic enzyme belonging
to the transglutaminase family involved in several important
cellular processes including cell death/survival and autophagy
(13–15).We have recently shown that genetic or pharmacological
inactivation of TG2 enhances the anti-mycobacterial properties
of Mtb-infected macrophages, which intriguingly correlate with
reduced cell death and impairment of the LC3/autophagy
homeostasis (16). Interestingly, two TG2 inhibitors, cystamine
and cysteamine, have already been tested in clinical trials and
showed a good safety record (17, 18). Briefly, cystamine inhibits
most of the extracellular transglutaminases, while its reduced
form cysteamine can more efficiently reach the cytoplasm and
inhibit transglutaminase intracellular activities (19). In this study,
we aimed to investigate in relevant in vitro and ex vivomodels of
human Mtb infection whether these two TG2 inhibitors act as
HDTs against TB.

RESULTS

Cysteamine and Cystamine Act as a
Host-Directed Therapy Against Mtb
We have recently shown that treatment of murine and human
primary macrophages with cystamine, a TG2 inhibitor, enhances

the anti-tuberculosis activity of macrophages (16). The reduced
form of cystamine, cysteamine, is an orphan drug also well-
known as TG2 inhibitor already tested in clinical studies to treat
non-infectious diseases (18). To investigate whether cysteamine
had an anti-microbial activity against Mtb in macrophages,
THP-1 monocyte-derived macrophages were infected with Mtb
H37Rv and then treated with cystamine and cysteamine at
concentrations compatible to those achieved in vivo (16). As
shown in Figure 1A, treatment with cysteamine resulted in a
dose-dependent reduction of intracellular bacteria that reached a
similar activity with cystamine when administered at equimolar
concentrations (400µM cystamine, 800µM cysteamine). At
these concentrations, treatment with cystamine or cysteamine
did not reduce macrophage cell viability (as assessed by
measuring lactate dehydrogenase, data not shown) nor inhibit
Mtb H37Rv viability in axenic culture (Figure 1B), similar
to what was previously shown for cystine or cysteine (20).
Moreover, the combined use of isoniazid with these two drugs,
at concentrations previously used in macrophages, provided only
a slight delay in the emergence of drug-resistant bacteria. Besides,
these treatments did not result in the sterilization or strong
inhibition of the persistent population (Figure 1B), as previously
observed with other molecules with a free-thiol group [though
when administered at higher concentration as is the case of N-
acetylcysteine (NAC) at 4mM; Figure 1B] (20). Taken together
these results indicate that cystamine and cysteamine, at the
concentrations shown to inhibitMtb replication in macrophages,
do not exert any direct antimicrobial effect onMtb.

Cystamine Restricts Mtb Replication in
Macrophages While Inhibiting Autophagy
We previously showed that genetic inactivation of TG2 inmurine
macrophages results in the impairment of the LC3/autophagy
homeostasis, which nevertheless correlates with the restriction
of Mtb intracellular replication (16). To further investigate the
impact of the two TG2 inhibitors cystamine and cysteamine
on autophagy, we quantitatively evaluated the autophagic
flux by confocal pH-imaging of the autophagic intermediates
on THP-1 cells transfected with mRFP-GFP-LC3B (21). The
number and pH of autophagic intermediates are expressed
by autophagic intermediates pH distribution (AIPD), the pH
distribution of the number of autophagic intermediates per
cell. AIPD shape and amplitude are sensitive to alterations in
the autophagy pathway induced by drugs or environmental
states and allow a quantitative estimation of autophagic flux
by retrieving the concentrations of autophagic intermediates.
Briefly, the total area of the AIPD corresponds to the total
number of autophagic intermediates. An increase of high FG/FR
organelles indicates an increase of autophagomes. Formation of
autolysosomes (autophagosome–lysosome fusion) is indicated
by a shift of AIPD toward low FG/FR values, caused by
a decrease of the pH of autophagic intermediates. Thus,
this assay is not only a marker of autophagy activation but
also allows for an accurate estimation of the autophagic
flux (21).

We first assessed the suitability of the assay following
infection with the virulent Mtb H37Rv and the attenuated
strain Mycobacterium bovis BCG, which is unable to inhibit
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FIGURE 1 | Cystamine and cysteamine exert anti-mycobacterial activity only in infected macrophages. (A) THP-1 cells were infected with Mtb at MOI 1:10 and

treated with the drugs starting at 4 h p.i. until harvesting of intracellular CFU at 2 days p.i. Cystamine (400µM) or cysteamine at different concentrations (from 250 to

800µM) and isoniazid at MIC concentration were administered to infected macrophages 4 h p.i. The graph shows intracellular CFU at 2 days p.i. for the untreated and

treated THP-1. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple-comparisons test (***p < 0.005, compared with Mtb H37Rv no treatment). (B)

Viability of Mtb treated with INH (7.3µM, 20 times the MIC), cystamine (400µM) or cysteamine (800µM), NAC (4.0mM), and combination of these with INH. The

experiments, in which the combinations are shown, were performed using the same concentrations of drugs as the individual treatments. Aliquots were taken at

indicated times and plated to determine CFU. Average with SD is plotted (n = 1). Values are expressed as a mean of three independent experiments. Data were

analyzed by one-way ANOVA with Dunnett’s multiple-comparisons test against Mtb H37Rv untreated (***p < 0.005, ****p < 0.001).

autophagy and is readily degraded by macrophages (22).
Infection with Mtb and BCG expressing the Ds-Red Cherry
fluorescent protein, followed by the confocal analysis of
autophagic intermediates (21), allows distinguishing autophagic
activation and flux in infected and non-infected cells (Figure 2).
A visual inspection of the AIPDs reveals that, in BCG-infected
cells (Figure 2A), not only autophagosomes are formed at
2 h post-infection (p.i.) (increase of high FG/FR shoulder)
but also autolysosomes are forming (simultaneous shift of
AIPD toward low FG/FR values). The observed decrease of
the total number of intermediates during the time course
indicates an increased autophagic flux accompanied by a
gradual autophagy inactivation (intermediates almost disappear
at 24 h). Therefore, this indicates that the overall duration of
the autophagy process in THP-1 cells infected with BCG is
≈24 h (Figures 2A–C).

Infection with virulent Mtb (Figures 2B–D) activates
autophagy, though the AIPD shift toward acidic pH is less
pronounced compared to BCG-infected cells and is accompanied
by an increase of the neutral organelles. In contrast with the
correspondent non-infected cells, the peak of autophagosomes
(high FG/FR values) is higher than the peak of autolysosomes
(low FG/FR values; Figure 2B). This change in the shape of
the distribution indicates Mtb inhibition of the autophagic flux
following infection by preventing intermediate acidification,
in line with previous findings (22–24). Another important

difference between BCG- and Mtb-infected macrophages is

that AIPD in the latter does not undergo important changes in
shape over the same 24-h time course, indicating that cells keep
autophagy activated even at 24 h p.i. These results underscore
the usefulness of the quantitative analysis of AIPD to monitor
authophagy in macrophages infected with Mtb. Of note, we also
observed autophagic flux induction in non-infectedmacrophages
(in BCG- and Mtb-infected cells), probably resulting from the

cytokines released by infected cells (24, 25) that can act in
paracrine mode.

To investigate the impact of the TG2 inhibitors on autophagy,
THP-1 mRFP-GFP-LC3B cells were infected with Mtb H37Rv
Ds-Red Cherry and then treated with rapamycin, cystamine,
and cysteamine immediately after infection, and AIPD was
measured at 24 h later (Figure 3). As expected, treatment with
rapamycin readily induced an increase in autophagic flux;
AIPD displays an acidification of intermediates (Figure 3A)
with respect to untreatedMtb-infectedmacrophages (Figure 3B).
Conversely, treatment with cysteamine resulted in a decrease
of autophagosome acidification (Figures 3A,B), thus indicating
a partial inhibition of the autophagic flux at the level of
autophagosome maturation. To quantify the extent of the
activation or inhibition of the autophagic flux, we reported in
Figure 3C the ratio A/B between the AIPD area at the left (A)
and at the right (B) of a fixed threshold value (FG/FR = 0.55).
An increase in A/B value corresponds to an increase in the
autophagic flux. These findings are in full agreement with the
impairment of late autophagic stages reported in TG2 knockout
mice (26). Taken together, these results indicate that treatment
with cystamine, and to a lesser extent cysteamine, of THP-1
mRFP-GFP-LC3B cells infected withMtb results in the inhibition
of the autophagic flux.

Pharmacological Inhibition of TG2
Restricts Mtb Replication of Modern and
Ancient Mtb Clinical Isolates
Mtb strains belonging to different phylogeographic lineages
show different pathogenetic properties, with implications in
terms of virulence, extent of disease, transmission, and epidemic
potentials (25, 27–29).Mtb strains belonging to modern lineages
showed enhanced virulence compared with strains of the
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FIGURE 2 | Autophagic flux is altered in virulent Mtb H37Rv strain compared to M. bovis BCG. THP-1 RFP-LC3-GFP cells infected with M. bovis BCG Ds-Red

Cherry at MOI 5:1 (A) and with virulent Mtb H37Rv Ds-Red Cherry at MOI 1:1 (B). Quantitative assessment of autophagic flux during the time interval lasting 24 h

post-infection. Reported in the graphs are the number and pH of autophagic intermediates expressed by AIPD, the pH distribution of the number of autophagic

intermediates per cell. AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states and allow a

quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. An increase of high FG/FR organelles indicates an increase of

autophagomes. A shift of AIPD toward low FG/FR values indicates that the pH of autophagic intermediates is shifting to acidic values and autolysosomes formation.

(C,D) Bar graphs on the trend of autophagy during infection of M. bovis BCG and Mtb, respectively, expressed as ratios FG/FR (A/B) between the AIPD area of a fixed

threshold value. Data were analyzed by two-way ANOVA with Bonferroni’s multiple-comparisons test (*p < 0.05).

ancient lineages, and recent data from our group indicate a
different ability to induce and evade autophagy by modern
vs. ancient strains (25). To investigate whether treatment with
TG2 inhibitors could restrict the intracellular replication of
Mtb belonging to different lineages, THP-1 cells were infected
with Mtb clinical isolates of the modern Euro-American (H3
clade) and East Asian (Beijing) lineages and of the ancient
lineage EAI (EAI_MAN). As shown in Figure 4, treatment with
cysteamine and cystamine were equally effective in restricting
Mtb replication of strains of different clades, with a decrease
over the untreated control that ranged between 35 and 50%
(Figure 4B). Interestingly, we show a 50% decrease in THP-1 cells
infected with the Beijing Mtb strain. These results indicate that
cysteamine and cystamine promote an antimicrobial activity in
macrophages effective against clinical isolates representative of
theMtb genetic diversity at global level.

Cystamine Synergizes With Capreomycin
in Restricting Mtb Replication in Primary
Human Monocyte-Derived Macrophages
HDTs against TB have the potential to synergize with
antimicrobial drugs to enhance the efficacy of therapy. This
is of utmost importance during treatment of drug-resistant

TB, which relies on antibiotics that are less powerful than the

first-line drugs (9). As a proof of concept, to investigate the

potential usefulness of the TG2-inhibitors under study, human

monocyte-derived macrophages (hMDM) were infected with
Mtb and then treated with cystamine, cysteamine alone, or in

combination with the second-line anti-TB drug capreomycin.

As shown in Figure 5, cystamine reduced Mtb replication in
macrophages at a higher level compared to rapamycin (16) and
similarly to capreomycin when these drugs were administered
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FIGURE 3 | Cystamine and cysteamine block autophagy in Mtb-infected macrophages. Representative confocal laser scanning images of THP-1 RFP-LC3-GFP

infected with Mtb H37Rv Ds-Red at MOI 1:1. At 4 h p.i., cystamine (400µM), cysteamine (800µM), or rapamycin (1mM) was added, and the images were acquired at

24 h p.i. The images represent the merge of the green and the red channels. Autophagic intermediates pH distribution (average of n = 80 cells) for the same

treatments is reported along the correspondent representative images. (C) Histogram of the ratios FG/FR (A/B) between the AIPD area at the left (A) and at the right

(B) of a fixed threshold value. An increase in A/B value corresponds to an increase in the autophagic flux. Data were analyzed by two-way ANOVA with Bonferroni’s

multiple-comparisons test (***p < 0.005).

at 4 h p.i. and intracellular Mtb evaluated after 2 days of
infection. Interestingly, the combined use of cystamine and
capreomycin further reduced Mtb replication in macrophages,
indicating a synergistic effect of these drugs. A similar experiment
was repeated with amikacin, an aminoglycoside included in
group C of drugs endorsed for use in longer MDR-TB
regimens (30). As shown in Figure 5B, in hMDM, amikacin
significantly reduced Mtb intracellular growth even more than
the reduction generated by capreomycin (capreomycin = −0.32
log colony-forming units (CFU)/106 cells; amikacin = −0.89
log CFU/106 cells). Remarkably, the combined use of amikacin
and cysteamine or cystamine further reduced Mtb replication

in hMDM, providing a decrease of −1.22 log CFU/106 cells
for combination with cystamine and −1.24 log CFU/106 cells
for cysteamine over untreated infected hMDM (Figure 5B).
Interestingly, the respective anti-Mtb activity of amikacin
and capreomycin was lower at day 7 p.i. compared to
what was observed at day 2 p.i. (Figure 5C); differently, the
combination of aminoglycosides, particularly amikacin, with
cystamine and cysteamine resulted in a persistent and highly
significant reduction of intracellular CFU (Figure 5C). Taken
together, these results indicate that cystamine and cysteamine
can synergize with amikacin to enhance anti-TB activity in
infected hMDM.
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FIGURE 4 | Evaluation of cystamine and cysteamine effects in macrophages infected with different Mtb strains belonging to different lineages. Differentiated THP-1

cells were infected with MTBC clinical strains belonging to different clades (H3, Beijing, EAI_MAN) (25) at MOI 1:1. At 4 h p.i., the cells were treated with cystamine

(400µM) and cysteamine (800µM), and at 2 days p.i., cells were lysed to measure intracellular CFU (A). Values are expressed as a mean of three independent

experiments. (B) To compare the activity of the two drugs, results are expressed as percentage of mean value of CFU in triplicate of treated vs. untreated strains in

panels. Data were analyzed by two-way ANOVA with Dunnett’s multiple-comparisons test against each strain with untreated condition (**p < 0.01, ****p < 0.001).

FIGURE 5 | Evaluation of the synergistic effect of cystamine and cysteamine with aminoglycosides in human primary monocyte-derived macrophages (hMDM). hMDM

were infected with Mtb H37Rv at MOI 1:1, and at 4 h p.i., we added different drugs: cystamine (400µM), cysteamine (800µM); the antibacterial drugs belonging to

the aminoglycosides class capreomycin (4µg/ml, A) and amikacin (1µg/ml, B) and the combination of the aminoglycosides with cystamine and cysteamine. Two days

after infection, cells were lysed to assess intracellular CFU, and results are shown as log CFU/106 cells. (C) To measure the long-term effect in this in vitro model of

Mtb infection, hMDM were maintained up to 7 days p.i., and CFU were determined. Values are expressed as a mean of three independent experiments. Data were

analyzed by one-way ANOVA followed by Dunnett’s multiple-comparisons test (*p < 0.05, **p < 0.001, ***p < 0.005, ****p < 0.001 compared with Mtb H37Rv no

treatment). To measure the synergistic effect of cystamine and cysteamine in combination with capreomycin or amikacin in prolonged treatment, we compared groups

treated with antibiotic alone with those receiving the same antibiotic in combination with cysteamine or cystamine (**p < 0.01, ***p < 0.005 for amikacin treatments;

*p < 0.05, ***p < 0.001 for capreomycin treatment). Data obtained from single independent infections are reported in Supplementary Figure 1.

Cysteamine and Cystamine Are Active
Against Mtb in the Human ex vivo Model of
Granuloma-Like Structures
Infection of human peripheral blood monocyte cells (PBMCs)
with Mtb results in the formation of granuloma-like structures
(GLS) that are emerging as a valuable ex vivo model of TB
(31, 32). To investigate the activity of these HDTs against TB,
PBMCswere infected withMtbH37Rv andwith the clinical strain
Mtb H3, which in hMDM showed enhanced virulence compared
with other Mtb reference and clinical strains (25). Following
infection with Mtb, cysteamine, or cystamine was added in
infected GLS at day 6 p.i. at the concentrations previously used

in macrophages. At day 12 p.i., the total CFU counts were
evaluated, and some GLS parameters were analyzed. As shown
in Figures 6A–D, treatment with cysteamine and cystamine
resulted in a reduction in the number of GLS per field compared

with untreated GLS, while no differences were observed in the

average surface area of these GLS. Interestingly,Mtb H37Rv load

was significantly reduced in these GLS, confirming the anti-
mycobacterial activity of these two TG2 inhibitors. Infection

of PBMCs with Mtb H3 resulted in fewer GLS with smaller

areas compared with the results obtained with Mtb H37Rv

(Figures 6E–G). Again, cystamine significantly reduced the total
CFU of Mtb H3-infected GLS, while the activity of cysteamine
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FIGURE 6 | Cysteamine and cystamine reduce the fitness of Mtb in an in vitro granuloma model containing human innate and adaptive immune cells. PBMCs

obtained from healthy donors were infected with Mtb H37Rv and Mtb H3 (MOI 1:1) for up to 12 days. Representative images of granuloma-like structure formed in

vitro 10 days after infection with Mtb reference strain H37Rv (A) and H3 clinical strain (E). Magnification, ×40. Granuloma formation was scored for each condition;

the means ± standard deviations of scores representative of three experiments each are given in the images. GLS were treated with different drugs at 3 days

post-infection; the medium was replaced: cystamine (400µM), cysteamine (800µM), and INH at MIC concentration. The measurement of the number of GLS and

area was applied on day 10 p.i., 12 fields per sample were evaluated (B,C for Mtb H37Rv; F,G for Mtb H3), and CFU were determined at 3, 6, and 12 days

post-infection (D) and for clinical strain Mtb H3 (H), arrows represent the beginning of treatments (*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001).

was lower compared with the results observed in Mtb H37Rv-
infected GLS (Figure 6H). Taken together, these results indicate
that cysteamine and cystamine reduceMtb growth in the human
ex vivomodel of GLS.

To further assess the potentials of these two TG2 inhibitors as
HDTs for TB, the respective activity of cystamine and cysteamine
was assessed in combination with capreomycin and amikacin

in the GLS model. As shown in Figure 6G, treatment with

cysteamine or cystamine significantly reduced Mtb replication

even more efficiently than the treatment with capreomycin in

GLS, and the combined administration of capreomycin with the
TG2 inhibitors did not provide any addictive effect. Conversely,

the combined administration of amikacin with cystamine or
cysteamine warranted an enhanced restriction of intracellular
Mtb compared with the treatment with any of these drugs
alone. Taken together, these results indicate that cystamine and
cysteamine can synergize with a second-line anti-TB drug as
amikacin, supporting their potential usefulness as HDTs for
TB (Figures 7A,B).

DISCUSSION

Our recent report indicating that genetic and pharmacological
inhibition of TG2 restricts Mtb replication in macrophages (16)
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FIGURE 7 | Synergy effect of cysteamine and cystamine with aminoglycosides in GLS model. Granuloma-like structures obtained from healthy donors were infected

with Mtb H37Rv at MOI 1:1 and were treated with different drugs, at 3 days post-infection as described above, with the addition of co-treatment of cysteamine and

cystamine with amikacin (1µg/ml) and capreomycin (4 ug/ml). CFU were determined at 12 days post-infection (A); *p < 0.05, ***p < 0.005, ****p < 0.001 by one-way

ANOVA with Dunnett’s multiple-comparisons test compared with Mtb H37Rv no treatment. To highlight the inhibition of mycobacterial survival following the addition of

different drugs, we expressed the results as percentage of survival of treated vs. untreated cells in B.

prompted us to investigate the potential usefulness of the TG2
inhibitors cystamine and cysteamine as HDTs against TB. In
this study, using a panel of in vitro experimental assays, we
show that cysteamine and cystamine, two known inhibitors
of TG2, can restrict Mtb replication in macrophages infected
with the Mtb H37Rv reference strain and a panel of clinical
isolates representative of different phylogeographic lineages.
Interestingly, we analyzed the AIPD in THP-1 mRFP-GFP-LC3B
cells infected with Mtb and observed, for the first time, that
cystamine inhibited autophagy while restricting Mtb replication,
confirming our previous observation (16). Overall, the results of
this study support the potential usefulness of the TG2 inhibitors
cysteamine and cystamine as HDTs against TB.

TG2 is known to contribute to a few important pathologies
(15). Among the drugs that inhibit TG2, there are two small
molecules, cystamine and cysteamine. These two drugs are safe
when administered in humans; cysteamine is used to treat
cystinosis (33, 34), and both cysteamine and cystamine have
been used in human clinical trials in the treatment of diseases
which directly or indirectly implicate TG2 and autophagy
deregulation such as Huntington disease (35), cystic fibrosis
(36, 37), and celiac disease (38). It is noteworthy that cystamine
has been used as a support treatment in cancer therapy (39).
In keeping with the data reported in this study, TG2 and
autophagy are both up-regulated in cancer, playing a crucial
role in oncogenesis (39, 40). Thus, the inhibitory action exerted
by cysteamine and cystamine both on autophagy and TG2
could represent an efficient approach to favor the sensitization
of cancer cells to chemo/radio/immune therapy. Our results
showing that cysteamine and cystamine have an anti-TB activity
when administered in a monocyte-derived macrophage cell line,
in primary macrophages, or PBMCs infected with Mtb suggest
that these drugs can be safely used as HDTs for TB (9).

Cystamine and cysteamine are reducing agents that can
affect cell metabolism by increasing glutathione and L-cysteine
level (35, 41). Recently, it has been demonstrated that L-
cysteine or NAC can promote respiration in axenic Mtb culture,
preventing the emergence of drug tolerance against the two

most powerful anti-TB drugs, isoniazid and rifampicin (20).
In these experiments, L-cysteine or NAC where administered
at a concentration of 4mM, which is five times higher
than the concentration we used in our experiments involving
Mtb-infected macrophages. Indeed NAC administered at a
concentration of 10mM was shown to directly decrease Mtb
replication (42). However, in this study, we show a reproduction
of the experimental conditions indicated in Vilcheze et al.
(20), wherein cystamine or cysteamine, when administered
at the concentrations used in Mtb-infected macrophages (400
and 800µM, respectively), did not exert any direct activity
against Mtb cultured in axenic media and did not prevent the
emergence of drug tolerance against isoniazid. It follows that
the anti-tuberculosis activity of cysteamine and cystamine that
we observed in THP-1 monocyte-derived macrophages, primary
macrophages, and PBMCs is not the result of a direct effect
on Mtb. Moreover, Vilcheze et al. (20) showed that only the
molecules with a free thiol group (as L-cysteine and NAC) may
enhance Mtb metabolism, while the oxidized form, as cystine,
does not exert any activity. Conversely, in our experiments, both
cysteamine and cystamine similarly inhibit Mtb intracellularly
in infected macrophages. This suggests that the mechanism of
the anti-TB activity of the two anti-TG2 drugs described in the
present study is different from that observed when L-cysteine
or NAC is administered at a much higher concentration in Mtb
axenic cultures.

It remains to be elucidated how the impairment of autophagy
homeostasis by cysteamine and cystamine may contribute to
restrict Mtb replication. It is well-established that induction
of autophagy by various stimuli, such as rapamycin, IFN-
γ, and Vitamin D3, promotes the lysosomal degradation of
Mtb (43). However, the role of basal autophagy in infected
macrophages appears to be more complex. We have recently
demonstrated that Mtb strains from ancient and modern
lineages have a different impact on the basal autophagy flux
(25). While the ancient lineages impair the autophagic flux,
infection with the modern strains leads to a stimulation of this
process, which is dependent on the increased production of
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IL1-β triggered by these mycobacteria (25). This induction of
autophagy is however ineffective in restricting Mtb growth but
rather correlates with more exuberant Mtb replication, perhaps
by sustaining its metabolic requirements in the infected cells
(25, 44). These observations lend support to the hypothesis
that a blanket inhibition of the autophagic flux in Mtb-infected
macrophages may be detrimental for Mtb, perhaps because
it would activate apoptosis, and that Mtb may manipulate
this process in a more complex and dynamic way (45, 46).
Autophagy is a complex and conserved process that involves
multiple autophagy-associated enzymes; yet, apart from Atg5,
autophagy-deficient mice do not show increased susceptibility
to Mtb infection (47). Interestingly, the dramatic difference
in the inflammatory response was the predominant driver
for the enhanced susceptibility to Mtb infection in ATG5-
deficient mice (47), highlighting the remarkable consequences
that disruption of autophagic homeostasis can have during Mtb
infection. These experimental observations suggest that Mtb has
developed multiple strategies to escape autophagy engulfment
and regulate the autophagy flux to fine-tune its pathogenetic
strategies. Based also on the evidences generated in this study,
we propose that impairment of the autophagic flux by the TG2
inhibitors is detrimental for Mtb intracellular growth. Further
experiments are required to elucidate the functional link between
impairment of autophagy homeostasis and Mtb growth and
its consequences on inflammation when cells are treated with
cysteamine and cystamine.

Mycobacterium tuberculosis complex (MTBC) is a genetically
monomorphic species which evolved by clonal expansion since
more than 100,000 years ago, leading to seven phylogeographic
lineages which show different pathogenetic and virulence
properties (27, 28). Most of the human TB cases at global level
are caused by Mtb strains belonging to the modern lineages L2,
L3, and L4, which seem to show enhanced pathogenic properties
(29, 48, 49). More recent evidences indicate that even within
these modern lineages, some clades or clusters may be more
successful or virulent than others, indicating that the relative little
genetic variability within Mtb can nevertheless have significant
impact on infection outcome (28, 49). We and others have
recently shown that Mtb strains of diverse lineages and clades
can differently manipulate the autophagic process in infected
macrophages, with consequences in terms of intracellular
survival and cytokine/chemokine secretion (25, 50, 51). In this
study, we show that the inhibition of TG2 by cysteamine or
cystamine can effectively inhibit intracellular Mtb regardless
of MTBC lineage. Indeed Mtb strains of the H3 and Beijing
clade, which are characterized by an enhanced in vitro virulence
compared to the other lineages (25), were inhibited by the anti-
TG2 drugs, although at a lower level compared with the results
observed with the other Mtb strains. Since Mtb H3 was shown
to modulate the autophagy flux differently compared to the
other Mtb strains, exploiting the autophagic process for its own
survival (25), it is possible that the anti-TG2 drugs cysteamine
and cystamine are less effective in inhibiting the intracellular
Mtb H3. Nonetheless, these results demonstrate that cysteamine
and cystamine have an antibacterial activity against several Mtb
clinical strains representative of the global diversity ofMTBC and

support the finding that these anti-TG2 molecules are acting as
HDTs by boosting macrophage antimicrobial responses.

Inhibition of TG2 and the ensuing effect on autophagy,
in addition with the capability of these drugs to increase
the generation of glutathione-S-transferase (52), may have
consequences on the pattern of chemokines and cytokines
secreted by infected macrophages. To evaluate the activity of
cystamine and cysteamine in a more complex system, involving
multiple cell types, we implemented the ex vivo model of GLS
(31, 53). Treatment with cystamine or cysteamine of PBMCs
infected with theMtbH37Rv reference strain and theMtb clinical
strain H3 indicates a significant reduction in the total bacterial
burden in GLS, although no major differences in GLS size were
observed. These results indicate that the two anti-TG2 molecules
can exert their anti-TB activity even in this ex vivo model of
infection, further supporting their role as HDTs for TB.

HDTs against TB shall ideally serve to improve and eventually
shorten current anti-TB regimens during treatment of drug-
susceptible TB and, most importantly, drug-resistant TB. In fact,
regimens against MDR-TB are longer and more toxic primarily
because second-line drugs show reduced antimicrobial activity
compared to isoniazid and rifampicin. Since the success rate for
drug-susceptible TB is around 95% (54), we anticipate that any
HDTs against TB will be tested and the activity will be measured
inMDR-TB patients receiving second-line drugs. It is remarkable
that cysteamine, and more robustly cystamine, can reduce
intracellular Mtb growth similarly to the two aminoglycosides
tested, underscoring on one side the potential antimicrobial
activity of these two molecules and on the other the poor
activity of the second-line drugs. Given the important potential
clinical implications, we investigated the synergistic activity of
the two anti-TG2 molecules with second-line drugs as those
of the aminoglycoside class. The finding that cysteamine and
cystamine synergized when administered in combination with
capreomycin and most importantly with amikacin in primary
human macrophages infected with Mtb and in the GLS ex vivo
model of infection further highlights the potential usefulness of
these two anti-TG2 inhibitors as HDTs against TB.

In conclusion, this study shows for the first time that
cystamine and cysteamine display anti-Mtb activity while
inhibiting host cell autophagy. These safe FDA-approved
drugs have high potential applications against Mtb infection
in combination with canonical anti-TB regimen to improve
and shorten regimens against drug-susceptible TB and most
importantly during treatment of MDR-TB patients or of patients
which are at higher risk of non-compliance as migrants or
homeless. In the future, specifically designed clinical trials should
validate the efficacy for their utilization in the clinical practice,
opening a new avenue in the treatment of TB.

MATERIALS AND METHODS

Reagents and Bacterial Strains
The M. tuberculosis strain H37Rv, Mtb complex clinical strains
(MTBC), and M. bovis BCG were isolated at the Fondazione
Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore
(25, 55). The strains were grown in Middlebrook 7H9 (Difco,
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Sparks, MD) supplemented with 10% (vol/vol) oleic acid-
albumin-dextrose-catalase (OADC; Difco), with 0.2% glycerol
(Microbiol, Cagliari, Italy) and 0.05% Tween 80 (Sigma-Aldrich,
St. Louis, MO) at 37◦C. Mycobacterial cultures were harvested at
late log phase, glycerol was added at 20% final concentration, and
1-ml aliquots stored at −80◦C. All experiments with Mtb strains
were carried out in biosafety laboratory level 3 (BSL-3), following
standard safety procedures.

Growth of Mtb in vitro Cultures
Mtb H37Rv cultures were diluted until a final concentration of
≈107 CFU/ml, treated with the appropriate chemicals (cystamine
400µM, cysteamine 800µM, NAC 4mM, INH 7.3µM, or
the combination INH/Cystamine, INH/cysteamine, INH/NAC
using the same concentrations as the individual treatment),
AND incubated at 37◦C with shaking for the duration of the
experiment, and CFU were obtained by plating serial dilutions.
Plates were incubated at 37◦C for up to 6 weeks. All experiments
were carried out in BSL-3.

Study Participants
The PBMCs were derived from healthy donors. Participants were
recruited among people who had recently tested negative for QFT
negative, not vaccinated with BCG, male, Caucasian, and aged
between 30 and 35 years. Written informed consent was obtained
from each donor.

Cell Cultures
Human THP-1 cells wt were stably transduced with a retroviral
vector encoding GFP-RFP-LC3 (56). Wt and transgenic THP-1
were grown in RPMI 1640 supplemented with glutamine (2mM)
and 10% FBS. Cells were treated with 20 nM PMA (Sigma-
Aldrich, St. Louis, MO) for 24 h to induce their differentiation
into macrophages, then washed three times with PBS, and
maintained in 5% FCS.

Peripheral blood mononuclear cells (PBMCs) were obtained
from healthy donors. PBMCs were isolated by density gradient
centrifugation. Monocytes were purified from PBMCs by positive
sorting, using anti-CD14–conjugated magnetic microbeads
(Miltenyi Biotec, Auburn, CA). Human monocyte-derived
macrophages (hMDM) were obtained by cultivating adherent
monocytes for 5–6 days in X-Vivo 15 medium (Lonza,
Walkersville, MD), 2% human serum (Euroclone, Paignton,
United Kingdom) at 37◦C in a 5% humidified atmosphere until
macrophage differentiation (25).

Human cells were infected with different strains of MTBC
[multiplicity of infection (MOI) 1: 1], and at various time-points
(4 h, 2 and 7 days for hMDM), cells were washed twice with sterile
phosphate-buffered saline (PBS) to remove extracellular bacteria,
lysed in 0.01% Triton-X100 (Sigma-Aldrich, St. Louis, MO) and
intracellular bacterial loads (in CFU) determined as previously
described (57).

To assess the synergistic effect of cystamine and cysteamine
with standard antibacterial drugs, we added 4 h and 3 days
post-infection, respectively for hMDM instead of hMMO
and GLS, capreomycin (4µg/ml) (Sigma-Aldrich, St. Louis,

MO), amikacin (1µg/ml) (Sigma-Aldrich, St. Louis, MO) and
combination of these drugs with cystamine and cysteamine.

Granuloma-Like Structure Formation and
Quantification
PBMCs were obtained from healthy donors and isolated as
described above. PBMCs (containing∼1× 105 monocytes) were
immediately infected withMtb at a MOI of 1:1 and incubated for
up to 10–12 days, during which time granuloma was developed
and analyzed (31, 58). The analysis of stage of GLS has been
done daily by using an inverted light microscope. At least
12 separate fields per sample were used to establish the area
and total number of GLS (31). Intracellular bacterial growth
was assessed by counting the CFU; infected GLS were lysed
at different time-points (3, 6, and 12 days post-infection) as
described previously (57).

Confocal Microscopy
Images were obtained by using an inverted confocal microscope;
the slides were then placed on the inverted confocal microscope
(Nikon A1 MP) equipped with an on-stage incubator (T =

37◦C, 5% CO2, OKOLAB), and 32 channel spectral images
were obtained using a ×60 objective (NA 1.4) under 488-
nm excitation for Nile Red. Internal photon multiplier tubes
collected images in 16-bit, unsigned images at 0.25ms dwell
time. mRFP-GFP-LC3 was excited by an argon-ion laser line
(excitation wavelength, 488 nm; emission ranges, 500–550, 570–
620 nm). DsRED fluorescence was monitored in the channel
500–550 nm. Photomultiplier tube gain values were kept fixed
during the experiment. Pinhole was set to 1A.U.Z-. Analysis
of images acquired was performed with ImageJ 1.41 (NIH).
AIPD determination was obtained following Maulucci et al.
(21). Briefly, the R index was obtained by calculating the ratio
between fluorescence emissions in the 500–550 nm (FG) and
570–620 nm (FR) ranges, upon sample excitation at 488 nm. By
mapping R over the entire microscope scanning field, R images
can be created with the homemade downloadable software Redox
Maps Generator Green (59), and red images were overlaid;
maxima of red and green channels, representing autophagy
intermediates (“puncta”), were retrieved by the FIND MAXIMA
plugin (ImageJ). Regions of interests, including whole organelles,
were manually drawn in correspondence of the maxima, and
fluorescence intensity values were measured directly on the R
image through the SYNC WINDOWS plug-in (ImageJ). Puncta
without detectable EGFP fluorescence wereminimized to<5% of
the total number by setting adequate values for photomultipliers.
At least 50 cells per sample were analyzed to build the histogram.
Fluorescence intensities and intensity ratio data were presented
as mean ± SD, and differences were assessed by using χ

2-test.
Values of p < 0.05 were considered as significant.

Statistics
Data were analyzed using the GraphPad Prism software, version
7.02 for Windows (GraphPad Software, San Diego, CA). All
experiments were performed at least three times in triplicate.
Growth of Mtb H37Rv in in vitro cultures was evaluated
using one-way ANOVA with Dunnett’s multiple-comparisons
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test against Mtb H37Rv untreated; the statistical significance of
the differences between MTBC strains was evaluated using two-
way ANOVA with Dunnett’s multiple-comparisons test against
each strain with untreated condition. The healthy donors used
for GLS formation were adult (18–45 years of age), uninfected,
and non-vaccinated. Differences were considered significant if
p-values were ≤0.05.
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The increasing incident rates of drug-resistant tuberculosis (DR-TB) is a global health
concern and has been further complicated by the emergence of extensive and total
drug-resistant strains. Identification of new chemical entities which are compatible with
first-line TB drugs, possess activity against DR-, and metabolically less active bacteria
is required to tackle this epidemic. Here, we have performed phenotypic screening of
a small molecule library against Mycobacterium bovis BCG and identified 24 scaffolds
that exhibited MIC99 values of at least 2.5 µM. The most potent small molecule identified
in our study was a nitroso containing pyrazole derivative, NSC 18725. We observed a
significant reduction in viable bacilli load of starved Mycobacterium tuberculosis upon
exposure to NSC 18725. The action of NSC 18725 was “synergistic” with isoniazid
(INH) and “additive” with other drugs in our checkerboard assays. Structure-activity
relationship (SAR) studies of the parent compound revealed that pyrazole derivatives
without a functional group at fourth position lacked anti-mycobacterial activity in vitro.
The derivative with para-chlorophenyl substitution at the first position of the pyrazole
ring was the most active scaffold. We also demonstrate that NSC 18725 is able to
induce autophagy in differentiated THP-1 macrophages. The induction of autophagy
by NSC 18725 is the major mechanism for the killing of intracellular slow and fast-
growing mycobacteria. Taken together, these observations support the identification of
NSC 18725 as an antimycobacterial compound, which synergizes with INH, is active
against non-replicative mycobacteria and induces autophagy in macrophages.

Keywords: Mycobacterium tuberculosis, phenotypic screening, pyrazole scaffold, NSC-18725, autophagy

INTRODUCTION

Tuberculosis (TB), is responsible for the highest number of annual deaths among the infectious
diseases (Glaziou et al., 2018). Furthermore, approximately 1.7 billion individuals are estimated
to be latently infected with Mycobacterium tuberculosis. These individuals are asymptomatic,
non-infectious but at a risk of developing disease during their lifetime (Glaziou et al., 2018). The

Frontiers in Microbiology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 305158

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.03051
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.03051
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.03051&domain=pdf&date_stamp=2020-01-28
https://www.frontiersin.org/articles/10.3389/fmicb.2019.03051/full
http://loop.frontiersin.org/people/823030/overview
http://loop.frontiersin.org/people/806726/overview
http://loop.frontiersin.org/people/542716/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03051 January 28, 2020 Time: 12:35 # 2

Arora et al. Mechanism of Action of NSC18725 Against M. tuberculosis

current regimen for TB treatment comprises of an intensive phase
of 2 months of administration of isoniazid (INH), rifampicin
(RIF), ethambutol (EMB), and pyrazinamide (PZA) followed by
a 4-month continuation phase for INH and RIF administration
(Snider and Roper, 1992; Bass et al., 1994). Several factors, such
as poor patient compliance, low tolerability, and sub-optimal
drug concentration contribute to the emergence of drug resistant
(DR-) strains. Approximately, 3.5% of newly diagnosed and 18%
of previously treated TB cases are estimated to be multi-drug
resistant TB (MDR-TB), which are defined as having resistance
to both INH and RIF. Among cases of MDR-TB, 8.5% are
extensively drug resistant TB (XDR-TB), defined as individuals
having resistance to at least one fluoroquinolone and a second-
line injectable drug in addition to INH and RIF (Horsburgh
et al., 2015). The cure rates in individuals with drug-susceptible
TB (DS-TB), MDR-TB and XDR-TB, are 82, 55, and 34%,
respectively (Glaziou et al., 2018). Therefore, it is imperative to
design better tolerated and shorter drug regimens to eliminate
both DS- and DR-TB. The new candidate drug should (i) target a
novel metabolic pathway, (ii) possess activity against DR-strains
and metabolically dormant bacteria, and (iii) be compatible with
current first-line TB and anti-retroviral therapy.

High-throughput phenotypic screening is the most successful
approach for identification of new chemical entities against
M. tuberculosis. Phenotypic screening addresses challenges
associated with cell wall penetration, pro-drug activation and
results in the identification of accessible and essential bacterial
targets (Swinney, 2013; Dhiman and Singh, 2018; Yuan and
Sampson, 2018). Several groups have performed modified
phenotypic screening by incorporating conditions such as acidic,
low oxygen, nutrient starvation, reactive nitrogen intermediates,
and fatty acids as carbon source in their screening assays (Cho
et al., 2007; Mak et al., 2012; Grant et al., 2013; VanderVen et al.,
2015; Early et al., 2019). In addition, high-content screening has
also resulted in identification of compounds that inhibit growth
of intracellular M. tuberculosis (Christophe et al., 2009, 2010;
Brodin et al., 2010; Pethe et al., 2013; Stanley et al., 2014). Target-
based phenotypic screening combines the advantage of both
phenotypic and target-based screening for validation of various
metabolic pathways as drug-targets and identification of small
molecules targeting these essential enzymes (Bogatcheva et al.,
2010; Wilson et al., 2013; Moreira et al., 2015). The combination
of phenotypic screening and whole-genome sequencing of the
DR-strains has led to identification of various scaffolds that
are currently being evaluated in different stages of clinical
trials (Dhiman and Singh, 2018; Yuan and Sampson, 2018).
Among these, Bedaquiline (BDQ, targeting ATP synthase),
Pretomanid (PA-824), and Delamanid (OPC-68683, targeting
bacterial respiration) have been recently FDA-approved for
administration in individuals with MDR-TB (Diacon et al., 2014;
Li H. et al., 2019; Li Y. et al., 2019).

In the present study, we have performed conventional
phenotypic screening to identify small molecules that possess
anti-tubercular activity. Among the identified anti-mycobacterial
compounds, NSC 18725 was the most potent scaffold that
displayed an MIC99 value of 0.3125 µM against both fast
and slow growing mycobacteria in liquid cultures. The lead

compound possessed activity against starved M. tuberculosis and
was synergistic with first-line TB drug, INH in vitro. Using
medicinal chemistry approach, we demonstrate that the nitroso
functional group is important for NSC 18725 activity. Further,
we show that NSC 18725 induces autophagy and inhibits survival
of intracellular M. tuberculosis in human macrophages. Taken
together, we have identified an anti-tubercular lead compound for
future mechanistic and structure-based drug design studies.

MATERIALS AND METHODS

Cell Culture and Reagents
The maintenance and differentiation of THP-1, a human
monocytic cell line, into macrophages (THP-1) was performed
as previously described (Mawatwal et al., 2017). The details of
cell culture reagents used in the present study are provided in
Supplementary Text 1.

Bacterial Strains and Growth Conditions
The culturing of various mycobacterial strains was carried out
in Middlebrook (MB) 7H9 medium supplemented with 0.2%
glycerol, 1 × Albumin-Dextrose-Saline (ADS), 0.05% Tween-80,
or 7H11 agar supplemented with 1 × Oleic acid-Albumin-
Dextrose-Saline (OADS) as previously described (Singh et al.,
2013). For MIC99 determination assays, Staphylococcus aureus
(ATCC-BAA-976), Klebsiella pneumoniae (ATCC-33495),
and Pseudomonas aeruginosa (ATCC-2785) were cultured in
Mueller-Hinton broth. Enterococcus faecium (ATCC-19434),
Acinetobacter baumannii (ATCC-BAA-2800), and Escherichia
coli MSG1655 were cultured in brain heart infusion broth, tryptic
soy broth, and Luria-Bertani broth, respectively.

Phenotypic Screening and MIC99
Determination Assays
In vitro MIC99 determination assays against various bacterial
strains were determined as reported previously (Kidwai et al.,
2017). Preliminary screening of small molecular library at 10 µM
concentration was performed using Mycobacterium bovis BCG as
a host strain. For actual MIC99 determination, the plates were
incubated at 37◦C for 1 day in the case of ESKAPE pathogens,
2 days in the case of Mycobacterium smegmatis and 10–14 days
in the case of M. bovis BCG and M. tuberculosis. The lowest
concentration of drug at which no visible growth was observed is
reported as the MIC99 values. All assay plates included no drug,
medium only controls, and positive controls such as INH for
M. tuberculosis and M. bovis BCG and ampicillin or tetracycline
for ESKAPE pathogens. We also determined the synergy of the
lead compound NSC 18725 with various first-line TB drugs,
INH, RIF, or EMB and drugs in clinical trials, BTZ043 or BDQ
or PA-824 using checkerboard assay. The fractional inhibitory
concentration index (6FIC) in various drug-combinations was
calculated as previously described (Odds, 2003). For in vitro
killing experiments, early logarithmic cultures (OD600 nm ∼0.2)
and nutritionally starved cultures were exposed to various
drugs at 10 × MIC99 concentration as described previously
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(Betts et al., 2002; Kidwai et al., 2017). For nutritionally starved
bacteria, mid-log phase cultures were washed with 1 × PBS,
resuspended in 1 × PBS and exposed to 10 × MIC99 of drugs.
After 7 days of exposure, 10-fold serial dilutions were prepared
and plated on MB7H11 plates at 37◦C for 3–4 weeks.

Cell Viability and Intracellular Killing
Experiments
Cell viability of THP-1 cells after exposure to drugs was
determined using Cell Proliferation Reagent, WST-1 as per
manufacturer’s recommendation (Sigma-Aldrich, St. Louis, MO,
United States). For macrophage killing experiments, THP-1 cells
were infected with single-cell bacterial suspensions as previously
described (Mawatwal et al., 2017). After 4 h post-infection, the
extracellular bacteria were removed by overlaying macrophages
with RPMI medium containing 200 µg/ml of amikacin. After 2 h
of incubation, cells were washed and infected macrophages were
overlaid with RPMI medium containing drugs for indicated time
points. In another experiment, infected macrophages were pre-
treated for 1 h with 3-methyl adenine (3-MA, 10 mM), a selective
PI3K inhibitor that inhibits autophagy before treating with NSC
18725 for varied time points. Co-localization experiments were
performed by infecting THP-1 cells with GFP labeled M. bovis
BCG at a MOI of 1:10 as described above followed by treatment
with NSC 18725 treatment for 12 h. For bacterial enumeration,
10-fold serial dilutions were prepared and plated on MB7H11
plates at 37◦C for 3–4 weeks.

Confocal Microscopy Experiments
The formation and counting of LC3 puncta were estimated
using a previously published protocol (Mawatwal et al., 2017).
Briefly, drug-treated macrophages were fixed, permeabilized,
and stained with specific antibodies. The formation of LC3
puncta was manually counted in approximately 50 cells for
each experiment. In a separate experiment, vacuolar ATPase
inhibitor, Bafilomycin A1 (Baf-A1, 50 nM) was added 3 h prior
to completion of NSC 18725 treatment followed by estimation
of LC3 puncta. Further, monodansylcadaverine (MDC) staining
was also performed in drug treated THP-1 macrophages as
previously described (Mawatwal et al., 2018). The images were
acquired using confocal scanning laser microscope (CSLM, Leica
Microsystems, Wetzlar, Germany) and were finally processed for
presentation using Adobe Photoshop software. In co-localization
experiments, macrophages were fixed, stained for LC3 and
visualized under confocal microscope using same methodology
as discussed above. The% co-localization between GFP labeled
M. bovis BCG and LC3 was calculated by counting more than 50
bacteria in at least five or six random fields.

Western Blot Analysis
The expression analysis of various autophagy markers
such as Beclin-1 and Atg 3 in THP-1 macrophages was
quantified by Western blot analysis as per manufacturer’s
recommendations. Briefly, the protein samples were prepared
in radioimmunoprecipitation assay (RIPA) buffer containing
protease inhibitors. The samples were fractionated through

SDS-PAGE, transferred to nitrocellulose membrane, probed
with appropriate antibodies, and detected using ECL kit. The
relative fold intensities in drug treated samples in comparison
to control samples were quantified using ImageJ software
(NIH, United States).

Chemical Synthesis of Various Pyrazole
Derivatives
The reagents for chemical synthesis of pyrazole derivatives
were purchased from Spectrochem, India. The formation of
the final products was monitored by thin-layer chromatography
(TLC). The purification of the final products was performed
by column chromatography using silica gel. The melting
points of various compounds were recorded on EZ-Melt
automated melting point apparatus, Stanford Research Systems
and are uncorrected. IR-spectra were recorded on Perkin-
Elmer FT-IR spectrophotometer using KBr pellets, and the
values are expressed in cm−1. 1H NMR (400 MHz) and
13C NMR (100 MHz) spectra were recorded on Jeol ECX
spectrospin instrument using CDCl3 as a solvent with TMS
as an internal reference. The chemical shift values were
expressed on δ scale and the coupling constant (J) in Hz. The
mass data were recorded in Jeol-Accu TOF JMS-T100LC and
micromass LCT mass spectrometer/Data system. The synthesis
and characterization details of various small molecules are
described in Supplementary Text 1.

Statistical Analysis
Differences between groups were determined by paired (two-
tailed) t test. Differences were considered significant at a P value
of <0.05. GraphPad Prism version 8 (GraphPad Software Inc.,
San Jose, CA, United States) was used for statistical analysis and
the generation of graphs.

RESULTS

Identification of NSC 18725 as a Highly
Potent and Specific Hit for
Mycobacterium tuberculosis
In order to identify novel scaffolds with anti-tubercular activity,
we screened approximately 5,000 small molecules using M. bovis
BCG as a host strain. The small molecule library was procured
from the National Institutes of Health and compounds belonged
to either Open Set II or Oncology Set V. Initially, the preliminary
screening was performed at a single concentration of 10 µM, and
we observed a hit rate of 4.14% with 207 compounds inhibiting
bacterial growth by more than 99% (Figure 1A). These active
scaffolds were re-evaluated for MIC99 determination in a dose
dependent manner. Among the active scaffolds, 127, 56, and 24
compounds displayed MIC99 value in the range of 5–10 µM,
2.5– 5 µM, and less than 2.5 µM, respectively (Figure 1A).
Among the scaffolds that displayed MIC99 below 2.5 µM, we
selected 10 preliminary hits, and these were evaluated for their
anti-tubercular activity (Table 1 and Supplementary Figure S1).
As shown in Figure 1B, we observed that MIC99 values of NSC
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FIGURE 1 | Phenotypic screening of small molecule library obtained from NCI-DTP. (A) The small molecule library was evaluated for antimycobacterial activity at a
single concentration of 10 µM. Bars are showing number of hits that possessed activity >10 µM, between 5 and 10 µM, between 5 and 2.5 µM, and less than
2.5 µM. (B) MIC99 values for the few selected small molecules were determined as mentioned in section “Materials and Methods.” The value on y-axis denotes
MIC99 values and x-axis denotes Ids of compounds tested for antimycobacterial activity. (C) Chemical structure of most potent hit (NSC 18725;
3,5-dimethyl-4-nitroso-1-phenylpyrazole) identified in our phenotypic screening.

18725, NSC 19806, NSC 16698, NSC 19723, NSC 19793, and
NSC 4994 were comparable against both M. bovis BCG and
M. tuberculosis. However, NSC 70082, NSC 202998, NSC 338695,
and NSC 338181 showed less potency against in vitro grown
cultures of M. tuberculosis in comparison to their activity against
M. bovis BCG (Figure 1B). The most potent hits identified in
our phenotypic screening were NSC 18725 and NSC 19723, and
their activity was comparable to the activity observed for INH, a
front-line TB drug (Table 1).

In the subsequent sections, we would discuss results of
structure-activity relationship (SAR) and activity of NSC 18725
against mycobacteria in vitro and in macrophages (Figure 1C).
We next determined the antimicrobial spectrum of NSC 18725
by evaluating its activity against well-characterized ESKAPE
pathogens. As shown in Table 2, we noticed that NSC 18725
was inactive against E. coli and ESKAPE pathogens in vitro even
at 25 µM. As shown in Table 2, the control drugs inhibited
the growth of ESKAPE pathogens in vitro in the expected
range. We also evaluated NSC 18725 for activity against fast-
growing mycobacterial species M. smegmatis and observed that
the MIC99 value was similar to that obtained against slow
growing mycobacteria (Table 2). Taken together, these results
demonstrate that NSC 18725 inhibits a metabolic pathway
that is vital for in vitro growth of mycobacteria. We next
determined the mode of mycobacterial killing by NSC 18725
in vitro. As shown in Figure 2A, we observed that exposure of
M. bovis BCG early logarithmic cultures to NSC 18725 resulted
in reduction of bacterial counts by ∼9.0 folds in comparison
to untreated samples (∗P < 0.05). As expected, exposure of
early logarithmic cultures to INH for 7 days resulted in ∼450-
fold reduction in bacterial counts (Figure 2A, ∗∗P < 0.01).
Several studies have shown that M. tuberculosis enters into
dormancy in host tissues by slowing down its metabolism, and
this metabolically less active dormant bacteria is tolerant to
front-line TB drugs (Wayne and Sohaskey, 2001; Peddireddy
et al., 2017). Next, the activity of NSC 18725 was evaluated
against non-replicating persistent M. tuberculosis using nutrient-
starvation model (Betts et al., 2002). Interestingly, we observed

that exposure to NSC 18725 results in the killing of starved
bacteria in a bactericidal manner. As shown in Figure 2B,
the bacterial counts declined by ∼24.0-fold upon exposure
to NSC 18725 (∗P < 0.05). As expected, nutrient deprived-
cultures of M. tuberculosis were resistant to killing by INH after
7 days of exposure (Figure 2B). These observations indicate
that NSC 18725 targets a metabolic pathway that is essential for
M. tuberculosis to survive in nutrient limiting growth conditions.

NSC 18725 Potentiates the
Anti-tubercular Efficacy of Front-Line
Anti-tubercular Drugs and Drugs in
Clinical Trials
In order to tackle the threat imposed by anti-microbial resistance,
there is an urgent need to identify small molecules that are
compatible with first-line TB drugs and possess activity against
DR-TB. Hence, we investigated the interactions between NSC
18725 and other front-line TB drugs or drugs in clinical trials.
We measured the activity of NSC 18725 either alone or in
combination with either INH or RIF or EMB or BDQ or BTZ043
or PA-824 using checkerboard assay. As shown in Figure 2C,
NSC 18725 synergizes with INH against M. tuberculosis with
a 6FIC value of 0.375 in our checkerboard experiments. This
combination improved the individual MIC99 values of NSC
18725 and INH by 8.0 fold and 4.0 fold, respectively. The 6FIC
of NSC 18725 with RIF, EMB, BDQ, BTZ043, and PA-824 was
approximately 0.75, 2, 1, 0.75, and 1, respectively suggesting the
additive effect in these drug-combinations (Figure 2C). Taken
together, these data augur well for future evaluation of NSC18725
in combination with first-line TB drugs in particular INH against
M. tuberculosis.

Structure-Activity Relationship Studies
of NSC 18725
The parent compound, NSC 18725 (compound 5b, 3,5-dimethyl-
4- nitroso-1-phenyl-1H-pyrazole), was chemically synthesized
and evaluated for its activity against slow growing mycobacteria
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TABLE 1 | List of compounds displaying MIC99 values less than 2.5 µM identified from phenotypic screening performed in the present study.

S. No NSC number Compound name Molecular weight
(Daltons)

MIC99 (M. bovis
BCG)

1 NSC 19893 5-Fluorouracil 130.08 0.156

2 NSC 15558 (4-Fluorophenyl)(oxo)arsane 186.01 1.25

3 NSC 70082 Diethylcarbamodithioic acid; tellurium 276.9 2.5

4 NSC 203105 Mercury, bis(1-butanethiolato)- 290.78 2.5

5 NSC 202998 Phenazine 5-oxide 196.2 2.5

6 NSC 18725 3,5-Dimethyl-4-nitroso-1-phenylpyrazole 201.22 0.3125

7 NSC 19806 Cinnamaldehyde, alpha-bromo- 211.05 2.5

8 NSC 16698 2-Methoxy-4-[(Z)-2-methyl-3-nitroprop-1-enyl]phenol 223.22 2.5

9 NSC 12470 Ethyl 2-acetamido-2-cyano-5-oxopentanoate 226.23 0.156

10 NSC 338695 Benzo[g]isoquinoline-5,10-dione 209.2 2.5

11 NSC 4830 Pyridylmercuric acetate 337.73 1.25

12 NSC 4773 Phenylmercuric hydroxide 295.71 0.156

13 NSC 4994 1-Chloro-5-nitroanthraquinone 287.65 1.25

14 NSC 338181 5-[(4-Chlorophenyl)hydrazinylidene]-2-(dimethylamino)-6-methylpyrimidin-4-one 291.73 0.625

15 NSC 269612 7-Chloro-[1,4]dithiino[2,3-b]quinoxaline-2,3-dicarbonitrile 302.8 1.25

16 NSC 19723 [(E)-(4-Prop-2-enoxyphenyl)methylideneamino]thiourea 235.31 0.625

17 NSC 19793 (1Z)-1-(4-Chlorophenyl)-2-diazonio-3-methoxy-3-oxoprop-1-en-1-olate 238.63 1.25

18 NSC 338107 1-(2H-Tetrazol-5-ylhydrazinylidene)naphthalen-2-one 240.22 1.25

19 NSC 4603 Chloro(2,2-dimethylpropyl)mercury 307.18 0.156

20 NSC 63142 N-[(E)-1-(3-Bromophenyl)ethylideneamino]pyridine-4-carboxamide 318.17 1.25

21 NSC 4772 Nitrooxy(phenyl)mercury or Phermernite 339.7 0.156

22 NSC 60777 3-Methoxyestra-1,3,5(10)-triene-16,17-dione 16-oxime 313.4 2.5

23 NSC 36758 Tolonium chloride, (7-amino-8-methylphenothiazin-3-ylidene)-dimethylazanium;chloride 305.8 1.56

24 NSC 171303 3-Nitro-N-(5-nitro-1,3-thiazol-2-yl) benzamide 294.25 2.5

TABLE 2 | Activity of NSC 18725 against Mycobacterium smegmatis and ESKAPE Pathogens.

Strain name NSC 18725 (µM) Tetracycline (µg/ml) Ampicillin (µg/ml) Rifampicin (µM)

E. coli MG1655 50 0.38 Not done Not done

S. aureus (ATCC-BAA-976) 50 <0.09 Not done Not done

K. pneumoniae (ATCC – 33495) 25 25 Not done Not done

P. aeruginosa (ATCC-2785) 50 12.5 Not done Not done

E. faecium (ATCC-19434) >100 0.39 3.125 10

A. baumannii (ATCC-BAA-2800) 25 >50 >200 10

M. smegmatis mc2155 0.39–0.78 Not done Not done Not done

in liquid cultures. The synthesized parent compound (5b)
displayed a MIC99 value of 0.3125 µM, and this was similar to
the activity obtained from our phenotypic screening (Table 3).
In order to design a more potent analog, we synthesized series
of NSC 18725 structural analogs using medicinal chemistry
approach and evaluated their in vitro anti-mycobacterial activity.
We synthesized two series of compounds. In Series I the
substituted phenyl ring was attached to the N-1 position of the
pyrazole ring and lacked any substitution at the fourth position
of the pyrazole ring (3a–3f, Figure 3A). In Series II, the nitroso
group was introduced at the fourth position of the pyrazole ring
and the substituted phenyl ring was varied at the N-1 position of
the pyrazole ring (5b–5k, Figure 3B). Subsequently, the nitroso
group of the parent compound (5b) was reduced by catalytic
hydrogenation using H2 gas in the presence of a catalyst, Pd/C
(6a, Figure 4A). Finally, the halogen groups were introduced at

the fourth position of the pyrazole ring by reacting 3,5-dimethyl-
1-phenyl-1H-pyrazole (3b) with either N-bromosuccinimide or
N-chlorosuccinimide (7a, 7b, Figure 4B). The details of the
synthesis and characterization of various scaffolds are provided
in Supplementary Text 1.

In our MIC99 determination assays, we observed that pyrazole
derivatives (3a–3f) lacking a functional group at the fourth
position were inactive against M. tuberculosis and displayed an
MIC99 value greater than 50 µM (Table 3). We also noticed
that derivatives (5b–5k) having the nitroso functional group at
the fourth position were active and displayed MIC99 value in
the range of 0.039–6.25 µM. Among these molecules, pyrazole
derivative with para-chlorophenyl at the first position displayed
the highest activity in the range of 0.039–0.078 µM against
M. tuberculosis (5f, Table 3). The pyrazole derivative with p-tolyl
substitution also displayed 4.0-fold higher activity in comparison
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FIGURE 2 | (A,B) Time kill kinetics of NSC 18725 against Mycobacterium bovis BCG and Mycobacterium tuberculosis. (A) M. bovis BCG was grown till early
logarithmic phase (OD600 nm ∼0.2) and subsequently exposed to either NSC 18725 or INH for 7 days. (B) The starved M. tuberculosis cultures were exposed to
either NSC 18725 or INH for 7 days. For bacterial enumeration, 10.0-fold serial dilutions were prepared and 100 µl was plated on MB7H11 plates at 37◦C for
3–4 weeks. The data shown in panels (A,B) are mean ±SE of CFU obtained from three independent experiments. P < 0.05 and P < 0.01 are represented as ∗ and
∗∗, respectively. (C) Synergy experiments of NSC 18725 with first-line TB drugs and drugs in clinical trials against M. tuberculosis using checkerboard assay.
Two-fold serial dilutions of NSC 18725 prepared horizontally were cross-diluted vertically with two-fold serial dilutions of other drugs and 6FIC values were
calculated for each combination. Combinations with best 6FIC values are shown.

to the parent compound (5g, Table 3). We also observed that
pyrazole derivative with nitrile substitution at para-position
of the phenyl ring (5i) enhanced the activity of the parent
compound by 2.0-fold (Table 3). However, a derivative with a
bromo-group (5h) substitution at para- position of the phenyl
group displayed MIC99 values that were comparable to those
observed for the parent compound. Next, we determined the
effect of ortho- and meta- position substitution of the phenyl ring
on NSC 18725 activity. We noticed that changing the position of
substitution from para- to ortho- and meta- position resulted in
a decrease of activity by 2.0-fold (5c, with methyl substitution at

ortho-position), 4.0-fold (5d, with chloro substitution at ortho-
position) and 4.0-fold (5e, with chloro substitution at para-
position). Further, multiple substitutions on the phenyl ring
resulted in reduced activity (5j; MIC99 = 0.3125–0.6250 µM and
5 k; MIC99, = 0.3125 µM) in comparison to mono-substituted
compounds (Table 3). We observed that the derivatives with
multiple substitutions (5j, 5k) on the phenyl ring displayed
MIC99 values similar to those obtained for the parent compound
(Table 3). These observations suggest that nitroso substitution at
the fourth position of the pyrazole ring is essential for NSC 18725
activity in vitro. Also, substitution at the para-position of the
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TABLE 3 | In vitro MIC99 determination of NSC 18725 and its derivatives against both Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG.

S. No. Compound code R R1 MIC99 (µM) (M. tuberculosis H37Rv) MIC99 (M. bovis BCG)

1 3a 4-methoxyphenyl H >50 >50

2 3b Phenyl H >50 >50

3 3c o-tolyl H >50 >50

4 3d 2-chlorophenyl H >50 >50

5 3e 3-chlorophenyl H >50 >50

6 3f 4-chlorophenyl H >50 >50

7 5b Phenyl NO 0.3125 0.3125

8 5c o-tolyl NO 0.156 0.078–0.156

9 5d 2-chlorophenyl NO 0.3125–0.625 0.3125

10 5e 3-chlorophenyl NO 0.3125 0.3125–0.625

11 5f 4-chlorophenyl NO 0.039–0.078 0.039

12 5g p-tolyl NO 0.078 0.078–0.156

13 5h 4-bromophenyl NO 0.3125 0.3125

14 5i 4-cyanophenyl NO 0.156 0.156

15 5j 3,4dimethylphenyl NO 0.3125 0.3125

16 5k 2,5-dichlorophenyl NO 0.3125–0.625 0.3125

17 6 Phenyl NH2 >50 >50

18 7a Phenyl Br >50 >50

19 7b Phenyl Cl >50 >50

FIGURE 3 | (A) The schematic for synthesis of pyrazole derivatives. The commercially available acetylacetone was condensed with substituted phenyl hydrazine
hydrochloride (2a–f) at 90◦C in a solvent system of glycerol-water (1:1). The reaction was allowed to proceed for 3–4 h and the desired pyrazole derivatives were
purified using column chromatography. (B) The schematic for synthesis of pyrazole derivatives with nitroso functional group at the fourth position. The synthesis of
nitroso containing derivatives was initiated by reacting commercially available acetylacetone with NaNO2 and diluted HCl at 0◦C for 20 min resulting in the formation
of intermediate 3-(hydroxyimino) pentane-2,4-dione. The intermediate (4) was subsequently subjected to condensation with various substituted phenyl hydrazone
hydrochlorides and final products were purified using column chromatography.

phenyl ring with chloro and methyl functional groups improves
NSC 18725 anti-tubercular activity.

NSC 18725 Induces Autophagy in
Differentiated THP-1 Macrophages and
Inhibits Growth of Intracellular
Mycobacterium tuberculosis
Being a facultative intracellular pathogen, M. tuberculosis
is able to adapt to various stress conditions encountered

in the host and to replicate inside the host macrophage.
Macrophages employ numerous antimicrobial mechanisms such
as production of reactive oxygen intermediates, reactive nitrogen
intermediates, and phagosome lysosome fusion to combat
infections. Autophagy is a lysosomal degradative process and can
be used by the macrophages to inhibit growth of intracellular
M. tuberculosis (Lowrie and Andrew, 1988; Bah and Vergne,
2017). Several studies have shown that small molecules inducing
autophagy are able to clear intracellular DR- and DS-TB (Kidwai
et al., 2017; Mawatwal et al., 2017; Dhiman and Singh, 2018).
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FIGURE 4 | (A) The schematic for the synthesis of
3,5-dimethyl-1-phenyl-1H-pyrazol-4-amine. The nitroso group of the parent
compound was reduced by catalytic hydrogenation and the desired product
was obtained at a yield of 85% and purified using column chromatography.
(B) The procedure for the synthesis of 4-bromo/chloro pyrazole derivatives.
The halogen groups such as Cl, Br were introduced by reacting
3,5-dimethyl-1-phenyl-1H-pyrazole with either N-bromosuccinimide or
N-chlorosuccinimide. The desired products were obtained with a yield of 75%
and purified using column chromatography.

In order to investigate whether NSC 18725 is able to induce
autophagy, we first determined cell viability of THP-1 cells
in the presence of different concentrations of drug. We
observed that NSC 18725 at 25 µM concentration was non-
cytotoxic to THP-1 cells till 72 h of incubation and subsequent
experiments were performed at this concentration (Figure 5A).
We observed that exposure of THP-1 cells to NSC 18725
at 25 µM concentration resulted in significant LC3 puncta
formation after 12 h of incubation, hence this time point
was selected for future experiments (Figures 5B,C, ∗P < 0.05,
∗∗P < 0.01 and ∗∗∗P < 0.001). In concordance, MDC staining
revealed significant autophagic vacuole formation in NSC 18725
treated THP-1 macrophages, and this observation was further
corroborated with specific upregulation of autophagic markers
such as Beclin-1 and Atg 3 at protein level in drug-treated samples
(Figures 5D,E). As shown in Figure 5F, we observed that Beclin-
1 and Atg 3 expression was increased by ∼3.0-fold and 2.5-fold,
respectively, in NSC 18725 treated macrophages (Figure 5F,
∗P < 0.05).

Previous studies have shown that there is an accumulation of
LC3 puncta or autophagic vacuole formation during autophagy
inhibition, therefore, we next performed autophagy experiments
in NSC 18725 treated THP-1 cells in the presence of Baf-A1
(Yoshii and Mizushima, 2017). In concordance with our earlier
results, we observed that Baf-A1 addition significantly enhanced
LC3 puncta and autophagic vacuole formation in NSC 18725
pre-treated THP-1 cells in comparison to untreated macrophages
(Figures 6A–D, ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001).
These observations were further validated by quantifying co-
localization between GFP labeled M. bovis BCG and LC3 in NSC
18725 treated THP-1 cells in the absence or presence of Baf-
A1. As shown in Figures 6E,F, significant co-localization was
observed in treated THP-1 cells in the presence of Baf-A1 in
comparison to only NSC 18725 treated cells (37.9 ± 1.9% vs.
26.4 ± 2.8%, ∗P < 0.05). These observations indicate that NSC
18725 induces autophagy in human macrophages. Several reports

have shown that modulation of autophagy by small molecules
results in faster clearance of intracellular M. tuberculosis,
therefore, we further evaluated the antimicrobial efficacy of
NSC 18725 against the pathogen replicating inside macrophages
(Kidwai et al., 2017; Mawatwal et al., 2017; Dhiman and Singh,
2018). In concordance with previous studies, we observed that
autophagy induction upon NSC 18725 treatment inhibited the
growth of mycobacteria in human macrophages. We observed
that exposure to NSC 18725 resulted in approximately 64 and
78% significant reduction in bacterial counts of M. smegmatis
and M. bovis BCG, respectively in comparison to untreated
and DMSO treated macrophages (Figures 6G,H, ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001). We next studied whether 3-MA
inhibited the killing activity of NSC 18725. In concordance with
our earlier observations, we demonstrated that preincubation of
macrophages with 3-MA reduced the intracellular killing of NSC
18725 (Figure 6I, ∗P < 0.05, ∗∗P < 0.01). As expected, pre-
incubation with 3-MA only has no effect on the intracellular
growth of both M. bovis BCG and M. smegmatis. These
findings elucidate that induction of autophagy is the mechanism
by which NSC 18725 inhibits the survival of intracellular
mycobacteria. Taken together, the observations presented in this
study demonstrate that modulation of autophagy by NSC 18725
in human macrophages can be exploited further to design novel
therapeutics against TB.

DISCUSSION

The current scenario of TB epidemiology stresses for the
development of new diagnostic tools, vaccines, and drugs to
tackle the challenge of DR- and DS-TB. Despite the availability
of various scaffolds in clinical pipeline, there is an urgent need
to develop new lead molecules that possess activity against
DR- and metabolically dormant bacilli. Till date, phenotypic
and target-based screening have been extensively utilized for
identification and validation of novel anti-tubercular agents.
Although, the target-based approach has been the backbone for
drug discovery in pharmaceutical industry in past decades, it has
failed to show ample success in the area of antitubercular drug
discovery. This lack of whole-cell activity for small molecules
identified from target-based screening is attributed to their
poor penetration. Phenotypic screening has led to identification
of various antitubercular scaffolds with a novel mechanism of
action (Dhiman and Singh, 2018). The highly infectious and
pathogenic nature of M. tuberculosis along with the prerequisite
for complex infrastructure for handling M. tuberculosis led us to
use M. bovis BCG as a surrogate host for initial screening. In
the present study, we have performed whole cell based screening
and identified 24 scaffolds that possessed anti-mycobacterial
activity below 2.5 µM. In concordance, with previous studies,
majority of these compounds showed comparable activity against
both M. bovis BCG and M. tuberculosis in vitro (Taneja and
Tyagi, 2007; Altaf et al., 2010; Stanley et al., 2012; Kidwai et al.,
2017). However, NSC 70082, NSC 202998, NSC 338695, and
NSC 338181 displayed better activity against M. bovis BCG in
comparison to M. tuberculosis. This differential activity could be
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FIGURE 5 | The effect of NSC 18725 pre-treatment on cell viability and autophagy induction in THP-1 cells. (A) THP-1 cells were treated with different
concentrations of NSC 18725, and cell viability was determined through WST-1 assay. The data shown on y-axis is percentage cell viability obtained from control
and drug-treated macrophages. (B) THP-1 cells were treated with either 25 µM NSC 18725 or DMSO for 6, 12, and 24 h. At designated time points, macrophages
were fixed, stained with anti-LC3 antibody, and immunofluorescent images were captured using a confocal microscope. The images shown are representative of
three independent experiments. Scale bar given is 10 µM. (C) The LC3 puncta formation in images shown in panel (B) were counted in a random manner (n = 50).
The data shown on y-axis is mean ±SE of puncta formation/cell obtained from three independent experiments. (D) THP-1 cells were pre-treated with either 25 µM
NSC 18725 or DMSO for 12 h. Subsequently, MDC staining was performed and images of fixed cells were acquired under a confocal microscope. Images given are
the representation of the experiment performed in duplicates. Scale bar given is 10 µM. (E) THP-1 cells were pre-incubated with NSC 18725 (25 µM) for 12 h
followed by whole cell lysate preparation. The expression of Beclin-1 and Atg 3 in various samples was analyzed through immunoblotting using specific antibodies.
The immunoblots shown are representative of three independent experiments. (F) This panel depicts the quantification of the fold change in the expression of
Beclin-1 and Atg-3 in NSC 18725 pre-treated samples in comparison to control macrophages for the blots shown in panel (E). The data is shown as mean ± SE of
fold change in expression obtained from three independent experiments. P < 0.001, P < 0.01, P < 0.05 are represented as ***, **, and *, respectively.

attributed to (i) altered expression levels of their respective drug-
targets in M. bovis BCG and M. tuberculosis (ii) modification of
the drug-target in M. tuberculosis or (iii) differential ability of the
small molecules to penetrate inM. bovis BCG andM. tuberculosis.

In the present study, we have performed detailed
characterization of NSC 18725 (3,5-dimethyl-4-nitroso-1-
phenylpyrazole), the most active compound identified in our
phenotypic screening. Pyrazoles containing pharmaco-active
agents are potent medicinal scaffolds and exhibit a broad
spectrum of biological activities such as antimicrobial, anti-
inflammatory, anti-cancer, analgesic, and neuroprotection
(Wilfred et al., 1956, 1958; Slack, 1957; Daidone et al., 1992;
Bekhit et al., 2005; Chandra et al., 2010; Ahsan et al., 2011;
Keche et al., 2012; Maurya et al., 2013; Alegaon et al., 2014;
Pathak et al., 2014; Naim et al., 2016). We also observed that
NSC 18725 displayed MIC99 value of ∼0.3125 µM against
slow growing mycobacteria and was non-cytotoxic to THP-1
macrophages even at 25 µM concentration. SAR studies revealed
that the nitroso group is important for anti-tubercular activity
associated with this series. In concordance previous studies
have also shown that nitro or nitroso functional groups are
essential for the anti-tubercular activity of small molecules
(Singh et al., 2008; Kidwai et al., 2017, 2019). We also show
that substitution at the para-position of the phenyl ring with
either electron withdrawing group such as (chloro and cyano)

or electron donating groups (such as methyl) improved NSC
18725 activity in vitro. A major limitation in the field of drug
development is target identification of small molecules identified
from phenotypic screens. In the present work, we have also tried
to generate resistant mutant strains against NSC 18725 but all
these attempts have been unsuccessful.

Indiscriminate use of antimicrobial drugs globally has resulted
in increased incident rates of various DR-TB strains. Several
studies have shown that pyrazole derivatives possess activities
against various microbial species such as S. aureus, P. aeruginosa,
Bacillus subtilis, E. Coli, and Salmonella typhi as well as fungal
strains such as Aspergillus niger and Candida albicans (Keche
et al., 2012; Naim et al., 2016; Karrouchi et al., 2018). Therefore,
we also evaluated the ability of NSC 18725 against a panel of
resistant strains that constitute ESKAPE pathogens. However,
we observed that NSC 18725 failed to inhibit the in vitro
growth of the tested ESKAPE pathogens thereby indicating that
these pyrazole derivatives lack cross resistance with existing
drugs and target a mycobacteria specific metabolic pathway.
Another challenge in the field of TB chemotherapy is that
among various clinical candidates very few scaffolds are able
to inhibit the growth of dormant bacteria. Here, we show
that NSC 18725 is able to kill the dormant population of
M. tuberculosis thereby indicating that NSC 18725 might target
a metabolic pathway which is essential for M. tuberculosis to
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FIGURE 6 | The effect of NSC 18725 on autophagic flux and intracellular mycobacterial growth. (A) THP-1 cells were pre-treated with 25 µM NSC 18725 for 12 h
and Baf-A1 treatment was performed as described in section “Materials and Methods.” At designated time points, cells were fixed, stained with anti-LC3, and
immunofluorescent images were captured using a confocal microscope. The image shown is representative of three independent experiments. Scale bar given is
10 µM. (B) The formation of LC3 puncta in panel (A) in different samples were quantified in a random manner (n = 50). The data shown on y-axis is mean ±SE of
LC3 puncta formation per cell obtained from three independent experiments. (C) Quantitative data depicting normalized values of LC3 puncta formation in 18725
treated THP-1 cells in the absence or presence of Baf-A1. (D) MDC staining of macrophages pre-treated with NSC 18725 in the presence or absence of Baf-A1 was
performed as described in section “Materials and Methods.” The images shown in this panel are representative of experiments performed in duplicates. Scale bar
given is 10 µM. (E) THP-1 cells were infected with GFP labeled M. bovis BCG for 4 h at a MOI of 1:10 before treating with NSC 18725 for 12 h. In few combinations,
Baf-A1 was added as described earlier before staining with LC3 antibody followed by visualization under confocal microscope. This panel represents the cumulative
quantification depicting co-localization between phagosomes and LC3 in three independent experiments and data is represented as mean ± SE (F) The images
shown in this panel are representative of experiments performed in triplicates. Scale bar given is 10 µM. (G,H) THP-1 macrophages were infected with either
Mycobacterium smegmatis with MOI of 1:1 (G) or Mycobacterium bovis BCG with MOI 1:10 (H) and anti-tubercular activity of NSC 18725 against intracellular
mycobacteria was determined as described in section “Materials and Methods.” (I) The antimycobacterial activity of NSC 18725 against intracellular M. smegmatis
and M. bovis BCG was determined in the presence of 3-MA as described in section “Materials and Methods.” The data shown in this panel is mean ± SE of
bacterial numbers obtained from three or four independent experiments. P < 0.001, P < 0.01, P < 0.05 are represented as ***, **, and *, respectively.

survive in nutrient limiting growth conditions. Most of the
compounds that are currently in different stages of clinical
trials possess activity against both DS- and DR- strains in vitro
and show synergistic effect with the current TB drugs. We
also observed that NSC 18725 shows synergistic effect with
INH and additive effect with other tested TB drugs. Our
results demonstrate that if used in combination, NSC 18725
can potentially reduce the dosage associated toxicity associated
with TB drugs. These observations suggest that evaluation of
NSC 18725 in combination with other first- and second-line
drugs could help design better regimens against both DS- and
DR-TB infection.

In the present study, we also validated the activity of NSC
18725 against intracellular mycobacteria in macrophage model

of infection. We observed that pre-incubation with NSC 18725
resulted in LC3 puncta formation and increased expression of
autophagy markers such as Atg 3 and Beclin-1. This NSC18725
mediated modulation of autophagy resulted in inhibition of
growth of mycobacteria in infected macrophages. We also
observed that pre-incubation of THP-1 macrophages with 3-
MA completely abrogated the intracellular activity associated
with NSC 18725. Therefore, we hypothesize, that induction
of autophagy is the main mechanism by which NSC 18725
inhibits intracellular bacterial growth in macrophages. These
observations are in concordance with previous reports showing
that induction of autophagy can be harnessed as a host-directed
therapy (HDT) either alone or in combination with first-line
TB drugs (Dara et al., 2019). Despite identification of autophagy
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inducers, enough information is not available about the co-
operative action of various known or unknown mechanisms
regulated by autophagy (Paik et al., 2019). Therefore, evaluation
of promising autophagy inducers as host-directed therapy either
alone or in combination with first-line TB drugs will refine
therapeutic interventions against TB.

Taken together, we have identified a pyrazole derivative
that possesses anti-mycobacterial activity. We showed that this
compound is active against both actively growing, dormant
bacteria, and the nitroso group is essential for the observed
anti-tubercular activity. Finally, we also show that NSC 18725
induces autophagy and inhibits the growth of intracellular
mycobacteria in macrophages. Further experiments include (i)
designing of structural analogs with better therapeutic index,
(ii) understanding the mechanism of action of NSC 18725
in vitro, (iii) pharmacokinetics and pharmacodynamic studies
to determine stability of these series of compounds in serum or
plasma of animals, and (iv) evaluating the in vivo efficacy of this
series in mice model of infection.

CONCLUSION

In conclusion, we have identified NSC 18725 as an anti-
tubercular compound with the activity comparable to INH, first-
line TB drug. In addition, NSC 18725 also possesses activity
against dormant M. tuberculosis in vitro. We also demonstrate
that NSC 18725 augments the host defense mechanisms by
inducing autophagy and inhibits M. tuberculosis survival in
macrophages. Furthermore, NSC 18725 showed synergy with
INH and additive effect with other tested drugs in checkerboard
assays. We also demonstrated that the nitroso group is essential
for the anti-mycobacterial activity of the parent compound.
Further, substitution at the para-position of the phenyl ring
enhanced NSC 18725 activity in vitro. Future studies would
involve more detailed SAR studies to improve NSC 18725
activity in vitro and evaluate the efficacy of this series in
aerosol infected mice.
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This study was aimed to investigate the effects of Clostridium butyricum (C. butyricum)
immunity and intestinal epithelial barrier function at the intestinal mucosal level, by using
Salmonella enteritidis (S. enteritidis) to infect specific-pathogen-free (SPF) chickens and
intestinal epithelial cells (IEC). We found that C. butyricum could decrease cytokine
levels (IFN-γ, IL-1β, IL-8, and TNF-α) via the TLR4-, MyD88-, and NF-κB-dependent
pathways in intestinal tissues and intestinal epithelial cells. Additionally, C. butyricum
could attenuate bacteria-induced intestinal damage and increase the expression level of
muc-2 and ZO-1 in the intestine and intestinal epithelial cells. Furthermore, C. butyricum
altered the intestinal microbial composition, increased the diversity of the bacterial
communities in the cecum of Salmonella-infected chickens. In conclusion, C. butyricum
effectively attenuated inflammation and epithelial barrier damage, altered the intestinal
microbial composition, increased the diversity of the bacterial communities in the
intestine of Salmonella-infected chickens. The result suggests that C. butyricum might
be an effective and safe therapy for the treatment of Salmonella infection.

Keywords: C. butyricum, Salmonella enteritidis, immunity, intestine, intestinal microflora

INTRODUCTION

Salmonella is a common bacterial entero-pathogen and one of the leading causes of serious illness
in humans and animals, such as enteritis and diarrhea (Mathur et al., 2012). Over 20 million
individuals suffer from typhoid fever, and more than 220,000 deaths each year have been reported
around the world (Majowicz et al., 2010; Feasey et al., 2012).

Chickens have been recognized as an important reservoir for Salmonella (Chen and Jiang,
2014). The most frequently isolated serovar from chickens is S. enteritidis (Zhao et al., 2017).
After oral ingestion in chickens, Salmonella initially breaches the epithelial lining, which is the
first line of defense against the invasion of microbes and their associated lipopolysaccharide
(LPS) and toxins. Impaired epithelial barrier function may predispose to various intestinal
disorders, such as inflammation (Juan et al., 2018; Xiao et al., 2018). In addition, Mucins are the
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primary conpinents of intestinal mucus layer that are part of
the innate immune system and act as a barrier against luminal
pathologies (Forstner et al., 1995; Huang et al., 2015).

In recent years, antibiotics have been effectively used to
treat Salmonella infection. Unfortunately, the widespread use of
antibiotics has increased bacterial resistance and led to intestinal
flora imbalance, which considerably diminish the efficacy of
chemical antibiotics (Parry and Threlfall, 2008). Alternatively,
the use of probiotic bacteria can modulate systemic and mucosal
immune function, improve intestinal barrier function, alter gut
micro-ecology, induce secretion of cytokines and Ig in serum,
and perturb the MyD88 signaling pathway (Kusumawati et al.,
2006; Shanahan, 2010; Madsen, 2012; Kemgang et al., 2014;
Lim et al., 2017).

Clostridium butyricum is a gram-positive, obligate anaerobe
and endospore-forming probiotic, which has been widely
used for repairing intestinal epithelium, thereby improving
gastrointestinal function (Cao et al., 2012). A preliminary study
demonstrated that C. butyricum could reduce the colonization
of pathogenic bacteria, weakening the inflammatory response
(Zhang et al., 2016). However, the mechanism of protection
remains to be elucidated.

In this study, we aimed to explore the mechanism by which
C. butyricum could suppress the pathogenic strain S. enterica
using the specific-pathogen-free (SPF) chicken model with an
emphasis on the response at the intestinal mucosal level.

MATERIALS AND METHODS

Ethics Statement
All procedures were approved by the Animal Care and Use
Committee of Shandong Agricultural University (SDAUA-2016-
016), and all husbandry practices and euthanasia were performed
with full consideration of animal welfare.

Bacterial Strains
Clostridium butyricum (AQQF01000149) was obtained from
Dalian Sanyi Animal Medicine Company (China). The strain
was cultured anaerobically with Reinforced Clostridial Medium
(RCM) broth at 37◦C for 48 h. According to the plate count
method as described by Wei et al. (2013), the concentration of
the bacteria was adjusted to 106 colony forming units (CFU)/mL.

A virulent atrichia strain of S. enteritidis was obtained from
the Avian Disease Centre of Shandong Agricultural University,
and it was selected for the challenge study due to the invasive
characteristic previously described (Zhao et al., 2017). The S.
enteritidis strain was cultured with nutrient broth at 37◦C for
12 h. To eliminate the possible LPS contamination, S. enteritidis
cells were collected by centrifugation at 7,000 × g for 10 min
and washed twice with PBS (pH 7.2), followed by dilution with
PBS to a final cell count of 106 colony forming units (CFU)/mL
according to the LD50.

Animals
Specific-pathogen-free chickens were obtained from Jinan
SPAFAS Poultry Company (Jinan, China). SPF chickens refer to

animals that do not have specific microorganisms or parasites,
but may carry non-specific microorganisms and parasites, also
known as third-class animals (The European Pharmacopoeia 7.
0,, 2010). Chickens were reared in the animal room of Shandong
Agricultural University. Chickens were reared in metal cages, and
the temperature was maintained at 30◦C for the first 3 days and
gradually reduced to 28◦C during the last days of the experiment.
Chickens were fed with a commercial diet and had free access
to feed and water during the whole experimental period. The
nutrient levels of the basal diet met the nutritional requirement
of the chickens (NRC, 1994) (Table 1). At 1 and 7 days of age,
birds were tested for the absence of Salmonella by taking cloacal
swabs. Thereafter, a total of 60 health chickens were randomly
assigned to three groups (n = 20/group): (Mathur et al., 2012)
orally administered 0.2 mL sterile saline solution per chicken
once every day from day 1 through day 14 [negative control group
(NC)]; (Feasey et al., 2012) orally administered 0.2 mL sterile
saline solution per chicken once every day from day 1 through
day 14 and challenged with 0.2 mL S. enteritidis (106 CFU/mL)
on day 8 [S. enteritidis infected group, positive control (PC)]; and
(Majowicz et al., 2010) orally administered 0.2 mL C. butyricum
(106 CFU/mL) once every day from day 1 through day 14 and
challenged with 0.2 mL S. enteritidis (106 CFU/mL) on day 8
[C. butyricum + S. enteritidis treatment (EXP)]. At the age of
14 days (6 dpi), all birds were euthanized via cervical dislocation.
The tissues of duodenum, jejunum, ileum, and cecum were
collected and stored in liquid nitrogen for mRNA and histological
analysis. The cecal contents were collected and stored at −80◦C
for microbial composition analysis.

Histological Study of the Cecum
One inch of the cecum of chickens was removed, fixed in
4% paraformaldehyde and prepared for histological studies as
described by Sainte-Marie (1962). Paraffin sections of 5 µm were
deparaffinized in xylene and stained with hematoxylin and eosin

TABLE 1 | The composition and nutrients of basal diet.

Ingredient Content (%) Chemical composition Content

Corn 55.23 CP,% 20.90

Soybean meal 30.67 ME, Mcal/kg 3.00

Wheat shorts 4.00 Calcium,% 1.00

Fish meal 3.00 Total P,% 0.65

Soybean oil 2.90 Available P,% 0.45

DL-Methionine 0.27 Methionine + cysteine,% 0.90

NaCl 0.27 Lysine,% 1.05

Limestone 1.33

Calcium phosphate 1.33

Vitamin-mineral premix 1.00

aCrude protein content is 62.5% and metabolizable energy is 2.79 Mcal/kg.
bMetabolizable energy is 8.8 Mcal/kg. cSupplied per kilogram of diet: vitamin
A (retinyl acetate), 1,500 IU; cholecalciferol, 200 IU; vitamin E (DL-α-tocopheryl
acetate), 10 IU; riboflavin, 3.5 mg; pantothenic acid, 10 mg; niacin, 30 mg;
cobalamin, 10 ug; choline chloride, 1,000 mg; biotin, 0.15 mg; folic acid, 0.5 mg;
thiamine 1.5 mg; pyridoxine 3.0 mg; Fe, 80 mg; Zn, 40 mg; Mn, 60 mg; I, 0.18 mg;
Cu, 8 mg; Se, 0.15 mg.
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(H&E) for microscopic examination, and the overall quality of
villi was observed.

Microbial Composition Analysis
100 mg cecum contents samples were collected and microbial
genomic DNA was extracted from cecum contents using
TIANamp Stool DNA Kit (Tiangen, Beijing, China) according
to the manufacturer’s instructions. The V4 hypervariable region
of the 16S rRNA gene was amplified by PCR using 515F and
806R primers. Eighteen samples (n = 6/group) were sequenced
on an Illumina MiSeq platform provided by Personalbio
(Shanghai, China). Paired-end reads from the original DNA
fragments were merged using FLASH. Clustering was performed
using the UPARSE pipeline, and sequences were assigned to
operational taxonomic units at 97% similarity (Schloss et al.,
2009). The diversity and composition of the bacterial community
was determined by α diversities according to Personalbio’s
recommendations. The Chao1 and ACE indexes simply refer
to the number of species in the community, regardless of the
abundance of each species in the community, the Shannon’s
diversity index considers both richness and evenness, the
higher Chao1, ACE and Shannon index are, the higher the
species diversity are.

Real-Time PCR
Total RNA was extracted from duodenal, jejunal, ileal, and
cecal tissues using Trizol reagent (Invitrogen, United States)
according to the manufacturer’s instructions. Briefly, 50–100 mg
tissue samples were ground to powder with liquid nitrogen and
transferred to a tube with 1 ml of Trizol; after centrifuged at
4◦C, 0.2 ml chloroform was added to the supernatant; after
centrifuged at 4◦C, the supernatant containing the intact RNA
was transferred to a new tube, RNA was then precipitated
with equal volume of isopropyl alcohol, and washed with 80%
ethanol. The RNA was solubilized in RNase free water. RNA
quantity and quality were evaluated using a NanoDropTM 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States), followed by cDNA synthesis via the Transcriptor
First-Strand cDNA Synthesis Kit (Roche, China) using 2 µg RNA
template. Real-time PCR was performed using SYBR Green I
Master mix (Roche). Two microliters of cDNA, 5 µl SYBR Green
buffer 2 × (Roche) and 2.5 pmol of each primer were combined
for a total reaction volume of 10 µl. The thermocycler protocol
consisted of a 5 min pre-incubation at 95◦C for 20 s, 60◦C for
30 s and 72◦C for 20 s, and melt curves were added. The β-actin
reference gene was chosen for the relative expression of targeted
genes. mRNA relative expression was calculated using the 2−M M

Ct method. The primers used in this study are listed in Table 2.

Primary Chicken Intestinal Epithelial Cell
Culture
Specific-pathogen-free eggs were purchased from Jinan SPAFAS
Poultry Company (China). Chicken intestinal epithelial cells
(IECs) were prepared from 19-day-old SPF chicken embryos
as described previously (Pierzchalska et al., 2012) with some
modifications. Briefly, the duodenum was excised, cut into small

TABLE 2 | Primer sequences of targeted and reference genes.

Gene Sequence (5′–3′) References

TLR4 Forward: AGTCTGAAATTGCTGAGCTCAAAT
Reverse: GCGACGTTAAGCCATGGAAG

Zhao et al., 2017

MyD88 Forward: TGATGCCTTCATCTGCTACTG
Reverse: TCCCTCCGACACCTTCTTTCTA

Zhao et al., 2017

NF-κB Forward: CAGCCCATCTATGACAACCG Zhao et al., 2017

IFN-γ Reverse: TCCCTGCGTCTCCTCTGTGA
Forward: CTGACGGTGGACCTATTATTGTAG
Reverse: GTTTGATGTGCGGCTTTGA

Zhao et al., 2017

IL-1β Forward: GTGAGGCTCAACATTGCGCTGTA
Reverse: TGTCCAGGCGGTAGAAGATGAAG

Zhao et al., 2017

IL-8 Forward: ATGAACGGCAAGCTTGGAGCTG
Reverse: TCCAAGCACACCTCTCTTCCATCC

Zhao et al., 2017

TNF-α Forward: TGCTGTTCTATGACCGCC Reverse:
CTTTCAGAGCATCAACGCA

Zhao et al., 2017

Muc-2 Forward: AGGCCAGTTCTATGGAGCACAGTT
Reverse: TTGAGTGCCCAGAGGGACATTTCA

Huang et al., 2015

ZO-1 Forward:GCGCCTCCCTATGAGGAGCA
Reverse:CAAATCGGGGTTGTGCCGGA

Zuo et al., 2014

Occludin Forward:TCGTGCTGTGCATCGCCATC
Reverse:CGCTGGTTCACCCCTCCGTA

Zuo et al., 2014

β-Actin Forward: GAGAAATTGTGCGTGACATCA
Reverse: CCTGAACCTCTCATTGCCA

Zhao et al., 2017

pieces with a sterile scalpel blade, and dissected perpendicularly
to expose the lumen. Small duodenal pieces were transferred
to a tube filled with DMEM/Ham’s/F12 (Gibco, Grand Island,
NY, United States) medium with 1% fetal bovine serum (Gibco),
50 µg/ml gentamycin (Invitrogen, Carlsbad, CA, United States),
100 µl/ml penicillin/streptomycin (10,000 U/ml/10,000 µg/ml)
(Invitrogen, Carlsbad, CA, United States), 1 U/ml dispase II
(Roche, Basel, Switzerland) and 75 U/ml collagenase (Gibco).
Digestion was performed at 37◦C under steady agitation for
2 h. The material was filtered, and larger pieces were discarded,
while medium containing single cells and small pieces was
centrifuged at 100 × g for 3 min. To separate mucus and IECs,
a centrifugation step of 10 min was performed at 400× g. Mucus
covering the cell pellet was discarded. The remaining cell pellet
was subsequently washed several times until the suspension was
clear, and finally, 1 × 107 cells were cultured in six-well plates
and incubated at 37◦C with 5% CO2. After incubation for 48 h,
IECs were treated under three different conditions as follows:
(NC) DMEM alone; (PC) S. enteritidis (106 CFU) infection only;
and (EXP) pre-incubation with C. butyricum (106 CFU) for 2 h
prior to exposure to S. enteritidis. At 2 and 6 h after S. enteritidis
challenge, a portion of the cells were then collected and treated
with lysis buffer to extract total RNA for real-time PCR.

Statistical Analysis
Statistical evaluations were performed using a one-way ANOVA
followed by a Duncan multiple range test or a Fisher least
significant difference test using SPSS 16.0 (SPSS, Chicago,
IL, United States). Data were visualized using GraphPad
Prism 5 software (GraphPad Software, Inc., San Diego, CA,
United States). P < 0.05 was considered significant.
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RESULTS

C. butyricum Improved Morphology and
Integrity in the Cecum
Microscopic examination revealed that chicken infected with
S. enteritidis in the PC group showed surface damage and
disruption to villi. Cecal tissue of chickens pre-treated with
C. butyricum in the EXP group showed less severe surface
damage to villi than did cecal tissue of chickens in the
PC group. These observations demonstrate that pretreatment
of C. butyricum resulted in a reduction of bacteria-induced
intestinal damage (Figure 1).

Determination of Cytokine Levels in
Intestines
Cytokine levels were measured to test the hypothesis that early
pretreatment of chicken with C. butyricum may alter cytokine
production in intestinal tissue following S. enteritidis challenge.

The gene expression levels of cytokines IFN-γ, IL-1β, IL-
8, and TNF-α in intestinal tissue (i.e. duodenum, jejunum,
ileum, and cecum) were also evaluated. The results showed
that at 6 days post-infection, no significant differences were
found in IFN-γ and TNF-α among NC, PC, and EXP groups
in intestinal tissue (i.e. duodenum, jejunum, ileum, and cecum)
(P > 0.05) (Figures 2A,D). The gene expression level of IL-
1β in the duodenum was significantly elevated in the PC group
compared to the NC and EXP group (P < 0.05), but there
was no significant difference between the NC and EXP groups
(P > 0.05); in the jejunum, the gene expression level of IL-
1β was significantly elevated in the PC group compared to the
EXP group (P < 0.05), but there was no significant difference
between the NC and EXP groups and the same change between
NC and PC groups (P > 0.05); in the ileum, no significant
difference of IL-1β was found among NC, PC, and EXP groups
(P > 0.05); in the cecum, the gene expression level of IL-1β

was significantly elevated in the PC group compared to the
NC group (P < 0.05), but no significant difference was found
between the NC and EXP groups and the same change between
PC and EXP groups (P > 0.05) (Figure 2B). The gene expression
level of IL-8 in the jejunum was significantly elevated in the
PC group compared to the NC and EXP groups (P < 0.05),
but no significant difference was found between the NC and
EXP groups (P > 0.05); of note, no significant difference of

FIGURE 1 | Representative histopathology of cecal tisssues at 6 days
post-infection. Three independent experiments showing similar results with
6–8 chicken per treatment. NC, the negative control group; PC, the positive
control group; EXP, C. butyricum + S. enteritidis treatment.

IL-8 in duodenum, ileum, and cecum was found among NC,
PC and EXP groups (P > 0.05) (Figure 2C). Furthermore, we
investigated the effects of C. butyricum on cytokine expression
in IECs in vitro. The results showed that after 2 h of infection,
the expression level of IFN-γ was significantly elevated in the
PC group compared to the NC and EXP groups (P < 0.05),
but there was no significant difference between the NC and EXP
groups (P > 0.05) (Figure 3A). The expression level of IL-8 was
significantly elevated in the PC and EXP groups compared to
the NC group (P < 0.05), but there was no significant difference
between the PC and EXP groups (P > 0.05). Regarding the
expression levels of IL-1β and TNF-α, no significant difference
was found among the NC, PC, and EXP groups (P > 0.05)
(Figures 3B–D). After 6 h of infection, the expression levels of
IFN-γ and TNF-α were significantly elevated in the PC group
compared to the NC and EXP groups (P< 0.05), but there was no
significant difference between the NC and EXP groups (P> 0.05)
(Figures 3A,D). The gene expression levels of IL-1β and IL-8
were significantly elevated in the PC group compared to the NC
group (P < 0.05), but there was no significant difference between
the NC and EXP groups, and the same change between PC and
EXP groups (P > 0.05) (Figures 3B,C).

C. butyricum Modulated muc2
Expression in Intestines of S.
Enteritidis-Infected Chickens
The expression of muc2 in chicken intestines was detected via
real-time PCR. The results showed that the expression level of
muc2 in the jejunum was decreased in the PC group compared to
the EXP groups (P< 0.05), but there was no significant difference
between the NC and EXP groups, and the same change between
PC and NC groups (P > 0.05). Of note, C. butyricum effectively
attenuated the S. enteritidis-induced changes to muc2 expression
in the jejunum. There were no significant differences in muc2
expression in the duodenum, ileum, or cecum among any of the
groups (P > 0.05) (Figure 2E). Furthermore, we investigated the
effects of C. butyricum on the muc2 expression in IECs in vitro,
and our data showed that after 2 and 6 h post-infection, the gene
expression level of muc2 was not significantly different among the
different groups (P > 0.05) (Figure 3E).

C. butyricum Increased Intestinal Barrier
Function in S. Enteritidis-Infected
Chickens
In this study, we evaluated the effects of C. butyricum on epithelial
barrier function in the chicken intestines by detecting the
expression level of Zonula occludens-1 (ZO-1) and Occludin via
real-time PCR. The results showed that at 6 days post-infection,
the expression level of ZO-1 in duodenum and jejunum was
significantly decreased in the PC group compared with the EXP
group (P < 0.05), but there was no significant difference between
the NC and EXP groups, and the same change between PC and
NC groups (P > 0.05). There were no significant differences
in ZO-1 expression in either the ileum or cecum among any
of the groups (P > 0.05) (Figure 2F). Similarly, no significant
difference in Occludin levels was found in intestines among the
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FIGURE 2 | Expression level of cytokines (IFN-γ, IL-1β, IL-8, and TNF-α), muc2 mucin and the tight junction proteins (ZO-1 and Occludin) (A–G) in intestine tissues
(duodenum, jejunum, ileum, and cecum) were estimated by real-time PCR. The bars represent the mean ± SD (n = 6/group). Different letters over the bars indicate
statistically differences between the groups (P < 0.05), same letters over the bars indicate no statistically differences between the groups (P > 0.05). NC, the
negative control group; PC, the positive control group; EXP, C. butyricum + S. enteritidis treatment.
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FIGURE 3 | Expression level of cytokines (IFN-γ, IL-1β, IL-8, and TNF-α), muc2 mucin and the tight junction proteins (ZO-1 and Occludin) (A–G) in intestinal epithelial
cells were estimated by real-time PCR. The bars represent the mean ± SD (n = 6/group). Different letters over the bars indicate statistically differences between the
groups (P < 0.05), same letters over the bars indicate no statistically differences between the groups (P > 0.05). NC, the negative control group; PC, the positive
control group; EXP, C. butyricum + S. enteritidis treatment.
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NC, PC, and EXP groups (P > 0.05) (Figure 2G). We also
investigated the effects of C. butyricum on tight junction (TJ)
expression in IECs in vitro. The data show that after 2 h post-
infection, the expression levels of ZO-1 and Occludin were not
significantly different among NC, PC and EXP groups (P > 0.05)
(Figures 3F,G); but after 6 h post-infection, the expression of ZO-
1 was significantly decreased in the PC group compared to the
EXP group (P < 0.05), and there was no significant difference
between the NC and EXP groups (P > 0.05) (Figure 3F). The
expression of Occludin 6 h post-infection was not significantly
different among any of the groups (P > 0.05) (Figure 3G).

C. butyricum Suppressed TLR4-,
MyD88-, and NF-κB-Dependent
Inflammation Pathways
Chickens in the EXP group had decreased gene expressions of
TLR4, MyD88, and NF-κB in the jejunum compared to those in
the PC group (P < 0.05), but there was no significant difference
between the NC and EXP groups and the same change between
PC and NC groups regarding the gene expressions of MyD88
(P > 0.05), which indicates a direct effect of C. butyricum. There
were no significant differences in TLR4 and MyD88 expression

in the duodenum, ileum, or cecum among any of the groups
(P > 0.05). The expression level of NF-κB in duodenum was
significantly elevated in the PC group compared with the EXP
and NC groups (P< 0.05), but there was no significant difference
between the NC and EXP groups (P > 0.05) (Figure 4). We
further investigated the effects of C. butyricum on the TLR4,
MyD88, and NF-κB expression levels in IECs in vitro and our
results show that, after 2 h post-infection, the gene expression
levels of TLR4, MyD88, and NF-κB were not significantly
different among any of the groups (P> 0.05) (Figure 5); but after
6 h post-infection, C. butyricum decreased the gene expression
levels of TLR4, MyD88, and NF-κB in the EXP group compared
with the PC group (P < 0.05), but there was no significant
difference between the NC and EXP groups and the same change
between PC and NC groups (P > 0.05) (Figure 5).

The Effects of C. butyricum on the
Bacterial Community Within Chicken
Cecum
We evaluated the effects of C. butyricum on the microbiota
in chicken cecum using Illumina sequencing of the 16S rRNA
V4 region. Firmicutes, Tenericutes, and proteobacteria were

FIGURE 4 | Clostridium butyricum supressed inflammation via TLR4-, MyD88-, and NF-κB-dependent pathways. Relative mRNA expression of TLR4, MyD88, and
NF-κB in the intestine tissues (duodenum, jejunum, ileum, and cecum) were estimated by real-time PCR. The bars represent the mean ± SD (n = 6/group). Different
letters over the bars indicate statistically differences between the groups (P < 0.05), same letters over the bars indicate no statistically differences between the
groups (P > 0.05). NC, the negative control group; PC, the positive control group; EXP, C. butyricum + S. enteritidis treatment.
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FIGURE 5 | Clostridium butyricum supressed inflammation via TLR4-, MyD88-, and NF-κB-dependent pathways. Relative mRNA expression of TLR4, MyD88, and
NF-κB in intestinal epithelial cells were estimated by real-time PCR. The bars represent the mean ± SD (n = 6/group). Different letters over the bars indicate
statistically differences between the groups (P < 0.05), same letters over the bars indicate no statistically differences between the groups (P > 0.05). NC, the
negative control group; PC, the positive control group; EXP, C. butyricum + S. enteritidis treatment.

the three most abundant bacterial phyla in all samples, and
C. butyricum increased the proportion of Tenericutes in the EXP
chickens compared to the NC and PC groups (Figure 6A). The
genera Ruminococcus, Oscillospira, Coprococcus, and Dorea
were the most prevalent in all of the groups, and the proportion
of Coprococcus and Dorea in NC and EXP groups was increased
compared to the PC group (Figure 6B). The diversity of the
intestinal bacterial community was determined by Shannon,
Chao1, and AEC indices. The results show that C. butyricum
increased the diversity of the bacterial community in the EXP
group compared to the NC and PC groups (Figures 6C–E).
Collectively, these data suggest that C. butyricum affects bacterial
composition in the cecum of chickens.

DISCUSSION

Gram-negative S. enterica was identified as the most common
cause of food poising in China (Ran et al., 2011) and is known to
disrupt the intestinal epithelial layer during its infection (Coburn
et al., 2007). In this study, C. butyricum protected the integrity
of the villi in the cecum, limited the invasion of Salmonella;

attenuated Salmonella-induced microbiota disruption in the
intestine of chickens; improved intestinal epithelial barrier
function through the modulation of Muc-2 and ZO-1 expression.
Our results suggest that C. butyricum is a potential therapy for
Salmonella infection or other intestinal diseases.

It has been reported that Salmonella could easily colonize the
gut and induce a strong intestinal inflammatory response due
to the defective microbial barriers and innate immune systems
in the newly-hatched chicks (Brown et al., 2006). In the present
study, C. butyricum significantly decreased the expression level
of the pro-inflammatory cytokine (IL-1β and IL-8) production
in intestines and the expression level of the pro-inflammatory
cytokine (IFN-γ, IL-1β, IL-8, and TNF-α) in intestinal epithelial
cells of chickens after Salmonella infection. The protective
action of C. butyricum was similar to that of other probiotics
(Castillo et al., 2013) and it maybe depended on its antibacterial
acticity. Furthermore, we found that C. butyricum suppressed
intestinal inflammation by downregulating the TLR4-, MyD88-
, and NF-κB-dependent pathways in chickens with Salmonella
infection, consistent with previous studies that C. butyricum
can decrease pro-inflammatory cytokine levels by inhibiting the
NF-κB signaling pathway in broiler chickens with Salmonella
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FIGURE 6 | The diversity and composition of the bacterial communities were determined by α diversity according to Personalbio’s recommendations. (A) Relative
abundance of the most abundant bacterial phyla. (B) Relative abundance of the most abundant bacterial genus. The diversity of the bacterial communities were
determined by Shannon index (C), Chao1 index (D), ACE index (E). (A–C) Represented sample of NC, PC, and EXP group. NC, the negative control group; PC, the
positive control group; EXP, C. butyricum + S. enteritidis treatment.

infection (Zhao et al., 2017). The result suggests the linkage
of TLR4/NF-κB pathway may involved in the suppression of
C. butyricum on Salmonella infection.

Muc2 is the major gel-forming mucin of the intestine and is
the main structural component of the mucus gel. It is generally
assumed that muc2 is essential for epithelial protection (Gill
et al., 2011). In this study, muc2 production was decreased in

the jejunum of chickens with Salmonella infection. However,
C. butyricum attenuated the Salmonella-induced disruption of
muc2 production, which is consistent with another study that
showed supplementation of LGG before and after DON/ZEA
exposure appeared to increase muc2 (Murphy et al., 2016), but
our results are different than those reported in mice (Gaudier
et al., 2005), that mucin gene expression was not altered by
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probiotic administration, this may be due to the differences in
probiotic strains.

Tight junctions play a very important role in the intestinal
mucosal barrier against macromolecular transmission (Ballard
et al., 1995). ZO-1 and Occludin are important proteins
responsible for the structural and functional organization of tight
junctions (Fanning et al., 1998). In this study, we demonstrated
that C. butyricum enhanced epithelial barrier function by
increasing the expression of ZO-1 in intestinal tissue and IECs
infected with Salmonella, which is consistent with a previous
report showing that mRNA levels of ZO-1 in broiler chickens fed
a 300 or 450 g/ton β-mannanase diet were significantly higher
(Zuo et al., 2014).

Dietary supplementation of C. butyricum strains as a probiotic
has become an effective alternative to the use of antibiotics
to increase health and growth performance of chickens, as it
has been shown that probiotics can positively affect the gut
microbiota, which plays an important role in health and nutrient
digestion in chickens (Yang et al., 2012). In this study, we
found that C. butyricum treatment could alter the intestinal
microbial composition and increase the diversity of the bacterial
community, which could directly or indirectly impact chicken
health and reduce or inhibit the presence of opportunistic
pathogens and it may be due to its ability to produce metabolites,
which can regulate the pH (acid change) of intestinal, inhibit
pathogenic bacteria, and thus adjust the bacterial community
structure. Our study aligns with another study that showed a diet
supplemented with Enterococcus faecalis could shift microbial
diversity in the porcine gut and inhibit pathogens (Li et al., 2016).

CONCLUSION

Clostridium butyricum effectively attenuated inflammation and
epithelial barrier damage, altered the intestinal microbial
composition by increasing the diversity of the bacterial

community, and promoted immune function in the intestines of
Salmonella-infected chicken. C. butyricum might be an effective
and safe therapy for Salmonella infection.

Future Work
In future work, we will supplement the detection of Salmonella
and Clostridium butyricum counts during the course of the
experiments to further verify that the organism of the bacteria
colonized the gut.
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Antimicrobial therapy has provided the main component of chemotherapy against

bacterial pathogens. The effectiveness of this strategy has, however, been increasingly

challenged by the emergence of antimicrobial resistance which now threatens the

sustained utility of this approach. Humans and animals are constantly exposed to

bacteria and have developed effective strategies to control pathogens involving innate

and adaptive immune responses. Impaired pathogen handling by the innate immune

system is a key determinant of susceptibility to bacterial infection. However, the

essential components of this response, specifically those which are amenable to

re-calibration to improve host defense, remain elusive despite extensive research.

We provide a mini-review focusing on therapeutic targeting of microbicidal responses

in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We

highlight pre-clinical and clinical data pointing toward potential targets and therapies.

We suggest that developing focused host-directed therapeutic strategies to enhance

“pauci-inflammatory” microbial killing in myeloid phagocytes that maximizes pathogen

clearance while minimizing the harmful consequences of the inflammatory response

merits particular attention. We also suggest the importance of One Health approaches

in developing host-based approaches through model development and comparative

medicine in informing our understanding of how to deliver this strategy.

Keywords: antimicrobial resistance, macrophage, neutrophil, host-based therapies, innate immunity

INTRODUCTION

Antimicrobial chemotherapy has formed the cornerstone of our therapeutic strategy against
bacterial disease since penicillin was first developed. Prior to this, developing host-based therapy
was a major focus, including Fleming’s original work on lysozyme, a humoral microbicide he
isolated while seeking antimicrobial factors in pus (1). The first therapeutic use of penicillin in 1930
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(treating eye infections in babies in Sheffield by Cecil Paine),
and the pioneering work of Florey, Chain and colleagues in
Oxford who developed innovations in penicillin synthesis to
allow the first clinical trials in 1941, established antimicrobial
chemotherapy as the pre-eminent therapeutic approach to
bacterial disease (2). This has had a major impact on human
health but arguably diverted focus away from host-based
approaches other than vaccination.

Recent public health estimates suggest antimicrobial resistant
bacteria cause 131 infections/100,000 population in Europe and
that two-thirds are nosocomial (3). The disability adjusted life
years of these infections approximates tuberculosis, influenza
and HIV combined (3). In addition, development of new
antimicrobials has been declining (4). There is thus a pressing
need to develop new antimicrobials, improved antimicrobial
stewardship, better diagnostics to identify the patients who
truly need antimicrobials, and alternative approaches, for
example those involving bacteriophage therapy, nanoparticle-
based therapy, photodynamic light therapy and antimicrobial
peptides (AMP) to manage infection with antimicrobial resistant
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp.) pathogens (5). While vaccination remains
a major focus, the concept of developing host-based therapy is
gaining traction.

CHARACTERISTICS OF OPTIMAL INNATE
IMMUNE RESPONSES TO PATHOGENIC
BACTERIA

Pathogenic bacteria commonly colonize healthy individuals
without causing disease. S. aureus is carried by >40% of
infants after birth and ∼50% of adults are permanent or
intermittent carriers (6, 7). Uropathogenic Escherichia coli is
typically part of an individual’s fecal microbiota and healthy
individuals carry a large number of potentially pathogenic
strains (8). In other cases, pathogens are harmless microbiome
constituents but cause opportunistic infections in patients
whose immune system is impaired by medical co-morbidity,
such as nosocomial enterococcal infections (9). This apparent
paradox, between common carriage but uncommon disease,
suggests most infections are readily controlled by the host
yet the specific microbicidal responses that control infection
when small numbers of colonizing bacteria translocate to new
sites is incompletely defined. Broadly, the innate immune
system ensures a rapid response, working in concert with
any adaptive immune responses to the pathogen. There are
many components to the innate immune system including
mucosal barrier function, humoral factors released in mucosal
secretions and a range of innate cellular responses that are
not restricted to myeloid phagocytes but also include innate
lymphoid cells. These responses are modified through adaptive
immune responses, but the focus of this review is exclusively on
myeloid phagocyte responses.

Professional phagocytes (macrophages and neutrophils) clear
bacteria frommucosa associated with a low-density microbiome,

for example the distal airway or bladder (10). Macrophages
play a critical role in the initial response as the resident
phagocytes in tissues, using pattern recognition receptors
(PRRs) to detect pathogens and orchestrate the inflammatory
response. They are efficient at phagocytosing bacteria and
utilize a range of microbicidal strategies to kill ingested
bacteria. Tissue macrophage function is tightly controlled by
activation state which is regulated by a cell network including
epithelial, endothelial, T- and B- lymphocytes, as well as tissue
resident innate lymphoid cells. The resulting cytokine networks
reflect the importance of environmental cues (11). Innate
immunememory ensures previous pathogen exposuremodulates
macrophage function via epigenetic imprinting of monocytes to
induce “training” (enhanced microbicidal responses to repeat
challenge) and “tolerance” (reduced deleterious responses to
repeat challenge) to pathogen-associated molecular patterns
(12, 13). Lipopolysaccharide (LPS) engagement of Toll-like
receptor (TLR) 4 is just one example amongst several of
a microbial stimulus that can on repeat stimulation be
associated with tolerance manifest as reduced generation of
pro-inflammatory cytokines and reactive species (14). This has
implications for monocyte-derived macrophage populations but
the extent to which it also influences resident macrophage
populations with distinct ontogeny remains to be established.
Though capable of avid phagocytosis, tissue macrophages have
a finite capacity to kill ingested bacteria (15). This capacity
can be diminished by interactions with other microorganisms
e.g., viruses, environmental factors or co-morbidity, resulting
in increased susceptibility to bacterial disease. For example,
both HIV-1 infection and chronic obstructive pulmonary
disease (COPD) impair alveolar macrophage (AM) killing
of pneumococci (16, 17). Furthermore, pathogenic bacteria
have evolved mechanisms to withstand microbicides, such as
antioxidant systems (18). Successful pathogens such as S. aureus
inhibit phagosomal maturation contributing to intracellular
survival (19), while others that are more readily killed may escape
killing in subsets of macrophages, as exemplified by survival
of pneumococci in permissive CD169+ splenic macrophages
in murine and porcine models (20). Several potentially AMR
pathogens such as K. pneumoniae and P. aeruginosa can
subvert phagosomal maturation in macrophages (21, 22).
Traditional paradigms of intracellular and extracellular bacteria
are blurring and the intracellular fate of the so-called extracellular
bacteria (including medically important ESKAPE pathogens,
Haemophilus influenzae and Streptococcus pneumoniae) is likely
a major determinant of infection outcome.

When the intracellular killing capacity of resident tissue
macrophages is overwhelmed, they orchestrate recruitment of
neutrophils and other inflammatory cells. Murine models of
clodronate-mediated AM depletion illustrate how escalating
bacterial challenge shifts the role of AM from primary effectors
of bacterial clearance to regulators of the inflammatory response,
with neutrophils required for pathogen clearance (15, 23). The
exhaustion of macrophage clearance capacity is likely also a
feature of systemic infections, as evidenced for Kupffer cells
in the liver and is augmented by commensal bacteria (24).
This represents the transition from sub-clinical infection to
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FIGURE 1 | Optimal and sub-optimal inflammatory and bacterial killing trajectories during infection. (A) Invading extracellular bacteria are recognized and

phagocytosed by macrophages, followed by intracellular killing. Pathogen clearance is optimal and achieved without the requirement for neutrophil recruitment.

Inflammation is tightly controlled and resolves without causing tissue damage. We term this optimally calibrated response “pauci-inflammatory.” (B) In hosts with

sub-optimally calibrated responses, there is inefficient phagocytosis and/or intracellular killing by macrophages, resulting in incomplete bacterial clearance. When

macrophage defense is overwhelmed beyond a “tipping point,” neutrophil recruitment is required to control the invading pathogen. Inflammation is more prolonged

and sustained by pathogen persistence and/or tissue damage. Inflammatory responses give rise to clinically recognizable features of disease, for example pneumonia.

Images created using BioRender.com.

clinical disease, and signs of neutrophilic inflammation are used
to establish a clinical diagnosis. The inflammatory response,
however, contributes to tissue injury since potent microbicides,
such as reactive oxygen species (ROS), can cause tissue injury
and organ dysfunction (25). Nevertheless, this inflammatory
response is essential and neutrophil deficiency results in severe
bacterial infection (26). Neutrophil microbicidal responses have
been extensively characterized and include ROS, AMP, divalent
metal iron-sequestering proteins (e.g., lactoferrin), proteases
such as the serine proteases contained in azurophilic granules
(e.g., cathepsin G and neutrophil elastase) and acid hydrolases
in lysosomes (26). The pre-eminence of ROS as a direct
microbicidal mechanism has been challenged by observations
that it is the associated ionic changes in the phagosome,
activating granule-associated serine proteases, that actually
mediate microbicidal killing (27). Neutrophils can also release
granule contents and DNA extracellular traps to kill bacteria (28).

The challenge is therefore to generate an effective response
that maximizes pathogen clearance and minimizes the
inflammatory response, either by enhancing the macrophage
response to raise the threshold for induction of neutrophilic

inflammation or by ensuring the neutrophilic component
achieves pathogen clearance yet limits bystander tissue
injury. We term this desirable microbicidal profile a “pauci-
inflammatory microbicidal response” recognizing that its
characteristics include rapid induction, effective pathogen
killing, and controlled recruitment of inflammatory cells
when needed, but also early resolution and tightly regulated
production of potentially damaging microbicidal species
(Figure 1). It builds on concepts articulated by Sears and
colleagues in chronic parasitic infections where the cost of
the host response (immunopathology) is weighed against
resistance to the pathogen (29). In the case of common
“extracellular” bacterial disease, the primary cost becomes
tissue injury/organ dysfunction due to the microbicidal
response and chronic infection is a rare outcome. If initial
microbicidal responses by phagocytes are sub-optimal,
the inflammatory response is escalated with increased
recruitment of neutrophils, macrophages and lymphocytes
that have the potential to promote self-propagating waves of
inflammation driven by release of damage-associated molecular
patterns in response to tissue injury. Excessive production
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of cytokines, reactive species, proteases, phospholipids and
eicosanoids mediate inflammatory tissue injury, induction
of various cell death paradigms and ultimately loss of tissue
homeostasis. These principles are well-exemplified by the
development of acute respiratory distress syndrome (ARDS)
(30). Organ specific injury is also associated with a systemic
inflammatory response which can cause multiorgan failure (31).
In addition, the generalized inflammatory response can lead
to immunosuppression with impaired immune responses on

subsequent pathogen challenge (32). It is therefore essential to
limit these dysregulated inflammatory responses and induce
a more limited inflammatory response with optimal pathogen
clearance, by targeting microbicidal responses. To target
potential bottlenecks in the host microbicidal response, we
must identify optimal responses that promote resilience in the
healthy population and patient groups in whom these fail. We
need to develop assays to assess the host response and effect
of therapy.

FIGURE 2 | Macrophage microbicidal responses involved in successful clearance of extracellular bacterial pathogens. Macrophage responses to ingested

extracellular bacteria (e.g., S. pneumoniae, S. aureus, P. aeruginosa) are summarized. Following phagocytosis of bacteria an initial microbicidal response occurs in the

phagolysosome (top panel). Specific effectors with demonstrated microbicidal roles differs based on the ingested organism, and include NADPH derived ROS,

MMP-12 (S. aureus), cathepsin L (S. aureus), asparagine endopeptidase (P. aeruginosa), lysozyme and antimicrobial peptides. Microbicidal species produced later

that co-localize to bacteria-containing phagolysosomes include NO and mROS which have demonstrated roles in killing ingested pneumococci. A mitochondrial

pathway of host-directed apoptosis is engaged in response to live ingested pneumococci, involving recognition of pneumolysin and accumulation of NO (middle

panel). This has been best studied in pneumococcal models, where it allows pauci-inflammatory clearance of bacteria that have survived initial phagolysosomal killing,

but may occur for other extracellular bacteria also. Immuno-metabolic changes that underpin the microbicidal function of macrophages have also been characterized

well in pneumococcal models and also in some other extracellular bacterial infections (bottom panel). This involves an early shift to glycolysis and a progressive

transition of mitochondrial function from ATP generation (oxidative phosphorylation) to become microbicidal organelles (mROS generation). Targets of host-directed

therapeutics that have been investigated in infection studies (clinical or pre-clinical) are indicated. The number corresponding to each indicates the stage in the killing

process where it acts, as indicated on the panels above. LAP, LC-3 associated phagocytosis; MMP, matrix metalloproteinase; Cat, cathepsin; AEP, asparagine

endopeptidase; AMP, antimicrobial peptide; ROS, reactive oxygen species; mROS, mitochondrial ROS; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; Casp,

caspase; iNOS, inducible nitric oxide synthase; Mcl-1, myeloid cell leukemia-1; PAMP, pathogen-associated molecular pattern; LMP, lysosomal membrane

permeabilization; 19M, mitochondrial membrane potential; OCR, oxygen consumption rate; IVIG, intravenous immunoglobulin; IFN, interferon.
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IDENTIFYING HOST RESPONSES AS
TARGETS FOR IMMUNOMODULATION

A critical bottleneck in host defense involves macrophage
bacterial clearance (19, 33). However, therapeutic modulation
of this is impeded by limitations in our understanding of
microbicidal responses in tissue macrophages, which are often
inferred from neutrophils, monocytes or monocytic cell lines.
Well-established microbicidal mechanisms in other phagocytes
may not operate in tissue macrophages, which (excluding those
in atherosclerotic plaques) lack the ability to produce the more
potent halogenated ROS like hypochlorous acid (34, 35). Some
microbicidal responses are more convincingly demonstrated in
mice than man, for example those involving nitric oxide (NO),
which may be produced at lower levels in human macrophages,
although several groups have detected it following bacterial
challenge (36). Effective responses likely require combinations
of microbicidals. Defining these has been limited by how well
in vitro macrophage cultures mirror tissue macrophages in vivo.
Many tissue macrophages with low-level homeostatic turnover
arise from embryonic yolk sac or fetal liver hematopoietic stem
cell progenitors and are maintained by division of resident cells,
e.g., AM derived from fetal liver precursors (37). Monocyte-
derived macrophages (MDM) give rise to macrophages in
the gut and peritoneum, populations associated with a higher
turnover, but we cannot assume their microbicidal responses are
identical to macrophages derived from embryonic progenitors.
In addition, tissue macrophage maturation is heavily influenced
by environmental cues and their transcriptional profiles are as
distinct as they are from monocytes (38).

Irrespective of these limitations there are many similarities
between microbicidal mechanisms of different macrophage
populations. A range of primary human macrophages (including
MDM and AM) and murine models demonstrate an initial phase
of extensive intracellular killing, activated in the phagosome. For
pathogens such as pneumococci, this is followed by a delayed
phase of bacterial killing, involving apoptosis-associated killing
that clears residual viable bacteria (16, 19, 33). These responses
often involve combinations of microbicidals (Figure 2), for
example ROS and NO, which helps subvert pathogen resistance
(33). Tissue macrophages modify the phagosomal environment
to inhibit bacterial survival; phagolysosomal acidification and
restriction of divalent metal cations inhibits bacterial enzymes,
including manganese-containing superoxide dismutase.
Nevertheless, the role of these responses is more established
in killing intracellular bacteria, compared to internalized
extracellular bacteria (39). These defenses are complemented by
AMP and proteases. Matrix metalloproteinase 12 contributes to
early killing of bacteria in macrophages (40). The cathelicidin
LL-37 enhances killing of bacteria including S. aureus in
macrophages and is taken up from exogenous sources to
complement ROS generation and lysosome fusion (41). AMR in
E. coli can increase the sensitivity to AMP, suggesting host-based
strategies can synergize with antimicrobials or with antimicrobial
selective pressure (42). Similarly, a synthetic peptide derived
from human lactoferrin synergizes with antimicrobials against

a carbapenemase-producing K. pneumoniae (43). However,
there are also examples where mutations inducing AMR may
also enable resistance to AMP; modification of K. pneumoniae
lipid A not only enables resistance to polymyxins but also
β-defensins and human neutrophil peptide-1 (44). Many other
AMP and proteases contribute to microbicidal responses, but
the mechanism may be indirect. For example cathepsin D
enhances apoptosis-associated killing by increasing proteasomal
degradation of the anti-apoptotic Bcl-2 family member
Mcl-1 (45).

The ability to perform lentiviral delivery of genome-
scale clustered regularly interspaced short palindromic repeats
(CRISPR)-associated nuclease Cas9 knock-out (GeCKO) pooled
libraries to human cells allows whole genome screening with the
potential to shed new light on microbicidal mechanisms (46, 47).
A further potential approach is to harness comparative biology
and aims to use convergent evolution of pathogens as they shift
species tropism (48) or divergent evolution within species as
they rapidly evolve under a host-selective pressure (49), to probe
microbicidal mechanisms. Nevertheless, identifying microbicidal
mechanisms as targets for immunomodulation will also require
evidence that these are sub-optimally calibrated in patient groups
with increased susceptibility to bacterial disease. For example,
AM from patients with COPD fail to enhancemitochondrial ROS
(mROS) production following bacterial challenge (16). This is
important since mROS has recently emerged as a keymicrobicide
affecting bacterial killing in the macrophage phagolysosome
(33, 50). Evaluation of potential microbicidal targets will also
require application of super-resolution microscopy and other
advanced imagingmodalities, combined with advances in probes,
optics and analytics to provide temporal and spatial resolution of
microbicidal generation. In the past, generation at a population
level using automated systems such as flow cytometry has been
assumed to be a surrogate for this but may be insufficient to
allow optimal characterization. In vivo imaging is also a valuable
adjunct and comparative medicine using large animals such as
pigs, whose immune system is similar to humans, and studies in
humans will aid translation in models of infection (51, 52).

RECALIBRATING MICROBICIDAL
RESPONSES IN CLINICAL SETTINGS

Only a few strategies to modulate the host response to bacteria
have progressed to clinical trials, and specific assessment
of target microbicidal responses is often lacking (Table 1).
Interferon (IFN)-γ is established in the treatment of chronic
granulomatous disease (CGD), a genetic disorder in which
deficiency in one of the components of the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase leads to
increased susceptibility to a range of infections. While this
is an extreme case of adjusting an immune response, it
shows immunomodulation can be used to enhance microbicidal
responses. Clinical trial data shows IFN-γ reduces the frequency
of severe infections in CGD and it has also been investigated
for multi-drug resistant tuberculosis, Mycobacterium avium
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TABLE 1 | Examples of host-directed therapies in infectious diseases from clinical and pre-clinical studies.

Therapy Level of

evidence

Target Pathogen or disease Outcomes References

Cell type Cellular pathway Microbicidal

response

IFN-γ Clinical trial

(RCT)

Neutrophil NADPH-mediated

ROS production

Phagosomal

intracellular killing

Patients with chronic

granulomatous disease

(n = 128)

↓ frequency of serious

infections in patients receiving

IFN- γ (22 vs. 46%, p =

0.0006).

(53)

No serious toxicity.

GM-CSF Clinical trial

(RCT)

Neutrophil RhoA GTPase

pathway and actin

polymerisation

Phagocytosis Critically ill adults with ↓ ex

vivo neutrophil phagocytosis

(n = 38)

Ex vivo reversal of defective

neutrophil phagocytosis.

(54)

No serious toxicity.

IL-7 Clinical trial

(RCT)

Lymphocyte IL-7R signaling via

Jak/STAT and

PI3K/Akt pathways

T-cell apoptosis Adults with septic shock and

lymphopenia (n = 27; most

commonly pneumonia or

intra-abdominal infection)

↑ absolute lymphocyte count. (55)

↑ CD8+ and CD4+ T-cell

count.

↑ T-cell proliferation and

activation.

No serious toxicity

IFN-γ Clinical trial Monocyte HLA-DR expression Monocyte activation Critically ill adults with sepsis

and ↓ monocyte HLA-DR

expression (n = 9)

↑ ex vivo monocyte

LPS-induced TNF-α

production.

(56)

↑ ex vivo monocyte HLA-DR

expression.

No serious toxicity.

Anti-PD1 mAb +

IFN-γ*

Case report Lymphocyte PD-1/PDL-1

interactions

T-cell apoptosis 1 patient with invasive

mucormycosis

Clinical cure. (57)

↑ absolute lymphocyte count.

↑ monocyte HLA-DR

expression.

↑ CD8+ T-cell count.

↓ T-cell PD-1 expression.

IFN-γ* Case report Monocytes HLA-DR expression Monocyte activation 1 patient with persistent S.

aureus bacteraemia and

metastatic infection

Clinical cure. (58)

↑ MHC-II pathway

transcription.

↑ HLA-DR expression.

↑ antigen-specific T-reg cells.

Shift from Th2 to Th1/Th17.

IFN-γ Pre-clinical Macrophage p62 tagging of

intracellular bacteria

and autophagosome

formation.

Autophagic killing of

intracellular bacteria

B. cenocepacia (cystic

fibrosis)

MDM from patients with cystic

fibrosis in vitro:

(59)

↑ intracellular killing

↓ IL-1β production

P4 peptide

+ IVIG

Pre-clinical Neutrophils

and

macrophages

Fc-γR Phagocytosis S. pneumoniae Murine pneumococcal disease

model:

(60)

↑ survival

↑ bacterial clearance

↑ Fc-γR expression

(neutrophils)

Murine macrophages: ↑

phagocytosis.

P4 peptide Pre-clinical Neutrophils

and

monocytes

Phagosome Phagocytosis and

killing

S. pneumoniae Neutrophils from adults with

severe sepsis:

(61)

↑ neutrophil bacterial killing

↑ neutrophil and monocyte

ROS

Nrf2 agonists Pre-clinical Macrophage Antioxidant

response (phase II

detoxifying enzymes)

Phagocytosis S. pneumoniae, H. influenzae Alveolar macrophages from

patients with COPD: ↑

phagocytosis.

(62)

(Continued)
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TABLE 1 | Continued

Therapy Level of

evidence

Target Pathogen or disease Outcomes References

Cell type Cellular pathway Microbicidal

response

BH3 mimetics

Clodronate

Pre-clinical Macrophage Inhibition of

anti-apoptotic

BCL-2 family

members or

induction of

apoptosis in case of

clodronate

Apoptosis-associated

killing

S. pneumoniae, L.

pneumophila

Murine pneumonia models: (33, 63)

↑ survival

↑ bacterial clearance (lung)

↓ neutrophil recruitment

↑ alveolar macrophage

apoptosis

Statins Pre-clinical Macrophage Cholesterol

biosynthesis

Phagosomal

maturation and

autophagy

M. tuberculosis MDM from statin-treated

patients:

(64)

↓ intracellular bacterial growth

Murine tuberculosis model:

↓ bacterial burden and lung

micro-abscesses

Statin-treated murine BMDM:

↓ intracellular bacterial growth

Statins Pre-clinical Macrophages Cholesterol

biosynthesis

Apoptosis-associated

killing

S. enterica serovar

Typhimurium

Statin-treated RAW 264.7

cells:

(65)

↓ intracellular bacterial growth

↑ apoptosis and CatD

localisation to SCV

Murine model (intra-peritoneal):

↓ bacterial burden (liver and

spleen)

Statins Pre-clinical Neutrophils Cholesterol

biosynthesis

NETosis

Phagocytosis

ROS

S. aureus Statin-treated neutrophils: (66)

↑ extracellular killing & NETosis

↓ phagocytosis

↓ oxidative burst

Murine pneumonia model:

↑ bacterial clearance (lung)

↓ lung inflammation

↑ NETosis

Statins Pre-clinical Macrophages Cholesterol

biosynthesis

JNK pathway

Phagocytosis

ROS

Fc-γR signaling

S. aureus Statin-treated MDM: (67)

↓ phagocytosis, ROS &

intracellular killing

↑ Fc-γR-mediated TNF-α

production

GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; IFN: interferon; RCT: randomised-controlled trial; ROS: reactive oxygen species; mAb: monoclonal antibody;

IVIG: intravenous immunoglobulin; BMDM: bone marrow-derived macrophages; MDM: monocyte-derived macrophages; CatD: cathepsin D; SCV: Salmonella-containing vacuole; NET:

neutrophil extracellular trap.

*Administered in addition to appropriate antimicrobials.

complex and Cryptococcus neoformans infections (53, 68). IFN-
γ enhances several microbicidal mechanisms and has been
shown to correct defective ex vivo killing of the intracellular
pathogen Burkholderia cenocepacia in cystic fibrosis (CF) MDM
by enhancing autophagy, a regulated cellular process that enables
removal and recycling of macromolecules and organelles to
promote cellular homeostasis and a related cell process using
autophagy machinery that leads to killing of ingested bacteria
termed xenophagy (59). However, nebulized IFN-γ did not

reduce bacterial density or inflammation in a clinical trial in
CF (69). In critically ill adults, clinical trial data demonstrates
that IFN-γ is associated with clearance of persistent bacteremia
and improved cytokine profiles in the setting of sepsis-induced
immunosuppression. Further investigation in clinical trials in
sepsis is ongoing (70). It has also been shown to correct HLA-
DR expression on monocytes in patients with sepsis which
provides a useful marker of response (56). In a case report,
IFN-γ enabled clearance of persistent S. aureus bacteremia in
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association with transcriptional profiles associated with a shift
toward Th1/Th17 responses and antigen-specific T-regs, though
the specific consequences for microbicidal responses were not
examined (58). In patients with septic shock and lymphopenia,
IL-7 has been shown to reverse sepsis-induced lymphopenia (55).

GM-CSF and G-CSF enhance macrophage and neutrophil
phagocytosis and microbicidal responses in vitro and are used
to restore functional phagocyte numbers in patients receiving
bone marrow-suppressive chemotherapy. GM-/G-CSF have also
been investigated in patients with sepsis, with a meta-analysis
suggesting a trend toward benefit (71, 72). Timing may be
important with GM-CSF and it may have most efficacy when
targeted to patients with low monocyte HLA-DR (73). Whilst
the impact on microbicidal responses is often not studied,
a recent clinical trial showed GM-CSF targeted to critically
ill patients with defects in ex vivo neutrophil phagocytosis
could ameliorate this defect and increase monocyte HLA-DR
(54). Both GM-CSF and IFN-γ will, with subtle differences,
contribute to macrophage activation phenotypes that promote
microbicidal responses, particularly against pathogens with
significant intracellular survival. Other cytokines will have
similar effects (74). As with many other approaches listed, each
can impact more than one cellular process directly or indirectly,
affecting microbicidal responses (Table 2). For example, IFN-γ
can also enhance myeloid cell recruitment in clinical trials (68).

Other investigational approaches include the use of check-
point inhibitors, such as anti-programmed cell death protein-1
(anti-PD-1) or anti-cytotoxic T-lymphocyte-associated protein-
4 (CTLA-4) monoclonal antibodies (73). These inhibitors
aim to reverse suppression of T-cell inflammatory responses.
Nivolumab, an anti-PD-1 monoclonal antibody, is being
tested in a clinical trial in sepsis, and while such therapies are
anticipated to modulate the inflammatory response, they may
also target microbicidal responses. For example, there is a case
report of Nivolumab being used in combination with IFN-γ to
successfully treat an intractable fungal infection (57). A PD-1
ligand inhibitor has also been shown to increase monocyte
HLA-DR expression (76). Other immune modulating strategies
that can be expected to modulate microbicidal responses
include recombinant IL-7, which corrects lymphopenia and
will enhance IFN-γ, and intravenous immunoglobulin (IVIG),
which in addition to immunomodulation enhances pathogen
clearance through phagocytosis (73). Immunomodulatory
peptides have also been combined with IVIG, specifically the P4
peptide (derived from the immunomodulatory pneumococcal
lipopeptide Pneumococcal surface adhesin A), resulting in
increased pneumococcal clearance in mice and enhanced
neutrophil and monocyte bacterial killing (60, 61).

REPURPOSED DRUGS TO TARGET
MICROBICIDAL RESPONSES IN
PRE-CLINICAL MODELS

Studies in relevant in vitro and animal models, and human
patient groups, can identify host microbicidal targets. But there is
then a need to develop therapeutic approaches to modulate these

targets. This will inevitably be constrained by cost, but this can
potentially be reduced by re-purposing existing agents that are
found to modify the host response of interest (75).

Critical illness can be associated with the compensatory
anti-inflammatory response syndrome and temporary
immunoparesis, after the initial stages of innate immune
activation. This is characterized by reduced Th1 and monocyte
responses, which increase the risk of nosocomial infection (77).
Reducing PRR engagement and subsequent immune activation,
such as through reduction in TLR activation in the early stages
of illness, could potentially reverse this phenomenon and
the turmeric constituent curcumin appears to down-regulate
signaling through a range of TLRs (78, 79).

Phagocytosis of bacteria activates phagosomal microbicidal
responses in myeloid cells (80). Although phagocytosis is not
usually a rate limiting process, in conditions such as COPD
macrophage phagocytosis may be reduced. This is associated
with increased airway bacterial burden (62). This defect is
related to cellular oxidative stress (62, 81). Nrf2 agonists are in
development, which enhance the host cell’s anti-oxidant host
defenses, and in COPD AM can enhance phagocytosis as well
as clearance of P. aeruginosa in mice exposed to cigarette smoke
(62, 82).

Xenophagy is selective autophagy that aids clearance of
intracellular pathogens such as Mycobacterium tuberculosis (83)
and some extracellular bacteria. Of note, Streptococcus pyogenes
subverts this process in endothelial cells (84). Activation of
autophagy via inhibition of inhibitory pathways, such as class
I phosphoinositide-3-kinase, mitogen-activated protein kinases
or 5’-AMP-activated protein kinases, could be a tractable
microbicidal strategy and drugs already under development for
other indications could be re-purposed (75).

Another novel microbicidal response in macrophages
and potentially other myeloid cells involves apoptosis-
associated killing. BH3 mimetics enhance killing of S.
pneumoniae and Legionella pneumophila in murine models
through augmentation/restoration of this pathway (33, 63).
Bisphosphonates also enhance macrophage apoptosis-associated
killing of bacteria (33), while fluoroquinolones cause lysosomal
permeabilization, sensitizing cells to this pathway (45, 85).

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase
inhibitors, termed statins, are used as cholesterol lowering
medicines. Statins enhance bacterial clearance in a murine sickle
cell model of pneumococcal disease. The impact was limited to
the sickle cell mice with no response seen in wild type (86). One
potential mechanism was downregulation of platelet-activating
factor receptor required for bacterial translocation from the
lung in the sickle cell mice. However, the microbicidal basis
for the enhanced clearance was not established beyond the
association of increased clearance with reduced sickle cell-
associated inflammation. In the case of M. tuberculosis, statins
enhance phagosomal maturation and xenophagy (64), while
for Salmonella enterica serovar Typhimurium they enhance
cathepsin D localization to phagosomes and apoptosis induction
(65). Whether they also enhance these processes for extracellular
pathogens is not established. They can enhance neutrophil and
monocyte killing by extracellular traps (66). However, they
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TABLE 2 | Summary of strategies of host-directed therapy.

Strategy Therapy References

↑ microbicidal activity

through canonical

killing mechanisms

IFN-γ (53)

GM-CSF (54)

Statins (undetermined

mechanism, presumed

canonical)

(64–66)

Anti-PD1 (nivolumab) (57)

IL-7 (73)

P4 peptide (61)

↑ apoptosis-associated BH3 mimetics (33, 63)

killing (macrophages) Clodronate (33)

Statins (65)

↑ xenophagy IFN-γ (59)

Statins (64)

PI3K, MAPK 5′ AMP

kinases

(75)

↑ monocyte activation IFN-γ (56, 58)

GM-CSF (54, 73)

PDL1 inhibitor (76)

Enhancing T cell

numbers to indirectly

increase microbicidal

responses

IL-7 (73)

↑ Phagocytosis as

basis of increased

microbicidal response

GM-CSF (54)

IVIG (60)

P4 peptide (61)

Nrf2 agonists (62)

Statins (66, 67)

inhibit phagocytosis and microbicidal responses in other models
such as Fcγ-receptor mediated uptake of opsonized S. aureus
(67) and reduce bacterial killing by neutrophils in a murine
pneumonia model (87). Therefore, how they would be best
used requires further elucidation, as reflected in contradictory
findings from clinical studies. For example, a reduced risk of
community-acquired S. aureus bacteremia (88) and reduced
mortality in pneumonia were reported (89, 90) yet no reduction
in mortality was observed in another pneumonia study (91) or in
a study of ventilator-associated pneumonia (92).

CHALLENGES

Recalibrating responses will likely require a personalized
medicine approach. Individual pathogens would need varying
degrees of engagement of a given response. S. aureus inhibits
apoptosis-associated killing in macrophages so might need
a greater degree of enhancement, or might require an
alternative approach, while for S. pneumoniae in which
apoptosis-associated killing is already engaged, the adjustment
might only need to be of a more modest extent in a

subset of individuals (33). Certain responses might need
engagement in select patient groups such as those with
medical comorbidities that adjust the response. Alternatively
these responses might not be suitable for enhancement in
certain groups. For example, patients with COPD might not
be amenable to enhancement of mROS production or might
require reduction in high baseline levels of antioxidants to
enhance this microbicidal response (16). Such personalized
approaches would require validated tests to help calibrate an
individual response.

Another challenge is that where responses need to be
recalibrated it will be important that responses do not over
shoot and result in overproduction of factors that could lead
to tissue injury if there is excessive production of microbicidals
or inflammatory cells (30). This is most likely to be prevented
where the responses enhanced are intracellular, generated at high
levels adjacent to bacteria and transient. Responses will require
application of techniques to measure the individuals response
through use of appropriate biomarkers or imagingmodalities and
would benefit from approaches that combine thesemeasures with
microdosing experiments and endomicroscopy (the application
of in vivomicroscopy applied through endoscopy to allow optical
biopsy) to test the efficacy of recalibration (93).

CONCLUSIONS

The ineluctable progression of AMR necessitates investigation
of novel strategies for treating bacterial disease. Based on the
observation that exposure to potentially pathogenic bacteria
infrequently leads to disease, we contend that identification
and exploitation of specific determinants of host defense
represents a tractable alternative to antimicrobials (host-
based therapy). While there are many potential aspects of
the host response that represent tractable targets, including
humoral factors (e.g., AMP), epithelial barrier function, and
lymphoid populations, we suggest approaches that promote
pauci-inflammatory macrophage and neutrophil microbicidal
responses can improve outcomes. We have highlighted a number
of promising in vitro, animal model, human and pre-clinical
observations that support this viewpoint and provide a roadmap
for future research.
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The quorum sensing (QS) signaling molecule, N-(3-oxododecanoyl)-L-homoserine
lactone (3O-C12-HSL), contributes to the pathogenesis of Pseudomonas aeruginosa by
regulating expression of the bacterial virulence factors that cause intense inflammation
and toxicity in the infected host. As such, the QS molecule is an attractive therapeutic
target for direct-acting inhibitors. Several substances, both synthetic and naturally
derived products, have shown effectiveness against detrimental 3O-C12-HSL activity.
Unfortunately, these compounds are relatively toxic to mammalian cells, which limits
their clinical application. In this study, fully human single-chain variable fragments
(HuscFvs) that bind to P. aeruginosa haptenic 3O-C12-HSL were generated based on
the principle of antibody polyspecificity and molecular mimicry of antigenic molecules.
The HuscFvs neutralized 3O-C12-HSL activity and prevented mammalian cells from
the HSL-mediated apoptosis, as observed by Annexin V/PI staining assay, sub-G1
arrest population investigation, transmission electron microscopy for ultrastructural
morphology of mitochondria, and confocal microscopy for nuclear condensation and
DNA fragmentation. Computerized homology modeling and intermolecular docking
predicted that the effective HuscFvs interacted with several regions of the bacterially
derived ligand that possibly conferred neutralizing activity. The effective HuscFvs should
be tested further in vitro on P. aeruginosa phenotypes as well as in vivo as a
sole or adjunctive therapeutic agent against P. aeruginosa infections, especially in
antibiotic-resistant cases.

Keywords: Pseudomonas aeruginosa, quorum sensing, N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-
HSL), apoptosis, human scFv
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INTRODUCTION

Pseudomonas aeruginosa, a versatile and ubiquitous Gram-
negative bacterium, is an opportunistic microorganism that
frequently causes severe nosocomial infections, particularly
among immunocompromised patients and those suffering from
cystic fibrosis, burns, HIV infection, and cancer (Tang et al.,
1996; Sadikot et al., 2005; Silva Filho et al., 2013; Malhotra
et al., 2019; Waters and Goldberg, 2019). The pathogenicity
of P. aeruginosa is attributable mainly, if not solely, to the
regulons of two complete N-acyl homoserine lactone (AHL)-
dependent quorum sensing (QS) systems, called LasI/R and
RhlI/R (Preston et al., 1997; Venturi, 2006). The two QS
systems act in a hierarchical manner, i.e., the lasI/R system
controls the activity of the rhlI/R circuit (Pearson et al.,
1994, 1995). During bacterial infection, the LasI and RhlI
synthases produce N-(3-oxododecanoyl)-L-homoserine lactone
(3O-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-
HSL), respectively. The QS molecules then interact with their
cognate LasR and RhlR, causing transcription of hundreds of
target genes, including those coding for virulence factors such as
lectins, elastases, proteases, exotoxin A, pyocyanin, and surface-
active rhamnolipids important in the late stages of biofilm
development, as well as genes involved in antibiotic resistance
(Wagner et al., 2003; Venturi, 2006; Rutherford and Bassler, 2012;
Moradali et al., 2017).

N-(3-Oxododecanoyl)-L-homoserine lactone (3O-C12-HSL)
is the prominent autoinducer of the P. aeruginosa QS system
(Duan and Surette, 2007; Rasamiravaka and El Jaziri, 2016).
3O-C12-HSL is a small, fatty acid-like, membrane-permeant
signaling molecule that comprises a hydrophilic homoserine
lactone ring linked to the hydrophobic 12-carbon-atom-long
acyl side chain via an amide bond (Eberhard et al., 1981;
Pearson et al., 1995; Ritchie et al., 2007; O’Connor et al., 2015).
The roles of 3O-C12-HSL in pathogenesis and modulation of
the host immune responses have been reviewed (Liu et al.,
2015). Owing to its lipophilicity, the 3O-C12-HSL can traverse
the mammalian cell membrane (Ritchie et al., 2007), causing
mitochondrial damage and dysfunction, which subsequently
activates the caspase pathway leading to apoptosis of several
cell types, including macrophages, neutrophils, T lymphocytes,
human vascular endothelial cells, murine fibroblasts, airway
epithelial cells, goblet cells, and breast carcinoma cells (Tateda
et al., 2003; Li et al., 2004; Shiner et al., 2006; Jacobi et al., 2009;
Schwarzer et al., 2012; Tao et al., 2016, 2018). P. aeruginosa QS
signaling molecules also modulate host immune responses by
down-regulating the expression of co-stimulatory molecules on
dendritic cells (DCs), leading to inhibition of DC maturation and
their ability to activate effector T-cell responses (Boontham et al.,
2008). Because the 3O-C12-HSL plays an important role in the
virulence and pathogenesis of P. aeruginosa and host immunity
suppression, it is an attractive target for novel therapeutics
for P. aeruginosa infection. Substances that interfere with
P. aeruginosa 3O-C12-HSL activity should mitigate bacterial-
associated disease severity, although blocking the QS system
alone does not necessarily abrogate all P. aeruginosa virulence
factors, such as T3SS (Bleves et al., 2005; López-Jácome et al.,

2019; Soto-Aceves et al., 2019). A therapeutic approach based on
QS interference and/or attenuation of QS signals should result
in greater sensitivity of the P. aeruginosa to stresses, such as
antimicrobial drugs (Rasmussen and Givskov, 2006; Defoirdt
et al., 2010; Maeda et al., 2012; Kalia et al., 2014; Krzyżek, 2019).

Recently, a murine monoclonal antibody (mAb), RS2-
1G9, against a lactam mimetic of 3O-C12-HSL has been
shown to prevent apoptosis through p38 mitogen-activated
protein kinase activation and protected murine bone marrow-
derived macrophages from the cytotoxic effects of the QS
molecule (Kaufmann et al., 2006, 2008). The RS2-1G9 paratope
was shown to enclose the polar lactam moiety of the 3O-
C12-HSL molecule in the co-crystal structure of the Fab
fragment of the RS2-1G9 mAb and the target 3O-C12-HSL
completely (Debler et al., 2007). Active immunization of mice
with 3O-C12-HSL-protein conjugate protected immunized mice
from lethal P. aeruginosa infection (Miyairi et al., 2006).
Antibody-based therapy directed to the QS molecule should
not only block bacterial virulence, but also rescue the host
immunity that had been modulated/suppressed by the QS
system (Kaufmann et al., 2008; Palliyil and Broadbent, 2009).
The present study generated engineered, fully human, single-
chain antibody variable fragments (HuscFvs) that neutralize
3O-C12-HSL bioactivity. The HuscFvs should be tested, step-
by-step, toward clinical application as a sole or adjunct therapy
for the currently failing antibiotic treatment of patients with
P. aeruginosa infection.

MATERIALS AND METHODS

P. aeruginosa
N-(3-Oxododecanoyl)-L-Homoserine
Lactone (3O-C12-HSL)
The QS molecule was synthesized commercially (Cayman
Chemical, Ann Arbor, MI, United States) under the IUPAC name:
3-oxo-N-[(3S)-2-oxooxolan-3-yl]-dodecanamide. 3O-C12-HSL
was stored in 100% dimethyl-sulfoxide (DMSO) and diluted
with phosphate-buffered saline, pH 7.4 (PBS), to the desired
concentration for use.

Preparation of HuscFv to P. aeruginosa
3O-C12-HSL
The human single-chain variable fragments (HuscFvs) to the
3O-C12-HSL were generated based on the principles of the
polyspecific property of an antibody, i.e., one antibody can
bind different antigens by paratope adaptation to accommodate
distinct antigens, such as through differential engagements of
the complementarity determining regions (CDRs), and the
molecular mimicry of the antigens (different antigens can share
surface topologies in terms of shape or chemical nature) (Tapryal
et al., 2013). In this study, HB2151 Escherichia coli clones carrying
phagemids with inserted HuscFv genes (huscfvs) were previously
selected from a HuscFv phage display library (Kulkeaw et al.,
2009) using Pseudomonas exotoxin A (ETA) as antigen in the
phage-biopanning process (Santajit et al., 2019). Genes coding for
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HuscFvs of individual E. coli clones were sequenced and deduced,
and the canonical CDRs and framework regions (FRs) of both
VH and VL domains were determined based on the numbering
scheme of Chotia and Kobat (Abhinandan and Martin, 2008).

Three dimensional (3D) models of the selected HuscFvs were
generated by subjecting their deduced amino acid sequences to
the I-TASSER online server (Yang et al., 2015). The HuscFvs-
3D models from the I-TASSER were further refined to improve
local geometric and physical quality using ModRefiner (Xu and
Zhang, 2011). The quality of the generated homology models
of HuscFvs was then evaluated using the PROCHECK server to
provide Ramachandran plots (Laskowski et al., 1993). Thereafter,
the 3D structures of the individual HuscFvs were superimposed
with the 3D structure of the mAb RS2-1G9 F(ab

′

)2 (PDB ID:
2NTF) (previously shown to neutralize 3O-C12-HSL pathogenic
activity; hence, the mAb has been designated as a “quorum
quenching antibody”) (Kaufmann et al., 2006, 2008) using the
CLICK server, i.e., the topology-independent tool comparing
3D structures without a scoring function measuring structural
similarity (Nguyen et al., 2011). The HuscFvs showing top-scored
topological similarity with the RS2-1G9 antigen-binding site were
selected. The 3D structure of 3O-C12-HSL was retrieved from
the PubChem database, a resource of chemical molecules and
their bioactivities (PubChem CID: 3246941) (Kim et al., 2015).
The modeled-3O-C12-HSL F(ab

′

)2 was docked with the 3D
model of each HuscFv receptor binding pocket using Autodock
Vina software (Trott and Olson, 2010; Forli et al., 2016). The
conformation of each HuscFv-ligand complex with the lowest
binding free energy (1G) at the best docking position was
selected for interaction analysis and visualization through the
Discovery studio visualizer 3.5 program.

Large-Scale Production of HuscFvs
The E. coli clones carrying phagemids containing the
DNA coding for the selected HuscFvs were subjected
to sub-cloning for large scale HuscFv production. The
huscfvs were PCR-amplified from the huscfv-pCANTAB5E
phagemids of HB2151 E. coli clones using a Phusion
High-Fidelity DNA polymerase (Thermo Fisher Scientific,
Carlsbad, CA, United States). The PCR specific primers were
forward-huscfv-LIC: 5

′

-GGTTGGGAATTGCAAGCGGC
CCAGCCGGCC-3

′

and reverse-E-tag-LIC: 5
′

-GGAGATGGGA
AGTCATTAACGCGGTTCCAGCGGATCC-3

′

. The huscfv
inserts were designed to consist of a HuscFv-coding sequence
linked to specific sequences for ligation independent cloning
(LIC) protocol (Thermo Fisher Scientific). The amplified
huscfv-E-tag DNAs were cloned separately into the pLATE52
vector (Thermo Fisher Scientific). Recombinant pLATE52-
huscfv plasmids were transformed into JM109 E. coli by the
heat-shock method. After PCR screening and DNA sequencing,
the recombinant plasmids were introduced into an expression
host, NiCo21(DE3) E. coli (New England Biolabs, St. Albans,
Herts, United Kingdom), and the transformed bacteria were
grown at 37◦C for 16 h on LB agar containing 100 µg/ml of
ampicillin. A single colony of each transformed clone was
cultured in LB broth containing 100 µg/ml ampicillin with

shaking (250 rpm) at 37◦C for 16 h. The overnight cultures
(12.5 ml) were separately inoculated into the fresh LB medium
(250 ml) containing ampicillin and grown at 37◦C until an
OD600 nm reached ∼0.6–0.8. Recombinant HuscFv expression
was induced by adding isopropyl-β-D-1-thiogalactopyranoside
(IPTG) to a final concentration of 1 mM and incubated at 30◦C
for 6 h. The bacterial pellets were collected by centrifugation at
5,000× g at 4◦C for 20 min.

The recombinant HuscFvs were purified from the bacterial
inclusion bodies (IBs) as described previously (Jittavisutthikul
et al., 2016). Two grams of E. coli wet cell pellets were
resuspended in 10 ml of BugBusterTM protein extraction reagent
(Novagen, Schwalbach, Germany) and 20 µl of LysonaseTM

bioprocessing reagent (Novagen) were added to each preparation.
The preparations were kept at 25◦C on a rotator for 20 min and
cell pellets were collected after centrifugation at 8,000 × g at
4◦C for 30 min. The IBs were washed with Wash-100 reagent
[50 mM sodium phosphate buffer, pH 8.0; 500 mM NaCl; 5 mM
EDTA; 8% (w/v) glycerol; and 1% (v/v) Triton X-100] twice and
once with Wash-114 buffer [50 mM Tris–HCl, pH 8.0; 300 mM
NaCl; and 1% (v/v) Triton X-114] with shaking at high speed
for 40 min, and the IB pellets were then collected. The IBs
were then washed with Wash-Solvent solution [50 mM Tris–
HCl, pH 8.0; and 60% (v/v) isopropanol] and sterile ultrapure
distilled water on ice, also with vigorous shaking, and centrifuged.
Thereafter, 2.5 mg of purified IB pellets were solubilized in 5 ml of
solubilizing buffer [50 mM CAPS, pH 11.0; 0.3% (w/v) N-lauryl
sarcosine; and 1 mM dithiothreitol (DTT)] and kept at 4◦C for
16 h. After dissolving completely, the protein was loaded into
Snakeskin dialysis tubing with a molecular weight cut-off of
10 kDa (Thermo Fisher Scientific), and dialyzed against 750 ml
of refolding buffer (20 mM imidazole, pH 8.5, supplemented
with 0.1 mM DTT) at 4◦C with slow stirring. After 3 h, the
buffer was changed to a fresh refolding buffer, and dialysis
was continued for 16 h. The refolded protein was subsequently
dialyzed against a dialysis buffer without DTT with slow stirring
at 4◦C for 16 h. Each preparation was filtered through a 0.2-
µm low protein binding Acrodisc R© Syringe Filter (Pall, Port
Washington, NY, United States) and kept at 30◦C in a water
bath for 3 h before adding 60 mM trehalose. The protein
concentration of the refolded HuscFvs was determined using
Pierce R© BCA Protein Assay, while the quality and purity of the
recombinant proteins were analyzed by SDS-PAGE and stained
with Coomassie Brilliant Blue G-250 (Bio-rad, Hercules, CA,
United States). Refolded HuscFv preparations were concentrated
using Amicon R© Ultra 4 ml 3K centrifugal filter devices (Merck
Millipore, Darmstadt, Germany) and stored at−20◦C until use.

Circular Dichroism
The buffer of the HuscFv preparations was changed to
20 mM sodium phosphate buffer, pH 8.5, at a protein
concentration of 0.1 mg/ml, and the antibodies were subjected
to CD measurement. The data were recorded using a JASCO
spectrometer (model J-815) equipped with a Peltier temperature
controller system (Jasco, Tokyo, Japan) in a 1 mm path-
length quartz cuvette. The proteins were scanned at 50 nm/min
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at 25◦C. The CD spectra were collected over a wavelength
range of 190–260 nm.

Cell Line
Human cervical carcinoma, HeLa, cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, Carlsbad,
CA, United States) supplemented with 10% (v/v) fetal bovine
serum (Hyclone, Novato, CA, United States) and 1% (v/v)
penicillin-streptomycin (complete DMEM) at 37◦C in a 5%
CO2 atmosphere.

Determination of the Biocompatibility of
the HuscFvs to Mammalian Cells
The monolayer of HeLa cells established in individual wells
of a 24-well tissue culture plate (∼2 × 105 cells/well) were
washed with sterile PBS, added with 2 µM of individual
HuscFv preparations in complete DMEM, and incubated at
37◦C in 5% CO2 atmosphere for 24 h. Cells in the medium
alone served as a background control. After 24 h, the percent
viability of cells of each treatment was analyzed using an
FITC-Annexin V Apoptosis Detection Kit (BD Biosciences,
San Jose, CA, United States) according to the manufacturer’s
protocols. The cells were washed with Dulbecco’s phosphate-
buffered saline (DPBS) and resuspended in binding buffer. Five
microliters of Annexin V-FITC conjugate and 5 µl of propidium
iodide (PI) were added. After 15-min incubation at room
temperature (25◦C) in darkness, apoptotic cells were enumerated
by flow cytometric analysis (BD LSRFortessaTM, San Jose, CA,
United States) using BD FACSDivaTM software (BD Biosciences).
At least 20,000 events of single cells per sample were collected.

Cellular Apoptosis Mediated by
3O-C12-HSL
HeLa cells (∼2 × 105 cells/well) were treated with various
concentrations of 3O-C12-HSL, i.e., 10, 25, 50, 75, and 100 µM.
The background control comprised of cells incubated with
medium alone. After incubation at 37◦C in a CO2 incubator for
18 h, the cells were harvested and subjected to Annexin V/PI
binding assay, as described above.

Neutralization of
3O-C12-HSL-mediated-Cytotoxicity by
HuscFvs
Fifty micromolars of 3O-C12-HSL in 0.25% DMSO were mixed
with various concentrations of individual HuscFv preparations
(0.25, 0.5, 1.0, and 1.2 µM) for 1 h before adding to HeLa cells
(∼2 × 105 cells/well) and incubated at 37◦C in a CO2 incubator
for 18 h. After incubation, the cells were collected, washed,
double-stained with Annexin V-FITC and PI, and analyzed
by flow cytometry, as described above. Three independent
experiments were performed.

Neutralization of 3O-C12-HSL-mediated
Cell Cycle Arrest by HuscFvs
HeLa cells (∼2 × 105 cells/well) were treated with a mixture
of 50 µM 3O-C12-HSL and 1 µM of individual HuscFvs for

18 h. HeLa cells exposed to medium alone served as a control.
After incubation, cells were washed with ice-cold PBS, fixed in
70% ethanol, and kept at −20◦C overnight. Cells were then
washed 3 times with ice-cold PBS and incubated in 500 µl of
stain solution [10 µg/ml PI, 100 µg/ml RNase, and 0.1% (v/v)
Triton X-100 in DPBS, pH 7.4] at room temperature in darkness
for 30 min. The DNA contents of the cells were measured,
and cell cycle histograms/distributions were generated. Then, the
percentage of cells in the sub-G1 phase was determined by flow
cytometry (BD LSRFortessaTM) using BD FACSDivaTM software
(BD Biosciences), with at least 10,000 recorded events per sample.

Analysis of Nuclear Damage by
Fluorescence Staining
Nuclear damage was studied using 4’,6-diamidino-2-
phenylindole (DAPI) staining. Briefly, HeLa cells (1 × 106 cells)
were seeded on a 22 × 22 mm square coverslip (Menzel-Glaser,
Braunschweig, Germany) in a 6-well plate (Costar, New York,
NY, United States) and kept at 37◦C in a 5% CO2 incubator
for 24 h. The culture medium was removed and the cells were
replenished with complete DMEM containing a mixture of
3O-C12-HSL (50 µM) and HuscFvs (2 µM). After 18 h, the
cells were washed and fixed with 4% (v/v) paraformaldehyde in
PBS, permeabilized with 1% (v/v) Triton X-100 in PBS, blocked
with 3% (w/v) bovine serum albumin (BSA) in PBS at room
temperature for 30 min, then washed. The permeabilized cells
were stained and mounted with DAPI (1:5,000) (Molecular
Probes, Carlsbad, CA, United States) in the anti-fade mounting
medium. DNA fragmentation and chromatin condensation were
observed under a confocal microscope (Carl Zeiss Laser Scanning
System LSM 700, Jena, Germany). Images were processed using
the Zeiss LSM Image Browser (version 6.0.0.309).

Transmission Electron Microscopy
Transmission electron microscopy (TEM) was used to examine
the ultrastructural changes of the HeLa cell mitochondria after
various treatments. The cells from each treatment group were
fixed with 2.5% (v/v) glutaraldehyde in 0.1 M sucrose phosphate
buffer (SPB) at room temperature for 1 h, washed three times
with 0.1 M SPB, post-fixed with 1.0% (w/v) osmium tetroxide
in the same buffer for 1 h, and dehydrated with a graded series
of ethanol. The dehydrated cells were infiltrated with pure LR
white embedded medium (EMS R©, Hatfield, PA, United States) in
70% (v/v) ethanol, embedded in a capsule beam, and incubated
at 65◦C for 48 h. The ultrathin (100 nm) sections of the cells
were prepared; the sections were positioned on a 200 square-
mesh copper grid and stained with ethanolic uranyl acetate and
lead citrate. The morphological and structural characteristics
of mitochondria were observed under a transmission electron
microscope (model HT7700, Hitachi, Tokyo, Japan).

Statistical Analysis
Statistical analyses of all experiments were performed using
GraphPad Prism 5 software (La Jolla, CA, United States). One-
way ANOVA followed by Tukey’s post hoc multiple comparison
tests were used to analyze the differences between groups. All data
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are shown as mean ± SD. Statistically significant difference was
set at p < 0.05.

RESULTS

HuscFvs to 3O-C12-HSL
The refined models of HuscFvs for the selected HB2151 E. coli
clones derived from phage biopanning with P. aeruginosa
exotoxin A revealed that HuscFvs of three E. coli clones,
i.e., E44 (HuscFv-E44), F15 (HuscFv-F15), and F19 (HuscFv-
F19), showed reliable Ramachandran plots. The percent residues
in the most favored regions, the additional allowed regions,
the generously allowed regions, and the disallowed regions
of the Ramachandran diagrams of the HuscFv-E44, HuscFv-
F15, and HuscFv-F19 were 90.1, 6.8, 1.0, and 2.1 %; 91.3,
7.7, 0.5, and 0.5%; and 88.2, 9.4, 1.0, and 1.5%, respectively
(Supplementary Figure S1).

From structural comparisons of individual HuscFvs with
the antigen-binding site of the well-characterized quorum
quenching mAb, i.e., RS2-1G9 (shown previously to bind to
and neutralize the activities of P. aeruginosa 3O-C12-HSL), it
was found that the binding pockets of the three HuscFvs were
superimposed with the antigen-binding site of RS2-1G9. The

coverage percentages of the overlapping structures between the
modeled HuscFv-E44, HuscFv-F15, and HuscFv-F19 and the
RS2-1G9 were 90.83, 89.29, and 88.58%, respectively (Figure 1
and Supplementary Table S1).

Homology Modeling and Intermolecular
Docking Between HuscFvs and
3O-C12-HSL
In silico intermolecular docking was performed to investigate the
interaction of the HuscFvs with the 3O-C12-HSL. The residues
of HuscFv-E44, HuscFv-F15, and HuscFv-F19 that tentatively
formed interactive bonds with the haptenic 3O-C12-HSL target
are shown in Figure 2 and Table 1. The Gibbs free energy (1G)
of the representative complexes of respective HuscFvs with the
ligand were−5.6,−5.8, and−5.4 kcal/mol, respectively.

The HuscFv-E44 used residues from VH-CDR2 and VL-
CDR3, as well as help from VH-FR2, VH-FR3, VL-FR1, and
VL-FR4 to form contact interfaces with the functional groups
of 3O-C12-HSL. The interactions were three hydrogen bonds
between L45 of VH-FR2 with the NH group of the coordinated
3O-C12-HSL (2.18 Å) and N60 of VH-CDR2, and W47 of VH-
FR2 with the 3O-C12-HSL carbonyl oxygen of 3-oxo-group of
the acyl chain (2.97 and 2.44 Å, respectively). There was one

FIGURE 1 | The 3D complex of RS2-1G9 F(ab
′

)2 fragment and N-Acyl-L-homoserine lactone analog (PDB:2NTF) was superimposed by the HuscFv-E44 (left),

HuscFv-F15 (middle), and HuscFv-F19 (right) using CLICK: http://mspc.bii.a-star.edu.sg/click (Upper panel). One antigen-binding site of the mAb RS2-1G9 F(ab
′

)2
fragment (VH and VL domains, shown in blue) was superimposed by the HuscFvs (green). The trace illustration is the remaining portion of the RS2-1G9 F(ab

′

)2.
Lower panel, the superimposed amino acids of the RS2-1G9 antigen-binding site (2NTF) and the VH and VL of HuscFv-E44, HuscFv-F15, and HuscFv-F19, are
shown in red alphabets.
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FIGURE 2 | Computerized contact interfaces between 3O-C12-HSL and HuscFvs. (A–C) on the left side of the panels show interaction between 3D structures of
3O-C12-HSL (yellow stick) and green ribbons of (A) HuscFv-E44, (B) HuscFv-F15, (C) HuscFv-F19. Right side of the panels (A–C) show residues of the respective
HuscFvs and the HuscFv-3O-C12-HSL interactive bonds (yellow, hydrogen bond; light pink, alkyl; magenta, Pi-alkyl; green, van der Waals force).
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TABLE 1 | Residues of Pseudomonas aeruginosa 3O-C12-HSL predicted to form
contact interfaces with the effective HuscFv-E44, HuscFv-F15, and HuscFv-F19.

3O-C12-HSL position HuscFv-E44 Interactive bond

Residue (s) Domain

Ketone group of HSL
ring

E46 VH-FR2 Van de Waals

C3 of HSL ring G44
G232

VH-FR2
VL-FR4

Van de Waals
Van de Waals

C4 of HSL ring G44 VH-FR2 Van de Waals

NH-group L45
E46
F231

VH-FR2
VH-FR2
VL-FR4

Hydrogen
Van de Waals
Van de Waals

1-oxo-group T230
F231

VL-CDR3
VL-FR4

Van de Waals
Van de Waals

C2 of acyl chain E46
T230

VH-FR2
VL-CDR3

Van de Waals
Van de Waals

3-oxo-group W47
N60

VH-FR2
VH-CDR2

Hydrogen
Hydrogen

E46
Y229

VH-FR2
VL-CDR3

Van de Waals
Van de Waals

C5 of acyl chain E133 VL-FR1 Van de Waals

C9 of acyl chain S62 VH-CDR2 Van de Waals

C10, C11 of acyl chain R38
R66

VH-FR2
VH-FR3

Van de Waals
Van de Waals

C12 of acyl side chain L63 VH-CDR2 Hydrophobic (alkyl)

C12 of acyl side chain R38
R66
N89

VH-FR2
VH-FR3
VH-FR3

Van de Waals
Van de Waals
Van de Waals

3O-C12-HSL position HuscFv-F15 Interactive bond

Residue(s) Domain

C3 of HSL ring P62 VH-CDR2 Van de Waals

C3, C4 of HSL ring D140 VL-FR1 Van de Waals

1-oxo-group W47
S61

VH-FR2
VH-CDR2

Van de Waals
Van de Waals

S63 VH-CDR2 Hydrogen

C2 of acyl chain W47/A241 VH-FR2 Van de Waals

3-oxo-group P240/A241/T242 VL-CDR3 Van de Waals

W47
A241

VH-FR2
VL-CDR3

Van de Waals
Van de Waals

C4 of acyl chain W4
F243

VH-FR2
VL-FR4

Van de Waals
Van de Waals

A241/T242 VL-CDR3 Van de Waals

C5 of acyl chain E46, W47
F243

VH-FR2
VL-FR4

Van de Waals
Van de Waals

C6 of acyl chain F243 VL-FR4 Van de Waals

C7 of acyl chain L45, E46
F243

VH-FR2
VL-FR4

Van de Waals
Van de Waals

C8 of acyl chain K43, E46 VH-FR2 Van de Waals

C9 of acyl chain K43 VH-FR2 Van de Waals

F243/G244/Q245 VL-FR4 Van de Waals

C10 of acyl chain F243/G244/Q245 VL-FR4 Van de Waals

C12 of acyl chain V142 VL-FR1 Hydrophobic (alkyl)

M143
T242
F243

VL-FR1
VL-CDR3
VL-FR4

Van de Waals
Van de Waals
Van de Waals

(Continued)

TABLE 1 | Continued

3O-C12-HSL position HuscFv-F19 Interactive bond

Residue(s) Domain

Ketone group of HSL
ring

R38
E89

VH-FR2
VH-FR3

Van de Waals
Van de Waals

C3, C4 of HSL ring K43 VH-FR2 Van de Waals

Oxygen of HSL ring E89 VH-FR3 Van de Waals

NH-group R38, E46 VH-FR2 Hydrogen

1-oxo-group R38 VH-FR2 Van de Waals

S63
G139

VH-CDR2
Linker

Hydrogen
Hydrogen

C2 of acyl side chain R38 VH-FR2 Van de Waals

C7, C8 of acyl chain L45
F245

VH-FR2
VL-FR4

Van de Waals
Van de Waals

C9 of acyl side chain T244
F245

VL-CDR3
VL-FR4

Van de Waals
Van de Waals

C10 of acyl chain E148 VL-FR1 Van de Waals

C11 of acyl chain L243 VL-CDR3 Van de Waals

C12 of acyl chain W47
A61

P242

VH-FR2
VH-CDR2
VL-CDR3

Hydrophobic
(π-alkyl)

Hydrophobic (alkyl)
Hydrophobic (alkyl)

hydrophobic interaction (alkyl) formed between L63 of VH-
CDR2 and C12 of the acyl chain of AHL. HuscFv-E44 also used
many residues in different domains to form contact interfaces
via van der Waals forces with the 3O-C12-HSL, including S62 of
VH-CDR2; Y229 and T230 of VL-CDR3; R38, G44, and E46 of
VH-FR2; R66 and D89 of VH-FR3, E133 of VL-FR1; and F231,
G232, and Q233 of VL-FR4 (Table 1).

HuscFv-F15 formed a hydrogen bond (2.25 Å) with the
carbonyl oxygen of the 1-oxo-group of the fatty acid-like ligand
through S63 of VH-CDR2. This antibody also used V142 of
VL-FR1 to form hydrophobic contact (alkyl) with the C12 of
the hapten acyl chain. Several other positions of the 3O-C12-
HSL molecule have interacted via van der Waals forces with
several residues of the HuscFv-F15 including S61 and P62 of VH-
CDR2; P240, A241, and T242 of VL-CDR3; K43, L45, E46, and
W47 of VH-FR2; D140 and M143 of VL-FR1; and F243, G244,
and Q245 of VL-FR4.

Serine 63 of VH-CDR2 and G139 of the HuscFv-F19 linker
formed contact with the carbonyl oxygen of the 1-oxo-group
of the 3O-C12-HSL via hydrogen bonds (2.06 and 2.44 Å,
respectively). Hydrogen bonding also occurred between E46 of
VH-FR2 and the NH-group of the HSL backbone (2.07 Å). The
last carbon atom of the long acyl side chain of the 3O-C12-HSL
formed π-alkyl hydrophobic interaction with W47 of VH-FR2 as
well as the alkyl hydrophobic interaction with A61 of VH-CDR2
and P242 of VL-CDR3. In addition, the HuscFv-F19 formed van
der Waals contacts with the 3O-C12-HSL by using L243 and T244
of VL-CDR3; R38, K43, and L45 of VH-FR2; E89 of VH-FR3;
E148 of VL-FR1; and F245 of VL-FR4.

The results of the structural comparison of the HuscFvs with
the quorum quenching mAb, RS2-1G9, and the intermolecular
docking between the HuscFvs and the 3O-C12-HSL enticed us
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FIGURE 3 | Production and characterization of HuscFvs to 3O-C12-HSL. (A) Schematic diagram of the inserted DNA construct in pLATE52 where the DNA
sequence coding for HuscFv (vh-linker-vl) was flanked with DNA sequences of 6 × His at the 5

′

end and E-tag at the 3
′

end. (B) Amplicons of huscfv-LIC fragments
(∼ 850 bp) for sub-cloning into pLATE52 vector. M, 100 bp-plus DNA ladder; 1–3, huscfv-LIC amplicons of three representatives transformed NiCo21(DE3) E. coli
clones. Numbers at the left are DNA sizes in bp. (C) Stained SDS-PAGE-separated purified recombinant HuscFvs. M, protein standard; 1–3, purified HuscFv-E44,
HuscFv-F15 and HuscFv-F19, respectively. Numbers at the left are protein masses in kDa. (D) CD spectra of the refolded HuscFv-E44, HuscFv-F15, and
HuscFv-F19.
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FIGURE 4 | The percentages of apoptotic HeLa cells exposed to different concentrations of 3O-C12-HSL. (A) Bar graph of average percentages (means ± SD) of
apoptotic cells from three independent experiments after exposure to 10, 25, 50, 75, and 100 µM of C12-HSL, compared with the cells in medium alone. (B) The
density plots of HeLa cells after treatment with 10, 25, 50, 75, and 100 µM of C12-HSL, and control cells stained by Annexin V-FITC/PI and subjected to flow
cytometric analysis (representative of three independent experiments). The cytotoxic activity of the 3O-C12-HSL was dose-dependent. Q1, necrotic cells (Annexin V
negative/PI positive); Q2, late apoptotic cells (Annexin V positive/PI positive); Q3, early-apoptotic cells (Annexin V positive/PI negative), and Q4, viable cells (Annexin
V negative/PI negative).
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to test further the ability of HuscFvs to neutralize P. aeruginosa
3O-C12-HSL activities.

Large-Scale Production of HuscFvs
The huscfv inserts in the pCANTAB5E phagemids of the E. coli
clones E44, F15, and F19 were sub-cloned into the pLATE52
vector. The DNA construct in the vector is shown in Figure 3A.
The amplicon of DNA coding for 6×His tagged-HuscFv formed
a PCR amplicon band at ∼ 850 bp, as revealed on agarose gel
(Figure 3B). The refolded and purified HuscFv-E44, HuscFv-F15,
and HuscFv-F19, with molecular sizes of about 34 kDa, are shown
in Figure 3C.

Secondary structures of the refolded HuscFvs were
determined by far-UV CD spectroscopy. The far-UV CD spectra
(190–260 nm) for all HuscFvs revealed their β-sheet structures,
which shared a similar CD spectra pattern (Figure 3D). The
antibody preparations did not form aggregates.

Biocompatibility of HuscFvs to
Mammalian Cells
HeLa cells exposed to 2 µM of HuscFv-E44, HuscFv-F15, and
HuscFv-F19 for 24 h showed more than 90% viability, which
was not different from the cells in medium alone (p > 0.05)
(Supplementary Figure S2) indicating biocompatibility of the
HuscFvs to the representative mammalian cells.

HuscFvs-bound 3O-C12-HSL Had
Impairment in Inducing Mammalian Cell
Apoptosis
The average percentages of apoptotic HeLa cells treated with
10, 25, 50, 75, and 100 µM of 3O-C12-HSL dissolved in 0.25%
DMSO, from three independent experiments, were 6.67 ± 0.53,
10.08 ± 1.41, 20.85 ± 1.62, 36.37 ± 2.32, and 49.63 ± 2.51%,
respectively, while the background apoptotic cells of the control
(cells in culture medium) was 5.71 ± 0.59% (Figure 4A).
Figure 4B shows the results of the flow cytometric analysis
of apoptotic cells (stained with Annexin V/PI) from one
representative experiment. The background apoptotic cells (%
cell viability) with and without 0.25% DMSO in the culture
medium were not different (Supplementary Figure S3).

The percentages of apoptotic HeLa cells exposed to 50 µM
of HuscFv-bound 3O-C12-HSL (0.25, 0.5, 1.0, and 1.2 µM of
individual HuscFvs) were significantly decreased compared with
those without HuscFvs (Table 2 and Figure 5). The HuscFvs of
all three E. coli clones could neutralize 3O-C12-HSL, leading to
reduced HeLa-cell apoptosis.

HuscFv-bound-C12-HSL Had Reduced
Ability to Induce sub-G1 Arrest of HeLa
Cells
Exposure of HeLa cells with 50 µM 3O-C12-HSL for 18 h resulted
in 3.79 ± 0.52% of apoptotic cells in the hypodiploid DNA peak
(sub-G1 population, which were apoptotic cells) as determined
by flow cytometric analysis of the PI-stained cellular DNA.
The numbers of cells with a hypodiploid DNA peak induced

TABLE 2 | Flow cytometric results evaluating the efficacy of HuscFvs using
Annexin V-FITC/PI staining for 3O-C12-HSL-mediated cell apoptosis.

HeLa cells treated with Percent
cellular

apoptosis

Percent
cellular
survival

Medium alone 6.77 ± 0.20 92.50 ± 0.28

3O-C12-HSL (50 µM) 21.05 ± 2.23 72.15 ± 1.91

3O-C12-HSL + HuscFv-E44 (0.25 µM) 15.03 ± 0.49 83.57 ± 0.50

3O-C12-HSL + HuscFv-E44 (0.5 µM) 13.31 ± 0.12 85.33 ± 0.25

3O-C12-HSL + HuscFv-E44 (1.0 µM) 12.99 ± 0.41 86.10 ± 0.35

3O-C12-HSL + HuscFv-E44 (1.2 µM) 11.74 ± 0.66 87.30 ± 0.70

3O-C12-HSL + HuscFv-F15 (0.25 µM) 16.04 ± 1.06 82.07 ± 1.20

3O-C12-HSL + HuscFv-F15 (0.5 µM) 12.31 ± 0.49 85.97 ± 0.50

3O-C12-HSL + HuscFv-F15 (1.0 µM) 12.88 ± 0.75 86.27 ± 0.75

3O-C12-HSL + HuscFv-F15 (1.2 µM) 12.88 ± 0.48 85.53 ± 0.47

3O-C12-HSL + HuscFv-F19 (0.25 µM) 13.53 ± 0.46 84.27 ± 0.49

3O-C12-HSL + HuscFv-F19 (0.5 µM) 12.93 ± 0.18 85.80 ± 0.17

3O-C12-HSL + HuscFv-F19 (1.0 µM) 10.71 ± 0.60 88.67 ± 0.64

3O-C12-HSL + HuscFv-F19 (1.2 µM) 10.63 ± 0.91 88.60 ± 0.87

by the 3O-C12-HSL bound by the HuscFv-E44, HuscFv-F15,
and HuscFv-F19, were decreased to 2.58 ± 0.10, 2.71 ± 0.10,
and 1.79 ± 0.11%, respectively. The cells in medium alone had
1.04 ± 0.04% apoptotic cells (Figure 6). The results of the sub-
G0/G1 analysis were conformed to those of the Annexin V/PI
binding assay data.

Degrees of Nuclear Damage Mediated by
HuscFv-bound 3O-C12-HSL
DAPI staining and confocal microscopy were used to observe
the intact HeLa nuclei and nuclear DNA damage induced by the
3O-C12-HSL and the HuscFv-bound 3O-C12-HSL (Figure 7).
Intact nuclei of normal HeLa cells were stained weakly by the dye
(Figure 7A), while the fragmented nuclei of the 3O-C12-HSL-
exposed cells were stained brightly (Figure 7B). Damage to the
nuclear DNA was reduced in cells exposed to HuscFv-F19-bound
3O-C12-HSL, as shown by the dimly stained nuclei (Figure 7C).

Mitigation of the 3O-C12-HSL
Induced-mitochondrial Injuries by
HuscFvs
Transmission electron microscopy was used to study
mitochondrial changes of the HeLa cells after exposure to the
3O-C12-HSL and HuscFv-bound 3O-C12-HSL, using the cells in
medium alone as a normal control. As shown in Figures 8A,B,
the mitochondria of the normal cells revealed an intact
mitochondrial subcellular structure. In contrast, mitochondria of
the cells treated with 50 µM of 3O-C12-HSL for 18 h exhibited
a swollen appearance, with single or multiple distensions of
the intercellular matrix in association with severe loss of cristae
and double membranes (Figures 8C,D). The pathological
changes of the mitochondria were ameliorated in the cells
exposed to HuscFv-F19-bound 3O-C12-HSL (representative),
i.e., mild mitochondrial swelling and more cristae (Figures 8E,F),
compared with the 3O-C12-HSL-exposed cells.

Frontiers in Microbiology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 1172103

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01172 June 22, 2020 Time: 18:19 # 11

Santajit et al. HuscFvs Prevent C12-HSL-mediated Cellular Apoptosis

FIGURE 5 | HuscFvs rescue HeLa cells from 3O-C12-HSL-mediated apoptosis. (A) The percentages of apoptotic cells of different treatment conditions, i.e., HeLa
cells in medium alone, cells exposed to 50 µM 3O-C12-HSL (C12), cells added with 3O-C12-HSL mixed with various amounts of HuscFvs. (B) Density plots of flow
cytometric analysis of doubly stained HeLa cells as in (A) (representative of one of the three reproducible experiments). The percent apoptotic cells caused by the
3O-C12-HSL was reduced significantly in the presence of HuscFvs.

DISCUSSION

Pseudomonas aeruginosa 3O-C12-HSL not only regulates
virulence factors of the bacteria, but also causes inflammation
in the infecting host by the induction of pro-inflammatory
cytokine and chemokine synthesis (Smith et al., 2002). The
3O-C12-HSL killed mammalian cells through programmed cell
death, i.e., an apoptotic mechanism at concentrations ranging
from 10 to 100 µM by rapidly triggering depolarization of

mitochondrial membrane potential and release of cytochrome
c into cytosol, which activates the caspase cascades (Sultan and
Sokolove, 2001; Tateda et al., 2003; Kravchenko et al., 2006;
Schwarzer et al., 2012; Tao et al., 2016, 2018). The apoptotic
cells manifest mitochondrial permeability transition (MPT),
caspase activation, nuclear fragmentation, phosphatidylserine
externalization, and cell shrinkage with apoptotic bodies (Wyllie
et al., 1980; Cummings and Schnellmann, 2004). Mitochondrial
swelling, depolarization, and membrane permeability are the
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FIGURE 6 | Reduction of sub-G1 arrest population of 3O-C12-HSL-exposed cells by HuscFvs. (A) Percent sub-G1 population (mean ± SD of triplicate individual
experiments) after different treatments. (B) Histograms of cell cycle distribution. The percentage of apoptotic cells in the hypodiploid DNA peak (sub-G1 population)
of each treatment is indicated in each plot.

key markers of the MPT that indicates mitochondria-stimulated
programmed cell death in the pathogenesis of several diseases.
Upon response to external stimuli or oxidative stress, the

cells undergo continuous opening of permeability transition
pores (PTP) in the mitochondrial inner membrane, which
augments colloidal osmotic pressure in the matrix together
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FIGURE 7 | Appearances of DAPI stained-nuclei of HeLa cells after treatment
with (A) Medium alone (B) 3O-C12-HSL (50 µM) and (C) mixture of
3O-C12-HSL (50 µM) and HuscFv-F19 (2 µM) for 18 h (original magnification
200×).

with mitochondrial membrane depolarization, resulting in
mitochondrial swelling (Chapa-Dubocq et al., 2018) followed
by rupture of the mitochondrial outer membrane and release of
cytochrome c into the cytosol and activation of caspase cascades
(Petronilli et al., 2001). The stimulated caspase-3 activates
endogenous endonuclease, which cleaves nuclear DNA (Zhang
and Ming, 2000). Cells with apoptotic fragmented DNA or
sub-G1 population are used as a marker of apoptosis (Riccardi
and Nicoletti, 2006). In this study, 3O-C12-HSL produced a
significant dose-dependent increment in mammalian cell death
by inducing apoptosis, which validates previous notions on the
cytotoxicity of P. aeruginosa QS substance.

Deletion of lasI or lasI and rhlI diminished the lung-
colonization ability of P. aeruginosa in a mouse model of acute
pneumonitis (Smith et al., 2002). P. aeruginosa mutants with
defective QS are known to have less virulence and be more
susceptible to antibiotic treatments and host immunity than the
respective wild-type (Hentzer et al., 2003). As such, P. aeruginosa
QS systems are attractive targets for direct-acting therapeutic
agents, of which the expected treatment consequences are
mitigation of the severity of the bacteria-associated diseases
(Penesyan et al., 2015). During the past decades, several groups
of P. aeruginosa QS inhibitors/modulators have been identified:
small chemical molecules, i.e., AHL analogs (phenylpropionyl
homoserine lactones and phenyloxyacetyl homoserine lactones
of the N-aryl homoserine lactone library) (Geske et al., 2008),
N-acyl cyclopentylamides (Ishida et al., 2007), halogenated
furanone compound (Hentzer et al., 2002), other furanone
derivatives (Kim et al., 2008), aspirin (El-Mowafy et al.,
2014), and itaconimides and citraconimides (Fong et al., 2018);
and natural inhibitors, such as secondary metabolites of the
Australian marine macroalgae, Delisea pulchra (Givskov et al.,
1996), patulin and penicillic acid from extracts of Penicillium
species (Rasmussen et al., 2005), an organosulfur compound
found in garlic extracts, named Ajoene (Jakobsen et al., 2012),
and derivatives of ellagic acid (dilactone of hexahydroxydiphenic
acid) from black or chebulic myrobalan, Terminalia chebula
Retz (Sarabhai et al., 2013). Unfortunately, these compounds
are relatively toxic to mammalian cells, which limits their
therapeutic use (Ni et al., 2009). Recently, natural plant-derived
compounds, trans-cinnamaldehyde (CA), and salicylic acid (SA)
have been shown to effectively downregulate both las and rhl

QS systems, reduce the production of extracellular virulence
factors, i.e., protease, elastase, and pyocyanin, and reduce
biofilm formation, concomitantly with repressed rhamnolipid
gene expression (Ahmed et al., 2019). However, the sole use
of QS inhibitors at high concentrations to eradicate bacterial
infection completely is of legitimate concern due to potential
toxicity (Shreaz et al., 2016).

Passive immunization has been used as an intervention for
post-exposure morbidity and/or treatment of diseases since
the late 18th century (Keller and Stiehm, 2000). An antibody
molecule uses multiple amino acid residues in several CDRs
(sometimes with the help of FRs) to form multiple non-covalent
bonds with the target molecule, thus, making it difficult for
pathogens to create antibody escape mutants, compared with
small molecular drugs/inhibitors, from which resistant variants
emerge rather easily and frequently. Therapeutic antibodies may
be in the form of intact molecules (two antigen-binding sites
with Fc fragment- when the bioactivities of the Fc are required
for effectiveness) or merely smaller antibody fragments, i.e.,
F(ab

′

)2, Fab, scFv, or single domain (VH, VHH) with higher
tissue penetrating ability than the intact four-chain counterpart
when the Fc is dispensable. For P. aeruginosa infection, specific
murine mAb, RS2-1G9, directed toward bacterial 3O-C12-HSL
has been generated for use as an immunotherapeutic agent
(Kaufmann et al., 2006, 2008). This murine antibody displayed
the cytoprotective effect of 3O-C12-HSL-exposed host cells
(Kaufmann et al., 2006, 2008; Debler et al., 2007). In addition,
sheep-mouse chimeric mAb recognized native AHL protected
mice from lethal P. aeruginosa infection (Palliyil et al., 2014).
Nevertheless, while these 3O-C12-HSL-specific antibodies have
therapeutic potential, their immunogenicity in human recipients,
with possible adverse consequences, such as serum sickness,
should be of concern.

Nowadays, any engineered fully human antibody format can
be generated in vitro using phage display technology, invented
by Nobel laureate, George Pearson Smith (Smith, 1985) as
a biological tool (Santajit et al., 2019). The target antigens,
such as proteins or peptides, attached to a carrier surface,
e.g., fixed cell, plastic bead, or well of an ELISA plate, can be
used as bait to fish out phage clones that display recombinant
antibodies binding to the antigen from an antibody phage
display library (Kulkeaw et al., 2009). Suppressor E. coli, such
as strain HB2151 transfected with antigen-bound phages, when
grown in appropriate conditioned medium, produces antigen-
specific antibodies, and these antibodies can be isolated from the
bacterial lysate/homogenate (Glab-Ampai et al., 2017; Santajit
et al., 2019). Nevertheless, attachment of the small molecular
haptens, like 3O-C12-HSL, to solid surfaces (as well as retaining
the native configuration of the molecule) for conventional phage
biopanning, is a relatively complicated process compared with
proteins or peptides. Therefore, in this study, an alternative
method was used to produce fully human scFvs (HuscFvs)
to the synthetic P. aeruginosa 3O-C12-HSL based on the
principle of antibody polyspecificity and antigenic molecular
mimicry, i.e., completely unrelated molecules can share common
receptors, possibly through similar structural and/or chemical
features involved in recognition and binding (Wing, 1995;
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FIGURE 8 | Transmission electron micrographs of mitochondrial ultrastructure. (A,B) normal mitochondria of HeLa cells. (C,D) HeLa cells treated with 3O-C12-HSL
(50 µM). (E,F) HeLa cells treated with a mixture of 50 µM 3O-C12-HSL and 2 µM HuscFv-F19. Black arrows indicate mitochondria of the HeLa cells. Mitochondria
of the cells exposed to the 3O-C12-HSL were swollen, characterized by a size increment with decreased electron density of the crista-free matrix.
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Tapryal et al., 2013). A repertoire of E. coli clones carrying
recombinant huscfv-phagemids was previously retrieved from a
HuscFv phage display library (Kulkeaw et al., 2009) by panning
with P. aeruginosa exotoxin A (Santajit et al., 2019). Moreover,
because the previously produced murine mAb, RS2-1G9, has
been known as the P. aeruginosa quorum quencher, we used
computerized antibody structure superimposition to select the
bacterial derived-HuscFvs that shared structural homology with
the murine mAb RS2-1G9 antigen-binding site. Using this
method, the HuscFvs of three phagemid-transformed E. coli
clones (E44, F15, and F19) showed high and satisfactory degrees
of molecular similarity to the mAb RS2-1G9 antigen-binding
site. Besides, these HuscFvs could neutralize the cytotoxic effects
of the 3O-C12-HSL in the induction of cellular apoptosis. The
HuscFv bound-3O-C12-HSL had a reduced capacity to mediate
mitochondrial swelling, diminishing DNA damage and reducing
sub-G1 arrest population of exposed cells. Unfortunately, the
amount of C12-HSL inside the HeLa cells with and without
HuscFv treatments were not measured; therefore, it is not known
whether the HuscFvs could prevent HSL from entering the cells.
Although the actual 3O-C12-HSL neutralizing mechanism of the
HuscFvs needs laboratory investigation, the predicted structural
complexes between the QS (ligand) and the HuScFvs (receptors)
indicated that the latter used several residues in different CDRs
and FRs to interact non-covalently with the target, including
van der Waals’ forces, hydrophobic interactions, and hydrogen
bonds. These interactions might render the disarming of the
bacterial toxic molecule through C12-HSL signal interference,
which would mitigate bacterial disease severity. This perspective
needs further testing of the HuscFvs on P. aeruginosa phenotypes
both in vitro (bacterial culture), such as expression of the QS
controlled virulence factors, as well as in the in vivo model of
bacterial infection.

CONCLUSION

The engineered human single-chain variable fragments that
attenuated the potent cytotoxicity of the P. aeruginosa quorum
sensing molecule, 3O-C12-HSL, were generated successfully
through the molecular basis of antibody polyspecificity and
antigenic mimicry. The fully human antibody fragments rescued
mammalian cells from the 3O-C12-HSL-mediated mitochondrial
injuries, DNA damage, and cellular apoptosis in vitro. They
should be tested further by step-by-step in vivo toward the

clinical application as a sole or an adjunct therapy for the failing
antibiotic treatment of P. aeruginosa infections.
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The emergence of resistant Candida albicans has made clinical fluconazole (FLC)
treatment difficult. Improving sensitivity to FLC is an effective way to treat resistant
isolates. Berberine hydrochloride (BBH) is a commonly used traditional Chinese
medicine with antimicrobial effects, especially in resistant isolates. We investigated
the molecular mechanisms underlying BBH and FLC synergism on biofilm-positive
FLC-resistant C. albicans inhibition. Checkerboard microdilution assays and time-
kill assays showed a strong synergistic effect between BBH and FLC in resistant
C. albicans isolates, causing a significant 32–512-fold reduction in minimum inhibitory
concentrations. BBH combined with FLC inhibited intracellular FLC efflux due to
key efflux pump gene CDR1 downregulation, whereas FLC alone induced high
CDR1 transcription in resistant strains. Further, BBH + FLC inhibited yeast adhesion,
morphological hyphae transformation, and biofilm formation by downregulating the
hyphal-specific genes ALS3, HWP1, and ECE1. BBH caused cytoplasmic Ca2+ influx,
while FLC alone did not induce high intracellular Ca2+ levels. The vacuolar calcium
channel gene YVC1 was upregulated, while the vacuolar calcium pump gene PMC1
was downregulated in the BBH + FLC and BBH alone groups. However, vacuolar
calcium gene expression after FLC treatment was opposite in biofilm-positive FLC-
resistant C. albicans, which might explain why BBH induces Ca2+ influx. These results
demonstrate that BBH + FLC exerts synergistic effects to increase FLC sensitivity by
regulating multiple targets in FLC-resistant C. albicans. These findings further show
that traditional Chinese medicines have multi-target antimicrobial effects that may inhibit
drug-resistant strains. This study also found that the vacuolar calcium regulation genes
YVC1 and PMC1 are key BBH + FLC targets which increase cytoplasmic Ca2+ in
resistant isolates, which might be critical for reversing biofilm-positive FLC-resistant
C. albicans.
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INTRODUCTION

Candida is a common pathogen of nosocomial bloodstream
infections, causing high-mortality invasive candidiasis. The
SENTRY antifungal surveillance program showed that 46.4–
57.4% of invasive candidiasis cases from 1997 to 2016 were caused
by Candida albicans infection (Pfaller et al., 2019). Fluconazole
(FLC) is a commonly used antifungal drug with a broad drug
spectrum, high efficiency, and safety. However, widespread
medication use has caused increased resistance annually (Xiao
et al., 2018) making most FLC therapy ineffective. Thus, anti-
fungal treatments face enormous challenges.

Berberine, an active component extracted from Coptis
chinensis, which is a common traditional Chinese medicinal
(TCM) herb, has a wide range of pharmacological effects
and multiple-target therapeutic effects on several diseases. In
particular, berberine is widely used to treat bacterial diarrhea
in China. Additionally, berberine has anti-arrhythmic and
anti-inflammatory activity (Lau et al., 2001; Kuo et al., 2004),
reduces colorectal adenoma recurrence after polypectomy
(Chen et al., 2019), decreases total cholesterol, improves
insulin-resistance in vivo, and prevents or delays Alzheimer’s
disease development associated with atherosclerosis (Cai et al.,
2016; Imenshahidi and Hosseinzadeh, 2019). Furthermore,
this compound exerts DNA damage-mediated antimicrobial
effects on various microorganisms, including Staphylococcus
aureus, Pseudomonas aeruginosa, Escherichia coli, Candida
albicans, Cryptococcus, and Vibrio cholerae (Čerňáková and
Košt’álová, 2002; Tillhon et al., 2012). Modern medicine
indicates that Chinese herbal monomers or phytocompounds
inhibit C. albicans growth by regulating multiple targets while
inducing little drug resistance. Previous studies show that
TCMs target several cellular pathways to exert antifungal
effects, such as ergosterol biosynthesis suppression (Sun
L. M. et al., 2015) intracellular reactive oxygen species
(ROS) production (Sharma et al., 2010) inhibition of efflux
pump Cdr1p and Mdr1p overexpression (Garcia-Gomes
et al., 2012), biofilm inhibition (Sharma et al., 2010; Sun L.
et al., 2015), and yeast apoptosis induced by intracellular
or mitochondrial high Ca2+ levels (Yun and Lee, 2016;
Tian et al., 2017). Previous studies revealed that ergosterol
synthesis inhibition and apoptosis induced by endogenous
ROS augmentation contribute to the synergistic effect of
berberine plus FLC against C. albicans (Xu et al., 2009; Xu
et al., 2017; Yang et al., 2018). Furthermore, this combination
could also downregulate efflux pump genes CDR1 and CDR2
overexpression (Zhu et al., 2014).

Biofilm formation and calcium homeostasis are also important
antifungal mechanisms against FLC-resistant C. albicans.
However, there is no relevant literature exploring the synergistic
antifungal effects of berberine and FLC on these two processes.
Therefore, berberine hydrochloride (BBH) combined with FLC
was tested to explore the molecular mechanism underlying the
synergistic effect on efflux pump activity, biofilm formation,
and intracellular calcium homeostasis. Synergistic molecular
targets were investigated using multiple approaches to provide an
effective solution for clinical treatment of drug-resistant strains.

MATERIALS AND METHODS

Strains and Media
Fluconazole-resistant C. albicans, CA 0253, CA 1460, CA
2119, CA 12038, and CA 21065 (Table 1), were isolated and
identified by the clinical laboratory of Chengdu University
of Traditional Chinese Medicine Hospital, Chengdu, China.
C. albicans ATCC10231 was purchased from the Guangdong
Microbial Culture Collection Center Co., Ltd., China. All strains
were stored in yeast extract peptone dextrose (YPD) (Hope,
China) medium containing glycerol at −80◦C and subcultured
twice with YPD medium at 35◦C for 24 h before experiments.

Antimicrobial Agents
Berberine hydrochloride and FLC were purchased from Chengdu
Pufei De Biotech Co., Ltd., China, dissolved with dimethyl
sulfoxide to achieve stock solutions of 12.8 and 20.48 mg/L,
respectively, filtered using 0.22 µm filters, and stored at−20◦C.

Checkerboard Microdilution Assay
The BBH and FLC minimum inhibitory concentrations (MICs)
against C. albicans were determined by broth microdilution
assay. Drug interactions were evaluated using checkerboard
microdilution assays according to CLSI (M27-A3) (CLSI,
2008). Briefly, yeast cell suspension was diluted in RPMI-
1640 medium (Gibco, United States) buffered with morpholino
propanesulfonic acid (MOPS) (Saiguo, China), and added to 96-
well microtiter plates at a final concentration of 2× 103 CFU/mL.
The serially diluted agents were subsequently added to each
well. The final drug concentrations were 128–0.25 µg/mL for
BBH and 32–0.5 µg/mL for FLC. Blank controls were prepared
without yeast. Drug-free wells were set as growth controls. After
incubation at 35◦C for 24 h, prepared 2,3-bis(2-methoxy-4-nitro-
5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) (KeyGen,
China) working solution was added to the wells and incubated in
the dark for 2 h at 35◦C. Finally, absorbance was measured with a
microplate reader (Kehua, China) at 450 nm. MICs were defined

TABLE 1 | Interactions of BBH with FLC against Candida albicans.

MIC80 (µg/ml) Interactions

Isolate Drugs Alone Combined FICI IN

CA 0253 FLC 512 1 0.03 SYN

BBH 64 2

CA 1460 FLC >512 1 <0.06 SYN

BBH 64 4

CA 2119 FLC >512 1 <0.03 SYN

BBH 64 2

CA 12038 FLC >512 1 <0.03 SYN

BBH 64 2

CA 21065 FLC 512 1 0.03 SYN

BBH 64 2

CA, C. albicans; MIC80, minimum inhibitory concentration inhibiting 80% C.
albicans growth in the control group; FICI, fractional inhibitory concentration index;
IN, Interactions; SYN, synergism.
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as the lowest drug concentration inhibiting 80% C. albicans
growth in the growth control group. The fractional inhibitory
concentration index (FICI) was calculated by the following
equation: FICI = MIC (A combo)/MIC (A alone) + MIC (B
combo)/MIC (B alone). FICI was used to identify whether the
two drugs had a synergistic antifungal effect, where FICI ≤ 0.5
indicated synergy, no synergism when FICI was between 0.5–4,
and FICI ≥ 4 indicated antagonism.

Time-Kill Curve Assay
Time-kill curve assays were performed to monitor the dynamic
antifungal effect of BBH and FLC against C. albicans (Liu et al.,
2016). The final concentrations were 2 µg/mL for BBH, 1 µg/mL
for FLC, and 2 × 103 CFU/mL for C. albicans (CA 0253).
A drug-free group served as the negative control. The cells
were incubated at 35◦C with constant shaking (200 rpm) after
different treatments. 100 µL was sampled at 0, 6, 12, 24, and
48 h in each group, and drug effects were detected with XTT
tests(λ = 450 nm).

Rh6G Efflux Assay
To evaluate the combined BBH and FLC effect on resistant
C. albicans drug efflux, Rh6G assays were performed as previously
described, with some modifications (Xu et al., 2019). The cells
were first incubated with constant shaking (200 rpm) in fresh
RPMI 1640 at 35◦C for 2 h to exhaust cellular energy stores.
A fungal suspension was added with Rh6G (Acros Organics,
United States) at a final concentration of 10 µM, cultured at
35◦C with constant shaking (200 rpm) for 1h, washed three times
with PBS, and resuspended in PBS containing 5% glucose to
4 × 107 CFU/mL. Drugs were then added, and the cells were
incubated for 0, 10, 30, 60, and 120 min at 35◦C in a shaker.
After incubation, the supernatant was collected by centrifugation
at 12,000 rpm for 1 min at room temperature. The 530 nm
fluorescence of the centrifuged supernatant was detected at
designated time points by a microplate reader.

Hyphal Growth Assay
The effect of combined treatment on C. albicans hyphal
formation was assessed using hyphal growth assays according
to previous protocols, with a few modifications (Haque et al.,
2016). Briefly, the cells (1 × 105 CFU/mL) were treated with
different drugs and incubated at 35◦C with agitation (200 rpm)
for 16–17 h. Unstained samples and Gram-stained samples
were observed under an optical microscope and photographed
(Olympus, Japan). Three random visual fields for each well and
three duplicate wells for each group were also observed.

Biofilm Information Assay
Berberine hydrochloride and FLC inhibition of C. albicans
biofilm formation was assessed as previously described (Haque
et al., 2016). Biofilm formation assays were carried out in 6-
well plates incubated overnight with 10% fetal bovine serum
(Tianhang, China). Cell suspensions (1 × 105 CFU/mL) and
drugs were added to the wells and incubated overnight at 35◦C.
The biofilm was washed with PBS and photographed under bright

field using an inverted fluorescence microscope (Olympus, Japan)
after culture (6, 12, 24, 48, and 72 h). The visual fields were
photographed as described above.

Cytoplasmic Calcium Assays
Cytoplasmic calcium assays were performed to detect
intracellular calcium concentration after combination therapy
(Liu et al., 2016). Briefly, overnight-cultured cells were washed
and diluted with HBSS.D-Hanks buffer (Thermo Fisher,
United States) (final concentration 1 × 107 CFU/mL), and then
mixed with 5 µM calcium indicator Fluo-3-AM (Solarbio, China)
and 20% Pluronic F-127 (Meilun, China). The suspensions were
incubated with agitation (200 rpm) at 35◦C for 30 min, washed
three times with HBSS buffer, and diluted to 1 × 107 CFU/mL.
After drug treatment, the cells were shaken at 35◦C in the dark.
Fluorescence was detected by inverted fluorescence microscopy
and flow cytometry (Beckman, United States) at 0, 2, and 3 h.

Quantitative Reverse Transcription PCR
To explore the molecular mechanism underlying the BBH and
FLC synergistic effect, quantitative reverse transcription PCR
(qRT-PCR) experiments were performed (Haque et al., 2016).
C. albicans cells were cultured in YPD medium and diluted
to 1 × 105 CFU/mL with RPMI 1640 medium. Cells were
incubated overnight with agitation (200 rpm) at 35◦C with
2 µg/mL BBH and 1 µg/mL FLC. Then cells were washed
and harvested for RNA extraction. Total RNA was isolated
using a TRIzol RNA isolation kit (Invitrogen, United States).
cDNA was synthesized using TransScript First-Strand cDNA
Synthesis SuperMix (Transgen, China) for qPCR. Target gene
and endogenous control (actin1) primers were designed and
synthesized by Shanghai Biotech (Supplementary Table S1). The
qRT-PCR reaction system was mixed with cDNA, gene primers,
and TransStart Green qPCR SuperMix kit (Transgen, China) in
20 µL reaction. qRT-PCR was carried on a qTower real-time PCR
system (Analytik Jena, Germany) with an initial denaturation at
94◦C for 30 s, followed by 40 cycles of 94◦C for 5 s, annealing
at 59◦C for 15 s, and extension 72◦C for 10 s. Primer specificity
and optimal annealing temperature were determined using melt-
curve analysis. Relative target gene expression fold changes were
calculated by the 2−11ct method.

Statistical Analysis
Three independent experiments were performed and a drug-free
group served as the negative control in all experiments. Statistical
differences were analyzed by ANOVA using SPSS Statistics
version 21.0 software. Data are presented as mean± the standard
error of the mean (SEM). P < 0.05 was considered significant.

RESULTS

BBH Enhances the Susceptibility of
Resistant C. albicans to FLC
The interactions between BBH and FLC, and treatment MICs
were assessed using five C. albicans isolates (Table 1). The clinical
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isolates showed distinct biofilm formation capacity compared
with biofilm-positive C. albicans ATCC10231. The five isolates
were all FLC-resistant strains with MIC ≥ 512 µg/mL. The BBH
MICs were 64 µg/mL, indicating insensitivity to both drugs.
The FICI values were 0.03–0.06, indicating that BBH + FLC
has strong synergistic effects. Combined use could increase
C. albicans sensitivity to FLC and BBH, causing decreased FLC
MIC from ≥512 to 1 µg/mL and reduced BBH MIC from 64
to 2–4 µg/mL. These results demonstrate that the FLC MIC is
decreased by 256–512-fold with minute BBH addition. Further,
these results show that BBH combined with FLC synergistically
inhibits FLC-resistant C. albicans and significantly enhances FLC
antifungal activity. Subsequent experiments were carried out with
the CA 0253 strain using 2 µg/mL BBH and 1 µg/mL FLC.

The combined BBH and FLC antifungal effect was first
investigated by a 48-h dynamic time-kill study (Figure 1).
Compared with the control group, growth was delayed in the
other groups. However, much lower cell viability was observed
in the BBH + FLC group than in the drug-monotherapy groups,
especially at 0–24 h, indicating BBH + FLC treatment effectively
inhibits FLC-resistant C. albicans growth (p < 0.05). A weak
antifungal effect was observed in the FLC group, which was
significantly lower than the combined group (p < 0.05). BBH
alone had a poor antifungal effect, instead promoting growth at
24–48 h. These data indicate that BBH increases resistant isolate
drug sensitivity, and that BBH combined with FLC synergistically
inhibits C. albicans with a significantly dynamic antifungal effect.

Combination of BBH and FLC Reduces
Rh6G Efflux
Rh6G fluorescent substrate was used to evaluate the effect of
drug combinations on drug efflux pumps. C. albicans actively
transported the absorbed Rh6G out of the cells, indicated
by gradually increased fluorescence in the supernatant over
time. Compared with the control group, lower supernatant
fluorescence was observed in the BBH + FLC group, FLC group,
and BBH group (p < 0.05), showing inhibited Rh6G efflux after

FIGURE 1 | Synergistic BBH and FLC antifungal effect. CA 0253 were treated
with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL), BBH (2 µg/mL), and
RPMI-1640 medium. The optical density (OD) was measured at 0, 6, 12, 24,
and 48 h after drug treatment. Three independent experiments were
performed, with eight replicates in each group (n = 8). Values represent
means ± SEM. ANOVA tested statistical differences.

drug treatments (Table 2). When BBH + FLC was applied for
2 h, the extracellular Rh6G concentration was 1.43-fold lower
than the FLC alone group and 1.28-fold lower than the BBH
alone group (p < 0.05). These data indicate that BBH plus FLC
significantly reduce the FLC efflux effect. Moreover, there was
no significant difference between FLC or BBH treatment alone
(p > 0.05).

BBH Combined With FLC Inhibits
Hyphae and Biofilm Formation
The biofilm-producing strain CA 0253 was used to detect the
effect of BBH combined with FLC on yeast-to-hyphae conversion
(Figure 2) and biofilm formation (Figure 3). Hyphal growth
was absent in the presence of BBH + FLC, with very few
spherical yeast cells. FLC monotherapy significantly increased
the number of fungal cells, and yeast-to-hyphae conversion
occurred in a portion of cells, accompanied with pseudohyphae
formation. The number of fungal cells in the BBH alone group
and the control group significantly increased with extensive
hyphae forming a network.

Berberine hydrochloride combined with FLC completely
inhibited biofilm production within 6–72 h. Only a few cells
remained in the yeast form without obvious hyphae. Notably,
BBH plus FLC significantly reduced yeast cell surface adherence,
especially in the biofilm adhesion stage (0–12 h). Pseudohyphae
growth (ellipsoidal cells joined end to end) was observed in FLC
alone group, and numerous pseudohyphae formed and adhered
to the surface at 24–72 h, forming an aggregated cell population.
The BBH alone and the control group contained complex biofilm
structure with hyphae (chains of cylindrical cells), pseudohyphae,
and yeast-form cells. Hyphae growth appeared at 6 h. Hyphal
cells continued to elongate at 12 h. Numerous long hyphae
formed and adhered to the surface at 24–48 h, accompanied with
yeast-form cells and pseudohyphae that accumulated around
the hyphal cells. These data indicate that BBH combined with
FLC inhibits yeast adherence and hyphae development, causing
biofilm formation defects.

BBH Plus FLC Increases Cytoplasmic
Calcium
Inverted fluorescence microscopy was used to observe cellular
calcium levels (Figure 4). The BBH plus FLC and BBH alone
groups showed pale green fluorescence at 2 and 3 h, indicating
Ca2+ influx. However, no fluorescence was observed in the FLC
monotherapy or control groups, indicating no Ca2+ influx.

Flow cytometry was performed to compare the cytoplasmic
Ca2+ concentration (Table 3). Compared with control and drug-
monotherapy groups, higher fluorescence was observed in the
BBH + FLC group at 0, 2, and 3 h (p < 0.05). Further, the
fluorescence of BBH + FLC group at 2 h was 1. 17-, 1. 07-, and
1.18-fold higher than the FLC monotherapy, BBH alone, and
control groups, respectively (p < 0.05). The fluorescence after
BBH treatment alone was higher than after FLC alone (p < 0.05),
but there was no significant difference between the FLC alone and
control groups (p > 0.05). These observations indicate that BBH
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TABLE 2 | Rhodamine 6G efflux in BBH and FLC-treated C. albicans.

CA 0253 Time of drug action

0 min 10 min 30 min 60 min 2 h

BBH + FLC�FN 1069 ± 131 2472 ± 117 8596 ± 305 16892 ± 310 26019 ± 663

FLC N 1107 ± 169 2172 ± 101 12761 ± 69 21579 ± 982 38365 ± 1132

BBHN 1466 ± 242 2946 ± 170 15366 ± 902 20047 ± 696 33294 ± 293

Control 932 ± 15 2782 ± 143 16502 ± 813 26887 ± 153 39751 ± 705

CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL), BBH (2 µg/mL), or RPMI-1640 medium. After drug treatment, fluorescence intensity was
detected (emission wavelength 530 nm) at 0, 10, 30, 60, and 120 min. Three independent experiments were performed, with eight replicates in each group (n = 8). Values
represent means ± SEM. ANOVA tested statistical differences. � compared with the FLC group, p < 0.05;F compared with the BBH group, p < 0.05; Ncompared with
the control group, p < 0.05; compared with the BBH group, p > 0.05.

FIGURE 2 | Candida albicans hyphae after BBH and FLC treatment. CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL), BBH
(2 µg/mL), and RPMI-1640 medium. Hyphae were photographed at 40× magnification.

further increases intracellular calcium concentration, disrupting
C. albicans calcium homeostasis.

BBH Combined With FLC Induces
Expression of Multiple Genes
qRT-PCR was conducted to explore the effect of BBH + FLC
on drug-resistance, biofilm-related, and calcium-related genes
(Figure 5). Compared with the control and drug-monotherapy
groups, CDR1 transcription in the BBH + FLC group was
downregulated 3-to-5-fold (p < 0.05). However, FLC alone
caused 1.52-fold CDR1 upregulation (p < 0.05). Although BBH
plus FLC significantly downregulated CDR2 by 3.58-fold, much
lower CDR2 expression was observed in the FLC alone group
than in the other groups (p < 0.05). MDR1 expression in the
combined group was almost 1.70-fold lower than in the drug-
monotherapy groups (p < 0.05). No significant difference was
detected between FLC or BBH treatment alone.

HWP1, ECE1, and ALS3 expression in the BBH + FLC group
was significantly decreased by 7. 26-, 12. 20-, and 3.73-fold,
respectively, compared to FLC alone (p < 0.05). Further, their
expression was substantially reduced by 54. 11-, 34. 20-, and
13.62-fold, respectively, compared with BBH alone (p < 0.05).
There was no significant difference in HWP1 (p = 0.499) or
ALS3 (p = 0.396) expression between the FLC alone and control
groups, while ECE1 expression was increased 5.68-fold after FLC
treatment alone (p < 0.05).

Compared with the control group, FLC alone downregulated
YVC1 expression. However, YVC1 was upregulated after
BBH + FLC therapy and BBH monotherapy (p < 0.05).
Nonetheless, YVC1 expression in the combined group was 1.62-
and 6.47-fold higher than in the BBH alone and FLC alone
groups, respectively (p < 0.05). Compared with the control
group, PMC1 expression increased when exposed to FLC alone,
and decreased when exposed to BBH + FLC or BBH alone
(p < 0.05). BBH + FLC significantly downregulated PMC1
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FIGURE 3 | Candida albicans biofilm after BBH and FLC treatment. CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL), BBH (2 µg/mL),
and RPMI-1640 medium. After drug treatments, biofilm was photographed (40× magnification) at 6, 12, 24, 48, and 72 h.

by 5.28-fold compared with FLC alone (p < 0.05). There was
no significant difference between the combined group and the
BBH alone group. BBH + FLC and FLC alone significantly

downregulated VCX1 and PMR1 expression, but the difference
between the groups was not significant difference. Combined
BBH and FLC significantly downregulated VCX1 and PMR1

Frontiers in Microbiology | www.frontiersin.org 6 July 2020 | Volume 11 | Article 1498116

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01498 June 30, 2020 Time: 20:53 # 7

Yong et al. Inhibition of Resistant C. albicans

FIGURE 4 | Intracellular calcium influx in C. albicans after BBH and FLC treatment. CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL),
BBH (2 µg/mL), and RPMI-1640 medium. Cells were photographed (40× magnification) at 0, 2, and 3 h.

expression by 8.89- and 1.69-fold, respectively, compared with
BBH alone (P < 0.05). These results indicate that BBH combined
with FLC significantly downregulates genes for the efflux pump
CDR1, hyphal-associated ALS3, HWP1, and ECE1, and the
calcium pump PMC1.

DISCUSSION

Berberine has multiple antibacterial and antifungal activities,
which suppress Gram-positive and Gram-negative bacteria,
and also suppress FLC-resistant Candida and Cryptococcus
neoformans (Čerňáková and Košt’álová, 2002; Tillhon et al.,
2012; da Silva et al., 2016). Previous studies have shown that
berberine induces a significant increase in DNA strand break
and DNA damage. Berberine not only destroys the cell wall
integrity in C. albicans, but also targets the cell membrane by
affecting ergosterol synthesis, resulting in increased membrane
permeability (da Silva et al., 2016; Zorić et al., 2017). In our
study, BBH treatment alone exerted weak antifungal effects for
all resistant isolates. However, it has been reported that high
doses of berberine can cause functional damage to the lungs, liver,

and intestines of experimental animals. Therefore, combination
therapy will be an effective strategy to reduce the toxic side
effects of berberine. Because BBH+ FLC will produce synergistic
effect and enhance drug sensitivity, thereby significantly reducing

TABLE 3 | Intracellular Ca2+ fluorescence in C. albicans after BBH
and FLC treatment.

CA 0253 Time of drug action

0 h 2 h 3 h

BBH + FLC�FN 4364.70 ± 44.33 5623.23 ± 41.16 5492.60 ± 11.00

FLCFM 3389.07 ± 4.18 4793.57 ± 9.49 4679.17 ± 24.69

BBHN 4158.93 ± 53.24 5266.37 ± 14.98 5080.40 ± 16.00

Control 3169.30 ± 54.53 4773.53 ± 45.29 4736.17 ± 16.4

CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL),
BBH (2 µg/mL), and RPMI-1640 medium. Fluorescence was measured (emission:
530 nm) at 0, 2, and 3 h. Three independent experiments were performed, with
eight replicates in each group (n = 8). Values represent means ± SEM. ANOVA
tested statistical differences. � compared with the FLC group, p < 0.05; F
compared with the BBH group, p < 0.05; Ncompared with the control group,
p < 0.05; 1 compared with the control group, p > 0.05.
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FIGURE 5 | Genes expression in C. albicans after BBH and FLC treatment. CA 0253 were treated with BBH (2 µg/mL) plus FLC (1 µg/mL), FLC (1 µg/mL), BBH
(2 µg/mL), and RPMI-1640 medium. Three independent experiments were performed, with 8 replicates in each group (n = 8). *p < 0.05, compared to the
BBH + FLC groups, ANOVA.

effective drug concentration and reducing the possibility of
toxic and side effects (Singh et al., 2018). Time-kill curve
assays further demonstrated that the dynamic antifungal effect
of combined BBH and FLC was significantly better than the
drug-monotherapy groups within 48 h. Efflux pump, biofilm,
and calcium-signaling pathways are important factors underlying
C. albicans FLC resistance. Importantly, these cellular processes

are not independent, but interact with each other in the fungus.
Constitutive efflux pump upregulation, including CDR1, CDR2,
and MDR1, is a key contributor to early biofilm resistance
in C. albicans (Nobile and Johnson, 2015). Luna-Tapia et al.
(2019) demonstrated that the calcium pump Pmc1p is essential
for transformation from yeast-to-hyphae and biofilm formation.
Previous work indicated that the vacuolar calcium channel Yvc1p
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participates in hyphal elongation and maintenance by regulating
hyphal-associated gene expression (Yu et al., 2014). In this study,
the effects of combined BBH and FLC on mechanisms leading to
FLC resistance were assessed to investigate possible mechanisms
for increasing drug sensitivity of FLC-resistant strains.

One important reason for FLC resistance in C. albicans is
enhanced efflux pump activity (Cdr1p, Cdr2p, and Mdr1p),
causing FLC to be pumped out of the cell (Cannon et al.,
2009; Dhamgaye et al., 2014; Prasad and Rawal, 2014).
Antifungal agents such as farnesol or clorgyline are ATP-
binding cassette superfamily (ABC) and major facilitator class
(MFS) transporter inhibitors, which could reverse C. albicans
azole resistance (Holmes et al., 2012; Černáková et al., 2019).
Therefore, regulating drug transporter activity would increase
FLC sensitivity. According to our results, BBH + FLC, BBH
alone and FLC alone reduce Rh6G excretion by decreasing CDR1
and CDR2 mRNA expression. Previous studies reported that
Eucalyptal D (Xu et al., 2019) geraniol (Singh and Sharma,
2018) and magnolol (Sun L. M. et al., 2015) which are
substrates for Cdr1p efflux pumps, exert synergistic effects
by simultaneously upregulating CDR1 and CDR2 expression,
while competitively inhibiting FLC efflux. Numerous studies
suggest that synergy results from increased intracellular drug
accumulation caused by downregulated efflux pump genes in
FLC-resistant strains (Garcia-Gomes et al., 2012; Zhu et al., 2014;
Shao et al., 2016). Although Rh6G efflux gradually increased
in all groups, much lower Rh6G efflux and CDR1 expression
were detected in the BBH + FLC group, confirming previous
results. In addition, CDR1 inhibition in the BBH + FLC
group was higher than CDR2, because the FLC-resistant strain
treated with BBH + FLC revealed considerably decreased CDR1
mRNA expression compared with the drug-monotherapy groups.
However, the inhibitory effect on CDR2 in the BBH + FLC
group was not significantly superior. Previous studies showed
that deleting the CDR1 gene significantly reduces FLC resistance,
while deletingCDR2 has a relatively weak effect (Tsao et al., 2009).
Based on efflux function, both Holmes et al. (2008) and Tsao et al.
(2009) demonstrated that Cdr1p plays the most important role
in inducing azole resistance. Therefore, CDR1 mRNA expression
decreased after BBH+ FLC therapy, whereas CDR1 upregulation
with FLC treatment was observed in resistant strains. These
results might be a crucial reason for increasing FLC sensitivity.

Candida albicans biofilm formation can significantly enhance
antifungal drug resistance, causing increased azole MIC values by
more than 1,000-fold. However, no biofilm-specific drugs exist
today (Nobile and Johnson, 2015). C. albicans is polymorphic and
capable of undergoing reversible morphological transformation
between yeast, pseudohyphae, and hyphae (Sudbery et al.,
2004; Noble et al., 2017). Inhibiting the yeast-to-hyphae
transition can lead to biofilm formation defects, which is
a new target for biofilm-specific therapeutics (Romo et al.,
2017; Vila et al., 2017). We found that hyphae formation in
C. albicans was effectively inhibited by combined BBH + FLC
treatment, with very few yeast cells remaining after treatment.
However, hyphae formation was not inhibited in the drug-
monotherapy groups and was accompanied by numerous hyphae
and pseudohyphae. The formation of hyphae upregulates the

expression of the hyphal-specific genes HWP1, ALS3, and ECE1
in the core filamentation response network, maintaining filament
morphology and function (Finkel and Mitchell, 2011; Koch et al.,
2018). Our results showed that BBH + FLC causes C. albicans
hyphal structure formation failure by inhibiting HWP1, ECE1,
and ALS3 expression. The drug-monotherapy groups could
not effectively inhibit hyphal-specific gene expression, such as
ECE1 upregulation after FLC exposure, or HWP1, ALS3, and
ECE1 upregulation after BBH exposure, indicated by numerous
hyphae or pseudohyphae. Hyphae are physical scaffolds for yeast
cell adhesion and aggregation, which enable increased biofilm
strength, integrity, and maturation (Haque et al., 2016; Lee et al.,
2019). HWP1 mutants produce a thin biofilm with less hyphae
in vitro, but display serious biofilm defects in vivo, only forming
yeast microcolonies (Nobile et al., 2006b). ALS3 mutants are able
to form hyphae, but exhibit defects in biofilm formation (Nobile
et al., 2006a, 2008). Our results support this observation. Indeed,
only the combined BBH+ FLC group had biofilm defects, which
might be related to hyphae-specific gene inhibition. In addition,
ALS3 and HWP1 are also capable of regulating the initial
adhesion of yeast cells to surfaces, which is essential for all stages
of biofilm development (Nobile et al., 2006a; Nobile and Johnson,
2015). Compared with other groups, the BBH + FLC group
had significantly reduced yeast cell surface adherence, which
inhibited the development of the initial basal cell layer of biofilm
formation (0–12 h), thereby suppressing biofilm formation. This
inhibition might be associated with downregulated HWP1 and
ALS3 expression.

Intracellular calcium is closely related to the regulation of
stress responses, antifungal drug resistance, and morphogenetic
filament conversion in C. albicans (Juvvadi et al., 2014; Liu
et al., 2015). Cytoplasmic Ca2+ in C. albicans is usually
low, and calcium hypersensitivity induced by high cytoplasmic
Ca2+ leads to toxicity and cell death (Li et al., 2018). Based
on cytoplasmic calcium assay results, FLC alone failed to
disrupt Ca2+ homeostasis in FLC-resistant C. albicans, but
BBH + FLC and BBH monotherapy increased cytoplasmic
Ca2+. These results indicate that BBH might be a key factor in
inducing high cytoplasmic Ca2+. The calcium cell survival (CCS)
pathway is the major calcium-signaling pathway maintaining
Ca2+ homeostasis in C. albicans (Li et al., 2018). Indeed, CCS
pathway activation induces calcium-related gene expression in
response to increased Ca2+, which decreases the intracellular
Ca2+ concentration by transporting excess cytoplasmic Ca2+

into internal compartments, including vacuoles, endoplasmic
reticulum, and the Golgi apparatus (Juvvadi et al., 2014; Liu
et al., 2016). RT-qPCR results showed that BBH + FLC and BBH
monotherapy significantly upregulates YVC1 and downregulates
PMC1, while FLC monotherapy had the opposite effect. Vacuoles
serves as the major storage site for excess Ca2+ in C. albicans.
Yvc1p localized on the vacuolar membrane mediates Ca2+

release from the vacuole into the cytoplasm, while the P-type
ATPase Pmc1p translocates Ca2+ from cytoplasm into the
vacuole using ATP hydrolysis (Bouillet et al., 2012; Luna-
Tapia et al., 2019). According these previous studies and our
results, BBH + FLC and BBH monotherapy promote Ca2+

release from the vacuole into the cytoplasm by upregulating
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YVC1 and reduce excess cytoplasmic Ca2+ transport into the
vacuole by downregulating PMC1. Together, this causes increased
cytoplasmic Ca2+, which enhances drug sensitivity in FLC-
resistant C. albicans. However, YVC1 could be downregulated to
prevent Ca2+ transport into the cytoplasm after FLC treatment.
In addition, upregulated PMC1 promotes Ca2+ transport into
the vacuole and effectively prevents increased cytoplasmic Ca2+,
which might be an important cause of FLC resistance. The
H+/Ca2+ exchanger Vcx1p transports Ca2+ into the vacuole
using the proton-motive force across the vacuolar membrane.
The calcium pump Pmr1p transfers Ca2+ to the Golgi apparatus
(Förster and Kane, 2000; Jiang et al., 2018). In our study, both
FLC monotherapy and BBH + FLC downregulated VCX1 and
PMR1, but there was no statistical difference. Luna-Tapia et al.
(2019) reported that pmc11/1 mutants are severely impaired by
high Ca2+ concentration in the medium, because they are unable
to transport Ca2+ from the cytoplasm into the vacuole. However,
vcx11/1 mutants are unaffected by high Ca2+, demonstrating
that Pmc1p is required for C. albicans pathogenicity, FLC
tolerance, and hyphal growth (Luna-Tapia et al., 2019). Thus,
YVC1 and PMC1 might be the most important calcium-related
genes to maintain cellular calcium homeostasis in FLC-resistant
C. albicans, and may be antifungal therapy targets. The flow
cytometry results showed that the cytoplasmic Ca2+ in the
BBH + FLC group was higher than in the BBH monotherapy
group, indicating that their combined use further enhances
cytoplasmic Ca2+. Although there was no significant difference
in PMC1 expression, YVC1 expression in the BBH + FLC group
was higher than in the BBH monotherapy group, which might
explain the higher cytoplasmic Ca2+ in the BBH+ FLC group.

Our study found that BBH + FLC treatment exerts a
synergistic antifungal effect by regulating efflux pumps, hyphae,
and calcium-related pathways. One limitation of this study is
that additional synergistic regulatory sites need to be further
explored. Hyphae are a key factor for C. albicans virulence
and invasiveness, and some researchers observed that Ca2+-
regulated genes YVC1 and PMC1 deletion cause hyphae defects
in C. albicans (Yu et al., 2014; Luna-Tapia et al., 2019). We found
that combined BBH + FLC simultaneously regulates vacuolar
Ca2+-regulated genes and significantly inhibits yeast-to-hyphae
conversion. Therefore, how BBH + FLC modulates vacuolar
Ca2+ regulation and hyphae formation in biofilm-positive FLC-
resistant C. albicans will be explored in future studies. We also
found that the Ca2+ channel, YVC1, and the Ca2+ pump, PMC1,
increase cytoplasmic Ca2+ in C. albicans, and gene transcription
level of resistant isolate treated with BBH + FLC and FLC alone
were completely opposite. This finding informs further study of
key targets to inhibit biofilm-positive FLC-resistant C. albicans.

CONCLUSION

Berberine hydrochloride synergistically suppresses FLC efflux,
hyphae and biofilm formation, and induces high cytoplasmic
Ca2+, indicating that the combination could restore FLC
antifungal activity in FLC-resistant C. albicans by regulating
multiple targets. This paper provides state-of-the-art TCM

antimicrobial research, demonstrates that TCMs have multi-
target antimicrobial effects, and suggests new ideas for resistant
strain treatments. These findings clearly suggest that BBH+ FLC
may be an effective therapeutic option for infections related
to FLC-resistant C. albicans, especially biofilm-positive resistant
isolates. Future experiments will explore the relationship between
hyphae formation and Ca2+ signaling pathways, and further
study the key nodes inhibiting biofilm-positive FLC-resistant
C. albicans.
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Toxoplasma gondii infects almost all warm-blooded animals, including humans, leading

to both cellular and humoral immune responses in the host. The virulence of T. gondii

is strain specific and is defined by secreted effector proteins that disturb host immunity.

Here, we focus on nuclear factor-kappa B (NFκB) signaling, which regulates the induction

of T-helper type 1 immunity. A luciferase assay for screening effector proteins, including

ROPs and GRAs that have biological activity against an NFκB-dependent reporter

plasmid, found that overexpression of GRA7, 14, and 15 of a type II strain resulted in

a strong activity. Thus, our study was aimed at understanding the involvement of NFκB

in the pathogenesis of toxoplasmosis through a comparative analysis of these three

molecules. We found that GRA7 and GRA14 were partially involved in the activation

of NFκB, whereas GRA15 was essential for NFκB activation. The deletion of GRA7,

GRA14, and GRA15 in the type II Prugniaud (Pru) strain resulted in a defect in the nuclear

translocation of RelA. Cells infected with the Pru1gra15 parasite showed reduced

phosphorylation of inhibitor-κBα. GRA7, GRA14, and GRA15 deficiency decreased

the levels of interleukin-6 in RAW246.7 cells, and RNA-seq analysis revealed that

GRA7, GRA14, and GRA15 deficiency predominantly resulted in downregulation of

gene expression mediated by NFκB. The virulence of all mutant strains increased,

but Pru1gra14 only showed a slight increase in virulence. However, the intra-footpad

injection of the highly-virulent type I RH1gra14 parasites in mice resulted in increased

virulence. This study shows that GRA7, 14, and 15-induced host immunity via NFκB

limits parasite expansion.
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INTRODUCTION

The obligate intracellular protozoan parasite Toxoplasma gondii
can cause congenital toxoplasmosis, opportunistic infections
in immunocompromised patients, and ocular disease (1–3).
Epidemiological investigation of toxoplasmosis revealed that the
majority of European and North American strains of the parasite
belong to three distinct clonal lineages: type I, II, and III (4).
These strains differ in virulence in mice: type I strains are
the most virulent with a lethal dose (LD100) of one parasite,
whereas the LD50 of type II and III strains are ∼103 and 105,
respectively (5). Previous studies demonstrated that virulence is
largely mediated by several families of secretory pathogenesis
determinants (6). These secreted effector proteins originate from
different organelles, namely the rhoptries, known as rhoptry
proteins (ROPs), and dense granules, known as dense granule
proteins (GRAs) (7). Recently, it has become clear that T.
gondiimanipulates and modulates host resistance mechanisms at
multiple points along pro-inflammatory pathways, which in turn
dictates parasite burden and disease (8).

Nuclear factor-kappa B (NFκB), the central mediator of
inflammatory responses and immune function, comprises homo-
and heterodimers of five members: NFκB1 (p50), NFκB2 (p52),
RelA (p65), RelB, and c-Rel (9, 10). The NFκB complex
structure resides in the cytoplasm of unstimulated cells, where
it is complexed with the inhibitor-κB (IκB) family of proteins,
such as IκBα, IκBβ, and IκBε, which bind to the NFκB DNA
binding domain and dimerization domain, the Rel homology
domain, and thereby interfere with the function of the nuclear
localization signal (11). Upon exposure to various infectious and
inflammatory stimuli, the inhibitor proteins are phosphorylated,
resulting in their ubiquitination and degradation, allowing the
nuclear translocation of NFκB dimers to regulate gene expression
(10). Many pathogens, including viruses, bacteria, and protozoa,
have been reported to modulate the host NFκB pathway to
optimize survival in the host (12).

Mice lacking c-Rel and RelB are highly susceptible to
intraperitoneally infection with T. gondii and die within 10–15
days of infection, indicating the importance of the NFκB pathway
for an adequate response to T. gondii infection (13, 14). C-Rel−/−

mice show an early defect in the number of IL-12p40-producing
cells among the peritoneal exudates cells collected at 12, 24, and
48 h post-infection, although within 2–3 days this defect is no
longer apparent (14). Moreover, increased susceptibility of c-
Rel−/− mice can be rescued by administration of IL-12 until 2
days post-infection, indicating that delayed production of IL-12
up to 2 days post-infection causes decreased production of IFN-
γ and a failure to control the parasite burden (14). Despite these
findings, modulation of the NFκB pathway by T. gondii remains
to be further elucidated.

In this study, we used an NFκB-luciferase assay to screen
candidates for their ability to regulate NFκB activity. We
found that overexpression of GRA7, 14, and 15 in a type II
strain resulted in strong NFκB activity; thus, we focused on
these proteins. Toxoplasma GRA15 accounts for differences
in NFκB activation among different strains (15). Recombinant
GRA7 protein also has potent activity against the NFκB

pathway; however, it is unclear whether endogenous GRA7 is
capable of affecting the NFκB pathway (16). GRA14, which
is secreted into the vacuole, can be transferred to both the
parasitophorous vacuole (PV) membrane (PVM) and the intra-
vehicular network (17). However, the molecular function of this
protein remains unknown. Thus, the aim of this study was to
gain a comprehensive understanding of the involvement of NFκB
in the pathogenesis of toxoplasmosis by comparative analysis
of three molecules that modulate inflammatory cytokines and
chemokines, to ultimately aid the development of strategies to
control chronic Toxoplasma infections.

MATERIALS AND METHODS

Reagents
Anti-RelA (Sc-109) antibody was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-total IκBα (#9242),
anti-phospho-IκBα (#2859), and anti- glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, #2118) were purchased
from Cell Signaling Technology (Beverly, MA, USA).

Ethics Statement
The use and care of animals complied with the Guide for
the Care and Use of Laboratory Animals from the Ministry
of Education, Culture, Sports, Science, and Technology, Japan.
The experimental protocol was approved by the Committee on
the Ethics of Animal Experiments at the Obihiro University of
Agriculture and Veterinary Medicine (permit number: 19-50).
All efforts were made to minimize animal suffering.

Experimental Design
First, we constructed 17 GRAs and 21 ROPs expressing vectors.
Then they were transiently transfected into 293T cells for
monitoring NFκB activity. Next, 293T cells were infected with
the parental Pru, Pru1gra7, Pru1gra14, and Pru1gra15 parasite
strains and assessed their effect on NFκB activity. We evaluated
the nuclear translocation of RelA in 293T cells overexpressing
GRA7, GRA14, and GRA15 alone. Moreover, we also examined
it in HFF cells infected with each parasite strain. Then, level of
phosphorylated-IκBα in HFF cells infected with parasite strains
were quantified. After that, we measured level of secreted IL-6 in
Raw246.7 mouse macrophage cells infected with parasite strains,
and then their RNA samples were supplied for transcriptome
analysis. Lastly, we conducted survival test of both mice infected
with type II T. gondii strains and mice infected with type I T.
gondii strains.

Parasites and Cell Culture
Toxoplasma gondii (type II, Pru1ku801hxgprt and type I,
RH1hxgprt, RH1hxgprt1gra7, and RH1hxgprt1gra14) was
maintained in monkey kidney adherent epithelial (Vero) cells
in Eagle’s minimum essential medium (MEM, Sigma, St. Louis,
MO, USA) with 8% fetal bovine serum (FBS) and the appropriate
antibiotics. RH1hxgprt1gra7 and RH1hxgprt1gra14 were
kindly gifted by Prof. John Boothroyd (Stanford University
School of Medicine) and Prof. Peter Bradley (University of
California), respectively. Human embryonic kidney (293T) cells,
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human foreskin fibroblast (HFF) cells, and Raw264.7 mouse
macrophages were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Sigma) supplemented with 10% FBS and
the appropriate antibiotics. For the purification of tachyzoites,
infected cells were syringe-lysed using a 27-gauge needle to
release the tachyzoite-stage parasites into the medium, which was
then filtered using a 5.0-µm pore-sized filter (Millipore, Bedford,
MA, USA).

Plasmid Construction
All of the plasmids and primers used in this study are listed in
Tables 1, 2. Further details of the plasmid construction can be
found in the Supplemental Methods.

Luciferase Assay in 293T Cells Expressing
Toxoplasma Genes
293T cells in a 96-well plate were transfected with
pGL4.32[luc2P/NF-κB-RE/Hygro] (Promega, Madison, WI,
USA), together with the pGL4.74[hRluc/TK] vectors (Promega)
and the mammalian expression plasmids of each parasite
molecule, respectively, using Fugene HD (Promega). The empty
p3 × FLAG-cmv14 vector was used as a negative (empty)
control. At 18 h post-transfection, the luciferase activities of the
total cell lysates were measured with the Dual-Glo luciferase
assay system (Promega).

Generation of Pru1gra7 Pru1gra14, and
Pru1gra15 Deletion Mutants, and GRA7-
and GRA14-Complemented Strains
The knock-out plasmid (pBS/GFP/TgGRA7KO/HX) was
transfected into parental Pru strains, and selected with
25µg/ml 3-mercaptopropionlc acid and 50µg/ml xanthine.
The electroporation of tachyzoites was performed as described
previously (18). The drug-resistant parasites were cloned by
limiting dilution and tested by PCR (Supplemental Figure 1).
PCR-positive clones were further analyzed with western
blotting and indirect fluorescent antibody test (IFAT) to
confirm the protein expression. To disrupt GRA14 and
GRA15 in Pru, we cotransfected the parasite with 50 µg of
the CRISPR plasmid (pSAG1::CAS9-U6::sgTgGRA14 and
pSAG1::CAS9-U6::sgTgGRA15), along with an amplicon
containing homologous regions of GRA14 and GRA15
surrounding a pyrimethamine-resistant dihydrofolate reductase
(DHFR∗) cassette (5 µg), respectively. Insert fragments were
prepared by PCR amplification using the primers listed in
Table 2. Selection by growth for 10 to 14 days in pyrimethamine
(1µM) was used to obtain stably resistant parasite clones
that were subsequently screened by PCR to ensure the correct
integration of DHFR∗ into the GRA14 and GRA15 gene loci
(Supplemental Figure 1). PCR-positive clones were further
analyzed by western blotting and IFAT to confirm the loss of
GRA14 expression (Supplemental Figure 3). To complement
the GRA7 and GRA14 genes, we transfected GRA7- and GRA14-
deficient parasites with pSAG1::CAS9-U6::sgUPRT (50 µg) to
target integration to the UPRT locus, along with an amplicon
containing the TgGRA7 and TgGRA14 genes containing the

5′- and 3′-untranslated regions (UTRs) (5 µg), respectively.
Stably resistant clones were selected by growth on fluorouracil
(10µM) for 10 to 14 days and were subsequently screened by
PCR to ensure the correct integration into the UPRT gene locus
(Supplemental Figure 1). PCR-positive clones were further
analyzed by western blotting and IFAT to confirm the protein
expression (Supplemental Figure 2).

Cytokine ELISA
Raw246.7 mouse macrophage cells in a 12-well plate were
infected with parasite lines (multiplicity of infection = 0.5) for
24 h, along with control uninfected cells. Then, supernatants
were collected and IL-6 levels were determined using a cytokine
enzyme-linked immunosorbent assay (ELISA) kit (Mouse
OptEIA ELISA set; BD Biosciences, San Jose, CA, USA).

RNA Sequencing and KEGG Pathway
Enrichment Analysis
Raw246.7 mouse macrophage cells were infected with parasite
lines for 24 h, then cells were lysed and total RNA was extracted
using TRI reagent (Sigma). Library preparation was performed
using a TruSeq stranded mRNA sample prep kit (Illumina, San
Diego, CA, USA). Sequencing was performed on an Illumina
HiSeq 2500 platform in a 75-base single-end mode. Illumina
Casava1.8.2 software was used for base calling and raw sequence
reads were subjected to quality control, then the cleaned reads
were mapped to the reference mouse genome (mm10) with
CLC Genomics Workbench version 10 (GWB; CLC bio, Aarhus,
Denmark) (read mapping parameters: minimum fraction length
of read overlap = 0.95 and minimum sequence similarity =

0.95). Only uniquely mapped reads were retained for further
analysis. We identified differentially expressed genes (DEGs)
as described in detail previously (19). The expression of each
gene was compared among parasite lines using the differential
expression for RNA-seq function in CLC GWB. DEGs were
identified as genes with a fold change in expression of >2,
and a max group mean of >1. KEGG pathway analysis was
also conducted as described in detail in a previous article
(19). The list of DEGs was subjected to a KEGG pathway
enrichment analysis using the clusterProfiler package (20) in the
statistical environment R to assess their overarching function.
Following CPM normalization, the expression of each gene in the
enriched pathways was normalized with Z-score normalization
and visualized. Normalized gene expression was visualized in
a heatmap using the heatmap.2 function (21) in the gplots
package in R. The genes were hierarchically clustered based on
the Pearson correlation distance and the group average method.

IFAT in T. gondii-Infected Cells
HFF cells in a 12-well plate were infected with parasites
(multiplicity of infection = 1) for 24 h, along with uninfected
control cells. The cells were then fixed with 4% (vol/vol)
paraformaldehyde in PBS for 15min at room temperature,
permeabilized with 0.1% (vol/vol) Triton X-100 and blocked in
PBS with 3% (wt/vol) bovine serum albumin. Cover slips were
incubated with primary antibody for 1 h at room temperature,
and fluorescent secondary antibody for 1 h at room temperature.
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TABLE 1 | Plasmids used in this study.

Plasmid Description Use Source or

reference

pBS/GFP/HX Plasmid for cloning TgGRA7 knock-out vector This study

pBS/GFP/TgGRA7KO/HX HXGPRT cassette flaked by two homology arms from the 5’-

and 3’- UTR of TgGRA7 gene

The knock-out vector targeting TgGRA7 gene This study

pSAG1::CAS9-U6::sgUPRT CAS9 expressed from the ToxoplasmaSAG1 promoter and

CRISPR gRNA targeting Toxoplasma UPRT produced from

the U6 promoter

CRISPR plasmid targeting Toxoplasma UPRT Addgene

pSAG1::CAS9-U6::sgTgGRA14 CAS9 expressed from the TgSAG1 promoter and CRISPR

gRNA targeting TgGRA14 produced from the U6 promoter

CRISPR plasmid targeting between nucleotides

488 and 489 in TgGRA14 gene

This study

pSAG1::CAS9-U6::sgTgGRA15 CAS9 expressed from the TgSAG1 promoter and CRISPR

gRNA targeting TgGRA15 produced from the U6 promoter

CRISPR plasmid targeting between nucleotides

146 and 147 in TgGRA14 gene

This study

pUPRT::DHFR-D DHFR* cassette flanked by two homology arms from the 5′-

and 3′-UTR of UPRT gene, respectively

Knockin the DHFR* expressed cassette into

targeting gene

Addgene

p3XFLAG-CMV-14 Plasmid for cloning of FLAG tag fused gene Sigma-Aldrich

p3XFLAG-CMV-TgGRA1 FLAG tag-fused Tg(GOI) Luciferase reporter assay This study

p3XFLAG-CMV-TgGRA2 This study

p3XFLAG-CMV-TgGRA3 This study

p3XFLAG-CMV-TgGRA4 This study

p3XFLAG-CMV-TgGRA5 This study

p3XFLAG-CMV-TgGRA6 This study

p3XFLAG-CMV-TgGRA7 This study

p3XFLAG-CMV-TgGRA8 This study

p3XFLAG-CMV-TgGRA9 This study

p3XFLAG-CMV-TgGRA11 This study

p3XFLAG-CMV-TgGRA12 This study

p3XFLAG-CMV-TgGRA14 This study

p3XFLAG-CMV-TgGRA15 This study

p3XFLAG-CMV-TgGRA16 This study

p3XFLAG-CMV-TgGRA23 This study

p3XFLAG-CMV-TgGRA24 This study

p3XFLAG-CMV-TgGRA25 This study

p3XFLAG-CMV-TgROP5 This study

p3XFLAG-CMV-TgROP8 This study

p3XFLAG-CMV-TgROP9 This study

p3XFLAG-CMV-TgROP10 This study

p3XFLAG-CMV-TgROP11 This study

p3XFLAG-CMV-TgROP12 This study

p3XFLAG-CMV-TgROP13 This study

p3XFLAG-CMV-TgROP14 This study

p3XFLAG-CMV-TgROP15 This study

p3XFLAG-CMV-TgROP16 This study

p3XFLAG-CMV-TgROP17 This study

p3XFLAG-CMV-TgROP18 This study

p3XFLAG-CMV-TgROP19A This study

p3XFLAG-CMV-TgROP20 This study

p3XFLAG-CMV-TgROP23 This study

p3XFLAG-CMV-TgROP24 This study

p3XFLAG-CMV-TgROP26 This study

p3XFLAG-CMV-TgROP34 This study

p3XFLAG-CMV-TgROP35 This study

p3XFLAG-CMV-TgROP38 This study

p3XFLAG-CMV-TgROP39 This study

(Continued)
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TABLE 1 | Continued

Plasmid Description Use Source or

reference

pGL4.32 Nuclear factor-κB response element (NF-κB) Luciferase reporter assay for NF-κB signal Promega

pGL4.74 Control Renillaluciferase expression vector Promega

pBluescript SK (+) Plasmid for cloning of TgGRA14+UTR gene Add gene

pBluescript SK (+)-TgGRA7+UTR TgGRA14 expressed from the TgGRA7 5′UTR and 3′ UTR Replacing the UPRT gene by TgGRA7 This study

pBluescript SK (+)-TgGRA14+UTR TgGRA14 expressed from the TgGRA14 5′UTR and 3′ UTR Replacing the UPRT gene by TgGRA14 This study

Nuclei were counterstained with Hoechst dye. Coverslips were
thenmounted onto the glass slide withMowiol 4-88 (Sigma), and
photographs were taken using All-in-One microscopy (BZ-9000,
Keyence, Itasca, IL, USA). Quantification of the nuclear signal
was performed by randomly selecting at least 20 infected cells
per T. gondii strain and measuring the mean signal intensity per
nucleus using the BZ analyzer II (Keyence).

IFAT in 293T Cells With Forced Expression
of GRA Proteins
The 293T cells in a collagen 1-coated 12-well plate were
transiently transfected with expression vectors of GRA7, GRA14,
or GRA15, or the empty p3×FLAG-cmv14 vector as a
negative (empty) control, using Fugene HD. After 24 h, IFAT
and quantification of the nuclear signal were performed as
described above.

Western Blotting
HFF cells were infected with parasites (multiplicity of infection
= 3) for 24 h, then lysed using the LysoPureTM Nuclear and
Cytoplasmic Extractor Kit (Wako, Osaka, Japan) supplemented
with complete mini protease inhibitors and Phos stop (Roche,
Mannheim, Germany). The cell lysates were separated by
SDS-polyacrylamide gel electrophoresis and transferred to a
Poly Vinylidene Di-Fluoride membrane (Millipore), which was
blocked in TBS/0.1% Tween-20/2% ECL Prime Blocking Reagent
(GE Healthcare, Buckinghamshire, UK) and incubated with
primary and secondary antibodies. The protein bands were
visualized by ECL Prime Western Blotting Detection reagent
(GE Healthcare), and analyzed by Versa Doc with Quantity
One (Bio-Rad, Munich, Germany). Band intensity was quantified
using ImageJ software developed by the US National Institutes
of Health.

Survival of Mice Infected With Toxoplasma

gondii
Male C57BL/6J mice, of 8 weeks of age, were obtained from
Clea Japan (Tokyo, Japan). Mice were infected intraperitoneally
with 500 tachyzoites of the parental strain Pru, or mutant
strains Pru1gra7, Pru1gra14, or Pru1gra15. Mice were also
infected intraperitoneally with 10,000 parental Pru or Pru1gra14
parasites. To determine the survival rates to the type I RH strain,
500 tachyzoites the RH1gra14, RH1gra7, or their parental
parasites were injected into the right footpads of mice and their
survival was monitored for up to 30 days.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism
(version 6.0) software (GraphPad Software, San Diego, CA,
USA). Statistically significant differences among groups were
determined using one-way ANOVA with Tukey’s post-hoc test.
P-values of < 0.05 represent statistically significant differences.
The survival rate was compared between groups using the log-
rank test.

RESULTS

Ectopic Expression of Type II GRA14
Activates NFκB Signaling in 293T Cells
To investigate which molecules modulate the NFκB pathway
in Toxoplasma, we constructed mammalian expression vectors
for 17 GRAs and 21 ROPs of a Toxoplasma type II strain.
Then, we assessed whether their overexpression, together with
luciferase reporter plasmids carrying an element dependent
on the NFκB promoter, activated the reporter. Overexpression
of GRA7, GRA14, and GRA15 activated NFκB (Figure 1A).
Overexpression of GRA14 stimulated the NFκB promoter to
a similar level as that of GRA7, whereas GRA15 produced
much higher levels of NFκB-dependent luciferase activity
than GRA7 and GRA14 (Figure 1B). The expression of these
molecules in 293T cells was confirmed by western blotting
(Supplemental Figure 3). Thus, we focused on GRA7, GRA14,
and GRA15 for further analysis.

Next, we generated Pru1gra7, Pru1gra14, and Pru1gra15
parasites based on the gene-editing strategies depicted in
Supplemental Figure 2. We isolated single clones of drug-
resistant parasites and performed diagnostic PCR to check
for correct integration (Supplemental Figure 1). Moreover, we
established complementation of GRA7 and GRA14. The GRA7
and GRA14 expression cassettes containing the 5′ UTR and
3’UTR were inserted into the UPRT gene locus. Drug-resistant
clones were isolated and correct integration into the UPRT
locus was confirmed (Supplemental Figure 1). Clones, with
the exception of Pru1gra15, were further analyzed by an
IFAT and western blotting to confirm the protein expression
(Supplemental Figure 2). The Pru1gra15 mutant was excluded
because of the lack of an anti-GRA15 antibody. We then assessed
the physiological changes in the transgenic lines in vitro. The
infection rates and egress rates of the Pru1gra7 and Pru1gra14
strains in Vero cells were similar to those of the parental strain
(Supplemental Figures 5A–D). Whereas, the in vitro replication
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TABLE 2 | Primers used in this study.

Primer Sequence (5′-3′) Use

TgGRA1_cDNA_1F ACC AGT CGA CTC TAG ATG GTG CGT GTG AGC GCT AT To clone full length of the gene into XbaI and BamHI sites of

the p3XFLAG-CMV-14 plasmid by In-Fusion cloning

TgGRA1_cDNA_2R AGT CAG CCC GGG ATC TCT CTC TCT CTC CTG TTA AGA

TgGRA2_cDNA_1F ACC AGT CGA CTC TAG ATG TTC GCC GTA AAA CAT TG

TgGRA2_cDNA_2R AGT CAG CCC GGG ATC TCT GC GAA AAG TCT GGG ACG G

TgGRA3_cDNA_1F ACCA GTC GAC TCT AGA TGG ACC GTA CCA TAT GTC C

TgGRA3_cDNA_2R AGT CAG CCC GGG ATC TTT TCT TGG AGG CTT TGT CCA

TgGRA4_cDNA_1F ACC AGT CGA CTC TAG ATG CAG GGC ACT TGG TTT TC

TgGRA4_cDNA_2R AGT CAG CCC GGG ATC TCT CTT TGC GCA TTC TTT CCA

TgGRA5_cDNA_1F ACC AGT CGA CTC TAG ATG GCG TCT GTA AAA CGC GT

TgGRA5_cDNA_2R AGT CAG CCC GGG ATC TCT CTT CCT CGG CAA CTT CTT

TgGRA6_cDNA_1F ACC AGT CGA CTC TAG ATG GCA CAC GGT GGC ATC TA

TgGRA6_cDNA_2R AGT CAG CCC GGG ATC TAA AAT CAA ACT CAT TCA CAC

TgGRA7_cDNA_1F ACC AGT CGA CTC TAG ATG GCC CGA CAC GCA ATT TT

TgGRA7_cDNA_2R AGT CAG CCC GGG ATC TCT GGC GGG CAT CCT CCC CAT

TgGRA8_cDNA_1F ACC AGT CGA CTC TAG ATG GCT TTA CCA TTG CGT GT

TgGRA8_cDNA_2R AGT CAG CCC GGG ATC TAT TCT GCG TCG TTT GGA CGG

TgGRA9_cDNA_1F ACC AGT CGA CTCT AGA TGC GGT CAC TCA AGT CAA T

TgGRA9_cDNA_2R AGT CAG CCC GGG ATC TGA GTC CTC GGT CTT CCT GCG

TgGRA11_212410_cDNA_1F ACC AGT CGA CTC TAG ATG TCC CGC CGC ATG GCA TC

TgGRA11_212410_cDNA_2R AGT CAG CCC GGG ATC TTG GCT TCA ACT CGT CCT CTT

TgGRA12_275850_cDNA_1F ACC AGT CGA CTC TAG ATG GAG ACT GGC CTA AAG GA

TgGRA12_275850_cDNA_2R AGT CGC CCG GGA TCT CTT CTT TTG TGA AGG TTT C

TgGRA14_cDNA_1F ACC AGT CGA CTC TAG ATG CAG GCG ATA GCG CGG GG

TgGRA14_cDNA_2R AGT CAG CCC GGG ATC TTT CGC TTG GTC TCT GGT AGC

TgGRA15_cDNA_1F ACC AGT CGA CTC TAG ATG GTG ACA ACA ACC ACG CC

TgGRA15_cDNA_2R AGT CAG CCC GGG ATC TTG GAG TTA CCG CTG ATT GT

TgGRA16_cDNA_1F ACC AGT CGA CTC TAG ATG TAT CGA AAC CAC TCA GG

TgGRA16_cDNA_2R AGT CAG CCC GGG ATC TCA TCT GAT CAT TTT TCC GC

TgGRA23_cDNA_1F ACC AGT CGA CTC TAG ATG GCA GCG CGT GCG GGA AG

TgGRA23_cDNA_2R AGT CAG CCC GGG ATC TGT TCT TTC GCG CAA GGG GT

TgGRA24_cDNA_1F ACC AGT CGA CTC TAG ATG CTC CAG ATG GCA CGA TA

TgGRA24_cDNA_2R AGT CAG CCC GGG ATC TAT TAC CCT TAG TGG GTG GT

TgGRA25_cDNA_1F ACC AGT CGA CTC TAG ATG AAG CGT TTC TGG TTG TG

TgGRA25_cDNA_2R AGT CAG CCC GGG ATC TGT TTC TAT CGA ATT CCG GG

TgROP5_cDNA_1F ACC AGT CGA CTC TAG ATG GCG ACG AAG CTC GCT AG

TgROP5_cDNA_2R AGT CAG CCC GGG ATC TAG CGA CTG AGG GCG CAG CA

TgROP8_cDNA_1F ACC AGT CGA CTC TAG ATG TTT TCT GTG TTA CGT AA

TgROP8_cDNA_2R AGT CAG CCC GGG ATC TTG CCG GTT CTC CAT CAG TT

TgROP9_cDNA_1F ACC AGT CGA CTC TAG ATG ACG CAC CCA AAT CCC CT

TgROP9_cDNA_2R AGT CAG CCC GGG ATC TCT GCA TGA TCA ACG AGG GC

TgROP10_cDNA_1F ACC AGT CGA CTC TAG ATG GGA CGA CCC AGG TGG CC

TgROP10_cDNA_2R AGT CAG CCC GGG ATC TGT TGG GCG CAT CTT CCG TA

TgROP11_cDNA_1F ACC AGT CGA CTC TAG ATG TCG TCA TCC AGA TTG GT

TgROP11_cDNA_2R AGT CAG CCC GGG ATC TCC CCG TGA CGG GGA AGT AC

TgROP12_cDNA_1F ACC AGT CGA CTC TAG ATG GCA CGC GTT CTT CCT TG

TgROP12_cDNA_2R AGT CAG CCC GGG ATC TGA ACC GCC TCA AGA GAA AA

TgROP13_cDNA_1F ACC AGT CGA CTC TAG ATG AAG AGA ACA GAG CTT TG

TgROP13_cDNA_2R AGT CAG CCC GGG ATC TCA ATA GCC TCA AGG AAT TC

TgROP14_cDNA_1F ACC AGT CGA CTC TAG ATG TAT TCC TCC CCT CAG TC

TgROP14_cDNA_2R AGT CAG CCC GGG ATC TCA GCG CTT GCT TCT TCC TA

(Continued)
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TABLE 2 | Continued

Primer Sequence (5′-3′) Use

TgROP15_cDNA_1F ACC AGT CGA CTC TAG ATG CTG AAA ACG ACA CCT GC

TgROP15_cDNA_2R AGT CAG CCC GGG ATC TGA AAG GTG AGC TAT GAG GT

TgROP16_cDNA_1F ACC AGT CGA CTC TAG ATG AAA GTG ACC ACG AAA GG

TgROP16_cDNA_2R AGT CAG CCC GGG ATC TCA TCC GAT GTG AAG AAA GT

TgROP17_cDNA_1F ACC AGT CGA CTC TAG ATG GAG TTG GTG TTG TGC TT

TgROP17_cDNA_2R AGT CAG CCC GGG ATC TCT CCT TCT GTA ATA AAG CC

TgROP18_cDNA_1F ACC AGT CGA CTC TAG ATG TTT TCG GTA CAG CGG CC

TgROP18_cDNA_2R AGT CAG CCC GGG ATC TTT CTG TGT GGA GAT GTT CC

TgROP19A_cDNA_1F ACC AGT CGACTC TAG ATG AGA AGG CGC TGC TTT C

TgROP19A_cDNA_2R AGT CAG CCC GGG ATC TCT GAG ATC TGG ATG CGC GC

TgROP20_cDNA_1F ACC AGT CGA CTC TAG ATG CGC CTG GAT GCT GTG TA

TgROP20_cDNA_2R AGT CAG CCC GGG ATC TGT CAC TTG AAC TTG GCT CC

TgROP23_cDNA_1F ACC AGT CGA CTC TAG ATG GAA AAG ATC CTG TGG GC

TgROP23_cDNA_2R AGT CAG CCC GGG ATC TCT TGA TGC CTT TCA ACA GG

TgROP24_cDNA_1F ACC AGT CGA CTC TAG ATG GCA ACG CGT TCA TTC CT

TgROP24_cDNA_2R AGT CAG CCC GGG ATC TGG GAT TAC GGG AGA GTG TT

TgROP26_cDNA_1F ACC AGT CGA CTC TAG ATG TTG TTA AGC ATA TCT GC

TgROP26_cDNA_2R AGT CAG CCC GGG ATC TTA ATG GGG TAA ACA ACT GC

TgROP34_cDNA_1F ACC AGT CGA CTC TAG ATG ATG TTT CCT GCC GTC GC

TgROP34_cDNA_2R AGT CAG CCC GGG ATC TGC TCT CCT GTG CGT CTT CC

TgROP35_cDNA_1F ACC AGT CGA CTC TAG ATG CCG GAA CAA GAT CTT GC

TgROP35_cDNA_2R AGT CAG CCC GGG ATC TTT CGT TTT CCT GTT CAT GG

TgROP38_cDNA_1F ACC AGT CGA CTC TAG ATG AAA AAT ACT CTG TTG TC

TgROP38_cDNA_2R AGT CAG CCC GGG ATC TAA ATT GAT GCG TTC TTA TC

TgROP39_cDNA_1F ACC AGT CGA CTC TAG ATG AGC AAA CCT TTT TTC CC

TgROP39_cDNA_2R AGT CAG CCC GGG ATC TAA CAA TTG ACT CCC GAA GA

TgROP41_cDNA_1F ACC AGT CGA CTC TAG ATG CGT CAC GTG TTC AAC TC

TgROP41_cDNA_2R AGT CAG CCC GGG ATC TGG AAA GCA CTT GT GAG GTC

TgGRA7_5UTR_1F GTG GAT CCC ATG GAG ACA CAC GGT CAA CA To clone 5′UTR of the TgGRA7 gene into pBS/GFP/HX

TgGRA7_5UTR_2R CGA AGC TTT AAT GCA GCT GTC ATG TCT CG

TgGRA7_3UTR_1F ATGGGCCCGGTTGGAAAAGGACCCGTATG To clone 3′UTR of the TgGRA8 gene into pBS/GFP/HX

TgGRA7_3UTR_2R ATGGGCCCACGGAGACTGCCTTGTCTTTC

TgGRA14II_484-gRNA GAA GTT CTG AGC CGT TTC CTG TTT TAG AGC TAG AAA TAG

C

Primer for CRISPR/CAS9 plasmids targeting the TgGRA14

gene (pSAG1::CAS9-U6::sgTgGRA14)

TgGRA15(II)_146-gRNA GCT CGA TAA TTC GGT GGC TTG GGG TTT TAG AGC TAG AAA

TAG C

Primer for CRISPR/CAS9 plasmids targeting the TgGRA15

gene (pSAG1::CAS9-U6::sgTgGRA15)

Common CAS9-U6-Rv AAC TTG ACA TCC CCA TTT AC Common primer for CRISPR/CAS9 plasmids targeting

Toxoplasma genes

DHFR_GRA14_484_1F AGG TTC AAG AAG TTC TGA GCC GTT TAA GCT TCG CCA

GGC TGT AAA

To amplify an amplicon containing TgGRA14 homology

regions surrounding a pyrimethamine-resistant DHFR*

cassette

DHFR_GRA14_484_2R CAG ACG CAA CAG AAC CAA GGG GAA TTC ATC CTG CAA

GTG CAT AG

DHFR-

25ntTgGRA15(II)_146_1F

CAA GTC ACG CTC GAT AAT TCG GTG GAA GCT TCG CCA

GGC TGT AAA

To amplify an amplicon containing TgGRA15 homology

regions surrounding a pyrimethamine-resistant DHFR*

cassette

DHFR-

21ntTgGRA15(II)_146_2R

GAG CAC CGT AAG ATA CCC AAG GGA ATT CAT CCT GCA

AGT GCA TAG

TgGRA7-KOS-1F CGT CAT GAG TAC CGG GAC AT To confirm the correct homologous recombination of

HXGPRT cassette with the TgGRA7 gene

TgGRA7-KOS-2R ATT CAG ACC TGC TGC GAG CC

TgGRA7-KOS-3R GCA AGG AAC GAT CAT GCG TG

(Continued)
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TABLE 2 | Continued

Primer Sequence (5′-3′) Use

HXGPRT-KOS-1F CTTGTCGGGGAGCAACAGCC

TgGRA7_RT_1F TCA CCA CCA GCA TGG ATA AGG To confirm the insertion of TgGRA7+UTR cassette into the

TgUPRT gene

TgGRA7_RT_2R GCC TCG CTT CCT GAA ATG AAC

TgGRA7+UTR_467-2R GAT TTT CAG CCA CGC CTG TC To confirm the insertion of TgGRA7+UTR cassette into the

TgUPRT gene

TgGRA7+UTR_467-1F AAG GAC CCG TAT GCA GGT AGC T

TgGRA14screen-1Fv3 CGA GTT GTA GCT GG CTT TTC To confirm the insertion of DHFR* cassette into the TgGRA14

gene

TgGRA14screen-1Rv3 TGT CAC GGG GAG ACT AGC GT

TgGRA15(II)_screen_1F TTT CCA GGA GGA ATC GCG CC To confirm the insertion of DHFR* cassette into the TgGRA15

gene

TgGRA15 (II)_screen_2R CTG CCT CGT CGT GTT TCC CG

DHFR2-1F CCA TTG TGA ACA TCC TCA AC To confirm the insertion of DHFR* cassette into the target

gene

TgDHFR-TS_screen_2R CAG ACA CAC CGG TTT CTG CAT

TgGRA7(II)+UTR_1F ATG CGG CCG CAG GAA AAC AGT GTT TCC GAA To clone full length of the TgGRA7 containing UTR region into

Not1 and EcoR5 sites of the pBluescript+SK plasmid by

Iigation cloning (pBluescript-TgGRA7+UTR)

TgGRA7(II)+UTR_2R ACG ATA TCA TGC GTC TTT TGT AGT GAA T

TgGRA14(II)+UTR_1Fv2 ATT CTA GAA AAT AAT GTG CGC ACA CAA C To clone full length of the TgGRA14 containing UTR region

into Not1 and EcoR5 sites of the pBluescript+SK plasmid by

Iigation cloning (pBluescript-TgGRA14+UTR)

TgGRA14(II)+UTR_2Rv2 TCA TCG ATT GCC AGC TCC TTT CAG CTT C

pBlue_UPRT_1F TGT GGC GTC TCG ATT GTG AGA TAG GGC GAA TTG GAG

CTC C

To amplify an amplicon containing TgUPRT homology region

surrounding TgGRA14+UTR expressed cassette

pBlue_UPRT_2R TTT CCA TCG ACT CGC CAG CTA GGG AAC AAA AGC TGG

GTA C

UpgRNA-1F GAT CCG CTT CTC TTG TAC TGC To confirm the insertion of TgGRA14+UTR cassette into the

TgUPRT gee

DngRNA-2R AAG CAG GTG CAG CGG ACA AG

CXCL1_RT_1F CAA TGA GCT GCG CTG TCA GT Real-time PCR for expression of mouse CXCL1 mRNA

CXCL1_RT_2R TTG AGG TGA ATC CCA GCC AT

CXCL5_RT_1F CGC TAA TTT GGA GGT GAT CCC Real-time PCR for expression of mouse CXCL5 mRNA

CXCL5_RT_2R ACT TCC ACC GTA GGG CAC TG

IL1-beta-RT-F1 CCA AAA GATGAA GGG CTG CT Real-time PCR for expression of mouse IL-1beta mRNA

IL1-beta-RT-R1 TCA TCT GGA CAG CCC AGG TC

IL6-RT-F1 TTC CAT CCA GTT GCC TTC TTG Real-time PCR for expression of mouse IL-6 mRNA

IL6-RT-R2 GAA GGC CGT GGT TGT CAC C

CCL17_RT_1F ATG TAG GCC GAG AGT GCT GC Real-time PCR for expression of mouse Ccl17 mRNA

CCL17_RT_2R TGA TAG GA ATG GCC CCT TTG

CCL7_RT_1F GGA TCT CTG CCA CGC TTC TG Real-time PCR for expression of mouse CCL7 mRNA

CCL7_RT_2R GGC CCA CAC TTG GAT GCT

LCN2-RT-F1 CCA GTT CGC CAT GGT ATT TTT C Real-time PCR for expression of mouse LCN2beta mRA

LCN2-RT-R1 CAC ACT CAC CAC CCA TTC AGT T

CSF3-RT-F1 CTG GCA GCA GAT GGA AAA CC Real-time PCR for expression of mouse CSF3 mRNA

CSF3-RT-R2 TGT GTG GGC TGC ACA GTA GG

Ptgs2_RT_1F ATG TAG GCC GAG AGT GCT GC Real-time PCR for expression of mouse PTGS2 mRNA

Ptgs2_RT_2R CCA GCA CTT CAC CCA TCA GTT

GAPDH-RT-1F CCC AGG TCC TCG CTT ATG ATC Internal control gene for real-time RT-PCR analysis

GAPDH-RT-2R CCT GCT TCA CCA CC TTC TTG AT
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FIGURE 1 | Luciferase activities in 293T cells transfected with NFκB reporter plasmid. 293T cells were transiently transfected with pGL4.32 expressing firefly

luciferase and pGL4.74 expressing renilla luciferase. (A,B) Cells were immediately transfected with the expression vectors of GRAs and ROPs, and the empty

p3×FLAG-cmv14 vector used as a negative (empty) control. The promoter activity was determined and is shown as a fold-increase in the luciferase activity

normalized for Renilla luciferase activity. (C) Pru, Pru1gra7 (deltaGRA7), Pru1gra14 (deltaGRA14), or Pru1gra15 (deltaGRA15) lines were added to the cells. After

12 h, parasites were added to the host cells, lysates were prepared, and luciferase activity was measured. The promoter activity was determined and is shown as a

fold-increase in the luciferase activity normalized for Renilla luciferase activity. Values are the means ± SD of triplicate samples, *p < 0.05. #a significant difference with

the control vector and or uninfected cells (p < 0.05). Differences were tested by one-way ANOVA with turkey’s post-hoc test in (B,C). Data are representative of two

independent experiments.

rate of Pru1gra7 parasites was significantly higher than that of
the parental parasites (Supplemental Figure 5E). The replication
rate of Pru1gra14 was comparable to that of the parental
parasites (Supplemental Figure 5F).

Next, we analyzed how each GRA contributes to NFκB
activation because it is known that GRA15 plays a dominant role
in NFκB activation by type II T. gondii. Cells infected with the
Pru1gra7 and Pru1gra14 mutants showed a partial decrease in
luciferase activity compared with cells infected with the parental
Pru (Figure 1C). However, for Pru1gra15, NFκB activity was
abolished in the infected cells (Figure 1C).

Each GRA Expression Alone Is Sufficient to
Activate NFκB in 293T Cells
We assessed whether each GRA protein alone is sufficient to
activate the process of NFκB signal transduction. The level
of nuclear RelA in GRA7- or GRA14-expressing cells was
significantly higher than the level in control cells (Figure 2).

Moreover, the level of RelA nuclear translocation in cells
expressed GRA15 was even higher than that in cells expressing
GRA7 and GRA14 (Figure 2). First, we performed transient
expression of each GRA gene. However, it is uncertain whether
the function of ectopic single parasite molecule is the same
as that of its native molecule. In addition, western blotting in
the Supplemental Figure 3 indicated different expression levels
among the transfection with GRA genes. Thus, we conducted
similar experiments using deficient parasite strains.

Cells infected with the parental Pru strain revealed a
higher level of nuclear RelA than cells infected with Pru1gra7
or Pru1gra14, whereas the complemented strain showed
a similar level of RelA signal to the parental parasite
(Figures 3A,B). Moreover, GRA15 deletion almost abolished
the nuclear translocation of RelA (Figure 3C). Representative
images from these experiments are shown in Figure 3D. Next,
we assessed whether each GRA affects the phosphorylation of
IκBα by western blotting. The phosphorylated IκBα levels were
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FIGURE 2 | GRA expression activates nuclear translocation of NF-κB RelA in 293T cells. (A) 293T cells were transfected with the expression vectors for GRA7,

GRA14, or GRA15, or the empty p3 × FLAG-cmv14 vector used as a negative (empty) control. Cells were then fixed and stained with α-NFκB RelA (red), α-FLAG

(green), or Hoechst dye (blue). Bars, 10µm. (B) The mean intensity of RelA in the nucleus was measured for at least 20 cells per group. Bar indicates the mean of

each group, *p < 0.05. #a significantly higher level of nuclear RelA compared with the control cells (p < 0.05). Differences were tested by one-way ANOVA with

turkey’s post-hoc test. Experiments were performed twice.

comparable between cells infected with the parental, Pru1gra14
and Pru1gra7 strains, whereas GRA15 deficiency obviously
reduced phosphorylated IκB (Figure 4). The relative levels of
phosphorylated IκBα compared with the parental Pru-infected
cells were 89, 105, and 38% in cells infected with Pru1gra7,
Pru1gra14, and Pru1gra15 strains, respectively (Figure 4).

Deficiency of GRA7, GRA14, and GRA15
Predominantly Results in Downregulation
of Gene Expression Mediated by NFκB in
Macrophages Infected With T. gondii
We next analyzed the levels of interleukin-6 (IL-6) in mouse
macrophage Raw246.7 cells infected with parasites, and found
that not only GRA15 deficiency but also GRA7 and GRA14
deficiency decreased the level of secreted IL-6 in the culture
supernatant (Figure 5). This result indicated that all of these
GRAs affect the induction of the host immune response. To
determine the host gene expression profiles relevant to these
GRAs, we conducted transcriptome analysis of Raw246.7 cells
infected with each strain and the uninfected cells. In total, 49,
103, and 338 genes were downregulated and 24, 15, and 111 genes
were upregulated by GRA7, GRA14, and GRA15 deficiency,
respectively (Figure 6A, the complete sets of genes are listed
in Supplemental Data Sheet 1). A Venn diagram was created
to illustrate the similarities and differences among the genes
regulated by these three GRAs (Figure 6A). This indicated that
a number of common genes were regulated by these GRAs, and
that GRA15 deficiency had more diverse effects than GRA7 and
GRA14 deficiency.

To gain greater insight into the pathways regulated by each
GRA in host cells, we conducted Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis on the relevant genes.
This analysis primarily identified immune-response-related

pathways, such as the cytokine-cytokine receptor interaction
pathway, the IL-17 signaling pathway, and the tumor necrosis
factor (TNF) signaling pathway, that were significantly enriched
in the DEGs downregulated in macrophage cultures infected
with deficient parasites compared with their expression in
cell cultures infected by Pru and the complemented parasites
(Supplemental Data Sheet 2). A heatmap of the gene expression
associated with the cytokine-cytokine receptor interactions
illustrated that GRA14, similar to GRA15, regulated some
cytokines and chemokines (Figure 6B). In addition, a heatmap of
the gene expression associated with the IL-17 signaling pathway
defined several cytokines and chemokines as GRA7-regulated
genes (Figure 6C, the complete sets of genes are available in
Supplemental Data Sheet 3. To confirm the host genes whose
expression is regulated by GRAs, we quantified the expression
levels of several genes: IL-1β, IL-6, Cxcl1, Cxcl5, and Ccl17
for GRA14 and GRA15; and IL-6, Ccl7, Lcn2, Csf3, and Ptgs2
for GRA7. These genes were selected because their expression
appeared to be regulated by GRAs according to the heatmaps
(Supplemental Data Sheet 3). In most cases, the gene expression
profiles were consistent between the transcriptome and the
real-time PCR data (Supplemental Figure 6). Collectively, these
results indicated that GRA7, GRA14, and GRA15 deficiency
robustly downregulated the immune response-related pathways
induced by T. gondii infection.

GRA7, GRA14, and GRA15 Deficiency
Increased Parasite Virulence in Mice
Next, we assessed the in vivo effects of each GRA on parasite
virulence. Almost all mice intraperitoneally injected with 500
tachyzoites of the parental Pru parasites survived (15/16, 15/16,
12/14), whereas approximately 20% (3/16), 60% (10/16), and
0% (0/14) of mice survived after infection with Pru1gra7,
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FIGURE 3 | T. gondii infection with parasites deficient in GRA7, 14, or 15 decreases nuclear translocation of NFκB RelA in HFF cells. (A–C) The mean intensity of RelA

in the nucleus was measured in HFF cells for each group. Experiments were performed twice. Bar indicates the mean of each group, *p < 0.05. #a significantly higher

level of nuclear RelA compared with uninfected cells (p < 0.05). Differences were tested by one-way ANOVA with turkey’s post-hoc test. (D) Representative IFAT

images of HFF cells infected with parasite strains and uninfected control cells. After infection for 24 h, cells were fixed and stained with α-NFκB RelA (red), α-SAG1

(green), and Hoechst dye (blue). Bars, 10µm.

Pru1gra14, and Pru1gra15 strains, respectively (Figures 7A–C).
To further confirm the role of GRA14 in virulence, we infected
mice by intraperitoneal injection with 10,000 tachyzoites of the
parental Pru and Pru1gra14 parasites, and monitored mouse
survival until 30 days post-infection. There was no significant
difference in survival betweenmice infected with 10,000 parasites
of the parental Pru and Pru1gra14 strains (Figure 7D).

Next, to determine the effect of GRA14 on in vivo
parasite growth and the immune response at the site of
infection, mice were infected with 500 tachyzoites of the
parental Pru, Pru1gra14, and GRA14-complemented lines.
At 5 days after infection, mice were euthanized and the
parasite burden and levels of cytokine secretion, including
IL-12p40 and interferon-γ (IFN-γ), were examined. Mice
infected with each strain showed no significant difference in
parasite burden in the spleen or the peritoneal exudate cells
(Supplemental Figures 7A,B). Although the differences in IL-
12p40 and IFN-γ secretion by the peritoneal exudate cells were
not significant, the average level of IFN-γ in Pru1gra14mutant-
infected mice was higher than that in the parental Pru and

complemented strains (Supplemental Figures 7C,D). Moreover,
no significant difference was detected in the level of serum
IFN-γ on either day 3 or day 5 among these mouse groups
(Supplemental Figures 7E,F).

To investigate how the deficiency of each GRA affects host
immunity at an earlier time, we conducted a time-course
experiment using thioglycolate-induced peritoneal macrophages
(Supplemental Figure 8). Supernatants were collected every
6 h for 24 h and measured the production of IL-12p40. IL-
12p40 production was abolished in the macrophages infected
with Pru1gra7, Pru1gra14, and Pru1gra15 strains until 18
hours post-infection. However, the IL-12p40 production at
24 h post-infection decreased in the macrophages infected with
the deficient parasite lines, with the highest decrease from
Pru1gra15, followed by Pru1gra7, and then Pru1gra14.

Lastly, we examined the effect of GRA7 and GRA14 on type
I RH parasites. Mice were infected by intra-footpad injection
with 500 parasites of the RH1gra7, RH1gra14, and parental
RH parasite strains, respectively. Survival was monitored for
30 days and 86% (13/15) of mice infected with the parental
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RH strain survived, whereas all RH1gra14 mutant-infected
mice succumbed to the infection between 15 and 26 days after
infection (Figure 7E). By contrast, when challenged with the

FIGURE 4 | Levels of phosphorylated IκBα in HFF cells infected with T. gondii

strains. (A) HFF cells were infected with parasite strains for 24 h, then cell

lysates were collected, separated on an SDS-PAGE gel, and western blot

analysis was carried out with anti-phospho-IκBα, total IκBα, and GAPDH (host

cell loading control) antibodies. (B) The ratio of phospho-IκBα/total IκBα in

cells stimulated with parasites and uninfected cells. This experiment was

repeated twice with similar results.

parental RH and RH1gra7 parasites, 0% (0/8) and 25% (2/8) of
mice survived after infection with the parental RH and RH1gra7
parasites, respectively (Figure 7F).

DISCUSSION

Secreted GRA15 has been identified as a major factor that
contributes to the strain-specific differences in NFκB activation
(15). Meanwhile, GRA7 produces a strong antibody response
in the acute phase of infection (22) and has been tested
as a candidate for vaccine development (23). Recent studies
have revealed that GRA7 associates with ROP2 and ROP4,
and functions in concert with ROP18 protein complexes that
resist IFN-γ-activated host immune-related GTPase (24–26).
Moreover, recombinant GRA7 interacts with inflammasome-
related molecules, such as an apoptosis-associated speck-like
protein that contains a caspase recruitment domain (ASC)
and phospholipase D1 (PLD1) (27). However, few studies have
investigated the role of GRA7 in the pathogenesis of type II T.
gondii strains. In the present study, we demonstrated that GRA14
is involved with NFκB activation by T. gondii. GRA14 seems
to be implicated in the interaction with host molecules because
secreted GRA14 localizes to PVs containingmembranous strand-
like extensions (called PVM extensions) similar to other GRA
proteins such as GRA3 and GRA7 (17). Furthermore, GRA14
is anchored in the PVM with its C terminus facing the host
cell cytosol (17). GRA14 has also been reported as a potential
vaccine candidate against T. gondii infection. Several studies
have reported the protective immunity induced by vaccination
with GRA14 antigen (28–32). However, there have been no
previous reports regarding the modification of host cell function
by GRA14. Thus, we targeted GRA7, GRA14, and GRA15 in
this study.

Although we focused on NFκB signaling pathway, reporter
activity by GRA was also evaluated in this study using reporter

FIGURE 5 | Levels of interleukin-6 in Raw246.7 macrophage cells. (A) Raw246.7 macrophage cells were infected with the parental Pru, Pru1gra15, Pru1gra14, and

GRA14 complemented parasite strains. (B) Raw246.7 macrophage cells were infected with the parental Pru, Pru1gra7, and GRA7 complemented parasite strains.

(A,B) At 24 h post-infection, supernatants were collected and IL-6 levels were determined by cytokine ELISA. These experiments were performed three times using

triplicate samples. Values are the means ± SD of triplicate samples, * indicates a significant difference (*p < 0.05). #a significantly lower level of IL-6 compared with

the Pru strain infected cells (p < 0.05). Differences were tested by one-way ANOVA with turkey’s post-hoc test. Experiments for Pru1gra14 and the complemented

lines were performed in tandem with Pru1gra15, and experiments for Pru1gra7 and the complemented lines were performed independently.
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FIGURE 6 | GRA deficiency resulted in downregulation of gene expression mediated by NFκB. RNA-seq analysis of Raw246.7 macrophage cells infected for 24 h

with parasite strains and the uninfected cells (Mock) (n = 1 per group). DESeq analysis identified genes with a more than 2-fold change in expression between the

GRA deficient strain and the parental Pru and complemented strains following infection. (A) Venn diagrams comparing GRA7, GRA14, and GRA15-dependent DEGs

during T. gondii infection: down, downregulated; up, upregulated. (B) Heatmap showing that the most significantly enriched pathway associated with the GRA14

expression status was the cytokine-cytokine receptor interaction, which contained a subset of 41 genes. Rows represent samples from different processes, and

columns represent genes. (C) Heatmap showing that the most significantly enriched pathway associated with the GRA7 expression status was the IL17 signaling

pathway, which contained a subset of 91 genes. Rows represent samples from different processes, and columns represent genes. The cluster shown in (B,C), which

was upregulated when GRA14 or GRA7 expression was restored, is enlarged on the right. The experiment for GRA14 was performed in tandem with GRA15, and the

experiment for GRA7 was performed independently.

plasmids having response elements such as cAMP-responsive
element, nuclear factor of activated T cells (NFAT), serum
responsive element, serum responsive factor (SRF), and activated
protein 1. As shown in Supplemental Figure 4, GRA14 and
GRA15 activated all of them, while GRA7 activated NFAT and
SRF other than NFκB. However, the main activities of GRAs
were observed in NFκB activation. Interacting host factor of
GRA14 is unknown, while GRA7 and GRA15 activate NFκB via
TNF receptor-associated protein (TRAF). TRAF participates in
the activation of the transcription factor NFκB and members of
the mitogen-activated protein kinase (MAPK) family, including
MAPK, c-jun N-terminal kinase, and p38. It remains possible
that each GRA regulates host immunity via signaling pathway
other than NFκB, but we believe that one of the primary
sites of action is the NFκB pathway. Interestingly, although
the levels of nuclear translocation of RelA in GRA7- and
GRA14-expressing cells were significantly lower than in GRA15-
expressing cells, expression alone was adequate for nuclear

translocation. Moreover, cells infected with Pru1gra7 parasites
showed no significant difference in the intensity of nuclear
translocation compared with uninfected cells. In addition,
GRA14 deficiency partially attenuated the intensity of nuclear
RelA in cells infected with T. gondii. Collectively, these results
suggest that GRA15 is the main player for NFκB activation
by type II T. gondii. Additionally, GRA7 and GRA14 play
a certain role in modulation of the NFκB pathway by type
II T. gondii. By contrast, the levels of phosphorylated IκBα

were comparable among cells infected with the parental Pru
strain and mutant strains Pru1gra7 and Pru1gra14. It was
reported that GRA15-mediated NFκB activation was dependent
on TRAF6, and GRA15 deficiency caused a decrease in the levels
of phosphorylated-IκBα (15), which was consistent with our
results. Contrary to this, another study showed that recombinant
GRA7 also interacted with TRAF6, and recombinant GRA7
protein stimulated the phosphorylation of IκBα (16). However,
in the present study, GRA7 deficiency showed no clear change in
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FIGURE 7 | Survival in mice infected with T. gondii. (A–E) Mice were intraperitoneally infected with a low dose (500) or a high dose (104) of T. gondii tachyzoites of

parasites strains, and survival was monitored for 30 days. (A) Survival rate of mice infected with 500 tachyzoites. In total, 16 mice were infected per strain (6 + 10).

Data are summarized from two independent experiments. (B) Survival rate of mice infected with 500 tachyzoites. In total, 14 mice were infected per strain (6 + 8).

Data are summarized from two independent experiments. (C) Survival rate of mice infected with 500 tachyzoites. In total, 16 mice were infected per strain (6 + 10).

Data are summarized from two independent experiments. (D) Survival rate of mice infected with 104 tachyzoites. In total, 14 mice were infected per strain (6 + 8).

Data are summarized from two independent experiments. Statistical analysis was performed using a log rank test (p < 0.05). (E) Mice were infected via the

intra-footpad route with 500 T. gondii tachyzoites of the RH1gra14 mutant and its parental strain, and survival was monitored for 30 days. In total, 15 and 16 mice

were infected per strain (RH, 7 + 8; RH1gra14, 8 + 8). (F) Mice were infected via the intra-footpad route with 500 T. gondii tachyzoites of the RH1gra7 mutant and

its parental strain, and survival was monitored for 30 days. In total, 8 and 8 mice were infected per strain (RH, 8; RH1gra7, 8). This experiment was performed once.

Statistical analysis was performed using the log rank test (p < 0.05). *indicates a significant difference.

the phosphorylation level of IκBα. It may be that due to the higher
activity of GRA15 compared with that of GRA7 and GRA14,
GRA15 compensates for the loss of GRA7 and GRA14 function.

Pru1gra7, Pru1gra14, and Pru1gra15 strains induced
significantly less cytokine secretion from infected macrophages
than the parental Pru strain-infected cells. NFκB activation leads
to the transcription of pro-inflammatory genes, such as those
encoding IL-1β and IL-12 (15, 33). In addition, our transcriptome
analysis revealed that these GRAs regulated the gene expression
levels of similar inflammatory cytokines and chemokines by
macrophages, in turn stimulating the development of a T-helper
type 1 (Th1) immune response (33). Our data suggested that
either GRA7 or GRA15 deficiency is sufficient for the increase
in acute virulence in infected mice. Mice infected with a type
II GRA15-deficient strain had a significantly higher parasite
burden than mice infected with a parental type II strain (15).
GRA15 activates NFκB in host cells and induces early IL-12
secretion (15). IL-12 stimulates NK cells and T cells to secrete
IFN-γ (34). On day 2 after infection, mice infected with a type
II GRA15-deficient strain had significantly less IFN-γ in their

intraperitoneal cavities than mice infected with a parental type
II strain (15). IFN-γ is the primary cytokine of host resistance
to intracellular pathogens (35). Thus, this difference in IFN-γ
levels was the likely cause of the virulence differences. It has
been demonstrated that GRA7 interacts with TRAF6, inducing
innate immune responses via the NFκB pathway in macrophages
(16). Our results suggested that the GRA7-induced reporter
activity of the NFκB promotor was less than that of GRA15.
However, GRA7 also interacts with a number of host cell
proteins, including ASC and PLD1, revealing a new facet of
the role of GRA7 in the regulation of innate immune responses
(36). Thus, GRA7 deficiency might result in increased mortality
comparable to that of GRA15.

GRA14 deficiency also resulted in a slight but significant
increase in virulence compared with the parental strain in mice
after the injection of 500 parasites. Whereas, consistent with
recent research involving 2 × 105 parental type II 1gra14
parasites, such a difference was no longer detectable when 10,000
parasites were injected, which furthermore had the potential
to cause lethal tissue damage (37). However, after 5 days of
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intraperitoneal infection, GRA14 did not affect the parasite
burden or the level of cytokine secretion, including IL-12p40
and IFN-γ, from the peritoneal cavity. Moreover, no significant
difference was detected in the levels of serum IFN-γ on days 3 or
5 among the groups of mice. The attenuated signal output caused
by GRA14-deficiency may impair the proper immune response,
resulting in an increased parasite burden in mice infected with
Pru1gra14 parasites at an early stage (days 1–4), explaining the
slight difference in virulence of this strain. The GRA-induced
protective immune response against T. gondii in mice requires
activation of antigen-presenting cells such as IL-12 production
in the early stages of infection. If the parasites were controlled
by the protective immune response in the early stage of infection,
the level of the inflammatory marker IFN-γwould be suppressed.
Therefore, the increased activity of Pru1gra14 at the initial
stage of infection might increase IFN-γ level compared to the
parental and complemented lines. Overall, our results suggest
that GRA7 and GRA15 are the major contributors to in vivo
virulence, whereas GRA14 has a relatively low impact on mice
virulence. Furthermore, parasites deficient in GRA7 but not in
GRA14 affect parasite growth in vitro. Moreover, a previous
study reported that a type II 1gra15mutant formed significantly
larger plaques than a type II strain in HFF cells, but this was
not apparent in mouse embryo fibroblast cells (15). These data
indicate that growth differences in GRA7 and GRA15-deficient
strains may affect their virulence in mice.

In this study, our experiments had focused on type II strains;
however, we conjectured that the GRA14 proteins of type I strains
are functional because there are few amino acid differences
between the type I and II proteins (P43S, D323G, and S356V).
The GRA15 proteins from type II and type III strains activate
NFκB. Type II strains activate NFκB more strongly than type
III strains, whereas the type I RH strain does not induce
NFκB activation because it has a mutation in GRA15, leading
to a frameshift and an early stop codon (15, 38). Therefore,
because GRA15 of type I strains lacks activity, it is easy to
evaluate the effect of GRA14 deficiency. Thus, we hypothesized
that GRA14 might be involved with the mechanisms of NFκB
activation by type I T. gondii. Previous studies have shown
that type I strains interfere with the host NFκB pathway to
promote their survival. ROP18, a key serine/threonine kinase
that phosphorylates host proteins to modulate acute virulence, is
associated with phosphorylation of RelA at Ser-468 and promotes
the degradation of RelA to inhibit the NFκB pathway (39).
Moreover, polymorphic kinase ROP16 of type I strains is capable
of suppressing the IL-12 response of infected macrophages
stimulated with lipopolysaccharide, thereby inhibiting NFκB
transcriptional activity (15, 40). Whereas, other studies have
shown that NFκB is activated by a type I strain of T. gondii,
and that its activation is necessary for the inhibition of apoptosis
(41–43). However, it is not known what effect GRAs have on the
NFκB pathway.

Therefore, we lastly evaluated the effects of GRA7 and GRA14
deficiency in the type I RH strain on the survival of mice.
Surprisingly, unlike type II parasites, all mice infected with
RH1gra14 parasites died within 26 days of footpad inoculation.
Previous studies showed that GRA14 did not affect the growth

and virulence of parasites following intraperitoneal injection of
mice (17, 44). Unlike intraperitoneal inoculation, which results
in a rapid, acute systemic infection, intra-footpad inoculation
allows us to observe the gradual spread of T. gondii in vivo (45).
Generally, intraperitoneal infection by RH tachyzoites was lethal.
However, intra-footpad infection led to survival or, at least, a
prolonged survival time in the present study. Therefore, deleting
GRA14 may result in a lethal parasitic load in mice. By contrast,
mice infected with RH1gra7 parasites experienced a significant
delay in death compared with the parental RH strain. A previous
study reported that outbred CD-1 mice infected with RH1gra7
parasites exhibited a similar phenotype (25). GRA7 binds to the
GTP-bound immunity-related GTPase a6 and acts synergistically
with ROP18 to block immunity-related GTPases (25, 26). Thus,
these results suggest that GRA14 plays an important role in the
control of parasite infection, creating a paradigm that protects
the host animals from acute infection and death.

In conclusion, the present study demonstrated new molecular
functions for GRA7 and GRA14 and confirmed their role
in the induction of NFκB during a type II strain infection.
NFκB activation mediated via GRA7, GRA14, and GRA15 was
closely related to the Th1 response promoted by inflammatory
cytokines following the activation of macrophages. This immune
response limits the tissue invasion of the parasite, ensuring
the survival of the host but, paradoxically, also aiding the
survival of the parasite by converting it into a bradyzoite form
able to persist in the muscle and brain tissues (46). GRA7
has multiple target components within the host cell that cause
different virulence phenotypes dependent on the type of parasite.
Whereas, the GRA14 protein has a low polymorphic phenotype
and is potentially functional throughout type I, II, and III strains.
Moreover, the suppressive control of virulence by early immune
activation after infection, which has been regarded as a unique
event to type II strains, is a conserved strategy across parasite
strains. This may contribute to the high prevalence and wide
distribution of this protozoan parasite. Thus, further insight into
the precise role of these GRAs may help delineate the mechanism
of NFκB modulation by T. gondii.
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Supplemental Data Sheet 1 | Detailed expression data for GRA-dependently

regulated genes.

Supplemental Data Sheet 2 | Results of KEGG pathway analysis.

Supplemental Data Sheet 3 | Heat map.

Supplemental Figure 1 | GRA knockout and the complementation strategies. (A)

Schematic genomic representation of the GRA7 locus and the plasmid construct

used to target the GRA7 gene. The drug-resistant hypoxanthine-xanthine-guanine

phosphoribosyl transferase (HXGPRT) cassette was surrounded by the 5′ and 3′

untranslated regions (UTR) of GRA7. (B) Schematic representation of the

CRISPR/CAS9 strategy used to inactivate the target genes by inserting the

pyrimethamine-resistance DHFR cassette (DHFR∗). Transfection of the CRISPR

plasmid targeting TgGRA (G01), together with an amplicon containing the

DHFR∗-expressing cassette flanked by regions homologous to the target gene,

was used to disrupt the corresponding target gene by insertion. (C) Transfection

of the CRISPR plasmid targeting the TgUPRT gene, together with an amplicon

containing 1,000 by of the 5′ and 3′ untranslated regions (5′ UTR and 3′ UTR)

flanked by regions homologous to the TgUPRT gene, was used.

Supplemental Figure 2 | IFAT and western blotting to confirm the expression of

TgGRA7 and TgGRA14. (A) IFAT analysis of Vero cells infected with Pm, PruAgra7

(deltaGRA7), PruAgra14 (deltaGRA14), and complemented (CompGRA7 and

CompGRA14) parasites at 24 h post-infection. Cells were fixed and stained with

a-TgSAG1 (green), a-TgGRA7 (red), a-TgGRA14 (red), and Hoechst dye (blue).

Bars, 10 gm. (B) Western blots of the parasite strains. Into each lane, 1 × 106

parasites were loaded. Anti-TgGRA7 and anti-GRA14 antibodies detected 25.9

and 42 kDa proteins in the parental Pru and complemented parasites,

respectively, but not in the deficient mutant parasites.

Supplemental Figure 3 | Forced expression of GRA7, GRA14, and GRA15 in

293T cells. 293T cells were transiently transfected with the expression vectors for

GRA7, GRA14, and GRA15. Cells lysates were then separated by SDS-PAGE,

and western blot analysis was carried out using an anti-FLAG antibody. The

estimated sizes of the FLAG-tag fused to GRA7, GRA14, and GRA15 were 29.9,

48.7, and 61.8 kDa, respectively. However, the observed molecular weight of the

FLAG-tag fused to GRA15 (−75 kDa), was higher than the expected predicted

size (61.8 kDa). It has been shown that this is not caused by parasite-mediated

modification of GRA15. Most likely, it is the particular amino acid composition of

GRA15, which is enriched in Pro, Ser, and Thr, that makes it run slower than

expected on an SDS-PAGE gel. Black arrows indicate the estimated band sizes of

the target proteins.

Supplemental Figure 4 | Luciferase activities in 293T cells transfected with

various reporter plasmids. 293T cells were transiently transfected with pGL4.29

(CRE), pGL4.30 (NFAT), pGL4.32 (NFx13), pGL4.33 (SRE), pGL4.34 (SRF), and

pGL4.44 (AP1) expressing firefly luciferase and pGL4.74 expressing renilla

luciferase. Cells were immediately transfected with the expression vectors of

GRA7, GRA14, GRA15, and the empty p3 × FLAG-cmv14 vector used as a

negative (empty) control. The promoter activity was shown as relative

fold-increase as compared to control cells in the luciferase activity normalized for

Renilla luciferase activity. Values are the means of triplicate samples.

Supplemental Figure 5 | Infection rate, growth, and egress assay. (A) Infection

rates of the different parasite lines in Vero cells at 24 h post-infection. (B) Egress

rates of the different parasite lines in Vero cells at 72 h post-infection. (C)

Intracellular replication assay of the parasite lines in Vero cells at 48 h

post-infection. Each bar represents the means ± the standard deviation (n = 4 for

all groups), and the results represent two independent experiments with similar

results. Statistical analysis was performed using one-way ANOVA, ∗a significant

difference (p < 0.05).

Supplemental Figure 6 | Expression levels of chemokines and cytokines in

Raw246.7 macrophage cells. (A,B) Raw246.7 macrophage cells were infected

with parasite strains for 24 h, then cells were lysed, and total RNA was extracted.

RNA was used to synthesize cDNA. Real-time RT-qPCR amplification was carried

out for CXCL1, CXCL5, IL-lbeta, IL-6, and Cc117. Each bar represents the mean

± the standard deviation (n = 3 for all groups), and the results are from a single

experiment. Statistical analysis was performed using one-way ANOVA with

post-hoc Tukey’s test, ∗a significant difference (p < 0.05).

Supplemental Figure 7 | In vivo cytokine ELISA and parasite burden. Mice were

infected with 500 tachyzoites of the parasites and then euthanized to examine the

parasite burden and level of cytokine secretion, including IL-12p40 and IFN-y, 5

days after infection. (A,B) Parasite burden in the spleen and peritoneal cavity in

mice infected with parental Pru, PruLgra14 (deltaGRA14), and the complemented

parasites (Comp). (C,D) Levels of serum IFN-y and IL-12p40 in mice. (E,F)

Cytokine levels in the peritoneal cavity in mice. Each plot represents data from one

mouse. Statistically significant differences were analyzed by one-way ANOVA with

post-hoc Tukey’s test but no significant difference was found. Data were collected

from one experiment.

Supplemental Figure 8 | Levels of interleukin-12p40 in thioglycolate-elicited

macrophage cells. Macrophages were infected with the parental Pru, PruAgra7,

PruAgra14, and PruAgral5 parasite strains. At every 6 h for 24 h post-infection,

supernatants were collected, and IL-12p40 levels were determined by cytokine

ELISA. Values are the means ± SD of four samples, ∗a significant difference (p <

0.05). #a significantly lower level of IL-12p40 compared with the Pm strain

infected cells (p < 0.05). Differences were tested by one-way ANOVA with

Turkey’s post-hoc test.
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Despite intensive antimicrobial and anti-inflammatory therapies, cystic fibrosis (CF)
patients are subjected to chronic infections due to opportunistic pathogens, including
multidrug resistant (MDR) Pseudomonas aeruginosa. Macrophages from CF patients
show many evidences of reduced phagocytosis in terms of internalization capability,
phagosome maturation, and intracellular bacterial killing. In this study, we investigated if
apoptotic body-like liposomes (ABLs) loaded with phosphatidylinositol 5-phosphate
(PI5P), known to regulate actin dynamics and vesicular trafficking, could restore
phagocytic machinery while limiting inflammatory response in in vitro and in vivo models
of MDR P. aeruginosa infection. Our results show that the in vitro treatment with ABL
carrying PI5P (ABL/PI5P) enhances bacterial uptake, ROS production, phagosome
acidification, and intracellular bacterial killing in human monocyte-derived macrophages
(MDMs) with pharmacologically inhibited cystic fibrosis transmembrane conductance
regulator channel (CFTR), and improve uptake and intracellular killing of MDR P.
aeruginosa in CF macrophages with impaired bactericidal activity. Moreover, ABL/PI5P
stimulation of CFTR-inhibited MDM infected with MDR P. aeruginosa significantly reduces
NF-kB activation and the production of TNF-a, IL-1b, and IL-6, while increasing IL-10 and
TGF-b levels. The therapeutic efficacy of ABL/PI5P given by pulmonary administration was
evaluated in a murine model of chronic infection with MDR P. aeruginosa. The treatment
with ABL/PI5P significantly reduces pulmonary neutrophil infiltrate and the levels of KC
and MCP-2 cytokines in the lungs, without affecting pulmonary bacterial load. Altogether,
org October 2020 | Volume 11 | Article 5322251141

https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.532225/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fraziano@bio.uniroma2.it
https://doi.org/10.3389/fimmu.2020.532225
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.532225
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.532225&domain=pdf&date_stamp=2020-10-02


Poerio et al. ABL/PI5P Improve Impaired CF Immunity

Frontiers in Immunology | www.frontiersin.
these results show that the ABL/PI5P treatment may represent a promising host-directed
therapeutic approach to improve the impaired phagocytosis and to limit the potentially
tissue-damaging inflammatory response in CF.
Keywords: phosphatidylinositol 5-phospate, host-directed therapy, cystic fibrosis, innate immunity, Pseudomonas
aeruginosa, liposome
INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive genetic disease
caused by a mutation in the gene encoding the cystic fibrosis
transmembrane conductance regulator channel (CFTR) (1). The
CFTR is usually expressed on the apical membrane of epithelia,
and its dysfunction causes a defective chloride secretion leading
to a modification in the airway surface liquid (2). The
pathophysiological changes in CF result in a systemic disease,
which affects the pancreas, liver, reproductive tract, and mainly
the lungs (3). Here, the loss of function of CFTR causes a
defective mucociliary clearance and a dramatic production of
sticky mucus, which is associated with chronic infection by
opportunistic pathogens, such as P. aeruginosa (4). Infections
sustained by MDR P. aeruginosa in CF are increasing, reflecting
cumulative exposure to antibiotic treatment (5). Moreover, the
chronic bacterial infections associated with the persistent
inflammation, leading to pulmonary insufficiency, represent
the main cause of mortality and morbidity in CF patients (6).
Today, the identification of novel host- and/or pathogen-
directed therapeutic tools represents an urgent challenge for
the scientific community to fight the emergence of MDR
pathogens, as well as a priority also at the global level.

The defective antimicrobial response exerted by innate
immune cells in CF patients has been documented and
depends, at least in part, on a dysfunctional phagocytosis
process (7, 8). Phagocytosis is an important innate effector
mechanism deputed to the intracellular elimination of invading
pathogen by the generation of highly microbicidal organelles
called phagolysosomes. These organelles originate from
a phagosome, generated by the invagination of plasma
membrane, which matures to a fully microbicidal phagolysosome,
through sequential events of fusion with early endosomes,
late endosomes, and, ultimately, lysosomes. This process is
driven by a topologically and timely coordinated expression of
second lipid messengers, which recruit signal proteins, on
the nascent or maturing phagosome, through specific lipid-
binding domains (9, 10), and may be target of bacterial
interference (11).

The second lipid messenger phosphatidylinositol 5-phosphate
(PI5P) is a minor phosphoinositide representing less than 10% of
the total lipids (12). PI5P can be directly produced from
phosphatidyl inositol (PI) by the activity of phosphoinositide
5-kinase (PIKfyve) or by the dephosphorylation of
phosphatidylinositol 3,5-bisphosphate (PI3,5P2) by mytubularin
3-phosphatases (13). PI5P is present at the cellular membrane and
at the early phagosome (14), and its level result increased during
the late stages of the phagocytosis process (15). Moreover, it can
org 2142
regulate endosome vesicle trafficking (16), cellular actin
remodeling, and bacterial invasion (14), and can be involved in
class III phosphatidylinositol 3-kinase (Vps34)-independent
autophagy activation (17).

In this study, we have generated asymmetric apoptotic body-
like liposomes (ABLs) composed by phosphatidylserine (PS) at
the outer membrane surface resembling an apoptotic body, to
target macrophages and to downmodulate inflammatory
reaction (18), and by the bioactive lipid PI5P at the inner
membrane surface to enhance the phagocytosis process. In
particular, this study evaluates the immunotherapeutic value of
ABL/PI5P in vitro in impaired macrophages from CF patients
and in vivo in models of P. aeruginosa infection, assessed in
terms of i) uptake and intracellular bacterial killing, ii)
mechanisms of bactericidal activity, and iii) potentially tissue-
damaging inflammatory response.
MATERIAL AND METHODS

Liposome Preparation
Apoptotic body-like liposomes (ABLs) were produced as
previously described (19). Briefly, the inner monolayer lipids
composed by 1,2-dioleoyl-sn-glycero-3-phospho-(1′-myo-
inositol-5′-phosphate) (PI5P, Avanti Polar Lipids) were
suspended in anhydrous dodecane (Sigma) at a concentration
of 0.05 mg/ml. L-a-phosphatidylserine (PS, Avanti Polar Lipids)
was used as outer monolayer lipid and was added to a 99:1
dodecane:silicone solution to obtain a final concentration of
0.05 mg/ml. Asymmetric liposomes were prepared by adding
2 ml of outer monolayer lipid suspension over 3 ml of cell culture
medium (for in vitro experiments) or saline (for in vivo
experiments). Finally, 100 ml of the inner monolayer lipid
suspensions were added over the 2-ml lipid phase, and the
samples were centrifuged at 120 × g for 10 min. After the
centrifugation, ABLs were collected in the aqueous phase using
a 5-ml syringe with a 16-gauge stainless steel needle, in order to
produce PS outside/PI5P inside liposomes (ABL/PI5P).
Liposomes were then quantified by a flow cytometer
FACSCalibur (Becton Dickinson), allowing quantification of
monodispersed vesicles >0.2 mm in diameter.

Cell Culture
Primary monocyte-derived macrophages (MDMs) were
prepared as previously described (17). Briefly, peripheral blood
mononuclear cells (PBMCs) from healthy donors and CF
patients were isolated by Ficoll density gradient, and
monocytes were then positively sorted using anti-CD14
October 2020 | Volume 11 | Article 532225
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monoclonal antibodies conjugated to magnetic microbeads
(Miltenyi Biotec), according to manufacturer’s instructions.
Monocytes were then suspended in complete medium and
incubated for a further 5 days in 96-well plates at a
concentration of 106 cells/ml in the presence of M-CSF (50 ng/
ml, Miltenyi Biotec) to get differentiated macrophages.

Bacteria
MDR P. aeruginosa strain (ATCC® BAA-2113) was used in in
vitro experiments and MDR-RP73 P. aeruginosa clinical isolate
(20) was used in an in vivomouse model of chronic P. aeruginosa
infection (21, 22). The BAA-2113 single colony was collected by
streaking on Trypticase soy agar (TSA, BD Difco™) and then
suspended in 15 ml of Trypticase soy broth (TSB, BD Difco™).
Bacteria were grown in Erlenmeyer flask at 37°C under stirring
for 18 h, and their growth was monitored by measuring the
optical density at a wavelength of 600 nm by Varioskan LUX
Multimode Microplate Reader (Thermo Fisher Scientific). BAA-
2113 was stored at −80°C until use after suspension in TSB and
30% glycerol.

For in vivo experiments, an aliquot of RP73 strain from
glycerol stocks (TSB + 25% glycerol) was streaked for isolation
on TSA and incubated at 37°C O/N. One colony was picked from
the plate and used to inoculate 10 ml of TSB and placed
overnight in a shaking incubator at 37°C 200 rpm. Thereafter,
bacterial suspension was diluted to 0.15 OD/ml in 20 ml of TSB/
flask and grown for 4 h at 37°C at 200 rpm, to reach the
log phase.

Patients
CF patients (n = 19) were enrolled at “Bambino Gesù” Children’s
Hospital in Rome, Italy. All of the CF patients were clinically
Frontiers in Immunology | www.frontiersin.org 3143
stable at the time of blood donation (5 ml). Controls (n = 20)
were represented by buffy coats from healthy blood donors,
attending at the Blood Transfusion Unit of Policlinico “Umberto I”
in Rome, Italy. Clinical and demographic features of CF patients as
well as healthy controls are summarized in Table 1.

Evaluation of In Vitro Bacterial Uptake and
Intracellular Growth
To assess bacterial uptake, MDMs from healthy donors or from
CF patients were distributed in 96-well plates at a concentration
of 2 × 105 cells/well and were stimulated with ABL/PI5P used at a
ratio of 1:1 (ABL:MDM), for 30 min before infection and/or
simultaneously with the infection, in the presence or absence of
the CFTR inhibitor INH172 (Sigma), used at a concentration of
10 µM. Then cells were washed once and infected with MDR P.
aeruginosa for 1 h at 37°C at an MOI of 30 in the presence or
absence of INH172. Thereafter, extracellular bacilli were killed at
1 h of incubation with 400 µg/ml amikacin. Finally, cells were
lysed with 1% deoxycholate (Sigma), samples were diluted in
PBS-tween 80, and colony-forming units (CFUs) were quantified
by plating bacilli in triplicate on TSA.

To assess intracellular bacterial growth, MDMs from healthy
donors or from CF patients were distributed in 96-well plates at a
concentration of 2 × 105 cells/well and were infected with MDR
P. aeruginosa, for 1 h at 37°C at an MOI of 30, in the presence or
absence of INH172, used at a concentration of 10 µM. Thereafter,
extracellular bacilli were killed at 1 h of incubation with 400 µg/
ml amikacin. Cells were then washed and incubated with ABL/
PI5P, added to a ratio of 1:1 (ABL:MDM) for a further 2 h, in the
presence or absence of INH172. Finally, cells were lysed with 1%
deoxycholate (Sigma), samples were diluted in PBS-tween 80,
and CFUs were quantified by plating bacilli in triplicate on TSA.
TABLE 1 | Demographic and clinical characteristics of cystic fibrosis (CF) patients and healthy donors (HD).

CF Age (range) Genotype Microbiology FEV-1 (%) HD Age (range)

1 26–30 F508del/N1303K S.a, A.x., S.m. 44 1 36–40
2 16–20 F508del/P5L S.a. 79 2 21–25
3 11–15 G576A/R668C S.a, En.c., E.a. 106 3 51–55
4 21–25 F508del/F508del S.a., B.b. 85 4 56–60
5 31–35 F508del/f508del S.a., Bu.c. 72 5 41–45
6 21–25 F508del/621+1G>T P.a., Bu.c. 50 6 36–40
7 41–45 F508del/F508del S.m., Bu.c. 91 7 56–60
8 31–35 F508del/W1282X S.a., P.a. 109 8 56–60
9 26–30 F508del/F508del S.a., Es.c. 115 9 41–45
10 21–25 F508del/G1244E S.a. 97-103 10 56–60
11 26–30 F508del/G542X E.f., S.a., C.g., S.m. 65 11 51–55
12 26–30 DeltaF508/G85E S.a., P.m., S.m., A.f. 82 12 46–50
13 6–10 DeltaF508/R334L S.p., S.a., H.i. 95-104 13 21–25
14 11–15 R553X/3272-26A->G S.a. 88 14 41–45
15 6–10 G85E/621+1G->T A.f., H.i. 86 15 56–60
16 21–25 G1244E/T338I H.i. 102 16 51–55
17 6–10 1717-1G->A/E831X GAS, Br.c., H.i. 119 17 41–45
18 16–20 W1282X/2789+5G>A S.a., Sc.a. 85 18 31–35
19 26–30 DeltaF508/DeltaF508 S.a., P.a. 25 19 21–25

20 26–30
October 2020
 | Volume 11 | A
S.a., Staphylococcus aureus; A.x., Achromobacter xylosoxidans; S.m., Stenotrophomonas maltophilia; En.c., Enterobacter cloacae; E.a., Enterobacter asburiae; B.b., Bordetella
bronchiseptica; Bu.c., Burkholderia cepacia; P.a., Pseudomonas aeruginosa; Es.c., Escherichia coli; E.f., Enterococcus faecalis; C.g., Candida glabrata; P.m., Proteus mirabilis; A.f.,
Aspergillus fumigatus; S.p., Streptococcus pneumoniae; H.i., Haemophlus influenzae; GAS, Group A Streptococcus; Br.c., Branhamella catarrhalis; S.a., Scedosporium apiospermum.
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In order to evaluate the role of ROS and of phagosome
acidification in intracellular bacterial killing, P. aeruginosa-
infected cells were treated simultaneously with ABL/PI5P
with either PEG-Catalase (100 U/ml) or Concanamycin A
(10 nM), respectively.

Fluorimetric Analysis
Phagosome acidification was assessed by using the fluorescent
probe Lysosensor green DND 189 (Molecular Probes) (23),
which measures the pH of acidic organelles, such as
phagolysosomes. Briefly, MDM from healthy donors were
pretreated or not for 1 h with 10 µM INH172 and then exposed
or not to Crimson fluorescent microbeads (1 µm FluoSpheres®

carboxylate-modified microspheres, LifeThechnologies), for 1 h at
37°C at a ratio of 5:1 in the presence or absence of 10 µM of
INH172, in order to exclude possible differences in microbead
internalization among experimental groups. Then cells were
washed and incubated for a further 90 min with ABL/PI5P,
added to a ratio of 1:1 (ABL:MDM), in the presence or absence
of INH172. Cells were stained for 15 min at 37°C with 1 µM of
Lysosensor green DND 189. pH calibration curve was obtained by
incubating macrophages in calibration buffers at pH 4.5, 5.5, 6.5,
and 7.5 (Intracellular pH Calibration Buffer Kit, Molecular Probes),
and by labeling cells for 15 min at 37°C with 1 µM of Lysosensor
green DND 189 according to the manufacturer’s instructions. pH
was evaluated by fluorometry by setting the wavelength of excitation
at 443 or 625 nm and emission at 505 or 645 nm, for Lysosensor
green DND 189 and Crimson fluorescent microbeads, respectively.

ROS generation was analyzed by loading MDM isolated from
healthy donors with the fluorescent indicator 20,70-
dichlorofluorescein diacetate (DCF, Molecular Probes), used at
a concentration of 10 mM, for 40 min at 37°C in the dark.
Thereafter, MDM isolated from healthy donors were pretreated
or not for 1 h with 10 µM INH172 and then exposed or not to
Crimson fluorescent microbeads (1 µm FluoSpheres®

carboxylate-modified microspheres, Life Technologies), for 1 h
at 37°C at a ratio of 5:1 in the presence or absence of 10 µM of
INH172, in order to exclude possible differences in microbead
internalization among experimental groups. Cells were then
washed and incubated for a further 90 min in the presence or
absence of INH172 with ABL/PI5P, added to a ratio of 1:1 (ABL:
MDM). The production of ROS was evaluated by fluorometry by
setting the wavelength of excitation at 443 or 625 nm and
emission at 505 or 645 nm, for DCF and Crimson fluorescent
microbeads, respectively. Fluorescence has been evaluated by the
use of a Varioskan LUX Multimode Microplate Reader (Thermo
Fisher Scientific).

Mouse Model of Chronic Infection
Immunocompetent C57Bl/6NCrlBR male mice (8–10 weeks,
Charles River) (n = 16 treated with 3 × 105 ABL/PI5P and
n = 16 treated with vehicle) were challenged with 3–4 × 105 CFUs
of the P. aeruginosa MDR-RP73 embedded in agar beads for
chronic infection by intratracheal (i.t.) administration. Agar
beads were prepared following established procedures (21, 24).
Local treatment by Penn-Century MicroSprayer® Aerosoliser
Frontiers in Immunology | www.frontiersin.org 4144
with 3 × 105 ABL/PI5P started soon (5 min) after infection and
was repeated daily for 6 days. Body weight and health status were
monitored daily. After 6 days postinfection, lung CFUs and cell
counts in the bronchoalveolar lavage fluid (BALF) were analyzed
as previously described (21, 24). Finally, 6 days after infection,
murine lungs were excised aseptically and homogenized in 2 ml
of PBS added with protease inhibitors (Complete™ Protease
Inhibi tor cockta i l—Roche) us ing the homogenizer
GentleMACS™ Octo Dissociator, and the levels of TNF-a, KC,
JE, and MIP-2 in the supernatant of murine lungs were measured
by ELISA kit (DuoSet® ELISA Development Systems).

Enzyme-Linked Immunosorbent Assay
MDMs were infected or not with P. aeruginosa (MOI 30) in the
presence or absence of INH172 and stimulated or not with ABL/
PI5P at a ratio of 1:1 (ABL:MDM) for 2 h. Thereafter,
supernatants were collected, cells were lysed, and both stored
at −20°C until analysis. The levels of tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), IL-6, IL-10, and transforming
growth factor-beta (TGF-b) in the supernatants of MDMs were
measured by human TNF-a ELISA kit (BD Biosciences), human
IL-6 DuoSet® ELISA Development Systems, human IL-1b
DuoSet® ELISA Development Systems, human IL-10 DuoSet®

ELISA Development Systems, and human TGF-b DuoSet®

ELISA Development Systems (all by R&D system) and used
according to the manufacturer’s instructions. The levels of
murine TNF-a, KC, JE, and MIP-2 were measured by
DuoSet® ELISA Development Systems (R&D system).
The activation of NF-kB transcription factor was assessed
on lysed cells by “NFkB p65 (Total/Phospho) Human
InstantOne™ ELISA Kit” (Invitrogen) and used according to
the manufacturer’s instructions.

Statistics
Comparison between groups was done using Student’s t test, as
appropriate, for normally distributed data. The Wilcoxon rank
test sum or Mann–Whitney test was performed for data that
were not normally distributed.

Ethics Statement
Buffy coats from anonymized healthy donors, who gave their
written informed consent to donate the nonclinically usable
components of their blood for scientific research, were
obtained from the Blood Transfusion Unit of Policlinico
“Umberto I” in Rome. The present study, which is based on
nonclinical in vitro research, did not require any specific
approval from an ethical committee, according to the Italian
law (decree by Ministero della Salute by February 8, 2013,
published on Gazzetta Ufficiale della Repubblica Italiana no. 96
of April 24, 2013, and legislative decree no. 211 of June 24, 2003,
published on Gazzetta Ufficiale della Repubblica Italiana no. 184
of August 9, 2003). Cystic fibrosis patients, giving their (or
parental) informed consent to participate in the study, were
enrolled at “Bambino Gesù” Children’s Hospital in Rome after
having received detailed information on the scope and objectives
of the study by a sanitary personnel who explained the patient
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information leaflet (ethics approval #738/2017 of “Bambino
Gesù” Children’s Hospital, Rome).

Animal studies adhered to the Italian Ministry of Health
guidelines for the use and care of experimental animals
(IACUC #733).

Research with P. aeruginosa RP73 clinical isolate from CF
patient has been approved by the Ethics Commission of
Hannover Medical School, Germany. The patient and parent
gave informed consent before the sample collection.
RESULTS

ABL Loaded With PI5P Improve
Dysfunctional Bacterial Uptake in CF and
INH172 Treated Macrophages
CF macrophages show defective P. aeruginosa internalization
(25–27). Hence, we tested the capability of ABL carrying PI5P to
improve phagocytosis of MDR P. aeruginosa in macrophages
with disabled CFTR. Results confirmed that the bacterial uptake
of MDM from CF patients or INH172-treated MDM from
healthy donors was dysfunctional compared to that of
untreated MDM (Figure 1A). The dysfunctional bacterial
uptake capacity was significantly improved by the preventive
treatment with ABL/PI5P of INH172-treated dTHP-1 cells,
infected with MDR P. aeruginosa at an MOI of 30 and 10, and
resulted completely restored at an MOI of 30 (Figure S1A).
Moreover, this effect was specific for ABL/PI5P, as any effect was
not observed when liposomes composed by either PS or PI5P
only were used (Figure S1B). Bacterial internalization was also
improved by the pretreatment with ABL/PI5P of primary MDM,
with pharmacologically inhibited CFTR (Figure S2), and of CF
MDM (Figures 1B, C). No modification of the bacterial uptake
was observed when ABL/PI5P was used simultaneously with
MDR P. aeruginosa infection, excluding that liposomes exerted
their effect interacting with the pathogen (Figure S2).

Treatment With ABL/PI5P Rescues
Impaired Phagosome Maturation and ROS
Generation in Macrophages With
Pharmacologically Inhibited CFTR
Dysfunctional activity of CFTR leads to impaired phagosome
maturation due to unbalanced influx of chloride ions (Cl−) that
does not allow intraphagosomal acidification (8). In this context,
we determined basal intracellular pH and ROS production, both
in the normal and CFTR-pharmacologically inhibited
macrophages. MDMs with CFTR functionally inhibited by
INH172 had a more basic intracellular pH than untreated
MDM and, after exposure to microbeads, showed an impaired
phagosome acidification (Figure 2A), which could be completely
restored after 90 min of treatment with ABL/PI5P (Figure 2A).
This result was confirmed by using microbeads labeled with
NHS, a pH-sensitive fluorochrome, whose fluorescence decreases
proportionally to acidification of phagosome microenvironment:
MDMs with CFTR functionally inhibited by INH172 and treated
Frontiers in Immunology | www.frontiersin.org 5145
with ABL/PI5P showed a reduction of NHS fluorescence at levels
comparable to that of control MDMs (Figure S3).

Phagosome acidification and ROS generation are sequential
steps leading to intracellular bacterial killing and type II NADPH
oxidase (NOX-2) assemblies from component subunits on
maturing phagosomes (28). On these grounds, we monitored
ROS generation in MDM with or without pharmacologically
inhibited CFTR following exposure to microbeads and after
90 min of treatment with ABL/PI5P. As expected, the exposure
to microbeads induced a significant ROS generation in control
cells (Figure 2B). On the contrary, the exposure to microbeads
provoked an impaired ROS production in MDM with INH172-
inhibited CFTR, which was significantly restored by the ABL/
PI5P treatment (Figure 2B). Together, these results show that
the inhibition of CFTR by INH172 causes an impaired
phagosome acidification and a reduced ROS production that
could be significantly recovered by the treatment with ABL/PI5P.
ABL/PI5P Promote Intracellular Bacterial
Killing of INH172-inhibited Control
Macrophages and CF Macrophages
Since ABLs/PI5Ps were shown to restore the functional
intraphagosomal acidification and oxidative burst of
macrophages with pharmacologically inhibited CFTR, we
investigated whether an increased bactericidal activity against
MDR P. aeruginosa strains could also represent a functional
consequence of ABL/PI5P treatment of cells with altered CFTR
function. In this context, we preliminarily tested the capability of
ABL/PI5P to improve intracellular bacterial killing in dTHP-1
cells with disabled CFTR infected with MDR P. aeruginosa
(BAA-2113 strain) at the MOI of 30 and 10. Results expressed
in Figure S4A show a significant reduction in intracellular
bacterial viability after exposure to ABL/PI5P, which was
higher at an MOI of 30. Moreover, such effect was specific for
ABL/PI5P, as any effect was not observed when liposomes
composed by either PS or PI5P only were used (Figure S4B).
Thereafter, we investigated the effect of ABL/PIP5 on primary
MDMs with pharmacologically inhibited CFTR. Our results
show that 2 h of ABL/PI5P treatment on INH172-treated
MDM significantly enhances the intracellular killing of MDR
P. aeruginosa strain (BAA-2113) (Figure 3A) as well as of a panel
of additional three MDR P. aeruginosa strains (BAA-2108, BAA-
2111, and BAA-2112) (Figure S5).

In order to evaluate the role of phagosome acidification and/
or of ROS generation in intracellular killing of MDR P.
aeruginosa induced by ABL/PI5P, we exposed P. aeruginosa-
infected cells to either Concanamycin A (ConcA), a specific
inhibitor of V-ATPases blocking phagosome acidification, or
polyethylene glycol-Catalase (PEG-Cat), which reduces
hydrogen peroxide to water. Results show that intracellular
killing of MDR P. aeruginosa, induced by ABL/PI5P
stimulation of MDM with pharmacologically inhibited CFTR,
is ROS mediated and phagosome acidification dependent, as it
results ineffective in the presence of Peg-Cat and Conc A,
respectively (Figure 3B).
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Finally, we tested the efficacy of ABL/PI5P in MDMs from CF
patients. On the basis of the efficacy of freshly isolated and
nontreated CF macrophages to limit intracellular bacterial
growth, we could divide patients in two groups: “impaired” and
“controller,” according to intracellular bacterial replication index
higher or lower than 1, respectively (Figure 4A). Notably, MDM
isolated from patients of the “impaired” group were susceptible to
ABL/PI5P stimulation (Figure 4C), increasing significantly their
intracellular killing upon liposome treatment, whereas ABL/PI5P
did not further increase the intracellular killing of MDM isolated
from patients belonging to the “controller” group (Figure 4B) or
from healthy donors (Figure S6).

ABL/PI5P Treatment Modulates Anti- and
Pro- Inflammatory Cytokine Production in
Macrophages With Pharmacologically
Inhibited CFTR
Chronic infection, mainly due to P. aeruginosa, and unresolved
acute inflammation are key mechanisms responsible for progressive
lung destruction in CF (29) and an effective host-directed
therapeutic strategy should also limit the inflammation-based
immunopathology. On the basis of previous results showing the
anti-inflammatory effect of ABL (18), we wanted to investigate the
effect of ABL/PI5P treatment of MDM incubated or not with
INH172 on NF-kB activation and on the production of a panel of
pro- and anti-inflammatory cytokines after infection with MDR P.
aeruginosa. In this model, we could show high basal levels of NF-kB
activation after CFTR inhibition, which further increased following
infection with MDR P. aeruginosa. Interestingly, the same NF-kB
activation levels were significantly reduced by the treatment with
ABL/PI5P (Figure 5A). The reduced activation of NF-kB was
confirmed by the comparative in vitro measure of cytokines
whose transcription depends upon NF-kB activity (TNF-a, IL-1b,
and IL-6). In fact, infected macrophages with dysfunctional CFTR
showed a significant increase in TNFa, IL-1b, and IL-6 secretion in
comparison with control infected macrophages, and ABL/PI5P
treatment reduced the levels of the same inflammatory cytokines
in infected macrophages irrespective of CFTR inhibition (Figures
5B–D). On the contrary, the secretion of anti-inflammatory
cytokines, such as IL-10 and TGF-b, was significantly increased in
ABL-/PI5P-treated MDMs (Figures 5E, F).

ABL/PI5P Therapeutic Treatment Reduces
Inflammatory Reaction in a Murine Model
of MDR P. aeruginosa Chronic Infection
We wanted to test in an in vivo model the functional
consequences of the in vitro observed anti-inflammatory
functions of ABL/PI5P in addition to the promotion of
intracellular killing of pathogens. This is particularly
interesting since massive neutrophil infiltration is the main
cause of chronic damage to the epithelial lung structure in the
CF lung (30). Thus, we tested the efficacy of ABL/PI5P
administrated by Penn-Century MicroSprayer® Aerosoliser in
mice, 5 min after infection with MDR P. aeruginosa embedded in
agar beads. An evaluation of the inflammatory response and
bacterial burden in lung and in BALFs was considered as read-
A

B

C

FIGURE 1 | Dysfunctional Pseudomonas aeruginosa uptake in macrophages
with pharmacologically inhibited or naturally mutated cystic fibrosis
transmembrane conductance regulator channel (CFTR) and its enhancement
by apoptotic body-like liposome/phosphatidylinositol 5-phosphate (ABL/PI5P)
stimulation. (A) Monocyte-derived macrophages (MDMs) from healthy donors,
treated or not with INH172, or from cystic fibrosis (CF) patients were infected
with multidrug-resistant (MDR) P. aeruginosa (BAA-2113 strain) at an MOI of
30. (B, C) CF MDMs were stimulated or not with ABL/PI5P for 30 min before
infection (B) or before and during infection (C). Cells were then infected with
MDR P. aeruginosa (BAA-2113 strain) at an MOI of 30. The bacterial uptake
was quantified by colony-forming unit (CFU) assay and indicated as
phagocytosis index, calculated as the ratio between the CFUs obtained
immediately after the infection and the inoculum. (A) Statistical analysis was
performed by using the two-sided Mann–Whitney test and *p < 0.05;
**p < 0.01 in comparison with control cells (healthy donors, n = 6; CF
patients, n = 6). (B, C) Statistical analysis was performed by using the two-
sided Wilcoxon rank sum test (B, n = 6) p = 0.03 and (C, n = 9) p = 0.004.
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out measures of ABL/PI5P treatment efficacy. Results showed a
significant reduction of both KC and MIP-2 (Figures 6A, B) and
no significant variations in the levels of TNF-a and MCP-1
(Figures 6C, D) in the lungs of ABL/PI5P-treated mice in
comparison with vehicle-treated mice. Results also showed a
significant reduction in neutrophil count in BALF (Figure 7B) of
ABL/PI5P-treated mice in comparison with vehicle-treated mice.
A reduction, although not significant, of BALF total cells (Figure
7A) and macrophages (Figure 7C) was observed. Of note, the
Frontiers in Immunology | www.frontiersin.org 7147
significant reduction in BALF neutrophils observed in ABL/
PI5P-treated mice did not significantly interfere with
pulmonary bacterial burden (Figure 7D).
DISCUSSION

CF is a genetic disorder that leads to a progressive dysfunction of
lung activity by predisposing patients to colonization by
A

B

FIGURE 2 | Treatment with ABL/PI5P rescues impaired phagosome acidification and ROS production in MDM with pharmacologically inhibited CFTR. Primary
MDMs, treated or not with INH172, were exposed for 1 h to 1-µm microbeads (Mb). Phagosomal pH (A) and ROS (B) were assessed, by staining with Lysosensor
green DND 189 or DCF, after 90 min of stimulation with ABL/PI5P, respectively. Results are shown as mean + standard deviation of the values obtained from
triplicate cultures and are representative of experiments with cells by two different donors. *p < 0.05; **p < 0.01, in comparison with INH172-unstimulated cells and
in comparison with untreated cells by one-sided Student’s t test.
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opportunistic bacterial pathogens. Infections caused by P.
aeruginosa, particularly because of the emergence of MDR
strains, represent the major cause of morbidity and mortality
in CF patients (31). These evidences highlight the urgency to
develop novel therapeutic approaches, which may contribute to
the control of MDR pathogens, including P. aeruginosa.
Phagocytosis and intracellular killing of extracellular pathogens
are the most important effector mechanisms of innate immune
cells that can be hampered in CF patients (26). Hence, strategies
aimed at improving the capacity of lung resident innate immune
cells to phagocytose and kill pathogens may represent a
Frontiers in Immunology | www.frontiersin.org 8148
promising host-directed approach to combat bacterial lung
infections in CF patients.

In the present manuscript, we show that ABLs carrying PI5Ps
are able to increase, both in vitro and ex vivo, the capacity of
INH172-treated and CF macrophages to internalize and kill
MDR strains of P. aeruginosa. Moreover, in a murine model of
in vivo P. aeruginosa infection, we show that ABLs carrying
PI5Ps are capable of reducing neutrophil recruitment and lung
inflammation, without promoting bacterial growth. In particular,
we show that treatment with ABL/PI5P enhance nonopsonic
P. aeruginosa phagocytosis in CF and INH172-treated
macrophages. Several not mutually exclusive mechanisms may
explain this observation. PI5P may promote actin dynamics and
bacterial phagocytosis i) via recruitment and activation of the
exchange factor Tiam1 and Rac1 (14), ii) by directly activating
PI3K/Akt signaling pathway (32), or iii) by participating as
substrate to the PI(4,5)P2 production (33), which may directly
induce membrane remodeling (34) or be converted, by means of
phosphoinositide 3-kinase (PI3K), in 3,4,5-tris phosphate [PI
(3,4,5)P3], which in turn is able to activate Akt signaling
pathway (35).

We then showed that ABL/PI5P treatment restores intracellular
acidification and ROS production of human macrophages, whose
CFTR was pharmacologically inhibited. Following phagocytosis,
phagosome maturation requires the sequential interaction with
early endosomes, late endosomes, and ultimately, with lysosomes,
leading to the generation of a highly microbiocidal organelle called
phagolysosome. In pharmacologically inhibited- or CF-
macrophages, the altered CFTR function leads to a limited
phagosome acidification because of the unbalanced Cl− ion
distribution, which alters phagolysosome maturation and causes a
defective intracellular bacterial clearance (8, 36). Together, our data
indicate that ABL/PI5P treatment may rescue the impaired
bactericidal mechanisms of macrophages with dysfunctional
CFTR by restoring phagosome acidification and enhancing ROS
production. Finally, the effect was specific to PI5P, as ABL loaded
with PI3P, a second lipid messenger involved in membrane
trafficking and autophagy (12), did not result in any modulation
of intracellular P. aeruginosa killing (18).

The ex vivo analysis of MDM from CF patients indicated the
presence of two groups of patients that we classified as “impaired”
or “controller,” based on their different capability to control in vitro
P. aeruginosa infection (bacterial replication index >1 or <1,
respectively). It has been reported that host-genotypic traits have
a critical role in the outcome of P. aeruginosa infection (37). In
particular, the host susceptibility and the severity of infections
caused by P. aeruginosa also depend upon a wide complex
arrangement of genes, which is highly variable among
immunocompromised individuals, including CF patients (38).
Changes in clinical disease signs are mostly dependent on
secondary gene variants that affect the outcome of the infection.
These genes are identified as “modifier genes,” some of which play a
role in innate immune response (39–41). Importantly, we observed
that ABL/PI5P ex vivo treatment of macrophages induced a
significant intracellular bacterial killing in the “impaired” group,
highlighting the immunostimulant properties of ABL/PI5P, which
A

B

FIGURE 3 | ABL/PI5P promotes both ROS and phagolysosome
acidification-dependent intracellular P. aeruginosa killing in MDM with
pharmacologically inhibited CFTR. (A) Primary MDMs were exposed to the
CFTR inhibitor INH172 at a concentration of 10 µM, infected with MDR P.
aeruginosa (BAA-2113 strain) and then stimulated for further 2 h with ABL/
PI5P. (B) Primary MDMs were exposed to the CFTR inhibitor INH172 at a
concentration of 10 µM, infected with MDR P. aeruginosa (BAA-2113 strain),
and then stimulated for a further 2 h with ABL/PI5P in the presence or
absence of catalase (PEG-Cat) or Concanamycin A (Conc A), at a
concentration of 100 U/ml or 10 nM, respectively. Bacterial growth was
assessed by CFU assay, and replication index was calculated as the ratio
between the CFU obtained after 2 h of infection, in the presence or absence
of ABL/PI5P, and the CFU was obtained before the addition of liposomes.
The results are shown as mean + standard deviation of the values obtained
from triplicate of each condition. **p < 0.01; ****p < 0.0001 by two-sided
Student’s test.
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restores the dysfunctional CF bactericidal response. On
the contrary, the same treatment did not further increase the
intracellular P. aeruginosa killing of macrophages from the
“controller” group or from functional MDM by healthy donors.
In agreement with these observations in vitro, we did not observe
variations in terms of pulmonary bacterial burden in an in vivo
model of P. aeruginosa chronic infection in immunocompetent
mice. Together, these data support the hypothesis that ABL/PI5P
treatment has no general and broad-spectrum immunoenhancing
effect, but it is endowed with the potential to rescue impaired
microbicidal innate immune function.

Airway inflammation is a hallmark of CF disease that leads to
the decline in lung function (26) and is characterized by elevated
levels of NF-kB activation and proinflammatory cytokine and
chemokine production (30), resulting in chronic inflammation,
neutrophil recruitment, and progressive airway destruction. It is
still a matter of debate on whether excessive inflammation in CF is
the result of either underlying chronic bacterial infection(s) in the
lungs or of exaggerated NF-kB signaling (42). Results reported
herein show that the levels of NF-kB activation increase in
macrophages following P. aeruginosa infection, and such an
increase is significantly higher following pharmacological
inhibition of CFTR, both in uninfected and in infected
macrophages in comparison with the control cells. However,
despite higher basal NF-kB activation in the cells with
pharmacologically inhibited CFTR, differences in TNF-a, IL-1b,
IL-6 levels were observed in P. aeruginosa-infected macrophages
only, suggesting that the presence of the pathogen is necessary to
NF-kB-dependent proinflammatory cytokine production. These
results support the hypothesis of a higher, NF-kB dependent,
predisposition to a hyperinflammatory response by the
macrophages with dysfunctional CFTR, which requires the
presence of bacterial pathogens to over-express proinflammatory
cytokines (30).

PS exposure at the outer surface of the cell membrane is a
physiologically relevant signal for phagocytic cells, for which it
represents the “eat me” signal provided by apoptotic bodies
generated by cells undergoing apoptosis (43). This process is an
anti-inflammatory/tolerogenic signal with immunomodulatory
properties (44), which have been previously exploited for the
treatment of autoimmune diseases (45). Furthermore, PI5P is
involved in the activation of PI3K/Akt pathway that is crucial in
restricting proinflammatory and promoting anti-inflammatory
response (32, 46). The results reported herein support the anti-
inflammatory and protolerogenic role of PS and PI5P even when
they are delivered as a single liposome formulation. Based on these in
vitro experimental results, we moved to the in vivo murine model of
chronic P. aeruginosa infection and assessed the effects of ABL/PI5P
treatment in terms of lung KC, MIP-2, JE and TNF-a production,
leukocyte infiltrates, and pulmonary bacterial burden. Results show
that in ABL-/PI5P-treatedmice, the number of BALF neutrophils was
significantly reduced, and such reduction paralleled with KC and
MIP-2 levels, whereas any reduction of TNF-a and JE levels was not
observed. The different results obtained following in vitro and in vivo
infection, in terms of TNF-a production, may be explained by the
activation of different cell types, such as antigen-specific Th1, Th17,
A

B

C

FIGURE 4 | ABL/PI5P enhances intracellular bacterial killing in CF
macrophages characterized by impaired antimicrobial activity. MDM isolated
from CF patients (n = 12) were infected with MDR P. aeruginosa (BAA-2113
strain) and then stimulated for another 2 h with ABL/PI5P. Bacterial growth
was assessed by CFU assay, and replication index was calculated as the
ratio between the CFU obtained after 2 h of infection in the presence or
absence of ABL/PI5P and the CFU obtained before the addition of
liposomes. (A) CF patients have been defined as “functional” or “controller”
on the basis of bacterial replication index, less or higher than 1, respectively.
Bacterial replication index is shown in “controller” (B, n = 6) and “impaired”
(C, n = 6) macrophages from CF patients following ABL/PI5P stimulation.
Statistical analysis was performed by using the two-sided Mann–Whitney
test (A) and two-sided Wilcoxon matched-pairs signed rank test (B, C).
(A) p = 0.0022; (B) p = not significant; (C) p = 0.0313.
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and Th22 cells that may be involved and recruited to the lung during
in vivo infections (47). Anti-inflammatory therapies, such as
corticosteroids or biotechnologicals, may cause immunosuppression,
which in turn is associated with the emergence of latent or
opportunistic infections, and for this reason, they are often
administered in combination with antibiotics (48). A clinical
study to investigate the leukotriene B(4) (LTB(4)-receptor
antagonist BIIL284 in CF patients was prematurely terminated
due to a significant increased risk of adverse pulmonary events
(49). Subsequent in vivo models showed that decreased airway
neutrophils induced lung proliferation and severe bacteremia in a
murine model of P. aeruginosa lung infection (50), indicating that
Frontiers in Immunology | www.frontiersin.org 10150
strategies that interfere with neutrophil mechanisms have to be
implemented with great caution. Of note, the reduction in
inflammatory reactions in the lung of infected mice treated with
ABL/PI5P was not associated with a significant increase in bacterial
burden, suggesting that the in vivo administration of ABL/PI5P, by
activating the macrophage component, may compensate for the
reduction in neutrophil response and may have a therapeutic value
also in critical conditions such as neutropenia.

Altogether, our data support the possibility that PI5P conveyed
by ABL represents a novel therapeutic strategy devoid of
immunosuppressive side effects, aimed at improving the efficiency
of phagocytosis of mononuclear phagocytes and at reducing the
A B

D

E F

C

FIGURE 5 | ABL/PI5P stimulation modulates NF-kB and cytokine production in MDM with pharmacologically inhibited CFTR. MDMs were treated or not with
INH172, infected or not with MDR P. aeruginosa (Pa, BAA-2113 strain), and then stimulated or not with ABL/PI5P for 2 h. Thereafter, cells were lysed (A) or
supernatants were collected (B–F), and both were stored at −20°C until analysis. (A) Cell lysates were analyzed by NF-kB p65 (Total/Phospho) Human InstantOne™

ELISA kit, and results are shown as the ratio between phosphorylated and total NF-kB p65. The production of TNF-a (B), IL-1b (C), IL-6 (D), IL-10 (E), and TGF-b
(F) was analyzed by ELISA. The results are shown as mean + standard deviation of the values obtained from triplicate of each conditions and are representative of
experiments with cells from at least three different donors. *p < 0.05; **p < 0.01; ***p < 0.001 one-sided t test.
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A B

DC

FIGURE 6 | ABL/PI5P treatment modulates KC and MIP-2 production in a murine model of MDR P. aeruginosa chronic lung infection. C57Bl/6NCrlBR mice were
infected with MDR P. aeruginosa (RP73 strain) and then treated with ABL/PI5P (n = 16) or vehicle (n = 16), as described in the Material and Methods section. At
day 6 post-infection, mice were sacrificed. Levels of KC (A), MIP-2 (B), TNF-a (C), and JE (D) upon treatment with ABL/PI5P or vehicle in the supernatants of lung
homogenates were measured by ELISA. Data are shown as mean values + standard error. The data are pooled from two independent experiments. Statistical
analysis was performed by using the two-sided Mann–Whitney test. Statistical significance is indicated: *p < 0.05. Outlier data, identified by Grubbs’ test, were
excluded by the analysis.
A B

DC

FIGURE 7 | ABL/PI5P treatment reduces neutrophilic recruitment in a murine model of MDR P. aeruginosa chronic lung infection. C57Bl/6NCrlBR mice were
infected with MDR P. aeruginosa (RP73 strain) and then treated with ABL/PI5P (n = 16) or vehicle (n = 16), as described in the Materials and Methods section. At
day 6 postinfection, mice were sacrificed, BALF was collected, and lungs were excised, homogenized, and plated onto TSA to determine bacterial burden. Counts of
total number of cells (A), neutrophils (B), and macrophages (C) were performed in BALF. (D) The bacterial burden and was assessed by CFU assay. Data are
shown as mean values + standard error. The data are pooled from two independent experiments. Statistical analysis was performed by using two-sided Mann–
Whitney test. Statistical significance is indicated: *p < 0.05. Outlier data, identified by Grubbs’ test, were excluded by the analysis.
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damage of chronic inflammation. In conclusion, the ABL-/PI5P-
based immunomodulatory strategy may represent an additional
therapeutic tool in the fight against MDR opportunistic pathogens,
such as P. aeruginosa, with the added value of the capacity to reduce
the hyperinflammatory reactions in chronic lung infections that are
particularly invalidating in CF patients.
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Extra-pulmonary tuberculosis (EPTB) is recognizedmainly as a secondarymanifestation of a
primary tuberculosis (TB) infection in the lungs contributing to a high incidence of morbidity
and mortality. The TB bacilli upon reactivation maneuver from the primary site disseminating
to other organs. Diagnosis and treatment of EPTB remains challenging due to the abstruse
positioning of the infected organs and the associated invasiveness of sample acquisition as
well as misdiagnosis, associated comorbidities, and the inadequacy of biomarkers. Female
genital tuberculosis (FGTB) represents the most perilous form of EPTB leading to poor
uterine receptivity (UR), recurrent implantation failure and infertility in females. Although the
number of TB cases is reducing, FGTB cases are not getting enough attention because of a
lack of clinical awareness, nonspecific symptoms, and inappropriate diagnostic measures.
This review provides an overview for EPTB, particularly FGTB diagnostics and treatment
challenges. We emphasize the need for new therapeutics and highlight the need for the
exaction of biomarkers as a point of care diagnostic. Nuclear receptors have reported role in
maintaining UR, immune modulation, and TB modulation; therefore, we postulate their role
as a therapeutic drug target and biomarker that should be explored in FGTB.

Keywords: nuclear receptors, uterine receptivity, cytokine modulation, female genital tuberculosis, recurrent
implantation failure, endometrium regeneration, extrapulmonary tuberculosis
INTRODUCTION

Mycobacterium tuberculosis (M. tuberculosis) is an etiological agent that causes tuberculosis (TB),
which is a health issue of global importance. TB profoundly exists in two forms, i.e., pulmonary
and extrapulmonary. The most prevalent site of TB infection is the lungs; this is called pulmonary
TB (PTB), where the bacilli are phagocytosed in alveolar macrophages and are contagious via
Abbreviations: EPTB, Extrapulmonary Tuberculosis; PTB, Pulmonary Tuberculosis; TB, Tuberculosis; FGTB, Female Genital
Tuberculosis; RIF, Recurrent Implantation Failure; UR, Uterine Receptivity; ER, Endometrium regeneration; CM, Cytokine
modulation; LIF, Leukemia inhibitory factor; VEGF, Vascular endothelial growth factor; NR, Nuclear Receptors; TR4,
Testicular receptor; PPAR, Peroxisome Proliferator Activated Receptor; PXR, Pregnane X Receptor; VDR, Vitamin D
Receptor; LXR, Liver X Receptor; PR, Progesterone receptor; LRH1, Liver receptor homolog 1; Nurr, Nuclear receptor related;
AR, Androgen receptor; COUP-TF, Chicken Ovalbumin Upstream Promoter; SF-1, Steroidogenic Factor; FXR, Farnesoid X
Receptor; IL, Interleukin.
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aerosol dissemination. TB bacilli can also disseminate to other
organs and causes extrapulmonary tuberculosis (EPTB). The
genital organs are also an important site for dissemination.
Table 1 shows the distribution of TB cases at extrapulmonary
sites (1). EPTB is mainly considered to be a secondary
manifestation of the primary infection, which is rarely
contagious; however, extrapulmonary involvement can occur
with or without PTB. The World Health Organization (WHO)
reported 7 million TB cases in 2018 of which 15% were EPTB
(2). Additionally, approximately, 10%–50% of EPTB cases are
reported to also have pulmonary manifestation (3). The
prevalence of EPTB significantly contributes to TB-related
morbidity and mortality and is a leading cause of maternal
mortality. In a case study, the highest mortality rates are
reported for meningitis TB (9.6%) and peritoneal TB (8.5%)
(4). Peritoneal TB and female genital TB (FGTB) are a threat to
human species propagation (5). Bacterial dissemination leading
to EPTB occurs majorly via three different channels, i.e.,
hematogenous, lymphatic, and direct spread (6). Additionally,
producing new blood vessels through vascular endothelial
growth factor (VEGF) can assist in bacterial dissemination (7).
Some rare modes of transmission include congenital
transmission, accidental inoculation, therapeutic instillation,
and vaccination (8). The atypical presentation, paucibacillary
nature, arduousness in procuring appropriate clinical sample,
lack of awareness among clinicians, and poor sensitivity of
conventional microbiological techniques in EPTB, particularly
FGTB, are challenges in diagnosis that further raise the cost due
to disability. EPTB cases are on the rise; however, there is still a
very extensive awareness gap compared to PTB (15% vs. 86%)
(9). The aim of the WHO’s “end TB strategy” highlights the
need for patient TB care and awareness programs in PTB (10).
However, the information on EPTB needs to be adequately
addressed. FGTB, which represents the most perilous form of
EPTB, is steadily rising as one of the major causes of infertility in
females. Globally, about 5%–10% of infertile women are
reported to have FGTB (11). FGTB demands immediate
attention because of its low recovery rates and the increased
abortion rates observed during recent years. Primary infection
of TB in the genital tract of females, albeit rare, may occur if the
partner has active genitourinary TB. Despite our current
understanding, it is vital that research into EPTB and
especially FGTB is increased as it is critical to enhance our
knowledge of this disease in order to effectively combat it.
Frontiers in Immunology | www.frontiersin.org
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This review highlights the major challenges of EPTB, especially
FGTB, and necessitates the need for research efforts for effective
biomarker discovery in FGTB. The objective of this review is to
introduce the diagnostic, treatment, and comorbidity challenges
associated with EPTB and, in particular, FGTB and to raise
fundamental biological questions regarding the impact of FGTB
on female fertility and on the major issues of endometrium
regeneration (ER), uterine receptivity (UR), and cytokine
modulation (CM). This review covers the current knowledge
of nuclear receptors (NRs), reported in regeneration, female
reproduction, and in the maintenance of pregnancy with
the aim of conceptually postulating that NRs should be
explored in the diagnosis and combating of FGTB-associated
female infertility.
EPIDEMIOLOGY AND CLINICAL
PRESENTATION OF FGTB: THE
SILENT RISE

FGTB is the most enigmatic form of EPTB, representing 15%–20%
of EPTB cases (12, 13), and is responsible for poor UR, poor
endometrial adhesions, and recurrent implantation failure (RIF) in
females (14). However, the exact proportion of FGTB is not
known due to underreporting of cases, nonspecific symptoms,
misleading clinical appearance, and lack of diagnostic measures.
Additionally, in a case study, approximately 75.6% of patients’
cases evaluated for infertility were diagnosed with FGTB (15). It is
highly concerning because the manifestations are asymptomatic,
and by the time FGTB is diagnosed, it has already left an impact on
female fertility and morbidity. There is also a social stigma
attached to FGTB that causes it to be difficult for women to talk
openly about it. FGTB is known to mainly cause primary infertility
rather than secondary infertility (16); therefore, even after
successful treatment, conception rates are very low (19.2%), the
success of pregnancy is very low (16.6%), and the birth rate is also
extremely low (7.2%) (17, 18). The TB bacilli break out from the
primary site of infection and reach the genital area generally
through hematogenous spread (19). The most prevalent site of
bacterial infection for FGTB includes the endometrium (50%–
60%), fallopian tubes (95%–100%), ovaries (20%–30%), cervix
(5%–15%), myometrium (2.5%), and vagina/vulva (1%) (19, 20).
FGTB causes caseation, adhesions, ulcerations, and complete
distortion of the cavity causing Asherman syndrome. The
clinical appearance of FGTB is generally called “the considerable
pretender” because it mimics ovarian carcinoma (21). FGTB
represent various clinical symptoms of infertility (43%–74%),
oligomenorrhea (54%), amenorrhea (14%), dysmenorrhea (12%–
30%), abdominal pain (42.5%), menorrhagia (19%), dyspareunia
(5%–12%), and postmenopausal bleeding (2%) (19, 22–25). The
abovementioned clinical presentations arise because the ER
capability is compromised, which contributes to recurrent
pregnancy loss and infertility (Table 2). All these symptoms
pertain to the endometrium, and its regeneration needs to be
addressed and investigated. The key factors that modulate and
exacerbate FGTB need to be identified.
TABLE 1 | The bacterial manifestation reported at the surplus site and the
prepotency.

Extrapulmonary forms Occupied site of EPTB (%) Mode of spread

Lymph node TB 35% Direct
Pleural TB 20% Hematogenous
Meningitis TB 5% Hematogenous
Abdomen TB 3% Direct
Miliary TB 8% Hematogenous
Bone and joint TB 10% Hematogenous
Genitourinary TB 9% Hematogenous
Others 10%
October 2020 | Volume 11 | Article 02161
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THE DIAGNOSTIC CHALLENGES OF EPTB
WITH AN EMPHASIS ON FGTB

The diagnostic tools for EPTB include the nucleic acid
amplification test (Gene-Xpert), immunological test, biopsy,
body fluid examination, and sputum acid-fast bacillus (AFB)
smear. Gene-Xpert shows high sensitivity in EPTB samples but is
less in cerebrospinal fluid (CSF), i.e., 29% (26). The antibody-
based serological test has poor sensitivity and is not applicable to
EPTB samples (27). Blood transcriptomic biomarkers are
identified in TB, which can easily discriminate between healthy
and infected persons (28–31). The onset of TB can be predicted
through metabolite changes in blood (32). Blood transcriptomic
and metabolic signatures have improved diagnosis in TB and are
being explored as probable diagnosis for EPTB (8, 33, 34).
Systematic reviews on TB biomarkers, including antibodies,
cytokines, chemokines, proteins, and metabolic activity
markers have already been published (35). These biomarkers,
to some extent, have also been studied in EPTB (36, 37). EPTB is
largely undiagnosed in patients, especially when visceral sites are
involved. The detection of EPTB, particularly FGTB, poses a
major challenge with conventional methods. EPTB diagnosis is
challenging because of misdiagnosis, arduousness in acquiring of
clinical samples, being asymptomatic, and poor sensitivity of
existing diagnostic (Figure 1). Generally, miliary TB is
misdiagnosed with systemic lupus erythematosus (SLE) (38).
EPTB, particularly peritoneal TB, may also be misinterpreted as
ovarian cancer and peritoneal carcinomatosis (5, 39). Intestinal
TB is misdiagnosed with Crohn disease (40). Bone and joint TB
are misdiagnosed as rheumatoid arthritis, traumatism, and gout.
Vulva and vaginal TB is misdiagnosed with malignancy (41).
Invasiveness and constraints in obtaining biopsies prevent the
early diagnosis of EPTB, and in addition, these diagnostic tests
can cause incidental damages and infection; for instance, in the
case of meningitis TB, extraction of CSF can possibly harm the
nerves around the site of insertion. Biopsy, endoscopy,
cystoscopy, and lumbar puncture are all performed depending
on the case for other EPTBs (8). Meningitis TB is suspected when
Frontiers in Immunology | www.frontiersin.org 3156
the patient is diagnosed with mental disturbance or is found to
have lymphocytic pleocytosis (42). Due to the nonparticular
symptoms, miliary TB and urogenital TB are often diagnosed at
an autopsy (8, 43–46).

Being a paucibacillary disease, the diagnostic measures of FGTB
involve a combination of bacteriological confirmatory measures.
FGTB patients exhibit features of dysfunction of genital organs
rather than any symptoms of infection. Repeatedly invasive
techniques are utilized to acquire sufficient samples of body
fluids, tissues, or biopsies. FGTB diagnosis is mainly done
through endometrial samples using microscopy (AFB),
histopathological detection of epithelioid granuloma on biopsy,
and Gene-Xpert (41). Peritoneal fluid or biopsy for culture,
endoscopy, and cervical cytology are also performed for
diagnosis. However, histopathological findings are not specific
for FGTB because of shedding of the endometrium. Magnetic
resonance imaging and positron emission tomography have been
used for detecting tubo-ovarian masses (47, 48). Loop-mediated
isothermal amplification is the most convenient technique used for
diagnosing FGTB (49). A laparoscopy combined with
hysteroscopy is the most reliable tool to diagnose FGTB;
however, this is associated with perioperative complications.
Laparoscopy is risky because of the presence of many adhesions,
which cover the pelvic organs and may hinder the diagnosis and
can increase the risk of bleeding (41, 50). Hysteroscopy is
associated with various complications, such as excessive
bleeding, perforation, inability to distinguish and distend cavity,
and flare-up of genital TB, which can cause abortions and
infertility (51). FGTB, specifically endometrial TB, represents
ulceration, caseous necrosis, and hemorrhage; this necessitates
careful macroscopic sampling (51, 52). FGTB is a silent disease;
rarely, it presents as abdominal pain, abnormal genital bleeding,
and dyspareunia (53). The misdiagnosis rate is very high among
FGTB patients and is associated with several complications. The
disease is mistaken for other gynecological conditions or
malignancy; for example, FGTB is misdiagnosed as ovarian
cancer or chocolate cyst or pelvic inflammatory disease (PID)
(54), and FGTB patients who are reported to have cervical TBmay
masquerade as cervical cancer (41, 55). Additionally, FGTB
patients may be mistaken or coexist with acute appendicitis or
ectopic pregnancy (52). TB of the vulva and cervix is very arduous
to distinguish as it appears as brucellosis, schistosomiasis,
tularemia, cervical amoebiasis, sarcoidosis, syphilis, or chancroid
(56). Furthermore, a high level of drug resistance is witnessed in
FGTB (57). Given the above challenges with FGTB diagnosis,
including exceptional positioning of organs, associated
invasiveness of sample collections, misdiagnosis, being
asymptomatic, poor sensitivity, the emergence of drug resistance,
and the lack of point of care, there is a strong need to identify
FGTB-specific biomarkers. The biosignatures emanating from the
pathogen have been reported for FGTB diagnosis (58). However,
the sensitivity of detection in FGTB patient samples is very low
because the infected sites are missed due to the paucibacillary
nature of M. tuberculosis. We are focusing on the host-derived
biomarkers for the prompt and accurate diagnosis of FGTB from
easily accessible samples without utilizing any invasive procedure.
TABLE 2 | Various forms of clinical presentations of FGTB are shown along with
signs and symptoms.

Extrapulmonary
infection

Clinical
presentation

Signs and Symptoms

TB of endometrium Uterine leiomyoma Pyometra
Postmenopausal
TB

Irregular vaginal bleeding and
persistent leucorrhoea

Oligomenorrhoea Menstrual disturbance
Amenorrhoea Menstrual disturbance
Menorrhagia Abnormal vaginal discharge

TB of cervix Ovarian carcinoma Postcoital bleeding
TB of vulva Tumor Bloodstained discharge
TB of ovary Perioophoritis Tubo-ovarian masses
TB of fallopian tube Salpingitis and

tubal block
Ectopic pregnancy

Infertility Implantation failure
TB of pelvic Fistula formation Rupture of a tuberculous pyosalpinx

Malaise Pelvic inflammatory disease
October 2020 | Volume 11 | Article 02161
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TREATMENT CHALLENGES OF EPTB
WITH AN EMPHASIS ON FGTB

Treatment of EPTB faces major challenges from comorbidities
(e.g., HIV coinfection or renal failure), drug sovereignty,
misdiagnosis, drug disposition, and unusual positioning of a
few organs, i.e., endometrium, central nervous system (CNS)
(Figure 2). Chronic renal failure exacerbates EPTB more than
TB (59). During renal impairment, DOTS therapy is eliminated
by nonrenal routes; for example, by biliary secretion or through
metabolism. Coadministration of anti-HIV and anti-TB drugs in
a comorbid condition leads to absorption issues due to a
reduction in the assimilation of the two key anti-TB drugs
(rifampin and isoniazid) (60). Likewise, TB drugs also lower
the levels of antiretroviral drugs; as soon as the antiretroviral
therapy is initiated, it paradoxically results in worsening of
symptoms or causes immune reconstitution inflammatory
syndrome (1, 61). A high proportion of drug-induced liver
injuries are observed in cirrhosis patients coinfected with TB
(62). Ascites formed in the body in peritonitis TB present a
problem for anti-TB drug disposition (63). Approximately 10%–
20% of patients consuming ATT (anti-TB drugs; Ethambutol,
Pyrazinamide, Isoniazid, and Rifampicin) either in a single or
combinatorial therapy are at a risk of evolving hepatotoxicity
(64–66). When EPTB is misdiagnosed as another disease, the
treatment for the erroneous disease may exacerbate EPTB; for
example, immunosuppressant therapy given when EPTB is
misdiagnosed as chronic kidney disease exacerbates the actual
case of EPTB (67, 68). A case was reported in which
immunosuppressant therapy given for SLE in a patient
coinfected with disseminated TB led to respiratory failure (69).
Meningitis TB treatment is challenging because of the poor
penetration of drugs (e.g., rifampin and streptomycin) into the
CSF due to the impervious blood–brain barrier (70). EPTB is
curable with ATT drugs only to an extent and may result in
several complications; for example, patients on ATT treatment
may develop acute kidney injuries and increase the risk for
nephrotoxicity neuropathy and CNS toxicity (71–73). EPTB
treatment also has some exclusion criterion; i.e., chemotherapy
is detrimental during the first trimester of pregnancy as it
prompts pregnancy termination. Specific adjuvant therapy,
chemotherapy, and major surgery are suggested in some
uncommon types of EPTB to avoid the complications of TB
dissemination (Figure 2). Chemotherapy is required for
genitourinary TB with surgery being substantial and reconstructive
surgery required to repair the ureteral strictures (3).

The treatment of FGTB faces formidable challenges from
coinfection (HIV, etc.); drug toxicity; obstetric, perioperative,
and postoperative complications; reactivation; and emergence of
drug-resistant bacteria (Figure 2). FGTB and HIV coinfection
make the most deadly combination and is the leading cause of
maternal mortality. Moreover, reactivation of bacilli has been
observed in FGTB and HIV coinfection (12). HIV-induced
immunosuppression in FGTB patients may also cause PID (74).
ATT drugs can cause several complications in FGTB (41). Stem
cells, nanotechnology, and colostrum are being used as a
Frontiers in Immunology | www.frontiersin.org 5158
regenerative therapy to treat damaged endometrium, fallopian
tubes, and ovaries (41). Vitamin D plays a crucial role in the
treatment of FGTB (75). The use of steroids and immunotherapy
is observed to a large extent among infertile patients and leads to
resurgence of M. tuberculosis (76). Surgery in FGTB is performed
as an adjunctive therapy during persistent or recurrent infection,
the presence of nonhealing fistulae, and for multi-drug-resistant
TB; however, reactivation of bacilli has been observed during
surgery and has been detected after hysterosalpingography,
laparoscopy, hysteroscopy, and laparotomy (77). Obstetric
complications, such as preterm labor, increased rate of
abortions, and neonatal mortality is high in FGTB. Perioperative
complications, such as extreme hemorrhage with huge risk of
damage to the pelvic and abdominal organs and the bowel, have
been discerned during laparotomy (41). FGTB with pervasive
adhesions in the uterus and blocked tubes and pelvis is not
treatable even after successful treatment (41). Hysteroscopy is
used to diagnose the adhesions and Asherman syndrome (78);
however, it is associated with several complications in FGTB, such
as, inability to visualize the cavity, excessive bleeding, perforation,
bowel injury, peritonitis, and flare-up of genital TB (51, 79).
Postoperative complications, such as bowel fistula and mortality
rate are high in FGTB. Repeated invasive measures are required
after ATT treatment for proper prognosis for fertility. The
conception rate after ATT is only 12.8%, and the outcome of
pregnancy could still be a live birth, spontaneous abortion, or
ectopic pregnancy (80, 81). Furthermore, if patients are considered
cured, their chances of pregnancy drop due to the irreversible
damage of the fallopian tube and endometrium. Moreover, FGTB,
if not properly treated, can cause permanent sterility through
endometrial destruction and tubal damage (41). In vitro
fertilization (IVF) is considered to be the successful modality for
pregnancy in FGTB patients; however, a pregnancy rate of only
17.3% is observed even after successful treatment (82, 83).

The emergence of drug resistance among EPTB, particularly
FGTB patients, is on the rise, and it poses a further threat to TB
control. EPTB patients have a higher proportion of drug resistance
compared to PTB patients (84). Furthermore, a high proportion of
drug resistance is witnessed among the treatment failure cases of
EPTB (52.7%) and PTB (48.1%) (85). The emergence of a multi-
drug-resistant strain has been reported in FGTB (57). Engineered
bacteriophages (Muddy, BPs33DHTH-HRM10, and ZoeJD45) are
used as an adjunctive therapy against drug-resistant disseminated
Mycobacterium abscessus (86). Antitubercular peptides, such as
cathelicidins, defensins, granulysin, and hepcidin, are developed as
novel TB therapeutics against drug-resistant TB (87).
GENITAL TUBERCULOSIS: ADEPTNESS
IN IMMUNE MODULATION

Various molecules that are essential for implantation are being
identified as potential players of uterine receptivity, such as growth
factors, i.e., VEGF; cytokines, i.e., leukemia inhibitory factor (LIF)
(88, 89); and cell adhesion molecules, i.e., CDH1 (E cadherin),
October 2020 | Volume 11 | Article 02161
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FIGURE 2 | Treatment challenges and remedies for EPTB, in particular, FGTB. Various comorbidity challenges associated with EPTB
comorbid condition depending on the severity of immunosuppression associated with these diseases. Coadministration of drugs resu
the body, which can further exacerbate the condition. EPTB misdiagnosis and subsequent mistreatment suppress the immune system
other organs (example genital organs) and exacerbation. Differential diagnosis in FGTB leads to erroneous surgical procedures, which
disposition and accretion challenges. The unusual positioning of infected organs in EPTB illustrate treatment challenges, especially in m
inaccessibility of organs in FGTB, surgical interventions are required to avoid dissemination of M. tuberculosis; however, several periop
procedures and mistreatment lead to obstetric and postoperative complications. Stem cell therapy, chemotherapy, vitamin D therapy,
is known to be effective in EPTB, and engineered bacteriophages and antitubercular peptides are used for drug-resistant TB.
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ITGAVB3 (avb3), MUC-1 (Mucin-1), and MECA79, as well as
hormones expressed during implantation (90, 91) (Figure 3). FGTB
infection is found to alter the endometrial milieu and, thus, the UR,
by causing immune modulation, endocrine disruption, activation of
antiphospholipids antibodies, and microthrombosis, which leads to
RIF, a major cause of infertility (92). FGTB significantly alters the
level of ITGAVB3, MECA79, CDH1, MUC-1, and VEGF, leading
to RIF (90). ITGAVB3 is essential for implantation, and its
expression is reduced in both FGTB and unexplained recurrent
pregnancy loss (90, 91). Additionally, an aberrant (reduced)
expression of LIF has been reported in the endometrium in
FGTB. The concentration of LIF is higher in fertile women
compared to infertile females (93). LIF can activate signal
transducers and activators of transcription 3 (STAT3) through a
signaling cascade mechanism, which regulates UR and is further
required for the transcription of VEGF, an angiogenic factor whose
role during pregnancy is well studied (88, 90, 94, 95). FGTB lowers
VEGF expression; thus creating an unfavorable environment for
embryonic implantation (90). On the contrary, high VEGF levels
Frontiers in Immunology | www.frontiersin.org 7160
contribute to the pathogenesis of EPTB; therefore, anti-VEGF
agents are used in TB to prevent bacterial dissemination (96, 97).
TB bacilli show an antigonadotropic effect in FGTB, impeding the
production of progesterone and human chorionic gonadotropin
(98). In FGTB, luteinizing hormone (LH) and follicle stimulating
hormone (FSH) levels are high, and inhibin levels are very low (99).
Inhibin is considered to be a more sensitive marker of ovarian
reserve in FGTB compared to FSH (99, 100). Latent FGTB not only
interferes with implantation in the basal endometrial layer, but also
lowers the level of two ovarian markers, i.e., antimullerian hormone
and antral follicle count (101). Furthermore, it has been observed
that FGTB lowers the oocyte yield and the ovarian reserve (101).

Cytokine production differs in PTB and EPTB patients; females
with normal pregnancy have been observed to have Th2-type
cytokine milieu, whereas there has been shown to be an increased
production of Th1-type cytokines in unexplained recurrent
abortions (102, 103). The inflammatory environment in the
endometrium prompts the preponderance of adverse cytokines
and antibodies of the Th1 repertoire, making it nonreceptive to
FIGURE 3 | FGTB: Immune dysregulation compromises female fertility. The impact of FGTB on female fertility is depicted. FGTB adversely affects uterine receptivity
through immune dysregulation. Various cell adhesion molecules, growth factors, glycoproteins, and cytokines mentioned here are potential biomarkers of uterine
receptivity and for successful placentation. FGTB lowers the level of CDH1, MUC1, MECA79, and ITGAVB3, leading to recurrent implantation failure. Similarly, FGTB
pares down the levels of VEGF and LIF, which are required for successful placentation, thus creating an unfavorable environment for embryonic implantation.
Glycoproteins and cytokines are also required for embryonic development. FGTB also affects embryonic development through upregulating proinflammatory cytokine
expression and antiphospholipid antibodies as well as by lowering anti-inflammatory cytokine expression and ovarian reserve markers, such as the antimullerian hormone.
October 2020 | Volume 11 | Article 02161
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the embryo, thereby causing an implantation failure (92). However,
T regulatory cells, a subset of CD4+ T cells limit the adaptive
immune response and contribute to the persistence of chronic
infection. Immune dysregulation has been reported in patients who
have a past or present history of EPTB as observed by an increased
production of T regulatory cells, high levels of IL-17, and
CD4+ lymphocyte activation (104, 105).
NRS AND FGTB: POTENTIAL MARKERS
AND DRUG TARGETS

This review aims to accentuate three major points: (i) the diagnostic
and treatment challenges of EPTB, particularly FGTB; (ii) the need
for new therapeutics and diagnostics of EPTB, particularly FGTB;
and (iii) the demand for FGTB biomarkers as a point-of-care
diagnostic. NRs appear to be major potential therapeutic targets
owing to their roles being reported as both pro-TB and anti-TB
Frontiers in Immunology | www.frontiersin.org 8161
(Figure 4). NRs are ligand-activated transcriptional factors that act
as molecular switches and can govern many physiological processes,
such as metabolism, reproduction, and development. The
superfamily of NRs shares a common structure containing an
amino terminal domain, a conserved DNA-binding domain
(DBD), a hinge region, and a ligand-binding domain (LBD) at
the carboxy terminal. The amino terminal domain includes the
activator function-1 region (AF-1), which interacts with several
coregulatory proteins and is also a site for various posttranslational
modification. The DBD is conserved and has two subdomains (for
DNA binding and receptor dimerization), each containing 4
cysteine residues that coordinate with a zinc ion to form zinc
finger motif. The hinge region consists of a nuclear localization
signal, and the LBD harbors another activation function domain
(AF-2) that can interact directly with coregulator proteins (106).
NRs can exist as monomer, homodimer, and heterodimer that
recognize a specific DNA sequence on the target genes known as
response elements. NRs are classified into three categories based on
FIGURE 4 | NRs are potential therapeutic targets and markers. NRs have many roles in TB, which makes them potential therapeutic targets for combating FGTB.
NRs have been reported in female fertility; for example PR, VDR, COUP-TF, PPARs, SF-1, and LXR are essential for maintaining uterine receptivity through
successful placentation and embryonic development. NRs such as COUP-TF, VDR, ERb, and PPARs play an important role in differentiation of ovarian cells and
angiogenesis. NRs such as PR, ERb, PPARs, LRH1, and AR are reported in endometrium maintenance. NRs are also good immuno-modulators that may act either
directly to combat the compromised tissue’s regenerative capacity or indirectly via CM to repair damaged tissues. NRs such as AR, Rev-erb, TRa, FXR, and CAR
are reported for tissue regeneration, whereas PPARs, Rev-erba, Nurr77, Nurr1, PXR, FXR, RORa, and LXR are known to modulate different cytokines’ milieu.
Additionally, NRs enhance the self-renewing and differentiation capacity of transcription factors through direct modulation. NRs should be considered as TB
biomarkers owing to their reported roles in both therapeutics and pathogenesis. NRs such as TR4, PPARg, and PXR are considered as host cohorts in
M. tuberculosis survival. Conversely, NRs such as VDR, LXR, and Rev-erba are considered as good host combatants for M. tuberculosis clearance.
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the ligand variability: class I constitutes the endocrine receptors,
class II includes orphan receptors, and class III comprises adopted
orphan receptors. The endocrine receptors recognize steroid
molecules and vitamins as their ligands and possess a high
affinity toward them. The orphan receptors are those for which
no endogenous ligand has been deciphered, and the adopted
orphans are those whose ligands have been recently identified,
and they bind to low-affinity dietary lipids. As various biological
processes are regulated by NRs, pharmacological inhibition or
dysregulation of them can lead to various diseases, including
cancer, metabolic disorders, infertility, and neurodegeneration.
They also play a significant role in infectious disease biology as
many pathogens, for their own advantage, can modulate NRs either
by interfering with their transcriptional activity or by changing their
function. NRs have been studied in macrophage response to
infectious disease, which also shows the potential role of NRs in
combating infectious disease (107). Our earlier studies show a
heterologous and noncanonical ligand receptor pairing, which
clearly demonstrates that M. tuberculosis engage NRs (108–110).
NRs, such as testicular receptor (TR4), peroxisome proliferator
activated receptor (PPARg), and pregnane X receptor (PXR),
enhance M. tuberculosis survival by subverting the host innate
immune defense mechanism and may increase the risk of
dissemination (108, 109, 111). Our group has shown that M.
tuberculosis cell wall lipids can crosstalk with NRs, such as
PPARg, TR4, and PXR. These NRs are involved in the formation
of lipid-enriched foamy macrophages inside the host cell, which
further enhances M. tuberculosis survival and subverts the immune
response by abrogating the phagolysosomal fusion, inhibiting the
secretion of proinflammatory cytokines and abating apoptosis.
Furthermore, our group also reports that PXR causes TB drug
nonresponsiveness in human macrophages by virtue of modulating
drug efflux transporters (111). It has been observed that knockout of
PPARg in a mouse model reduces the growth of M. tuberculosis,
lowers granulomatous infiltration, and enhances secretion of the
proinflammatory cytokines (112). Moreover, NRs, such as vitamin
D receptor (VDR) (113), Rev-erba (114), and liver X receptor
(LXR) (115), help with M. tuberculosis clearance. Interestingly,
EPTB patients with multidrug-resistant TB have lower vitamin D
levels (116). TR4 is identified as a marker for early TB detection in
rhesus macaques, demonstrating that NRs are likely to make good
biomarkers for TB (117). The expression level of TR4 is linked with
severity of disease progression in the PBMCs of M. tuberculosis–
infected rhesus macaques. Correspondingly, NRs can be modulated
by small molecules, which allows them to be a potential therapeutic
drug target. NRs also may have a role in EPTB, particularly FGTB
which needs to be addressed further.

The three chief challenges pertaining to FGTB are UR, ER,
and CM. These three factors are required for maintaining female
fertility; their dysregulation, either directly or indirectly, leads to
fertility issues. FGTB, either directly or indirectly, modulates UR
and ER or CM, respectively; thereby, causing RIF. As mentioned
before, NRs also play multifarious roles in female reproduction
and in sustaining viable pregnancies (Table 3). Any
perturbations in the expression of NRs could lead to
spontaneous abortions. NRs, such as liver receptor homolog 1
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(LRH1), retinoic acid receptor (RAR), chicken ovalbumin
upstream promoter (COUP-TFII), steroidogenic factor (SF-1),
androgen receptor (AR), LXR, VDR, progesterone receptor (PR),
estrogen receptor (ERb), and PPARs have been reported for
successful uterine implantation and endometrium maintenance.
VDR has also been reported to be important for the
differentiation of granulosa cells. The NR LRH1 is reported to
be important for mouse fertility (118), ovulation, and ovarian
steroidogenesis (119, 120). RAR is involved in early embryonic
development (121). COUP-TFII is required for placental
development and angiogenesis (122, 123). SF-1 is reported for
folliculogenesis and in the process of ovulation with its absence
in granulosa cells leading to impaired ovulation (124, 125). AR
signaling is essential for endometrial function, whereas its
perturbation leads to reproductive failure (126). LXR
modulates ovarian endocrine and exocrine function and uterus
contractility (127). VDR expression increases during pregnancy
and helps with reproductive function (128). Vitamin D has roles
in folliculogenesis, differentiation, luteinization, and
steroidogenesis as well as altering antimullerian hormone
signaling and progesterone production (129). Vitamin D
deficiency in pregnancy increases the fortuity of preterm birth
and preeclampsia (130, 131). PR signaling is essential for the
initiation and maintenance of pregnancy (132). ERb is essential
for maintaining the endometrium quiescence and vasculature
(133). PPARs are essential for trophoblast invasion,
decidualization, tissue remodeling, ovarian function, and
placental formation (134–136). Additionally, circadian rhythm
disturbance is reported to affect female fertility (137). Rev-erb is a
circadian NR, which maintains the circadian rhythm (138) and
may have a role in female fertility. Because NRs play crucial roles
in female reproduction, they could make good therapeutic
targets to combat female infertility.

RIF occurs due to compromised ER capacity; therefore, stem
cell therapy for ER could be helpful. Many NRs have gained
TABLE 3 | Role of Nuclear receptors in female reproduction.

Nuclear
Receptors

Functions in Female Reproduction

LRH1 Essential for ovarian steroidogenesis and ovulation
PR Implantation, decidualization, and preventing endometriosis
ERa Endometriosis progression
ERb Maintenance of endometrium quiescence and vasculature
SF-1 Development of reproductive tissue, ovulation, and

folliculogenesis
VDR Differentiation of granulosa cells, folliculogenesis, luteinization,

and steroidogenesis
PPARa Proliferation and differentiation of ovarian cells
PPARb Implantation and decidualization
PPARg Trophoblast invasion and placental formation, decidualization,

and preventing endometriosis
AR Maintenance of endometrium physiology
RAR Embryonic development, growth, and reproduction
Rev-erb Regulating the circadian rhythm
COUP-TFII Placental development and angiogenesis
LXR Control ovarian endocrine and exocrine function and uterine

contractility
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attention in stem cell biology (139–142); estrogen receptor
(ERa), PR, and PPARg are all implicated in endometriosis
(143–146); and AR, thyroid receptor (TR), farnesoid X
receptor (FXR), Rev-erb, and constitutive androstane receptor
(CAR) are reported in tissue regeneration (147–152). Female
fertility is compromised due to endometriosis. NRs are known to
modulate endometriosis; for example, loss of PR expression leads
to endometriotic tissue becoming resistant to progesterone,
leading to endometriosis (146). PR helps to relieve pain in
endometriosis by limiting inflammation and the growth of
endometriotic tissue PPARs and retinoid X receptor alpha are
expressed in abortive trophoblastic tissue and are upregulated in
extra villous trophoblast in recurrent miscarriages (153, 154).

M. tuberculosis modulates various cytokines’ milieu, such as
interferon g (IFNg) and interleukin- (IL2) in the endometrium
and TNFa, IL-6, IL-4, and IL-8 in the blood (155, 156).
Additionally, administration of IFNg, TNFa, and IL-2 is
reported to cause abortions in pregnant mice (102, 157, 158).
Moreover, IL-1b is shown to promote endometriosis
and angiogenesis (159, 160). Conversely, IL-6 and IL-10
are reported to have increased production in normal
pregnancy compared to spontaneous abortion (103). Various
proinflammatory, anti-inflammatory, and pleiotropic NRs, such
as retinoic acid receptor-related orphan receptor, nuclear
receptor related (Nurr) 77, Nurr1, RORa, PXR, FXR, PPARa,
LXR, Rev-erba, and PPARs, are known as immune modulators
as they can modulate different cytokines’ milieu (114, 161–167).
LXR is known to inhibit proinflammatory cytokine expression
and is also responsible for maternal-fetal cholesterol transport;
there is also a reduction in LXR expression in miscarriages (168,
169). Additionally, FGTB modulates pregnancy-related
hormones, such as human chorionic gonadotropin and
progesterone, which are known to function via their cognate
endocrine receptors (98). Taken together, NRs seem to be a
promising target to combat FGTB by addressing the issues of
UR, ER, and CM. Extensive knowledge about the expression and
function of the NRs in FGTB is lacking and needs to
be addressed.

FGTB modulates the localized endometrial immune
repertoire, which has been reported to modulate UR. There are
various reports illustrating the function of the endometrial
immune repertoire in recurrent spontaneous miscarriage (170),
polycystic ovarian syndrome (171), endometriosis (172), and
unexplained infertility (173). Given the reported role of NRs in
the regulation of uterine implantation and CM as well as being
cognate to pregnancy-related hormones, for example, estrogen,
progesterone, human chorionic gonadotropin, and human
placental lactogen, which function via estrogen receptor, PR,
and VDR, respectively (174–178), they are good potential targets
to alleviate the disease. NRs could be excellent host-directed
targets in FGTB as evident from previous reports of NRs in TB.
M. tuberculosis can modulate the expression of NRs by certain
crosstalk with its lipid repertoire. It would be interesting to see
whether M. tuberculosis components interfere or modulate the
interaction of pregnancy-related hormones with their cognate
endocrine receptors. It would be interesting to decipher whether
Frontiers in Immunology | www.frontiersin.org 10163
the M. tuberculosis components also relay their effect through
orphan or adopted orphan receptors.
DISCUSSION

Globally, EPTB and, in particular, FGTB are growing problems
with increasing rates of morbidity and mortality worldwide.
FGTB represents the most perilous form of EPTB and is the
leading cause of infertility and recurrent implantation failure in
females. FGTB cases are asymptomatic in early stages, and
untreated FGTB can cause permanent sterility through
endometrial destruction and tubal damage. FGTB diagnosis is
arduous because of varied clinical presentations, misdiagnosis,
associated comorbidities, arduousness in acquiring of clinical
samples, poor sensitivity, it is often asymptomatic and
paucibacillary, emergence of drug resistance, lack of point of
care, impenetrable sites, and abstruse positioning of the organs.
Likewise, the treatment of FGTB faces formidable challenges due
to drug toxicity; HIV coinfection; obstetric, perioperative, and
postoperative complications; reactivation; and emergence of
drug-resistant bacteria. Our review rolls out the possible
remedies to prevent FGTB by precluding several of these
challenges and also highlights the need for exaction of
biomarkers in FGTB.

It is imperative to understand that FGTB adversely affects UR
and causes immune modulation, which promptly leads to
abortions and also reduces the chances of conception. We
emphasize the imperative mechanism of FGTB-associated
female infertility by highlighting the three major challenges,
i.e., UR, ER, and CM. FGTB adversely affects various
endocrine hormones (progesterone, estrogen, and human
chorionic gonadotropin), cytokines, growth factors (LIF and
VEGF), and cell adhesion molecules (ITGAVB3, MECA79,
CDH1 and MUC-1), which are responsible for the
maintenance of successful pregnancy. We epitomize the need
to identify the molecular switches at the interface of FGTB and
mechanisms associated with female infertility.

Given the above challenges in FGTB, there is an exigent need
to identify FGTB-specific biomarkers from accessible samples.
NRs have been reported as both pro- and anti-TB but have
gained less attention in FGTB. They are reported to modulate
female fertility and stem cell plasticity and are also known as
immune modulators. We attempt to invoke interest in the
exploration of NRs as a novel therapeutic target in FGTB-
associated female infertility and as a potential biomarker. NRs,
which are cognate to pregnancy-related hormones (estrogen,
progesterone, and human chorionic gonadotropin) and have
been cited in female reproduction and regeneration, prompt us
to postulate them as a potential player and target to combat
FGTB-associated female infertility by addressing the issues of
UR, ER, and CM.

The topic is of immediate importance because of the abrupt
increase in disease severity, drug resistance, and lack of a
knowledge base of the major diagnostic and treatment
challenges, which leads to exacerbation in FGTB. Although a
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large number of biosignatures and mechanisms have been
reported in FGTB, there is a paucity of specific targets and
biomarkers. Our review provides the conceptual advance; it
postulates the role of NRs as a potential target and biomarker
in FGTB. The description is comprehensive and is factual.
Fostering innovative research is required to (i) develop highly
permeable, safe, and nontoxic drugs with a novel mechanism of
action and target; (ii) identify biomarkers and point-of-care
diagnostics; and (iii) develop a strategy to shorten the treatment
regimens and reduce treatment-related functional disability.
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50. Efared B, Sidibé IS, Erregad F, Hammas N, Chbani L, El Fatemi H. Female
genital tuberculosis: a clinicopathological report of 13 cases. J Surg Case Rep
(2019) 3:rjz083. doi: 10.1093/jscr/rjz083
Frontiers in Immunology | www.frontiersin.org 12165
51. Sharma JB, Roy KK, Pushparaj M, Karmakar D, Kumar S, Singh N.
Increased Difficulties and Complications Encountered During
Hysteroscopy in Women with Genital Tuberculosis. J Minim Invasive
Gynecol (2011) 18:660–5. doi: 10.1016/j.jmig.2011.05.008

52. Grace GA, Devaleenal DB, Natrajan M. Genital tuberculosis in females.
Indian J Med Res (2017) 145:425–36. doi: 10.4103/ijmr.IJMR_1550_15

53. Neonakis IK, Spandidos DA, Petinaki E. Female genital tuberculosis: A
review. Scand J Infect Dis (2011) 43:564–72. doi: 10.3109/00365548.
2011.568523

54. Sah SK, Shi X, Du S, Li X, Li CH, Shah S, et al. CT findings and analysis for
misdiagnosis of female pelvic tuberculosis. Radiol Infect Dis (2017) 4:19–25.
doi: 10.1016/j.jrid.2016.04.001

55. Sharma S, Dutta S, Yadav A,K, Mandal A. A Rare Case of Cervical
Tuberculosis Masquerading as Carcinoma Cervix. Ann Woman Child
Health (2016) 2:C20–3.

56. Gupta B, Shree S, Rajaram S, Goel N. Genital tuberculosis: Unusual
presentations. Int J Mycobacteriol (2016) 5:357–9. doi: 10.1016/j.ijmyco.
2016.06.017

57. Sharma JB, Kriplani A, Sharma E, Sharma S, Dharmendra S, Kumar S, et al.
Multi drug resistant female genital tuberculosis: A preliminary report. Eur J
Obstet Gynecol Reprod Biol (2017) 210:108–15. doi: 10.1016/j.ejogrb.
2016.12.009

58. Bhanothu V, Theophilus JP, Rozati R. Use of Endo-Ovarian Tissue Biopsy
and Pelvic Aspirated Fluid for the Diagnosis of Female Genital Tuberculosis
by Conventional versus Molecular Methods. PloS One (2014) 9:e98005.
doi: 10.1371/journal.pone.0098005

59. Yousef AI, Ismael MF, Elshora AE, Abdou HE. Pulmonary tuberculosis in
patients with chronic renal failure at Zagazig University Hospitals. Egypt J
Chest Dis Tuberc (2014) 63:187–92. doi: 10.1016/j.ejcdt.2013.11.002

60. Gurumurthy P, Ramachandran G, Kumar AKH, Rajasekaran S,
Padmapriyadarsini C, Swaminathan S, et al. Malabsorption of Rifampin
and Isoniazid in HIV-Infected Patients With and Without Tuberculosis.
Clin Infect Dis (2004) 38:280–3. doi: 10.1086/380795

61. Rajasekaran S, Khandelwal G. Drug therapy in spinal tuberculosis. Eur Spine
J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc
(2013) 22 Suppl 4:587–93. doi: 10.1007/s00586-012-2337-5

62. Sharma P, Tyagi P, Singla V, Bansal N, Kumar A, Arora A. Clinical and
biochemical profile of tuberculosis in patients with liver cirrhosis. J Clin Exp
Hepatol (2015) 5:8—13. doi: 10.1016/j.jceh.2015.01.003

63. Jullien S, Jain S, Ryan H, Ahuja V. Six-month therapy for abdominal
tuberculosis. Cochrane Database Syst Rev (2016) 11:CD012163.
doi: 10.1002/14651858.CD012163.pub2

64. Scharer L, JP S. Serum Transaminase Elevations and Other Hepatic
Abnormalities in Patients Receiving Isoniazid. Ann Intern Med (1969)
71:1113–20. doi: 10.7326/0003-4819-71-6-1113

65. Mitchell JR, Zimmerman HJ, Ishak KG, Thorgeirsson UP, Timbrell JA,
Snodgrass WR, et al. Isoniazid Liver Injury: Clinical Spectrum, Pathology,
and Probable Pathogenesis. Ann Intern Med (1976) 84:181–92. doi: 10.7326/
0003-4819-84-2-181

66. Ramappa V, Aithal GP. Hepatotoxicity Related to Anti-tuberculosis Drugs:
Mechanisms and Management. J Clin Exp Hepatol (2013) 3:37–49.
doi: 10.1016/j.jceh.2012.12.001

67. Amedia C, Oettinger C. Unusual presentation of tuberculosis in chronic
hemodialysis patients. Clin Nephrol (1977) 8:363–6.

68. Milburn H, Ashman N, Davies P, Doffman S, Drobniewski F, Khoo S, et al.
Guidelines for the prevention and management of Mycobacterium
tuberculosis infection and disease in adult patients with chronic kidney
disease. Thorax (2010) 65:557–70. doi: 10.1136/thx.2009.133173

69. Chen D, Yang Z, Yang Y, Zhan Z, Yang X. A Rare Case of Disseminated
Tuberculosis of the Bone Marrow in Systemic Lupus Erythematosus: Case
Report. Med (Baltimore) (2016) 95:e3552–2. doi: 10.1097/MD.0000000
000003552

70. Nau R, Sörgel F, Eiffert H. Penetration of Drugs through the Blood-
Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central
Nervous System Infections. Clin Microbiol Rev (2010) 23:858–83.
doi: 10.1128/CMR.00007-10

71. Chang C-H, Chen Y-F, Wu V-C, Shu C-C, Lee C-H, Wang J-Y, et al. Acute
kidney injury due to anti-tuberculosis drugs: a five-year experience in an
October 2020 | Volume 11 | Article 02161

https://doi.org/10.1371/journal.pone.0026938
https://doi.org/10.1371/journal.pone.0026938
https://doi.org/10.3389/fimmu.2019.00527
https://doi.org/10.1038/s41467-018-07635-7
https://doi.org/10.1016/S1473-3099(18)30111-7
https://doi.org/10.1172/jci.insight.87238
https://doi.org/10.1038/s41564-019-0380-2
https://doi.org/10.1038/s41564-019-0380-2
https://doi.org/10.1007/s15010-014-0602-8
https://doi.org/10.1128/CVI.00038-13
https://doi.org/10.1128/CVI.00038-13
https://doi.org/10.1016/j.rmcr.2018.09.005
https://doi.org/10.1155/2012/215293
https://doi.org/10.3748/wjg.v23.i34.6306
https://doi.org/10.1007/s13224-015-0780-z
https://doi.org/10.1007/s13224-015-0780-z
https://doi.org/10.12659/ajcr.900762
https://doi.org/10.1056/NEJM194608222350801
https://doi.org/10.1056/NEJM194608222350801
https://doi.org/10.1016/j.jctube.2016.03.003
https://doi.org/10.1016/j.jctube.2016.03.003
https://doi.org/10.1080/00365540310016961
https://doi.org/10.1159/000474841
https://doi.org/10.1016/j.ijgo.2012.02.020
https://doi.org/10.1016/j.ijgo.2012.02.020
https://doi.org/10.1016/j.ijgo.2010.10.021
https://doi.org/10.1016/j.ijgo.2010.10.021
https://doi.org/10.4103/0255-0857.188323
https://doi.org/10.1093/jscr/rjz083
https://doi.org/10.1016/j.jmig.2011.05.008
https://doi.org/10.4103/ijmr.IJMR_1550_15
https://doi.org/10.3109/00365548.2011.568523
https://doi.org/10.3109/00365548.2011.568523
https://doi.org/10.1016/j.jrid.2016.04.001
https://doi.org/10.1016/j.ijmyco.2016.06.017
https://doi.org/10.1016/j.ijmyco.2016.06.017
https://doi.org/10.1016/j.ejogrb.2016.12.009
https://doi.org/10.1016/j.ejogrb.2016.12.009
https://doi.org/10.1371/journal.pone.0098005
https://doi.org/10.1016/j.ejcdt.2013.11.002
https://doi.org/10.1086/380795
https://doi.org/10.1007/s00586-012-2337-5
https://doi.org/10.1016/j.jceh.2015.01.003
https://doi.org/10.1002/14651858.CD012163.pub2
https://doi.org/10.7326/0003-4819-71-6-1113
https://doi.org/10.7326/0003-4819-84-2-181
https://doi.org/10.7326/0003-4819-84-2-181
https://doi.org/10.1016/j.jceh.2012.12.001
https://doi.org/10.1136/thx.2009.133173
https://doi.org/10.1097/MD.0000000000003552
https://doi.org/10.1097/MD.0000000000003552
https://doi.org/10.1128/CMR.00007-10
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gupta and Gupta Role of Nuclear Receptors in FGTB
aging population. BMC Infect Dis (2014) 14:23–3. doi: 10.1186/1471-2334-
14-23

72. Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J
Nephrol Renov Dis (2014) 7:457–68. doi: 10.2147/IJNRD.S39747

73. Beebe A, Seaworth B, Patil N. Rifampicin-induced nephrotoxicity in a
tuberculosis patient. J Clin Tuberc Mycobact Dis (2015) 1:13–5.
doi: 10.1016/j.jctube.2015.09.001

74. Ilmer M, Bergauer F, Friese K, Mylonas I. Genital Tuberculosis as the Cause
of Tuboovarian Abscess in an Immunosuppressed Patient. Infect Dis Obstet
Gynecol (2010) 2009:745060. doi: 10.1155/2009/745060

75. Gautam S, Jain A, Akhtar S, Priyadarshini A, Jaiswar SP. Serum Vitamin D
Level as a Risk Factor for Female Genital Tuberculosis (FGTB). J Clin Diagn
Res (2017) 11:DC18–DC20. doi: 10.7860/JCDR/2017/30084.10636

76. Mahajan N, Naidu P, Kaur S. Insight into the diagnosis and management of
subclinical genital tuberculosis in women with infertility. J Hum Reprod Sci
(2016) 9:135–44. doi: 10.4103/0974-1208.192043

77. Ballon SC, Clewell WH, Lamb EJ. Reactivation of silent pelvic tuberculosis
by reconstructive tubal surgery. Am J Obstet Gynecol (1975) 122:991.
doi: 10.1016/0002-9378(75)90363-4

78. Sharma J, Roy K, Pushparaj M, Gupta N, Jain S, Malhotra N, et al. Genital
tuberculosis: An important cause of Asherman’s syndrome in India. Arch
Gynecol Obstet (2008) 277:37–41. doi: 10.1007/s00404-007-0419-0

79. Sharma JB, Mohanraj P, Jain SK, Roy KK. Increased complication rates in
vaginal hysterectomy in genital tuberculosis. Arch Gynecol Obstet (2011)
283:831–5. doi: 10.1007/s00404-010-1463-8

80. Al eryani AA, Abdelrub AS, Al Harazi AH. Genital tuberculosis is common
among females with tubal factor infertility: Observational study. Alex J Med
(2015) 51:321–4. doi: 10.1016/j.ajme.2014.11.004

81. Kulshrestha V, Kriplani A, Agarwal N, Singh UB, Rana T. Genital
tuberculosis among infertile women and fertility outcome after
antitubercular therapy. Int J Gynecol Obstet (2011) 113:229–34.
doi: 10.1016/j.ijgo.2010.12.014

82. Jindal UN, Verma S, Bala Y. Favorable infertility outcomes following anti-
tubercular treatment prescribed on the sole basis of a positive polymerase
chain reaction test for endometrial tuberculosis. Hum Reprod (2012)
27:1368–74. doi: 10.1093/humrep/des076

83. Sharma JB, Sharma E, Sharma S, Dharmendra S. Female genital tuberculosis:
Revisited. Indian J Med Res (2018) 148:S71–83. doi: 10.4103/ijmr.
IJMR_648_18

84. Pang Y, An J, Shu W, Huo F, Chu N, Gao M, et al. Epidemiology of
Extrapulmonary Tuberculosis among Inpatients, China, 2008–2017. Emerg
Infect Dis J (2019) 25:457–64. doi: 10.3201/eid2503.180572

85. Sethi S, Biswal M, Chatterjee S, Mewara A, Gupta D, Kumar S, et al.
Susceptibility pattern among pulmonary and extrapulmonary isolates of
Mycobacterium tuberculosis in north India. Afr J Microbiol Res (2012)
6:3696–9. doi: 10.5897/AJMR12.195.

86. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K,
Harris K, et al. Engineered bacteriophages for treatment of a patient with a
disseminated drug-resistant Mycobacterium abscessus. Nat Med (2019)
25:730–3. doi: 10.1038/s41591-019-0437-z

87. Khusro A, Aarti C, Agastian P. Anti-tubercular peptides: A quest of future
therapeutic weapon to combat tuberculosis. Asian Pac J Trop Med (2016)
9:1023–34. doi: 10.1016/j.apjtm.2016.09.005

88. Vuorela P, Carpén O, Tulppala M, Halmesmäki E. VEGF. its receptors and
the Tie receptors in recurrent miscarriage. Mol Hum Reprod (2000) 6:276–
82. doi: 10.1093/molehr/6.3.276

89. Marwood M, Visser K, Salamonsen LA, Dimitriadis E. Interleukin-11 and
Leukemia Inhibitory Factor Regulate the Adhesion of Endometrial Epithelial
Cells: Implications in Fertility Regulation. Endocrinology (2009) 150:2915–
23. doi: 10.1210/en.2008-1538

90. Subramani E, Madogwe E, Ray CD, Dutta SK, Chakravarty B, Bordignon V,
et al. Dysregulated leukemia inhibitory factor and its receptor regulated
signal transducers and activators of transcription 3 pathway: a possible cause
for repeated implantation failure in women with dormant genital
tuberculosis? Fertil Steril (2016) 105:1076—1084. doi: 10.1016/
j.fertnstert.2015.12.015
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