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Editorial on the Research Topic

Curriculum Applications in Microbiology: Bioinformatics in the Classroom

John Naisbitt stated in his 1982 book Megatrends, “We are drowning in information but starved
for knowledge.” The statement, made nearly 40 years ago, seems acutely applicable in today’s
scientific and academic world. Reviews by Barba et al. and van Dijk et al., provide a nice historical
perspective on the growth of sequencing technology. Over three decades, sequencing technology
has improved greatly from 1987 when the first ABI automated sequencing machine went to market
up through the mid 2010s when next generation sequencing platforms from 454 Life Sciences,
Illumina and other companies were outputting up to 1,800 Gb per run (Barba et al., 2014; van Dijk
et al., 2014). Technology has since progressed even further with the development of long-read and
single molecule (Pacific Biosciences, Illumina, Oxford Nanopore, and 10X Genomics) sequencing
systems that can output terabytes of data, per run, in a matter of days (van Dijk et al., 2018).
Specifically, in the areas of genomics, proteomics, and transcriptomics, we are now producing
upwards of 1 zetta-bases/year (Stephens et al., 2015). The explosion of data has increased the
demand for hardware and software development tomanage and analyze the data as well as qualified
personnel in bioinformatics to sift through the outputs to draw meaningful conclusions. A report
from Reports and Data states the global bioinformatics market is projected to reach 18.96 billion
USD by 2026 (Reports and Data, 2019) and this means re-thinking not only how we store data
but how we train the next generation of scientists. The greatest needs identified in various surveys
compiled by the NSF, ELIXIR-UK, and EMBL-ABR include: (i) data quality and control (ii) data
analysis skills in visualization and interpretation, (iii) data mining, manipulation andmanagement,
(iv) analysis reproducibility, and (v) statistics (Kanwal et al., 2017; Kim et al., 2018; Attwood et al.,
2019).

The large quantity of data available for analysis in many scientific fields is both a strength
and a weakness in bioinformatic analysis. There are several databases and repositories available
to acquire sequence data (INSDC: ENA+DNA Data bank of Japan and Genbank SRA, GISAID)
and it is essential to know that not all data may be handled the same way. This variability in
the quality of data that is released to scientists and the public at large can result in low quality
data being analyzed and potentially spurious conclusions. A prime example can be seen in the
current pandemic where SARS-CoV-2 sequences can be obtained from several different databases
and analyzed in real-time. In the haste to make genomes available, the quality of what is released
has been variable with challenges in consistent nomenclature (Gozashti and Corbett-Detig, 2021),
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and genomes containing errors created by sequencing
artifacts, sample preparation, consensus calling approaches,
or contamination (De Maio et al., 2020a,b; Van Noorden, 2021).
Analysis of these genomes, even among experts, can lead to
data misinterpretation, over-interpretation, and confusion
on important topics such as SARS-CoV-2 origins (Andersen
et al., 2020; Zhang et al., 2020; Wacharapluesadee et al., 2021).
However, it is important to recognize these challenges to big data
quality control, management, analysis, and reproducibility are
not unique to SARS-CoV-2 but are systemic in many subfields
of bioinformatics such as microbiome analysis (Katsnelson,
2019), metatranscriptomics (Shakya et al., 2019), and RNA-seq
(Simoneau et al., 2021) analysis.

Recognition of these short-comings of big data acquisition,
quality control, reproducibility, management, and analysis across
bioinformatics disciplines have led to improvements in next
generation sequencing workflows and quality control (Charre
et al., 2020; De Maio et al., 2020b; Van Damme et al., 2021),
efforts to use provenance, github, and docker containers to
facilitate reproducibility (Kanwal et al., 2017; Kulkarni et al.,
2018; Menegidio et al., 2018; Bolyen et al., 2019; Wercelens et al.,
2019), nomenclature clarification (Rambaut et al., 2020, 2021), an
increased emphasis on workflow automation (Reiter et al., 2021),
and database curation and consolidation (Heard et al., 2021). As
the tools and refinements to how scientists manage and analyze
data continue to move forward, the demand for qualified big data
analysts, statisticians, and bioinformaticians is increasing rapidly
(Gómez-López et al., 2019; Terry, 2019; Tammi et al., 2020).

To address the need for big data management and analytical
skill sets, many university programs have emerged offering
certificates, Master’s degrees and even Ph.D. degrees in the field
of bioinformatics. The most recent guidance on bioinformatics
core competencies has highlighted the importance of developing
informatics skill sets early in the undergraduate curriculum
(Welch et al., 2014; Vincent and Charette, 2015; Mulder
et al., 2018; Wilson Sayres et al., 2018; Tractenberg et al.,
2019). However, few curricula at the undergraduate level
introduce big data analytics and bioinformatics systematically
and many students graduate without a full understanding
of what bioinformatics is or how it can be used to solve
biological problems.

Several bioinformatic disciplines: i.e., metagenomics,
genome construction/annotation, pathogen discovery,
phylogenetics, metabolomics, and transcriptomics, have
well-known workflows that teach valuable skills in data
management, analytics, interpretation, and troubleshooting, but
have yet to be translated to the classroom. Additionally, while
many microbiology instructors recognize the importance
of integrating more research, real-world datasets, and
informatics into the classroom, they feel their training
is inadequate, their curriculum is already over-full, or
students do not appear particularly interested or prepared
for such topics in the course (Williams et al., 2019). For
many instructors, it can be daunting to put together
bioinformatics curriculum modules if you are not familiar
with the software or general topics within bioinformatics that
students can explore.

This Research Topic focuses on bringing both research
and educational communities together; encouraging researchers
to translate their studies and pipelines into teaching tools
and curriculum, and encouraging educators to dive into
messy real-world datasets when teaching microbiology. Much
of the challenge in implementing research or bioinformatics
focused modules in the undergraduate classroom revolves
around implementation. Bennet discusses strategies for blending
your classroom to incorporate undergraduate research and
bioinformatics modules into your curriculum design (CURE).
Bennet takes a “workshop” or “project-based” approach to
introduce the often complicated and challenging topic of RNA-
Seq analysis (Conesa et al., 2016; Bennett) and discusses the long
term outcomes for students experiencing this particular CURE as
well as educational applications.

Another challenge in implementation of bioinformatics
workflows in the classroom is the requirement for background
experience in a variety of topics, both biological and
computational. While many biology instructors are comfortable
introducing and expanding on biological topics related to
research and design, they are less comfortable discussing the
computing aspects of bioinformatic analysis such as coding
languages, data quality control, and data management. Several
papers in the special topic discuss data workflows that utilize
Microsoft Excel (Mitchell et al.; Hankey et al.; Kruchten).
While many individuals working in advanced bioinformatic
analysis may cringe at the idea of excel data analysis and
tables, this program is well-used in classrooms globally and
many instructors are comfortable with implementing data
analysis and mathematical functions in the Excel environment.
Programs such as Excel can provide a bridge between the
user-friendly, GUI-based interfaces and the world of command-
line applications (CLI). Krutchen, in particular, offers a nice
comparison of the use of Excel vs. the R statistical language
when analyzing metagenomic datasets and this may serve as
motivation for instructors to explore other programming and
CLI-based workflows (Kruchten). Topic papers in the methods
category show instructors how to introduce, discuss, and/or
implement coding languages and CLI-based bioinformatics
in their classroom such as python/R for microbiome analysis
(Rosen and Hammrich), basic command line proficiency in
analyzing genome scale data for microbial isolates (Petrie and
Xie), and how to conduct metagenomic analysis using the R
statistical package (Kruchten) or QIIME, which contains its own
language and syntax for implementation (Bolyen et al., 2019;
Rosen and Hammrich).

Additional topic papers contain curricular designs for
introducing and teaching a variety of bioinformatic analysis
skills in the classroom without the need for teaching additional
modules on coding skills. Topic papers discuss gene discovery
and genome annotation using a variety of free web-accessible
programs (Amatore et al.; Koury et al.; Martins et al.),
microbiome analysis using PUMAA (Mitchell et al.), 16S
amplicon identification using DNALC and NCBI-BLAST
databases and the DNA Subway software program (Tawde and
Williams; Williams et al., 2014), metagenomics analysis using
MG-RAST and the MicrobiomeAnalyst program (Meyer et al.,
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2019; Chong et al., 2020; Baker et al.), phage hunting using
PHASTER and iTOL programs (Arndt et al., 2019; Letunic and
Bork, 2019; Martinez-Vaz and Mickelson), and Cancer data
analysis using The Cancer Genome Atlas (TCGA; Hankey et al.).

To account for variable quality of datasets analyzed in
the classroom, special topic studies used already published,
curated, data from the Cancer Genome Atlas or GENI-ACT
toolkit (Hankey et al.; Koury et al.) or pre-curated genomes
for genome prediction exercises rather than raw data from
databases (Martins et al.). Studies that made use of raw
data or minimally curated data utilized embedded quality
assessment tools and discussion modules on data cleanup
within their curriculum methods and workflow (Amatore et al.;
Kruchten; Tawde and Williams; Petrie and Xie; Baker et al.;
Mitchell et al.). However, discussion and training on quality
and data management needs to be ongoing; especially given
data is being reused for educational purposes. Wilkinson and
colleagues proposed the FAIR guiding principles to support the
accessibility, findability, interoperability, and reusability of data
in science (FAIR principles for data stewardship, 2016;Wilkinson
et al., 2016) and there are workshops available on how to
get started with “FAIR data” (https://mdibl.org/course/applied-
bioinformatics-2021/). These principles should be considered
widely in addition to the use of provenance and contained
workflows or containers such as those mentioned earlier. In the
overwhelming world of big data analysis it will be important
for instructors to translate complex analysis techniques to their
novice students; a key challenge is balancing quality and rigor
with simplicity.

Finally the topic papers extend into existing scientific
communities, where skills needed for data analysis are lacking by
a large number of current researchers and professionals tasked to
conduct bioinformatics analysis and interpretation. Therefore,
workshops to educate existing researchers and laboratory
personnel, from the level of graduate student to principal
investigator, have become more frequent. These professional
development and “train the trainer” workshops are attractive
in that they are intensive short term experiences that teach
very specific skill sets related to computational jobs in the field
(McGrath et al., 2019). The Physalia courses (https://www.
physalia-courses.org/), Cold Spring Harbor Laboratory Short
Courses (https://meetings.cshl.edu/courses.html), and various
workshops offered by the Evolution and Genomics training
team (http://evomics.org/workshops/) and the MDI Biological
Laboratory (https://mdibl.org/course/bioinformatics-t3-2021/)
are a few examples of training experiences that undergraduates,
graduates and professional personnel can use to augment their
skill sets in the field of genetic analysis and computational

biology. Internationally, these short term intensive educational
opportunities, putting bioinformatics in the classroom, have
proven useful in bringing staff and personnel up to date on
the latest technologies and analysis capabilities to increase job
performance and institute mission output. The BioCANET
network in Central America (Orozco et al., 2013), Walter Reed
Army Institute of Research (WRAIR) in South America (Pollett
et al., 2016), H3Africa consortium in Africa (Aron et al., 2017;
Ahmed et al., 2018; Shaffer et al., 2019), and APBioNet in
Asia (Khan et al., 2013; Ahmad et al., 2019) are all aimed at
increasing capacity for educational and research institutions
in the areas of data management, systems administration,
biostatistics, genome wide association studies, next generation
sequencing analysis, metagenomics, and virology; and all have
had success using this educational format. Our topic supports
this educational “workshop” format of continued training for
professional personnel through a paper by Maljkovic Berry
et al., on implementation of a bioinformatics workshop for
laboratory and research personnel at a US Department of
Defense laboratory located in Kisumu, Kenya.

Special topic papers detail curriculum set up and
implementation of bioinformatics modules or coding
contain supplemental material to facilitate readers in their
own implementation of the module or curriculum design
in their classroom. We hope to convey through this topic
the versatility of instructional designs that can be used
to teach students at all levels of expertise, from high
school to established professionals, how to leverage the
strength of coding, software, and computational analysis to
accomplish their research goals and further scientific teaching
and discovery.
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INTRODUCTION

Bioinformatics is a field that combines biology and computer science to investigate relevant current
topics such as annotation of the Human Genome Project and other genomes, protein structure and
function, examination of disease processes and personalized medicine, evolutionary relationships
and conservation genetics (as reviewed in Luscombe et al., 2001; Can, 2014). Today it is difficult to
find a published article in biochemistry and molecular biology/microbiology that does not have a
bioinformatics component. Thus, it is important for majors in the life sciences to have exposure
to bioinformatics in the curriculum. A blended course format (Garrison and Kanuka, 2004)
allows for short lectures and hands-on learning in the classroom combined with computer-based
learning outside of the classroom in the form of literature searches, computer tutorials, and
independent research that use information from the course applied to specific projects. The topics
and techniques that students learn will help them navigate the vast amounts of information that
are freely available in databases and inform them about how to manage that data and derive
new information.

Bioinformatics is often a course taught in a workshop/computer lab format and in many
instances a primarily lecture format. Adding a CURE, or Course-based Undergraduate Research
Experience, has many advantages over traditional labs and lectures. CUREs have features of
inquiry-based learning and also allow for participation in a larger project and community of
researchers (Auchincloss et al., 2014). The Bioinformatics course described here incorporates many
of the best teaching practices that have been called upon by numerous professional societies and are
included in the 2011 Vision and Change Report (Brewer and Smith, 2011).

OVERVIEW OF THE BLENDED LEARNING WORKSHOP FORMAT

My upper-level bioinformatics course was taught in the format of a workshop that was designed
to keep students engaged both inside and outside of the classroom. At the beginning of each week
I led the first workshop with what I referred to as a “Bio Byte,” a newsworthy current event in the
field of bioinformatics that was often in the form of a short video clip. Each class incorporated a
mini-lecture of∼10min that described the bioinformatics tool(s) to be used that day, descriptions
about when and why the particular tool should be used and the relevance to society. A guided
demonstration ensued with students practicing the software and later applying it to their gene
of interest, in a self-paced, hands-on experience. In the open lab format at the end of each class,
students could practice the tools and converse with each other to gain additional knowledge in
addition to asking for instructor feedback.
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Beginning with student outcomes in mind, my Bioinformatics
course was created using a backward design approach (Wiggins
and McTighe, 2005). The desired outcomes of the course were
for students to (1) Learn how to use various bioinformatics
techniques, (2) Apply the techniques to answer pertinent research
questions, (3) Explain how bioinformatics is connected to wet-
lab experimentation, and (4) Generate and report novel data.
The blended learning or hybrid format allowed for the majority
of the semester to be taught in two 55-min sessions per week
with additional time to work on the project and assignments that
were posted to the blackboard learning site. It also allowed for
some open computer lab days where students could work and ask
questions. The atmosphere was relaxed for the students and fun
to teach.

A PROJECT-BASED APPROACH TO

BIOINFORMATICS

With the intent of introducing large data sets and independent
research, students were given access to RNA Sequencing
data generated from my microbial genetics research program.
The RNA-Seq experiment compared wild-type bacterial gene
expression with that of a mutant under the same conditions
(Bennett, unpublished). Students examined the data and chose
a gene that was not already annotated in the spreadsheet.
The job of each student for the rest of the semester was
to characterize this chosen gene by conducting independent
research and applying the various bioinformatics tools that
they would be learning in the classroom. The fact that each
student was assigned a different gene for investigation allowed
a unique combination of both creativity and design-sharing
within the classroom. Students were able and encouraged
to help one another in an environment that promoted
improvements to create better quality portfolios and more
advanced analyses.

Instead of exams, each student was responsible for submitting
a final portfolio showing mastery of the various bioinformatics
tools that they learned in class as applied to their specific gene.
The portfolio was the culminating project for the bioinformatics
course, and required figures and corresponding legends in
the format of a publication along with annotations about the
techniques used. A minimum set of expectations was given for
the gene analysis portfolio, however students had the freedom
to characterize their gene in ways that extended beyond these
expectations. The result was multiple student portfolios that
showcased additional tools not discussed in class and advanced
functions of the tools that we had covered.

LONG TERM POSITIVE OUTCOMES

The portfolio specifically allowed students to demonstrate their
ability to apply each bioinformatics tool to their chosen gene of
interest. The independent research project and resulting portfolio
could be listed on student applications, curricula vitae, and
resumes. Additionally, each of the 12 students in the class was
required to give a short oral presentation, describing what they

had learned about their gene and its possible role in the cell.
Three of the students also seized the opportunity to present their
bioinformatics research, and their abstracts were accepted for
poster presentation at the Ohio Branch Meeting of the American
Society for Microbiology. Two of the students decided to
pursue Ph.D. programs in bioinformatics/computational biology,
in large part crediting the experience that they had in the
bioinformatics course. Two additional students also entered
Ph.D. programs bringing with them bioinformatics knowledge
they learned in the course that will be extremely useful to their
dissertation research. There was one sophomore student in the
spring 2018 course, who is about to graduate and is currently
applying to Ph.D. programs where she hopes to combine her
skills in bioinformatics and microbiology. Spring 2018 was the
second time that I taught Bioinformatics. I first taught the course
as an experimental course in Fall 2013 with only six students
enrolled. During the first iteration of the course, it was taught in a
very similar workshop format with a final portfolio, only without
the exposure to the RNA-Seq dataset. Students chose a gene of
interest that was uncharacterized from the Streptomyces genome
(Bentley et al., 2002) and presented on that gene. One of the
initial six students chose to enter a graduate program to pursue
bioinformatics research based on his bioinformatics experience at
Otterbein and is about to graduate with a Ph.D. in Biochemistry
with dissertation research entirely in the area of bioinformatics.

The features that make the guided workshop approach with
a novel independent research project so successful are hands-on
direct application, student ownership of an important project,
the ability of students to customize their portfolio and pursue
advanced topics, and the ability to communicate their data
in both written and oral form. Wilson Sayres et al. (2018)
published a set of bioinformatics core competencies in 2018
that are readily achieved in the framework of the bioinformatics
course described here. The students must read and evaluate the
primary literature and directly apply bioinformatics techniques.
Their final product is a source of pride. They produce data
that has the possibility of publication and they are part of
a larger community of researchers within their classroom
and in the field of microbial genetics. The data continues
to make an impact as it influences future studies in my
research program.

Concepts and techniques that the students learned and applied
in the Bioinformatics course included BLAST, multiple sequence
alignments (Clustal), phylogenetics, domain mapping (SMART
and Pfam), analyses of protein-protein interactions, and protein
modeling (RaptorX, Cn3D, and pyMOL). Some of the proteins
were also 3D printed in collaboration with engineering students
at The Point, Otterbein’s STEAM innovation center. Connections
to wet-lab experimentation and other disciplines were introduced
throughout the semester, including the next steps in the analysis
pipeline. For example, after using bioinformatics to identify
and begin the characterization of novel genes, some of the
gene expression data obtained through RNA-Seq could be
verified using Real Time PCR. Genes could be deleted using
such tools as the Lambda Red System (Datsenko and Wanner,
2000) or CRISPR-Cas9 (Wang et al., 2016) to determine the
mutant phenotype and thus provide experimental evidence
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for the role of the gene as compared to that predicted
using bioinformatics.

The following examples illustrate the long-term impact of
bioinformatics skills learned by undergraduates on my research
program. Undergraduate research students in my lab have
successfully completed Real Time PCR experiments for two
genes identified in the RNA-Seq experiments introduced into
the bioinformatics class, and a student is currently using the
Lambda Red System to delete a gene of interest identified
in the bioinformatics course. Another gene identified in our
RNA-seq experiment was fortuitously disrupted in a transposon
experiment and we are studying it and other similar genes
identified using bioinformatics in light of the RNA-Seq data.
Hull et al. (2012) serves as a past example of undergraduate co-
authors contributing significant research to a published paper
using bioinformatic analyses. One student co-author contributed
entirely through bioinformatics research, stemming from a
portfolio completed as an independent study in my lab. This is
the format that I have continued to employ in my bioinformatics
course. The published paper incorporates the following skills
performed by undergraduate co-authors: construction of genetic
maps, primer design, sequence analysis, BLAST to identify
similar genes in the genome and to identify orthologues in other
species, sequence alignments, and protein domain mapping. As
part of my bioinformatics course, students employ these skills
that our lab typically uses to present and publish, in addition to
many more techniques such as those listed above.

DISCUSSION OF EDUCATIONAL

APPLICATIONS

Bioinformatics is a course that lends itself especially well to
a blended course and workshop format. The application of
techniques to a novel gene of interest in a progressive order
kept students engaged with a sense of strong ownership. Only a
computer lab or student laptops are required. My entire course
made use of databases and software that were freely available to
the public. The bioinformatics tools were easily accessible and
relatively simple to learn for instructors with little bioinformatics
background because the programs employed Graphical User
Interfaces (GUIs) that do not require programming knowledge.
However, all of these exercises can be easily extended to include
introductory scripting for students. The introduction of some

command lines into the course is advantageous for students to
better understand how their data is being obtained.

The course format used in the bioinformatics course described
here can be transferred to other portions of the biology and
microbiology curricula. A small portion of a course can be
devoted to a bioinformatics analysis of research data using
any of the techniques from the full bioinformatics course,
allowing students to make important contributions to large
projects. The course used a bacterial genome of interest to my
research program, but the same techniques can be applied to any
organism, based on the interests of the instructor. In my course, I
introduced RNA-seq data, but we also have a proteomics project
where we used mass spectroscopy to identify binding proteins
discovered in bead capture experiments. Students could easily
have investigated these proteins instead. Any bioinformatics
course or module could also include a functional genomics
component where students are involved in complimentary wet-
lab experimentation along with the bioinformatics analyses. In
summary, this type of bioinformatics CURE can readily be used
in full courses or modified for modules within a course to actively
engage students in meaningful research with high learning gains.
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Biologists with bioinformatic skills will be better prepared for the job market, but relatively
few biology programs require bioinformatics courses. Inclusion in the curriculum may be
hindered by several barriers, including lack of faculty expertise, student resistance to
computational work, and few examples in the pedagogical literature. An 8-week wet-
lab and in silico research experience for undergraduates was implemented. Students
performed DNA purification and metagenomics analysis to compare the diversity and
abundance of microbes in two samples. Students sampled snow from sites in northern
Minnesota and purified genomic DNA from the microbes, followed by metagenomic
analysis. Students used an existing metagenomic dataset to practice analysis skills,
including comparing the use of Excel versus R for analysis and visualization of a large
dataset. Upon receipt of the snow data, students applied their recently acquired skills
to their new dataset and reported their results via a poster. Several outcomes were
achieved as a result of this module. First, YouTube videos demonstrating hands-on
metagenomics and R techniques were used as professional development for faculty,
leading to broadened research capabilities and comfort with bioinformatics. Second,
students were introduced to computational skills in a manner that was intentional, with
time for both introduction and reinforcement of skills. Finally, the module was effectively
included in a biology curriculum because it could function as either a stand-alone
course or a module within another course such as microbiology. This module, developed
with Course-based Undergraduate Research Experience guidelines in mind, introduces
students and faculty to bioinformatics in biology research.

Keywords: bioinformatics, curriculum, undergraduate, R, big data, metagenomics, biology

INTRODUCTION

In 1920, botanist Hans Winkler coined the term “genome” as a fusion of the words gene
and chromosome (Winkler, 1920). Since that time, the “omics” fields have exploded, creating
such terms as “pseudome” (the population of pseudogenes), “translatome” (the population of
proteins in the cell, weighted by their abundance level), and many others that are increasingly
becoming a normal part of the lexicon for biologists1. The term “bioinformatics” was defined by

1http://bioinfo.mbb.yale.edu/what-is-it/omes/
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Luscombe et al. (2001), as “conceptualizing biology in terms
of molecules (in the sense of Physical chemistry) and applying
“informatics techniques” (derived from disciplines such as
applied maths, computer science and statistics) to understand
and organize the information associated with these molecules,
on a large scale. In short, bioinformatics is a management
information system for molecular biology and has many practical
applications.” Undergraduates in biology should be trained in this
field to successfully compete in the job market and make vital
contributions to the biological sciences as their careers mature.

The Vision and Change: A Call to Action report of 2011
(Brewer and Smith, 2011) emphasized that undergraduate
biology students should have competence in computational and
systems level approaches and the ability to use large databases.
Only a small fraction of institutions offer a full undergraduate
bioinformatics program (Mellon, 2020), but several offer courses
on bioinformatics. In the state of Minnesota, 50% of public
and private school biology departments offer a bioinformatics
course in their curriculum but none appear to require it for the
degree. This may reflect a lack of expertise among faculty to
teach the course.

In 2016-17, 116,759 bachelor’s degrees in biology were
conferred to graduates in the United States (US-DOE, 2020).
Among bachelor’s degree holders 25–29 years old, biology
graduates’ annual salaries were not significantly different than
the median annual income of all degree holders of $50,600, but
computer and information science degree holders had an annual
income of $70,100, well above the median income (NCES, 2020).
A slight increase in biology-related computer information jobs is
predicted, suggesting that biology majors would be well-served to
develop computer information skills to complement their biology
degrees (Araneo et al., 2017).

Bioinformatics is a broad field that encompasses gene
alignment tools, crowdsourcing approaches, metagenomics, and
many others. Rather than lecturing about bioinformatics, many
groups have chosen to incorporate bioinformatics tools into
CUREs (Course-based Undergraduate Research Experiences). In
CUREs, students are working in classes on research projects
of interest to the broader scientific community (Auchincloss
et al., 2014). On the CUREnet website2, several bioinformatics
CUREs have been shared for faculty adoption and participation,
including a CRISPR-Cas9 project3, a study of iron uptake in
insects4, Genome Solver: Microbial Comparative Genomics5,
and the Genomics Education Partnership (GEP)6. These
programs, and many others across the country, teach students
a variety of gene-based bioinformatics approaches including
using BLAST, multiple gene alignment, primer design, and many
others. Students develop strong gene analysis skills while also
contributing to active scientific research projects in the process.

While these CUREs develop students’ genome analysis skills,
other courses focus on microbiome analyses including mapping

2https://serc.carleton.edu/curenet/whatis.html
3https://serc.carleton.edu/curenet/collection/213026.html
4https://serc.carleton.edu/curenet/institutes/boulder/examples/207018.html
5https://serc.carleton.edu/curenet/collection/218072.html
6https://serc.carleton.edu/curenet/collection/215335.html

microbiomes of the human oral cavity (Wang et al., 2015)
and crowdsourcing datasets of antibiotic resistance in microbes
(Freeman et al., 2016; Small-World, 2020). Students in these
courses develop research skills such as bacterial culturing,
sterile technique, PCR, and hypothesis building. Few projects,
however, teach undergraduates the computational skills required
to statistically analyze “big data” in biological fields.

Computational skills are required to analyze and find patterns
in big data, which includes the four Vs: volume of data,
velocity of processing the data, variability of data sources,
and veracity of the data quality. Applications of big data
analysis can be found everywhere, but for biologists especially
important applications include genome sequencing, ecological
studies (such as of microbiomes), and health care information
(Li and Chen, 2014). Graduates of biology programs have
opportunities for employment in any of these fields but may
not have the important computational skills in parallel with wet
lab or field biology skills to be successful in big data fields.
There seem to be few CUREs or similar programs published
in the literature that provide instructions for how faculty can
implement curricular modules to help students develop these
big data skills.

Several groups have outlined a series of bioinformatics
competencies for life scientists, including CourseSource (the
Bioinformatics Learning Framework) (Rosenwald et al., 2016),
the Curriculum Task Force of the International Society of
Computational Biology (ISCB) Education Committee (Mulder
et al., 2018), and the Network for Integrating Bioinformatics into
Life Sciences Education (NIBLSE) (Wilson Sayres et al., 2018).
Building on previous work from both CourseSource and ISCB,
NIBLSE surveyed instructors at US institutions and used the
data to develop a list of Core Competencies for Undergraduate
Life Scientists. While many of the core competencies focus on
genomics-based bioinformatics skills, several of the competencies
are addressed by the work in this project. The competencies are
listed below (Wilson Sayres et al., 2018), and the bolded ones are
addressed by the approach in this project:

• C1. Explain the role of computation and data
mining in addressing hypothesis-driven and
hypothesis-generating questions within the life
sciences.
• C2. Summarize key computational concepts, such as

algorithms and relational databases, and their applications
in the life sciences.
• C3. Apply statistical concepts used in bioinformatics.
• C4. Use bioinformatics tools to examine complex

biological problems in evolution, information flow, and
other important areas of biology.
• C5. Find, retrieve, and organize various types of

biological data.
• C6. Explore and/or model biological interactions,

networks, and data integration using bioinformatics.
• C7. Use command-line bioinformatics tools and write

simple computer scripts.
• C8. Describe and manage biological data types, structure,

and reproducibility.
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• C9. Interpret the ethical, legal, medical, and social
implications of biological data.

Importantly, both the CourseSource Bioinformatics Learning
Framework and the ISCB Curriculum Task Force recognize that
there are different levels of users of bioinformatics curriculum,
including bioinformatics engineers, bioinformatics scientists, and
bioinformatics users. The approach described here is geared
toward bioinformatics users, including both faculty who are
interested in learning about these tools and students who will be
moving forward into a variety of careers in research, medicine,
education, and others. This course module is a starting point for
introducing students to low level Bloom’s taxonomy areas such
as knowledge and comprehension of bioinformatics. It is hoped
that this introduction will spark an interest in students to learn
more about the field and become bioinformatics scientists. This
approach is also intended to provide an entry point for faculty
to begin developing new courses in bioinformatics within their
undergraduate biology programs and collaborate with colleagues
in computer science fields to pool interests and resources.

BIOINFORMATICS COURSE MODULE

In response to the need for a big data CURE, I have developed
an 8 week course that meets for two 2-hour sessions weekly in
which students gain hands-on experience using R and Excel to
analyze large datasets. To mimic an authentic research experience
as closely as possible, the 10 students work as a research group
as they discuss the literature, develop hypotheses, and plan
experiments. Individuals or pairs are responsible for collecting
samples and performing the actual sample preparation and
experiments. Data analysis is completed individually and then
discussed and improved in the full research group. While this
course was developed as a stand-alone experience, it could easily
be incorporated as a module in a broader full length course.

The primary student learning outcome for this course was
to develop students’ data science skills using Excel and R. The
premise of this research course was to perform a metagenomic
analysis of the microbiota in two different snow samples. To
accomplish this research project, students perform a literature
review, develop hypotheses, collect and prepare samples, perform
metagenomic sequencing (through a third party vendor), learn
data analysis skills, and present their research findings via a
poster presentation. Secondary student learning outcomes for
this course include those described in the CURE network: making
discoveries of interest to the broader scientific community, an
iterative work experience, communication of their findings, and
development of scientific research skills (CUREnet, 2020).

Weeks 1 and 2: Literature Review,
Hypothesis Development, and Sampling
Table 1 highlights the main activities completed in the course,
beginning with a literature review. Because the primary learning
outcome for this course is the development of R and Excel
skills, the instructor can assist in the literature review process
by developing the initial research question and providing some

preliminary resources to begin the discussion. In this project,
I developed the initial research question of “how does the
bacterial population vary between two snow samples from
different locations on campus?” and provided several primary
and secondary articles about microbiomes, microorganisms often
found in snow, and bacterial abundance and diversity. Students
used these resources as jumping off points to find more sources
(usually PDFs, websites, and videos) which were collected in a
class Google folder. Students visually mapped these sources into
three broad categories on the whiteboard: “snow,” “microbiomes,”
and “microbial diversity.” After a group discussion, each student
was responsible for developing an individual literature review
from these and other sources they found.

This fast-paced literature review process leads to the
development of a research question, hypothesis, and sampling
procedure. Metagenomic analysis with our vendor takes 3–
4 weeks, so it was essential to collect and prepare samples right
away to allow time for the primary student learning outcome of
developing skills in Excel and R. To this end, after discussion,
most of the class agreed upon the same research question and
hypothesis, with slight variations that could be accommodated
within the sampling and sample preparation processes. Our
research question asked if the microbiota of snow samples
would differ between an area heavily trafficked by both foot
and automobile traffic compared to campus trails primarily
traveled by snowshoe. Most students hypothesized that the area
with both foot and automobile traffic would have more bacteria
overall and more diversity of bacteria. Students demonstrated
their understanding of the field and our research question
development by submitting a draft of an introduction for their
final poster project (see Supplementary Material Section 5 for
teaching materials).

Sampling and sample purification were relatively simple and
inexpensive. Students used 50 ml plastic conical tubes (VWR
89039-656) to collect three samples spaced at one meter intervals
along a line at each of the two sites for 3 days in a row.
To purify microbial DNA from the samples, the snow was
melted and filtered through a 0.2 micron polyester membrane
using an Aeropress coffee press7. The membranes containing
the filtered microorganisms were then processed using the
Qiagen DNeasy PowerWater kit (Qiagen 14900-50-NF). After
confirming the presence of bacterial DNA via PCR with a
16S primer set (idtdna.com; 16S rRNA For #51-01-19-06, 16S
rRNA Rev 51-01-19-07), the samples were sent for metagenomic
sequencing off campus.

Weeks 3 and 4: Introducing
Metagenomics, Big Data, and R
The first step in teaching students about bioinformatics
was to guide them through an understanding of how
metagenomic sequencing works and how the dataset was
generated. A prerequisite for this course was a one semester
Foundations in Biology course covering the essentials of
molecular biology, including central dogma concepts such
as DNA, RNA, base pairing, replication, and transcription.

7https://aeropress.com
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TABLE 1 | Flow of the bioinformatics course.

Week # Course topics

1 Literature review

The literature review is initiated by the instructor to save time and is further developed by students.

2 Hypothesis development, sampling, and sample preparation

Students use their literature review to develop their hypothesis, identify sampling methods, and prepare DNA samples, allowing a pairing of
wet lab skills with in silico activities.

When wet lab resources are unavailable, this step can be completed by the instructor or replaced with an existing publicly available dataset.

3 Understanding metagenomic sequencing and big data

Students build on foundational knowledge of DNA from prerequisite courses by viewing video material on PCR and sequencing.

4 Introduction of Data Analysis Skills

Instruction in statistics, Excel, and R using a combination of video material and in class discussions builds a foundation of data analysis skills.

5 Practice data analysis using an existing dataset

Students use their developing data analysis skills to mimic the instructors’ actions using Excel and R to analyze an existing dataset.

6 Reinforcing data analysis skills with snow dataset

Students apply the data analysis skills they have learned and practiced to a new dataset from samples collected on campus.

7 Creating a Scientific Poster of Analysis of Big Data

Students showcase all the skills practiced in the course in a poster containing a research question, background material, a hypothesis,
methods, results, and discussion.

8 Poster presentations

Students complete the semester by recording a video presentation of themselves presenting their poster. If available, students also present
their posters at a campus-wide research symposium.

The Supplementary Material contain a list of resources
used for reviewing foundational DNA and PCR knowledge
(Supplementary Material Section 1). With this background
in mind, students work to understand the polymerase chain
reaction, or PCR. This foundational knowledge is essential, in
part because it strips away the complexities of how we typically
teach replication with emphases on all of the different enzymes
(polymerases I and III, primase, ligase, helicase, etc.) and focuses
on the simple concept of creating a complement sequence of
DNA to the template.

After mastering PCR, students then move on to understanding
DNA sequencing, beginning with Sanger sequencing. To do
this, students watch a series of YouTube videos on Sanger
Sequencing8, the evolution of next-generation sequencing9,
and finally Illumina sequencing10 used by our vendor (see
Supplementary Material Section 1 for more details). After
watching the video on Illumina sequencing, students usually
express a combination of fascination and confusion. To provide
further practice in understanding this extremely important
process, we break into student pairs and have each pair illustrate
the processes of cluster formation on whiteboards using color
coding. After performing a similar exercise to better understand
base calling, we complete this section of the instruction by
discussing how multiple overlapping DNA segments from one
organism can be used to generate the sequence for the entire 16S
ribosomal RNA gene.

It is common for biology students in our program to have
a fear or aversion to mathematical and other quantitative or
computational approaches. 65% of traditional undergraduate

8https://www.youtube.com/watch?v=Jnk_4Maf5Fk
9https://www.youtube.com/watch?v=jFCD8Q6qSTM&t=176s
10https://www.youtube.com/watch?v=fCd6B5HRaZ8

students enrolled in our college identify as female, 31% identify
as first generation college students, 35% have family incomes less
than $50,000, and 70% come from rural communities and small
cities. Many students have taken the minimum mathematics
courses required by the state graduation guidelines. In a study of
life sciences majors conducted by Andrews and Aikens (Andrews
and Aikens, 2018), both females and first generation students
exhibited a lower interest in mathematics topics in biology than
their counterparts, and females perceived a higher cost associated
with doing math in biology than their male counterparts. They
also found that students’ likelihood of taking a biostatistics class
was positively related to their interest and perceived utility of the
course. A goal for this course module is to spark future interest
in bioinformatics training, so it was important to demonstrate to
students the utility of statistical analysis both for the project and
their future careers.

In recognition of these factors, I began the bioinformatics
instruction with a review (or novel instruction) of basic statistical
analysis. To accomplish this, students first reviewed major
statistical functions such as mean, median, standard deviation,
standard error, p-values, and Student’s t-test using a freely
available resource compiled by MIT11. These concepts were
practiced using a very simple assignment completed in pairs
during class time examining the statistical significance of simple
drug treatment data (see Supplementary Material Section 2
for details). In class discussion helped to sort out problems in
understanding before moving on to larger dataset analysis.

Next, students are introduced to fundamental concepts in data
analysis, including data clean up and developing the research
question. To facilitate this process, I provided the students with a
dataset previously collected in the Boundary Waters Canoe Area

11https://web.mit.edu/$\sim$csvoss/Public/usabo/stats_handout.pdf
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Wilderness (BWCAW). This dataset included triplicate sampling
of four different sample sites resulting in 12 columns of data
on a spreadsheet. After metagenomic sequencing, 15,000 unique
bacterial species or OTUs (operational taxonomic units) were
identified in the spreadsheet rows, resulting in 180,000 unique
cells of data. Given that most students’ experience of using Excel
to this point had been in traditional lab courses, this was by far
the largest Excel file any of them had ever opened.

To make the experience less overwhelming for the students,
I provide them with a version of the dataset that condensed
OTUs into phyla, resulting in a dataset with 12 sampling columns
and 23 rows of identified phyla. My goal was for them to be
able to use Excel to average the triplicate results from each
sample site and make comparisons across the data, either between
the four individual sample sites or between phyla. To do this,
I created a video of myself using Excel to average the sites,
perform a t-test comparing the data between sites, and then
sort the data by increasing p-value, thus reordering the data
so that the most significant p-values were at the top of the
list. Students then were required to repeat the actions of this
video on both the phyla dataset and the OTU dataset. In
doing this, students gained experience cleaning up and renaming
columns, writing formulas, accessing the formula bank, sorting,
and visualizing data.

Weeks 5 and 6: Practicing and
Reinforcing Big Data Analysis Skills
After establishing comfort with analyzing data in Excel, we
moved on to R. R is a freely available statistical computing
program (The R-Foundation, 2020) used across many fields for
the analysis and visualization of data. For the purposes of this
course module, I wanted to introduce students to the pros and
cons of using the programming language R versus using Excel
both for data analysis and for data visualization, particularly for
its ability to generate a heat map of large datasets. This includes
establishing student knowledge, but not necessarily application,
of using a command line and understanding the function of
packages, bundles of shareable code created by experts in the field
and freely available for use.

When students learned coding was involved, there was an
immediate sense of anxiety in the room. To alleviate this stress,
I returned to an approach with which the students were familiar:
learning by watching videos. Just as they had learned to use
Excel functions by watching me perform tasks via video, the
basics of R were laid out by watching a series of publicly
available YouTube videos. Many videos are available, but I
chose the “R Programming for Beginners” playlist from the R
Programming 101 YouTube channel12 (see the Supplementary
Material Section 3 for a complete list of videos). In this series, the
host, public health specialist Greg Martin, guides viewers through
the whole process of using R, including downloading R and R
Studio onto their computers, learning basic commands such as
identifying variables and manipulating a preloaded dataset of
health characteristics of Star Wars characters, and installing and
using R packages. This playlist resonated with the students, both

12https://www.youtube.com/channel/UCfJyQ3P2k_SuqfxVdqIEQNw

because of the clear instructions and because of the link to public
health, a field with which many of the biology students could
identify. Students watched this series of videos on their own and
their sole assignment was to replicate exactly what the host did
and turn in a screenshot of their final R Studio product.

Once the students achieved some initial comfort with R,
I gave them a fully composed sheet of code to copy and
paste into the script window of R. The code was created
by modifying freely available code (Albert and Yoder, 2013),
including the packages gplots, vegan, and RColorBrewer to plot
data, create the heatmap, and apply a color scheme. I used
this approach for three reasons. First, students did not yet have
the capability to compose their own code because they didn’t
have enough knowledge of syntax to do what was needed.
Second, because R is an open access community, students and
instructors can find existing code for many functions on the
internet and modify it to fit their needs. Third, by providing
code that was annotated (with # lines explaining each line
of code), students were able to walk through each line of
code, understand the function, and run the code to achieve a
final product of a heat map demonstrating the diversity and
abundance of microbial samples across sampling sites in the
BWCAW (Figure 1; full code in the Supplementary Material
Section 4). Because the purpose of this course module was to
introduce bioinformatics users to command line coding, the
ability to generate a finished product was important both to
increase their level of confidence in using R and in order to
demonstrate the analysis capabilities available in R that were not
available in Excel.

At this point in the course, students had participated in a
strong introduction to data analysis using both Excel and R. They
had manipulated a dataset larger than any of them had seen
before and reflected on the pros and cons of each tool in analyzing
the datasets. Each student had observed Excel and R being
used via video and followed up with practice completing the
work themselves. This iterative approach follows best practices
in pedagogy where students are offered multiple opportunities to
observe, practice, and learn a skill.

When the data from the metagenomic analysis of the snow
samples was returned to us in week six, students were ready
to analyze it. The final project was a standard scientific poster
presentation of their background, research question, hypothesis,
methods, results, and discussion. To accomplish this task,
students had to return to the notes they took for the analysis of
the BWCAW dataset and apply these approaches for the snow
dataset. This task involved cleaning up the data, and properly
labeling sample columns, and changing existing lines of code
in R to import the proper.csv file, identifying columns correctly
and creating an appropriate visualization. By using this iterative
approach of first observing, then practicing, and finally applying,
all the students were able to successfully assign the right syntax to
the code and create a successful project.

Potential for Virtual Course Delivery
As presented, this process allows students to experience both wet
bench and in silico research. However, it is important to note
that the project could be modified to include only the in silico
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FIGURE 1 | Example heat map and R code. Students used R to generate two heat maps in the course, first with a practice set of data from the Boundary Waters
Canoe Area Wilderness which was followed by a heat map of snow sample data to reinforce skills. (A) Representative student-generated heat map of the BWCAW
data. On the right axis, triplicate samples are boxed with corresponding colors; bacterial species’ names are on the bottom axis. R-generated dendrograms are on
the left and top axes. (B) A snapshot of the script window of R studio showing the code students used to generate the heat maps. A full copy of the code is
available in Supplementary Material.
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experience for students, as was the case in the second iteration of
this course in spring 2020 due to the COVID-19 pandemic and
the closure of college facilities. It would be possible to provide
this experience with the many publicly available datasets, but
during the college closure I chose to perform the wet bench
portion myself prior to the beginning of the course so that
students felt they had a more “personal” sample rather than a
dataset to which they had no personal attachment. This approach
resonated with students as evidenced in their comments in the
course evaluations.

During the COVID-19 pandemic in Spring 2020, the course
was delivered using both asynchronous and synchronous (Zoom)
methods. The course meeting schedule was altered to limit Zoom
fatigue by meeting synchronously on Tuesdays and working
asynchronously on course materials during the remainder of
the week. Thursday meeting sessions were reserved for open
office hours, an approach that well was received by students
and widely used. Tuesday synchronous meetings were initially
used for discussions of the overall project, research design,
and sequencing videos. Breakout rooms in Zoom were used
extensively to facilitate small group discussions of research
questions and to build comprehension of the sequencing videos.
Beginning in week 3, the course took on essentially a “flipped”
format. Students viewed and practiced skills introduced in the
videos and synchronous class time was used for troubleshooting,
comprehension checks, and setting up the “next steps.” Students
in this virtual course were still able to successfully use R for
statistical analysis and visualization of their data.

DISCUSSION

One of the most important take home messages of this
work is that we should take advantage of technology both to
continue skill development as faculty and to teach resourcefulness
to students. Many faculty who teach undergraduate students
completed their dissertations before the age of bioinformatics
or in an area that did not focus on quantitative skills. These
faculty may not currently possess the skills to incorporate
a bioinformatics module into a course. YouTube affords
faculty the opportunity to learn new skills in a step-by-
step manner when the technology and approaches may
be wholly new to them. This is a very inexpensive and
efficient way to acquire professional development that can
serve to enhance both classroom teaching and potential new
areas of research.

As part of the course evaluation, students were asked to
answer a series of confidence questions about skills developed
in the course (Table 2). On a scale of 1–10, with 10 being
high confidence, all students rated themselves as a ten when
asked about confidence in pipetting a variety of liquids
with micropipettors, reflecting the skills developed in the
wet lab portion of the course. When asked about explaining
Sanger sequencing and Next Generation Sequencing to another
scientist, the class averages were 6.8 and 6.7 out of 10,
respectively, for these new skills learned in the course. The
course successfully introduced students to basic knowledge

TABLE 2 | Student confidence in course skills.

How confident are you that you can
complete the following tasks?

Class average
confidence Scale of

1–10; 10 = high
confidence

I can pipet a variety of liquids with
micropipetors.

10

I can understand scientific methods and
instructions to perform experiments.

9.4

I could explain the process of PCR to another
scientist.

8.7

I can explain Sanger sequencing to another
scientist.

6.8

I can explain next generation sequencing (NGS)
to another scientist.

6.7

I can analyze the bands on a gel to determine if
I got the right sized DNA product from PCR.

9.5

I can use Excel to perform a t-test and analyze
a p-value.

8.4

I can pose a question and use a large data set
to effectively answer that question.

8.3

I can copy, perform, and run a simple code in R. 8.9

I can create and run my own code in R. 5.2

about R, as reflected in an 8.9 average score to “I can
copy, perform, and run a simple code in R.” As expected
from an 8 week introductory module, the students did not
feel confident enough to create and run their own R code
(average score 5.2).

Students were also asked, “After completing this course, how
has your interest in biological research changed?” All of their free
response answers are below:

• I am still interested in it, and now realize the
importance of being able to effectively use R and excel
to convey my data.
• My interest in research has stayed quite high after

taking this course. I am planning on working in the
more biochemical side, but this was still very interesting
and helped me make sure that a career in research
is where I belong.
• I feel like I have a better understanding of how questions

are being asked in the biological community.
• My interest in biological research has grown even

stronger. I knew before that I love research, but every time
I continue to do it, my passions grow stronger.
• It greatly raised my interest in biological research. It was

cool to see how the experiments we performed gave us
numbers, that we could find relationships between.
• I was always curious about how scientists made the figures

they did. After using R, examining larger datasets is a lot
less frightening.
• I have a greater understanding of the importance of

microbiomes and am interested in my own microbiome!
• I was very hesitant about research before this course

because I had a few bad experiences, but this class changed
my outlook on it. I am definitely more interested and
would like to do more.
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• My interest has greatly increased in biological research,
specifically, on human microbiomes like the gut
microbiota. Also, conducting my own biological research
and experiencing the challenges of creating a poster has
made me appreciate all the hard work scientist do to give
us informative papers.
• I am once again excited now about the medical

applications of molecular biology and studies! I’m
excited to skim new articles and have a better toolbox
to understand them after learning about R and how
microbiome data can be represented.

While this course had a very small sample size (n = 10),
these responses suggest that this approach to using R was
positively received by students. Moreover, the students saw a
utility in learning R, which research shows may lead to continued
interest in participating in mathematical biology experiences
(Andrews and Aikens, 2018).

In a short time frame, the course introduced students to
bioinformatics and provided an opportunity for further practice.
Because of the students’ ability to effectively visualize the dataset
with R, they were able to think critically about the data and
consider future research questions. From the R-generated heat
map, the students realized that their initial hypothesis was
incorrect. The heavy foot and automobile traffic sample site
did have a higher abundance of bacteria but the diversity of
bacteria was much lower than the sample site with light traffic.
Several students continued their analysis of the data even after
the course ended and proposed a new research question for the
next offering of the course.

Several outcomes were achieved as a result of this module.
First, faculty expertise was enhanced in a time efficient manner
using YouTube training videos, leading to broadened research
capabilities and comfort. Second, students were introduced
to computational skills in a manner that was effective and

intentional, with time for both introduction and reinforcement
of skills. Finally, the module was effectively included in a biology
curriculum because it could function as either a stand-alone
course or a module within another course such as microbiology,
leading to flexibility in the curriculum. This module, developed
with CURE guidelines in mind, is an effective and easily
implementable way to introduce a broad group of students
to bioinformatics in biology research, and also serves as a
springboard for interested students to pursue further training and
research in bioinformatics.
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Bioinformatics Exercises to Identify
and Explore Bacteriophage Genomes
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Bioinformatics skills are increasingly relevant to research in most areas of the life
sciences. The availability of genome sequences and large data sets provide unique
opportunities to incorporate bioinformatics exercises into undergraduate microbiology
courses. The goal of this project was to develop a teaching module to investigate
the abundance and phylogenetic relationships amongst bacteriophages using a set
of freely available bioinformatics tools. Computational identification and examination of
bacteriophage genomes, followed by phylogenetic analyses, provides opportunities to
incorporate core bioinformatics competencies in microbiology courses and enhance
students’ bioinformatics skills. The first activity consisted of using PHASTER (PHAge
Search Tool Enhanced Release), a bioinformatics tool that identifies bacteriophage
sequences within bacterial chromosomes. Further computational analyses were
conducted to align bacteriophage proteins, genomes, and determine phylogenetic
relationships amongst these viruses. This part of the project was carried out using
the Clustal omega, MAFFT (Multiple Alignment using Fast Fourier Transform), and
Interactive Tree of Life (iTOL) programs for sequence alignments and phylogenetic
analyses. The laboratory activities were field tested in undergraduate directed research,
and microbiology classes. The learning objectives were assessed by comparing the
scores of pre and post-tests and grading final presentations. Post-tests were higher
than pre-test scores at or below p = 0.002. The data suggest in silico phage hunting
improves students’ ability to search databases, interpret phylogenetic trees, and use
bioinformatics tools to examine genome structure. This activity allows instructors
to integrate key bioinformatic concepts in their curriculums and gives students the
opportunity to participate in a research-directed learning environment in the classroom.

Keywords: bacteriophages, bioinformatics, genomes, phylogenetic trees, research project, experimental design
(study designs)

INTRODUCTION

There is a distinct need in life science education for educators to adapt their teaching strategies
to best support student learning and prepare them for careers in science. Scientific education
councils cite incorporating research into the undergraduate curriculum and emphasizing the
interdisciplinary nature of biology as major national reform goals (National Research Council,
2009; AAAS, 2010). Research experiences are often interdisciplinary in nature and can teach
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students to think like scientists (AAAS, 2010; Ballen et al., 2017),
greatly increase their chances of entrance into graduate school
(Bangera and Brownell, 2014), and allow students to actively
engage with current problems in biology. However, the process of
obtaining a research experience while at college presents a variety
of barriers to historically underrepresented and marginalized
student populations (Stebleton and Soria, 2012). As a result, many
students are left out of research experiences that can greatly
enrich their understanding of biology, open doors for them
professionally, and allow them to contribute their perspective in
the larger scientific community (Bangera and Brownell, 2014).
To make research experiences more accessible, many instructors
opt to integrate research-based learning activities into their
course curriculums. The activity we describe here is a low-
cost research experience that can be implemented as a multi-
week laboratory exercise in microbiology and other biology
courses. This activity, which we have called In Silico Phage
Hunting, utilizes bioinformatic tools to learn about bacteriophage
genomes and viral proteins. We offer a perspective that this
activity can help research experiences be more accessible by
being integrated into appropriate elective biology courses, and
engages students in inquiry-based learning, critical thinking,
and scientific discovery which are all key components of the
research process.

In Silico Phage Hunting is an adaptable teaching module
that utilizes freely available bioinformatics software to examine
the abundance of bacteriophages in bacterial genomes, the
viral proteins encoded, and the phylogenetic relationships
between phage proteins. Many bacterial genomes remain to
be examined for the existence of bacteriophages. For example,
only 500 sequenced genomes of bacteriophages that infect
the genus Escherichia have been isolated compared to the
66,000 Escherichia bacterial genomes that are publicly available
(Sazinas et al., 2017). Yet, bacteriophages contain a high
proportion of novel genetic sequences and are likely to represent
the largest reservoir of unexplored genes on earth (Hatfull,
2008). Given the existence of so many bacterial genomes
in public databases and the limited knowledge of phages
therein, locating phages can help bridge this gap in scientific
understanding. In Silico Phage Hunting engages students in
researching bacteriophage abundance and diversity while they
learn about the genetic interplay between viruses and bacteria and
develop important bioinformatics skills relevant for careers in
STEM fields.

Bacteriophages have been used as model systems to
incorporate scientific inquiry and research into undergraduate
classrooms across the United States. The SEA-PHAGES (Science
Education Alliance Phage Hunting Advancing Genomics
and Evolutionary Science) program has successfully engaged
thousands of students in authentic research through the isolation,
characterization, and genome sequencing of bacteriophages from
various bacterial species. Numerous laboratory exercises
describing the use of phages to investigate diverse aspects of
biology have been reported (Allen and Gyure, 2013; Hyman,
2014). Other initiatives include independent faculty members
integrating phage research as multi-week laboratory exercises
into their courses. Williamson et al. (2014) utilized a phage

research experience in a molecular virology course to isolate
novel bacteriophages and perform genetic analyses using
computational tools. Recently, the Genome Solver Project
utilized phage genomes to create hands-one bioinformatics
activities and encourage educators to incorporate computational
skills in their biology courses (Mathur et al., 2019). Despite
these efforts, the number of phage-based laboratory activities
incorporating genome searches, bioinformatics analyses,
and phylogeny is still very limited in comparison to wet
bench exercises.

Using computational methods to study bacteriophages is
a promising area of biological research, as new insights can
be uncovered about phage genomics and proteomics through
bioinformatic analysis. Many studies have utilized the data
present in public databases and bioinformatic analyses to
research phage transcription (Guzina and Djordjevic, 2015),
evolutionary classification (Lima-Mendez et al., 2008), and
protein function (Carlton et al., 2005). Other authors advocate
that undergraduate students can spearhead this research into
bacteriophage abundance and diversity (Staub et al., 2017). In
the Internet era, many more possibilities for scientific inquiry
exist that previously were not accessible. The availability of
microbial and viral genomes along with computational tools to
assess these genomes gives teachers a unique opportunity to
incorporate more inquiry-based and active learning exercises into
their classrooms.

Bioinformatics skills are increasingly relevant to research
in most areas of the life sciences. A recent nationwide
faculty survey led to the development of a set of nine core
competencies to guide the integration of bioinformatics in the
life sciences curriculum (Wilson-Sayres et al., 2018). These
competencies include but are not limited to: (1) understanding
the role of data mining and computation in hypothesis-driven
processes in the life sciences, (2) summarizing key computational
concepts, (3) applying statistical concepts used in bioinformatics,
(4) utilizing bioinformatics tools to analyze genomic information,
and (5) knowing how to access genomic (Wilson-Sayres et al.,
2018). A large number of publicly available bacterial genomes
provides an excellent opportunity to teach about the abundance
and evolutionary relationships amongst bacteriophages while
incorporating five of the nine core bioinformatics competencies
in microbiology courses.

In Silico Phage Hunting addresses five of these competencies
by accessing genomic data from NCBI (National Center for
Biotechnology Information), analyzing bacterial and phage
genomes with bioinformatic tools, and facilitating group
discussion throughout this process. Additionally, students
prepare a final presentation or poster of their findings and
complete worksheets along the way, acting as “check points”
for their understanding of the concepts underlying the activity.
This activity is also designed to promote inquiry in student
groups by allowing enough time for students to discuss the
concepts they are learning about and practicing the related
skills. A sense of scientific discovery is also present in this
activity, as students know they are locating phages in bacterial
genomes and making genetic interpretations that have not
yet been made.
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LESSON OVERVIEW

The In Silico Phage Hunting lesson described in this report
was designed for upper level biology students. The activities
can be conducted as part of the laboratory component of
upper level biology classes or as independent projects in
directed research courses. In traditional biology classes, the
activities can be taught as multi-week laboratory exercises or
separate classroom assignments. Prior to starting this activity,
participants must have background knowledge of the following
concepts: (1) principles of microbial and eukaryotic cell structure,
(2) the central dogma of biology, (3) basic interpretation of
phylogenetic trees, and (4) familiarity with sequence similarities
searches and their application to biological research questions.
It is recommended that students have completed at least one
semester of genetics or cellular biology for effective participation
in this project. If the students do not have substantial
background in these areas, the instructor should incorporate
brief lectures and discussions on common bioinformatics tools,
genomes sequences, and any other themes considered necessary
for the activity.

The workflow for multi-week laboratory exercises and
research projects is illustrated in Figure 1. During the first
week, students have a pre-test followed by an assigned reading
of the laboratory handout and a lecture on phage biology.
Bioinformatics searches and phage genome exploration are
covered in the second and third week of phage hunting activities.
The fourth, fifth, and sixth weeks are used for experimental
design, data retrieval, and analysis. Instructors have the choice
of using additional weeks for wet-bench experiments or more
computational analysis (Supplementary File S1). Independent
research projects follow a timeline similar to the multi-week
laboratory exercises, however, these students have additional
weeks to expand their research questions and perform more
detailed bioinformatics analyses (Supplementary File S1). Both
the multi-week laboratory activity and the research project have
a final assessment consisting of a poster or an oral presentation.

The In Silico Phage Hunting activities were designed to achieve
the following learning objectives:

1. Describe the basic structure of a bacteriophage.
2. Explain the cycle of bacteriophage infection

and replication.
3. Construct and interpret phylogenetic trees to investigate

evolutionary relationships amongst phages.
4. Utilize bioinformatics tools to detect phages in bacterial

genome sequences.
5. Retrieve bacteriophage genomes and protein sequences

from public databases.
6. Formulate hypotheses regarding the abundance of

bacteriophages in microbial genomes.

This research was deemed exempt status by the Hamline
University IRB committee as defined by federal regulations
(Final Common Rule, 45 CFR §46.104) under normal
educational research. The study presented less than minimal
risk associated with students’ participation and was conducted

in an established educational setting using practices that were
not likely to adversely impact student learning or assessment
of the instructor providing the lesson. The data shown is
anonymous and cannot be linked directly or indirectly to any of
the participants in the study.

RESULTS AND DISCUSSION

The In Silico phage hunting activities were field-tested in two
classes, Microbiology (AY 2015–2016), and Research in Biology
(AY2017–2018). In lecture-based classes, these activities were
conducted as part of multi-week investigative laboratory exercises
in the laboratory component of the course. Students taking the
Research in Biology course designed and completed independent
projects using the In Silico Phage Hunting approach over a period
of 6–10 weeks. Examples of laboratory and directed research
projects are presented in Supplementary File S2.

Student learning after the completion of the In Silico phage
hunting activities was evaluated using multiple assessment tools.
For the lecture-based courses, we used the scores of pre and
post-tests (Table 1 and Supplementary Files S3) to assess
learning objectives (LOs) 1–5. The scores in the post-tests were
significantly higher than the pre-tests with a p-value at or below
0.002. Learning gains were calculated for learning objectives
1–5. These analyses showed learning objectives 3–5 improved
the most with learning gains equal to 0.50, 0.58, and 0.52,
respectively. In contrast, LO1 and LO2 showed learning gains
of 0.27 and 0.35. These results suggest the introductory lecture,
and laboratory exercises completed in the initial portion of
the phage-hunting activity improved students’ knowledge of
bacteriophage biology, computational detection of phages, and
interpretation of phylogenetic trees. The data from pre and post-
tests indicate students showed the most improvement in the skills
related to database searches and interpretation of phylogenetic
trees (LOs 3–5).

Learning objectives 3–6 were designed to allow students
to formulate hypotheses and employ publicly available data
with computational tools to address these propositions. These
activities were assessed by grading laboratory worksheets, and
final research presentations (Supplementary Files S2, S8).
Rubrics were developed to evaluate hypothesis statements,
interpretation of bioinformatics data, and presentations
(Supplementary File S5). Evaluation of laboratory worksheets
showed students were able to formulate hypotheses and use
publicly available genome data to test these propositions.
Students were able to formulate hypotheses regarding the
abundance of phages in Escherichia coli, and several genera of
Nitrogen-fixing bacteria. In one of the courses, students carried
out additional wet bench experiments to investigate induction
of phages using diverse conditions such as temperature shifts,
exposure to UV light, and chemicals. When students did In Silico
Phage Hunting as a summer or semester long research project,
they often conducted phage induction and isolation experiments
as part of their projects (Supplementary File S2). The laboratory
worksheets (Supplementary File S8) and presentations showed
most students met expectations regarding the formulation
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FIGURE 1 | Workflow for in silico phage-hunting multi-week laboratory project conducted by microbiology students to investigate the presence of bacteriophages in
the genomes of different bacteria.
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TABLE 1 | Summary of pre/post-test assessment data for in silico phage hunting laboratory activities field tested in microbiology courses.

Course Pre-test score (%) Post-test score (%) p-valuea Normalized learning gainsb

Microbiology 2015 (n = 19) 60.1 71.7 0.00036 0.28

Microbiology 2016 (n = 13) 62.9 80.5 0.00179 0.47

aA paired two tail t- test was used to evaluate the mean difference between pre and post-test scores. These scores were significant with p-values at or below 0.002.
bAverage normalized individual student learning gains (G) were calculated for the questions in the pre- and post-tests. G = [(post-test – pre-test)/(100 – pre-test)].

of hypotheses, retrieval of data from public repositories and
interpretation of phylogenetic trees. Students’ verbal feedback,
overall attitude, and level of engagement with the In Silico
Phage Hunting activities were very positive. These observations
suggest they had an appreciation for bioinformatics and its
applications to biology.

In Silico Phage Hunting provides multiple opportunities for
students to be exposed to and practice core bioinformatics
competencies (Supplementary File S6). Formulating hypotheses
about the abundance of phages in microbial genomes highlights
the role of computation and data mining in addressing
questions in the life sciences; this is one of the most important
bioinformatics competencies. In addition, during the phage
hunting activities, students used multiple databases and evaluated
statistical values to assess the accuracy of bioinformatics
predictions. These skills support the development of various
bioinformatics competencies including the use of computational
tools to examine biological problems and applying statistical
concepts in bioinformatics.

Students also practice appropriate retrieval and organization
of large data sets. These competencies are essential when locating
and sorting through different types of biological data to construct
sequence alignments and phylogenetic trees.

In Silico Phage Hunting was designed as a series of multi-
week laboratory exercises, therefore, the activity has many
fundamentally “hands-on” active learning components. For
example, students were engaged in downloading data from
public databases, employing bioinformatics web tools to analyze
bacterial and viral genome sequences, and using the information
gathered to discuss the biological relevance and implications
of their findings. Many parts of this activity involve students
working in teams of 3–4 people. This strategy leads to
group discussions focused on the value of the information
gathered, and whether the results obtained support or refute
the hypothesis posed. These activities are all consistent with
the definition of activity learning which states “anything
that involves students in doing things and thinking about
the things they are doing” (Bornwell, 1991). Group work
also encourages effective communication, and higher-order
thinking tasks such as critical data analysis, evaluation and
synthesis of information.

By using freely available Internet software in research, these
activities provide students of diverse backgrounds and academic
abilities with an opportunity to learn how to use bioinformatic
tools to test hypotheses. Laboratory projects involving data
mining and bioinformatics prepare students to participate
in summer or course-based research experiences given that
addressing modern scientific questions in biology often involves

working with large data sets as well as retrieving information
from databases. The activities carried out as part of these projects
make use of multiple approaches to teach about bacteriophage
structure, function, and diversity. Students formulate hypotheses,
perform database searches, and explore different ways to analyze
and present data. These exercises provide students of diverse
learning styles with an opportunity to engage with topics being
taught and make contributions to their team.

The phage hunting activities can be easily modified and carried
out with any bacterial species, offering research opportunities
for students in the classroom that otherwise would be difficult
to access. In Silico Phage Hunting also provides prospects to
discover and investigate novel phages in bacterial genomes.
An extension of these activities could include searching
and cataloging the abundance of RNA phages in bacterial
chromosomes. Once a complete DNA or RNA phage genome
is predicted by PHASTER, investigators can isolate the virus by
induction of the lytic cycle or cloning. This type of research can
contribute to enhancing our understanding of phage biology and
viral diversity.

Phage genome analyses can be modified to incorporate other
viral bioinformatic tools such as: the MVP (Microbe-Vs.-Phage)
database, VIRFAM (Viral Protein Families), and Phage Signature
Genes, PhiSiGns (Supplementary File S7). In Silico Phage
Hunting is suitable as a research project or as a laboratory activity
for upper-level courses such as virology, microbiology, evolution,
and molecular biology. Alternatively, instructors can use the
phage hunting activities as individual or stand-alone modules to
create assignments and supplement class content. Many of the
bioinformatics activities are easy to follow and can be used as
classroom or one-time laboratory exercises. These activities can
also be used together with commercially available bacteriophage
induction and plaque demonstration kits.

PERSPECTIVE

The equitable access of research experiences is of concern
in academia. We know students benefit greatly from these
experiences. Students report that they have a greater sense of
pride in their work (Hekmat-Scafe et al., 2017), learn critical
thinking skills by virtue of engaging in the research process, and
gain a greater sense of awareness about what scientific research
is like. Research experiences are also one of the crucial keys for
entrance into graduate programs (Bangera and Brownell, 2014).
Given the high importance of research experiences in relation
to student learning, appreciation of biology, and gateways
to academic and professional opportunities, these experiences
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should be designed to be more accessible to a wider range of
students. Scientific educators occupy a critical space by being able
to directly implement research experiences in their classrooms.
As individual teachers, we must consider what we can do to create
an equitable learning environment for all learners. Teachers
have a direct relationship with students’ education, and it is
this education that can open doors for students into future
careers as educators, researchers, doctors, and scientists. Research
experiences can open these doors for students and empower
them as learners. Teachers can implement a tangible change
in their classrooms by incorporating research experiences into
their curriculums.

In Silico Phage Hunting is a classroom activity that engages
students in important aspects of the research process: hypothesis
testing, data mining, interpretation of results, and sharing of
findings. It is an adaptable teaching module that incorporates
research into laboratories and classrooms with little cost to
instructors. A barrier to incorporating research experiences
into classrooms is often an issue of lack of resources and
funding for departments. The activity we described in this paper
does not require advanced equipment or massive amounts of
funding to implement and was field-tested at a small liberal
arts college showing learning gains made by students. Biological
databases offer a new approach to incorporating research
experiences into classrooms that would otherwise have been
difficult to achieve.

By developing a teaching module that utilizes research into
bacteriophage abundance and diversity, we aim to confront
the barriers present in academic research. The wealth of
biological data that is freely available in databases such as NCBI
(National Center for Biotechnology Information) presents a
unique opportunity that was not available for past educators to
incorporate research into the classroom. Software tools available
on the Internet present new modes of inquiry into this data,
offering new interpretations and insights into bacteriophage
abundance and diversity. The core of this activity is the use of
freely available data and tools on the Internet to design research
activities in the classroom, and we encourage other educators to
get creative with this accessible information.
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Epidemics of emerging and re-emerging infectious diseases are a danger to civilian
and military populations worldwide. Health security and mitigation of infectious disease
threats is a priority of the United States Government and the Department of Defense
(DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional
biosurveillance by providing additional data to understand transmission, identify
resistance and virulence factors, make predictions, and update risk assessments. As
more and more laboratories adopt NGS and BI technologies they encounter challenges
in building local capacity. In addition to choosing the right sequencing platform and
approach, considerations must also be made for the complexity of bioinformatics
analyses, data storage, as well as personnel and computational requirements. To
address these needs, a comprehensive training program was developed covering
wet lab and bioinformatics approaches to NGS. The program is meant to be
modular and adaptive to meet both common and individualized needs of medical
research and public health laboratories across the DoD. The training program was
first deployed internationally to the Basic Science Laboratory of the US Army Medical
Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter
Reed Army Institute of Research (WRAIR). A week-long workshop with intensive
focus on targeted sequencing and the bioinformatics of genome assembly (n = 24
participants) was held. Post-workshop self-assessment (completed by 21 participants)
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noted significant median gains in knowledge domains related to NGS targeted
sequencing, bioinformatics for genome assembly, and sequence quality assessment.
The participants also reported that the information on study design, sample preparation,
sequencing quality control, data quality assessment, reporting, and basic and advanced
bioinformatics analysis were the most useful information presented in the training.
While longer-term evaluations are planned, the training resulted in significant short-term
improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This
framework can be used for future DoD laboratory development in the area of NGS and
BI for infectious disease surveillance, ultimately enhancing this global DoD capability.

Keywords: NGS, bioinformatics, workshop, infectious disease, DoD

INTRODUCTION

Development of Next-Generation Sequencing (NGS), or High-
Throughput Sequencing (HTS), has revolutionized life sciences,
dramatically increasing the variety of questions that can be
answered using genomic sequence data. With this continuously
evolving and growing field, the need for adequate computational
hardware resources, software, and expertise to analyze large and
complex data is also increasing. The field of bioinformatics has
thus experienced substantial growth and advancement in recent
years, and the requirement for highly skilled and specialized
personnel has surged.

Within the Department of Defense (DoD), NGS and
bioinformatics are routinely used to answer many scientific and
research questions that ultimately aid in protection of the armed
forces, as well as the general population (Kijak et al., 2017; Colby
et al., 2018; Ehrenberg et al., 2019; Waickman et al., 2019).
Infectious diseases are one area where such research is of high
importance. Like the general population, United States forces
are vulnerable to many infections commonly occurring within
the United States, such as influenza, coronavirus, adenovirus
and antibiotic resistant bacterial infections including but not
limited to infection by methicillin resistant Staphylococcus aureus
(MRSA); pathogens that have the ability to negatively impact
United States force readiness and mission goals (MacPherson
et al., 1923; Beam et al., 1959; Earhart et al., 2001; Shanks
and Hodge, 2011; Millar et al., 2017, 2019). In addition, global
deployment of the United States forces also puts them at a
higher risk for infections that occur more frequently outside
the United States, such as Ebola, dengue, Zika, cholera, malaria,
leishmaniasis, shigellosis, and many others (Riddle et al., 2011;
Murray et al., 2015). The DoD Global Emerging Infections
Surveillance (GEIS) program seeks to improve infectious disease
surveillance, prevention, and response capability to better protect
the health of the military force. Utilizing a global network of
partner DoD medical research and public health laboratories,
GEIS funds surveillance activities in over 70 countries to
inform force health protection through timely and actionable
infectious disease surveillance information (Chakhunashvili
et al., 2017; Chang et al., 2018; Coleman et al., 2018; Koka
et al., 2018; Anyamba et al., 2019; Guerra et al., 2019;
Juma et al., 2019; Rivers et al., 2019; Rocha et al., 2019;

Sugiharto et al., 2019). Unsurprisingly, development of NGS and
bioinformatics methods for infectious disease surveillance and
control has enabled a rapid expansion of GEIS partner studies
that utilize pathogen genomic information (Frey et al., 2016;
Maljkovic Berry et al., 2016, 2019a; Lee et al., 2017; Mullins
et al., 2017; Salje et al., 2017; Cowell et al., 2018; LaBreck et al.,
2018; Srijan et al., 2018; Grubaugh et al., 2019; Kim et al., 2019;
Mbala-Kingebeni et al., 2019; Millar et al., 2019; Pollett et al.,
2019; Wiley et al., 2019). However, NGS and bioinformatics
can generally be technically challenging, as it requires specific
knowledge of complex wet lab and bioinformatics processes
(Maljkovic Berry et al., 2019b). Therefore, and in spite of great
interest in this technology, only a few partner laboratories
have been adequately equipped to utilize these approaches to
their full potential.

In 2017, GEIS created a Consortium to address the increasing
needs and challenges associated with NGS and bioinformatics
at DoD medical research and public health laboratories. The
vision of the Consortium is to rapidly detect and characterize
known, emerging, and novel infectious disease agents through
establishment of a harmonized DoD laboratory NGS and
bioinformatics capability to inform force health protection
decision making. The Consortium today represents a network of
DoD laboratories that use NGS and bioinformatics for infectious
disease surveillance. A baseline assessment and initial training
effort was led by GEIS and three DoD core sequencing and
bioinformatics laboratories: WRAIR-VDB (Walter Reed Army
Institute of Research-Viral Diseases Branch), NMRC-BDRD
(Naval Medical Research Center-Biological Defense Research
Directorate), and USAMRIID-CGS (United States Army Medical
Research of Infectious Diseases-Center for Genome Science).
The Consortium performed an assessment of the GEIS DoD
laboratory partners with access to Illumina MiSeq or other
NGS instrument(s), in order to evaluate existing laboratory
capabilities in NGS and bioinformatics, and to map gaps and
needs in laboratory utilization of these tools to meet their
mission goals of infectious disease surveillance. Limited access
to experienced and knowledgeable NGS and bioinformatics
personnel was one of the main gaps, making basic and advanced
bioinformatics analyses a common challenge across the network.
Another challenge was the restrictive and limited informatics
infrastructure, especially in some of the participating laboratories
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located in low-and-middle income countries (LMICs). However,
the challenge of finding personnel with sufficient training in
NGS and bioinformatics was not only observed in laboratories
located in LMICs, it was also apparent in domestic laboratories,
thus highlighting the need to develop a structured NGS
and bioinformatics training for the specific needs of DoD
biosurveillance programs. Such training would have to be
standardized across the Consortium network, as well as made
agile enough to meet different levels of needs and computational
resources of the participating DoD laboratories. Using the
baseline information from the assessment, desired sequencing
capabilities for DoD research and public health laboratories
were divided into three tiers (Figure 1). Here we present the

deployment of NGS and bioinformatics training with our partner
laboratory in Kenya, United States Army Medical Research
Directorate – Africa (MRD-A). Future iterations of similar
trainings and assessments will be used to further strengthen
global infectious surveillance for DoD utilizing genomics
and bioinformatics.

MATERIALS AND EQUIPMENT

Samples used for the NGS hands-on training included dengue
virus 2 (DENV-2) and chikungunya (CHIKV) and were
provided on-site. Controls for library preparation, MiSeq

FIGURE 1 | Tiered next generation sequencing (NGS) and bioinformatics (BI) capabilities for biosurveillance. Relative levels of laboratory and equipment footprint,
proximity to source of biosurveillance samples, information technology (IT) infrastructure, and sequencing and bioinformatics surge capacity are displayed by black
gradient bars along the top. Continuous flow of data back and forth among all three tiers is depicted by gray arrow, and expected types of activities and products by
tier are illustrated by plus marks (+) along the bottom.
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sequencing and TapeStation for both DENV-2 and CHIKV
were validated and prepared at VDB-WRAIR in the months
prior to the planned NGS&BI training in Kenya. Prior to
shipment of controls to Kenya, the control concentrations
were measured and documented and the information was
sent to MRD-A. Coordination of the reagent and control
shipment from VDB-WRAIR to Kisumu, Kenya started a
month prior to the training. Four Linux laptops and two
Linux servers were prepared for hands-on bioinformatics
training. A list of software was prepared by the Consortium
and sent out to MRD-A Lab for installation onto the
training computers. The software list included ngs_mapper,
IGV, Geneious, MEGA7, EDGE (servers only) (Robinson et al.,
2011; Kumar et al., 2016; Viral Diseases Branch WRAIR, 2016;
Philipson et al., 2017). Three weeks prior to the training, a hands-
on genome assembly training dataset was designed, consisting
of dengue, chikungunya, and influenza raw fastq data, as well
as hands-on performance instructions. The whole dataset was
tested at VDB-WRAIR prior to training and saved onto the
training computers.

METHODS

Day 1
Lectures and theory included: History of sequencing, overview of
NGS, library preparation, quantification, validation and pooling.
In detail: (i) List of library preparation kits used by core DoD
for different projects and specimens were highlighted; (ii) Several
topics on types of kits for viruses, bacteria and parasite work
were heavily discussed throughout the lecture; (iii) Specific
library preparation kits were highlighted including TruSeq,
QIASeq Fx, Kappa, NexteraXT, RNA Access and DNAFlex; (iv)
AmpureXP Beads clean up after PCR reactions and library
preparation was emphasized as preferred method; (v) Different
library validations, including qPCR, Qubit and TapeStation were
highlighted as essentials for quality control (QC); (vi) Library
pooling based on TapeStation and Qubit were introduced; (vii)
Two exercises of how to calculate amount of each library
for pooling were conducted. Preparations were made for the
upcoming bioinformatics training.

Day 2
Hands-on training for NGS wet lab was performed with
24 participants. The participants were separated into two
groups based on their NGS background and interests for
hands-on performance. Group 1 prepared the NexteraXT
library from the amplicons and assessed amplicons using
both Qubit and TapeStation prior to NexteraXT library
preparation. The NexteraXT libraries were validated using
both Qubit and TapeStation. Group 2 validated the pooling
based on the controls from the shipment and prepared
sample sheets, the MiSeq instrument and PhiX controls.
The libraries were loaded onto the Miseq. Bioinformatics
training dataset was prepared on each computer. Server
performance was tested for running the pipelines and tools
needed for the training, and the training dataset analyses

were executed to test functionality prior to the hands-on
bioinformatics training.

Day 3
Hands-on wet lab activities from Day 2 were summarized and any
questions and concerns were addressed. Lectures on laboratory
project experimental design (to include bioinformatics),
bioinformatics data cleaning and pre-processing, and genome
assembly through reference mapping were performed, as well
as exercises in experimental design and genome consensus
calling. For hands-on bioinformatics training, the 24 participants
were divided into six different groups, each group utilizing
one training computer or server. Ngs_mapper was used as the
example of a reference mapping pipeline. The first training
was performed on the DENV fastq dataset, including training
on usage of different stages of the pipeline, setting a desired
reference genome and running the pipeline. After ngs-mapper
jobs were completed, interpretation of the output, how to
utilize data quality scores and depth of coverage, how to assess
the performance of the sequencing and the genome assembly
were performed. Manual QC and genome curation were
performed. The second training dataset consisted of CHIKV
fastqs and was used for training on multiple reference usage
and reference selection, in addition to repeating the above steps
for dataset one.

Day 4
Bioinformatics hands-on training was continued by evaluation
of the CHIKV runs for reference genome selection. Based
on the best reference choice, the reference mapping run was
repeated. The repetition was incorporated on purpose to ensure
better knowledge retention. Following reference mapping, the
output of CHIKV assembly was evaluated and its genome
curated. The data that were used for this training were
purposefully chosen to be of lower quality, so that different
challenges of genome assembly curation were highlighted, as
well as the importance of QC and what consequences a lack
of QC might result in. The last reference mapping analysis
was performed on CHIKV data but now the participants
learned how to change different pipeline thresholds, picking
their own requirements for minimum base quality, consensus
type output and the like. In addition, lectures were conducted
covering theory of de novo genome assembly, assembly of
bacterial genomes, and troubleshooting and maintenance of
the MiSeq platform.

Day 5
A summary of wet lab activities and library pooling to obtain
optimal cluster density was presented. An exercise aimed
at the evaluation of several MiSeq runs was performed.
Management of sequencing libraries and data, and prevention
of chimeric sequence data generation and mislabeling were
discussed. Bioinformatics training on the influenza dataset was
performed separately since influenza virus has a segmented
genome and bioinformatically, full genome assembly is
slightly more complicated. How to recognize presence of
influenza reassortment was covered. A workshop survey was

Frontiers in Genetics | www.frontiersin.org 4 September 2020 | Volume 11 | Article 57756333

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-577563 September 22, 2020 Time: 19:57 # 5

Maljkovic Berry et al. DoD NGS and Bioinformatics Training

distributed (Supplementary Material) and the workshop
was concluded.

RESULTS

NGS and Bioinformatics Training
Modules
A comprehensive training curriculum was constructed that
consisted of standardized wet lab and bioinformatics theory
modules (Figure 2) as well as hands-on training. The modules
could be independently compiled into a set of theoretical lectures

that could be adjusted for the existing laboratory tiers and specific
knowledge gaps. As they were designed to meet the particular
DoD surveillance needs, the modules were divided into two
main wet lab sequencing and two main bioinformatics analyses
approaches. The wet lab lectures could thus be adjusted to cover:
(i) the theory of targeted sequencing, which is mainly used
in response to epidemics and outbreaks of known pathogens;
and (ii) the theory of metagenomics, which is usually used
for pathogen discovery and identification. The bioinformatics
lectures focused on: (i) the genome assembly and curation
analyses, an essential part of outbreak genomic surveillance; and
(ii) the bioinformatics of pathogen discovery, usually the most

FIGURE 2 | NGS and bioinformatics training modules. Modules used in training of MRD-A are denoted with an asterisk.

Frontiers in Genetics | www.frontiersin.org 5 September 2020 | Volume 11 | Article 57756334

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-577563 September 22, 2020 Time: 19:57 # 6

Maljkovic Berry et al. DoD NGS and Bioinformatics Training

challenging aspect of basic sequencing-based biosurveillance. In
addition to these, modules covering other parts of NGS and
bioinformatics were included, such as theory of experimental
design, troubleshooting, and equipment maintenance. The
theory modules were complemented with development of
corresponding hands-on wet lab and bioinformatics training of
the above approaches.

NGS and Bioinformatics Training
Deployment
Based on the results of the initial laboratory assessment, training
was recommended for the GEIS partner US Army Medical
Research Directorate – Africa (MRD-A) laboratories in Kenya.
For MRD-A’s initial needs, which mainly cover sequencing
and analyses of known pathogen outbreaks and epidemics
in the region, a 1 week on-site workshop was constructed
where the wet lab targeted sequencing was covered in both
lectures (specific assembled modules) and hands-on practice,
followed by bioinformatics theory (specific assembled modules)
and hands-on practice of pathogen genome assembly and

curation (Figure 2). This approach was specifically designed
based on the needs and gaps that were highlighted during the
initial assessment of MRD-A capabilities. Participating in the
training were representatives from various MRD-A and Kenya
Medical Research Institute (KEMRI) laboratory divisions in
Kenya: Basic Science, Viral Hemorrhagic Fevers, Entomology, Flu
Lab, Antimicrobial Resistance, Sexually Transmitted Infections,
Microbiology Hub-Kericho, Influenza, and KEMRI-Centers for
Disease Control divisions (Figure 3). There was a total of 24
workshop participants.

We undertook a rapid evaluation of participants’ self-reported
baseline and post-workshop knowledge across ten skill domains
related to genomic sequencing (Supplementary Material). We
also determined individual-level gains in self-reported knowledge
after completing the workshop. This was measured with a single
hard-copy questionnaire administered after the workshop. This
survey asked the participants to self-rate their knowledge in
each skill domain on a customized scale of 1–10 (1 = “no
prior knowledge”, 10 = “high level of experience”) before
and after the workshop. Median baseline and post-workshop
scores are presented in Table 1. While interpretation of

FIGURE 3 | A map of training performance site and participating partner laboratories from Kenya. Red triangle shows where the training was held.
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TABLE 1 | Self-reported knowledge across skill domains of genomic sequencing
(n = 21 respondents).

Knowledge domain Pre-
workshop

scorea

Post-
workshop

scorea

Post-workshop
gains

Median
(IQR)

Median
(IQR)

Median
(IQR)

p-valueb

NGS technology 4 (3,5) 7 (6,8) 3 (2,3) <0.001

Illumina MiSeq sequencing
chemistry

4 (2,5) 7 (6,8) 3 (2,4) <0.001

NGS library preparation 5 (2,6) 8 (7,9) 3 (2,4) <0.001

NGS library validation 2 (1,5) 8 (6,8) 4 (3,4) <0.001

MiSeq run validation 2 (1,3) 6 (4,8) 3 (2,4) <0.001

Experimental design for
bioinformatics analysis

2 (1,4) 6 (5,8) 3 (2,4) <0.001

FASTQ data cleaning and
pre-processing

2 (1,5) 6 (5,8) 4 (2,4) <0.001

Reference mapping 3 (1,5) 7 (6,9) 4 (1,5) <0.001

Linux OS use and
command line

2 (1,5) 5 (3,7) 1 (0,3) <0.001

Consensus sequence
calling and manual curation

2 (1,3) 6 (5,8) 4 (2,5) <0.001

NGS, next generation sequencing; OS, operating system. aMaximum
possible score is 10. bDerived from Wilcoxon signed rank test.

these metrics is limited due to the subjectivity of the self-
reported knowledge measurements, particularly when measured
at a single point in time, the IQR and range around the
median reported knowledge scores did suggest that this sample
of participants had varying expertise across each of these
skill domains. Pre-training baseline scores suggested that the
participants had, in particular, less self-reported expertise in NGS
library validation, Illumina MiSeq run validation, experimental
design for bioinformatics analysis, and FASTQ data cleaning
and pre-processing.

There were substantial gains in self-reported knowledge across
all skill domains (Table 1), with the notable exception of
Linux OS and command line skills, suggesting that this is a
particular area of residual training need. Indeed, Linux OS and
command line skill had the lowest post-workshop self-reported
knowledge scores. A module was later developed specifically
to fill this gap (Figure 2). The questionnaire also measured
the participants’ perceptions on the most “useful” information
learned during the NGS library and bioinformatics components
of the workshop. This was measured by free-text open ended
questions (Table 2).

The participants were also asked in which topics they felt
they would like more training and experience (Table 3) and
how to improve future iterations of this workshop (Table 4).
The participant’s responses all highlight the complexity and the
diversity of considerations within NGS and bioinformatics. The
many topics that can be covered and trained upon for the
fields of infectious disease surveillance and control alone, and
the associated time that it would take to train and educate the
workforce, would indicate a large gap in the currently existing
education programs.

TABLE 2 | Information reported by participants to be the most useful (n = 21
respondents)a.

n %b

NGS library preparation 12 60

NGS library validation 7 35

Sample pooling 6 30

Tapestation use 5 25

Library normalization 5 25

Qubit use 2 10

QC for sequence reads 1 5

Experimental design considerations 1 5

Sequencing platform overview 1 5

MiSeq runs (hands-on experience) 1 5

Sample pre-processing 1 5

Nextera-XT protocol 1 5

MiSeq run troubleshooting 1 5

Genome assembly (reference mapping and curation) 15 71

Sequence read QC 8 38

De novo sequencing 4 19

Experimental considerations 3 14

Software (including NGS_mapper and IGV) 3 14

Mapping bacterial sequences 1 5

Output analysis 1 5

aDerived from open questions: “What information was most useful to you that
this NGS library provided?” and “What information was most useful to you that
this bioinformatic workshop provided?”. bSome participants indicated > 1 item of
information in response. QC, quality control.

DISCUSSION

The rapid growth and utility of NGS and bioinformatics for
research and biosurveillance has resulted in the emergence
of DoD requirements for implementation of sequencing
and computational technologies, as well as access to highly
trained and knowledgeable personnel in the fields of NGS
and bioinformatics. Specifically the latter point remains one
of the major challenges across the DoD, and even though
bioinformatics programs have more recently gained larger
momentum in academia, lack of workforce with early-on
and/or specialized bioinformatics training is still palpable in the
government settings, particularly in government labs outside the
continental United States. Therefore, NGS and bioinformatics
training programs for infectious disease surveillance have
recently been developed by many government agencies or
non-governmental organizations. Within the United States
Government, Canada, and the European Union, there is
movement towards training and coordinated promotion of
standardized quality assurance and quality control practices
for pathogen genome sequencing using NGS technologies (e.g.,
Illumina) (Cui et al., 2015; Gargis et al., 2016; Nadon et al., 2017).
Some recent examples include the GenomeTrakr program at the
Food and Drug Administration, Next Generation PulseNet at
Centers for Disease Control, and the Global Microbial Identifier
for food-borne pathogen surveillance (Moran-Gilad et al., 2015;
Timme et al., 2018; Ribot et al., 2019). More recently, the
SARS-CoV-2 Sequencing for Public Health Emergency Response,
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TABLE 3 | Suggested topics for more training/experience, as reported by
participants (n = 21 respondents)a.

n %b

Phylogenetics and other advanced bioinformatics analysis 8 38

Metagenomics for pathogen discovery 4 19

De novo assembly 4 19

Linux OS/cluster 4 19

MiSeq loading and run evaluation 3 14

Bacterial genomics 3 14

Pipeline development (including open source bioinformatic tools) 3 14

Sequence assembly 2 10

Read QC 2 10

Library prep 1 5

16s and 18s molecular analysis 1 5

Sample pre-processing 1 5

Bioinformatic experimental design 1 5

SNP detection and variant calling 1 5

Sample sheet prep 1 5

Reference mapping 1 5

Plasmid sequencing 1 5

Recombination detection 1 5

Comparative genomics 1 5

Outbreak investigations 1 5

aDerived from open question: “What topic would you like more
training/experience in (if any)?”. bSome participants indicated more than
one line item of information. QC, quality control.

TABLE 4 | Participants’ suggestions for workshop improvements (n = 21
respondents)a.

n %b

More time (longer workshop >1 week) 4 19

More hands on training/practical sessions (less theory/slides) 4 19

More time on bioinformatic data interpretation and analysis 3 14

Increased frequency of workshop with follow-up training 2 10

More wet lab time 2 10

More laptops 1 5

Split into beginner and advanced classes 1 5

aDerived from open question: “Suggestions for workshop improvement?”. bSome
participants had >1 suggestion.

Epidemiology, and Surveillance (SPHERES) national genomics
consortium was set up by the Centers for Disease Control, to
coordinate SARS-CoV-2 sequencing across the United States
(Centers for Disease Control and Prevention, 2019). Within
the DoD, the training designed and implemented by the
GEIS Consortium aims to develop lasting and sustainable
capabilities for pathogen genomic sequencing and bioinformatics
at DoD medical research and public health laboratories in
overseas locations.

Our experience in deploying a comprehensive yet
customizable classroom and hands-on training in NGS
and bioinformatics in Kenya was overall successful (see
caveats of assessment below) and is a potential model for
future training programs in similar environments. This
training program consisted of foundational material in

sequencing theory and experimental design which formed
a basis for more applied modules in targeted sequencing
and metagenomics. Additionally, hands-on NGS wet lab
and bioinformatics modules were further tailored to meet
the needs of the laboratory participants using information
obtained from a baseline landscape assessment. This training
shows that a highly modular and deployable set of NGS and
bioinformatics workshop components can be used within the
DoD network of medical research and public health laboratories
to improve sequencing wet lab capability, and analysis and
interpretation of pathogen genomic data gathered using NGS
and bioinformatics.

Embedded within this training workshop was a post-self-
assessment questionnaire to gauge immediate improvements
in knowledge gained from the workshop materials. It is
important to note that this questionnaire has several limitations
including a small sample size, the immediate nature of
the assessment tool which does not allow one to measure
long-term benefits, and the fact that the assessment was
only delivered through written evaluation and self-report.
Further, more objective measurements of knowledge and
skill gains after workshops may not directly translate into
effective implementation and retention of these skills. The
latter requires medium and longer term evaluations in an
implementation science framework (Nilsen, 2015). However,
these data do suggest that the participants have perceived
that this workshop offered productive training which has led
to substantial gains in knowledge. In similar bioinformatics
trainings in LMICs, technological limitations were identified
as an impediment to knowledge acquisition and long-term
improvements in bioinformatics capability (Pollett et al., 2016).
This training attempted to overcome these barriers by (a)
providing training laptops, (b) providing recommendations for
IT upgrades, bioinformatics software, and computer networking,
and (c) upgrading local IT equipment for bioinformatics
during the workshop.

Following this workshop a mechanism to facilitate reach back
support with embedded long-term training and mentorship has
been instituted to overcome challenges associated with long-term
sustainability of a sequencing capability at MRD-A. Included
in this 5-year NGS and bioinformatics implementation plan for
MRD-A are: (i) continuous contact and support by the core
DoD sequencing laboratories, (ii) repetition of training with
focus on real data and troubleshooting, (iii) additional hands-
on training in other wet lab and bioinformatics approaches
to achieve capability diversification, (iv) development of local
computational infrastructure for bioinformatics, and (v) regular
assessments of wet lab and bioinformatics knowledge retention.
Laboratory-level assessments of proficiency and skill retention
1–2 years post-training have included external review of raw
sequence data and consensus genomes generated from GEIS
funded surveillance projects. We also anticipate deploying
periodic blinded panel of samples or data files for follow-up
assessments of knowledge retention and capability development.
At the end of this period, the goal is to achieve a high quality
diversified portfolio of NGS and bioinformatics capabilities at the
site, which then may serve as a central DoD hub for sequencing
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and advanced characterization of Force Health Protection (FHP)
relevant pathogens in Africa.

The current COVID-19 pandemic has further highlighted
the importance of access to the NGS and bioinformatics in
laboratories throughout the world. This makes the need of
workshops such as ours even greater. However, the pandemic
has also made travel and in-person learning a challenge, and
therefore, GEIS is planning on development of virtual versions
of the workshops to continue development of this important
DoD-wide capability. In addition, Oxford Nanopore’s MinION
platform has increasingly been used in pathogen outbreak
studies for real-time in-field analyses throughout the world,
including analyses of SARS-CoV-2 (Quick et al., 2016; Faria
et al., 2018; Moore et al., 2020). Although training in the wet-
lab and bioinformatics of this approach was not included in
the workshop in Kenya to maintain simplicity and focus, the
plan is to apply the modular approach for development and
incorporation of a general DoD MinION-focused training for
the GEIS partner laboratories. Currently, GEIS has established
a separate MinION working group, and has been working
in providing basic training in this technology to a subset of
partner laboratories.

More broadly, the Consortium goal is the establishment
of basic proficiencies and adopted norms in quality assurance
and quality control in targeted (hybridization- or amplicon-
based) and metagenomic sequencing for viral and bacterial
pathogens leading to more reliable results which will ultimately
improve DoD public health surveillance and response. An
additional objective is the development and maintenance of
advanced genomics and bioinformatics capabilities in the
United States and priority overseas locations, in order to
enhance global health surveillance and facilitate faster response
to infectious disease outbreaks. Development of these capabilities
with GEIS DoD laboratory partners will require sustained
commitment and global coordination. The end results will
be the ability to reliably and rapidly sequence, identify, and
characterize pathogens of public health importance in order
to improve biosurveillance efforts and inform FHP measures
throughout the world.
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Improvements in high-throughput sequencing makes targeted amplicon analysis
an ideal method for the study of human and environmental microbiomes by
undergraduates. Multiple bioinformatics programs are available to process and interpret
raw microbial diversity datasets, and the choice of programs to use in curricula is largely
determined by student learning goals. Many of the most commonly used microbiome
bioinformatics platforms offer end-to-end data processing and data analysis using a
command line interface (CLI), but the downside for novice microbiome researchers
is the steep learning curve often required. Alternatively, some sequencing providers
include processing of raw data and taxonomy assignments as part of their pipelines.
This, when coupled with available web-based or graphical user interface (GUI) analysis
and visualization tools, eliminates the need for students or instructors to have extensive
CLI experience. However, lack of universal data formats can make integration of these
tools challenging. For example, tools for upstream and downstream analyses frequently
use multiple different data formats which then require writing custom scripts or hours
of manual work to make the files compatible. Here, we describe a microbial ecology
bioinformatics curriculum that focuses on data analysis, visualization, and statistical
reasoning by taking advantage of existing web-based and GUI tools. We created
the Program for Unifying Microbiome Analysis Applications (PUMAA), which solves
the problem of inconsistent files by formatting the output files from several raw data
processing programs to seamlessly transition to a suite of GUI programs for analysis
and visualization of microbiome taxonomic and inferred functional profiles. Additionally,
we created a series of tutorials to accompany each of the microbiome analysis curricular
modules. From pre- and post-course surveys, students in this curriculum self-reported
conceptual and confidence gains in bioinformatics and data analysis skills. Students
also demonstrated gains in biologically relevant statistical reasoning based on rubric-
guided evaluations of open-ended survey questions and the Statistical Reasoning in
Biology Concept Inventory. The PUMAA program and associated analysis tutorials
enable students and researchers with no computational experience to effectively analyze
real microbiome datasets to investigate real-world research questions.

Keywords: microbiome, 16S rRNA, software tool, GUI (Graphical User Interface), undergraduate education,
curriculum, data visualisation, targeted amplicon sequencing
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INTRODUCTION

Engaging undergraduates in research has been consistently
demonstrated to increase students’ performance, attitudes, and
retention in sciences (Lopatto, 2004; Russell et al., 2007; Eagan
et al., 2013). In particular, course-based undergraduate research
experiences (CUREs) have been touted as an inclusive and
scalable model to bring these benefits to a diverse set of student
populations (Harrison et al., 2011; Bangera and Brownell, 2014;
Corwin et al., 2015; Shapiro et al., 2015; Hanauer et al., 2017).
Microbiome research using marker gene metabarcoding is an
attractive direction for CUREs, as sample collection is relatively
straightforward and advances in sequencing technologies and
reduced cost have made the acquisition of marker gene
microbiome data easier than ever (Clooney et al., 2016; Jovel
et al., 2016). The large microbiome datasets using a combination
of marker genes targeting bacteria and archaea (16S), eukaryotes
(18S), and fungi (ITS) give students an opportunity to ask a
variety of questions ranging from the composition of their own
oral microbiome to plant–microbe interactions (Rosenwald et al.,
2012; Sanders and Hirsch, 2014; Wang et al., 2015; Weber et al.,
2018; Parks et al., 2020; Sewall et al., 2020).

We designed a microbial ecology CURE as part of the
interdepartmental Competency-Based Research Laboratory
Curriculum at the University of California, Los Angeles
(Shapiro et al., 2015). In this two-term (two 10-week quarters)
curriculum students work in teams to conduct self-directed
research projects, with a focus on developing critical thinking
and quantitative skills. Under the umbrella of an instructor
designated overarching research question, students in the
microbial ecology CURE formulate and test hypotheses about
the microbiomes of different environments. The functional
profiles of microbial communities are just as important as the
taxonomic composition (Langille, 2018), and the questions of
“who is there?” and “what are they doing there?” are the guiding
questions for the curriculum. In the first wet-lab term they use
both cultivation-dependent techniques such as isolating bacteria
from the soil and characterizing their functional capabilities,
and cultivation-independent techniques such as extraction of
environmental DNA (eDNA) for 16S rRNA (16S) sequencing. In
the second computer-lab term they use a variety of phylogenetics
programs and bioinformatics tools for analysis of microbiome
taxonomic community profiles and Piphillin predicted functional
profiles (Narayan et al., 2020).

A major challenge for the development of microbiome
research for undergraduates is that marker gene amplicon
microbiome data provided by sequencing providers requires
a number of bioinformatic processing steps before it can be
easily analyzed and visualized, a process with which not all
instructors or researchers have familiarity (Carey and Papin,
2018; Garcia-Milian et al., 2018). Many of the available end-to-
end data analysis packages such as Quantitative Insights Into
Microbial Ecology (QIIME/QIIME 2) (Caporaso et al., 2010;
Bolyen et al., 2019), mothur, and the Pipeline for Environmental
DNA Metabarcoding Analysis (PEMA) (Zafeiropoulos et al.,
2020) have steep learning curves, requiring at least some
command line interface (CLI) programming skills, or familiarity

with R (R: The R Project for Statistical Computing) in the
case of phyloseq (McMurdie and Holmes, 2013, 2015) and
PEMA, in order to perform data analysis and visualization.
Teaching these skills may be outside the scope of the average
undergraduate microbiology classroom. Fortunately, there are
several microbiome data analysis and visualization tools that
do not require command line, such as the Shiny web app
ranacapa (Kandlikar et al., 2018) or locally installed programs
with graphical user interfaces (GUIs) such as Statistical Analysis
of Metagenomic Profiles (STAMP) (Parks and Beiko, 2010; Parks
et al., 2014) and Cytoscape (Shannon et al., 2003). These are
attractive tools for use in the undergraduate bioinformatics
classroom where there is lack of time to devote to the steep
learning curve necessary for installation and use of command line
programs (Mangul et al., 2017).

Even with the increasing availability of GUI analysis tools,
there is still the problem that the data output file formats from
QIIME or custom commercial and academic pipelines such as
MrDNA (mrdnalab, 2020) and Anacapa (Curd et al., 2019) do
not match the data input file formats required for the GUI
and web-based analysis and visualization tools. Formatting the
different analysis pathway files into a single pipeline is a non-
trivial task requiring either running scripts or hours of manual
reformatting. To address this problem, we created PUMAA,
the Program for Unifying Microbiome Analysis Applications,
which takes the output files from QIIME, Anacapa, or MrDNA
and reformats them directly for use in downstream GUI or
web-based applications for microbiome analysis. Additionally,
PUMAA both prepares files for upload to Piphillin for prediction
of functional genes from the 16S taxonomy data, and queries
the KEGG database to annotate the Piphillin gene predictions
(Iwai et al., 2016; Narayan et al., 2020). Inferring functional
profiles from 16S rRNA marker genes using programs like
PiCRUSt (Langille et al., 2013; Douglas et al., 2020) or Piphillin
are accessible options for researchers without the resources to
perform full functional metagenomics (Laudadio et al., 2019).

Since classroom time is limited and our curriculum learning
objectives focus on microbiome data analysis, visualization,
and statistical reasoning rather than learning programming
languages, the instructional staff runs the PUMAA program to
generate the files necessary for several different GUI or web-
based tools and provide them to students. The bioinformatics
curriculum is scaffolded such that the students’ progress in their
microbiome research from phylogenies of individual bacterial
isolates, to simple microbial community qualitative analyses,
to quantitative diversity metrics, to statistical analysis of the
microbial community profiles. We developed accompanying
instructional modules, video tutorials, and a lab manual to
teach students both the theory behind the analysis tools and
the skills needed for visualizing and performing biostatistical
methods on the data. The key tools and tutorials include
inferring phylogenetic trees, analyzing community profiles and
diversity metrics using Microsoft Excel pivot tables and ranacapa,
statistical analysis of taxonomic and inferred functional profiles
using STAMP, and using KEGG to assign functions to genes.

The curriculum was assessed using entry/exit surveys designed
to gauge the students’ confidence in integrating computational
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analysis with microbiology, and the Statistical Reasoning in
Biology Concept Inventory (SRBCI) (Deane et al., 2016). Analysis
of entry and exit surveys saw an increase in students’ self-reported
conceptual understanding and confidence levels in using the
analysis tools, as well as improved competencies with biostatistics
as demonstrated by improvement in the SRBCI post-test. The
PUMAA program and associated instructional materials provide
a scaffolded learning experience for undergraduate students
and make microbiome bioinformatics analyses accessible to
novice researchers.

PUMAA – PROGRAM FOR UNIFYING
MICROBIOME ANALYSIS APPLICATIONS
OVERVIEW

Analyzing metabarcoded microbiome data is a complex multi-
step process. Next-generation sequencing produces a variety of
data files, which then need to be processed and quality checked
before assigning taxonomic profiles (Zhang, 2016; Almeida et al.,
2018). Most sequencing providers include basic bioinformatic
processing in their pipelines, and provide taxonomic abundance
tables and sequence FASTA files along with the raw data. These
files can be then used in downstream analysis and visualization
applications. However, each taxonomic assignment platform and
analysis or visualization tool may have different data input and
output formats that need to be reconciled, or have significant
data pre-processing steps that need to occur before the various
analyses can be performed.

Some sequencing providers, such as MrDNA (mrdnalab,
2020), produce taxonomy abundance tables that must be
rearranged in order to be compatible with most visualization
programs, but even for those that are in the right general format,
many tools have specific formatting requirements. For example,
the STAMP tool enforces a “strict hierarchy” requirement where
no classification of taxonomy can exist at a lower level than
one which was left unclassified. The following classification,
from phylum to species: “Proteobacteria, Gammaproteobacteria,
Enterobacteriales, unclassified, Escherichia, unclassified,” will
produce errors in STAMP because the family is unclassified
even though the genus is classified. In addition, STAMP requires
that all unclassified columns must be labeled so and cannot
be left blank. Another tool, Cytoscape, requires that each
sample identification and taxonomic identification be a unique
row where the weight corresponds to the quantity of the
given instance in order to create a network type visualization.
Web server-based programs such as Piphillin (Iwai et al.,
2016) may have file size upload limitations, necessitating sub-
setting of the data. These formatting and processing steps
need to be carried out independently on the taxonomy or
functional data for each of the desired analysis and visualization
platforms (Figure 1A).

PUMAA, the Program for Unifying Microbiome Analysis
Applications, provides the solution to these problems by
integrating all of the formatting and pre-processing steps
required for the platforms and tools discussed here into a single
unified protocol with an easy installation procedure (Figure 1B).

In addition, PUMAA is easily expandable as it provides the
ability to add a new analysis tool or taxonomic ID platform
with one added operation. The PUMAA protocol unifies existing
data analysis and visualization tools by formatting common
amplicon (16S/18S/ITS) taxonomic data outputs from a variety
of sources to be compatible with the input formats required
for multiple basic and advanced microbiome analysis tools.
Additionally, PUMAA integrates Piphillin inferred functional
microbiome composition from the 16S taxonomy data. PUMAA
provides both a CLI as well as a GUI to accommodate a
spectrum of potential users. A CLI version is implemented
to allow users with UNIX experience, or those who are
interested in learning, to customize their analysis and build
upon/automate the provided scripts (Mangul et al., 2017). The
GUI is ideal for novice microbiome researchers with little
experience on UNIX based systems, who are interested in
quickly visualizing their microbiome marker gene amplicon data.
Initial installation of the GUI does require running a small
set of terminal installation commands, but subsequent usage is
straightforward.

PUMAA Supports Input From Various
Microbiome Data Pipelines
Currently PUMAA supports three microbiome raw data
processing platforms and/or services: MrDNA, Anacapa, and
QIIME 2 (Bolyen et al., 2019; Curd et al., 2019; mrdnalab, 2020).
PUMAA formats the taxonomic abundance tables and sequence
files created by these platforms for any marker gene amplicons,
including 16S, 18S, ITS, and others, for downstream analysis and
visualization (Figure 2).

MrDNA
MrDNA is a commercial full-service next generation sequencing
provider that offers 16S, 18S, and ITS amplicon sequencing on
a variety of platforms. Regardless of the sequencing platform,
MrDNA provides free comprehensive taxonomic analysis in
addition to raw data processing using their proprietary pipeline.
The pipeline generates operational taxonomic unit (OTU)
abundance tables with taxonomic identities and representative
FASTA sequence files at each taxonomic level (kingdom, phylum,
class, order, family, genus, species).

Anacapa
Anacapa is a software tool kit developed to process
environmental DNA (eDNA) sequence data and assign taxonomy
data for six marker genes targeting bacteria, archaea, algae, fungi,
protozoa, plants, and animals (Curd et al., 2019). Anacapa
creates a custom reference library for marker genes, generates
amplicon sequence variants (ASV), and assigns taxonomies at
each taxonomic level (domain, phylum, class, order, family,
genus, species). ASVs have been proposed as a finer resolution
replacement for OTU clustering based on sequence similarity
(Callahan et al., 2017). Anacapa output includes a detailed
taxonomy table with sequences and abundances for each ASV,
as well as tables with taxonomies summarized at various percent
confidence intervals.
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FIGURE 1 | The problem presented and the PUMAA solution. (A) The current problem is lack of unification of outputs from different taxonomic identification or
functional inference platforms (MrDNA, Anacapa, QIIME, etc.) and the input data required by prospective analysis and visualization tools (ranacapa, STAMP, QIIME,
Cytoscape, etc.). (B) PUMAA is a streamlined pipeline unifying the output files from multiple platforms and converting them to the input files necessary for varied
analysis and visualization tools.

QIIME
QIIME is a powerful and widely adopted package for processing
microbiome data, from raw sequences through taxonomy and
data visualization. Tutorials and published protocols are available
to walk users through standard data processing (Kuczynski et al.,
2011), but the scope of QIIME may be daunting for novice
users, even with the availability of the QIIME 2 Studio graphical
interface (Bolyen et al., 2019). It also remains difficult to convert
to other analysis/visualization platforms since QIIME provides
users with OTU files and sequence files in the ‘.qza’ format, which
is unique to its platform.

PUMAA Supports Piphillin for Inferred
Functional Profile Analysis
PUMAA formats taxonomic abundance (OTU or ASV) tables
and representative sequence files for prediction of metagenomic

content by Piphillin, which uses nearest-neighbor matching of
16S rRNA amplicons and full genomes (Iwai et al., 2016).
Piphillin has the added benefits of a web interface and the ability
to use any standard abundance table and representative sequence
FASTA file, rather than relying on taxonomic assignments
assigned from a specific reference phylogenetic tree, as in
PiCRUSt (Langille et al., 2013). PiCRUSt2 has an extended
database of reference genomes and broader compatibility, but
still requires use of the command line for implementation
(Douglas et al., 2020). A drawback to Piphillin is the 10 MB
limit placed on uploaded file sizes in the web version. PUMAA
addresses this by producing subset abundance and FASTA files
that comply with these limits. The subset files are uploaded
to the Piphillin server1, and reference database and percent
identity cutoffs are chosen [PUMAA currently only supports

1https://piphillin.secondgenome.com/
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FIGURE 2 | Protocol of the PUMAA software. (A) The first panel as part of the “User File Input” displays the simple protocol to be performed by the user such as
uploading metadata and various data formats of supported operational taxonomic unit, sequence, and functional file types. (B) The second panel as part of the “User
File Input” displays the two forms of user interaction with PUMAA, through the GUI and CLI, which will enable community and functional profile analysis. (C) “User
Analysis” shows the possible platforms for visualizing community/functional composition data enabled by user input such as STAMP, Excel, QIIME 2, and Cytoscape.

KEGG (Kanehisa, 2000; Kanehisa et al., 2004)], then results are
emailed to the user as compressed.tar files. The other drawback
to Piphillin is that it provides abundance tables for all predicted
genes and pathways (identified by K and KO numbers), but
not the associated annotations to assign biological information
to the K/KO numbers. To address this, the PUMAA inferred
function protocol also performs queries to the KEGG database
in order to properly annotate the genes and pathways returned
by Piphillin. Prior to PUMAA, this annotation process required
command-line experience or labor-intensive manual curation.

PUMAA Supports a Variety of Analysis
and Visualization Platforms
There are a wide variety of research questions that can be
addressed using amplicon microbiome data, and the methods
used for data analysis and visualization will vary based on the
needs of the researcher. PUMAA focuses on processing and
formatting user data to be compatible with a suite of readily
available web-based or GUI data analysis and visualization
tools. Using the PUMAA supported tools, researchers can
explore data and test hypotheses by linking groups of samples
or environmental parameters, otherwise known as metadata,
to diversity metrics, community composition, and inferred
functional profiles.

We have integrated PUMAA into a broad range of research
analysis options (from simple to advanced) and visualization
types (from bar charts to network analyses). In addition, PUMAA
has options to complete data processing such as rarefaction
subsampling to normalize for variation in sequence numbers

between samples (McMurdie and Holmes, 2014; Willis, 2019),
multiple sequence alignment (MSA) using MUSCLE (Edgar,
2004), and inference of phylogenetic trees using FastTree
(Price et al., 2010).

Microsoft Excel
Microsoft Excel pivot tables are an easy way to begin
to summarize the massive amounts of data in taxonomic
abundance tables for visualizations of the overall community
profile of different samples at different taxonomic levels (i.e.,
kingdom/domain, phylum, class, order, family, genus, species).
Excel can also be easily used to make simple (non-statistical)
comparisons of sample abundances at different taxonomic levels.

ranacapa
ranacapa (Kandlikar et al., 2018) is a user-friendly Shiny web
application designed to explore biodiversity using environmental
DNA metabarcoding data. It includes interactive visualizations
and brief explanations of sequencing depth, alpha and beta
diversity, and taxonomy distribution analyses such as bar plots
and heatmaps. ranacapa was developed as an extension of the
Anacapa toolkit (Curd et al., 2019), but can prove slightly
difficult to access from other taxonomic identification platforms,
like that of MrDNA.

STAMP (Statistical Analysis of Metagenomic Profiles)
STAMP (Parks et al., 2014) is a downloadable graphical interface
that can quickly generate publication-quality graphics for
differential abundance analysis of either taxonomy or functional
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pathway data without the need to write code or use command-
line interface. STAMP supports parametric and nonparametric
statistical hypothesis testing for two-sample, two-group, and
multiple-group comparisons. It emphasizes the use of effect size
and confidence intervals in assessing biological relevance, and
supports a variety of visualizations, including heatmaps, PCA
plots, extended error bar plots, box plots, and bar plots.

QIIME 2 (Quantitative Insights Into Microbial Ecology)
QIIME 2 (Bolyen et al., 2019) provides numerous interactive and
advanced data visualization tools and plugins for evaluation of
metagenomic profiles (Caporaso et al., 2010; Kuczynski et al.,
2011). Although QIIME can be used for end-to-end data analysis,
some researchers may receive data processed by other platforms
(e.g., MrDNA or Anacapa) and wish to feed the data back into the
QIIME pipeline for analysis.

Cytoscape
Cytoscape (Kohl et al., 2011) is a unique open-source
locally downloadable tool that enables the visualization of
networks between community and functional profiles. Basic
network analysis and visualization can be performed with
the core distribution, with many additional features available
as Cytoscape Apps.

Methods – PUMAA Protocol
Overview
The user executes a single script for both the GUI and
CLI versions in order to execute the program. The PUMAA
protocol consists of two key parts: (1) Production of all files
for taxonomic community analysis, and (2) production of all
files required for inferred functional analysis. PUMAA solves
the problem of going from any of the taxonomic identification
platforms to the multitude of visualization and analysis tools
available by enforcing standardized files as part of the unification
process. The user first obtains input files from one of the three
supported pipelines (MrDNA, Anacapa, or QIIME2), identifies
the metadata necessary for identifying and comparing samples
(Figure 2A), and chooses to run PUMAA through either the GUI
or CLI (Figure 2B). PUMAA verifies that the metadata sample
IDs match the input data, then produces output files that can be
used for a variety of analysis platforms (Figure 2C).

Protocol: PUMAA Installation and Requirements
PUMAA is freely available under the Apache-2.0 license at
https://github.com/keithgmitchell/PUMAA and is supported by
MacOSX and Linux; in addition, PUMAA works on Windows
machines after installing the Linux subsystem Comprehensive
installation instructions are provided on the Github page. Given
software install is handled using conda, all versions of MacOSX
and Linux that support the conda environment management
software are viable options for usage and make for consistent and
user-friendly install (Mangul et al., 2019). Issues or questions with
the software can be submitted using the github issues feature:
https://github.com/keithgmitchell/PUMAA/issues.

PUMAA is written in Python and the application’s GUI
is written using the Django web framework running locally.

The example datasets all run on a laptop and use <1GB
of memory when the MSA and Phylogenetic tree production
is set as false. The QIIME 2 and MrDNA datasets run on
a laptop and use <1GB of memory when the MSA and
Phylogenetic tree production is set as true. The Anacapa
dataset was unsuccessful on a laptop with 16GB RAM and
was evaluated using a high-performance computing (HPC)
cluster with 32GB of RAM and 3 h of runtime. Therefore,
to produce a MSA and phylogenetic tree for datasets of
this size, access to an HPC cluster, experience with CLI,
and experience running jobs on HPC clusters may be
required (Table 1).

Protocol: PUMAA Verifies Metadata
The user uploads their metadata describing the samples,
taxonomy abundance (OTU or ASV) table and sequences from
any given supported platform. The first part of the PUMAA
protocol verifies the metadata and the taxonomy table to be sure
the two files have consistent, alphanumeric sample identifiers
which are unique compared to other forms of metadata validation
(Rideout et al., 2016). This is a critical step as identifiable
metadata is necessary for many downstream analysis steps, and
some tools limit the types of characters accepted in the sample
identifiers (e.g., underscores, but not periods, are acceptable in
sample IDs in ranacapa).

Protocol: PUMAA Produces Files for Community
Profile Analysis
PUMAA performs a variety of functions on the taxonomic
abundance and sequence files in order to support the suite
of tools discussed above. These functions include optional
sample rarefaction at a user defined depth and number
of iterations (max = 10) (Weiss et al., 2017), multiple
sequence alignment by MAFFT (Katoh and Standley, 2013),
phylogenetic tree construction via FastTree 2 (Price et al.,
2010), and file formatting and annotation for ranacapa, STAMP,
QIIME 2, Piphillin, and Excel. The protocol produces files
for community profile analysis in the folder ‘output,’ or
some other specified directory as an argument in the CLI.
The output folder contains time-stamped subfolders for each
PUMAA run, each containing subfolders with ready-to-run files
for community profile analyses in Microsoft Excel, STAMP,
ranacapa, and Cytoscape. In addition, pre-processed feature
table (taxonomy), metadata, and phylogenetic tree files are
created that can be imported directly into the QIIME 2 pre-
configured virtual machine. A variety of analyses such as
alpha- and beta-diversity can be performed in QIIME 2, as
well as principal component analysis based on phylogenetic
diversity metrics.

Protocol: PUMAA Produces Files for Inferred
Functional Profile Analysis
The PUMAA protocol consists of three steps necessary
for the generation and visualization of inferred functional
profiles. The first step is automatically performed at the
same time as the generation of the community profile
analysis files. PUMAA creates a “piphillin” subfolder in
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TABLE 1 | Dataset size, runtime, and memory usage with no rarefaction performed across the three example datasets.

Dataset Dataset size
(ASV/OTU count

*10,000)

Fasta file size
(MB)

Runtime
(minutes)

FastTree/MAFFT
peak memory

usage (GB)

Python memory
usage (GB)

MrDNA examples 0.3229 0.868 0.0778 0.207 0.02

QIIME 2 examples 0.0759 0.115 0.00517 0.044 0.02

Anacapa examples 3.6 1.789 1.24 12 0.075

the time-stamped output subfolder. This folder contains the
original data formatted as a ‘phiphillinotu.csv’ taxonomic
abundance table and a ‘phiphillinseqs.fasta’ representative
sequence file. If the FASTA file exceeds the file size limit of
10 MB enforced by the Piphillin server, PUMAA subsamples
the data into the number of necessary file sets of ‘.fasta’
and ‘.csv’ files (e.g., piphillinseqs1.fasta; piphillinseqs2.fasta;
piphillinotu.csv1.csv; piphillinotu.csv2.csv). Second, each of the
sets of Piphillin files in the output directory are uploaded to the
Piphillin functional inference web server, which returns ‘.tar’ files
to the user via email.

Finally, the ‘.tar’ files can then be run directly in the
PUMAA protocol, which produces files for functional analysis
that can be visualized using many of the same tools used
for community profile analysis, including STAMP, Excel, and
QIIME 2. Importantly, the PUMAA protocol also performs
queries to the KEGG database using the KEGG genes to
pathway API in order to properly annotate the Piphillin gene
estimations (Kawashima et al., 2003). The BRITE hierarchy
file of the KEGG database is downloaded and used to
evaluate the functional hierarchy based on Piphillin pathway
estimations. This ensures that estimated gene expression levels
and hierarchy levels are inferred using the actively updated
information. Annotating the genes and pathway expression from
Piphillin is necessary when producing data visualizations with
informative identifiers, and greatly reduces the need for manual
querying of KEGG.

PUMAA produces a timestamped output subfolder for
the functional profile files, including a gene description and
functional hierarchy file designated for use in STAMP and Excel.
This file contains annotated gene names and functional pathways,
as opposed to just “K number” identifiers, and vastly increases the
efficiency and ease of data analysis and visualization. PUMAA
also produces weighted functional network files for usage in
Cytoscape, which is a platform for visualizing important gene
networks between samples.

Sample Data
The sample data used here and in the tutorials was generated
by UCLA students in the winter and spring quarters of 2018,
where they investigated the effect on rhizosphere microbial
communities following the Skirball wildfire of December
2017 (Skirball Fire, 2020). Sample collection kits and sample
sequencing were provided by the California Environmental
DNA (CALeDNA) program, a community science initiative
monitoring California’s biodiversity through eDNA (Meyer et al.,
2019), and the 16S sequences were processed using the Anacapa

toolkit (Curd et al., 2019). The sample data for QIIME 2 is
the same as the “moving pictures” human microbiome example
dataset available on the QIIME 2 website2.

Results
PUMAA Input and Output Files
The PUMAA pipeline creates output files formatted specifically
for the needed input files for each of the data analysis and
visualization platforms described in Supplementary Table 1.

PUMAA – CURRICULUM OVERVIEW

The Microbiology, Immunology, and Molecular Genetics
(MIMG) undergraduate degree program at UCLA requires the
completion of a two-quarter authentic research experience. An
option to fulfill this requirement is to take the MIMG 109AL/BL:
Research Immersion Laboratory in Microbiology series. This
laboratory series is designed to prepare its students with the
proper background and training to work in microbiology
research, and has been demonstrated to improve their critical
thinking and research skills as part of the life science curriculum
(Shapiro et al., 2015). The 109AL/BL laboratory curriculum is
discovery-based and driven by student-generated hypotheses
tested using both cultivation-dependent and cultivation-
independent techniques. The first term emphasizes experimental
design and isolation of bacteria in a wet lab environment, and
the second term focuses on the analysis of 16S sequencing data
from individual isolates and 16S rRNA microbial community
profiles. Students work in teams to conduct an original research
project within the context of an overarching research question
for the microbial ecology course, focusing on the interactions
between plants and soil-associated bacteria. Recent course
projects have involved collaborations with researchers at
UCLA and beyond studying plant–microbe interactions in
California grasslands (Kandlikar et al., 2020), analysis of the
soil microbial communities of a Los Angeles urban farm (St.
Clair et al., 2020), and a longitudinal study on the recovery of
soil microbial communities following the 2017 Skirball fire in
Los Angeles, CA, United States. The Skirball fire project was
conducted in conjunction with the California Environmental
DNA (CALeDNA) program’s efforts to catalog California’s
biodiversity (Meyer et al., 2019).

In order for the MIMG 109AL/BL lab series to respond to
the need for more computationally minded scientists (Bialek and
Botstein, 2004; Campbell et al., 2007; Brewer and Smith, 2011), it

2https://docs.qiime2.org/2020.2/tutorials/moving-pictures/
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was necessary to introduce new modules and tutorials that would
sufficiently integrate bioinformatics and statistics with biology in
ways that aspiring undergraduate researchers can comprehend
(Aikens and Dolan, 2014). We created a comprehensive set
of step-by-step tutorials (documents, presentations, and videos)
designed to provide students with the necessary theory and
skills to use the GUI analysis and visualization tools described
in Section 2.3 (Excel, ranacapa, and STAMP), as well as the
theory behind inference of metagenomic functional profiles using
Piphillin. Although not a biostatistics course, the PUMAA-
associated curriculum allows these students to learn about the
computational tools available to researchers and the importance
of integrating their knowledge of microbiology with statistical
and quantitative support.

All tutorials are publicly available at https://sites.google.com/
g.ucla.edu/pumaa/home.

First Term – Sample Collection and
Bacterial Isolation/Characterization
The first term of the curriculum takes place in the wet lab and
closely follows the cultivation-dependent experiments described
in units 1–4 of the “I, Microbiologist” (Sanders and Miller, 2010)
course textbook and lab manual. In brief, students collect bulk
soil and decide on enrichment strategies for isolation of bacteria
related to their research questions (e.g., antibiotic production and
resistance or plant growth-promoting properties). Students then
perform phenotypic characterization of bacterial isolates and 16S
rRNA PCR and sequencing. In addition to collecting bulk soil for
cultivation-dependent experiments, students also collect separate
soil samples for environmental DNA (eDNA) extraction and
16S rRNA high-throughput sequencing for bacterial community
profile analysis.

Second Term – Bioinformatics Analysis
of 16S rRNA Genes Using PUMAA
In the second term, students use bioinformatics to interpret,
expand, or refine 16S rRNA gene datasets generated in
MIMG 109AL. Students generate 16S rRNA phylogenetic
trees to assign taxonomic identities to their isolates and
use statistical tools to make comparisons of the microbial
communities from different environments. The course is
divided into five Core Concept Modules. The first module
(Phylogenetic Trees) concludes the analysis of bacterial isolates,
and the other four modules focus on microbiome data
analysis and visualization using the PUMAA output files:
Community Profiles, Diversity Metrics, Statistical Analysis of
Taxonomic Profiles, and Inferring Metagenomic Functional
Profiles (Figure 3A). Students could also elect to perform
optional advanced independent analysis on their data using
QIIME or Cytoscape. Each of the modules includes written
and/or video tutorials and was assessed with a combination of
reading assessments and reflection questions (Figure 3B). This
bioinformatics course was assessed using pre- and post-course
concept inventories and surveys. Learning objectives, activities,
and tutorials for each of the Core Concept Modules are outlined
in Supplementary File 1.

Curriculum Assessment Methods
Study Sample
The study sample consisted of six cohorts of junior and senior
level students who enrolled in MIMG 109BL (Advanced Research
in Microbiology) in Spring 2016, Spring 2017, Winter 2018,
Spring 2018, Winter 2019, and Spring 2019. This yielded an
initial population of 143 students. Table 2 provides a summary
of demographic characteristics for these students. Instructor
J.M.P. taught the spring cohorts and instructor A.F. taught the
winter cohorts. Prerequisites for enrollment in MIMG 109BL
included MIMG 109AL (Research Immersion in Microbiology)
and either Statistics 13 (Introduction to Statistical Methods
for Life and Health Sciences) or Life Sciences 40 (Statistics of
Biological Systems).

Assessment Data Collection and Analyses
The study utilized two sources of data: student assignments
and self-report surveys. Data collected included qualitative and
quantitative measures. UCLA’s Institutional Review Board (IRB)
gave approval to work with human subjects on all aspects of the
assessment (IRB #10-000904).

Administration of Self-Report Surveys
Two self-report surveys were administered to all students in
the course. Surveys included a broad collection of open- and
closed-ended questions, some developed by the instructors and
evaluation team. Students were given the entry survey at the
start of the second term and asked to indicate how well
they thought they understood key learning goals related to
data analysis and their confidence in their ability to analyze
data using various visualization plots. The exit survey was
completed at the end of the term and had matched questions
to the first survey, as well as additional survey questions asking
them to assess the quality and usefulness of the tutorials and
instructional materials. Both surveys also included open-ended
content-related questions. The surveys were piloted in 2016
and 2017 and were given to students anonymously through the
course management system as low-stakes (completion points)
assessments to increase response rate and reduce response
bias (Furnham, 1986). Starting in Winter 2018, these items
were added to a comprehensive curricular assessment plan
administered electronically by external evaluators (see Shapiro
et al., 2015) for details on survey data collection). Of the 143
students who took the course between Spring 2016 and Spring
2019, 141 completed the first survey (98.6% response rate) and
132 completed the second survey (92.3% response rate). The
surveys are available as Supplementary File 2.

Administration of SRBCI Concept Inventory
The Statistical Reasoning in Biology Concept Inventory (SRBCI)
is a series of multiple-choice questions to test students on
concepts including statistical significance, basic graph/trend
interpretation, and assessing hypotheses based on results (Deane
et al., 2016). The twelve questions on the SRBCI pre- and post-
tests are designed to identify students’ common misconceptions
in statistical analysis and track their learning progress as a
result of the pedagogical interventions. The concept inventory
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FIGURE 3 | Microbiome analysis course schedule with pedagogical interventions. (A) The progress of the course followed the concept goals as outlined in yellow.
(B) The pedagogical interventions are described, with tutorials in blue and assessment materials in purple.

TABLE 2 | Study sample demographics.

Number of
students (N)

Percent of
students (%)

Female 81 56.6%

Transfer studenta 34 23.8%

URMb 34 23.8%

Pell Grant Recipientc 53 37.1%

Total 143 100%

Academic terms: Spring 2016, Spring 2017, Winter 2018, Spring 2018, Winter
2019, Spring 2019. aTransfer to UCLA, usually from a 2-year institution. bUnder-
Represented Minority (URM) students include American Indian, Native American,
Black Non-Hispanic, and Hispanic students. cReceived Pell Grant for one or
more terms while enrolled at UCLA; Pell Grant Recipient is a proxy for low
socioeconomic status.

was administered as an anonymous low-stakes (ungraded) in-
class activity at the start and end of the second term to the
first two cohorts of students in Spring 2016 and Spring 2017.
The study design, intended to gauge authentic learning gains
across the curriculum by reducing “math anxiety” (Ashcraft
and Moore, 2009), necessarily resulted in the inability to
assess individual student learning gains using this metric.
The pre-test and post-test were administered to a total of
52 and 50 students, respectively. Statistical reasoning gains
between the pre-test and post-test groups were assessed using
descriptive and Mann–Whitney nonparametric tests to account
for variations in sample size.

Analyses of Closed-Ended Quantitative Survey Data
The closed-ended survey questions quantitatively ranked the
students’ agreement with a statement or confidence with a certain
concept using a five-point Likert scale ranging from “Not at
all” to “Very well/Very confident.” Scores for matched questions
were averaged across all participants to compare results from
the Entry and Exit Surveys. Survey items asking students about
the usefulness of learning activities were rated on a five-point
Likert scale where 1 = “Don’t remember,” 2 = “Not useful,”
3 = “Somewhat useful,” 4 = “Very useful,” and 5 = “Essential.”
Descriptive analyses of matched pre/post-survey close-ended

items were conducted to explore students’ change in self-
reported confidence and changes in their self-reported levels
of understanding. To test for statistical differences between the
overall means of the Entry and Exit Survey items, descriptive
and Mann–Whitney nonparametric tests were performed on the
combined survey data from all cohorts to account for variations
in sample size. Because the responses for the Spring 2016 and
Spring 2017 surveys were anonymous, we were unable to pair the
data by student. Wilcoxon signed ranks (paired nonparametric)
tests were conducted on just the surveys administered by the
external evaluators from Winter 2018 to Spring 2019, in order
to see if there were differences between the all the data and the
matched data. Since both sets of tests were significant, we were
confident in using the aggregated data and the Mann–Whitney
nonparametric tests to report our results.

Analyses of Open-Ended Qualitative Survey Data
Open-ended questions related to course content were included
in the Entry and Exit surveys, allowing students to respond in
their own words. Of particular interest was a question that asked
students to describe the relationship between p-value (statistical
significance) and effect size (biological significance). A 4-point
rubric assessing students’ level of proficiency with statistical
concepts was used to gather direct evidence of student learning
gains (Supplementary File 3). Student responses to open-ended
questions were scored on a scale of 1 point = no familiarity
(i.e., students indicated that they are not familiar with the
concept), and 2–4 points for novice, intermediate, and advanced
proficiency, respectively. Responses left blank were unscored.
All student responses (both pre and post) were randomized
and pooled by the external evaluator, then provided to the
raters. The rubric was developed and refined by J.R., A.F., and
J.M.P. through iterative rounds of scoring a subset of sample
responses followed by consensus discussion. All responses were
scored independently by all three raters, and interrater reliability
(IRR) as determined by Randolph’s free-marginal multirater
kappa, was 0.49 (61.8% overall agreement) indicating moderate
agreement. To account for the IRR variations, the median score
for each response was used to assess whether pre-post gains
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were statistically significant between the groups using both the
Mann–Whitney nonparametric test and a t-test.

Curriculum Assessment Results
Conceptual and Confidence Gains From
Self-Reported Surveys
We wanted to assess if students would be able to formulate and
statistically test hypotheses linking environmental parameters

(metadata) to diversity metrics, community composition, and
inferred functional profiles. Students were assessed using
entry/exit surveys designed to gauge the students’ comfort with
integrating computational analysis with microbiology. At the
beginning of the term the students reported, on average, “very
little” understanding of key learning objectives such as how to
use and assess the results of bioinformatics databases, and which
statistical tests to use and how to interpret them (Figure 4A).
By the end of the term students reported they understood these

FIGURE 4 | Average ranked responses to selected entry and exit survey questions. In self-reported survey questions, students were asked to indicate (A) their level
of understanding of key learning goals, (B) their confidence in their ability to analyze common data plots, and (C) their confidence in their ability to analyze aspects of
phylogenetic trees. Average scores on a five-point Likert scale are reported for matched questions. A score of 1 = Not at all, 2 = Very little/Not very, 3 = Fairly
well/confident, 4 = Quite well/confident, and 5 = Very well/confident. Students reported significant gains in their understanding and confidence in all categories
(p < 0.001).
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TABLE 3 | Ranked usefulness of STAMP learning activities.

STAMP learning activity Average score on
five-point Likert
Scale (N = 131)

Hands-on use of the program 4.5

One-on-one discussions with instructional staff 4.3

Tutorials (documents and videos) 3.6

Reading/reading assessment of STAMP user guide or articles 3.0

concepts on average “fairly well” to “quite well,” a statistically
significant change based on Mann–Whitney nonparametric tests
for all measures (p < 0.001). Of note, students were generally
less confident of their understanding of “the advantages and
limitations of various statistical tests (e.g., Do you know when
to use a T-test over a one-way ANOVA)?” at the end of the term.
This result was somewhat to be expected because the statistical
analysis tool they used, STAMP, aims to promote best practices
by suggesting a statistical hypothesis test based on the input data
(Parks and Beiko, 2010). Therefore, students had limited practice
with this particular skill.

In addition to performing statistical tests, STAMP generates
a variety of data visualization plots, and we wanted to assess
how confident students were in their ability to analyze these
plots (Figure 4B). Mann–Whitney results indicated a statistically
significant change in students’ self-reported levels of confidence
(p < 0.001). Specifically, at the start of the term students
reported being “fairly” to “quite” confident in their ability
to analyze common plots such as scatter plots, bar plots,
and histograms. They had much less confidence, however, in
their ability to interpret principal component analysis (PCA),
heat maps, and extended error bar plots. By the end of
the term they were “quite confident” on average in their
ability to analyze most of the plots, and had dramatically
improved their confidence in PCA, heat map analyses, and
extended error bar plots. Another key learning objective of
the course was the ability to interpret phylogenetic trees and
analyze their statistical support (Figure 4C). At the start of
the term, students reported being “not very” confident in their
ability to assess bootstrap or resampling values, which are an
indication of the of statistical confidence in a clade (Efron et al.,
1996), and “not very” to “fairly” confident in their ability to
interpret topology and evolutionary distances. By the end of
the term, students had significantly increased their confidence
in their ability to analyze all aspects of phylogenetic trees
(p < 0.001).

Tutorials
STAMP was an essential component of the curriculum and was
central for many of the student data analysis and visualization
learning outcomes. We wanted to find out which learning
activities the students found to be the most helpful in preparing
them to use and interpret data in STAMP. Students reported
that tutorials we created were useful, but perhaps unsurprisingly,
it was actual use of the program and discussing it with
the instructional staff that the students found to be essential

(Table 3). All tutorials are publicly available at https://sites.
google.com/g.ucla.edu/pumaa/home.

Statistical Reasoning and Conceptual Gains
Measured by the SRBCI and Open-Ended Survey
Responses
We used the SRBCI to directly assess student learning gains in
core concepts related to repeatability of results, variations in data,
hypotheses and predictions, and sample size. Students took the
pre-test in the first week of the term and the post-test at the end of
the term following the completion of all of the analysis modules.
Scores for the pre-tests and post-tests were binned by number of
correct responses and plotted to compare the overall distribution
of scores (Figure 5). The distribution of the post-test scores is
more skewed to the right, demonstrating overall improvement on
the SRBCI for the combined cohorts. Statistical reasoning gains
between the pre-test and post-test groups were assessed using
a Mann–Whitney nonparametric test. There was a statistically
significant increase in pre-test (Mean = 58.7%, Mean Rank = 44.3,
N = 52) to post-test (Mean = 69.3%, Mean Rank = 59.0, N = 50)
scores (p = 0.01) on the SRBCI.

A rubric-guided assessment of an open-ended survey
question was used to determine whether the curricular
interventions resulted in an increased understanding of the
relationship between statistical significance (p-value) and
biological significance (effect size). At the beginning of the term,
63.9% of students had no familiarity with the concept or held
novice understanding, meaning the responses indicated they
didn’t know, or they had multiple or complete misconceptions
(Figure 6). By the end of the term, 78.4% of students held
intermediate to advanced levels of understanding, and were able
to demonstrate conceptual understanding of the relationship
to varying degrees. The rubric scores from the Exit survey
(Mean = 3.14, Mean Rank = 164.4, N = 125) were significantly

FIGURE 5 | Distribution of Student scores on the SRBCI pre-test and
post-test. The number of students plotted on the vertical axis is binned by the
number of correct responses shown on the horizontal axis. The blue columns
represent the pre-test scores and yellow columns represent the post-test
scores. There was a significant increase in the SRBCI scores from the pre-test
to the post-test (p = 0.01).
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FIGURE 6 | Conceptual gains in understanding the relationship between statistical and biological significance. Student responses to the open-ended question were
evaluated using a rubric to assign them a level of competency from 1 = No familiarity, 2 = Novice, 3 = Intermediate, and 4 = Advanced. The primary axis indicates the
percent of student responses demonstrating each level of competency for the entry and exit surveys. Blue indicates lower competency levels and yellow indicates
higher competency levels. The secondary axis indicates the average score for all responses; there was a significant increase in the average score from the entry
surveys to the exit surveys (p < 0.001).

higher than the Entry survey (Mean = 2.26, Mean Rank = 96.7,
N = 135) by both the Mann–Whitney and t-tests (p < 0.001).
These results demonstrate the shift from lower levels of
competency to higher levels of competency in understanding the
relationship between statistical and biological significance.

DISCUSSION

The increased availability of microbiome and other “big
data” data sets has coincided with calls for life science
undergraduates to have bioinformatics “minimum skill sets” or
“core competencies” in order to meet the growing demand to
analyze that data (Tan et al., 2009; Welch et al., 2016; Mulder
et al., 2018; Sayres et al., 2018). PUMAA has been in use in the
Research Immersion in Microbiology undergraduate laboratories
at UCLA for a number of years, resulting in the development of
a suite of instructional materials and tutorials to train students
in many of the bioinformatics skills necessary to meet this
demand. This curriculum focused on quantitative literacy, which
is the intersection of critical thinking, math/statistics, and real-
world contexts, and has been highlighted by the Association
of American Colleges and Universities as an essential skill
for undergraduates (Elrod, 2014). The PUMAA curriculum
and associated analysis and visualization tools gave students
opportunities to use multiple bioinformatic approaches to
analyzing their data. Repeated practice with tools and integration
of said tools into student-driven research projects increased self-
reported confidence with data visualization and analysis. For
example, use of STAMP enabled students to perform statistical
tests on microbiome community and functional profiles, and
improved their competence with statistical concepts such as
statistical significance and biological significance. This was of

particular interest due to the tendency of notice researchers to
over interpret p-values and disregard the importance of effect
sizes and confidence intervals (Nakagawa and Cuthill, 2007;
Martínez-Abraín, 2008).

PUMAA presents a user-friendly, time-and-cost-effective
approach to processing, analyzing, and visualizing marker gene
microbiome data. It improves the accessibility and range of
available microbiome investigations by providing users with
a simple way to unify the output of various taxonomic
identification platforms with a suite of tools for data analysis
and visualization. The protocol accomplishes this by producing
properly configured, formatted, and annotated files for analysis of
taxonomic community profiles and inferred functional profiles.
This process of data manipulation can often be performed by
sequencing services for additional fees or completed by users
with significant time commitment, both of which could be
barriers for those with funding or time constraints. PUMAA
is an open-source solution which is highly accessible to a wide
spectrum of users, including undergraduates or other researchers
interested in learning to conduct microbiome analyses, as it
can be used as a GUI as well as a CLI. It provides an easy
and flexible interface for a variety of users requiring a clear
and brief interface for production of files needed for diversity
analysis and data visualization for analysis of targeted amplicon
sequencing studies. The demand for tools that meet this need
is evidenced by the recent development of DNA metabarcoding
data processing tools like the web-based SLIM (Dufresne et al.,
2019) and minimal coding-required PEMA (Zafeiropoulos et al.,
2020). Both of these tools produce OTU and/or ASV tables from
raw metabarcode data that could be incorporated into the PUMA
input pipeline for downstream data analysis and visualization.

In practice, the instructional staff runs the PUMAA program
and provides students with files ready for use in Excel, ranacapa,
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STAMP, and other tools. One limitation of this approach is
that students do not get direct experience with command-
line bioinformatics, which is one of the core competencies
for undergraduate life sciences education described by several
different bioinformatics curriculum committees (Tan et al., 2009;
Welch et al., 2016; Mulder et al., 2018; Sayres et al., 2018).
However, the International Society for Computational Biology’s
Curriculum Task Force has refined their core competencies
and designated different user profiles requiring different
levels of competency (Mulder et al., 2018). For example,
an undergraduate in a 10-week microbial ecology course
may be considered a “bioinformatics user,” rather than a
“bioinformatics scientist” or “bioinformatics engineer,” and the
steep learning curve required to gain CLI skills may not be
practical with the limited time available. We focused instead
on training students to perform all of the bioinformatic
analyses needed for an authentic course-based undergraduate
research experience in microbial ecology. PUMAA is not
intended to replace comprehensive CLI tools such as QIIME
or mothur, but rather serve as an entry point for novice
researchers to analyze and visualize their datasets. Students
that express interest in expanding their bioinformatics skills
can be directed to a wealth of tutorials and resources for
learning to code.

The PUMAA program and the curriculum described here
have the potential to have a wide impact by making marker
gene microbiome research accessible to researchers with multiple
levels of experience, and with the included instructional module
documents, it can be practically implemented in a classroom
setting for undergraduates.
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The key role of bioinformatics in explaining biological phenomena calls for the need to 
rethink didactic approaches at high school aligned with a new scientific reality. Despite 
several initiatives to introduce bioinformatics in the classroom, there is still a lack of 
knowledge on their impact on students’ learning gains, engagement, and motivation. In 
this study, we detail the effects of four bioinformatics laboratories tailored for high school 
biology classes named “Mining the Genome: Using Bioinformatics Tools in the Classroom 
to Support Student Discovery of Genes” on literacy, interest, and attitudes on 387 high 
school students. By exploring these laboratories, students get acquainted with 
bioinformatics and acknowledge that many bioinformatics tools can be  intuitive for 
beginners. Furthermore, introducing comparative genomics in their learning practices 
contributed for a better understanding of curricular contents regarding the identification 
of genes, their regulation, and how to make evolutionary assumptions. Following the 
intervention, students were able to pinpoint bioinformatics tools required to identify genes 
in a genomics sequence, and most importantly, they were able to solve genomics-related 
misconceptions. Overall, students revealed a positive attitude regarding the integration 
of bioinformatics-based approaches in their learning practices, reinforcing their added 
value in educational approaches.

Keywords: bioinformatics, comparative genomics, gene regulation, high school, genomic literacy

INTRODUCTION

Bioinformatics, understood as the use of computational resources to categorize massive raw 
data and retrieve meaningful information from datasets, has gained a primordial utility in 
scientists’ daily routine (Sadek, 2004). This paradigm of biological research cannot be disregarded 
when seeking to promote a scientifically informed society. Indeed, it demands the improvement 
of curricular and educational resources at middle and high school educational levels based 
on initiatives validated by focused science education research.
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Learning by accessing online bioinformatics resources in 
the classroom has already proven to have a beneficial impact 
on students’ ability to build up and mobilize scientific contents, 
namely, related to drug resistance, phylogenetic trees, or genetic 
expression (Amenkhienan and Smith, 2006; Taylor et al., 2014; 
Newman et  al., 2016; Machluf et  al., 2017). In addition, the 
introduction of bioinformatics at high school enhances the 
learning of new information through novel technologies and 
recruits resources used in research laboratories, serving as a 
stimulus to spark students’ future interest in scientific careers 
(Kovarik et  al., 2013; Machluf et  al., 2017).

Despite the various initiatives across Europe to support 
teachers and students to integrate bioinformatics-based approaches 
in their classes, these remain sporadic and are still not 
implemented consistently. Recent studies have called attention 
to the importance of a joint effort by all stakeholders (e.g., 
research institutions, governmental entities, teachers, trainers, 
and researchers) to deliver an action plan that can lead to 
bioinformatics dissemination in schools in a wider, more 
structured and cohesive manner (Koch and Fuellen, 2008; 
Campbell and Nehm, 2013; Attwood et al., 2017). Recent reports 
call for more educational assessments to strengthen the positive 
impact of bioinformatics-based activities on students’ scientific 
and digital literacy, providing a rationale to incorporate 
bioinformatics in the curriculum (Dudley and Butte, 2009; 
Campbell and Nehm, 2013; Machluf and Yarden, 2013;  
Magana et al., 2014; Marques et al., 2014; Machluf et al., 2017).

This study aims to address the educational impact on high 
school students of a set of activities developed to introduce 
basic bioinformatics analysis used to deconstruct a bacterial 
genomic sequence into its coding genes (Martins et al., 2018a), 
using purposely tailored evaluation instruments. The main 
research question driving this investigation was: are there 
significant changes in high school students’ scientific and digital 
literacy, interest, and attitudes toward gene regulation, genomics, 
and evolution after performing bioinformatics-based activities?

MATERIALS AND METHODS

Participants
The sample studied included a group of 387 students and 11 
teachers from five public and private schools in Porto and 
Lisboa, Portugal. Fourteen 11th grade biology and geology 
classes (students’ age: 16–17  years old) and five 12th grade 
biology classes (students’ age: 17–18  years old), comprising 
167 male and 220 female students, were involved in this study. 
Students’ average age was 16.34 ± 0.67 years. The study included 
an experimental group (n  =  292) with 123 male students and 
169 female students (average age: 16.27  ±  0.68  years) from 
14 classes and a control group (n  =  95) including 44 male 
students and 51 female students (average age: 16.54 ± 0.62 years) 
from five classes.

Students participated in the project as part of their science 
classes, and taking into account all ethical requirements, the 
project was institutionally approved by each school’s Directive 
Board. Upon entering the project, the participants were invited 

to take part in the study and informed of its nature and aims, 
being assured that all the data collected were to be  processed 
and analyzed anonymously. Students were given the chance 
to participate in the project without participating in this 
specific study.

Didactic Instrument: Bioinformatics 
Laboratories
A set of bioinformatics-based activities previously proposed 
by Martins et  al. (2018a) to identify genes from a bacterial 
genomic sequence and disclose their genomic context in 
different species was chosen as the didactic instrument. A 
tutorial video1 provides teachers and students with a detailed 
road map of the sequential bioinformatics resources needed 
to deconstruct a 2  kb genomic region of Escherichia coli and 
determine its occurrence across different bacteria taxa and 
hypothesize about its evolution. Participants were initially 
instructed to select a particular E. coli strain (E. coli str. 
K-12 substr. MG1655, Accession number: NC_000913.3) and 
a specific 2  kb genomic region, to ensure that all of them 
would be  working with the same genomic sequence, allowing 
for a more efficient teacher supervision and facilitating 
subsequent analysis. In fact, the 2  kb sequence proposed 
includes the lac operon, which is the paradigm used to 
introduce gene expression and regulation at the high school. 
This provides a meaningful curricular framing for these 
activities and is aligned with students’ previous knowledge. 
Furthermore, it is important to emphasize that implementing 
bioinformatics exercises framed within the curriculum was 
the main concern of the participant teachers. Currently, the 
Portuguese biology curricula for the 11th and 12th grades 
include contents related with DNA and protein synthesis (for 
example, transcription, translation, and start and stop codons), 
as well as evolution (Mendes et al., 2003), and genetic expression 
(Mendes et  al., 2004). These topics are also comprised in 
the Next Generation Science Standards (NGSS; National 
Research Council, 2013). While these curricular topics are 
frequently focused on eukaryotic models, bacterial genomes 
were chosen as an educational instrument for this study 
having in mind that bacteria stand for the most represented 
domain in genome databases, reflecting its high taxonomic 
diversity, and may be  easily recruited by ingenious 
bioinformatics platforms with graphical and user-friendly 
interfaces using a Windows or Mac browser. In addition, 
bacterial genomes are frequently restricted to a single replicon 
(i.e., the chromosome), besides having a small-sized haploid 
genome that favors comparative genomics and contributes to 
strengthen students’ knowledge on bacteria, fostering their 
motivation and interest on microbiology-related topics, presently 
poorly explored in high school.

The bioinformatics resources used include the genome 
database, Open Reading Frames Finder (ORFfinder) and Basic 
Local Alignment Search Tool (BLAST) from the National Center 
for Biotechnology Information (NCBI; Altschul et  al., 1990; 

1 https://drive.google.com/file/u/1/d/1WrtjzLHzKI7nLALtVnmqy6WhPnkUsQSR/view
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Agarwala et al., 2018), and the genome browser of Magnifying 
Genomes (MaGe) that is part of MicroScope, a comparative 
genomics platform (Vallenet et  al., 2013). Before starting 
with the in silico laboratories, the teachers work through 
basic and already known concepts, such as genome, genes, 
start codons, stop codons, and operons with the class, and 
introduce new notions, such as Open Reading Frames (ORFs), 
synteny, and comparative genomics (Figure  1; Martins and 
Tavares, 2018). This is particularly important since these 
new notions, presently absent from the curricula, are 
instrumental to understand the data retrieved by the students 
when performing the bioinformatics exercises proposed 
(Martins and Tavares, 2018).

Research Design and Methodology
To implement bioinformatics-based activities as a successful 
didactic instrument, it is crucial to engage both teachers and 
students in the selection of the activities to ensure that these 
are meaningful and adjusted to the curricular contents (Marques 
et  al., 2014). In this regard, the design of the bioinformatics-
based activities proposed by Martins et  al. (2018a) took  

into account teachers’ contribution in revising and piloting 
the proposed educational resources with their students 
(Figure  2). To lighten the burden for teachers, a dedicated 
webpage2 was developed to provide them with resources that 
introduced the bioinformatics tools and the new concepts to 
be  addressed.

The workflow of the bioinformatics activities includes four 
parts (Figure  2). Firstly, teachers provide the knowledge 
background about gene regulation, genomics, and evolution. 
Secondly, students are introduced to the bioinformatics databases 
and tools to be used, namely, NCBI database, NCBI ORFfinder, 
NCBI Blast, and MicroScope (MaGe). And thirdly, the 
bioinformatics exercises are performed. These exercises were 
set to meet the curricular requirements for the topic, and 
given the novelty of bioinformatics for these students (and 
teachers), guidelines were prepared to provide a comprehensible 
workflow to address the research questions outlined. This 
allowed to prevent students from becoming overwhelmed by 
the wide plethora of choices of links and commands available 

2 https://bioinformaticaaula.wixsite.com/bioinformatica-pt

FIGURE 1 | Bioinformatics laboratories framed within the curricular biology contents for high school to reinforce genomics topics currently required and to 
introduce new core concepts.
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in the platforms mentioned before. In the fourth and final 
stage of implementation, the results obtained in each exercise 
were discussed with the students, and conclusions were drawn.

During the implementation of the activities, a member of 
the research team (Martins) was present to identify 
misconceptions and reasoning difficulties, as well as to check 
the participants’ engagement and interaction, and to carry out 
qualitative observations useful to improve the robustness of 
the interpretations made.

A quasi-experimental pre-/post-design, with a control and 
an experimental group, was set up. The control group included 
classes exclusively exposed to the first two parts of the 
intervention, i.e., the introductory lectures about the scientific 
questions and the bioinformatics databases and resources 
(Figure  2 – workflow I  and II). In turn, the experimental 
group was exposed to the full set of the bioinformatics 
activities, i.e., from the introductory lectures to the 
bioinformatics laboratories and the interpretation of the 
results (Figure  2 – workflow I–IV). To mitigate possible 
bias effects, the control group classes were from the same 
schools, from the same education levels, and taught by the 
same teachers as the experimental group classes. The 
comparison between the performance of students in the 
control group and the experimental group was intended to 
test the educational impact of the practical bioinformatics-
based activities. In this regard, the control group was taught 
only through expositive teaching (Figure 2 – workflow I and 
II), and the experimental group was exposed to the same 
lectures as the control group plus the practical component 
(Figure  2 – workflow I–IV).

The Questionnaire
To assess the educational impact of integrating the mentioned 
bioinformatics-based activities in high school, a specific  
and comprehensive questionnaire including open-ended  
questions, dichotomous questions, and Likert-type scales was  
designed (Figure  3).

The questionnaire was structured according to three main 
dimensions: knowledge, interest, and attitudes. The knowledge-
related questions (Q1, Q2, Q4, Q5, Q6, Q7, and Q8.5) aimed 
to characterize students’ literacy regarding gene regulation, 
comparative genomics, bioinformatics, and its usefulness for 
scientific research. Students’ interest (Q3 and Q9) was measured 
by their perception of the role of bioinformatics in tackling 
different biology research questions and by their awareness about 
the scientific disciplines addressed in the in silico activities, 
namely, genetics, genomics, and evolution. Students presently 
attending high school are part of the so called iGeneration (iGen), 
which is characterized by being highly motivated to use technology 
in their daily lives (Rosen et  al., 2010; Quinn and Oldmeadow, 
2013). Having this in mind, a question (Q8) was added to 
depict students’ attitudes toward the use of computer/technological 
devices to study and to assess their motivation to access 
bioinformatics tools inside or outside the classroom.

The questionnaire developed was piloted in two high school 
classes (n  =  43 students; Figure  2), which, as recommended 
by several authors (Treece and Treece, 1982; Connelly, 2008; 
Johanson and Brooks, 2010), represent slightly over 10% of 
the universe of students included in the main research study. 
This procedure allowed to ensure that the students’ responses 
were not biased by a lack of comprehension of the questionnaire 

FIGURE 2 | Experimental design for preparation, implementation, and assessment of bioinformatics-based activities.
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and also to prevent difficulties in deconstructing the answers 
to open-ended questions during the content analysis. 
Furthermore, it is important to highlight that in the final 
version of the measurement instrument, students were invited 
to rate the questionnaire regarding its objectivity and intelligibility, 
to guarantee that the questions were clear and well understood 
by all respondents.

Lastly, students from both the control group and the 
experimental group rated the questionnaire as being objective 
and easy to understand, which further emphasizes the adequacy 
of the validated version of the questionnaire.

Data Analyses
Methods of descriptive and inferential statistics were used to 
analyze the pre-/post-test data. All statistical analyses were 

carried out using IBM’s Statistical Package for the Social Sciences 
(SPSS) version 24.

Independent samples t-tests and paired samples t-tests 
for a 95% confidence interval were used for five-point Likert-
type scale data, and the effect size of mean differences 
registered with t-test was measured using Cohen’s d (Cohen, 
1988). Data gathered through open-ended questions and 
dichotomous variables were analyzed using Chi-square and 
the McNemar tests, respectively, and considering the phi 
coefficient as the effect size measure (Pallant, 2007). 
Furthermore, to obtain a broader, more inclusive depiction 
of the effectiveness of the activities, while strengthening 
the interpretation of the outcomes of the analyses performed 
(Punch, 2009), it was decided to combine quantitative and 
qualitative methods of analysis, as has been suggested in 

FIGURE 3 | The questionnaire used in this study included demographic characterization of the participants and items to assess students’ knowledge, interest, and 
attitudes.
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similar studies (Gelbart et  al., 2009; Fonseca et  al., 2012; 
Machluf and Yarden, 2013). This methodology would avoid 
missing detailed information that cannot be retrieved exclusively 
from quantitative data (Johnson and Christensen, 2012).

In what concerns the qualitative data, a thematic content 
analysis of the participants’ responses to open-ended questions 
was performed with the purpose of producing a systematic 
description of the meaning of specific information gathered 
through the definition of coding categories (Schreier, 2012). 
This allowed to organize extensive answers to open-ended 
questions into fewer and more focused content categories 
(Weber, 1990; Krippendorff, 2004; Hsieh and Shannon, 2005). 
The analysis of the answers to the open-ended questions was 
performed according to the framework previously created by 
the authors in which specific categories of answers have been 
defined (Supplementary Figure  1). Regarding the open-ended 
question Q9, aimed to assess students’ interest, the subjective 
task value of Eccles and Wigfield (2002), Eccles (2005) that 
characterizes an expectancy–value model of achievement 
motivation was used as the theoretical framework underlying 
data analysis. Task value is related with the quality of the 
task, which influences the probability of it being select by an 
individual. In this study, the intrinsic/interest value (i.e., expected 
enjoyment of engaging in the task), the utility value (i.e., 
possible rewards from the task), and the cost of engaging in 
the activities were the dimensions considered when analyzing 
the students’ answers.

RESULTS AND DISCUSSION

Students’ Literacy on Bioinformatics and 
Its Applications
It is consensual that an updated and edifying high school level 
education requires an attentive revision of the curricula aligned 
with the challenges of NGSS and capable to meet Science, 
Technology, Engineering and Mathematics (STEM) education 
(Wefer and Sheppard, 2008; Kovarik et  al., 2013; National 
Research Council, 2013; Champagne Queloz et  al., 2017). In 
this regard, bioinformatics is in a privileged position, due to 
the transdisciplinary approach it entails, by seeking a level of 
integration of different disciplines, such as biology, computer 
science, and mathematics, beyond the mere interdisciplinary 
relationship between them. It is therefore reasonable to 
acknowledge the importance of integrating bioinformatics in 
high school, as emphasized in several studies (Dudley and 
Butte, 2009; Machluf and Yarden, 2013; Magana et  al., 2014; 
Marques et  al., 2014; Machluf et  al., 2017), even though there 
is scarce research on how to do it (Campbell and Nehm, 
2013; Magana et  al., 2014; Machluf et  al., 2017). To measure 
the impact of educational initiatives using bioinformatics 
resources on high school students and to emend misconceptions 
and tailor adequate bioinformatics activities for successful 
learning, it is important to diagnose the knowledge students 
perceive to have about bioinformatics- and genomics-related 
concepts (Gelbart and Yarden, 2006; Gelbart et al., 2009; Form 
and Lewitter, 2011; Champagne Queloz et  al., 2017).

In the universe of 387 high school students enquired in 
the present study, only a modest percentage (40.1% of the 
experimental group, 24.2% of the control group) revealed to 
have heard about bioinformatics in the pre-test (Q1), and 
most of the ones who did so could not define bioinformatics, 
admitting that their answer reflected the etymological meaning 
of the word. Following an expositive teaching session on 
bioinformatics and associated resources, such as databases 
and applications, in the post-test, the percentage of the students 
who revealed to have heard about bioinformatics raised 
consistently for both the experimental group (99.0%) and 
the control group (99.0%; Figure  4). Regardless of the fact 
that in the post-test most of these students linked bioinformatics 
to the etymology of the word: bio  +  informatics (60.9% of 
the experimental group, 73.6% of the control group), which 
undermines a truly sensible diagnostic of their understanding 
of bioinformatics, some students did mention specific aspects, 
such as data analysis, storage, and comparative genomics. 
The difference observed in this regard between the experimental 
and control groups (31.0% of the experimental group, 22.0% 
of the control group) may be  explained by the fact that 
students in the experimental group carried out a set of 
bioinformatics exercises using the mentioned resources and 
used bioinformatics platform for comparative genomics, 
contrarily to their counterparts in the control group. This is 
particularly evident regarding comparative genomics, a 
completely new notion for the majority of the students, which 
was mentioned by 6.6% of the experimental group students 
and only by 1.1% of the control group students. Furthermore, 
students from both groups recognized that genebanks are 
open-access resources (Q6.1; 81.2% of the experimental group, 
59.0% of the control group) and generally accessible to all 
citizens (Q6.2; 78.8% of the experimental group, 62.1% of 
the control group), suggesting an enhanced perception of 
what comprises a bioinformatics scientific toolbox and of 
their empowerment to access it (Figure  4). These findings, 
observed in other studies (Kovarik et al., 2013; Machluf et al., 
2017), report for a motivational trigger of scientific literacy 
and STEM education. The higher percentage scores obtained 
with the experimental group indicate that complementing 
expositive teaching with hands-on in silico laboratories favors 
the acquisition of structural knowledge. This was a particularly 
relevant outcome that allows to dismiss the common 
misconception that bioinformatics analysis always requires 
programing skills. In fact, while initially, i.e., before the 
intervention, students from both groups (62.9% of the 
experimental group, 69.5% of the control group) agreed that 
programing skills would be needed to use bioinformatics tools 
(Q6.3; Figure  4), after the intervention, only 27.1% of the 
students from the experimental group and 32.6% of the control 
group agreed with this statement (Figure  4). These data 
indicate that while initially students associated bioinformatics 
analysis to a set of complex computer codes, after they were 
challenged with bioinformatics activities, they were able to 
acknowledge the panoply of bioinformatics applications with 
user-friendly interfaces tailored for web browsers that do not 
require programming competencies as has been highlighted 
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by Martins et  al. (2018b). Students were shown to be  aware 
that bioinformatics tools are essential to molecular biology 
studies (Q6.4), in both the pre- and post-test (Figure  4). 
Still, in the post-test, there was a slight increment in the 
percentage of students who agree with this statement, suggesting 
that they confirmed their previous idea about the role of 
bioinformatics in molecular biology.

Following the intervention (i.e., post-test), when the 
participants were asked to “Indicate which bioinformatics 
platforms [they] used” (Q8.5), 16.7% of the students in the 
control group failed to mention any of the expected resources 
used during the intervention, namely, NCBI, NCBI ORFfinder, 
NCBI BLAST, and MaGe. This percentage dropped to 1.7% 
in the experimental group (Figure  5), indicating the positive 
impact of bioinformatics laboratories on students’ knowledge.

The bioinformatics exercises used in this study aimed to 
train the students on key procedures to identify genes from 
a genome sequence, as proposed by Martins et  al. (2018a). 
Since the bioinformatics exercises were supported by a tutorial 
video comprising detailed guidelines and instructions,3 it was 
important to determine if the students’ performance actually 
contributed to enhance their knowledge on basics genome 
mining and did not resume to a mere mechanical procedure 
of following a recipe step by step. To address this question, 
the students were asked to describe the procedures that can 

3 https://drive.google.com/file/u/1/d/1WrtjzLHzKI7nLALtVnmqy6WhPnkUsQSR/view

be  used to identify putative genes within a genomic DNA 
sequence (Q2, Q2.1). While in the pre-test, only a minority 
of the students in both groups (24.9% of the experimental 
group, 17.9% of the control group) claimed to know the 
procedures to deconstruct a DNA sequence into putative 
coding sequences, in the post-test, this percentage increased 
significantly (74.6% of the experimental group, 74.7% of the 
control group; Figure  4). As expected, the change between 
pre- and post-test is statistically significant for both groups 
(Supplementary Table  1). To fully elucidate if the students’ 
perceptions were aligned with their knowledge, a content 
analysis was carried out.

In this regard, a framework with three expected bioinformatics-
related notions was defined: (1) “Getting the target DNA 
sequence in a database,” (2) “Looking for Open Reading Frames,” 
and (3) “Deciding which of the retrieved ORFs are likely to 
be  genes running a BLAST.”

The pre-test content analysis regarding the answers to Q2.1 
showed that students who admitted knowing how to identify 
putative genes from a genomic DNA sequence failed to mention 
any of the three notions. Instead, they mentioned, for instance, 
that “To unveil a DNA sequence we  can perform an 
electrophoresis to determine the genes, looking at the gel bands 
in comparison to a known gene. Restriction enzymes may 
be  needed in this procedure,” which was the most frequently 
recorded notion in the experimental group, and that it is 
possible to “Use the genetic code to identify the codons in a 

FIGURE 4 | Students’ knowledge toward bioinformatics, gene regulation, and genomics.
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DNA sequence,” which was the most frequently recorded notion 
in the control group.

The post-test content analysis for the answers to Q2.1 revealed 
that 47.7% of the students in the control group did not mention 
any of the expected answers, 9.0% mentioned one of the 
expected answers, 41.8% mentioned two expected notions, and 
1.5% mentioned all three expected notions. This trend improved 
in the experimental group, for which the percentage of students 
who mentioned one expected notion (14.3%) and all the 
expected notions (11.1%) was higher. Furthermore, the percentage 
of students who did not mention expected notions was lower 
in the experimental group than in the control group (38.6%).

Contrary to what was observed in the pre-test, in the post-
test, students from both groups mentioned bioinformatics 
approaches, rather than wet laboratory techniques currently 
mentioned in their biology classes, such as electrophoresis and 
restriction enzymes. This outcome highlights the notion that, 
following a bioinformatics laboratory, most of the experimental 
designs envisioned by students to address a research question 
are based on a bioinformatics approach, instead of involving 
wet laboratory techniques that were already known to them. 

More than suggesting an enrichment of students’ scientific 
toolbox and the development of thinking skills, the intervention 
seems to narrow the gap between students’ school reality and 
what are common research practices nowadays, which is 
consistent with the educational benefits of bioinformatics reported 
in the literature (Gelbart and Yarden, 2006; Flanagan, 2013; 
Wood and Gebhardt, 2013). The data further suggest that when 
students are guided in the use of a wide variety of resources, 
they show to be  capable to explore ideas and to interpret 
results in order to answer questions raised by the teacher 
(Kuhlthau et  al., 2007).

Students’ Knowledge on Gene Regulation 
and Genomics
According to the educational theories proposed by Ausubel 
(1968) and Vygotskiĭ and Cole (1978), students’ prior knowledge, 
and in particular students’ misconceptions, is of crucial 
importance when learning a new issue. Several diagnostic 
instruments are available, in published research studies, that 
can be  used to obtain guidelines for specific interventions to 
address these misconceptions (Klymkowsky et  al., 2010;  

FIGURE 5 | Bioinformatics tools mentioned by students to unveil genes from bacterial genomics sequences.
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Tsui and Treagust, 2010; Gurel et al., 2015). Examples of students’ 
key misconceptions regarding basic genetic and genomics notions 
are already described in the literature and include the use of 
gene and genome as synonyms, the misunderstanding of the 
relationship between a gene and DNA, a misinterpretation of 
the association between a gene and gene regulation, and the 
idea that some organisms, such as bacteria and fungi, often do 
not have DNA (Lewis and Kattmann, 2004; Mills Shaw et  al., 
2008). Adding the relevance of addressing these misconceptions, 
the Portuguese biology curriculum for the 11th grade (Mendes 
et  al., 2003) recommends the discussion of the concept of 
“codogene” – part of a gene, i.e., a triplet of DNA, which is 
contributing to mislead students on the definition of gene. Having 
in mind the reported misconceptions, the activities implemented 
in this study aimed to tackle notions related with genes, genomes, 
alternative start codons, and the genetic code. Participants of 
both groups agreed that different bacteria groups have genes in 
common (Q7.1) and were shown to be aware that not all bacteria 
genes are identified and characterized, and that genomics 
information is still missing for many species (Q7.4; Figure  6). 
Conversely, misconceptions related with gene structure and the 
features of the genetic code did not seem to be overcome following 
the activities. In fact, students of both groups tended to disagree 
with the existence of different start codons (Q7.2) and were 
shown to be  unaware of the existence of a bacterial genetic 
code (Q7.3), in both pre- and post-test (Figure  6).

These two questions were conceived having in mind that 
in high school, it is commonly taught that there is a unique 
start codon, a misconception that is reinforced in most textbooks. 
During the practical activities, students from the experimental 
group explored different start codons and worked with a specific 
bacteria-dedicated genetic code when using the tool NCBI 
ORFfinder, which was expected to make them aware of the 
specifications of the genetic code. However, surprisingly, the 
acquisition of this knowledge was not confirmed, which can 
be  explained by reported evidence that even after being taught 
and accurately updated on a given scientific content for which 
misconceptions are observed, many students do not reconstruct 
their thinking (Mills Shaw et  al., 2008). In this study, the 
practical component designed to address this particular 
misconception was also not effective. In fact, the use of misleading 
terms, simplified explanations that induce erroneous 
interpretations, adapted language, and everyday examples to 
explain the biological phenomena is often the origin of students’ 
misconceptions, which can be  tenacious and quite difficult to 
be  overcome, ending up being perpetuated all through their 
high school education (Cho et al., 1985; Soyibo, 1995; Tekkaya, 
2003; Mills Shaw et  al., 2008). These data call for further 
attention and suggest that exercises specifically dedicated to 
exploring different start codons and distinct genetic codes 
according to the taxa of interest are needed to successfully 
overcome these deep-rooted misconceptions.

Other knowledge dimensions analyzed in this study include 
the concepts of genomics (Q4) and comparative genomics (Q5) 
aimed to acknowledge the importance of genomics in nowadays 
science and how it is impacting common societal sectors, such 
as human health and biotechnology. The results recorded for 

these two questions (Q4 and Q5) revealed a noticeable lack 
of knowledge about these concepts as previously described 
(Kirkpatrick et  al., 2002; Mills Shaw et  al., 2008; Baumler 
et  al., 2012; Chen and Kim, 2014), which bares implications 
when trying to use bioinformatics tools.

In the post-test, 54.7% of the students in the experimental 
group provided a correct definition of genomics, i.e., “The 
field of science that studies genomes,” trend that was not 
registered in the control group in which only 29.1% of the 
students were able to define this concept correctly. Zooming 
in the answers to identify the reported misuse of gene and 
genomics in an interchangeable way evidences a significant 
difference between the control and the experimental groups. 
In the pre-test, 1.5% of the control group students mentioned 
that genomics is a field of science that studies genes and/or 
genomes, a frequency that increased in the post-test (5.1%). 
In turn, in the experimental group, the trend was opposite, 
with the frequency of these notions decreasing from the pre- 
to the post-test (8.2 vs. 0.5%). These differences suggest an 
improvement of the quality of the answers of the students 
who carried out the bioinformatics exercises, i.e., the experimental 
group, apparently denoting that the expository teaching failed 
to clearly teach the difference between genomics and genetics. 
This may have resulted in the lack of accuracy witnessed in 
students’ replies to question Q4, in what relates to the reference 
genome instead of gene. It is important to mention that in 
the particular case of the Portuguese science curriculum and 
in the NGSS, genomics is not at all mentioned; the topic 
addressed when referring to gene- and genome-related issues 
is genetics. In this regard, before the intervention, only a few 
students mentioned that they had heard about comparative 
genomics (Q5; Figure  4), an important concept that currently 
is not addressed in science classes (Martins and Tavares, 2018).

When students were asked to define comparative genomics 
in the post-test (Q5.1), the majority was able to do so correctly 
(79.5% in the experimental group, 75.3% in the control group). 
They associated the field with “genomic characteristics/genomes/
genes/DNA sequences/homologous between different organisms,” 
which suggests that the expository teaching on comparative 
genomics was efficient in fostering an accurate understanding 
about comparative genomics in students in both groups. As 
comparative genomics was a notion new to students, it was 
not conditioned by their previous perceptions, contrary to what 
happened with the concepts of genetics and genomics. Despite 
this general trend, question 5.1 was also aimed to depict more 
misconceptions that could be  associated with the definition 
of comparative genomics. In the pre-test, 3.6% of the students 
in the experimental group mentioned that comparative genomics 
could be defined as comparisons between genes and phenotype, 
claiming that comparative genomics is the comparison between 
genetic sequences. The percentages of students with these 
misconceptions in the experimental and control groups lowered 
significantly in the post-test (2.4 and 1.4%, respectively). At 
this stage, i.e., in the post-test, a new notion was identified, 
with the experimental group students associating comparative 
genomics with the “Comparison of genomes of two or more 
species aiming to investigate phylogenetic relations” (6.7%). 
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Having these outcomes in mind, it can be noted that the quality 
of answers of students in the experimental group improved 
after the intervention. It is worth mentioning that in the post-
test, 5.2% of the control group students also recognized that 
comparative genomics can be associated with phylogenetic studies, 
which can be justified by the expositive teaching.

Attitudes and Interest
Together with the characterization of the students’ knowledge 
regarding bioinformatics, gene regulation, and genomics, as 
described in the previous section, a depiction of their attitudes 
and interest toward bioinformatics was also carried out. As 
previously mentioned, in the context of this study, interest 
was interpreted according to Eccles’ expectancy–value model 
(Eccles, 2005), which foresees motivation as a result of the 
combination of expectancy and value. The value given by 
students to a specific task is extremely important because they 
are more likely to pursue an activity if they acknowledge its 
worth. The model further differentiates task value into four 
components: attainment value (importance of doing it correctly), 
intrinsic value (personal enjoyment), utility value (perceived 
usefulness for future goals), and cost (competition with other 
goals; Eccles and Wigfield, 2002; Eccles, 2005; Leaper, 2011).

From the start, students were shown to be  aware about the 
importance of bioinformatics to identify genes (Q3.1). Nevertheless, 

the classroom discussion that followed the expository teaching 
session about the need of bioinformatics tools to efficiently mine 
the huge genomics datasets contributed to reinforce this belief 
as demonstrated by the statistically significant difference between 
pre- and post-test results (Figure  6; Table  1).

Regarding the role of bioinformatics to store genomic data 
(Q3.2) and to study evolution (Q3.3), a statistically significant 
difference was observed from pre- to post-test in the experimental 
group (Figure  6; Table  1), but not in the control group. As 
the bioinformatics laboratories entailed the recruitment of 
bioinformatics resources particularly suited to access large 
datasets and address evolutionary inferences through synteny 
maps, these results highlight the direct impact of the intervention, 
which sustains identical results detailed in other studies 
(Luscombe et  al., 2001; Kremer et  al., 2005).

When asked to rate the importance of studying gene regulation 
(Q9.2) and evolution in bacteria (Q9.3), students in both groups 
agreed on its importance in both assessment moments (Figure 6). 
In what concerns the study of gene regulation (Q9.2.1), in 
the control group, its perceived importance was mainly connected 
with its usefulness from an instrumental point of view (60.3%; 
utility value), as suggested by expressions that linked its 
importance with the goals, such as “To get in touch with the 
world around us” or “To improve human life quality.” Interestingly, 
in the experimental group, adding to the utilitarian value 

FIGURE 6 | Students’ knowledge, interest, and attitudes toward the integration of bioinformatics in science curricula.
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TABLE 1 | Pre- and post-test comparison of students’ knowledge, interest, and attitudes toward bioinformatics.

Control group Experimental group

t df p |d| t df p |d|

Interest How important do 
you think 

bioinformatics is 
to…(Q3)

…identify genes. (Q3.1) −6.27 89 <0.01* 0.77 −5.94 274 <0.01* 0.48

…store genomic data. 
(Q3.2)

−1.59 90 0.12 0.21 −2.66 271 0.01* 0.21

…study the evolutionary 
relations between 
organisms. (Q3.3)

−1.87 78 0.07 0.22 −3.62 230 <0.01* 0.30

Rate the 
importance of the 
following practices 

(Q9)

Practical work using 
digital tools in the 
classroom. (Q9.1)

−1.78 94 0.08 0.18 −1.32 281 0.19 0.08

Study of genomes and 
gene regulation in 
bacteria. (Q9.2)

−1.65 72 0.10 0.17 0.07 209 0.94 0.00

Study of phylogeny/
evolution of bacteria. 

(Q9.3)
0.48 62 0.63 0.15 −1.64 221 0.10 0.09

Using bioinformatics 
tools in the class. (Q9.4)

0.00 41 1.00 0.03 1.33 181 0.18 0.12

Knowledge Rate your 
agreement with the 

following 
statements (Q7)

Different taxonomic 
groups of bacteria have 

genes in common. 
(Q7.1)

−4.12 66 <0.01* 0.40 −6.08 182 <0.01* 0.47

There are different 
initiation codons. (Q7.2)

0.99 92 0.33 0.11 −1.78 279 0.08 0.13

There is a specific 
genetic code for 
bacteria. (Q7.3)

0.32 65 0.75 0.02 −1.61 191 0.11 0.17

All the bacterial genes 
are known. (Q7.4)

−0.22 66 0.83 0.05 0.00 207 1.00 0.00

Attitudes

How often do 
you use the 
computer/

technological 
devices…(Q8)

…for autonomous 
study outside the 
classroom. (Q8.1)

0.20 94 0.84 0.02 1.72 290 0.09 0.11

…in the classroom to 
study. (Q8.2)

−1.86 94 0.07 0.16 −5.03 290 <0.01* 0.30

…to access 
bioinformatics tools 

outside the classroom. 
(Q8.3)

0.28 94 0.78 0.04 −2.82 285 0.01* 0.20

…to access 
bioinformatics tools in 
the classroom. (Q8.4)

0.00 94 1.00 0.00 −11.89 286 <0.01* 0.85

t, paired samples t-test for a 95% confidence interval (p); df, degrees of freedom; d, Cohen’s d measure of effect size. *Indicates significant differences between pre- and post-test to each group.
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(42.7%), a more knowledge-related intrinsic worth (intrinsic 
value) was also well represented (42.7%), as shown by statements, 
such as “When we  study bacteria it is interesting to have the 
chance to better understand this group and to get information 
about their metabolism in different environments.” These results 
indicate that the scientific topic chosen for these activities is 
of interest to the students, and that the bioinformatics exercises 
carried out by the experimental group contributed to a more 
focused appraisal of the relevance of genomics and gene 
regulation. An identical trend was observed concerning the 
interest of evolutionary studies in bacteria (Q9.3.1), with 59.0% 
of the students in the experimental group and 50.9% of the 
students in the control group mentioning notions that reflect 
their motivation to explore the scientific topic, which emphasizes 
the importance of adding comparative genomic tools to the 
activities proposed.

As expected, students considered the practical work using 
digital tools important, engaging and motivating, raising their 
intrinsic interest (Q9.1, Q9.1.1; Figure 6). Concerning students’ 
interest on the use of bioinformatics tools in the classroom, 
even before the in silico laboratories, they had already shown 
to be  motivated in this regard (Q9.4; Figure  6). Despite the 
lack of statistically significant differences (Table  1), in the 
post-test, the students from both groups agreed that the 
integration of bioinformatics laboratories in the classroom 
(Q9.4) can have a beneficial impact to increase their intrinsic 
interest. This suggests their curiosity and awareness about the 
potential of using these tools in the classroom, regardless of 
whether they carried out (experimental group) or not (control 
group) the bioinformatics exercises.

Interesting remarks on the participants’ engagement and 
interaction can be  made based on the observations carried 
out during the implementation of the activities. For instance, 
the students were very surprised when they realized the 
incredible amount of open-access biological data, as translated 
by questions of amazement, such as “Can I  access these 
bioinformatics resources for free at home?” and “Nice! Everyone 
can do it?.” Having in mind we  are now living in the post-
genomic era, these reflections are crucial for students to get 
acquainted with genomics data sharing and to become aware 
of the social benefits and ethical implications of open access 
data (Foster and Sharp, 2007; Oliver et  al., 2012).

Another aspect that students stated as being truly interesting 
pertained to the fact that they were sharing the exact same 
platforms used by professional researchers. These findings 
meet the reported importance of exposing science students 
to real-world phenomena and data, since this kind of activities 
can increase their interest and better prepare them for engaging 
in careers in science (Gelbart and Yarden, 2006; Flanagan, 
2013). Furthermore, the observations showed that after 
completing the activities, students looked forward to exploring 
other tools in the platforms suggested, making comments, 
such as “What is the size of the genome of a spider?,” “Are 
virus – such as HIV, genomes also available at this database?,” 
or “Let us search for the gene coding for insulin.” While 
this enhanced enthusiasm and curiosity have been reported 
for university science students (Chapman et  al., 2006;  

Madlung, 2018), it has been poorly described in pre-university 
levels of education, which makes this finding even more  
interesting.

Confirming the participants’ interest in learning science with 
bioinformatics tools is the fact that only a low percentage of 
students (13.5% in the experimental group, 9.3% in the control 
group) associated the integration of bioinformatics in the class 
(Q9.4.1) with a cost, according to Eccles’ framework (Eccles, 
2005). These students mentioned that incorporating 
bioinformatics in the classroom “is not that important once 
there are similar ways of obtaining the same results” or that 
“According to the Portuguese curricula for science in high 
school there is no need of using such complex tools” and 
also “This kind of activities can make classes more confusing 
since students are not used to working with these applications.” 
These comments seem to reveal a lack of sympathy for innovative 
learning challenges.

As it is well-known, nowadays, youths are particularly at 
ease with digital resources (Rosen et  al., 2010; Quinn and 
Oldmeadow, 2013), and indeed, students from both the 
experimental and the control groups admitted that they often 
take advantage of the technologies at their disposal in their 
autonomous study outside the classroom (Q8.1; Figure  6). 
Despite this reality, students from both groups stated that 
they do not use computers or other technological devices 
in the classroom (Q8.2, Figure 6). The statistically significant 
pre- to post-test increase observed in the answers to this 
question among the experimental group students is likely 
due to the unique opportunity created by this study for 
them to join bioinformatics laboratories (Table  1). Recent 
studies reported that although schools apparently have the 
necessary conditions to successfully integrate Information 
and Communications Technology (ICT) in the classroom, 
there are still barriers, such as teachers’ pedagogical beliefs, 
which prevent the use of computers in classroom settings 
(Marcinkiewicz, 1993; Ertmer, 2005; Sang et  al., 2010). 
Interestingly, some informal comments made by the students 
revealed that their teachers often feel discouraged to use 
technology in the classroom because they do not feel 
comfortable with it, which meets the constraints mentioned 
by the teacher, the majority of whom acknowledged their 
anxiety regarding the use of technology in this setting 
(Machluf and Yarden, 2013; Martins et  al., 2018c, 2020).

Even though students of both groups also revealed (Q8.3) 
that they usually do not access bioinformatics tools outside 
the classroom, there is a significant pre- to post-test difference 
for the experimental group, which may suggest that these 
students decided to take advantage of the bioinformatics resources 
explored after the activities (Figure  6; Table  1). Regarding the 
specific use of bioinformatics tools in the classroom (Q8.4), 
while in the pre-test, students from both groups answered 
negatively to this question, as expected, in the post-test, the 
students from the experimental group reported that they used 
bioinformatics in their classes (Figure  6; Table  1).

Having in mind that the students who took part in this 
study belong to a highly technological society, one can anticipate 
that their performance in manipulating computer-based tools 
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was efficient (Rosen et al., 2010; Quinn and Oldmeadow, 2013). 
Indeed, and regardless that most of the students had never 
experienced working with bioinformatics tools before, during 
the implementation of the bioinformatics laboratories, no major 
difficulties to follow the guidelines and discussing the issues 
raised were reported to the teacher. The observations showed 
that students were completely able to manage the platforms 
and did not feel the need to use printed out guidelines. Instead, 
they looked for solutions and alternatives together with their 
classmates and took advantage of the technological resources 
available, namely, smartphones. In spite of the expectable side 
talk, the participants’ behavior and their questions and comments 
suggest their engagement in every task that they were asked 
to perform.

CONCLUSION

The findings obtained in this study demonstrate an improvement 
in students’ knowledge of concepts, such as gene, protein 
synthesis, nucleic acid (DNA, RNA), start and stop codons, 
genome, evolutionary relations, and genomic or comparative 
genomics, following their participation in bioinformatics-based 
activities “Mining the Genome: Using Bioinformatics Tools in 
the Classroom to Support Students Discovery of Genes” (Martins 
et  al., 2018a). By the end of the activities, students were also 
shown to be  more aware of the applications and potential 
of bioinformatics.

This study also raises several questions that are worth 
pursuing in future research, namely, related with misconceptions 
that were addressed in this intervention. In addition, future 
focus on other school levels (namely, middle school) and other 
curricular topics might be  relevant to cross-examine and more 
widely and consistently depict the impact of bioinformatics-
based activities in the classroom. Likely pertinent will be  to 
assess the influence of the “teacher” in students’ performance 
through a nested effect analysis.

Beyond the evidence of the educational benefits of 
incorporating practical activities in science education programs, 
overall, this study represents a contribution to introduce a 
top-notch research area – bioinformatics – in school and to 
inform stakeholders about its potential from not only educational 
but also scientific and other social points of view.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will 
be  made available by the authors, without undue reservation.

ETHICS STATEMENT

The project was institutionally approved by each school’s Directive 
Board. Written informed consent from the participants’ legal 
guardian/next of kin was not required to participate in this 
study in accordance with the national legislation and the 
institutional requirements.

AUTHOR CONTRIBUTIONS

AM, MJF, and FT designed the research plan. AM followed the 
implementation of the instruments in the classroom and collected, 
organized, and analyzed the data. MJF, ML, LL, and FT participated 
in the data analysis and interpretation. All authors contributed 
to the writing of this article and approved the submitted version.

FUNDING

AM is supported by a fellowship from Fundação para a Ciência 
e Tecnologia – FCT (SFRH/BD/112038/2015). This work is 
supported by National Funds through FCT – Fundação para a 
Ciência e a Tecnologia in the scope of the project UIDB/50027/2020.

ACKNOWLEDGMENTS

The authors are grateful to all participants (teachers, students, 
and schools) for creating the opportunity to implement these 
bioinformatics laboratories and carry out this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be  found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.578099/
full#supplementary-material

 

REFERENCES

Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., Bolton, E., et al. 
(2018). Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res. 46, D8–D13. doi: 10.1093/nar/gkx1095

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). 
Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/
S0022-2836(05)80360-2

Amenkhienan, E., and Smith, E. J. (2006). A web-based genetic polymorphism 
learning approach for high school students and science teachers. Biochem. 
Mol. Biol. Educ. 34, 30–33. doi: 10.1002/bmb.2006.49403401030

Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A., and Schneider, M. V. 
(2017). A global perspective on evolving bioinformatics and data science 
training needs. Brief. Bioinform. 20, 398–404. doi: 10.1093/bib/bbx100

Ausubel, D. P. (1968). Educational psychology: A cognitive view. Michigan: Holt, 
Rinehart and Winston.

Baumler, D. J., Banta, L. M., Hung, K. F., Schwarz, J. A., Cabot, E. L., Glasner,  
J. D., et al. (2012). Using comparative genomics for inquiry-based learning 
to dissect virulence of Escherichia coli O157:H7 and Yersinia pestis. CBE 
Life Sci. Educ. 11, 81–93. doi: 10.1187/cbe.10-04-0057

Campbell, C. E., and Nehm, R. H. (2013). A critical analysis of assessment 
quality in genomics and bioinformatics education research. CBE Life Sci. 
Educ. 12, 530–541. doi: 10.1187/cbe.12-06-0073

Champagne Queloz, A., Klymkowsky, M. W., Stern, E., Hafen, E., and  
Köhler, K. (2017). Diagnostic of students’ misconceptions using the  
Biological Concepts Instrument (BCI): a method for conducting an educational 
needs assessment. PLoS One 12:e0176906. doi: 10.1371/journal.pone. 
0176906

68

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://www.frontiersin.org/articles/10.3389/fmicb.2020.578099/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2020.578099/full#supplementary-material
https://doi.org/10.1093/nar/gkx1095
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1002/bmb.2006.49403401030
https://doi.org/10.1093/bib/bbx100
https://doi.org/10.1187/cbe.10-04-0057
https://doi.org/10.1187/cbe.12-06-0073
https://doi.org/10.1371/journal.pone.0176906
https://doi.org/10.1371/journal.pone.0176906


Martins et al. Bioinformatics’ Impact in High School

Frontiers in Microbiology | www.frontiersin.org 14 October 2020 | Volume 11 | Article 578099

Chapman, B. S., Christmann, J. L., and Thatcher, E. F. (2006). Bioinformatics 
for undergraduates: steps toward a quantitative bioscience curriculum. Biochem. 
Mol. Biol. Educ. 34, 180–186. doi: 10.1002/bmb.2006.49403403180

Chen, L. -S., and Kim, M. (2014). Needs assessment in genomic education. 
Health Promot. Pract. 15, 592–598. doi: 10.1177/1524839913483470

Cho, H. -H., Kahle, J. B., and Nordland, F. H. (1985). An investigation of 
high school biology textbooks as sources of misconceptions and difficulties 
in genetics and some suggestions for teaching genetics. Sci. Educ. 69, 
707–719. doi: 10.1002/sce.3730690512

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New 
York: Lawrence Erlbaum Associates.

Connelly, L. M. (2008). Pilot studies. Medsurg Nurs. 17, 411–413.
Dudley, J. T., and Butte, A. J. (2009). A quick guide for developing effective 

bioinformatics programming skills. PLoS Comput. Biol. 5:e1000589. doi: 
10.1371/journal.pcbi.1000589

Eccles, J. S. (2005). “Subjective task value and the Eccles et  al. model of 
achievement-related choices” in Handbook of competence and motivation. 
eds. A. J. Elliot and C. S. Dweck (New York: The Guilford Press), 105–121.

Eccles, J. S., and Wigfield, A. (2002). Motivational beliefs, values and goals. 
Annu. Rev. Psychol. 53, 109–132. doi: 10.1146/annurev.psych.53.100901. 
135153

Ertmer, P. A. (2005). Teacher pedagogical beliefs: the final frontier in our 
quest for technology integration? Educ. Technol. Res. Dev. 53, 25–39. doi: 
10.1007/BF02504683

Flanagan, J. (2013). Open data for science education. PLoS Blogs. doi: 10.1525/
bio.2010.60.5.2

Fonseca, M. J., Costa, P., Lencastre, L., and Tavares, F. (2012). Multidimensional 
analysis of high-school students’ perceptions about biotechnology. J. Biol. 
Educ. 46, 129–139. doi: 10.1080/00219266.2011.634019

Form, D., and Lewitter, F. (2011). Ten simple rules for teaching bioinformatics 
at the high school level. PLoS Comput. Biol. 7:e1002243. doi: 10.1371/journal.
pcbi.1002243

Foster, M., and Sharp, R. (2007). Share and share alike: deciding how to 
distribute the scientific and social benefits of genomic data. Nat. Rev. Genet. 
8, 633–639. doi: 10.1038/nrg2124

Gelbart, H., Brill, G., and Yarden, A. (2009). The impact of a web-based 
research simulation in bioinformatics on students’ understanding of genetics. 
Res. Sci. Educ. 39, 725–751. doi: 10.1007/s11165-008-9101-1

Gelbart, H., and Yarden, A. (2006). Learning genetics through an authentic 
research simulation in bioinformatics. J. Biol. Educ. 40, 107–112. doi: 
10.1080/00219266.2006.9656026

Gurel, D. K., Eryilmaz, A., and McDermott, L. C. (2015). A review and 
comparison of diagnostic instruments to identify students’ misconceptions 
in science. Eurasia J. Math. Sci. Technol. Educ. 11, 989–1008. doi: 10.12973/
eurasia.2015.1369a

Hsieh, H. -F., and Shannon, S. E. (2005). Three approaches to qualitative content 
analysis. Qual. Health Res. 15, 1277–1288. doi: 10.1177/104973230 
5276687

Johanson, G. A., and Brooks, G. P. (2010). Initial scale development: sample 
size for pilot studies. Educ. Psychol. Meas. 70, 394–400. doi: 10.1177/00131 
64409355692

Johnson, B., and Christensen, L. B. (2012). Educational research: Quantitative, 
qualitative, and mixed approaches. Thousand Oaks, California: SAGE Publications.

Kirkpatrick, G., Orvis, K., and Pittendrigh, B. (2002). A teaching model for 
biotechnology and genomics education. J. Biol. Educ. 37, 31–35. doi: 
10.1080/00219266.2002.9655843

Klymkowsky, M. W., Underwood, S. M., and Garvin-Doxas, R. K. (2010). 
Biological Concepts Instrument (BCI): a diagnostic tool for revealing student 
thinking. Available at: http://arxiv.org/abs/1012.4501 (Accessed June 23, 2020).

Koch, I., and Fuellen, G. (2008). A review of bioinformatics education in 
Germany. Brief. Bioinform. 9, 232–242. doi: 10.1093/bib/bbn006

Kovarik, D., Patterson, D., Cohen, C., Sanders, E., Peterson, K., Porter, S., 
et al. (2013). Bioinformatics education in high school: implications for 
promoting science, technology, engineering, and mathematics careers. CBE 
Life Sci. Educ. 12, 441–459. doi: 10.1187/cbe.12-11-0193

Kremer, A., Schneider, R., and Terstappen, G. C. (2005). A bioinformatics 
perspective on proteomics: data storage, analysis, and integration. Biosci. 
Rep. 25, 95–106. doi: 10.1007/s10540-005-2850-4

Krippendorff, K. (2004). Content analysis: An introduction to its methodology. 
Thousand Oaks, California: SAGE Publications.

Kuhlthau, C. C., Caspari, A. K., and Maniotes, L. K. (2007). Guided inquiry: 
Learning in the 21st century. New York: Libraries Unlimited.

Leaper, C. (2011). More similarities than differences in contemporary theories 
of social development?: a plea for theory bridging. Adv. Child Dev. Behav. 
40, 337–378. doi: 10.1016/b978-0-12-386491-8.00009-8

Lewis, J., and Kattmann, U. (2004). Traits, genes, particles and information: 
re-visiting students’ understandings of genetics. Int. J. Sci. Educ. 26, 195–206. 
doi: 10.1080/0950069032000072782

Luscombe, N., Greenbaum, D., and Gerstein, M. (2001). What is bioinformatics? 
A proposed definition and overview of the field. Methods Inf. Med. 40, 
346–358. doi: 10.1053/j.ro.2009.03.010

Machluf, Y., Gelbart, H., Ben-Dor, S., and Yarden, A. (2017). Making authentic 
science accessible-the benefits and challenges of integrating bioinformatics 
into a high-school science curriculum. Brief. Bioinform. 18, 145–159. doi: 
10.1093/bib/bbv113

Machluf, Y., and Yarden, A. (2013). Integrating bioinformatics into senior high 
school: design principles and implications. Brief. Bioinform. 14, 648–660. 
doi: 10.1093/bib/bbt030

Madlung, A. (2018). Assessing an effective undergraduate module teaching 
applied bioinformatics to biology students. PLoS Comput. Biol. 14:e1005872. 
doi: 10.1371/journal.pcbi.1005872

Magana, A. J., Taleyarkhan, M., Alvarado, D. R., Kane, M., Springer, J., and 
Clase, K. (2014). A survey of scholarly literature describing the field of 
bioinformatics education and bioinformatics educational research. CBE Life 
Sci. Educ. 13, 607–623. doi: 10.1187/cbe.13-10-0193

Marcinkiewicz, H. R. (1993). Computers and teachers. J. Res. Comput. Educ. 
26, 220–237. doi: 10.1080/08886504.1993.10782088

Marques, I., Almeida, P., Alves, R., Dias, M., Godinho, A., and Pereira-Leal, J. 
(2014). Bioinformatics projects supporting life-sciences learning in high 
schools. PLoS Comput. Biol. 10:e1003404. doi: 10.1371/journal.pcbi. 
1003404

Martins, A., Fonseca, M. J., and Tavares, F. (2018a). Mining the genome: using 
bioinformatics tools in the classroom to support student discovery of genes. 
Am. Biol. Teach. 80, 619–624. doi: 10.1525/abt.2018.80.8.619

Martins, A., Lencastre, L., and Tavares, F. (2018b). “Predictive microbiology 
in a non- formal science education context: understanding food preservation 
techniques” in Hands-on science. Advancing science. Improving education. 
eds. M. Costa, B. Dorrío and J. Fernandez Novell. July 16–20, 2018 (Barcelona: 
Hands-on Science Network), 309–317.

Martins, A., Lencastre, L., and Tavares, F. (2018c). “Integrating bioinformatics 
in elementary and secondary education: teacher’s perceptions” in 3rd 
International Conference on Teacher Education (INCTE); May 4–5, 2018 
(Bragança: Instituto Politécnico de Bragança).

Martins, A., Lencastre, L., and Tavares, F. (2020). “Bioinformatics, a befitting 
tool for e-learning: potential and constrains according teachers’ perceptions” 
in Hands-on science. Science education. Discovering and understanding the 
wonders of nature. eds. M. F. Costa and J. B. Dorrío. July 13–17, 2020 
(Hands-on Science Network), 97–105.

Martins, A., and Tavares, F. (2018). “Genomics education: update core concepts 
in high school” in Hands-on science. Advancing science. Improving education. 
eds. M. Costa, B. Dorrío and J. Fernandez-Novell (Barcelona: Hands-on 
Science Network), 145–150.

Mendes, A., Rebelo, D., and Pinheiro, E. (2003). Programa de Biologia e Geologia 
11o ou 12oano(s).

Mendes, A., Rebelo, D., and Pinheiro, E. (2004). Biologia 12oano—Curso Científico 
Humanístico de Ciências e Tecnologias.

Mills Shaw, K. R., Van Horne, K., Zhang, H., and Boughman, J. (2008). Essay 
contest reveals misconceptions of high school students in genetics content. 
Genetics 178, 1157–1168. doi: 10.1534/genetics.107.084194

National Research Council (2013). Next generation science standards. Washington, 
DC: National Academies Press.

Newman, L., Duffus, A. L. J., and Lee, C. (2016). Using the free program 
MEGA to build phylogenetic trees from molecular data. Am. Biol. Teach. 
78, 608–612. doi: 10.1525/abt.2016.78.7.608

Oliver, J., Slashinski, M., Wang, T., Kelly, P., Hilsenbeck, S., and McGuire, A. 
(2012). Balancing the risks and benefits of genomic data sharing: genome 

69

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://doi.org/10.1002/bmb.2006.49403403180
https://doi.org/10.1177/1524839913483470
https://doi.org/10.1002/sce.3730690512
https://doi.org/10.1371/journal.pcbi.1000589
https://doi.org/10.1146/annurev.psych.53.100901.135153
https://doi.org/10.1146/annurev.psych.53.100901.135153
https://doi.org/10.1007/BF02504683
https://doi.org/10.1525/bio.2010.60.5.2
https://doi.org/10.1525/bio.2010.60.5.2
https://doi.org/10.1080/00219266.2011.634019
https://doi.org/10.1371/journal.pcbi.1002243
https://doi.org/10.1371/journal.pcbi.1002243
https://doi.org/10.1038/nrg2124
https://doi.org/10.1007/s11165-008-9101-1
https://doi.org/10.1080/00219266.2006.9656026
https://doi.org/10.12973/eurasia.2015.1369a
https://doi.org/10.12973/eurasia.2015.1369a
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1177/0013164409355692
https://doi.org/10.1177/0013164409355692
https://doi.org/10.1080/00219266.2002.9655843
http://arxiv.org/abs/1012.4501
https://doi.org/10.1093/bib/bbn006
https://doi.org/10.1187/cbe.12-11-0193
https://doi.org/10.1007/s10540-005-2850-4
https://doi.org/10.1016/b978-0-12-386491-8.00009-8
https://doi.org/10.1080/0950069032000072782
https://doi.org/10.1053/j.ro.2009.03.010
https://doi.org/10.1093/bib/bbv113
https://doi.org/10.1093/bib/bbt030
https://doi.org/10.1371/journal.pcbi.1005872
https://doi.org/10.1187/cbe.13-10-0193
https://doi.org/10.1080/08886504.1993.10782088
https://doi.org/10.1371/journal.pcbi.1003404
https://doi.org/10.1371/journal.pcbi.1003404
https://doi.org/10.1525/abt.2018.80.8.619
https://doi.org/10.1534/genetics.107.084194
https://doi.org/10.1525/abt.2016.78.7.608


Martins et al. Bioinformatics’ Impact in High School

Frontiers in Microbiology | www.frontiersin.org 15 October 2020 | Volume 11 | Article 578099

research participants’ perspectives. Public Health Genomics 15, 106–114. doi: 
10.1159/000334718

Pallant, J. (2007). SPSS—survival guide to data analysis using SPSS for windows. 
Maidenhead: Open University Press/McGraw-Hill.

Punch, K. F. (2009). Introduction to research methods in education. Los Angeles: 
SAGE Publications.

Quinn, S., and Oldmeadow, J. A. (2013). Is the iGeneration a “we” generation? 
Social networking use among 9- to 13-year-olds and belonging. Br. J. Dev. 
Psychol. 31, 136–142. doi: 10.1111/bjdp.12007

Rosen, L. D., Carrier, M. L., and Cheever, N. A. (2010). Rewired: Understanding 
the iGeneration and the way they learn. New York: Palgrave Macmillan.

Sadek, H. (2004). Bioinformatics: Principles, basic internet applications. Canada: 
Trafford Publishing.

Sang, G., Valcke, M., Braak, J.van, and Tondeur, J. (2010). Student teachers’ 
thinking processes and ICT integration: predictors of prospective teaching 
behaviors with educational technology. Comput. Educ. 54, 103–112. doi: 
10.1016/J.COMPEDU.2009.07.010

Schreier, M. (2012). Qualitative content analysis in practice. London, 
United  Kingdom: SAGE Publications.

Soyibo, K. (1995). A review of some sources of students’ misconceptions in 
biology. Singapore J. Educ. 15, 1–11. doi: 10.1080/02188799508548576

Taylor, J. M., Davidson, R. M., and Strong, M. (2014). Drug-resistant tuberculosis. 
Am. Biol. Teach. 76, 386–394. doi: 10.1525/abt.2014.76.6.6

Tekkaya, C. (2003). Remediating high school students’ misconceptions concerning 
diffusion and osmosis through concept mapping and conceptual change 
text. Res. Sci. Technol. Educ. 21, 5–16. doi: 10.1080/02635140308340

Treece, E. W., and Treece, J. W. Jr. (1982). Elements of research in nursing. 
St. Louis: Mosby.

Tsui, C., and Treagust, D. (2010). Evaluating secondary students’ scientific 
reasoning in genetics using a two-tier diagnostic instrument. Int. J. Sci. 
Educ. 32, 1073–1098. doi: 10.1080/09500690902951429

Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, S., Lajus, A., et al. 
(2013). MicroScope—an integrated microbial resource for the curation and 
comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41, 
D636–D647. doi: 10.1093/nar/gks1194

Vygotskiĭ, L. S., and Cole, M. (1978). Mind in society: The development of 
higher psychological processes. Cambridge, Mass, United  States: Harvard 
University Press.

Weber, R. (1990). Basic content analysis. Thousand Oaks, California: SAGE Publications.
Wefer, S. H., and Sheppard, K. (2008). Bioinformatics in high school biology 

curricula: a study of state science standards. CBE Life Sci. Educ. 7, 155–162. 
doi: 10.1187/cbe.07-05-0026

Wood, L., and Gebhardt, P. (2013). Bioinformatics goes to school—new avenues 
for teaching contemporary biology. PLoS Comput. Biol. 9:e1003089. doi: 
10.1371/journal.pcbi.1003089

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2020 Martins, Fonseca, Lemos, Lencastre and Tavares. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY).  The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

70

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://doi.org/10.1159/000334718
https://doi.org/10.1111/bjdp.12007
https://doi.org/10.1016/J.COMPEDU.2009.07.010
https://doi.org/10.1080/02188799508548576
https://doi.org/10.1525/abt.2014.76.6.6
https://doi.org/10.1080/02635140308340
https://doi.org/10.1080/09500690902951429
https://doi.org/10.1093/nar/gks1194
https://doi.org/10.1187/cbe.07-05-0026
https://doi.org/10.1371/journal.pcbi.1003089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fmicb-11-578810 October 20, 2020 Time: 19:39 # 1

ORIGINAL RESEARCH
published: 26 October 2020

doi: 10.3389/fmicb.2020.578810

Edited by:
Mel Crystal Melendrez,

Anoka-Ramsey Community College,
United States

Reviewed by:
Felipe Hernandes Coutinho,

Miguel Hernández University of Elche,
Spain

Justin Joseph Donato,
University of St. Thomas,

United States

*Correspondence:
Mangala Tawde

mtawde@qcc.cuny.edu

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 01 July 2020
Accepted: 05 October 2020
Published: 26 October 2020

Citation:
Tawde M and Williams M (2020)

Antibiotic Resistance in Environmental
Microbes: Implementing Authentic

Research in the Microbiology
Classroom.

Front. Microbiol. 11:578810.
doi: 10.3389/fmicb.2020.578810

Antibiotic Resistance in
Environmental Microbes:
Implementing Authentic Research in
the Microbiology Classroom
Mangala Tawde* and Marianne Williams

Queensborough Community College, CUNY, Bayside, NY, United States

Incorporating Undergraduate Research Experience in Microbiology Classroom.
Dr. Mangala Tawde, Associate Professor, Department of Biological Sciences and
Geology, Queensborough Community College, CUNY. Undergraduate Research (UR)
experience is increasingly being recognized as one of the most transforming experiences
students can have in their undergraduate years of education. To make it accessible
to all students, incorporating authentic research experiences in the classroom is
important and it is a major initiative at Queensborough community college; where we
have institutionalized UR as a High Impact Practice. We incorporated an authentic
research project into the Microbiology course curriculum for allied health majors. The
research project was to isolate and identify antibiotic-resistant microbes from diverse
environments. As students are aware of antibiotic resistance being a serious concern in
today’s medicine, they get interested and are enthusiastically engaged in the research
project. Students collect soil samples from various environments and locations of their
choice and then they isolate and identify bacteria that may exhibit antibiotic resistance.
The microbes isolated from diverse environments are identified based on the 16s rRNA
sequence analysis as well as biochemical tests. The research experience is relevant and
aligns well with the course curricula, course learning objectives as well as the college’s
General Education objectives.

Keywords: undergraduate research experience, course based undergraduate research experiences, antibiotic
resistance, environmental microbiome, community college undergraduate courses

INTRODUCTION

Inquiry-based team learning is shown to be vital for developing skills such as critical-
thinking, scientific problem-solving ability, and acquiring scientific content knowledge in
undergraduate biology education (Lord, 2001; Apedoe et al., 2006; Hunter et al., 2007; Kuh,
2008). Many recent studies have shown that research experiences for students early on
during their undergraduate years, result in improved learning outcomes, and science career
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decisions leading to a stronger Science, Technology, Engineering
and Mathematics (STEM) workforce (Lopatto, 2004, 2007;
Kuh, 2008). Thus Undergraduate Research (UR) experience is
considered as one of the best practices to engage and motivate
students in undergraduate education (Lopatto, 2004, 2007; Kuh,
2008; Lopatto and Tobias, 2010). Though the traditional one-
on-one apprenticeship model with a specific mentor for research
internship is known to transform students’ lives and careers, its
accessibility is limited to a few students (National Academies
of Sciences Engineering and Medicine, 2015). In order to
make the pedagogy of undergraduate research accessible to all
students, authentic research experiences need to be implemented
and incorporated in the undergraduate classroom setting.
Thus course-based undergraduate research experiences (CUREs)
incorporated in the classroom setting are the response to national
“Call for Action” (National Research Council, 2003; American
Association for the Advancement of Science, 2011; Ballen
et al., 2017) to reform the undergraduate Biology curriculum
(Handelsman et al., 2004; Woodin et al., 2010; Lopatto et al., 2011;
Wei and Woodin, 2011; Dolan, 2012; Caplan and MacLachlan,
2014; Brownell and Kloser, 2015; Ballen et al., 2017). Students
involved in research-based courses are more engaged, more likely
to complete their courses, show a greater appreciation of science
and inclination toward STEM careers and are more likely to
pursue them as compared to those taking traditional courses
(Handelsman et al., 2004; Woodin et al., 2010; Lopatto et al., 2011;
Wei and Woodin, 2011; Dolan, 2012; Caplan and MacLachlan,
2014; Brownell and Kloser, 2015). There are numerous CUREs
that have been proposed as inclusive models to make these
experiences accessible to all students (Handelsman et al., 2004;
Woodin et al., 2010; Lopatto et al., 2011; Wei and Woodin, 2011;
Dolan, 2012; Auchincloss et al., 2014; Caplan and MacLachlan,
2014; Brownell and Kloser, 2015; Brownell et al., 2015; Corwin
et al., 2015a,b; Bangera and Brownell, 2017; Mader et al., 2017).
However, at institutions without a strong research infrastructure
or resources such as community colleges, it is a totally different
beast of a challenge for the faculty to convert an entire semester-
long course into a CURE. Here we describe a course-based
research experience where we incorporated an authentic research
experience of studying antibiotic resistance in bacteria isolated
from environmental samples into a microbiology lab course that
is required for allied health majors.

The student body at Queensborough Community College
(QCC) at City University of New York (CUNY) is extremely
diverse in its ethnic, cultural and financial backgrounds as well
as levels of college preparedness. The unique demographics and
needs of CUNY’s community college student population present
multiple barriers to students success. Most students come from
lower income households, they juggle work, school and family
obligations in one of the nation’s most expensive cities. Many
have not had science classes in high schools or are returning
to school after a hiatus. Understandably, these students are
highly unprepared for college-level learning experiences leading
to attrition rates of over 30% in our science classes. Therefore
incorporating UR experience in classroom is a vital strategy to
engage these students, retain and motivate them for rewarding
and meaningful educational experiences especially in STEM.

Queensborough CC institutionalized Undergraduate Research
(UR) as a High Impact Practice (HIP) in 2013–2014. UR as a HIP
is a learning-centered and student centered practice supported
by student learning outcomes, assessments, and professional
development. Since spring 2014, over 60 faculty members have
participated in UR professional development. Close to 100 UR
experiences have been offered reaching over 800 students –in
addition to the students who engage in the more traditional,
dedicated research experiences of the apprenticeship model
(QCC Fact book 2018–2019).

The undergraduate research experience in Microbiology
course started as a “Research in the Classroom (RIC)” grant
initiative that was awarded to M. Tawde by CUNY’s Office of
Research. We teach a one-semester Microbiology course (BI
311) that is offered to students seeking to pursue allied health
careers and programs. The students typically are rushing to
finish the course to get into Nursing, Physician’s Assistant or
other programs or may already be in their desired programs.
Hence undergraduate research is usually not on their radar and
they are not planning to participate in any research program
or internship. Most students in our courses have never had
any prior UR experience. M. Tawde also teaches one section
of Environmental Health class (BI 501) every spring semester.
The research experience was implemented in one section of
BI 501 and 4 sections of BI 311 lab courses thus involving
about 80 students.

Course Description of Microbiology
(BI 311)
A one semester, 4- credit course, Microbiology is intended for
Nursing and Allied Health students. The course involves a
systematic study of the bacteria, viruses, fungi and helminths
with an emphasis on those associated with infectious diseases.
Laboratory work includes microbiological techniques and
procedures for control.

Course Description of Environmental
Health (BI 501)
A one semester, 4- credit course. An introduction to our
environment and its influence on human health; emphasis
on scientific principles needed to understand environmental
requirements of life; role of air, water, food, energy; studies of
effect of human activity on environment and effect of modified
environment on human health.

As both classes have a common focus on human health, it
is imperative to study the effect environmental microbes may
have on human health. Antibiotic resistance is a grave concern
in the fields of medicine and healthcare (Allen et al., 2010;
Centers for Disease Control and Prevention, 2013; World Health
Organization, 2014). Biopharmaceutical agencies are trying to
keep up with the growing demand for novel drugs to defeat
the antibiotic-resistant pathogens. Hence, we decided to bring
this research into our classroom by integrating it into the
course curriculum.

Typically in a Microbiology laboratory, students start to learn
basic microbiology concepts and standard techniques such as
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aseptic technique, isolation of bacteria from mixed cultures,
staining techniques etc., and then continue to learn how to
identify bacteria using Gram staining and various metabolic tests.
The midterm practical is conducted over a period of 4–6 weeks
and involves identification of “unknown” bacteria. Students learn
all the standard “cookbook” microbiology techniques needed to
identify the “unknown” bacteria which are actually pure cultures
of known bacteria provided to them as unknowns. Thus the
students do not receive an authentic research experience.

The research project that we implemented in this course
was titled “Research in the Classroom: Antibiotic Resistance
in Environmental Microbes.” The goal of the project was
to provide an authentic research investigation experience to
students as part of their Microbiology laboratory curriculum
while they isolate and identify novel microorganisms from the
environment and study their resistance/susceptibility to most
commonly used antibiotics. Students are aware that antibiotic
resistance is a serious concern in the field of health care
today. So they are immediately interested and enthusiastic about
participating in the research project. The laboratory course syllabi
were modified to incorporate the non-traditional activities such
as DNA extraction, PCR and DNA analysis by Agarose Gel.
A similar CURE has been developed at a larger scale as the
PARE project (Genné-Bacon and Bascom-Slack, 2018) as we were
developing ours. It is a crowd-sourcing monitoring system that
engages students across the country to systematically test and
report the prevalence of tetracycline-resistant bacteria from soil
at diverse geographic sites. However, our model involved testing
antibiotic susceptibility against 12 different antibiotics; not just
tetracycline and targets a student population who would not have
a research experience otherwise. The majority of students in the
above classes usually focus on learning just the techniques but
not the concepts behind the techniques or their applications in
the real world. Since humans and microorganisms co-exist in
dynamic relationships in nature and these relationship critically
affects human health; it is crucial that the applications of the
microbial genomics are emphasized and understood.

As we implemented the research experience, we attempted to
ask more specific questions-

(a) What type of microbes exist at various environments
for example soil vs. water vs. surfaces of objects. Do
you find more number/types of bacteria in environments
with higher human activity as compared to natural
environments?

(b) Are the microbes from crowded areas more resistant to
antibiotics (or wider variety of antibiotics) compared to
those that are isolated from natural environments? Does the
environment have any effect on antibiotic susceptibility of
organisms that reside in it?

MATERIALS AND METHODS

Timeline to incorporate research lab activities during a 15-
week semester of a microbiology lab. Laboratory class of
Environmental Health class will have similar outline:

Traditional
Laboratory Outline

Laboratory Outline
with implemented
research experience

Week 1 Use and care of the
microscope; diversity of
microbial life; bacterial
shapes

Use and care of the
microscope; microbial
diversity;Introduction
of research project,
sample collection.

Week 2 Basic aseptic technique;
isolation of single
colonies; culturing
microbes from the
environment; selective
and differential media

Basic aseptic technique,
culturing
environmental samples
and isolation of single
colonies; selective and
differential media

Week 3 Introduction to smear
preparation; staining
techniques, Gram
staining and special
stains

Introduction to smear
preparation; staining
techniques Gram
staining and special
stains

Week 4 Acid-fast stain;
endospore stain;
Practice for Gram stain

DNA extraction of
unknown environment
isolates, set up PCR,
practice Gram stain

Week 5 Mid-term Lab
practical- part 1: Gram
stain of unknowns;
Inoculate for Metabolic
activities

Mid-term Lab practical:
Gram stain unknowns
and unknown
environmental isolates

Week 6 Analysis of metabolic
activities, Preparation
of dichotomous key for
Lab Practical I
unknowns

Analysis of metabolic
activities,
Running Agarose gels,
prepare samples for
sequencing

Week 7 Physical control of
microorganisms:
temperature, UV
radiation, moisture,
Inoculate for Practical
I: Part 2 (inoculate
metabolic tests)

Physical control of
microorganisms:
temperature, UV
radiation, moisture;
Practical I—Part 2
(inoculate metabolic
tests)

Week 8 Lab Practical I - Part 2:
Analysis of metabolic
tests for unknowns,
Chemical control of
microorganisms:
disinfectants and
antibiotics

Lab Practical I - Part 2:
Analysis of metabolic
tests for unknowns,
Chemical control of
microorganisms:
Test for antibiotics
resistance

Week 9 Quantification of
bacteria in food- milk
and chicken broth

Quantification of
bacteria in food-
milk/chicken broth,
Unknowns sequences
Analysis

Week 10 Lab reports for
unknown due

Lab reports for
unknown due
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Description of the Research Activity
The research component was implemented during the spring and
fall of 2017 and 2018 semesters. This authentic microbiology wet-
lab, hands-on research experience was carried out in groups of
4–5 students each. The students needed to meet twice during
the semester outside the class time, (typically during the club
hours) each for a block of 1–2 h. These meetings were typically
followed by the regular lab class. The first meeting is for
DNA extraction and setting up PCR while the second meeting
is held to analyze the sequencing data and identification of
bacterial species.

Students formulated a hypothesis as to which environmental
site may contain the most harmful or highest number of
bacteria. Based on their hypothesis, they selected sites for sample
collection and went around to swab a small area from the
sites such as cafeteria, gym, bathroom, bus-stops, nature trails
and botanical garden etc. Some samples came from students’
cell phones. Students were provided with sterile wet swabs to
collect the samples of choice. They were asked to bring in the
samples at the second class meeting and possibly collect the
sample right before the class. After students brought in the
soil/surface samples, they streaked them on to sterile Tryptic
Soy agar plates and incubated further for growth. At next
class meeting, single isolated bacterial colonies were picked
and grown in Tryptic Soy broth to confluent cultures. DNA
extraction was carried out by using the MoBio DNA PowerSoil
DNA isolation kit or Qiagen DNeasy PowerSoil kit and the
kit protocols. DNA extraction was followed by setting up a
50 µl polymerase chain reaction (PCR) to amplify the 16s
rRNA gene. Once amplified, small amount (10 µl) of amplicons
were analyzed by running an agarose gel in the class to ensure
amplification of the correct gene product. Remaining amplified
product was sent to external sequencing facility GENEWIZ,
Inc.,1 for sequencing. When the sequencing data was received,
it was analyzed using NCBI or DNA Learning Center (DNALC)
databases. Students determined the identity of the bacteria by
doing a BLAST (Basic Local Alignment Search Tool) search
from the National Center for Biotechnology Information (NCBI)
database. Alternatively, students used a user friendly version
of BLAST – the “DNA Subway” program which is hosted by
the DNA Learning Center of Cold Spring Harbor laboratory2

(Supplementary Material Part II).
After identifying bacterial species students streaked some

of the isolates on the Mueller-Hinton agar plates to form
uniform bacterial lawns and carried out Kirby Bauer disk
diffusion assay for testing antibiotic susceptibility of select
isolates. A BBL disk dispenser was used to dispense commercially
available disks impregnated with 12 antibiotics- penicillin,
vancomycin, polymyxin B, nitrofurantoin, tobramycin,
streptomycin, ciprofloxacin, oxacillin, piperacillin, gentamicin,
neomycin, and ampicillin.

All the laboratory procedures were carried out in a BSL 2
laboratory with two hand washing stations, an eye-wash station,
an emergency shower, fire blanket etc. Students performed

1https://www.genewiz.com/
2https://dnasubway.cyverse.org

bacterial culturing procedures using aseptic techniques with
Bunsen burners and mandatory lab coats. For all bacterial isolates
that showed antibiotic resistance, students were supervised
closely for all the following procedures performed.

The students submit a comprehensive lab activity report at the
end of the semester. The entire research project makes up 10% of
the course grade for the students. Other course sections involve a
variety of other course activities since 10% of the course grade is
at the discretion of the individual instructor.

Guidelines for Writing the 10% Project
Report

• What was the research project that you participated in?
{Antibiotic resistance (susceptibility) of environmental
microbes}

• Describe the procedures and methods
• Sample Collection- location (where did you pick your

sample from? Home/outside/kitchen/cafeteria/Gym etc.)
How did you collect sample? (By swabbing/picking soil?)

• Growing bacteria (You streaked the swab on an TSA agar
plate and incubated it for 24–48 h)

• Genomic DNA extraction by using a MoBio
PowerSoil/Qiagen DNeasy PowerSoil kit (describe
briefly)- 1–2 paragraphs

• Kirby-Baur assay for Antibiotic testing- which antibiotics
did you test for? Which antibiotics was your bacterium
found to be sensitive or resistant to?

• Analysis/viewing of genomic DNA or PCR amplified 16s
rRNA product on Agarose gel by gel Electrophoresis

• What are your thoughts about the research project?
(Interesting/Not Interesting/Hmm?)

Surveying Students’ Attitudes Toward
the CURE
Though we were not able to perform a formative assessment of
the impact of integrating research experience into the course,
students were surveyed for their attitudes toward and feedback
about their UR experience using following questions/reflection
pointers -

1. The Research project as UR experience helped me
understand the course material better.

2. I think I can apply the learned knowledge
to newer concepts.

3. After participating in the Research, I am able to
comprehend my course material better.

4. How much did the research experience help you to
integrate the course concepts in your learning process?

5. How much do you think the course materials were
integrated into the research project?

6. How well do you think the course materials were
integrated into the research project?

7. How did you like doing the research activities in hands-on
form/in laboratory?

8. How did you like doing the research activities online,
downloading information from other resources?
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9. Has your appreciation for science as it relates to everyday
life increased?

10. Would you like to participate in a science research project
in other classes at QCC?

RESULTS

Some of the bacterial species identified were not surprisingly
those commonly found on human skin such as Staphylococcus
epidermidis, Staphylococcus aureus and Staphylococcus
haemolyticus. Other bacteria that were isolated included
various strains of Bacillus subtilis, Bacillus cereus and Escherichia
coli. Some novel species such as Staphylococcus caprae, Bacillus
circulans were identified as well. Students were intrigued to

observe that majority of isolates showed high resistance to many
commonly used antibiotics such as penicillin, oxacillin and
ampicillin (Figure 1). However, bacteria isolated from crowded
places were not necessarily found to be more resistant to tested
antibiotics (data not shown).

Though most students had never had any research experience,
all the students in the class displayed mostly positive attitude
toward participating in all types of research experiences.
Most said they were able to comprehend the course material
better, and integrate course concepts in learning process as
the concepts were integrated well in the research project.
Many liked doing the research activities in hands-on format
in laboratory compared to research online or in the library.
Their appreciation for science as it relates to everyday
life has increased. Most reported that they would like to

FIGURE 1 | Comparing the susceptibility or resistance of environmental isolates against antibiotics most commonly tested in Microbiology laboratory.

FIGURE 2 | Qualitative student response survey about the research in classroom experience.
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FIGURE 3 | Student Reflections: Sentiment analysis.

participate in a science research project in other classes
at QCC (Figure 2).

Students performed all the laboratory procedures successfully
including sample collection, streaking on media plates, isolation
and culturing/growing bacteria from the environmental sample,
DNA extraction from bacterial isolates, setting up PCR,
performing Agarose gel electrophoresis and analyzing the 16s
RNA sequence data to identify bacteria isolated from their
environmental samples. They displayed increased engagement
while learning the procedures and techniques as well as relevance
of the research experience to real life situations as is evident
from the student response survey (Figure 2) and the student
reflections (Figure 3 and Supplementary Material Part II).

Thus the research experience aligned well with the following
course learning objectives.

1. Students will understand the general principles
of Microbiology with practical emphasis on
pathogenic microorganisms.

2. Students will develop the skills necessary to perform
various microbiological laboratory procedures.

3. To create an incentive for further investigations in the
field and to acquire sufficient background to understand
the technical terminology in current publications.

4. To correlate the principles of Microbiology with the
students’ own interest and future as a health practitioner.

DISCUSSION

By integrating a research component directly into an existing
Microbiology laboratory course, not just a select few, but
ALL students in the class had the opportunity to participate
in an inquiry-based real-world application of genomics in
Microbiology experience. Incorporating the UR as high impact
practice into a course that is required for allied-health career
pathway, many students were successfully introduced to biology
research concepts and practices, including DNA isolation,
amplifying DNA using Polymerase Chain Reactions, DNA
sequencing, and genomic/bioinformatics concepts. The vast
majority of the students would have never been introduced to

these practices had it not been incorporated into a required
course. The survey results demonstrate an overwhelmingly
positive response and experience for all of the students (Figure 3).
The students enjoyed performing the research, recognized
the applicability of it to their lives and future careers, and
stated that the research experience was valuable. The UR
experience helped students make a solid connection between
what they learn in class and how it can be applied to the
environment around them in real life. It made the students
aware of the wide diversity of microbial species in their
surroundings as well as introduced them to the technology
in the fields of Microbiology and Biotechnology. The students
who participated in the project reported significant gain in
their knowledge and confidence. They expressed interest in
pursuing STEM careers.

Nevertheless, we did face some challenges. There is always
time constraint from the instructor point of view as we struggle
to “cover” the course content. There is time constraint for
students as they are juggling too many classes and work/family
responsibilities. These hurdles are prominent especially in
community college students. It is extremely challenging to
motivate all of the students in a class.

CONCLUSION

Here we describe a model CURE that was successfully
implemented in a biology lab course at an institution with
minimal research infrastructure and limited funding resources.
Though it is extremely challenging to incorporate a CURE in a
community college science class, it has been a highly rewarding
experience for students as we look at the student reflections. It has
been a gratifying experience for the faculty as well. We think that
this model of CURE can be successfully implemented in other
Biology lab courses at other small and large schools alike without
too much efforts.
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In this article, we present our three-class course sequence to educate students about
microbiome analysis and metagenomics through experiential learning by taking them
from inquiry to analysis of the microbiome: Molecular Ecology Lab, Bioinformatics, and
Computational Microbiome Analysis. Students developed hypotheses, designed lab
experiments, sequenced the DNA from microbiomes, learned basic python/R scripting,
became proficient in at least one microbiome analysis software, and were able to
analyze data generated from the microbiome experiments. While over 150 students
(graduate and undergraduate) were impacted by the development of the series of
courses, our assessment was only on undergraduate learning, where 45 students
enrolled in at least one of the three courses and 4 students took all three. Students
gained skills in bioinformatics through the courses, and several positive comments
were received through surveys and private correspondence. Through a summative
assessment, general trends show that students became more proficient in comparative
genomic techniques and had positive attitudes toward their abilities to bridge biology
and bioinformatics. While most students took individual or 2 of the courses, we show
that pre- and post-surveys of these individual classes still showed progress toward
learning objectives. It is expected that students trained will enter the workforce with
skills needed to innovate in the biotechnology, health, and environmental industries.
Students are trained to maximize impact and tackle real world problems in biology
and medicine with their learned knowledge of data science and machine learning.
The course materials for the new microbiome analysis course are available on Github:
https://github.com/EESI/Comp_Metagenomics_resources.

Keywords: bioinformatics, microbiome, metagenomics, microbial ecology, multidisciplinary education

INTRODUCTION

In recent years, there has been a call for greater data literacy in life science education (Gibson and
Mourad, 2018). Bioinformatics core competencies have been identified by various organizations.
Competencies include a combination of biology, understanding of technologies, statistics, and
computational methods in addition to teamwork, communication, and the scientific discovery
process. Also, researchers have found that while learning the breadth of biology, computation,
and math, it is important to start early and maintain depth and focus on a multidisciplinary topic
(Anton Feenstra et al., 2018). Thus, it is concluded a series of courses, if not whole training program,
is needed to effectively train students in bioinformatics. Also, an iterative teaching approach allows
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students to incorporate feedback, especially from
multiple sources (e.g., biology and computation)
(Marbach-Ad and Marr, 2018).

Metagenomics has been introduced in the undergraduate and
graduate curriculums, but usually as a short course (Falana et al.,
2015; Bolyen et al., 2019), research module in a larger course
(Muth and McEntee, 2014; Gibbens et al., 2015; Lentz et al.,
2017), or a single course (Edwards et al., 2013). Also, there
is an issue of students from more biological disciplines and
from more computational/engineering disciplines both gaining
valuable knowledge from these courses.

To address some of these issues, we introduce three
interdisciplinary courses to educate students in the realms
of genomics, molecular evolution, and the bioinformatics
analyses of genes and genomes. Students participating in
these courses come from biology, biomedical engineering,
electrical engineering, and computer science, providing a diverse
multidisciplinary environment with great potential for peer
learning. While developing hypotheses, students gain hands-on
skills in DNA sample preparation and sequence analysis in the
Molecular Ecology Laboratory and Bioinformatics courses. They
analyze amplicon and metagenomic datasets that they helped to
generate, using these to test hypotheses about microbial ecology,
symbiosis, and the roles of microbes in nutrition and disease.
Through the thematic activities, we actively engage students in
the learning process, helping them to develop as critical-thinkers
who understand the scientific method. The course sequence is
complementary in its approaches, with the Molecular Ecology
Lab being hypothesis generating and learning lab techniques,
while the Bioinformatics course builds skills through a more
traditional format, and the sequence finally culminates in the
Computational Microbiome Analysis course where students
share and learn about cutting-edge tools. Specifically, in the
microbiome course, students conduct tutorials to learn cutting-
edge tools by (1) independently following or composing tutorials,
demonstrating what they learned, and sharing with the tutorial
and results others, (2) learn from peers’ tutorials, and (3) learn
the steps to analyze their project data. We attempt to reach out
to heterogeneous backgrounds by having students take a hands-
on lab course (rather than bio theory), by teaching bioinformatic
algorithms through demonstration, by teaching coding through
example and debugging, and through group work in two of the
courses. We are the first to broaden training in microbiome data
analysis so that students gain deeper understanding from learning
bioinformatics basics to more advanced analysis via inquiry.
Quantitative assessments of knowledge gain of 45 undergraduate
students showed that students generally improved knowledge in
several bioinformatics areas.

THE STRUCTURE OF THE 3-COURSE
SEQUENCE

Drexel university has 3 quarters (approximately 10 weeks each)
per year. The course sequence is as follows: Molecular Ecology
Lab and Bioinformatics are concurrently offered in the first
quarter, followed by Computational Microbiome Analysis in a

second quarter. Due to some life events, we offered the course
sequence twice—once in the 2015–2016 and again in the 2016–
2017 school years. In 2015–2016, the concurrent Molecular
Ecology lab and Bioinformatics was offered in the Fall with the
Computational Microbiome Analysis course in the Spring, while
the second time, it was offered in the Fall/Winter. The specific
learning objectives of each course are (1) Molecular Ecology:
Proficiency in molecular lab techniques and knowledge of
technologies, mastery of knowledge of computational analyses of
ecology, and understand an application, methods, and synthesize
hypotheses; (2) Bioinformatics: Be able to modify python
code, introduced to bash scripting, learn algorithms such as
dynamic programming, hidden Markov models, phylogenetics,
and learn about their implementations (e.g., BLAST); and
(3) Computational Microbiome Analysis: working knowledge
of bioinformatics programming, proficiency in bioinformatics
pipeline development, and learning how and when to use
comparative genomics tools.

With the three courses, we were able to address 11 out
of 16 core competencies identified by the Intl. Consortium
for Systems Biology (ICSB) curriculum task force (Mulder
et al., 2018) and 11 out of the 15 core competencies
identified by Network for Integrating Bioinformatics into
Life Sciences Education (NIBLSE) (Wilson Sayres et al.,
2018). This course series teaches ICSB core competences—
B: Depth in at least one area of biology, C: Biological data
generation technologies, D: Details of the scientific discovery
process and the role of bioinformatics in it, E: (at a high-
level due to undergraduate curriculum): statistical research
methods, F: bioinformatics tools and methods, G: ability of a
computer-based system to meet scientific problem, J: Command
line skills and scripting, K: Web-based Bioinformatics, L:
Impacts of bioinformatics/genomics, N: (partial) communication
of results to peers, and O: Effective Teamwork. We also
address NIBLSE’s core competencies: S1: Role of Bioinformatics
in hypothesis-drive biology, S2: Bioinformatic computational
concepts, S3: Statistics, S4: Accessing genomics, S5: Using
genomic tools, S11 (partial through functional prediction
module): Using pathway prediction tools using expression tools,
S12: Metagenomics, S13: Scripting, S14: Using software packages,
and S15: operate different computing environments. A summary
of the core competencies targeted in each course are shown
in Figure 1.

Molecular Ecology Lab
The Molecular Ecology Lab course (first quarter class in the
sequence) was designed to train students in basic laboratory
techniques and technologies from the field of molecular biology,
applying these to enable research on microbial symbionts of
animals. The course was also designed to emphasize the design
of hypotheses and experiments using amplicon and meta-
genomic/transcriptomic sequencing to ask questions about host-
microbe interactions that are challenging to study in other
ways. The timeline for the course project instructions is shown
in Figure 2.

In this course, students were graded on: (1) two quizzes,
which emphasized their understanding of methods/technologies
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FIGURE 1 | Each course in the sequence and its mapping to ICSB and
NIBLSE competencies.

and situations in which to apply them; (2) course participation,
which included a requirement that the students demonstrate
competency in DNA extraction, PCR amplification, PCR primer
design, and gel electrophoresis; (3) an 8 page paper in which they
analyzed and reported data that they generated on a bacterial
endosymbiont of ants, showing competency in DNA sequence
alignments, BLAST searches, and phylogenetics; and (4) their 4–6
page microbiome analysis proposal. Skills emphasized in the class
were, thus, not only related to lab techniques but also thinking
like a scientist and analyzing and interpreting data.

Molecular Ecology Project Proposals
For the microbiome analysis proposal students submitted one
outline and one rough draft, using instructor feedback to improve
their ideas, hypotheses, justification, and methodologies. We
focused on five research programs that were put forth as areas
where the students could develop questions that they could
then test through a follow-up course: (1) reciprocal impacts
between non-alcoholic fatty liver disease and gut bacteria; (2)
identifying function of ancient gut symbionts of predatory army
ants; (3) studies of ant gut microbiome gene expression in
response to dietary variation; (4) microbial source tracking in
the Delaware River watershed; and (5) studies on bacteria co-
colonizing bioreactors with algae.

Scientists from labs supporting these projects delivered 20–
30 min presentations at the start of the course, helping to establish
the “menu.” They put forth knowns and unknowns for their
systems, helping to make clear the motivations for study. For
each presentation one or more articles from the primary research
literature were assigned for background reading, helping students
to develop further understanding of these subdisciplines.

Students were given some guidance in narrowing down the
list of potential projects. As an example, see the below excerpt
from the microbiome analysis proposal guidelines provided to
the students:

“The best hypotheses will combine a mixture of novelty and
realism, with clear links to mechanism as a guiding force or focus.
For instance:

FIGURE 2 | Timeline of the molecular ecology lab projects.
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1. For the Cephalotes transcriptome project (project 3), one
might hypothesize particular genes and pathways that
should show transcriptional responses to the various diets
if bacteria do indeed use substances contained within. One
might also hypothesize which organisms to be involved.

2. For the army ant project (project 2), one might hypothesize
functions expected to be common among gut symbionts
of carnivorous animals. One might also propose functions
that should differ between closely related strains of bacteria
hosted by sibling ants belonging to the same colonies”.

While biologically-inquisitive students went through several
rounds of hypothesis development with the instructor, those
who were less-developed to choose hypotheses were given a
specific problem with limited choices on hypotheses. Groups
were encouraged to be heterogeneous, meaning that groups that
contained at least bioscience and one engineering/comp student
were encouraged for peer learning. All groups were required to
submit a 4–6 page proposal draft that utilized metagenomics,
metatranscriptomics, or 16S rRNA amplicon sequencing to
study one of the potential projects presented in class. Students
learned about the subject area through independent study and
interaction with the instructors to learn more about these systems
and techniques.

Examples of Specific Aims and hypotheses from
undergraduate projects included:

Project 1

“Hypothesis 1: Non-alcoholic fatty liver disease development will
correlate with changes associated with increased short chain fatty
acid production.”

“Hypothesis 2: Non-alcoholic steatohepatitis progression may
correlate with endogenous alcohol production.”

Projects 2 and 3 – One student combined two of the
projects on the menus.

“I predict that different amounts of Enzyme Commission
numbers (E.C.s) associated with in (sic) digestion will be present
in ants with different feeding types, as was found in Muegge et al.
(2011). . .. enzymes used in amino acid synthesis will be more
common in Cephalotes than army ants because of the nitrogen
poor diets in Cephalotes” (Student is using precedent from a prior
publication and knowledge of ant biology to predict differences in
the devotion of gut microbes to particular digestive processes.)

Project 3

“The main aim for this project is to find whether particular genes
are highly expressed based on the diet. In this project, we’ll analyze
metabolic pathways that should show transcriptional responses to
various diets.”

Project 4

“The primary objective of the study is to identify microbes present
in the watershed that correspond to specific sources of fecal
contamination for MST. To achieve this, fecal samples have been
gathered from a variety of microbial hosts at different times of

the year, and water samples have been collected upstream and
downstream of the potential contamination sites.”

Bioinformatics
While students engaged in the Molecular Ecology lab, students
took Bioinformatics, which was co-taught by Dr. Rosen
(Engineering) and Dr. Russell (Biology). Most of this course
was developed prior to the grant, except for the first 2-week
coding bootcamp. Previously, the course had lacked some of the
more practical data wrangling and retrieval necessary to start
in bioinformatics. So, for the grant, we introduced an intensive
introduction to bash and Biopython (Cock et al., 2009). The first
2 weeks were a review of molecular evolution, and a “coding
bootcamp” that was an introduction to Biopython and the bash
environment/job queuing system on Proteus, Drexel’s campus
computing cluster (over 2000 CPU-cores offered to the campus
community in 2014) (URCF, 2019). One of the programming
assignments was to debug Biopython code to NCBI retrieve
sequences, where intentional errors were introduced into the
code that students had to correct. This exercise was specifically
designed for the course and reinforced the idea that most
bioinformatics programming is not coded from scratch, but that
“related code” can often be found online (e.g., on a forum)
and that it must be manipulated for specific solution to solve a
specific problem. Subsequently to the coding bootcamp format,
the biological goals and algorithmic foundations of dynamic
programming/BLAST, hidden Markov models, phylogenetics,
and sequence logos to represent DNA variation, were taught.
Our lectures were structured so that the biological application
and goals were laid out, followed by the computational and
mathematical underpinnings of the algorithms. The course
contains 3 homeworks, one midterm, and one final.

Computational Microbiome Analysis
Computational Microbiome Analysis (also listed as “Statistical
Analysis of Genomics” to enroll a wider audience) is the flagship
course developed for the project. The course generally teaches
fundamentals in the first 3–4 weeks; first, there is a review of
shell scripting, Biopython, and running code in a cluster queuing
environment (overlap with Bioinformatics for students that
repeat). Then, an introduction to the microbiome (including
the significance of the 16S rRNA gene), microbial ecology,
and metagenomics is introduced. Large-scale databases and
meta-analysis programs for both amplicon sequencing and
metagenomics datasets [like QIIME (Bolyen et al., 2019) and
MEGAN (Bağcı et al., 2019)] are covered. These fundamentals
are expected to get students comfortable with automating code
and using third party software, with both being necessary for
the individualized course projects. Students also sign up for
one or two tutorials, in which they must learn a particular
package/method in-depth and present a summary of how the
method works and give an example of how to run the software
and the output that one can expect. While undergraduates
present on 1 tutorial and graduate students present on 2 tutorials
in groups of 2–3, most of the quarter (6–7 weeks) is consumed by
the 10–12 tutorials from groupings of all the students. Usually,
the instructor gives a 30 min lecture to give background on the

Frontiers in Microbiology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 52805181

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-528051 October 23, 2020 Time: 19:2 # 5

Rosen and Hammrich Microbiome Analysis: Design to Computation

analysis theme for the week, such as “Metagenome assembly,”
which would explain the need and challenges of the area. Then,
the rest of the week is 2 tutorials (usually 30 min in length
on average) to talk about the algorithms and show how the
various methods work, with added time for discussions. For our
example theme week, this would include a review of IDBA-UD
and Metaspades (depending on the year). The students work
on instructor-selected datasets to demonstrate the tools in
their tutorials and compare metrics, such as N50/min and
max contig lengths for our example theme week. The students
use online materials about the associated tools to develop the
10–15 min algorithm discussion followed by a 15–20 min
tutorial demonstration. While a few groups do take the class
through a real-time tutorial, usually 15–20 min is not enough,
and the students, who are teaching, usually point the students,
who are learning, to a Github repository where they can view
and run the code themselves. This course focus on tutorials
of important microbiome analysis tools allows the course to
update itself and keep up with the quickly-moving field of
microbial community analysis. Tutorials have included High-
throughput Phylogenetics [using alignment and tree methods
on CIPRES (Miller et al., 2012), learning microbial ecology
comparison techniques (like diversity metrics, distance measures
between samples like Unifrac (Lozupone and Knight, 2005)
etc., ordination, etc.], assembly and binning of genomes from
metagenomics, taxonomic identification from metagenomics,
functional annotation of metagenomes, functional prediction
of amplicon data, metatranscriptomic analysis (differential
abundance comparisons), and even basic statistics (like
ANOVA/MANOVA/correction for multiple comparisons) and
analysis like gene set enrichment analysis. The tools that are
reviewed can change from course iteration to course iteration.
For example, tutorials on taxonomic classification methods
went from Metaphlan2 (Segata et al., 2012) in the first year to
Kraken2 (Wood et al., 2019) and Kaiju (Menzel et al., 2016) in
the latest iteration.

The course projects are the most important aspect of this
course. Students who take the Molecular Ecology lab will analyze
a dataset that they set out to investigate to verify a hypothesis.
Students, who did not take the Molecular Ecology lab, can choose
from a menu of datasets and project ideas, some of which may be
investigating algorithms and comparing methods (which appeal
to the engineering and computer science students in the course.)
Students received detailed guidance from the PIs and teaching
assistants (TAs). Also, we made a concerted effort to pair graduate
students with undergraduates, so that each team had a balance of
levels. Projects titles include (results and project findings can be
found on the course Github page):

1. “Metatranscriptomic Analysis of Laboratory-reared
Cephalotes varians RNA Dataset and Comparison across
Four Dietary Treatments.

2. “Metagenomic analysis of and comparison between
the photosynthetic microbial communities in two
photobioreactors”.

3. “A Metagenomic Analysis of Healthy Mice vs. Fatty Liver
Disease Induced Mice on Both Control and High Fat Diets”.

TABLE 1 | Student self-reported knowledge and skills (n = 45).

Level of skill No skill Somewhat skilled Very skilled

Genetics 31% 49% 20%

Ecology 51% 38% 11%

Bioinformatics 51% 42% 7%

Metagenomics 80% 13% 7%

Hypothesis development 31% 47% 22%

Experimental design 16% 51% 33%

Programming 18% 53% 29%

4. “Finding Patterns in Time-course Metagenomic Data”.
5. “Metagenomic Analysis of Army Ant Guts”.
6. “Building Ensembles of Taxonomic Classifiers”.

Each week, students had to compose quiz questions (with
corresponding answers), which we found acted as a formative
assessment, to understand what students were absorbing from
the lectures and tutorials since this forced students reflect on the
material in weekly intervals. Undergraduate students learn one
tool in-depth by teaching a tutorial, and finally, most of the skills
are learned from a data analysis project. In order to keep this
projects on-track, we have learned that students need to submit
a project declaration, proposal, progress report, and final report
throughout the short 10-week quarter.

PROJECT OUTCOMES

A total of ∼150 students enrolled in all three courses for the
two offerings. However, we performed formative and summative
instruments (a demographic questionnaire, de-identified but
non-blind comparison of pre- and post-surveys; and bi-weekly
administered surveys) only for the undergraduates. The surveys
were administered under instruments approved under Drexel
IRB #1211001675, and we obtained student consent at the
beginning of each course. Forty-five undergraduates enrolled
in at least one of the three courses, with 4 taking all three
(there were substantially more graduate students that took all 3
courses). We surveyed demographics of the 45 undergraduates
that took at least one of the courses, with 62% of them identified
as male and 6% identifying with an ethnic group that was not
Caucasian or Asian.

From a pre-course survey, students were asked to rate their
abilities/skills of different subjects. In Table 1, Most students
rated themselves with no skills in metagenomics, bioinformatics,
genetics, and hypothesis development. This has identified that
focusing the course on such skills is much needed.

Reflections From the Molecular Ecology
Lab
From the Molecular Ecology Lab course, we generated four
new next-generation sequencing datasets. These were presented
to students in the Computational Microbiome Analysis follow-
up course, a class whose roster included several students who
participated in the lab.
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Beyond serving as a prelude to the Computational
Microbiome Analysis course, and an introduction to how
the ‘omics revolution has revolutionized microbiology, the
microbiome analysis proposal served to allow students to
“demonstrate a capacity to synthesize and integrate results
into the broader context of the field,” an objective from the
course syllabus (all syllabi can be seen in the Supplementary
Material). Through in class discussions, rough draft feedback, it
was clear that students were able to do this to some extent. While
some strongly mimicked documents disseminated from the
scientists leading these projects, others demonstrated a strong
vocabulary and independent thinking in areas they had not
previously studied.

Through assessments of student quizzes and papers, it was
clear that all developed a deeper understanding of microbial
ecology and the applications of DNA/RNA sequencing to
study microbes in their natural habitats. Several showed clear
proficiency in developing well-justified hypotheses and aims. At
minimum, all were able to develop a coherent and reasonable set
of research activities.

Challenges included the fact that students often deviated
from directives to limit their proposed work to suit the
available/pending datasets. This meant that for those moving on
to the subsequent Computational Microbiome Analysis course,
several could not directly test their hypotheses.

Another challenge was the very steep learning curve required
for students to develop a good understanding of bacterial
metabolism. This was key to formulating strong hypotheses for
several of the projects and more time devoted to this area during
the course would have been immensely helpful.

Reflections From Bioinformatics
The Bioinformatics class was the most standard class of the
three, with homeworks and tests. The biology students found the
coding challenging but rewarding, with the statement “. . .coding
activities most difficult to understand but most rewarding” and
“. . .use of NCBI was great.” Others wanted to see more coding
and did not want the theory behind the algorithms – “I expected to
learn more practical skills that I can use such as a script to sequence
alignments but this course taught a lot about background theory of
these algorithms.”

Many students were satisfied with the course – “The fusion
of disciplines is readily apparent”, “This course is more hybrid
than all other engineering science courses I‘m taken. Requiring
understanding of two fields to apply them in bioinformatics”.
There was a trend that students with backgrounds in biology
found programming part challenging and the students with
programming background found biology challenging.

Reflections From Computational
Microbiome Analysis
In the computational microbiome analysis course, students
learned about state-of-the-art methods and tools used for
microbiome and metagenomic analyses through hands-on
tutorials and projects. Because each tool could possibly elicit a
few weeks to itself alone, it is perceived that too much is covered

in the class. We required that each student group spend half of
a 30 min slot on describing how the method/tool works and
half the time showing how to operate the tool and interpret its
results. We did notice that computational students seemed to
spend more time on the methods while biological students spent
more time on results interpretation, which is to be expected.
The hope is that the tutorial will give a basic introduction to
the students, so that they can be aware of its existence in the
vast toolbox of microbiome analysis to reference and learn more
in-depth when needed.

The tutorials, each learned in-depth by a few students, were
reinforced to the rest of the class through reflection – students
were required to hand in 3 mock quiz questions and answers,
some of which would be selected (or reshaped into more cohesive
questions) for a quiz given the following week. The weekly
quizzes were a good mechanism, as it induced a “studying for the
quiz” reinforcement of the material. In our second iteration of
the three-course sequence, we limited quiz content to conceptual
understanding of the tool’s purpose and interpretation of their
function. This way, students could focus their studying and
understand the fundamental concepts of each week’s theme.

While students are excited by no tests or finals, they soon
realize the curse of a project-based course, as it is 50% of
their grade. As with all projects, students struggle to maintain
a schedule, so we have found that 10-week project-based classes
need multiple hard deadlines throughout the course to keep
students on track. Having four deadlines is perfect. The “Project
declaration” (due in week 2) is where the students must decide
which topic they are interested in and demonstrate that they can
gather the data. Demonstrating that students can import data
structures and objects is pivotal, as we have found that many
groups delay actually working with the data. Then the “Project
proposal” (due in the week 5) must (1) describe the problem
they are interested in (they would be able to take this hypothesis
development directly from the Molecular Ecology Lab if enrolled
in this class prior or if not, detail their hypothesis or design idea)
and (2) propose the analysis steps and timeline of how they will
test their hypothesis or build a tool. Then, the “Progress Report”
(week 7) gives a deadline that students must report on some
analysis steps, any issues encountered, and gives them the final
chance to modify their proposed analysis design. Around week
10, students must give an oral presentation on their final results,
and the following week, a written report is due. These spaced
deadlines keep students thinking and working on the project in
a timely manner.

Many undergraduates find that the freedom from tests and
finals is more challenging than they expect, because they must
now “get things to work” and peruse literature to understand
concepts and tools. Varying quality of the tutorials and projects
result. However, instead of teaching and testing on methods that
are in constant flux, the focus is software pipeline design to test
hypotheses or make tools, which builds critical thinking. Some
students realize that this course helps build skills needed in the
workforce. A spontaneous email that was received approximately
6 months after the Computational Microbiome Analysis course
by a graduate student, who went on to work in the pharmaceutical
industry, wrote:
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“Dr. Rosen,
I would like to thank you in the strongest possible terms for
your course in the Spring term of ’15: ECES 690.
Without a doubt it is the single most applicable course I have
taken, not only at Drexel, but in my entire academic career,
to my current endeavors.
At the time I expected it to be useful, but now I am discovering
that the lessons learned there are ∗completely indispensable∗

to my occupation.
I encourage you to keep up the amazing work with that class,
and more like it, so that a new class of students can benefit
from such instruction as I have had”.

Assessment of Learning Outcomes
We can show that bioinformatic competencies generally
improved upon completion of any of courses in the three-
course sequence. Pre- and Post- surveys of the Bioinformatics
and Computational Microbiome Analysis classes included 20
content questions; the full list of questions can be found in
the Supplementary Material. Quantitative data was collected
by using a pre- and post-survey that was administered at the
beginning and the end of the course and were coded so only
the evaluator knew the identities. The questionnaire consisted of
20 open-ended content questions (seen in questions.docx in the
Supplementary Material) on the microbiome, metagenomics
and molecular ecology. The student responses in both the pre-
and post- surveys were graded independently by two subject
matter experts on a scale 1–5, with 1 meaning that the student
demonstrated no knowledge and 5 meaning that the student
demonstrated excellent mastery of the material. The pre- and
post- surveys were collected from the 45 undergraduate students
who agreed to participate in the study with 12 pre- and post-
matched surveys that were near-completely filled out (due to
student absences or incomplete surveys on either end since the
surveys were lengthy). There were 7 questions that received
more than 10 responses on the pre- and post- surveys and were
statistically significant (as determined by a 2-tailed T-test). Other
questions either received less than or equal to 10 responses or
they were not significant (meaning that there was no statistical
difference between the pre- or post-survey answers). The content
questions that were statistically significant are:

2. What is a Standard Flowgram File and what type of DNA
sequencer outputs it?

3. How would you convert a SFF file to a FASTA file?
4. What is the difference between PCA (Principal components

analysis) and PCoA (Principal coordinates analysis)?
5. What are the trade-offs of supervised learning algorithms

(trade-off of random forests vs. support vector machines vs.
bayes classifiers)?

9. Genome sizes for a given species or taxon vary, often
considerably. Describe why metatranscriptomic reads need
to be normalized, especially for downstream analysis.

14. Name at least two ways that you can annotate WGS (whole-
genome shot sequencing) reads with functional annotation?

15. Describe the difference between phylogenetic tree
reconstruction methods?

As seen in Figure 3, Question 5 (about machine learning
algorithms learned in Comp. Microbiome Analysis) has the
biggest increase in understanding. Questions 2, 3, and 15 were
learned in Bioinformatics, and Questions 4, 5, 9, 14, and 15
were learned in Computational Microbiome Analysis (note that
question 15 was taught in both classes). Students completed the
lab assignments, proposal report, computational assignments,
tutorial demonstrations, and project demonstrations that meet
the criteria in Figure 1. Students gained knowledge of wet lab and
programming techniques, although proficiency was lacking for
students from the opposite discipline, and this was a challenge.
However, most students gained an appreciation for algorithms
through hands-on calculations and learning how to use a tool
through tutorials. Finally, microbiome analysis skills through
group projects were facilitated through peer learning, and
students gained at least some skills/knowledge that they did not
have before. This demonstrates that knowledge of bioinformatics
and metagenomics analysis increased for some topics. We believe
that knowledge increased for other questions, but the sample size
was too small (due to content question changes and not as many
students answered those questions).

We have also included a qualitative report on student
perceptions, experiences, and understandings (seen in the
Evaluator_report.pdf in the Supplementary Material) that can
elucidate more detail on how the learning outcomes were realized
by the students.

DISCUSSION

We describe a 3-course sequence in microbiome analysis
training via a Molecular Ecology Lab, Bioinformatics, and
Computational Microbiome Analysis. A summative analysis
and student feedback demonstrate that the course sequence
and individual courses had some beneficial impact on student
bioinformatic competencies. In a world where data is becoming
ever abundant, students need to be equipped with the
knowledge to handle it. Our training sequence helps to
meet those training goals. Yet, there is still the challenge of

FIGURE 3 | Bar chart comparison of the knowledge scale for different
bioinformatic topics (that were statistically significant). In around 7 areas (many
related to microbiome analysis), there was improved knowledge. Other areas,
see Supplementary Material, were not noticeably improved due to removal
because of curricular changes, lack of enough responses, or no significance
between the pre- and post- surveys.
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educating students from heterogeneous backgrounds (biology
and computation/engineering), so that students can (1) come to
a level playing field or (2) speak each other’s languages to work
together and learn from each other. Future work may involve
iterative differentiated coursework, adding more peer learning to
the bioinformatics class, offering short courses (or bootcamps)
to facilitate interdisciplinary communication for peer learning
(computational students to get up to speed on biology and
biology students to improve their programming).

Training in an emerging multidisciplinary field, that has great
potential, importance, and need, has both its advantages and
challenges. We have found that students who have bioinformatic
skills and understand the domain science are urgently needed
in the workforce. We encourage faculty and administration
at universities to look past immediate barriers (such as
financial constraints and/or politics) and foster interdisciplinary
teaching and courses. When successful, we can train a new
generation of scientists and engineers who will push the
boundaries of discovery.
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Scientific advancement is hindered without proper genome annotation because
biologists lack a complete understanding of cellular protein functions. In bacterial cells,
hypothetical proteins (HPs) are open reading frames with unknown functions. HPs
result from either an outdated database or insufficient experimental evidence (i.e.,
indeterminate annotation). While automated annotation reviews help keep genome
annotation up to date, often manual reviews are needed to verify proper annotation.
Students can provide the manual review necessary to improve genome annotation.
This paper outlines an innovative classroom project that determines if HPs have
outdated or indeterminate annotation. The Hypothetical Protein Characterization
Project uses multiple well-documented, freely available, web-based, bioinformatics
resources that analyze an amino acid sequence to (1) detect sequence similarities
to other proteins, (2) identify domains, (3) predict tertiary structure including active
site characterization and potential binding ligands, and (4) determine cellular location.
Enough evidence can be generated from these analyses to support re-annotation of HPs
or prioritize HPs for experimental examinations such as structural determination via X-ray
crystallography. Additionally, this paper details several approaches for selecting HPs to
characterize using the Hypothetical Protein Characterization Project. These approaches
include student- and instructor-directed random selection, selection using differential
gene expression from mRNA expression data, and selection based on phylogenetic
relations. This paper also provides additional resources to support instructional use
of the Hypothetical Protein Characterization Project, such as example assignment
instructions with grading rubrics, links to training videos in YouTube, and several
step-by-step example projects to demonstrate and interpret the range of achievable
results that students might encounter. Educational use of the Hypothetical Protein
Characterization Project provides students with an opportunity to learn and apply
knowledge of bioinformatic programs to address scientific questions. The project is
highly customizable in that HP selection and analysis can be specifically formulated
based on the scope and purpose of each student’s investigations. Programs used
for HP analysis can be easily adapted to course learning objectives. The project can
be used in both online and in-seat instruction for a wide variety of undergraduate
and graduate classes as well as undergraduate capstone, honor’s, and experiential
learning projects.
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INTRODUCTION

Nucleic acid sequencing has become so inexpensive that
researchers are generating a plethora of fully sequenced
genomes annually through massive initiatives such as the Earth
BioGenome Project which aims to sequence the genomes of
1.5 million eukaryotic species by 2050 (Yandell and Ence, 2012;
Lewin et al., 2018). Once a genome sequence is determined,
it must be annotated to identify the locations and functions
of genes (Koonin and Galperin, 2003). In bacteria, the first
step in genome annotation is identifying open reading frames
(ORFs). An ORF is a continuous stretch of DNA that begins
with a start codon and ends at a stop codon and has the
proper number of nucleotides to potentially encode a functional
protein (Brown, 2002). Due to the lack of introns and exons in
bacterial genes, an ORF is usually synonymous with a gene in
bacteriology. The amino acid (i.e., primary protein) sequence
for each ORF is used to search several databases to predict
gene function. These databases include (1) sequence databases
to identify sequence similarities with established sequences, (2)
domain databases to detect conserved domains, (3) genome-
oriented databases for identification of orthologous relationships
for refined functional prediction, and/or (4) metabolic databases
for metabolic pathway reconstruction (Koonin and Galperin,
2003). From these data, a public knowledgebase record for each
ORF is generated which typically includes nucleic acid and amino
acid sequences, gene and protein sizes, any identified domains,
and a predicted function. The record is easily retrievable via
a unique identifier (i.e., locus tag) which is consistently used
across knowledgebases (Brown et al., 2015; Tatusova et al., 2016;
Coordinators, 2018). These public records are used for a wide
variety of gene analyses, such as pathway enrichment, so having
proper genome annotation is important to draw accurate and
complete scientific conclusions (Goad and Harris, 2018; Smits,
2019).

Unfortunately, many genomes have a substantial number
(up to 70%) of hypothetical proteins (HPs), which are ORFs
with unknown functions (Sivashankari and Shanmughavel, 2006;
Mohan and Venugopal, 2012; Bharat Siva Varma et al., 2015;
Ijaq et al., 2015; Islam et al., 2015; School et al., 2016). Reports
estimated that around 33% of National Center for Biotechnology
Information (NCBI) knowledgebase sequences in 2006 were
HPs (Kolker et al., 2004; Sivashankari and Shanmughavel,
2006; Omeershffudin and Kumar, 2019). While the exact
number of HPs in today’s NCBI is unknown, recent papers on
Mycobacterium tuberculosis and Exiguobacterium antarcticum
strain B7 genomes report around 27% HPs (da Costa et al.,
2018; Yang et al., 2019) with 16% HPs in Shigella flexneri (Gazi
et al., 2018). Assuming 20% of the current 218,642,238 GenBank
sequences are HPs, over 43 million proteins need proper
annotation, and this number continues to grow exponentially as
sequences continue to be deposited. A hypothetical protein (HP)
can be the result of either outdated or indeterminate annotation.
Outdated HPs result from an out-of-date knowledgebase. Older
genomes are more likely to have outdated HPs since experimental
work to determine function of HPs is ongoing and annotation
for older genomes was completed prior to the characterization

of a similar sequence with known function. Automated and
manual curation of public knowledgebases is needed to improve
genome annotation and identify sequences with out-of-date
annotation. For example, function was successfully attributed to
approximately 17% of HPs in E. antarcticum strain B7 using
computational methods (da Costa et al., 2018). If computational
approaches can re-annotate just 10% of current HPs, then
annotation will be improved for over 4 million proteins, which
would substantially improve public knowledgebases overall.
Alternatively, indeterminate annotation is the result of true
HPs whose amino acid sequence has low similarity to proteins
with known function. Experimental work is needed to properly
annotate true HPs and improve genome annotation, but once
completed manual inspection is needed to further discover,
analyze, and correct erroneous annotation.

Several previously reported studies have used computational
approaches to assign functional annotation to HPs in a wide
range of bacterial and viral species, including but not limited
to Staphylococcus aureus (Mohan and Venugopal, 2012; School
et al., 2016), M. tuberculosis (Raj et al., 2017; Yang et al.,
2019), Vibrio cholerae (Islam et al., 2015), Klebsiella pneumoniae
(Pranavathiyani et al., 2020), Mycoplasma pneumoniae (Shahbaaz
et al., 2015), Orientia tsutsugamushi (Imam et al., 2019),
Corynebacterium pseudotuberculosis (Araujo et al., 2020), human
adenovirus (Dorden and Mahadevan, 2015; Naveed et al., 2017),
and vaccinia virus (Mahmood et al., 2016). These studies utilize
some combination of the various computational tools and
databases available to analyze the physiochemical, functional,
and structural properties of an HP (Table 1) since results
generated from a single server cannot provide a complete
functional determination currently (Dorden and Mahadevan,
2015). While these computational resources are continually
changing, due to their wide application in research it would be
beneficial for undergraduate microbiology students to be familiar
using some of the more enduring and commonly referenced
resources. Therefore, this paper introduces a Hypothetical
Protein Characterization Project based off commonly referenced
resources in previously reported in silico HP characterization
studies that students use while learning interdisciplinary concepts
in bioinformatics, microbiology, biochemistry, and genetics
(Figure 1). This educational, inquiry-based bioinformatics
project familiarizes students with multiple free web-accessible
programs that identify and predict HP characteristics, such
as sequence similarities to other proteins, protein domains,
tertiary (i.e., 3D) protein structure, ligand binding partners, and
cellular location. Critical thinking skills applied by the student to
results obtained from the Hypothetical Protein Characterization
Project are used to determine whether an HP has outdated
or indeterminate annotation. This determination can be useful
for improving public knowledgebase annotation and prioritizing
experimental examination of true HPs.

HYPOTHETICAL PROTEIN SELECTION

The first step in the Hypothetical Protein Characterization
Project is the selection of HPs to be characterized. This section
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TABLE 1 | Example studies considered in the development of the Hypothetical Protein Characterization Project.

Species Citation No. HPs Resources Used

Staphylococcus aureus Mohan and Venugopal, 2012 10 CDD-BLAST, Pfam, PS2, STRING, QFinder, ExPASy ProtParam, SOSUI, DISULFIND

School et al., 2016 35 PSI-BLAST, ExPASy ProtParam, CDD-BLAST, Pfam, PS2, 3DLigandSite, STITCH,
STRING, PSORTb, SOSUI, DISULFIND

Mycoplasma pneumoniae Shahbaaz et al., 2015 204 (41%) BLAST, FASTA, HMMER, SBASE, CATH, SUPERFAMILY, InterPro, SYSTERS, CDART,
SMART, GPCRpred, Discovery Studio, STITCH, STRING, iPfam, ExPASy ProtParam,
PSORTb, PSLpred, LOCTree3, TMHMM, HMMTOP, SignalP 4.1, SecretomeP,
VirulentPred, DBETH server

Mycobacterium tuberculosis Raj et al., 2017 1055 (55%) BLASTP, ExPASy ProtParam, PSORTb, CELLO, TMHMM, SignalP 4.1, HHPred,
HMMSCAN, Pfam, InterPro, SUPERFAMILY, VirulentPred, VICMPred

Klebsiella pneumoniae Pranavathiyani et al., 2020 540 InterPro, Pfam, BLASTP, CELLO2GO, GO FEAT, STRING, ExPASy ProtParam,
VICMpred, MP3, I-TASSER

Corynebacterium
pseudotuberculosis

Araujo et al., 2020 172 (47%) GO FEAT, Pfam, CATH, SUPERFAMILY, VICMPred, CDART, CDD-BLAST, ExPASy
ProtParam, PSORTb, TopHat, Gipsy, VirlentPred, STRING, PSIPRED, Modeler

Vibrio cholerae Islam et al., 2015 6 CDD-BLAST, Pfam, PS2, STRING, QFinder, ExPASy ProtParam, PSORTb, DISULFIND

Orientia tsutsugamushi Imam et al., 2019 344 BLASTP, ExPASy ProtParam, PSLpred, CELLO, ScanProsite, SMART, Motif Scan,
PFP-FunDSeqE, VirulentPred, PFP, Argot2, PSIPred, Modeler

Vaccinia virus Mahmood et al., 2016 1 (100%) BLAST, GOR IV server, I-TASSER, ExPASy ProtParam PSI-BLAST and Clustal Omega
used to select model template for I-TASSER

Human adenovirus Dorden and Mahadevan, 2015 28 BLASTP, Pfam, SMART, Phyre2, SWISS-MODEL, MuFOLD, PFP, ESG, Argot2, BAR+,
PSIPred, ProtFun, dcGO, 3d2GO

Naveed et al., 2017 38 (16%) BLASTP, Pfam, CATH, SUPERFAMILY, INETRPRO, MOTIF, CDART, SMART, SVMPort,
ProtoNet, I-TASSER, ExPASy ProtParam, Virus PLoc, TMHMM, HMMTOP, DISULFIND

No. HPs, Total number of hypothetical proteins examined (percent of hypothetical proteins with proposed annotation revisions if available).

details three general approaches for HP selection (Table 2). HPs
can be selected randomly or targeted through differential gene
expression analysis or phylogenetic relations.

Random Selection
Depending on instructor preference and learning objectives,
students can be allowed to select HPs themselves (i.e., student-
directed) or selection can be partially or completely directed
by the instructor (i.e., instructor-directed). Students can find
HPs easily by searching the NCBI knowledgebase for the term
“hypothetical protein” to generate a list for selection, as done
previously (Bharat Siva Varma et al., 2015). Further, if the student
is interested in a specific organism, HPs can be selected randomly
using NCBI’s Genome database.

Alternatively, instructors may choose to partially or
completely direct HP selection. One way a project can be
partially instructor-directed is by requiring the class to designate
a class pet microbe. The instructor then provides a list of available
HPs from the class-appointed pet microbe for student selection.
The class pet microbe technique is based on early published
computational characterization studies that limited focus to HPs
that were randomly selected from several hundred HPs in one
highly pathogenic bacterial species (Mohan and Venugopal,
2012; School et al., 2016). To reduce the number of potential
HPs for selection, a protein size cut-off can be imposed also
(Shahbaaz et al., 2015).

Differential Gene Expression
The differential gene expression approach requires gene
expression data, such as those produced by microarray or
RNAseq procedures, containing at least two groups (i.e.,

experimental and control) that are useful for comparison.
HPs that have the greatest change in gene expression between
groups (i.e., differential gene expression) are given the highest
priority for HP selection. Gene expression datasets that measure
expression for nucleotide sequences associated with HPs can
be generated by the student in the laboratory or found in the
Gene Expression Omnibus (GEO) database (Edgar et al., 2002;
Barrett et al., 2011, 2013).

If only two groups are available, HPs can be selected
using single-gene analysis approach which requires meeting a
statistical cut-off, like a T-test p-value <0.05. This approach
can produce long lists of differentially expressed HPs that may
contain redundancy and cannot be prioritized based on biological
relevance, thus prioritization of HPs for characterization, require
utilization of statistical methods. For example, volcano plots
(i.e., scatter plot that compares a gene’s statistical significance
via T-test p-value to its biological relevance via fold change)
are frequently used to identify differentially expressed genes (Li,
2012; Kumar et al., 2018). Differentially expressed HPs with the
best statistical significance (i.e., lowest p-value) and biological
relevance (i.e., highest fold change) are given selection priority for
the Hypothetical Protein Characterization Project (Figure 2A).

If more than two experimental groups are available, HPs
can be selected by gene enrichment analysis (Goad and Harris,
2018). HPs can be selected by either singular enrichment analysis
or gene set enrichment analysis (Huang et al., 2009; Tipney
and Hunter, 2010). In singular enrichment analysis, each gene
is considered individually via single-gene analysis, generating
multiple lists of statistically significant HPs, one from the
differential expression comparison of each experimental group
relative to the control. HP lists are then examined for overlapping
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FIGURE 1 | Schematic of Hypothetical Protein Characterization Project. The
Hypothetical Protein Characterization Project provides students with a
process that generates evidence to address if a hypothetical protein (HP) is
accurately labeled. The HP can be selected randomly, through differential
gene expression analysis using established statistical methods, or
phylogenetic relations established through sequence similarity. Once selected,
the HP’s amino acid sequence is analyzed by web-accessible individual
programs for (1) detection of sequence similarities, (2) identification of protein
domains, (3) 3D predictive modeling of the HP’s structure including active site
and potential ligand binding partners, and (4) determination of protein cellular
location. If results from these analyses provide sufficient evidence to support a
function for the HP, the results can be provided directly to knowledgebases so
the protein’s public record can be updated. Otherwise, the HP needs
experimental examination before a function could be assigned.

HPs, which are considered most relevant to the phenotypic
variation under examination (Figure 2B).

Alternatively, gene set enrichment analysis (GSEA) compares
gene signatures (i.e., list of genes ranked by their differential
expression based on an appropriate statistic method such as
T-test or fold change) rather than individual genes. To do this,
one gene signature is used as reference (i.e., all genes are used)
and the other signature is used to generate two separate query
gene sets derived from the signature’s positive and negative tails
(i.e., representing the most over-or under-expressed genes in
the gene signature, respectively). Query gene sets must include
between 15 and 500 genes for GSEA to properly function
(Subramanian et al., 2005), and to maximize potential HPs
for selection we recommend using a 500 gene inclusion size.
GSEA compares the reference signature to each query gene set
individually to calculate an enrichment score (Figure 2C). Genes
that contribute most to reaching the maximum enrichment
score for GSEA are called leading-edge genes and are thought
to contribute to the phenotypic difference under examination.
HPs included among identified leading-edge genes are given the
highest priority in HP selection. GSEA requires use of specialized
software with a JAVA-based, user-friendly desktop version freely
available at Broad Institute (Subramanian et al., 2005).

Sequence Similarity to a Protein With
Determined Structure
The sequence similarity to a protein with determined structure
approach can find outdated HPs for characterization, as we
demonstrate in section 4.1. To select HPs using this approach,
students begin by finding established proteins that have already
undergone some experimental examination, such as protein
structure determination via X-ray Crystallography, and therefore
have accurate annotation. The Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank (PDB) is
a rich resource for finding established proteins since it is the
largest free and publicly available archives of macromolecular
structural data (Bank, 1971; Berman et al., 2000, 2014; Burley
et al., 2017). Next, amino acid sequences from established
proteins undergo sequence similarity searches using programs
such as the Position-Specific Iterated Basic Local Alignment
Search Tool (PSI-BLAST) to select HPs for the Hypothetical
Protein Characterization Project.

ANALYSIS OF HYPOTHETICAL
PROTEINS

After an HP is selected for characterization, the amino
acid sequence in FASTA format is acquired from a public
knowledgebase like NCBI or UniProt, and used to detect
sequence similarities, identify protein domains, predict protein
tertiary structure including active site and potential ligand
binding partners, and determine cellular location (Table 3).
Instructional videos for use of each program discussed in this
section are available on our “Online Faculty Mentoring Network
to Develop Video Tutorials” YouTube channel1.

Sequence Similarity Detection
Detecting sequences that share significant similarity to an HP
is an important first step in analysis since similar sequences are
thought to be homologous and likely share a common ancestor
(Pearson, 2013). Widely used similarity search programs, like
the Basic Local Alignment Search Tool (BLAST), are used to
estimate similarity between sequences (Altschul et al., 1990).
Results from any BLAST program includes the percentage of
query (e.g., amino acid) coverage and identity to individual
sequences, with high percentages of query coverage and identify
to sequences with known function indicating an outdated HP.
Further, a bit-score indicates the required size of the database
needed to find the same sequence similarity by random chance
with a high bit-score indicating sequence similarity. To estimate
the statistical significance of detected similarities, the bit-score
is used to calculate an Expect-value (E-value), representing the
number of closely matched sequences that are anticipated by
random change when searching a database of certain size (i.e.,
random background noise). E-values close to zero highlight
similar sequences.

At NCBI’s website there are several BLAST programs available
for use. Nucleotide BLAST (BLASTN) and Protein BLAST

1https://www.youtube.com/channel/UCEE6oecA8YKQip9VaqOOHbg
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TABLE 2 | Selected approaches for hypothetical protein selection.

Approach Sub-approach Description Level1 Setting(s)2

Random Student-directed Complete student autonomy to select HPs for characterization Beginner C

Instructor-directed Instructors limit student ability to select HPs for characterization
(e.g., students select HPs from genome of “class pet microbe”)

Beginner C

Differential Gene
Expression

Single-gene Analysis Use of statistical method(s) (e.g., T-test and/or fold change) on
gene expression data to find and prioritize individual differentially
expressed HPs for characterization

Intermediate C, E, H, G

Singular Enrichment
Analysis

Gene enrichment analysis comparing groups of significant HPs with
similar differentially expression as defined by single-gene analysis

Intermediate C, E, H, G

Gene Set Enrichment
Analysis

Gene enrichment analysis comparing a group of the most
differentially expressed HPs to a gene signature (i.e., gene list
ranked by differential expression based on a statistical method)

Advanced E, H, G

Phylogenetic
Relations

N/A HPs for characterization are selected for their sequence similarities
to proteins with established tertiary structures

Intermediate E, H, G

1Level definitions: Beginner, does not require additional steps or prior knowledge of statistics; Intermediate, may require prior knowledge of statistics and/or additional
steps using free web-accessible programs; Advanced, requires prior knowledge of statistics and additional steps using publicly available free downloadable programs.
2C, classroom; E, experiential learning courses; G, graduate projects; H, undergraduate honors and capstone projects.
HPs, hypothetical proteins.

FIGURE 2 | Schematics of differential gene expression approaches for hypothetical protein (HP) selection. (A) Volcano plot of mRNA expression data from Gene
Expression Omnibus accession number GSE46687 identified HPs with statistical (two-tailed Welch’s T-test p-value < 0.05) and biological relevance [fold change
(FC) > 5 for over-expressed or <–5 for under-expressed genes in experimental compared to control groups] to antibiotic resistance in Staphylococcus aureus that
could be selected for the Hypothetical Protein Characterization Project. (B) Venn diagram illustrates conceptually how HPs are selected from singular enrichment
analysis using the overlap of statistically significant (e.g., T-test p-value < 0.05) over-expressed genes between two mRNA expression datasets. The same concept
applies to selecting under-expressed HPs also. (C) Schematic shows how HPs can be selected from gene signature comparison using Gene Set Enrichment
Analysis (GSEA). Gene signatures are gene lists ranked by their differential expression based single-gene analysis (e.g., T-score or FC). A gene signature for each of
two mRNA expression datasets are generated. One signature is chosen from which the 500 most over- and under-expressed genes are taken to derive positive and
negative query gene sets, respectively. Each query gene set is compared individually to the second gene signature, which is used as reference for GSEA. GSEA
calculates an enrichment plot with a maximum enrichment score. GSEA identifies leading-edge genes, which are genes that contribute most to reaching the
maximum enrichment score. HPs among leading-edge genes are selected for the Hypothetical Protein Characterization Project.
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TABLE 3 | Selected analysis programs for Hypothetical Protein Characterization Project.

Objective Program Citation Description

Sequence Similarity
Detection

BLASTP Altschul et al., 1990 Encompasses similarities between relevant sequences to predict the
functionality and evolutionary aspect of sequences between gene families.

PSI-BLAST Altschul et al., 1997; Altschul
and Koonin, 1998

Provides means of detection to note distant relationships between proteins.

Domain Identification Pfam Sonnhammer et al., 1998;
El-Gebali et al., 2019

Database of functional proteins that are called domains. Provides the
students with structure of the protein, family annotation, and protein search
against database models.

CD-Search Marchler-Bauer and Bryant,
2004; Lu et al., 2020

Protein annotation that contains annotated sequence alignment models
along with complete proteins. The output allows for identification of
domains in the form of matrices.

3D Predictive Modeling PHYRE2 Kelley et al., 2015 Provides affiliation of proteins to predict protein structure, function, and
mutation. Software uses a detection method through homologs to build 3D
models, note binding sites, and analyze amino acids.

3DLigandSite Wass et al., 2010 Allows for the prediction of ligand binding sites by using the predicted
protein structure.

Cellular Location
Determination

SOSUI Hirokawa et al., 1998 Provides transmembrane domain prediction of a single alpha helix. This
process occurs through scanning through protein sequence to identify
hydrophobic regions.

PSORTb Yu et al., 2010 Contains multiple modules to analyze biological features of known
characteristics pertaining to subcellular localization. Thus, the database
may predict a protein localization site. Database also encompasses
Gram-negative and Gram-positive localization features.

(BLASTP) detect sequence similarities between other nucleotide
and amino acid sequences, respectively. While either BLAST
program can be used and comparing between BLASTN and
BLASTP would generate a good educational discussion, the
Hypothetical Protein Characterization Project uses BLASTP to
reduce student confusion by providing input consistency across
HP analysis. The Hypothetical Protein Characterization Project
also looks at results from Position-Specific Iterated BLAST
(PSI-BLAST). PSI-BLAST first generates the same results as
BLASTP sequence alignments to establish a specialized position-
specific scoring matrix (PSSM) from all user-selected sequences,
representing what the group of sequences might look like on
a positional basis. Use of PSSM allows for the comparison of
local amino acid sequence patterns between proteins rather
than direct comparison of amino acid sequences themselves.
Therefore, through several rounds of computational analysis (i.e.,
iterations), PSI-BLAST refines the PSSM for an HP based on
PSSM alignments with user-selected sequences identified within
each iteration. This process combines underlying conservation
information from a range of related sequence into a single
score matrix (Altschul et al., 1997; Bhagwat and Aravind, 2007).
By using this PSSM methodology, PSI-BLAST can detect less
similar sequences and is more likely to identify HPs. True HPs,
by definition, cannot have similar sequences with established
function. Thus, identification of similar sequences with known
function using BLAST can strongly indicate outdated annotation
for the HP being analyzed.

Domain Identification
Protein domains are spatially distinct and compact regions of a
protein that can fold into a stable structure that may be integral
to the protein’s function (Yegambaram et al., 2013). Domains
are often conserved across proteins with similar function across

diverse species. There are several protein domains databases
that are readily available. For example, the Pfam database
has been collecting protein information since 1995 and now
contains more than 17,000 entries (Sammut et al., 2008; Finn
et al., 2010; El-Gebali et al., 2019; Lu et al., 2020). Pfam has
a large collection of protein domains, which are individually
represented by hidden Markov model (HMM) based profiles
and multiple sequence alignments (Sonnhammer et al., 1998).
While Pfam is a trusted resource, it can be expanded upon.
NCBI’s Conserved Domain Database (CDD) is a collection of
multiple sequence alignment models for full-length proteins
and ancient domains that includes NCBI-curated domains,
which use 3D-structure information to define domains, and
domain models imported from several external databases
including Pfam (Lu et al., 2020). The CDD can be searched
using the CD-Search tool which is easily accessible from NCBI’s
Protein Database. Conserved domain (CD)-Search uses RPS-
BLAST, a PSI-BLAST variant, to scan a protein for any sets
of pre-calculated position-specific scoring matrices (Marchler-
Bauer and Bryant, 2004). CD-Search results are presented
as an annotation of protein domains with high confidence
associations. These associations are determined by calculating
the E-value between the protein’s sequence and any domains are
shown as specific hits using similar methods to those previously
described for BLAST programs. The Structural Classification of
Proteins (SCOP) database of proteins with known structures that
organizes protein domains by their evolutionary and structural
relationships, providing a broad overview of established protein
folds, detailed information about any close relatives to an HP, and
a general framework for future protein classification (Andreeva
et al., 2014, 2020). SUPERFAMILY is a database of structural
and functional protein annotation based on a collection of
HMMs representing SCOP superfamily structural domains
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(Gough et al., 2001). The Conserved Domain Architecture
Retrieval Tool (CDART) and Simple Modular Architecture
Research Tool (SMART) can be used to identify similarities
across significant evolutionary distances through comparing
domain architecture (i.e., sequential order of conserved domains
in a protein sequence) for protein (Geer et al., 2002)and
genetically mobile domains (Schultz et al., 1998; Letunic and
Bork, 2018), respectively, both using PSI-BLAST. Further, the
CATH protein domain database classifies protein secondary
structures from the PDB and collects domains into superfamilies
only when there is enough evidence of divergence from a
common ancestor (Sillitoe et al., 2019). The CATH database is
paired with Gene3D which uses CATH’s information to predict
structural domain locations for protein sequences available in
public databases, allowing for functional information and active
site residue annotations (Lewis et al., 2018). Since domains
are distinct regions of a protein, it is not uncommon for a
protein to have more than one identified domain, ergo results
from searching these domain databases also usually identify the
range of amino acids associated with domains of HPs under
investigation. HPs containing at least one domain with an
established function likely have outdated annotation.

3D Predictive Modeling
3D predictive modeling gives students the ability to consider an
HP’s tertiary structure and potential binding partners. To do this,
the Structural Bioinformatics Group at Imperial College London
developed a suite of integrative modeling programs, Protein
Homology/analogY Recognition Engine V 2.0 (Phyre2), with free
web portal access (Kelley et al., 2015). Phyre2 uses template-based
modeling (i.e., homology and comparative modeling) based on a
three-step procedure. First, homologous sequences are gathered
by scanning a query sequence against specially curated protein
sequence database with HHblits. This produces a multiple-
sequence alignment that is used by PSIPRED to predict secondary
structure before both the alignment and secondary structure
prediction combined into a query HMM. Next, the query model
is scanned against a database of HMMs of proteins of known
structure. From this search, top-scoring alignments are used to
generate an unrefined backbone-only model. Finally, the model
is refined via loop modeling and side-chain placement. Template-
based modeling as used by Phyre2 is a good approach assuming
homology exists between a user-supplied sequence and at least
one sequence of known structure, meaning Phyre2 and any
other template-based modeling programs are unable to model
true HPs. If the Phyre2 generated model is assigned a >90%
confidence and does not contain substantial disorder (<50%),
Phyre2 automatically submits the model and its corresponding
amino acid sequence to the 3DLigandSite server for ligand
binding site prediction (Wass et al., 2010). In a similar approach
to template-based modeling, 3DLigandSite identifies structures
like the one generated by Phyre2 model and superimposes
bound ligands from identified structures onto the model. This
is done multiple times to establish a cluster of the highest
number of ligands for active site prediction. It may take several
hours for Phyre2 and 3DLigandSite to generate results, however,
those results include: (1) tables of identified ligand clusters and

binding-site residues, (2) visual representations of the model,
and (3) predicted binding site and any ligand clusters. Thus, 3D
predictive modeling can identify outdated HPs due to theoretical
tertiary structure homologies with proteins of known function.

There are several other computational resources available
to predict an HP’s tertiary structure from its primary (i.e.,
amino acid) sequence and predict its potential binding partners.
Alternatives to Phyre2 include but are not limited to SWISS-
MODEL (Schwede et al., 2003; Waterhouse et al., 2018), PS2

(Chen et al., 2006, 2009), and the Iterative Threading Assembly
Refinement (I-TASSER) program (Roy et al., 2010; Yang and
Zhang, 2015). SWISS-MODEL is the original fully automated
protein homology modeling server. In its most recent version,
SWISS-MODEL uses a ProMod3 that differs from prior versions
and other programs like Phrye2 by replacing ab-initio techniques
to resolve insertions and deletions in the aligned template
structure with structural database searches for viable candidate
fragments. PS2 is another automatic homology modeling server
that uses a substitution matrix, S2A2, to combine sequence and
secondary structure information to detect established proteins
with remote similarity before the 3D structure is generated via
the MODELER modeling package (Sali and Blundell, 1993; Webb
and Sali, 2014). MODELER uses an alignment between the HP’s
sequence and known related structures to generate a model
containing all non-hydrogen atoms based on satisfying atomic
spatial restraints. The I-TASSER is an integrated platform for
automated protein structure and function prediction from an
amino acid sequence that is based on a sequence-to-structure-
to-function paradigm. To accomplish this, I-TASSER begins
by using multiple threading alignments and iterative structural
assembly simulations to generate 3D atomic models. The HP’s
function is inferred from these 3D models by structurally
matching them with known proteins. Phyre2, SWISS-MODEL,
PS2, and I-TASSER all measure the quality of their resulting
models though differences exist in how models are measured
for quality. I-TASSER also provides functional annotations
on ligand-binding (i.e., active) sites, Gene Ontology terms,
and Enzyme Commission numbers not provided by the other
programs, though 3DLigandSite competes by providing active
site characterization and ligand predictions for models produced
by Phrye2. Further, potential binding partners for HPs can be
predicted from programs separate from 3D modeling programs.
For example, STRING (Snel et al., 2000; Szklarczyk et al., 2019)
and STITCH (Kuhn et al., 2008; Szklarczyk et al., 2016) are
databases of protein-protein and protein-chemical interactions,
respectively. An HP’s function can be inferred from the network
of proteins and chemicals identified from searching its amino
acid sequence in the STRING and STITCH databases.

Cellular Location Determination
Students finally consider the cellular environment in which
their HP may exist. For classroom purposes, students focus
on determining the cellular location of their HP using two
programs, PSORTb and the SOSUI server. PSORTb consists
of several analytical modules that each analyze one biological
feature known to impact or be characteristic of a subcellular
localization. PSORTb combines the results from each module
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to assess the likelihood of a protein being assigned a specific
localization. Based on these likelihood assessments, a probability
value between 0 and 10 for each of the five localization sites is
determined. PSORTb considers 7.5 a good cutoff for assignment
of a protein to a single cellular location (Yu et al., 2010). Similarly,
SOSUI distinguishes between membrane and soluble proteins
and predicts transmembrane helices in potential membrane
proteins (Hirokawa et al., 1998; Mitaku and Hirokawa, 1999;
Mitaku et al., 2002). To do this, SOSUI considers four
physicochemical parameters (amphiphilicity index, hydropathy
index, index of amino acid charges, and length of each
sequence) to calculate grand averages of hydropathy (GRAVY).
Positive GRAVY values indicate hydrophobic; negative values
mean hydrophilic (Chang and Yang, 2013). For a more
detailed analysis, ExPASy ProtParam can be used to calculate
physicochemical parameters individually including aliphatic
index, index of amino acid composition, length of each sequence,
and GRAVY (Gasteiger et al., 2005; Artimo et al., 2012). ExPASy
ProtParam also provides experimentally useful information such
as instability index (i.e., estimate of HP stability in a test tube),
extinction coefficient (i.e., measure of light absorbance at 280 nm
wavelength), estimated half-life in mammalian reticulocytes,
yeast, and Escherichia coli, and theoretical pI (i.e., isoelectric
point, pH where the HP is electrically neutral). While the
ability to determine cellular location for an HP does not
distinguish outdated annotation from true HPs, cellular location
can support re-annotation conclusions for outdated HPs drawn
from other results generated from the Hypothetical Protein
Characterization Project.

EXAMPLE HYPOTHETICAL PROTEIN
CHARACTERIZATION PROJECTS

The following section contains examples to demonstrate possible
Hypothetical Protein Characterization Project results that might
be encountered in educational settings. The examples presented
here utilized FASTA-formatted amino acid sequences acquired
from the NCBI Protein database (Coordinators, 2018). The
UniProt knowledgebase (UniProt, 2019) was consulted to
highlight differences between knowledgebases. For consistency
across projects, the following program parameters were used: (1)
Default program settings for all programs, (2) The most similar
non-HP sequence was reported from BLASTP analysis, making
it the most relevant description for potential re-annotation, (3)
PSI-BLAST results were generated from three iterations of each
sequence to capture similar sequences more extensively as no
significant change resulted from running additional iterations,
and (4) The least similar non-HP sequence resulting from PSI-
BLAST analysis was reported. Data for these example projects
were collected between March 15–23, 2020.

AUH26_00140 Should Be Re-annotated
as an ABC Transporter Permease
To find an example of an HP with outdated annotation, the
sequence similarity to a protein with determined structure
approach to select HPs was used. Since we previously used this

approach to examine HPs related to major facilitator superfamily
proteins related to antibiotic resistance in S. aureus (Marklevitz
and Harris, 2016), we browsed the PDB for multidrug resistance
transporters related to antimicrobial resistance. We performed
PSI-BLAST on approximately five randomly selected transporters
before finding a transporter with HPs, a process taking less
than 30 min, demonstrating the feasibility of sequence similarity
to a protein with determined structure approach to identify
outdated HPs. We found PSI-BLAST of the multidrug ABC
transporter Sav1866 from S. aureus (PDB accession: 2ONJ)
identified HPs. We selected AUH26_00140 (96% query coverage,
38.89% identity, E-value = 6.0 × 10−142) over three other HPs
with lesser similarity (W538_02582 from S. aureus VET0261R,
W475_02351 from S. aureus VET0166R, and V089_02512 from
S. aureus GD2010-115). We noted that AUH26_00140 was not
included in the UniProt knowledgebase. The 592-amino acid
sequence for AUH26_00140 is below:

>OLC18526.1 hypothetical protein AUH26_00140
[Candidatus Rokubacteria bacterium 13_1_40CM_69_96]
MPLGPYRRLFVYLRPHVPVLVLGACLALIVSGMEGLTAWLV
KPVMDDIFIRRDGLMLKLIPLALLAVYVVKGVARYLQSYLM
AAVGERVVARLRRELYTHIQSMPLSFFSDVHSADLMSRILTD
VTRLARLSSGVLVMGVRQLGTIAALLVVMLAREWALTLTA
LVAFPAIALIVRTIGRRLYTINKRTQERVAQLAVLLHESFSGTK
IVKAFGRERHEQARFDALNDRLLNLSLKNVRADEITEPLME
IAGALGIMAVLWYGGYRVIEGHMTPGTLFSFTAAALMLYG
PVRRLSRSLNVVQQSTASVERVFHILELPPAITDRPGATRLET
FTRALAFERVDFRYGDADEMTLKEISLEIRKGEVVAFVGMS
GAGKSTLMDLVPRFHDVTAGRITLDGRDLRDVTQASLRAQ
LGVVTQETFLFSDTIRYNIAYGRPDATFEEIVRAARQAHAH
DFTLACPDGYDTLVGERGVRLSGGQRQRIAIARAFLKNPPIL
ILDEATSDLDAESEFMVQQALAELMHGRTVFVIAHRLATVR
NADRIVVVHDGRIAEIGRHEELIARDGIYRRLYALQMEGFPG
EQVGGPGGPLRPR

When AUH26_00140 was used as query for BLASTP, the
most similar non-HP sequence was an ABC transporter permease
from Candidatus rokubacteria bacterium (97% query coverage,
98.96% identity, E-value = 0.0), which is a strong indicator
that AUH26_00140 has outdated annotation. PSI-BLAST results
included mostly lipid A export permease protein MsbA (98%
query coverage, E-value = 0.0, 49.06% identity) and no HPs,
further supporting BLASTP results.

The NCBI Protein database did not list any domains.
CD-Search identified COG1132 (E-value = 0.00), a domain
that spans most of AUH26_00140 (amino acids 3 to 576)
which is associated with the ATPase and permease component
of the ABC-type multidrug transport system. Pfam also
found two matches: (1) an ABC transporter transmembrane
region (CL0241, E-value = 3.2 × 10−52) spanning amino
acids 21 to 291, and an ABC transporter domain (CL0023,
E-value = 3.3 × 10−33) that spans amino acids 354 to 503,
supporting results identified by CD-Search.

Phyre2 generated a tertiary structure model for AUH26_00140
with 100% confidence from part of an X-ray diffraction structure
of a heterodimeric ABC transporter from Thermotoga maritima
(model template c3qf4A) whose protein sequence covered 96% of
AUH26_00140’s sequence with 31% identity (Figure 3A). From
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this model, 3DLigandSite predicted a 14-amino acid binding
site that could bind to adenosine triphosphate (ATP), adenosine
diphosphate (ADP), and magnesium.

PSORTb predicted that AUH26_00140 is a cytoplasmic
membrane protein (localization score = 10). These results
are supported by SOSUI, which calculated AUH26_00140
to be a membrane protein (GRAVY = 0.168920) with five
transmembrane helices. While additional analysis, such as
comparison of physiochemical properties, multiple sequence
alignment, and phylogenetic tree analysis, are needed to fully
support re-annotation, these results here suggest AUH26_00140
likely has outdated annotation and should be re-labeled to
be a ABC transporter permease in keeping with its closest
similar sequence.

L2624_01843 Should Be Re-annotated as
a DUF871-Containing Outer Surface
Protein
L2624_01843 from Listeria monocytogenes was originally
characterized as part of student’s Hypothetical Protein
Characterization Project using the student-directed approach
for HP selection. NCBI Protein database listed L2624_01843
as an HP. L2624_01843 was not included in the UniProt
knowledgebase. The 362-amino acid sequence for L2624_01843
is provided below:

>AKI46902.1 hypothetical protein L2624_01843
[L. monocytogenes] MRKLGISVFPQHVALEESL
EYIETAAKYGFSRIFTCLISANDEAEFAKLETICKRAKELGFD
VIADVDPTVFESLNITYKELDRFKELGLAGLRLDLGFSGSEE
AAMSFDDTDLKIELNISNGTRYVENILSYQANVGNIIGCHN
FYPRKYTGLSRKHFLRTSKQFKDLNLRTAAFVSSNSGEFGPW
FVVDGGLPTMEEHRGVDITVQAKDLWNTGLIDDVIVGNM
FASEDELRALSELNRNELQLAVEFLDGATDVEKEIVLTQKHF
NRGDASEYVLRSTMTRVNFKQFDFPAHDTNTIAKGDVTID
NDGYERYKGEMQVALQEMENSGNTNIVARIVPEERYLLDTI
LPWQHFRLVEKKK

When L2624_01843 was used as query for BLASTP, all
identified similar sequences had DUF871 domain-containing
protein annotation (100% query coverage, 99.17% identity,
E-value = 0.0). While most similar sequences identified by
PSI-BLAST for L2624_01843 are DUF871 domain-containing
proteins, a few sequences had outer surface protein descriptions
with the closest sequence being EFR87458.1 which is found
in Listeria marthii FSL S4-120 (100% query coverage, 98.90%
identity, E-value = 0.0).

The NCBI Protein database showed that L2624_01843
contains a conserved COG3589 region that has an unknown
function that spans 361 amino acids (99.7% of the protein).
CD-Search showed COG3589 was similar (covering amino
acids 1 to 361, E-value = 0.00) to the DUF871 domain
superfamily, which was confirmed by Pfam that found DUF871
was the only significant match (covering amino acids 1 to 357,
E-value = 3.1× 10−136).

Next, the tertiary structure and potential ligand binding
partners for L2624_01843 were predicted. Phyre2 generated a
protein model for L2624_01843 with 100% confidence from

the crystal structure of an outer surface protein from Bacillus
cereus (model template c1x7fA, PDB accession 1X7F_A) whose
protein sequence covered 95% of L2624_01843’s sequence with
51% identity (Figure 3B). Interestingly, according to NCBI’s
Protein database, 1X7F_A is 385 amino acids long and contains
a DUF871 domain spanning across amino acids 28 to 384.
3DLigandSite predicted a binding site involving 32 amino acids,
mostly comprised of residues 176–185 and 222–228, that bound
with the following heterogens: NADPH dihydro-nicotinamide-
adenine-dinucleotide phosphate (NDP), flavin mononucleotide
(FMN), magnesium, NADP nicotinamide-adenine-dinucleotide
phosphate (NAP), zinc, b-D-mannose (BMA), a-D-mannose
(MAN), and calcium.

SOSUI calculated L2624_01843 to be a soluble protein
(GRAVY = −0.328453) with no transmembrane helices,
which supported PSORTb predictions that L2624_01843 was a
cytoplasmic protein (localization score = 7.50). We noted that
PSORTb is unable to detect outer surface as a cellular location
(Yu et al., 2010). Taken together, these data suggested that
L2624_01843 should be re-labeled as a DUF871-containing Outer
Surface Protein though experimental examination of DUF871 is
needed to further refine L2624_01843’s annotation.

WP_002214142 Is a True Hypothetical
Protein
WP_002214142 from Yersinia pestis plasmid pMT1 was
originally characterized as part of student’s Hypothetical Protein
Characterization Project using the instructor-directed class pet
microbe approach for HP selection. WP_002214142 was labeled
as a hypothetical (i.e., uncharacterized) protein in both NCBI
Protein and UniProtKB databases. The 77-amino acid sequence
is provided below:

>WP_002214142.1 MULTISPECIES: hypothetical
protein [Bacteria] MAQAIPSTSVCSTKRTRPPMLVALNGH
PVSRRLKTPTSYRQATEQPSDSLQATICRNRTLGRLMRVAIIK
PTRKQIV

BLASTP identified several HPs from various species with
similar sequences to WP_002214142. PSI-BLAST was not
able to identify similar sequences for WP_002214142 that
were not HPs and new sequences could not be detected
above the 0.005 threshold from the second iteration of
PSI-BLAST. In summary, no sequences from non-HPs
were identified.

WP_002214142 contains no documented domains according
to NCBI’s knowledgebase, either Protein database or the
CDD. Pfam also could not detect any domains. Lack of
identified domains is a good indication that the HP under
characterization is a true HP.

Phyre2 generated a tertiary structure model for
WP_002214142 with 31.8% confidence from part of an
X-ray diffraction interferon-induced RNA binding protein
from Homo sapiens (model template c6c6kD) whose protein
sequence covered 30% of WP_002211802’s sequence with 52%
identity (Figure 3C). Low model confidence and similarity to
the template supports the conclusion that WP_002214142 is
a true HP. To further support this conclusion, 3DLigandSite
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FIGURE 3 | Predictive 3D Models for Hypothetical Protein Characterization Project Examples. (A) Completeness of Phyre2 model of AUH26_00140 shows
AUH26_00140 has outdated annotation. (B) Completeness of Phyre2 model of L2624_01843 suggests L2624_01843 has outdated annotation. (C) Lack of
completeness of Phyre2 model of WP_002214142 supports the conclusion that WP_002214142 is an example of indeterminate annotation. (D) Lack of
completeness of Phyre2 model of YP_009724396 indicates YP_009724396 is an example of indeterminate annotation. All images are colored by rainbow from N
terminus to C terminus.

was unable to predict a binding site or ligand binding partners
from this model.

SOSUI calculated WP_002214142 to be a soluble protein
(GRAVY =−0.425), though PSORTb could not predict a cellular
location for WP_002214142 (localization score = 2.00). Project
results taken together do not provide sufficient evidence to
re-label WP_002214142 in public knowledgebases. Therefore,
experimental examination is needed before WP_002214142’s
annotation can be improved.

ORF8 (YP_009724396.1) Is a Viral
Example of a True Hypothetical Protein
While the Hypothetical Protein Characterization Project was
optimized for use on bacterial species, students frequently want
to apply it to other organisms. A virus that students have
recently want to use for their projects is Severe Acute Respiratory
Syndrome coronavirus 2 (i.e., SARS-CoV-2), the causative agent
of COVID-19 (Wang et al., 2020). So, for this example, ORF8 (i.e.,
ORF8) was randomly selected from the SARS-CoV-2 genome.
When this example was prepared, ORF8 was labeled as an HP
in the NCBI Protein database and not found in UniProt. The
121-amino acid sequence is provided below:

>YP_009724396.1 ORF8 protein [Severe acute respiratory
syndrome coronavirus 2] MKFLVFLGIITTVAAFHQE
CSLQSCTQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIELC
VDEAGSKSPIQYIDIGNYTVSCLPFTINCQEPKLGSLVVRCSF
YEDFLEYHDVRVVLDFI

All but one protein identified by BLASTP had ORF8
annotation and came from SARS-CoV-2. The one sequence that
was not an ORF8 was a HP from Bat SARS-like coronavirus
(100% query coverage, 94.21% identity, E-value = 8 × 10−81).

Most similar sequences identified by PSI-BLAST for ORF8 were
also HPs or proteins with vague descriptions (e.g., ORF8a or
ORF10). However, one sequence (AAP51236.1), which came
from Human SARS coronavirus (SARS Co-V) GD01, had a BGI-
PUP(GZ29-nt-Ins) description (98% query coverage, 29.03%
identity, E-value = 4 × 10−42). The BGI-PUP(GZ29-nt-Ins)
description is associated with a SARS-CoV isolate with a 29
nucleotide insertion at the relative position 27,995 in its genome
(Pavlovic-Lazetic et al., 2005).

The NCBI Protein database listed no domains for ORF8.
However, CD-Search showed a functionally uncharacterized
corona_NS8 superfamily domain conserved in coronaviruses
(100% query coverage, E-value = 1.87 × 10−39). CD-Search
results were confirmed by Pfam that found Coronavirus NS8
protein was the only significant match (E-value = 3.8 × 10−44).
Both CD-Search and Pfam aligned the corona_NS8 superfamily
domain to residues 1 to 118 in ORF8.

To predict the tertiary structure for ORF8, Phyre2 generated
a protein model for ORF8 with 33.3% confidence from the
immunoglobulin-like beta-sandwich fold of an X-ray diffraction
of the ORF7a accessory protein from SARS-CoV (model template
d1xaka) whose protein sequence covered 17% of ORF8’s sequence
with 30% identity (Figure 3D). From this limited model,
3DLigandSite was unable to predict potential binding site or
ligand binding partners.

With regards to cellular location, SOSUI calculated ORF8 as
a soluble protein (GRAVY = 0.219). PSORTb could not predict
a cellular location for ORF8 because PSORTb cannot analyze
viral sequences. Taken together, these data suggested that more
experimental examination is needed before ORF8’s annotation
can be improved, which is not surprising given the novelty of
SARS-CoV-2 at this time.
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DISCUSSION

The Hypothetical Protein Characterization Project is a valuable
educational tool where students learn and apply knowledge of
computational programs that can assist with ongoing manual
curation efforts to improve genome annotation (Figure 1).
This project incorporates interdisciplinary concepts to identify
and predict HP characteristics, such as sequence similarities,
domains, 3D structure, ligand binding partners, and cellular
location. Project results are used to determine whether an
HP has outdated or indeterminate annotation. Individual and
collective results from student projects can be used to improve
public database annotation. While current NCBI knowledgebase
protocols dictate that only the research group that deposited the
genome can change its annotation, depositor contact information
is usually provided. While contact information may need to
be updated, students are encouraged to use internet search
resources to find and share their HPCP results for outdated HPs
with the genome’s depositor(s). This provides students with an
opportunity to establish and develop professional connections
that could benefit them throughout their careers. Further,
individual and collective results from student projects are often
welcomed for scientific conference poster presentations, which
further stimulates student motivation, learning opportunities,
and ideally scientific employability.

The project is versatile and customizable to accommodate a
wide variety of learning objectives. The project can be used in
both online and in-seat educational settings for undergraduate
and graduate classes in microbiology, bioinformatics, genetics,
and/or biochemistry. HP analysis objectives and programs can
be modified based on the instructor’s learning objectives, and
we recommend instructors test programs immediately prior to
classroom use to ensure functionality as programs are often
temporarily taken off-line for maintenance and updates. Further,
this project can be expanded through advanced approaches to
HP selection, such as differential gene expression or phylogenetic
relations, and additional HP analysis to provide an advanced,
research-oriented project that is well suited for undergraduate
capstone, honor’s, and experiential learning projects as well as
Master level theses (Table 2). Given the variety of potential HP
selection approaches and programs for HP analysis, students and
instructors are encouraged to find, develop, and/or use these
and other methods of selecting and analyzing HPs to best suit
their specific needs.

Further, the project was designed to stimulate classroom
discussion based on the methodology and interpretation of
variations in results from different knowledgebases and HP
analysis programs (Table 3). Classroom discussion can begin
with comparing and contrasting information found on the
HP between NCBI Protein database (Coordinators, 2018) and
UniProt knowledgebase (UniProt, 2019). As seen from examples
provided in this paper, in some cases like WP_002214142, HP
information provided is the same between Protein and UniProt.
In other cases, like AUH26_00140 there are differences in HP
inclusion and/or provided information. Similar discussions that
compare analysis programs can be applied to each objective.
For example, if an instructor wants to examine program

methodology differences, students can discuss why results
first iteration PSI-BLAST results are the same as BLASTP
results and how PSI-BLAST uses BLASTP results to identify
distant similar sequences. An instructor that wants to continue
discussing impacts of knowledgebase inclusion could similarly
emphasize program inclusion by discussing similarities and
differences in methodology and generated results between
Pfam and CDD, which includes a number of external source
databases including Pfam (Marchler-Bauer et al., 2017; Lu
et al., 2020). Instructors may decide to have students explore
other bioinformatic resources to supplement or replace analysis
databases and programs described in this paper to stimulate
student discussion. Finally, though we used default settings
for our examples here, student discussion can be generated
around how and why variations from default settings change
results of program analysis. Taken together, this discussion
highlights the educational aptitude of the Hypothetical Protein
Characterization Project.

Random Selection of Hypothetical
Proteins Is Best for Classroom Use
Random selection of HPs for the Hypothetical Protein
Characterization Project is optimal for beginning students
with no prior experience in bioinformatics or statistics (Table 2).
Random selection is the easiest HP selection method since
it does not require extra computational analysis. This makes
random selection of HPs good for undergraduate classroom
use, particularly as a multi-step individual assignment. Example
assignment instructions with grading rubrics and their 15-week
course schedule designed for use in student-directed random HP
selection are included in Supplementary Materials.

Giving students complete autonomy in HP selection (i.e.,
student-directed) empowers them to take ownership of their
projects. Students will naturally select HPs from a wide range
of species, the student-directed approach is good for identifying
both outdated and true HPs that can be used as examples in large-
class discussions. However, programs can vary in their ability
to generate accurate results from diverse species. For example,
PSORTb requires its users to provide the type of microbe (i.e.,
Gram-negative or Gram-positive) that the amino acid sequence
came from. If the student selects an HP from a Mycobacterium
that has an advanced cell wall, PSORTb may struggle to
provide clear and accurate results. Further, PSORTb was not
designed to analyze eukaryotic HPs, though its complementary
program WoLF PSORT can analyze eukaryotic HPs (Horton
et al., 2007), which can cause confusion and frustration
among students and instructors alike if the student selects a
eukaryotic protein for study. To avoid such complications, we
recommend some instructor-imposed limitations in HP selection
(i.e., instructor-directed) for classroom use. Partially instructor-
directed approaches, such as the class pet microbe discussed
earlier, are better than the instructor simply assigning HPs to
students directly (i.e., completely instructor-directed) as this
approach allows students to retain some autonomy in the
selection process while still reducing the confusion that can result
from interpreting results across diverse species. However, both
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partial and complete instructor-directed HP selection approaches
may not generate ample examples of outdated HPs needed for
large-class discussions unless the instructor is careful to select
HPs from older genomes that are more likely to have outdated
annotation compared to recently published genomes.

Hypothetical Protein Selection via
Differential Gene Expression Is Best for
Advanced Students With the Ability to
Conduct Laboratory Experimentation
Selecting HPs based on differential gene expression is a great
approach that expands the Hypothetical Protein Characterization
Project by incorporating statistical analysis of gene expression
data to identify HPs that have a specific biological relevance.
Analysis of gene expression differences adds more scientific
rationale to the project, which makes true HPs identified by
the project using the differential gene expression approach
potentially valuable in addressing serious biological questions,
allowing a priority to be placed on their experimental
examination. While the differential gene expression approach can
be used in upper-level undergraduate and graduate classrooms
where statistics is a pre-requisite, without laboratory access
students cannot fully realize their educational potential (Table 2).
For this, advanced educational applications such as first-
year experiential learning courses, undergraduate honor’s and
capstone projects, or graduate work where students have access
to laboratory resources to experimentally examine true HPs
identified from this approach are needed. Further, having a
laboratory component to the project can be helpful if the
instructor wants to share student project results within the
broader biological sciences community.

This paper discussed three progressively more challenging
ways to identify HPs using differential gene expression. Single-
gene analysis, the easiest way to use differential gene expression
to identify HPs, requires an understanding of statistics since it
uses statistical methods such as a Student’s T-test to select HPs
through via differential gene expression. Singular enrichment
analysis improves upon single-gene analysis by selecting
overlapping HPs between differential expression comparisons
so that HPs can be grouped based on their potential biological
relevance. However, due to its dependence on single-gene
analysis for HP selection, singular enrichment analysis only
considers HPs that meet a specific statistical cut-off, producing
long lists of differentially expressed HPs that may contain
redundancy. To overcome these limitations, GSEA considers all
genes during analysis by removing the need for a statistical cut-off
(Tipney and Hunter, 2010). GSEA is extremely complex, and best
for advanced educational projects such as a Master thesis, where
the goal is to identify true HPs whose immediate experimental
examination could directly enhance scientific understanding of a
variety of biological mechanisms (Goad and Harris, 2018).

Further Computational Analysis Expands
the HPCP for Advanced Students
Without Laboratory Access
As mentioned earlier, selection of HPs via sequence similarity
to a protein with determined structure is inherently useful for

finding outdated HPs that do not require further experimental
examination (Marklevitz and Harris, 2016). Results generated
from HPs selected by this approach become supporting evidence
toward the conclusion that the selected HPs should be re-
annotated in keeping with similar sequences with established
annotation. Due to this, 3D predictive models generated from
this project, like the one we provided for AUH26_00140, should
be further validated for accuracy. Procheck and other free web-
based programs check the stereochemical quality of a model’s
structure, such as deviations from ideal bonding angles and bond
length, and produce a Ramachandran plot identifying outliers
and clashing contacts which is a standard part of structure
analysis before deposition (Praznikar et al., 2019). Further, after
completion of the project, selected HPs and identified similarly
sequenced proteins with established annotation should undergo
additional comparisons to support re-annotation conclusions.
Examples of additional computational analyses include multiple
sequence alignment, physiochemical properties, and phylogeny
tree builder, performed by programs such as PROMALS3D (Pei
et al., 2008) or CLUSTAL Omega (Thompson et al., 1994; Madeira
et al., 2019), ExPASy ProtParam (Artimo et al., 2012), and the
PHYLIP suite (Lim and Zhang, 1999; Retief, 2000; Abdennadher
and Boesch, 2007), respectively. These additional analyses make
the phylogenetic relations approach for selecting HPs a complete
bioinformatics project that is ideal for undergraduate honor’s and
capstone projects or as part of graduate work where scientific
rationale for the study is needed but students lack access to a
laboratory for further experimental examination.

Knowledgebases Are Constantly
Improving
The overall goal of the Hypothetical Protein Characterization
Project from a student perspective is to assist in improving
genome annotation. To emphasize the speed at which
knowledgebases update as well as the importance of improving
genome annotation, we re-ran the project on ORF8 on June
10, 2020, to see how results may have changed in a short
time under substantial pressure to computationally and
experimentally characterize SARS-CoV2 due to the COVID-19
pandemic. We found that NCBI Protein database updated
the protein’s description in the public record from HP to
ORF8 protein (Severe acute respiratory syndrome coronavirus
2). The record now shows a corona_NS8 domain for ORF8
where it was not listed in March despite previous CDD and
Pfam identification. In March, CDD and Pfam described
the corona_NS8 domain as a functionally uncharacterized
superfamily domain conserved in coronaviruses. While the
statistical values have not changed, now the description details
a superfamily of immunoglobulin (Ig) domain proteins without
mention of anything still being uncharacterized. While UniProt
did not have an entry for ORF8 in March and still does not
have one using the same identifies as NCBI, UniProt has
now added ORF8 as a 121 amino acid long, non-structural
protein 8 under the identifier P0DTC8 (NS8_SARS2). We
used the WayBack Machine web archival site2 to confirm

2https://archive.org/web/
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P0DTC8 did not exist in UniProt in March. 3D predictive
modeling and cellular location results did not change between
March and June, though we expect modeling for ORF8 to
improve when the structure of ORF8 or one of its homologs has
been elucidated.

Given the high number of newly sequenced genomes
deposited regularly to public knowledgebases, there will
be plenty of HPs for use in the Hypothetical Protein
Characterization Project for years to come. Further,
proteins with vague annotation descriptions (e.g., membrane
protein) and no gene symbol may also benefit from
characterization using this project. The quick update in
the annotation of ORF8 due to the COVID-19 pandemic
highlights how manual review can improve genome
annotation when ample resources are available. This
paper provides a tool that turns students into manual
reviewers of genome annotation while learning valuable
interdisciplinary concepts. Application of the Hypothetical
Protein Characterization Project in educational settings
worldwide has the potential to significantly improve public
knowledgebases and the scientific conclusions derived from
their information.
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Undergraduate students in the biomedical sciences are often interested in future health-
focused careers. This presents opportunities for instructors in genetics, molecular
biology, and cancer biology to capture their attention using lab experiences built
around clinically relevant data. As biomedical science in general becomes increasingly
dependent on high-throughput data, well-established scientific databases such as
The Cancer Genome Atlas (TCGA) have become publicly available tools for medically
relevant inquiry. The best feature of this database is that it bridges the molecular features
of cancer to human clinical outcomes—allowing students to see a direct connection
between the molecular sciences and their future professions. We have developed and
tested a learning module that leverages the power of TCGA datasets to engage students
to use the data to generate and test hypotheses and to apply statistical tests to
evaluate significance.

Keywords: bioinformatics, cancer, genomics, cancer genomics, undergraduate teaching and learning

INTRODUCTION

While many undergraduates are interested in becoming medical doctors and declare “pre-med”
early in their academic careers, it is predicted that by 2032 the United States will face a shortage of
between 46,900 and 121,900 physicians (Dall et al., 2019). One of the factors likely to exacerbate this
projected shortage is the high attrition rates of undergraduates from the premedical academic track
(Lin et al., 2013). In fact, many of the empirical studies recorded in the scientific literature related to
undergraduate premedical students are focused on documenting and better understanding attrition
from the premedical track (Lin et al., 2013). High attrition rates in undergraduate premedical tracks
have been found to be influenced by a variety of factors including loss of interest and negative
experiences in required courses (Lin et al., 2013).

Student interest and persistence in STEM careers can be increased and strengthened through
participation in Course-based Undergraduate Research Experiences (CUREs) as part of the
curriculum (Estrada et al., 2016). These findings suggest that one of the ways in which student
persistence in undergraduate premedical programs can be increased is through relevant CURE
experiences that highlight clinically relevant data and its applications.
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While undergraduate access to clinical research experiences
is limited, the biomedical sciences are becoming increasingly
dependent on high-throughput data, and well-established
scientific databases such as The Cancer Genome Atlas (TCGA)
have become publicly available tools for medically relevant
inquiry (Cancer Genome Atlas Network, 2012; Cerami et al.,
2012; Gao et al., 2013). These databases are increasingly being
recognized as resources available for undergraduate teaching
(Coughlan, 2020).

Furthermore, there is currently a need for physicians and
health professionals to recognize and use the power of cutting
edge genomics to inform diagnosis and treatments for their
patients (Rubanovich et al., 2018). Through the use of clinically
relevant genomic datasets like the ones found in TCGA in
the undergraduate classroom, we can raise awareness for the
relevance of these resources in medicine early on in the training
of these individuals (Schoenborn et al., 2019).

It is also important to point out the increasing need for
scientific literacy, pro-science attitudes, and evidence-based
decision-making among non-majors in a variety of different
disciplines (Ballen et al., 2017). These skills, including scientific
literacy, can be developed using CURE experiences and inquiry-
based modules in the non-majors classroom (Ballen et al., 2017;
Segarra et al., 2018).

We have developed and tested a learning module that
leverages the power of TCGA datasets to engage students in
inquiry-based clinical research in the context of cancer—a human
disease that is of universal relevance. Our module allows students
to not only generate and test hypotheses with clinical relevance,
but also apply statistical tests to evaluate significance. Continuing
to refine such activities to better cultivate engagement in and
comfort with data-based decision-making will better position
us to foster interest, persistence, and scientific literacy among
undergraduate science majors both inside and outside of the
premedical track, as well as non-majors preparing to enter an
increasingly data-driven workplace.

METHODOLOGY

Accessing TCGA Datasets
The Cancer Genome Atlas data were accessed by the course
instructor through cBioportal1, a widely used web interface that
provides access to public cancer genomics datasets (Cancer
Genome Atlas Network, 2012; Cerami et al., 2012; Gao et al.,
2013). Breast cancer was selected as a focus because of the
increased likelihood for the intended audience members to
make personal connections to a highly prevalent cancer type
with a significant impact on human health, and because of
the convenience of introducing the genomic data starting with
familiar genes such as BRCA1, BRCA2, and the gene encoding
p53 (TP53) that had previously been discussed in the lecture
component of the class. TCGA was chosen as a data source for
the combination of high-quality genomic and associated clinical
data characteristic of TCGA datasets in general and the high

1https://www.cbioportal.org/

sample size of the available datasets. The TCGA Breast Invasive
Carcinoma dataset associated with the 2015 publication in Cell
(Ciriello et al., 2015) was specifically chosen from among the four
available TCGA Breast Invasive Carcinoma datasets because of its
combination of mutation data and copy number alteration data,
as well as its inclusion of stage among the clinical data variables
(study ID “brca_tcga_pub2015”; https://www.cbioportal.org/
study/summary?id==brca_tcga_pub2015). It should be noted
that the original data set was composed of a total of 818 patient
samples—817 from primary and 1 from metastatic tumors. Only
data from the 817 primary tumor samples were included in the
student analysis. The metastatic sample was excluded in order to
present the students with a comparable and consistent group of
samples for analysis.

While mutation and copy number data were available in
the dataset for more than 20,000 genes, a more focused subset
of 16 total genes was selected to provide to the students.
This subset was narrow enough facilitate visualization of the
complete dataset and analysis by first-time bioinformaticists
in Microsoft Excel, but diverse enough to include examples
fitting several different patterns. The list began with well-
known cancer-associated genes previously discussed in the course
(BRCA1, BRCA2, TP53), then added genes that were among the
most frequently targeted in breast cancer by known pathogenic
mutations (PIK3CA, CDH1, GATA3, MAP3K1, KMT2C, and
AKT1), amplifications (MYC, CCND1, and ERBB2), or deletions
(RB1, PTEN). These high-frequency targets of mutations and
copy number alterations were identified by selecting the dataset
of interest (Cancer Genome Atlas Network, 2012) from the
cBioportal menu and using the Explore Selected Studies function
to view the Summary of findings. The genes encoding β-actin
(ACTB) and hemoglobin subunit β (HBB) were added to the
list in order to function as recognizable negative control genes
generally not associated with cancer. Once the list of sixteen
breast cancer-relevant genes and controls was determined, the 16
gene names were entered as a list into the cBioportal website to
access genomics data for this subset using the Query by Gene
function. For each gene of interest, genetic mutation data and
copy number alteration data were separately accessed for all
817 tumors in the dataset from the Download section of the
site, selecting the Tab Delimited Format option. Clinical data
were accessed through the cBioportal site using the Explore
Selected Studies function and the Clinical Data tab. A limited
subset of clinical characteristics were downloaded, with each
characteristic chosen to help illustrate a different point or to
enable the students to test a different hypothesis. The majority
of clinical variables were categorical, facilitating the use of 2 × 2
tables to test association between the clinical category and the
status of a gene as mutated/unmutated, etc. The 15 characteristics
were Informed Consent by Patient (Yes/No), Diagnosis Age,
Cancer Type, Race Category, Ethnicity Category, Sex, Disease
Stage (I–IV), Treatment Outcome (Living Disease-Free/Living
with Tumor/Recurred, or Progressed/Deceased), Time from
Treatment to Recurrence (Months), Time from Treatment to
Death (Months), Time from Treatment to Most Recent Contact
(Months), ER Status (by Staining), PR Status (by Staining), HER2
Status (by Staining), and Total Number of Mutations. Similar to
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the mutation and copy number data files, the clinical data were
arrayed so that the clinical variables were each assigned a different
column, while the 817 tumors were each assigned a different row
(Supplementary Appendix 1).

Combining Genetic and Clinical TCGA
Data in Microsoft Excel
Initially, the separate Mutations and Copy-Number Alterations
files were integrated into a single Excel file by alphabetizing the
list of samples in each file by Patient ID and integrating the
columns along matching rows. The instructor then sought to
integrate the mutation status and the copy number status into a
single column for each gene, stating only the change in that gene
most relevant to the disease. For example, if the Copy Number
Alteration column for TP53 listed the gene as Amplified in a
particular tumor, while the Mutations column for TP53 listed it
as a known Pathogenic Mutant in that same tumor, the merging
of those two columns into one TP53 Status column listed it as
Pathogenic Mutant for that tumor. On the other hand, if the
Copy Number Alteration column for TP53 listed the gene as
Amplified in a particular tumor, while the Mutations column
for TP53 listed it as a Mutant of Unknown Significance in that
same tumor, the merging of those two columns into one TP53
Status column listed it as Amplified for that tumor. The resulting
Excel file containing gene status data was then integrated with
the Clinical Data file into a single Excel file by alphabetizing
the list samples in each file by Patient ID and integrating them
along matching rows. The resulting file contained 16 columns
of genetic data and 15 columns of clinical data, with 817
rows of tumor samples, each representing a different patient
(Supplementary Appendix 1).

Generation of the Worksheet
The instructor designed an assignment to introduce students
to the kinds of research hypotheses that are testable using the
combination of genetic and clinical data. The initial assignment
was generated in the form of a worksheet (Supplementary
Appendix 2), which consisted of five different tables. Categorical
clinical and/or genetic characteristics were listed along the x-
and y-axes, and students were asked to count how many tumors
from the dataset possessed each combination of characteristics.
Students first determined how many of the patients classified as
Living Disease-Free, Living with Tumor, Recurred or Progressed,
and Deceased were diagnosed with Stage I vs. II vs. III vs. IV
tumors. This comparison of stage and outcome was selected
to illustrate a well-known clinical association and presented
students with an opportunity to test whether the counts matched
their expectations. Students then determined how many of the
patients classified as Living Disease-Free, Living with Tumor,
Recurred or Progressed, and Deceased harbored vs. did not
harbor pathogenic mutations/deletions in TP53, BRCA1, or
BRCA2. Students were already familiar with all three genes as
well-known tumor suppressors in breast cancer, and were able to
formulate hypotheses about how mutations in each gene might
associate with clinical outcome. In the final table, students were
asked to calculate the total number of tumors with pathogenic

mutant, mutant of unknown significance, amplified, and deleted
genotypes, for each of the sixteen genes. Since most of these
genes were less familiar, students would have the opportunity
to collect the data without bias, and then to use them to form
a hypothesis about each gene’s status as an oncogene, tumor
suppressor gene, or neither.

Generation of Instructions for Sorting
Tumors in Microsoft Excel
Students came into the assignment with heterogeneous
backgrounds using Microsoft Excel for similar tasks, and were
provided with general instructions to help them complete
the worksheet (Supplementary Appendix 3). The Sort and
Filter function in Excel was recommended as a critical tool
for organizing data into subsets according to a particular
genomic or clinical characteristic. Within each subset, students
were recommended to count occurrences of the associated
characteristic using the COUNTIF function in combination with
quotation marks around the text of interest.

Generation of a Microsoft Excel File to
Support Statistical Analysis
As a follow-up assignment, students were asked to use the
counts data from their completed worksheet to generate one
hypothesis about the association of two variables. They would
then construct a 2 × 2 table and perform a test for statistically
significant association. The chi-square test of independence
was recommended as an applicable statistical test that can be
performed using Excel. To facilitate their introduction to this
statistical test, a template Excel file was constructed into which
the students could enter their 2 × 2 table (Supplementary
Appendix 4). The file would then use these observed counts to
calculate the expected counts, determine the test statistic, and
generate a p-value.

CLASSROOM IMPLEMENTATION

The documents/data described above (also see
Supplementary Materials) were used to create and implement a
bioinformatics laboratory experience during two 3-h lab periods
near the conclusion of an upper-level undergraduate Cancer
Biology course. This activity can also be implemented in a
bioinformatics or genetics course and is particularly well suited
to be implemented remotely in the context of online teaching.

Step 1: Introduce students to the Microsoft Excel file containing
data subset of interest.

Students were introduced to the data subset of interest,
including the kind of information each column and row
contained (Supplementary Appendix 1).

Step 2: Students complete a worksheet composed of 2 × 2 tables
that measure associations between presence/absence of a mutation
and categorical clinical phenotypes.

Students were given the opportunity to increase their
familiarity with the dataset of interest (Supplementary
Appendix 1) by completing an Excel worksheet (Supplementary
Appendix 2) that required them to identify the data relevant
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to different categories. To help students sift through the data,
they were provided with tips for sorting tumor data in Excel
(Supplementary Appendix 3).

Step 3: Students articulate a new association of interest to test
(research question), create/complete the appropriate 2 × 2 tables,
and calculate statistical significance of association.

Using the data as a guide, students were given the opportunity
to come up with their own association or research question to
test (Table 1). Students had to examine the data provided and
decide which two categorical variables they wanted to use to test
an association. Students were introduced to the chi-square test of
independence and its relevance to categorical data. To facilitate
students performing the relevant statistics, an Excel file template
was provided (Supplementary Appendix 4). Before beginning
this portion of the assignment, the instructor demonstrated the
process from selection of an association of interest and 2 × 2 table
construction, all the way to statistical analysis.

TABLE 1 | Representative research questions answered by students using TCGA
Breast Invasive Carcinoma datasets.

Research question Categorical variables being
compared

p-value

Are pathogenic PIK3CA
gene mutations associated
with poor clinical outcomes
(not living disease-free) for
breast cancer?

Wildtype PIK3CA vs. pathogenic
mutations in PIK3CA
Good clinical outcome (living
disease-free) vs.
Poor clinical outcome (not living
disease-free)

0.24

Is the wildtype BRCA2
gene associated with good
(living disease-free) breast
cancer clinical outcomes?

Wildtype BRCA2 vs. pathogenic mutant
BRCA2
Good clinical outcome (living
disease-free) vs.
Poor clinical outcome (not living
disease-free)

0.93

Are BRCA1 gene tumor
mutations associated with
poor (not living
disease-free) breast cancer
outcomes?

Wildtype BRCA1 vs. mutated BRCA1
gene
Good clinical outcome (living
disease-free) vs.
Poor clinical outcome (not living
disease-free)

0.60

Are pathogenic TP53
mutations associated with
more advanced (Stages
II/III/IV) stages of cancer?

Wildtype TP53 vs. pathogenic TP53
gene mutations
Early (Stage I) vs. advanced stages of
cancer (Stages II/III/IV)

0.14

Are pathogenic BRCA1
mutations associated with
breast cancer recurrence?

Wildtype BRCA1 vs. pathogenic
BRCA1 mutants
Good clinical outcome (living
disease-free) vs.
Poor clinical outcome (living but tumor
recurred/progressed)

0.01

Are patients living
disease-free more likely to
have been diagnosed early
stage breast cancer
(Stages I/II)?

Living disease-free vs. Not living
disease free
Early stage (Stages I/II) vs. late stage
(III/IV) cancer

2 × 10−6

For Step 3 in Classroom Implementation, students articulate a new association of
interest to test (research question), create/complete 2 × 2 tables, and calculate its
statistical significance. Shown in this table are representative research questions
(associations being tested), including the categorical variables being tested and
the determined statistical significance (p-value) of the association. Associations that
were not independent from each other have a p-value less or equal than 0.05.

Microsoft Excel was selected for this activity due to its
familiarity to the majority of undergraduate students as both a
calculator and a tool for generating scientific figures. Thus, it
serves as a comfortable starting point in which the dimensions of
the dataset can be visualized and new functions and calculations
for data analysis can be introduced. At the same time, it is
important to note the caveat that Microsoft Excel is increasingly
recognized as a flawed platform for statistical analysis. In
comparison to the open-source programming language R, which
has become a preferred platform for many research applications
of statistics, Excel is considered the less reproducible and more
error-prone option (Ziemann et al., 2016). A key advantage of
R is the ability to record and share in a transparent way the

TABLE 2 | Student feedback in response to each of the steps of the TCGA
module.

Step 1 of the module: Introduce students to the Microsoft Excel file containing
data subset of interest.

Student feedback

Spreadsheet with TCGA data made it clear how large the pool of genome data
from cancer patients can be and how these data can be used to determine
relationships between mutations and clinical patient outcomes.

Humbling to think about the data on the Excel spreadsheet coming from actual
patients, some who died, and some who recovered and were able to continue
living cancer-free

While spreadsheet was well organized, it took some time and exploring to
understand and get a feel for the information in it.

I finally understood what it means for a patient to have “triple negative” breast
cancer at the molecular level. Seeing all the potential options for these
receptors lined up on the spreadsheet drove the point home.

I would be interested in learning how to create the spreadsheet with data
entirely from scratch using information posted in TCGA.

Step 2 of the module: Students complete a worksheet composed of 2 × 2
tables that measure associations between presence/absence of a mutation and
categorical clinical phenotypes.

Student feedback

Completing the worksheet helped with understanding information on dataset.

I learned new easy excel functions (like COUNTIF function) that will likely be
useful later on in data and statistical analysis.

Completing the worksheet was time consuming and could easily be combined
with the research question creation and analysis. This would have allowed me
to come up with a question while the information in the data set is still fresh in
my head.

I liked the worksheet because I was able to turn the data into relationships and
percentages that were applicable to real human disease.

Step 3 of the module: Students articulate a new association of interest to test
(research question), create/complete the appropriate 2 × 2 tables, and
calculate statistical significance of association.

Student feedback

You always hear of the statistics of different cancers and stages, but with the
data we were able to see the actual outcomes of real patients for our own
research question, which made it more real than reading about it in a textbook.

This is the first time I have actually gotten to make my own experiment with
clinical data from real humans.

I was overwhelmed at first by the amount of research questions that could be
addressed with the data provided.

I tried testing several associations in the hopes of getting a statistically
significant difference, but was not successful.

For similar student feedback or statements, one representative comment was
chosen and listed on this table.
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steps taken to organize and analyze the data (Incerti et al., 2019).
While we felt that the benefits of Excel outweighed the caveats
in this particular application, future adaptations of this exercise
might consider introducing students instead to programming in
R or to other commercial software packages for statistics and
data science, such as Stata, SPSS, SAS, or JMP. Substitution of
these tools for Excel might create an additional obstacle to the
accessibility of key concepts to students, but would likely benefit
those students who might continue to use these programs in their
future research.

DISCUSSION

While, at first, students had difficulty managing the large amount
of information that was provided, sharing strategies to sort and
count data using Excel helped them gain confidence in using
the dataset to complete Steps 2 and 3 described above. In fact,
all students were ultimately able to get perfect grades on their
practice worksheets (Supplementary Appendix 2).

Table 1 provides representative research questions that were
answered using the breast cancer tumor data available. In general,
many of the associations tested were not statistically significant.
This is likely due to shortcomings of the dataset that have been
noted and described by others (Huo et al., 2017; Liu et al., 2018).
For example, clinical annotation of TCGA datasets with patient
survival and treatment outcomes is incomplete—follow-up times
are short (TCGA only stayed in touch with clinicians regarding
their patients’ clinical outcomes for a short period of time) and
data is unclear at times about what the cause of death actually
was (may not have been cancer; Huo et al., 2017). Moreover,
breast cancer is a less aggressive cancer type, and can take 10 years
or more to recur (Liu et al., 2018). So given the relatively short
window of follow-up time during which TCGA outcomes were
measured (reported by clinicians following up on their patients),
overall survival is not a suitable clinical outcome to use (Liu
et al., 2018). Overall survival is also complicated by other causes
of death besides breast cancer. Disease-free survival/recurrence
might have been a better endpoint to use (Liu et al., 2018). While
these factors may compromise the accuracy of correlations to
survival and staging, they do not affect the primary goal of using
these data as a tool for learning in the classroom.

Table 2 provides student feedback that captures their attitudes
and perceptions about the TCGA modules described in this
paper. While students reported being initially taken aback by the
size of the dataset, they reported that completing the worksheet
and learning new Excel commands like the COUNTIF function

helped them navigate the data effectively. Some students pointed
out wanting to learn how to download data directly from the
TCGA database. Others reported that working with real patient
data made an impression on them.

All in all, we find this is an effective way for students
to experience clinically relevant inquiry in the classroom.
This bioinformatics activity can also be expanded by having
the students selecting the cancer of interest and pulling
relevant data from TCGA.
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Knowledge of genomics is an essential component of science for high school student
health literacy. However, few high school teachers have received genomics training or
any guidance on how to teach the subject to their students. This project explored the
impact of a genomics and bioinformatics research pipeline for high school teachers
and students using an introduction to genome annotation research as the catalyst.
The Western New York-based project had three major components: (1) a summer
teacher professional development workshop to introduce genome annotation research,
(2) teacher-guided student genome annotation group projects during the school year, (3)
with an end of the academic year capstone symposium to showcase student work in a
poster session. Both teachers and students performed manual gene annotations using
an online annotation toolkit known as Genomics Education National Initiative-Annotation
Collaboration Toolkit (GENI-ACT), originally developed for use in a college undergraduate
teaching environment. During the school year, students were asked to evaluate the
data they had collected, formulate a hypothesis about the correctness of the computer
pipeline annotation, and present the data to support their conclusions in poster form at
the symposium. Evaluation of the project documented increased content knowledge in
basic genomics and bioinformatics as well as increased confidence in using tools and
the scientific process using GENI-ACT, thus demonstrating that high school students
are capable of using the same tools as scientists to conduct a real-world research task.

Keywords: professional development, STEM education and careers, curriculum development (education), high
school (9–12), bioinformatics, gene annotation

INTRODUCTION

With the continuing expansion of genomic databases, discovery of rare disease-causing genetic
variations and reports of drug efficacy-genotype associations, genomics has ever-increasing
relevance to everyday life. It is important that the education of everyone, from doctors to patients,
include genomics and bioinformatics for the continued successful integration of genomics into
healthcare (Green et al., 2011). At the same time, career opportunities for students trained in
genomics are growing and the recruitment and retention of talent in genomics is important for
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United States economic growth (Grand View Research, 2019).
This growth is due to technical advances, with DNA sequence
data being generated at a much faster rate, which has created
a gap between the actual generation of data and its analysis
(Li et al., 2016).

While a thorough knowledge of genomics is an essential
component of science and health literacy required for students
to become informed citizens, consumer and professionals,
educational resources and curricula fail to address this need,
as few high school teachers have received genomics training
or any guidance on how to teach the subject to their students
(Wray, 2017). Even fewer resources are available to high school
teachers to address the newer, nuanced understanding of genome
structure and function and emerging genomic technologies,
such as genome sequencing (National Human Genome Research
Institute, 2018). The Next Generation Science Standards (NGSS)
promote a three-dimensional learning approach focused on
core ideas intertwined with science and engineering practices
and cross-cutting concepts such as “structure and function”
(Next Generation Science Standards, 2019) and the AP Biology
curriculum has been redesigned to incorporate inquiry-driven
scientific practices in the core (Anon, 2019). These changes in
standards provide an opportunity to embed more genomics into
the high school classroom, involving students in applications of
genomics in real-world problem-solving settings. Incorporating
inquiry-based genetic sequencing science projects into the high
school curriculum is a way to narrow this knowledge gap and
to educate, inspire and encourage the development of technical
research skills that are needed within healthcare and personalized
genomics (Ditty et al., 2010; Moitra, 2017).

Project Background
Beginning in 2013 and funded by a 3-years NSF Innovative
Technology Experiences for Students and Teachers (ITEST)
Grant, we developed the Western New York Genetics in Research
Partnership (WNYGRP). The partnership was comprised of the
University at Buffalo, including the departments of Biotechnical
and Clinical Laboratory Sciences and Family Medicine; the NYS
Center of Excellence in Bioinformatics and Life Sciences (CBLS);
the New York State Area Health Education Center System
(NYSAHEC), including Erie-Niagara (EN AHEC) and Western
New York Rural (R-AHEC); Oak Ridge Associated Universities
(ORAU); UB faculty with expertise in genome annotation;
and a NYS STEM Master High School Teacher. The project
introduced high school teachers and students to genomics and
bioinformatics through the use of freely available, hands-on,
state-of-the-art bioinformatics tools.

This ITEST research project developed partnerships with
disadvantaged high schools across a 14-county region in
Western New York, forming a pipeline for teacher and student
recruitment. The details of the development of the partnership
will be presented elsewhere. Grades 9–12 biology teachers
were trained on the use of the Genomics Education National
Initiative-Annotation Collaboration Toolkit (GENI-ACT)1. This
innovative technology experience increased high school students’

1https://geni-act.org

and teachers’ knowledge of bioinformatics and allowed teachers
to gain experience with bioinformatics software tools for
classroom use through real-world research experiences.

PROGRAM COMPONENTS

The ITEST project had three major components outlined below,
consisting of a summer teacher professional development
(PD) workshop, teacher-guided student genome annotation
projects during the school year, and a capstone symposium
at the end of the school year. High school Biology teachers
recruited from the targeted schools signed-up for the
summer workshop for a variety of reasons, including learning
something new, using the training hours to count toward their
mandatory staff development, the stipend they received for
their involvement, and/or the ability to offer their students
something new to add to their portfolios or highlight during
college interviews. One teacher commented, “The idea of
exposing students to real science was very enticing to me
and I feel like the idea of being a scientist and being able
to handle Big Data is a skill that we need to start teaching
our students.” Overall, we recruited 74 Biology teachers
over the 3 years to take part in the summer professional
development training.

Summer PD Workshop
During the 5-day Summer Workshop, teachers were trained
using nine modules customized by project faculty that were
based on those in GENI-ACT (9, Table 1). After the training,
the teachers worked with their students on the same modules
during the school year. GENI-ACT and the online bioinformatics
tools utilized during the training were free, so only computer
and internet access were needed to take part in the project. First,
we presented teachers with background knowledge that provided
them with an understanding of genomics, DNA structure, and
transcription/translation relevant to gene annotation. Teachers
were then instructed on how to log into GENI-ACT and
navigate the website.

Faculty instructors assigned the teachers a set of
demonstration genes to annotate that illustrated positive
and negative results obtained from the tools in the modules.
Teachers were shown how to use each tool and interpret results
using such parameters as scores and e-values and then allowed
to apply it on their own during the week of training. The relative
strengths and drawbacks of results obtained from different
databases were stressed to inform the development of hypotheses
about genes under investigation.

A manual with background information and complete step-
by-step instructions for completing all modules was developed
during the project is freely available on our website (NSF,
2020). The gene annotation work was interspersed with talks
from project faculty on personalized genomics and program
evaluation. Teachers completed pre and post-workshop surveys
to evaluate gains in content knowledge about bioinformatics
related to genome annotation and their comfort level with
teaching bioinformatics concepts.
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TABLE 1 | The modules used in GENI-ACT.

Modules Activities Questions investigated

Basic information DNA Coordinates and Sequence, Protein Sequence What is the sequence of the gene and protein? Where is it located
in the genome?

Sequence-based similarity Blast (Altschul et al., 1990), COG (Tatusov et al., 1997), T-Coffee
(Di Tommaso et al., 2011), WebLogo (Crooks et al., 2004)

How similar is the sequence of the protein under investigation to
other proteins in GenBank?

Structure-based similarity TIGRFAM (Haft et al., 2001), Pfam (El-Gebali et al., 2019), PDB
(Berman et al., 2000)

What functional domains are present in the protein under
investigation?

Cellular localization Gram Stain, TMHMM (Krogh et al., 2001), SignalP (Almagro
Armenteros et al., 2019), PSORTb (Yu et al., 2010), Phobius
(Käll et al., 2007)

Is the protein under investigation located in the cytoplasm,
secreted, in the periplasm, or embedded in the cell membrane or
cell wall?

Enzymatic function KEGG (Kanehisa and Goto, 2000), MetaCyc (Karp et al., 2002),
E.C. Number (Expasy, 2020)

In what process or structure is the protein under investigation
involved?

Duplication and degradation Paralog, Pseudogene Are there other forms of the protein under investigation in the same
genome? Is it functional?

Horizontal gene transfer Phylogenetic Tree, Gene Neighborhood, GC Content Has the protein under investigation co-evolved with the rest of the
genome or has it been obtained in a different way?

RNA family Rfam (Kalvari et al., 2018) Does the gene under investigation encode a functional RNA?

Final annotation Evaluate data from all modules Has the gene been correctly called by the pipeline annotation?

GENI-ACT was undergoing a transition at the time the project was initiated, resulting in creation of customized notebooks and instructions for this project (NSF, 2020).

Academic Year Annotation Projects
As the teachers returned to school in September, they recruited
student participants and trained them using the nine GENI-
ACT modules. All interested students were offered career
counseling and exposure to genomics activities to encourage
the recruitment of student participants. Activity 1, College
and Career Exploration, was facilitated by AHEC coordinators
from the school’s local center, R-AHEC or EN-AHEC, and
provided students with STEM college and career guidance.
Activity 2, also facilitated by AHEC, explored bioinformatics
and genomic careers in more detail. Activity 3, facilitated
by University of Buffalo faculty, provided students with an
introduction to genome annotation. A total of 1,948 high school
students attended at least one of the three activities over the
3 years of the program.

To evaluate the effectiveness of the program, informed consent
was obtained from all participating students, and pre and post
surveys assessed gains of student knowledge and changes related
to their attitudes about careers in STEM. An experimental
design was used, which randomized the 667 students recruited
by the teachers into two groups: 343 were randomized into
the intervention group (received GENI-ACT training) and the
other 324 into the comparison group (no GENI-ACT training).
Comparison group activities included various topics, which
included researching bioethics or doing background research
on genes identified by the annotators and/or the organism
under study. Each student group in the intervention (GENI-
ACT trained) was assigned a unique gene from the bacterium
Kytococcus sedentarius. The students worked on this gene in the
modules, along with a demonstration gene that teachers could use
in a “show one, do one” model of teaching. Most teachers worked
with their students through an after school club, as teachers
were compensated for their time outside the classroom. Since
a randomized design was utilized, the control and intervention
students’ work were separated and easier to control outside of
the regular classroom in an after school program. On average,

teachers met with their intervention students once a week from
January through April of the school year. Each teacher worked
with a group averaging about seven students, assisting their work
on the modules and recording data in their online notebooks.
The students enjoyed the GENI-ACT modules. As one student
explained “the modules themselves along with the paper manual
really made the program easy to follow, which was great for first
time students.” Students also appreciated that each of the genes
they were assigned were different and that the modules allowed
them find something unique about their particular gene. One
student commented that the aspect of the uniquely assigned genes
helped to fuel their love of research.

Refresher trainings were offered to teachers on three different
Saturdays during the school year. The third refresher training,
offered in April, dealt with preparing the teachers for their
students’ research poster preparation and presentation at the
project culminating Capstone Symposium held in May. Using
a poster template that could be populated with data generated
by their students, teachers submitted the completed posters to
program faculty approximately 1 week before the capstone, and
faculty edited them for formatting only (Figure 1). The content
was left as submitted (unless a glaring error was noted) to ensure
that the posters represented student work and data interpretation.
All posters were printed with dimensions of 4 × 3 feet and
displayed at the capstone symposium.

Capstone Symposium
In all, four student capstones were hosted. A total of 136 posters
were prepared and presented during capstone symposia from
2014 to 2017 and are viewable on our online website (NSF, 2020).
Annual Capstone Symposia took place at the end of each project
year at the University at Buffalo, and, on two different occasions
in academic institutions outside of the immediate Buffalo area,
with participant numbers increasing each successive year. The
capstone provided each student participant with the experience of
attending a scientific meeting to present their data and to network

Frontiers in Microbiology | www.frontiersin.org 3 January 2021 | Volume 11 | Article 578747110

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-578747 January 9, 2021 Time: 17:42 # 4

Koury et al. Gene Annotation in High Schools

FIGURE 1 | Example of a capstone event poster. Two to three students typically pooled data to prepared a poster in most instances and took turns presenting the
poster at the capstone. High resolution versions of all posters presented at capstone events are available on the Student Research page of our project website (NSF,
2020).

with other teacher/student participants and program faculty. The
capstone poster session was broken into two sections, allowing
students to visit and interact with students from other schools.

A luncheon also allowed for informal interaction among
students, followed by a series of speakers highlighting current
topics in bioinformatics and genomics. The capstones concluded
with a ceremony recognizing each student and teacher
participant with a certificate of participation. Teachers were
encouraged to take their posters back to their school and display
them in the hallway or classroom. One teacher commented that
their students “are very proud of those posters hanging up there
in the hallway.” Another teacher noted that the capstone is “a
nice program for the high school students to see what’s going on
at the college level and the poster event is something unique, and
something we don’t usually do at the high school level.”

Program Outcomes
Teacher Content Knowledge was measured before and after
the workshop. Teachers were asked to complete two sets of 10
True/False questions to assess their knowledge of bioinformatics
and genome annotations at the start and end of the summer

training workshop. The ten questions included in Set 1 were
developed by the Microbial Genome Annotation Network
(MGAN) to assess learning in students who used GENI-ACT
within their courses. Set 2 includes 10 supplemental items
developed by Faculty to help assess learning specific to the
program. Mixed ANOVAs produced a significant increase in
content knowledge scores from the pre workshop survey to the
post workshop survey [F(1,31) = 37.86, p < 0.001, η2p = 0.55],
confirming that teachers increased their content knowledge of
bioinformatics and gene annotation by the end of the workshop,
as predicted. The content knowledge questions, scoring, and
example teacher responses are available in the educational
resources section of our project website (NSF, 2020a).

Teaching Behaviors around bioinformatics and gene
annotation were also expected to increase as a result of training.
As a way of gauging their comfort with teaching the material,
teachers were asked to rate their confidence in teaching GENI-
ACT content topics. Specifically, teachers rated 28 topics on
a percentage scale, from 10 to 100% in 10-percentage point
increments. Their pre and post workshop ratings were compared
using paired t-tests. In the case of every single topic, there was
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a significant increase by the end of the workshop. The mean
increase in confidence from pre workshop to post workshop
across all 28 content topics was 56%. The workshops clearly
prepared teachers to use the GENI-ACT content and software
tools with their students. However, not all teachers went on to
work with students during the following academic year, with
reasons including perceived difficulty of the project activities,
difficulty implementing the study using the control group model
or that they personally did not want to participate in the project.

Student content knowledge was projected to increase by
the end of program in the intervention group, or those
students receiving training on the GENI-ACT modules. Students
completed the same content knowledge assessment as the
teachers, measured twice as part of pre and post student
surveys. Students were asked to complete two sets of 10
True/False questions to assess their knowledge of bioinformatics
and genome annotations. In independent t-tests, Intervention
students significantly increased their content knowledge of
bioinformatics and gene annotation by the end of the project,
while comparison students did not, on both Set 1, t(173) = 3.19,
p = 0.002 and Set 2, t(173) = 8.40, p< 0.001. Moreover, the scores
in the Treatment group increased by well over 50%, especially in
Knowledge Set 2.

Participant Perspectives
Impact of the project could be seen in student participants
when it came to college applications, choosing a major and
college interviews. One student said that “After participating
in the ITEST program I knew that I wanted to become a
chemical engineer. Furthermore, I knew that I wanted to attend
the University at Buffalo because of how research-oriented the
university is. Lastly, I knew that I wanted to attempt to pursue
applications of chemical engineering in medicine and specifically
the genomic medicine field. Over the next 4 years and beyond, I
plan to pursue a career in this field.” Another student, who was
accepted into RIT after participating in this program, was able
to petition to be allowed into a Bioinformatics course that was
only available for seniors as an elective. He was able to take the
course as a Sophomore because he was able to prove through
his Capstone poster that he had all the background knowledge
to take the course.

Other teacher and student perspectives on performing gene
annotations as a part of this project are available in an NSF STEM
For All Video Showcase presentation (Videohall, 2016).

DISCUSSION

The results of this project informed different approaches to gene
annotation with high school students and teachers that were
utilized in another recently completed NIH Science Education
Partnership Award (manuscript in preparation). The valuable
partnership relationships developed have continued to expand
since completion of the ITEST project described here and
continue for the foreseeable future through another recently
funded project. This project demonstrated that grade 9–12

students could grasp gene annotation and bioinformatics tools
and use them appropriately.

The major limitation of this project for teachers was the use
of the control group design. With this design, teachers could
not include the gene annotation activities within their regular
classes due to the need of having some students in a control
group. This restricted most teachers to working with students
before or after regular school hours, resulting in competition
with other after-school student activities (sports/clubs). Another
limitation of the control group design was the amount of
time needed to recruit and randomize students before they
could begin working with students on their annotations. As
such, most teachers could not to begin work with their
students until well after winter break and were only able
to work through the first four modules before the end of
the school year.

Sustained use of the bioinformatics tools by teacher
participants after project completion is being explored and
will be reported in more detail elsewhere. While complete
gene annotation is not a common theme, teachers have been
able to pick and choose tools from modules to integrate
into their curriculum with relative ease. Some teachers have
continued to pursue complete gene annotations and have
their students present at the annual capstone event tied to
another project, as they feel the poster presentation is a
great experience for their students. One past participating
teacher has integrated all nine GENI-ACT modules into
his Honors Biology class by putting together PowerPoint
presentations based on the Modules and meeting with
the students every day in a lab situation. Future research
might aim to determine the effect of taking part in gene
annotation on academic performance related to biology and
genetics. A study performed at the community college level
demonstrated that students taking part in gene annotation
in a cell biology lab exhibited clear gains in understanding
of topics related to molecular biology in a lecture course
(Beagley, 2013), suggesting similar gains could be expected
in the high school classroom as well. Additional research is
needed to identify topics most appropriate for, and learned
most optimally by, high school students. For example, which
aspects of bioinformatics-based research would most easily be
integrated into high school biology curricula guided by NGSS?
NGSS-friendly curricula will make it easier for teachers to
introduce more students to bioinformatics. While bioinformatics
software tools are complex and their use is challenging to
teach, this study shows they can be successfully used by high
school teachers with their students. Furthermore, utilizing
the same bioinformatics tools used by scientists to conduct
authentic research promotes student interest in science by
seeing that they too can apply the scientific method to study
real-world problems.
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Course-based undergraduate research experience (CURE) courses incorporate high-
impact pedagogies that have been shown to increase undergraduate retention among
underrepresented minorities and women. As part of the Building Infrastructure Leading
to Diversity program at the University of Detroit Mercy, a CURE metagenomics
course was established in the winter of 2019. Students investigated the bacterial
community composition in a eutrophic cove in Lake Saint Clair (Harrison Township,
MI, United States) from water samples taken in the summer and winter. The students
created 16S rRNA libraries that were sequenced using next-generation sequencing
technology. They used a public web-based supercomputing resource to process their
raw sequencing data and web-based tools to perform advanced statistical analysis. The
students discovered that the most common operational taxonomic unit, representing
31% of the prokaryotic sequences in both summer and winter samples, corresponded
to an organism that belongs to a previously unidentified phylum. This result showed
the students the power of metagenomics because the approach was able to detect
unclassified organisms. Principal Coordinates Analysis of Bray–Curtis dissimilarity index
data showed that the winter community was distinct from the summer community
[Analysis of Similarities (ANOSIM) r = 0.59829, n = 18, and p < 0.001]. Dendrograms
based on hierarchically clustered Pearson correlation coefficients of phyla were divided
into a winter clade and a summer clade. The conclusion is that the winter bacterial
population was fundamentally different from the summer population, even though the
samples were taken from the same locations in a protected cove. Because of the small
class sizes, qualitative as well as statistical methods were used to evaluate the course’s
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impact on student attitudes. Results from the Laboratory Course Assessment Survey
showed that most of the respondents felt they were contributing to scientific knowledge
and the course fostered student collaboration. The majority of respondents agreed or
strongly agreed that the course incorporated iteration aspects of scientific investigations,
such as repeating procedures to fix problems. In summary, the metagenomics CURE
course was able to add to scientific knowledge and allowed students to participate in
authentic research.

Keywords: 16S rRNA, aquatic, Course-based Undergraduate Research Experience, eutrophic, ice, Laboratory
Course Assessment Survey, metabarcoding, metagenomics

INTRODUCTION

For over a quarter of a century, reports from science, technology,
engineering and mathematics (STEM) advisory organizations
have been calling for reform of undergraduate STEM curricula
to focus on developing analytical skills instead of memorizing
content (Project Kaleidoscope, 1991; Howard Hughes Medical
Institute, 1996; National Research Council, 1996, 2003; National
Science Foundation, 1996; Bauerle et al., 2009). These same
reports have called for teaching innovations that will increase
the participation of underrepresented minority students in
STEM. Programs that have met this goal have some of the
following attributes: experience with authentic research, active
learning, collaborative learning communities where students
share an intellectual experience, and involvement in research
that directly impacts their communities (Graham et al., 2013;
Toven-Lindsey et al., 2015; Estrada et al., 2016; Provost, 2016).
Faculty-supervised undergraduate research is a well-established
approach to provide these high-impact activities. Unfortunately,
the approach has limited capacity (i.e., only a few students
can be effectively taught using an apprentice model). One
strategy to overcome the bottleneck is to provide course-based
undergraduate research experience (CURE) instruction (Provost,
2016; Bell et al., 2017).

Course-based undergraduate research experiences are defined
as laboratory courses that incorporate the following attributes
(Auchincloss et al., 2014; Provost, 2016):

1. Scientific Process: Conducting research as practiced by
professional scientists.

2. Discovery: Investigating novel questions.
3. Relevance: Having impacts beyond the classroom because

the research advances scientific knowledge.
4. Collaboration: Collectively tackling difficult problems.
5. Iteration: Conducting research built upon existing

knowledge, learning by failure and retrying, and revising
thinking after self-analysis and peer-critique.

Several CURE courses have been successfully implemented
that involved microbiology, virology, molecular biology,
bioinformatics, and other life science disciplines (Wang, 2017),
including metagenomics (CUREnet, 2013; Lentz et al., 2017;
Wang, 2017). One strength of CUREs is they can support
distributive approaches to address large biological questions
(Hatfull, 2015; Wang, 2017). Because the microbial world is so

diverse and vast, the National Research Council has called for
the incorporation of metagenomics into undergraduate biology
instruction because it can be an effective distributive strategy
to advance scientific knowledge (Jurkowski et al., 2007). An
example of a successful distributive-science CURE is the Science
Education Alliance Phage Hunters Advancing Genomics and
Evolutionary Science (SEA-PHAGES) program (Hatfull, 2015).

The University of Detroit Mercy’s ReBUILD Detroit program
(Snyder and Kumar, 2019) is part of a National Institutes of
Health initiative to increase the pipeline of underrepresented
minority undergraduates entering biomedical STEM research
careers (National Institutes of Health, 2019). To recruit and retain
the target population, ReBUILD Detroit is using a “persistence
model” (Graham et al., 2013; Toven-Lindsey et al., 2015) which
involves having the students participate in research activities
every semester, including the first semester of their freshman
year. To increase the availability of authentic research experiences
for undergraduates and to support ReBUILD Detroit’s retention
strategy, a CURE course entitled, “Applied Metagenomics” was
established in the winter of 2019 and repeated in the winter of
2020. The course investigations focused on aquatic microbiology
because water quality issues are important community concerns
in metropolitan Detroit (Bolsenga and Herdendorf, 1993).
Because Detroit is a large industrial city within the Great Lakes
Basin, the students have a myriad of water quality issues they
can investigate.

Background Related to the
Environmental Question Investigated by
the Students
Metagenomics, as defined by the National Research Council
(2007) and Wooley et al. (2010), is the study of uncultured
microorganisms found in environmental samples, by use of
massively parallel sequencing. The environmental DNA (eDNA)
sequences can be bulk DNA (a.k.a., shotgun metagenomics)
or amplicons from specific loci (a.k.a., metabarcoding).
Metagenomic studies have shown that freshwater ecosystems
appear to have a distinct assemblage of prokaryotes in the
epilimnia. Metanalysis studies of 16S rRNA gene sequences
obtained from diverse lakes (e.g., oligotrophic to highly
eutrophic) on different continents have shown that freshwater
lakes have an assemblage of prokaryotes that are distinct
from marine and terrestrial habitats (Zwart et al., 2002;
Newton et al., 2011).
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Some 16S rRNA metabarcoding studies have shown that
freshwater trophic status can impact the composition of
prokaryote communities. For example, a study of human-
impacted tributaries of the Great Lakes showed greater species
richness in oligotrophic lake samples (Newton and McLellan,
2015). A similar pattern was observed in a separate study of
the Great Lakes, canals, and streams of the Niagara Peninsula
(Mohiuddin et al., 2019). In contrast, a study of oligotrophic
versus eutrophic lakes in Greece showed greater species diversity
in the eutrophic samples (Karayanni et al., 2019). These results
suggest that trophic status can alter the freshwater prokaryote
diversity, but a general rule on the relationship between
nutrient level and prokaryote community diversity has not
been established.

Many metagenomic investigations of aquatic ecosystems
only sample water during ice-free months (for examples, see
Shade et al., 2007; Mohiuddin et al., 2019). As a result, less
information on the nature of aquatic bacterial communities in
seasonally freezing lakes is available in the literature. Vigneron
et al. (2019) observed that ice-covered tundra lakes had a rich
prokaryotic community with similar cell densities to the ice-free
water. However, the composition of the prokaryotic community
changed with the seasons. Metabolic pathways deduced from
shotgun metagenomic sequencing showed the prokaryotic
community shifted from phototrophic and aerobic metabolism in
the summer to reductive metabolism that could degrade aromatic
organics in the winter. Tran et al. (2018) observed similar results
in their investigations of Verrucomicrobia communities of taiga
lakes. These results suggest that winter prokaryotic communities
in ice-covered lakes contain a rich biota distinct from their open
water counterparts. With these observations in mind, the goal
of the students in Applied Metagenomics was to determine if
the prokaryotic community in an ice-covered versus open-water
temperate lake exhibited changes in community composition
similar to those observed in tundra and boreal lakes.

MATERIALS AND METHODS

Human Subject Statement
This study was carried out in accordance with the
recommendations of National Institutes of Health’s Human
Subjects Research Guidelines. The protocol was approved
by the University of Detroit Mercy’s Institutional Review
Board (Protocol Number 1718-53) on March 10, 2018. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Class Description and Assessment
Applied Metagenomics (BIO3201) was offered at the University
of Detroit Mercy during the winter terms of 2019 and 2020.
The prerequisite for the course was genetics, cell and molecular
biology, or biochemistry. In 2019, eight students were enrolled
in the 15 week course. Their self-reported demographics were
as follows: Gender: 75% males, 25% female; Ethnicity/Race: 75%
white, 25% Asian/Pacific Islander. In 2020, 16 students took
the course. Their self-reported demographics were as follows:

Gender: 50% males, 43.75% female, 6.25% prefer not to answer.
Ethnicity/Race: 37.5% White (Middle Eastern descent), 25%
White (European descent), 31.25% Asian/Pacific Islander, 6.25%
Black African American, and 6.25% prefer not to disclose.
The sum is greater than 100% because some students reported
themselves in more than one category. The course was taught
twice weekly in 2 to 3 h sessions. During the first 2 weeks
of the course, students performed skills-building activities
involving accurate micro-pipetting, sterile technique, and basic
bacteriology (i.e., pouring Petri plates, streak plates, and liquid
transfers). After completing the skills-building portion of the
course, the students conducted their investigations. Students’
grades were based on written laboratory reports and exams.
In 2019, students elected to conduct a study to compare
the prokaryote composition of summer versus winter aquatic
communities. In 2020, students chose to study the prokaryotic
community of two park ponds. In both terms, the students
performed dilution plate count assays, field-collected water
samples, and isolated eDNA. Due to the COVID-19 epidemic, the
students in 2020 were unable to complete their study because the
course was switched to an online format during the last 5 weeks.
For the online component, the students independently analyzed
the data generated by the 2019 students. Both years, students
were taught how to interpret species accumulation curves (Knell,
2018), principal component analysis (Starmer, 2015, 2017), and
hierarchically clustered heatmaps (Starmer, 2016) by watching
online videos. In 2020, the instructor created a video tutorial on
how to use MicrobiomeAnalyst (Dhariwal et al., 2017; Chong
et al., 2020), which was posted on a course-management website.

To determine if the course provided the expected outcome
of a CURE, the Laboratory Course Assessment Survey (LCAS)
was administered during the last week of the course (Corwin
et al., 2015). The LCAS is a validated psychometric instrument
that assesses students’ views of the frequency of collaboration,
perception of creating new scientific knowledge, and frequency
they needed to repeat and evaluate their experimental results.
To assess student attitudes regarding next-generation sequencing
technologies, the Genome Consortium for Active Teaching –
Sequencing Group (GCAT-SEEK) questionnaire (Buonaccorsi
et al., 2011; Tobin and Shade, 2018) was administered the first
week of the course and the last week of the course. Additionally,
an end-of-term survey written by the instructor was given to
the students as a qualitative assessment. All the surveys and
questionnaires were taken anonymously.

Study Site
Samples were taken from an artificial cove in Lake Saint Clair
(Harrison Township, MI, United States; latitude 42.561496,
longitude −82.843249; Figure 1). The cove was created when
a stone and earth breakwater was installed to create a boat
harbor. The cove is located next to the mouth of the Clinton
River Bypass, a flood-control canal that can carry Clinton River
sediments (Francis and Haas, 2006; Healy et al., 2008). The
harbor was abandoned when the property was acquired by the
Michigan Department of Natural Resources. Natural successional
processes have been allowed to occur in the cove for several
years. Sediments from the Clinton River Bypass have been
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FIGURE 1 | Map of the study’s location. Dots represent water sampling
locations. Wetland contiguous to the study site is shaded in green. The range
bar is 100 m.

accumulating. As a result, the water depth was approximately 1
to 2.5 meters, with the shallowest portion near the mouth of the
harbor. A rich community of aquatic vegetation, invertebrates,
fish, and turtles resided in the cove.

Water Sampling
Water samples were collected in gamma-irradiated sterile bottles
placed on ice and transported back to the laboratory. Surface
water samples were collected in summer (June 22, 2016)
from ten different locations (Figure 1). To exclude floating
plant material, the water was filtered through autoclaved rayon
polyester mesh (22–25 µm pore size) during collection. After
collection, the bottles were capped with an airtight closure.
The water temperature was 23◦C. To collect water in the
winter (February 5, 2019), an autoclaved ice auger (15 cm
diameter) was used to drill holes through 10 cm to 61 cm
of ice. The auger was sterilized with 95% ethanol between
samplings. The holes were drilled near the same location as the
ten summer water samples. The water temperature underneath
the ice was 0.8◦C. A surface sterilized pole was used to lower
the collection bottle below the ice. An ethanol sterilized rubber
stopper was removed from the mouth of the sampling bottles
by pulling an attached string. Once recovered, the bottles were

closed with an airtight cap. The samples were stored on ice
until DNA extraction.

Water and Sediment Analysis
After microfiltration (see section “DNA Extraction”), the sterile
cove-water samples were placed into a −20◦C freezer until
analysis. On the day of analysis, the water samples were thawed in
a room temperature water bath. Orthophosphate concentrations
were measured using Hanna Instruments (Woonsocket, RI,
United States) Ultra Low Range Phosphate Reagent kit, which
is based on the ammonium molybdate-ascorbic acid method
(Environmental Protection Agency, 1978). For orthophosphate
analysis, 10 mL of water was transferred to virgin sterile
polypropylene tubes. The content of the reagent packet was
dissolved into the samples. After a 3 min room temperature
incubation, the samples were transferred to a 5 cm long cuvette.
The absorbance at 708 nm was measured. Winter samples were
measured by Applied Metagenomics students. Summer samples
were measured by students enrolled in Ecology Laboratory
during the fall of 2019. Water hardness, ammonia, and nitrate
levels were measured using Hanna Instruments model HI83200
Multiparameter Photometer kits.

During the fall 2018 semester, students enrolled in Ecology
Laboratory performed chemical assays on the cove’s benthic
sediments. Samples were collected by attaching a plastic beaker
to a 3 m pipe. To remove the excess water from the sample, small
colanders were lined with coffee filter paper and allowed to drip.
The LaMotte (Chestertown, MD, United States) Soil Analysis
Kit (5010-01) was used to measure phosphorous, potassium,
nitrogen, and pH.

DNA Extraction
Within 2 h of sampling, bacteria were isolated by passing the
samples through gamma-irradiated disposable microfiltration
(pore size 0.2 µm, diameter 47 mm) apparatuses. The apparatuses
had closures to prevent contamination. Immediately after
vacuum filtration, the apparatuses were moved to a laminar
flow hood. Membranes were cut out using sterile scalpels,
transferred to gamma-irradiated polystyrene Petri plates, and
cut into small fragments. To prevent cross contamination,
virgin sterile scalpel blades were used for each membrane filter.
The eDNA was isolated using the Zymo Research (Irvine,
CA, United States) Quick-DNA Fecal/Soil Microbe Miniprep
Kit (Catalog number D6010). As a control, membranes were
wetted with 100 µL of the kit’s elution buffer and processed
like the other filters. Cell disruption and lysis were performed
by placing membrane fragments into the kit’s lysis tubes.
A Bead Bug Homogenizer (Benchmark Scientific, Sayreville, NJ,
United States) shaken at 4,000 cycles per minute was used for
180 s. The manufacturer’s instructions were followed for the
remaining DNA purification steps. To remove contaminating
RNA, isolated DNA was treated with 1/10 volume of 10 mg/mL
RNase A (37◦C for 30 min). The DNA was purified and size
selected (>500 pb) using 0.65X volume of Mag-Bind Total
Pure NGS magnetic beads (Omega Bio-tek, Norcross, GA,
United States) per the manufacturer’s instructions. DNA purity
was assessed by measuring the 260 nm/280 nm optical density
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(OD) absorption ratio with a NanoDrop Lite Spectrophotometer
(ThermoFisher, Waltham, MA, United States). All samples had
an OD260/280 ratio of less than 1.9. DNA concentrations were
measured with an Invitrogen Qubit fluorimeter (ThermoFisher;
Double Stranded DNA Broad Range Assay Kit, Catalog number
Q32853). The size of the RNase A treated eDNA was evaluated
using a rapid gel electrophoresis system (1.2% DNA FlashGel,
Lonza Group, Basel, Switzerland).

16S Amplicon Library Construction and
Sequencing
Library preparations and sequencing were performed by a
commercial service (Molecular Research Laboratory, Shallowater,
TX, United States). The 16S rRNA gene variable region V4
(Gray et al., 1984) was amplified using Illumina (San Diego,
CA, United States) barcoded oligonucleotides that contain
the priming sequences 515F-GTGYCAGCMGCCGCGGTAA
(Parada et al., 2016) and 806R-GGACTACNVGGGTWTCTAAT
(Apprill et al., 2015). Polymerase chain reaction (PCR) was
performed using the HotStarTaq Plus Master Mix Kit (Qiagen,
Hilden, Germany). The thermocycling protocol was as follows:
polymerase activation by heating at 94◦C for 3 min; 28 cycles
of melting at 94◦C for 30 s; annealing at 53◦C for 40 s;
and primer extension at 72◦C for 1 min. An additional
elongation step of 72◦C for 5 min was added to the last
cycle. After 2% agarose gel electrophoresis, successfully produced
amplicons were pooled in equal molar amounts and purified
using Ampure XP beads (Beckman Coulter Life Sciences,
Indianapolis, IN, United States). The library was sequenced
with an Illumina MiSeq using the manufacturer’s protocol. After
sequencing, barcodes were removed. Sequences shorter than
150 pb were purged, and chimeras were removed. Ten of ten
samples were successfully sequenced from the winter samples
while nine of ten samples were successfully sequenced from
the summer samples.

Analysis Pipeline
To facilitate data processing by undergraduates with no
command-line computing experience, software pipelines with
web-based graphical user interfaces (GUI) were used. A flow-
chart of the data analysis steps used is shown in Figure 2 and
a detailed description of how the students completed the steps
is presented in Supplementary Table 1. Metagenomics Rapid
Annotation using Subsystem Technology (MG-RAST; Meyer
et al., 2008) version 4.0.3 (Argonne National Laboratory, 2017)
web-based pipeline was used as a sequence data repository,
to perform data quality control, and to query the 16S rRNA
databases (Quast et al., 2012).

Students in the 2020 course performed data analysis by
accessing the web-based MicrobiomeAnalyst pipeline (Dhariwal
et al., 2017). After data uploading, the students used the
Projection with Marker Data Profiling (PPD) pipeline. To deal
with data paucity in low abundance taxa (Weiss et al., 2017), a
filter was used to remove OTUs with fewer than four counts in
20% of the data cells. After filtering, 341 OTU’s were assessed.
To deal with variability in library sizes, the data was rarefied

without replacement to the minimum library size. The data was
normalized by total sum scaling (Weiss et al., 2017). The pipeline
was used to analyze the data with rarefaction curves, alpha-
diversity tools, and beta-diversity tools. Additionally, differential
abundance was evaluated by using built-in RNAseq tools [DEseq2
algorithm (Love et al., 2014)]. An MA-plot (Love et al., 2014) was
created by using a spreadsheet to merge the log2-fold change data
(M) calculated by DEseq2 with average OTU count data (A). The
larger abundance average (summer versus winter) was used to
plot the A-axis.

RESULTS

Limnology
To evaluate the trophic status of the study site, nutrient
concentrations of the water and benthic sediments were
measured (Table 1). Notably high concentrations of
orthophosphate were observed in the water. Additionally,
high levels of phosphorous were detected in the sediments.

16S Metagenomic Libraries
The students were successful in isolating high quality eDNA from
bacteria sampled from the frozen cove. After RNaseA treatment,
the DNA had a modal size of >4 kbp (Supplementary Figure 1A)
and was successfully used to create libraries containing 16S rRNA
encoding amplicons. After Illumina MiSeq sequencing, the SILVA
16S rRNA gene database was queried by the students. The hits
observed from the libraries ranged from 14,995 hits to 178,120
hits, with the median being 62,317 hits.

Species accumulation curves were used to determine if
the sequenced libraries were representative of the species
richness of the prokaryotic communities (Figure 3). In both
the summer samples and the winter samples, the slopes of the
curves of the low-count unfiltered datasets did not produce
an asymptote, even library S3 that produced over 120,000 hits
to the SILVA 16S rRNA database. The lack of an asymptote
indicates that the libraries did not capture the complete species
richness of the prokaryotic community. Additionally, the graphs
show that the sequencing runs did not produce datasets of
equal sampling efforts, especially the libraries made from the
summer samples. As a result, the data sets were rarefied
before subsequent analysis. The bottom panels of Figure 3
showed that the filtering and data rarefaction produced datasets
representing equal sampling efforts, making the data amenable to
statistical analysis.

α-Diversity
The students used three methods to compare the α-diversity
(i.e., taxonomic diversity within a habitat) of the winter and
summer prokaryote communities. Unfiltered data was used
to produce ranked abundance curves. Summer versus winter
data sets of nearly equal sizes were compared (Figure 4A and
Supplementary Figures 1B,C). The analysis showed that both
the summer and winter bacteria populations produced nearly
identical genera abundance structure. Even on a log-scale, the
distribution produced a steep negative-sloping curve. Analysis
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FIGURE 2 | Flow-chart of data analysis steps. The order of activities and the software tools used to accomplish the corresponding tasks are described.

TABLE 1 | Nutrient data.

Water chemistry (Winter 2019)

Sample

Parameter size Mean Standard deviation 95% confidence interval Units

Orthophosphate 9 31.2 11.0 39.6 22.8 mg/L

Hardness, Ca2+ 9 98.0 4.6 101.5 94.5 mg/L

Ammonium 3 0.23 0.09 0.46 0.01 mg/L

Nitrate 9 3.3 2.2 5.0 1.5 mg/L

PH 9 6.70 0.27 6.90 6.49

Sediments (Summer 2018)

Sample

Parameter size Mean Standard deviation Units

Phosphorous 3 224 0 kg/ha

Potassium 3 477 0 kg/ha

Nitrogen 3 17 0 kg/ha

pH 3 7 0

using Simpson’s diversity index indicated that both communities
showed similar genera diversity (Figure 4B). The difference
in the diversity indices was not statistically significant (two-
sample t-test assuming unequal variance: winter x̄ = 0.8349,
s = 0.0367; x̄ = 0.7941 and s = 0.1135; pooled degrees of
freedom = 8, t = 0.9754, p = 0.3579; and Shapiro Wilk
test of normality: winter p = 0.9712, summer p = 0.2081).
Similar results were obtained when using Shannon’s diversity
index (Figure 4C, two-sample t-test assuming unequal variance:
winter x̄ = 2.633, s = 0.1292; summer x̄ = 2.650, s = 0.3803;
pooled degrees of freedom = 7, t = −0.2495, p = 0.8101; and
Shapiro Wilk test of normality: winter p = 0.5777, summer
p = 0.5215).

β-Diversity
To evaluate β-diversity (i.e., comparison of taxonomic diversity
between habitats), the students used principal coordinate analysis
of Bray–Curtis dissimilarity indexes (Figure 5). The summer
samples and winter samples produced two distinct clusters.
ANOSIM showed the clustering to be statistically significant
(r = 0.59829, p < 0.001). To determine which phyla were
responsible for the observed differences in β-diversity, changes
in abundance were analyzed.

To visualize which phyla were associated with winter
versus summer communities, the students created stacked bar
charts (Figure 6A). The graph shows that the majority of
the observed phyla were present in low abundance. Only
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FIGURE 3 | Species curves of unaltered and filtered-rarefied datasets. Raw
OTU counts that represent species richness are presented in the top two
panels. The filtered and rarefied datasets are presented in the bottom two
panels. Libraries from summer-collected samples are labeled with S and
winter-collected samples with W.

one phylum, Proteobacteria, was highly prevalent and showed
increased abundance in the winter. Additionally, only one
phylum, Verrucomicrobia, was highly prevalent and showed
increased abundance in the summer. Dendrograms with
differential abundance heat-maps (Figure 6B) produced a
distinct summer clade and a winter clade. Similar results
were also produced when taxonomic orders were analyzed
(Supplementary Figure 1D).

An MA-plot (Figure 7) was used to show the differential
abundance of genera. Of the 230 genera in the analysis, 80
had greater abundance in the winter samples and 59 were
more abundant in the summer samples (Supplementary
Table 2). Six genera showed substantially increased winter
abundance: unclassified within Betaproteobacteria, Prolixibacter,
unclassified within the Sphingobacteriaceae, Delftia, and
Pedobacter (descending order). Five genera showed substantially
increased summer abundance: Clostridium, Cryobacterium,

FIGURE 4 | Comparison of the alpha-diversity of summer and winter
prokaryote populations. (A) Ranked-abundance curve by genera of summer
sample (S2) and winter sample (W5). Both libraries produced nearly identical
sampling efforts (62,317 hits and 63,700 hits to the SILVA 16S rRNA
database, respectively). The S2 data was normalized to 63,700 hits by
multiplying the hit count for each genus by 1.022. (B,C) Box-and-whisker
plots comparing Simpson diversity and Shannon diversity, respectively, of the
summer versus winter prokaryote populations. The data set was filtered and
rarefied.

Rubritalea, unclassified within the Gamaproteobacteria,
Terrimonas, and Chthoniobacter.

Course Assessment
Students’ perceived experiences in conducting authentic research
were assessed using the LCAS (Figure 8). The Collaboration
component of the LCAS assesses the frequency that collaborative
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FIGURE 5 | Principal coordinates analysis of Bray–Curtis Index distance
measurements at the taxonomic level of the genera.

activities occurred during the course. Two-tail sign-tests were
used to assess the null hypothesis that Collaborative activities
occurred monthly. In 2019 (Figure 8A), responses to questions
C1, C2, C4, C5, and C6 were statistically significant (p < 0.05).
The results indicated that collaborative activities were perceived
to occur more frequently than monthly, with the median
response corresponding to weekly. The null hypothesis was
accepted for C3 (6 positives, 1 negative, and p = 0.1250). In 2020
(Figure 8C), responses to all the Collaboration questions were
statistically significant (p < 0.01). The results indicated that the
students’ perceived collaborative activities more frequently than
monthly, with the median value being weekly.

The Discovery section of the LCAS (Figures 8B,D) assesses
students’ perceptions of their experiments contributing to new
scientific knowledge. The Iteration section assesses student
perceptions of the frequency that procedures were duplicated
and the frequency that experiments were repeated to resolve
problems with their data. Both sections used a six-point Likert
scale. The students’ responses were evaluated with two-tail sign-
tests, using the null hypothesis median = 3.5. For the 2019 class,
all the Discovery questions and Iteration questions produced
statistically significant responses (p < 0.05). For the 2020 class,
all the Discovery questions and Iteration questions produced
statically significant responses at p < 0.001. The results indicated
that the students perceived that they participated in iteration-
processes associated with the scientific method and their research
activities were scientifically relevant.

In addition to the LCAS, a survey created by GCAT-SEEK was
used to evaluate the students’ attitudes and perceptions related
to next-generation sequencing. The results from the 2019 course
(Figure 9) indicated that the students felt their understanding of
genetics, biochemistry, and bioinformatics increased after
completing the course. Analyses of the Understanding
questions with Mann–Whitney U-tests detected statically
significant (p < 0.05) increases of median response scores for all

questions. Additionally, the two questions related to students’
bioinformatics skills showed statistically significant increases.
The students also showed a statistically significant increase
in their “enthusiasm” regarding next-generation sequencing
(question A1). They also indicated increased confidence
(questions A3 to A5) in their ability to use next-generation
sequencing in future research. There was no change in students’
interest in taking additional courses (question A2), possibly
because their initial interest was already high (median = 4.5 on
a 5-point scale). Students answering the questionnaire in 2020
reported high scores in all categories of the questionnaire. As a
result, no statistically significant changes were observed in the
pre-course/post-course median responses. Comparisons of pre-
course questionnaire responses from 2019 to 2020 showed the
2020 students had statistically greater median scores (p < 0.05)
for questions U1 to U4, S1, S2, and A5. The results indicated
that the 2020 students felt they had a greater understanding of the
concepts and better analytical skills at the beginning of the course
than their 2019 counterparts.

For qualitative assessment, an anonymous end-of-course
student questionnaire was given to the students. Their verbatim
responses are presented in Supplementary Table 3. In 2019 and
2020, students’ responses to the question, “What aspects of the
course did you like?” were longer than their responses to “What
changes can be made to improve the course.” Some noteworthy
comments made in 2019 related to the students’ positive attitudes
toward field collections during the winter. Because the course
switched to an online format due to the COVID-19 epidemic in
2020, those students did not have the opportunity to participate
in field collection. A theme observed in both the 2019 and 2020
surveys was student comments on the hands-on nature of their
experience, collaborations with their peers, repeating procedures
that did not work in the first attempt and performing experiments
where the answers were not already known. Some students noted
that having cycles of draft and revision of their laboratory reports
was beneficial to their learning.

DISCUSSION

Students Conducted Authentic Research
Undergraduates enrolled in the CURE course Applied
Metagenomics were successful in conducting an authentic
scientific investigation. The students’ chemical analysis of
the water samples (Table 1) showed high orthophosphate
concentrations. As a result, the cove-water can be classified
as eutrophic (Carlson, 1977). The presence of dense mats of
three duckweed species (Baker, 2018) also indicates that the
water is eutrophic (Landesman et al., 2011). The likely source
of nutrients is the Clinton River Bypass (Figure 1), a waterway
high in nutrient and sediment pollution (Healy et al., 2008).
Sediments from the bypass can be observed entering the cove
(personal observation). Analysis of the benthic sediments
collected from the cove showed high nutrient levels, including
phosphorous (Table 1).

The students used some standard computational approaches
(Gotelli and Chao, 2013) to evaluate community diversity.
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FIGURE 6 | Changes in prokaryote abundance by phyla. (A) Stacked bar chart of relative abundance. The phyla were arranged from greatest mean winter
abundance to lowest mean winter abundance. DEseq2, with a false discovery rate set at 0.05, was used to assess the statistical significance of the fold changes.
Phyla that showed greater winter abundance are indicated with a “W” while those with greater summer abundance are indicated with “S.” The adjusted p-values are
shown. (B) Dendrogram with heat-maps that were hierarchically clustered by average Pearson correlation coefficient. Phyla that were statistically significant in (A) are
marked with asterisks in (B).

Species accumulation curves (Figure 3) indicated that the 16S
rRNA sequence data sets did not sample all the species present in
the summer and winter samples. The largest sequencing library
(S3) detected 1,032 OTUs (Supplementary Table 2). Because
detected species richness is a function of sampling effort (Gotelli
and Chao, 2013) and the libraries had over a 10-fold difference
in sequencing depth (Weiss et al., 2017), the students conducted
most of the subsequent data analysis with rarefied datasets.

Multiple approaches were used to evaluate α-diversity by
the students. One approach was to use spreadsheets to create
ranked abundance curves (Smith and Smith, 2015) using data
from libraries of equal sequencing depth (Figure 4A and
Supplementary Figures 1B,C). Since 16S rRNA barcoding
cannot reliably classify bacteria to the species level (Lebonah
et al., 2014), the ranked abundance curves were created at the
genera level as defined by the SILVA 16S rRNA databases (Quast
et al., 2012). The graphs had backwards-J shapes indicating the
communities were comprized of one to three highly abundant

genera. The winter and summer lines on the graphs overlapped,
which indicated that the amount of prokaryote diversity in
the winter samples was the same as in the summer samples.
This conclusion was supported by calculating diversity indices.
Simpson’s and Shannon’s diversity indices measure diversity by
considering the number of taxa and the evenness of distribution
of the taxa (Smith and Smith, 2015; Kim et al., 2017). The
box-and-whisker plots of both diversity indices overlapped,
thus showing no difference in α-diversity between summer
and winter samples.

The students used the Bray–Curtis dissimilarity index to
evaluate β-diversity. This index was chosen because it is the
complement of the Sørensen similarity index, a community
comparison index presented in many undergraduate ecology
textbooks (Smith and Smith, 2015). Principle coordinate analysis
(Figure 5) showed that the winter and summer community
compositions were distinct. Dendrograms with heat-maps were
used to display the differential abundance of phyla (Figure 6) and
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FIGURE 7 | Differential abundance of prokaryote genera. Maximum mean
abundance (summer versus winter) is presented on the X-axis. Differential
abundance expressed as log2 [(mean winter abundance) – (mean summer
abundance)] is presented on the Y-axis. Genera with greater winter relative
abundance are given positive values and those with greater summer
abundance are given negative values. Red data points represent genera that
have statistically significant change in abundance, as determined by DEseq2,
with a false discovery rate set at 0.05. The labeled data points correspond to
the following genera: A, unclassified within Betaproteobacteria; B,
Prolixibacter; C, unclassified within the Sphingobacteriaceae; D, Delftia; E,
Clostridium; F, Cryobacterium; G, Rubritalea; H, Terrimonas; I,
Chthoniobacter; and X, unidentified phylum in Bacteria domain.

orders (Supplementary Figure 1D). The data clearly showed that
the taxonomic composition of the winter prokaryotic community
was different than that of the summer community.

The community compositions of the cove (Figure 6)
contained the same phyla identified as ubiquitous freshwater
bacteria by Zwart et al. (2002) and Newton et al. (2011). They
are Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria,
Verrucomicrobia. As a result, the students concluded that the
composition of the prokaryote community in the cove was typical
of freshwater ecosystems.

In contrast, the students concluded that the composition
of the frozen cove community was unlike communities in
frozen tundra lakes described by Vigneron et al. (2019).
When frozen, the Methanogens, Planctomycetes, Chloroflexi,
and Deltaproteobacteria became abundant in tundra lakes. In
contrast, no Methanogens or Deltaproteobacteria in any of the
lake samples were observed by the students (Figure 6). The
undergraduates did observe Chloroflexi and Planctomycetes,
but they were more abundant in the summer samples. In
the summer, Actinobacteria and Betaproteobacteria were the
predominant phyla in the tundra lake. In contrast, in the Lake
Saint Clair samples, Betaproteobacteria were not predominant,
and Actinobacteria were more abundant in the winter samples.
These results indicated that the community composition of
the eutrophic temperate water was distinctly different than the
community composition observed in a tundra lake.

The most abundant phylum detected by the students in all
water samples was classified as unidentified (Figure 6). This
phylum contained a single OTU (Supplementary Table 2).
Thus, this organism likely has not been described by science.
OTU2675 represented 31% of the counts in the dataset. Although
it is the most prevalent bacterium in the community, it likely
does not grow on tryptic soy agar or minimal media. Over 30
bacteria strains have been isolated as pure cultures by students
taking an ecology laboratory course. 16S rRNA barcodes of these
isolates did not correspond to OTU2675 (personal observation).
The probability of obtaining this result due solely to chance is
1.46 × 10−5. This result showed the students that culture-based
methods can miss environmentally prominent organisms, thus
illustrating one of the strengths of using metagenomics to study
microbial ecology.

Because of their great metabolic diversity, it is difficult to
determine the ecological role of prokaryotes by just evaluating
higher-level taxa. Thus, differential abundance level was
analyzed at the level of genera. With 224 genera in the data set
(Supplementary Table 2), stacked bar charts and hierarchically
arranged heat-maps were inadequate methods of presenting
the data. To solve the problem, the students used spreadsheet
software to create an MA plot to analyze differential abundance
at the level of the genera (Figure 7). Four genera stood
out as having increased abundance in the winter samples;
unclassified within Betaproteobacteria; Prolixibacter; unclassified
within the Sphingobacteriaceae; Delftia; and Clostridium.
Four genera showed prominently increased abundance in the
summer samples; Cryobacterium, Rubritalea, Terrimonas, and
Chthoniobacter. The most abundant genera corresponded to the
unidentified OTU2675 bacteria. Its relative abundance was nearly
identical in winter and summer samples. Based on its position
on the A-axis, this bacterium was the dominant prokaryote in
the cove. One possible line of future student investigation is to
determine the prevalence of the species in other locations within
Lake Saint Clair and other waterways of the Great Lakes Region.

Analyzing the natural history of prominent genera may
provide insights into the ecology of the frozen lake and
become a basis for students to develop testable hypotheses. For
example, datapoint-A (Figure 7) corresponds to an unclassified
genus within Betaproteobacteria. Betaproteobacteria are often
numerically dominant in lake epilimnia, have rapid growth rates,
are major components in microbial grazing food chains, and
prefer nutrient-rich environments (Newton et al., 2011). Thus,
organism-A may have increased its relative winter abundance
due to the exploitation of winter-abundant resources. Another
example is the genera Prolixibacter (datapoint-B). Members of
this taxon are non-cellulosic fermenting facultative anaerobes
that have been isolated from marine sediments (Holmes et al.,
2007) and cold (5◦C) peat bogs (Schmidt et al., 2015). Often,
biological oxygen demands cause hypoxia in ice-covered lakes
(Ellis and Stefan, 1989). Thus, the increased prevalence of
Prolixibacter may be due to its being adapted to cold low
oxygen environments. To test this hypothesis, dissolved oxygen
measurements can be conducted of water samples collected
from under the ice.
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Nutrient availability may be a factor causing an increased
abundance of some genera. For example, Delftia abundance
increased 32-fold in the winter samples. The two corresponding
OTUs had high homology to D. acidovorans and D. tsuruhatensis.
The type specimens for these species were isolated from high
nutrient environments (Han et al., 2005; Yilmaz and Icgen, 2014).
Another genus, Clostridium, had a 6-fold greater prevalence in
the winter samples. Members of this genera have been isolated
from activated sludge (Gumaelius et al., 2001). Many strains
are aerobic denitrifiers. The presence of Clostridium suggests an
active role in nutrient turnover.

The pattern observed in one of the differentially abundant
genera is puzzling. Cryobacterium, represented by a single OTU,
showed a 2.8-fold increased abundance in the summer samples
(Figure 7, datapoint F). The Cryobacterium OTU had high
homology to C. psychrophilum and was the 2nd most abundant
OTU in the summer dataset (Supplementary Table 2). The
type specimen of C. psychrophilum was isolated from samples
in Iceland. It grew best in cool water (9 to 12◦C) and stopped
growing when the temperature reached 18◦C (Suzuki et al., 1997).
When the water samples were collected in the summer, the
surface temperature was 23◦C. Thus, the increased prevalence
of the C. psychrophilum-like bacteria in the summer sample is
unexplained and warrants further investigation.

Student Data Analysis Workflow
One of the goals in the development of the Applied
Metagenomics CURE course was to overcome computing-
barriers in processing metagenomics data. The data
presented in this manuscript show that undergraduates
without knowledge of computer coding or command-line
computing can complete a metabarcoding investigation.
However, the students did find some of the computing tasks
difficult to accomplish. The nature of the difficulties and
strategies used to overcome the bottlenecks are presented in
Supplementary Table 4.

The approach of using MG-RAST in combination with
MicrobiomeAnalyst can be used to analyze shotgun metagenomic
sequence data as well since both portals support this type of data.
Additionally, undergraduates can use other pipelines to analyze
metabarcoding data sets. Recently, CyVerse has beta-released the
Purple Line of its DNA Subway (CyVerse, 2019), a GUI-based
version of the QIIME 2 pipeline (Bolyen et al., 2019). As a result,
students can use more than one approach to process 16S rRNA
metabarcoding data.

Limitations When Using CUREs
Though CUREs can contribute to scientific knowledge, there
are inherent limitations on the nature of the investigations that
can be conducted. For example, undergraduate students do not
have access to the array of resources often available in research
laboratories. In this course, the students wanted to obtain
water samples that were as representative of the prokaryotic
community as possible. However, they did not have access to a
mobile field laboratory to perform immediate microbial isolation.
Though the collection vessels were filled to the lip, closed with
an air-tight cap, and kept on wet-ice for less than 2 h, some

organisms, such as obligate anaerobes, may have been lost.
Many other metagenomic investigations of environmental water
samples have stored samples on wet-ice before microbe isolation
(Yannarell et al., 2003; Shade et al., 2007; Van Rossum et al., 2015;
Uyaguari-Diaz et al., 2016; Linz et al., 2017; Karayanni et al., 2019;
Mohiuddin et al., 2019). Thus, the collection procedure that were
used by the students is within the norms of basic research.

Another limitation to CURE studies is the timeframe of the
investigation. Ideally, a longitudinal study like this one would be
conducted over consecutive seasons and multiple years. However,
the CURE course only lasted one semester (15 weeks). The
students were able to compare different seasons because they
were able to utilize a data set created 3 years earlier. Though
the primary conclusions are valid (i.e., the microbial community
from the ice cover lake samples were as diverse as the open water
summer samples, and the compositions of the two communities
were strikingly different), the students could not determine the
variability of the community structure from one year to the next.
Finally, budget constraints limit the number of samples analyzed.
For this course, the maximum number of samples, including
controls, that could be used in the experimental design was
limited to 12 sequencing runs.

Course Assessment
The course was assessed to determine if the goals of a typical
CURE were accomplished. The LCAS (Corwin et al., 2015) is
designed to measure three attributes of CUREs. Students were
asked six questions regarding their perceptions of collaborative
activity frequency. The results in Figure 8 showed that the
students felt that they discussed with their peers or the instructor
elements of their investigations, reflected on their learning,
contributed to discussions, collaborated on data analysis, and
collaborated on resolving problems on a weekly basis.

Five questions on the LCAS evaluated the students’
perceptions of their research as they relate to scientific discovery
and scientific relevance. All questions produced statistically
significant responses (p < 0.05 in 2019; p < 0.01 in 2020) to
the null hypothesis of neutral attitude (i.e., Median = 3.5). The
lowest median response observed was to question D1, generating
novel results unknown to the instructor or scientific community.
The lead author (SSB) was surprised by this result because the
discovery-nature of the course was explicitly conveyed to the
students. In contrast, questions addressing students’ perception
of their investigating something previously unknown (D2),
formulating a hypothesis (D3), developing an argument based on
evidence (D4), and creating new scientific knowledge (D5), the
median responses were “highly agree” or “agree.” To resolve the
dichotomy in the students’ attitudes, open-response questions
will need to be added to future surveys. In total, the students’
responses to this section of the LCAS indicate that the students
felt their research contributed to scientific knowledge and was
scientifically relevant.

Six LCAS questions evaluated the iteration processes used
in scientific investigations. All questions produced statistically
significant responses (p < 0.05 in 2019; p < 0.01 in 2020) with
the median responses corresponding to “agree” or to “strongly
agree.” These results indicate that the students felt they repeated
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FIGURE 8 | Student responses to the Laboratory Course Assessment Survey. Results from the 2019 survey are shown in (A,B). The 2020 results are in (C,D). The
dot represents the students’ median response. The range bars are the range of responses. The dotted line corresponds to the null hypothesis used in the sign-tests.
All responses statistically significant at α = 0.05 are marked with single asterisks (∗) and significance at α = 0.01 are marked with a double asterisk (∗∗). The questions
for the Collaboration section (A,C) started with, In this course, I was encouraged to, and ended with, (C1) discuss elements of my investigation with classmates or
instructors, (C2) reflect on what I was learning, (C3) contribute my ideas and suggestions during class discussions, (C4) help other students collect or analyze data,
(C5) provide constructive criticism to classmates and challenge each other’s interpretations, and (C6) share the problems I encountered during my investigation and
seek input on how to address them. The answer options for the 2019 survey (A) were never (1), one or two times (2), monthly (3), and weekly (4). In the 2020 survey
(C), the options were never (1), one or two times (2), monthly (3), every other week (5), and weekly (6). The Discovery and Relevance questions (B,D) started with, In
this course, I was expected to, and ended with (D1) generate novel results that are unknown to the instructor and that could be of interest to the broader scientific
community or others outside the class, (D2) conduct an investigation to find something previously unknown to myself, other students, and the instructor, (D3)
formulate my own research question or hypothesis to guide an investigation, (D4) develop new arguments based on data, and (D5) explain how my work has
resulted in new scientific knowledge. The Iteration section questions started with, In this course, I had time to, and ended with, (I1) revise or repeat work to account
for errors or fix problems, (I2) change the methods of the investigation if it was not unfolding as predicted, (I3) share and compare data with other students, (I4)
collect and analyze additional data to address new questions or further test hypotheses that arose during the investigation, (I5) revise or repeat analyses based on
feedback, and (I6) revise drafts of papers or presentations about my investigation based on feedback. The answer options were, strongly disagree (1), disagree (2),
somewhat disagree (3), somewhat agree (4), agree (5), and strongly agree (6).

work to fix problems with their results, changed methods in
response to unanticipated results, compared their results to the
results of their peers, collected additional data to help revise
hypotheses, responded to feedback from others, and revised
their written work.

The GCAT-SEEK opinion questionnaire was used to
assess students’ attitudes to next-generation sequencing
technologies (Figure 9). In 2019, students reported an increased
understanding of the genetic mechanisms related to evolution,
the relationships of molecular structure and functions, genome
information flow, and how genomes control metabolism
(p < 0.05). The same students felt their skills in using
bioinformatics to identify patterns and making arguments
increased after completing the course. The students also
indicated a more positive attitude toward research involving
next-generation sequencing. The median “enthusiasm” (A1)
response increased from 3.5 (a neutral value) to 5 (highly agree).
They also reported increased confidence in understanding (A3)
and using (A4 and A5) next-generation sequencing data. The
students indicated they had a “high” (median = 4.5) interest
in performing more research with next-generation sequencing
at the start of the course and maintained this interest after the
course (p = 0.610).

A different response pattern was observed in the 2020 data.
The students indicated they had a strong understanding of core
concepts (U1 to U5) in the pre-survey, with a median value
corresponding to “agree” or “strongly agree.” They maintained
this opinion after they completed the course [p = 0.056 (due to a
small increase in the post-survey) to 0.608]. The same patterns
were observed with the skills questions (p = 0.082 to 0.110)
and attitude questions (p = 0.154 to 0.984). The results indicate

that the students maintained their positive attitudes regarding
next-generation sequencing technologies after completing the
course. Comparison of the pre-course responses of the 2019
and 2020 classes showed the 2020 class reported higher median
scores for the understanding questions and skill questions. The
differences were statistically significant for questions A1 to A4
and S1 to S2. These results suggest that the students taking
the course in 2020 felt more intellectually prepared for the
coursework than did the students in 2019.

Qualitative assessment involved the instructor giving
the students anonymous open-ended survey questions
(Supplementary Table 3). Major themes observed in the
student comments indicated that the course contained some of
the major elements of CUREs (i.e., Scientific Process, Discovery,
Collaboration, and Iteration). Their comments aligned well with
the response observed in the LCAS survey (Figure 9). In terms of
areas for improvement, some students felt that the open-ended
nature of the laboratory was “disorganized,” and the procedures
were too time intensive. In total, the responses in the open-ended
survey indicated that the students found the CURE elements
(Auchincloss et al., 2014) of the course helpful to their learning.

Supporting the Goals of Vision and
Change
Vision and Change is a joint policy statement of the American
Association for the Advancement of Science, the National
Academy of Sciences, and other organizations on how
undergraduate biology curricula should be reformed during the
21st century (Bauerle et al., 2009). Because of the ever-expanding
nature of science, Vision and Change calls for biology education
to focus on a few key concepts, develop student investigative
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FIGURE 9 | Student responses to the GCAT-SEEK opinion survey in 2019
and 2020. The survey used a Likert scale response system (1 “not at all” to 5
“a great deal”). The dots ( ) represent the students’ median response in the
pre-course survey. The squares (�) indicate the students’ median response in
the post-course survey. A two-tailed Mann–Whitney U-test for two
independent samples was used to assess the null hypothesis
MedianPre−course = MedianPost−course. Statistically significant differences at
α = 0.05 and α = 0.01 are marked with single and double asterisks,
respectively. The questions related to student perception of their
Understanding (U) started with the phrase, Presently, I understand, and ended
with U1, the genetic mechanisms that underlie evolution (mutation, selection,
migration, drift, and etcetera.); U2, the relationship between basic units of
molecular structure and their function; U3, how bioinformatics can be used to
understand the flow, exchange, and storage of information from genome to
phenotype; U4, how the genome confers metabolic capabilities to an
organism; and U5, how genomic analysis can elucidate larger scale
interactions within organisms, between organisms, and/or between
organisms and ecosystems. The Skills (S) questions assess students’
perception of their abilities and started with the phrase, Presently, I can, and
ended with S1, identify patterns in bioinformatics data; S2, recognize a sound
argument based on the appropriate use of bioinformatics evidence. The
Attitudes (A) questions started with the phrase, Presently, I am, and ended
with A1, enthusiastic about next-generation sequencing; A2, interested, if the
opportunity is available, in taking further courses/performing more research in
this topic area; A3, confident that I understand next-generation sequencing
technologies; A4, confident that I can analyze next-generation sequencing
data; and A5, confident that I can incorporate next-generation sequencing
technologies into my research.

competencies and enhance student engagement in the scientific
process (Woodin et al., 2010). The Applied Metagenomics course
incorporates many of the Vision and Change recommendations.
For example, students used the concept of evolution and
biological information flow to analyze the results of their
experiment. Additionally, the students developed competencies
in using large data sets and computational analysis. Moreover,
mathematical and communication skills were developed by
having students write formal laboratory reports where they
had to interpret their numeric data and clearly present their

results with graphs. Finally, the students were fully engaged in
the scientific process, because the research they performed was
authentic and contributed to the knowledgebase of society.

The development of educational strategies that help retain
undergraduate underrepresented minority students is identified
as one of the “pressing needs” in Vision and Change. Large-
scale studies of 6-year graduation rates showed that CUREs
increase retention of underrepresented minority students (Jones
et al., 2010; Schultz et al., 2011). CUREs may increase retention
because the self-efficacy of underrepresented minorities increases
when they participate in research (Hurtado et al., 2009). The
results of the course assessment (Figures 8, 9) indicate that this
metagenomic CURE course had a positive impact on the students’
attitudes toward research and thus has the potential of improving
retention of underrepresented minority students.

CONCLUSION

The instructional approach utilized in the Applied Metagenomics
course can be used as a template to foster the development
of additional CURE courses. The course was designed to
overcome potential computational barriers (Maloney et al., 2010)
by using publicly available web-based resources. Additionally,
the data-analysis workflow used did not require students to
learn command-line computing or programming. The students’
research was relevant because the sequence data was posted in
a data repository and their research findings are published here.
Additionally, the students’ data (i.e., posted sequence data and
the OTU count data) can be used to develop additional in-silico
activities for undergraduate instruction.
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Familiarity with genome-scale data and the bioinformatic skills to analyze it have become
essential for understanding and advancing modern biology and human health, yet
many undergraduate biology majors are never exposed to hands-on bioinformatics.
This paper presents a module that introduces students to applied bioinformatic
analysis within the context of a research-based microbiology lab course. One of the
most commonly used genomic analyses in biology is resequencing: determining the
sequence of DNA bases in a derived strain of some organism, and comparing it to
the known ancestral genome of that organism to better understand the phenotypic
differences between them. Many existing CUREs — Course Based Undergraduate
Research Experiences — evolve or select new strains of bacteria and compare them
phenotypically to ancestral strains. This paper covers standardized strategies and
procedures, accessible to undergraduates, for preparing and analyzing microbial whole-
genome resequencing data to examine the genotypic differences between such strains.
Wet-lab protocols and computational tutorials are provided, along with additional
guidelines for educators, providing instructors without a next-generation sequencing
or bioinformatics background the necessary information to incorporate whole-genome
sequencing and command-line analysis into their class. This module introduces novice
students to running software at the command-line, giving them exposure and familiarity
with the types of tools that make up the vast majority of open-source scientific
software used in contemporary biology. Completion of the module improves student
attitudes toward computing, which may make them more likely to pursue further
bioinformatics study.
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INTRODUCTION

The Need for Bioinformatics in the Undergraduate Biology
Curriculum
Bioinformatics is increasingly an important part of research in any biological discipline (Barone
et al., 2017), and there is widespread agreement that bioinformatics should be incorporated into
the undergraduate biology curriculum (Pevzner and Shamir, 2009; Wilson Sayres et al., 2018).
However, barriers to this exist at both the instructor and student level. Instructors report lack of
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training as the primary barrier to shifting their curricula
(Williams et al., 2017), while research has suggested that
student anxiety about computing and lack of confidence in
their capabilities may act as a barrier to learning computing
(Doyle et al., 2005).

The paper presents a way to introduce complete novices
to bioinformatics as part of a module in an undergraduate
biology laboratory course. This module is not as extensive as
a full bioinformatics class, but could be part of an effort to
incorporate bioinformatics throughout the curriculum, to reach
students who wouldn’t otherwise complete any bioinformatics
or computer science coursework. The goal of this module is
to get undergraduate students engaged with bioinformatics in
the context of a broader course, where they can connect the
analysis of their data to something tangible they are exploring in
another context.

How does this module address a gap in bioinformatics
education? The vast majority of bioinformatics software used
by researchers to analyze next-generation sequencing data is
open-source and run at the command-line. This means that
users interact with the software by typing commands into a
text-based window (called a terminal), rather than through a
point-and-click graphical user interface (GUI). Excellent short
workshops to teach this type of command-line bioinformatics
to researchers exist (Wilson, 2014; Teal et al., 2015; ANGUS,
2019), but they are primarily aimed at graduate students and
researchers beyond the undergraduate level. There are several
well-known efforts to introduce undergraduate students to
bioinformatics including the Genomic Education Partnership
(Elgin et al., 2017) and SEA-PHAGES (Hanauer et al.,
2017). These efforts create genuine research opportunities for
undergraduate students in classrooms around the world to
contribute to scientific understanding and even earn authorship
on scientific publications (Leung et al., 2015). However,
they focus primarily on aspects of bioinformatics that do
not require command-line skills. Students in these programs
typically start with an assembled genome sequence that has
already been processed from raw data, and they generally
use GUI-based software or websites to finish and annotate
the sequence (Genomics Education Partnership, 2020; SEA
PHAGES, 2020). While finishing and annotation are certainly
important components of genome bioinformatics, there is still
a need for instruction focused on the command-line skills to
needed to work with raw sequence data.

Working at the command-line can be difficult and
intimidating for novices, so several GUI-based platforms
that simulate command-line bioinformatics pipelines have
been developed (Hilgert et al., 2014; Batut et al., 2018). While
these can be used to perform real analysis and introduce the
underlying concepts, alone, GUI-based platforms cannot fully
prepare students to handle working with bioinformatics
data the way it is done by most researchers. There are
curriculum modules in the literature that focus on quantitative
analysis of sequencing data using statistics-focused computing
languages like R (i.e., Peterson et al., 2015; Kruchten, 2020).
This module complements those modules by focusing on
the data processing and analysis steps that would need

to be run before (or in lieu of) that type of quantitative
statistical analysis. This module aims to a fill a need in
bioinformatics curricula by showing students how command-
line software tools are used to go from raw sequencing data to
interpretable outputs.

What Types of Courses Could Use This
Module to Bring Bioinformatics Into the
Classroom?
What types of courses would be a good fit for this module?
An undergraduate microbiology lab class that includes, or is
thinking of including, a CURE would be ideal. CUREs, or Course-
Based Undergraduate Research Experiences, incorporate genuine
open-ended research of potential relevance to the scientific
community (Auchincloss et al., 2014). They have been lauded
as a way to answer calls to incorporate more of the skills
used in science into the undergraduate curriculum (American
Association for the Advancement of Science [AAAS], 2011),
and they contribute to making science more inclusive (Bangera
and Brownell, 2017). There are many CUREs that have been
developed for microbiology labs which select or evolve a novel
variant of a known microbe (overviewed in the methods, below).
This module would allow students to sequence the genome of that
variant and compare it to an ancestor genome that has already
been sequenced, an approach called resequencing. The paper
combines a guide for the wet-lab preparation of microbial DNA
for next-generation resequencing with a guide to the dry-lab
analysis of the resulting data.

This module would be ideal in a microbiology lab, or
molecular biology lab which uses microbes as a model system.
Why are microbes the ideal organism for this module? Although
the costs of next-generation sequencing continue to drop, it is still
prohibitively expensive and computationally time-consuming to
sequence and analyze most eukaryotic genomes. Microbes, on the
other hand, have genomes which are generally short enough to
facilitate multiplexing – combining multiple samples together so
that data for an entire class of student-generated variants can be
analyzed on a single sequencing run. Microbial genome datasets
are also small enough that analysis of them they can be completed
in reasonable time-frames with desktop or laptop computers;
they do not require high-performance computing clusters or
supercomputer access.

Organization and Goals of This Guide
The methods section contains background information and
guidelines for setting up and teaching a resequencing module.
The first part of the methods describes how to get from a
derived microbial isolate to DNA ready for next-generation
sequencing. The second part of the methods introduces the
bioinformatics skills needed to computationally analyze next-
generation sequencing data.

Neither the preparation of DNA for next-generation
sequencing, nor the computational analysis of genomic data
are novel methods, however, this article attempts to bring
all of the relevant information together in one place in an
accessible, easy-to-use format. We have provided a detailed
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lab manual with bioinformatics tutorials, lecture slides, and
lecture notes in the Supplementary Materials. Instructors can
use the module as-is, or they can use it as a starting point
to be adapted to their own particular purposes. Although
specific details of sequencing methodology and software
may change over time, this article covers several universal
considerations that should guide any instructor thinking of
incorporating a resequencing and bioinformatics module
into their class.

This article is intended as a guide to help course designers and
instructors who do not have prior next-generation sequencing or
bioinformatics experience bring a resequencing module into their
own course. This approach has been vetted in the classroom over
several quarters of a microbiology lab course by an instructional
team consisting of a lead instructor (the author), two additional
instructors, multiple graduate instructional assistants, and
laboratory support staff. We show that this module can improve
student attitudes toward computing, which could make students
more likely to engage and persist in further opportunities to
use bioinformatics.

METHODS FOR IMPLEMENTING
RESEQUENCING MODULE AS PART OF
A COURSE

The following methods provide a general guide for instructors,
covering key considerations and pitfalls to avoid for each
step of the module. Detailed, step-by-step instructions for
students, including protocols adapted from kit manufacturers’
instructions, as well as bioinformatics tutorials, are provided in
the Supplementary Materials. For instructor testing, or for use
in a course that is only incorporating the bioinformatics portion
of the course (see section “Dry Lab Methods: Analyzing Genomic
Re-sequencing Data”), a sample dataset has been provided in
the Supplementary Materials. For courses incorporating the
wet lab methods, the methods assume that each student, or
group of students, has isolated a unique microbe of interest
that they will characterize. Figure 1 shows an overview of the

individual lab sessions, along with suggested lessons for down
time or for lectures between labs. Figure 2 shows a suggested
preparation timeline for instructors planning to add all or part
of this module to a class.

Wet Lab Methods: Preparing DNA for
Genome Sequencing
One can imagine many possible experiments students could
run to generate or isolate novel derivatives of a microbial
strain. One popular example is the isolation of antibiotic
resistant microbes in laboratory selection experiments. Another
is culturing the fast-evolving Pseudomonas fluorescens SBW25
strain in static microcosms to study the evolution of biofilm-
forming phenotypes (this is, in fact, what we did in our
implementation of the class). Details on how to set up those
experiments for the classroom are provided elsewhere (Green
et al., 2011; Spiers, 2014; Johnson and Lark, 2018; Van den
Bergh et al., 2018), so they will not be included here. Once a
strain of interest has been generated, the following steps provide
an overview for educators of how to prepare DNA from that
strain for sequencing.

Generally, it is important that students use good sterile
technique, especially when they are working with the bacterial
strain itself. Once cultures are grown and DNA is extracted, there
are not as many opportunities for exponential amplification of
contaminants, but students should still practice clean laboratory
technique to avoid cross contamination and prevent the
introduction of DNases (Students should wear gloves at all
times, always use fresh micropipettor tips for every step of a
procedure, and take care not to touch the inner caps or rims of
microfuge tubes).

For preparation steps which use kits, the instructional team
found it useful to pre-aliquot reagents per pair of students or per
group (providing a slightly higher volume than required) to speed
up time in the classroom and avoid cross-contamination. The
adapted protocols provided in the manual are aimed at students;
for any kits utilized, we recommend instructors also read the kit
manuals provided by the manufacturer; they contain important
details, like storage conditions, not provided here.

FIGURE 1 | Overview of each lab session and suggested lessons for downtime or in between lab session. Lab sessions are broken up into 3 h (or less) blocks,
though adjacent sessions of identical color could be combined into a single session if timing allows. The lower track shows suggested instructor-led lectures or
discussions. Two sets of slides, covering Illumina sequencing and Illumina library preparation, are provided in the Supplementary Materials, and they include
active-learning questions for students to attempt in-class and for peer-instruction (these can be administered through digital or informal polling methods).
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FIGURE 2 | Suggested preparation timeline for instructors.

Initial Considerations – How Many Samples Can You
Sequence?
The biggest consideration for introducing a resequencing module
into a laboratory class is how many individual isolates to
analyze. One of the benefits of a CURE is that students have
the opportunity to make a genuine scientific contribution. The
more isolates there are, the more there is to potentially learn,
and students working with their own unique microbe may
have a greater sense of ownership over their project. However,
these goals must be balanced by cost, time, and the amount
of data required per strain to get meaningful results. In our
implementation, the cost, from start to finish, was approximately
$100 per isolate sequenced, though this may vary according to the
specific kits and sequencing service used (many institutions have
a core facility that provides next-generation sequencing services,
there are also several commercial vendors). In terms of time,
several of the processing steps are fairly work intensive, so we
recommend students work in groups of 2–4 students (with one
isolate per group) so they can assist one another.

The amount of data required per strain is a key consideration
in determining how many variants can be sequenced. Most
sequencing services require users to buy an entire sequencing
“run,” where all the samples loaded onto the machine are
submitted by a single user. In the author’s implementation of
the module, every pair of students works with their own unique
isolate, and 24 isolates were pooled together into an Illumina
sequencing run. Illumina machines produce the largest share of
contemporary sequence data. It would certainly be possible to
carry out resequencing projects with third generation sequencing

technologies, like Oxford Nanopore’s MinION sequencing or
Pacific Bioscience’s SMRT sequencing, but a detailed guide
for those technologies is beyond the scope of this article.
For an excellent review of all sequencing technologies, see
Slatko et al. (2018). For our course, samples were sequenced on
an Illumina MiSeq instrument.

Why is the MiSeq an appropriate instrument for the job?
The answer requires a basic understanding of how Illumina
sequencing works (Bentley et al., 2008), briefly reviewed here. To
prepare DNA for sequencing, genomes are randomly fragmented
into smaller pieces and Illumina-specific adaptor oligos are
attached. The ∼600 bp-long fragments are then loaded onto
a flow cell coated with a lawn of oligos complementary to
the adaptors. Fragments are loaded at low concentration so
they are well-isolated from one another when they anneal, and
then they are clonally amplified in a 2-dimensional PCR-like
process to produce DNA clusters. Each cluster contains enough
template to make visualization of base-specific dyes possible
in a subsequent sequencing-by-synthesis step. All clusters are
visualized simultaneously, with images taken after each base
is added. The resulting stack of images is then converted
into a digital sequence, called a “read,” corresponding to each
individual cluster. The determining factor for how much data
a particular instrument can put out is how many individual
clusters can be visualized in a single run on that instrument.
The MiSeq instrument can generate ∼22 million reads per run
(Illumina, 2018).

How do we use that information to figure out how many
samples to run? First, we need more information about the
read-length — how many bp of the DNA strands in each
cluster are actually sequenced. Usually, the entire length is not
read; with the most recent reagent kits, 75 or 300 bases are
read from each end (Illumina, 2018). This results in a pair
of reads for each DNA fragment. Once we know the read-
length and the number of reads, it is possible to estimate the
coverage — how many times, on average, each position in the
genome will be represented in the data. Coverage is calculated
as the total number of bases sequenced/the genome size of
the organism. For resequencing, 20-fold (or “20X”) coverage
is a safe bet, as coverage is not always uniformly distributed
across the genome, and extra coverage can help distinguish rare
sequencing errors from genuine variants. In our implementation
of the class, we sequence 24 samples of P. fluorescens SBW25
in a single, 75 bp paired-end run; this corresponds to ∼20-fold
coverage. [(22,000,000 reads × 150 bp per read)/6,722,539 bp
in SBW25 genome] = 491-fold coverage/24 samples = 20-
fold coverage).

Genomic DNA Extraction – The Fresher, the Better
Students should begin with a clonal isolate of their strain of
interest — ideally in the form of a well-isolated colony on an agar
plate. For laboratory evolution and selection experiments, the
starting, or ancestral, strain should also be processed as described
here, even if a reference is available (Strains may accumulate
mutations as they are propagated and stored in labs over time,
and knowing the precise sequence of what you are starting with is
crucial for interpreting mutations. The sample dataset illustrates

Frontiers in Microbiology | www.frontiersin.org 4 March 2021 | Volume 12 | Article 578859133

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-578859 March 11, 2021 Time: 10:33 # 5

Petrie and Xie Resequencing: An Instructional Lab Module

this point; the SBW25 strain we used to initiate evolution —
the ancestor — is slightly different than the public reference
available in GenBank).

While it is possible to isolate genomic DNA directly from a
colony, it is easier to achieve the high yield and quality of DNA
necessary for next-generation sequencing by first preparing a
fresh saturated culture (∼109 cfu/mL, typically from overnight
incubation). If lab sessions are scheduled so that students will
not be able to come in on contiguous days, inoculated cultures
should be held at 4◦C and only transferred to an incubator for
growth the afternoon or evening before students will return.
Over-incubation or prolonged storage in the stationary phase
can lead to the accumulation of GASP mutations (Finkel,
2006), which could make interpretation of sequencing results
difficult. LB (lysogeny broth) media is recommended for this
overnight growth as LB has been widely used to amplify bacteria
without downstream issues in next-generation sequencing. Any
formulation should work, though we have most recently used
LB-Miller (Miller, 1972).

For the actual genomic DNA extraction itself, there are
many different commercial kits available. A column-based kit
is recommended; in student hands they were both easier and
higher-yield than those which rely on phase-separation. Many
genomic extraction kits have an “elution buffer” designed for the
final step of eluting or resuspending genomic DNA; these should
not be used, as some elution buffers, especially those that contain
EDTA, can interfere with downstream steps. Instead, MilliQ or
molecular grade water should be used for elution. We have had
success with the QIAGEN DNeasy Ultra Clean Microbial Kit
(Cat No. 12224).

Genomic DNA Quantitation – OD260 Is a No-Go
For next-generation sequencing, it is important to measure
the concentration of DNA as precisely as possible. To that
end, it is recommended that fluorescence-based quantitation
methods be used (as opposed to UV absorbance-based methods).
In our implementation of the class (as described in the
Supplementary Materials), we used a Qubit fluorimeter and
Qubit ds DNA HS assay kit according to the manufacturers’
instructions, but many other dyes/reagent kits are available,
and they can be used on any instrument with the appropriate
excitation wavelength and emission detection spectrum. One
important consideration is sensitivity. The amount of genomic
DNA required for library preparation, using the approach
described in the next step, is 1 – 500 ng (in 2–30 µL). Given the
elution volume, this translates to a minimum DNA concentration
of ∼33 pg/µL, however, students have had the most success
with DNA concentrations at or above 16.7 ng/µL (concentrated
samples can always be diluted). It may be useful to have a
backup sample of DNA available for students who do not extract
the minimum amount.

DNA Library Preparation – Your Students Can
Handle It!
There are many library preparation protocols and kits for
Illumina sequencing. Regardless of the specific approach used,
all protocols break the genomic DNA into smaller fragments

and attach oligonucleotide adaptor sequences to the ends of
each fragment. This collection of prepared fragments is called a
sequencing library. The adaptor sequences help each fragment
bind to the flow cell and generate clusters, and they are
complementary to primers used in sequencing by synthesis.
Library prep can also include a step that adds a unique
oligonucleotide — called an index — to every fragment in the
sample. This acts as a barcode or a tag, so that when multiple
samples are pooled and sequenced together, the output can be
computationally sorted by the unique index sequences.

Library preparation is the most difficult part of next-
generation sequencing, and even experienced scientists in
research labs sometimes elect to outsource library prep as an
additional fee paid to the sequencing service provider. However,
this is (often prohibitively) costly. The kit used in the our
implementation of this module (Illumina DNA Prep, 20018705,
from Illumina) was chosen primarily because of its ease of
use. Fragmentation and adaptor ligation are carried out in a
single step (cleverly called “tagmentation”), and the bead-based
purification is somewhat self-normalizing, in that the beads can
only bind a certain maximum amount of DNA; so as long as they
are saturated, different students should get fairly similar yields.

The Supplementary Materials contains detailed directions
adapted from the kit’s manual. Normally, library prep kits are
designed to allow a single researcher to process up to 96 samples
at once, using multichannel micropipettors and 96-well plates.
Here, they have been rewritten to allow students (or groups of
students) to process their samples individually, with standard
micropipettors. Below are a few key pointers:

Amount of input DNA: the kit is designed to accommodate
1–500 ng of DNA, added in anywhere from 2–30 µL of
liquid volume. As mentioned before, students should add the
maximum amount of DNA possible. However, students new to
the laboratory may have difficulty calculating what volume to add,
so it is useful to have instructors or assistants check student’s
calculations before proceeding (see the Illumina Library Prep
slide deck in the Supplementary Materials for examples of this
calculation). If less than 50 ng was added, students will need extra
amplification steps, so they should pay attention to the note in
step 21 of the session four protocol.

Magnetic bead-based purification: most kits rely on ferrous
microbeads that bind the DNA. When tubes are placed in
magnetic racks, the beads are immobilized while solutions are
exchanged. Magnetic stands typically use strong, rare-earth
magnetics to speed up the separation process. We have had
success with eight-well magnetic stands shared among groups
with four students each. We use stands which orient the magnet
on the side of the tube (rather than at the bottom or in a ring), as
this allows students to rest the pipette tip against the opposite wall
without disrupting the beads. The particular stands we use are not
currently available from the supplier, but there are many different
commercial sources and DIY plans for constructing your own
(Oberacker et al., 2019).

Index addition: Typically, samples will get two unique indexes:
one for each end of the fragments. We have successfully used the
Nextera CD indexes (Illumina 20018708). Indices are typically
supplied in trays or in a limited set of tubes, which are difficult

Frontiers in Microbiology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 578859134

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-578859 March 11, 2021 Time: 10:33 # 6

Petrie and Xie Resequencing: An Instructional Lab Module

TABLE 1 | The five components of student attitude toward computing (For a complete list of the items in each factor, see Dorn and Tew, 2015).

Factor Description Sample item from CAS (expert consensus)

1 Problem Solving – Transfer Ability to see/apply connection between concepts
and ideas to solve problems

Errors generated by computers are random, and when they
happen there’s not much I can do to understand why
(disagree)

2 Problem Solving – Strategies Attitude toward problem-solving strategies in
computer science

When I solve a computer science problem, I break it into
smaller parts and solve them one at a time (agree)

3 Problem Solving – Growth Mindset Belief in ability to improve skill or understanding
with practice

If I get stuck on a computer science problem, there is no
chance I’ll figure it out on my own (disagree)

4 Real-World Connections Belief in real-world relevance of computer science
discipline

Tools and techniques from computer science can be useful
in the study of other disciplines (e.g., biology, art, business)
(agree)

5 Personal Interest and Enjoyment Personal interest, motivation, and engagement with
computer science

I am interested in learning more about computer science
(agree)

to share with students. We have students bring samples to the
instructor or an instructional assistant to receive their unique
indices one sample at a time. This prevents cross contamination
and allows the instructor to record which samples get which
indices, which is useful if students misplace this information. To
attach the index oligos, the number of PCR cycles needed varies
depending on the amount of DNA originally used as input; it is
important to make sure students use the correct number.

Stopping points: the complete library preparation process is
fairly time consuming, however, it can be broken into two lab
sessions, with the DNA stored at 4◦C after the index addition and
amplification step. We have stored DNA at this stopping point
for up to 5 days with no problems, however, there are no other
recommended stopping points during library preparation.

Figuring Out the Molar Concentration
Although the Illumina DNA Prep kit is designed to normalize the
yield of library DNA, when carried out by many different student
groups, we tend to see a fairly wide range in the library yields.
So the library DNA should be quantified using a fluorescent-dye
based method, as described above. Additionally, it is typically
recommended that the average fragment size of the library be
measured with either a TapeStation (Agilent) or BioAnalyzer
(Agilent) instrument. This is because the tagmentation may
not always produce fragments of the exact same size. However,
if you do not have access to one of these instruments, it is
acceptable to use the average expected fragment size, which for
the Illumina DNA Prep kit is 600 bp. The average fragment length
is used to calculate the molar concentration of DNA, using an
average atomic mass of 660 g/mol for one basepair. The molar
concentration will be used in the next step.

DNA Pooling for Sample Submission – It’s All About
Balance
To take advantage of small microbial genome sizes and maximize
data yield, samples are multiplexed: pooled together and run on
the same machine. To make sure that each sample is equally
represented in the sequencing data, it is important that an equal
number of DNA fragments are added from each sample. This will
require students to dilute their DNA to a universal concentration
before their sample is added to the pool (Alternatively, different
volumes of each sample can be added to achieve the same final

concentration). The sequencing service provider will specify the
required total concentration of DNA in the pool; it is typically
at least 10 nM. Because some students may have lower than
expected amounts of DNA, we recommend instructors be the
ones to collect the final concentration of each library from
students and calculate how the DNA should be pooled. It may
be necessary to add a little less of some high-concentration
libraries to “make room” for low-concentration libraries, and
some very low concentration libraries may have to be dropped
altogether, if they fall too far below the threshold required by the
sequencing center. Once a pooling scheme has been established,
we recommend that students bring their samples to the instructor
or an assistant to be added to the pool one-at-a time. This
prevents cross contamination and lets the instructor “check off”
each sample as it is added. If you are exceptionally lucky, your
sequencing service provider may offer to pool your samples for
you, but if they do, you should verify whether they will account
for different sample concentrations, or else the data may be
dominated by the highest-concentration libraries.

Dry Lab Methods: Analyzing Genomic
Re-sequencing Data
It may take several weeks to get data back from your sequencing
service provider, so it is important to start the wet lab portion
of this module early in the course. Most sequencing providers
will demultiplex the data for you (separate it into individual
files according to the unique index barcodes for each sample).
Typically, the size of sequencing data files is large enough that
sharing via email or an LMS may be problematic, so the service
provider may provide an ftp link that could be shared with
students, or data can be distributed from a central source using
USB storage devices.

To provide a universal computing environment for all
students, ideally analysis would be carried out in a computer
lab with software preinstalled. While it is possible to set up
virtual machines that can be downloaded or accessed through
cloud computing so that students can use their own devices,
instructions on how to do so are beyond the scope of this
article. A Unix-based operating system (OS) is required, as
most open-source bioinformatics software cannot be run directly
on PCs. This means that you can use Unix OS, Linux OS,
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or Mac OS. In principle, you can use a simulated Unix
environment on a PC through the use of an interface like
Cygwin1, though this will be more challenging. If you plan
to have students use their own machines, we recommend
setting aside at least an entire lab session to help students
configure them, and we recommend skipping the “Quality
Control” section below.

Working at the Command-Line – A Guide for the
Complete Beginner
The Supplementary Materials include a brief tutorial
that introduces students to the basic commands used
to navigate through directories (folders) in Unix-based
terminals. It is essential that students try it out on their
own (rather than follow along with the projector while
an instructor demonstrates), as engaging with the activity
and seeing for themselves what actually happens is key
to understanding some essential rules about working in a
command-line terminal.

Many instructors or teaching assistants may be apprehensive
about teaching bioinformatics if they are themselves new to
working at the command-line. However, trying the tutorial
ahead of time and seeing what common mistakes occur
is sufficient preparation for most of the problems students
might encounter. The vast majority of errors stem from
typos or from commands that try to use a file not located
in the current working directory. A quick check of the
command that students entered and a look at the file contents
of their current location reveals most problems. We have
provided a troubleshooting guide expanding on this and
other common problems in the Supplementary Materials.
More complicated issues can usually be solved by reading
the error messages, and occasionally using a search engine
to find out what they mean. Additional information can
be found through discussion forums focused on computing
(Stack Overflow, 2020), bioinformatics in general (Biostars,
2020), next-generation sequencing (SEQanswers, 2020), and
on the support pages for individual software tools. Even
experienced bioinformatics researchers have to troubleshoot
software, so it is good to adopt a collaborative outlook to
helping students solve problems, encouraging them to be
resourceful and not get discouraged if things don’t work
out the first time.

Installing Software – Use a Package Manager if
Possible!
Software installation is probably the most difficult part of
next-generation sequence analysis. Many open source software
programs are not self-contained; they require other, previously
developed software programs to function. This is the nature of
high-throughput sequencing analysis – newer, more specialized
programs build on earlier algorithms and data processing tools.
The software tools required by a particular program are called
dependencies, and up until about a few years ago, there was little
else to do but install each dependency – and the dependencies

1https://www.cygwin.com/

FIGURE 3 | Prior computing experience of students. In the pre-survey,
students were given free-response space to respond to the following prompt:
“Please describe any experience you have in computer science. Write “none”
if you don’t have any experience. Some examples of computer science are:
using a computer to analyze data, taking a CSE course, programming, writing
software, writing computer scripts, analyzing data in R, debugging, running
computer programs via command-line interfaces (where you type directions
to your computer instead of using a mouse to point and click).” Student
responses were coded according to the following scheme: “None” if the
student wrote none or indicated no experience, “Some” if the student
described MATLAB or limited use of command-line (i.e., in personal time), and
“Significant” if the student mentioned a bioinformatics or computer science
course, or if they mentioned “knowing” a computer language. The number
and percentage of students in each category are shown.

of that dependency – one at a time. One would have to hope
that all of the versions of each piece of software were compatible
with one another, and if not, just keep troubleshooting until it all
worked. Software developers and users refer to this problem as
“dependency hell,” and it is particularly vexing in bioinformatics,
since software tools have been developed by independent research
teams over nearly a decade and a half of next-generation
sequencing history.

So, how do we make this easy and accessible? Fortunately,
tools called package managers have been developed to make
software installation easier. With a single command, they can
install the desired software program and all of its dependencies
automatically, and package managers can be used to create
“environments” – workspaces for individual projects with defined
collections of software. In recent years, the bioinformatics
community has assembled bioconda, a collection of packages
(software, dependencies, and directions that tell the computer
how to install them) for over 7,000 bioinformatics software tools
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FIGURE 4 | Scores on Computing Attitude Survey before and after completing bioinformatics module. Mean pre- and post- scores are shown. Bars indicate
standard error. Significant differences between pre- and post- scores (Wilcoxon Signed Rank, n = 56) are indicated with a star.

(Grüning et al., 2018). The packages in bioconda can be installed
with the popular package manager, conda2 or miniconda, a
lightweight version of conda.

All of the bioinformatics software used in this module
(fastqc, fastx_toolkit, and breseq) can be installed through
bioconda using the conda or miniconda package manager. To
use bioconda, carefully follow all the directions in the “Getting
Started” section of the bioconda user documents found at3

(For additional information, see the notes accompanying the
sample dataset). It is also possible to install the software without
a package manager, by following the individual installation
instructions for each individual software tool (see citations
below for links to the user support). Finally, a streamlined
version of this module can be completed with just breseq,
to minimize the software requirements, though the breseq
installation instructions must be followed carefully to make sure
all dependencies are also installed. If possible, we recommend
that you work with your institution’s technology support staff to
facilitate software installation, especially if you will be installing
software in a computer lab (most institution-managed computers
do not grant regular users permission to install software by
default). Note: if students will be running this module on PCs
(i.e., via Cygwin), it may be easiest to skip the quality control
steps and install breseq directly according to the instructions in
the breseq user documentation.

2https://docs.conda.io/
3https://bioconda.github.io/

Examining Data – An Introduction to the FASTQ
Format
Illumina sequencing outputs data files in the FASTQ format.
FASTQ files contain information on all of the “reads”
corresponding to that sample. A “read” is the information derived
from an individual genome fragment, and contains the sequence
of bases, as well as a quality score for each base call.

The quality score, Q, estimates the probability that the base
is incorrect (P, probability of error), according to the formula
Q = −10 log10 (P) (Ewing and Green, 1998; Cock et al., 2010).
This conversion takes potentially long character strings (i.e.,
a high-quality base call like P = 0.0001, or 99.99% accuracy)
and reduces them to one or two digits (i.e., Q = 40). To
compress the quality score even further, in the FASTQ file, Q is
reported as single ASCIII keyboard character (ASCII characters
are numbered, for example, the letter “I” is ASCII character
73). To get Q, you subtract 33 from the ASCII value, however,
older Illumina data (only a concern if you are using previously
collected data from several years ago) had an offset of 64 (Cock
et al., 2010). The tutorial leads students through an exploration
of the FASTQ format and how to interpret the “two-layer” code
of compressed quality scores.

Cleaning Up Data – Optional Here, but Good Practice
for Students
All sequencers occasionally produce low quality base-calls, and
in many bioinformatics applications, it is important to filter
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TABLE 2 | Pre- and post- CAS scores.

Measure Pre-score Post-score Shift Wilcoxon signed-rank

Mean SD Mean SD W p

Overall CAS Score 0.409 0.212 0.526 0.183 0.117 195 <0.001*

Problem Solving – Transfer 0.304 0.289 0.384 0.257 0.080 254 0.026

Problem Solving – Growth Mindset 0.493 0.288 0.612 0.213 0.119 179 0.003*

Problem Solving – Strategies 0.345 0.339 0.488 0.332 0.143 106 <0.001*

Real-World Connections 0.585 0.220 0.683 0.181 0.098 106 0.007*

Personal interest and Enjoyment 0.308 0.274 0.455 0.341 0.147 150 0.002*

The shift of each score was calculated as the post-score minus the pre-score. The average and standard deviation for all students are shown. To see if there was a
significant difference between the pre and post scores, a Wilcoxon signed-rank (paired, non-parametric, n = 56) test was used. Significant differences are starred with ∗

(for the overall CAS score, α = 0.05, for the individual factors, a Bonferroni correction was applied; α = 0.01).

TABLE 3 | Gain in overall CAS score by prior level of computing experience.

Prior computing experience N Mean shift SD

None 30 0.169 0.193

Some 9 0.0756 0.0581

Significant 17 0.0471 0.143

The mean and standard deviation are shown.

these out. Here, the tutorial guides students in the use of
two software tools, FastQC (FastQC, 2015), which produces
statistics on the quality score distribution of a FASTQ file,
and the FASTX-Toolkit (Hannon, 2010), which can be used
to remove reads where a specified proportion of the bases
fall below a specified quality score. For this module, this
filter is not strictly necessary, as the next step of analysis
actually takes quality score into account, so it can be safely
skipped if time is a limiting factor. However, it is good
bioinformatics practice to examine the quality of the data, and
removing low-quality reads can make subsequent steps of the
analysis run faster.

The FASTX-Toolkit filter can only be run on one file at a time.
This means students with paired-end sequencing data must run
it twice, once on the forward reads file and once on the reverse
reads file. Because the different files may have a different number
of reads passing the filter, the filtered files may be different sizes.
This is not a problem for breseq, as it treats the forward and
reverse reads as if they were two independent lists of single-end
data. However, we would be remiss not to mention that other
bioinformatics software make use of pair linkage information
(the fact that forward and reverse reads are ∼600 bp apart) to
guide analysis, and in other applications, it is critical that every
read in the forward file has its corresponding pair in the reverse
file. If you are considering other analyses, you may need to use
a filter designed to work with paired-end data, such as sickle
(Joshi and Fass, 2011).

Running Breseq to Identify Mutations – The Software
That Does It All!
In order to identify mutations in the sequenced strains,
the reads need to be compared to an existing reference
sequence (of the ancestor or a closely related strain). First,

the reads are mapped to the reference (each read is scanned
against the genome to see where it belongs), and then
each position is examined to see if the majority of the
reads there have the same base at that position as the
reference does. There is a huge variety of software tools
capable of performing these steps (alignment and variant
identification), but this module uses a tool called breseq (short
for bacterial resequencing) (Deatherage and Barrick, 2014).
A detailed guide to all of breseq’s capabilities is available
elsewhere (Deatherage and Barrick, 2014); here, we cover a few
important pointers.

Breseq is ideal for students new to bioinformatics, as it outputs
results as easy-to-navigate html files that can be opened in a
web-browser. A key feature of breseq is that it can report not
just the genomic position and identity of any mutations, but
also whether a mutation is synonymous or non-synonymous
as well as the name of the gene it is in or near. To get this
information, you must use an annotated reference in a gff3 or
GenBank (.gbk) format, which includes the location and name
of genes. Annotated references for many microbial species can be
obtained from the NCBI. For our classes, we provide the reference
file to students to ensure that they are all using the same one.
To find a reference sequence at NCBI4, restrict the search to
the “Genomes” database, and type your species of interest in the
search bar. This will display the landing page for your species,
and you can click a link to browse all available genomes for the
species. Locate your strain (or a close relative), click the link in
the “strain” or “organism name” column, and you’ll be taken to
its genome assembly and annotation report. From there, you can
click “download genome annotation in GenBank format.” You
can also get to the GenBank record by clicking on the RefSeq ID,
though to ensure that you download the full file, you will have to
set the “customize view” to show all features before you download
it with the “Send to” link.

Running breseq will take a considerable amount of time, as
aligning millions of short reads to a genome that is millions of
bp long is not a trivial task. The time required depends on the
genome size, the amount of data, and the computer itself. We
have found that on a typical desktop or laptop computer, it takes

4https://www.ncbi.nlm.nih.gov
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TABLE 4 | No significant difference in overall CAS pre-score between different demographic groups (Mann–Whitney U-Test, non-parametric, independent, n = 56).

Mann–Whitney U

N Pre-score SD U p

Applicant type New-Freshman 43 0.422 0.198 227 0.312

Transfer 13 0.366 0.259

First-Generation Status Non-First-Generation 38 0.397 0.207 324 0.751

First-Generation 18 0.436 0.227

Binary Gender Female 42 0.386 0.204 231 0.236

Male 14 0.480 0.229

TABLE 5 | No significant difference in overall CAS score improvement between different demographic groups (Mann–Whitney U-Test, non-parametric, independent,
n = 56).

Mann–Whitney U

N Mean shift SD U p

Applicant type New-Freshman 43 0.1060 0.156 239 0.431

Transfer 13 0.1538 0.217

First-Generation status Non-First-generation 38 0.1147 0.133 318 0.679

First-Generation 18 0.1222 0.238

Binary gender Female 42 0.1190 0.176 285 0.864

Male 14 0.1114 0.163

The mean shift is the average difference in pre- and post-score.

10–20 min for breseq to analyze an ∼7 million bp genome with
∼20-fold coverage.

RESULTS

Implementation of Module
This module was incorporated into a Microbiology
Laboratory course taken primarily by juniors and seniors.
It has since been taught by three different instructors
(including the author) to ∼450 students (in person).
In Spring 2020, the class was held remotely for ∼100
students, and we implemented only the bioinformatics
analysis, relying on data generated by previous classes.
Instructors wishing to run only the bioinformatics portion
of the module can use the sample dataset provided (see
Supplementary Materials), or browse publicly available
resequencing data in the NCBI’s Sequence Read Archive
(Sequence Read Archive Submissions Staff, 2011).

In every offering of the course, variants have been successfully
analyzed. Identifying mutations is only the first step of the
analysis; the bigger challenge for students lies in interpreting
them. Students have to predict which mutations are responsible
for the observed phenotype of their variant, and which mutations
are neutral, acquired by random chance. This requires students
to dive into the literature to learn more about the genes or
regulatory regions where they find mutations. Students can
also see if similar mutations have been previously observed.
In our implementation of the class, we have students write
up their findings in a lab report, though other forms of
assessment are possible.

Assessment of Bioinformatics Module’s
Impact on Student Attitudes Toward
Computing
For a subset of classes in which this module was offered, we
carried out a focused assessment of the bioinformatics portion
of the module. Before and after the computing module, we
administered a validated instrument, the Computing Attitudes
Survey (CAS), designed to measure student attitudes toward
learning the practices and skills of computing (Dorn and Tew,
2015). Why focus on student attitudes? After a brief introduction
like the one in this module, students will likely need further
practice to really master bioinformatics content. However, if the
module can positively impact their attitude toward computing,
they may be more likely to persist in future opportunities to learn
and use bioinformatics.

The CAS is a 26-item Likert scale that assesses the beliefs
people have about the process of computing and learning
computational skills (Dorn and Tew, 2015). Within the scale,
items are divided into subscales, called factors, that relate to
different components of student attitude. The scale includes three
factors connected to problem solving: belief that concepts and
ideas can transfer to new problems, attitude toward problem
solving strategies, and adoption of a growth mindset (the idea
that skills and understanding are not fixed and can be improved
with practice). Another factor relates to belief in the real-world
relevance of computer science, and the final factor assess personal
interest in and enjoyment of computer science (see Table 1 for a
detailed description of the five factors and sample items). Each
item in the CAS has a “correct,” or expert-like rating, based on
the consensus opinion (agreement or disagreement) for each item
when administered to a group of computing faculty as described
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in Dorn and Tew, 2015. Students are scored based on their level
of agreement with the expert consensus, providing a measure of
how students may shift from holding more novice-like attitudes
toward more expert-like attitudes (Dorn and Tew, 2015).

We administered the CAS immediately before and
immediately after the bioinformatics (“dry-lab”) portion of
the module, so that each student has a pre- and a post- score.
We also asked students to describe their previous experience in
computing. Students’ demographic factors, including applicant
type, first-generation student status, and gender, were added
and student responses were deidentified. All responses were
collected with approval of the UC San Diego Institutional
Review Board. Only students who completed both the pre- and
post-survey once and on time were included. Students who did
not respond to more than five items were removed. Students
who did not correctly respond to the control statement (“We
use this statement to discard the surveys of people who are not
reading the questions. Please select “Agree” for this question to
preserve your answers) were removed, and this item was not
used in subsequent analysis.

Student responses were scored according to the method
described by the survey’s developer (Dorn and Tew, 2015).
For each item, students selected “Strongly Disagree,” “Disagree,”
“Neutral,” “Agree,” or “Strongly Agree.” The responses were first
collapsed into a 3-point scale by replacing “strongly agree” by
“agree” and replacing “strongly disagree” by “disagree,” then
scored based on their agreement with expert opinion. Each item
receive a “1” if the student agreed with the expert opinion, and
a “0” if their response was “Neutral” or they disagreed with
expert opinion. The score for each student was calculated as
the average of their responses to all items (to get an overall
score) or only those from the relevant subscale for each factor.
A score of 1 represents student agreement with expert opinion
on all items, and a score of 0 represents disagreement with expert
opinion on all items.

Prior to the bioinformatics module, over half the students
surveyed did not have any experience with computing
(Figure 3). When looking at all students, there was a significant
improvement in overall computing attitude scores after
completion of the bioinformatics module (Figure 4 and Table 2,
Wilcoxon signed rank test, p < 0.001, n = 56), suggesting that
even this short module can improve student attitudes toward
computing. Looking at all items in the survey, students went
from an average of 41% agreement with expert opinion to 53%
agreement with expert opinion. A significant improvement was
seen in four out of the five factors, with “Problem Solving –
Transfer” as the only factor with no significant improvement.
Shifts in the overall CAS score were greatest for the students with
no prior computing experience, though students at all levels of
experience showed a gain (Table 3).

Computer science remains one of the STEM majors with
the biggest gender gap [only about 20% of CS majors are
female (Sax et al., 2016)]. Studies have attributed this gap to
differences in attitudes (Dorn and Tew, 2015; Sax et al., 2016).
Here, we sought to explore whether there were differences in
computing attitudes between male and female students in the
context of a biology course. We also explored whether there were

differences between first-generation college students and students
with at least 1 parent with a four-year degree, and between
students who enrolled directly as new freshman and students
who transferred from other (typically community) colleges. In
contrast to previous studies, we did not see a significant difference
in pre-scores on the CAS between any of the demographic
groups (Table 4). We also did not see any significant differences
between demographic groups in how much the CAS scores
improved after the module (Table 5). Possible explanations for
the difference between our observations and previous work are
explored in the discussion.

All statistics were computed in jamovi (The jamovi
project, 2020).

DISCUSSION

This methods paper serves as a guide for instructors who are
thinking of adding a next-generation resequencing project into
their courses. We hope short modules like this can act as a bridge
for novice students with no prior command-line experience.
Though only a small amount of specific knowledge of particular
software programs is covered, the familiarity with command-line
that students develop, and the positive impact of the module on
student attitudes toward computing, may serve as a bridge to
future learning.

This type of exposure may be particularly important
for students from populations that are underrepresented in
computing fields. Studies have shown that key barriers for
participation are student attitudes toward computing, including
their confidence about their computing ability and their
perception of belonging in computer science (Cheryan et al.,
2009; Dorn and Tew, 2015; Sax et al., 2016). Completion of the
bioinformatics portion of the module improved student attitudes,
but there was no difference in the magnitude of this shift among
the different demographic groups we analyzed, nor was there a
difference in incoming attitudes as measured by the pre-score
alone. There are two possible explanations for this.

First, the CAS, which focuses primarily on attitudes toward
the practice of computing itself, may not capture attitudes
about belonging and identity as someone who does computer
science, and these factors may be the ones that better explain
demographic differences in attitudes. In future implementations
of the course we plan to include assessments that measure these
other components of student attitude.

Second, it may be that negative attitudes are more strongly
held in environments in which students are the minority group.
In contrast to computer science, where there is a strong gender
imbalance, biology majors typically have greater gender equity in
their cohorts. At the institution where we collected data, only 17%
of computer science majors were women; by comparison, 60%
of biology majors were women (institutional research, 2017/2018
school year), and in the student responses we analyzed, 75% of
the students were women. This may create a more welcoming
environment for female students, and suggests that teaching
computing in the context of biology may be a way to better reach
underrepresented students.
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In the future, we hope to assess the impact of this module
on other student outcomes, including content knowledge
and understanding in bioinformatics, as well as potential
gains in other related areas, like microbiology and evolution.
Additionally, we plan to explore how this module, or any
introductory bioinformatics module, could be improved in ways
that lead to an even greater shift in student attitudes toward
computing. This module incorporates a tutorial to walk students
through the mechanics of command-line work, but there could
be other potential learning activities or self-reflections focused on
students’ self-efficacy and capacity for growth that might improve
outcomes, especially for populations underrepresented in STEM
and bioinformatics.
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