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Editorial on the Research Topic

XXXIII SIMGBMCongress 2019 - Environmental and Industrial Microbiology

The Italian Society for General Microbiology and Microbial Biotechnology (SIMGBM) was
founded in 1982. At present, the society has more than 350 members from Academia, Research
Institutions, and Biotech Companies with the aim to foster microbiological research in Italy
and to promote collaborations and visibility of Italian microbiologists in the different areas
of microbiology and biotechnology. Articles presented in this Research Topic come from
attendants of Microbiology 2019, the 33rd Congress of SIMGBM, held in Florence, Italy, on
19th−22nd June 2019 and include selected contributions under the label “Environmental and
Industrial Microbiology.”

Microorganisms represent an environmental treasure in itself, playing a fundamental role
in the sustainable development of ecosystems. Moreover, if exploited judiciously, they can be
used to recover disturbed environments or for bioremediation processes. Both terrestrial and
aquatic environments have been explored with this aim. In the papers from Vassallo et al. and
Chamizo et al., microbial communities are studied aiming to obtain environmental benefits like
the formulation of a synthetic bacterial community to improve phytodepuration processes, and for
inoculation in soil restoration techniques, respectively. Vassallo et al. identified the dynamics of the
microbiota composition of Phragmites australis roots as triggered by the presence of wastewater,
identifying a direct correlation, linking the appearance of antibiotic- and synthetic wastewater-
resistance with the time of exposure to wastewater. Cyanobacteria adapted to environmental
stress can be used as inoculants to induce artificial biocrusts formation in degraded drylands.
Exopolysaccharides (EPS) production is a key factor in biocrusts formation. In their study, Chamizo
et al. investigated the differences in growth and polysaccharidic matrix features among three
common biocrust-forming cyanobacteria proposed as soil inoculants. Although the proper care
needs to be taken when releasing microorganisms into the environment, both studies highlight
that a careful selection of microorganisms providing specific functions can be profitable for several
environmental applications.

Selected microbial strains are, moreover, crucial to obtain specific biotechnological products.
Three reviews are present in this Research Topic, focusing on three distinct applications of
specific microbial groups, i.e., wild Saccharomyces strains for improved processes in industrial
fermentations Di Paola et al., Streptomycetes for recombinant protein production (Berini et al.
and calcium carbonate mineralizing bacteria for stone artwork consolidation (Marvasi et al.). The
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mini-review by Di Paola et al. outlines the history of fermentation
and yeast domestication, leading to strain artificial selection
by the breeding of wild species to obtain standardized yeast
cultures. The authors highlight in particular the importance
of social insects in yeast dispersion and in-gut breeding and
discuss on their exploitation for the production of hybrid
yeasts from environmental S. cerevisiae isolates suitable for
industrial and biotechnological applications. The mini-review
by Berini et al. focuses on the biotechnological exploitation
of the streptomycetes by recapitulating recombinant protein
production heterologously expressed in this genus in the last
40 years. The authors highlight Streptomyces as a promising,
alternative, and versatile platform for recombinant protein
production, discussing the pros and cons of using it as
an expression chassis. Marvasi et al., finally, focus on the
exploitation of bacteria to counteract the weathering threat
to the stone cultural heritage given by pollution and global
warming. Bacterial Calcium Carbonate Mineralization is indeed
proposed as an environmentally friendly tool applicable in
situ to protect calcareous stone artworks. The mini-review
reports the milestones of the biomineralization approaches,
discussing the challenging aspects and the perspectives of the
different methods.

Marine Microbiology is a rapidly expanding branch of
the science of Microbiology and thanks to latest generation
molecular methodologies and technologies the nature, role,
and biotechnological potential of marine microorganisms,
the dominant life form on our planet, begin to be disclosed. In
the work by Ottaviani et al. predatory bacteria belonging to the
genus Halobacteriovorax were isolated from the Adriatic Sea and
tested for their ability to prey pathogenic Vibrio spp. strains.
Predator-prey interaction within the prokaryotic community was
proposed to play a role in modulating the abundance of V.
parahaemolyticus strains in the marine ecosystem through a top-
down control of their bacterial prey community. Tamburini et al.
investigate the structure and composition of the bacterial and
archaeal communities in sediments from three Mediterranean
ports. Using targeted metagenomic analysis of the 16S rRNA
gene they were able to assess the effects exerted by multiple
organic and inorganic contaminations on the benthic prokaryote
community and designate bacterial community as a candidate
tool for the monitoring of the sediment quality status in
marine harbors.

The rise of extensive and widespread antibiotic resistance
(AR) is one of the greatest threats to human health in
environments exposed to antibiotic residues by means of
wastewaters and animal manure. It has been recognized that
some of the routes that cause AR spread in environments
related to the agri-food system include the use of reclaimed
water for irrigation purposes, and also the animal manure

application to soils. In the study reported by Riva et al., the
ability of an environmental E. coli strain, isolated form the
crustacean Daphnia sp., to acquire exogenous DNA by natural
competence with relatively high frequency was demonstrated.
The protocol adopted was conceived to mimic conditions
feasible in the environment, i.e., in natural and artificial water
solutions considered as representative of environmental habitats.
By also showing the capacity of this E. coli strain to colonize
plant rhizosphere, using soil potted lettuce as a model system,
the authors’ results confirm the importance to investigate the
possible spread of antibiotic resistant determinants through
horizontal gene transfer in the environment and, particularly, in
the rhizosphere of those employed plant species. Citterio et al.
applied a PCR-based plasmid replicon typing to investigate the
diversity and transferability of AR genes carrying plasmids in
environmental E. coli strains, isolated from clams and marine
sediments. Conjugative FIA, FIB, FII, plasmids (IncF group) were
the most frequently found in AR strains isolated from the marine
environment, suggesting a role played by these replicons in the
spread of AR genes among environmental Enterobacteriaceae
and, through the food chain, to human isolates.

Lastly, the use of antibiotics in the food animal industry is
certainly considered among the main causes of propagation and
dissemination of antibiotic residues, antibiotic-resistant bacteria
(ARB) and antibiotic resistance genes (ARGs) in the soil-water
system. The review by Checcucci et al. highlights the most recent
research on ARGs in farm environment and the strategies used to
control their dissemination. This review analyzes the most recent
research on antibiotics and ARGs environmental dissemination
conveyed by livestock waste. Strategies to control ARGs
dissemination and antibiotic persistence were reviewed with the
aim to identify methods for monitoring DNA transferability and
environmental conditions promoting such a diffusion.
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Plasmid Replicon Typing of
Antibiotic-Resistant Escherichia coli
From Clams and Marine Sediments
Barbara Citterio1*†, Francesca Andreoni1†, Serena Simoni2, Elisa Carloni1,
Mauro Magnani1, Gianmarco Mangiaterra2, Nicholas Cedraro2, Francesca Biavasco2

and Carla Vignaroli2

1 Department of Biomolecular Sciences, Biotechnology Section, University of Urbino “Carlo Bo”, Urbino, Italy, 2 Department
of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy

Unlike human isolates, environmental Escherichia coli isolates have not been thoroughly
investigated for the diversity and transferability of antibiotic-resistant plasmids. In this
study, antibiotic-resistant strains from marine sediment (n = 50) and clams (n = 53)
were analyzed (i) for their plasmid content using a PCR-based plasmid replicon typing
(PBRT) kit and (ii) for the transferability of plasmid-associated antibiotic resistance (AR)
traits by mating experiments. Fifteen of the thirty replicons targeted by the PBRT kit
were detected in the isolates; 8/15 were identified in both sediment and clam isolates,
although at different frequencies. The most frequent replicons in sediment (74%) and
in clam strains (66%) alike, were FIA, FIB, or FII, which are associated with the IncF
group, followed by the I1α replicon, which was more frequent in clam (24.5%) than
in sediment (10%) strains. More than 50% of the strains contained multiple replicons;
although 15 were untypable, S1-PFGE analysis demonstrated that 14/15 carried no
plasmids. All cryptic strains were successfully typed and were positive for IncF or
IncI replicons. Antibiotic-resistant strains accounted for 63% of all isolates and were
significantly (p < 0.05) more frequent in phylogroup A. Most (35%) multidrug-resistant
(MDR) strains belonged to phylogroup A, too. Although 25/26 MDR strains were positive
for IncF plasmids (the exception being a clam strain), the FII-FIB rep combination was
predominant (63%) among the sediment isolates, whereas most clam isolates (40%)
carried the FII replicon alone. In mating experiments, selected MDR strains carrying FIB,
FII, and I1α replicons, used as the donors, transferred multiple ARs together with the
IncF or IncI plasmids at high frequency. Since IncI plasmids are common in E. coli and
Salmonella enterica isolates from poultry, our findings suggest an animal origin to the
E. coli clam strains carrying IncI plasmids. They also suggest a role for IncI plasmids
in the spread of ARs among environmental Enterobacteriaceae and, through the food
chain, to human isolates. In conclusion, the PBRT kit proved to be a useful tool to
identify plasmids carrying antibiotic-resistant genes and to shed light on the factors
underpinning their diffusion.

Keywords: PBRT kit, plasmid, Inc group, replicon, antimicrobial resistance, Escherichia coli
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INTRODUCTION

Antimicrobial resistance – a major and topical clinical issue –
has also become an environmental concern owing to the growing
spread and ubiquity of resistance genes and bacteria (Bengtsson-
Palme et al., 2018). The human and animal microbiota appears to
be the primary reactor where antibiotic resistance develops, due
to exposure to the selective pressure of antibiotics administered
for infection treatment or prophylaxis (Baquero et al., 2008;
Rolain, 2013). Moreover, the gut may be a reservoir of resistance
genes, where horizontal genetic transfer (HGT) among different
microbial species may easily occur (Rolain, 2013). Human and
animal antibiotic-resistant (AR) bacteria released into wastewater
find their way to the soil and to water environments; in particular,
water is a favorable habitat for interactions and gene exchanges
among micro-organisms, the dissemination of resistance genes
or bacteria, and the transmission of waterborne infectious
disease (Finley et al., 2013; Jang et al., 2017). Enterobacteriaceae
are found in a wide range of environments. The presence of
Escherichia coli – a common bacterium of the human and animal
intestinal microbiota – in natural water bodies has long been
interpreted as indicating fecal contamination. More recently,
E. coli has been demonstrated to be highly adaptable and to
be able to survive and replicate outside the host, in water,
soil, sediment and vegetables (Delaquis et al., 2007; Bergholz
et al., 2011; Frank et al., 2011; Jang et al., 2017). Commensal as
well as pathogenic E. coli strains resistant to several antibiotics
have been recovered in the marine environment (Vignaroli
et al., 2013, 2016; Charnock et al., 2014; Drali et al., 2018).
Antibiotic resistance in E. coli species is of particular concern
because of the growing prevalence of multidrug-resistant (MDR)
strains involved in human and animal infections. Moreover, the
incidence of AR commensal E. coli isolates in healthy humans
is increasing worldwide (Broaders et al., 2013; Rolain, 2013),
contributing to the emergence and spread of AR pathogens. AR
clinical isolates of E. coli are also frequently related to those from
animals, suggesting that both the food chain and food animals
may be a source of MDR strains (Rolain, 2013; Lazarus et al.,
2015; Berg et al., 2017).

Besides antibiotic exposure and HGT events, the acquisition
of resistance genes by E. coli isolates is also affected by their
genetic background. Some phylogenetic groups (i.e., A and D)
are more prone to develop antibiotic resistances, and strains
belonging to the same phylogroup and sequence type (ST) often
share the same antibiotic resistance profile (Tenaillon et al.,
2010). E. coli population structure can provide useful information
on strain origin, since different phylogroups predominate in
distinct ecological niches (Tenaillon et al., 2010). The acquisition
of plasmids, which enhance resistance gene dissemination, is
believed to play a key role in the growing prevalence of MDR
E. coli strains (Mathers et al., 2015). In Enterobacteriaceae,
some plasmids associated with specific resistance determinants
are predominant in specific geographic areas; they are able to
replicate in a wide host range (e.g., IncA/C and IncL/M plasmids)
and their dissemination relies on antimicrobial selective pressure
(Rozwandowicz et al., 2018). Other plasmids are only found
in closely related hosts and are maintained by the bacterial

cell because they encode virulence factors enhancing bacterial
adaption and fitness (Carattoli, 2009).

This study was undertaken to determine: (i) the distribution
and prevalence of major plasmid replicons in E. coli isolated
from clams and marine sediment using the PCR-based replicon
typing (PBRT) kit and (ii) the involvement of specific
plasmids in the conjugal transfer of antibiotic resistance from
environmental E. coli.

MATERIALS AND METHODS

Bacterial Strains
A total of 103 E. coli isolates (53 from clams and 50 from
marine sediments) were used in the study. The 53 clam
strains were selected from a collection of 141 strains isolated
from Venus clams collected in Italy in the middle Adriatic
Sea, which had previously been characterized for antibiotic
resistance phenotype and phylogroup (Vignaroli et al., 2016).
The 50 sediment strains were isolated from samples collected
at three coastal sites (SE, PN, and API) at a depth of 4–12 m
(from latitude 43◦45.300′N, longitude 13◦12.630′E, to latitude
43◦39.0′N, longitude 13◦22.0′E) near the areas where the clams
had been harvested.

To detach bacteria from sediment, aliquots (5 g) of each
sample were suspended in 20 mL sterile seawater, vortexed and
sonicated (3 times, 1 min per cycle) as described previously (Luna
et al., 2010; Vignaroli et al., 2013). The resuspensions were filtered
by the membrane filter technique and E. coli strains were isolated
in the selective medium mFC agar (BBL, Becton Dickinson & Co.,
Sparks, MD, United States) (Vignaroli et al., 2013).

Strain Identification and Typing
Presumptive E. coli colonies from sediment samples were
identified by the molecular approach based on PCR amplification
of the species-specific uidA gene (McDaniels et al., 1996). The
PCR methods developed by Clermont et al. (2011, 2013) allowed
each E. coli isolate to be assigned to a phylogenetic group
or cryptic clade.

Antimicrobial Susceptibility and PCR
Detection of Class 1 Integrons and
Antibiotic Resistance Genes
Strain susceptibility to ampicillin (10 µg), cefotaxime (30 µg),
gentamicin (10 µg), ciprofloxacin (5 µg), tetracycline
(30 µg), chloramphenicol (30 µg), nalidixic acid (30 µg),
trimethoprim/sulfamethoxazole (1.25/23.75 µg) and
streptomycin (10 µg) was assessed by the disk diffusion
method according to CLSI recommendation (Clinical and
Laboratory Standards Institute (CLSI), 2017). Strains resistant
to β-lactams were analyzed for extended spectrum β-lactamase
(ESBL) production by screening and confirmatory tests (Clinical
and Laboratory Standards Institute (CLSI), 2017). In brief, a
standard disk diffusion test was performed in which the β-lactam
antibiotic disks of both cefotaxime and ceftazidime, alone and
in combination with clavulanate were used. A ≥5-mm increase
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in a zone diameter for either antimicrobial agent tested in
combination with clavulanate vs. the zone diameter of the agent
when tested alone indicated the ESBL production by the strain
(Clinical and Laboratory Standards Institute (CLSI), 2017).

E. coli ATCC 25922 was the reference strain in all
antimicrobial susceptibility assays. Resistant strains were
screened by PCR for the following determinants: blaTEM ,
blaSHV , and blaCTX−M (ESBL-encoding genes) for β-
lactam resistance; tet(A) for tetracycline resistance; dfrA1
for trimethoprim/sulfamethoxazole resistance; and strA,
strB, aadA, and ant(3′′) for aminoglycoside resistance.
Primers and PCR conditions were as reported previously
(Vignaroli et al., 2012, 2013).

MDR strains were analyzed by PCR for the intI1 integrase
gene and the variable region of the class 1 integron using primers
and PCR conditions described previously (Vignaroli et al., 2012).
The resistance genes linked to class 1 integron were characterized
by sequencing (GATC Biotech Cologne, Germany) the cassette
amplicons and by nucleotide sequence analysis using the Basic
Local Alignment Search Tool (BLAST)1.

Plasmid Typing
The PBRT 2.0 kit (Diatheva, Fano, Italy) which has been used for
plasmid identification and to type the major resistance plasmids
found in Enterobacteriaceae (Carloni et al., 2017), was applied
in our study. The amplicons recognized by the PBRT kit were
analyzed by capillary electrophoresis with an AATI Fragment
Analyzer (Agilent, Santa Clara, CA, United States).

Where necessary, amplicons were purified using MinElute
PCR purification kit (Qiagen, Hilden, Germany) and directly
sequenced by the Sanger method using BigDye Terminator
v. 1.1 Cycle Sequencing Kit (Thermo Fisher Scientific,
Vilnius, Lithuania) on the ABI PRISM 310 Genetic Analyzer
(Applied Biosystems, Thermo Fisher Scientific, Waltham,
MA, United States). The consensus sequences obtained
were submitted to the pMLST database for allele variant
identification2.

The stx1, stx2, and eae genes of shiga toxin-producing E. coli
(STEC) strains were identified using STEC FLUO detection
kit (Diatheva, Fano, Italy) according to the manufacturer’s
instructions; the strains that were positive for stx and/or eae genes
underwent O-serogroup identification (O157, O111, O26, O103,
and O145) using the STEC Serotypes FLUO kit (Diatheva).

S1-PFGE
S1-nuclease pulsed field gel electrophoresis (S1-PFGE) was
performed to determine plasmid size and compare the plasmid
profile of strains. Total DNA embedded in 0.8% agarose plugs
was incubated for 30 min at 25◦C with 100 U Aspergillus oryzae
S1 nuclease (Takara Bio Inc., Shiga, Japan). The plugs were
loaded on a 1% agarose gel using 0.5X TBE running buffer.
Electrophoresis was performed in a CHEF-mapper system (Bio-
Rad Laboratories, Inc., CA, United States) with the pulse time
increasing from 1 to 25 s for 17 h at 14◦C and 200 V (6 V/cm).

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2https://pubmlst.org/plasmid

The Low Range PFG Marker (0.1–200 kb) and Lambda Ladder
PFG Marker (50–1,000 kb) from New England Biolabs (Ipswich,
MA, United States) were used as molecular size markers.

Conjugation Experiments
Conjugal transfer of tetracycline and β-lactam resistance was
performed by filter mating using the protocol previously
described (Vignaroli et al., 2011). The E. coli 1816 (a
mutant of E. coli C600, lactose-non-fermenting, resistant to
nalidixic acid and rifampicin) was used as the recipient strain.
Transconjugants were selected on Brain Heart Infusion agar
(BHIA) (Oxoid, Basingstoke, United Kingdom) supplemented
with tetracycline (20 µg/mL), rifampicin (50 µg/mL), and
nalidixic acid (50 µg/mL). Transfer frequency was expressed as
number of transconjugants per recipient. Transconjugants were
first confirmed by three passages on MacConkey agar (Oxoid)
containing all three antibiotics at the concentrations used for
selection. Plasmid acquisition was assessed by comparing the
S1-PFGE profiles of transconjugant and donor and confirmed
using the PBRT kit.

Hybridization Assays
The plasmid location of the tet(A) gene was investigated in
the donors, the transconjugants and the recipient E. coli 1816
by hybridization assays after S1-PFGE and Southern blotting.
DNA was blotted onto positively charged nylon membranes (Bio-
Rad Laboratories) and hybridized with a biotin-labeled tet(A)
probe using North2SouthTM Chemiluminescent Hybridization
and Detection Kit (Thermo Fisher Scientific, Rockford, IL,
United States), according to the manufacturer instructions.

Statistical Analysis
Differences in the prevalence of the replicon types were analyzed
by the χ2 test. The significance of the association between a
replicon type and resistance to a specific antibiotic or belonging
to a specific phylogroup was analyzed by Fisher’s test. A P-
value < 0.05 was considered significant.

RESULTS

A total number of 103 E. coli isolates, obtained from clam and
sediment samples collected at roughly the same three sites (API,
SE, and PN) were analyzed in this study. The 53 E. coli clam
strains belonged to different phylogroups; most (n = 31) were
from clams harvested next to the API site, 10 came from site
SE and 12 from site PN. Most isolates belonged to phylogroup
A (n = 21), B1 (n = 7) or D (n = 6) whereas six were cryptic
(Vignaroli et al., 2016; Table 1).

Analysis of the 50 isolates from sediment samples grown
on mFC agar and identified as E. coli showed that most of
them (n = 41) were from site PN and that they belonged to all
phylogroups except E and F. There were only two cryptic strains,
both of clade V, from site PN (Table 1).

All 103 strains were subjected to plasmid replicon typing;
the results are reported in Table 1. Overall, 15 of the 30
replicons detected by PBRT kit were found in the strains;
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TABLE 1 | Prevalence of the replicons detected by the PBRT kit in E. coli isolates from clams and sediments.

Phylogroup N. of strains N. of strains positive for each replicon type

HI1 I1α I1γ X1 X3 X4 M N FIA FIB FII FIB KN K B/O R More Rep No Repa

Clams

A 21 1 3 – 4 1 – – 1 2 3 12 – – – – 7 3

B1 7 – 1 – – – – – – – 3 4 2 – – – 3 –

B2 4 – 1 – – – – – – 2 3 3 – – – – 3 –

C 2 – 1 – – – – 1 – – 1 1 – – – – 1 1

D 6 – 1 – – – – – – 1 4 4 – – – – 4 1

E 5 – 1 – – – – – 1 1 3 2 – – – – 2 2

F 1 – 1 – – – – – – – – – – – – – – –

Ub 1 – – – – – – – – 1 1 1 – – 1 – 1 –

clade III-IV-V 6 – 4 1 – – – – – – 2 3 – – – – 4 –

Total 53 1 13 1 4 1 – 1 2 7 20 30 2 – 1 – 25 7

Sediments

A 16 3 2 – – – – – – – 4 9 1 – – – 7 4

B1 13 – 3 – 1 – – – – 1 6 7 2 – – 1 6 2

B2 10 – – – – – 1 – 1 4 5 7 – 1 – – 7 2

C 3 – – – – – – – 1 – 3 3 – – – – 3 –

D 4 – – – – – – – – 1 2 4 – 1 – – 2 –

E – – – – – – – – – – – – – – – – – –

F 2 – – – – – – – – – 2 2 – – – – 2 –

Ub – – – – – – – – – – – – – – – – – –

clade V 2 – – – – – – – – – 2 2 – – – – 2 –

Total 50 3 5 – 1 – 1 – 2 6 24 34 3 2 – 1 29 8

aNegative for all replicon types detected by the PBRT kit. bUnknown, PCR-negative for phylogroup determination (Clermont et al., 2013).

8/15 were shared by clam and sediment strains, although at
different frequencies. FIA, FIB, and FII, carried by IncF family
plasmids, were the most frequent types, followed by replicon
I1α, which is associated with IncI plasmids. IncF plasmids which
were detected in 74% of sediment and 66% of clam strains
carried single or multiple IncF replicons. In particular, the rep
combination FII-FIB was significantly (p = 0.03) more frequent
in sediment (54%) as well as in clam (28.6%) strains. More than
50% of strains contained multiple replicons, whereas 15 (8 from
sediments and 7 from clams) were untypable by the PBRT kit.
S1-PFGE analysis showed that 14/15 untypable strains did not
contain plasmids. Interestingly, replicon I1α was more frequent
among clam (24.5%) than among sediment strains (10%), but
the difference was not significant. All cryptic clade strains (8)
were typable by the kit and were positive only for IncF and/or
IncI family replicons; 50% of these strains were positive only
for FIB and FII replicons, whereas the remaining 50% carried
I1α in addition to I1γ (clade III, E. coli ISZ 201), or FII (clade
V, E. coli ISZ 272). In three E. coli clam strains (ISZ 45, ISZ
211, and ISZ 275), the PCR products of the FIA replicon were
smaller (from ∼411 to ∼440 bp) than those of the control
strain (462 bp). Sequencing and comparison with the pMLST
database disclosed that all were FIA replicons carrying short
deletions; in particular, E. coli ISZ 45 and E. coli ISZ 211 bore
the FIA6 allele, whereas E. coli ISZ 275 carried the FIA5 allele;
compared with the FIA2 allele of the control strain E. coli ISZ

35, the FIA6 and FIA5 alleles showed a deletion of 55 and
22 bp, respectively.

The STEC FLUO kit for the stx1, stx2, and eae virulence genes,
to detect shiga toxin-producing E. coli showed that only E. coli
PN37 from sediment was positive for gene eae, but that it did not
belong to any of the serogroups detected by the kit.

The results of antimicrobial susceptibility testing showed that
resistant isolates were significantly (p < 0.05) more numerous
in phylogroup A (75.6%) than in the other phylogroups (56%).
The prevalence of clam and sediment strains resistant to the
different antimicrobials is reported in Figure 1. Among the 53
clam strains, resistance to tetracycline was the most frequent
(62%; n = 33), followed by resistance to ampicillin (43%; n = 23)
and streptomycin (26%; n = 14) (Figure 1), in line with a previous
report (Vignaroli et al., 2016). Resistance to tetracycline was
significantly more frequent (p = 0.0015) among clam than among
sediment strains (Figure 1). Multidrug resistance was detected
in 15 strains (28%), most of which belonged to phylogroup A
(47%), B2 (20%) or E (13%) and was not significantly associated
with any phylogroup. The percentage of resistant strains positive
to the relevant resistance genes is shown in Figure 2. Of the 23
ampicillin-resistant strains, 21 (91%) were ESBL producers and
19 of them (83%) carried a gene (blaTEM) encoding a TEM-type
β-lactamase, whereas 24 out of 33 (73%) tetracycline-resistant
strains were positive for tet(A). In the streptomycin-resistant
strains (n = 14) the genes strA and strB were recovered at a
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frequency of 86% (n = 12) and 57% (n = 8), respectively, whereas
the ant(3′′) gene was found in 21% (n = 3) of clam strains and
aadA (50%; n = 7) was significantly (p = 0.03) more common in
clam than in sediment strains (Figure 2).

Altogether, 30% (n = 15) of sediment strains were resistant
to tetracycline, 30% (n = 15) to ampicillin and 22% (n = 11) to
streptomycin, in line with the results from the clam strains, which
come from the same areas (Figure 1). The association between
the occurrence of antimicrobial resistance and specific Inc family
plasmids was then investigated. The only detected association was
between ampicillin resistance and the IncF family in the clam
isolates (p = 0.007), as shown in Figure 3.

Multidrug resistance (to three or more antibiotic classes)
was also detected in 11 sediment strains (22%); most of them
(82%) belonged to phylogroup B1 (36%), B2 (28%) or A
(18%); however, as in the clam strains, multidrug resistance was
associated with none of the phylogroups. All but one of the
ampicillin-resistant strains (93%; n = 14) were positive to the
ESBL production test and carried blaTEM gene. Two strains from
the PN site were also positive for a gene encoding a SHV-type
β-lactamase (blaSHV ) and an ESBL-encoding gene (blaCTX−M),
respectively. ESBL producers were recovered from all three sites,
as displayed by the phenotypic screening. Moreover, 93% (n = 14)
of tetracycline-resistant strains carried the tet(A) gene and all

FIGURE 1 | Prevalence of resistant strains among clam and sediment
isolates. AM, ampicillin; CTX, cefotaxime; GEN, gentamicin; CIP, ciprofloxacin;
TE, tetracycline; C, chloramphenicol; NA, nalidixic acid; SXT,
trimethoprim/sulfamethoxazole; STR, streptomycin. **Highly statistically
significant (p = 0.0015).

FIGURE 2 | Prevalence of resistance genes among resistant clam and
sediment strains. **Statistically significant (p = 0.03). *Not quite statistically
significant (p = 0.09).

FIGURE 3 | Association between antibiotic resistance and IncF family
replicons among clam (A) and sediment isolates (B). **Statistically significant
(p = 0.007). *Not quite statistically significant (p = 0.07–0.09).

streptomycin-resistant isolates were positive for strA and strB at
a high frequency (91%; n = 10), like the streptomycin-resistant
clam strains (Figure 2). The ant(3′′) gene was never detected,
whereas a single strain (E. coli PN56) carried both aadA and
dfrA1. All MDR sediment strains (n = 11) carried multiple
IncF replicons, with the FII-FIB combination being predominant
(64%). All MDR clam strains but one (n = 14) were also IncF-
positive. Most of them (n = 6) carried the FII replicon alone,
whereas three strains carried FII and FIB.

Although 80% (n = 21) of MDR strains from both clam and
sediment were positive for the integrase gene intI1, amplification
of the variable region of the class 1 integron was obtained only
from 20 and 9% of the clam and sediment strains, respectively.
Sequence analysis of gene cassettes demonstrated three different
arrangements: dfrA1-aadA1 and dfrA17-aadA5 in clam strains
and dfrA12-aadA2 in sediment strains.

The 14 E. coli isolates from clams (n = 9) and sediments (n = 5)
showing positivity for the IncI1α group were subjected to S1-
PFGE. Analysis of the number and size of their plasmids (Table 2)
indicated that all isolates harbored 1–3 plasmids, ranging in
size from 75 to 145 kb. To assess the involvement of the IncIα
group in the transfer of antibiotic resistance, six tetracycline-
resistant isolates carrying the tet(A) gene were used as donors
in conjugation experiments. E. coli ISZ 220 from clams and
E. coli PN30 from sediments transferred tetracycline resistance to
E. coli 1816 at the highest frequency (respectively, 4.8× 10−3 and
1.2 × 10−7). Five transconjugants obtained from the two mating
pairs were analyzed for their plasmid profile and resistance gene
acquisition. In both mating assays the transconjugants acquired
all the resistance determinants and the intI1 gene, but not all
the plasmids (Table 2 and Supplementary Figure S1). In fact,

Frontiers in Microbiology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 110110

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01101 May 25, 2020 Time: 12:42 # 6

Citterio et al. Replicon Typing of Marine E. coli Strains

TABLE 2 | E. coli isolates from clams and sediments showing positivity for the IncI1α group: phylogroups, resistance genes and plasmid sizes.

E. coli strain Phylo-group Resistance genes PBRT replicon Plasmid size (∼kb)

Clams

ISZ 220 C blaTEM, tet(A), dfrA1, aadA I1α – FIB – FII – M 110, 95, 55

ISZ 276 D strA, strB I1α 90

ISZ 61 E blaTEM, dfrA1, strA, aadA, ant(3′′) I1α – FIB – FII – N 140, 80, 40

ISZ 80 F – I1α 85

ISZ 210 A – I1α – FIB 110, 95

ISZ 211 A – I1α – FIB – FIA 80, 40

ISZ 255 B1 – I1α 80

ISZ 274 A blaTEM I1α 90

ISZ 325 B2 tet(A) I1α 90

Sediments

PN41 A tet(A) I1α 95

PN44 A tet(A) I1α 95

PN16 B1 – I1α 85

PN29 B1 blaTEM, tet(A), strA, strB I1α – FIB – FII 145, 75

PN30 B1 blaTEM, tet(A), strA, strB I1α – FIB – FII 145, 75

S1-PFGE showed that E. coli ISZ 220 transferred two (∼110
and 55 kb) of its three plasmids; PBRT confirmed that the
transconjugants were positive for replicons I1α and M, but not
for replicon F. In contrast, E. coli PN30 transferred only the
IncF plasmid, although it also carried an IncI1 plasmid, as shown
by S1-PFGE and by PCR amplification of the replicons. The
hybridization assays confirmed the location of the tet(A) gene on
the larger plasmids of the two donors (on the 110 kb plasmid in
E. coli ISZ 220 and on the 145 kb plasmid in E. coli PN30) and of
the relevant transconjugants (Supplementary Figure S1).

DISCUSSION

The rapid evolution and global diffusion of MDR
Enterobacteriaceae (mostly E. coli and Klebsiella pneumoniae)
is raising widespread concern. Specific successful bacterial
clones such as E. coli ST131 and K. pneumoniae ST258 are
major causes of hospital- and community-acquired infections
(Mathers et al., 2015). For epidemiological purposes, epidemic
clones are usually identified by their genetic background (e.g.,
ST determination), whereas plasmid DNA is ignored despite
its important role in strain resistance traits. The association
between high-risk clones and specific resistant plasmids involved
in resistance gene dissemination has been demonstrated in
clinical settings (Mathers et al., 2015; Roer et al., 2018). In
contrast, environmental E. coli isolates have not been thoroughly
investigated for the diversity and transferability of antibiotic
resistance plasmids, despite the fact that assessment of their
plasmid profile could help identify dangerous strains and their
origin. Moreover, recurrent detection of some plasmid types
could indicate their role in strain survival in specific habitats
as well as in the spread of antibiotic resistance traits. In this
study, 103 AR strains from clam and marine sediment samples,
collected along the mid-Adriatic coast, were analyzed for their
plasmid content and for the transferability of plasmid-associated

resistance traits. The PBRT kit employed in the study proved
useful to identify the most common plasmids. Even though
14.5% of strains were negative for all the replicons targeted
by the kit, most (93%) were not typable because they did not
contain plasmid DNA. IncF replicons were the most frequent
in our isolates, in line with reports that IncF plasmids are
the most common plasmids in Enterobacteriaceae, especially
in E. coli species (Carattoli, 2009). In Europe IncF plasmids
are described predominantly in human and animal isolates,
not in environmental strains (Rozwandowicz et al., 2018).
Consequently, their high prevalence in our clam and sediment
isolates may reflect their human or animal origin.

IncF plasmids are typically multireplicon, often encoding FII
together with FIA and/or FIB (Villa et al., 2010). The plasmids
containing FII and FIA replicon types have been described
in the epidemic E. coli strain ST131 and in K. pneumoniae
ST258 clones (Mathers et al., 2015). In our E. coli strains,
most IncF-positive isolates, particularly among sediment isolates,
contained the FII-FIB combination or FII alone. In a recent
study (Lambrecht et al., 2018), the FII-FIB combination was
found to be predominant in commensal MDR E. coli from farm
animals, mainly broilers. IncF plasmids are often associated with
IncI plasmids, which are also common in E. coli and Salmonella
enterica from poultry (Rozwandowicz et al., 2018). Moreover,
IncF and IncI plasmids have been reported in association
with MDR E. coli strains, mainly ESBL producers, from food
animals (Xie et al., 2016). The prevalence of both IncF and IncI
plasmids in our isolates, particularly from clams, strengthen the
hypothesis that contamination of our clam harvesting areas came
from animal sources.

Resistance to multiple antimicrobial classes is common in
E. coli (ECDC, 2019) and the prevalence of resistance to β-
lactams, tetracycline and aminoglycosides in our clam and
sediment strains is in line with earlier reports (Vignaroli
et al., 2016; Pormohammad et al., 2019). Notably, antibiotic
resistances are frequently associated with conjugative IncF or
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IncI plasmids (Rozwandowicz et al., 2018). Accordingly, in our
study these Inc groups were detected at higher frequency in
resistant than in susceptible strains; moreover, sediment strains
exhibited a significant association between β-lactam resistance
and the presence of IncF plasmids. This Inc group was also
associated, besides the IncI group, with the conjugative transfer
of tetracycline resistance from E. coli donors of both origin
(clams and sediment). These plasmids were probably involved
in multidrug resistance, since mating experiments resulted in
the transfer of multiple resistance genes. Most MDR strains
(∼80%) were positive for the class I integron and the co-
transfer of the intI1 gene and of the resistance genes suggest
the plasmid location of the integron. In particular, donor E. coli
ISZ 220 (from clams) carried an integron with the dfrA1-
aadA1 cassette that was probably linked to the ∼110 kb IncI
plasmid transferred in mating assays. Plasmids containing this
cassette array have been described more frequently in MDR
Salmonella and MDR E. coli isolates from meat and food animals
than in human isolates (van Essen-Zandbergen et al., 2009;
Sunde et al., 2015). In contrast, the dfrA17-aadA5 cassette,
which was found in a single clam strain, has typically been
reported in isolates of human origin (Povilonis et al., 2010;
Musumeci et al., 2012; Sunde et al., 2015). This finding may
also be ascribed to contamination of the sampling areas with
fecal bacteria mostly of animal origin. Therefore, the presence
of a class I integron on conjugative plasmids contributes both
to the emergence of MDR strains and to the dissemination of
antibiotic resistance.

CONCLUSION

In conclusion, to the best of our knowledge this is one of
the few studies focused on the prevalence of specific Inc
group plasmids in E. coli isolates from secondary habitats
(like clams and sediments). The PBRT kit, which has been
developed for human isolates of Enterobacteriaceae, proved
a useful tool to type the plasmids conferring antibiotic
resistance on environmental E. coli isolates, to predict their
origin and to formulate hypotheses on the contamination
source. Moreover, these data could help correlate a plasmid
type to strain adaptation and survival strategies outside the
host, and provide further information on the spread of

antibiotic-resistant plasmid families among Enterobacteriaceae in
different settings.
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Ports and marinas are central nodes in transport network and play a strategic role in
coastal development. They receive pollution from land-based sources, marine traffic
and port infrastructures on one side and constitute a potential pollution source for the
adjacent coastal areas on the other. The aim of the present study was to evaluate
the effects of organic and inorganic co-contamination on the prokaryotic communities
in sediments from three Mediterranean ports. The structure and composition of the
bacterial and archaeal communities were assessed by targeted metagenomic analysis
of the 16S rRNA gene, and the links of prokaryotic communities with environmental and
pollution variables were investigated. The harbors presented pronounced site-specificity
in the environmental properties and pollution status. Consistently, the structure of
archaeal and bacterial communities in surface sediments exhibited a strong spatial
variation among the three investigated ports. On the contrary, a wide overlap in
composition of prokaryotic assemblages among sites was found, but local variation in
the community composition and loss of prokaryotic diversity was highlighted in a heavily
impacted port sector near a shipyard. We provided evidences that organic matter,
metals and PAHs as well as temperature and salinity play a strong role in structuring
benthic bacterial communities significantly contributing to the understanding of their
responses to anthropogenic perturbations in marine coastal areas. Among metals,
copper was recognized as strongly associated with the observed changes in bacterial
assemblages. Overall, this study provides the first assessment of the effects exerted
by multiple organic and inorganic contaminations on benthic prokaryotes in ports over
a large spatial scale and designates bacterial community as a candidate tool for the
monitoring of the sediment quality status in harbors.

Keywords: bacteria, archaea, next generation sequencing, metal, hydrocarbon, harbor, sediment, network

INTRODUCTION

Over the last two centuries, different manufactured materials and hazardous substances have
been introduced in marine ecosystems by human activities causing their anthropization (Waters
et al., 2016). The Mediterranean Sea is an interesting case study for investigating the impacts of
anthropogenic pressures on marine ecosystems as it combines numerous maritime activities and
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demographic pressures (Piante et al., 2015). Moreover, its
responsiveness to human pressures is accelerated by the
oceanographic conditions of a semi-enclosed sea. The
Mediterranean Sea is not only amongst the busiest routes
of global maritime transport, but it is also the main tourism
destination in the world, accounting for the 53% of EU passenger
seaborne traffic in 2009 (Eurostat, 2011) and 30% of the total
world tourists in 2012 (Plan Bleu, 2014). Therefore, the Basin is
globally one of the main hotspots of vulnerability to pressures
exerted by tourism activities. More specifically, marinas and
recreational harbors are ubiquitous tourism infrastructures,
with 940 marinas along the Mediterranean coasts in 2010
(Piante et al., 2015).

Ports and marinas are central nodes in the transport network
and play a strategic role in coastal development. They receive
pollution from land-based sources, marine traffic and port
infrastructures on one side and constitute a potential pollution
source for the neighboring coastal areas on the other. Port
pollution may result from ship accidents, deliberate operational
discharges from ships, land activities, ship bunkering, garbage,
dust, dredging, port maintenance, ship air emission, sewage, and
others (Vandermeulen, 1996). In the last decades, the negative
effects on natural ecosystems caused by anthropogenic activities
have received increasing attention by the EU environmental
policies (Borja et al., 2010). In this context, port sustainability
has become crucial for protection of coastal water quality,
wildlife, and human health in port city destinations (Di Vaio and
Varriale, 2018). On the other hand, port facilities are types of
activities that can result in a water body designated as a Heavily
Modified Water Body (HMWB, Water Framework Directive
2000/60/EC, WFD). Human activities to support specific uses
(e.g., navigation) have indeed caused physical alterations (i.e.,
dredging, confinement) in the water body (i.e., port) basically
modifying its hydromorphological properties (Ondiviela et al.,
2012, 2013). The peculiar features of HMWBs justify the
development of monitoring and remediation programs specific
and adequate to port characteristics.

Among chemical contaminants, metals and polycyclic
aromatic hydrocarbons (PAHs) are almost ubiquitous in
anthropized coastal areas, especially in harbors, which usually
exhibit higher concentrations than the adjacent zones (Angelidis
and Aloupi, 1995; Merhaby et al., 2015; Schintu et al., 2015;
Zakhama-Sraieb et al., 2016). The distribution of metals
within the aquatic environment is controlled by complex
processes of material exchange, which are altered by natural
and anthropogenic factors (Christophoridis et al., 2009).
Metals are natural components of metalliferous minerals,
which are geographically distributed in a heterogeneous way.
Therefore, the background values can vary widely in different
geographic regions, even in non-anthropized environments
depending on the abundance of such metalliferous minerals
(Gadd, 2010). Anthropogenic activities alter the biogeochemical
cycle by increasing the concentration of metals with respect
to their natural background and modifying their speciation
in the environment (UNEP, 2013). On the other hand, PAHs
are derived from crude oil products (i.e., petrogenic PAHs)
and incomplete combustion of organic matter (i.e., pyrolytic

PAHs). Natural sources have been found to be marginal, while
anthropogenic activities are generally considered to be the major
source of PAHs into the marine environment (Baumard et al.,
1998). Long-range aeolian PAH transport of fine combustion
particles appears to dominate the oceanic PAH flux (Gustafsson
et al., 1997). In ports and marinas, the predominance of
pyrogenic emission sources has extensively been reported with
marked differences in pollutant compositions among different
sites and the coexistence of petroleum and pyrogenic PAHs in
multi-sectoral harbors (McCready et al., 2000; De Luca et al.,
2004; Sprovieri et al., 2007; Merhaby et al., 2015; Schintu et al.,
2015; Vitali et al., 2019). Lastly, metals and PAHs entering
the marine environments accumulate in sediments, which
act as a long-term contaminant sink (Christophoridis et al.,
2009). Sediments in anthropized coastal zones are therefore
contaminated by complex mixtures of organic and inorganic
pollutants exhibiting a range of multifaceted interactions with
bacterial communities (Liu et al., 2017).

Bacteria play a pivotal role in determining the fate and
distribution of contaminants in marine sediments by controlling
the global PAH fluxes by degradation (Duran and Cravo-
Laureau, 2016) and altering metal speciation (Gadd, 2010).
More specifically, interactions with microorganisms can lead
to either an increase (i.e., siderophore production, redox
mobilization, acidification) or a decrease (i.e., exopolymer
production, intracellular sequestration, redox immobilization,
biomineral formation) in metal bioavailability (Gadd, 2010).
On the other hand, essential and non-essential elements above
threshold concentrations exert toxic effects on bacteria by
different mechanisms, such as oxidative stress caused by reactive
oxygen species (ROS, Lemire et al., 2013). The compounds with
two or three aromatic rings (i.e., low-molecular-weight PAHs)
are acutely toxic while those having four or more rings (i.e.,
high-molecular-weight PAHs) are generally genotoxic (Ghosal
et al., 2016). Nevertheless, the simultaneous exposure to PAHs
and metals result in more complex impacts than those exerted
by the single pollutant due to additive, synergistic or antagonistic
effects. Indeed, metals can affect PAHs degradation by changing
the surface properties of bacterial cells and interfering with
enzymes on one side (Biswas et al., 2015); on the other,
degradation of PAHs by the cytochrome P450 generate ROS
reducing the tolerance to toxic metals (Kuang et al., 2013).
In marine ecosystems, the impact of pollutants on benthic
communities may also depend on the system attributes, such as
hydrology, tidal energy, and climatic conditions (Nogales et al.,
2011). In the last decade, the effects of co-contamination by
PAHs and metals on benthic prokaryotic assemblages in marine
sediments have been addressed in few studies (Iannelli et al., 2012;
Sun et al., 2012; Chiellini et al., 2013; Misson et al., 2016) and
even less have pursued this challenging goal by exploiting NGS
techniques (Sun et al., 2013; Quero et al., 2015).

With these premises, the general objective of this work was to
evaluate the impacts of organic and inorganic co-contamination
on the prokaryotic communities in port sediments. In the
framework of the ENPI CBCMED project MAPMED, sediments
were collected from three touristic ports located along the
Mediterranean Sea. The pollution status of the three harbors

Frontiers in Microbiology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 123415

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01234 June 5, 2020 Time: 19:41 # 3

Tamburini et al. Benthic Prokaryotes Response to Pollutants in Ports

has been recently determined by Chatzinikolaou et al. (2018)
and Vitali et al. (2019). Moreover, their environmental properties
have been defined based on the combined assessment of physical
parameters, chemical variables (i.e., nutrients, pigments), and
macrobenthic diversity (Chatzinikolaou et al., 2018). In this
study, the structure and composition of the bacterial and
archaeal communities were assessed in surface sediments from
the three ports by targeted metagenomic analysis of the 16S rRNA
gene, and the links between prokaryotic communities and both
environmental and pollution variables were investigated.

MATERIALS AND METHODS

Study Sites and Sampling
A coordinated sampling campaign was performed in September
2012 at the end of the tourist season at three Mediterranean
ports (Figure 1): Cagliari (Sardinia, Italy), El Kantaoui (Sousse,
Tunisia), and Heraklion (Crete, Greece). Within each harbor,
three to five sampling stations were located in sectors dominated
by different port activities achieving an adequate spatial coverage
of the whole port area (Supplementary Table S1). The
collected samples were labeled as follows: the letter specifies
the port (C: Cagliari; E: El Kantaoui; H: Heraklion), while the
digit identifies the sampling station within each port sector
(Supplementary Table S1).

The environmental parameters (Chatzinikolaou et al., 2018)
included in the statistical analysis were salinity measured in
surface seawater (S_W), temperature (T_S), redox potential (Eh),
silt-clay ratio (SC), and organic carbon (OC). The sum of

chlorophyll-a and phaeopigment concentrations (CPE, Danovaro
et al., 1999) and the ratio of phaeopigments to the sum of
chlorophyll-a and phaeopigments in sediments (PAP, Boon et al.,
1998) were also calculated.

Concentrations of 31 individual aliphatic hydrocarbons (AHs)
in the range C10-C40, Unresolved Complex Mixture (UCM),
and 16 US EPA priority PAHs in superficial sediments were
previously evaluated by gas chromatography-mass spectrometry
in Chatzinikolaou et al. (2018) and Vitali et al. (2019).
Abbreviations for the 16-EPA priority PAHs are as follows: 2-ring
PAH – naphthalene (Naph); 3-ring PAHs – acenaphthylene
(Aceph), acenaphthene (Ace), fluorene (Fl), phenanthrene
(Phen), anthracene (Ant); 4-ring PAHs – fluoranthene (Flu),
pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr); 5- ring
PAHs – benzo[b]fluoranthene (BbF), benzo[k]fluoranthene
(BkF), benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (Inp),
benzo[g,h,i]perylene (BgP), dibenzo[a,h]anthracene (DBA). The
following hydrocarbon pollution descriptors were used: (i) the
total level of AHs, calculated as the sum of individual compounds
in the range C10-C40, (ii) the sum of four low-molecular-weight
PAHs (Phen, Ant, Flu, Pyr, LPAHs) and the sum of eight
high-molecular-weight (BaA, Chr, BbF, BkF, BaP, Inp, BgP, DBA,
HPAHs) as descriptors of PAH pollution levels; (iii) the molar
ratios of selected PAHs (6LPAH/6HPAH, Ant/Ant + Phen,
Flu/Flu + Pyr, BaA/BaA + Chr, Inp/Inp + BgP), as descriptors
of PAH sources (Vitali et al., 2019).

The concentrations of metals (Al, Cd, Cr, Cu, Fe, Ni,
Pb, V, and Zn) and metalloids (As, Sb) were previously
determined by Inductively Coupled Plasma optical emission
spectrometry in Chatzinikolaou et al. (2018). A normalization

FIGURE 1 | Maps of the touristic ports of Cagliari (C), El Kantaoui (E), Heraklion (H). The position of the sampling stations and the main sector uses are indicated on
the maps. Map image: Google Earth Pro, Maxar Technologies.
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of metal data by Al as conservative metal was applied
according to the geochemical approach implemented for port
sediments by Ho et al. (2012). In literature, Al has been
extensively used as normalizer since it complies with a number
of prerequisites (Schropp and Windom, 1988; Huntingford
and Turner, 2011; UNEP/Med, 2011). More specifically, the
element is one of the most important constituents of the
aluminosilicate minerals, which represent the main group of
minerals in the fine sediment fractions and tightly bind naturally
occurring metals within their structure. Aluminum is also stable
and is not significantly subject to environmental influences,
such as reduction/oxidation, adsorption/desorption, and other
diagenetic processes. Finally, the aluminum content is not
generally influenced by anthropogenic sources.

Analysis of Prokaryotic Communities by
NGS of 16S rRNA Gene
Sample collection and DNA extraction were performed as
previously described by Vitali et al. (2019). Briefly, three samples
of surface sediments (0–1 cm) were collected using small plastic
corers from each station (Chatzinikolaou et al., 2018). Extracted
DNA (10 ng) was used as template in PCR reactions. The V4
region of the bacterial 16S rRNA gene was amplified by the
bacterial-specific primer pair 563f/802r according to Claesson
et al. (2010). For amplification of the archaeal 16S rRNA gene,
a nested PCR approach was adopted. The first amplification
was performed with archaeal-specific primers 21f/958r according
to DeLong (1992). Then, the hypervariable V3 region of the
16S rRNA was amplified using the archaeal-specific primer pair
344f/519r (Yu et al., 2008). For each sample, three replicate
reactions with each primer pair were combined to minimize
stochastic PCR bias. The PCR products were purified from the
agarose gel using the QIAquick Gel extraction kit (Qiagen).
Sequencing was performed by the sequencing facility Source
Bioscience (Nottingham, United Kingdom).

For data processing, raw sequences obtained by Illumina
Miseq were demultiplexed by the sequencing facility. For
pre-treatment, reads were quality checked with FastQC
(Andrews, 2010), primers were removed with Cutadapt (Martin,
2011), and forward and reverse reads were merged using Pear
(Zhang et al., 2014). The quality check with FastQC revealed
a region of low quality at the end of the sequences. Thus, the
sequences were subjected to a trimming and filtering step using
Sickle (Joshi and Fass, 2011) and FastX-trimmer (Gordon and
Hannon, 2012). A final quality control was carried out with
MultiQC (Ewels et al., 2016) to evaluate the overall quality
of the reads by aggregating the whole dataset. “Good Quality
Reads” were subsequently imported into Quantitative Insights
into Microbial Ecology (QIIME 2) version 2018-11 (Bolyen
et al., 2019) and dereplicated. Illumina sequencing reads are
available at the European Nucleotide Archive under accession
study PRJEB36504.

For each distinct community (Bacteria, Archaea), the
operational taxonomic units (OTUs) were assigned with a default
identity of 97% using open reference OTU picking approach, then
low abundance OTU < 0.005% (Bokulich et al., 2013), chimeras

and singletons were identified and removed from the dataset, thus
obtaining a filtered OTU-abundance table.

For each OTU, a representative sequence was used
for taxonomy assignment against the Silva database
release 132 (Quast et al., 2013). For the analysis of
sulfate reducing bacteria (SRB), the OTUs assigned to
the families Thermodesulfovibrionaceae, Desulfarculaceae,
Dethiosulfovibrionaceae, Desulfobacteraceae, Syntrophaceae,
and Syntrophobacteraceae were extracted from the normalized
OTU-abundance table of Bacteria according to Robador et al.
(2016). For community composition, the barplots and Venn
diagrams were plotted using the ggplot2 package and the online
tool Venny 2.1, respectively (Oliveros, 2015; Wickham, 2016).

Statistical Analyses
Statistical analyses were performed using R (R Core Team, 2013)
in RStudio (RStudio Team, 2015). Linear correlations between
abiotic variables were computed by using the corr.test function
of the psych package (Revelle, 2018) (Supplementary Figure S1).
As pre-treatment transformation, data for each variable were
subjected to the z-score transformation by subtracting their
mean to each value and then dividing by their standard
deviation. For multivariate analysis, the Principal Component
Analysis (PCA) was performed on normalized (z-score) variables.
PCA was obtained using prcomp function, while the fviz_pca
function in factoextra package was used for plotting (Kassambara
and Mundt, 2017). According to Ho et al. (2012), metal
concentrations were included without normalization to Al in
correlation analysis and PCA, while normalization was applied
in all the other statistical tests.

In distance-based methods (i.e., Permutational multivariate
analysis of variance, BIOENV, Mantel and partial Mantel tests),
matrices were calculated by means of Bray–Curtis dissimilarity
coefficient between sampling stations based on biotic data (i.e.
Bacteria, Archaea, and SRB) by using the vegdist function in
vegan R package (Oksanen et al., 2019), while Euclidean distance
was calculated using the dist function based on abiotic data and
geographical coordinates of the sampling stations.

For the two distinct prokaryotic communities (Bacteria,
Archaea) read count data were firstly normalized by Cumulative
Sum Scaling (CSS) transformation, using metagenomeSeq
package (Paulson et al., 2013; Paulson, 2014). The indices of
diversity (richness as number of observed OTU, Shannon with
an e log base) and evenness (Pielou’s) were used to assess the
alpha-diversity. All indices were calculated for all samples using
the function global in the microbiome package (Lahti et al., 2017).
Beta diversity was inspected by ordination analysis [principal
coordinate analysis (PCoA)] based on Bray–Curtis dissimilarity
using the function ordinate of the phyloseq package (McMurdie
and Holmes, 2013). Permutational multivariate analysis of
variance (PERMANOVA) was then used to evaluate the null
hypothesis that there were no significant differences between
ports. PERMANOVA was performed using the adonis function
in the vegan package on the Bray–Curtis dissimilarity matrix with
9,999 permutations.

The relation between the structure of the prokaryotic
communities (i.e., Bacteria, Archaea, SRB) and the measured
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abiotic variables was investigated by the BIOENV test. In
order to identify the best subsets of variables associated
with each community structure (BestBIOENV), the Spearman
rank correlation coefficient between the matrix for abiotic
variables (calculated with Euclidean distance) and the matrix
of each distinct community (calculated with Bray–Curtis) was
determined by the bioenv function in the vegan package.
A Mantel test was then performed to assess the significance
of the biotic-abiotic relation using the mantel function (9,999
permutations) in the vegan package.

The Mantel test was also applied to correlate each Bray–Curtis
distance matrix of community structure with the Euclidean
distance matrix of the best subset of abiotic variables
(BestBIOENV) selected for each distinct prokaryotic community.
The partial Mantel test was subsequently performed according
to Vitali et al. (2019) to evaluate the relationship between
the community structures and the best subsets of variables
(BestBIOENV) after the effects of spatial autocorrelation
have been removed. Briefly, the mantel.partial function
in vegan package was used to determine the correlation
between each Bray–Curtis distance matrix of community
structure and the Euclidean distance matrix of the best subsets
of variables (BestBIOENV) while controlling the effect of
spatial autocorrelation with the Euclidean distance matrix of
geographical coordinates of sampling stations (GEO).

A redundancy analysis (RDA) was performed on the Hellinger
transformed OTU-abundance table (Legendre and Gallagher,
2001) to investigate the effects of the best subset of abiotic
variables selected for each distinct prokaryotic community. The
rda function in the vegan R package was used to test the
independent and combined effects of the variables in the best
subsets (i.e., model was formalized in R with the ∗ operator). The
ANOVA test for constrained analysis was performed to assess the
significance of the RDA model (i.e., overall and by terms) using
the anova.cca function of vegan package.

To further investigate the relations between community
structure and measured abiotic variables, Spearman correlation
analysis was performed between all OTUs and between all
OTUs and abiotic variables. Correlations were calculated with
the corr.test function in the psych package, with false discovery
rate correction for multiple testing (i.e., option “fdr” in corr.test
function). For archaeal communities, few correlations were
retained and therefore the dataset was not further analyzed. For
bacterial communities, the strong and significant (i.e., spearman’s
rho > 0.8 and p-val < 0.05) correlations were selected, which
were imported in Cytoscape (Shannon et al., 2003) to construct
and visualize a correlation network. In the network, each node is
a genus-level OTU or an abiotic variable, and edge connecting
two nodes indicate the presence of a significant and strong
correlation between two nodes (i.e., between two bacteria genus
or between a bacterial genus and an abiotic variable). Clusters in
the network were identified and calculated with clusterMaker2
(Morris et al., 2011) using the Community Clustering (GLay)
algorithm. Network properties were calculated with Cytoscape
“NetwrokAnalyzer” plugin (assuming an un-directed network on
the unclustered network) and node degree was used to color
nodes in the network clusters.

RESULTS

Environmental and Pollution Status
A PCA analysis was performed including all the abiotic variables
in order to identify which of them contributed the most to
the description of the environmental and contamination status
of the three investigated ports (Figures 2A,B). The first three
components accounted for 75.1% of the total variance. Sediments
collected in Cagliari were separated from those collected in
the other two ports on the first component (PC1) based on
higher concentrations of the four metals Al, Pb, Zn and Fe,
higher levels of CPE as well as lower values of temperature and
salinity (see vectors in Figures 2A,B, and variable contribution in
Figures 2C–E). On the second component (PC2), higher levels
of the three metals Ni, Cr, and V, aliphatic hydrocarbons (AHs,
UCM) and silt-clay ratio as well as lower values of Sb separated
the majority of Heraklion samples from sediments collected in El
Kantaoui. Cagliari exhibited intermediate levels of the variables
included in PC2. Finally, sediments collected from the inner part
of the El Kantaoui port (E1, E2), in the sectors hosting the leisure
boat (C1) and military navy vessels (C2) in Cagliari, and near
the shipyard in Heraklion (H5) were separated from the other
samples on the PC3 based on lower redox potential and higher
levels of Cu, OC and UCM.

Structure and Composition of
Prokaryotic Communities
The richness displayed a low variation (coefficient of
variation < 5%) with average values of 1,880 OTUs and 597
OTUs for Bacteria and Archaea, respectively. The only exception
was the sediments collected near the shipyard in Heraklion (H5),
which differed from all the other stations with 654 OTUs for
Bacteria and 361 OTUs for Archaea. In station H5, the lowest
values of Shannon (H′) and Pielou’s evenness (J’) were also found
for both prokaryotic communities (Supplementary Table S2).

The first two ordination axis of the PCoA analysis explained
68.7 and 49.9% of the variance in the bacterial and archaeal
communities, respectively (Figures 3A,B). A clear segregation
of the two prokaryotic communities in the ordination space
was evident on the basis of the factor “port.” Indeed, the
PERMANOVA analysis demonstrated that the port was a factor
significantly (p < 0.01) affecting the bacterial and archaeal
communities. Most noticeably, sediments near the shipyard (H5)
differed from all the other samples in community structure of
both Bacteria and Archaea (Figures 3A,B).

The most abundant phyla of Bacteria was Proteobacteria
(41 ± 3.5%) followed by Acidobacteria (11 ± 0.8%),
Latescibacteria (5.3 ± 0.8%), Spirochaetes (5.2 ± 0.9%),
Actinobacteria (4.7 ± 0.8%), Bacteroidetes (3.5 ± 0.5%),
Chloroflexi (3.3 ± 0.9%), Planctomycetes (3.2 ± 0.4%).
For archaeal communities, the most abundant phyla were
Euryarchaeota (58 ± 4.9%), followed by Crenarchaeota
(21 ± 3.9%) and Nanoarchaeaeota (9.9 ± 2.5%). The other less
abundant phyla were all below the 3%, while the unassigned
sequences accounted on average for 2.1 ± 1.0 and 3.5 ± 2.5%
in the composition of bacterial and archaeal communities,

Frontiers in Microbiology | www.frontiersin.org 5 June 2020 | Volume 11 | Article 123418

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01234 June 5, 2020 Time: 19:41 # 6

Tamburini et al. Benthic Prokaryotes Response to Pollutants in Ports

FIGURE 2 | Principal component analysis (PCA) of environmental and pollution variables recorded in the ports of Cagliari (C, blue), El Kantaoui (E, green), and
Heraklion (H, pink). Biplots showing (A) PC1 vs. PC2, (B) PC1 vs. PC3. The percentage of the variation explained by each axis is indicated in parentheses after the
axis label. Variable contribution to the first (C), second (D), and third (E) component is reported as percentage.
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FIGURE 3 | Ordination and contribution of abiotic variables to spatial variation of prokaryotic community structures in surface sediments collected at the port of
Cagliari (blue), El Kantaoui (green), Heraklion (pink). PCoA ordination of bacterial (A) and archaeal (B) communities. The percentage of the spatial variation in
community structure explained by each axis is indicated in parentheses after the axis label. Redundancy analysis (RDA) ordination diagrams of the first two axes for
bacterial (C), SRB (D), and archaeal (E) communities. The constrained sets of environmental variables analyzed are indicated as vectors. Only significant constrained
variables are reported.

respectively. The community contribution of Bacteria and
Archaea for each port is shown in Figure 4. Proteobacteria
showed the highest values in Heraklion (44 ± 1.8%) and the
lowest in El Kantaoui (36± 0.9%), with intermediate percentages
in Cagliari (42 ± 1.7%). Sediments from El Kantaoui showed the
highest percentages of Euryarchaeota (63%) and Heraklion the
lowest one (51%), while Cagliari (58%) displayed intermediate
values. A total of 2,482 bacterial OTUs and 909 archaeal OTUs
were identified across all samples and, among them, 87 and 73%
were shared among the three ports for Bacteria and Archaea,
respectively (Supplementary Figure S2). Actually, sediments

collected near the shipyard in Heraklion (H5) exhibited a
peculiar community composition as compared to all the other
samples (Supplementary Figure S2). More specifically, the
highest percentages of Spirochaetes (12%), Actinobacteria
(8.2%), and Firmicutes (7.8%) as well as the lowest percentages of
Proteobacteria (26%), Acidobacteria (3.3%), Latescibacteria
(3.3%), Chloroflexi (2.6%), and Planctomycetes (1.5%)
were found in station H5, which also exhibited the highest
percentages of Thaumarchaeota (11%) and Asgardaeota (3.0%).
Because of its peculiar community compositions, sediments
collected in station H5 were not included in all the average
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FIGURE 4 | Composition of prokaryotic communities in surface sediments of the study ports (C: Cagliari, E: El Kantaoui, and H: Heraklion). Bar plot showing the
average contribution for each port of Bacteria (A) and Archaea (B) at phylum level. Taxa that on average comprised less than 1% of the libraries were grouped. The
station H5 was excluded from calculation of average values for the Heraklion port.

calculations of community composition (Figure 4) as well as in
subsequent analyses.

Relation Between Prokaryotic
Communities and Environmental and
Pollution Variables
The linking between the measured abiotic variables and the
prokaryotic communities of Bacteria and Archaea was predicted
using the BIOENV test. Moreover, the specific group of SRB was
separately analyzed for its crucial role in ecosystem functioning in
marine sediments. The best subsets of abiotic variables predicted
by BIOENV test were: (i) concentrations of OC and Cu for
Archaea (ρ = 0.9025, p = 0.0001), (ii) the concentrations of
OC and Cu as well as a descriptor of PAH sources, namely
the Inp/Inp + BgP ratio for Bacteria (ρ = 0.8060, p = 0.0001),
(iii) temperature, OC, Cu, and the Inp/Inp + BgP ratio for SRB
(ρ = 0.8400, p = 0.0002). The relation between each prokaryotic
community and the best subset of abiotic variables predicted
by BIOENV, was further explored by RDA ordination analysis
(Figures 3C–E). The analysis confirmed significant relations
between the community structure and each single abiotic variable
predicted by BIOENV for Bacteria and Archaea (ANOVA,
p < 0.05), but interactions between abiotic variables were never
significant in ANOVA by term tests (ANOVA, p > 0.05). For
SRB community, RDA showed a significant effect of the single
variables temperature and the Inp/Inp + BgP ratio (p < 0.05),
while the single variables OC and Cu, as well as the interactions
among abiotic variables were not significant in ANOVA by term
tests (ANOVA, p > 0.05).

Cogently the results of PERMANOVA analysis, Mantel test
(Table 1) confirmed the presence of significant correlations
(p < 0.05) between the geographic locations of the sampling
stations and the community structures of Bacteria, Archaea,
and SRB (spatial autocorrelation; row “GEO” in Table 1).
Correlations were weak for SRB (ρ = 0.3450), moderate for
Bacteria (ρ = 0.4794), while Archaea showed the highest

TABLE 1 | Spearman correlation coefficients (R) of Mantel and partial Mantel tests
between the distance matrices of the best subsets (selected by the BIOENV test)
of abiotic variables (Euclidean distance), geographical locations (Euclidean
distance), and community structures (Bray–Curtis) of Bacteria, Archaea and SRB.

Test Matrices Bacteria SRB Archaea

Mantel BestBIOENV 0.8463** 0.8438** 0.8929**

GEO 0.4794* 0.3450+ 0.6805**

Partial Mantel BestBIOENV – GEO 0.8038** 0.8378** 0.8294**

BestBIOENV: organic carbon, Cu (Al normalized), Inp/Inp + BgP ratio for Bacteria;
organic carbon, Cu (Al normalized) for Archaea; temperature, organic carbon, Cu
(Al normalized), Inp/Inp + BgP ratio for SRB. GEO: geographical coordinates of
the sampling stations. – GEO: the influence of distance matrix GEO is removed.
+p < 0.05, ∗p < 0.01; ∗∗p < 0.001.

correlation between community structure and geographic
locations of the sampling stations (ρ = 0.6805). The effect of
the best subsets of abiotic variables was thus untangled from the
one owed to autocorrelation by partial Mantel test (Table 1, row
“BestBIOENV – GEO”). The partial Mantel test demonstrated a
significant and strong correlation (ρ > 0.8, p < 0.001) between
each prokaryotic community and the best subset of selected
abiotic variables (Table 1, row “BestBIOENV – GEO”).

The relationship between the bacterial communities and
abiotic variables was further investigated by correlation analysis.
Figure 5 reports results of Spearman correlation analysis of the
bacterial communities (cumulating all samples collected from
the three ports and excluding the station H5) as a correlation
network. Constructed network was composed of a total of
32 elements, 434 nodes (17 abiotic variables, 417 genus-level
OTUs), and 1,131 edges (500 negative correlations, 631 positive
correlations). The main element accounting for the majority
of nodes and edges was used for further analysis. This main
element was composed of 355 nodes (12 abiotic variables, 343
genus-level OTUs) and 1,077 edges (484 negative correlations,
593 positive correlations), while the average number of nodes
connected to each node (i.e., the average node degree) was
6.07 (SD = 5.95). The network was divided into 11 clusters
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FIGURE 5 | Correlation analysis between bacterial genus-level OTUs and abiotic variables. (A) Network constructed with strong and significant Spearman
correlations between OTUs, and between OTUs and abiotic variable. Node represents OTUs (rhombi) or abiotic variables (octagons). Node color is based on results
of network clusterization analysis. Edges represent strong and significant Spearman correlation between nodes. Edge color is based on the direction of the
correlation (blue for negative correlations, red for positive correlations). (B–E) Detailed view of the identified clusters in the network comprising abiotic variables. In
those detailed views, node color is based on node degree (i.e., the number of nodes connected to a node). (F) Heatmap showing the distribution of OTUs in cluster
6 between samples. (G) Heatmap showing the distribution of OTUs in cluster 2 between samples. IdAnt: Ant/Ant + Phen; IdBaA: BaA/BaA + Chr; IdFlu:
Flu/Flu + Pyr, IdInp: Inp/Inp + BgP; LPAHs: Phen, Ant, Flu, Pyr; HPAHs: BaA, Chr, BbF, BkF, BaP, Inp, BgP, DBA, S_W: salinity in surface water; T_S: temperature in
surface sediments.

based on node connectivity (Figure 5). Overall, two distinct
modules of genus-level OTUs can be observed in the network
topology/morphology (Figure 5A). Those modules were not

generated by groups of mutual excluding OTUs, as positive
(which could be interpreted as co-occurrence) and negative
(which could be interpreted as mutual exclusion) edges were

Frontiers in Microbiology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 123422

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01234 June 5, 2020 Time: 19:41 # 10

Tamburini et al. Benthic Prokaryotes Response to Pollutants in Ports

evenly distributed across the network. Moreover, inspection of
the aforementioned modules showed that the OTUs distribution
was not ascribable to differences in community composition
among ports, a strong factor shaping the bacterial communities.
The two modules were rather connected to different group of
genera, having different relationships with abiotic variables. More
specifically, the module on the lower part of the network was
almost exclusively composed of genus-level OTUs and comprised
only one abiotic variable, namely OC. The main clusters of this
module were clusters 1, 2, 3, and 7. The clusters 1, 3, and 7 were
exclusively composed of OTUs, cluster 1 showed the higher node
degree values (data not shown), while cluster 2 comprised the
abiotic variable OC (Figure 5E). Conversely, the module on the
upper part of the network comprised all the connected abiotic
variables. Main clusters of this module (Figures 5B–D) were
cluster 6 (connected with the abiotic variables Ant/Ant + Phen,
Cu, Inp/Inp + BgP, Pb, T_S, S_W), cluster 5 (connected with the
abiotic variables BaA/BaA + Chr, Flu/Flu + Pyr, HPAHs, LPAHs)
and cluster 10 (connected with the abiotic variable Ni).

The heatmaps showing the genus-level OTUs distribution
among ports of cluster 6 (as the main abiotic connected cluster
in the upper module) and cluster 2 (as the only abiotic connected
cluster in the lower module) are shown in Figure 5. Even if
the overall network did not reflect differences in genus-level
OTUs distribution among ports, cluster 6 showed a marked
similarity in OTUs composition and abundance distribution
between El Kantaoui and Heraklion and a substantially different
pattern in Cagliari. On the other hand, cluster 2 highlighted
similarity between Cagliari and El Kantaoui, while Heraklion
was substantially different. Mirroring abundance distribution, the
PCoA ordinations of the OTUs included in cluster 2 and cluster
6 showed similar separations among the three ports with the first
axis explaining 81.8 and 82.5% of the total variance, respectively
(data not shown).

Upon detailed inspection of the OTUs included in cluster 2
(n = 40), four OTUs established a direct relationship with the
abiotic variable OC. More specifically, an OTU assigned to the
genus Sedimenticola exhibited a positive correlation with OC
and a negative correlation with a second OTU belonging to
the order Clostridiales, which in turn was negatively correlated
to OC. Moreover, a positive correlation with OC was found
for one OTU assigned to the uncultured lineage SJA-28 in
the class Ignavibacteria and a negative correlation for an OTU
attributed to the class Gammaproteobacteria. Among the OTUs
included in cluster 6 (n = 78), the abiotic variables with the
highest number of correlations were Cu (Node degree = 8) and
sediment temperature (Node degree = 12), which established
complex relationship with a total of 16 OTUs. Overall, those
OTUs displayed a high connectivity level, with 5.5 median
node degree (i.e., the median number of node connecter to
each node of this network module) and values ranging from
1 to 12. Four OTUs established direct relationships with both
Cu and temperature. Among them, two OTUs identified as
belonging to the class Thermodesulfovibrionia and one to the
phylum Schekmanbacteria were negatively correlated to Cu and
temperature, while one OTU assigned to the class Anaerolineae
was positively correlated to both variables. In addition to

these four shared OTUs, four and eight OTUs were correlated
singularly to Cu and temperature, respectively. More specifically,
two OTUs were negatively correlated to Cu and assigned to
the order Tistrellales in the class Alphaproteobacteria and to
the uncultured clade BD7-8 in the class Gammaproteobacteria.
On the other hand, Cu was positively correlated to one
OTU identified as belonging to the genus Sulfurovum and
one OTU assigned to the family Ruminococcaceae. As far as
sediment temperature is concerned, negative correlations were
found with one OTU assigned to Candidatus Moranbacteria
order in the phylum Petescibacteria and one OTU assigned
to the JS1 group in the phylum Atribacteria, while a positive
correlation to temperature was found for six OTUs affiliated
to the genus Desulfosarcina, the class Phycisphaerae, and the
families Gemmatimonadetes, Spirochaetaceae, Oligoflexaceae,
and Pedosphaeraceae.

Among the other abiotic variables included in cluster 6,
one OTU identified as belonging to the Candidatus phylum
Moranbacteria exhibited a negative correlation with salinity in
surface water. A positive correlation with salinity was found for
one OTU assigned to the family Terasakiellaceae and one OTU
assigned to the class Gammaproteobacteria in the clade KI89A.
The metal Pb correlated negatively to a single OTU identified
as belonging to the genus Alkalispirochaeta and positively to
two OTUs, one assigned to the family Nitrosococcaceae and one
to the phylum Lentisphaerae. Finally, a single OTU affiliated to
the family Desulfobacteraceae was negatively correlated to the
Inp/Inp + BgP ratio and an unassigned OTU was positively
correlated to the Ant/Ant + Phen ratio.

DISCUSSION

Prokaryotic communities play a fundamental role in ecosystem
functioning in marine sediments regulating essential processes in
global biogeochemical cycles, organic and inorganic contaminant
transformation, and pollutant bioremediation. Recently, the
impacts on benthic communities of organic and inorganic
co-contamination as multiple stressors in harbors have been
addressed by an increasing number of studies, such as extensive
characterizations of complex commercial ports (Iannelli et al.,
2012; Chiellini et al., 2013; Misson et al., 2016) as well as
comparison between ports (as pollutant hot spots) and more
natural (or less contaminated) coastal sediments (Sun et al.,
2012, 2013). In this background, the present work represents the
first assessment of the combined effects of multiple organic and
inorganic pollutants on benthic prokaryotes in different ports at
a large spatial scale (i.e., Mediterranean basin).

The sediment contaminations in the ports under study
are markedly heterogeneous in compositions, levels and
emission sources. Overall, the levels of PAHs vary over three
orders of magnitude (25–49,000 ng/g), covering the range of
concentrations previously reported for Mediterranean harbors
(Vitali et al., 2019). The surface sediments in the artificial marina
of El Kantaoui presents the highest levels of Cu (181± 10 mg/kg),
a metal extensively used as antifouling agent in paints for ship
hulls (Dahllöf and Andersen, 2009). Indeed, the copper level is
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three orders of magnitude higher inside the marina than in the
adjacent coastal sediments (Zakhama-Sraieb et al., 2016). On the
other hand, sediments in the El Kantaoui port are contaminated
by low/moderate levels of PAHs with fuel combustion as primary
emission source (Vitali et al., 2019). The Heraklion port is
characterized by a moderate level of PAHs emitted by different
sources. Moreover, the co-occurrence of Ni (345 ± 11 mg/kg)
and Cr (98 ± 43 mg/kg) was found, which could be reasonably
ascribed to anthropogenic sources, such as nickel-chrome plating
(Dahllöf and Andersen, 2009). The port of Cagliari shows the
highest levels of PAHs, primarily originated by burning of coal
and biomass (Vitali et al., 2019). As far as metals are concerned,
sediments exhibit a 10-fold higher level of Pb (156 ± 38 mg/kg)
than the other studied sites. Notably, the Cagliari port is located
in the context of a peculiar mineralogical background near an
important abandoned mining district (Cidu and Fanfani, 2002),
even if anthropogenic inputs could not be ruled out inside the
port area (Schintu et al., 2016). Finally, the three studied ports are
markedly different in terms of environmental properties because
of their different geographical positions in the Mediterranean
Sea and local factors (Chatzinikolaou et al., 2018).

As expected for such a pronounced site-specificity in abiotic
conditions, the archaeal and bacterial communities exhibited
a strong spatial variation among the three investigated ports
(Figure 3). On the contrary, we found an unforeseen overlap
in composition of prokaryotic communities (Figure 4), down
to the lowest taxonomic rank (i.e., OTU level, Supplementary
Figure S2). On this core of shared taxa, the benthic communities
in sediments collected near the shipyard in Heraklion clearly
moved away from all the other stations for their structure and
composition as well as the lowest richness and evenness. More
specifically, Firmicutes and Spirochaetes were six- and two-fold
more represented as compared to the other studied sediments,
respectively. An increase in the relative abundance of Firmicutes
has been found under anoxic conditions as compared to oxic
ones (McKew et al., 2013). On the other hand, Spirochaetes
are common and abundant in anoxic contaminated sites,
where they have been suggested to drive necromass recycling
(Dong et al., 2018). It is worth noting that the three most
abundant OTUs were affiliated to the phylum Aegiribacteria
and the family Ruminococcaceae. Members of the phylum
Aegiribacteria have been found in an extreme meromictic
system under anoxic conditions (Hamilton et al., 2016), while
Ruminococcaceae are well-known anaerobic bacteria. The fourth
most abundant OTU belonged to the phylum Acetothermia
(previously candidate OP1 phylum), which has been involved in
biogeochemical transformations in oil reservoirs (Hu et al., 2016).
The peculiar prokaryotic assemblage in the Heraklion shipyard
station is paralleled by the distinct abiotic status of its sediments
(Figure 2), which exhibit the finest particle size, the most strict
anoxic conditions, and the highest contamination by aliphatic
hydrocarbons, petrogenic PAHs, and Ni throughout all stations,
but also the highest amount of organic carbon among Heraklion
stations (Chatzinikolaou et al., 2018; Vitali et al., 2019). The
strict anoxic condition and pollution status in Heraklion shipyard
sediments can be reasonably ascribed to the high organic carbon
load and consequent increased respiration (Acosta-González

et al., 2015) as well as to the high contaminant sorption and the
slow oxygen diffusion in fine grain size sediments (Eggleton and
Thomas, 2004). Consistently with our results, a negative impact
on diversity of benthic prokaryotic assemblages with a reduction
of species richness and changes in community structure has
been extensively documented in chronic contaminations by
petrogenic hydrocarbons (Orcutt et al., 2010; Acosta-González
et al., 2015). Notably, a coordinated study of the three
investigated Mediterranean ports also found the most heavily
disturbed conditions in the sediments near the shipyard in
Heraklion, as highlighted by the lowest species richness of the
macrozoobenthic communities (Chatzinikolaou et al., 2018) and
a “poor” ecological status (“unacceptable” under the WFD) based
on benthic macrofaunal indices (Dimitriou et al., 2020).

The different statistical approaches implemented in this study
demonstrated a strong link between the prokaryotic communities
and organic matter in port sediments with numerous connections
among bacterial genus-level OTUs (Figure 5). More specifically,
a first module in the network gathers bacterial genera, which
mainly take part to complex biotic interactions and are basically
unrelated to abiotic variables except for a small proportion of
taxa interconnected with OC (Figure 3A, lower module). A direct
positive link with OC was found in the network for Ignavibacteria
and Sedimenticola. The cultivable members of Ignavibacteria are
facultatively anaerobic with an obligately organotrophic mode of
life either by fermentation or respiration with several electron
acceptors (Podosokorskaya et al., 2013). On the other hand,
Sedimenticola have been demonstrated to grow autotrophically
by sulfur oxidation coupled to denitrification under hypoxic or
anaerobic conditions, but also organotrophically under aerobic
and anaerobic conditions (Flood et al., 2015). In line with
these results a role in decomposition of organic materials
in the investigated surface sediments may be suggested for
these recently described groups characterized by a pronounced
metabolic versatility. Overall, opposite trends between Cagliari
and El Kantaoui on one side, and Heraklion, on the other,
were found in genus-level OTUs distribution in cluster 2
(connected with the abiotic variable OC, Figure 5F), reasonably
related with the highest amount of organic matter in sediments
(Figure 2, PC3). Cogently, RDA assigned the detected variations
in bacterial community structure to changes in organic carbon
levels with opposite trends for Heraklion and the other
two ports (Figure 3C). We found neither an interaction of
OC with Cu or descriptors of PAH sources in RDA nor
a direct interconnection with other abiotic variables in the
network. Our results should not be interpreted as a lack of
reciprocal effects between pollutants and organic matter. It
is well-known that the organic carbon fraction in sediments
plays an important role in binding metals and hydrophobic
contaminants, including PAHs. However, organic matter is
present in sediments in different forms that may have very
different sorption capacities for hydrophobic contaminants.
Therefore, the nature of organic matter (e.g., coal, vegetable
debris) determines the bioavailability, biodegradability and
biological effects exerted by PAHs in sediments (Yunker et al.,
2002; Ghosh et al., 2003). On the other hand, the ability to
bind toxic metals in the colloidal fraction of the organic carbon
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pool is important in the cycling of metals in aquatic systems
(Ford and Ryan, 1995).

Network analysis identifies a second module composed of
connections among bacterial taxa as well as strong relationships
between them and abiotic parameters (Figure 5A, upper
module). More specifically, there were numerous connections
between OTUs affiliated to different lineages and temperature,
and to a lesser extent with salinity. Both temperature and salinity
have been found to be important drivers of bacterial communities
over large spatial scale in coastal sediments (Sun et al., 2013;
Bargiela et al., 2015). In the network, several OTUs ascribable to
SRB (i.e., Desulfosarcina and Thermodesulfovibrionia) exhibited
positive link with temperature. Accordingly, we also found
a strong relation between this abiotic variable and the
structure of SRB communities. These findings are consistent
with previous results, which have demonstrated the prevailing
ambient temperature exerts strong environmental selection
on the composition of the SRB community in marine
sediments from different climatic regions (Robador et al.,
2016). Overall, temperature seems to play an important
role in shaping SRB communities in sediments from the
three investigated ports. In this context is important to
mention that the Mediterranean Sea is characterized by well-
known longitudinal gradients with a west to east increase
in salinity and temperature (e.g., Coll et al., 2010), which
may at least partially account for the correlation between
the bacterial assemblages and the geographical locations of
sampling stations. Moreover, the specific hydromorphological
properties in ports (i.e., confinement) may reasonably contribute
to local variation in salinity and temperature in the studied
harbors, contributing to the site specificity of the benthic
prokaryotic assemblages observed in this study. On the
other hand, temperature has a crucial effect on the fate
of PAHs and metals as it causes marked changes in the
interactions (i.e., degradation, transformation, accumulation)
between microorganisms and pollutants (Liu et al., 2017).
Indeed, the solubility as well as the adsorption capacity and
adsorption intensity on microbial cells and abiotic particles of
PAHs and metals increase with increasing temperature (Liu
et al., 2017). Even if descriptors of PAHs (i.e., Ant/Ant + Phen,
BaA/BaA + Chr, Flu/Flu + Pyr, Inp/Inp + BgP, HPAHs)
and metals (i.e., Cu, Pb, Ni) are connected with bacterial
OTUs in the network, the biotic interconnections are more
numerous (Figure 5A). Notably, the variable HPAHs interacts
with a single OTU, while the variable LPAHs takes no
direct connection with any genus-level OTU. This result is
in line with that recently obtained for metals by Coclet
et al. (2019) in a study on bacterioplankton in Toulon
Bay; the authors have suggested that metals significantly
influence the dynamics of few microbial groups, and could
rather influence indirectly, via biotic interactions, the whole
bacterial community. A clear separation of the Cagliari port
from the other two ports was found based on the genus-
level OTUs distribution in cluster 6. This result clearly
mirrors differences in environmental and pollution status
described by the abiotic variables included in this cluster
(Figure 2, PC1).

Statistical analyses employed in this study cogently
highlighted a strong link between descriptors of PAH sources
and the structures of the whole bacterial communities as well
as the group of SRB. These results support our previous study,
which has recently provided a first evidence of the role of
PAH emission sources in structuring the benthic communities
of SRB as targeted by terminal restriction fragment length
polymorphism of the dsrAB (dissimilatory sulfite reductase)
gene (Vitali et al., 2019). Indeed, the combustion process by
which PAHs are formed determines not only the composition
of the contaminant mixture but also bioavailability of PAHs
in sediments (Akkanen et al., 2012). In the network, we
found a negative correlation between diagnostic ratio of
PAH emission sources and Desulfobacteraceae. Bacteria
belonging to Desulfobacteraceae have been previously found
to be the dominant microorganisms in anaerobic enrichment
cultures able to oxidize phenanthrene under sulfate reducing
condition (Davidova et al., 2007; Himmelberg et al., 2018).
Collectively, these findings might suggest the relative abundance
of Desulfobacteraceae decrease in sediments where burning of
biomass combustion was the dominant pollution source due to
the low bioavailability of PAHs.

Among the investigated metals, both bacterial and archaeal
communities showed a strong link with copper contamination
in surface sediments. Our observations comply with similar
studies on metal pollution in coastal areas, where copper
has been suggested to be responsible for driving community
changes in bacterioplankton from Toulon Bay (Coclet et al.,
2019) and benthic bacteria from Australian coastal sediments
(Sun et al., 2012). Moreover, a coordinated study on the three
Mediterranean harbors investigated in the present work has
previously demonstrated that copper affects macrobenthonic
assemblages (Chatzinikolaou et al., 2018), a well-consolidated
ecological tool for sediment quality assessment (McPherson
et al., 2008; Gislason et al., 2017). The network analysis employed
in this study allows us to identify potential copper sensitive-
and tolerant- OTUs in the benthic bacterial community.
More specifically, OTUs assigned to uncultured lineages of
Alphaproteobacteria, Gammaproteobacteria, Schekmanbacteria,
and Thermodesulfovibrionia seem to be negatively impacted
by copper. In literature, similar results can be documented
for Alphaproteobacteria and Gammaproteobacteria (Yin
et al., 2015). Currently, Thermodesulfovibrionia are known
for reduction of sulfate and other sulfur compounds but
this class has not been previously linked to metals. The
biological and geochemical importance of Candidatus
phylum Schekmanbacteria is still unclear. On the other
hand, the relative abundance of Sulfurovum, Anaerolineae
and Ruminococcaceae increases with higher copper levels in
the investigated sediments. Consistently with our results, an
increase has been found in literature in metal contaminated
environments including mangrove sediments and hydrothermal
vents for Sulfurovum (Nakagawa et al., 2007; Fernández-Cadena
et al., 2020), river sediments, soils, and coastal sediments for
Anaerolineae (Sun et al., 2013; Yin et al., 2015; Meng et al.,
2019), as well as barrier for mine tailings for Ruminococcaceae
(Zhang et al., 2019).
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CONCLUSION

Our study gives strong evidences supporting the notion that
organic matter, metals and PAHs as well as temperature and
salinity shape prokaryotic communities in port sediments. The
“port” is the main factor affecting the structure of archaeal
and bacterial communities in surface sediments, a result
consistent with the pronounced differences in sediment pollution
status, geological background, and geographical position among
the investigated sites. Nevertheless, a marked overlap in the
composition of prokaryotic communities was found among
ports. In this contest, the targeted NGS analysis of the benthic
bacterial community allows us to detect local variation in the
community composition and loss of prokaryotic diversity in the
heavily impacted sediments near the shipyard in Heraklion. On
the other hand, multiple statistical tools recognize copper as
strongly associated with the observed changes in structure and
composition of the benthic bacterial community and allows us
to identify the bacterial populations more directly linked to the
pollutant. These findings would deserve further investigations
under controlled experimental conditions to verify a direct
causal relation between stressor and candidate indicators and
a more in-depth analysis of bacterial genomes and functions.
Overall, the results obtained under the umbrella of the ENPI
CBCMED project MAPMED designate the benthic bacterial
community as a good candidate tool for monitoring of the
sediment status in port management, a crucial prerequisite to
plan bioremediation intervention, and lay the foundation for
the developing of a proper benthic microbiota-based index
of sediment quality status. In a wider perspective, our results
provide a significant contribution to the understanding of
responses of benthic prokaryotic communities to anthropogenic
perturbations in marine coastal areas. Admittedly, the main
limitation of the employed DNA-based target metagenomic
analysis resides in the substantial inability to directly evaluate
functional and metabolic pathways in the active community, and
how bacteria are affected by and affect anthropogenic pollutants,
a goal that will be pursued by untargeted metagenomic analysis
coupled with transcriptomics.
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Calcareous stones have been widely used in artworks and buildings by almost all
human cultures. Now, more than ever, the increased environmental pollution and
global warming are threatening the stone cultural heritage. Weathering due to physical,
chemical and biological factors results in monumental calcareous stone deterioration.
These agents induce a progressive dissolution of the mineral matrix, increase porosity,
and lead to structural weakening. Bacterial Calcium Carbonate Mineralization is a
widespread naturally occurring process which in the last decades was proposed as an
environmentally friendly tool to protect monumental and ornamental calcareous stones.
The advantage of this treatment is that it mimics the natural process responsible for
stone formation, producing a mineral product similar to the stone substrate. This mini
review highlights the milestones of the biomineralization approaches with focus on
in situ stone artworks protection. The strategies explored to date are based on three
main approaches: (i) the use of allochthonous and (ii) autochthonous alive cells that,
due to the bacterial metabolism, foster biomineralization; (iii) the cell-free approach
which uses fractionated cellular components inducing biomineralization. We discuss
the challenging aspects of all these techniques, focusing on in situ applications and
suggesting perspectives based on recent advances.

Keywords: calcite biomineralization, biodeposition, bioremediation, stone conservation, stone microbiota,
cultural heritage

INTRODUCTION

Bacterial Calcium Carbonate Mineralization (BCCM) is a widespread natural process of many
bacterial taxonomic groups in different environments, ranging from microscopic crystals to large
geological formations (Boquet et al., 1973; Ehrlich, 2002; Zavarzin, 2002; Dupraz et al., 2009; Perito
and Mastromei, 2011).

According to Hammes and Verstraete (2002), BCCM is regulated by four key factors: calcium
concentration, concentration of dissolved inorganic carbon (DIC), pH, and the availability of
nucleation sites. Bacteria can foster an alkaline environment and increase DIC through different
autotrophic and heterotrophic metabolic pathways (Castanier et al., 1999; Dhami et al., 2014;
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Zhu and Dittrich, 2016). If calcium ions and nucleation sites are
available in the environment, BCCM then occurs.

Bacterial surfaces such as cell walls or esopolymeric substances
(EPS), due to their metal binding properties, serve as nucleation
sites and constitute particularly favorable templates for
heterogeneous nucleation and crystal growth (Fortin et al., 1997;
Douglas and Beveridge, 1998). The EPS act as matrix templates
influencing CaCO3 crystal morphology, polymorphism, spatial
position and growth (Braissant et al., 2003; Tourney and
Ngwenya, 2009; Ercole et al., 2012; Oppenheimer-Shaanan et al.,
2016). CaCO3 crystals usually grow on bacterial cell surfaces
(Rivadeneyra et al., 1998; Castanier et al., 1999). The polymorph
produced (mainly calcite, aragonite and vaterite) depends both
on environmental conditions and bacterial strains (Ben Omar
et al., 1997; Rivadeneyra et al., 1998; Brennan et al., 2004).

During the last decades, BCCM application was proposed
as an environmentally friendly tool for conservation and
reinforcement of monumental and ornamental calcareous
stones (Orial et al., 1993). Weathering by physical, chemical
and biological factors increases the porosity and dissolution
of the mineral matrix thus progressively weakening the
structure (Tiano et al., 1999). Organic products used to reduce
monument deterioration present several drawbacks related to
incompatibility with the stone, while inorganic consolidants show
poor performance (De Muynck et al., 2010). The advantage
of a BCCM-mediated treatment is that it mimics the natural
process responsible for stone formation, producing a mineral
product similar to the stone substrate. The aim is dual: to
provide a coherent CaCO3 layer on the surface of deteriorated
stone, protecting against the intake of water or chemicals, and to
consolidate the inner, weakened structure. In literature a number
of comprehensive reviews are available about biodeposition
of CaCO3 on stone and building materials, highlighting
mechanisms, limitations, challenges, and perspectives of this
technology (De Muynck et al., 2010; Dhami et al., 2014; Anbu
et al., 2016; Nazel, 2016; Zhu and Dittrich, 2016; Castro-Alonso
et al., 2019). In this mini review, we fill a literature gap, by
focusing on current BCCM technologies for in situ cultural
stone conservation. We highlight the typology of interventions
and recent improvements of in situ applications and provide
viewpoints based on recent advances.

BCCM-Based Approaches for Cultural
Stone Conservation

Living Cells, Single Selected Bacterial
Strain
The application of BCCM for cultural heritage conservation was
proposed by a pioneer French group that developed the so-
called Calcite Bioconcept technology, covered by a now expired
patent (Adolphe et al., 1990). This methodology was based on
the application of cultures of selected bio-calcifying strains by
spraying them on the stone surface and then feeding them
by applications of a nutrient medium. The result was the
formation of a new calcareous coating layer called biocalcin.

This few µm thick layer was coherent to stone and made of
encrusted bacterial bodies mixed with CaCO3 (Figures 1A,B).
A preliminary screening of bacteria isolated from natural
carbonate environments allowed the selection of a Bacillus cereus
strain exhibiting the highest precipitation performance via the
ammonification of amino acids (Table 1; Castanier et al., 2000).
After testing it on limestone specimens, the technology was
transferred to in situ applications (Le Métayer-Levrel et al.,
1999). The first application was made in 1993, testing an area
of 50 m2 of the tower of the Saint Médard Church in Thouars.
Evaluation of the treatment was carried out 6 months and
1 year after the application (Table 1). The treatment had no
influence on the color or other aesthetical features and the water
absorption rate was up to five times less. Following this approach,
a number of façades of French historic and private buildings
were treated by the Calcite Bioconcept Company (Castanier
et al., 2000; Anne et al., 2010; De Muynck et al., 2010). No
scientific reports can be found about these treatments. At the
same time, several groups have worked to improve this system
by isolating and testing different microorganisms, exploring
different metabolic pathways and application conditions mainly
in laboratory settings, showing, in many cases, similar results
(reviewed by Nazel, 2016).

Over the last 20 years, a Spanish group of Granada made
efforts to further develop this technology. They promoted
the use of Mixococcus xanthus, a Gram-negative, non-
pathogenic soil bacterium, to overcome drawbacks of previous
treatments: the thin layer of the new formed bio-cement,
the possible formation of endospores, and uncontrolled
biofilm by Bacillus clogging stone pores. In an in vitro
model, sterilized calcarenite slabs were immersed in a liquid
medium containing M. xanthus and nutrients activating the
ammonification of amino acids (Rodriguez-Navarro et al.,
2003). Newly formed coherent carbonate cement of calcite
grains was deposited into the pores without plugging them to
a depth ≥500 µm. No myxospore formation was found in the
tested culture media.

Living Cells, Microbial Community of
Stone
A further step in the development of this technology proposed by
Jimenez-Lopez et al. (2007) was bio-precipitation fostered by the
microbial community inhabiting the stone. The advantage was
that it supported the autochthonous CaCO3 producing-bacteria
without introducing exogenous microorganisms. Initially, quarry
porous limestone slabs were immersed in a M-3P nutritive
buffered solution with/without M. xanthus (Jimenez-Lopez
et al., 2008). Treated stones showed newly precipitated CaCO3
overgrowth without pore plugging and, accordingly, weight
increase, regardless of the presence or absence of M. xanthus.
In comparison to sterilized slabs used as controls, the
treated slabs maintained their original pore size distribution
and were more resistant to mechanical stress. The M-3P
medium, stimulating heterotrophic carbonatogenic bacteria via
the ammonification of amino acids (Table 1), was patented
(González-Muñoz et al., 2008).
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FIGURE 1 | Examples of CaCO3 precipitation on limestone by different BCCM strategies. Panels (A,B) SEM micrographs of “biocalcin” formed by allochthonous
alive cells on Saint Maxim (SM) limestone: (A) Untreated surface of SM limestone; (B) Pores filled with the superficial bacterial coating (arrows). Panels (C–E) SEM
micrographs of calcite (determined by XRD) formed by autochthonous alive cells on calcarenite: (C) Untreated calcarenite. Chemically precipitated calcite crystals
(Cc) in a control stone show dissolution pits and NaCl crystals; (D) In the treated stone, bacterial calcite (BCc) are organized in nanogranular structure surrounded by
EPS; (E) Magnification of the nanogranular structure of calcite biocement. Panels (F,G) CaCO3 induced by cellular fraction: (F) SEM micrograph of calcite crystals
(determined by XRD) induced by BCF in CaCl2 solution; (G) Representative thin section made from cores taken from stone slabs of the Angera Cathedral stained
with Alizarine red (optical microscope, 400×). The metabolic pathway of allochthonous and autochthonous alive bacteria promoting BCCM (panels A–E) is the
oxidative deamination of amino acids present in the nutrient medium. As a result, calcifying bacteria produce CO2 and NH3 creating an alkaline microenvironment
and shifting the HCO3

− = CO3
2− + H+ equilibrium toward the right. In the presence of Ca2+, supplied in the nutrient medium, precipitation occurs via the reaction

Ca2+ CO3
2−
= CaCO3 preferentially on the bacterial cell surface in a microenvironment highly supersaturated with respect to CaCO3 (e.g., bacterial biofilm;

Jroundi et al., 2017) (With permission from: Le Métayer-Levrel et al., 1999 for Panels A,B.; Jroundi et al., 2017 for Panels C–E; and Perito et al., 2014 for Panels F,G).

The M-3P treatment was then tested in situ, with and
without M. xanthus, on selected areas of decayed calcarenite
stone of three historic buildings in Granada: San Jeronimo
Monastery, Hospital Real and Royal Chapel (Jroundi et al.,
2010; Rodriguez-Navarro et al., 2015). The evaluation
included both the technical efficacy and, for the first time,
the monitoring of the bacterial community of the decayed
stone by culture-dependent and independent techniques
(Table 1). Medium/long-term efficacy and detrimental
side-effects were monitored up to 4 years after treatments
(Rodriguez-Navarro et al., 2015). In all the three cases, the
newly formed CaCO3 (mostly calcite) created a cement that
consolidated the deteriorated calcarenite with a significant
surface strengthening neither plugging pores nor causing
aesthetical changes. The efficacy of the treatment in situ was
independent of the presence of M. xanthus. The carbonatogenic
bacterial population initially increased after treatment
applications, but over time reached values close to those
observed before treatment.

In those cases where the stone microbiota was altered
and/or suppressed (e.g., application of biocides), the
same authors proposed a bioconsolidation treatment with
carbonatogenic bacteria selected from calcareous stones
as inoculants (Jroundi et al., 2012). Bacteria were isolated
from altered calcarenite stone slabs by the application of
M-3P medium, then precipitating bacteria belonging to
Actinobacteria, Gamma-proteobacteria and Firmicutes were
selected and single strains were tested for bio-consolidation
capability in vitro, with and without M. xanthus. They found
that Acinetobacter spp. strains were the most appropriate
candidate bacteria.

To test the self-inoculation biotreatment in situ, an indigenous
community was recovered by cultivation from salt damaged
carbonate stone in a historic building (San Jeronimo Monastery),
activated via M-3P, and applied back onto the same stone
(Jroundi et al., 2017). Firmicutes was the dominant phylum in
the inoculum (∼79%). Test evaluation methods are reported in
Table 1. The effective consolidation was due to the formation of
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an abundant and exceptionally strong hybrid cement consisting
of nanostructured CaCO3 and bacterial EPS covering the
substrate (Figures 1C–E). After 5 months, the viable titer
of culturable microbiota increased and then after 24 months
dropped back to about pre-treatment values.

Cell Components
An Italian team of Florence investigated and assessed CaCO3
mineralization on stone induced by a bacteria-mediated system
in absence of viable cells (Perito et al., 2014). This investigation
used the Bacillus subtilis strain 168 to identify bacterial structures
or molecules inducing precipitation. The precipitation capability
of bacterial dead cells was tested in a CaCl2 solution as calcium
source and with the sublimation of ammonium carbonate for
alkalization. Dead cells were able to promote calcite formation,
then cell fractions were tested and a bacterial cell fraction (BCF)
containing the cell wall induced CaCO3 formation (Figure 1F).
Interestingly, the system was specific in generating crystal
polymorphisms, since only calcite was found by X-ray diffraction.

Apparently, dead cells as well as BCF acted as crystallization
nuclei in liquid medium. This hypothesis is supported by the
capacity of cell walls to uptake cations such as Ca2+, as previously
demonstrated for isolated B. subtilis walls (Beveridge and Murray,
1980), and fostering heterogeneous nucleation (Fortin et al.,
1997). According to Dupraz et al. (2009), this process can be
referred to biologically influenced mineralization.

BCF was stored as easy-to use lyophilized preparations,
maintained a long-lasting activity and showed heat resistance.
BCF treatment was tested on slab stones and then in situ on
selected areas of the main façade of the Angera Cathedral, a 6th
century monumental site in Italy (Perito et al., 2014). Lyophilized
BCF was dissolved in a CaCl2 solution, then sprayed on stone
surface with a supersaturated calcium bicarbonate Ca(HCO3)2
solution (Super C solution) for supplying calcium ions and
CO2. The solution was supplemented with calcite nanoparticles
to maintain supersaturation in the pore and increase calcium
ions. Field evaluation tests after treatment showed that BCF
treated areas had negligible color changes (Table 1). New crystals
formed inside stone pores (Figure 1G) and, accordingly, there
was a significant decrease in water absorption (up to 6.8%). The
cohesion profiles were significantly increased in the first 3 mm
(if compared with the control area treated with Super C alone).
These results show that this application has potential, even if the
authors concluded that further testing was needed to fully assess
the treatment conditions for in situ applications.

Perspectives: From Cell Components to
the Microbial Community
BCCM biotechnology could be an ecological alternative to
chemical treatments due to the low environmental impact and
the production of a layer of CaCO3 compatible with and
coherent to the stone. A common point of improvement for
the BCCM technologies is the consolidation performance, not
yet comparable to that of synthetic polymers. The appropriate
selection of stone types before application is important
because pore structure affects penetration depth and treatment
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performance (De Muynck et al., 2011). Nanomechanical
properties of CaCO3 polymorphs can also be improved by
a better understanding of the bio-geo-chemical processes
governing the formation of biominerals with high mechanical
performance in natural environments (Dhami et al., 2018).

While the literature shows the potential in the laboratory
of different bacterial applications to promote CaCO3
mineralization, very few attempts have been made to test
the technology in situ (Table 1). Based on these few studies,
some companies have developed biomineralization products
for cultural heritage by using cultures of selected strains
(Amonit, France1) or media stimulating stone microbiota
(KBYO Biological, Spain2). Nevertheless, the translation of other
promising results obtained in vitro into practical bioremediation
applications on heritage stone in situ remains the challenge for
the immediate future (Webster and May, 2006); as examples,
the well documented biocalcite production by bacterial urease
or carbonic anhydrase (Castro-Alonso et al., 2019). Scaling up
will be needed in order to develop this technology (Figure 1,
box perspectives). In situ applications always have additional
problems when compared with the in vitro conditions, especially
concerning heterogeneity and conservation state of the stone,
delivery systems, outdoor or indoor environmental conditions,
type of feasible evaluation tests and the value of the artwork.
For this reason, preliminary in situ small-scale testing should
adopt treatment conditions mimicking those to the follow in
larger-scale applications.

Another general comment concerns the heterogeneity of the
treatment evaluation tests (Table 1). Although the choice of the
monitoring methods sometimes depends on the experimental
set-up, evaluating methods must be rapidly standardized for
comparing results and for metadata analyses. Standard methods
should consider the effectiveness of the treatment in terms of
both consolidation and safety of stone (impact on structural and
aesthetical features as well as on resident microbiota).

Living bacteria require the application of nutrient media on
the stone. The possibility of undesirable side-effects on stone is
controversial and it needs to be carefully evaluated (González-
Muñoz, 2008; Nazel, 2016). The metabolic pathway activated
in situ is the oxidative deamination of amino acids (Table 1),
which increases the alkalinity by production of ammonia
(Castanier et al., 1999; Lee and Park, 2019). The convenience
of obtaining byproducts as ammonia and using spore-forming
bacteria as Bacillus on stone has been recently discussed
(Dhami et al., 2014; Zhu and Dittrich, 2016). More generally,
promotion of undesired microbial growth can produce mineral
changes or appearance of stained patches on stone, as found by
Tiano et al. (1999). Such drawbacks may be encountered both
in case of activating allochthonous or autochthonous strains.
While aesthetical changes can be easily evaluated, growth of
unwanted microorganisms and/or changes in the autochthonous
community structure affecting the original ecological niche
is harder to analyze. Microbes can strongly contribute to
stone deterioration (Pinna, 2017) and the application of new

1http://www.amonit.fr/fr/calcite__1
2http://kbyobiological.com/en/

biotechnologies by conservators requires knowledge about the
risk factors, in particular on the long-term effects (Webster
and May, 2006; De Muynck et al., 2010). In this respect,
the work about the long-term monitoring of stone microbiota
carried by Ettenauer et al. (2011) and Jroundi et al. (2017) is
remarkable. However, knowledge about microbial communities
inhabiting heritage stone mainly comes from cultivation studies
(Scheerer et al., 2009). Microbial communities of stone were
only recently investigated using Next Generation Sequencing
and omics techniques (Perito and Cavalieri, 2018; Marvasi
et al., 2019). The latest studies suggest that natural community
structure detected by metagenomics is quite different from that
of enriched communities cultivated from calcareous stone in
precipitating media where Firmicutes are dominant (Dhami et al.,
2018; Li et al., 2018).

Meta-omics techniques as a whole (metagenomics,
metatranscriptomics and metabolomics) will promote a
further step to improving BCCM technology, because they
provide a wider view of the microbial community structure,
fluctuations and metabolic potential (Marvasi et al., 2019). In
regard to the cultivation bias (Hardoim et al., 2014), omics
technologies will provide a better understanding of the stone
microbial community structure to allow treatment monitoring
as well as the identification of the community components
with biomineralization potential. Chimienti et al. (2016) used
metagenomics to identify the presence of microorganisms
known as carbonatogenic (i.e., Arthrobacter) within the overall
microbial community from stone slabs of a medieval church.
Zanardini et al. (2019) reconstructed the carbon, nitrogen and
sulfur cycles and their biodeterioration potential within the
prokaryotic community of decayed sandstone of a medieval
castle by 16S rRNA and functional gene analyses. Using a similar
approach, the carbonatogenic potential of metabolic pathways
linked to these biogeochemical cycles could be inferred. On the
other hand, cultivation is more valuable than ever in the omics
era (Gutleben et al., 2018) because it is needed to confirm the
predicted carbonatogenic ability of stone populations as well as
for other applications. But then again, meta-omics techniques
can also provide useful information to improve cultivation
strategies for the isolation of potential calcinogenic bacterial
populations from calcareous environments.

The cell-free approach offers several advantages: the cellular
components act as mineral nucleation and growth sites in the
absence of nutrients, components smaller than cells penetrate
more in depth into pores and microcracks, interventions on
the chemical environment governing precipitation are easier
(Hammes and Verstraete, 2002). Alkaline buffering or different
supersaturated calcium solutions should be further developed
and compared to that used by Perito et al. (2014). However, the
preparation of the BCF product is more complex compared to
alive cellular strategies but could have as target calcareous objects
where minimum change in their chemistry is required (Perito
et al., 2014). A cell-free approach has not been explored further.

Very little is still known about the molecular basis of the
calcium biomineralization process (Perito and Mastromei, 2011).
B. subtilis laboratory strain 168 was used to identify cellular
fractions as well as genes and molecules with key roles in inducing
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precipitation (Barabesi et al., 2007), as found for mollusks
(Falini et al., 1996). Characterization of B. subtilis mutants
impaired in CaCO3 precipitation suggested a link between
biomineralization, redox reactions of fatty acid metabolism,
changes in phospholipids membrane composition and surface
properties (Barabesi et al., 2007; Marvasi et al., 2010, 2016;
Frandi et al., 2011; Perito et al., 2018a). In Lysinibacillus, CaCO3
precipitation can modify membrane rigidity by upregulating
the branched chain fatty acid synthesis (Lee and Park, 2019).
We speculate that intervention on these metabolic switches
could help in the search for bacterial molecules fostering
precipitation and, at the same time, improving precipitation
performance by bacteria.

On the other hand, it is well known that bacterial
macromolecules, like the EPS, act as matrices which promote
mineralization and are trapped in the growing calcite (Decho,
2010; Marvasi et al., 2012; Perito et al., 2018b). According to
Jroundi et al. (2017), the hybrid cement due to the incorporation
of organisms and EPS within the nanostructured CaCO3 in
the self-inoculation biotreatment was responsible for the high

consolidation effectiveness. Further studies are needed in order
to identify and test different EPS or to design bacteria-
based biomimetic matrices promoting calcite growth on stone.
This would represent a further advancement of the cell-free
technology since it would reduce the complexity of organic
matter to apply, increasing its penetration inside stone.

Concluding, in our opinion all the different approaches
explored in this mini review are worth further development for
in situ applications, even if two of them are already available on
the market. Fascinating challenges for the future include advances
in exploitation of bacterial pathways, cell components and single
(macro)molecules.
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This research aimed to study the abundance and molecular diversity of Vibrio
parahaemolyticus-specific Halobacteriovorax strains isolated from seawater of the
Adriatic Sea and the relationship between predator and prey abundances. Moreover,
predator efficiency of the Halobacteriovorax isolates toward V. parahaemolyticus and
Vibrio cholerae non-O1/O139 strains was tested. V. parahaemolyticus NCTC 10885
was used as primary host for the isolation of Halobacteriovorax from seawater by the
plaque assay. Molecular identification was performed by PCR detection of a fragment
of the 16S rRNA gene of the Halobacteriovoraceae family members. Moreover, 700 bp
PCR products were sequenced and compared between them and to clones described
for other sampling sites. Vibrio counts were performed on TCBS agar from 100 ml of
filtered water samples and presumptive colonies were confirmed by standard methods.
Predatory efficiency of Halobacteriovorax isolates was tested by monitoring abilities
of 3-day enrichments to form clear lytic halos on a lawn of Vibrio preys, by the
plaque assay. Out of 12 seawater samples monthly collected from June 2017 to
May 2018, 10 were positive for V. parahaemolyticus specific Halobacteriovorax with
counts ranging from 4 to 1.4 × 103 PFU per 7.5 ml. No significant relationship was
found between Halobacteriovorax and Vibrio abundances. The 16SrRNA sequences of
our Halobacteriovorax strains, one for each positive sample, were divided into three
lineages. Within the lineages, some sequences had 100% similarity. Sequence similarity
between lineages was always <94.5% suggesting that they may therefore well belong
to three different species. All Halobacteriovorax isolates had the ability to prey all tested

Frontiers in Microbiology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 157539

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.01575
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.01575
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.01575&domain=pdf&date_stamp=2020-07-08
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01575/full
http://loop.frontiersin.org/people/267557/overview
http://loop.frontiersin.org/people/649984/overview
http://loop.frontiersin.org/people/980033/overview
http://loop.frontiersin.org/people/175670/overview
http://loop.frontiersin.org/people/382415/overview
http://loop.frontiersin.org/people/880368/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01575 July 6, 2020 Time: 20:39 # 2

Ottaviani et al. Halobacteriovorax From the Adriatic Sea

Vibrio strains. Additional research is necessary to assess whether stable strains of
Halobacteriovorax are present in the Adriatic Sea and to understand the mechanisms
by which Halobacteriovorax may modulate the abundance of V. parahaemolyticus and
other vibrios in a complex marine ecosystem.

Keywords: V. parahaemolyticus-specific Halobacteriovorax, Vibrio spp., V. parahaemolyticus, V. cholerae non-
O1/O139, Adriatic Sea

INTRODUCTION

In many ecological communities, predation has a key role in
regulating community structure or function. In the marine
environment, predation has been extensively explored in animals,
microbial eukaryotes and viruses (Baum and Worm, 2009)
while predation by bacteria is less well understood (Williams
et al., 2015). The genus Halobacteriovorax, in the class
Deltaproteobacteria, family Bacteriovoracaceae, consists of small,
Gram-negative, flagellated, marine predator bacteria that are
members of a broader group of predatory bacteria known as
Bdellovibrio and like organisms (BALOs), also including non-
marine (terrestrial and freshwater) forms (Williams and Baer,
2005). BALOs enter into a susceptible Gram-negative prey
bacterium and reside within the periplasmic space where they
use the cytoplasmic nutrients of the prey to support growth
and replication. The replicative form, known as bdelloplast,
extends within the prey and divides into progeny cells that are
released as soon as the host is lysed and are able to attack other
preys (Williams and Baer, 2005). The genus Halobacteriovorax,
according to the results of the analysis of the 16S rRNA
gene sequence, includes two species Halobacillus litoralis and
Halobacteriovorax marinus for which the similarity between
the type strains is 92.61% (Koval et al., 2015). Recently, the
new species Halobacteriovorax vibrionivorans has been also
proposed (Ye et al., 2019). Furthermore, analysis of the 16S
rRNA gene sequence from Halobacteriovorax saltwater strains
identified multiple distinct phylogenetic clusters in different
marine habitats, grouped based on a sequence identity with values
>96.5% (Pineiro et al., 2007). Many of these Halobacteriovorax
could represent potential new species. Halobacteriovorax favors
predation on Vibrio species and other saltwater prey (Rice et al.,
1998; Chen et al., 2012; Koval et al., 2015; Ye et al., 2019).
Different lineages within this genus favor estuarine or marine
waters and some isolates have been found in salt lakes (Koval
et al., 2015). There are no known freshwater isolates (Koval
et al., 2015). Recent studies reported that Halobacteriovorax
were capable of containing Vibrio parahaemolyticus levels in
seawater and oysters, at laboratory scale (Chen et al., 2011; Li
et al., 2011; Richards et al., 2012, 2016; Williams et al., 2015;
Ottaviani et al., 2018a). Furthermore, there is evidence that
Halobacteriovorax contributes to Vibrio vulnificus mortality in a
simulated natural seawater system with greater efficiency than
other natural predators, such as bacteriophages (Chen et al.,
2018). A previous study demonstrated that Halobacteriovorax
was part of the coral microbiome (Welsh et al., 2016). In
light of this evidence to understand if Halobacteriovorax has
a role in modulating the natural levels of V. parahaemolyticus

and other vibrios in the marine environment it is essential
to know its natural abundance and understand in details how
the predator infects and kills the prey. Quantitative PCR has
been used to detect total Halobacteriovorax abundances in the
marine environment, but it does not identify strains capable of
targeting specific host bacteria (Zheng et al., 2008). On the other
hand, Pineiro et al. (2007) isolated and characterized selected
Halobacteriovorax phylotypes against V. parahaemolyticus in
seawater, but results were not quantitative. To date, only two
previous (plaque assay-based) studies have documented the
abundance of V. parahaemolyticus specific Halobacteriovorax in
seawater (Richards et al., 2013; Ottaviani et al., 2018a). However,
as far as we know, there are no data on correlations between levels
of Halobacteriovorax, V. parahaemolyticus and total vibrios in
the marine environment. V. parahaemolyticus strains producing
thermostable direct haemolysin (TDH) and/or TDH-related
haemolysin (TRH) are recognized as a cause of diarrhoeal
diseases worldwide, with bivalves, eaten raw or undercooked
being the most frequent sources of infection (Potasman et al.,
2002; Letchumanan et al., 2014). In Italy Halobacteriovorax
and pathogenic vibrios, including V. parahaemolyticus and non-
O1/O139 Vibrio cholerae, have been isolated in seawater and
mussels coming from the Adriatic Sea (Masini et al., 2007;
Ottaviani et al., 2018a). Moreover, in the last years, illness due
to V. parahaemolyticus and non-O1/O139 V. cholerae, with
mussels or seawater of Adriatic Sea as the source of infection,
has been reported (Ottaviani et al., 2010, 2013, 2018b). In this
work we studied the abundance and molecular diversity of
V. parahaemolyticus-specific Halobacteriovorax strains isolated
from seawater of a mussels growing area at the Conero Riviera
of the Adriatic Sea. From the same samples V. parahaemolyticus
and total vibrios were also counted and the relationship
between these and Halobacteriovorax was studied. Finally,
the predatory efficiency of Halobacteriovorax isolates toward
V. parahaemolyticus and V. cholerae non-O1/O139 strains from
clinical and environmental sources, the majority linked to the
Adriatic sea of Italy, was tested.

MATERIALS AND METHODS

Sampling Site
The Conero Riviera, located halfway of the Italian Adriatic coast,
is a coastal marine ecosystem with an extension of 20 km and
a low anthropic impact. This riviera includes several important
sea towns, such as Ancona, Portonovo, Sirolo, and Numana, and
lies in a protected area representing the most important marine
reserve of the Marches where there are also many natural banks
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FIGURE 1 | Map of the Conero Riviera showing the location of the sampling site.

of mussels (Mytilus galloprovincialis) (Figure 1). Subsurface
seawater samples were monthly collected from a site of approved
mussels growing area in the Conero Riviera (43◦30′12′′N–
13◦41′12′′E) from June 2017 to May 2018 (Figure 1). Two
liters of seawater for each sample were collected using sterile
polypropylene bottles. Water temperature and salinity were
determined in situ with a multiparametric probe (Handy Gamma,
Oxyguard, Denmark). All samples were transported to the
laboratory on ice for analysis. Salinity remained steady between
38 and 39 ppt. Seawater was immediately transported to the
laboratory in an insulated cooler and analyzed within 4 h. The
same seawater samples that were used for Halobacteriovorax
analyses were also used for V. parahaemolyticus and total
Vibrio analyses.

Prey Strains
Vibrio parahaemolyticus NCTC 10885 strain was used as prey.
Prey specificity and predatory efficiency of Halobacteriovorax
isolates were tested on V. parahaemolyticus and V. cholerae
strains of environmental and clinical origin, the majority directly
or indirectly linked to the Adriatic sea of Italy (Table 1). For

all Vibrio strains, fresh enrichments were prepared from a stock
culture grown on 3% NaCl Luria-Bertani broth until prey reached
an OD600 of 0.20 (∼1.8× 108 CFU/ml).

Halobacteriovorax Enumeration
It was performed by a double layer agar plating technique
(Richards et al., 2012). The prey was grown in LB–3% NaCl broth
until it reached an OD600 of 0.20 (∼1.8 × 108 CFU/ml). For the
analysis, 500 ml of test seawater was first filtered through a 0.45-
µm, 500-ml filter to remove particulates and bacteria. Then, the
filtered seawater was serially diluted 10-fold in sterilized artificial
seawater (30 ppt). For each assay, 25 ml of bottom-layer Pp 20
agar (polypeptone peptone supplemented with Bacto agar) were
dispensed into a 100-mm Petri dish and allowed to harden. Top
agar was pipetted into sterile glass tubes (7.5 ml/tube) while
the agar was hot and allowed to cool to 48◦C in a water bath.
The plaque assay was conducted by combining 1 ml of host
V. parahaemolyticus culture, at an OD600 of 0.20 and 7.5 ml of
undiluted and diluted test seawater to 7.5 ml of molten (48◦C)
Pp 20 agar in tubes. The tubes were inverted 3 times to mix
and poured on top of the existing bottom layer. Counts of
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TABLE 1 | Vibrio preys tested with Halobacteriovorax strains.

No. Prey strains Toxin genes* Source and year of isolation Origin

1 V. parahaemolyticus tdh+**; trh−***; toxRS+
(pandemic strain)

Feces, 2007 Mussels of Adriatic sea, Italy as the most
probable source of infection

2 V. parahaemolyticus tdh−/trh−; toxRS− Feces, 2010 Mussels of Adriatic sea, Italy as the most
probable source of infection

3 V. parahaemolyticus tdh−; trh−; toxRS− Feces, 2010 Mussels of Adriatic sea, Italy as the most
probable source of infection

4 V. parahaemolyticus tdh−/trh+; toxRS− Marine water, 2011 Conero Riviera, Italy

5 V. parahaemolyticus tdh+/trh−; toxRS− Mussels, 2014 Conero Riviera, Italy

6 V. parahaemolyticus tdh−; trh−; toxRS− Mussels, 2015 Conero Riviera, Italy

7 V. parahaemolyticus tdh−; trh+; toxRS Mussels, 2016 Conero Riviera, Italy

8 Non O1/O139 V. cholerae hlyAClass−; hlyET+;
ctxA−; tcpAClass+; tcpAET−; stn/sto−

Subcutaneous tissue, 2009 Seawater of Adriatic sea, Italy, as the most
probable source of infection

9 Non O1/O139 V. cholerae hlyAClass−; hlyET+;
ctxA−; tcpAClass−; tcpAET−; stn/sto−

Subcutaneous tissue, 2012 Seawater of Adriatic sea, Croazia, as the most
probable source of infection

10 Non O1/O139 V. cholerae hlyAClass−; hlyET+;
ctxA−; tcpAClass−; tcpAET−; stn/sto+

Marine water, 2011 Conero Riviera, Italy

11 Non O1/O139 V. cholerae hlyAClass−; hlyET+;
ctxA−; tcpAClass−; tcpAET−; stn/sto−

Feces, 2012 Bivalves as the most probable source of
infection

12 Non O1/O139 V. cholerae hlyAClass−; hlyET+;
ctxA−; tcpAClass−; tcpAET−; stn/sto−

Mussels, 2014 Conero Riviera, Italy

13 V. parahaemolyticus NCTC 10903

14 V. parahaemolyticus NCTC 10884

15 V. cholerae O1 NCTC 9459

*tdh: thermostable direct haemolysin gene; trh: TDH-related haemolysin gene; toxRS: pandemic genetic marker; ctxA: cholera toxin gene; stn/sto: heat stable enterotoxin
gene; hlyAClass: hemolysin classical gene; hlyET: hemolysin El Tor gene; tcpAClass: toxin-coregulated pilus classical gene; tcpAET: toxin-coregulated pilus El Tor gene;
**+: positive; ***−: negative.

Halobacteriovorax were performed after incubation at 26◦C for
7 days. The number of viable Halobacteriovorax isolates was
estimated as PFU per 7.5 ml seawater.

Halobacteriovorax Molecular
Identification and Sequencing Analysis
For each presumptively positive sample, five plaques appearing
on plates of the highest dilution were picked up for molecular
identification. The templates used for PCR were individual
plaques re-suspended in 100 ml of sterile double-distilled
water and vortexed at a high speed. The liquid phase was
transferred to a new tube and subjected to heating in boiling
water for 3 min (Jurkevitch et al., 2000). 16S rRNA PCR
analysis was performed on a fragment of the 16S rRNA gene
of the Halobacteriovoraceae family members using the primers
Bac676F and Bac1442R, as previously described (Davidov et al.,
2006; Richards et al., 2013). Samples showing a band of
700 bp were considered Halobacteriovorax. For each positive
sample, sequencing analysis was performed on PCR product
of 700 bp from a unique plaque. PCR products were purified
with the High Pure PCR Product Purification kit Roche
Diagnostics (GmbH, Mannheim, Germany). Sequencing analysis
was performed using the reverse primer BAC1442R and ABI
Prism R© BigDye R© Terminator v1.1 Cycle Sequencing kit (Applied
BiosystemsTM, Life Technologies, United States), according
to the manufacturer’s instructions. Sequenced products were
analyzed in an automated capillary sequencer ABI Prism R©

310 Genetic Analyzer (Applied BiosystemsTM, United States).

Nucleotide sequences were manually edited, aligned and analyzed
using CLC genomics workbench V.12 (Qiagen Bioinformatics).
Phylogenetic trees of the 16S rRNA gene sequences from
the isolates generated in this study were reconstructed using
the maximum likelihood (ML) method. These sequences
were also compared to those of the following type strains
of the Halobacteriovorax species: H. marinus SJ (GenBank
accession number 102485), H. litoralis JS5 (GenBank accession
number 028724) and H. vibrionivorans BL9 (GenBank accession
number MH150810) Initially the 16SrRNA sequences were
aligned with a progressive alignment tool (Feng and Doolittle,
1987) within the CLC genomics workbench 20 environment.
The best substitution model fitting the alignment was the
General Time Reversible (GTR), gamma distribution 0 and
transition/transversion rate ratio 2. The tree topology was tested
with 1000 bootstrap replicates.

Total Vibrio spp. and V. parahaemolyticus
Enumeration
Each water sample was mixed and 100 ml of undiluted and
1:10, 1:100, 1:1000 diluted sample was filtered using a 0.45-mm-
pore membrane filter (Millipore, Bedford, MA, United States);
the filter was placed on thiosulfatecitrate-bile-salts-sucrose-agar
(TCBS, Difco Laboratories, Detroit, MI, United States) and
incubated at 37◦C for 24 h. For each presumptively positive
sample, five colonies appearing on plates of the highest dilution
were selected and subcultured on trypticase soy agar with 2%
NaCl (TSAs, Oxoid). Presumptive Vibrio spp. were biochemically
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identified at genus level by a standardized protocol (Ottaviani
et al., 2003). Presumptive V. parahaemolyticus strains were
confirmed by a standard method (ISO/TS, 2017). The number of
viable V. parahaemolyticus and total Vibrio isolates was estimated
as CFU per 100 ml seawater.

Prey Specificity and Predatory Efficiency
of Halobacteriovorax Isolates
Three-day enrichments of each Halobacteriovorax isolate
(approximately 1 × 106 PFU ml−1) were filtered through a
0.45- m-pore-size Millex HV syringe filter (Millipore Corp.,
Billerica, MA, United States) to remove the primary prey. Prey
specificity and predator efficiency of Halobacteriovorax strains
were determined by monitoring their abilities to form clear
lytic halos on a lawn of the reference V. parahaemolyticus and
V. cholerae preys listed in Table 1, using a double layer agar
plating technique. Briefly, 1 µl of filtered predator undiluted
enrichment, 1 ml of prey culture at an OD600 of 0.2 for Vibrio
preys (approximately 108 PFU ml−1), were added to 7.5 ml of
sterilized artificial seawater (30 ppt salinity) and 7.5 ml of Pp 20
top agar (Richards et al., 2012, 2016). For each prey specificity
assay a positive control, represented by V. parahaemolyticus
NCTC 10885 and the Halobacteriovorax strain, and a negative
control, which consisted of the prey alone, were performed.

Statistical Analysis
On each 2 l seawater sample the analyses were performed
in six independent replicates for Halobacteriovorax and Vibrio
(n = 6). Results of microbiological analyses were reported as
mean values (log-transformed)± standard deviation. Correlation
coefficients were determined and associated p-values < 0.05 were
considered significant.

RESULTS

Halobacteriovorax Enumeration
Out of 12 seawater samples collected, 10 (83.3%) were positive
for presumptive V. parahaemolyticus specific Halobacteriovorax,
with counts ranging from 4 PFU per 7.5 ml (November 2017)
to 1.4 × 103 PFU per 7.5 ml (January 2018) (Figure 2). Plaques
on primary prey became visible after 72 h. After that, sizes
expanded over time, reaching the maximum diameter of 9 mm
after 5 days of incubation at 26◦C. A lack of plaques was observed
on all replicates of February and May 2018 samples even when
the incubation was prolonged up to 10 days. No significant
relationship was found between Halobacteriovorax levels and
seawater temperature (Figure 2).

Halobacteriovorax Molecular
Identification and Sequencing Analysis
All plaques for each seawater sample were confirmed by
molecular methods as Halobacteriovorax. The sequences
obtained by analysis of the 10 16SrRNA 700pb PCR fragments,
one for each positive sample, were named DOGA1-DOGA10.
The partial 16SrRNA gene sequences were deposited in GenBank

under accession numbers MN750616–MN750625 (Table 2).
Sequences from DOGA1 to DOGA7 were obtained from the
strains isolated in 2017 while sequences from DOGA8 to
DOGA10 were from the strains isolated in 2018 (Table 2).
Overall, the divergence between our sequences was always
<10% (Supplementary Figure 1). A similarity >99% was
between the sequences DOGA1-DOGA5, DOGA6-DOGA7 and
DOGA8-DOGA10. Between the three groups, the sequence
similarity ranged from 90.63% (between DOGA 1 and DOGA 8)
to 94.51% (between DOGA 6 and DOGA 9–10) (Supplementary
Figure 1). These three distinct lineages were named L1, L2, L3,
respectively (Table 2). DOGA2, DOGA3, and DOGA5 within
L1 showed 100% sequence identity (Figure 3 and Table 2). Also
DOGA9 and DOGA10 within L3 showed 100% sequence identity
(Figure 3 and Table 2). Sequences within L3 shared 98.54–
99.19% similarity with H. vibrionivorans BL9, 94.83–95.32% with
H. litoralis JS5 and 91.75–92.23%. with H. marinus SJ (Figure 3
and Supplementary Figure 1). Sequences within L2 shared
94.18–94.51% similarity with H. vibrionivorans BL9, 95.64–
95.96% with H. litoralis JS5 and 93.38–93.70%. with H. marinus
SJ (Figure 3 and Supplementary Figure 1). Sequences within
L1 shared 91.44–92.57% similarity with H. vibrionivorans BL9,
91.11–92.25% with H. litoralis JS5 and 92.41–93.21%. with
H. marinus SJ (Figure 3 and Supplementary Figure 1).

Total Vibrio spp. and V. parahaemolyticus
Enumeration
Six samples (50%) were positive for V. parahaemolyticus with
counts ranging from 1.0 × 102 CFU per 100 ml (May 2018)
to 1.7 × 104 CFU per 100 ml (August 2017). A lack of
detection was reported from November to December 2017 and
from January to April 2018. Nine samples (75%) were positive
for total vibrios with counts ranging from 2.0 × 102 CFU
per 100 ml (January 2018) to 1.3 × 105 CFU per 100 ml
(August 2017). A lack of detection was reported from February
to April 2018. No significant relationship was found between
levels of Halobacteriovorax and those of total Vibrio and
V. parahaemolyticus (Figure 2).

Prey Specificity and Predatory Efficiency
of Halobacteriovorax Isolates
All Halobacteriovorax isolates were able to lyse all tested
V. parahaemolyticus and V. cholerae reference strains. Plaques
of lysis became visible after 72 h and then, their sizes expanded
over time, reaching the maximum after 5 days of incubation at
26◦C. At the end of the incubation, the diameter of lysis plaques
on vibrios was similar to those on primary prey, ranging between
7 and 9 mm diameter.

DISCUSSION

Halobacteriovorax Enumeration
Indigenous V. parahaemolyticus-specific Halobacteriovorax is
present in seawater of a mussel growing area of the Conero
Riviera at levels higher than those reported for Atlantic and
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FIGURE 2 | Trend of temperature (A), V. parahaemolyticus and total vibrio (B), and Halobacteriovorax (C).

TABLE 2 | Halobacteriovorax strains molecularly characterized in this study.

16S-rRNA sequences GenBank accession number Period of isolation Seawater temperature 16S-rRNA lineages

DOGA1 MN750616 June 2017 20◦C L1

DOGA2 MN750617 July 2017 25◦C L1

DOGA3 MN750618 August 2017 26◦C L1

DOGA4 MN750619 September 2017 24◦C L1

DOGA5 MN750620 October 2017 22◦C L1

DOGA6 MN750621 November 2017 16◦C L2

DOGA7 MN750622 December 2017 16◦C L2

DOGA8 MN750623 January 2018 10◦C L3

DOGA9 MN750624 March 2018 11◦C L3

DOGA10 MN750625 April 2018 10◦C L3

Pacific Oceans which never exceeded values of 102 PFU per
mL (Richards et al., 2013). Moreover, the Halobacteriovorax
counts in this study should be considered minimum counts
since some portion of the predators were undoubtedly removed
by filtration (Richards et al., 2013). Surprisingly, we found the
Halobacteriovorax higher abundances on January 2018 while
Halobacteriovorax in Atlantic and Pacific Oceans were mainly
concentrated in the warmer months of the year (Richards
et al., 2013). It is known that Halobacteriovorax against
V. parahaemolyticus is able to proliferate in the temperature range
between 10 and 30◦C (Williams et al., 2015). In the marine areas
investigated by Richards et al. (2013) temperatures over a 12-
month period ranged from lows of 5◦C in winter and highs of
30◦C in summer. Halobacteriovorax replication was therefore
completely inhibited in the winter months. In the Conero Riviera
temperatures over a 12-month period ranged from lows of 10◦C
in winter and highs of 25◦C in summer. Therefore, throughout
the year, the temperatures were suitable for a good replication of
Halobacteriovorax.

Halobacteriovorax Molecular
Identification and Sequencing Analysis
In BALOs, as in other bacteria, a 90% sequence similarity means
grouping at the genus level while the species level is identified
by a >98% similarity (Koval et al., 2015). In this study the
sequence similarity of Halobacteriovorax strains inter-lineages

was always <94.5% suggesting that they may therefore well
belong to three different species. Moreover, sequences in L1
and L2 formed independent branches separated from the type
strains of Halobacteriovorax. Instead the sequences in L3 shared
>99% similarity with H. vibrionivorans BL9. For this reason these
Halobacteriovorax strains would clustered with the proposed new
species H. vibrionivorans. In this period there is a great interest
from the scientific world in the taxonomic and phylogenetic study
of this genus. Shortly we will perform the genome sequencing of
our Halobacteriovorax strains in order to obtain more detailed
information on their taxonomic position and understand if
they could belong to new species within the genus. Our results
show that different strains of Halobacteriovorax circulated in
the Conero Riviera in the 2017–2018 period. In this study we
have limited ourselves to the molecular characterization of the
dominant population of Halobacteriovorax. For this reason, the
plaques for each isolate were enumerated and treated as if
they were a single clonal population. Moreover, in this study
we have used a unique V. parahaemolyticus strain as prey to
recover Halobacteriovorax. These working methods may have
limited the Halobacteriovorax diversity detected in the marine
area investigated. Previous studies associated different clusters
of Halobacteriovorax to marine waters with different salinity
(Pineiro et al., 2007, 2013; Crossman et al., 2013; Richards
et al., 2013). In disagreement, our strains belonging to different
lineages, were isolated from a marine area with a constant level
of salinity equal to 38–39 ppt throughout the year. An association
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FIGURE 3 | Maximum-likelihood phylogenetic tree, based on 16S rRNA gene sequence comparisons, showing the position of strains DOGA1-10 and related type
strains. Numbers at branch nodes are bootstrap values (per 1000 trials).

was found among the lineages of our Halobacteriovorax strains
and the temperature of seawater. The strains in L1 were isolated
in the period June–October 2017 when the temperature ranged
between 20 and 25◦C. The strains in L2 were isolated in the period
November–December 2017 when the temperature was 16◦C.
Finally, the strains in L3 were isolated in the period January–
April 2018 when the temperature ranged between 10 and 11◦C.
In a future investigation we will extend the period and marine
area of the study, by using different Vibrio parahemolyticus prey
strains and sequencing 16SrRNA fragments from more plaques
for each sample. The scope will be to assess if, in the Adriatic
Sea, diversities of Halobacteriovorax may exist in respect of
seasonality and prey specificity and whether particular strains can
be present here stably.

Total Vibrio spp. and V. parahaemolyticus
Enumeration
No significant correlations between Halobacteriovorax,
total Vibrio spp. and V. parahaemolyticus abundance
was detected in the marine area investigated in this
study. A previous study confined to microcosms in
which Halobacteriovorax/V. parahaemolyticus at a ratio of
105 PFU/105 CFU per ml were added, produced a different effect,
where Halobacteriovorax increased as V. parahaemolyticus
decreased (Ottaviani et al., 2018a). The fact that no
relationship between the abundance of Halobacteriovorax

and V. parahaemolyticus was observed in the present study could
be related to the very low abundance of both genera in seawater
which was about 10–100 cells per ml. This may have reduced
the chance for high predation and consequently a significant
increase and decrease in the abundance of Halobacteriovorax
and V. parahaemolyticus, respectively. Moreover, it is known
that some Halobacteriovorax has broader host specificity than
others and the mechanisms that drive Halobacteriovorax host
specificity within a complex bacterial community are not known.
In this regard, our Halobacteriovorax strains demonstrated
predatory activity in vitro toward all V. parahaemolyticus and
V. cholerae reference strains tested, many of them isolated
from the same marine area. Halobacteriovorax may well target
one microorganism over another within the same species and
also between different species of marine bacteria. The extent
to which this occurs remains unresolved. In the next future it
would be essential to perform microcosm-studies to investigate
the unwanted effect of Halobacteriovorax isolates toward the
vital core-microbiome bacteria in marine seawater. Moreover,
Halobacteriovorax and Vibrio abundances may be subject to
control by bacteriophages, other predators, environmental
conditions, nutrient levels, the effects of competing microbes,
and the development of host resistance. Finally, the lack
of correlation between predator and prey levels could be
linked to the different speed of Halobacteriovorax and Vibrio
replication, so that they cannot compete with maximum
efficiency between them.
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Prey Specificity and Predatory Efficiency
of Halobacteriovorax Isolates
Our Halobacteriovorax isolates, although captured using a single
V. parahaemolyticus strain as primary prey, were able to lyse
a wide range of V. parahaemolyticus and V. cholerae strains,
including those toxigenic and/or involved in human infections.
Previous scientific information reported that V. parahaemolyticus
is the most efficient prey known for Halobacteriovorax recovery,
at least for the strains against Vibrio (Pineiro et al., 2007).
The broad spectrum of action of our isolates would seem to
confirm this hypothesis. Most of the vibrio prey came from
the same marine area from which Halobacteriovorax strains
were also isolated. Some had been isolated from mussels,
others from seawater in the Conero Riviera. We believe
that Halobacteriovorax similarly to other bacteria through
the filtration from seawater passes inside the mollusk where
continues to parasitize vibrios and other potential pathogens.
A previous study investigated the Halobacteriovorax predation
in coral-associated microbiome (Welsh et al., 2016). The authors
speculated that coral microbiome could allow the predator to
remain alive and vital while Halobacteriovorax could regulate and
maintain the microbiome structure in balance and at the same
time protect the host by consuming potential pathogens. Similar
symbiotic relationships may also exist between Halobacteriovorax
and the microbiome associated with other aquatic organisms,
such as bivalves. Laboratory-scale studies are currently underway
to evaluate the effects of Halobacteriovorax in the reduction of
V. parahaemolyticus in bivalves during the purification phase and
to understand the potential unwanted effects of the predator on
the mussel microbiome.

CONCLUSION

In conclusion, different V. parahaemolyticus-specific
Halobacteriovorax strains are present in seawater of a
mussel growing area on the Conero Riviera where they,
probably, play a physiological role as natural modulators
versus V. parahaemolyticus and other vibrios populations.
These predatory bacteria could have a primary role in
regulating and structuring marine bacterial communities and

the nutrient cycle but have not received the attention they
deserve to date. Additional research is necessary to better
understand the mechanisms by which Halobacteriovorax may
modulate V. parahaemolyticus and other vibrios in a complex
marine ecosystem, and the overall effect they exert on the
structure of seawater microbial communities and marine
host-associated microbiomes.
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Improvement of industrial productions through more environment-friendly processes is
a hot topic. In particular, land and marine environment pollution is a main concern,
considering that recalcitrant compounds can be spread and persist for a long time.
In this context, an efficient and cost-effective treatment of wastewater derived from
industrial applications is crucial. Phytodepuration has been considered as a possible
solution and it is based on the use of plants and their associated microorganisms
to remove and/or transform pollutants. In this work we investigated the culturable
microbiota of Phragmites australis roots, sampled from the constructed wetlands (CWs)
pilot plant in the G.I.D.A. SpA wastewater treatment plant (WWTP) of Calice (Prato,
Tuscany, Italy) before and after the CW activation in order to check how the influx of
wastewater might affect the resident bacterial community. P. australis specimens were
sampled and a panel of 294 culturable bacteria were isolated and characterized. This
allowed to identify the dynamics of the microbiota composition triggered by the presence
of wastewater. 27 out of 37 bacterial genera detected were exclusively associated to
wastewater, and Pseudomonas was constantly the most represented genus. Moreover,
isolates were assayed for their resistance against eight different antibiotics and synthetic
wastewater (SWW). Data obtained revealed the presence of resistant phenotypes,
including multi-drug resistant bacteria, and a general trend regarding the temporal
evolution of resistance patterns: indeed, a direct correlation linking the appearance of
antibiotic- and SWW-resistance with the time of exposure to wastewater was observed.
In particular, nine isolates showed an interesting behavior since their growth was
positively affected by the highest concentrations of SWW. Noteworthy, this study is
among the few investigating the P. australis microbiota prior to the plant activation.

Keywords: Phragmites australis, phytodepuration, wastewater, endophytes, antibiotic resistance, metal
resistance
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INTRODUCTION

Plants and microorganisms have been living in association for
a very long time. In fact, arbuscular mycorrhizal mutualism is
believed to have had a key importance in the terrestrialization
process and in the evolution and diversification of plant
phototrophs (Selosse and Le Tacon, 1998; Heckman et al., 2001).
Different microorganisms (bacteria and fungi) can establish
(more or less) deep associations with plants; some of them
exhibit an endophytic lifestyle, in that they colonize plant tissues
internally, although a more specific definition of endophytes
states that they are organisms which, at some moment of their
life cycle, colonize the internal plant tissues without causing
any type of harm to the host (Patriquin and Döbereiner,
1978). Potential endophytes often inhabit the surrounding soil,
especially rhizosphere, from where they can enter plant tissues
switching to an endophytic lifestyle. They may thus enter plant
tissues through wounds, germinating radicles, emergence points
of lateral roots or root elongation and differentiation zones
(Reinhold-Hurek et al., 2006; Sturz et al., 2010). Once inside,
bacteria adapt to different environmental conditions (e.g., pH,
osmotic pressure, carbon source, and availability of oxygen) and
overcome plant defense responses (Zeidler et al., 2004).

The plant host and the bacterial endophytes create a
mutualistic interaction, with bacteria gaining nutrients and
a niche to colonize (Sturz et al., 2010). Even though the
exact role of endophytes within plant tissues has not been
fully understood yet, it is well-established that in many cases
endophytes are beneficial to plants (Schlaeppi and Bulgarelli,
2015; Wani et al., 2015). The most common functions observed
for bacterial endophytes are (i) uptake of nutrients (e.g., N, P,
S, Mg, Fe, and Ca; Duijff et al., 1999; Çakmakçi et al., 2006),
(ii) biosynthesis of phytohormones promoting plant growth
(Spaepen et al., 2007), (iii) 1-aminocyclopropane-1-carboxylate
deaminase activity (ACC; Glick et al., 2007), (iv) nitrogen fixation
(Doty et al., 2009), (v) prevention of pathogenic infections
(Weller, 2007; Pérez-García et al., 2011), (vi) acceleration of
seedling emergence (Hardoim et al., 2008), and (vii) tolerance
to pollution and stresses (Ryan et al., 2008; Lugtenberg and
Kamilova, 2014).

In the context of the present work, particularly important
is the ability of plant-associated bacteria to increase tolerance
to pollution and/or increase the ability of plants to detoxify
polluted environments. Environmental pollution, especially
water pollution, represents a concern of considerable prominence
in the current society. In this regard, phytodepuration is the over-
arching term for a group of technologies that utilizes plants and
the associated rhizospheric microorganisms to remove and/or
transform contaminants leached from soils/sediments and from
used water streams (He et al., 2017; Saxena et al., 2020). It
represents an environmental-friendly and a valuable solution for
environmental cleanup, in particular for wastewater treatment,
and it is popular because of its cost effectiveness, aesthetic
advantages, and long-term applicability (Puvanakrishnan et al.,
2019). In the present manuscript the term “phytodepuration”
has been used to indicate specifically the remediation process
regarding water and wastewater, rather than “phytoremediation,”

TABLE 1 | Antibiotics used in this work.

Antibiotic Class Target

Ampicillin Penicillins Cell wall synthesis: inhibitor of
D-Ala-D-Ala carboxypeptidase

Chloramphenicol Phenicols Ribosome: inhibitor of peptidyl
transferase activity of 23S rRNA

Ciprofloxacin Fluoroquinolones Topoisomerases

Kanamycin Aminoglycosides Ribosome: inhibitor of 30S
ribosomal subunit

Rifampicin Ansamycins DNA-dependent RNA
polymerase

Streptomycin Aminoglycosides Ribosome: inhibitor of 30S
ribosomal subunit

Tetracycline Tetracyclines Ribosome: it blocks the binding
of aminoacyl-tRNAs

Trimethoprim Diaminopyrimidines DNA replication: inhibitor of
dihydrofolate reductase

TABLE 2 | Composition of synthetic wastewaters (SWWs).

Compound 1X SWW 2X SWW 3X SWW

H3BO3 20 40 60

FeCl2 · 4H2O 15 30 45

Na2SeO3 0.03 0.06 0.09

NaCl 5,000 10,000 15,000

Concentrations are expressed as mg/L.

which has a more general meaning, encompassing applications
regarding, for example, soil remediation.

The constructed wetlands (CW) are engineered systems
designed to mimic the self-purification processes of natural
wetlands. For decades, CW have been successfully used for
treating wastewater of different origins and have been identified
as a sustainable wastewater management option worldwide
(Wang et al., 2017), demonstrating their ability to eliminate
diffuse pollutants from urban, rural, and industrial emissions.
In literature, the effectiveness of the use of CW in the
treatment of sewage containing heavy metals and high salinity is
reported (Vymazal, 2011). This process is due to the interaction
between plants, microorganisms, soil, and polluting substances
(Zhou et al., 2013).

In CW, the rhizosphere is the mainly involved plant
compartment, where multiple different physiochemical and
biological processes occur (Stottmeister et al., 2003). The
common reed Phragmites australis is one of the most employed
plant species, because of its ability to flourish in marshy areas
and swamps and the high detoxification and phytodepuration
potential. Moreover, it is widely used to treat industrial
wastewater containing heavy metals (Zhang et al., 2017).
One peculiar characteristic of P. australis is that its internal
environment is characterized by a relatively constant osmotic
gradient determined by the downward transportation of Na+
from stems to roots (Vasquez et al., 2006). For this reason,
P. australis is also well-adapted to salty ecosystems. In CW,
vegetation is responsible for only a small amount of pollutant
removal (0.02%; Zhang et al., 2017), while its main function is
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TABLE 3 | Bacterial counts in roots of Phragmites australis collected during the five samplings and meteorological conditions registered monthly.

Samplings

1st (March 2017) 2nd (July 2017) 3rd (November 2017) 4th (June 2018) 5th (December 2018)

SFS-v (CFU/g) 4 × 106 1 × 107 1 × 106 3 × 106 6 × 105

SFS-h (CFU/g) 5 × 106 1 × 107 5 × 106 2 × 107 1 × 106

Average air temperature (◦C) 13.8 26.4 10.6 23.5 7.4

Total precipitations (mm) 58.8 2.0 108.2 48.6 42.6

Bacterial counts are expressed as colony forming units per gram (CFU/g) of roots, air temperature in Celsius degrees, total precipitations in millimeters.

to provide additional oxygen and organic matter for microbial
growth (Zhou et al., 2013). Indeed, microorganisms have been
described as the main actors of pollutant removal in CW (Zhang
et al., 2017). Phytodepuration has proved to effectively remove
or neutralize hazardous environmental contaminants and it is
predicted to have a growing application in the next years.
However, this process presents some limitations, such as the toxic
effects of pollutants on the growth and health of the plants (Glick,
2003). In fact, plant biomass is critical for phytodepuration
(Germaine et al., 2010) and even hyperaccumulator plants, which
can accumulate concentrations of toxic elements up to 100-
fold higher than other plant species, usually exhibit a reduced
growth. Also, phytodepuration may determine the accumulation
of contaminants in plant tissues, which, in turn, is responsible for
ecological and airborne exposure issues (Ho et al., 2012). In this
scenario, rhizobacteria and endophytic bacteria can aid plants by
supporting their growth (Tesar et al., 2002; Shaw and Burns, 2004;
Chaudhry et al., 2005), reducing phytotoxicity effects, increasing
pollutant uptake and removal (Glick and Stearns, 2011), reducing
the release of toxic compounds into the atmosphere (Barac
et al., 2004), removing contaminants and/or accumulating heavy
metals (Germaine et al., 2010; Ho et al., 2012).

The experimental plant of Calice (Prato, Italy), managed by
G.I.D.A. SpA, has therefore set itself as a goal to verify the action
of this association in tertiary treatment of landfill leachate (LFL;
Coppini et al., 2019).

The aim of this work was to characterize the cultivable
bacterial communities associated to the roots of P. australis
plants in Calice CW and to analyze their temporal dynamics
before and after the activation of the plant for 22 months. This
allowed the assessment of wastewater influx effect in shaping the
composition of pre-existing bacterial communities. Moreover,
bacteria isolated from roots were tested for their ability to grow
in the presence of synthetic wastewater (SWW), along with their
resistance against a panel of antibiotics commonly used to treat
infections in humans. To the best of our knowledge, this work is
among the few taking in consideration the bacterial composition
of endophytes before the activation of CW, and likely the first
regarding this issue in P. australis.

MATERIALS AND METHODS

Site Description
P. australis plants were obtained from the CWs pilot plant
managed by G.I.D.A. SpA and located at Calice Wastewater

Treatment Plant (WWTP) in Prato, Italy. The CW of Calice
was designed for the tertiary treatment of LFL. This CW is
located downstream of a membrane bio-reactor (MBR) designed
to pretreat a mixture of LFLs before their discharging in the
main line of a full-scale WWTP, which treats both urban and
industrial wastewater.

Constructed wetlands medium, used as substrate for the
growth of P. australis, consists of four layers of gravel and sand;
proceeding from the top to the bottom they are (thickness of
layers and diameter range of particles are reported in brackets,
respectively): gravel (20 cm; 5–10 mm) – sand (60 cm; 0.1–
0.4 mm and 0.02–0.1 mm) – gravel (10 cm; 5–10 mm) – gravel
(10 cm; 40–70 mm). CW implant was designed with two parallel
lines, named “Line A” and “Line B,” respectively, with a total
surface area of 1,620 m2. Each line is a two-stage subsurface flow
system (SFS), consisting of a vertical system (SFS-v) followed by
a horizontal one (SFS-h). The SFS-v of Line A is subdivided into
four parallel separated tanks (SFS-v1, SFS-v2, SFS-v3 e SFS-v4),
while the SFS-v of Line B is composed by two tanks (SFS-v5 e
SFS-v6). Furthermore, both SFS-h lines are composed by three
tanks, each one receiving the same hydraulic load. The maximum
hydraulic load supplied to the entire system was 95 m3/day
corresponding to a 1.9-day Hydraulic Retention Time for the
horizontal stage (Coppini et al., 2019).

Sampling and Isolation of Bacteria
Samples from the roots of P. australis were collected using sterile
plastic bags and immediately transported to the laboratory for
the subsequent processing. All procedures described hereinafter
were carried out under sterile conditions to avoid external
contaminations. Samples of three different specimens of
P. australis growing in three different tanks were grouped and
pooled before starting any procedure. Two pools were obtained
from both SFS-v and SFS-h for each sampling campaign. 1 g
of fresh tissue from each pool was surface-sterilized with 1%
v/v HClO solution at room temperature to remove epiphytic
bacteria and then washed three times with sterile water. Aliquots
of 100 µL of water from the last wash were plated in triplicate
as sterility controls. Subsequently, samples were homogenously
pottered in a sterile mortar with the addition of 2 mL of 0.9%
w/v NaCl sterile solution. Serial dilutions of tissue extracts were
plated in triplicate on trypticase soy agar (TSA) medium (Biolife)
and incubated at 30◦C for 48 h. The total number of aerobic
heterotrophic fast-growing bacteria of each sample was expressed
as colony forming units per gram of roots (CFU/g), and it was
determined as an average of three replicates. Isolated bacteria
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TABLE 4 | Number of bacterial isolates grouped for genus and sampling.

Samplings

1st 2nd 3rd 4th 5th Total %

Achromobacter – 1 3 4 4 12 4.08

Acinetobacter – 4 – – – 4 1.36

Aeromonas – – – 1 – 1 0.34

Agrobacterium – 2 1 9 1 13 4.42

Arthrobacter – – – 1 – 1 0.34

Bacillus 9 2 9 – 4 24 8.16

Buttiauxella 1 – – – – 1 0.34

Chryseobacterium – – – – 3 3 1.02

Comamonas – 1 – – – 1 0.34

Devosia – – – 1 – 1 0.34

Enterobacter – – 2 – – 2 0.68

Flavobacterium 1 – – 2 2 5 1.70

Halomonas – 1 6 – – 7 2.38

Idiomarina – 1 – – – 1 0.34

Isoptericola – – 1 – – 1 0.34

Janthinobacterium 1 – – – – 1 0.34

Lelliottia 2 – – – – 2 0.68

Lysobacter – – – 1 – 1 0.34

Microbacterium – 2 1 1 – 4 1.36

Micrococcus – – – 1 – 1 0.34

Ochrobactrum – 2 – – 1 3 1.02

Paenibacillus – – – – 5 5 1.70

Pannonibacter – 1 2 3 – 6 2.04

Pantoea 7 – – – 2 9 3.06

Paracoccus – 1 – – – 1 0.34

Pectobacterium 1 – – – – 1 0.34

Planococcus – – – – 1 1 0.34

Pseudomonas 43 15 12 21 19 110 37.41

Pseudoxanthomonas – 2 1 – – 3 1.02

Rheinheimera – 7 2 1 – 10 3.40

Rhizobium – – 2 13 1 16 5.44

Shinella – – – 2 – 2 0.68

Sphingobium – – – 1 – 1 0.34

Staphylococcus 1 2 – – – 3 1.02

Stenotrophomonas 1 – 8 1 10 20 6.80

Thalassospira – 4 7 5 – 16 5.44

Vibrio – 1 – – – 1 0.34

Total number of isolates 67 49 57 68 53 294

Total number of genera 10 17 14 17 12 37

–: absence of isolates.

were name-coded according to the portion of the CW from
whom they were isolated (V for the SFS-v and H for the SFS-
h, respectively) and the pool of origin collected during the five
samplings (1–2, 3–4, 5–6, 7–8, and 9–10 for the first, second,
third, fourth, and fifth sampling, respectively).

Amplification and Sequencing of 16S
rRNA Gene
Polymerase chain reaction (PCR) were performed to amplify
the 16S rRNA coding gene. 2 µL of colony thermal lysate

were used as template for a PCR in 1X DreamTaq Buffer
(Thermo Scientific) containing 200 µM of each dNTPs, 0.2 µM
of primers P0 (5′-GAGAGTTTGATCCTGGCTCAG-3′) and P6
(5′-CTACGGCTACCTTGTTACGA-3′; Di Cello and Fani, 1996),
2 U of DreamTaq DNA Polymerase (Thermo Scientific) in a
final volume of 25 µl. The PCR cycling for 16S rRNA gene
amplification was 95◦C for 3 min followed by 30 cycles of 95◦C
for 30 s, 55◦C for 30 s, and 72◦C for 1 min, then a final extension
at 72◦C for 10 min. A Bio-Rad T100 thermal cycler was used.
Sequencing of 16S rRNA gene was performed by IGA Technology
Services Srl (Udine, Italy).

Taxonomic and Phylogenetic Analyses
Taxonomic affiliation of isolates was determined through the
alignment of sequences to those of type strains downloaded from
the ribosomal database project (RDP; Cole et al., 2014) using
BioEdit (Hall, 1999). The obtained alignment was then used
to build a phylogenetic tree through MEGA7 (Kumar et al.,
2016), applying the Neighbor-Joining algorithm with a 1000-
bootstrap resampling.

Antibiotic Resistance Assay
Isolates were tested for their resistance against eight
antibiotics (i.e., rifampicin, ampicillin, kanamycin, tetracycline,
chloramphenicol, streptomycin, trimethoprim and ciprofloxacin)
at six different concentrations (i.e., 1 – 10 – 25 – 50 – 100 –
150 µg/mL; Table 1). Bacteria were firstly grown overnight on
TSA (Biolife) at 30◦C, then a single colony was resuspended
in 100 µL of 0.9 w/v NaCl sterile solution. The obtained
suspensions were streaked on Mueller–Hinton II Agar (Biolife)
plates supplemented with the tested antibiotics. Bacteria were
also cultivated on the same medium in the absence of antibiotics,
using these cultures as control to evaluate the presence of growth
inhibition in presence of antibiotics. All plates were incubated at
30◦C and growth performances were evaluated after 48 h. The
minimal inhibitory concentration (MIC) value for each antibiotic
was considered as the lowest concentration of the compound
that inhibited visible growth of the tested isolate.

Growth in Presence of Synthetic
Wastewater
Growth of strains isolated from roots of P. australis in presence
of SWW was assayed through the broth microdilution methods
(Wiegand et al., 2008) using trypticase soy broth (TSB) medium
(Biolife). The bacterial inoculum for the experiment was prepared
by dissolving an isolated bacterial colony in 10 ml of TSB medium
after 24 h-growth at 30◦C on TSA. The inoculum was incubated
overnight at 30◦C under shaking. Upon incubation, absorbance
at 600 nm was measured and adjusted to 0.1. The experiment
was performed using 96-well plates. Each well contained 10 µL
of bacterial inoculum, 80 µL of TSB medium and 10 µL of
10X, 20X, and 30X SWW, to reach the final concentration of
1X, 2X, and 3X, respectively. The composition of SWWs used
for this assay is shown in Table 2. Growth performances in
presence of SWW were evaluated calculating the ratio between
the OD600 of cultures in presence of SWW (herein after indicated
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FIGURE 1 | Distribution of bacterial genera during the five samplings.

as OD600SWW) and OD600 of controls (i.e., bacteria grown in
TSB lacking SWW). Bacterial isolates were considered sensitive
to SWW when this parameter assumed values <0.7, while they
were evaluated as resistant when it was >1.3.

RESULTS

Bacterial Counts
P. australis plants were sampled from the CW in Calice during
a period of 22 months, spanning from March 2017 to December
2018; 5 samplings were conducted, with the first one (i.e., March
2017) performed before the activation of the CW (Table 3). This

experimental strategy allowed us to compare the composition of
the cultivable bacterial community associated to the P. australis
roots before and after the beginning of wastewater influx. The
titer of viable bacteria associated to roots was determined as
described in section “Materials and Methods”. Data obtained
revealed that there were no great differences between the CFU
counts in SFS-v and SFS-h, exception for the third and fourth
samplings in which CFU values were higher in SFS-h (Table 3).

In general, bacterial load was quite constant during the
experiment and fluctuations might be related to different factors,
such as wastewater composition, frequency of raining, and/or
seasonal variations. Indeed, it is likely that the weather exerted
a main effect on bacterial growth since the highest bacterial loads
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TABLE 5 | Frequencies of minimal inhibitory concentration (MIC) values among
bacterial isolates.

MIC (µg/mL) Samplings

1 2 3 4 5

Rifampicin 1 12 18 26 9 8
10 26 28 9 21 20
25 23 – 9 22 13
50 – – 11 1 5
100 – – – 3 4
150 – – – – 2

>150 – – – – –
Ampicillin 1 3 7 18 5 2

10 1 8 1 1 3
25 4 3 4 – 2
50 2 7 6 5 5
100 10 6 1 9 5
150 1 4 2 3 5

>150 39 8 23 33 30
Kanamycin 1 1 – – 2 3

10 50 25 31 16 27
25 2 7 5 7 4
50 3 3 2 14 1
100 1 1 1 5 –
150 1 2 1 – –

>150 1 6 15 12 17
Tetracycline 1 30 43 37 33 12

10 28 4 8 19 31
25 – – 8 3 1
50 – – 1 – –
100 – – – – 8
150 – – – – –

>150 – – – 1 –
Chloramphenicol 1 20 14 9 15 4

10 8 10 17 5 9
25 4 7 14 13 14
50 4 7 8 6 14
100 16 6 – – 6
150 2 2 2 – 1

>150 7 – 4 17 4
Streptomycin 1 3 12 2 – 2

10 32 13 24 16 10
25 10 9 9 4 12
50 10 3 1 5 –
100 4 – 4 2 8
150 1 – – 9 –

>150 3 7 14 20 20
Trimethoprim 1 12 15 8 – 5

10 – 5 9 7 7
25 1 3 2 2 7
50 1 6 3 5 2
100 2 7 15 4 5
150 7 5 5 3 6

>150 42 5 12 35 20
Ciprofloxacin 1 65 43 40 48 39

10 – 3 14 8 5
25 – – – – 8
50 – – – – –
100 – – – – –
150 – – – – –

>150 – – – – –

–: absence of isolates showing a specific MIC value.

FIGURE 2 | Growth of 294 Phragmites australis root-associated bacteria in
the presence of synthetic wastewater (SWW). Ranges of OD600SWW /OD600

values are reported in the x axis, while the number of isolates is reported in the
y axis. (A) 1st sampling; (B) 2nd sampling; (C) 3rd sampling; (D) 4th sampling;
and (E) 5th sampling. Blue: 1X SWW; Orange: 2X SWW; Gray: 3X SWW.
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were observed during summer (i.e., second and fourth samplings,
respectively), when the higher temperatures probably facilitated
bacterial growth and the poor precipitations probably caused a
higher concentration of wastewater.

Taxonomic Affiliation of Cultivable
Bacteria
A total of 294 isolates (67, 49, 57, 68, and 53 from the first,
second, third, fourth, and fifth sampling, respectively) were
isolated from the P. australis roots. The attention was focused on
bacteria isolated from this plant compartment because it has been
reported that it is primarily involved in the depuration process
(Riva et al., 2020). Each of the 294 isolates underwent a taxonomic
characterization; to this purpose the amplification, sequencing,
and analysis of 16S rRNA coding gene(s) were performed as
described in section “Materials and Methods.”

Each sequence was submitted to Genbank and was assigned
the accession number reported in Supplementary Table
S1. The comparative analysis of each sequence with those
available in databases allowed to split the 294 isolates into
37 different genera (Supplementary Figures S1–S30). The
analysis revealed that 254 isolates were Gram-negative while
40 were Gram-positive bacteria. Moreover, a total of four
different phyla were represented, with 246 belonging to
Proteobacteria (59 Alphaproteobacteria, 14 Betaproteobacteria,
and 173 Gammaproteobacteria), 8 to Bacteroidetes (all belonging
to Flavobacteriia class), 33 to Firmicutes (all belonging to Bacilli
class), and 7 to Actinobacteria (all belonging to Actinobacteria
class). The most represented genus was Pseudomonas, whose
members accounted for 37% of all isolates, as shown in Table 4.
The abundance of Pseudomonas was not directly related to the
activation of the CW, because it was the most represented genus
even before the influx of wastewater (Figure 1).

Among the 37 genera, only 4 were exclusively present during
the first sampling (i.e., Buttiauxella, Janthinobacterium, Lelliottia,
and Pectobacterium), while 27 started being present from the
second one on (i.e., Achromobacter, Acinetobacter, Aeromonas,
Agrobacterium, Arthrobacter, Chryseobacterium, Comamonas,
Devosia, Enterobacter, Halomonas, Idiomarina, Isoptericola,
Lysobacter, Microbacterium, Micrococcus, Ochrobactrum,
Paenibacillus, Pannonibacter, Paracoccus, Planococcus,
Pseudoxanthomonas, Rheinheimera, Rhizobium, Shinella,
Sphingobium, Thalassospira, and Vibrio). Hence, it is possible
that the bacteria belonging to these 27 genera might derive
from the wastewater, although it cannot be established whether
they were present in wastewater with either urban or industrial
origin. In addition to this, we cannot a priori exclude the
possibility that they were already present in the pre-existing
community (even though in low percentage) and that the
presence of the wastewater might have exerted a selective
pressure favoring their reproduction. In most cases, the
phylogenetic trees showed a narrow taxonomic distribution
of isolates, which clustered together in the same branch.
For example, all Acinetobacter strains were phylogenetically
close to A. haemolyticus (Supplementary Figure S1), all
Achromobacter isolates formed a distinct cluster and were close

to A. spanius (Supplementary Figure S5), all Chryseobacterium
were related to C. indoltheticum (Supplementary Figure
S7), all Paenibacillus belonged to the same cluster and
were close to P. tundrae (Supplementary Figure S19), all
Pannonibacter were affiliated to P. phragmitetus (Supplementary
Figure S24), and all Thalassospira isolates formed a separate
branch in the phylogenetic tree (Supplementary Figure S29).
Moreover, Rheinhemera isolates distributed in close branches
which included R. aquimaris, R. pacifica, and R. nanhaiensis
(Supplementary Figure S22). On the contrary, a higher
phylogenetic diversity was observed in the case of Bacillus
(Supplementary Figure S4), Enterobacteriales (Supplementary
Figure S10), Pseudomonas (Supplementary Figure S20),
Rhizobiales (Supplementary Figure S23), and Stenotrophomonas
(Supplementary Figure S28). However, with the exception of
the bacteria belonging to the Enterobacteriales order, in the case
of these genera the formation of distinct clusters was observed.

Resistance Against Antibiotics
All 294 isolates were tested for their resistance against a panel of
eight antibiotics used to treat human infections as described in
section “Materials and Methods.” These compounds were chosen
because they are representatives of diverse antibiotic classes and
they are directed toward different cellular targets (Table 1).
Data obtained are shown in Table 5 and Supplementary Table
S2 and revealed that, overall, the most effective antibiotics
were rifampicin, tetracycline and, above all, ciprofloxacin. On
the contrary, the more tolerated antibiotic was ampicillin,
especially in the case of Pseudomonas and Stenotrophomonas
(Supplementary Table S2). Although resistant bacteria were
isolated since the first sampling, a correlation between the time
of exposure to the wastewater (i.e., earlier vs later samplings) and
the increase of MIC values was observed for almost all antibiotics
(Table 5 and Supplementary Table S2).

On one hand, tests with rifampicin, ciprofloxacin and
tetracycline showed a progressive increase in the number of
isolates having the highest MIC values going from the first to
the fifth sampling. On the other one, although MIC values were
not determined in the assayed conditions because isolates were
able to grow even in presence of the highest concentration of
antibiotic, in the case of kanamycin and streptomycin the number
of isolates with MIC > 150 µg/mL increased during time. Finally,
clear trends were not detected using ampicillin, chloramphenicol
and trimethoprim: indeed, there were bacteria able to survive in
the presence of the highest concentration since the first sampling
and, also, the frequency of resistant isolates was not subjected to
temporal variations.

According to the MIC breakpoints provided by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST –
Breakpoint tables for interpretation of MICs and zone diameters;
Version 10.0, 20201), relatively to the antibiotics assayed in
this work and limiting to the species reported by EUCAST, six
isolates could be defined as multi-drug resistant strains, since
they were resistant against at least three different antibiotics
(Supplementary Table S2). In detail, two Lelliottia (V2R14 and

1http://www.eucast.org
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FIGURE 3 | Principal component analysis (PCA) showing profiles of resistance against antibiotics and SWW of isolates belonging to the genus Pseudomonas. Dot:
1st sampling; Filled square: 2nd sampling; Triangle: 3rd sampling; Diamond: 4th sampling; and Star: 5th sampling.

H1R21) and two Enterobacter (H5R6 and H5R7) isolates were
resistant to ampicillin, chloramphenicol, and ciprofloxacin; lastly,
the two Pantoea isolates H9R2 and H9R15 that were resistant to
ampicillin, chloramphenicol, trimethoprim, and ciprofloxacin.

Growth in the Presence of SWW
The 294 isolated P. australis root-associated endophytes were also
tested for their ability to grow in the presence of SWW containing
B, Fe, and Se since these elements are critical for the WWTP
studied in this work. Selection of bacteria able to grow efficiently
in the presence of these compounds is of relevant interest because
CW might be enriched with these more tolerant microorganisms,
which, in turn, might increase the pollutant removal efficiency in
wastewater. All bacterial isolates were assayed for their growth
in TSB medium supplemented with three different concentration
of SWW: 1X (i.e., a mix of H3BO3, FeCl2 · 4H2O, Na2SeO3,
and NaCl at the maximum concentrations allowed by law for
sewer emission), and 2X and 3X in which TSB medium was
supplemented with two- and threefold higher concentrations of
1X SWW, respectively.

In general, the presence of 1X SWW did not alter the growth
of isolates, indicating that these endophytes can tolerate the
presence of the tested compounds (Figure 2 and Supplementary
Table S3). The analysis of data shown in Supplementary Table
S3 and Figure 2 also revealed that 211 bacterial isolates were able
to grow efficiently also in the presence of either 2X SWW or 3X
SWW. Interestingly, eight isolates (i.e., V2R8, H3R17, H4R18,
V6R1, V5R1, V8R24, H9R1, and H10R8), belonging to the
genera Bacillus, Planococcus, Pseudomonas, and Rheinheimera,
showed a positive correlation between growth and concentration
of SWW: indeed, the higher the SWW concentration, the
higher the growth of these bacteria. This finding suggests
that these bacteria could represent good candidates for future

applications and for improvements of phytodepuration efficiency
and pollutant removal. Moreover, the isolate H9R16 deserves
further investigations, since it showed the highest growth increase
(about 350%) in presence of SWW. The analysis of the 16S rDNA
phylogenetic tree revealed that it joined bacteria belonging to the
Bacillus gibsonii species (Supplementary Figure S4), alkaliphilic
bacteria exploited for production of alkaline proteases (Martinez
et al., 2013; Deng et al., 2014).

Similarly to the case of antibiotic resistance, also in this assay a
correlation between the time of exposure to wastewater in the CW
and the appearance of more resistant isolates was highlighted.
Indeed, a progressive increase of the number of isolates showing
an augmented growth (measured as OD600SWW/OD600 ratio as
described in section “Materials and Methods”) was observed from
the first to the last sampling. For instance, several isolates with an
OD600SWW/OD600 > 2.4 (Figure 2E) were detected only during
the last sampling.

Changings of resistance profiles along time, considering
those against either antibiotics or SWW, were particularly clear
in the case of isolates belonging to the genus Pseudomonas.
As shown in Figure 3 by the mean of principal component
analysis (PCA) performed with the PAST4 software (Hammer
et al., 2001), the formation of two different main clusters
was observed with the main part of isolates from the first
sampling clustering independently from those isolated from all
the other four samplings.

DISCUSSION

The aim of this work was the analysis of the composition,
the phenotypic characterization, and the temporal dynamics of
the cultivable microbiota associated to the roots of P. australis
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grown in the CW of Calice (Prato, Italy) before and after the
activation of the CW.

The composition of root cultivable microbiota was
determined through five samplings spanning from March
2017 to December 2018. We focused on cultivable bacterial
communities because their isolation and characterization might
permit the identification of strains particularly resistant to the
antibiotics and/or to the compounds present in the wastewater.
Hence, these strains could be used to construct a “synthetic”
consortium that, in turn, might be exploited in pilot-experiments
with the goal of increasing the phytodepuration efficiency of the
plant. The taxonomic analysis was performed on 294 cultivable
bacteria through the analysis of the 16S rRNA genes. Even
though we are completely aware that the number of isolates
could not be representative of the entire community, the analysis
performed gave useful hints on the effect of the activation of CW
on bacterial community composition. Data obtained revealed
that the wastewater income exerted a shaping effect on the
bacterial composition. Overall, 37 bacterial genera were disclosed
and six of them were detected both before and after the activation
of CW. Moreover, bacteria belonging to 27 different genera
were detected only after the activation of the CW, while, on the
contrary, 4 genera that were present at the beginning were not
found in the following samplings. The most represented genus
in all five samplings was Pseudomonas, which accounted for the
37% of all isolates.

As it might be expected, the effect of the wastewater income
was exerted not only at the taxonomic level, but also at the
phenotypic one. Each of the 294 bacterial isolates was assayed
for its resistance against a panel of eight antibiotics belonging
to different chemical classes and acting toward different cellular
targets. This analysis was performed since it is known that
WWTP are reservoirs of antibiotic resistance genes and/or
resistant bacteria. Data obtained revealed the presence of several
resistant (or multi-resistant) strains and, mostly important, that
the number of antibiotic resistant isolates and the degree of
antibiotic resistance increased over time, from the first to the
last sampling. This strongly suggests that the wastewater income
might generate a selective pressure favoring the growth of those
isolates intrinsically resistant to antibiotics, even though it cannot
be a priori excluded the possibility of horizontal gene transfer
(HGT) events and/or the acquisition of resistance through
mutations in chromosomal genes.

All the 294 isolates were assayed also for their ability to grow
in SWW containing three different concentrations of B, Se, Fe,
and NaCl. Analogously to the antibiotic resistance pattern, we
detected a similar correlation between SWW exposure and the
ability to grow in its presence. Interestingly, among isolates able
to grow in the presence of these compounds, nine of them showed
an increasing growth at the highest concentrations of SWW: these
isolates will deserve a specific focus to identify the molecular
mechanisms behind this intriguing behavior. Moreover, a PCA
carried out on Pseudomonas strains, isolated from all the five
samplings, furtherly suggested that the main event changing
the resistance patterns against antibiotics and SWW was the
activation of the plant (i.e., when conveyance of the permeate
into the tanks occurred). The characterization of heavy metal

resistant strains may be crucial to better understand the diffusion
of antibiotic resistance genes in the environment. As a matter
of fact, it has been reported that the occurrence of multiple
heavy metal resistance markers is associated with the onset of
antibiotic resistance (Wales and Davies, 2015; Wu et al., 2018;
Zhu et al., 2019). This might be due to the co-localization
of resistance genes against antibiotics and heavy metals in the
same mobile genetic element(s) and, as a consequence, the
accumulation of heavy metals in the environment can cause the
selection of antibiotic resistant species. So, the dissemination
of these heavy metal resistance genes represents an issue
that should not be underestimated. Moreover, monitoring the
presence of bacteria resistant to antibiotics and/or heavy metals
specifically in WWTPs should be considered as a priority to
contrast the spreading of multi-drug resistant (MDR) pathogens.
Indeed, WWTPs represent hotspots for HGT events, because of
the mixing of bacteria from diverse sources (e.g., households,
hospitals, industries, etc.), the high bacterial densities, stressful
conditions triggering SOS responses and presence of antibiotics
at sublethal concentrations (Karkman et al., 2018). It must be also
considered that although HGT occurring in WWTPs might not
directly regard human pathogens, these could acquire resistance
markers from harmless bacteria which act as vectors as soon as
effluent is released in the environment (Manaia, 2017).

To deeply characterize this phenomenon, future work could
take advantage of emulsion, paired isolation and concatenation
PCR (epicPCR) as previously reported (Spencer et al., 2016;
Hultman et al., 2018). Indeed, this kind of analysis could allow
the “tagging” of resistance genes with phylogenetic markers, such
as 16S rRNA gene, helping to compare these pairs in wastewater
entering the WWTP and in effluents. However, this would be
limited to target resistance markers with known sequence and for
whom it is thereof possible to design specific primers.

CONCLUSION

The experimental approach used in this work revealed that
the cultivable bacterial community existing prior to the plant
activation underwent fluctuations in terms of both taxonomy and
resistance to antibiotics and SWW compounds. As it might be
expected, the influx of wastewater exerted a selective pressure
on the resident bacterial community, selecting and/or bringing
bacterial strains progressively more resistant to SWW and/or
antibiotics. We are completely aware that the analysis of the entire
community (both cultivable and uncultivable) might give more
detailed insights into the composition of the total community.
In spite of this, only the selection of particular cultivable strains,
i.e., more resistant to SWW and antibiotics, can permit the
formulation of a synthetic bacterial community to improve the
phytodepuration properties of P. australis.
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and accession number(s) can be found at: https://www.
ncbi.nlm.nih.gov/genbank/, MK110895, MK110946, MK110896,
MK110920, MK110921, MK110947, MK110948, MK110922,
MK110897, MK110949, MK110898, MK110950, MK110899,
MK110959, MK110923, MK110925, MK110924, MK110960,
MK110926, MK110945, MK110957, MK110927, MK110928,
MK110929, MK110930, MK110931, MK110932, MK110900,
MK110901, MK110902, MK110933, MK110934, MK110935,
MK110958, MK110936, MK110937, MK110938, MK110939,
MK110940, MK110941, MK110942, MK110943, MK110903,
MK110904, MK110905, MK110906, MK110907, MK110908,
MK110909, MK110910, MK110911, MK110912, MK110951,
MK110913, MK110914, MK110915, MK110952, MK110916,
MK110953, MK110917, MK110954, MK110918, MK110944,
MK110961, MK110919, MK110955, MK110956, MK134509,
MK134489, MK134488, MK134487, MK134486, MK134554,
MK134508, MK134547, MK134496, MK138850, MK134502,
MK134511, MK134551, MK134555, MK134559, MK134558,
MK134549, MK138851, MK134553, MK134542, MK134557,
MK134546, MK134544, MK134543, MK134541, MK134540,
MK134510, MK134497, MK134490, MK134495, MK134494,
MK134493, MK134499, MK134505, MK134552, MK134556,
MK134545, MK134548, MK134500, MT165525, MK134507,
MK134504, MK134503, MK134550, MK134501, MK134498,
MK134506, MK134492, MK134491, MK134518, MK130934,
MK130935, MK134524, MK134539, MK134538, MK134515,
MK138852, MK134526, MK130907, MK130906, MK130937,
MK134534, MK134533, MK138853, MK130915, MK130913,
MK130910, MK130921, MK130917, MK134514, MK130914,
MK134516, MK130911, MK134532, MK134531, MK134530,
MK134528, MK134485, MK138854, MK130912, MK130908,
MK130920, MK130932, MK130933, MK130936, MK134513,
MK130922, MK130919, MK134521, MK134512, MK134537,
MK134536, MK134535, MK134522, MK134519, MK134517,
MK134529, MK134525, MK134523, MK134520, MK134527,
MK130916, MK130931, MK130909, MK130923, MK130918,
MK130945, MK130957, MK130901, MK130905, MK133358,
MK138868, MK138869, MK138870, MK138872, MK138874,
MK138875, MK130924, MK130928, MK138881, MK138862,
MK130903, MK138867, MK138878, MK138861, MK130939,
MK138863, MK130949, MK130953, MK130904, MK138876,
MK138879, MK130926, MK130927, MK130929, MK138880,
MK130930, MK138882, MK138883, MK138884, MK138885,
MK138886, MK138887, MK130940, MK130941, MK130943,

MK138889, MK130944, MK130902, MK130900, MK130946,
MK138877, MK138855, MK138856, MK138857, MK138858,
MK138859, MK138860, MK138864, MK138865, MK138866,
MK138871, MK138873, MK130925, MK130942, MK130948,
MK130950, MK130955, MK138888, MK130951, MK130952,
MK130954, MK130956, MK130947, MT165526, MT165527,
MT165547, MT165551, MT165553, MT165552, MT165528,
MT165529, MT165530, MT165531, MT165532, MT165533,
MT165534, MT165557, MT165554, MT165535, MT165536,
MT165555, MT165558, MT165559, MT165561, MT165548,
MT165562, MT165560, MT165549, MT165563, MT165564,
MT165537, MT165538, MT165565, MT165539, MT165540,
MT165566, MT165570, MT165569, MT165567, MT165571,
MT165568, MT165578, MT165550, MT165541, MT165542,
MT165543, MT165572, MT165544, MT165545, MT165573,
MT165546, MT165574, MT165556, MT165575, MT165576,
and MT165577.

AUTHOR CONTRIBUTIONS

RF, EC, and DF conceived the project. AV, EM, CF,
and RF designed the experiments. AV, EM, CF, SV, SD,
LC, and SC performed the experiments. RF supervised
the experiments. AV, EM, and RF analyzed the results.
AV wrote the original draft of the manuscript. AV,
SD, LC, SC, CF, EM, EC, and RF reviewed and
edited the manuscript. All authors read and approved
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2020.01652/full#supplementary-material

FIGURE S1–S30 | Phylogenetic trees.

TABLE S1 | List of bacteria isolated from roots of Phragmites australis and used in
this work. Accession numbers of 16S rRNA gene partial sequences are reported.

TABLE S2 | MIC (µg/ml) values of bacterial isolates described in this work.

TABLE S3 | Growth of 294 bacterial isolates associated to Phragmites australis
roots in TSB in presence of three different concentrations of synthetic wastewater
(SWW).

REFERENCES
Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., et al.

(2004). Engineered endophytic bacteria improve phytoremediation of water-
soluble, volatile, organic pollutants. Nat. Biotechnol. 22, 583–588. doi: 10.1038/
nbt960

Çakmakçi, R., Dönmez, F., Aydın, A., and Şahin, F. (2006). Growth promotion
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Antibiotic resistance is a public health problem of growing concern. Animal manure
application to soil is considered to be a main cause of the propagation and dissemination
of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes
(ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-
contaminated manure on soil microbiomes have increased exponentially, in particular
for taxonomical diversity and ARGs’ diffusion. Antibiotic resistance genes are often
located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a
broad range of bacteria (pathogens and human commensals included) has been
identified as the main cause for their persistence and dissemination. Chemical and
bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of
these treatments on the persistence of resistance genes must be carefully considered.
This review analyzed the most recent research on antibiotic and ARG environmental
dissemination conveyed by livestock waste. Strategies to control ARG dissemination
and antibiotic persistence were reviewed with the aim to identify methods for monitoring
DNA transferability and environmental conditions promoting such diffusion.

Keywords: veterinary antibiotics, animal manure, antibiotic resistance genes, crop soils, antimicrobial resistance

INTRODUCTION

In recent decades, the overuse and misuse of antibiotics in human and veterinary medicine has
become a serious public health issue (World Health Organization, 2014; Aidara-Kane et al., 2018).
The increased number of resistant pathogens and commensal bacteria has been associated with the
environmental spread of antibiotics and the propagation of antimicrobial resistant genes (ARGs;
Levy, 1998; Witte, 1998; He et al., 2020). Furthermore, the environmental diffusion of antibiotics
may lead to the change (Han et al., 2018) and loss (Chen et al., 2019) of microbial community
diversity in soil (Kemper, 2008).

Antibiotics are used worldwide in livestock production, thus increasing the risk of antimicrobial
resistance (AMR) spread. When administered for prophylactic treatments, antibiotics can directly
increase selective pressure, thus favoring the generation of antibiotic-resistant bacteria (ARB;

Frontiers in Microbiology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 141660

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.01416
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.01416
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.01416&domain=pdf&date_stamp=2020-07-22
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01416/full
http://loop.frontiersin.org/people/339967/overview
http://loop.frontiersin.org/people/922613/overview
http://loop.frontiersin.org/people/982314/overview
http://loop.frontiersin.org/people/937249/overview
http://loop.frontiersin.org/people/697865/overview
http://loop.frontiersin.org/people/72014/overview
http://loop.frontiersin.org/people/55536/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01416 July 20, 2020 Time: 12:12 # 2

Checcucci et al. Antibiotic Resistance Genes in Animal Manure

Pruden et al., 2013; Troiano et al., 2018; Blau et al., 2019).
For these reasons, improved livestock and waste management
strategies (i.e., diets, proximity between animals, waste treatment,
use of additives, and operating conditions) should be adopted to
limit the use of antibiotics in animal husbandry.

Antimicrobial resistant genes can enter and persist in
ecosystem through multiple pathways. They spread across soil
(Binh et al., 2007), crops (Su et al., 2015), and gut microbial
communities of wild and livestock animals and of humans
(Yadav and Kapley, 2019). Antimicrobial resistant genes’ spread
occurs through horizontal gene transfer (HGT) of mobile
genetic elements (MGEs), as phages, plasmids (Fondi and Fani,
2010), transposons, or integron gene cassettes (Figure 1). The
acquisition of AMR by bacteria may be due to spontaneous
mutations (Woodford and Ellington, 2007) or, more frequently,
by gaining specific ARGs from other bacteria through HGT.
High density of microbial cells in the presence of antimicrobial
compounds and nutrients, as observable in manure (Blau
et al., 2018), triggers HGT events among bacteria, thus
conferring selective advantage to the hosts (Thomas and Nielsen,
2005). Mutations are essential for the continuous evolution
of ARGs, producing hundreds of variants which are hardly
identifiable and increasingly dangerous for the environment
(Woodford and Ellington, 2007).

In this review, the effect of antibiotic occurrence in animal
manure on the dissemination of AMR and ARGs in agricultural
fields are discussed in a critical way. The main strategies
to mitigate ARGs’ dissemination and to control antibiotic
persistence are also reported. Methods monitoring changes in
microbial communities and transferability and environmental
diffusion of DNA were addressed as well.

THE DISSEMINATION MECHANISMS OF
ENVIRONMENTAL RESISTOME

The “resistome,” i.e., the total amount of resistance genes
associated with an ecosystem (Finley et al., 2013), is generally
mediated by conjugative plasmids. The resistome confers
resistance of antibiotics and heavy metals to microorganisms,
thus enhancing their survival in hostile environments (Bennett,
2008; Song et al., 2017). IncP-1, a common environmental
plasmid group, is largely known for its efficient conjugative
transferability potential and stable replication in a wide range of
Gram-negative bacteria (Heuer et al., 2012). Conversely, plasmids
IncF (Villa et al., 2010), IncI (Blau et al., 2018), and IncQ
(Rawlings and Tietze, 2001) show a narrower host range. These
plasmids are assumed to be important for the dissemination of
ARG in Escherichia coli and other Enterobacteriaceae (Johnson
and Nolan, 2009; Suzuki et al., 2010; Heuer et al., 2012; Van
Houdt et al., 2013). As evidence, the study of the mechanisms
of diffusion of these plasmids (Teuber, 2001) and compatibility
evolution with broad or narrow host ranges should allow for ARG
diffusion prediction.

Integrons play a key role in the fast spread of resistance
determinants toward antibiotics. They are genetic elements
composed of a gene encoding an integrase and an integration

site for exogenous gene cassettes, which can be acquired and
converted in functional and expressed genes (Mazel, 2006).
Integrons can move horizontally in bacterial populations by
frequent integration in plasmids or in transposons (Rowe-
Magnus and Mazel, 2002). According to their aminoacidic
sequence, integrases are divided into several classes. Classes
1, 2, and 3 (Inti1, Inti2, Inti3) were the first to be identified
as associated with MGEs, while class 4 (Inti4) was associated
with chromosomal integration (Deng et al., 2015). Among
elements which facilitate DNA transfer, class 1 integron (int1)
is the most frequently identified as responsible for spreading
antibiotic resistance determinants amongst commensals and
pathogens of humans and domesticated animals. Moreover, int1
cassette was found in different environments, such as fresh
water, sediments, and sludge (Collis and Hall, 1995; Hall and
Collis, 1998; Nardelli et al., 2012; Borruso et al., 2016), where it
showed significantly positive correlations with the relative ARG
abundance (Zhao et al., 2019).

Antibiotic residues, once entered into soil through manure
application, can enhance persistence and HGT of ARGs (Binh
et al., 2007; Zhao et al., 2019) through plasmids and integrons
(Gotz and Smalla, 1997; Smalla et al., 2000; Sengeløv et al.,
2003), promoting the spread of ARB in the environment and
affecting the microbial community composition (Chen et al.,
2019). Although manure-derived bacteria cannot always adapt to
new environments, the antimicrobials can favor the enrichment
of specific bacterial taxa in soils (through positive selection) and
suppress others (Ding et al., 2014). In addition, the concentration
of antibiotics in manure, usually at a sub-inhibitory level,
can affect the interactions among strains and impact on gene
expression and regulation (Gillings, 2013; Jechalke et al., 2014;
Brüssow, 2015).

When manure is used as a fertilizer for crop production, both
the increased ARB load and the antibiotic residues contained
within may have negative effects on plant development and
food product quality (Verraes et al., 2013; Mirza et al., 2020;
Muhammad et al., 2020). In addition, antibiotic residues can
persist and accumulate in the environment (Jechalke et al., 2014)
by adsorption on soil solid phases (Du and Liu, 2012).

ARGs IN THE ENVIRONMENT

The majority of antibiotics are naturally produced by microbes
as a self-protection mechanism against other microorganisms.
ARGs have been always present in the environment. ARGs
encoding resistance for a large set of antibiotics have been
found in 30,000-year-old Beringian permafrost and in bacteria
isolated from prehistoric caves (D’Costa et al., 2011; Berglund,
2015). When present in the environment at a sub-inhibitory
concentration, antibiotics frequently play a role in transcription
regulation and in the exchange of signals among cells (i.e.,
quorum sensing mechanism and conjugation) (Reygaert, 2018).

Antibiotic resistance consists of a large variety of mechanisms,
such as inactivation by specific cleaving enzymes, exclusion
from cells via efflux pumps, interference with protein synthesis,
limitation of drug uptake, and modification of antibiotic target.
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FIGURE 1 | Spread of ARGs and ARB in farm-related environments. ARB, antimicrobial resistant bacteria; ARG, antibiotic resistance gene; AMS, antimicrobial
sensitive; HGT, horizontal gene transfer.

Resistance acquired through MGEs and plasmids is responsible
for the last two mechanisms in which the resistance extent
depends on bacterial species and acquired ARGs (Reygaert, 2018;
Kraemer et al., 2019). The antibiotic selective pressure driving
the acquired resistance determines accurate ARGs’ specialization,
thus making the environment a potential reservoir.

Anthropogenic activities affect antibiotic and ARGs’ spread
with somewhat predictable effects (Vikesland et al., 2017).
In livestock farming, the use of antibiotics varies depending
on the farming type and location, having a considerable
effect on ARGs’ concentration. Among the ARGs most
frequently detected in livestock production, those related to
sulfonamide resistance (sul) (Table 1) are particularly diffused
in aquatic systems (Chen et al., 2015; Makowska et al.,
2016). In surface and fresh waters, sul genes were found in
IncQ plasmid group (Sköld, 2001; Berglund, 2015). Similarly,
diaminopyrimidine genes (dfr), which confer resistance to
antimicrobial trimethoprim, have been identified in both
class 1 and class 2 integrons (Deng et al., 2015). Similarly,
quinolone resistance qnr genes have been frequently associated
with different plasmid groups. Both dfr and qnr genes easily
disseminate in the environment, being found in surface
waters (Berglund, 2015), wastewaters, and related irrigated soils
(Dalkmann et al., 2012). Tetracycline resistance genes (tet)
are widely diffused in different pathogenic and environmental
bacteria (Roberts, 2005) and are often detected in sewage
treatment plants, soil, and surface and ground water (Chee-
Sanford et al., 2001; Berglund, 2015). In the same environments,
erm genes, which are the most widespread macrolides resistance
gene, were isolated.

Essentially, ARGs’ diffusion is associated with a stress
response activated by exposure to antibiotics as well as with
the mobilization of several integrative and conjugative elements.

ARGs’ maintenance depends on their considerably low fitness
cost. In fact, once a specific ARG has been acquired by a bacterial
cell, it must evolve to produce more benefits than costs in
order for multiple copies of the same gene to be kept and to
maintain the expression control of genes in MGEs (Bengtsson-
Palme et al., 2017). Furthermore, as already mentioned, nutrient
rich environments can positively influence the ARGs’ spread and
facilitate cell–cell interactions (Manaia et al., 2018) (Figure 1).

THE USE OF VETERINARY ANTIBIOTICS

In veterinary medicine, antimicrobials can be used as
therapeutics and/or growth promoters. Antibiotic growth
promoters (AGPs) are antimicrobial substances administered
at a sub-therapeutic dose for a prolonged time with the main
purpose being to improve the feed conversion rate, especially in
young animals, raising the economical profit of farmers. Since
2006, both the European Union and Australia have forbidden
the use of AGPs. Nevertheless, in most other countries the use of
AGPs is still permitted (Guardabassi et al., 2009).

Among breeding farms, poultry and pig livestock have
received the majority of antibiotics for therapeutic or
prophylactic use (Ungemach, 2000; Kim et al., 2011), resulting in
an abundance of ARGs greater than three orders of magnitude
compared to other farming systems, such as fish and cattle
farming. Several studies confirmed swine farms as a hot-spot for
ARB and ARGs (Rosen, 1995; Cromwell, 2002; de Greeff et al.,
2019; Petrin et al., 2019). Recently, the scientific community
investigated prevalence, abundance, and possible mobilization of
ARGs in pig farms and surrounding environments (Hölzel et al.,
2010; Marti Serrano, 2014; Petrin et al., 2019; Van den Meersche
et al., 2019; Wu et al., 2019).

Frontiers in Microbiology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 141662

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-11-01416

July
20,2020

Tim
e:12:12

#
4

C
heccuccietal.

A
ntibiotic

R
esistance

G
enes

in
A

nim
alM

anure

TABLE 1 | The most commonly used antibiotics and the relative ARGs in livestock production (DHPS, dihydropteroate synthase; DHPR, dihydropyridine-resistant).

Antibiotic family Most used Animal
Farming

Use Contrasted bacteria and recognized
main targets

Resistance mechanism Main ARGs

Macrolides Tylosin Cattle Gastrointestinal and
respiratory infections

Gram-positive bacteria. Interference with protein synthesis
(sequestration of mRNA
ribosome-binding site)

erm, msr, mef
genes

Erytromycin Pig Main target: Lawsonia intracellularis

Clarithromycin Poultry Staphylococcus aureus

Sulfonamides Sulfamethazine Cattle Urinary tract infections Gram-positive and Gram-negative bacteria.
Main target: Enterobacteriaceae,
Pasteurellaceae

Interference with folic acid synthesis
competing for the enzyme DHPS

sulI, sulII genes

Pig Respiratory infections

Poultry

Tetracyclines Chlortetracycline Cattle Systemic and local
infections

Gram-positive and Gram-negative bacteria Interference with efflux pump systems tet genes

Oxytetracyclines Pig Gastrointestinal and
respiratory infections

Doxycycline Poultry

Quinolones Fluoroquinolones (Enrofloxacin,
Danofloxacin, Marbofloxacine)

Pig Intestinal infections Gram-positive and Gram-negative bacteria,
including mycobacteria, and anaerobes

Mutations in the genes encoding
quinolone target DNA gyrase and
topoisomerase IV, interference with
efflux pump systems

qnr genes

Cattle

β-lactams Penicillins (Amoxycilline,
Ampicillines) Cephalosporins,
Carbapenems

Pig Respiratory diseases Gram-positive and Gram-negative bacteria Interference with cell wall synthesis and
permeability, inactivation through
β-Lactamase enzyme

bla, amp, pen
genes,

Cattle Necrotic enteritis

Poultry

Dog

Cat

Aminoglycosides Streptomycin, Spectinomycin,
Neomycin, Aspramycin,
Gentamycin, Lincomycin

Pig Intestinal infections Gram-positive, and Gram-negative
bacteria, if aerobic

Inhibition of protein synthesis
(rhibosome interference)

aac, aad, aad aph
genes

Poultry

Phenicols Chloramphenicol Pig Respiratory disease, foot
rot

Broad spectrum. Main target:
Photobacterium, Salmonella, E. coli

Enzymatic modification of antibiotic
molecules

cat, pp-flo, flo
genes

Thiamphenicols (thiamphenicol,
florfenicol)

Diaminopyrimidines Trimethoprim Horse Post-weaning scours Gram-positive and many Gram-negative
bacteria. Main target: Enterobacteriaceae

Interference with folic acid synthesis by
binding the enzyme DHFR

dfr genes

Pig

(Continued)
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Table 1 summarizes the main antibiotic families and the
most used antimicrobics in livestock animals for therapeutic
use. Nowadays, more than 150 antimicrobial compounds in
livestock production are used. The residues inevitably end up in
the environment because of manure application on agricultural
lands (Baguer et al., 2000). In 2010, more than 63,000 tons
of antimicrobials were consumed by livestock across the globe.
The predicted growth of the world’s population allows for an
estimated increase in antibiotic consumption of up to 105,000
tons by 2030 (Tasho and Cho, 2016). For this reason, specific
action plans have been defined to reduce the use of antibiotics as
therapeutics for livestock in several countries (i.e., the European
One Health Action Plan against Antimicrobial Resistance, 2017;
the National Strategy to Combat Antibiotic-Resistant Bacteria,
proposed by the White House, 2014; the National Action Plan to
Contain Antimicrobial Resistance issued by the Chinese National
Health and Family Planning Commission, 2016–2020).

MANURE TREATMENTS

Besides direct collection into aerobic or anaerobic lagoons,
animal manure can undergo drying and liquid-solid phase
separation. Manure solid phase, as well as whole manure if
shovellable, is traditionally composted to produce biofertilizer.
Currently, anaerobic digestion and biological treatments of
animal manure are often adopted on intensive animal farms
(Van Epps and Blaney, 2016).

Composting can substantially reduce the antibiotic load,
especially during the thermophilic phase (Zhang et al., 2019),
but recalcitrant antibiotics accumulate in compost products
and in amended soil (Bohrer et al., 2019; Zang et al., 2019).
A general ARG abatement (0.7–2.0 log decrease) is obtained
through thermophilic composting of swine, cattle, and poultry
manure, depending on manure type and operational conditions
(He et al., 2020).

Biological treatments of animal manure and wastewater,
which are adopted to reduce the environmental input of nitrates,
slightly decreases the levels of antibiotic residues and pathogenic
bacteria (Van den Meersche et al., 2019). Antimicrobial resistant
gene reduction of 0.1–3.3 log is observed in swine manure after
treatment (He et al., 2020).

Anerobic digestion (AD) is adopted to stabilize manure with
a final production of methane (Fubin et al., 2016, 2017). A 0.3–
52 log decrease of ARGs was observed in digestate from swine
wastewater (He et al., 2020). Interestingly, the higher the content
of volatile solids in manure and the mixing rate, the higher
the ARGs number in the digestate (Turker et al., 2018). The
combined pasteurization and AD of swine manure reduced sole
archaeal communities, whereas simple AD affected bacteria and
archea (Fubin et al., 2020). Manure pretreatment with bacterial
strains is effective in degrading antibiotics (Liu et al., 2019) and
enhancing biogas production, but the overall effect on ARB and
ARGs was not addressed.

Constructed wetlands are vegetated aquatic systems that can
be adopted for the treatment of wastewater and agricultural
drainage water (Lavrnic et al., 2018). Their ability to reduce
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ARGs in swine wastewater resulted in a 0.18–3 log decrease
(He et al., 2020).

Oxidizing post-treatments, as ozonation or Fenton conditions,
can be used on animal or treated wastewaters to degrade
antibiotics and bacteria thanks to the activity of reactive oxygen
species (Balcıoğlu and Ötker, 2003; Ikehata et al., 2006; Uslu and
Balcıoğlu, 2009). Among advanced oxidation processes, highly
costly ionizing radiations are known for their ability to destroy
microbial DNA. Therefore, affordable combinations of ionizing
radiation and oxidation allows for the degradation of antibiotics
and ARGs in organic matrices, although with a high biological
and environmental risk (Chu et al., 2019, 2020).

DIFFERENT APPROACHES TO
RESISTOME PROFILING STUDY

Even though AMRs introduced in the environment with animal
manure have been largely explored (Dolliver et al., 2008; Selvam
et al., 2012b), contradictory information exists regarding the fate
of ARGs (Selvam et al., 2012a; Wang et al., 2015; Xie et al., 2016).
The growing need for the control of ARGs’ spread prompted the
scientific community to set up and to validate refined molecular
methods for the study of ARGs’ dissemination dynamics among
environmental microbial communities.

Both 16S rRNA amplicon and untargeted sequencing can be
considered exhaustive methods for the exploration of microbial
community structure in manure-fertilized soil and farm waste.
Several studies on resistome diffusion in wastewater treatment
plants (Yadav and Kapley, 2019), sewage sludge composting units
(Su et al., 2015), and urban sewage support the metagenomic
approach (Hendriksen et al., 2019) in monitoring ARGs’ level
during treatments and seasonal changes. A recent work (Han
et al., 2018) showed that the shift in soil bacterial communities
caused by manure application leads to changes in the soil
bacteria resistome.

Recently, studies on the detection of genetic markers
associated with AMR (transposases and class 1 integron-
integrase genes) and ARGs have been markedly increasing.
The quantification of ARGs in soils amended with livestock
and swine manure (Brooks et al., 2014; Tao et al., 2014) was
performed with high-throughput qPCR assay (Rocha et al., 2018;
Blau et al., 2019). In a recent study, both intracellular and
extracellular DNA containing ARGs were quantified in sludge
at about 1010 and 1012 copies per gram, respectively (Dong
et al., 2019). Here, the intracellular ARGs were assessed through
conjugation with cell-cell contact, whereas the extracellular ARGs
were assessed through natural transformation. Several works on
different manure types focused on the quantification of targeted
genes intI1 and intI2 for class 1 and 2 integron-integrase genes
and korB gene, specific for IncP-1 plasmids, together with ARGs
(Hu et al., 2016; Blau et al., 2018, 2019).

As already reported, plasmid-mediated ARGs’ diffusion is
frequently used, especially for the role of plasmids in the
rapid bacterial adaptation and fitness improvement (Smalla
et al., 2000). Exogenous plasmid isolation techniques (Bale
et al., 1988) clarified how plasmids diffuse in different

environments. Recently, plasmids from municipal sewage sludge
and recipient bacteria were analyzed for their transferability
by exogenous isolation (Blau et al., 2018; Wolters et al.,
2018). Referring to pig manure samples, four IncQ-like
plasmids were isolated in recipient strains: Pseudomonas putida
UWC1, Acinetobacter sp., Ralstonia eutropha, Agrobacterium
tumefaciens, and E. coli. The plasmid transferability in E. coli
strains was not efficient, underlying a broad but highly specific
host range (Smalla et al., 2000).

Recently, simplified mathematical models have been applied
to predict and quantify ARGs’ spread in livestock animal
gut microbiomes (Andersen et al., 2020) and in agricultural
waste (Baker et al., 2016). In such environments, the variables
involved in the ARGs’ spread are countless and depend on a
wide range of intrinsic and extrinsic factors, such as genetic
mechanisms of ARB replication, HGT dynamics, environmental
and stressor conditions, and microbiota composition. Therefore,
future research should focus on the improvement of predictive
models of ARGs’ dissemination mechanism, exploitable for
targeted operations in livestock waste management.

CONCLUSION

Although a decrease in the use of antibiotics in livestock
production is highly recommended, antibiotics’ overuse remains
an important issue to solve. The uncontrolled spread of ARB
and ARGs in the environment due to soil manuring is of serious
concern. Many studies highlight ARGs’ presence in microbial
communities of livestock manure and manured agricultural
fields, despite the improved livestock and waste management
strategies to contain in-farm ARGs’ spread. In the last thirty
years, knowledge on pathways of ARGs’ diffusion from animal
waste to the environment was enriched by multidisciplinary
research approaches.

In light of the current knowledge, the study of the dynamics
of AMR and ARGs’ spread in manure and environments
surrounding livestock farms should combine molecular
and functional genetics strategies with prediction models
of the diffusion of MGEs (integrons and plasmids) and
metagenomic data.
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Enzymes are increasingly applied as biocatalysts for fulfilling industrial needs in a
variety of applications and there is a bursting of interest for novel therapeutic proteins.
Consequently, developing appropriate expression platforms for efficiently producing
such recombinant proteins represents a crucial challenge. It is nowadays widely
accepted that an ideal ‘universal microbial host’ for heterologous protein expression
does not exist. Indeed, the first-choice microbes, as Escherichia coli or yeasts,
possess known intrinsic limitations that inevitably restrict their applications. In this
scenario, bacteria belonging to the Streptomyces genus need to be considered
with more attention as promising, alternative, and versatile platforms for recombinant
protein production. This is due to their peculiar features, first-of-all their natural
attitude to secrete proteins in the extracellular milieu. Additionally, streptomycetes are
considered robust and scalable industrial strains and a wide range of tools for their
genetic manipulation is nowadays available. This mini-review includes an overview
of recombinant protein production in streptomycetes, covering nearly 100 cases of
heterologous proteins expressed in these Gram-positives from the 1980s to December
2019. We investigated homologous sources, heterologous hosts, and molecular tools
(promoters/vectors/signal peptides) used for the expression of these recombinant
proteins. We reported on their final cellular localization and yield. Thus, this analysis
might represent a useful source of information, showing pros and cons of using
streptomycetes as platform for recombinant protein production and paving the way for
their more extensive use in future as alternative heterologous hosts.

Keywords: streptomycetes, recombinant proteins, heterologous expression, industrial enzymes, therapeutic
proteins

INTRODUCTION

Nowadays, we witness the increasing application of enzymes in industrial sectors, including
food, detergent, and textile manufactures (Trono, 2019) and the bursting of interest in proteins
for therapeutic and diagnostic purposes (Tripathi and Shrivastava, 2019). Developing efficient
bioprocessing strategies for protein production is consequently of utmost importance. Most of
valuable industrial enzymes and therapeutic proteins are recombinant versions, produced by
heterologous platforms (Adrio and Demain, 2014). However, an ideal ‘universal host’ for protein
heterologous expression does not exist. Those microbes (as Escherichia coli or yeasts) that are still
considered the first-choices to this purpose possess intrinsic limitations inevitably restricting their
use. Production of heterologous proteins in E. coli is limited by self-cytotoxicity, incorrect folding,
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aggregation into inclusion bodies, and/or lack of secretion (Adrio
and Demain, 2014). In yeasts, recombinant protein production is
often associated with hyper-glycosylation and product retention
within the periplasmic space (Vieira Gomes et al., 2018).

In this scenario, bacteria belonging to the Streptomyces
genus might represent a promising alternative platform for
recombinant protein production. Streptomycetes are Gram-
positive, aerobic bacteria, characterized by a mycelial life style
and commonly found in soils, where they secrete multiple
hydrolytic enzymes to degrade complex organic substrates.
This natural secretion capacity represents their most attractive
feature for recombinant protein production. Secretion may
prevent local accumulation of the overexpressed recombinant
proteins, reducing toxicity to host cells and promoting correct
folding (Anné et al., 2012). It facilitates downstream recovery
decreasing production costs (Hamed et al., 2018). In addition,
streptomycetes are characterized by low endogenous proteolytic
activity; they grow relatively fast and in inexpensive media; they
do not produce pyrogenic lipopolysaccharides and endotoxins;
they are not pathogenic; and they might express G + C-rich genes
without codon usage optimization (Anné et al., 2012; Sevillano
et al., 2013). Thanks to the extensive fermentation knowhow
deriving from their use as antibiotic producers (Ndlovu et al.,
2015), streptomycetes are robust and scalable industrial strains,
and a wide range of tools for their genetic manipulation have
recently become available (Kieser et al., 2000). Notwithstanding
these potential advantages, nowadays their use is not so common
as it could be expected. To investigate this aspect, in this
mini-review we cover – to the best of our knowledge – all
studies published from 1980s to December 2019, in which
streptomycetes were used as heterologous hosts for recombinant
protein production. Table 1 reports these 94 cases of proteins
expressed in streptomycetes. Figure 1 highlights the main results
emerging from the analysis of Table 1 in terms of protein class,
homologous source, heterologous host, and molecular tools.

WHAT ARE THE RECOMBINANT
PROTEINS PRODUCED IN
STREPTOMYCETES?

50 (out of 94) proteins listed in Table 1 are enzymes with
potential industrial/environmental applications (Figure 1A).
The most represented class is that of glycosyl hydrolases (23
proteins), including: (i) (hemi)cellulases, for lignocellulose
saccharification and biofuel production; (ii) chitinases, for
generating value-added chitin-derivatives as chitosan or
biopesticides (Berini et al., 2018a); and (iii) amylases for
starch processing. The lipase/esterase group (8 proteins) with
applications in detergent, food, and biofuel industries, and the
oxidoreductase class (7), including laccases and peroxidases for
bioremediation (Berini et al., 2018b), follow. Interesting examples
are the phospholipase D from Streptomyces racemochromogenes,
for producing phosphatidyl derivatives from lecithin with
emulsifying properties for food and cosmetics (Nakazawa et al.,
2011), and the cutinase from Thermobifida sp. with polyester-
degrading activity in bioplastic recycle (Sinsereekul et al., 2010).

Dubé et al. (2008) produced in Streptomyces lividans up to
350 mg/L of Streptomyces coelicolor small laccase, a thermostable
enzyme decolorizing synthetic dyes that is considered promising
for pollutant degradation in urban or industrial wastewaters.
Finally, Table 1 and Figure 1A include transferases (6 proteins)
for food processing, proteases/peptidases (5) for feed and
detergent industries, and phosphatases (2), including a phytase
used as supplement for animal nutrition (Carrillo Rincón
et al., 2018). Additionally, Torres-Bacete et al. (2015) expressed
a novel Penicillin V acylase for producing semisynthetic
penicillins, whereas Rose et al. (2005) a latex clearing protein
for bioconversion of rubber wastes. Unfortunately, only few
of these studies reported a comparison of protein expression
yield between streptomycetes and other microbial hosts. Hamed
et al. (2017) succeed in producing 90 mg/L of a thermostable
cellulase from the bacteroidetes Rhodotermus marinus using S.
lividans TK24 as host; the same protein could not be produced
in E. coli. Very recently, Šnajder et al. (2019) reported the first
and so far the only case of expression of an archaeal thermozyme
(pernisine) in Streptomyces rimosus. The homologous host –
the hyperthermophilic Aeropyrum pernix – was uncultivable
in industrial fermentation facilities. The protein productivity
(10 mg/L) in this case was comparable to that achieved in E. coli,
but with the advantage of simplified downstream processes due
to protein secretion in the streptomycete (Šnajder et al., 2019).
Similarly, the Streptomyces halstedii phospholipase expression
was approximately 60 and 30 times higher in S. lividans TK24
than in E. coli and Pichia pastoris, respectively (Tao et al., 2019).
Sianidis et al. (2006) and Sinsereekul et al. (2010) reported that
their attempts to express a xyloglucanase from Jonesia sp. and a
cutinase from Thermobifida sp. failed, respectively, in E. coli and
B. subtilis, and E. coli and P. pastoris. Finally, Díaz et al. (2004)
produced in S. lividans JI66 a xylanase from Aspergillus nidulans
with a yield 3- and 19-fold higher than in lactic bacteria and
Saccharomyces cerevisiae, respectively. Despite these successes at
laboratory level, we are indeed unaware of any further scaling
up at industrial level of recombinant enzyme production from
streptomycetes. We can suppose that this is probably due to
an overall limited protein productivity in streptomycetes that
rarely reaches the g/L production level usually required for
industrial application. As reported in Table 1, only in the case
of a chitinase (Nguyen-Thi and Doucet, 2016), the protein
productivity was more than 1 g/L. These results point out
the crucial need to overcome intrinsic bottlenecks in protein
productivity in streptomycetes, by redesigning their regulatory
networks and secretion pathways by system biology, as recently
proposed by Kim et al. (2020).

In Table 1, 21 are the recombinant proteins curing human
diseases (Figure 1A), including those for treating cancer
(interleukin, interferon, Tumor Necrosis Factor Alpha-TNF-
α), cardiovascular pathologies (streptokinase, hirudin), and
metabolic or auto-immune disorders (glucagon, phenylalanine
ammonia-lyase, tendamistat). Recently, S. lividans TK24 was
used for producing an Actinoallomurus A8-sourced glutenase, a
promising candidate for oral enzymatic management of gluten
toxicity (Cavaletti et al., 2019). Streptomycetes were also used
to express 8 ‘target’ proteins, as antigens from Mycobacterium
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TABLE 1 | List of the heterologous proteins produced by streptomycetes (in chronological order).

References Protein Source Heterologous host Plasmid Promoter Signal peptide Productivity
(up to)

Localization

Berini et al., 2019 Chitinase Metagenomics S. coelicolor A3(2), S. venezuelae
ATCC 10595, S. lividans TK24

pIJ86 ermEp* Absent 45 mg/L Extracellular

Cavaletti et al., 2019 Glutenase Actinoallomurus sp.
(Gram +)

S. lividans TK24 pIJ86 ermEp* Native 1.4 × 106 U/L Extracellular

Šnajder et al., 2019 Pernisine Aeropyrum pernix
(archaeon)

S. rimosus M4018 pVF tcp830p srT-SP 10 mg/L
(codon usage
optimization,
pro-region
removal)

Extracellular

Tao et al., 2019 Phospholipase D S. halstedii
(Gram +)

S. lividans TK24 pIJ12739 Dual promoter
(tipAp/ermEp*)

Native 7.1 × 104 U/L Extracellular

Carrillo Rincón et al.,
2018

Phytase Escherichia coli
(Gram −)

S. rimosus M4018 pVF, pAB04 ermEp*,
nitA/nitRp,
tcp830p

aml-SPSv,
srT-SP, lip-SP

5 × 103 U/L in
extracellular
fraction, < 1 ×
103 U/L in
cytoplasm
(codon usage
optimization)

Extracellular +
cytoplasm

Daniels et al., 2018 Cellulase Rhodothermus
marinus (Gram −)

S. lividans TK24 pIJ486 vsip vsi-SP 7.5 mg/L Extracellular

Noguchi et al., 2018 Chitobiase S. avermitilis
(Gram +)

S. lividans 1326 and derivative
(expressing a repressor to avoid
protein production without inducer)

pIJ350 xylApSa Native 1.5 × 106 U/L Extracellular

Hamed et al., 2017 Cellulase Rhodothermus
marinus (Gram −)

S. lividans TK24 pIJ486 vsip vsi-SP 90 mg/L
(120 mg/g dry
cell weight)

Extracellular

Sevillano et al., 2017 α-Amylase S. griseus (Gram +) S. lividans1TA-Tox
(pGM160-YefMslts, pALCrets)

pNRoxAnti pstSp NA 1.1 × 106 U/L Extracellular

Xylanase S. halstedii
(Gram +)

NA 1.7 × 105 U/L Extracellular

Gabarró et al., 2016 Agarase S. coelicolor
(Gram +)

S. lividans TK21, S. lividans1sipY
(derivative deficient in the major
signal peptidase SipY)

pIJ486 Native NA 2.4 × 106 U/L Extracellular

Laccase S. lividans (Gram +) S. lividans1sipY (derivative
deficient in the major signal
peptidase SipY)

pFD666 dagp NA 5.8 U/L Extracellular

Liu et al., 2016 Transglutaminase S. hygroscopicus
(Gram +)

S. lividans TK24 pIJ86 Native
(optimized by
removal of
negative
element)

Native 5.7 × 103 U/L
(codon usage
optimization)

Extracellular

Nguyen-Thi and
Doucet, 2016

Chitinase S. coelicolor
(Gram +)

S. lividans 10-164 pC109 NA NA 1.1 × 103 mg/L Extracellular

(Continued)
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Sevillano et al., 2016 Xylanase S. halstedii
(Gram +)

S. lividans 1326, S. lividans GSAL1
(derivative overexpressing the
morphogene ssgA)

Derivative of
pN702GEM3

Native, vsip,
ermEp*, xysAp,
pstSp, xylApSc,
glpQp

Native, amy-SP
(as-it-is, or
optimized)

2.5 × 105 U/L Extracellular

α-Amylase S. griseus (Gram +) xysAp, pstSp Native 1.6 × 105 U/L Extracellular

Laccase S. coelicolor
(Gram +)

S. lividans 1326, S. lividans1xlnR,
S. lividans1bxlR (derivatives
knocked-out in putative xysAp
repressor genes)

pHJL401 xysAp Native 160 U/g dry
weight

Extracellular

Guan et al., 2015 Transglutaminase S. hygroscopicus
(Gram +)

S. lividans TK24, S. griseus, S.
lividans 1326, S. hygroscopicus
FR008

pIJ86 Native, ermEp Native (as-it-is,
or optimized)

687 mg/L
(9.6 × 103 U/L)

Extracellular

Aminopeptidase Bacillus subtilis
(Gram +)

tgp tg-SP
(optimized)

2.8 × 103 U/L Extracellular

Phenylalanine
ammonia-lyase

Rhodotorula glutinis
(yeast)

2.1 × 104 U/L Extracellular

Gullón et al., 2015 Agarase S. coelicolor
(Gram +)

S. lividans TK21, S. lividans1secG,
S. lividans1tatC (derivatives
knocked-out for components of the
Sec- or Tat-route respectively)

pAGAs1 Native Native,
aml-SPSl

60 U/mg dry
weight

Extracellular

Torres-Bacete et al.,
2015

Penicillin V acylase S. lavendulae
(Gram +)

S. lividans 1326 pEM4 ermEp* Native 11 mg/L (959
U/L)

Extracellular

Binda et al., 2013 D,D-peptidase/D,D-
carboxypeptidase

Nonomuraea
gerenzanensis
(Gram +)

S. venezuelae ATCC 10595,
S. coelicolor A3(2), S. lividans TK24

pIJ86 ermEp* Native 12 mg/L Cell wall
fraction

Li et al., 2013 Endoglucanase Thermobifida fusca
(Gram +)

S. lividans 1326 pZRJ362 xylApAm Native 173 mg/L
(5.6 × 103 U/L)

Extracellular

Sevillano et al., 2013 α-Amylase S. griseus (Gram +) S. lividans pKC796,
S. lividans1TA-pKC796 (pGM160-
YefMslts),
S. lividans1TA-pKC796-Tox
(pGM160-YefMslts)

pN702Gem3-
Anti

pstSp NA NA Extracellular

Xylanase S. halstedii
(Gram +)

NA NA Extracellular

Lule et al., 2012 Tumor Necrosis
Factor α

Human S. lividans TK24 and derivative
(overexpressing
phosphoenolpyruvate
carboxykinase)

pIJ486 vsip vsi-SP 0.9 mg/g dry
biomass

Extracellular

Dubeau et al., 2011 Chitosanase Kitasatospora sp.
N106 (Gram +)

S. lividans TK24, S. lividans1csnR
(knocked-out for a negative
transcriptional regulator)

Derivative of
pHM8a, pFDES

Native (as-it-is
or modified),
S. ghanaensis
phage I19
promoter

NA 2.4 × 104 U/L Extracellular
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Nakazawa et al., 2011 Phospholipase D S. racemochromo
genes (Gram +)

S. lividans TK23 pES Native NA 3.0 × 104 U/L Extracellular

Zhu et al., 2011 Interleukin A Human S. lividans TK24 Derivative of
pSGL1

ermEp* melC1-SP,
gpp-SP
(as-it-is, or
optimized)

0.6 mg/L Extracellular

Côté and Shareck,
2010

Lipase Metagenomics S. lividans 10-164 pIAFC109 NA Native NA Extracellular

Noda et al., 2010 Transglutaminase Stv. cinnamoneum
(Gram +)

S. lividans 1326 pIJ702 plDp plD-SP 230 mg/L Extracellular

β-1,4-
Endoglucanase

Thermobifida fusca
(Gram +)

64 mg/L Extracellular

β-Glucosidase 114 mg/L Extracellular

Sinsereekul et al., 2010 Cutinase Thermobifida sp.
(Gram +)

S. rimosus R7 pIJ8600 tipAp Native 58 µg/L Extracellular

Meilleur et al., 2009 Lipase Metagenomics S. lividans IAF10-164 pIAFD95A D95Ap Native 11.3 mg/L Extracellular

Díaz et al., 2008 Alkaline
phosphatase

Thermus
thermophiles
(Gram −)

S. lividans JI66 pIJ702 xysAp Native 2.7 × 105 U/L Extracellular

β-Glycosidase Absent 2.6 × 105 U/L
in cytoplasm,
5.5 × 104 U/L
in extracellular
fraction

Extracellular +
cytoplasm

Dubé et al., 2008 Laccase S. coelicolor
(Gram +)

S. lividans IAF10-164 pIAFD95A D95Ap NA 350 mg/L Extracellular

Hatanaka et al., 2008 Leucine
aminopeptidase

S. griseus (Gram +) S. lividans 1326 pTONA5 ssmp, ermEp*,
kibilysin gene
promoter

NA 1.5 × 105 U/L Extracellular

Proline
aminopeptidase

Streptomyces sp.
(Gram +)

Absent 5.2 105 U/L in
extracellular
fraction,
5.0 × 104 U/L
in cytoplasm

Extracellular +
cytoplasm

Aminopeptidase P Absent 3.5 × 104 U/L
in extracellular
fraction, up to
1.8 × 104 U/L
in cytoplasm

Extracellular +
cytoplasm

Lin et al., 2006, 2008 Tranglutaminase S. platensis
(Gram +)

S. lividans JT46 pIJ702 melC1p Native 5.8 × 103 U/L Extracellular

Qi et al., 2008 Glucagon
(co-expressed with
rat α-amidase
gene)

Human S. lividans TK24 Derivative of
pIJ680

aphp melC1-SP 24 mg/L Extracellular

(Continued)
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Ayadi et al., 2007 α-Integrin
A-domain

Rat S. lividans 1326 pIJ699 ermEp Long synthetic
SP

8 mg/L Extracellular

Merkens et al., 2007 Quercetinase Streptomyces sp.
(Gram +)

S. lividans TK23 pIJ702 Native Absent 5.1 U/mg total
protein

Cytoplasm

Pimienta et al., 2007 Streptokinase Streptococcus
equisimilis (Gram +)

S. lividans TK24 pUWL-218 vsip vsi-SP, xlnC-SP 15 mg/L Extracellular

Vrancken et al., 2007 Tumor Necrosis
Factor α

Human S. lividans TK24 and derivative
(over-expressing the phage-shock
protein A homolog)

pSSV05 vsip vsi-SP 1.1 µg/mg dry
weight

Extracellular

Enhanced green
fluorescent protein

Aequorea victoria
(jellyfish)

xlnC-SP 20 mg/L
(15.9 U/mg dry
weight)

Extracellular

Côté et al., 2006 β-Glucosaminidase Amycolatopsis
orientalis (Gram +)

S. lividans TK24 pFD666 NA Native 573 U/L Extracellular

β-Glucosaminidase S. avermitilis
(Gram +)

NA NA NA Extracellular

Sianidis et al., 2006 Xyloglucanase Jonesia sp.
(Gram +)

S. lividans TK24 pIJ486 vsip Native, vsi-SP 150 mg/L Extracellular

Vallin et al., 2006 Glycoprotein
(antigen)

Mycobacterium
tuberculosis
(Gram +)

S. lividans 1326 pUWL-219 dagp dag-SP 80 mg/L Extracellular

Fukatsu et al., 2005 N-substituted
formamide
deformylase

Arthrobacter
pascens (Gram +)

S. lividans TK24, S. coelicolor A3(2)
M145, S. avermitilis K139

pSH19 nitA/nitRp NA 8.5 U/mg total
protein

Extracellular

Rose et al., 2005 Latex clearing
protein

Streptomyces sp.
(Gram +)

S. lividans TK23 pIJ702 Native Native NA Extracellular

Díaz et al., 2004 Xylanase Aspergillus nidulans
(fungus)

S. lividans JI66 pIJ702 xysAp Native, xys1-SP 1.9 × 104 U/L Extracellular

Lara et al., 2004 Glycoprotein
(antigen)

Mycobacterium
tuberculosis
(Gram +)

S. lividans 1326 pIJ486,
pIJ6021

Native, tipAp Native 5 mg/L Extracellular

Lin et al., 2004 Transglutaminase Stv. ladakanum
(Gram +)

S. lividans JT46 pIJ702 Native Native 1.5 × 103 U/L Extracellular

Ogino et al., 2004 Phospholipase D Stv cinnamoneum
(Gram +)

S. lividans 1326 pUC702 Native Native 118 mg/L
(5.5 × 104 U/L)

Extracellular

Schaerlaekens et al.,
2004

Tumor Necrosis
Factor α

Human S. lividans TK24, S. lividans1tatB,
S. lividans1tatC (derivatives
knocked-out for components of the
Tat pathway)

pIJ486 vsip xlnC-SP,
melC1-SP,
vsi-SP

23 mg/L Extracellular

Interleukin-10 166 µg/L Extracellular

Zhang et al., 2004 Interleukin-4
receptor

Human S. lividans TK24 pSGLgpp NA gpp-SP 10 mg/L Extracellular

(Continued)
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Béki et al., 2003 β-D-Mannosidase Thermobifida fusca
(Gram +)

S. lividans TK24 pIJ699 Native Absent 0.015 U/mg
total protein

Cytoplasm

Geueke and Hummel,
2003

L-Amino acid
oxidase

Rhodococcus
opacus (Gram +)

S. lividans 1326 pIJ6021,
pUWL201

tipAp, ermEp* Native 18 U/L Cytoplasm

Hong et al., 2003 Calcitonin
(co-expressed with
rat α-amidase
gene)

Salmon S. lividans TK54 pIJ680 aphp melC1-SP 30 mg/L Extracellular

Tremblay et al., 2002 19 kDa major
lipoprotein antigens

Mycobacterium
tuberculosis
(Gram +)

S. lividans IA F10-164 pIJ702 xlnAp celA-SP (long) 200 mg/L Extracellular

38 kDa major
lipoprotein antigens

80 mg/L Extracellular

Lammertyn et al., 1997;
Pozidis et al., 2001

Tumor Necrosis
Factor α

Mus musculus
(Mouse)

S. lividans TK24 pIJ486 vsip vsi-SP (as-it-is
or modified)

300 mg/L Extracellular

Isiegas et al., 1999 β-Lactamase Escherichia coli
(Gram −)

S. lividans TK21 pIJ487 dagp dag-SP 60 U/L Extracellular

Smith et al., 1999 Alkene
monooxygenase

Rhodococcus
rhodochrous
(Gram +)

S. lividans TK24 pIJ6021 tipAp NA 2.2 U/mg total
protein

Cytoplasm

Lammertyn et al., 1998 Tumor Necrosis
Factor α

Mus musculus
(Mouse)

S. lividans pIJ486 vsip aml-SPSv 50 mg/L Extracellular

Park and Lee, 1998 β-Lactamase-
inhibitory
protein

S. exfoliatus
(Gram +)

S. lividans TK24 pIJ702 melC1p Native 3.0 × 104 U/L Extracellular

Binnie et al., 1997 Extracellular
domain of
erythropoietin
receptor

Human S. lividans 66 pCAN46 aphp sprtB-SP
(modified)

15 mg/L Extracellular

Motamedi et al., 1996 31-O-Demethyl-
FK506
methyltransferase

S. hygroscopicus
(Gram +)

S. lividans pIJ943 NA Native NA Cytoplasm

Taguchi et al., 1995 Transforming
Growth Factor α

(fused with
S. albogriseolus
subtilisin inhibitor)

Human S. lividans 66 pIJ702 ssip + melC1p ssi-SP 10 mg/L Extracellular

Paradkar et al., 1994 β-Lactamase
inhibitor protein

S. clavuligerus
(Gram +)

S. lividans TK24 pIJ486 Native Native NA Extracellular
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Washizu et al., 1994 Transglutaminase Stv. mobaraense
(Gram +)

S. lividans 3131 pIJ702 S. antibioticus
tyrosinase
promoter

Native 0.1 mg/L Extracellular

Fornwald et al., 1993 T cell receptor CD4
(as-it-is and
derivatives)

Human S. lividans 1326 pLTI450 STI-IIp, βgalp STI-II-SP 300 mg/L Extracellular

Jung et al., 1993 Endoglucanase Thermobifida fusca
(Gram +)

S. lividans TK24 Derivatives of
pIJ702

Native Native 36 mg/L (1.9 ×
103 U/L)

Extracellular

Exoglucanase Native Native 17 mg/L (23
U/L)

Extracellular

Ueda et al., 1993 Fv domain of
monoclonal
antibody against
hen egg-white
lysozyme

Human S. lividans 66 pIJ702 ssip ssi-SP 1 mg/L Extracellular

Wolfframm et al., 1993 Chloroperoxidase Pseudomonas
pyrrocinia (Gram −)

S. lividans TK64 pIJ486 Native NA 11.2 U/g wet
weight

Cytoplasm

Hale et al., 1992 Esterase S. scabiae (Gram +) S. lividans 1326 pIJ486, pIJ702 NA Native 100 mg/L Extracellular

Taguchi et al., 1992 Apidaecin 1b (fused
with
S. albogriseolus
subtilisin inhibitor)

Apis mellifera
(Honeybee)

S. lividans 66 pIJ702 ssip + melC1p ssi-SP >200 mg/L Extracellular

Jørgensen et al., 1991 Lipase
(co-expressed with
a lipase modulator)

Pseudomonas
cepacia (Gram −)

S. lividans TK24 pIJ702 dagp dag-SP Na NA

Bender et al., 1990a Hirudin Hirudo medicinalis
(Leech)

S. lividans TK24 pIJ702 melC1p AI-SP 500 µg/L Extracellular

Bender et al., 1990b Interleukin-2 Human S. lividans TK24 pIJ680 NA AI-SP 7.1 × 105 U/L
in extracellular
fraction, 4.7 ×
104 U/L in
cytoplasm

Extracellular +
cytoplasm

Koller and Riess, 1989 Human α-amylase
inhibitor
(tendamistat)

S. tendae (Gram +) S. lividans TK24 pIJ61, pIJ350,
pIJ486, pIJ702

Native, melC1p
(or both in
tandem)

Native 700 mg/L Extracellular

Swan et al., 1989 Calcium-binding
protein

Sac. erythraea
(Gram +)

S. lividans TK24 pIJ702 Native NA NA Extracellular
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Lamb et al., 1988 65-kilodalton
antigen

Mycobacterium
leprae (Gram +)

S. lividans pIJ697 Native NA NA Cytoplasm

Lichenstein et al., 1988 Interleukin-1β Human S. lividans 1326 pIJ350 βgalp βgal-SP 3.8 × 106 U/L
in extracellular
fraction,
6.3 × 104 U/L
in cytoplasm

Extracellular +
cytoplasm

Galaktokinase Escherichia coli
(Gram −)

S. lividans 1326, S. lividans galK−

(galactokinase-deficient mutant)
345 U/L in
extracellular
fraction, 120
U/L in
cytoplasm

Extracellular +
cytoplasm

Noack et al., 1988 Interferon α1 Human S. lividans TK24 pIJ487 saKp saK-SP 2.0 × 108 U/L Extracellular

Horinouchi et al., 1987 Streptothricin
acetyltransferase

S. lavendulae
(Gram +)

S. lividans TK21 pIJ41, pIJ702,
pIJ487

aphp, melC1p,
Bacillus subtilis
cellulose
promoter

NA NA Cytoplasm

The list was created by searching Pubmed database (accession on 18 December, 2019) with the following query: ((((heterologous[Title/Abstract]) AND expression[Title/Abstract]) AND protein[Title/Abstract]) AND
streptomyces[Title/Abstract]), then manually checked and integrated. Gram + , Gram-positive; Gram −, Gram-negative; NA, data not available; SP, signal peptide; S., Streptomyces; Sac., Saccharopolyspora; Stv.,
Streptoverticillium. Promoters (CO, constitutive; IN, inducible): aphp from S. fradiae aminoglycoside 3′-phosphotransferase (CO); βgalp from S. lividans β-galactosidase (CO); D95Ap from S. coelicolor groEL2 heat-shock
gene (NA); dagp from S. coelicolor agarase (CO); ermEp∗ from Sac. erythraea erythromycin resistance gene (CO); glpQp from S. coelicolor glycerophosphoryl diester phosphodiesterase (IN by glycerol-3-phosphate);
melC1p from S. antibioticus melanin operon (CO); nitA/nitRp from Rhodococcus rhodochrous nitrilase (IN by ε-caprolactam); plDp from Stv. cinnamoneum phospholipase D (CO); pstSp from S. lividans phosphate-
binding protein (IN by phosphate starvation and carbon sources as fructose, xylose, or galactose); saKp from Staphylococcus aureus phage 42D staphylokinase (NA); STI-IIp from S. longisporus protease inhibitor
(NA); ssip from S. albogriseolus subtilisin inhibitor (CO); ssmp from S. cinnamoneus metalloendopeptidase (CO in the presence of a rich inorganic phosphate source and glucose); tcp830p synthetic promoter from
S. coelicolor (IN by tetracycline); tgp from S. hygroscopicus transglutaminase (CO); tipAp from S. lividans (IN by thiostrepton); vsip from S. venezuelae subtilisin inhibitor (CO); xlnAp from S. lividans xylanase A (NA);
xylAp from S. avermitilis (xylApSa), S. coelicolor (xylApSc), or Actinoplanes missouriensis (xylApAm) xylose isomerase (IN by xylose); xysAp from S. halstedii xylanase (IN by carbon sources as xylose, xylan, or fructose).
Plasmids (HN, high copy number; MN, moderate copy number; LN, low copy number; SN, single copy number; int, integrative; rep, replicative): pAB04 (LN, int); pAGAs1 (HN, rep); pC109 (HN, rep); pCAN46 (HN, rep);
pEM4 (HN, rep); pES (HN, rep); pFD666 (HN, rep); pFDES (HN, rep); pHJL401 (MN, rep); pHM8 (SN, int); pIAFC109 (HN, rep); pIJ12739 (MN, rep); pIJ350 (HN, rep); pIJ41 (LN, rep); pIJ486 (HN, rep); pIJ487 (HN, rep);
pIJ6021 (HN, rep); pIJ61 (LN, rep); pIJ680 (HN, rep); pIJ699 (HN, rep); pIJ702 (HN, rep); pIJ86 (HN, rep); pIJ8600 (SN, int); pIJ943 (LN, rep); pLTI450 (HN, rep); pN702GEM3 (HN, rep); pN702Gem3-Anti (HN, rep);
pNRoxAnti (HN, rep); pSGL1 (HN, rep); pSGLgpp (HN, rep); pSH19 (HN, rep); pSSV05 (HN, rep); pTONA5 (HN, rep); pUC702 (HN, rep); pUWL201 (HN, rep); pUWL-218 (HN, rep); pUWL-219 (HN, rep); pVF (HN, rep);
pZRJ362 (HN, rep). Signal peptide: AI-SP from S. tendae tendamistat (α-amylase inhibitor); aml-SP from S. venezuelae (aml-SPSv ) or S. lividans (aml-SPSl ) α-amylase; amy-SP from S. griseus α-amylase; βgal-SP from
S. lividans (β-galactosidase); celA-SP from S. lividans cellulase; dag-SP from S. coelicolor agarase; gpp-SP from S. globisporus apoprotein C-1027; lip-SP from S. rimosus lipase; melC1-SP from S. antibioticus melanin
operon gene; plD-SP from Stv. cinnamoneum phospholipase D; saK-SP from Staphylococcus aureus phage 42D staphylokinase; sprtB-SP from S. griseus protease B; srT-SP from S. rimosus trypsin-like protease;
ssi-SP from S. albogriseolus subtilisin inhibitor; STI-II-SP from S. longisporus protease inhibitor; tg-SP from S. hygroscopicus transglutaminase; vsi-SP from S. venezuelae subtilisin inhibitor; xlnC-SP from S. lividans
xylanase C; xys1-SP from S. halstedii xylanase.
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FIGURE 1 | Distribution of the 94 recombinant proteins heterologously produced by streptomycetes and listed in Table 1, according to: use/family of the
recombinant protein (A), homologous source (B), heterologous host (C), plasmid (D), and promoter (E) used for heterologous production. (C–E) When for the same
protein, multiple hosts and/or plasmids, and/or promoters were used, these different conditions were counted separately.

tuberculosis (Vallin et al., 2006) or the α-integrin A-domain for
screening ligands for treating inflammatory disorders (Ayadi
et al., 2007), and few diagnostic proteins (2) as the T
Cell receptor CD4 for diagnosis of HIV infection (Fornwald
et al., 1993). Biopharmaceutical production of proteins in
streptomycetes is generally acceptable to the Food and Drug
Administration and European Medicine Agency since these
bacteria have been used for decades in industrial manufacturing
of antibiotics, immunomodulating and antitumor drugs, and
nutraceuticals (Marinelli and Marcone, 2011). Additionally,
these naturally soil-inhabiting bacteria are recognized as useful
components of natural ecosystem and they are considered safer
than other microorganisms for agricultural use (Berini et al.,
2019). Interestingly, besides the proteins listed in Table 1,
S. lividans was employed by Cangene Corporation (now part
of Emergent BioSolutions) for the recombinant production of
the macrophage-colony stimulating factor LeucotropinTM, a
therapeutic agent that successfully completed Phase III trials for
treating Hodgkin’s and non-Hodgkin’s lymphoma (Vrancken and
Anné, 2009). To our best knowledge, this is the only reported
case of a therapeutic protein production in streptomycetes that
reached the clinical phases.

Finally, Table 1 includes 7 proteins without any direct
industrial/therapeutic application: they were produced
in streptomycetes for studying biochemical/functional
properties and/or mode of action, as in case of the novel

N-substitute formamide deformylase from Arthrobacter pascens
involved in the metabolism of isonitriles (Fukatsu et al.,
2005). Another example is VanYn, a D,D-dipeptidase/D,D-
carboxypeptidase identified as the sole resistant determinant in
the glycopeptide producer Nonomuraea gerenzanensis (Binda
et al., 2013; Dalmastri et al., 2016). VanYn expression in
Streptomyces venezuelae allowed a higher production than in
E. coli (Binda et al., 2012), and contributed to elucidating cell wall
turnover during antibiotic production (Marcone et al., 2010a,
2014).

WHERE DO RECOMBINANT PROTEINS
EXPRESSED IN STREPTOMYCETES
COME FROM?

71 of the proteins listed in Table 1 derive from prokaryotes
and 23 from eukaryotes (Figure 1B). Most of prokaryote-
sourced proteins come from Gram-positive bacteria: 49 are from
Streptomyces or Streptoverticillium spp., or other actinomycetes
as Nonomuraea, Kitasatospora, or Thermobifida spp. This is not
surprising, as heterologous expression is facilitated when the
host is phylogenetically related to the homologous producer, due
to the similar metabolic and genetic background (Binda et al.,
2013). Streptomycetes (DNA G + C > 60%) offer an optimized
codon usage for high G + C content genes and they represent
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a complementary tool versus E. coli (DNA G + C ca. 51%).
For instance, chitinases, usually produced by soil-inhabitant
actinomycetes, were successfully produced in streptomycetes
(Berini et al., 2019). Cloning a S. coelicolor chitinase in S. lividans
10–164 resulted in 486-fold production improvement compared
to E. coli, allowing gram-scale production for converting
crystalline chitin in N-acetylglucosamine (Nguyen-Thi and
Doucet, 2016). 9 additional recombinant proteins derive from
the firmicutes Bacillus subtilis and Streptococcus equisimilis, and
other 9 from the Gram-negative Escherichia, Thermus, and
Pseudomonas spp. (Figure 1B). The thermostable cellulase from
the bacteroidetes Rhodotermus marinus (Hamed et al., 2017)
and the archaeal thermozyme (pernisine) (Šnajder et al., 2019),
described above, complete the list of the prokaryote proteins.

Streptomycetes were successfully used for expressing
metagenome-sourced bacterial enzymes (Berini et al., 2017).
2 lipases from enriched fed-batch bioreactors (Meilleur et al.,
2009; Côté and Shareck, 2010) and 1 chitinase (named 53D1)
from agricultural soil (Berini et al., 2019) were produced in
different Streptomyces strains. In case of 53D1, the protein
was secreted (45 mg/L) into the culture broth by S. coelicolor
A3(2), with a clear improvement over its expression in E. coli,
where the protein was mostly accumulated as inactive into
inclusion bodies (Cretoiu et al., 2015). Enough 53D1 was
produced in the streptomycete to test its activity as biopesticide
(Berini et al., 2019).

The heterogeneity of eukaryote sources of the recombinant
proteins expressed in streptomycetes confirms their versatility
(Table 1 and Figure 1B). The homologous producers of the
eukaryote proteins listed in Table 1 span from filamentous
fungi or yeasts (2), to invertebrates (insect, leech, and jellyfish;
3) or vertebrates (fish and mammals; 18). Notably, 14 human
proteins were produced in these hosts. A chronological analysis
indicates that eukaryote protein expression in streptomycetes
was more frequent in the 1990s, becoming after that rarer.
The last example of eukaryote protein produced in S. lividans
TK24 dated back to 2012 (Lule et al., 2012). This is probably
due to recent developments in using engineered yeasts, and
mammalian and insect cell lines for manufacturing high-value
eukaryote proteins, especially those requiring post-translational
modifications (Hunter et al., 2019).

WHICH IS THE BEST
PROMOTER/VECTOR/HOST SYSTEM
FOR RECOMBINANT PROTEIN
PRODUCTION IN STREPTOMYCETES?

S. lividans strains are by far the most frequently used
heterologous hosts, employed for producing 91 proteins listed in
Table 1. 31 proteins were expressed in the parental S. lividans
66 (also named JI66 or 1326), whereas 37 in its derivative
TK24, which is a two-plasmid-free mutant carrying streptomycin
resistance mutation (str-6, SLP2−, SLP3−) (Kieser et al., 2000)
(Figure 1C). 1 additional protein was produced in TK64, carrying
the same mutations as TK24 plus the pro-2 mutation, and 1

in TK54, characterized by his-2, leu-2, and spc-1 mutations.
The use of S. lividans TK24 has the following advantages: (i)
low level of extracellular protease activity, (ii) poorly active
restriction-modification system of exogenous DNA, (iii) known
biochemistry/genetic background due to its high similarity
to the model organism S. coelicolor A3(2) (Daniels et al.,
2018). Other S. lividans used as hosts were the plasmid-free
mutants S. lividans TK23 (for 3 proteins), carrying spectinomycin
resistance mutation (spc-1, SLP2−, SLP3−), and its derivative
JT46 (2 proteins) mutated in rec-46 gene to reduce inter-plasmid
recombination (Kieser et al., 2000). 4 proteins were produced
in S. lividans TK21, which lacks only SLP2 plasmid. Ad hoc
constructed S. lividans hosts were derivatives of S. lividans 66 or
TK24, as the pleiotropic mutant S. lividans 10–164 (Hurtubise
et al., 1995) defective in cellobiose and xylobiose uptake and
used for producing a metagenome-sourced lipase (Meilleur
et al., 2009; Côté and Shareck, 2010), and S. lividans galK−
(galactokinase-deficient mutant) for the production of E. coli
galactokinase (Lichenstein et al., 1988). S. lividans GSAL1, used
for the production of a xylanase and a α-amylase, overexpresses
the morphogene ssgA, which pleiotropically controls growth
and cell division. ssgA overexpression markedly enhances
septation in vegetative hyphae, leading to fragmented growth
and to wider hyphae, a phenotype that apparently favors
protein production and secretion (Sevillano et al., 2016). Other
streptomycetes employed as hosts were S. coelicolor A3(2) and
its derivative M145 (3 proteins), Streptomyces griseus (3), S.
rimosus (3), Streptomyces hygroscopicus (3), S. venezuelae (2), and
Streptomyces avermitilis (1) (Table 1 and Figure 1C). Although
less frequently used than S. lividans, in certain cases these
alternative streptomycetes permitted the production of proteins
poorly or not at all expressed in S. lividans (Binda et al., 2013;
Berini et al., 2019), thus indicating that expanding the range of
streptomycete hosts might be promising.

As regards to vectors, the mostly used are high copy number
replicative ones (in 93 cases) (Table 1 and Figure 1D) as
for examples pIJ702 (25 proteins), pIJ486 (14), and pIJ86 (7
proteins). pIJ702 vector, which carries thiostrepton resistance
(tsrR) and tyrosinase production (mel+) markers, is the derivative
of pIJ350, a non-conjugative broad host range vector (Kieser
et al., 2000). pIJ486 (tsrR) derived from pIJ101, which contains
the promoterless neo gene (kanamycin resistance) and lacks
both the transfer function and the sti locus that usually confers
‘strong incompatibility’. Removing the sti locus increases the
chance that different plasmids can be retained at similar copy
numbers (Deng et al., 1988; Kieser et al., 2000). The more recent
pIJ86 carries apramycin resistance marker (aprR) and it is a
conjugative vector used for the strong constitutive expression of
proteins under erythromycin promoter (ermE∗ promoter) from
Saccharopolyspora erythraea. Recent works (Sevillano et al., 2013,
2017) described new replicative high copy number ‘marker-free’
systems, which allowed the production of high levels of proteins
without using antibiotics as selection markers. One example is
based on the presence of a toxin gene localized in the genome
and of an anti-toxin gene located on the expression plasmid of the
yefM/yoeBsl operon from S. lividans (Sevillano et al., 2013). Only
for 5 proteins, replicative moderate or low copy number vectors
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were used. For instance, the moderate copy number pIJ12739
was constructed for the expression of the phospholipase D from
S. halstedii in S. lividans TK24, following the same approach
previously described by Fernández-Martínez and Bibb (2014) to
produce a dual-promoter expression vector (Tao et al., 2019).
The low copy number pIJ943 was used for producing the 31-
O-demethyl-FK506 methyltransferase in S. lividans (Motamedi
et al., 1996). For only 3 proteins, integrative vectors were
employed such as pAB04 – low copy number plasmid used for
producing a phytase (Carrillo Rincón et al., 2018), or pIJ8600 –
single copy number vector employed for the expression of the
cutinase from the Gram-positive Thermobifida sp. in S. rimosus
R7 (Sinsereekul et al., 2010). Although less explored, integrative
vectors might present some advantages. When the integrative
single copy number pHM8a plasmid was used for expressing a
chitosanase, productivity was comparable to that achieved with
replicative multicopy pFDES plasmid, but with the advantage
of not requiring antibiotic addition for selection (Dubeau et al.,
2011). Interestingly, this last work is the only one, among those
cited in this mini-review, which allowed a direct comparison
on the effect of different vectors on protein yield. Most of the
studies were driven by an empirical case-by-case approach to
optimize the tools for a specific protein production, making
difficult to draw final conclusions on which is the preferable
vector system to be used.

In 20 cases (out of 94), the heterologous protein genes
were cloned under the control of their native promoters,
but more frequently streptomycete (or other actinomycete)
heterologous promoters were used (Table 1 and Figure 1C).
The heterologous promoters can be constitutive (e.g., vsip
from S. venezuelae; dagp from S. coelicolor; ermE∗p from
Sac. erythraea; ssip from Streptomyces albogriseolus; aphp from
Streptomyces fradiae) or inducible (e.g., xysAp from S. halstedii,
induced by xylane; pstSp from S. lividans, by phosphate starvation
and different carbon sources; tcp830p from S. coelicolor, by
tetracycline; tipAp from S. lividans, by thiostrepton). Constitutive
promoters were more frequently used than inducible ones (50
vs. 24 cases, respectively). If in E. coli, a balance between
the vector copy number and the promoter strength is needed
for controlling protein production and slowing down inclusion
body formation (Adrio and Demain, 2014), in streptomycetes
this problem is overcome by protein secretion. On the other
hand, in streptomycetes, constitutive expression may cause
a growth rate reduction negatively impacting on protein
productivity: in these cases, inducible expression could be
advantageous, although weak points of an inducible system
remain as low level of expression, a narrow host range, and
the need of an expensive inducer (Herai et al., 2004). As
in the case of vectors, only very few studies systemically
compared the effect of different promoters on protein yield.
Sevillano et al. (2016) investigated the expression of a xylanase
from S. halstedii cloning the gene under the control of six
strong promoters, including two commonly used (vsip and
ermE∗p) and four recently identified. Two belonging to the
last group (xysAp and pstSp) performed better than those
considered the golden standards, confirming that there is room
for developing new tools for improving protein expression
in streptomycetes.

In 30 out of the 94 proteins, the presence of native signal
peptides (SP) guaranteed secretion in the heterologous hosts,
while in 2 cases proteins expressed with their native SP
accumulated into the cytoplasm and in 1 case the enzyme was
recovered from the cell wall fraction (Table 1). In streptomycetes,
the Sec pathway constitutes the main secretion system (Anné
et al., 2012). Accordingly, proteins to be secreted have N-terminal
hydrophobic SP, followed by a longer hydrophobic H-domain
and a C-terminal part containing at the end three amino
acids which form the signal peptidase recognition site. Other
minor secretion systems were reported, including the twin-
arginine dependent translocation (Tat) pathway (Anné et al.,
2012). The Tat machinery exports fully folded proteins across
the cytoplasmic membrane: SPs that target proteins to this
pathway resemble Sec SPs, but contain a conserved twin-arginine
motif in the N-region (Valverde et al., 2018). A comparison
between the efficiency of these two pathways for recombinant
protein production showed that replacing Sec-dependent SP
with Tat-dependent SP drastically reduced protein expression
(Schaerlaekens et al., 2004). When native SPs were absent or
not functional, heterologous genes were fused to SP encoding
sequences from genes for highly expressed/secreted endogenous
Streptomyces proteins (Anné et al., 2016), such as the one from the
subtilisin inhibitor (vsi) of S. venezuelae CBS762.70 (Van Mellaert
et al., 1998). Other SP sequences, frequently used in Streptomyces
expression-systems are also listed in Table 1. They derived from
the genes for the trypsin-like protease (srT) from S. rimosus, for
the α-amylase from Streptomyces tendae, S. griseus, S. lividans,
or Streptomyces limoseus, for the melanin operon gene (melC1)
from Streptomyces antibioticus, for the subtilisin inhibitor (ssi)
from S. albogriseolus. The final result is that in 77 out of the
94 proteins listed in Table 1, the recombinant proteins were
completely secreted with productivities up to 100s of mg/L (Guan
et al., 2015). In the few cases (8) where proteins were accumulated
into cytoplasm, their productivity was generally low. 7 proteins
were found produced either inside or outside the cells, whereas
VanYn was localized in the cell wall fraction where it plays its
physiological role in antibiotic resistance (Marcone et al., 2010a;
Binda et al., 2012, 2013).

CONCLUSION

From the analysis of the literature in the last four decades,
it emerges that, although promising, streptomycetes have been
used for heterologous protein production less than their
potential indicates to do. Notwithstanding their efficient protein
secretion machine – which definitively facilitates downstream
operations and protein purification – the mycelial lifestyle
of these bacteria has probably discouraged scientists to use
them more frequently. In liquid media, streptomycetes grow
as mycelial pellets consisting of cells in different physiological
states, and cultures are not homogenous and might become
very viscous. In this regard, combining different specific
mutations as ssgA for improving disperse growth (Sevillano
et al., 2016), and galK for generating auxotrophic mutants not
requiring antibiotic-dependent selection (Lichenstein et al., 1988)
might facilitate upstream processes. Additionally, formulation
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of novel cultivation media – replacing those used for antibiotic
biosynthesis – could facilitate protein downstream (Binda et al.,
2013; Berini et al., 2019). Another aspect probably limiting
their application is that streptomycetes cannot be genetically
manipulated by the methods commonly used for E. coli and
S. cerevisiae. They need ad hoc protocols based on intergeneric
conjugation or protoplast transformation (Kieser et al., 2000;
Marcone et al., 2010b,c). With time, these protocols have become
available and, as reported in this review, nowadays we can count
on a large variety of vectors, promoters, and SP sequences. What
is still missing is the systematic and critical comparison of the
available toolkits. Optimization of protein production is still
conducted following a case-by-case – and somehow random –
approach. Finally, an important issue is the intrinsic low protein
productivity of streptomycetes in comparison with the mostly
used E. coli and yeasts. Further improvements, in this sense,
are urgently needed and may derive from system and synthetic
biology approaches, still poorly applied to streptomycetes.
Indeed, progresses in system biology and -omics technologies
may shed light on the interplay of elements involved in protein
expression, thus helping in the rational improvement of both
expression platforms and fermentation conditions, finalized at
reducing the metabolic burden due to heterologous protein
production. A demonstration is present in the pioneering
work conducted by Muhamadali et al. (2015) on a S. lividans
strain producing the murine TNF-α, where heterologous protein
expression determined profound changes in the metabolomics
of the streptomycete causing an overflow of organic acids and
sugars. In post-genomic era, a further ambitious goal is applying
synthetic biology approaches for building a Streptomyces ‘super
host’ with metabolic networks rewired to facilitate heterologous
protein expression. Synergic application of genome minimization
strategies (i.e., systematic removal of those elements – as

secondary metabolites or proteases – that can hamper protein
production) and engineering of translation and transcription
machineries, might help reaching this goal (Kim et al., 2020).
To this end, it is encouraging considering that performing
Streptomyces ‘super hosts’ have been already constructed for
the heterologous production of antibiotics (Gomez-Escribano
and Bibb, 2011; Myronovskyi et al., 2018). We believe that
integrating these tools could help in improving streptomycetes
as robust producers of recombinant proteins, increasing their
competitiveness to other platforms and stimulating their large-
scale application as cell factories.

AUTHOR CONTRIBUTIONS

FB and EB collected the data and analyzed them. FB, FM, and
EB co-wrote the review. FB prepared the figure and the table. EB
coordinated the work. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by grant ‘Fondo di Ateneo per la
Ricerca’ 2017 and 2018 to FM, and Consorzio Italbiotec to EB.

ACKNOWLEDGMENTS

CIB (Consorzio Interuniversitario per le Biotecnologie)
fellowship to FB and FEMS (Federation of European
Microbiological Societies) Research and Training Grant support
to FB and EB are acknowledged.

REFERENCES
Adrio, J. L., and Demain, A. L. (2014). Microbial enzymes: tools for

biotechnological processes. Biomolecules 4, 117–139. doi: 10.3390/biom40
10117

Anné, J., Economou, A., and Bernaerts, K. (2016). “Protein secretion in Gram-
Positive bacteria: from multiple pathways to biotechnology,” in Protein and
Sugar Export and Assembly in Gram-Positive Bacteria. Current Topics in
Microbiology and Immunology, eds F. Bagnoli and R. Rappuoli (Cham:
Springer), 267–308. doi: 10.1007/82_2016_49

Anné, J., Maldonado, B., Van Impe, J., Van Mellaert, L., and Bernaerts, K. (2012).
Recombinant protein production and streptomycetes. J. Biotechnol. 158, 159–
167. doi: 10.1016/j.jbiotec.2011.06.028

Ayadi, D. Z., Chouayekh, H., Mhiri, S., Zerria, K., Fathallah, D. M., and Bejar, S.
(2007). Expression by Streptomyces lividans of the rat alpha integrin CD11b
A-domain as a secreted and soluble recombinant protein. J. Biomed. Biotechnol.
2007:54327. doi: 10.1155/2007/54327

Béki, E., Nagy, I., Vanderleyden, J., Jäger, S., Kiss, L., Fülöp, L., et al.
(2003). Cloning and heterologous expression of a beta-D-mannosidase
(EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51. Appl.
Environ. Microbiol. 69, 1944–1952. doi: 10.1128/aem.69.4.1944-1952.
2003

Bender, E., Koller, K. P., and Engels, J. (1990a). Secretory synthesis of human
interleukin-2 by Streptomyces lividans. Gene 86, 227–232. doi: 10.1016/0378-
1119(90)90283-W

Bender, E., Vogel, R., Koller, K. P., and Engels, J. (1990b). Synthesis and secretion
of hirudin by Streptomyces lividans. Appl. Microbiol. Biotechnol. 34, 203–207.
doi: 10.1007/BF00166781

Berini, F., Casartelli, M., Montali, A., Reguzzoni, M., Tettamanti, G., and Marinelli,
F. (2019). Metagenome-sourced microbial chitinases as potential insecticide
proteins. Front. Microbiol. 10:1358. doi: 10.3389/fmicb.2019.01358

Berini, F., Casciello, C., Marcone, G. L., and Marinelli, F. (2017). Metagenomics:
novel enzymes from non-culturable microbes. FEMS Microbiol. Lett.
364:fnx211. doi: 10.1093/femsle/fnx211

Berini, F., Katz, C., Gruzdev, N., Casartelli, M., Tettamanti, G., and Marinelli, F.
(2018a). Microbial and viral chitinases: attractive biopesticides for integrated
pest management. Biotechnol. Adv. 36, 818–838. doi: 10.1016/j.biotechadv.2018.
01.002

Berini, F., Verce, M., Ausec, L., Rosini, E., Tonin, F., Pollegioni, L., et al. (2018b).
Isolation and characterization of a heterologously expressed bacterial laccase
from the anaerobe Geobacter metallireducens. Appl. Microbiol. Biotechnol. 102,
2425–2439. doi: 10.1007/s00253-018-8785-z

Binda, E., Marcone, G. L., Berini, F., Pollegioni, L., and Marinelli, F.
(2013). Streptomyces spp. as efficient expression system for a D,D-
peptidase/D,D-carboxypeptidase involved in glycopeptide antibiotic resistance.
BMC Biotechnol. 13:24. doi: 10.1186/1472-6750-13-24

Binda, E., Marcone, G. L., Pollegioni, L., and Marinelli, F. (2012). Characterization
of VanYn, a novel D,D-peptidase/D,D-carboxypeptidase involved in
glycopeptide antibiotic resistance in Nonomuraea sp. ATCC 39727. FEBS
J. 279, 3203–3213. doi: 10.1111/j.1742-4658.2012.08706.x

Frontiers in Microbiology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 195881

https://doi.org/10.3390/biom4010117
https://doi.org/10.3390/biom4010117
https://doi.org/10.1007/82_2016_49
https://doi.org/10.1016/j.jbiotec.2011.06.028
https://doi.org/10.1155/2007/54327
https://doi.org/10.1128/aem.69.4.1944-1952.2003
https://doi.org/10.1128/aem.69.4.1944-1952.2003
https://doi.org/10.1016/0378-1119(90)90283-W
https://doi.org/10.1016/0378-1119(90)90283-W
https://doi.org/10.1007/BF00166781
https://doi.org/10.3389/fmicb.2019.01358
https://doi.org/10.1093/femsle/fnx211
https://doi.org/10.1016/j.biotechadv.2018.01.002
https://doi.org/10.1016/j.biotechadv.2018.01.002
https://doi.org/10.1007/s00253-018-8785-z
https://doi.org/10.1186/1472-6750-13-24
https://doi.org/10.1111/j.1742-4658.2012.08706.x
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01958 August 18, 2020 Time: 17:32 # 14

Berini et al. Recombinant Protein Production in Streptomycetes

Binnie, C., Jenish, D., Cossar, D., Szabo, A., Trudeau, D., Krygsman, P., et al. (1997).
Expression and characterization of soluble human erythropoietin receptor
made in Streptomyces lividans 66. Protein Expr. Purif. 11, 271–278. doi: 10.1006/
prep.1997.0787

Carrillo Rincón, A. F., Magdevska, V., Kranjc, L., Fujs, Š., Müller, R., and Petković,
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The diffusion of antibiotic resistance determinants in different environments, e.g., soil
and water, has become a public concern for global health and food safety and
many efforts are currently devoted to clarify this complex ecological and evolutionary
issue. Horizontal gene transfer (HGT) has an important role in the spread of antibiotic
resistance genes (ARGs). However, among the different HGT mechanisms, the capacity
of environmental bacteria to acquire naked exogenous DNA by natural competence is
still poorly investigated. This study aimed to characterize the ability of the environmental
Escherichia coli strain ED1, isolated from the crustacean Daphnia sp., to acquire
exogenous DNA by natural competence. Transformation experiments were carried out
varying different parameters, i.e., cell growth phase, amount of exogenous DNA and
exposition to artificial lake water (ALW) and treated wastewater to mimic environmental-
like conditions that may be encountered in the agri-food system. Results were compared
with those showed by the laboratory E. coli strain DH5α. Our experimental data,
supported by genomic sequencing, showed that, when exposed to pure water, ED1
strain was able to acquire exogenous DNA with frequencies (10−8–10−9) statistically
higher than the ones observed for DH5α strain (10−10). Interestingly, higher values were
retrieved for ED1 than DH5α strains exposed to ALW (10−7 vs. 10−9, respectively) or
treated wastewater (10−8 vs. 10−10, respectively). We tested, therefore, ED1 strain
ability to colonize the rhizosphere of lettuce, a model plant representative of raw-
consumed vegetables of high economic importance in the ready-to-eat food industry.
Results showed that ED1 strain was able to efficiently colonize lettuce rhizosphere,
revealing a stable colonization for 14 days-long period. In conclusion, ED1 strain ability
to acquire exogenous DNA in environmental-like conditions by natural competence,
combined with its ability to efficiently and stably colonize plant rhizosphere, poses the
attention to food and human safety showing a possible route of diffusion of antibiotic
resistance in the agri-food system, sustaining the “One Health” warnings related to the
antibiotic spread.

Keywords: antibiotic resistance, horizontal gene transfer, treated wastewater, rhizosphere, root colonization,
E. coli genomes, One Health
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INTRODUCTION

Antibiotic Resistance (AR) is a public concern for global
health. About 700,000 people die every year from antibiotic
resistant bacteria-infections and 10 million annual deaths caused
by antibiotic resistant pathogens are estimated by 2050 (Lim
et al., 2019). In the last century, antibiotics have been widely
used in medicine, plant production and livestock industries,
imposing a strong selective pressure on the environmental
microbial communities (Van Hoek et al., 2011). The exposition
of bacteria to a sub-lethal concentration of antibiotics has led
to the generation and diffusion of antibiotic resistant bacteria
(ARB), through mutations and horizontal gene transfer (HGT)
of antibiotic resistance genes (ARGs) (Smalla et al., 2018). This
can be particularly enhanced in specific hot spots of natural
and engineered ecosystems, such as mycosphere, residuesphere,
rhizosphere and wastewater treatment plants (WWTPs) (Eckert
et al., 2018; Riva et al., 2020). The spread of ARGs in different
environments linked to anthropogenic activities has been largely
demonstrated: for example, long-term applications of sewage
sludge and chicken manure can improve the abundance and
the diversity of ARGs and ARB in soil (Chen et al., 2016),
while WWTPs can be considered as one of the main ARGs’
contaminated aquatic systems for both ARB and free DNA
(Czekalski et al., 2014; Amos et al., 2015). Despite several studies
have described the presence and spread of ARGs and ARB in
the environment, some gaps of knowledge about the selection,
evolution, persistence and HGT of ARGs remain to be unveiled
(Larsson et al., 2018; Smalla et al., 2018).

HGT is crucial for bacterial adaptation to new environments
and, consequently, for bacterial evolution. DNA transfer is
generally accomplished by three “classical” mechanisms, namely
transduction, conjugation and transformation (Sun, 2018). While
in transduction and conjugation specific apparatuses are required
to transfer DNA from donor to recipient cells, i.e., phage
virions and conjugative pili, respectively, in transformation
the acquisition of DNA is usually transient and linked to
the capability of the bacterial cells to express competence at
a specific physiological phase. Concerning the environmental
ARG diffusion through HGT mechanisms, researchers have
highlighted that many aspects have yet to be clarified, e.g., the
contribution of the different mechanisms to ARG spread or the
drivers of gene transfer (Smalla et al., 2018). For instance, since
conjugation-based experiments are more feasible in laboratory
and field conditions than those based on the other HGT
mechanisms, this might have underestimated the importance of
transformation or transduction (Smalla et al., 2018).

Natural competence for transformation is a specific
physiological state in which bacteria are able to acquire
genetic material from their surroundings. The acquired DNA can
be then integrated into the bacterial genome or be maintained as
a plasmid in the cell (Blokesch, 2016). There are more than 80
prokaryotic species described to be naturally transformable and
different species and strains can show peculiar traits: for instance,
Vibrio cholerae has been described to acquire DNA in presence
of chitin (Meibom et al., 2005), while Acinetobacter baylyi is
constitutively competent for transformation with frequency

rates depending on the bacterial growth phase (Blokesch, 2016;
Domingues et al., 2019). For a long time, Escherichia coli has
not been considered a naturally transformable bacterium. E. coli
is routinely forced to acquire exogenous DNA by artificial
laboratory treatments, i.e., following the exposure to (i) solutions
with high concentrations of divalent metal ions followed by heat
shock, (ii) polyethylene glycol solutions, or (iii) electrical shock
pulses (Hasegawa et al., 2018). Nonetheless, in some specific
conditions, not related to the artificial transformation, E. coli
has been demonstrated capable to acquire exogenous DNA,
e.g., in contact with environmental waters (Baur et al., 1996;
Woegerbauer et al., 2002; Ishimoto et al., 2008), in food extracts
(Maeda et al., 2003) or after freeze-thaw processes. Besides
the “classical” exogenous DNA uptake machinery of natural
transformation, based on conserved proteins for the transport of
single-stranded DNA (ssDNA) into the cell cytoplasm, two new
routes of DNA acquisition by transformation have been recently
identified in this species. In the first way, double-stranded DNA
(dsDNA) is internalized into E. coli cells on agar plates, while
the second DNA uptake mechanism depends on a cell-to-cell
contact, not related to conjugation, and occurs in a colony on
agar plates (Sun et al., 2006, 2009; Etchuuya et al., 2011; Sun,
2018). While the latter mechanism has been recently reported
to be induced by a P1vir bacteriophage (Sugiura et al., 2017),
the former foresees the participation of several proteins, among
which researchers have so far identified ydcS and ydcV genes,
encoding for a putative periplasmic protein and a putative inner
membrane protein, respectively (both located on the putative
ABC transporter ydcSTUV operon for putrescine transport;
Sun, 2016) and the general stress response regulator factor RpoS
(Zhang et al., 2012; Sun, 2016).

One of the main recognized routes that could allow AR spread
in environments related to the agri-food system is the use of
reclaimed water for irrigation purposes. Nowadays the water
reuse represents a common practice in several countries and is
considered a priority also by the European water management
policy to combat the water crisis exacerbated by global warming
(Riva et al., 2020). Indeed, at least 20 million hectares of
croplands worldwide are irrigated with urban treated wastewater
(Bouaroudj et al., 2019). WWTPs have been indicated as one of
the main contributors of both cell bound and free ARGs for the
aquatic systems (Czekalski et al., 2014; Amos et al., 2015; Li et al.,
2018; Zhang et al., 2018); the reuse of treated wastewater for
irrigation purposes would enter the food production and could
contribute to the diffusion of ARGs that finally could potentially
be acquired by pathogenic strains. Indeed, it has been found that
WWTPs can promote, in the water in which the effluents are
released, the stabilization of a resistome derived principally from
treated wastewaters (Corno et al., 2019), making the freshwater
bodies reservoirs of ARGs (Di Cesare et al., 2015). The ability
of E. coli to acquire and transfer exogenous DNA (Hasegawa
et al., 2018; Sun, 2018), together with its capability to survive
and thrive in different habitats (i.e., water, rhizospheric soil or
human gut; Van Elsas et al., 2011; Raimondi et al., 2019), where
the presence of ARGs has been reported (Du et al., 2020; Osińska
et al., 2020) and HGT can be enhanced (i.e., rhizosphere, Chen
et al., 2019), could pose a risk for the food safety and public
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health (Krzeminski et al., 2019). This risk could be high for
fresh products such as spinach, sprout, and lettuce, which are
generally consumed as raw vegetables (Shen et al., 2019). Indeed,
antibiotic resistant bacteria belonging to the pathogenic species
E. coli and Salmonella enterica have been already reported in farm
environments and fresh products, including lettuce and ready-
to-eat food (Nüesch-Inderbinen et al., 2015; Araújo et al., 2017;
Schierstaedt et al., 2019; Perera et al., 2020; Yang et al., 2020).

In the framework of “One Health” approach, this study aimed
to (i) characterize the possible acquisition of exogenous DNA by
an environmental strain of E. coli mimicking the conditions that
may be encountered in the agri-food system, and to (ii) study
the E. coli strain capacity to colonize plant rhizosphere, using soil
potted lettuce as model system.

MATERIALS AND METHODS

Strains and Media
Escherichia coli strain ED1 was isolated from individuals of
Daphnia sp. collected from a small rainwater-fed pond in the
garden of the CNR-IRSA, Verbania, Italy. Thirty daphnids (in
triplicates) were washed in sterile Milli-Q water, crushed and
sonicated (3 times, 1 min each cycle with a shaking application
by vortexing between cycles) in 1 ml of 2M NaCl. Serial
10-fold dilutions were prepared and filtered on nitrocellulose
membrane filters (type GSWP, 25 mm diameter, 0.22 µm pore
size, Millipore) which were placed onto agar plates of the selective
medium mFC (Biolife) and incubated for 24–48 h at 37◦C. Once
colonies of presumptive E. coli (blue color on mFC agar) appeared
on plates, they were purified by streaking three times and then
stored in 25% glycerol solutions at −80◦C. A small amount of
the bacterial biomass was then introduced in 1 ml of 2M NaCl,
centrifuged (5000 g, 10 min, 4◦C), boiled 15 min, frozen for 2–4 h
and finally centrifuged as before. One of the isolate, named ED1,
was identified as an E. coli strain due to positive amplification
of the uidA gene (Srinivasan et al., 2011) by PCR as described
elsewhere (Sabatino et al., 2015).

Preparation of Transforming Exogenous
DNA
Transformations were carried out by using pCRTMII-TOPO R©

(Invitrogen) plasmid carrying ampicillin and kanamycin
resistance genes. The plasmid was extracted from the strain
E. coli Mach1TM T1 Phage-Resistant pCRTMII-TOPO R© using the
QIAPrep R© Spin Miniprep Kit (Qiagen, Milan, Italy) following
the manufacturer instructions. The plasmid was quantified
by measuring the optical density at 260 nm wavelength in a
spectrophotometer (BIO RAD SmartSpecTM 3000).

Natural Transformation Protocol
Precultures of ED1 and DH5α strains were firstly grown in 25 ml
of LB liquid medium overnight at 37◦C with shaking. Then,
1 ml of cultures were diluted in 100 ml of LB and incubated
at 37◦C until the cells reached early exponential or stationary
growth phases, i.e., at optical densities at 600 nm (OD600 nm)

of 0.4–0.5 or 2, respectively. Forty milliliter of cells were then
centrifuged twice with Milli-Q water for 10 min at 2700 g
and finally resuspended in 500 µl of the same washing buffer.
All centrifugation steps were performed at room temperature
(RT) between 20 and 23◦C. Four aliquots of 100 µl of cells
were prepared, and the proper quantities of plasmidic DNA
were added and gently mixed, without pipetting (the mixture
is hereafter named as transformation mixture). The remaining
100 µl-cells aliquot was used as negative control (no DNA
was added). Samples were incubated at RT for 1 h: three
aliquots were then plated on LB plates added with ampicillin
(100 µg/ml), while the fourth aliquot was serially diluted (from
the undiluted sample to -8) and used to evaluate (in triplicate)
the total cell count on LB agar plates without the antibiotic
selection. Aliquot of negative control was plated as well on
LB plates added with ampicillin (100 µg/ml). All the plates
were kept at 37◦C overnight. Experiments were performed with
three biological replicates. Putative colonies of transformants,
retrieved by ampicillin selection, were then streaked on LB plates
added with kanamycin (100 µg/ml). Both ED1 and DH5α strains
are sensitive to 100 µg/ml ampicillin, 100 µg/ml kanamycin
and 50 µg/ml rifampicin. To further confirm the plasmid
acquisition, kanamycin-resistant colonies were also subjected to
PCR amplification. Transformation frequencies were calculated
as the ratio between the number of transformants and the total
number of culturable cells (about 109 cell/ml in case of cells
harvested at the exponential phase and 1010 cell/ml in case of cells
harvested at the stationary phase). Bacterial transformation was
performed using 0.25, 0.5, 1, and 2 µg of plasmidic DNA.

Transformation protocols were then carried out using cells
collected at the early exponential phase and exposing them to
2 µg of plasmidic DNA in two different types of water as washing
and incubation buffers: besides Milli-Q water (pH 6.23) we used
(i) artificial lake water (ALW, pH 7.69) prepared modifying
the protocol of Zotina et al. (2003) in regard to the inorganic
medium components (Supplementary Table 1), and (ii) water
collected from the effluent of a WWTP located in Verbania (pH
6.84; water sampled on December 10th, 2019; Supplementary
Table 1), serving 51,000 population equivalent and equipped with
chlorination as disinfection process (Di Cesare et al., 2016). In
order to reduce the presence of environmental bacteria, water
samples were filtered through nitrocellulose membrane filters
with 0.22 µm pore size (Millipore).

DNase sensitivity was tested by adding DNase I to the
transformation mixture at different times, e.g., immediately after
the transformation mixture preparation and after 1, 3, 4, 6, and
18 h from the preparation of the transformation mixture. Then,
the transformation mixtures containing DNase I were incubated
1 h at RT before plating on LB agar plates added with ampicillin
(100 µg/ml) (Sun et al., 2006).

To verify the acquisition of pCRTMII-TOPO R© plasmid, DNA
was extracted from putative transformants by boiling lysis
(Ferjani et al., 2015) and used as template to amplify a plasmid
sequence fragment of about 250 bp with primer M13f (-20) (5′-
GTA AAA CGA CGG CCA G-3′) and M13r (5′-CAG GAA
ACA GCT ATG AC-3′) according to manufacturer’s (Invitrogen)
instruction. Thermal protocol was set up as follows: 94◦C for
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5 min, followed by 34 cycles at 94◦C for 1 min, 55◦C for 1 min
and 72◦C for 1.5 min and the last step at 72◦C for 10 min.

Generation of Rifampicin Resistant
Mutants of E. coli Strains ED1 and DH5α
Rifampicin mutants of ED1 and DH5α strains were obtained
by plating stationary-phase cultures on LB plates added
with 50 µg/ml of rifampicin. Plates were then incubated at
37◦C overnight. Upon appearance, rifampicin resistant (RIF-
R) colonies were selected and initially re-streaked on LB added
with 50 µg/ml rifampicin and, finally, on LB added with
100 µg/ml rifampicin.

Root Colonization by E. coli Strains
RIF-R ED1 and RIF-R DH5α strains were used for the
bacterization of Lactuca sativa (var. Canasta) seedlings to verify
their ability to colonize plant rhizosphere. Lettuce seeds were
sterilized with 0.7% sodium hypochlorite for 5 min followed by
5 rinsing steps in sterile distilled water (Bonaldi et al., 2015)
and grown in pots filled with non-sterile soil under greenhouse
conditions. Three days after sowing, lettuce seedlings (n = 3 for
each strain) were inoculated with 5 ml of bacterial suspensions
obtained by growing the RIF-R ED1 and RIF-R DH5α strains
in LB medium supplemented with rifampicin (100 µg/ml)
for 24 h at 37◦C, centrifuging twice the bacterial cultures at
4000 rpm for 10 min and re-suspending the pelleted cells in
physiological solution (NaCl 0.9%) to obtain a final bacterial
concentration of 108 cell/g of soil. Six lettuce seedlings were
irrigated with 5 ml of distilled water and considered as negative
control. One week after bacterization, lettuce seedlings were
harvested and the rhizosphere soil was separated from the root
by vortexing for 5 min the root system in physiological solution.
To evaluate the number of colony-forming units (cfu) per gram
of soil, rhizosphere samples (n = 3 for each strain; n = 6 for
negative control) were serially diluted in physiological solution,
plated in triplicate on LB medium supplemented with rifampicin
(100 µg/ml) and cfu were counted after 24 h of incubation
at 30◦C. In order to confirm the identity of the isolates, after
the visual check of colony morphology on the Petri dishes, 10
bacterial colonies isolated from the rhizosphere of each bacterized
lettuce seedlings were picked. The DNA was extracted through
boiling cell lysis and the 16–23S rRNA Intergenic Transcribed
Spacer (ITS) region was amplified by ITS-PCR fingerprinting
(Mapelli et al., 2013), comparing the ITS profiles of the bacteria
re-isolated from the rhizosphere at the end of the experiment
with those of RIF-R ED1 and RIF-R DH5α strains used for
lettuce bacterization.

The colonization experiment was repeated to investigate the
stability of ED1 and DH5α strains in the lettuce rhizosphere
over time (14 days). For this experiment, lettuce seeds were
sterilized as reported above and grown in soil previously
sterilized through tindalization process. One week after sowing,
lettuce seedlings were inoculated with 5 ml of bacterial
suspensions (108 cell/g of soil) prepared as described above.
The presence of RIF-R ED1 and RIF-R DH5α strains in
lettuce rhizosphere was verified 1 week (t1) and 2 weeks

after bacterization (t2). As previously described, rhizosphere
soil samples (n = 3 for each strain and each experimental
time) were serially diluted and plated in triplicate on LB
medium supplemented with rifampicin (100 µg/ml). Assessment
of cfu/g of soil and strain identity were performed as
described above.

DNA Extraction, Genome Sequencing,
and Analysis
Genomic DNA from E. coli strain ED1 was extracted
from an overnight culture in LB liquid medium using the
UltraClean Microbial DNA extraction kit (Qiagen), according
to the manufacturer’s protocol. DNA quantity was assessed
using fluorometry (Qubit, Invitrogen) according to the
manufacturer’s protocol. Sequencing was performed on an
Illumina NovaSeq platform using paired-end sequencing of
150 bp fragments at IGA Technologies (Udine, Italy). The
genome was assembled as described by Cabello-Yeves et al.
(2018): briefly, Trimmomatic was used for read trimming
and filtering and SPAdes for the genome assembly, while a
preliminary gene annotation was done using NCBI (Johnson
M.et al., 2008). This Whole Genome Shotgun project has
been deposited at DDBJ/ENA/GenBank under the accession
JAAWVB000000000. The version described in this paper is
version JAAWVB010000000.

Genome assemblies of E. coli strains ED1 and K12 NEB
DH5α (Accession Number CP017100; Anton and Raleigh, 2016)
were submitted to the RAST Service1 and compared taking
advantage of the RAST function-based comparison tool. Plasmid
presence in ED1 genome was investigated through the platform
PlasmidFinder (Carattoli et al., 2014)2. VirulenceFinder 2.0
platform (Joensen et al., 2014)3 was used to identify virulence
genes in the genomes of E. coli strains ED1, K12 NEB DH5α,
O157:H7 Sakai (Accession Number BA000007, Makino et al.,
1999) and O157:H7 EDL933 (Accession Number AE005174,
Perna et al., 2001). Genomic islands, insertion sequences (IS)
and phage genome sequences were searched in ED1 and K12
NEB DH5α genomes by IslandViewer4 (Bertelli et al., 2017),
ISfinder (Siguier et al., 2006) and PHASTER (Arndt et al.,
2016). Details on RAST and NCBI annotation can be found in
Supplementary Table 2.

Statistical Analyses
Statistical analyses were conducted with R 3.1.2 (R Core Team,
2013) through RStudio (RStudio Team, 2015) and with Calc
Statistical Function of Microsoft R© Office Excel. Linear model
was applied to assess the relation between transformation
frequency and quantities of DNA added during transformation
protocols. Student’s t-test was employed to verify differences
between ED1 and DH5α strains concerning transformation
frequencies (considering growth phase and types of water) and
root colonization efficiency.

1http://rast.nmpdr.org/
2https://cge.cbs.dtu.dk/services/PlasmidFinder/
3https://cge.cbs.dtu.dk/services/VirulenceFinder/
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RESULTS

Influence of Different Growth Phases on
Transformation
The capability to acquire exogenous DNA by the environmental
E. coli strain ED1, compared with the laboratory E. coli strain
DH5α, was initially tested in pure water on resting cells harvested
at different phases of the growth curve: Milli-Q water was used
as washing and incubation buffer (to avoid the presence of
interfering cations) and a large amount of transforming DNA
plasmid (2 µg) was added to minimize any possible interference
on transformation frequencies linked to a limiting quantity of
DNA. First, we used cells harvested from early exponential
phase cultures (OD600 nm between 0.4 and 0.5) (Supplementary
Figure 1), observing a transformation frequency of 4.26 × 10−8

(± 2.26 × 10−8) and 4.44 × 10−10 (± 7.70 × 10−10) for
ED1 and DH5α strains, respectively (Supplementary Table 3).
ED1 cells in early exponential growth phase demonstrated a
significantly higher transformation frequency in comparison
with DH5α cells (Student’s t-test, p = 0.032, Figure 1). When
cells were harvested at the stationary phase (OD600 nm between
2.1 and 2.2), a transformation frequency of 3.95 × 10−9

(± 3.91 × 10−10) was obtained with ED1 strain, resulting
however statistically higher than the value recovered for DH5α

strain (1.93× 10−10
± 1.56× 10−10; Student’s t-test, p = 0.0001,

Figure 1 and Supplementary Table 3). While transformation
frequencies of DH5α strain were not significantly different
between both growth phases (Student’s t-test, p = 0.609),
statistical analysis indicated that ED1 natural competence is
significantly higher in the early exponential phase than in the
stationary one (Figure 1; Student’s t-test, p = 0.0415). All the
following transformation assays were therefore run with cells at
the early exponential phase.

In order to confirm the occurrence of natural transformation
(which is a DNase-sensitive mechanism differently from the
DNase-resistant mechanisms i.e., conjugation and transduction),
we checked the sensitivity of ED1 uptake of DNA to the
addition of DNase I. Since no transformation events were
retrieved, unveiling thus the DNase sensitivity of the mechanism,
we confirmed ED1 cells’ ability to uptake DNA by natural
competence (Hasegawa et al., 2018).

Influence of Exogenous DNA Quantity on
Transformation Frequency
Transformation frequencies of ED1 and DH5α strains were
analyzed in Milli-Q water with increasing quantities of plasmid
pCR R© II-TOPO R© as exogenous DNA, by adding 0.25, 0.5, 1,
and 2 µg of plasmidic DNA to the cells harvested at the
early exponential phase. As shown in Supplementary Table 4,
transformation frequency for DH5α strain was estimated to
be ≤ 4.44 × 10−10, while increasing transformation frequencies
were reported for ED1 strain, ranging from 5.48 × 10−9 to
4.26 × 10−8 when increasing quantities of plasmid from 0.25
to 2 µg, respectively, were added. Statistical analysis revealed
a statistical difference for ED1 strain exposed to 2 or 0.25 µg
of plasmidic DNA (Student’s t-test, p = 0.0480 between 2 and
0.25 µg). As shown in Figure 2, transformation frequency of ED1
strain was significantly related to the amount of plasmid added
(linear model: t = 3.9, p = 0.003), whereas this was not the case for
DH5α strain (linear model: t = 0.55, p = 0.6) (Baur et al., 1996).

Bacterial Transformation in Different
Types of Waters
Transformation of ED1 and DH5α strains was assessed in natural
and artificial water solutions considered as representative of
environmental habitats, i.e., the artificial lake water (ALW)

FIGURE 1 | Transformation frequencies of E. coli strains ED1 and DH5α with cells collected at early exponential (“exp”) and stationary (“stat”) phases.
Transformations were performed in Milli-Q water with 2 µg of plasmidic DNA.
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FIGURE 2 | Transformation frequencies of E. coli strains ED1 and DH5α in Milli-Q water with increasing quantities of plamidic DNA. Transformation frequency of ED1
strain was significantly related to the amount of plasmid added (linear model: t = 3.9, p = 0.003).

and the water collected from the effluent of Verbania WWTP.
Milli-Q water was used as control and the transformations
were carried out with a not limiting quantity of transforming
DNA (2 µg). Statistical analysis showed that the transformation
frequencies of ED1 strain were significantly higher than the ones
observed for DH5α strain considering all the types of water
used (Student’s test; p = 0.0295, 0.0226, and 0.0364 with ALW,
Milli-Q water and treated wastewater, respectively, Figure 3).
Transformation frequencies ≤ 5.19 × 10−9 were obtained for
DH5α strain in the different types of water (Supplementary
Table 5). Moreover, transformation frequencies of ED1 strain
were significantly higher in ALW than in the other types of
water (Figure 3; Student’s t-test p-values: between Milli-Q water
and ALW, p = 0.029; between ALW and treated wastewater,
p = 0.047): specifically, we obtained for this strain transformation
frequencies values of 1.06 × 10−7 (± 5.26 × 10−8) in ALW
and 1.83 × 10−8 (± 9.80 × 10−9) in the effluent water released
into the environment from Verbania WWTP, whereas for the
control in pure water a value of 4.26 × 10−8 (± 2.26 × 10−8)
was retrieved (Supplementary Table 5).

Plant Colonization by E. coli Strains
The ability of ED1 and DH5α strains added to the soil to colonize
plants’ rhizosphere was verified using the correspondent RIF-R
strains and lettuce seedlings as model system. The experiment

was firstly conducted in short term conditions in non-sterile soil
to check the rhizocompetence of E. coli strains in presence of the
competing soil dwelling microbial community. Seven days after
E. coli addition to the 3 days-old plantlets surrounding soil, the
rifampicin resistant bacteria re-isolated from the rhizosphere of
the lettuce seedlings amounted to 1.59× 109 (± 8.29× 108) cfu/g
rhizospheric soil for RIF-R ED1 strain and resulted statistically
higher in comparison to rifampicin resistant bacteria isolated
from the rhizosphere of both non-bacterized lettuce seedlings
(1.97× 105

± 1.62× 105cfu/g soil; p = 1.61× 10−7) and seedlings
bacterized with RIF-R DH5α strain (4.23 × 108

± 4.45 × 108

cfu/g soil; p = 1.14× 10−3), as shown in Figure 4A. Ten randomly
picked colonies isolated from each bacterized plant (n = 30 per
ED1 strain bacterization; n = 30 per DH5α strain bacterization)
were subjected to ITS-PCR fingerprinting. The ITS profiles
detected for all colonies corresponded to those of the E. coli
strains used for plants bacterization, as shown in Supplementary
Figure 2A and Supplementary Figure 2B for ED1 and DH5α,
respectively. Although both the tested E. coli strains were able to
colonize in 7 days the lettuce rhizosphere under non-sterile soil
condition, the environmental E. coli strain ED1 showed a higher
colonization performance of this microhabitat compared to the
laboratory strain DH5α (p = 1.92× 10−3).

Similar results were obtained when the experiment was
repeated with lettuce plants older (7 days-old) than those
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FIGURE 3 | Transformation frequencies of E. coli strains ED1 and DH5α using different types of water: (A) Milli-Q water, (B) ALW, and (C) treated wastewater (WW).

FIGURE 4 | Evaluation of E. coli strains ED1 and DH5α rhizocompetence. (A) Bacterial abundance (cfu/g soil) of rifampicin-resistant bacteria in the lettuce
rhizosphere after a 1-week colonization experiment performed with non-sterile soil. (B) Assessment of the stability of the rifampicin-resistant bacteria abundance in
the rhizosphere of lettuce seedlings grown in sterile soil. Dark- and light-colored columns indicate cfu/g of soil 1 and 2 weeks after the bacterization, respectively.
NC, non-bacterized lettuce seedlings; ED1/DH5α, lettuce seedlings bacterized with ED1 and DH5α strains, respectively. Different letters or asterisks indicate
statistically significantly differences according to Student’s t-test (p < 0.01).

used in the first colonization assay in sterile soil and for
a longer period, to verify the stability of the strains in the
rhizosphere microhabitat, without any competition with the
soil residing microbiota. As shown in Figure 4B, 1 week after
plant bacterization with ED1 strain, 1.35 × 106 (± 8.39 × 105)
cfu/g soil of RIF-R cells were recovered, whereas plants exposed
to DH5α strain led to isolate from the lettuce rhizosphere
a significant lower RIF-R titer (3.86 × 105

± 2.38 × 105

cfu/g soil; p = 0.0043). The RIF-R isolated colonies in
all the assays demonstrated to belong to the inoculated
E. coli strains by evaluating their ITS-PCR fingerprinting
on representative colonies (Supplementary Figure 3). Two
weeks after bacterization the presence of both ED1 and
DH5α E. coli strains remained stable in plants rhizosphere,
amounting, respectively to 1.01 × 106 (± 1.03 × 106) cfu/g
soil and 2.44 × 105 (± 3.33 × 105) cfu/g soil (p = 0.048;
Figure 4B).

Genome Analysis
Taking advantage of RAST function-based comparison
tool, genomes of E. coli strains ED1 and K12 NEB DH5α

(Anton and Raleigh, 2016; Accession Number CP017100),
composed of 5,159,712 and 4,583,637 bp, respectively, were
compared. E. coli strain K12 NEB DH5α has been chosen as
reference strain for genomic analysis since it is a fhuA2 derivative
of E. coli K12 DH5α, the genome sequence of which is not
currently available.

Both genomes shared a high percentage of metabolic
functions: indeed, the presence of all the main basic metabolic
functions, such as, for instance, carbohydrate metabolism or
respiration, was assessed. Differences in the genomes’ size are
primary reflected in the fact that ED1 strain owns a larger
number of genes (included in the below reported metabolic
pathways) than K12 NEB DH5α strain. We detected the presence
of the “propanediol metabolic pathway” and the “methylcytrate
cycle” in ED1 genome, which were absent in K12 NEB
DH5α genome (Table 1). Furthermore, in ED1 genome we
retrieved genes encoding proteins related to the osmoregulatory
choline-glycine betaine system e.g., the high-affinity choline
uptake protein BetT, a choline dehydrogenase and a betaine
aldehyde dehydrogenase (Table 1). Only in the genome of
ED1 we found several genes classified by RAST as involved
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TABLE 1 | Main subsystems revealed in the genome of E. coli strain ED1.

Role CDS ID in ED1 genome* ED1

IncF conjugative transfer
genes

HBA78_21285-HBA78_21370,
HBA78_21380-HBA_21390,
HBA78_21405-HBA78_21425,
HBA78_21435-HBA78_21455,

+

Propapendiol metabolism
pathway

HBA78_16485-HBA78_16525,
HBA78_16535-HBA_7816560,
HBA78_16570-HBA78_16580

+

Type I secretion system
LapB, C, E

HBA78_15000, HBA78_15005, HBA78_ 15015 +

CFA/I fimbriae encoding
system

HBA78_08810, HBA78_08825 +

Type III secretion system HBA78_04615, HBA78_04630, HBA78_04645,
HBA78_04655-HBA78_ 04665, HBA78_04680,
HBA78_04690, HBA78_04695, HBA78_20315,
HBA78_ 20335

+

Choline and Betaine
Uptake and Betaine
Biosynthesis

HBA78_08680, HBA78_08695 +

Hydroxyaromatic
non-oxidative
decarboxylase protein

HBA78_20830, HBA78_20835 +

“+” indicates presence of functions; *Details on RAST and NCBI annotation can be
found in Supplementary Table 2.

in the bacterial adhesion and secretory systems, i.e., CFA/I
pili, the secretion system type I and the type III secretion
injectosome (Table 1).

Considering genes related to the acquisition of exogenous
DNA, the automatic annotation revealed in both genomes the
presence of several genes homologous to those required for the
DNA uptake in species that are known to be naturally competent:
pilQ/HofQ (HBA78_15695 and NEB5A_17330; HBA78 code
refers to ED1 strain, while NEB5A one refers to K12 NEB
DH5α strain), encoding for a transmembrane channel allowing
dsDNA to cross the outer membrane; pilA (HBA78_09875;
NEB5A_00545), pilB (HBA78_09880 and NEB5A_00540), pilC
(HBA78_09885; NEB5A_00535), related to the construction
of the pseudopilus; dprA (HBA78_16130; NEB5A_16795), also
called smf, responsible of the DNA processing and ycaI/ComEC
(HBA78_03445; NEB5A_04210) related to the uptake of
exogenous DNA (Chen and Dubnau, 2004; Cameron and
Redfield, 2006; Sun, 2018). We detected in both genomes the
presence of genes involved in one of the two E. coli-specific
mechanisms of natural transformation, i.e., the general stress
response regulator factor RpoS (HBA78_20820; NEB5A_05530)
(Zhang et al., 2012; Sun, 2018), as well as the RpoS-regulated
genes ydcS and ydcV (HBA78_24185 and HBA78_24200) in
ED1; NEB5A_07355 and NEB5A_07370 in K12 NEB DH5α)
(Sun, 2016). Additional analysis was performed submitting ED1
genome to the PlasmidFinder platform (Carattoli et al., 2014;
Yang et al., 2015; Table 1): we found the presence of i) a IncFII
plasmid replicon sequence (with an identity of 96.55% against
the one of the reference sequence AY458016) and ii) a IncX1
plasmid replicon sequence (with an identity of 95.23% against the
one of the reference sequence JN935898). The replicon sequences
were located on two separate contigs of 79,647 and 25,889 bp,

respectively, and allowed us to speculate the presence of two
plasmids in ED1 chromosome.

In order to identify virulence factors, we further analyzed
the genomes of strains ED1 and K12 NEB DH5α through the
platform VirulenceFinder 2.0 (Joensen et al., 2014). We found
a higher number of virulence factors in ED1 than in DH5α

genome (Table 2). Both genomes showed the presence of the
glutamate decarboxylase (GAD) system which contributes to acid
resistance in the human gut (Vanaja et al., 2009). Conversely, we
detected only in ED1 genome the presence of genes encoding the
adhesin air, an enteroaggregative immunoglobulin repeat protein
involved in bacterial aggregation and colonization (Sheikh
et al., 2006), astA, a heat stable enterotoxin-1 (Yatsuyanagi
et al., 2003) and eilA, a putative activator of the type three
secretion system (T3SS), which contributes to the pathogenicity
of enteroaggregative E. coli (EAEC) strains (Sheikh et al.,
2006). Moreover, from the comparison with DH5α genome
we found that ED1 genome lost iss virulence factor, defined
as a serum survival gene (Johnson T.J. et al., 2008). When
we included in our analysis the genomes of two pathogenic
strains of E. coli, i.e., E. coli strains O157:H7 Sakai (Accession
Number BA000007, Makino et al., 1999) and O157:H7 EDL933
(Accession Number AE005174, Perna et al., 2001), we could
observe that a conspicuous higher number of virulence factors
was retrieved in the latter than in ED1 or K12 NEB DH5α

genomes (Supplementary Table 6). Whereas similar numbers
of genomic islands are present in both genomes, the number of
IS sequences predicted in ED1 genome is higher than the one
retrieved for NEB DH5α genome. Moreover, we found more
phage genomic sequences in the former than in the latter strain
(Supplementary Table 7).

DISCUSSION

Several studies have revealed the modest capability of E. coli
strains to acquire exogenous DNA by natural transformation
and researchers have recently underlined the existence of a few
peculiar DNA uptake mechanisms of natural transformation
in this species (Sun et al., 2006; Guo et al., 2015; Hasegawa
et al., 2018). E. coli laboratory strains, known for their high
artificial transformation efficiency, demonstrated to undergo
to natural transformation in experiments mimicking natural
conditions, e.g., using freshwater or food extracts (Baur et al.,

TABLE 2 | Virulence genes revealed by the analysis of the genomes of E. coli
strains ED1 and K12 NEB DH5α using the platform VirulenceFinder 2.0.

ED1 K12 NEB DH5α

air Enteroaggregative immunoglobulin repeat protein + −

astA Heat stable enterotoxin-1 + −

eilA hilA-like regulator in enteroaggregative E. coli + −

gad Glutamate decarboxylase ++ ++

iss Increased serum survival − +

“+” indicates presence of functions; “−” indicates absence of functions. Number of
“ + ” indicates the number of sequences of virulence factors detected in genomes.
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1996; Woegerbauer et al., 2002; Maeda et al., 2003, 2004), whereas
a limited number of publications verified natural competence in
E. coli strains isolated from human and warm-blooded animals
(Tsen et al., 2002; Woegerbauer et al., 2002; Matsumoto et al.,
2016). Environmental E. coli strains, to our knowledge, were
never tested for natural competence. In this study, we investigated
the ability of the environmental E. coli strain ED1, isolated
form the crustacean Daphnia sp., to acquire exogenous DNA,
comparing the results with the ones showed by the laboratory
E. coli strain DH5α in relation to the cell growth phase, amount of
transforming DNA and in environmental-mimicking conditions,
i.e., exposed to lake water and WWTP effluents.

We ascertained a higher transformation frequency (10−8–
10−9) for the environmental strain than for the laboratory
one (10−10), observing a higher number of transformation
events when high quantities of plasmidic DNA were used, up
to a saturation level (Baur et al., 1996). Values retrieved for
ED1 strain underlined the modest capability of transformation
in E. coli strains, especially if compared with other bacterial
strains known to be naturally competent, such as Acinetobacter
baylyi BD413 (Lorenz et al., 1992) and Bacillus subtilis 168
(Hauser and Kanamata, 1994). As reported by Baur et al.
(1996), our results showed higher transformation frequencies
for ED1 strain with cells grown at early exponential growth
phase (0.4–0.6 OD600 nm) rather than at the stationary one.
Log-phase cells were also used by Woegerbauer et al. (2002)
who compared the transformation frequency and efficiency of
laboratory and clinical isolates, revealing higher transformation
rates for the former. In case of DH5α strain we recovered
low values of transformation frequencies: we retrieved only
two transformants in all the replicates in which Milli-Q water
and 2 µg of DNA were applied. Nevertheless, other studies
reported in case of DH5α strain higher numbers of transformants
or transformation frequencies than the ones we obtained,
likely due to differences of the adopted experimental protocols,
which included, among the others, variations of the bacterial
growth condition and growth phase (Woegerbauer et al., 2002;
Sun et al., 2006).

The protocol we adopted in our experiments was conceived
to mimic conditions feasible in the environment. To this aim,
strains were subjected to a few manipulation procedures before
incubation on selective agar plates and were exposed to different
kinds of waters considered as representative of a few habitats
(i.e., ALW and treated wastewater). Moreover, temperatures of
20–23◦C, closer to environmental values than the ones usually
used in laboratory procedures, were maintained during the
transformation protocol (not for the incubation), differently
from what reported in literature i.e., 37◦C (Sun et al., 2006),
10◦C or temperature shifts (Baur et al., 1996). Although it was
reported that disinfection by-products in the WWTP effluents
can enhance the rate of bacterial transformation, promoting
the spread of extracellular ARGs (Augsburger et al., 2019;
Mantilla-Calderon et al., 2019; Jin et al., 2020; Lu et al.,
2020), ED1 strain showed higher transformation efficiency in
presence of ALW than treated wastewater. This could be
due, on one hand, to a water composition of ALW that was
more similar to that of the original habitat of the bacterium;

on the other, lower transformation frequencies detected for
ED1 strain in presence of treated water than ALW could be
related to the peculiar chemical composition of the sampled
water (Pereira et al., 2015; Papageorgiou et al., 2016). Thus,
we cannot rule out that experiments performed with water
collected in different moments could bring the same results.
Certain natural and anthropic environments could supply
optimal conditions for natural transformation. An example
are biofilms in which cell density is very high and cells can
be exposed to high concentrations of free DNA (even higher
than the ones routinely used in laboratory procedures) derived
from the dead neighboring cells (Baur et al., 1996; Hasegawa
et al., 2018); this condition can result in ARGs acquisition and
spread in the bacterial communities, as characterized in several
studies (Petrovich et al., 2018). Moreover, clinically relevant
ARGs enter freshwater systems through the outflow of WWTPs
(Zhang et al., 2018).

Gram-positive and Gram-negative bacteria that are known
to be naturally transformable usually share a similar DNA
uptake machinery linked to the Type IV pili and Type II
secretion systems (Claverys and Martin, 2003) and both ED1
and K12 NEB DH5α showed the presence of these genes in
their genomes. Taking into account the peculiar E. coli DNA
uptake machineries (Sun, 2018), we found the presence of the
genes encoding the transcriptional regulator RpoS that regulates
E. coli natural transformation (Zhang et al., 2012), as well as
the RpoS-regulated genes ydcV and ydcS, which are involved
in the DNA internalization into the inner membrane (Sun,
2016). Although we retrieved in both E. coli strain genomes
the presence of the above-mentioned genes, we demonstrated
that ED1 transformation frequency was higher than DH5α

one. Even though we observed an overall genomic function-
based similarity between the strains (using the RAST function-
based comparison tool), we cannot exclude the existence of
some signaling-dependent or regulatory mechanisms that can
favor natural transformation in ED1 rather than in DH5α

strain. Natural transformation is known to be a very complex
mechanism activated differently among species and strains
(Lorenz and Wackernagel, 1994; Blokesch, 2016). For instance, in
Haemophilus influenzae natural competence was demonstrated to
be triggered by a lack of phosphotransferase system (PTS) sugars
and purine precursors (Mell and Redfield, 2014). Furthermore,
since only a DNA-based analysis has been performed in our
study, we do not have information about the effective production
of the proteins corresponding to the natural transformation-
related genes.

Genomic analysis allowed to identify a larger number of genes
encoding for metabolic pathways in ED1 genome rather than in
the one of K12 NEB DH5α strain, e.g., we found in ED1 genome
the propanediol utilization pathway, which allows E. coli to grow
in anaerobic conditions using rhamnose as carbon source (Liu
et al., 2007) and the genes of methilcytrate cycle, which allows
microorganisms to use propionate as a carbon/energy sources,
being especially useful in the propionate-rich environments
such as the gastrointestinal tract (Upton and McKinney, 2007).
Furthermore, we found several genes that may help ED1 to thrive
in different habitats, i.e., genes encoding for proteins related
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to the osmotic stress (involved in the synthesis and uptake of
compatible solutes; Sim et al., 2014); genes involved in cell to
cell aggregation and biofilm production, such as RTX that seems
to be responsible for cell-surface adhesions, cells’ aggregation
and production of biofilm (Tchagang et al., 2018); CFA/I pili-
related genes implicated in the bacterial adhesion through the
production of fimbriae; and genes encoding the type III secretion
injectosome (Diepold et al., 2011; Zheng et al., 2019; Table 1).
Therefore, strain ED1 has different traits that may help it to
thrive in the environment and that might be related to a high
transformation rate success. Moreover, the higher total amount
of the mobile genetic elements found in ED1 than in K12 NEB
DH5α could be due to the fact that these elements are commonly
found in bacteria exposed to a “horizontal gene pool”, which can
be easily found in several environments (Dobrindt et al., 2004).
HGT is, indeed, known to contribute to bacterial adaptation to
different habitats and, in the long term, to bacterial evolution
(Lorenz and Wackernagel, 1994; Thomas and Nielsen, 2005;
Vandecraen et al., 2017). This result is also in agreement with the
data available on Vibrio species, the transformation proficiency of
which appears to be more common in environmental strains than
in clinical ones (Bernardy et al., 2016).

The environments where E. coli is known to survive include
soil, water and manure besides several micro-habitats associated
to plants, given the ability of some E. coli strains to colonize
roots, leaf surfaces and endosphere (Van Elsas et al., 2011;
Wright et al., 2017; Eissenberger et al., 2020). The capacity of
an environmental and naturally transformable E. coli strain like
ED1 to survive in soil and colonize the plant rhizosphere has
relevant implications in the light of the antibiotic cycle and
the One Health vision. The plant rhizosphere is indeed a well
characterized, substrate-rich, hot spot for bacterial activity and
abundance (Zhu et al., 2018), where naturally competent cells
can find higher concentrations of free DNA and could, moreover,
reach the growth phase in which transformation occurs with
high frequency (Sørensen and Jensen, 1998; Mølbak et al., 2003;
Ling et al., 2016; Zhu et al., 2018). Relevant concentrations
of ARGs can reach the plant rhizosphere, e.g., through soil
amended with manure, sewage sludge and treated wastewater
(Chen et al., 2017; Riva et al., 2020; Wu et al., 2020). We
selected lettuce as a model plant for the root system colonization
experiments, as representative of raw-consumed vegetables of
high economic importance in the ready-to-eat food industry. Our
results showed that ED1 strain colonized efficiently the lettuce
rhizosphere both in sterile and non-sterile soils and indicated
that the rhizosphere colonization was stable over a period of
14 days. The ability of ED1 strain to acquire exogenous DNA in
environmental mimicking conditions and to efficiently colonize
the plant rhizosphere might represent a possible route of ARGs
spread in the plant microbiome, potentially representing a risk
for health through the consumption of raw vegetables (Nüesch-
Inderbinen et al., 2015). In this perspective we analyzed the ED1
strain genome for the presence of virulence factors, revealing a
higher number of virulence factors in this environmental and
naturally competent strain than in the laboratory strain K12
NEB DH5α. Although further analyses are required to unveil any
possible relation with human pathogenic E. coli strains, these data

allow us to hypothesize a low and not relevant virulence for E. coli
strain ED1 (Supplementary Table 6).

CONCLUSION

We demonstrated the ability of an environmental E. coli strain
to acquire exogenous DNA by natural competence with relatively
high frequency in exponential growth phase in environmental-
like conditions, together with its capability, when applied to
soil, to thrive in lettuce rhizosphere. These results confirm the
importance to further investigate the possible spread of antibiotic
resistant determinants through HGT in the environment and,
particularly, in the rhizosphere of those plant species consumed
as raw vegetables, to elucidate the related food and human safety
risks. Further studies on environmental E. coli strains could
allow to strengthen our results and to understand the spread of
this phenomenon.
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Land degradation in drylands is a drawback of the combined action of climate
change and human activities. New techniques have been developed to induce artificial
biocrusts formation as a tool for restoration of degraded drylands, and among them
soils inoculation with cyanobacteria adapted to environmental stress. Improvement
of soil properties by cyanobacteria inoculation is largely related to their ability to
synthesize exopolysaccharides (EPS). However, cyanobacterial EPS features [amount,
molecular weight (MW), composition] can change from one species to another or
when grown in different conditions. We investigated the differences in growth and
polysaccharidic matrix features among three common biocrust-forming cyanobacteria
(Nostoc commune, Scytonema javanicum, and Phormidium ambiguum), when grown
in liquid media and on sandy soil microcosms under optimal nutrient and water, in
controlled laboratory conditions. We extracted and analyzed the released EPS (RPS)
and sheath for the liquid cultures, and the more soluble or loosely-bound (LB) and the
more condensed or tightly-bound (TB) soil EPS fractions for the sandy soil microcosms.
In liquid culture, P. ambiguum showed the greatest growth and EPS release. In contrast,
on the sandy soil, S. javanicum showed the highest growth and highest LB-EPS
content. N. commune showed no relevant growth after its inoculation of the sandy
soil. A difference was observed in terms of MW distribution, showing that the higher
MW of the polymers produced by P. ambiguum and S. javanicum compared to the
polymers produced by N. commune, could have had a positive effect on growth for
the first two organisms when inoculated on the sandy soil. We also observed how
both RPS and sheath fractions reflected in the composition of the soil TB-EPS fraction,
indicating the role in soil stabilization of both the released and the cell attached EPS.
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Our results indicate that the features of the polysaccharidic matrix produced by different
cyanobacteria can influence their growth success in soil. These results are of great
relevance when selecting suitable candidates for large-scale cyanobacteria applications
in soil restoration.

Keywords: cyanobacteria liquid culture, sand inoculation, sandy soil microcosms, EPS monosaccharidic
composition, EPS molecular weight distribution, semiarid soil

INTRODUCTION

Cyanobacteria are the oldest oxygenic photosynthetic organisms.
They are widespread in aquatic and terrestrial ecosystems, and
occupy almost every habitat on Earth thanks to their ability to
adapt to a wide range of environmental conditions (Whitton
and Potts, 2002). In dryland soils, cyanobacteria are found in
close associations with other organisms such as bacteria, algae,
lichens and mosses forming the so called biological soil crusts
or biocrusts (Weber et al., 2016). As part of these communities,
cyanobacteria play key roles in soil properties and functions.
Cyanobacteria filaments bind soil aggregates and create a stable
surface layer that facilitates the path for colonization by other
biocrust organisms such as lichens and mosses (Deng et al.,
2020). Cyanobacteria fix CO2 (Miralles et al., 2018) and some
species are able to fix N2, increasing soil organic matter and
nutrient content (Mager and Thomas, 2011). They also release
a wide array of substances in the soil such as growth-promoting
regulators, vitamins, amino acids, polypeptides, biotins, proteins,
and sugars that contribute to soil fertility and act as biocontrol
agents against plant pathogenic bacteria, fungi and micro-algae
(Singh et al., 2016). Cyanobacteria have received special attention
as bio-inoculants for ecological restoration of degraded lands
(Rossi et al., 2017). Soil inoculation with cyanobacteria has been
shown to lead to soil improvements in desertified natural soils
(Park et al., 2017), mine (Muñoz-Rojas et al., 2018) and quarry
substrates (Roncero-Ramos et al., 2019a,b), fire-affected soils
(Acea et al., 2003; Chamizo et al., 2020) and agricultural lands
(Maqubela et al., 2009). Exopolysaccharides (EPS) are among
the most important compounds synthesized by cyanobacteria
playing a vital role in soil functions. Cyanobacterial EPS consist of
polymeric substances of high viscosity with varying biochemical
composition and biophysical properties that are among the most
structurally and functionally complex bacterial structures (Hill
et al., 1994). These biopolymers form an envelope surrounding
the cells called sheath, glycocalyx, capsule, or slime, depending
on its consistency and localization (De Philippis and Vincenzini,
1998), which protect cells from physical and biological stresses
(Costa et al., 2018).

In dryland soils, cyanobacterial EPS are implied in soil
stabilization, nutrient provision and resistance to desiccation
(Brüll et al., 2000; Hu et al., 2003; Mager and Thomas, 2011).
Exopolysaccharides regulate the loss and uptake of water from
cells (Potts, 1994; Mazor et al., 1996; Adessi et al., 2018) and
protect cells from damage during swelling and shrinkage due
to frequent desiccation-rehydration cycles (Liu et al., 2017).
After rewetting, cyanobacteria can rapidly recover metabolic
activities and repair cellular components (Billi and Potts, 2002).

Cyanobacterial EPS also contain sunscreen pigments that
protect cells against UV-A/B radiation (Scherer et al., 1988;
Ehling-Schulz et al., 1997; Fleming and Castenholz, 2007).
More soluble soil EPS fractions or loosely-bound (LB) EPS
are thought to represent an important source of energy for
heterotrophic activity, while more condensed soil EPS fractions
or tightly-bound (TB) EPS are mainly involved in soil particle
consolidation, contributing to soil stability (Chen et al., 2014;
Chamizo et al., 2019). Consequently, changes in soil properties
can be related, to a large extent, to soil polysaccharidic matrix
features such as amount, molecular weight (MW) distribution
and chemical composition of soluble and condensed EPS
fractions (Chen et al., 2014; Colica et al., 2014; Mugnai et al.,
2018a,b; Chamizo et al., 2019). In general, EPS synthesis by a
given cyanobacterial strain mostly depends on the species and
the cultivation conditions such as the source of nitrogen, light
intensity, temperature, salinity, and phosphorus and potassium
contents (De Philippis and Vincenzini, 1998; Nicolaus et al.,
1999; Otero and Vincenzini, 2003). In the soil, EPS characteristics
have been related to the soil type (Chamizo et al., 2019)
and biocrust age or successional stage (Chen et al., 2014;
Colica et al., 2015).

Cyanobacterial EPS properties may represent an important
factor to be considered for the selection of suitable
cyanobacteria candidates for soil restoration. Cyanobacterial
EPS characterization has been mainly done in liquid cultures for
isolated strains but less explored in cyanobacteria-inoculated soil
trials. Besides, little is known of how EPS features might change
for a specific strain when grown in liquid culture and in the soil.
The paucity of information may due to the fact that it is still not
clear whether the soluble fraction of the EPS in liquid cultures
is the same soluble fraction than when the strain grows in soil,
similarly for the sheath EPS and the more strongly attached soil
EPS. Another important factor to take into account for selection
of adequate cyanobacteria bio-inoculants is that some strains
might exhibit a fast growth when cultured in liquid conditions
but limited growth when inoculated on the soil and vice versa.
Thus, viability for biomass growing of the selected cyanobacteria
in liquid culturing systems as well as capability to successfully
colonize the soil after inoculation are key issues to be considered,
especially for scaling up of cyanobacteria applications with
restoration purposes. Last, the inoculated cyanobacteria should
be able to induce significant improvements in soil properties and
functions, so that the desired objective of soil recovery is fulfilled.
In this respect, it would be very useful to have some descriptors of
the potential of the strains for successful restoration approaches
before actually applying them to the soil. Characterization of
cyanobacterial EPS features in terms of their macromolecular
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distribution and monosaccharidic composition could provide
valuable insights to this regard.

The main goal of this study was to examine whether
different biocrust cyanobacterial strains showed contrasting
performances when grown in liquid and solid medium and if
so, if such differences could be linked to their EPS features. To
achieve this goal, we analyzed the growth and polysaccharidic
matrix features (amount, MW distribution and monosaccharidic
composition) of three biocrust-forming cyanobacteria (Nostoc
commune, Scytonema javanicum, and Phormidium ambiguum)
when grown in liquid medium and after inoculation on a sandy
soil under comparable optimal water and nutrient availability
conditions. This can also help improve our understanding on
how cyanobacterial performance and EPS traits might change
when cyanobacteria are inoculated together with the nutrient
media during their culturing, as a viable approach to improve
biocrust performance and soil restoration success.

MATERIALS AND METHODS

Selection of Cyanobacteria Strains
We selected three terrestrial cyanobacterial strains available in
the laboratory collection and isolated from biocrust samples: the
N-fixing Nostoc commune, belonging to the order Nostocales,
isolated from the Negev desert; the N-fixing Scytonema
javanicum Bornet & Flahault NIES-1956, belonging to the
order Nostocales, originally isolated from the Tsukuba Botanical
Garden (Japan); and the non N-fixing Phormidium ambiguum
Gomont NIES-2121, belonging to the order Oscillatoriales,
originally isolated from an African soil. These three genera
have been described as part of the cyanobacterial community
in biocrusts from semiarid regions (Roncero-Ramos et al.,
2020). Besides, N. commune has been reported in biocrusts
worldwide (Büdel et al., 2016). Nostoc spp., Scytonema spp. and

Phormidium spp. have been also employed as soil inoculants
to reverse land degradation and promote soil recovery in
degraded arid soils (Li et al., 2014; Park et al., 2017; Zhao
et al., 2019). The selected cyanobacterial strains were used for
the batch culture and sand-microcosm experiments described
below. A scheme summarizing the experimental design and
the variables measured on each experiment can be seen in
Figure 1.

Batch Culture Experiments in Liquid
Media
Biomass of the selected cyanobacterial strains was collected
and used to set up the batch culture experiments (Figure 1A).
The strains were transferred to aerated glass vertical columns
(diameter 50 mm) with a working volume of 500 ml. BG-110
medium (Rippka et al., 1979) was used for the heterocystous
strains, N. commune and S. javanicum, and BG-11 medium
(with nitrate) for the non-heterocystous strain, P. ambiguum. The
columns were placed in a thermostated water bath at a constant
temperature of 30◦C and were continuously illuminated on both
sides, with a photon flux density (PFD) of 70 µmol m−2 s−1.
The strains were acclimated to these conditions during two
weeks previous to perform growth curve measurements. Cultures
were bubbled with filter-sterilized air supplemented with CO2
(0.05%v/v.) in order to homogenize the culture and keep the pH
close to 7.0. Three replicates were considered forN. commune and
four replicates for S. javanicum and P. ambiguum due to their
frequent cell aggregation which introduced higher variability of
parameter measurements. Cultures were inoculated at an initial
dry weight of 0.1 g L−1 and the growth curve for the three
strains was followed for 9 days. Evaporation was compensated
daily with sterilized distilled water. Every day, a sample of 30 mL
was withdrawn from each culture to monitor the culture behavior
and analytical measurements.

FIGURE 1 | Scheme of the experimental design and variables measured in the (A,B) batch culture and sand microcosm experiments.
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Dry Weight and Chlorophyll a Concentration
Dry weight was measured by filtering 5–10 mL of culture on
a pre-weighted filter (Whatman grade GF/F) 1 µm pore filters,
and then dried at 105◦C for 3 h. Chlorophyll a concentration
was measured following the method by Singh et al. (2016).
In brief, 5 mL of culture was centrifuged at 2500 × g at
laboratory temperature for 7 min and the supernatant was
thoroughly discarded, after which 5 mL of methanol was
added and the sample was vortexed and heat at 70◦C. Then,
samples were centrifuged at 2500 × g and absorbance of the
supernatant was measured in a spectrophotometer at 665 nm and
750 nm. Chlorophyll a content was determined according to the
equation by Ritchie (2006).

Chla [µg/ml] = 12.9447 (A665 – A750) x Volume of methanol
(mL)/Volume of sample (mL) (Eq. 1).

Fluorescence Parameters
The ratio between variable and maximum fluorescence, Fv/Fm,
was measured to determine the maximum photochemical
quantum yield of PSII, using a pulse-amplitude-modulation
fluorimeter (PAM-2100, H. Walz, Germany). For this purpose,
samples were taken from the cultures and incubated in the
dark for 15 min to remove any energy-dependent quenching.
Then, one far-red light (above 700 nm) pulse with a duration
of 10 sec (10 W m−2), supplied by the PAM-2100, was
applied. This procedure was applied to attain a full oxidation
of the plastoquinone pool (PQ). For comparison, measurements
of Fv/Fm were also performed in the light using 3-(3,4-
dichlorophenyl)-1,1-dimethylurea (DCMU) (10−5 M), and
resulted in a lower value, therefore all the measurements were
carried out using far red light. In addition, rapid light-response
curves (RLCs) of cultures were measured daily using a 2 mL
cell sample placed in a Liquid-Phase Oxygen Electrode Chamber
(Hansatech, DW3) cuvette, thermostated at 25◦C. A series of
stepwise increasing irradiance intensities (LEDs, 0–636 µmol
photons m−2 s−1) provided by PAM-2100 were automatically
applied at 20 s intervals to obtain the light-adapted fluorescence
level F’ (steady-state fluorescence yield in the light), and at
the end of each step a saturating pulse (>6,000 µmol photons
m−2 s−1, 0.6 s duration) was triggered to reach the maximum
fluorescence level Fm’ (steady state maximum fluorescence in the
light). The effective PSII photochemical quantum yield in the
light, YII , was determined as (Fm’- F’)/Fm’ in the light-adapted
state at respective irradiance level. The effective quantum yield
of PSII was used to calculate the electron transfer rate (ETR).
However, it must be pointed out that with cyanobacteria, this
parameter can furnish only a relative measure of the ETR, since
the PSI/PSII ratio is much higher than in leaves (Vermaas, 2001;
Fraser et al., 2013), and the light absorption coefficient can
affect the measurements (Szabó et al., 2014). Relative electron
transport rates (rETR = µmol e- m−2s−1) were calculated as
rETR = PFD x (Fm’- F’)/Fm’ x ETR factor (i.e., the fraction of
light absorbed by the sample and distributed to PSII). An ETR
factor of 0.42 was used, which takes into account the default
setting for percentage of light absorbed (0.84) and that distributed
to PSII (0.5). Analysis of RLCs was used to calculate changes
in important parameters, that is, the maximum relative electron

transport rate through PSII, rETRmax, the initial slope, α, of
the rETR vs. PFD curve which is the quantum efficiency of the
photosynthesis, the saturation irradiance, Ik, given as intercept
between α, and rETRmax. The curves were fitted to the non-linear
least-squares regression model by Eilers and Peeters (1988) using
PamWin 3 software.

EPS Characterization
Total EPS content and released EPS (RPS hereafter) were also
daily determined in the cultures. For total EPS content, 1 mL
of the culture was taken and its carbohydrate content was
quantified by means of the phenol-sulfuric acid assay (Dubois
et al., 1956). RPS were extracted by centrifuging 5 mL of
culture at 4000 × g for 30 min. Then, the supernatant was
recovered and an aliquot of 1 mL was taken to quantify
carbohydrate content using the phenol-sulfuric assay. When EPS
amount was very high and/or there was interference of nitrate
in BG-11 cultures, a 1:5 or 1:10 dilution was applied to the
samples; v) Protein content of the cultures was measured by
the Lowry method using bovine serum albumin as standard
(Lowry et al., 1951).

Additionally, at the end of the growth curve, apparent
molecular weight (MW) distribution and monosaccharidic
composition of the cyanobacterial sheath and RPS of the three
strains were determined. For this, the remaining culture of the
strains at the end of the experiment and once the described
measurements were done, was mixed and centrifuged to separate
the RPS from the cell biomass. Then, the cyanobacterial sheath
was recovered from the pellet by washing cyanobacterial cells
with 5 mL of distilled water at 80◦C for 1 h, centrifugation at
4000 × g for 30 min and recovery of the supernatant. This
operation was repeated three times. In the cases in which the
sheath was strongly attached to cells (e.g., P. ambiguum), the
sheath-containing pellet was additionally mixed with a 1.5%
NaCl solution and then extracted with 5 mL of distilled water
at 80◦C for 1 h (Rossi et al., 2018). Effective sheath extraction
from cyanobacterial filaments was checked by optical microscope
observations. MW distribution of RPS and cyanobacterial sheaths
was determined by size exclusion chromatography (SEC). 1 mL
of the sheath- and RPS-containing extracts was taken and
injected in a Varian Pro-Star liquid chromatograph (Varian Inc.,
United States) equipped with a refractive index (RI) detector
and two columns, PolySep-GFC-P 6000 and 4000 (Phenomenex,
United States), connected in series. The columns (700 mm
length and 7.8 mm internal diameter) had separation ranges of
100 kDa to 15 MDa and 0.3 to 400 kDa, respectively. Samples
were analyzed with runs of 70 min using HPLC-grade water
as eluent at a flow rate of 0.4 mL min−1. Size classes were
established according to retention times of known MW dextran
standards (Sigma-Aldrich, United States). These MW classes
were: >2000 kDa (0–25 min), 2000–1100 kDa (25–35 min),
1100–410 kDa (35–36 min), 410–150 kDa (36–38 min), 150–
50 kDa (38–40 min) and <50 kDa (40–70 min). To obtain the%
of the different MW classes, we performed the ratio of each peak
area to the total area under the curve and assigned the resulting%
area to the corresponding size class according to the retention
time of the peak output.

Frontiers in Microbiology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 568224101

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-568224 October 21, 2020 Time: 20:7 # 5

Chamizo et al. EPS Influence Cyanobacteria Growth Success

The monosaccharide composition was analyzed using Ion
Exchange Cromatography (IEC) following the procedures
described in Mugnai et al. (2018a,b) and Chamizo et al. (2019).
Before IEC analysis, 1 mL of the extracts (sheath or RPS) was
mixed with 1 mL of 4 N trifluoroacetic acid (TFA) and heated
for 120 min at 120◦C. Afterward, the excess of TFA was removed
by drying on a rotary evaporator and the dried extracts re-
solubilized in deionized water, repeating this operation three
times per sample. Monosaccharide composition was analyzed
with a Dionex ICS-2500 ion exchange chromatograph (Dionex,
United States) equipped with an ED50 pulsed amperometric
detector operating with a gold working electrode (Dionex) and
a CarboPac PA1 column of 250-mm length and 4.6-mm internal
diameter (Dionex). We used as eluents HPLC-grade water (A),
0.185 M Na hydroxide (B), and 0.488 M Na acetate (C), at a
flow rate of 1 mL min−1. Single sugars were identified on the
basis of the retention time of known standards. Results were
expressed as molar ratio.

Sandy Soil Microcosms Experiments
Preparation and Inoculation of the Sandy Soil
Microcosms
Cultures of the same cyanobacterial strains used for the
batch culture experiments were used for the sand-microcosms
experiment (Figure 1B). The sandy soil (92% sand, 1% silt and
7% clay) was collected from a semiarid area in Almeria province
(SE Spain) and had an organic carbon content of 1.23 g kg−1

and nitrogen content of 0.21 g kg−1. Small Petri dishes (12 mm
height x 54 mm diameter) were filled with 30 g of sterilized
sand (by autoclaving twice for 20 min at 120◦C). Inoculation
was done by adding 30 mg (dry weight) of cyanobacterial
biomass on each Petri dish or sand microcosm, equivalent to 5 g
m−2, which has been found to be an optimal areal density to
promote biocrust formation on sandy soils (Mugnai et al., 2020).
In addition, chlorophyll a content of the inoculum solutions
was measured following the procedure explained above for the
liquid culture. Chlorophyll a concentrations of N. commune,
S. javanicum, and P. ambiguum solutions were 10.4 ± 1.5,
11.0 ± 2.3 and 8.1 ± 1.0 µg mL−1, respectively. Soil samples
with non-inoculated sand were used as controls. Each treatment
(control and sand inoculation with each strain) was done in
triplicate. Sand microcosms were incubated in a plexiglass growth
chamber with controlled temperature (30◦C) and light intensity
(70 µmol photons m−2 s−1) for 30 days. Water and nutrients
were added to the microcosms in order to provide optimal
conditions for cyanobacteria growth, similar to that of liquid
cultures. Microcosms were watered with 5 mm of distilled water
five days a week. In addition, 5 mL of culture media (3 x
concentrated) (BG11 for the sand inoculated with the non-
heterocystous strain and BG110 for the sand inoculated with the
heterocystous strains) was added to the soil samples every 5 days.
The amount of nutrients applied to the soil after 30 days was
equivalent to 0.5 L of culture media (similar to that of the liquid
cultures). Addition of water and nutrients was also done on the
control samples. Of the three control replicates, two were sprayed
with BG11 and one with BG110. As no difference was found in the

control sand provided either with BG11 or BG110, the average of
the three replicates was considered for further comparisons with
the inoculated sand treatments. Six samplings were carried out
during the experimental period, so that a total of 72 samples (4
treatments x 3 replicates x 6 samplings) were prepared.

Soil Determinations
Every 5 days, 12 samples (three per treatment) were randomly
selected and the surface crust (2 mm thick) was collected in order
to determine chlorophyll a content, as a proxy of cyanobacterial
growth, and EPS content. Previous to crust sampling, soil
hydrophobicity was measured on the sand microcosms using the
water drop penetration time (WDPT) test (Doerr, 1998). Five
to seven drops of distilled water were dropped from a height
of 1.5 cm on to the surface of the soil sample. The average
time the drops remained on the surface was used as an index
of the severity of water repellency. After this test, the crust was
collected with a small putty knife and ground to a fine powder
with mortar and pestle. Chlorophyll a content was determined
after extraction with hot ethanol at 80◦C for 5 min, centrifugation
and measurement of supernatant absorbance at 665 nm (Castle
et al., 2011). Chlorophyll a content was calculated according to
Ritchie (2006) equation:

Chlorophyll a = (11.9035×A6650 ×V) x (g soil−1) x L (Eq. 2)
where V is the volume of solvent (mL) and L is the path length.

Soil EPS Characterization
The amount of two soil EPS fractions were determined in
the crust: the more soluble and less condensed fraction, easily
released into the environment or “loosely bound EPS” (referred
to as LB-EPS), and the more condensed fraction, firmly attached
to the cells and soil particles or “tightly bound EPS” (referred
to as TB-EPS). LB-EPS were extracted with distilled water at
room temperature for 20 min. The supernatant was recovered
after centrifugation at 3500 × g for 30 min. This process was
repeated three times for each sample and the three supernatants
obtained were mixed together. TB-EPS were recovered from the
resulting pellet using three extractions with 0.1 M Na2EDTA and
centrifugation at 3500 × g for 30 min. The three supernatants
obtained after the three extractions were mixed together. The
carbohydrate content of both LB-EPS and TB-EPS extracts was
determined using the phenol-sulfuric acid assay.

At the end of the experiment (30 days), the apparent MW
distribution and monosaccharide composition of the two soil EPS
fractions were also determined. In the TB-EPS fraction, the excess
of Na2EDTA that could interfere with the chromatographic
analysis was removed by dialyzing the extracts in nitrocellulose
tubular membranes (14 kDa MW cutoff, Medicell International,
United Kingdom) for 24 h in distilled water. Extracts were then
dried and dissolved in deionized water, transferred to Eppendorf
tubes, and clarified by ultracentrifugation at 13,000 × g in
order to remove the coarse particulate. The MW distribution
was analyzed by size exclusion chromatography (SEC) following
the procedure explained above for the liquid culture extracts.
For monosaccharidic composition determination, the extracts
were hydrolyzed and purified following the same procedure
explained above for the liquid culture and monosaccharide
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composition was determined by IEC analysis following the
previously described methodology.

Data Elaboration and Statistical Analysis
Differences in dry weight, chlorophyll a content, fluorescence
parameters, and total and released EPS content among the three
cyanobacterial strains grown in liquid culture were analyzed
using one-ANOVA and the Tukey post hoc test. Variables were
previously checked for normality and homogeneity of variance
using the Shapiro-Wilk and Levene’s test. When needed, data
were log transformed before performing parametric analysis.
In the case of the sandy soil microcosms, as variables did
not meet normality assumptions, the effect of the inoculation
treatment (control and sand inoculation with the three strains)
and incubation time on chlorophyll a, LB-EPS and TB-EPS
was analyzed using a permutational multivariate analysis of
variance (PERMANOVA) based on Euclidean distances. Further
differences among the strains were analyzed with paired-wise
tests using a maximum of 9999 permutations and applying
Monte Carlo correction. All the analyses were performed
using Primer 7 and Permanova + (PRIMER-E Ltd., Plymouth,
United Kingdom). The complexity of the monosaccharidic
profiles was analyzed and interpreted calculating diversity
indices. Thus, alpha-diversity of sugar residues of the different
strains and conditions (sheath and RPS in liquid cultures, and
LB-EPS and TB-EPS in the sand microcosms) were compared.
Diversity indexes were calculated using the percentiles of a
bootstrap distribution with 9999 repetitions, using the Past 4.0
software. Significance was established at p < 0.05.

RESULTS

Cyanobacteria Growth in Liquid Cultures
Batch cultures of the three cyanobacteria strains were monitored
during 9 days through determination of dry weight and
chlorophyll a concentration. The greatest growth was observed
with P. ambiguum which reached a dry weight of 3.33 g L−1

after 9 days, while N. commune and S. javanicum showed a lower
growth, 1.46 g L−1and 1.75 g L−1, respectively (Figure 2A). The
higher growth showed by P. ambiguum was also reflected in a
higher chlorophyll a increase, which reached 31.9 mg L−1 at
day 7 and then progressively decreased until day 9 (Figure 2B).
Chlorophyll a concentration increased in N. commune and
S. javanicum over time and after 9 days of biomass culturing,
reached values of 24.1 mg L−1 and 8.9 mg L−1, respectively
(Figure 2B). Chlorophyll increase with time showed a Gompertz
curve fitting for P. ambiguum (r2 = 0.9903) and an exponential
curve for N. commune and S. javanicum (r2 = 0.9667 and 0.9901,
respectively). Protein content of the cultures at the end of the
experiment reached 796.0 ± 135.5 mg L−1 for N. commune,
933.4 ± 306.1 mg L−1 for S. javanicum and 1128.2 ± 290.3 mg
L−1 for P. ambiguum, representing, respectively, 55%, 53% and
34% of their respective dry weight.

During the whole period of culture, the Fv/Fm ratio remained
rather constant or slightly increased in N. commune, indicating
good physiological state of the cultures (Figure 3). The mean

values of the Fv/Fm were 0.525 ± 0.039 in N. commune;
0.502± 0.014 in S. javanicum, and 0.434± 0.016 in P. ambiguum
(Table 1). The mean values of the calculated parameters of
RLCs, i.e., the rETRmax, the initial slope (α) of the rETR vs.
PFD curves, and the saturation irradiance (Ik) are reported in
Table 1. The mean rETRmax gathered over the whole cultivation
period resulted about 25% higher in P. ambiguum, while the
initial slope, i.e., the quantum efficiency of photosynthesis, was
higher in N. commune (0.228) than in S. javanicum (0.190)
and P. ambiguum (0.174). The highest saturation irradiance of
photosynthesis was found in P. ambiguum (Table 1).

Analysis of EPS production during cyanobacteria growth
showed a similar trend to chlorophyll content. The amount of
released and total EPS was significantly higher in P. ambiguum
showing the highest values at day 6 and 7, after which it
slightly decreased in both EPS fractions (Figures 4A,B), in
coincidence with the pattern of chlorophyll content. N. commune
and S. javanicum showed lower EPS contents and significant
differences were found between them in the released EPS. While
the total EPS amount was similar for both cultures (Figure 4B),
N. commune showed a higher amount of released EPS than
S. javanicum (Figure 4A).

Cyanobacteria Growth in Sandy Soil
Microcosms
The cyanobacteria strain and incubation time, as well as
interaction between them, had a significant effect on chlorophyll
a content and LB-EPS and TB-EPS amounts (p < 0.05),
indicating that change of these variables with time depended
on the strain. Chlorophyll a content increased in the inoculated
sand with P. ambiguum and S. javanicum, thus indicating
a significant cyanobacterial growth over time. However, no
significant increase was observed in the inoculated sand with
N. commune, which showed a chlorophyll content close to zero
and similar to control soils (Figure 5). In contrast to the pattern
observed in batch cultures where P. ambiguum exhibited the
highest growth, in the sand microcosms S. javanicum was the
strain that showed a better performance. After 30 days of soil
incubation, chlorophyll content resulted four times higher in
the S. javanicum-inoculated sand than in the P. ambiguum-
inoculated sand. The content of the two soil EPS fractions
differed between the two strains. LB-EPS content was similar
in the inoculated sand with P. ambiguum and S. javanicum
during the first days after sand inoculation (Figure 6A) but it
was significantly higher in S. javanicum from the fifteenth day
onward (Figure 6A), also coinciding with a sharper increase
in chlorophyll content. TB-EPS content increased in both
inoculated soils over time and although the sand inoculated
with P. ambiguum showed higher TB-EPS content than the
sand inoculated with S. javanicum, the difference resulted not
significant (Figure 6B). It is worth mentioning that a significant
increase in soil hydrophobicity was found in the sand inoculated
with S. javanicum from day 10 till the end of the experiment.
While controls and the other inoculated soils showed no water
repellence (WDPT < 5s), S. javanicum-inoculated sand showed
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FIGURE 2 | Dry weight (A) and chlorophyll a concentration (B) during the cultivation period of the three cyanobacteria strains. Different letters indicate significant
differences among the strains for each day.

WDPT > 60 s in most cases and some times lasting for several
minutes, indicating severe hydrophobicity.

EPS Molecular Weight Distribution and
Monosaccharidic Composition of the
Cyanobacterial Strains in Liquid Culture
and Soil Microcosms
The EPS extracted both from culture biomass and from the
soil microcosms were analyzed in terms of molecular weight
(MW) distribution and monosaccharidic composition. The
EPS extracted from N. commune inoculated microcosms were
insufficient for these in-depth analytical purposes (see Results
in Figure 6), hence data are not shown in Figures 7C,D,
8C,D. The MW distribution results (Figure 7) showed that
the polymers were composed of four classes of MW, from
>2MDa to <50 kDa, not equally represented among strains
and among culturing conditions. In liquid cultures the highest
MW class (>2MDa) could only be detected in P. ambiguum
sheath (16.3%), while the lowest MW class (<50kDa) was always
largely represented (ranging from 36.0% in S. javanicum sheath
to 83.4% in N. commune sheath) (Figure 7B). The released EPS
were mostly composed of low MW molecules <50KDa. However,
S. javanicum showed also a high percentage of the MW class
2MDa-1.1MDa (56%), as well as N. commune which showed
high percentages of the MW class 2MDa-1.1MDa (20%) and
1.1MDa–410 kDa (27%) (Figure 7A).

In the sandy soil microcosms (Figures 7C,D), the EPS MW
distribution profiles of the two strains were similar, either for
LB-EPS or TB-EPS: the only exception was the presence of the
intermediate MW class (1.1MDa–410 kDa) in P. ambiguum LB-
EPS. The highest MW class (>2MDa) was always represented
both in LB-EPS (2.5 and 2.1% for P. ambiguum and S. javanicum,
respectively) and in TB-EPS (6.0 and 5.7% for P. ambiguuum
and S. javanicum, respectively), while the lowest MW class
(<50kDa) was more represented in LB-EPS (50.5 and 67.0% for
P. ambiguum and S. javanicum, respectively) than in TB-EPS
(35.1 and 34.3% for P. ambiguum and S. javanicum, respectively).

The EPS monosaccharidic composition was heterogeneously
dependent on the strain or on the culturing conditions
(Figure 8, Supplementary Table S1). In almost all cases
the most represented sugar residue was glucose, but many
differences could be observed. Due to the complexity of
the monosaccharidic profiles and the number of conditions
to compare, for a clearer and informative interpretation of
analytical data, we used an innovative approach for the
description of monosaccharidic composition, as usually done
in ecologic approaches, based on analysis of diversity indices
of the samples. The results referring to the liquid cultures
(Figures 8A,B, Table 2, and Supplementary Table S1) showed
similar profiles of N. commune and P. ambiguum in terms of
most represented sugars (a 3% threshold was arbitrarily set
to define a significantly represented sugar): glucose, mannose,
xylose, galactose, arabinose and glucuronic acid, in order from
the most to the less represented residue in RPS; besides glucose,
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FIGURE 3 | Time course of the daily values of the Fv/Fm ratios measured during the cultivation period of the three cyanobacteria strains (mean ± SD, n = 9).
Different letters indicate significant differences among the strains for each day.

TABLE 1 | Mean values of fluorescence parameters measured over a cultivation
period of nine days in cultures of N. commune, P. ambiguum, and S. javanicum.

Fluorescence
parameters

Cyanobacteria strain

N. commune S. javanicum P. ambiguum

rETRmax (µmol e-
m−2 s−1)

40.85 ± 10.25a 40.0 ± 17.72a 52.80 ± 33.0a

Ik (µmol photons
m−2 s−1)

178.62 ± 26.19b 211.42 ± 89.28ab 303.57 ± 32.68a

α (µmol e- µ

photons−1)
0.228 ± 0.031a 0.190 ± 0.018b 0.174 ± 0.033c

Fv/Fm 0.525 ± 0.039a 0.502 ± 0.014b 0.434 ± 0.016c

Data are the mean values ± SD (n = 9). Different letters indicate significant
differences among the strains. rETRmax : maximum relative electron transport rate;
Ik : saturation irradiance; α: initial slope of the rETR vs. PFD curve; Fv/Fm: ratio
between variable and maximum fluorescence.

only rhamnose was present (>3%) in the sheath. On the
contrary, S. javanicum showed glucose, xylose, galactose and
fucose as the main RPS components, and glucose, mannose,
ribose, fructose, and galactose composing the sheath. In general,
the RPS composition showed a higher diversity than sheath
composition, but some differences were observed among the
strains. S. javanicum maintained the same diversity between RPS
and sheath, while P. ambiguum and N. commune showed a lower
diversity for the sheath compared to the RPS (Table 2).

In the sandy soil microcosms, comparison between
P. ambiguum and S. javanicum-inoculated soils highlighted
differences mostly in LB-EPS composition, while TB-EPS

composition resulted similar between the two strains
(Figures 8C,D, Supplementary Table S1). Glucose was the most
abundant monosaccharide in LB-EPS and also galactose was
found at a relatively high percentage in S. javanicum-inoculated
sand (Figure 8C). TB-EPS was mostly composed of glucose,
galactose, mannose, xylose, and uronic acids in both inoculated
soils (Figure 8D, Supplementary Table S1). Noticeably, the
monosaccharidic profile composing TB-EPS resulted similar or
even higher than the respective sheath or RPS profiles, in terms
of diversity (Table 2). In P. ambiguum-inoculated sand, mannose
and xylose were present in TB-EPS, and the same were only
present in RPS (and not in the sheath); same occurred for xylose
in S. javanicum-inoculated microcosms. On the other hand, the
TB-EPS extracted from S. javanicum-inoculated microcosms
contained for example mannose, which was only present in the
strain’s sheath (and not in its RPS).

DISCUSSION

The current study allowed exploring the growth performance
and amount and chemical features of EPS of three biocrust
cyanobacterial strains when grown in liquid culture and on
a sandy soil. Although direct extrapolation of results from
one experimental setting to another cannot be done due to
the intrinsic characteristics of the growing media (liquid and
solid), which affect light distribution, cyanobacteria dispersion
in the medium, and contrasting capabilities for the use of
nutrients, among others, application of similar conditions for
both experiments (light, temperature and addition of nutrient
medium) facilitates, to the best extent, comparisons of results
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among strains in the two growing conditions. Contrasting growth
performances and EPS synthesis and chemical features of the
cyanobacterial strains under the two growth conditions provide
valuable insights for the screening of cyanobacteria candidates to
be used in soil restoration.

Growth and EPS Characteristics of the
Cyanobacterial Strains in Liquid Cultures
The three cyanobacteria strains showed a significant growth
within 9 days, as shown by the increase of dry weight and
chlorophyll concentration. At the end of the experiment, the
dry weight surpassed 1 g L−1 in all the strains (Figure 2).
P. ambiguum was the strain that showed the higher growth,
reaching 3.33 g L−1 (dry weight). Fv/Fm remained stable during
the whole cultivation period although at different levels. The
highest value (0.525 ± 0.039) was found in N. commune
(Figure 3). The Fv/Fm ratios, usually lower in cyanobacteria than
in green algae, can be explained by different ratios of PSI/PSII,
which in cyanobacteria varies from 2 to 3.5 (Vermaas, 2001;
Fraser et al., 2013), and raises the level of minimum level of
fluorescence, Fo. However, Fv/Fm ratios well mirrored those of
initial slopes (α) in the three tested strains. The rETR values of
the strains correlated well with the increase in biomass being
higher in P. ambiguum. This cyanobacterium showed the lowest
quantum yield and the highest saturation irradiance Ik (Table 1),
meaning that this organism utilizes light with lower efficiency and
requires more light to saturate photosynthesis. One consequence

could be that this cyanobacterium, compared to N. commune and
S. javanicum is more adapted to cope with high light exposure, a
condition that could be found in arid zones.

In all the strains the increase in cyanobacterial biomass
over time was accompanied by a parallel increase in both
total EPS (cellular EPS + RPS) and RPS contents (Figure 4).
An increase in the amount of RPS along with cell growth in
batch cultures has been previously documented (Rossi and De
Philippis, 2015). Total EPS content was up to 14 times higher
than RPS content, highlighting the significant contribution of
cell sugars content to total EPS amount. Parallelly to the
higher dry weight and chlorophyll content in P. ambiguum, this
strain also showed the highest amounts of total and released
EPS. The greater growth and EPS synthesis by P. ambiguum
in comparison to the other two strains can be attributed
to the presence of a nitrogen source in the medium, which
is a condition requiring lower energy for the assimilation
of combined nitrogen compared with the energy needed for
nitrogen fixation (Otero and Vincenzini, 2003).

In our experiments, with nutrient replete cultures, both RPS
and sheath fractions showed the presence of very high MW
polymers (> 1.1MDa). Previous studies have also confirmed
that most cyanobacterial EPSs are characterized by the presence
of high MW components (Pereira et al., 2009). However, a
relevant presence of smaller macromolecules (<50kDa) was also
found in both RPS and sheath (Figures 7A,B). This result is
in contrast with that obtained by Mugnai et al. (2018a) who
found for the strain Schizothrix cf. delicatissima AMPL0116 that

FIGURE 4 | Released (A) and total EPS (B) content during the cultivation period of the three cyanobacteria strains. Different letters indicate significant differences
among the strains for each day.
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FIGURE 5 | Chlorophyll a content over time in the control and inoculated sandy soil microcosms. Different letters indicate significant differences among the control
and cyanobacteria-inoculated soils for each sampling day.

FIGURE 6 | LB-EPS (A) and TB-EPS (B) contents over time in the control and inoculated sandy soil microcosms. Different letters indicate significant differences
among the control and cyanobacteria-inoculated soils for each sampling day.
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FIGURE 7 | MW distribution of the EPS extracted from liquid culture: (A) RPS, (B) sheath, and from sandy soil microcosms: (C) LB-EPS; (D) TB-EPS, of the cultured
strains. Relative proportions (%) of MW classes are represented. No data are reported for N. commune in the sandy soil microcosms (C,D) because of the negligible
amounts of EPS extracted (See Figure 5).

both RPS and sheath were mostly composed of macromolecules
higher than 1 MDa.

EPS composition of the three cyanobacterial strains was
characterized by a high complexity, and a high number of
monosaccharides (up to 12, see Figure 8, Table 2, Supplementary
Table S1) was identified. EPS composition of cyanobacterial
sheaths and RPS showed different composition profiles. Within
each EPS fraction, the composition was similar for N. commune
and P. ambiguum, and different for S. javanicum (Figures 8A,B,
Supplementary Table S1). The EPS released into the medium
were mainly composed of glucose, and this monosaccharide was
also the main component for S. javanicum and P. ambiguum
sheaths (63.5 and 35.4%, respectively), while for N. commune
the major sheath component was xylose (30.6%), and glucose
as the second one (26.6%) (Figures 8A,B, Supplementary
Table S1). This composition partially confirms the results of
previous studies that reported the presence of different sugars
in N. commune colonies such as glucose, galactose, xylose, and
uronic acids (Helm et al., 2000). Hu et al. (2003) reported
that glucose was the most abundant monosaccharide (44%) in
Nostoc sp., with galactose and xylose being also found at a
high molar percentage (21.5% and 20.9%, respectively). These
authors also reported that most abundant monosaccharides in

the EPS from S. javanicum were glucose (24.8%), galactose
(23.4%) and mannose (22.9%), and for one species of the genus
Phormidium, P. tenue, were arabinose (43.9%), glucose (32.5%)
and rhamnose (10.4%).

Growth of the Cyanobacterial Strains
and Characteristics of the Induced EPS
Matrix in the Sand Microcosms
A different pattern in cyanobacteria growth among the three
strains was observed in the sandy soil microcosms. When
inoculated on the sand, S. javanicum exhibited the highest
growth, followed by P. ambiguum, as shown by the increase in
chlorophyll content after one month of soil incubation (Figure 5).
Both EPS fractions LB-EPS and TB-EPS increased over time
as chlorophyll increased (Figure 6). A similar trend has been
described in previous studies that documented an increase in
chlorophyll a in cyanobacteria inoculated soils accompanied by
an equivalent increase in EPS (Mazor et al., 1996; Chamizo
et al., 2018). No growth was observed for N. commune, which
showed a chlorophyll a content close to zero and similar to
the non-inoculated sand. In their natural habitat, N. commune
forms macroscopic colonies in which the entangled filaments are
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FIGURE 8 | Monosaccharidic composition of the EPS extracted from liquid culture: (A) RPS, (B) sheath, and from sandy soil microcosms: (C) LB-EPS; (D) TB-EPS,
of the cultured strains. Molar percentages (%) of single sugars are represented (expressed as moles of the single monosaccharide divided by the total amount of
moles of monosaccharides in the EPS × 100). No data are reported for N. commune in the sandy soil microcosms (C,D) because of the negligible amounts of EPS
extracted. Abbreviations: Fuc fucose, Rha rhamnose, GalN galactosamine, Ara arabinose, GlcN glucosamine, Gal galactose, Glc glucose, Man mannose, Xyl xylose,
Fru fructose, Rib ribose, GalA galacturonic acid, GlcA glucuronic acid.

embedded in massive polysaccharidic structures which are crucial
in the stress tolerance of this species to drought and frequent
desiccation-rewetting (Potts, 1994) and freezing-thawing cycles
(Tamaru et al., 2005). The chemical analysis on its RPS and sheath
showed a higher percentage of low MW polymers (<50 kDa),
compared to the two other strains, despite a very similar
composition in monosaccharides to P. ambiguum EPS. The
presence of smaller polymers may have reduced N. commune
capability of forming stable aggregates in the sandy soil for
growth sustain. Previous studies have shown the efficiency of
this cyanobacterium to grow and lead to stable biocrusts over
fine-textured soils (<70% sand) (Román et al., 2018; Roncero-
Ramos et al., 2019a,b). However, in coarse soils, the ability
of this cyanobacterium to bind sand grains and form stable
organo-mineral layer could be reduced, as has been also reported
for other cyanobacterial strains such as Microcoleus vaginatus
(Rozenstein et al., 2014) or Leptolyngbya ohadii (Mugnai et al.,
2020) on coarse sand. Of the two strains that showed a
significant growth on the sandy soil, S. javanicum showed higher
chlorophyll a (Figure 5) and LB-EPS contents than P. ambiguum
(Figure 6A), regardless the latter strain was supplied with
nitrogen-rich medium (BG11).

Under natural stressing conditions, cyanobacteria are
considered to produce compositionally simpler EPS compared
to liquid cultures, where they experience optimal abiotic
conditions and excess of nutrients (Brüll et al., 2000). In the
current study, under optimal conditions of water and nutrient
availability, the soil EPS matrix was still characterized by a
high number of monosaccharides (7–11), being almost always
glucose largely the most abundant (Figure 8, Supplementary
Table S1). While LB-EPS was compositionally simpler, TB-
EPS showed a grater sugar diversity (Table 2) and besides
glucose, galactose, mannose, xylose, and uronic acids were
also relatively abundant. In induced biocrusts of different
ages, mannose and glucose resulted the sugars present at
the highest molar percentages in the LB-EPS fraction, while
mannose, glucose, galactose and galacturonic acid were present
at the highest molar percentages in the TB-EPS fraction
(Chen et al., 2014). In inoculated sand with S. javanicum and
P. ambiguum, but in the absence of nutrient supply and subjected
to low water additions, the most abundant monosaccharides
were glucose and galactose in the two soil EPS fractions,
with also relatively high abundances of other sugars such as
mannose, xylose, rhamnose and fructose in the TB-EPS fraction
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TABLE 2 | Diversity indices of the EPS fractions extracted from the three strains in the two culturing conditions.

Culture condition EPS fraction Strain Number of sugar residues S Dominance D Shannon H Evenness eˆH/S Equitability J Fisheralpha

Liquid RPS N. commune 12 0.21 1.81 0.51 0.73 1.35

culture S. javanicum 8 0.44 1.21 0.42 0.58 0.85

P. ambiguum 11 0.23 1.74 0.52 0.72 1.22

Sheath N. commune 9 0.82 0.50 0.18 0.23 0.98

S. javanicum 11 0.45 1.28 0.33 0.53 1.22

P. ambiguum 11 0.44 0.59 0.32 0.52 1.22

Sandy soil LB S. javanicum 7 0.56 0.95 0.37 0.49 0.74

microcosms P. ambiguum 8 0.88 0.33 0.17 0.16 0.89

TB S. javanicum 10 0.21 1.84 0.63 0.80 1.10

P. ambiguum 11 0.23 1.75 0.50 0.72 1.28

(Chamizo et al., 2019). According to Brüll et al. (2000), the
heterogeneous sugar composition detected in our experiment
could be due to the availability of nutrients. However, the
experiment previously cited by Chamizo et al. (2019) led to
a complex monosaccharidic profile even without nutrient
addition, suggesting that in the natural conditions to which
Brüll et al. (2000) refer, some other abiotic factors may influence
the composition of the EPS.

When EPS features of the inoculated sandy soils were
compared with the EPS profile of liquid cultures, we found that
the soil TB-EPS fraction reflected both the MW distribution and
monosaccharidic composition of the sheath but also the RPS
fraction. Accordingly, Mugnai et al. (2018b) reported that EPS
from the cyanobacterium Schizothrix cf. delicatissima AMPL0116
was significantly different in soil growth compared to liquid
cultures, both in composition and MW distribution, affecting
these changes mainly the more condensed TB-EPS fraction,
while no alterations were observed for the more soluble LB-
EPS fraction. Their results showed that TB-EPS fraction was
composed of a higher number of sugars than the LB-EPS
fraction, and they attributed this difference to the different
composition between sheath (composed of a higher number of
sugar residues) and RPS (less heterogenous than the sheath).
Our results, in turn, show that the TB-EPS fraction was very
heterogeneous, resembling, on the contrary, the RPS fraction
as witnessed by its high diversity compared to the sheath
and by the presence of RPS-exclusive sugar residues both
for S. javanicum and P. ambiguum. Moreover, the diversity
describing the composition of the TB-EPS fraction resulted
even higher than the RPS fraction alone (Table 2). It is indeed
hard to dissect between two possible phenomena that may have
occurred, that is, between the possibility that organisms produced
polymers composed of different monosaccharides when growing
on a different substrate, or that the complexity observed in TB-
EPS composition was the result of the extraction procedure
that removed a mixture of RPS and sheath EPS. The high
diversity of TB-EPS leads us to believe that when the RPS
get in contact with soil particles, the various chemical features
of the sugars residues make the polymers bind tightly to the
particles, so that they only become extractable with Na2-EDTA
treatment (TB-EPS extraction), while only the very soluble
glucose-based polymers can be extracted with water (LB-EPS

extraction). This can easily be related to the fact that the
growth and high EPS production capability of cyanobacteria
in soil favor the formation of aggregates (Issa et al., 2001;
Mager and Thomas, 2011).

Implications for Soil Restoration
Production of EPS by cyanobacteria inoculation on the soil
induces changes in soil properties important for a number
of processes occurring at the soil surface. Cyanobacterial
filaments together with their sticky EPS bind sand grains
(Mugnai et al., 2018b), forming a cohesive and stable layer
that contributes to reducing soil erosion (Kheirfam et al., 2017;
Fattahi et al., 2020), one of the most important processes
accelerating land degradation in drylands (Ravi et al., 2010).
Experiments carried out in sand dunes in China have shown
effective soil stabilization after inoculation with Microcoleus
vaginatus and S. javanicum, encouraging soil colonization by
other biocrust organisms and accelerating biocrust succession
(Lan et al., 2014; Park et al., 2017). EPS also increase water
retention capacity of the surface and thus play an important
role in the maintenance of moisture (Mazor et al., 1996;
Adessi et al., 2018). However, on very sandy soils, EPS have
been also reported to retard water movement and reduce the
amount of water that can penetrate into the sand (Mazor
et al., 1996) thus decreasing hydraulic conductivity (Colica
et al., 2014). We found that soil hydrophobicity was increased
in the sandy soil inoculated with S. javanicum, probably
associated to a higher growth and EPS release (especially of
the LB-EPS) by this strain compared to P. ambiguum. In a
previous study (Chamizo et al., 2019) we found no increase
in hydrophobicity by inoculation of sandy soil with this strain
possibly explained by the lower EPS amount (∼1 mg/g soil)
under more water stressing conditions compared to the higher
EPS amount (∼6.5 mg/g soil) recorded in this study where
sandy soils were supplied with water and nutrients. Nevertheless,
an increase in soil hydrophobicity by cyanobacteria inoculation
on sandy soils could have as advantage a decrease in the time
for runoff start and an increase in runoff yield, providing
surplus water to downslope vegetation patches and favoring plant
survival in drylands.

On the other hand, our results also showed that the
monosaccharidic features of the released EPS and of sheath
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don’t represent per se an advantage for surviving in a sandy
environment, as suggested by the scant growth of N. commune,
despite the strain showed a polymer composition very similar
to the EPS of P. ambiguum. Indeed, it might have been the
smaller dimension of the secreted polymers that contributed
in preventing N. commune growth in the sandy soil. These
may be relevant information when planning the selection
of cyanobacteria candidates for soil restoration purposes. In
addition, our findings suggest that inoculation of the soil with
the cyanobacterial biomass as well as their RPS can provide
additional advantages derived from: (1) the supply of low MW
molecules contained in the RPS fraction that could be easily
hydrolyzed and used as carbon sources for soil heterotrophic
microorganisms; (2) addition of a medium characterized by
a diverse monosaccharidic composition, likely with different
traits and contributing to increasing soil microbial heterogeneity.
Indeed, in the attempt to extrapolate soil restoration techniques
based on cyanobacteria inoculation from lab to the field, our
findings point out the need of further considering the importance
of the characteristics of the EPS released during culture growth
in providing successful results, by improving conditions for
cyanobacteria survival and growth and help them cope with
abiotic stresses.
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Sinetova, M. A., červený, J., Zavřel, T., and Nedbal, L. (2012). On the dynamics
and constraints of batch culture growth of the cyanobacterium Cyanothece sp.
ATCC 51142. J. Biotechnol. 162, 148–155. doi: 10.1016/j.jbiotec.2012.04.009

Singh, J. S., Kumar, A., Rai, A. N., and Singh, D. P. (2016). Cyanobacteria:
a precious bio-resource in agriculture, ecosystem, and environmental
sustainability. Front. Microbiol 7:529. doi: 10.3389/fmicb.2016.
00529

Szabó, M., Parker, K., Guruprasad, S., Kuzhiumparambil, U., Lilley, R. M.,
Tamburic, B., et al. (2014). Photosynthetic acclimation of Nannochloropsis
oculata investigated by multi-wavelength chlorophyll fluorescence analysis.
Bioresour. Technol. 167, 521–529. doi: 10.1016/j.biortech.2014.06.046

Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005). Crucial role
of extracellular polysaccharides in desiccation and freezing tolerance in the
terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71,
7327–7333. doi: 10.1128/aem.71.11.7327-7333.2005

Vermaas, W. F. J. (2001). Photosynthesis and Respiration in Cyanobacteria.
Chichester: John Wiley & Sons Ltd, doi: 10.1038/npg.els.0001670

Weber, B., Büdel, B. and Belnap, J. (eds). (2016). Biological Soil Crusts: An
Organizing Principle in Drylands, Vol. 226. Berlin: Springer.

Whitton, B. A., and Potts, M. (2002). “Introduction to the cyanobacteria,” in The
ecology of cyanobacteria: their diversity in time and space, eds B. A. Whitton and
M. Potts (Dordrecht: Kluwer Academic Publishers), 689.

Zhao, Y., Jia, R. L., and Wang, J. (2019). Towards stopping land degradation
in drylands: water-saving techniques for cultivating biocrusts in situ. Land.
Degrad. Dev. 30, 2336–2346. doi: 10.1002/ldr.3423

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Chamizo, Adessi, Torzillo and De Philippis. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 16 October 2020 | Volume 11 | Article 568224113

https://doi.org/10.1007/s10811-019-1749-6
https://doi.org/10.1007/s10811-019-1749-6
https://doi.org/10.1007/s11104-019-04239-y
https://doi.org/10.3390/life5021218
https://doi.org/10.1016/j.earscirev.2017.05.006
https://doi.org/10.1007/s11104-017-3441-4
https://doi.org/10.1007/s11104-017-3441-4
https://doi.org/10.1016/j.aeolia.2014.08.003
https://doi.org/10.1104/pp.88.4.1055
https://doi.org/10.1016/j.jbiotec.2012.04.009
https://doi.org/10.3389/fmicb.2016.00529
https://doi.org/10.3389/fmicb.2016.00529
https://doi.org/10.1016/j.biortech.2014.06.046
https://doi.org/10.1128/aem.71.11.7327-7333.2005
https://doi.org/10.1038/npg.els.0001670
https://doi.org/10.1002/ldr.3423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-578425 October 25, 2020 Time: 13:43 # 1

MINI REVIEW
published: 29 October 2020

doi: 10.3389/fmicb.2020.578425

Edited by:
Sara Borin,

University of Milan, Italy

Reviewed by:
Rashmi Chandra,

University of Waterloo, Canada
David Peris Navarro,

University of Oslo, Norway

*Correspondence:
Duccio Cavalieri

duccio.cavalieri@unifi.it;
cavalieri.unifi@gmail.com

Specialty section:
This article was submitted to

Microbiotechnology,
a section of the journal

Frontiers in Microbiology

Received: 30 June 2020
Accepted: 06 October 2020
Published: 29 October 2020

Citation:
Di Paola M, Meriggi N and

Cavalieri D (2020) Applications of Wild
Isolates of Saccharomyces Yeast

for Industrial Fermentation: The Gut
of Social Insects as Niche for Yeast

Hybrids’ Production.
Front. Microbiol. 11:578425.

doi: 10.3389/fmicb.2020.578425

Applications of Wild Isolates of
Saccharomyces Yeast for Industrial
Fermentation: The Gut of Social
Insects as Niche for Yeast Hybrids’
Production
Monica Di Paola, Niccolò Meriggi and Duccio Cavalieri*

Department of Biology, University of Florence, Florence, Italy

In the industry of fermented food and beverages, yeast cultures are often selected and
standardized in order to ensure a better control of fermentation and a more stable
product over time. Several studies have shown that the organoleptic characteristics
of fermented products reflect geographic variations of the microbial community
composition. Despite investigations of the worldwide distribution and genetic diversity of
Saccharomyces cerevisiae, it is still unclear how and to what extent human intervention
has shaped the brewer’s yeast population structure. The genotypic and phenotypic
characterization of environmental yeast populations and their potential application
in the fermentative processes can significantly enrich the industrial fermentation
products. Social insects have proven to be closely associated to the yeasts ecology.
The relationships between yeasts and insects represent a fundamental aspect for
understanding the ecological and evolutionary forces shaping their adaptation to
different niches. Studies on phylogenetic relationships of S. cerevisiae populations
showed genetic differences among strains isolated from gut and non-gut environments
(i.e., natural sources and fermentation). Recent evidences showed that insect’s gut is
a reservoir and an evolutionary niche for Saccharomyces, contributing to its survival
and evolution, favoring its dispersion, mating and improving the inter-specific hybrids
production during hibernation. Here, we discuss the potential use of social insects for
production of a wide range of hybrid yeasts from environmental Saccharomyces isolates
suitable for industrial and biotechnological applications.

Keywords: Saccharomyces cerevisiae, social insects, yeast–insect association, hybrids, wine, beer,
biotechnological application, ecology

HISTORY OF FERMENTATION AND YEAST DOMESTICATION

Many species of Saccharomycetes and non-Saccharomycetes are essential components of human
production of fermented food and beverages. Saccharomyces cerevisiae, known as the brewer’s or
bakery’s yeast, has been widely used for its fermentative capacity for thousands of years (Legras
et al., 2007) (Figure 1). The fermentation process has allowed preservation of perishable food
and made bioavailable nutrients and microelements, improving the quality of foods (Hatoum
et al., 2012). The oldest traces of yeast and fermented foods have been found in the tomb of U-j
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FIGURE 1 | History of fermentation and yeast domestication. S. cerevisiae and human activities related to the production of fermented products. In the timeline: on
the top of the dashed line, the oldest traces of S. cerevisiae across the human history and geography. Blue: fermented products; purple: wine; brown: bakery
products. Below the dashed line, events related to S. cerevisiae in the history of fermentation and scientific advancements.

of King/Jiahu in Henan in China (7,000 B.C.) (McGovern
et al., 2004), in Iran (6,000 B.C.) (Fatahi et al., 2003), in
wine jars of tomb of Scorpion King in Egypt (3,150 B.C.)
(Cavalieri et al., 2003), and in Mesopotamia (about 4,000 to
3,100 B.C.) (McGovern, 2003), demonstrating that fermentation
of cereals, honey and fruit, has been carried out since the dawn
of civilization (McGovern et al., 2004; Kupfer, 2013, 2015).
Successively, viticulture spread in Asia Minor and northern
Africa, and around 1,000 B.C. arrived in Mediterranean countries
(Legras et al., 2007). Beer production is supposed to be almost
as ancient as wine and came from the Middle East, subsequently
acquired by Germanic and Celtic populations around 1st century
A.C. (Legras et al., 2007).

The long lasting association of S. cerevisiae with fermentative
processes has led to propose the idea that its wide use caused
its domestication as adaptation to different fermented products
(Legras et al., 2007; Sicard and Legras, 2011). Yet the effect of
domestication on trait selection has been proven only in the
yeast strains used for the beer production (Piskur et al., 2006;
Berlowska et al., 2015; Gallone et al., 2016, 2018).

The art of fermentation had been developed empirically
from generation to generation. Scientific awareness related
to biochemical transformations during fermentation started
around the end of the 18th and in 19th century (Gay-
Lussac, 1815; Kützing, 1837; Cagniard-Latour, 1838). In 1883,
the first pure yeast culture was created by Emil Christian
Hansen for beer production (Figure 1). Hansen had been

brought to work from Copenhagen University to the Carlsberg’s
Laboratories by Jacobsen, the founder of the Carlsberg Empire,
to standardize the quality of beer by isolating and stabilizing
the microorganism used in the brewing process. Subsequently
in 1890, Hermann Mueller-Thurgau planned the process for
a better control and repeatability of wine fermentations with
starter cultures (Marsit and Dequin, 2015) (Figure 1). The rise
of the industry of fermented products and the application of
innovative biotechnological methods for selection of enhanced
yeast strains or production of hybrids suitable for different types
of fermentable substrates enables a much more defined control of
the fermentation process than the generally used strains.

SOCIAL INSECTS AND YEASTS OF
NATURAL ENVIRONMENTS

The ability of yeasts to metabolize sugars by producing ethanol
through anaerobic fermentation even when oxygen is available
(the Crabtree effect) (Chambers and Pretorius, 2010) and in
presence of high glucose concentrations (Otterstedt et al., 2004)
has enabled S. cerevisiae to gain an evolutionary advantage
over other microorganisms (Albergaria and Arneborg, 2016).
Ethanol production and acidification of the growth medium have
always kept bacteria and other aerobic molds under control. The
microbial communities, including yeasts, can play a key role in
triggering fermentation processes conferring a typical bouquet,
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thanks to volatile compounds (El-Sayed et al., 2005; Christiaens
et al., 2014). S. cerevisiae produces several aromatic esters: ethyl
acetate (varnish, nail polish, and fruity aroma), isoamyl acetate
(banana and pear), isobutyl acetate (banana), phenylethyl acetate
(fruity and flowery), ethyl hexanoate (apple, banana, and violets),
ethyl octanoate (pineapple and pear), and ethyl decanoate (floral)
(Ruiz et al., 2019).

The question of the natural environmental niche for
S. cerevisiae was debated for a long time (Goddard and Greig,
2015). Environmental S. cerevisiae strains are subjected to harsh
conditions and they developed survival strategies, which are
not retained when laboratory or industrial strains are cultured
under most favorable conditions. S. cerevisiae has been isolated
from different natural environments, such as oak trees (Sampaio
and Goncalves, 2008; Zhang et al., 2010; Hyma and Fay, 2013),
maize (Hayford and Jespersen, 1999; Halm et al., 2004), various
fermentations and other substrates, including soil (van der
Aa Kuhle et al., 2001; Oba et al., 2011; Dunn et al., 2012;
Kubo et al., 2014).

Saccharomyces cerevisiae has adapted itself and evolved to
different environmental niches (Goddard and Greig, 2015; Peter
et al., 2018). Evidences indicated that, although S. cerevisiae is
found in abundance in environments, such as wineries, it does
not originate from grapevines or grape berries. Mortimer and
Polsinelli (Mortimer and Polsinelli, 1999) demonstrated that
S. cerevisiae was found at very low frequency on unripe and intact
grape berries (0.05% on average), while during grape maturation
it was present on average with a frequency of 25% on broken
berries (Mortimer et al., 1994; Polsinelli et al., 1996; Mortimer
and Polsinelli, 1999). Thus, ripe and crushed grape berries (with
high concentration of fermentable sugars), represent a suitable
environment for S. cerevisiae. In a recent study (Taylor et al.,
2014) the rare presence of S. cerevisiae in intact grapes was
confirmed: one S. cerevisiae cell was found among 20,000 cells of
other fungi by metagenomic approach.

Researchers wondered how S. cerevisiae could be carried on
the grapes. The agents proposed to play a role in spreading
of microorganisms in the environment are animal vectors (e.g.,
insects and birds) (Mortimer and Polsinelli, 1999; Goddard
et al., 2010; Stefanini et al., 2012). Unlike bacteria and fungal
spores that can easily be dispersed by other means (e.g.,
air/wind) (Madden et al., 2018), yeast spores are not adapted
for wind-borne transmission. Many decades ago (Grace and
Collins, 1976), testing the dispersion rate of bacteria and yeasts
spores using a wind tunnel, demonstrated that the wind is

unable to disperse S. cerevisiae cells when these are adhered to
the leaf surface.

Evidences showed that insects have a mutualistic relationship
with yeasts (Belisle et al., 2012; Stefanini et al., 2012, 2016;
Madden et al., 2018) and play a key role for yeast dispersion
in natural environments. Saccharomyces spp., in particular
S. cerevisiae, were detected in different insects worldwide
(Stefanini et al., 2012; Buser et al., 2014; Jimenez et al., 2017;
Meriggi et al., 2020; YeastFinder1; Table 1).

Social insects represent a fulcrum in the yeast ecology and
evolution. At the same time, volatile compounds produced by
yeasts attract insects that preferentially foraged nectar sources,
and influence their behavior and physiology (Becher et al., 2012;
Babcock et al., 2017; Stefanini, 2018).

In our previous studies (Stefanini et al., 2012, 2016), we
demonstrated not only that wasps contribute to dispersion of
yeast strains into the environment, but also that they can host
yeasts in their gut, contributing to their survival and biodiversity.
Polistes dominula allows the transmission of yeasts to the progeny
(Stefanini et al., 2012), ensuring the presence of yeast in the
colony and in the foraging area. This make a flow of yeast cells
in the environments (in the vineyard, on grapes) from autumn
to spring. These observations allow to explain where yeasts can
reside during the winter and how reappear during the spring and
summer, an unsolved question up until few years ago.

In spite these evidences, specific factors that select natural
yeasts in the insect gut have not yet been found. Our recent
findings showed that yeast has evolved strategies to adapt to
the gastrointestinal tract of insects (Stefanini et al., 2012, 2016;
Ramazzotti et al., 2018). The wall of the ascospore is able to
resist to the insects gastric digestion, allowing survival within the
host gut (Coluccio et al., 2008; Stefanini et al., 2012, 2016). More
recently, we demonstrated that host’s gut, not only of insect but
also human, is a potential reservoir for yeasts (Ramazzotti et al.,
2018). Genetic and phenotypic differences, including peculiar
cell wall composition, different ability to sporulation and to
induce host immune response were discovered between strains
isolated from human and insect’s gut and non-gut environment,
suggesting the existence of gut-specific features that could
represent a selective advantage for survival and expansion in the
gut environment (Ramazzotti et al., 2018).

Based on our previous studies (Stefanini et al., 2012,
2016), the insect’s gut is an advantageous ecological niche for

1www.stefaninilab.com/tools/

TABLE 1 | Isolation of Saccharomyces spp. in the insects’ gut and geographical distribution.

Insect order Insect common name Yeast species Geographical distribution References

Hymenoptera Wasps
Honeybees

Saccharomyces cerevisiae
Saccharomyces ludwigii

North America, Brasil, Europe, and
New Zeland

Batra et al. (1973), Sandhu and Waraich
(1985), Stefanini et al. (2012), Jimenez
et al. (2017), and Meriggi et al. (2019)

Diptera Fruit flies
Flies

Saccharomyces cerevisiae
Saccharomyces ludwigii

New Zeland, Australia, Taiwan,
Seychelles Islands, Brasil, and Europe

Phaff and Knapp (1956), Kircher et al.
(1982), Broderick and Lemaitre (2012),
Buser et al. (2014), and Meriggi et al.
(2019)

Coleoptera Beeteals Saccharomyces cerevisiae North America, Asia, and Africa Suh et al. (2005) and Stefanini (2018)
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S. cerevisiae, favoring the intra− and inter−species mating
of yeast cells, and allowing increased fitness of hybrids, thus
representing an environment favoring the generation of yeast
genetic biodiversity.

The current used industrial strains represent a small fraction
of the natural biodiversity (Liti et al., 2009). The nature could
provide unknown strains with relevant characteristics that may
enhance the industrial fermentations. Specific strategies could
help to transfer these properties to industrial strains or create
novel strains with best performance for fermentation processes.
Here, we propose and discuss the use of wasp’s gut for accelerated
selection and production of hybrids suitable for different types of
fermentable substrates.

YEAST STRAINS AND FERMENTATION
INDUSTRY: HYBRIDS DO IT BETTER

Recent genomic studies provided a comprehensive overview of
the biodiversity of wild and industrial Saccharomyces strains
(Liti et al., 2009; Schacherer et al., 2009). Diversity within
S. cerevisiae population structure was at least in part associated
to its industrial application. According to the domestication
hypothesis, this long-term process has resulted in different strains
with specific characteristics suited for industrial fermentation,
clustering differently from wild populations (Fay and Benavides,
2005; Liti et al., 2009; Schacherer et al., 2009; Sicard and
Legras, 2011). Several studies reported genome-wide signatures
of clonal expansion of yeast strains, as well as convergent
evolution of industrially relevant traits in separate lineages (Liti
et al., 2009; Gallone et al., 2016; Parapouli et al., 2020). Yet
the only bona fide evidence for selection on genomic regions
associated to domestication was reported by Gallone et al. (2019)
that studied the whole-genome of more than 200 industrial
yeasts showing that about 25% consisted of interspecific hybrids
derived from S. cerevisiae, S. kudriavzevii, S. eubayanus, and
S. uvarum. Langdon et al. (2019) analyzed the genomes of 122
interspecies hybrids and introgressed strains in Saccharomyces
genus revealing three domesticated lineages, including wild
lineages from Europe and Northern continents of the world.
These evidences show that industrial yeasts are the result of
selection following clonal expansion and adaptation of specific
strains, shaped by genetic drift caused by bottlenecking.

Beer’s yeasts present the strongest and maybe only genetic
and phenotypic signatures of domestication (Gallone et al., 2019;
Langdon et al., 2019). The strong selective pressure imposed over
many generations allowed to obtain desirable phenotypes, but
has also dramatically affected the genomic structure and stability
of domesticated yeasts (Legras et al., 2007; Gallone et al., 2016,
2018). Hybrid strains are preferred in the industrial fermentation
because they show phenomena, such as “vigor of the hybrid”
that confer better fermentation capacity in terms of speed, use
of alternative sugar source and an enriched pattern of aromatic
compounds (Bellon et al., 2011; Piotrowski et al., 2012; Bellon
et al., 2013; Gamero et al., 2013; Snoek et al., 2015).

An example of yeast’s domestication trait is the ability
to ferment maltotriose. This trait evolved independently and

through different genetic pathways in the two main beer lineages,
such as ale (by the top-fermenting S. cerevisiae) and lager (by
the bottom – fermenter S. pastorianus, a interspecific hybrid
S. cerevisiae × S. eubayanus), suggesting strong selection pressure
(Gallone et al., 2016, 2018). S. pastorianus can ferment at
lower temperatures than S. cerevisiae (Dunn and Sherlock, 2008;
Libkind et al., 2011). This hybridization process has combined
the efficiency of S. cerevisiae in the sugar metabolism and
the cryoprotective capacities of S. eubayanus (Hebly et al.,
2015; Krogerus et al., 2015). The cryoprotective capacity was
demonstrated to be related with the mitochondrial genome
inheritance. S. eubayanus (Baker et al., 2019) and S. uvarum
(Li et al., 2019) mitochondrial genome provided with low-
temperature tolerance to the interspecies hybrids compared
when the same hybrids inherited the mitochondrial genome
of S. cerevisiae. In addition, hybrids between natural strains of
S. kudriavzevii × S. cerevisiae, selected to confer diverse flavors,
are used for the production of Trappist beers (a subgroup of
ale) (Gonzalez et al., 2008; Peris et al., 2018; Gallone et al., 2019;
Langdon et al., 2019).

On the other hand, several authors suggested that during
centuries of wine production, S. cerevisiae acquired remarkable
resistance/tolerance to high sugar concentrations and nitrogen
metabolic activity, through adaptive horizontal gene transfer and
copy number variations (Fay and Benavides, 2005; Aa et al.,
2006; Ezov et al., 2006; Ruderfer et al., 2006; Legras et al.,
2007; Stefanini and Cavalieri, 2018). These events potentially
conferred competitive advantages during must fermentation
(Almeida et al., 2017), and production of a wide spectrum
of aromatic profiles (González et al., 2007). Triple hybrid
S. cerevisiae × S. kudriavzevii × S. uvarum has shown to be
able to use fructose more efficiently than S. uvarum strain and
to restart fermentation (Christ et al., 2015), avoiding the upper
hand of bacteria and the consequent spoilage of the must.
Inactive or stuck fermentations are detrimental to wine/beer
production. These events have been reduced by the commercial
availability of selected yeast strains used as starter. However, this
practice limits the developing of wild yeasts during fermentation
(Parapouli et al., 2020). Camarasa et al. (2011) investigated
the fermentative efficiency of a set of S. cerevisiae strains,
observing that strains isolated from sugar-rich environments
were able to complete the fermentation process, while the
laboratory or environmental strains were unable. The extensive
genetic diversity of environmental S. cerevisiae isolates, in
particular of interspecific hybrids, could be an extremely
significant source of innovation for biotechnological applications
(Parapouli et al., 2020).

BIOTECHNOLOGICAL APPLICATIONS
OF INSECTS AS YEAST HYBRIDS’
PRODUCERS

The quest for increased and improved productivity and
adaptability to changing consumer preferences lead to the
study and development of industrial strains with novel and
desired properties.
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Non-genetically modified organisms (non-GMO) and GMO
techniques can be used for selection of yeast strains with suitable
traits and industrially relevant phenotypes. Jan Steensels et al.
(2014) extensively described these approaches, indicating their
advantages and limitations. Non-GMO techniques have been
developed to create performant yeast variants, that can be
freely used in industrial fermentations, without encounter any
problems with legislation and/or consumer acceptance.

Currently there are four main approaches for generate
artificial diversity in yeast strain using sexual hybridization:
(i) direct mating – crossing of two haploid cells or spores of
opposite mating types; (ii) rare mating – crossing of strains
without sporulation by occasional and rare homothallic mating-
type switch; (iii) mass mating – crossing of multiple parental
strains or a heterogeneous population of the same parental strain;
and (iv) genome shuffling of multiple strains. In addition, asexual
hybridization includes cytoduction (a method that transfer
cytoplasmically inherited traits) and protoplast fusion (asexually
merging of cells after cell wall distruption in osmotic medium).
Overall, the above mentioned approaches could have important
impact in the optimization of industrial processes, at technical
and economic level. Our previous studies demonstrated that
the insects’ gut represents the environment where S. cerevisiae
mates and interspecific hybrids arise spontaneously. After 2 and
4 months of hibernation in the wasp’s gut, S. paradoxus can
survive only in hybrid shape with S. cerevisiae. The rate of
inbreeding in S. cerevisiae spores increases up to ten times when
inoculated in the insect gut. The high frequency of outbreeding
coincides with the rates of mosaicism and genetic diversity in
yeast strains (Reuter et al., 2007).

In last years, the interest for insects for food and applicative
purposes is growing. The insects breeding is a sustainable method
with low energy impact and represents a great opportunity
for large-scale industrial applications. Social insects could play
a role in the evolution and genetic recombination of yeasts.
They seems to be a perfect niche in which the formation of
hybrids occurs naturally and much more efficiently than in any
other wild place, without employing artificial strategies of genetic
manipulation, as recently showed by Peris et al. (2020) making
synthetic hybrids by six yeast species. Wasps could provide yeast
communities with the level of genetic variation required in time
to adapt to a changing environment. Given the fast pace at which
climate change is affecting the man made, “ersatz” environment
where fermented products are produced, maintaining the genetic
variation force driven by the presence of insects could be very

important to support the adaptability of yeast to these changes.
Considering that many yeasts used in the fermentation industry
are interspecific hybrid strains, we could speculate that insects
have been the breeders of the past, having likely provided a great
deal to the evolution of brewing and wine making. The need
of product diversification present in the fermented beverages
field could look with great interest at the potential of using
wasps as breeding places to produce yeasts of biotechnological
interest, including yeasts producing beverages with a reduced
ethanol content.

CONCLUSION

Optimization of current strategies and novel technologies such as
next-generation sequencing, together with a better understanding
of complex phenotypes allows to create yeasts with more variants
and better adapted to the industrial goals. In the near future, the
fermented beverages industry could benefit significantly from the
possibility to breed insects massively and use them as a forge
for accelerated selection and production of hybrids suitable for
different types of fermentable substrates, further modeling these
according to biotechnological requirements.

We can conclude that the yeasts–insect association certainly
goes beyond the simple link between vectors and transported.
In a future perspective, a better understanding of the ecology
and relationships between insects and yeasts can play a key
role in producing fermented beverages meeting the needs of
tomorrow’s consumers.
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