About this Research Topic
The aim of this Research Topic is to publish papers that advance molecular simulation in the field of cement chemistry through the application of modern computational chemistry methods alone, or in conjunction with experimental techniques to discover the nanoscale nature of cementitious material and to guide nanotechnological applications in cement-based materials. The scope of this Research Topic includes (but is not limited to):
• Hydration reaction mechanisms at the molecular level: Dissolution of anhydrous clinker and growth of solid hydrous cement phases.
• Understanding the mechanical and fracture nature of cement-based materials at the nanoscale level.
• Migration process of water and ions in the nanometer channel of cement-based materials, and interactions between solution species and solid substrate.
• New computational chemistry methodologies and Force Field database development for cement-based materials (empirical force field, reactive force field, and coarse-grained force field).
• Molecular simulations of novel cementitious material to advance sustainability such as geopolymers, magnesium phosphate cement materials, etc.
• Mechanisms of waste/cement interactions (storage of radioactive and non-radioactive waste)
• Nanotechnology applications in modifying cement-hydrate properties (incorporation of polymers, carbon nanotubes, graphene oxides, etc. in the cement matrix).
Keywords: Molecular dynamics, reactive force field, coarse grain, Monte Carlo method, first principle, calcium silicate hydrate
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.