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Editorial on the Research Topic

Advances in Robots Trajectories Learning via Fast Neural Networks

Motion planning, also known as the navigation problem, is a term used in robotics to find a
sequence of valid configurations that moves the robot from the source to a destination. From
Figure 1, a robot trajectorymay be specified as a sequence of discrete points of a temporal sequence.
For this Research Topic, we hope to see focused manuscripts that use artificial intelligence for
robots to learn how to develop a trajectory specifically using fast neural networks. Fast neural
networks are algorithms which accelerate trajectory learning in robots. Some examples of fast
neural networks, and their variants, are long short-term memory, convolutional neural network,
recurrent neural network, deep deterministic policy gradient, cascade neural network, genetic
algorithm, machine learning, and fuzzy model. The goal of this Research Topic is to welcome
research on different types of robots that use fast neural networks to learn and retrieve trajectories in
order to perform a positioning task of a robot and contribute solutions to the navigation problems.
This Research Topic collected twelve high quality papers reporting the performance results related
to some of the previously mentioned emerging research directions how to realize fast neural
networks for robots trajectory learning.

The paper titled “Using Long Short-Term Memory for Building Outdoor Agricultural
Machinery” by Wu et al. describes an outdoor agricultural robot that uses Long Short-Term
Memory (LSTM). The key features of this innovation consider that the robot is portable and uses
green power to reduce installation cost, the system combines the current environment with weather
forecasts through LSTM to predict the correct timing for watering, and the robot is mainly for
outdoor applications.

The paper titled “Quantum-Based Creative Generation Method for a Dancing Robot” by Mei
et al. introduces a creative generation process model based on the quantum modeling simulation
method. This model is mainly aimed at generating the running trajectory of a dancing robot and
the execution plan of the dancing action. They use digital twin technology to establish the robot
trajectory and the dancemovements, they use regions with convolutional neural networks to extract
character bones and movement features to form a movement library, and the system then render
scenes that match the actions through generative adversarial networks.
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FIGURE 1 | A robot trajectory.

The paper titled “Bi-criteria Acceleration Level Obstacle
Avoidance of Redundant Manipulator” by Zhao et al. presents
a recurrent neural network based neural dynamic solver for the
improved obstacle-avoidance-scheme-based kinematic control
problem in acceleration level for a redundant robot manipulator.
The distance between the manipulator and an obstacle is
described as the point-to-point distance, and the collision
avoidance strategy is formulated as an inequality. From the
perspective of optimization, therefore, an acceleration level
quadratic programming (QP) problem is formulated to solve the
resultant QP minimization problem.

The paper titled “The Path Planning of Mobile Robot by
Neural Networks and Hierarchical Reinforcement Learning” by
Yu et al. proposes a Deep Deterministic Policy Gradient (DDPG)
as a hierarchical reinforcement learning of neural networks for
the path planning of mobile robots. Specifically, when compare
with Double Deep Q-Learning (DDQN), DDPG has a shorter
path planning time and a reduced number of path steps.

The paper titled “PD Control Compensation Based on a
Cascade Neural Network Applied to a Robot Manipulator” by
Soriano et al. introduces a nominal control law to achieve a
sub-optimal performance, and implements a scheme based on
a cascade neural network to act as a non-linear compensation
of a two-degree-of-freedom robot manipulator. The main
contributions of this work are neural compensation based
on a cascade neural networks and the function to update
the weights.

The paper titled “A Custom EOG-Based HMI Using Neural
Network Modeling to Real-Time for the Trajectory Tracking of a
Manipulator Robot” by Reynoso et al. considers the generation
of points in a Cartesian space (X, Y, Z) in order to control a
manipulator robot that follows a desired trajectory by means
of the movement of the user eyeball. For this purpose, a
multilayer neural network (MNN) is used to model the EOG
signal as a mathematical function, which is optimized using
genetic algorithms, and the machine learning is customized for
the classification in order to reduce the domain time of the system
without the need of a database.

The paper titled “CNN Based Detectors on Planetary
Environments: A Performance Evaluation” by Furlán et al.
presents a convolutional neural network algorithm and an
exploration robot for the detection of rocks in environments
similar to Mars. The methodology proposed here is based on the
use of a Single-Shot-Detector (SSD) network architecture, which
has been modified to detect rocks in planetary images.

The paper titled “Optimal UAV’s Deployment and Transmit
Power Design for Two Users Uplink NOMA Systems” by
Zhao describes a simplified setup with two ground users
to draw some insightful results in the UAV deployment
location. Authors formulate an optimization problem
employing the Karush-Kuhn-Tucher (KKT) conditions that
maximizes the sum throughput subject to each user transmit
power constraint.

The paper titled “Adoption of Machine Learning Algorithm-
Based Intelligent Basketball Training Robot in Athlete Injury
Prevention” by Xu and Tang proposes a machine learning-
based improved Q-Learning algorithm for the path planning
obstacle avoidance in an intelligent robot. First, combined with
the basketball motion trajectory model, the sport recognition
in basketball training was analyzed. Second, the mathematical
model of the basketball motion trajectory of the shooting motion
is established, and the factors affecting the shooting are analyzed.

The paper titled “Intelligent Badminton Training Robot in
Athlete Injury Prevention based on Machine Learning” by Xie
et al. presents a machine learning algorithm to explore the
role of intelligent badminton training robot (IBTR) in the
prevention of badminton player injuries. An IBTR is designed
from the perspectives of hardware and software systems, and the
movements of the athletes are recognized and analyzed with the
hidden Markov model (HMM) in the machine learning.

The paper titled “The Industrial Robot based on Machine
Vision and Artificial Intelligence in 5G Environment” by Jin et al.
introduces a visual recognition system of industrial robots based
on improved Fast R-CNN target detection model. The image
layers are convolved and pooled through the deep learningmodel
of artificial intelligence.

To end up, the paper titled “The Analysis of Trajectory
Control of Nonholonomic Mobile Robots based on Internet
of Things Target Image Enhancement Technology and
Backpropagation Neural Network” by Zhao proposes
the trajectory tracking and control of incomplete mobile
robots. First, the mathematical kinematics model of the
nonholonomic mobile robot is studied. Then, the improved
Backpropagation Neural Network (BPNN) based on combining
the fuzzy algorithm and the neural network is applied to the
robot controller.

We conclude this editorial by expressing our sincere gratitude
and appreciation to the Specialty Chief Editors of Frontier in
Neurorobotics, Alois C. Knoll and Florian Röhrbein, for their
great support throughout the compilation of this Research Topic,
for their guidance when proposing this Research Topic. Last
but not least, we thank the authors for their contributions to
this Research Topic and to all reviewers for their voluntary
contribution in the peer-review process to maintain a high
standard of our Research Topic.
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Today, climate change has caused a decrease in agricultural output or overall yields that

are not as expected; however, with the ongoing population explosion, many undeveloped

countries have transformed into emerging countries and have transformed farmland to

be used in other types of applications. The resulting decline in agricultural output further

increases the severity of the food crisis. In this context, this study proposes an outdoor

agricultural robot that uses Long Short-Term Memory (LSTM). The key features of this

innovation include: (1) the robot is portable, and it uses green power to reduce installation

cost, (2) the system combines the current environment with weather forecasts through

LSTM to predict the correct timing for watering, (3) detecting the environment and

utilizing information from weather forecasts can help the system to ensure that growing

conditions are suitable for the crops, and (4) the robot is mainly for outdoor applications

because such farms lack sufficient electricity and water resources, which makes the

robot critical for environmental control and resource allocation. The experimental results

indicate that the robot developed in this study can detect the environment effectively

to control electricity and water resources. Additionally, because the system is planned

to increase agricultural output significantly, the study predicts the variables through

multivariate LSTM, which controls the power supply from the solar power system.

Keywords: artificial intelligence, robot, deep learning, intelligent agriculture, automation equipment, long short-

term memory

1. INTRODUCTION

The world is currently facing energy and food crises; moreover, many countries are transforming
farmland into industrial land for related usage because they are transforming from being
undeveloped to being emerging countries. All of these factors have reduced agricultural output
tremendously. The literature (Liu et al., 2018) has mentioned that rapid economic development
and urbanization are consuming the resources of the planet extremely rapidly and that, especially
due to the impact of climate change, the yields of many crops are declining or are not as expected.
Therefore, the huge challenge arises of rethinking our exploitation of food and energy. On the other
hand, traditional agriculture requires labor and machinery to irrigate and harvest; yet, with the
impact of an aging agricultural labor population, a large amount of farmland is deserted or fallow.
Consequently, agriculture needs to be upgraded to intelligent production, which could increase

7
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output while reducing labor because farmers would then
only need to calibrate the smart equipment and set
relevant parameters.

Precision Agriculture (PA) works to detect relevant
environmental information around the farmland to enhance
automated production; the PA system controls automated
machinery and the related irrigation equipment while farmers
will only need to calibrate the equipment and confirm
correctness; this will reduce agricultural labor and ensure a
good crop-growing environment Narvaez et al. (2017). Hu et al.
(2019) utilized an intelligent agriculture system to handle the
tasks of irrigation and production, as well as doing the watering
work according to the environmental conditions of the farmland
to manage the growing environment. In another study Ayaz et al.
(2019), the farmland environment was detected via the Internet
of Things (IoT), which supports equipment, such as lighting
and watering equipment, to make sure that the crops grow in a
suitable environment. Furthermore, the article pointed out that
for farmland in extreme climate areas, there are difficulties over
a huge amount of farmland in planting proper crops to grow in
such an environment; thus, the development of smart agriculture
can re-analyze farmland environments to find suitable species of
crops for the farmers. Finally, a study by Chebrolu et al. (2018)
used unmanned aerial vehicles to check and monitor farms; these
can detect the environment and ease the agricultural labor issue.

Based on the aforementioned issues, this study offers an
approach for building outdoor agricultural machinery that
utilizes LSTM. Additionally, because most farmland is located
beyond the reach of power equipment or where there are not
enough water resources, this study proposes a system that uses
solar power as the key electricity supply andmakes the equipment
movable. Due to the limited electricity offered by the solar
power system, the approach detects the equipment and conducts
watering tasks by LSTM to avoid energy waste, the detectors used
in the experiment monitor the soil temperature and humidity,
pH value, and sunlight conditions in the farmland. The study
also collects forecast information, such as temperature and the
Probability of Precipitation, from the Central Weather Bureau
and uses this to predict soil humidity and sunlight conditions
via LSTM. The robot will forecast the best time to activate the
watering equipment, and when the prediction result exceeds
the set suitable conditions, the server will notify the farmer.
This approach is an application designed for outdoor usage
and is shown to be practical on a farm. The experimental
result proves that the proposed method is feasible; moreover,
the equipment presented is cost-efficient, which makes it well-
suited to widespread distribution and massive adoption for
general applications.

2. RELATED WORK

To date, many studies have offered intelligent agriculture-based
approaches for improving the quality of crops. A study by Liu
et al. (2018) mainly used natural resources to support farm
planting; for example, it used overproduced energy to provide
watering and lighting or utilized solar energy and rainwater to

take care of the farm. Using natural resources can significantly
reduce resource waste and achieve eco-friendliness. Narvaez et al.
(2017) used spectral data to monitor the growing conditions of
crops and decide whether to trim or spray pesticides. Hu et al.
(2019) utilized wireless sensor networks to transfer detector data
and reduce installation cost as well as using the network to lower
the energy consumption of the detectors. Ayaz et al. (2019),
meanwhile, detailed the structures of intelligent agriculture
performed through IoT and cloud networks. IoT equipment
supports the delivery of the environmental data collected to a
cloud server, which enables agricultural experts to analyze data
for decision-making. Two other studies, Chebrolu et al. (2018)
and Farooq et al. (2019) utilized unmanned aerial vehicles to
monitor farmland regularly to detect the growing conditions of
the crops; additionally, Shadrin et al. (2019) used a Convolutional
Neural Network to judge whether the growing conditions had
reached expectations, and Bayrakdar (2019) combined detectors
with wireless sensor networks to check whether there were holes
underneath the farmland and used sonar to determine whether
the area was suffering from plant diseases and pest damage.
The method presented in this article can detect the growing
environment of the crop regularly to ensure the quality of
the crop.

Because Internet equipment cannot be robustly installed in
outdoor farms, it is better to develop a Wi-Fi system to transmit
the data and ensure delivery quality. A study by Chen and
Yang (2019) offers an intelligent agriculture method to improve
growing for farmers significantly by using relevant data to build
decision systems or Knowledge-Based Systems. Lozoya et al.
(2016) constructed modular agriculture that helps diverse farms
to adjust system modules based on their requirements, which
ensures an optimal automated process. Herrera et al. (2016)
combine four-wheeled vehicles with sensors to tour around the
farm; with fixed routes, the vehicle would collect the growth
information of each selected part and transfer the data back for
analysis. The method presented by Murugan et al. (2017) can
be used in latifundios (large farms) because it uses aerial shots
to identify crop maturity; this method can substantially reduce
agricultural labor pressures. Another study, Elijah et al. (2018)
developed a wireless sensor network system for farmland that
can collect farm information effectively; with data analytics, the
system could activate the equipment rapidly and ensure that
crops were growing under the most suitable environment. In
Liu et al. (2019) study combining IoT and cloud computing to
record the relevant environmental factors of the farm, the crop
quality was increased because the system protected the farm from
pollution. Lin et al. (2020) used R-CNN to conduct pest control
and detection; instead, this study suggests using a 4G network to
improve transmission quality.

Palangi et al. (2016) searched keywords online through LSTM;
due to the massive amount of data on the Internet, LSTM
helps find the required files rapidly by utilizing the concept of
keywords. Wang et al. (2018) examined the production yield
of wafers via bilateral LSTM. Park et al. (2018) mainly used
LSTM to develop keyword recognition in speech recognition for
drivers; because the level of device computation available in a
car is usually low, keywords are required to boost searches to

Frontiers in Neurorobotics | www.frontiersin.org 2 May 2020 | Volume 14 | Article 278

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wu et al. Using LSTM for Agricultural Machinery

fulfill the needs of drivers. Zhou et al. (2019) presented a system
that predicts sunlight and estimates the electricity produced by
solar power systems through LSTM, which becomes the basis
of solar power equipment management. Finally, Zhang et al.
(2019) utilized LSTM in edge computing; when video files are
too large, an LSTM technique helps predict the buffer memory
for each edge computing, node. Guardo et al. (2018) mainly
used Fog Computing to reduce the workload of centralized
servers. Additionally, Arachchi et al. (2019) scheduled video
time arrangements via LSTM, which is beneficial for composing
various videos chronologically. The current article uses the LSTM
technique to detect the experimental environment and effectively
control water resources and electrical power conditions.

In this study, outdoor agricultural machinery was built that
has a solar power system to provide electricity because outdoor
farms usually lack sufficient electricity and water resources. Due
to limited solar power energy, for achieving the performance
of monitoring the farm environment and maintaining good
growing conditions, the experiment used LSTM to monitor
the environment and control the watering system. It combined
information on sunlight, soil humidity, temperature, and weather
forecasts from the Central Weather Bureau with LSTM to
set system schedules and avoid wastage of electricity and
water resources.

3. THE PROPOSED SCHEME

This chapter introduces the following details: the system model;
signal delivery and control; data normalization; long short-term
memory prediction.

3.1. System Model
The article proposes the system model shown in Figure 1.
The equipment includes lighting and sensors that detect the
barometric pressure, soil temperature and humidity, and pH
value in an outdoor farm, and also a sprinkler motor. We
attached an IoT development board to the machinery (I0) that
uses stored electricity from the solar power system; the sensors
on the equipment deliver the collected data to the server (S0)
via 4G networks. Furthermore, the server updates the weather
forecast data through a web crawler and combines this with the

FIGURE 1 | System model.

sensor data to conduct LSTM analysis. The LSTM system will
set watering schedules based on the analytic results to ensure
that the growing environment provides a suitable humidity
and temperature for the crops. On the other hand, outdoor
farmland usually lacks sufficient water resources and electricity;
in particular, the installation cost of electrical equipment is a
huge burden for farmers. Therefore, this research presents a
solar power system for reducing the cost stress; additionally,
the designed equipment is movable to any location on the
farm, which also reduces the workload of farmers. The system
uses LSTM to predict soil conditions and weather changes, the
equipment sets the schedules for activating the machinery, and
the design saves electricity to avoid waste; all of these improve
the growing environment for crops.

The research developed an outdoor robot for detecting
environmental conditions and controlling the watering system.
The robot transmits the data to the server for further analysis,
and the server can use environmental factors and weather
forecasts to predict the environmental conditions. Different kinds
of crops grow under different conditions; hence, through the
analysis, the result can help to judge whether the environmental
conditions are beyond expectations. If the growing conditions
are not suitable for growing the crop, the system will warn the
farmers. Moreover, because weather data exhibits linear growth,
the study applies LSTM to calculate environmental variables so
as to predict the environmental factors and conditions of the
farmland to increase output.

3.2. Signal Delivery and Control
This study uses Extensible Messaging and Presence Protocol
(XMPP) to collect information from the sensors on the machine
and uses LSTM to predict soil temperature and humidity so as to
judge the activation time of the equipment. As shown in Figure 2,
the machinery and the IoT development board will maintain a
low power consumption status. When the LSTM system suggests
starting the equipment, the server will send a signal to the IoT
development board to activate the sprinkler system and the
sensor. When the task is finished, the IoT development board
will also send a signal back to the server and provide the sensor

FIGURE 2 | Signal delivery and control model.
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data for analysis. Due to the low power consumption, the IoT
development board can avoid wastage of electricity; hence, when
the server receives the sensor data, it will further conduct LSTM
prediction analysis and set the next schedule for activation.

3.3. Data Normalization
The machinery with sensors can detect soil temperature and
humidity, sunlight, and related information, which will be
delivered to the server through 4G networks. Nonetheless, packet
loss might occasionally occur, causing data error, and insects
might also cause the sensors to detect incorrect information; thus,
it is necessary to judge the data correctness. Firstly, to check
the correctness of the detected temperature, we input the lowest
and highest temperatures from the Central Weather Bureau and
check the current time to judge the rationality. The algorithm is
shown below:

Algorithm 1: Temperature detection algorithm.

//If the value of the current temperature minus the estimated
temperature is smaller than a set threshold.
if (|Tect − PTes|) < Threshold then

Correct
else

Re-detect
end if

Tect means the current soil temperature detected from the
sensor, and PTes is the temperature loaded from the Central
Weather Bureau. If the temperature between 06:00 and 17:00 is
set to be the highest temperature, the temperature during the rest
of the day will be set to be the lowest temperature. The threshold
presents the defined value; the detected temperature is correct if
the difference is smaller than the threshold; otherwise, the system
will re-detect the temperature.

Regarding humidity, the study uses the evaporation equation
presented by Priestley (1970) to judge whether the soil
evaporation fulfills the prediction. Moreover, we combine
weather forecast data to check whether it will rain. The
evaporation equation is ET0 = αS (Rn− G) / (s+ γ ), where Rn
is the net radiation, α is the equilibrium evaporation parameter,
G is the sensible heat flux, and γ is the humidity. A large
evaporation value means that the soil humidity is low, and the
condition is normal. The study uses weather forecast information
to judge whether the sensor is detecting correctly and further
improve the correctness of LSTM.

3.4. Long Short-Term Memory Prediction
The study conducts Multivariate LSTM to manage the watering
and detect the farm conditions. Firstly, the experiment judges
whether the targeted crop can grow under the weather conditions
as forecasted; if not (for example, when the temperature is too low
or too high or when it will rain heavily), the system will send an
alarm to notify the farmer. The equation is shown below:

Algorithm 2: Farm Environmental Detection algorithm.

//If the temperature is suitable for growing the targeted crop.
if

(

ATe < PTeh and ATe > PTel
)

then

Normal
if

(

QPF < Threshold
)

then

Normal
else

Alarm
end if

end if

The aforementioned equation checks whether the growing
temperature (ATe) is set between the predicted highest (PTeh)
and lowest temperatures (PTel); if not, the system will notify the
farmer to take care of the issue. On the other hand, the system
will also confirm whether the Quantitative Precipitation Forecast
(QDF) is higher than the threshold; if so, this means that the rain
will be too heavy and will damage the crops.

The study utilizes soil humidity, temperature, the weather
forecasted temperature, UV index, and QDF, and the calculated
evaporation to make a watering prediction. Firstly, the
evaporation equation, ET0 = αS (Rn− G) / (s+ γ ), is used
to calculate the evaporation of the soil. The second step is to
calculate the temperature curve. Because time and temperature
are proportional, assuming that 12:00 to 14:00 is the period of
the highest temperature, the percentage for that period is set
as 100%; as the temperature decreases from 14:00 to 17:00, the
percentages would be 70, 40, and 10%, and as the temperature
increases between 07:00 and 12:00, the percentages would be
20, 40, 60, 80, and 100%. Therefore, the slopes of the current
and predicted temperatures can be calculated from the equation
m = 1y/1x, where 1y is the time percentage of the current
temperature and 1x is the predicted time percentage of the
estimated temperature. After the calculation, using Multivariate
LSTM for further prediction, the variable is calculated by the
equation xi = {Huct ,m,QDF,ET0,UV}, where Huct is the soil
humidity and UV is the UV index. xi is entered to conduct
the LSTM analysis, and tanh is using to transfer the output
value into a number between 1 and −1, as shown in Figure 3.
According to the predicted time and the output value, the
system will judge whether it is necessary to activate the sprinkler
and environmental detection equipment. The system offered
in this research can reduce electricity waste significantly and
control water resources effectively to ensure a good growing
environment for the crops. Building outdoor agricultural
machinery based on LSTM enables farmers to set the desired
watering system and environmental management parameters
according to different crops, which can improve agricultural
output and reduce agricultural labor use.

4. PERFORMANCE

The performance of the system is described in sections
Experiment Results of the System’s Functions and LSTM
Experimental Results.
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4.1. Experiment Results of the System’s
Functions
The experimental area used in this research is an outdoor farm, as
shown in Figure 4. The experiment uses a solar power system to
store energy because there is no other source of electricity at the
farm. The area is 0.2 hectares, and the equipment used is pictured
in Figure 5; the machinery can be flexibly moved around the
farmland, and the hardware and software equipped on the system
are listed in Table 1. The machinery connects with the sensors
and the development board through IoT; there are various types
of sensors, such as barometric pressure and light sensors on the

FIGURE 3 | LSTM diagram.

FIGURE 4 | Experimental area.

machinery, as well as a mini pumping motor, a 3-in-1 soil tester,
and a solar power system.We set up a remote server that not only
collects sensor data but also conducts LSTM analysis; the server
further transfers the analytic results into readable signals for
judging whether the system should activate the sprinkler system
and initiate the environmental monitor.

4.2. LSTM Experimental Results
The study utilized LSTM to monitor the farm and select the
timing for watering. Figure 6 shows the curves from the XMPP
server and Figure 7 pictures the activation of the sprinkler system
after the signals have been judged. The data from the Central
Weather Bureau and the detected data from the environment
were combined for a further prediction. The result is shown in
Figure 8, where the blue line is the actual data, the orange line is
the prediction result after training, and the green line is the result
of the test data. In Figure 8, the number of samples is shown
in the X-axis, while the Y-axis represents the soil humidity. The
experimental results prove that the prediction approach offered
in this study is extremely accurate. The LSTM prediction value is
between 0 and 1, as Figure 9 shows; the blue line represents the
training sample, the orange line shows the test sample, the X-axis
is the number of samples, and the Y-axis is the prediction value.
The threshold value is set to 0.4, and the sprinkler system will be
activated when the value is lower than 0.4.

FIGURE 5 | Experimental hardware.

TABLE 1 | The software and hardware the proposed system.

Hardware Software

IoT Development Board XMPP Platform

Barometric Pressure Sensor Python

Light Sensor MySQL Server

Mini Pumping Motor Windows 10

3-in-1 Soil Tester

Solar Power System
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FIGURE 6 | XMPP platform.

FIGURE 7 | Activation of the sprinkler systems.

5. CONCLUSIONS

This study built outdoor agricultural machinery incorporating
LSTM; the system can carry out watering automatically and

FIGURE 8 | Prediction result of humidity.

FIGURE 9 | Prediction result of LSTM.
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monitor the farm conditions, fulfilling the purpose of an
intelligent machine. The approach presented in this study can
achieve the purpose of green energy effectively and reduce
the waste of water resources. Through the implementation of
LSTM, the system can analyze and predict the best timing for
watering, which can avoid wastage of stored solar power and
ensure an optimal growth environment for crops. Furthermore,
the method can resolve the problem of an aging agricultural
labor population and improve production output. The study
successfully accomplishes the following functions. (1) The LSTM
technique can predict the temperature and humidity of the soil
precisely. (2) The suggested approach uses a solar power system
and stores the electricity in a battery to reduce the workload of the
power installation on the farm. (3) Through an IoT platform, the
presented method is capable of predicting the best time to initiate
the watering function and control water resources effectively.
(4) The system presented in this study is mainly for outdoor
application; the experimental results have proved that practical
usage of the equipment is feasible. The experimental results
show that the proposed approach was practical under testing;
the LSTM experimental data demonstrated decent prediction

performance. In the future, the authors aim to conduct a further
study on monitoring multiple farms with a single server, which is
expected to reduce the installation costs for farmers and enable
the commercialization of the relevant equipment.
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Although different physiological signals, such as electrooculography (EOG) have been

widely used in the control of assistance systems for people with disabilities, customizing

the signal classification system remains a challenge. In most interfaces, the user must

adapt to the classification parameters, although ideally the systems must adapt to the

user parameters. Therefore, in this work the use of a multilayer neural network (MNN) to

model the EOG signal as a mathematical function is presented, which is optimized using

genetic algorithms, in order to obtain the maximum and minimum amplitude threshold

of the EOG signal of each person to calibrate the designed interface. The problem of the

variation of the voltage threshold of the physiological signals is addressed by means of

an intelligent calibration performed every 3min; if an assistance system is not calibrated,

it loses functionality. Artificial intelligence techniques, such as machine learning and fuzzy

logic are used for classification of the EOG signal, but they need calibration parameters

that are obtained through databases generated through prior user training, depending

on the effectiveness of the algorithm, the learning curve, and the response time of the

system. In this work, by optimizing the parameters of the EOG signal, the classification

is customized and the domain time of the system is reduced without the need for a

database and the training time of the user is minimized, significantly reducing the time of

the learning curve. The results are implemented in an HMI for the generation of points in

a Cartesian space (X,Y ,Z) in order to control a manipulator robot that follows a desired

trajectory by means of the movement of the user’s eyeball.

Keywords: EOG, HMI, customization calibration, MNN, optimization, robots trajectories

INTRODUCTION

The development of human–machine Interfaces (HMI) has been on the rise due to the
incorporation of physiological signals as inputs to the control algorithms. Currently, robots are
collaborative and interact with humans to improve their quality of life, which has allowed the
development of intuitive interfaces for human–robot collaboration, in tasks, such as assistance
and robotic rehabilitation. One of the study objectives in these systems is shared control, where
a robotic system and human control the same body, tool, mechanism, etc. Shared control has
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originated in research fields, such as human–robot co-adaptation,
where the two agents can benefit by each other’s skills or must
adapt to the other’s behavior, to achieve the execution of effective
cooperative tasks.

In this paper, it was considered that the human and individual
characteristics affect the execution of the task that the HMI
perform; these parameters are highly variable, and it is required to
analyze and reduce the effects on the efficiency of the system. It is
difficult to determine the level of adaptability or personalization
of an HMI; however, calibrating a system looking for it to
adapt to the personal parameters of a user has been shown to
decrease the learning curve, improving the level of acceptance
of inexperienced users. The proposed HMI will be implemented
in the future to assist people with severe disabilities, where a
manipulator robot will be adapted to a wheelchair, so that the user
can control the movements of the robot by means of orientation
of the gaze with the ability of taking objects and increasing
their autonomy.

The work presented proposes to develop an intelligent
calibration system to personalize the use of an HMI, where using
EOG signals controls the trajectory tracking of a manipulator
robot in its workspace. To achieve this, a fuzzy inference
system is calibrated using the EOG signal of each user. The
individual EOG signal was modeled by means of an MNN,
implementing descending backpropagation using the Widrow–
Hoff technique, obtaining a mathematical function that describes
the waveform of the signal discrete EOG. The objective function
obtained by means of the neural network is optimized using
genetic algorithms to obtain the maximum and minimum
voltage threshold of the EOG signal corresponding to each
person. Once the variability range is obtained by optimizing the
EOG signal, the fuzzy classifier is calibrated for the generation
of coordinates in the Cartesian space (X, Y , Z). Gaussian
membership functions define position in space by detecting EOG
signal voltage thresholds; each threshold corresponds to a point
in space defined precisely by calibration for each individual. In
this case, a database is not required for the system to work; in
most interfaces, they have a set of signals stored, and through
training the user it is expected to reach the expected values, which
only then does the system respond.

In section Overview of Related Work of this document, a
summary of related works is presented; section Materials and
Methods provides an overview of the neural network for non-
linear regression of discrete EOG signal samples and details of the
method used to implement the calibration system using genetic
algorithms. The experimental procedure and analysis of results
are presented in section Experiments and Results Analysis, and
section Conclusion concludes the current work and discusses the
advantages and limitations of the proposed system.

OVERVIEW OF RELATED WORK

People with severe disabilities cannotmove their lower and upper
extremities, so designing interfaces with custom features has
become a technological challenge (Lum et al., 2012); for this
reason, controllers have been implemented that can adapt to the

needs of the user using haptic algorithms, multimodal human–
machine interfaces (mHMI) and incorporation of artificial
intelligence algorithms (Dipietro et al., 2005) among others. In
Gopinathan et al. (2017), a study is presented that describes
the physical human–robot interaction (pHRI) using a custom
rigidity control system of a 7-DOF KUKA industrial robot; the
system is calibrated using a force profile obtained through each
user and validates their performance by 49 participants using a
heuristic control. A similar control system is applied in Buchli
et al. (2011), where the level of force of each user is adapted
to the control of a 3-DOF robot by haptics and is adjusted to
the biomechanics of the user, in order to work on cooperative
environments with humans (Gopinathan et al., 2017).

To customize assistive systems, Brain–Computer Interface
(BCI) systems have also been developed in combination with
electroencephalography (EEG), electromyography (EMG), and
electrooculography (EOG) signals (Ang et al., 2015). In Zhang
et al. (2019), a multimodal system (mHMI) is presented that
can achieve a classification accuracy of physiological signals with
an average of 93.83%, which is equivalent to a control speed of
17 actions per minute; the disadvantage that it presents is the
long training time and the excessive use of sensors placed on
the user. In Rozo et al. (2015), Gaussian functions are used to
classify and learn cooperative human–robot skills in the context
of object transport. In Medina et al. (2011), a method is proposed
usingMarkov models to increase the experience of a manipulator
robot in collaborative tasks with humans; the control adapts
and improves cooperation through user speech commands and
repetitive haptic training tasks.

The disadvantages of handling EEG for the development of
Brain–Computer Interfaces (BCI) are described in Xiao and
Ding (2013), since EEG signals do not have sufficient resolution
because they attenuate during transmission; however, detection
is reported in the EEG bandwidth using artificial intelligence
that decodes individual finger movements for the control of
prostheses. Advanced methods have been used for the detection,
processing, and classification of EMG signals generated by
muscle movements. In Gray et al. (2012), a comprehensive
review was conducted on the changes that occur in the muscle
after clinical alterations and how it affects the characteristics
of the EMG signal, emphasizing the adaptability of the signal
classification due to muscle injuries.

In the case of wheelchair control in Djeha et al. (2017), they
use wavelet transform and an MNN for the classification of EOG
and EEG signals, obtaining a classification accuracy rate of 93%;
the classifier works in a control system for a virtual wheelchair.
In Kumar et al. (2018), a review of human–computer interface
systems based on EOG is presented; the work of 41 authors
is explained, where the interfaces used implement artificial
intelligence algorithms for signal classification. To calibrate the
classifier, they use databases that contain an average of the signal
threshold; they are characterized by implementing pattern search
algorithms so that the machines designed to provide assistance
have a response.

The HMI system presented in this paper has the property
of being calibrated in real time, so it can be adapted to an
EOG signal of any user, without the need for a database, unlike
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most of the systems reported in Kumar et al. (2018). The HMI
works with any inexperienced user because of its capability of
adapting to personal characteristics after a brief training. This is
mainly due to the use of a calibration system designed from a
multilayer neural network (MNN) to model the EOG signal as
a mathematical function. The proposal in this work is that the
user is not the one that adapts to previously acquired signals to
generate a response in the system and that the system is the one
that adapts to personal parameters of any user with severe motor
disability. The preliminary results, obtained with 60 different
users without disabilities in order to measure the adaptability of
the system, showed that it was possible to generate trajectories to
control a robot by means of ocular commands.

MATERIALS AND METHODS

The developed system is presented in Figure 1; there is an analog
acquisition stage of the EOG signal and two parallel processing
of the signal. One is for classification, where the EOG signal is
divided by means of voltage thresholds, and a fuzzy inference
system is implemented to establish the relationship between
the EOG signal and the workspace of an assistance robot. The
classification using fuzzy logic requires a working threshold to
generate points in the Cartesian space; these data represent the
desired position to which a manipulating robot must arrive.

The other is for calibration of the fuzzy inference system.
The proposed method is to obtain a mathematical model that
describes the behavior of the EOG signal for each individual,
and an algorithm that detects the optimal thresholds with
which the classifier can be modified and adapted to any user.
Customizing the control of the assistance system reduces time
training necessary for mastering it. Thus, the objective function
for each individual is obtained by optimizing the range of
signal variability. These data are the input to the fuzzy classifier,
adapting the interface to the personal properties of each user.

The proposed methodology for the development of the
HMI consists of parallel processing, while acquisition digital
processing and classification by means of fuzzy inference is
carried out with a time from the generation of the eye movement
to the articular movement of the robot of 1.1 s. Calibration
consisting of modeling and optimization of the EOG signal is
carried out every 3min.When the optimal range data is obtained,
it is transmitted through a virtual port, communicating the
optimization results with the fuzzy classifier. So the range of the
classifier is constantly updating, adapting to changes in either the
signal, due to user changes, or in the variability of the voltage
threshold due to fatigue and clinical alterations.

EOG Acquisition
By generating an eye movement through the direct central
position toward the periphery, the retina approaches an electrode
while the cornea approaches the electrode on the opposite
side. This change in the orientation of the dipole is reflected
as a change in the amplitude and polarity of the EOG signal
(Figure 2) so that by registering these changes the movement
of the eyeball can be determined. EOG signals have been
determined to show amplitudes ranging from 5 to 20 µV per

degree of displacement, with a bandwidth between 0 and 50Hz
(Lu et al., 2018).

The EOG signal is obtained using two pairs of electrodes
connected near the eyes, plus a reference electrode on the
forehead and another to eliminate muscle noise in the earlobe,
thus generating two channels that record horizontal movement
and vertical of the eyeball. In total, six silver/silver chloride
electrodes are connected (Ag/AgCl), as presented in Figure 3A.

For the acquisition of the reliable EOG signal, an analog
processing stage was designed, which includes amplification,
isolation, and filtering for each channel (horizontal and vertical)
and was complemented by a digital filtering module. The pre-
amplification and amplification stage has a 100-dB CMRR,
an analog low-pass filter in Butterworth configuration of 40
dB/decade, and a capacitive isolation system for user safety. The
designed acquisition system is embedded on a PCB board placed
in portable glasses (Figure 3B), to provide security and comfort
to the user.

To remove the D.C. level, an integrator circuit is used for
feedback of the EOG signal at the reference terminal of the
instrumentation amplifier. It acts as a high-pass filter preventing
instrumentation amplifiers from being saturated. The muscle
signal is considered as noise, and it does not allow obtaining a
good interpretation of the EOG signal. To eliminate it, the output
of the common-mode circuit of the instrumentation amplifier is
connected to the earlobe through an electrode for return noise of
the muscle signal at the input of the amplifier, thus subtracting
the noise signal of the EOG signal affected by noise. Additionally,
the electrode placed on the user’s forehead is connected to the
isolated ground of the circuit. Through these connections, the
D.C. component, generated by involuntary movements and poor
electrode connection, is eliminated.

In summary, each type of noise is eliminated and the additive
noise is eliminated by means of an integrating circuit that works
as a 0.1-Hz high-pass filter that eliminates the DC component
that is added to the EOG signal. Impulsive noise caused bymuscle
movement is eliminated by a common rejection mode circuit
connected to the earlobe that is fed back to the instrumentation
amplifier in its differential configuration. Due to this property,
this noise is subtracted and eliminated. The multiplicative noise
is eliminated by means of a second-order digital Notch filter
tunable in real time on the device’s test platform.

For digital processing of the obtained EOG signal, the
horizontal and vertical channels were connected to the
differential voltage input of a DAQ6009 acquisition card that
communicates with a PC through a USB port of a 25-s sample.
The DAQ6009 card is used for the acquisition of the EOG
signal because it has a maximum input frequency of 5 MHz; the
electrooculography has a bandwidth of DC at 50Hz, so for the
purposes of this work the sample frequency is ideal, complying
with the Nyquist sampling theorem. This theorem indicates that
the exact reconstruction of a continuous periodic signal from its
samples is mathematically possible if the signal is band-limited
and the sampling rate is more than double its bandwidth.

In Figure 4A, the waveform of the EOG signal of a user
is observed when the movement of the gaze to the right
and left is performed. This acquisition is done in 25-s time
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FIGURE 1 | HMI system.

windows generating 48 discrete samples. This signal is digitized
by convolution as a function of time with a Dirac pulse train
at a frequency of 100Hz (Equation 1), and the result of signal
sampling is presented in Figure 4B.

xp (t) =
∑

x[nT]δ(t − nT) (1)

The EOG signal (Figure 4A) is the input to the fuzzy classifier
to generate points according to the workspace of an assistance

system that can be a mobile robot, a robotic arm, or a cursor on
the screen.

The nature of the EOG signal behavior is non-linear, there is
no pattern, and thresholds vary from one individual to another;
if this signal is used as input to an HMI system, the classification
system must be calibrated for each user or recalibrated if there
is a disturbance in the environment. Assistive systems controlled

by physiological signals regularly use a database for the system

to generate a response to a particular signal; in this type of case,

the user must have a training that makes their eye movements
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FIGURE 2 | Retina–cornea action potential (Ding and Lv, 2020).

FIGURE 3 | (A) Placement of the electrodes. (B) Portable EOG signal acquisition and instrumentation system.

generate a signal similar to those stored in the database, thus
generating a longer response time in the system. In this case, a
database or previous training will not be necessary, because a
process of the discrete samples (Figure 4B) of the EOG signal
is performed in parallel, which are the input to the MNN
designed to perform the interpolation of the discrete data in
order to calibrate the system. The objective is to obtain the
maximum and minimum values of the voltage threshold; this
range is important because it delimits the operation of the fuzzy
inference system.

In the next section, the design of the intelligent calibration
system is explained first, followed by the operation of the fuzzy
inference system.

Intelligent Calibration System
Due to the need to determine the working threshold of the fuzzy
classifier for each person in this section, the modeling of the
EOG signal is presented, which allows obtaining the required
values of the optimal operating range of the fuzzy inference
system. First, the mathematical model of the signal is obtained by
means of an MNN; the result of this stage provides an objective
function. Then, using genetic algorithms, the voltage thresholds
were calculated which, without falling into local values, represent
the maximum and minimum values of the signal amplitude
when the user guides the gaze. Finally, the custom EOG signal
is classified based on its optimal range. This data is sent as the
user’s optimal thresholds.
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FIGURE 4 | (A) Signal waveform. (B) Discrete samples.

Multilayer Neural Network
The Widrow–Hoff learning is a training algorithm for an MNN,
with the objective of determining synaptic weights; polarization
for the classification of data is not linearly separable (An et al.,
2020). Given these characteristics, this algorithm was selected
for the training of the neural network developed to model the
EOG signal.

In Figure 5, a monolayer neural network is represented, where
the vector of the R inputs is p =

[

pT
]

, W =
[

WSR
T
]

is the

synaptic weight matrix, b =
[

bT
]

represents the polarization of

the S neurons, n =
[

nT
]

represents the net inputs of each of the

S neurons, and a =
[

aT
]

is the vector of the S outputs of the
neurons (An et al., 2020).

The output of the monolayer neural network is represented in
Equation (2):

a = f
(

Wp+ b
)

(2)
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FIGURE 5 | Representation of a monolayer neural network.

FIGURE 6 | MNN for the calculation of the objective function that describes the behavior of the EOG signal.

The neural network employs activation functions, using a least
squares method for its training. The weights are adjusted using
the Widrow–Hoff rule to minimize the difference between
the output and the objective. This algorithm is an iterative
implementation of linear regression, reducing the square error
of a linear fit.

A pattern pq is presented as the input to a network; it responds
with an output aq. Due to this, an error vector eq is formed,
which is the subtraction of the desired answer tq, and the neuron’s
response aq so that eq = tq − aq. Square error is defined as the

dot product eTq eq of the error vector that provides the sum of the
square errors of each neuron. In order to minimize the square
error, the gradient descent is used, whose objective problem
is to find x0 which minimizes function F(x). In Equation (3),
the descending gradient equation is presented to minimize the
square error.

x0 = x0 − α
dF

dx

∣

∣

∣

∣

x=x0

(3)

The value of F(x) is defined as eTq eq whose objective is tominimize
the square error by means of an iterative Widrow–Hoff learning.
There is a set of test patterns

(

pQ, tQ
)

, and with these data, the
synaptic weights and polarization are found so that themultilayer
network responds as desired.

The neural network multilayer is implemented to calculate the
function that describes the behavior of the EOG signals. It is a
neural network that has three layers; it is represented in Figure 6.

The multilayer neural network is used for linear regression;
the structure is made up as follows: The input layer has a sigmoid
activation function, the hidden layer has a sigmoid activation
function, and the output layer has an activation function linear.
This is the reason why using non-linear activation functions at
the input corresponds to the smooth transition between one
sampling point and another, while a linear output activation
function allows obtaining numerical values that correspond to
the exact value of the sample. In this way, a smooth transition
is achieved, and all the sampling points are covered for a correct
modeling. The output of the multilayer network takes values that
the EOG signal registers which vary according to each person;
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using a sigmoid function in layer 3 does not allow to reach
these values.

The recursive equation that describes the output of the
multilayer neural network represented by aM with input patterns
p through q, for a neural network with M layers, is presented in
Equation (4), where XM represents the polarization and synaptic
weights of neuronM. The solution ismore complex because these
parameters must be calculated for each of the neurons that make
up the multilayer.

aM = fM
(

WMfM−1
(

WM−1 · · · f 2
(

W2f 1
(

W1p+ b1
)

+ b2
)

· · · + bM−1
)

+ bM
)

⇒

am = fm
(

Wmam−1 + bm
)

(4)

The objective is to minimize the square error, which is a function
of XM arrays (Equation 5).

F
(

X1, · · · ,XM
)

= eTq eq whereXm =
[

Wm bm
]T

(5)

The function obtained F
(

X1, · · · ,XM
)

= eTq eq; the gradient
descent method is used to find synaptic weights and polarizations
that minimize square error. An optimization method has been
obtained that is found when defining the error gradient and is
minimized with respect to the parameters of the neural network,
as indicated in Equation (6).

Xm = Xm − α
dF

dXm

∣

∣

∣

∣

xm=xm0

(6)

Xm =
[

Wm bm
]T

The variation of the mean square error with respect to the
synaptic weights and the polarization of the corresponding
neuron is described in Equation (7).

dF

dXm
=

[

dF

dxm1
. . .

dF

dxmSm

]

(7)

To calculate the gradient dF
dXm , the function can be decomposed

using the chain rule as the variation of F with respect to net input
ni, and the product of the variation of the net input with respect
to the variation of the neuron’s polarization and synaptic weights
i is represented by Xi. The net input is represented as the product
of the vectors ni = xTi z; the results is seen in Equation (8).

dF

dxi
=

dni

dxi

dF

dni
= zsi (8)

There is variation of function F, which is the square error
with respect to any net input; in any layer of the neuron, it is
represented with an s and is called sensitivity. In the sensitivity
gradients in Equation (8), the vector z is factored and is replaced
by the input augmented with 1 in the last element; the input of

layer n is the output of the previous layer, so zm =

[

am−1

1

]

and

applying the transposed operator the Equation (9) is obtained.

dF

dXm
= [zsi . . . zssm ]

m = zm
(

sm
)T

=

[

am−1

1

]

(

sm
)T

=

[

am−1 (sm)T

(sm)T

]

dFT

dXm
=

[

sm
(

am−1
)T

sm
]

(9)

If Equation (9) in the formula for the descending gradient of
Equation (3) and the vector Xm is replaced in terms of synaptic
weights W and polarization b, Equations (10) and (11) are
obtained which determine the iterative method for learning a
multilayer neural network by Widrow–Hoff.

(

Xm
)T

=
(

Xm
)T

− α
dFT

dXm
(10)

Wm = Wm − αsm
(

am−1
)T

bm = bm − αsm

For ∀m ∈ [1, . . . , M] (11)

Now the calculation of the sensitivities must be carried out,
which is the basis of the backpropagation algorithm. Sensitivity
is defined as the derivative of the function, which is the square
error, with respect to the net input of the neuron (Equation 12).

dF

dnm−1
=

dnm

dnm−1

dF

dnm
(12)

In Equation (12) applying the chain rule, we have the variation
of F with respect to the net input of the layer m, as well as
the variation of the net input of the layer m with respect to the
net input of the previous layer nm−1. If the nomenclature of
sensitivities is used, Equation (13) is obtained.

sm−1 =
dnm

dnm−1
sm (13)

Equation (13) indicates the sensitivity of the previous layer sm−1

which is calculated from the sensitivity of the back layer sm. This
relationship is what gives it the name of backpropagation because
the sensitivity will be propagated from the last layer to the first
layer of the neural network to calculate the sensitivity in each one.
The net inputs of two consecutive neural networks are related by
Equation (14).

nm = Wmfm−1
(

nm−1
)

+ bm (14)

There is an equation where the net input nm depends on f ,
which is the activation function of the net input nm−1 from the
previous layer. Using the chain rule, the result is expressed in
Equation (14), where the derivative of the activation function
fm−1 with respect to the net input of the previous layer nm−1

is expressed as Ḟm−1
(

nm−1
)

. The second derivative of the net
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input nm in relation to the activation function fm−1 is obtained by
deriving Equation (13) which results in the transposed vector of
the synaptic weights of layerm using the equation (Wm)T , where
Equation (15) is obtained.

dnm

dnm−1
=

dfm−1

dnm−1

dnm

dfm−1
= Ḟm−1

(

nm−1
) (

Wm
)T

sm−1 = Ḟm−1
(

nm−1
) (

Wm
)T

sm

For∀m ∈ [M, . . . , 2] (15)

Equation (15) calculates each of the sensitivities; in order to carry
out this process, it is necessary to calculate the sensitivity of
the last layer M (where sm = sM). Applying the chain rule to
deduce the sensitivity sM , the last layer of the sensitivity definition
is known to be the derivative of the objective function to be
minimized with respect to the net input of the last layer nm, F
is the square error F = eTq eq, and the error is the difference of the
desired response tq and the response of the last layer, defined as
the activation function fM

(

nM
)

, that is, eq = tq − fM
(

nM
)

; the
result of the said process is observed in Equation (16).

sM =
dF

dnM
=

dfM

dnM
deq

dfM
dF

deq
=

dfM

dnM
(−1)

(

2eq
)

= −2ḞM
(

nM
)

eq (16)

sM = −2ḞM
(

nM
)

eq (17)

The definition of ḞM
(

nM
)

which is the derivative of the
activation functions with respect to the net input; this process is
represented in Equation (17). The derivative generates a matrix
containing the gradients of each of the activation functions of the
neural network with respect to its net input, and so on, until it
reaches the last neuron.

ḞM
(

nM
)

= Ḟm
(

nm
) dfm

dnm
=

[

dfm1
dnm

. . .
dfmsm

dnm

]

(18)

=

















dfm1
dnm1

0 · · · 0

0
dfm2
dnm2

· · · 0

...
0

...
0

. . .
...

· · ·
dfm
sm

dnm
sm

















= diag

(

dfm1
dnm1

)

The derivative must exist for any value of the net input that is
a continuous function, and there are three activation functions
to which the operation ḞM

(

nM
)

must be calculated. The MNN
is made up of three neurons, but two activation functions are
used: the sigmoidal and the linear. The result of implementing
Equation (17) in the activation functions of the neural network
is presented in Equation (18) for the sigmoid activation function
and in Equation (19) for the linear activation function.

• Logistics sigmoid.

ai = fi (ni) =
1

1+ e−ni
→

dfi

dni
= (1− ai) ai

If all neurons have the same function:

Ḟm
(

nm
)

= diag
((

1− ami
)

ami
)

(19)

• Lineal function.

ai = fi (ni) = ni →
dfi

dni
= 1

If all neurons have the same function:

Ḟm
(

nm
)

= 1 (20)

The descending backpropagation algorithm for calculating an
objective function that models the behavior of the EOG signal
by discrete samples is presented in Listing 1.

Listings 1 | Backpropagation algorithm for interpolation of an EOG signal using a

multilayer neural network, through discrete samples.

Pseudocode: algorithm for interpolation of an EOG
Random initialization of Wm and bm for ∀m

Since epochs = 1 to Nepochs repeat
Since q = 1 to Q repeat

(

Q = Sample vector size
)

1. Forward propagation.
am = fm

(

Wmam−1 + bm
)

for ∀m

2. Backpropagation.
eq = tq − aM0
sM = −2ḞM

(

nM
)

eq
sm−1 = Ḟm−1

(

nm−1
)

(Wm)T sm for ∀m ∈ [M, . . . , 2]

3. Update for ∀ m

Wm = Wm − αsm
(

am−1
)T

bm = bm − αsm

End
End

From the acquisition of the EOG signal, 48 discrete samples
are obtained that are stored as a data vector Q; the non-linear
regression is applied on these data. The algorithm calculates a
function that passes through all the discrete points. Figure 7
shows a trend line resulting from the neural network when
interpolating the signal samples, this being the output of the
last layer.

The function f (x) = am = fm
(

Wmxm−1 + bm
)

describes
the behavior of the EOG signal of each individual, depending
on the variability of the value of the synaptic weights Wm and
polarization bm. Through this method, the analytical description
of the physiological signal is obtained.

By having a mathematical function that describes the
individual characteristics of each user, information is obtained
that allows a classification system to adapt to the variability that
physiological signals present. As can be seen in Figure 7, this
signal has several positive and negative data on a threshold; in
order to determine the operating range of a system, it is necessary
to know the amplitude in which the signal varies for each user.
The objective is to record the maximum and the minimum value
of the signal threshold to calibrate the fuzzy inference system.
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FIGURE 7 | Interpolation using a multilayer neural network, to calculate an objective function to be optimized.

Genetic Algorithm
An optimization problem can be formulated as a process where
the optimal value x which minimizes or maximizes the objective
function is found. In this case, the objective function is the result
from interpolation performed with a multilayer neural network
and it is determined by Equation (20). Considering that Wm

represents the value of the synaptic weights, bm is the value of
polarization of each layer, m is the maximum number of layers,
andX represents the vector of decision variables.X represents the
candidate solution set, also known as the search space or solution
space, such that x ∈ X. The search space is limited by the lower
(

l
)

or upper (u) limits of each of the d variables, as indicated in
Equation (20).

f (x) = fm
(

Wmxm−1 + bm
)

∈ R, (21)

X =
{

x ∈ R | li ≤ xi ≤ ui, d = 1
}

The objective function obtained is a complex problem to
solve using classical optimization methods, because it contains
a set of local optimums. Therefore, an evolutionary method
like genetic algorithms is a good alternative for its solution.
When the mathematical model of the EOG signal is obtained
as a result of the processing of the neural network, it is
represented as a mathematical function with local positive and
negative thresholds; using classical optimization techniques, it
is not possible to determine the range of the signal because
it presents different ridges and valleys of different amplitudes,
so the two objectives sought are to obtain the maximum and
minimum optima regardless of the variable characteristic of
the signal. For the maximum optimal value, the 15 iterations

of the genetic algorithm are applied, and to obtain the
minimum optimal value, a negative sign multiplies the objective
function and the 15 iterations of the genetic algorithm are
performed again.

For genetic algorithms (GA), each candidate solution is
considered an individual that belongs to a population, and its
level of “adaptation” is the value obtained when evaluating each
of the candidate solutions with the objective function (Leardi,
2003). Basically, a GA is an algorithm that generates a random
population of parents; during each generation, it selects pairs of
parents considering their value f (x) and exchanges of genetic
material or crosses are made to generate pairs of children;
such children will be mutated with a certain probability and
will ultimately compete to survive the next generation with the
parents, a process known as elitism.

The algorithm corresponding to a GA is indicated below:
Number of dimensions d= 1
Search space limits l= 0 y u= 25
Number of iterations Niter= 15
Population size Np= 48
Number of bits per dimension Nb= 11
Initialization by the equation: xn = l+ rand (.)∗

(

u− l
)

Selection of parents (Roulette Method): Each individual is
evaluated considering the objective function.

The cumulative of the objective function is calculated as E, as
indicated in Equation (21).

E =

Nb
∑

i=1

f (xi) (22)
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FIGURE 8 | (A) Genetic algorithm at optimal maximum. (B) Genetic algorithm at optimal minimum.

The possibility of selection of each individual is calculated, as
shown in Equation (22).

pi =
f (xi)

E
(23)

The cumulative probability of each individual is calculated,
represented in Equation (23).

qi =

i
∑

j=1

pj (24)
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Then, the selection of the parents is made:
A uniformly distributed random number is generated.
The parent that satisfies the condition qi > r is selected, where

r is a random value between 0 and 1.
In a GA, it is necessary to determine certain parameters for its

design; these are as follows.

Cross: It consists of randomly generating a location within
each individual which will serve as a reference for the exchange
of genetic information, previously converting to binary values.
We consider a parent pair of 11 binary data and an initial cross
point with a value of 7 generated randomly. Each individual
is divided into two parts: one of 5 bits and the other of 6
bits; later, the complementary parts of each individual will be
united, to form the descendants.
Mutation: The individuals in the population are made up
of binary chains; the mutation is carried out by changing
with some probability the bits of each descendant individual,
generating a population of mutated children, although it is
also necessary to convert the said population to real numbers
in order to evaluate them in the objective function.
Selection of the fittest: It is necessary to select the fittest
individuals who will survive the next generation. This is
achieved through the competition of the parents with the
children that were generated after applying the cross and
mutation operators; in the case of the binary AG, the original
populations of parents are simply mixed, and that of the
children generated.

In Figure 8A, the data is observed in each period of the genetic
algorithm cycle in the case of obtaining the optimal maximum,
while in Figure 8B the data is observed in the same period of the
genetic algorithm, but calculating the optimal minimum.

Table 1 records the data in each period in which the
optimization algorithm is evaluated. As an example for a specific
user, the data in Table 1 are obtained.

Fuzzy Inference System
To characterize the EOG signal and to be able to use it to
generate Cartesian coordinates, a classification system with fuzzy
logic was implemented. This method uses a set of mathematical
principles based on degrees of belonging and is performed based
on linguistic rules that approximate a mathematical function.
The input is the signals of the two previously calibrated EOG
horizontal and vertical channels, and the output of the system are
Cartesian coordinates within the working space of an assistance
system, in this case an anthropomorphic manipulator robot.

The Mamdani-type inference method was implemented
to design the fuzzy classifier because it allows the intuitive
relationship through syntactic rules between the workspace and
the voltage thresholds; this feature is very useful when generating
a point in Cartesian space in real time.

In the mathematical interpretation of Mamdani’s fuzzy
controller, there are two fuzzy antecedents expressed by
membership functions of the linguistic variables A′ and B′, with a
first premise or a valid fact: If x isA′ and y is B′, then we have a set
of fuzzy rules expressed in the form; if x is Ai and y is Bi then z is
Ci. Where x is the voltage range of the calibrated EOG signal for

TABLE 1 | Values delivered by the genetic algorithm in each period.

Iteration number Maximum

optimum

Minimum

optimum

1 0.7328 0.6983

2 0.8102 0.6452

3 0.8392 0.6012

4 0.8583 0.5932

5 0.8873 0.5874

6 0.8921 0.5320

7 0.9012 0.4943

8 0.9058 0.4832

8 0.9134 0.48032

10 0.9239 0.4786

11 0.9323 0.4632

12 0.9532 0.4324

13 0.9832 0.4132

14 1.0983 0.3932

15 1.1193 0.3172

The values highlighted in gray in Table 1 provide the range to which the EOG classifier

should be calibrated for this user, thus assigning to each voltage threshold a coordinate

in Cartesian space using fuzzy logic.

the input or the robot workspace for the output, A′ and B′ are the
antecedents of the linguistic variables expressed by membership
functions and Ci is the consequent of a fuzzy set z. In the end,
when evaluating all the fuzzy rules, we have a conclusion set z
which is C′; this approach is represented in Equation (24) using
the Mamdani inference model.

x is A′ and y is B′ True Premise
If x is A1 and y is B1, then z is C1 Fuzzy rule 1
If x is A2 and y is B2, then z is C2 Fuzzy rule 2

...
If x is Ai and y is Bi, then z is Ci Fuzzy rule i

z is C′ Set Conclusion.
(25)

By classifying the EOG signal by thresholds from positive
to negative, leaving an inactivation zone as indicated in
Figure 9, the response relationship is performed in the
Cartesian space of the anthropomorphic robot. The entire
workspace is mapped according to the threshold registered in
the classifier.

The membership function used to verify the performance
of the fuzzy classifier is a Gaussian-type function, such as
that presented in Equation (25). The implemented membership
functions are Gaussian, because the transition between one
membership function to another is smooth; it also helps to
generate trajectories from one point to another without using
cubic polynomials like the Spline technique.

Gaussian :f
(

x; a, b
)

=

{

e
(

x−a
b

)2

(26)
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FIGURE 9 | Classification using thresholds of the EOG signal.

FIGURE 10 | (A) Relation of the robot workspace and the EOG signals. (B) Robot workspace and dimensions.

where a defines the mean value of the Gaussian bell, while b
determines how narrow the bell is.

The output is the work space of the anthropomorphic robot,
which is represented as a hollow sphere; previously, studies of
direct and inverse kinematics were performed to calculate its
work space, as well as robot dynamics to apply control algorithms
for monitoring of the paths generated by the fuzzy classifier. The

robot with which experimental tests were carried out is presented
in Figure 10B.

According to the voltage level that each linguistic variable
represents, the inputs are defined, x = EOG vertical/EOG
horizontal, for fuzzy classifier inputs that use Gaussian
membership functions T (x); the names of these functions are
presented in Algorithm 1.

Frontiers in Neurorobotics | www.frontiersin.org 13 September 2020 | Volume 14 | Article 57883427

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Perez Reynoso et al. HMI Using Neural Network Modeling

Algorithm 1: Name of each of the Classifier input Functions.

T (x) =
Negative Vertical/Horizontal High (NAV/NAH),
Vertical/Horizontal Medium Negative (NMV/NMH)
Vertical/Horizontal Low Negative (NBV/NBH)
Vertical/Horizontal Zero (ZV/ZH),
Positive Vertical/Horizontal Low (PBV/PBH),
Positive Vertical/Horizontal Medium (PMV/PMH),
Vertical/Horizontal High Positive (PAV/PAH).

According to the voltage level represented by each linguistic
variable, the workspace is defined with y = Position X/Y/Z, for
the outputs of the fuzzy classifier, using the Gaussianmembership
functions T

(

y
)

. The name of the functions is indicated in
Algorithm 2.

Algorithm 2: Name of each of the Output Functions of
the Classifier.

T
(

y
)

=

Negative High X/Y/Z (NAX/NAY/NAZ)
Negative Medium X/Y/Z (NMX/NMY/NMZ)
Negative Low X/Y/Z (NBX/NBY/NBZ)
Zero X/Y/Z (X0/Y0/Z0)
Positive Low X/Y/Z (PBX/PBY/PBZ)
Positive Medium X/Y/Z (PMX/PMY/PMZ)
Positive High X/Y/Z (PAX/PAY/PAZ).

Algorithm 3 establishes the range of the membership
functions of the optimization of the modeling of the EOG
signal from the results obtained in Table 1, corresponding to
each vertical and horizontal channel modeled by Gaussian
membership functions.

Algorithm 4 establishes the range of the membership
functions of the fuzzy classifier outputs for each of the Cartesian
coordinates in f (px, py, pz); the Gaussian membership functions
are used depending on the workspace of any assistance system,
whose positions are expressed in Cartesian coordinates, in this
case that of an anthropomorphic robot with three degrees
of freedom.

The relationship between the voltage thresholds and the robot
workspace is indicated by 113 inference rules. The workspace is
classified on dividing surfaces by slices from the positive to the
negative threshold; the horizontal EOG is related to the positions
on the x-axis, while the vertical EOG is related to the positions
on the z-axis and y-axis. By having the membership functions
for the inputs and outputs of the fuzzy classifier, syntactic rules
are implemented that indicate the points that form the trajectory
to be followed by the manipulator robot. Figure 10A represents
the relationship of the workspace in the XY plane by means of
a Cartesian axis; the horizontal EOG channel is represented by
the abscissa, and the vertical EOG channel is represented by the
ordinates. Each of the concentric circles represents a layer of the
plane that encompasses the position correlation in the XY plane
and the EOG signal voltage threshold value from positive values

above the baseline and values below this reference which take
negative values. Figure 10B represents the relationship of the
workspace on the z-axis with respect to the vertical EOG channel
and the three degrees of freedom robot

(

q1, q2 and q3
)

.
All fuzzy syntactic rules for generating positions through

eye movement interaction were introduced into the LabVIEW
Design Manager (see Figure 11A) V2019. The horizontal EOG
signal corresponds to the x-axis or abscissa, while the vertical
EOG corresponds to the y-axis or ordered y for the z coordinates,
generating a trajectory in the Cartesian space using a function
f
(

x, y, z
)

. The LabVIEW V.2019 Design Manager presents the
control surfaces for each X, Y , and Z position output relative
to the horizontal and vertical channel input data. In each trend
of the surfaces, it is observed that while the voltage value in the
horizontal/vertical EOG is positive, the graph has a blue color.
The direction of position in each of the axes is explained; the
graph indicates the positions in X to the right (see Figure 11A),
in Y it indicates the position upward on the XY plane (see
Figure 11B), and in Z the robot’s position is higher than the XY
plane (see Figure 11C). In contrast, if the graph tends toward
negative values, it has a red color tone; the position values in
X are to the left (see Figure 11A), in Y it indicates the position
down on the XY plane (see Figure 11B), and in Z the robot
position is lower than the XY plane (see Figure 11C), covering
the entire workspace.

The classifier has the property of being variable in the input
membership functions to be adaptive to any user, while the
output membership functions are variable in order to adjust
the classifier to any navigation system with coordinates in the
Cartesian space. This system can be adapted to the generation
of trajectories for autonomous aerial vehicles, a pointer for
a personal computer in order to write letterforms and for
home automation systems; however, for the purposes of this
work the fuzzy output classifier adapts to the workspace of an
anthropomorphic robot. Table 2 describes the relationship of the
horizontal and vertical EOG signals and the robot workspace
represented as a hollow sphere. The position is determined by
the membership functions of the semantic rules

(

px, py, and pz
)

.
The coordinates of the manipulator robot are previously defined
for each value of the acquisition potential of the EOG signal,
covering the entire workspace of the robot. For example, the
horizontal EOG input is defined in the membership function ZH,
the vertical EOG input is defined in the membership function
ZV, and the output values are in Cartesian coordinates; they are
delimited by the membership functions X0, Y0, and Z0 set as the
robot home position.

Robot Position Control Scheme
The result of the classifier provides the position of the
robot in Cartesian coordinates (X, Y ,Z); to convert these
results into desired joint coordinates

(

q1d, q2d, q3d
)

, the inverse
kinematics of the robot are used. These values are the input
of the control PD+ algorithm that orders the robot to
path tracking.
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Algorithm 3: Input membership functions.

x=EOG Vertical x=EOG Horizontal

EOG input signal:
[

0.3172
(

optimal minimum
)

to 1.1923
(

optimal maximum
)]

Volts. Peak-to-peak voltage of an EOG signal
(Optimized Variable Rating Range).

M (NAV) = Gaussian (x, [0.31 0.31 0.4 0.49])
M (NMV) = Gaussian (x, [0.4 0.49 0.58 0.67])
M (NBV) = Gaussian (x, [0.49 0.58 0.67 0.76])
M (ZV) = Gaussian (x, [0.67 0.76 0.85 0.94])
M (PBV) = Gaussian (x, [0.76 0.85 0.94 1.03])
M (PMV) = Gaussian (x, [0.85 0, 94 1.03 1.10])
M (PAV) = Gaussian (x.[1.03 1.10 1. 19 1.19])

M (NAH) = Gaussian (x, [0.31 0.31 0.4 0.49])
M (NMH) = Gaussian (x, [0.4 0.49 0.58 0.67])
M (NBH) = Gaussian (x, [0.49 0.58 0.67 0.76])
M (ZH) = Gaussian (x, [0.67 0.76 0.85 0.94])
M (PBH) = Gaussian (x, [0.76 0.85 0.94 1.03])
M (PMH) = Gaussian (x, [0.85 0, 94 1.03 1.10])
M (PAH) = Gaussian (x.[1.03 1.10 1. 19 1.19])

Algorithm 4: Output membership functions.

x=Position px x=Position py x=Position pz

Robot workspace: [−30 a 30] cm Distance in centimeters within the workspace (this range may vary depending on the device
workspace).

M (NAX) =

Gaussian (x, [−30− 30− 22.5 − 15])
M (NMX) =

Gaussian (x, [−22.5−18.7 −11.2 −7.5])
M (NBX) =

Gaussian (x, [−15 − 11.2 − 3.7 0])
M (X0) =
Gaussian (x, [−7.5 − 3.7 3.7 7.5])
M (PBX) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMX) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAX) =

Gaussian (x, [15 22.5 30 30])

M (NAY) =

Gaussian (x, [−30− 30− 22.5 − 15])
M (NMY) =

Gaussian (x, [−22.5−18.7 −11.2 −7.5])
M (NBY) =

Gaussian (x, [−15 − 11.2 − 3.7 0])
M (Y0) =
Gaussian (x, [−7.5 − 3.7 3.7 7.5])
M (PBY) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMY) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAY) =

Gaussian (x, [15 22.5 30 30])

M (NAZ) = Gaussian (x, [−30 − 30 −

22.5 − 15])
M (NMZ) = Gaussian (x, [−22.5 −

18.7 − 11.2 − 7.5])
M (NBZ) = Gaussian (x, [−15 −11.2 −

3.7 0])
M (Z0) = Gaussian (x, [−7.5 −

3.7 3.7 7.5])
M (PBZ) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMZ) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAZ) =

Gaussian (x, [15 22.5 30 30])

The control law is expressed in Equation (26).

τPD+ = Kpq̃+ Kv
˙̃q+M

(

q
)

q̈d + C
(

q, q̇
)

q̇d + Bq̇d + g
(

q
)

(27)

This algorithm requires the dynamic robot model, so M
(

q
)

is
a positive defined symmetric matrix n x n which corresponds
to the robot’s inertia matrix, C(q, q̇) is an array of n x n which
corresponds to the matrix of centrifugal forces or Coriolis, B is
a vector n x 1 which determines the viscous friction coefficients,
g
(

q
)

is a vector n x 1 representing the effect of gravitational force,
τ is a vector n x 1 indicating torque applied to joint actuators,
Kp and Kv are the proportional and derivative constants of

the controller, q̃ is joint position error, ˙̃q is the joint speed
error, q̈d is the desired joint acceleration, and q̇d is the desired
joint speed.

EXPERIMENTS AND RESULTS ANALYSIS

To perform different experiments to validate the operation of the
designed HMI system, a graphical interface was developed that

allows the operator to visualize the EOG signals of both channels,
the movement of a virtual robot that emulates the movements
generated by the interaction of the gaze, a graph showing

the position in Cartesian coordinates of the data generated by

the fuzzy classifier, and a visual feedback of the object to be

taken by means of the image acquired by an external camera
placed on the end effector. In addition, the response of the

control algorithm, the position error, and the torque graph in
each of the robot’s joints are presented in the graphic interface
(see Figure 12).

The characteristics of the robot used in the experiments are
shown in Table 3.

To evaluate the performance of the HMI system, experiments

were conducted with 60 individuals inexperienced in the use of

this type of system. The purpose was to demonstrate that a system

that adapts to the user allows a learning curve that requires fewer
repetitions and therefore less time to perform a defined task, with
the advantage of reducing the training time of a user to become
an expert.

The performance of the HMI is verified by obtaining the
time it takes the user, using the orientation of his eyeball (see
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FIGURE 11 | (A) Fuzzy classifier of the EOG signal using the 113 inference rules previously calibrated with genetic algorithms. (B) X-axis control surface. (C) Y-axis

control surface. (D) Z-axis control surface.
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TABLE 2 | Correspondence of the ocular displacement and the workspace of an anthropomorphic robot with three degrees of freedom.

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PBV X0, PBY, PAZ PAV Vertical EOG

ZV X0, Y0, PAZ

NBV X0, NBY, PAZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PMV X0, PMY, PMZ PMV Vertical EOG

PBV NBX, PBY, PMZ X0, PBY, PMZ PBX, PBY, PMZ

ZV NBX, Y0, PMZ X0, Y0, PMZ PBX, Y0, PMZ

NBV NBX, NBY, PMZ X0, NBY, PMZ PBX, NBY, PMZ

NMV X0, NMY, PMZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV X0, PAY, PBZ PBV Vertical EOG

PMV NBX, PMY, PBZ X0, PMY, PBZ PBX, PMY, PBZ

PBV NMX, PBY, PBZ NBX, PBY, PBZ X0, PBY, PBZ PBX, PBY, PBZ PBX, PBY, PBZ

ZV NMX, Y0, PBZ NBX, Y0, PBZ X0, Y0, PBZ PBX, Y0, PBZ PMX, Y0, PBZ

NBV NMX, NBY, PBZ NBX, NBY, PBZ X0, NBY, PBZ PBX, NBY, PBZ PMX, NBY, PBZ

NMV NBX, NMY, PBZ X0, NMY, PBZ PBX, NMY, PBZ

NAV X0, NAY, PBZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV NBX, PAY, Z0 X0, PAY, Z0 PBX, PAY, Z0 ZV Vertical EOG

PMV NMX, PMY, Z0 NBX, PMY, Z0 X0, PMY, Z0 PBX, PMY, Z0 PMX, PMY, Z0

PBV NAX, PBY, Z0 NMX, PBY, Z0 NBX, PBY, Z0 X0, PBY, Z0 PBX, PBY, Z0 PBX, PBY, Z0 PAX, PBY, Z0

ZV NAX, Y0, Z0 NMX, Y0, Z0 NBX, Y0, Z0 X0, Y0, Z0 PBX, Y0, Z0 PMX, Y0, Z0 PAX, Y0, Z0

NBV NAX, NBY, Z0 NMX, NBY, Z0 NBX, NBY, Z0 X0, NBY, Z0 PBX, NBY, Z0 PMX, NBY, Z0 PAX, NBY, Z0

NMV NMX, NMY, Z0 NBX, NMY, Z0 X0, NMY, Z0 PBX, NMY, Z0 PMX, NMY, Z0

NAV NBX, NAY, Z0 X0, NAY, Z0 PBX, NAY, Z0

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV X0, PAY, NBZ NBV Vertical EOG

PMV NBX, PMY, NBZ X0, PMY, NBZ PBX, PMY, NBZ

PBV NMX, PBY, NBZ NBX, PBY, NBZ X0, PBY, NBZ PBX, PBY, NBZ PBX, PBY, NBZ

ZV NMX, Y0, NBZ NBX, Y0, NBZ X0, Y0, NBZ PBX, Y0, NBZ PMX, Y0, NBZ

NBV NMX, NBY, NBZ NBX, NBY, NBZ X0, NBY, NBZ PBX, NBY, NBZ PMX, NBY, NBZ

NMV NBX, NMY, NBZ X0, NMY, NBZ PBX, NMY, NBZ

NAV X0, NAY, NBZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PMV X0, PMY, NMZ NMV Vertical EOG

PBV NBX, PBY, NMZ X0, PBY, NMZ PBX, PBY, NMZ

ZV NBX, Y0, NMZ X0, Y0, NMZ PBX, Y0, NMZ

NBV NBX, NBY, NMZ X0, NBY, NMZ PBX, NBY, NMZ

NMV X0, NMY, NMZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PBV X0, PBY, NAZ NAV Vertical EOG

ZV X0, Y0, NAZ

NBV X0, NBY, NAZ

Figure 13A), to control the robot to follow a trajectory defined by
5 points (Figure 13B). Each user performs twenty repetitions. A
camera is placed on the end effector, and a program for detecting
red color is added to the interface in real time. Each point has
an internal number that defines the order that the robot must
follow to indicate them; when the first red color point is detected,
a timer is activated to take the time of the execution of the task.

For evaluating adaptability of the classifier, it was necessary to
compare the time of the execution of the twenty repetitions of
the 30 users, in each experiment.

In the first experiment, the glasses are placed on each user
and a sample of the EOG signal is taken for 25 s to generate a
database with the 30 users, and the average voltage of the EOG
signals is calculated for the maximum and minimum threshold
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FIGURE 12 | Graphical interface that provides system information to the user.

FIGURE 13 | (A) Control of the physical manipulator robot by EOG. (B) Proposed trajectory for the validation of the system by following the gaze.

values. The system is calibrated once, and all users need to do
a workout to reach the required thresholds. In other words, in
this first experiment, the user must adapt to the HMI in order to
operate the assistance system.

In the second experiment, the system, by optimizing the signal
thresholds, is automatically calibrated every 3min, adapting
the fuzzy classifier to the parameters of the EOG signal of
each individual. The optimal range data becomes the input
of the classifier; the calibration process is imperceptible to

the user and does not affect the operation control of the
assistance system since it only lasts 0.53 s. In this second
experiment, the HMI adapts to each user and the variability of its
EOG signal.

A third experiment was realized with the users of the
second experiment, who had previous training to analyze the
performance of users with experience in executing the task and
evaluate if with only 20 training tests the execution time of this is
considerably reduced.
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FIGURE 14 | (A) Response time trend without optimization of the fuzzy classifier. (B) Response time trend with fuzzy classifier optimization. (C) Response time trend

with fuzzy classifier optimization and expert users.
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TABLE 3 | Physical characteristics of the robot.

Physical robot

dimensions

Position range of

robot joints

Robot

implemented

l1 = 0.18 m q1 = 20− 70◦

l2 = 0.28 m q2 = 30− 230◦

l3 = 0. 15 m q3 = 20− 270◦

Experiment 1: Standard Calibration With
Inexpert and Expert Users
In this experiment, 30 different EOG signals were obtained.
The average of the maximum and minimum thresholds of the
user voltage was calculated; the result gave a value of 1.123
volts for the maximum threshold and 0.3212 volts for the
minimum threshold. The fuzzy classifier was calibrated with
these databases, and the same 30 users were asked to perform
the test. When making the first attempts, the users were unable
to control the operation of the robot and complete the trajectory;
it was necessary to do prior training in the use of the HMI and
to manually adjust the thresholds of the fuzzy classifier for each
user on the average value obtained for get them to complete the
test. When they had the necessary training, time was taken in 20
repetitive tests.

As seen in Figure 14A when starting the experiment, the
average execution time of the task was 322.22 s; after 20
repetitions, the average was 175.7 s. In Figure 14A, the tendency
to decrease the execution time to realize the path tracking is
observed. Task execution time average was reduced by 45.5% after
twenty tests. The standard deviation of the recorded time is 55.56,
which indicates that there is considerable variation in relation
to the average. This is because each user tries to adapt to the
thresholds already preestablished in the system.

Table 4 shows the response time of a sample of 7 users out
of 30 users who carried out the experiment. The time it takes
to perform the 5-point tracking experiment is represented in the
rows for each user. While in the column, the number z test is
indicated.

In the analysis of the results, it is observed that there is
a decrease in the response time resulting after test number
6, but a dispersion in the trend is observed, that is, the user
did not achieve a good control of the operation of the robot
until the repetition number 16. In test 16, it is observed
how this dispersion decreases. This variability explains why
the system does not respond adequately until the user reaches
the voltage thresholds at which the classifier is calibrated.
Most HMIs work on this principle; they are calibrated using
information stored in a database, even if the user has different
parameters from those stored, the system responds with close
values, increasing the time in which a control command is T

A
B
L
E
4
|
V
a
lu
e
o
f
th
e
re
sp

o
n
se

tr
e
n
d
o
f
in
e
xp

e
rie

n
c
e
d
u
se
rs

b
y
m
a
n
u
a
lc
a
lib
ra
tio

n
o
f
th
e
fu
zz
y
c
la
ss
ifi
e
r.

R
e
s
p
o
n
s
e
in

ti
m
e
o
f
e
x
p
e
ri
m
e
n
ta
l
te
s
ts

Te
s
t
1

Te
s
t
2

Te
s
t
3

Te
s
t
4

Te
s
t
5

Te
s
t
6

Te
s
t
7

Te
s
t
8

Te
s
t
9

Te
s
t
1
0

Te
s
t
1
1

Te
s
t
1
2

Te
s
t
1
3

Te
s
t
1
4

Te
s
t
1
5

Te
s
t
1
6

Te
s
t
1
7

Te
s
t
1
8

Te
s
t
1
9

Te
s
t
2
0

U
se
r
1

3
2
2
.9
0

3
1
9
.2
0

3
1
5
.3
2

3
0
7
.3
8

3
0
6
.3
8

3
0
0
.1
2

2
9
8
.1
3

2
8
0
.3
4

2
6
8
.3
8

2
5
0
.3
4

2
4
9
.2
8

2
3
9
.8
3

2
1
8
.3
9

2
0
0
.3
8

1
9
8
.3
8

1
8
0
.3
8

1
7
0
.3
9

1
6
8
.3
8

1
5
8
.8
2

1
5
8
.3
9

U
se
r
5

3
5
8
.3
8

3
4
3
.3
8

3
3
2
.3
9

3
2
0
.2
9

3
1
8
.3
8

3
1
4
.3
8

3
0
9
.3
9

3
0
0
.2
8

2
9
8
.3
9

2
7
8
.3
8

2
6
8
.3
9

2
8
8
.2
9

2
8
7
.3
8

2
5
8
.3
9

2
3
9
.2
9

2
2
8
.3
8

2
1
8
.3
9

2
0
0
.3
9

1
9
8
.3
9

1
8
8
.3
9

U
se
r
1
0

2
7
8
.3
9

2
8
6
.4
5

2
9
1
.3
8

2
8
1
.3
9

3
2
9
.6
9

2
9
0
.8
9

2
8
9
.9
8

2
7
0
.1
4

3
1
2
.4
5

2
6
7
.8
9

2
5
4
.3
2

2
7
8
.9
8

2
1
4
.3
8

2
2
0
.8
6

2
1
8
.4
3

2
0
0
.7
8

1
7
6
.4
5

1
8
7
.8
9

1
6
7
.5
6

1
6
5
.9
0

U
se
r
1
5

3
6
8
.3
8

3
5
8
.3
8

3
4
8
.2
8

3
4
4
.3
8

3
3
9
.3
0

3
4
9
.3
8

3
3
0
.3
9

3
2
9
.3
8

3
1
8
.3
8

3
1
5
.3
8

2
8
9
.3
8

2
7
8
.3
8

2
6
8
.3
8

2
5
8
.3
8

2
4
8
.3
8

2
3
2
.3
8

2
1
9
.2
8

2
1
3
.2
9

2
0
0
.2
9

1
9
8
.2
8

U
se
r
2
0

3
0
0
.8
9

3
1
2
.3
3

2
9
9
.8
0

2
8
9
.0
8

2
7
8
.6
5

2
6
8
.5
4

2
5
3
.4
0

2
3
4
.5
7

2
3
6
.7
8

2
2
8
.1
2

2
1
7
.4
5

2
1
4
.3
7

2
1
2
.3
8

1
9
0
.2
9

1
8
9
.7
6

1
8
7
.4
5

1
8
8
.0
9

1
8
9
.4
5

1
7
0
.4
5

1
6
9
.0
2

U
se
r
2
5

3
5
7
.3
8

3
3
2
.9
0

3
2
8
.3
8

3
1
6
.3
8

3
4
3
.3
8

3
3
2
.2
9

2
9
8
.3
8

2
8
8
.3
9

2
1
8
.2
9

2
1
6
.3
9

2
1
5
.3
9

2
1
4
.5
9

2
1
3
.3
8

2
1
0
.1
2

2
0
8
.3
2

1
9
8
.3
4

1
8
9
.5
4

1
8
4
.3
8

1
8
2
.1
8

1
7
8
.3
8

U
se
r
3
0

3
1
2
.7
6

3
0
0
.4
5

3
1
2
.4
0

3
0
0
.7
5

2
9
9
.8
9

2
7
8
.1
3

2
8
8
.1
2

2
6
7
.3
4

2
5
8
.5
4

2
4
8
.8
0

2
4
6
.5
0

2
4
8
.9
0

2
3
6
.7
8

2
2
8
.7
6

2
1
9
.4
8

2
1
3
.4
5

2
0
8
.5
4

2
0
6
.4
3

2
0
0
.1
2

1
9
8
.3
4

Frontiers in Neurorobotics | www.frontiersin.org 20 September 2020 | Volume 14 | Article 57883434

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Perez Reynoso et al. HMI Using Neural Network Modeling

generated because a search must be made for the closest
parameter and then generate a response by activating the
actuators of the system to be controlled. In addition, extensive
user training is required to adapt as quickly as possible to the
HMI calibration parameters.

Experiment 2: Customized Calibration With
Inexpert Users
For the second experiment, the times it took to perform the test
for 30 new users were obtained, but in this case, the intelligent
calibration system developed from the modeling of the voltage
thresholds was used. The fuzzy inference system is automatically
calibrated for each user every 3min, from the first EOG signal
acquisition until the test ends. This is a parallel process, and
interrupting the control routine for a period of 0.53 s, the genetic
algorithm obtains the thresholds and the optimal range is the
new fuzzy classifier input, customizing the system and adapting
the control to individual parameters, including when there are
disturbances in the EOG signal due to external interference. The
interruption time for calibration is imperceptible by the user
and negligible, compared to the response time of the controlled
device. The user does not require prior training to generate
some skill in controlling the device, because the classifier is
constantly calibrating.

In this experiment, the average time it took the 30 users
to follow the path when starting the test was 215.53 s; after a
series of 20 repetitions, the average execution time was 48.51 s.
In Table 5, a summary of the response time of Experiment 2
is presented and it can be observed that the execution time is
much less than the average obtained in the first experiment.
As seen in Figure 14B, from the first test there was a tendency
to decrease the average time by 77.55%, a value considerably
higher than that observed in the first experiment. The standard
deviation of the recorded time is 41.3, which indicates less
variability in the response of different users using the optimal
calibration for the classifier. In Figure 14B, can be see that
the standard deviation is reduced after of test number 18,
this indicates that the dispersion of the data is decreased,
which suggests that all the users adapted to the system at
the end of the Experiment 3: Customized calibration with
expert users.

A third experiment was carried out with the 30 users who
carried out the second experiment, and very significant results
were obtained. In Table 6, a summary of the response time of
Experiment 3 is presented. The average response time when
starting the test of the 30 users is 224.15 s, after a series of
20 repetitions, it is verified that the tendency to decrease the
execution time has an average of 24.09 s. With previous training,
the average time to follow a new path decreased the response
time of the robot by 89.26%, it can be observed in the graphs in
Figure 14C. When analyzing the results presented, a significant
improvement in the dispersion of the response is observed due to
the decrease in the standard deviation of 29.8, which indicates a
greater domain in the control of the system by users, especially
after test 16. In Figure 14C, in the last two tests in the 30 T
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users, a significant decrease in the execution time of the task
is observed.

With this HMI, the user does not have to worry about reaching
the required voltage levels or need prior training to control
the robot, on the contrary, the HMI adapts to the operating
thresholds of each user, generating a response from the robot
throughout its workspace.

CONCLUSION

In this work, an intelligent calibration system is presented
by means of which an HMI interface whose control input
is the EOG signal adapts to the characteristics of the signals
of different users and generates trajectories in the workspace
of an anthropomorphic robot manipulator in real time. The
difference from other HMIs is that the proposed system does
not need a database for its calibration. The innovation is
the intelligent system capable of calibrating the HMI from
the use of fast neural networks to model the physiological
signal and its optimization with genetic algorithms to obtain
amplitude thresholds that allow easy adaptation of the HMI
to the EOG signal of the user. It is verified that the use of
artificial intelligence to generate trajectories from signals with
high variability, such as EOG results in a decrease in the
execution time of a task and the sensation of real-time control of
the robot. It was shown, from the observation of data obtained by
experimentation, that the adaptive calibration system generates
response times in the robotic system to be controlled less than
when the user is trained to use standard calibrated systems.
When comparing Figure 14C with Figure 14A, the decrease in
task execution time is observed. For the first experiment (users
with manual calibration experience), the average decrease in
task execution time is 44%, and for the third experiment (users
with adaptive calibration experience) it is 82%. In addition,
using an intelligent system reduces training time, since the
user does not have to adapt to the HMI if not the HMI
adapting to the user. In Figure 14A, a large dispersion of
data is observed (standard deviation), indicating that each user
tries to adapt differently to the HMI. In contrast, Figure 14C
shows a significant reduction in data dispersion (standard
deviation), since each user manages to control the system
adequately, since the HMI adapts to the characteristics of its
EOG signal.

In the graphs of Figure 14, it is observed how the adaptability
of the system improves; in the first experiment, the calibration
was done manually, although it presents a decrease in response
time, where it takes the user more time to reach the objective
set; however, the fuzzy logic allows adaptability to personal
characteristics. The second experiment has been worked with
inexperienced users who had no control over the system, but
calibrating the system from modeling the signal and optimizing
the range of signal variability, it is observed that the response
time is less and the level of adaptability is verified by decreasing
the measure of dispersion of each of the responses. The system
tends to standardize the learning curve to the same pattern
regardless of the individual who uses the HMI; this property T
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of the modeling of the EOG signal to customizing the fuzzy
classifier can be seen in the results of Experiment 3, in the
graph of Figure 14C where the response time decreases to
an average value of 24 s and the standard deviation measure
is reduced.

The experiment was performed using an anthropomorphic
robot to validate the HMI response, but since the fuzzy classifier
generates coordinates in a Cartesian space (in three dimensions),
it can be adapted to any navigation system by modifying
only the mapping in the workspace, generating trajectories
for example for autonomous vehicles or intelligent spatial
location systems for the control of wheelchairs or any type of
mobile robot.

In a future work, this HMI would be implemented in
assistance systems for people with severe disabilities, by
implementing an eye joystick system in order to accomplish
everyday tasks, such as taking objects.
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Existing mobile robots cannot complete some functions. To solve these problems, which

include autonomous learning in path planning, the slow convergence of path planning,

and planned paths that are not smooth, it is possible to utilize neural networks to

enable to the robot to perceive the environment and perform feature extraction, which

enables them to have a fitness of environment to state action function. By mapping the

current state of these actions through Hierarchical Reinforcement Learning (HRL), the

needs of mobile robots are met. It is possible to construct a path planning model for

mobile robots based on neural networks and HRL. In this article, the proposed algorithm

is compared with different algorithms in path planning. It underwent a performance

evaluation to obtain an optimal learning algorithm system. The optimal algorithm system

was tested in different environments and scenarios to obtain optimal learning conditions,

thereby verifying the effectiveness of the proposed algorithm. Deep Deterministic Policy

Gradient (DDPG), a path planning algorithm for mobile robots based on neural networks

and hierarchical reinforcement learning, performed better in all aspects than other

algorithms. Specifically, when compared with Double Deep Q-Learning (DDQN), DDPG

has a shorter path planning time and a reduced number of path steps. When introducing

an influence value, this algorithm shortens the convergence time by 91% compared

with the Q-learning algorithm and improves the smoothness of the planned path by

79%. The algorithm has a good generalization effect in different scenarios. These results

have significance for research on guiding, the precise positioning, and path planning of

mobile robots.

Keywords: neural network, hierarchical reinforcement learning, mobile robot, path planning, fusion algorithm

INTRODUCTION

Mobile robot autonomous navigation can be divided into three subsystems: information
perception, behavior decision-making, and manipulation control. Path planning is the basis of
mobile robot navigation and control (Ghosh et al., 2017; Orozco-Rosas et al., 2019). The goal of
mobile robot path planning is to find a path from the current position to the target position. The
path should be as short as possible, the smoothness of the path should meet the dynamics of the
mobile robot, and the safety of the path should be collision-free (Han and Seo, 2017).
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Depending on how much information is known about the
environment in the path planning process, path planning can
be divided into global path planning and local path planning
(Li and Chou, 2018). There are many methods of path
planning. According to specific algorithms and strategies, path
planning algorithms can be roughly divided into four types:
template matching, artificial potential field, map construction,
and artificial intelligence (Zhao et al., 2018). Each type of
path planning algorithm has an optimal application scenario
and limitations. The current path planning of mobile robots
relies heavily on the surrounding environment. In addition
to the limitations of traditional path planning, robots cannot
complete their learning and judgment in complex environments,
a bottleneck in the development of research in this field (Bakdi
et al., 2017). It is therefore particularly important to develop a
path planning method with low reliance on the environment,
which can quickly adapt to the surrounding environment.

The Deep Q-Learning Network (DQN) is a way of modeling
the environment and calculating the collision energy function,
which is the main cause of a loss in functionality (Ohnishi et al.,
2019). To realize the path planning process, the neural network
is trained to minimize the loss function through the gradient
descent method. To enable better generalization ability in the
neural network, various sample data are needed for learning and
training, however, an over large data sample will increase the
training time (Shen et al., 2019a; Sung et al., 2020).

Deep Reinforcement Learning (DRL), as an important
machine learning method, has received more attention and there
are increasing applications of it in robot path planning DRL
(Arulkumaran et al., 2017). The agent obtains knowledge through
the exploration of an environment and learns using a process
of trial and error. The DRL method has obvious advantages
in path planning and requires less prior information about the
environment (Wulfmeier et al., 2017; Zheng and Liu, 2020).

Unlike the supervised learning method, reinforcement
learning does not require much sample data for training, like
neural network methods, and acquires sample data during the
training process. In recent years, scholars have focused on using
new algorithms or fusion algorithms to improve the performance
of mobile robots (Yan and Xu, 2018). Lei et al. found that adding
the Q-Learning algorithm to the reinforcement learning path
enhances the ability of robots to dynamically avoid obstacles
and local planning in the environment (Lei et al., 2018; Liu
et al., 2019). Wang et al. found that compared with Distributed
DQN (DDQN) algorithm, the Tree Double Deep Network
(TDDQN) has the advantages of fast convergence speed and
low loss (Wang P. et al., 2020). By using a neural network
to strengthen the learning path planning system, Wen et al.
suggested that the mobile robot can be navigated to a target
position without colliding with any obstacles and other mobile
robots, and this method was successfully applied to the physical
robot platform (Wen et al., 2020). Botteghi et al. introduced a
reward function training strategy in the fusion algorithm, which
not only outperformed the standard reward function in terms
of convergence speed but also reduced the number of collisions
by 36.9% of iteration steps (Shen et al., 2019b; Botteghi et al.,
2020). Therefore, the fusion algorithm has obvious advantages

FIGURE 1 | The path planning motion model of mobile robots.

in path planning and algorithm performance. However, the
path planning performance of current fusion algorithms is
not outstanding.

Taking into account the shortcomings of these research
results, we designed a mobile robot path planning system based
on neural networks and hierarchical reinforcement learning.
Through neural networks, this system perceives the environment
and performs feature extraction to realize the fitting from the
environment to the state action function (Chen, 2018). The
mapping of the current state to the action of the hierarchical
reinforcement learning is satisfied through the enhancement
function, thereby realizing the demand for mobile robots.
Theoretically, the organic combination of the two can improve
the performance of mobile robots in path planning. Therefore,
in this study, the algorithm was embedded into a mobile robot,
and the designed algorithm was verified by comparing it with
other path planning algorithms in different environments and
scenarios. The initial Q-value of the proposed algorithm sped
up the convergence speed, redefined the number of states, as
well as the direction of motion, and step length. The real-time
performance of the mobile robot’s path planning and smoothness
was significantly improved, and could be used to guide robot
movement, and improve algorithm mobility (Liu and Wang,
2019).

METHODS

Mobile Robot Path Planning Model
The path planning task explored in this study is based on a
two-wheel differential mobile robot. The robot can control the
speed of its two driving wheels to achieve arbitrary trajectory
movements such as linear movement, turning, and turning
around in circles. Figure 1 shows the pose of the robot at adjacent
time intervals, based on which kinematic model is established.

The world coordinate system pose of the mobile robot at time

t is set to Wt =
[

xt , yt , θt
]T
; if the world coordinate pose of the
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mobile robot at time t + 1t isWt+1t =
[

xt+1t, yt+1t, θt+1t

]T
,

the distance between the left and right driving wheels is L, the
speeds of the left and right driving wheels are vl and [[Mathtype-
mtef1-eqn-5.mtf]], and the robot linear speed and angular speed
are respectively v and ω, the speed v of the mobile robot in the
ideal motion state is:

v =
vl + vr

2
(1)

The angular velocity of the robot is:

ω=
vl-vr

L
(2)

The instantaneous curvature radius R is:

R =
v

ω
(3)

As shown in Figure 1, θ1=θ2=θ , after1t, the heading angle of the
robot changes as follows:

θt+1t=θt + θ (4)

The motion from position Wt =
[

xt , yt , θt
]T

to Wt+1t =
[

xt+1t, yt+1t, θt+1t

]T
can be regarded as a circular arc with radius

R. If the arc is used to approximate the actual trajectory of the
robot, the geometric relationship should be:





xt+1t

yt+1t

θt+1t



=





xt + R(sin(θt + θ)− sinθt)
yt+R(cos(θt + θ)− cosθt)
θt + θ



 , θ 6= 0 (5)

Combining the above equations, the motion equation of the
differential mobile robot can be obtained as:





xt+1t

yt+1t

θt+1t



=







xt +
L(vr+vl)
2(vr−vl)

(R(sin(θt + θ)− sinθt)

yt+
L(vr+vl)
2(vr−vl)

R(cos(θt + θ)− cosθt)

θt + θ






, θ 6= 0

(6)

ANN
ANN is a mathematical or computational model that simulates
the structure and function of biological neural networks, which is
used to estimate or approximate functions. With the continuous
deepening of research works on ANNs, it has made great
breakthroughs in the fields of speech recognition, pattern
recognition, automatic control, and predictive estimation. ANN
has successfully solved many problems that are difficult for
computers to solve, showing good performance.

In the practical application of ANN, most neural network
models use a backpropagation neural network (BPNN) and its

transformations, which have good nonlinear mapping ability,
self-learning ability, and fault tolerance. It mainly uses many
aspects such as pattern recognition, function approximation,
data compression, prediction estimation, and classification.
Therefore, the most representative BPNN is chosen as the basis of
modeling to analyze the robot path. AnANN is usually composed
of multiple BPNN layers and multiple neurons, which are mainly
divided into an input layer, a hidden layer, and an output layer,
where the input vector should be:

x = [x1, x2, x3...xi, ...xm] , i = 1, 2, ....m (7)

The output vector should be:

y =
[

y1, y2, y3...yk, ...yn
]

, k = 1, 2, ....n (8)

The neuron input of the hidden layer should be:

h(l) =
[

h(l)1, h
(l)

2, h
(l)

3...h
(l)

j, ...h
(l)

sl

]

, j = 1, 2, ....sl (9)

Where: sl is the number of neurons in layer 1; assuming that w(l)
ij

is the connection weight between the j-th neuron in layer 1-1,

b(l)i is the threshold of the i-th neuron in layer 1, and net(l)i is the
input of the i-th neuron in layer 1, then the following equation
is obtained:

h(l)i = f (net(l)i) (10)

net(l)i=

sl−1
∑

j=1

w(l)
ijh

(l-1)
j+b

(l)
i (11)

Here, the functions of the input layer to the output layer use
the S-type corresponding TANSIG function, the output layer
uses the PURELIN linear function, the learning rules use the
TRINGDX function, and the performance evaluation uses the
MES function, where the model number is set to 1,000 times
and the accuracy is set to 0.0001. The rest are the default
parameters of the system, and the specific structure is shown in
Figure 2.

Reinforcement Learning
Reinforcement learning is a machine learning method that
learns by interacting with the environment. An Agent uses
reinforcement learning methods to learn, which is to acquire
knowledge from a sequence of actions obtained by exploration.
Its sample data is not existing, meaning it is different from the
supervised learning process. After an Agent executes an action,
it will get feedback from the environment. This feedback is the
evaluation of the action made by the environment and is a
process of “trial and error.” The evaluation of the action made
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FIGURE 2 | Structure of ANN.

FIGURE 3 | The schematic diagram of the reinforcement learning model.

by the environment is the immediate reward value received by
the Agent. The immediate reward is an enhanced signal, which
indicates the impact of the execution of this action on the result.
The larger the value is, the better the effect is, otherwise it
will have a poor impact. The reinforcement learning model is
shown in Figure 3. The learning process of the reinforcement
learning method is a heuristic process. It continuously tries
through random units, searches for the optimal action to obtain
the enhanced signal of the environment, and increases the
probability that the optimal action is selected by the iterative
update, thereby finding a set of optimal solutions (a set of action
sequences with the highest reward value).

The reinforcement signal in reinforcement learning comes
from the immediate reward of environmental feedback. This
reward value indicates the quality of the action performed instead
of telling the machine what the correct action is. The process of
the machine interacting with the environment can be regarded
as a Markov Decision Processing (MDP). As long as the random

FIGURE 4 | Schematic diagram of Q-Learning path planning method.

variable set {X1,X2,X3.... Xt} satisfies the following equation, the
set will have Markov attributes:

Pr(Xt+1 = x |Xt = xt ,Xt−1 = xt−1, ...X1 = x1 )

= Pr(Xt+1 = x
∣

∣Xt = xt) (12)

Once the state x is determined, the actions before the state are
not correlated to the actions after the state and are independent
of each other. Among them, the state set S, the action set A,
the reward function R, the state transition function T, and the
objective function constitute the MDP. The state process of the
transition is as follows:
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T(s,α, s′) = Pr(st+1 = s′ |st = s,αt = a ) (13)

The process of Markov’s decision is mainly to realize a set of
action sequences α=π(s) so that the cumulative discount reward
∞
∑

t=0
γ ′R(st , at) reaches the maximum value. Through the iteration

of values, the optimization problem of MDP can be realized. The
function of the optimal value is defined as:

V ∗ (s) = max(R(s,α)+ γ
∑

s′∈S

T(s, a, s′)V ∗ (s′)), ∀s ∈ S (14)

Then, the optimal strategy is calculated as follows:

π(s) = arg |max (R(s,α)+ γ
∑

s′∈S

T(s, a, s′)V ∗ (s′)) (15)

The reinforcement learning system is mainly composed of three
parts: reward function, value function, and action selection
strategy. Among them, reinforcement function is divided into
continuous reward function. By establishing a mathematical
model between the state and environmental feedback perceived
by the Agent at each moment, the Agent can obtain the
evaluation of the environment in each state, giving more
guidance information during the Agent training process, and
the Agent can find the optimal strategy faster. The calculation is
as follows:

Rt = f (st , it) (16)

The discrete reward functions require less a-priori information
and are simple to construct, which have better applications
in exploration and learning in unknown environments. The
calculation is as follows:

Rt =







1 Perform optimal actions
-1 Perform the worst action
0 Other situations

(17)

The reward function only gives the reward of the currently
executed action, but this does not guarantee that each action
can get a reward. As the training progresses, the value function
continuously optimizes and converges, and the action is selected
by strategy in a state, which ensures that each action will get not
only the largest reward but also the largest cumulative discount
reward, of which the limited non-discount cumulative reward
function is:

Vπ (st) =

h
∑

t=0

rt (18)

Where: rt is the reward immediately obtained by the machine
at time t, and the cumulative reward is the accumulation of the
immediate rewards obtained from the starting state to the target
state. The unlimited discount reward function is:

Vπ (st) =

h
∑

t=0

γ ′rt+10 ≤ γ ≤ 1 (19)

Where: γ ′ is the discount factor, and the value range is 0 ≤ γ ≤ 1,
which represents the limit of reinforcement learning. The value
function pays more attention to future rewards. The average
reward function is:

Vπ (st) = lim
h→∞

(
1

h

h
∑

t=0

rt) (20)

After learning, the optimal strategy can use the value function
obtained by training to select the action strategy. The equation is
as follows:

π* = argmaxVπ (s), ∀s ∈ S (21)

The action selection strategy of Softmax is used to analyze the
probability of the action, which is generally described by the
Boltzmann distribution function. The mathematical model is as
follows, where T is the temperature control coefficient.

p(at/s) =) =
kVi/T

∑

α∈A
kVi/T

(22)

Different Path Planning Recognition
Algorithms
Here, different algorithms are compared to determine the
advantages of the proposed algorithm. There are many
recognition algorithms for the path planning of mobile robots.
These path planning algorithms are all based on the principle
of feature point positioning, which changes in any direction
of the images mainly through a Gaussian window. Through
this movement, the correlation matrix of different windows is
calculated and the image data of the environment are obtained.

(1) The Q-Learning algorithm is a table-valued learning
algorithm because the state-action Q value table is established
during the interaction between the machine and the
environment. The reward in the environment will affect the
Q-value corresponding to the state-action. The Q-value of
the correct behavior is gradually increased under the positive
reward, and the Q-value corresponding to the wrong behavior
will also be reduced under the negative reward. The optimal
action is selected in the action selection strategy to make the
Agent obtain the optimal behavior strategy (Wei et al., 2016;
Zhu et al., 2017). The method of updating the Q-value is
as follows in Figure 4:
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FIGURE 5 | Schematic diagram of the neural network approximation function

structure.

(2) The DQN algorithm is a process of using the neural network
to approximate the value function. As shown in Figure 5,
the optimal value function Q(s,α, θ) is approximated by
adjusting the weight of the neural network. The update value
function changes the parameters. After the neural network
training is completed, the parameters are determined, and the
corresponding function value will not change anymore. The
training process then converges (Liu and Hodgins, 2017; Zhu
et al., 2017). The location update equation is:

θt+1 = θt + α
[

r + γ maxQ(s,α, θ
]

1Q(s,α, θ) (23)

(3) The Potential DQN (PDQN) algorithm is an improvement
to the DQN algorithm. Its major purpose is to accelerate the
running speed of the algorithm. On this basis, the artificial
potential field method is added (Gupta et al., 2019). The
gravitational field is calculated as follows:

U(X) =
1

2
k(X − Xg)

2 (24)

Where: k is the gain coefficient, X is the current position of
the mobile robot, Xg is the target position, j is the planning
adjustment reward, and the relationship between reward and
gravity is as follows:

r = jU(X) (25)

(4) Actor-Critic (A3C) algorithm is a way of reinforcement
learning. It introduces an evaluation mechanism to solve the
high variance problem. It utilizes a neural network to predict
the selected action and directly passes the prediction result
back to increase the probability that the action is selected next
time. If the reward function shows that the selected action is
not optimal, the probability that the action is selected next
time will be reduced (Haarnoja et al., 2018). The strategy
gradient equation is as follows:

1θ Jθ =
1

T

T
∑

t

1θ logπ(αt |st; θ )(

n
∑

i=1

γ i−1rt + 1+ v(st + n)

− v(st))+ β1θH(π(st; θ) (26)

(5) The Deep Deterministic Policy Gradient (DDPG) algorithm
is an algorithm with a lot of improvements to DQN, in
which the A3C algorithm is added. It is a fusion algorithm
of neural network and reinforcement learning. The specific
improvement details are shown in Figure 6.

(6) THE double DQN (DDQN) algorithm estimates the
maximum action in the target network through the network
and uses this estimated action to select Q(s) in the target
network (Zhang et al., 2018; Han et al., 2019). Then, the goals
of TD should be:

Yt
DoubleDQN = Rt+1 + γQ(st+1, argmaxQ(st+1, θt

′)) (27)

Construction and Monitoring of Simulation
Environment
The simulation environment mainly uses the multimedia
framework pyglet under Python to design the interactive
applications as the simulation platform. A 200∗200-pixel static
environment is built in the experiment. In the environment, the
mobile robot is no longer a particle but is represented by a blue
circle of 10∗10 size. The green circle S represents the starting
coordinate. The pixel coordinate of the starting position is (5, 5).
The purple circle represents the target position and the five black
areas of different sizes in the figure are the positions of obstacles.
The white area indicates that there are no obstacles in the map, in
which the robot can move freely. Since the robot has size in the
real world when the boundary of the mobile robot is in contact
with the boundary of the obstacle area, it is considered to have
collided, and after the collision, it is considered to have failed and
is returned to the starting position. The state of the experiment is
represented by the rasterized state.

The detection mainly uses the summary.value.add () function
in TensorFlow to add variables to the monitoring log. The
changes in training process data can be viewed through
TensorFlow. After learning, the neural network parameters are
saved by using the tf.train.Saver () function and the neural
network is reloaded and run again to indicate the effect after
the learning is completed. The experimental results show that
the mobile robot can avoid dynamic obstacles in time and find
an optimal path to reach the target position after avoiding
the dynamic obstacles. In the experiment, the copy network
value function, the average number of steps used to reach the
target position, and the average cumulative reward of the copy
network are saved. At the end of the learning and training
process, the changing process of the three data can be viewed
through TensorBoard.

RESULTS AND DISCUSSIONS

Experimental Results of Different Path
Planning Algorithms of Mobile Robot
Figure 7 shows the experimental results of the path planning of
mobile robot under different algorithms. As shown in Figure 7,
under the same starting and ending conditions, all algorithms
can effectively avoid obstacles. Comparing Figures 7A,B, it was
found that in the traditional Q-Learning and A3C algorithms,
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FIGURE 6 | Structure of DDPG network algorithm.

the reinforcement learning algorithm effectively reduces the
number of path steps. Comparing Figures 7A,C, it was found
that the introduction of a neural network algorithm based on
the traditional Q-Learning algorithm can greatly reduce the
number of paths and achieve the same effect as the reinforcement
learning algorithm. Comparing Figures 7C,D, it was found that
the introduction of the force field based on the neural network
has greatly accelerated the running speed of the algorithm,
causing a significant reduction in the number of steps. Although
the algorithm can effectively avoid obstacles, it has taken many
useless paths. Therefore, the DDQN algorithm of Q value
accumulation was added. As shown in Figure 7E, the algorithm
can effectively utilize the neural network to learn and achieve the
minimum number of steps. Compared to the DQN algorithm,
the running speed of DDQN was improved and compared to
the PDQN algorithm, the DDQN can find the optimal path.
As shown in Figure 7F, a reinforcement learning algorithm was
added based on the neural network. It was found that compared
to the DDQN algorithm, it runs faster and has an optimal
path. According to the above results, the fusion algorithm
using a neural network and reinforcement learning has better
performance in the path experiment.

Performance Evaluation of Different Path
Planning Algorithms of Mobile Robot
Figure 8A illustrates the path planning time of different
algorithms under different path lengths. The results show that
as the path length increases, the path planning time is also
increasing, where the time required is proportional to the
path length. As far as different algorithms are concerned, the
traditional Q-Learning algorithm takes the longest time, with an
average of 78.35 s. The PDQN takes the shortest time because

the algorithm introduces a force field, causing the algorithm
to be improved continuously. The DDPG algorithm based on
neural networks andHRLmarks the second position, which takes
an average of 40.7 s and is 48.05% higher than the traditional
algorithm, 31.01% higher than the DQN algorithm of the neural
network, and 40.1% higher than the reinforcement algorithm.

Figure 8B illustrates the number of path steps of different
algorithms at different iteration times. As the number of
iterations increases, it does not affect the Q-Learning and
A3C algorithms because these two algorithms do not have
deep learning capabilities. With the increase in the number of
iterations, in terms of other algorithms, the number of path
steps continues to decrease under the same path. Of the different
algorithms, the reinforcement learning algorithm is significantly
better than the traditional Q-Learning algorithm, with a 20.56%
improvement. Of the different neural network algorithms, the
DDPG algorithm has the best performance, which has an average
path step of 63 steps; compared to the DQN algorithm, it has an
increase of 20.25%. When compared to the DDQN algorithm,
the number of path steps is increased by 8.69%. According to
the above results, the PDQN algorithm is more efficient under
the same path conditions, as the learning continues, the fusion
algorithm performs better in terms of path steps.

Figure 9A illustrates the convergence time of different
algorithms under different path steps. The results show that
as the path steps continue to increase, the convergence time
of each algorithm is continuously increasing. Compared to the
Q-Learning and A3C algorithms, after adding reinforcement
learning, the convergence time of robot path planning is
increased by 13.54%; compared to the Q-Learning and DQN
algorithms, after adding the neural network algorithm, the
convergence time of robot path planning is increased by 33.85%,
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FIGURE 7 | Experimental results of different path planning algorithms of mobile robot.

which is the most obvious improvement. Comparing different
neural networks, it was found that the convergence time of the
DDQN algorithm with increased Q-value is greatly improved,
and the convergence time of path planning is improved by
94.44% compared with the previous Q-Learning algorithm. For
the DDPG algorithm based on neural network and HRL, the
convergence time of the algorithm under the unsynchronized
number is 1.34 s on average, which is 55.52% faster than the
optimal DDQN algorithm.

Figure 9B illustrates the cumulative rewards of different
algorithms under different path steps. Since the designed reward
rules are more stringent, the reward results are all negative,
but this does not affect the obtained results. As shown in
Figure 9B, as the number of path steps continues to increase,

the cumulative rewards continue to increase. For different
algorithms, comparing the Q-Learning and A3C algorithms,
the cumulative reward is significantly improved by 29.64%.
Compared to the Q-Learning algorithm, the neural network
DQNhas increased significantly. Under the same neural network,
it was found that the PDQN algorithm that introduces the force
field has less cumulative rewards. The reason may be that the
purpose of the algorithm is to enhance the running speed of
the algorithm. The mechanism for rewards is not very complete;
thus, the rewards are less. Among the neural network algorithms,
the DDQN algorithm has the best cumulative reward. However,
compared to the fusion algorithm DDPG, the performance of the
DDQN algorithm is not very good. The cumulative reward of
DDPG is increased by 41.5% compared to DDQN. According to
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FIGURE 8 | Performance evaluation of time and steps of different mobile robot path planning algorithms (QL algorithm represents the Q-Learning algorithm).

FIGURE 9 | Evaluation of convergence time and cumulative reward performance of different path planning algorithms of the mobile robot (QL algorithm represents the

Q-Learning algorithm).

the above results, it is concluded that under different path steps,
the convergence time of the algorithm is the fusion algorithm; at
the same time, the algorithm can also obtain the most rewards.

Analysis of Performance Changes in
Neural Network and HRL Algorithms Under
Different Environmental Conditions
To explore the impact of different environmental conditions
on the performance of the algorithm, the performance of the
DDPG algorithm was tested under different action sets, grid
numbers, state sets, and force values. Under the premise of the
same starting point and ending point, the average value of the
algorithm was obtained after running 30 times. The results are
shown in Table 1. As shown in the table, the comparison between
M1 and M2 indicates that when the action set is doubled, the
convergence time of the algorithm will increase by 41%, and
the smoothness of the planned path is also increased by 53%.

Comparing M2 and M3, it is found that when the number of
grids is increased three times, the convergence of the algorithm
will be reduced by 69%, and the smoothness will be increased
by 45%. Comparing M3 and M4, it was found that increasing
the number of state sets will slow down the convergence speed
of the algorithm, but by adjusting the direction of the action
set, the right angles and corners in the path can be avoided,
and the smoothness with which it navigates the planned path is
increased by 18%. Comparing M4 and M5, it is found that the
introduction of the force field will reduce the convergence time
of the algorithm by 49%, which can increase the action step size,
thereby adjusting the number of state sets and the direction of
the action set. Therefore, when the action set is 4, the number of
grids is 3, and the state set is 40∗40∗8, with the introduction of
the force value, the algorithm can reduce the convergence time
by 91% compared with the traditional Q-learning algorithm, and
the smoothness of the path increased by 79%.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 6346



Yu et al. Path Planning of Mobile Robot

TABLE 1 | Effect of different environmental conditions on algorithm performance.

Numbering Number of

states

Number of

actions

Action

step

Potential

field/s

Convergence

time

Convergence

round

Path

length

Total

corner/rad

M1 40*40 4 1 N0 1.9254 682.6 38.1 21.677

M2 40*40 8 1 N0 2.7139 629.7 32.7 10.210

M3 40*40 8 3 N0 0.8515 274.6 34.3 5.655

M4 40*40*8 4 3 N0 1.4259 340.1 32.8 4.616

M5 40*40 4 1 Yes 0.9848 559.8 38.0 21.834

M6 40*40*8 4 3 Yes 0.1735 155.3 32.1 4.555

FIGURE 10 | Path changes of algorithms in different scenarios.

Analysis of Changes in Paths Based on
Neural Networks and HRL Under Different
Scenario Conditions
Figure 10 and Table 2 indicate the path changes and quantitative
data of the algorithm under different scene conditions. As shown
in Figure 10, by comparing Figures 10A,B, it was found that at
the same starting point and ending point, under the condition
of different obstacles, the algorithm system can effectively
avoid obstacles and design the optimal paths. In addition, the
convergence time is maintained at about 0.15 s, the number of
convergence rounds is maintained at 145, and the total rotation
angle is 4.8 rad. By comparing Figures 10A,C, it was found

that under different environments and different starting points
and ending points, the system can still avoid collisions with
obstacles, maintain a high convergence time, and design an
optimal path. Simulation results show that the proposed path
planning algorithm for mobile robots based on neural networks
and HRL has a good generalization effect in different scenarios.

DISCUSSION

The neural network DQN can perceive the environment
and perform feature extraction to realize the fitting from
the environment to the state action function. This has been

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 6347

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Path Planning of Mobile Robot

TABLE 2 | Statistical results of algorithm path changes under different scenario

conditions.

Scenes Position Convergence

time/s

Convergence

round

Path

length

Total

corner/rad

P1 (1, 39) 0.1615 144.5 32.1 4.869

P2 (1, 39) 0.1468 147.0 31.6 4.712

P3 (39, 39) 0.1724 147.4 31.8 4.641

mentioned in the literature. Qiao et al. (2018) proposed an
adaptive DQN strategy and applied it to text recognition. These
results showed that the DQN algorithm is significantly better
than other algorithms, which also indicated the advantages of
the DQN algorithm in image recognition (Qiao et al., 2018).
Compared with the deep learning algorithm DQN, the DDQN
algorithm is better than DQN in terms of value accuracy and
strategy, which is also consistent with previous reports (Qu et al.,
2020). The hierarchical reinforcement learning technology is
utilized to achieve the mapping from state to action and meet the
mobile needs of mobile robots. The data have also proven that
the robot path planning method based on deep reinforcement
learning is an effective end-to-end mobile robot path planning
method, which has also been confirmed in a study by Wang B.
et al. (2020). The above results illustrate the feasibility of the
proposed method in the path planning of mobile robots.

The DDPG algorithm was developed based on the DQN
algorithm. The biggest improvement is that the action strategy
of the DQN algorithm can only select actions in discrete
action space, while the DDPG algorithm can select actions in
continuous action space. The results show that the algorithm is
significantly better than other algorithms in terms of operating
efficiency. This is consistent with the results of Shen X. et al.
(2019), in which it was found that when compared with the
exponential moving average the effective variance of DDPG
and average DDQN were reduced, which explained the efficient
runtime of the algorithm further (Shen X. et al., 2019). The
results also found that after reinforcement learning is added, the
convergence time of robot path planning is increased by 13.54%.
Low et al. used the flower pollination algorithm to properly
initialize the Q-value, which could speed up the convergence
of mobile robots (Low et al., 2019). The principle is similar
to reinforcement learning, therefore, the research results here
are also supported. The comparison between the Q-Learning
and DQN algorithms found that the convergence time of
robot path planning is increased by 33.85% after adding the
neural network algorithm. Some scholars have improved the
convergence performance of the model significantly by using
two natural heuristic algorithms in unknown or partially known
environments (Saraswathi et al., 2018). This natural heuristic
algorithm is similar to the neural network structure, further
proving the effectiveness of the proposed algorithm.

In summary, the proposed DDQN algorithm has been proven
to be applicable to image feature extraction, and the neural
network algorithm has also been proven to effectively improve
the performance and convergence of the algorithm. The data

obtained are consistent with previous research. However, in
terms of algorithm performance, the performance of mobile
robot path planning based on neural networks and hierarchical
reinforcement learning has been significantly improved. This
algorithm can significantly reduce path planning time and
improve smoothness, enabling mobile robots to move more
conveniently and flexibility.

CONCLUSIONS

Through neural networks, the fitting from the environment
to the state action function was realized by perceiving the
environment and performing feature extraction. Through the
enhancement function, the mapping of the current state to the
action of the hierarchical reinforcement learning was satisfied,
thereby enabling the robot to become more mobile. The
two were organically combined to improve the performance
of mobile robots during path planning. The mobile robot
path planning algorithm based on neural networks and
hierarchical reinforcement learning has better performance than
other algorithms in all aspects. In addition, the proposed
algorithm reduces the planning time, decreases the number
of path steps, shortens the convergence time, and increases
the smooth and efficient recognition and movement functions
of the mobile robots. Although the performance of each
algorithm has been analyzed as comprehensively as possible,
the following aspects need to be improved in the future.
First, it is impossible for the neural network learning method
of the mobile robot’s motion path planning to perform
multiple “trial and error” processes in actual operations,
which makes it difficult to apply the proposed algorithm. It
is therefore necessary to implement the application on the
physical platform before applying the algorithm to the actual
robots. Second, the path planning only involves static scenarios.
Whether the algorithm can show the same performance
when encountering dynamic environmental changes is yet
to be explored. The path planning capabilities of mobile
robots were improved, laying a theoretical foundation for
practical applications.
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In this paper, an improved obstacle-avoidance-scheme-based kinematic control problem

in acceleration level for a redundant robot manipulator is investigated. Specifically,

the manipulator and obstacle are abstracted as mathematical geometries, based on

the vector relationship between geometric elements, and the Cartesian coordinate of the

nearest point to an obstacle on a manipulator can be found. The distance between the

manipulator and an obstacle is described as the point-to-point distance, and the collision

avoidance strategy is formulated as an inequality. To avoid the joint drift phenomenon

of the manipulator, bi-criteria performance indices integrating joint-acceleration-norm

minimization and repetitive motion planning is adopted by assigning a weighing

factor. From the perspective of optimization, therefore, an acceleration level quadratic

programming (QP) problem is eventually formulated. Considering the physical structure

of robot manipulators, inherent joint angle, speed, and acceleration limits are also

incorporated. To solve the resultant QP minimization problem, a recurrent neural network

based neural dynamic solver is proposed. Then, simulation experiments performing

on a four-link planar manipulator validate the feasibility and effectiveness of the

proposed scheme.

Keywords: recurrent neural network, path planning, redundant manipulator, acceleration level obstacle

avoidance, bi-criteria

1. INTRODUCTION

With the advances of society, ranging from industry to military, home furnishing, service, medical
treatment, etc., robot technology has already become gradually mature. Simultaneously, the high
demand on the execution abilities of a robot manipulator working in complicated environment
also poses a challenge to robotic control. Due to its degrees of freedom (DOF) exceeding ones
required by the robot to complete the given tasks, a redundant manipulator shows better flexibility,
multifunction, and wide universality than the traditional non-redundant robot.

As a fundamental problem in robotic control, the kinematic motion planning problem of the
redundant manipulator has already been widely investigated in recent years. Series of related
products have been reported, e.g., in Li et al. (2016), from the perspective of game theory, and
a distributed recurrent neural network (RNN)-based dynamic controller was proposed for the
coordination control of multi-robot system. In Li et al. (2020), based on the RNN, Li et al.
investigated the kinematic control problem of the multi-robot system under neighbor-to-neighbor
communication. To access the desired global command, an observer was developed for estimating
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the velocity information of the desired motion trajectory. A
distributed RNN scheme was proposed in Jin et al. (2018) for
the consensus and cooperative control of a multiple manipulator
under limited communication, achieving the global cooperation
of PUMA 560 manipulators. The kinematic control of a
redundant manipulator disturbed by the periodic input was
investigated in Zhang et al. (2019a) based on the RNN.
Moreover, Zhang et al. proposed an RNN control scheme
incorporating the joint acceleration constraint for the redundant
manipulator in Zhang et al. (2019b), which is solved in
acceleration level. In Xu et al. (2019a) and Xu et al. (2020),
the RNN was used to the kinematic control of redundant
manipulator with model uncertainties and coupling of motion
and contact force, respectively. In Chen et al. (2019), the RNN
was applied to the motion control of a mobile robot. In Li
et al. (2018a) and Li et al. (2018b), a modified RNN-based
controller was proposed for motion control of the manipulator
disturbed by noises. In Chen et al. (2020a), a time-varying noise
disturbance rejection constraint was established. In addition,
Chen et al. proposed a joint velocity, acceleration, and joint
jerk three-level simultaneous minimization scheme in Chen
et al. (2020b). The abovementioned involve single and multiple
robot systems. Following them, the RNN can in principle
handle the kinematic problem of a redundant manipulator. In
addition, inmost of the abovementioned literature, the consensus
is that the quadratic programming (QP) method, i.e., where
the manipulator kinematic control problem is described as a
QP minimization problem, is adopted, owing to which can
incorporate physical constraints such as joint angle and joint
velocity limits.

When performing a desired task, the success of the motion
planning task may not be guaranteed if the manipulator
encounters a sudden obstacle, and even the robot manipulator
will be damaged due to the collision. The obstacle avoidance
problem of a redundant manipulator is thus worthy of
investigation. Obstacle avoidance, called collision avoidance,
always plays an important role and is continuously investigated
among redundant manipulators. For collision avoidance, in
general, two aspects need to be considered: one is robot-to-
environment, and the other is robot-to-robot. Especially for
a multi-robots system, the obstacle avoidance scheme should
include not only the collision avoidance between robot arms but
also the collision avoidance between robots and environmental
obstacles. Many obstacle avoidancemethods have been proposed,
such as pseudo-inverse-based ones (Zlajpah and Nemec, 2002;
Lee and Buss, 2007; Guo et al., 2018), random-sampling-based
methods such as rapidly exploring random tree (RRT) (Ju et al.,
2014; Zhang et al., 2018), artificial potential field (Volpe and
Khosla, 1990; Kim andKhosla, 1992), andQP-based optimization
methods (Zhang and Wang, 2004; Guo and Zhang, 2014,
2019; Zhou et al., 2019; Xu et al., 2019b). In general, pseudo-
inverse methods have no ability of handling physical structure
constraints of a manipulator. The RRTmethods are very effective
for high-dimensional and complicated environments, which
makes the generated path approaches a collision-free region by
randomly sampling unknown space. For ones aided with an
artificial potential field, different environments need specialized

potential functions. Among such a method, the robot is assumed
to move within a virtual force field where the target and
the obstacle are denoted as an attractive pole and a repulsive
surface, respectively. Although effective, these two methods are
accompanied by higher computational costs; for the latter, the
computational complexity is exponentially increasing to the
DOFs of the robot.

Generally speaking, for QP-based methods, the obstacle
avoidance strategy is usually formulated as an attachment
constraint of the resultant QP minimization problem. For their
works in Zhang and Wang (2004), Guo and Zhang (2014, 2019),
etc., the collision avoidance constraints were set inner and outer
thresholds for safety. In Xu et al. (2019b) and Zhou et al. (2019),
a relatively simple inequality that can avoid collision with the
obstacle was proposed. In their works, both the obstacle and
manipulator are abstracted as point sets. A safe distance is given
by ensuring the distance between the manipulator and obstacle
is always greater than the safe distance, and the safety is ensured.
However, as points representing the manipulator are chosen in a
uniform way, this method carries a possible risk that the chosen
points do not collide with the obstacle; in practice, the collision
has already happened due to the distance from the chosen point
to the obstacle may be greater than the shortest distance between
the manipulator and the obstacle.

In this study, therefore, we provide an improved obstacle
avoidance scheme that can determine the nearest point on every
link of the manipulator to the obstacle. By always keeping
the minimal distance between them outside the non-safety
region, the safety is ensured. In addition, if the acceleration
vector is quite different at the front and back time, it will
produce excessive velocity, which will enable the manipulator
to shake, critically impact, or even cause damage to the
manipulator or potential safety accident. Moreover, if not taking
the joint acceleration into account, the generated joint velocity
command may be discontinuous (Guo and Zhang, 2014, 2019).
Consequently, in this study, the kinematic control problem of a
redundant manipulator is investigated in terms of acceleration
level. Specifically, the robot manipulator and obstacle are first
abstracted as mathematical geometries based on the vector
relationship between geometric elements in the search for the
Cartesian coordinates of the points whose distance from every
link of the manipulator to the obstacle is shortest. The distance
between a robot manipulator and an obstacle is described as
point-to-point distance, and an inequality constraint is thus
constructed, which is built in acceleration level, to avoid
the obstacle. To avoid the joint drift problem and improve
the stability and reliability of robots in periodic tasks such
as palletizing, welding, etc., the bi-criteria performance indices
integrating joint-acceleration-norm minimization (MAN) and
repetitive motion planning (RMP) is considered by assigning
a weighing factor. The kinematic control problem of the
manipulator is transformed into an equality constraint mapping
from Cartesian space to joint acceleration space. To sum up,
an acceleration-level quadratic programming (QP) problem is
obtained, combining the joint angle, joint velocity, and joint
acceleration limits rebuilt in the acceleration level. Then, utilizing
the real-time property of the RNN, we designed an RNN based

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 5451

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Bi-criteria Acceleration Level Obstacle Avoidance

neural dynamic controller to solve the QP problem. Finally,
simulative experiments are performed on a four-link planar
manipulator, validating the feasibility of the proposed control
scheme and obstacle avoidance strategy by simulative results.

The ensuing part of this paper is arranged around the
following aspects: preliminaries such as kinematic description of
redundant manipulator, the nearest point selection as well as the
formulation of the inequality obstacle avoidance strategy, and
problem statement are introduced in section 2. Section 3 shows
the QP problem reformulation and the design of RNN controller.
Simulation results are given in section 4, where both the static
and dynamic obstacle are considered. Section 5 summarizes the
whole paper with a final remark. The main contributions of this
paper are summarized as follows:

1) The acceleration-level kinematic control problem of
redundant manipulator with the obstacle collision avoidance
is investigated. Bi-critic performance indices consisting of
joint-acceleration-norm minimization and repetitive motion
planning are considered in order to avoid the joint drift and
improve the stability and reliability of robots in periodic tasks.

2) An improved obstacle avoidance strategy that can return the
nearest point of every link of a manipulator to the obstacle
is proposed. By keeping minimal distance between the robot
and the obstacle outside the non-safety region all the times,
the safety is ensured.

3) An RNN-based dynamic controller combining the motion
planner, obstacle avoidance and joint angles, joint speed, as
well as joint acceleration constraints is proposed. Under its
control, the robot achieves the desired trajectory tracking
task with a desired tracking error, and it successfully avoids
collision with static and dynamic obstacles.

2. PRELIMINARIES AND PROBLEM
STATEMENT

2.1. Kinematics Description of Redundant
Manipulator
For path planning task of a robot manipulator, the position of its
end-effector is only determined by its joint space vector θ(t), and
the relationship between them is usually described as

r(t) = f (θ(t)), (1)

where r(t) ∈ R
m are Cartesian coordinate of the end-effector

at time t, and θ(t) ∈ R
n are the coordinate of the end-

effector in joint space. f (·): Rn → R
m, is a non-linear mapping

determined by the physical structure and parameters of the used
manipulator. For a redundant manipulator, m < n; this means
that when r(t) is given and known, infinite corresponding θ(t)
may exist. Moreover, due to the non-linear property of redundant
manipulator, directly solving Equation (1) is extremely difficult.
On the contrast, solving Equation (1) in velocity level or
acceleration level gives a simpler way. For the velocity level,
Equation (1) can be transformed into

ṙ(t) = J(θ(t))θ̇(t), (2)

where J(θ(t)) ∈ R
m×n is Jacobian matrix. ṙ(t) and θ̇(t)

correspond to the derivatives of r(t) and θ(t), respectively,
denoting Cartesian and joint velocity, respectively.

Computing the derivatives of Equation (2), the acceleration
level kinematics is described as

r̈(t) = J(θ(t))θ̈(t)+ J̇(θ(t))θ̇(t), (3)

where J̇(θ(t)) is a time derivative of J(θ(t)). r̈(t) and θ̈(t) are the
derivatives of ṙ(t) and θ̇(t), respectively, denoting acceleration of
the manipulator in Cartesian and joint space, respectively. For
simplicity, in the following sections, J̇(θ(t)), J(θ(t)), r(t), ṙ(t),
r̈(t), θ(t), θ̇(t), and θ̈(t) are abbreviated to J̇, J, r, ṙ, r̈, θ , θ̇ , and
θ̈ , respectively.

2.2. Obstacle Avoidance
2.2.1. Basic Description
Based on the bound box theory, the robot manipulator and
obstacle can be simplified as the mathematical geometry.
For example, the plane manipulator can be abstracted as a
combination of cylinders, and the obstacles are abstracted as
spheres, cylinders, cuboids, or a combination of them (Yue
et al., 2015). By describing the manipulator and obstacle as
point sets, the distance between them is transformed into the
point-to-point distance. Assume that A and B are Cartesian
coordinates of one of the points on a manipulator and an
obstacle, respectively, given a safety distance d; in principle, if
||AB|| ≥ d is always satisfied during robot movement, the safety
(collision-free) between the robot and obstacle will be ensured,
where ||AB|| =

√

(A− B)T(A− B) denotes the Euclidean norm.
As the DH parameters of a manipulator are given, Cartesian

coordinates of the critical points located in manipulator joint
centers are easier to compute. By setting certain criteria, critical
points on links of a manipulator can also be obtained. However,
how to select the representative points on both the manipulator
and obstacles is challenging. Selecting abundant points will
increase the computational costs and is not necessary. A method
is to uniformly choose critical points on a manipulator (as shown
in Figure 1A), which is introduced in Xu et al. (2019b) and Zhou
et al. (2019). The basic idea is that the critical point is chosen
in the center of a link of a manipulator, based on the joint
angle information and link length, and Cartesian coordinates
of the critical point can be computed. Although we reduced
the computational complexity, we found that this way caused a
possibility that the chosen points did not collide with the obstacle;
in practice, the collision had already happened due to the distance
from the chosen points to the obstacle being greater than the
shortest distance between them.

As shown in Figure 1B, when the obstacle is located in
Position III based on the uniform point selection, B will be
adopted to determine whether the collision with the obstacle
occurred. If the safety distance is just set as d + a and d <

d + a < ds, where a is a positive constant, for B, the collision-
free will be determined. However, for point A, the manipulator
will collide with the obstacle. Therefore, motivated by it, in this
study, we aim to find the nearest points on every link of the
manipulator to the obstacle to ensure the collision-free. Utilizing
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FIGURE 1 | The basic idea of two obstacle avoidance schemes where the green denotes the obstacle, and the blue denotes the critical point selected from a link of a

manipulator. (A) Uniform point selection. (B) The proposed nearest point selection method in this paper. (C) Three possible situations corresponding to the nearest

point collision avoidance strategy.

the vector relationship between geometric elements, the method
is simple and easy to implement. Assuming that P1 and P2
are the coordinates of two critical points in the center of two
joints connecting a link of the manipulator, P0 are Cartesian
coordinates of the detected critical point from the encountered
obstacle (as shown in Figure 1C where the manipulator link and
the obstacle are simplified as a segment and a point, respectively).
Assume that Pv is a projection of P0 to segment P1P2. If λ =
−−→
P1Pv/

−−→
P1P2 ∈ [0, 1] (that is to say, P0 is located in Position II),

where −→· denotes the directional vector, then the nearest point
is Pv with the minimal distance dmin = ||P0Pv||. Otherwise,
dmin = {||P0P1||, ||P0P2||}min. For λ < 0, the nearest point is
P2 (i.e, P0 is located in Position III), for λ > 1, the nearest point
P1 will be returned.

Remark1: Note that, in this paper, Cartesian coordinates of the
critical points on the obstacle are known by default. In real life,
the real-time measurement of the surrounding obstacles is easy
to achieve by use of a camera, and the related achievements have
been reported in Carloni et al. (2013) and Zhang et al. (2015).

2.2.2. Inequality Formalization on an Acceleration

Level
Assume that A is the nearest point on a link of a manipulator to
the obstacle and B denotes the mass center of the obstacle. To
ensure safety between them, the inequality ||AB|| ≥ d is required
to hold. For this purpose, define e = ||AB||−d, and an inequality
in velocity level is constructed as follows:

d||AB||

dt
≥ −k1e, (4)

where k1 is a positive constant that is used to scale the
convergence rate of the error. Due to Ȧ = Jθ̇ and

d||AB||

dt
=

d

dt

√

(A− B)T(A− B) =
−−−→
||BA||T(Ȧ− Ḃ), (5)

where
−−−→
||BA|| = (A− B)T/||A− B|| ∈ R

1×m is the unit vector of
−−−→
A− B, Ȧ is the velocity of point A in joint space, and J ∈ R

m×n is
the Jacobian matrix of A; we can obtain

−−−→
||BA||T(Ȧ− Ḃ) ≥ −k1e,
−−−→
||BA||T(Jθ̇ − Ḃ) ≥ −k1e,
−−−→
||BA||T(Jθ̇) ≥ −k1e+

−−−→
||BA||T Ḃ,

(6)

let −
−−−→
||BA||TJ = Jo ∈ R

1×n, k1e −
−−−→
||BA||T Ḃ = C, Equation (6)

can be summarized as

Joθ̇ ≤ C. (7)

The velocity-level collision avoidance inequality, i.e., Equation
(7), is obtained, and it has been proven to have the ability to
avoid collision between the static and dynamic obstacles in Zhou
et al. (2019) and Xu et al. (2019b). Much like the velocity level,
by constructing

d

dt
(
d||AB||

dt
+ k1e) ≥ −k2(

d||AB||

dt
+ k1e), (8)

then,

d

dt
(
d||AB||

dt
+ k1e) ≥ −k2(

d||AB||

dt
+ k1e)

d

dt
(
−−−→
||BA||T(Jθ̇ − Ḃ)+ k1e) ≥ −k2(

−−−→
||BA||T(Jθ̇ − Ḃ)+ k1e)

− Joθ̈ − J̇oθ̇ −
−−−→
||BA||T B̈+ k1(−Joθ̇ −

−−−→
||BA||T Ḃ) ≥

− k2(−Joθ̇ −
−−−→
||BA||T Ḃ+ k1e)

Joθ̈ + J̇oθ̇ +
−−−→
||BA||T B̈+ k1(Joθ̇ +

−−−→
||BA||T Ḃ) ≤

− k2(Joθ̇ +
−−−→
||BA||T Ḃ− k1e),

(9)
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therefore, we can obtain the obstacle avoidance inequality in
acceleration level:

Joθ̈ ≤− k2(Joθ̇ +
−−−→
||BA||T Ḃ− k1e)

− k1(Joθ̇ +
−−−→
||BA||T Ḃ)− J̇oθ̇ −

−−−→
||BA||T B̈.

(10)

where −
−−−→
||BA||TJ = Jo. Let the right side of inequality (10) be

denoted by µ; Equation (10) is then equivalent to

Joθ̈ ≤ µ. (11)

So far, the construction of the inequality collision avoidance
strategy on the acceleration level, i.e., Equation (11), is completed.

2.3. QP Problem Statement
For a redundant manipulator, due to the redundancy, it
is possible to perform the primary and secondary tasks
simultaneously. In view of m < n, many solutions satisfying
Equation (11) exist. To choose a better solution from them,
the secondary task can be set as the optimization of some
performance indices such as joint velocity minimization, joint
acceleration minimization, joint jerk minimization, etc. In this
study, the acceleration level kinematic control of the redundant
manipulator was considered, and the joint-acceleration-norm
minimization was thus chosen. On one hand, in terms of practical
industrial applications, the robot is often expected to perform
some repetitive tasks such as palletizing and welding. To make
the kinematic control of manipulator repetitive, the RMP scheme
was proposed and investigated in Zhang et al. (2009), Xiao and
Zhang (2013), and Jin et al. (2018), and it was constructed as
the minimization of the displacements between the θ(t) and θ(0),
where θ(0) denotes the initial joint angle. On the other hand, to
avoid the joint drift problem, another performance index, i.e., the
repetitive motion planning, was also adopted in this paper:

1) Minimum acceleration norm (MAN):

U = θ̈T θ̈/2. (12)

2) Repetitive motion planning (RMP):

U = (θ̈ + d1(θ − θ(0)))T(θ̈ + d1(θ − θ(0)))/2, (13)

where d1 > 0 is designed as a positive constant determined by
the designer based on the experimental results, which is used to
scale the magnitude of the displacements θ − θ(0). Parameters θ

and θ(0) denote the current joint angle and the initial joint angle
of the manipulator, respectively.

Let η = d1(θ − θ(0)), assigning a weight ω1 = 0.5 and
ω2 = 0.5 to the MAN and the RMP schemes, respectively;
ω1+ω2 = 1, the bi-criteria acceleration level obstacle avoidance,
and kinematic control problem of a redundant manipulator are

formulated as an QP problem as follows:

min θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4, (14a)

s.t. Jθ̈ = r̈d − J̇θ̇ , (14b)

Joθ̈ ≤ µ, (14c)

θ− ≤ θ ≤ θ+, (14d)

θ̇− ≤ θ̇ ≤ θ̇+, (14e)

θ̈− ≤ θ̈ ≤ θ̈+, (14f)

where Equation (14a) denotes the objective function to be
minimized. Equations (14b) and (14c) denote the motion
planning scheme and obstacle avoidance scheme, respectively.
Equations (14d)–(14f) are the physical constraints. Parameters
θ̈ , θ̇ , θ denote joint acceleration vector, joint velocity vector and
joint angle vector of the robot manipulator, respectively. θ−, θ̇−,
θ̈− and θ+, θ̇+, θ̈+ are lower bound and upper bound of θ ,
θ̇ , θ̈ , respectively. rd are the desired trajectory that the robot is
expected to track. r̈d is the time derivation of ṙd, and ṙd is the
derivation of rd.

3. QP REFORMULATION AND RNN
CONTROLLER

3.1. QP Reformulation
For Equation (14b), to achieve a higher tracking accuracy to the
desired trajectory, a feedback is introduced, and Equation (14b)
is rewritten as

Jθ̈ = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r − rd), (15)

where β > 0 ∈ R and γ > 0 ∈ R are the feedback gains,
and r is the actual trajectory achieved by manipulator under the
designed controller. In addition, For Equations (14d)–(14f), it is
obvious that they are located at different levels, which makes it
impossible to directly solve Equation (14). Following Guo and
Zhang (2014, 2019), Equations (14d)–(14f) can be incorporated
in the acceleration level, i.e.,

ξ+ = min{κ1(θ
+ − ϑ − θ), κ2(θ̇

+ − θ̇), θ̈+},

ξ− = max{κ1(θ
− + ϑ − θ), κ2(θ̇

− − θ̇), θ̈−},
(16)

where ϑ > 0 ∈ R, κ1 > 0 ∈ R, and κ2 > 0 ∈ R. The QP problem
(14) can thus be reformulated:

min θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4, (17a)

s.t. Jθ̈ = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r − rd), (17b)

Joθ̈ ≤ µ, (17c)

ξ+ = min{κ1(θ
+ − ϑ − θ), κ2(θ̇

+ − θ̇), θ̈+}, (17d)

ξ− = max{κ1(θ
− + ϑ − θ), κ2(θ̇

− − θ̇), θ̈−}. (17e)

Remark2: The weight factors of both theMAN and RMP schemes
are set at the same value, meaning that the MAN and RMP
schemes are viewed as equally important. For different weightsω1

and ω2 = 1− ω1, the minimized objective function is different.
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FIGURE 2 | Block diagram of the acceleration-level kinematic motion control of redundant manipulator with obstacle avoidance (17c) and physical constraints

(17d)-(17e) under the designed RNN controller (21).

3.2. RNN Controller
In this part, we would design an RNN-based dynamic controller
to solve Equation (17) recursively. Specifically, for Equation (17),
a lagrange function is defined as

L = θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4+λT1 (Bright − Jθ̈)+λT2 (Joθ̈ −µ),
(18)

where Bright = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r− rd), λ1 and λ2 is the
Lagrange multiplier. Based on the KKT conditions, the optimal
solution of Equation (18) can be equivalently rewritten as

θ̈ = P�(θ̈ −
∂L

∂θ̈
), (19a)

Jθ̈ = Bright , (19b)
{

λ2 = 0 if Joθ̈ ≤ µ,

λ2 > 0 othewise.
(19c)

where P� is a projection operation to a set �, and P�(x) =

argminy∈�||y− x|| Li et al. (2016). Equation (19c) can be further
written as

λ2 = max((λ2 + Joθ̈ − µ), 0). (20)

The designed RNN controller is:

ǫ
...
θ = −θ̈ + P�(−

1

2
η + JTλ1 − JTo λ2), (21a)

ǫλ̇1 = Jθ̈ − Bright , (21b)

ǫλ̇2 = max((Joθ̈ − µ + λ2), 0)− λ2, (21c)

where ǫ > 0 is a constant that is used to scale the
convergence rate of the neural network. Figure 2 shows a
block diagram of the acceleration-level kinematic motion control
of a redundant manipulator with obstacle avoidance (17c)
and physical constraints (17d)-(17e) under the designed RNN
controller (21).

TABLE 1 | The D-H parameter of the robot manipulator employed in this paper

and simulation parameters setup.

Link a(m) α(rad) d(m) Parameter Value Parameters Value

1 0.296 0 0 k1 7 k2 7

2 0.296 0 0 ǫ 0.002 ϑ 0.1

3 0.296 0 0 κ1 20 κ2 20

4 0.212 0 0 β 20 γ 20

θ− -2(rad) θ+ 2(rad)

θ̇− -2(rad/s) θ̇+ 2(rad/s)

θ̈− -2(rad/s) θ̈+ 2(rad/s2)

d 0.1(m) d1 10

The left side is the DH parameter. The right side is simulation parameters involved in the

simulative experiments.

4. SIMULATION

In this paper, the simulation experiment was performed
on a plane four-DOF robot manipulator to validate the
feasibility of the control scheme Equation (21). Table 1

gives the corresponding DH parameters of the employed
manipulator and the parameter values involved in the simulative
experiment, respectively.

4.1. Circle Trajectory Tracking
4.1.1. Static Obstacle
In this experiment, the robot is expected to track a circle
trajectory with definition of rd = [0.6470+0.1 cos(0.5t), 0.3125+
0.1 sin(0.5t)]T whose radius is 0.1. Assume that position of
the obstacle is centered at [−0.1, 0.3]Tm. The initial joint
angle is chosen as q(0) = [π/2,−π/3,−π/4, 0]Trad with the
joint velocity and joint acceleration initializing as zero. The
simulation time is set as 25s with step size being 0.001. Collision
avoidance and trajectory tracking results are shown in Figure 3,
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where the single static obstacle is considered. Figures 3A,B

show the trajectory tracked by the manipulator under RNN
controller without and with the obstacle avoidance strategy
Equation (17c), respectively, where the corresponding tracking
results are used at t = 1, 6, 9 and t = 13s. Following
them, when not considering the collision avoidance, though
the manipulator successfully tracks the desired circle trajectory,
distances between the obstacle and both the first and second
links of the manipulator are small, and this allows the collision
between them to happen. For practical industrial applications,
this control method will inevitably lead to the tracking failure of

the expected behavior. After introducing the obstacle avoidance
strategy, as the distance between the nearest point on the
manipulator and the encountered environmental obstacle, and
as the obstacle is less than the setting safety distance 0.1,
the inequality Equation (17c) comes in the control command,
enabling the manipulator to escape the obstacle (see Figure 3B);
under the path-tracking controller Equation (17b), the robot
moves along the desired trajectory as expected with a promising
tracking error being the 10−3 order (see Figure 3C). As the
initial point of the end-effector of the manipulator coincides
with the expected tracking trajectory, the tracking error is always

FIGURE 3 | Static obstacle collision avoidance results. (A) Trajectory tracked by the manipulator without Equation (17c) at t = 1, 6, 9 and t = 13s. (B–F) Simulation

results achieved by the manipulator with Equation (17c). (B) Tracked trajectory. (C) Tracking error at x-axis, y-axis. (D) Joint angle profiles. (E) Joint velocity profiles.

(F) Joint acceleration profiles.

FIGURE 4 | Comparative results between bi-criteria scheme considering the MAN and RMP and the MAN scheme. (A): Tracking trajectory result corresponding to

bi-criteria scheme; (B) Tracking result corresponding to MAN scheme. (C): Comparison of ||q− q(0)||2 with and without RMP scheme.
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satisfying from the start to the end of simulation. Figures 3D–F

show the joint angles, joint velocities, and joint accelerations
profiles, respectively. Among them, the lines are relatively
smooth and not sharp, and they do not exceed the setting the
bound constrains.

4.1.2. Verification of RMP
Now, we start to validate the effectiveness of the RMP scheme.
In this paper, the performance index was chosen as a bi-
criteria optimization, i.e., a weighted combination of the MAN
scheme Equation (12) and the RMP scheme Equation (13). The
desired trajectory tracking result corresponding to the bi-criteria
scheme is shown in Figure 4A, and the one corresponding
to the MAN scheme is illustrated in Figure 4B. Comparing
Figures 4A,B, the joint-drift problem at the acceleration level
can be seen to be solved by considering the RMP scheme.
In addition, a comparison between ||q − q(0)||2 with and
without the RMP scheme is illustrated in Figure 4C, showing
that, for the scheme considering RMP, ||q − q(0)||2 would
be guaranteed to converge to zero when t = T, 2T and
change periodically. If not considering the RMP scheme, ||q −

q(0)||2 increases when t = T, 2T and is haphazard. Moreover,
based on the simulative results shown in Figures 3D,E, we
observe that when t = T, 2T, joint angles and joint velocities
of the manipulator are guaranteed to return to their initial
configurations. The RMP scheme can therefore be said to
be effective.

4.1.3. Dynamic Obstacle
Pedestrians or other objects with dynamic property may break
into the motion range of the robot. In this part, we consider
the collision avoidance between the robot and a dynamic
obstacle, and snapshots of the manipulator avoiding a dynamic
obstacle at different time t are given in Figure 5, where the
real shadow denotes the collision avoidance result achieved by
the manipulator under the RNN dynamic controller with the
inequality collision avoidance strategy Equation (17c), and the
virtual shadow corresponds to ones without Equation (17c).
The motion trajectory of the considered dynamic obstacle is
set as [−0.1 + 0.01t, 0.3]T with simulation time being 15s.
Macroscopically, when t = 3s, 6s, 9s and 12s, if not considering
the collision avoidance, the manipulator collides with the

FIGURE 5 | Snapshots of manipulator avoiding a dynamic obstacle at different time t, where the real shadow denotes collision avoidance result with Equation (17c),

and the virtual shadow corresponds to ones without Equation (17c). (A) t = 3 s. (B) t = 6 s. (C) t = 9 s. (D) t = 12 s.
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TABLE 2 | A dynamic obstacle is considered: the nearest point on the

manipulator to the obstacle obtained by the controller with and without the

obstacle avoidance scheme Equation (17c) at different time t and the distance

between the nearest point and the obstacle.

Time (s) Nearest point

with Equation

(17c)

Distance (m) Nearest point

without

Equation (17c)

Distance (m)

t = 1 [0.0089, 0.2959]T 0.0990 [−0.0107, 0.2958]T 0.0794

t = 3 [0.0285, 0.2903]T 0.0990 [−0.0616, 0.2910]T 0.0123

t = 6 [0.0570, 0.2803]T 0.0990 [−0.0677, 0.3215]T 0.0351

t = 9 [0.0845, 0.2704]T 0.0991 [−0.0210, 0.3151]T 0.0187

t = 12 [0.1112, 0.2612]T 0.0991 [0.0178, 0.3039]T 0.0045

t = 15 [0.1450, 0.2722]T 0.0989 [0.0136, 0.3417]T 0.0554

dynamic obstacle. After introducing the collision avoidance
strategy, under the control of the controller, the robot escapes
the obstacle by changing its joint angles and being maintained
outside the non-safety distance. To further show the effectiveness
of the collision avoidance scheme Equation (17c), Table 2 gives
the corresponding Cartesian coordinates of the nearest point on
the manipulator to the obstacle obtained by the controller with
and without Equation (17c) at different time t and the distance
between the nearest point and the obstacle. Obviously, without
Equation (17c), the distance is significantly less than the safety
distance 0.1, meaning that the collision will happen with high
probability. By contrast, after introducing Equation (17c), the
collision avoidance scheme comes in the control command,and
enables the manipulator to escape the obstacle and maintain
a safe distance. Based on Table 2, under the control of the
dynamic controller, the distances between the nearest point on
the manipulator and the obstacle maintain 0.099, which is very
close to 0.1. In addition, we give the minimum distance profile
between the manipulator and the dynamic obstacle achieved by
the controller without and with Equation (17c) for illustration, as
shown in Figure 6. It is more obvious and intuitive than Table 2,
if not taking the collision avoidance strategy Equation (17c) into
account, and the robot would collide with the obstacle at t = 3.5s
owing to the distance being 7× 10−4m. It is therefore concluded
that the proposed collision avoidance strategy is effective.

Remark 3: Compared to the setting safety threshold 0.1m,
the distances between the nearest point to the obstacle on the
manipulator and the obstacle at different time were maintained
at 0.099 in the dynamic obstacle avoidance experiment. We
observed that the minimal distance achieved by the controller
was a somewhat smaller than 0.1, and this is attributed to
the sampling interval adopted in the simulation experiment.
Compared to the generated results without Equation (17c), the
proposed collision avoidance strategy can help the robot to avoid
collision with the obstacle on the whole, and the slight difference
can thus be ignored.

4.2. Three-Ring Trajectory Tracking
To further validate the feasibility of the dynamic controller
[Equation (17)] integrating path tracking and obstacle avoidance

FIGURE 6 | Minimum distance profile between the robot and the considered

dynamic obstacle achieved by the controller without and with Equation (17c).

strategies, in this experiment, the robot tracks a three-
ring trajectory. The tracked trajectory is defined as rd =

[0.05 cos(π t/10)−0.025 cos(4π t/10)+0.4888, 0.05 sin(π t/10)−
0.025 sin(4π t/10) + 0.0040]T . Position of the obstacle is located
on [−0.025, 0.25]Tm. The initial joint angle is valued as
q(0) = [π/2.5,−π/3,−π/4,−π/2]Trad, and the initial joint
velocity is set as [−0.0210,−0.0101, 0.0032, 0.0092]Trad/s. Other
experimental parameters are the same as the previous circle
trajectory tracking. The simulation time is set as 20s with step
size being 0.001. Static obstacle collision avoidance and trajectory
tracking results are illustrated in Figure 7. Figures 7A–C show
snapshots of manipulator avoiding a static obstacle at different
time t = 4s, t = 8s, and t = 20s, respectively, where the
real shadow denotes collision avoidance result with Equation
(17c), the virtual shadow corresponds to ones without Equation
(17c). We can observe that when not considering the collision
avoidance scheme Equation (17c), the distance between the first
link of the manipulator and the obstacle is tiny (e.g., when
for t = 8, the minimal distance is 0.0785 with the nearest
point being [0.0516, 0.2330]T). After introducing Equation (17c),
compared to the previous, the distance between them is enlarged
and maintained outside the non-safety region (see Figure 7D).
Figure 7D gives the distance between the nearest point on the
first link of the manipulator to the obstacle and the obstacle.
When t = 4s and t = 8s, the distance between them is
maintained as 0.1, i.e., the setting safety distance. For t = 8,
the neatest point returned by the computer is [0.0702, 0.2195]T .
Except when successfully avoiding the obstacle, the robot also
accomplishes the desired three-ring path tracking as expected.
Based on Figures 7E,F, it is obvious that the actual trajectory
achieved by the manipulator is coincident with the desired
trajectory, and the tracking errors at x-axis and y-axis reach 10−3

level. Figures 7G,I show the joint-angle profiles, joint-velocity
profiles, and joint-acceleration profiles of the manipulator,
respectively. Following them, therefore, we can say that the
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FIGURE 7 | Obstacle collision avoidance results. (A–C) Snapshots of the manipulator avoiding a static obstacle at t = 4s, t = 8s, and t = 20s, respectively. (D)

Minimum distance profile. (E) Trajectory tracked by the manipulator and the desired trajectory. (F) Tracking error at x-axis, y-axis. (G) Joint-angle profiles.

(H) Joint-velocity profiles. (I) Joint-acceleration profiles.

proposed obstacle avoidance scheme Equation (17c) and the
designed RNN dynamic controller Equation (17) are effective
for solving the kinematic motion problem of a redundant
manipulator at the acceleration level.

Comparative results between the bi-criteria scheme and the
MAN scheme are shown in Figure 8. As the movement period
is 20s, in this experiment, the simulation time is set as 40s. In
addition, d1 = 15. Figures 8A,B show the tracking trajectory
result corresponding to bi-criteria scheme and MAN scheme,
respectively. A comparison between ||q−q(0)||2 with andwithout
the RMP scheme is illustrated in Figure 8C. For the scheme
considering RMP, ||q − q(0)||2 would be guaranteed to converge
to zero when t = T, 2T and changes periodically. If is not
considering the RMP scheme, when t = T, 2T, the current
joint-angle state q does not return the initial joint-angle state q(0).

Remark 4: As one of the important performance indices,
here, we start to show the effectiveness of the MAN scheme.
Figure 9 gives comparative results of the joint-acceleration norm
||θ̈ || achieved by the pseudo-inverse method and the RNN-based
method proposed in this paper for two trajectories. Figure 9A
corresponds to the circle trajectory tracking experiment.
Figure 9B corresponds to the three-ring trajectory tracking
experiment. Note that, in this experiment, the cost function
only considers the MAN scheme to show the effectiveness of
the MAN scheme, not involving the RMP and the collision
avoidance. In general, the pseudo-inverse method is deemed as
a persuasive solution, therefore, it is employed to compare with
our RNN-based method. Following Figure 9A, it is observed
that ||θ̈ || quickly coincides with one achieved by the pseudo-
inverse method although it is slightly different at initial time.

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 5459

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Bi-criteria Acceleration Level Obstacle Avoidance

FIGURE 8 | Comparative results between bi-criteria scheme considering the MAN and RMP, and the MAN scheme. (A) Tracking trajectory result corresponding to

bi-criteria scheme; (B) Tracking result corresponding to MAN scheme. (C) Comparison of ||q− q(0)||2 with and without RMP scheme.

FIGURE 9 | Joint acceleration norm ||θ̈ || comparison achieved by the pseudo-inverse method and the RNN-based method proposed in this paper, respectively.

(A) Circle trajectory tracking. (B) Three-ring trajectory tracking.

TABLE 3 | Comparison between the proposed scheme in this paper and the

existing QP-based acceleration level obstacle avoidance schemes.

Methods Performance

indices

Physical

constraints

Static

obstacle

Dynamic

obstacle

This paper Bi-criteria Yes Yes Yes

Guo and Zhang

(2019)

MAN Yes Yes No

Guo and Zhang

(2014)

MAN Yes Yes No

Xiao and Zhang

(2013)

RMP Yes / /

Guo and Li

(2016)

MAN No Yes No

/ denotes the obstacle avoidance is not considered in Xiao and Zhang (2013).

The conclusion is also same for the three-ring trajectory (as
shown in Figure 9B), consequently, the effectiveness of the MAN
scheme is validated. In addition, the pseudo-inverse method does
not handle the physical constraints such as joint angles, joint
accelerations, consequently, the RNN-basedmethod in this paper
is adopted.

4.3. Comparison
As described in the previous sections, obstacle avoidance of the
redundant manipulator has been investigated for decades, and
the research has been fruitful. However, the existing products
mainly focus on the velocity level. At present, only a small
amount of attention is paid to the obstacle avoidance of
the redundant manipulator at the acceleration level (not to
mention the bi-criteria acceleration-level obstacle avoidance).
There are few related works that have been reported. In this
study based on the QP optimization, we investigated the bi-
criteria acceleration-level obstacle avoidance of the redundant
manipulator. To highlight the proposed controller scheme in
this paper, comparisons between our scheme and the existing
QP-based acceleration level obstacle avoidance schemes were
conducted, and the comparative results are illustrated in Table 3.
In Xiao and Zhang (2013), the obstacle avoidance scheme was
not considered. For their works proposed by Guo and Zhang
(2014, 2019) and Guo and Li (2016), in their collision-avoidance
schemes, the inner and outer safety thresholds were considered.
In Guo et al. (2018), a noise-tolerant obstacle avoidance strategy
was introduced by proposing an integration-enhanced error
function. As this paper is not investigated from the perspective
of QP, it is not listed in Table 3. Following Table 3, this
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study first investigated the bi-criteria performance optimization-
based acceleration-level obstacle avoidance of the redundant
manipulator from the QP perspective. Moreover, the dynamic
obstacle as also considered.

Combining all simulative results, in summary, the proposed
collision avoidance scheme has the ability to find the nearest
point on the manipulator to obstacle, and it can enable the
manipulator to avoid collision with the environmentally static
and dynamic obstacles. Under the designed RNN controller,
the manipulator also accurately achieves the desired trajectory
tracking task.

5. CONCLUSIONS

We shed some light on the acceleration-level kinematic motion
control problem of the redundant manipulator with obstacle
avoidance in this paper. An improved inequality obstacle
avoidance method is introduced, and it can find the nearest point
on every link of a manipulator to an obstacle. By keeping the
minimal distance between them outside the non-safety region
at all times, the safety is ensured. Minimizing the combination
integrating the joint-acceleration norm and repetitive motion
planning as the objective function, a QP optimization problem
is established where the desired motion behavior and obstacle
avoidance are formulated as equality and inequality constraints
rebuilt at the acceleration level. The inherent physical constraints
of the manipulator are also incorporated. An RNN-based
neural dynamic controller is designed to solve the resultant
QP problem. Simulative results performing on four-link planer
manipulator validate the feasibility of the designed control
scheme, when the minimal distance between robot and
obstacle violates the setting safety criticality, the collision
avoidance strategy come in the control command, the robots
successfully avoid collision with the environmental obstacles.
If no collision is detected, the robot performs the desired
trajectory tracking task with a promising tracking error. In
this paper, we only considered the obstacle avoidance problem
of a single redundant manipulator. For the multiple robot

system, the obstacle avoidance scheme should not only consider
collision between the manipulator and the environment, but
also collision between the manipulators each other. This
is a challenge problem. In the future work, the obstacle
avoidance problem of multiple robot manipulators system will
be considered.
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An essential characteristic that an exploration robot must possess is to be autonomous.

This is necessary because it will usually do its task in remote or hard-to-reach places.

One of the primary elements of a navigation system is the information that can be

acquired by the sensors of the environment in which it will operate. For this reason,

an algorithm based on convolutional neural networks is proposed for the detection of

rocks in environments similar to Mars. The methodology proposed here is based on the

use of a Single-Shot-Detector (SSD) network architecture, which has been modified to

evaluate the performance. The main contribution of this study is to provide an alternative

methodology to detect rocks in planetary images because most of the previous works

only focus on classification problems and used handmade feature vectors.

Keywords: convolutional neural network (CNN), rock detection, machine learning, planetary exploration, remote

sensing

1. INTRODUCTION

Research interest in planetary missions centered on exploring on-site regions of Mars or the Moon
is increasing. Remarkable examples of this are the next NASA mission to Mars with a new Rover
generation (NASA, 2020) or the recent Chinese (Amos, 2020) and Arabian launches. Projects that
have reached singular success are the exploration missions performed by geologist robots. Their
main task is to retrieve samples that could give clues about the past of the terrain conditions
of vital importance for future missions. A serious problem in these missions originates from
data transmission latency, which is the time needed to send information from the robot location
back to Earth, in contrast to a reduced time window for this assignment. Therefore, the robot
must be able to detect objects of interest like rocks autonomously. A typical method used for
object detection is through image processing. But conditions typically encountered in planetary
environments, like arid terrains devoid of any kind of vegetation, as well as similar color and
texture scenarios, results in poor performance of conventional image processing methods that
usually are not adequate to different lighting conditions. This makes it necessary to experiment with
models capable of handling information with uncertainty and effective in recognizing objects of
interest with tolerance to the disturbances present in the captured images, such as Artificial Neural
Networks (ANN).

In Gao et al. (2014) several approaches to detect objects in planetary terrains are introduced,
suggesting that neural networks could provide promissory results. In many research works found
in literature, ANN and recently, Convolutional Neural Networks (CNN), have demonstrated
astonishing results in a diversity of problems related to object recognition, surpassing the
performance of other approaches. Typical works deal meanly with images that focus on scenes
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taken from houses, offices, or cities. Other works are specialized
in medical or biological images. However, the number of articles
that employ CNN to process planetary terrain images or lands
with characteristics alike is reduced.

Results from testing two CNN architectures, along with a
Visual Geometry Group Neural Network (VGG) type and a
Residual Neural Network (Resnet) for rock classification are
reported in Li et al. (2020), where an approach called transfer
learning is employed, which consists of using the trained
weights of a model processed over a large amount of data as
the initial weights of the CNN. The second training model
named fine-tuning adjusts the CNN weights with a smaller
dataset of the object of interest. They reported extraordinary
results with an accuracy of 100%, by using a VGG16. Also,
they compare the results with conventional methodologies, like
HistogramOriented Gradients (HOG) or Scale-Invariant Feature
Transform (SIFT), plus a Support Vector Machine (SVM) that
reaches a humble accuracy of around 63% and 75%. They used,
as the dataset, images captured from the Curiosity mission,
Nevertheless, images are trim and show only a rock.

In Furlán et al. (2019), a methodology to detect rocks using a
CNN is presented, where a U-net, which is a convolutional neural
network introduced in Ronneberger et al. (2015), was adapted
to segment panoramic images taken in a Mars-like environment
located on Earth. An F1-score of 78% while improving the
inference latency of the algorithm is reported. The results were
satisfactory and similar to other methodologies.

This work is aimed to evaluate the performance of
some CNN’s models for rock detection tasks, in a Mars-
like environment, demonstrating that a CNN can be an
alternative to conventional image detection techniques, due to
their inherent advantage for handling the uncertainty found
typically in unexplored terrains, paving the way for ambitious
exploration traversals. Indeed, a combination of CNNs with
neuromorphic computing, based on memristor technologies are
gaining attention as future intelligent computing platforms for
image detection due to their ultra-low power consumption and
implementation on integrated circuits (Amravati et al., 2018)
and (Chen et al., 2019). A combination of CMOS-camera with
a neuromorphic chip, running CNN based algorithms for image
recognition is expected to become the next step for planetary
Rover missions.

2. MATERIALS AND METHODS

Recent advances in object detection that use CNN models have
achieved successful results with different datasets, like COCO
(Lin et al., 2014) or Pascal VOC (Everingham et al., 2010).
COCO and Pascal VOC are datasets consisting of images taken
in different scenarios, focused on detecting objects like cars,
people, cats, dogs, among other daily life objects. Due to those
promising results, we considered testing the performance of
such CNN architectures with unstructured objects typical in
outdoor environments.

We are interested in experimenting with the CNN
architectures in a Mars-like environment where the main

task is to detect rocks. The methodology proposed uses a
Single-shot Multibox Detector (SSD) to detect rocks, which are
objects of interest in an exploration mission.

2.1. Single-shot Multibox Detector
The Single-shot Multibox Detector was introduced in 2016 (Liu
et al., 2016). The architecture is formed by three parts, a backbone
followed by a series of convolutional feature extraction layers
and the detection layers. It is required to apply a non-maxima
suppression process to obtain the correct output, which are the
corresponding predicted boxes in the image, see Figure 1.

In the original paper, the backbone corresponds to a truncated
VGG-16 network that works as a feature extraction phase. The
extra feature extraction layers decrease gradually in size to make
predictions on different scales. The detection layers align the top
feature layers with bounding boxes that have multiple predefined
scales and ratios. The predictions obtain for each bounding box
related to the feature layer are the offset of the position of the
bounding box and a confidence value that means whether a class
is present in the region or not. An advantage of this architecture
is that it makes predictions at multiple scales, which improves the
detection in comparison with other models like Faste R-CNN.

The function of the extra feature extraction layers is to
generate default bounding boxes using convolution filters. For
each feature layer, a small kernel operates to obtain amembership
value for each class or an offset measured relative to the default
bounding box position, depending on the convolutional layer.

A set of default bounding boxes is associated with each feature
layer where the predictions will be made. So, each bounding box
will produce c score values, where c is the number of classes
to be detected, and 4 location offsets relative to the initial box
position. For example, an m × n feature map produces a total of
(c + 4)k filters that are applied around each location, where k is
the number of boxes, generating (c+ 4)kmn outputs.

The loss function is a weighted sum of two functions.

L(x, c, l, g) =
1

N
(Lconf (x, c)+ αLloc(x, l, g)) (1)

The localization loss function (Lloc(x, l, g)) estimates the closeness
between the predicted box (l) and the ground truth box (g).
It measures the difference in the center location (cx, cy) and
the width (w) and height (h) of the predicted box relative to
the ground truth box. It uses a Smooth L1 norm and α is a
weight term.

The confidence loss function (Lconf (x, c)) compares the
predicted classes with the ground truth classes for each bounding
box. It uses a softmax function. For a detailed explanation of the
loss functions consult (Liu et al., 2016).

2.2. Dataset
The images used with the CNN model are from (Furgale
et al., 2012) created by the Autonomous Space Robotics Lab
(ASRL) from the University of Toronto. The original dataset is
a compilation of more than 50,000 images captured during a
10-kilometer traverse in the Mars analog site on Devon Island
located in Canada. The dataset is not labeled. Hence to avoid the
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FIGURE 1 | SSD architecture as presented in Liu et al. (2016).

FIGURE 2 | Sample images form dataset (A) Devon Island (Furgale et al., 2012) and (B) Katwijk beach (Hewitt et al., 2018).

laborious task of manually mark every image, we separated an
image each five frames ending with a dataset of 5172 images.

During the labeling process, we discarded images that didn’t
display rocks. In the end, the final dataset has 1,600 labeled
images that include a total of 8,372 objects labeled as rocks. Then,
we divided the dataset into 1,280 images for training and 320 for
validation. To examine the performance of the CNN model, we
selected a different dataset for testing.

We used The Katwijk beach planetary rover dataset (Hewitt
et al., 2018) that uses artificial models of rocks of different sizes
and distribute them around a beach to resemble a planetary
terrain. We manually labeled 331 images to estimate the
generalization ability of the models. In Figure 2, we show an
image from each dataset.

2.3. Proposed CNN
We introduce two modified versions of the original SSD
architecture presented in Liu et al. (2016). We resized the dataset
images to 512× 512, which is the input size of the models. ReLu
is the activation function used in all convolution operations.

The scales are parameters required in the detection layers,
which are obtained using the next equation:

sk = smin +
smax − smin

m− 1
(i− 1) (2)

where smin = 0.1 and smax = 1.06, m is the number of
predictions layers for all models. In this work, m = 7 is
considered, the first scale is set as 0.04, and i is the number of
scales needed in the model. The scales used in all models are
[0.04, 0.1, 0.26, 0.42, 0.58, 0.74, 0.9, 1.06].

The models proposed makes predictions over 7 layers, the
aspect ratios used for all models are the same as in the original
paper (Liu et al., 2016). The aspect ratios for prediction layers
1, 6 and 7 are [1, 2, 12 ] and for prediction layers 2, 3, 4 and 5

are [1, 2, 12 , 3,
1
3 ].

The first introducedmodel is amodified version of the original
SSD architecture that reduces the number of filters in the VGG16
backbone in half. This backbone has 13 convolutional layers with
3 × 3 kernels. The input size is reduced from 512 to 32 due to
5 max-pooling operations. A detailed diagram of the Backbone
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FIGURE 3 | (A) Modified VGG16 backbone and (B) Modified Extra Feature Layers in SSD A architecture.

FIGURE 4 | SSD architecture version A.

is presented in Figure 3. Additionally, the Extra Feature Layers
also reduced its filters in half and is formed by 12 convolutional
layers with 1 × 1 and 3 × 3 kernels with strides of 2 that caused
feature maps dimension reduction. A detailed diagram of the
Extra Feature Layers is presented in Figure 3.

These modifications lessen the number of parameters. The full
SSD A architecture is shown in Figure 4.

Previous works like (He et al., 2017) used ResNet
configurations as a backbone to improve the performance
for detections and instance segmentation tasks but require
big datasets for training since its large number of trainable

parameters. In the second model, the VGG16 net is replaced
with a convolutional network inspire in ResNet50. The new
backbone uses two types of building blocks known as identity
block and convolutional block. Their unique property is the
shortcut connection, which consists of an add operation between
an early convolution and the final convolution. A detailed
diagram of these blocks is shown in Figure 5. The identity
block has 3 convolutional layers and the convolutional block
has 4 layers.

The backbone architecture is similar to the ResNet50, but we
use the same number of filters in all convolutions in each building
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FIGURE 5 | Building blocks for the ResNet50, (A) Identity block and (B) Convolutional block.

FIGURE 6 | (A) Modified ResNet50 backbone and (B) Modified Extra Feature Layers in SSD B architecture.

block and truncate it at stage 4. In the original ResNet50 model,
the last convolution has more filters than the other convolutions
in each block. Figure 6 presents the backbone configuration. This
backbone has 43 layers. The Extra Feature Layers are configured
as in Figure 6 and have 12 layers. These modifications in the
model reduce the number of trainable parameters. The full SSD
B architecture is shown in Figure 7.

An original SSD configuration serves as a baseline for
comparing performance with the introduced models.
The original model is named SSD O in tables and

graphics and shares the same configuration as the SSD A
model. The only difference is the number of filters in the
convolutional operations.

The code from (Ferrari, 2018), which is a Keras
implementation of the original SSD architecture, was modified
to run with Tensorflow 2.2. The generator function was
transformed to read CSV files from the label datasets. The
corresponding architectures presented in this article were
developed as functions for the training process. Each training
process took about 18 h of time execution, using an Intel
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i9 computer equipped with 64 Gb of RAM and two GPU
cards installed, to complete the job with a learning rate
of 0.001.

We utilized stochastic gradient descent (SGD) during 500
epochs to adjust the parameters during the training process.
We used data augmentation to change the images with one of
four transformations, which could be photometric distortion,
expansion, random crop, or random horizontal flip. The
intention of using data augmentation is to evade overfitting
while training the models. The training process of a model
requires only one execution to generate a weights file, that
later will be loaded in the model to implement the inference
task. Each execution will produce similar results, but not the
same since the weights are randomly initialized using a He
normal distribution. The resulting learning curves are shown
in Figure 8.

3. RESULTS

Table 1 shows a comparison of the number of parameters
within the architectures. The number of parameters is associated
with the complexity of the net and the inference time.
The inference time denotes how long does the CNN take

TABLE 1 | Comparison of the number of parameters and inference time.

Model Number of parameters Inference time

(milliseconds)

FPS

SSD Original - VGG16 24,088,664 55.36 18

SSD A - VGG16 6,320,632 38.70 25

SSD B - ResNet50 10,088,664 39.01 25

FIGURE 7 | SSD architecture version B.

FIGURE 8 | SSD architectures training curves.
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to produce a prediction. A remarkable characteristic of the
SSD architecture is that it delivers what can be considered
real-time performance. Table 1 shows the average inference
times for each model for each model running over the
training computer.

The mean average precision per dataset (Train, Validation,
and Testing) is listed in Table 2. This value represents how many
target objects are predicted or detected by a CNN. The higher the
number obtained, the network performance is better. This value
is bounded to the [0,1] interval.

Additionally, the graphs of the mAP for each model and
dataset are shown in Figure 9.

The original architecture shows signs of overfitting, caused
by a large number of trainable parameters, more than twice the
number of parameters of the proposed models. Another factor
that contributes to the overfitting is the reduced amount of
images of the dataset. Since this model posses a large number
of parameters, it shows an undesired behavior conducting to
memorize the training data, which results in a high mAP
for training and validation but a significant drop for the
testing dataset.

The results showed that there is plenty of room for
improvement. Model A achieved better results for training and
validation, while model B scored better in testing. Hence to
determine which model is better, we need to remember that most

TABLE 2 | Comparison of the mean average precision.

mAP

Model Train Validation Testing Standard deviation

SSD Original -VGG16 0.815 0.604 0.233 29.46%

SSD A -VGG16 0.627 0.520 0.174 23.68%

SSD B - ResNet50 0.451 0.353 0.253 9.90%

of the planetary applications are focus on exploring unknown
environments to find valuable scientific information.

Therefore we need a model capable of generalizing, which
means, be capable of achieving high-grade performance with
unknown data slightly different from the training data. Model
B has a lower standard deviation among its mAP over
all datasets.

We show some testing images with their corresponding
predictions and ground truths in Figures 10, 11. The predictions
made by the network are depicted with a red square along with
its confidence value, which means the grade of accuracy that the
boxed object is a rock. Lastly, the ground truth is labeled with a
green square.

4. DISCUSSION

Previous methodologies employed to detect rocks in planetary
environments require algorithms that need handmade
feature vectors, which are complicated to design and are
dependant on expert knowledge and the feature extractors
applied that sometimes are not robust. This study evaluates
an alternative solution adopting a supervised learning
algorithm to avoid selecting feature extractors. Since CNN’s
are tolerant of translation transformations, and also trained
appropriately permit small rotations or scale transformations,
it adds a factor of robustness. It could become part of
an autonomous navigation system because rocks are the
main obstacles for rovers traversals, and with the same
algorithm fulfill two functions detecting valuable samples
and obstacles.

This methodology can improve while operating in an
unknown environment by collecting new images and adding
them to the training dataset. The training process can be
performed remotely in a high-performance computer and then
transmit the weights file to be updated on the operation site.
The expected result would be an enhanced performance caused

FIGURE 9 | Comparative graphic of the mAP.
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FIGURE 10 | Examples of predictions with Devon Island dataset, (A) SSD A and (B) SSD B.

FIGURE 11 | Examples of predictions with Katwijk beach dataset, (A) SSD A and (B) SSD B.

by the new knowledge acquired from the unexplored area. Space
exploration missions use remote sensing equipment to broadcast
information to a control center. Hence this methodology would
be suitable for object detection process.
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In this paper, we propose a creative generation process model based on the quantum

modeling simulation method. This model is mainly aimed at generating the running

trajectory of a dancing robot and the execution plan of the dancing action. First, we used

digital twin technology to establish data mapping between the robot and the computer

simulation environment to realize intelligent controllability of the robot’s trajectory and the

dance movements described in this paper. Second, we conducted many experiments

and carried out a lot of research into information retrieval, information fidelity, and result

evaluation. We constructed a multilevel three-dimensional spatial quantum knowledge

map (M-3DQKG) based on the coherence and entangled states of quantum modeling

and simulation. Combined with dance videos, we used regions with convolutional

neural networks (R-CNNs) to extract character bones and movement features to form a

movement library. We used M-3DQKG to quickly retrieve information from the knowledge

base, action library, and database, and then the system generated action models through

a holistically nested edge detection (HED) network. The system then rendered scenes

that matched the actions through generative adversarial networks (GANs). Finally, the

scene and dance movements were integrated, and the creative generation process

was completed. This paper also proposes the creativity generation coefficient as a

means of evaluating the results of the creative process, combined with artificial brain

electroenchalographic data to assist in evaluating the degree of agreement between

creativity and needs. This paper aims to realize the automation and intelligence of the

creative generation process and improve the creative generation effect and usability

of dance movements. Experiments show that this paper has significantly improved

the efficiency of knowledge retrieval and the accuracy of knowledge acquisition, and

can generate unique and practical dance moves. The robot’s trajectory is novel and

changeable, and can meet the needs of dance performances in different scenes. The

creative generation process of dancing robots combinedwith deep learning and quantum

technology is a required field for future development, and could provide a considerable

boost to the progress of human society.

Keywords: creative generation, quantum simulation, information fidelity, M-3DQKG, QGAN, robot trajectory
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INTRODUCTION

Robot trajectory calculations have always been an essential
subject of scientific research. Nevertheless, directly programming
a robot takes much debugging time and development costs.
In this paper, computer simulation technology and a quantum
modeling method are used to generate dance movement
creativity that meets the performance and calculation of the
robot trajectory data. The data are simulated and rehearsed

by a digital twin to realize the robot’s dance performance.
Simulation technology has been widely used since the 20th
century (Zeigler et al., 2000). With the maturity of computer
technology, simulation technology has been further popularized
through simulation software. Now, simulation technology has

been widely used in stage performance (Bilbao, 2009; Niedenthal
et al., 2010; Jaber et al., 2019), event scheduling (Colella, 2011;
Arima, 2015), emergency response (Merién et al., 2010), military
training (Liang et al., 2001; Machado et al., 2015; Ma et al.,
2016), aerospace (Zipfel and Schiehlen, 2001; Jha et al., 2015),
industrial manufacturing (Buyya and Murshed, 2010; Yamaguchi
et al., 2016; Santipanusopon and Worawattanaparinya, 2019;
Taheripour et al., 2019), technology research and development
(Boyd and Bruns, 2001; Rapaport et al., 2002; IEEE, 2010;
Binder and Heermann, 2014; Moin, 2018; Yingying et al.,
2018), and many other fields. The simulation process has many
commonalities, and these commonalities can be found in the
application of simulation technology in various fields (Bucklew,

2010). As one of the tools to assist us in completing the planning,
it has an essential and irreplaceable role in insignificant events.

For example, the US military simulation system (Zhou et al.,
2015) to the global strategic military defense system evaluation
(Burger and Jenkins, 2013). Simulation is used to construct
mathematical and physical models through computer modeling
tools (Kasztenny and Kezunovic, 2002). Its purpose is to help
people discover the problems that may be encountered during
the development of an event (Biolek et al., 2019). Therefore,
this paper attempts to use simulation technology to solve the
problem of dance creativity for a dancing robot in order to
assist people in the creative generation process to make decisions
that meet their needs. Simulation technology can realize data
interconnections between the real world and the virtual world
by establishing a digital twin relationship with the robot. This
paper uses simulation technology to generate dance robot data,
including body movement data on points and spatial trajectory
movement data. This paper establishes the usefulness of the
multilevel three-dimensional spatial quantum knowledge map
(M-3DQKG) knowledge retrieval model by determining the
domain of the requirement ontology: to retrieve creative points
according to creative needs to generate a creative pool. Using the
creative pool as the original data, M-3DQKG is updated through
quantum generative adversarial networks (QGANs) learning.
The retrieval weight of this model is allocated according to
the probability branch model. The knowledge retrieval process
is performed according to weight. The generated ideas are
evaluated by means of the subjects’ electroencephalographic
(EEG) data and creative generation coefficient (CGC) calculation
results. The whole process described in this paper simulates the

creative generation process, which provides a quick and effective
method of enhancing the richness of creativity. Migrating the
simulation data to the dancing robot can operate the robot’s
dance performance and trajectory movement.

Section Related Work is an introduction to related work.
Section Method mainly introduces the critical technologies of
dance creative movement generation, including the M-3DQKG
model, probability branch model, creative generation model,
information fidelity calculation method, and system creative
generation ability evaluation method. Section Results presents
an analysis and discussion of the experimental results. The last
section is the conclusion and future prospects.

RELATED WORK

This section will introduce related work and the key technologies
involved in this field. As a relatively new research direction,
creativity generation is not widely understood by many people.
This section first introduces the concepts of originality, creativity,
and creativity generation, as well as the cognition of these
concepts by related researchers. Next, this section will introduce
the essential means of realizing creative generation–computer
simulation technology. This technology can complete the creative
process in a virtual environment and transfer the simulated
data to the dancing robot to complete dance performances
and trajectory movements. In the simulation process, the three
links of knowledge map construction, machine learning network,
and result evaluation are all integrated into quantum modeling
methods. This accelerates the creative generation process from a
new perspective and enriches the creative results.

Originality, Creativity, and Creative
Generation
Originality is new original ideas. Creativity is the ability to
generate originality. And creative generation is a flow of
operations that span time to create originality.

Originality is a new abstract thinking or action based on
people’s cognition of things. It cannot get rid of cognition
and exists alone, and human perceptions are very different.
Therefore, there is no unified rule for the definition of creativity
or for the evaluation criteria of creativity. At this stage,
although the creative process is complicated, and the tasks are
numerous, people’s demand for it is becoming greater. Not
only that, but with the development of society in the future,
this demand will continue to increase. This paper starts with
meeting people’s creative needs, breaking the single boundary
of people’s cognition, and proposes a method that can be
quantitatively evaluated.

Originality arises as a new thing, but it is in fact a
recombination of old elements. People’s insight into the
relationship between elements is the basis for generating new
combinations. The creative generation process of the brain is the
perfect cooperation between knowledge and neurons. Simulating
the creative generation process of the human brain requires two
conditions. Pezzulo et al. (2013) proposed that one is widely
generated and frequently changed, and the other is summarized
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and filtered from it. The focus of the former is to continuously
acquire knowledge, analyze knowledge, use trial and error, and
correct. The focus of the latter is to emphasize the method of
selection. In 1960 Campbell proposed the theory that creativity
requires blind change and selective retention, exploring the
generation of creativity (Simonton, 2012). These ideas have
become the key technical points for computers to complete the
creative generation process.

The process of creative generation is differently affected by
a person’s personality (Shamay-Tsoory et al., 2011), intelligence
level (Kim, 2016), educational situation (Calignano and Jsendal,
2018), and creative environment (Saorín et al., 2017). One
study (Steele et al., 2018) proposed neural and cognitive
models to balance the influence of cognition on creativity.
This paper explores the automation and intelligence of the
creative generation process so that the creativity of the system
is maintained at a stable level, and the results are free from
the influence of individual differences. Therefore, a dance
movement creative generation model is proposed to complete
the creative generation process without human intervention and
environmental influence. Studies have found that the internal
role of emotion is the basis for the association between people’s
creativity and intuitive thinking (Haijuan et al., 2018). Positive
emotions can enhance people’s original ideas (Rooij et al., 2017)
and make people work hard on simple tasks that are fun and
stupid. Negative emotions make people work harder on serious
and essential complex tasks (Friedman et al., 2007). Therefore,
people use a creative process with emotion as the dominant
position (Agnoli and Corazza, 2019). This paper simulates the
emergence of emotion-led creativity based on the random nature
of quantum modeling. The purpose is to increase the novelty
of originality. The improvement of this technology has become
one of the motivations for computers to complete the design of
creative generative models.

This paper takes creative needs as the starting point and
realizes the unity of opposites between creative thinking and
critical thinking (Diyanni, 2014; Rivas, 2017): jump out of the
shackles of creativity and standardization (Oliver et al., 2019)
to give freedom to people’s creative ability (Robinson, 2011;
Jonason et al., 2015). The computer has become a capable
means of giving full freedom to creativity with its plasticity,
stability, upgradeability, and supercomputing power. Knowledge
retrieval and learning networks break the upper limit of human
creativity so that creativity is not affected by individual education,
intelligence, experience, environment, needs, and other factors.
The movement data generated by dance creativity take the virtual
human in the simulation system as the carrier and are digitally
twinned to the physical robot to drive the robot’s limb movement
and trajectory calculations to enhance the expressive power of the
dancing robot.

Computer Simulation Technology
Computer simulation technology emerged in the 1950’s and
was transformed from analog to digital simulation in the
1960’s (Gould and Tobochnik, 2007). The process of simulation
transforms the uncertainty of an event into a representation of
the overall level of the event throughmodeling (Roux et al., 1973).

Its purpose is to clarify the development trend of things and
eliminate the vague understanding of the connections between
things (Mustafee et al., 2018). Simulation is used to simulate and
map real events. The modeling method is the primary tool for
computer simulation to enhance people’s understanding of things
(Rozenblit, 2015).

Based on the advantages of computer simulation, researchers
have made many attempts in the field of creative generation.
In their research, Li proposed combining original thinking
models with intuitive thinking methods such as the Theory of
Inventive Problem Solving (TRIZ) and brainstorming (Li et al.,
2003), through computer-aided product innovation. Computer
simulation technology uses a neural network to process voice
(Hinton et al., 2012; Graves et al., 2013; Muckenhirn et al., 2017),
image (Sjöström et al., 2015; Lin et al., 2016; Hu et al., 2018;
Sana et al., 2018), and video (Matta, 2008; Han et al., 2017)
data and extracts the characteristics of the simulated object.
The simulation system performs three-dimensional modeling
based on the characteristic data. The application of GANs in the
field of computer simulation has also accelerated the process of
data processing and learning. Although different GANs methods
are based on various convolutional neural network (CNN)
frameworks (Wang et al., 2019), experiments by Goodfellow
et al. have proved the potential of this framework through
qualitative and quantitative evaluation of the generated samples
(Goodfellow et al., 2014). Similarly, the apparent advantage
of computer simulation technology improves the credibility of
evaluating simulation results. Zheng et al. (2017) made some
attempts in their paper, assigning recognition results into five
categories and generating results through six-category detection.
Recently, the University of California, Berkeley, has made
significant progress (Xu et al., 2020). They proved the advantages
of GANs evaluation results in the simulation system. In addition,
an essential method of computer simulation technology is the
modeling method. Moore and Cain (William and Ralph, 2015)
and others pointed out the vital role of mathematical ability and
logical methods in the process of computer simulation creative
generation. Zhang et al. (2018) proposed a computable model
of creative generation, which provides a theoretical basis for the
digitization of the creative generation process. The construction
of the simulation environment of computational simulation
technology provides a simulation platform for the performance
of a dancing robot. This is a great help in saving development
costs and shortening the time required for choreography.

Originality needs to be evaluated in a consensus model
(Mumford and Mcintosh, 2017). The computer simulation
system uses the measurement of brain waves (EEG) (Matthias
et al., 2010) to obtain people’s quantitative indicators of creative
results. At the same time, the scope of innovation is defined
in artificial intelligence (Gazoni, 2016). The process of creative
generation is the divergence of thinking information, but it
does not mean that its expression function does not converge.
When the system complexity reaches a saturation point, from the
perspective of thermodynamics, energy will be released at this
time. At this time, the function tends to converge. This paper
defines the release range of this idea in the simulation system as
the “emergence value range” (EVR). It also proposes the CGC as
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a means of measuring the creativity of the system. The evaluation
method is realized by the quantum modeling method.

This paper gives full play to the advantages of computer
simulation technology in visualization, modeling, and
evaluation. It generates robot dance creativity and trajectory
calculation results that meet people’s needs. It drives dance
robot performance through digital twin technology. This
process realizes the point data sharing of robot dance
performance and trajectory movement. Computer simulation
technology combined with quantum modeling methods
quantitatively evaluate the robot dance creativity and trajectory
calculation capabilities.

Quantum Modeling Method
Since the introduction of quantum theory, it has been widely
concerned in all walks of life. Nowadays, it is not only a modeling
method and calculation theory in traditional physics but also an
essential tool for problem-solving in fields such as mathematics
(Jayantika et al., 2019), chemistry (Nalewajski and Roman, 2017),
the life sciences (Han et al., 2001), and computer science (Bennett
and DiVincenzo, 2000; Schramm, 2017; Aerts et al., 2019). For
computer simulation, the superposition and entanglement of
quantum theory mean that it plays a pivotal role. Quantum
computing can be realized by using the properties of quantum
superposition (Gyongyosi and Imre, 2019), and the applications
of quantum entanglement are mainly in the fields of quantum
teleportation, quantum encryption, and quantum dense coding.
With the help of thermodynamic principles, the complexity of a
quantum system can be calculated by entropy. The complexity
theory of quantum computing is one of the fundamental theories
of quantum computer science (Zhang et al., 2016a). This paper
uses the quantum superposition property and GANs to construct
QGANs to accelerate the data-processing and -learning process.
This paper uses quantum theory, the superposition state, and
entangled states in building the knowledge storage and retrieval
structure of M-3DQKG. At the same time, by calculating the
complexity of the quantum system, combined with CGC, it
is possible to evaluate the creative generation ability of the
simulation system.

If this paper transforms information into quantum state
information, the information at this time is a superposition state.
Then the form of the quantum state information is stored in
each qubit. The superposition state makes the storage capacity
of data much more important than traditional storage methods.
This can prompt M-3DQKG to store more information in a
shallower structure. Moreover, the qubit in the calculation is the
superposition of 0 and 1, which makes quantum computation
much faster than other classical algorithms (Knill et al., 2001).
This can promote the QGAN based on this to have a better
learning ability. More information stored and retrieved by the
algorithm can make the trajectory calculation of the dancing
robot faster, and the body language more abundant. We use
creative analogy (Christensen and Ball, 2016) to combine
newly acquired innovative thinking skills with normal scientific
thinking processes and use proven techniques to expand the
ability of humans to generate original ideas (Ness, 2012).
Kitaev et al. (2011) and others introduced the new theory of

quantum computing. The information of classical systems can be
calculated with the help of quantum systems and their properties
(Nielsen and Chuang, 2007; Roy et al., 2017), so as to realize the
research of classical computing theory and quantum mapping.
This also provides new ideas for improving the computing power
of classical systems.

In the process of studying quantum entanglement, we were
surprised to find that the coherence of the input state and the
entanglement of the output state are quantitatively equivalent
(Berta et al., 2015). The conversion between the coherent state
and the entangled state means that the quantum coherent state
can be measured by the entangled state (Plenio and Virmani,
2011). Nevertheless, we also found that quantum entanglement
and quantum teleportation (Prakash, 2010) are effective means of
quantum information transmission. Before the development and
popularization of quantum computers, we could use computer
simulation technology to simulate quantum models.

The entropy of the complexity of a quantum system is
equivalent to the quantum information entropy (Edward, 2015).
The linear characteristics of quantum systems make it possible
to calculate the information entropy of quantum systems. As the
quantum system complexity can be calculated through entropy
(Deng et al., 2012), if the mapping relationship between the
microscopic quantum system and the macroscopic classical
system can be found (Neill et al., 2016), it may be possible to solve
the problem that the complexity of the classical system cannot be
evaluated owing to non-linear characteristics (Jami and Labbafi,
2017; Madhok et al., 2018).

According to the viewpoint of quantum information theory,
quantum entanglement is a kind of physical existence with
a measurement effect (Yu and Song, 2004; Li et al., 2010;
Shota et al., 2017). Through the measurement and calculation
of multiple dimensions of quantum theory (Heydari, 2006;
Mintert and Buchleitner, 2007; Chernyavskiy, 2009), the purpose
of system complexity evaluation can be achieved. Therefore,
an entangled quantum system with strong operability, useful
calculations, and containing mixed and pure states is valuable.
This is conducive to quantitative evaluation to ensure the
effectiveness of the dance robot’s trajectory and the practicality
of the creative action process.

Summary
The main content of this paper is to use computer simulation
technology to realize the generation and trajectory calculation
of dance robot dance creativity. The system builds the M-
3DQKG structure based on the quantum modeling simulation
model to achieve information storage and retrieval. Under the
premise of information fidelity, a variety of neural networks
are used to accelerate the creative generation process and
increase its richness. This paper uses the quantum system
linear method and EEG test to quantify and evaluate the
creative ability and creative results of the system. The simulation
system uses digital twin technology to copy the simulation
output results that meet the needs of the dancing robot. These
data will drive the trajectory and dance movements of the
dancing robot.
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METHOD

This paper proposes a modeling and simulation method to
enhance the creative generation effect and uses this method to
realize the action arrangement and trajectory calculation of the
dancing robot in a particular scene. As shown in Figure 1, the
general process of idea generation has many links and requires
a lot of human resources and time to complete. This leads to
very low efficiency in the proposal of creative generation schemes.
Programming the creative generation process will be an essential
means of improving efficiency and reducing costs.

The generation of dance creativity mainly involves four
main links: skeleton movement extraction, movement template
generation, three-dimensional (3D) model production, and
the integration of characters and scenes, as shown in Figure 2.
The region with convolutional neural networks (R-CNNs)
recognizes characters’ actions and movement tracks in text,
sound, and images, and extracts bone information and
displacement point information. The holistically nested
edge detection (HED) network generates abstract models
of virtual human limbs as action templates by extracting
information. In the 3D engine, we bind the generated
action template and bone attributes to the character
model and drive the character model to complete the
dance motion simulation. The QGAN network generates
performance scenes based on the information extracted
by R-CNNs.

To enhance the practicality and novelty of the results of dance
creativity, we have made new attempts to increase the capacity
of information storage and the efficiency of knowledge retrieval.
We start from the creative needs, extract the keywords of the
needs, and form the ontology domain, abstract model, and the
weight index of the demand knowledge. The ontology domain
is used to define the object to be creative and the constraint
range of the object’s actions, scenes, and expressions. The abstract
model is a data model generated by the ontology domain to
describe the virtual person. The demand knowledge weight
index is a weight table defined according to the frequency and
importance of the keywords in demand. Moreover, we extract
dance videos, images, and music information from R-CNNs

to form an action library. The action library stores the body
movement data and the running track. Based on the properties of
the quantum superposition state and entangled state, we buildM-
3DQKG result storage and retrieval knowledge based on action
feature tags.

To ensure the accuracy of the body template and the
rationality of the fusion of characters and scenes, we have carried
out some research into information fidelity and optimizing the
creative generation process. We put forward the calculation
method of information fidelity and related parameters for each
link. Moreover, we optimize the closure of the information flow
of the two processes of action generation and scene generation in
the creative generation process. Our purpose in doing this is to
keep information from being disturbed and lost by the external
environment. We use the information degree to continuously
measure the information changes of the system and provide an
available reference for the final creative result.

To evaluate the degree of creativity of the creative generation
results, we propose a CGC linear evaluation method based on
measuring the information entropy of the quantum system. This
combines EEG results to evaluate creative results. CGC is the
mapping value of the quantum system information complexity
in the classical system. We calculate the complexity of the
quantum system based on the equivalence relationship between
quantum entanglement entropy and information entropy. We
use the principle of thermodynamics to calculate the relationship
between the information entropy of the quantum system and
the classical system and realize the mapping of linear quantum
systems to non-linear classical systems. We defined the critical
value of the convergence of the CGC description function as the
EVR to evaluate the creative generation ability of the system.
In addition, we invited volunteers to take an EEG test while
watching creative generation videos. We marked creative points
based on EEG peaks. Creative points are used as knowledge labels
for neural network learning. The result of learning is an update of
the structure and weight of M-3DQKG. Finally, the purpose is to
achieve the convergence of the CGC description function.

This paper takes the generation of dance movements as
an experimental case and visualizes the generated dance
movement videos in a 3D simulation engine through
character modeling and scene fusion. The system will meet
the simulation results of the needs assessment to produce
dance robot bones, joints, and displacement data. These
data are transferred to the robot, and, finally, used to realize
the dance performance and trajectory calculation of the
dancing robot.

Knowledge Retrieval Model
Knowledge retrieval of the creative generation is based on the
knowledge graph. We propose the M-3DQKG model, which is
used to construct the knowledge graph of the research object.
Knowledge is a description of the attributes of the research object.
Each node is defined as a qubit to store a unit of knowledge. The
knowledge of a qubit is in a superposition state, which increases
the data capacity of the knowledge graph. We divide knowledge
into levels and determine the attribution or relationship of the
upper and lower levels. Each layer forms an array of qubits. With
the increase and connection of the qubits storing the knowledge
unit points, the system creates an intricate knowledge network,
as shown in Figure 3. When acquiring knowledge, knowledge
units are retrieved one by one from the first level to deeper levels
according to the connection relationship between qubits. Among
them, the knowledge unit is locally entangled. A red dotted line
connects the two entangled qubits in Figure 3. The generation of
entanglement is determined based on the coherent state of the
knowledge points stored in the qubit. When a knowledge unit in
an entangled state is retrieved, we think that a measurement has
been made. At this time, the state of the qubit is determined, and
the superposition state of the qubit disappears. The information
from the state change is instantly transmitted to the qubit at the
other end through entanglement. The new search starts from this
qubit, which realizes the cross-level search of the knowledge unit.
The M-3DQKG model increases the diversity of knowledge unit
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FIGURE 1 | Comparison between the general process of creative generation and the programmatic form.

FIGURE 2 | The main links and key techniques of creative dance movements. HED, holistically nested edge detection; R-CNN, regional convolutional neural network;

QGAN, quantum generative adversarial network.

retrieval. This model not only enriches the knowledge structure
but also promotes faster information transmission.

In the process of retrieving knowledge based on the
M-3DQKGmodel, the connection relationship between qubits is
assigned weights according to the characteristics of the research
object. Furthermore, we define the knowledge unit of the qubits
in an entangled state. If one of the qubits is retrieved, the other
qubit must be extracted. Therefore, the connection between
them is assigned a weight of 1. The initial structure of the
knowledge graph is based on research-on demand ontology (Jing
et al., 2013; Zhang et al., 2016b). This ensures that the creative
generation results remain valid. We extract the demand ontology
and calculate the ontology domain of the idea generation so

that the idea generation process always meets the constraints of
the demand.

The learning network extracts keywords from the input
demand information. The main research object is defined as the
central ontology or primary ontology, and the secondary object
is defined as the related ontology or secondary ontology. The
ontology is the carrier of creative generation, and the keywords
are bound to the ontology as attributes of the ontology. After that,
the keywords are sorted according to their importance, and the
sort number is marked. Take the expression rules in Table 1 as an
example of designing a sorting number labeling algorithm.

After the labels of the sorting numbers are assigned, each
keyword is tested once. The test is based on the C-index in
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FIGURE 3 | Examples of quantum knowledge graphs.

TABLE 1 | Ontology and keyword sorting number labeling.

Object Person Environment

Keyword Duet-dance Slide Whirl Jump Fast Hold Ice field Audience Light

Number 1 2 3 4 5 6 7 8 9

C-index 4 3.32 2.86 2.71 2.15 1.88 1.27 1.03 0.54

Table 1. The purpose of the detection is to determine whether
the labeling of the sorting number is accurate. Otherwise, the
sorting number labeling of the main body and the sub-body will
be reassigned. If multiple sub-ontologies and more keywords are
determined from the demand information, the ranking numbers
are marked sequentially. Table 1 is used to find dance clips from
the action library.

The generation of the action library relies on the R-CNN
network to extract and label the features of videos, pictures,
and audios. The tags are constructed into a knowledge network,
as shown in Figure 4. In the network, the demand layer is
the ontology information in Table 1. The retrieval layer is the
knowledge network in the action library. The resulting layer is
the conclusion data generated by knowledge reorganization. The
system sequentially calculates the connection weight of the upper
level knowledge and the lower level knowledge in the knowledge
network. Take the hierarchical structure and node distribution in
Figure 4 as an example.

First, determine the interpretation matrix A of the primary
ontology. According to the searching results of the row labels
constructs the matrix, where B1, B2, and B3 connected to it and
B2 > B3 > B1. The subordinate ranking numbers are marked as
B1 = 5,B2 = 2,B3 = 3.

A=





1 |1/(B1−B2)| |1/(B1−B3)|

|B1−B2| 1 |B3−B2|

|B1−B3| |1/(B3−B2)| 1



 ⇔A=









1 1/3 1/2

3 1 1

2 1 1
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Calculate the primary weightW by the square root method,
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NormalizeW using dispersion normalization and map the value
between [0, 1 ],

w∗
i =
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∑N
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(3)
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w∗
2

w∗
3



=





0.111

0.475

0.414



 (4)

where w∗
i is the normalized value of each weight and W◦ is

the normalized matrix. We can use this method to obtain the
retrieval weight between each layer of tags. Mark the weights of
each layer on the graph, as shown in Figure 5. It can be seen that,
after knowledge retrieval and reorganization, the result layer data
are output, and the weight that the knowledge unit can adopt
is marked. The weight value can reflect the admissibility of the
knowledge unit. The dotted line in the figure indicates that the
intermediate knowledge retrieval level is omitted.

The knowledge units obtained in the result layer are
used to generate a creative library through clustering. The
generation of the creative scheme adopts the “probability
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FIGURE 4 | Hierarchical structure of the M-3DQKG model.

FIGURE 5 | M-3DQKG model retrieval weight calculation and creative library generation.

branch model” to generate the knowledge units in the creative
library through combination, as shown in Figure 6. The final
scheme judges its validity according to the value of the sum
of weights. The M-3DQKG model is repeatedly reconstructed
through the continuous “learning–improvement–re-learning–
re-improvement” process of the learning network to obtain the
most reasonable knowledge unit storage and retrieval structure.

The “probabilistic branching model” in Figure 6 can
reorganize the knowledge units of the result layer according
to probability. The creative scheme generated after the
reorganization is a random combination of “hot knowledge”

with a relatively large weight and “cold knowledge” with
minimal weight. The model is based on the creative knowledge

unit from reorganization at the two levels of quantity and
quality, so it improves the novelty and diversity of creative
generation schemes.

Information Fidelity and Creative
Generation Model
This paper proposes the concept of “information fidelity” in
the process of creative generation. “Information fidelity” means
that the information in the system should be as authentic and
complete as possible. The information fidelity in this paper
includes the reliability of the demand ontology information and
the integrity of the information in the information-processing
procedure. The former ensures that the results of the creative
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FIGURE 6 | The structure of the probability branch model in the knowledge base.

generation meet the constraints of the ontology domain, while
the latter can maximize the creative ability of the system through
rich information.

The input system of the required information in the creative
generation process is the starting point; it ends with the
generation of the creative plan. The process always follows the
principle of information fidelity, and, under the premise of
satisfying the ontology domain, it emphasizes that creativity
should follow natural laws and social reality. Its purpose is to
enable creative results to be used to solve a social problem.

Information fidelity needs to reduce the process of
extraction and visualization in the process of information
processing and transmission. Moreover, based on the current
information-processing environment, even if we use multiple
threads to process information, we cannot adequately meet the
impact of big data. Information will be lost in a specific link,
causing information loss. The advantage of parallel quantum
computing lies in solving these problems. Creative computing
has been able to satisfy the composition of music (Hugill, 2014;
Giraud et al., 2016) in music creation, but it is a new endeavor
in scene generation and dance performance. Because of the
numerous elements involved in the creative calculation and the
enormous amount of calculation required, the calculation cannot
solve all creative problems in a short time, and the process of
composing music is relatively simple.

To ensure the fidelity of the information, we have carried out a
lot of research work mainly on the credibility of the information
source, the closure of the information-processing method, the
integrity of the information-processing results, and the timeliness
of the information. Define the information fidelity I (x) as

I (x)= f (Sc, Cl,Inte,Tim) (5)

where Sc is the credibility of the information source, Cl is the
degree of closure of the information-processing method, Inte
is the completeness of the information result, and Tim is the
timeliness evaluation value of the information.

Sc (x)=q
(

1−p
)

√

√

√

√

q
∑

i=1

(xi−x0)
2

q
(6)

where p represents the error tolerance rate of the dataset and q is
the amount of the subset of the dataset. Sources of information
include the initial graphics, audio–video datasets, databases,
and requirements documents. All of these must form an exact
information index database, which is convenient for checking
that the information is correct.

Cl (m,n)=dec (m,n)
deep∗num

sum
∗rate∗100% (7)

where dec (m, n) is the information loss function affected by the
environment,m is the amount of quantum parallel computation,
n is the number of the structural unit of each parallel computing
process, deep represents the depth of knowledge graph retrieval,
num is the cumulative number of knowledge nodes that the
process goes through, and sum is the total number of nodes
of knowledge points. Furthermore, rate is the coverage rate of
knowledge points. During information processing, the database
must not only cover enough demand information but also
form a complete expression of the characteristics of the data.
Based on the M-3DQKG model construction method in the
previous section, the system assigns weights to the knowledge
units containing the information of the ontology and realizes
information retrieval.

Inte (t)=
sets (t)∩ (dm∪F)

dm∪F
∗com (t) ∗100% (8)
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where sets (t) is the fitting function of the dataset containing
the ontology domain and feature labels returned at a random
time, dm is the ontology domain set, F is the feature label set,
and com () is the proper function of the knowledge nodes used.
This paper proposes a comparison method to compensate for
information loss. The method is a combination of information
feedback and a suitable comparison. The feedback information
is the ontology domain and feature label of the current creative
generation at a random time in the process of generating results.
Based on the feedback from these two characteristics, the deep
learning network compares them with the original demand data.
If the ontology domain or the feature labels are different during
the fitting process, it is considered that a suitable comparison has
failed. At this time, the system considers that the result of the
creative calculation has deviated. This deviation is part of the
unsuccessful suitable comparison segment. The successful part
of fitting and matching forms the starting value of the creative
evaluation score (between [0, 100]). This value will also be used
as the evaluation value for the fidelity of the information when
the creative generation result is evaluated. Also, all information
in the creative process should be kept up to date.

Tim (t)=
1q

1Q

(

t−t′
)

t

∫ t′

t

f (x) dx (9)

where t−t′ is the difference between the current time and the data
update time, q is the sum of the absolute value of the increase
and decrease of the data from t′ to t, Q is the total amount of
current information, and f (x) is the quantization function of
the information.

In the process of generating ideas, the data are updated
continuously. The arrows in Figure 7 indicate the input of
new data, and the numbers indicate the order of information
input. Each row represents the progress of the data calculation.
Different colors indicate the module unit of varying processing
times. The first line is the primary process, which is used to
interact with the data and integrate the data directly. The module
unit processes integrated data based on the last completed
process. Processes completed before this base point choose to
wait. Moreover, the integrated data are used for idea generation.

Creative generation is based on information fidelity
calculations. This paper proposes a basic framework for the
creative generation model based on the flow of information. The
creative generation model was mentioned at the outset of digital
creative technology (Lee, 2016), but, unfortunately, the definition
of the creative model is relatively one-sided and not universal.
Moreover, the method is single and cannot complete the creative
generation process quickly and intelligently. This paper uses a
variety of deep learning networks and quantum technologies
to reconstruct the creative generation model. Compared with
previous studies, the framework has the characteristics of
universality, high performance, and intelligence.

It can be seen from Figure 8 that this paper proposes a
four-stage simulation framework for the creative generation
process. The demand analysis module determines the ontology
domain and feature labels through demand analysis. The system
generates abstract models with unified characteristics and stores

knowledge weight tables. The data-processing module extracts
the action library and knowledge network through the R-CNN
network and establishes a connection between them. The M-
3DQKG structure is constructed using quantum modeling and
simulation methods to realize entangled interconnection and the
teleportation of information. The information stored in the qubit
forms a backtracking table, which compares the requirements
with the update of the knowledge network. In the creative
generation module, action learning extracts dance action models
through R-CNN and HED and builds simulation models in a
3D engine. At the same time, QGAN generates an expression
environment that meets the characteristics of the dance and
realizes the integration of dance movements and the expression
environment. The mature performance data are twinned on
the robot to drive the robot’s dance expression. The result
evaluation module uses EEG tests to mark the creative tags that
trigger excitement on the creative generation results and uses
information fidelity and CGC to evaluate the novelty, practicality,
and intelligence of the creative results. Under the framework of
this creative generation model, computer simulation technology
reduces the event cost of robot debugging. It ensures the closure
of the creative generation process and the practical value of the
creative results.

Linear Evaluation of System Creative
Ability
Three crucial indicators comprehensively evaluate the creative
ability of the system. The first one is the amount of information
that the system may need to generate originality. The second one
is the timeliness of the results, and the last one is the diversity
of results. The M-3DQKG model solves the problem of result
diversity. Information fidelity is used to evaluate the timeliness
of the generated results. Moreover, we study the problem of the
calculation of the amount of information in this section. The
evaluation of creative results should conform to four criteria.
First, the semantic extracted features and demands need to match
with others to confirm that the learning network in the creative
generation model satisfies the characteristic value of the ontology
domain. The M-3DQKG model does this work. Second, the
abstract model and dataset training results also need to match to
generate an abstract model based on the dataset that has the same
attributes as the research object. The creative generation model
solves this problem. Third, the output results and realization
conditions need to match to ensure that creative solutions
can be realized under existing conditions. Information fidelity
computing achieves this goal. Finally, the creative ability and
psychological expectations need to match to develop a creative
generation system thatmeets people’s expectations. This issue will
be studied in this section.

This paper proposes a method to evaluate the creative ability
of the system by calculating the complexity of the system to
quantify the creative capacity of the system. This method maps
the non-linear relationship of the complex macroscopic system
into the linear space of the microscopic quantum system. The
complexity of the system is quantitatively analyzed by calculating
the changes in system energy during information transmission
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FIGURE 7 | Information-processing timelines.

and conversion. The amount of information calculates the
measurement of information. Entropy is used as a unified
calculation standard to quantify the energy change in the
system from the thermodynamics perspective (Nalewajski, 2016).
Thereby, humans can obtain system complexity (Burdon et al.,
2018). As shown in Figure 9, the entropy is used to measure
the consistency between macro-complex systems and micro-
quantum systems. At the same time, this paper proposes the
concept of the “creative generation coefficient” (CGC), which is a
standardized value used to map the system’s current complexity
and information volume. The value continually changes with
time. What is more, the creativity generation coefficient is just
like the value of evaluating people’s IQs. It can also reflect the
level of intelligence and creativity of the system. When the CGC
reaches a specific value, it means that the complexity of the
system has reached a high level. According to thermodynamic
theory, the increasing trend is suppressed by quantum effects,
although quantum chaos can lead to an increase in entanglement,
that is, an increase in quantum entanglement entropy. In other
words, the entanglement entropy cannot be infinite. It tends
to converge. Humans cannot make the complex system lose
its original emergent properties by increasing the entanglement
of the quantum system. The entropy of the system cannot be
increased indefinitely, which also coincides with the emergence
of complex systems (Morrison, 2003). If the system emerges
strongly, it gradually changes from the disordered state to the
ordered state when the emergence process occurs. Then, the
entropy of the system decreases. Therefore, we define that the
system will emerge and complete the creative generation process
when the CGC grows to a higher value.

Information is stored in qubits, which are particles. They are
in a linear superposition state. This can be expressed as

9=c191+c292 (10)

where 91 and 92 are the possible states of particles and c1 and
c2 are constant complex numbers. If entanglement occurs in
the quantum system, the possible state of the particles can be
expressed as a spin form, which is shown with the Dirac mark

| ψ〉 =
1
√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉 ) (11)

where | ↑〉 and | ↓〉 indicate that the spin of the particles
is up or down, respectively. In order to facilitate calculation,
quantum entanglement is expressed mathematically. Assuming
that a composite system is composed of two subsystems A and
B, the Hilbert spaces of these two subsystems are HA and HB,
respectively, and the Hilbert space HAB of the composite system
is a tensor product

HAB=HA⊗HB (12)

Set the quantum states of subsystems A and B to | α〉 A, | β〉 B,
respectively. If the quantum state of the composite system
| ψ〉 AB cannot be written as a tensor product | α〉 A ⊗ | β〉 B,
the compound system is called the entanglement system of
subsystems A and B, and the two subsystems A and B are
entangled with each other.

The state vector | ψ〉 or the density operator ρ = | ψ〉 〈 ψ |

can describe the quantum state of a pure state. Density operators
can only describe statistical mixed states

ρ=
∑

k

Pk | ψk〉 〈 ψk| (13)

where Pk is the pure state | ψk〉 probability of occurrence in the
statistical mixed state ρ. They satisfy the normalization condition

Trρ=
∑

k

Pk=1 (14)

Because of the inevitable effect of the environment, the system is
converted from the initial pure state (the coherent superposition
state of the coherent state) to the mixed state (the incoherent
superimposed state of the coherent state) when passing through
the cavity field in the process of information propagating using
the qubit as a carrier. The pure state of this composite system can
be expressed as

| ψ (0)〉 ∝ (| α〉 + | −α〉 ) (15)

where | α〉 is an assumption that the cavity field is initially
prepared in a coherent state and defines that the environment is
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FIGURE 8 | The creative generation model of dance movements integrated with performance scenes. CNN, convolutional neural network; SVM, support vector

machines; QGAN, quantum generative adversarial network.

Frontiers in Neurorobotics | www.frontiersin.org 12 December 2020 | Volume 14 | Article 55936683

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Mei et al. Method of Creative Generation

FIGURE 9 | The relationship between macroscopic complex systems and microscopic quantum systems.

initially in the state | ε〉 , then the state of the composite system
at time t becomes

| ψ (t)〉 ∝ (| β (t)〉 | ε1〉 + | −β (t)〉 | ε2〉 ) (16)

where

β (t)=αe−
γt
2 (17)

γ represents the information loss rate of the cavity field and
| ψ〉 is the quantum state of the cavity field. To trace the
environmental variables, the reduced density operator of the
cavity field is

ρF=Treρ=
∑

j

〈

εj
∣

∣ψ (t)
〉 〈

ψ (t)
∣

∣εj
〉

∝ | β (t)〉

〈 β (t)| + |− β (t)〉 〈− β (t)| (18)

It can be seen that, because of the effect of the environment, the
pure state becomes a mixed state. When t → ∞, the cavity
field information will decay to the vacuum state |0〉. For linear
entropy, the nature of the trace of the density operator ρ is

Trρ =

{

1, pure state

< 1, mixed state
(19)

Tracing the density operator can obtain the moisture entropy of
the system, then the entropy value of the system is calculated
according to the entanglement entropy

S (ρ)=−Tr
(

ρ log ρ
)

(20)

The rate of change of entropy with time is

Ṡ=−
dTrρ2

dt
=−Tr (ρ̇ρ+ρρ̇) (21)

Since the entanglement entropy is not additive, the amount of
information reflecting the two entangled subsystems is

I (A,B)=S (A∪B)−S (A)−S (B)+S (A∩B) (22)

This is Shannon’s proposed definition of information entropy.
It is seen that the information entropy can be expressed as the
mathematical expectation of the amount of information I (xi)
provided in the systemwhen an event xi appears in setX, which is

HX=−

n−1
∑

i=0

p (xi) log p (xi) (23)

For information, it is a question of probability. A large probability
only requires one bit to be transmitted. In other words, the
smaller the probability, the more bits need to be transmitted.
Using the number of bits to measure the amount of information,
the lower probability, the enormous amount of information. The
formula based on this information is

I (x)=−log2p (x) (24)

It can be clearly seen that there is a correlation between
entanglement entropy and information entropy. The change
process of the system from the pure state to the mixed state also
exactly meets the necessary environment for creative computing
(Liu and Yang, 2014). The amount of information on the two
entangled subsystems can also be calculated. When the input
information is stored in the qubit unit of the system, the
amount of information is known. Using this as the cardinal
number, humans can change the system information through
the calculation used in the process of information transmission.
This change is mainly the result of the increasing amount of
information. The added information is the process data and this
results in the dataset generated by the learning network after
learning. It also includes a knowledge graph that represents the
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relationship between the data, an abstract model representing
the ontology of things, and point information, representing the
movement of the model. When the amount of information
reaches a specific value, the information entropy of the system
also reaches a higher value. At this time, as a subsystem of
a complex system, each quantum system can map the result
to the information entropy of the complex system through
the calculation of information entropy. Based on this, the
complexity of a complex system can be measured. For this
measure of complexity, the value can be mapped to a value
between [0, 100]. This is the “creative generation factor” (CGC)
that we proposed. The emergence phenomenon will occur when
the system information is saturated. At this time, the system
information is continuously released to the outside system, and
the information entropy of the system will increase slowly, and
even tend to converge. The quantity of emergence of the system
is defined as the total value from the beginning of emergence to
the end of it, that is,

1H=Hstart−Hend (25)

This can more intuitively represent the system’s ability to
generate creativity. The CGC C (x, t) is

C (x,t)→f
(

I,1H,HX,Ṡ
)

(26)

When the system emerges, the CGC current value is called the
“emergence value range” (EVR). After the CGC reaches the EVR,
the representation function of the CGC tends to converge. From
the perspective of system evaluation, we believe that the system
has a high creative generation ability. We use this method to
achieve a linear evaluation of the system’s ability to generate
originality. This method, combined with EEG, can reasonably
evaluate the results of the creative generation. We will explain
the evaluation experiment process in detail in the next section.

RESULTS

The experiment was deployed on an IBMAC922 machine,
using four Tesla V100 floating-point arithmetic cards. It
was compiled with Python3.5+ and OpenCV 3.4 under the
environment of IBMpcc64 ubuntu18.04. The experiment
used the cityscape database for 1,000 epochs of deep
learning. It was able to obtain 3D scenes and task models,
generate action libraries, and perform fragmented creative
simulations of dance movements. The engine achieves
dance performances by combining creative dance moves
and generated simulation scenes. Then, the system gets the
relevant results, showing that the generated actions are not
the same as the learned video library. The rearrangement of
the combined sequence of actions and the movement path
of the skeleton of the simulation model can achieve creative
generation. Dance movements can be viewed through VR
devices, and humans can experience the viewing effects in the
performance scene.

According to different task requirements and files, the
learning network extracts data feature values and labels the data

to form the original feature label table, as shown in Table 2.
Dance creativity is classified according to the type of dance, such
as folk dance, tap dance, and ballet. We assign keyword tags that
represent the characteristics of each type of dance. These tags are
used to match with the requirements to determine the actions
needed for that dance action. Moreover, dance performances
combined with dance moves need to have corresponding scenes
to express the artistic conception. Therefore, the environmental
label is also stored in this table. For example, mountains, plants,
landscapes, and street scenes. The data extracted from this table
are as accurate as possible. As the only constant table, it is
the standard for feedback comparison in the system learning
network’s learning process, and it is also the basis for data
review. Similarly, this table contains not only the primary data
for defining the ontology domain of ideas but also provides the
basis for evaluating the results of creative generation.

For the creative process of dance movements, an initial
knowledge graph is formed, according to Table 2. This
knowledge graph is the accumulation of experience in the
formation of traditional ideas. The system must search and
form a new knowledge graph–M-3DQKG search structure, first
based on the task feature label. Then, the system stores the
knowledge in the qubit. For each knowledge point, the weight
is determined according to the degree of primary and secondary
requirements, as shown in Table 3. M-3DQKG retrieves the
hierarchical management of the structure and defines the weight
of the parent node to the lower child node. The sum of the
weights is 1. There may be entangled nodes each time, defining
the entangled pairs for cross-level retrievals, such as B2 and D9.

According to the weight distribution of the knowledge graph,
dance movements are recombined from the action library
formed by the learning network through learning to form dance
fragments, which are combined with the probabilistic branch
model. The system generates simulation scenes based on dance
clips and demand ontology domains. Then, the simulation scene
and dance movements are combined to complete the creative
process. Figure 10 shows an example of generating a character
abstract model and the dance movements.

The subjects watched the creative generation plan and
recorded EEG data through EEG equipment, as shown in
Figure 11. The participants were creative needs proposers and
student volunteers (a total of 26 people). The former assessed
how well the creativity needs are met, while the latter pretended
to be an audience watching the creativity. When the subject was
interested in the creative points generated by the system, the EEG
data obtained from the test had a peak. The time corresponding
to the peak was defined as the creative time point. In Figure 11,
for example, the creative time points for the first subject were the
12th and 69th s. The subjects watched the creative plan again.
This time, they compared their EEG data andmarked the creative
tag at the point of the stimulus (the peak point during the EEG).
We analyzed these times in the subjects’ EEG data and marked
keywords that were of interest to the subjects.We organized these
keywords to form an evaluation form, as shown in Table 4. We
added the tags for each subject to the knowledge graph one by
one as the negative feedback knowledge of M-3DQKG. If the
label already existed in the knowledge graph, then a new round of
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TABLE 2 | Original feature labels.

Ontology Feature label Attributes Layer number Node number Retrieval rate

Folk dance Dai people Peacock, drums, performance... 6 541 0.673

Dong nationality Chorus, lusheng, love... 6 532

Korean Sword dance, fan dance, chic, cheerful... 5 344

Uighur Plate dance, tambourine dance, head,

shoulders, waist, and eyes...

8 892

… …

Tap dance American Free, relaxed, complex rhythm, jazz... 3 87 0.522

British Rotate, slide, beautiful, split sound,

repeat...

5 381

Irish No upper body movements, crossed feet,

soft shoes...

3 98

… …

Ballet Banquet ballet Song, dance, recitation... 2 22 0.735

Court ballet Drama, acrobatics, music... 2 19

Plot ballet Education, story... 4 235

Romantic ballet Lighting, big screen, lightness, poetry... 3 106

Russian ballet Women, elves, ghosts, gods, longing... 4 269

Contemporary ballet Life, stretch, jump, straight... 3 112

… …

…

Mountains Green hills Green, vitality, birds, and flowers... 5 401 0.449

Snow mountain White, cold, steep... 3 115

Distant mountain Small, rolling... 5 384

…… …

Plants Flower Colorful, petals, stamens,

chrysanthemums, sunflowers...

4 298 0.907

Grass Green, four-leaf clover, mimosa... 7 754

Tree Colors, leaves, branches, trunks, pine

trees, willows...

5 372

… …

Landscapes Bright moon Bright, curved, round... 2 13 0.846

Mountains High, overlapping... 6 557

Morning glow Red, big, halo... 5 369

… …

Street scenes Street Width, length, car, lights... 8 933 0.633

Building Shape, floor... 11 1,421

Shops Signboard, display... 10 1,275

… …

…

machine learning updated its weightW. After repeated iterations,
we perfected the structure of M-3DQKG.

As shown in Figure 11, different subjects have different points
of interest in creativity. For example, the top subject only showed
peaks on both sides, while the middle subject showed peaks that
appeared very frequently. However, it can be seen that they have
coincident peak points. Table 4 reflects the intersection of the
creative points.

According to the evaluation results, the previous knowledge
graph is readjusted to assign weights to highlight the creative
points of the test-takers’ focus. The results of one adjustment are
shown in Table 5. Compared with Table 3, the connection node

of the A1 node is increased by B31, and the connection weight
of each node has changed. Similarly, the number of connected
child nodes of other parent nodes has been adjusted. As the
creative label in Table 4 was added on the one layer, the number
of changed nodes increased, and the numbering sequence was
changed. Such adjustments may need to be made hundreds or
thousands of times. All are done automatically by the system.
Figure 11 shows the EEG test results of the first three test-takers
in Table 4.

Finally, the creative results that meet the creative needs
are evaluated for their information fidelity. Meanwhile, in
the creative generation process, we have to evaluate the
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TABLE 3 | Original table of the knowledge graph and weights.

Label Connection nodes Entangled nodes

Name A A1 B3 B7 B10

W 0.241 0.533 0.226

Name A2 B2 B5 B9 B12

W 0.321 0.552 0.109 0.018

Name A3 B1 B3 B4 B6 B8 B11

W 0.116 0.284 0.485 0.061 0.033 0.021

Name B B1 C5 C8 C13 C17

W 0.702 0.135 0.098 0.065

Name B2 C1 C6 C7 C16 C22 D9

W 0.238 0.299 0.374 0.018 0.071

Name B3 C3 C4 C11 C15 C16

W 0.096 0.167 0.355 0.219 0.163

Name B4 C6 C8 C12 C15 C20

W 0.457 0.166 0.182 0.064 0.131

Name B5 C4 C9 C14 C18 C24 C31

W 0.205 0.611 0.034 0.142 0.005 0.003

… …

Name B11 C2 C7 C19 F11

W 0.857 0.032 0.111

Name B12 C5 C11 C27 C32

W 0.629 0.174 0.062 0.135

Name C C1 D3 D12 D44 D47

W 0.525 0.261 0.103 0.111

Name C2 D2 D23 D39

W 0.732 0.233 0.035

Name C3 D9 D11 D52 D69 D73 E7

W 0.494 0.268 0.127 0.042 0.069

… …

FIGURE 10 | Dance movement generation (A). Deep learning process (B). Generation of virtual people.

system’s creative generation ability. As shown in Figure 12,
the entanglement entropy and information entropy of the
microscopic system are tested, and the two are mutual proof that

errors in the measurement data have been prevented. Similarly,
the information entropy of a complex system is calculated
through the change in information volume of the macro-system.
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FIGURE 11 | Electroencephalographic (EEG) experiment and waveform. (A) Schematic of the EEG equipment used. (B) EEG waveforms of three subjects.

TABLE 4 | Test takers’ creative input label.

Creative time T = 12 s T = 35 s T = 84 s T = 92 s

Insertion time T = 23 s T = 57 s T = 69 s T = 115 s

Subject 1 Gesture Spinning

Subject 2 Cross Light Imagination Passion Dynamic Warm

Subject 3 Bounce Spinning Expression Squat-up

Subject 4 Fly Light Power Pleasant Elegant

Subject 5 Imagination Spinning Music

Subject 6 Power Spinning Pleasant Soothing

Subject 7 Light Spinning Expression Music Warm

…

Subject 26 Imagination Spinning Expression Dynamic Elegant

It can be seen that there is a correlation between the three. It
can be proved that the calculation of the information entropy
of the complex macroscopic system can be obtained by the
linear calculation of the microscopic quantum system. Based
on the calculation method of the CGC proposed in this paper,
the information entropy of the complex system is mapped to
the interval [0, 100], as shown in Figure 13. It is not difficult
to see that there is also a mapping relationship between the
CGC, information entropy, and system complexity entropy.
Furthermore, it is used as the basis to calculate the creative
generation ability of complex systems.

As shown in Figures 12, 13, the mapping relationships among
the CGC, the system information quantity, and the system
complexity have provided the quantitative calculation basis for
the assessment of the system’s creative ability. When the CGC
reaches an absolute value, the amount of information will no
longer increase significantly, and tends to converge. As shown
in Figure 13, after 15 iterations per month, the value is stable at
around 95. This phenomenon can be explained by the heating
effect of themetering subsystem. Currently, the system completes
the creative generation process and releases some storage space.
In other words, the process of releasing energy in a complex
system is the process of completing the emergence of information

and realizing the creation of ideas. In this way, the pressure on
the system caused by process data storage during the calculation
process is relieved. The performance of the system is much
improved. It can also be seen that the creative generation
ability of the system has been maintained at a high level in the
subsequent creative generation process.

The EEGwaveform and the subject’s creative label annotations
reflect the popularity of the current creative system very well.
As the tag knowledge is learned again, the structure of M-
3DQKG tends to be reasonable. The next creative plan will still
be marked by the subject’s EEG test results and creative tags as
one of the criteria. The loop of this process may require multiple
iterations. In the process of system iteration, the information
entropy of the system increases continuously and tends to be
saturated. Therefore, CGC steadily approaches 100. When the
creative generation results are satisfactory to the subjects, the
current CGC is fixed as the system’s creative emergence value. At
this time, the dance creative M-3DQKG structure that addresses
these needs is set. When the system faces new dance creation
needs, the dance creativity can be simplified to observe whether
the CGC value reaches the creative emergence value, and the
process of EEG testing and creative labeling is omitted. Therefore,
the whole process of dance creativity can be completed more
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TABLE 5 | Change table of the knowledge graph and weights.

Label Connection nodes Entangled nodes

Name A A1 B3 B7 B10 B31

W 0.203 0.515 0.126 0.156

Name A2 B2 B5 B12 C6

W 0.333 0.585 0.082

Name A3 B1 B3 B4 B6 B8 B11

W 0.116 0.284 0.485 0.061 0.033 0.021

Name B B1 C5 C8 C14 C19 C31

W 0.513 0.089 0.114 0.065 0.219

Name B2 C1 C6 C11 D21

W 0.388 0.305 0.307

Name B3 C3 C4 C11 C15 C16

W 0.096 0.167 0.355 0.219 0.163

Name B4 C12 C23

W 0.698 0.302

Name B5 C4 C9 C14 C18 C24 C31

W 0.205 0.611 0.034 0.142 0.005 0.003

… …

Name B11 C2 C7 C19 C39 F16

W 0.646 0.014 0.125 0.215

Name B12 C5 C11 C27 C32 C33 D54

W 0.352 0.109 0.262 0.135 0.142

… …

Name B16 C33 C36

W 0.732 0.268

Name C C1 D3 D12 D44 D47 D66 G78

W 0.455 0.198 0.117 0.102 0.128

Name C2 D2 D23 D52

W 0.227 0.532 0.241

Name C3 D12 D16 D56 D71 D75 D81 E11

W 0.387 0.206 0.158 0.033 0.012 0.204

… …

quickly and effectively. Because of the small number of subjects,
the coincidence of EEG peaks between different subjects needs
to be strengthened. The time points of some creative point
tags obtained from the test may be optimized. Furthermore, in
order to accelerate the speed and accuracy of creative generation
iterations, the subject technology can be expanded, which is one
of the important means of achieving this.

CONCLUSION AND DISCUSSION

This paper builds a creative generation process based on
a quantum modeling simulation framework and proposes
a method that can generate multiple creative schemes for
dance movements. This method can realize the reasonable
construction and reorganization of a quantum knowledge graph

and assign knowledge retrieval weights according to creative

needs dynamically. The method includes the M-3DQKG model,

information fidelity method, the creative generation model, and
the linear evaluation method of the creative ability. Furthermore,
the learning results from the creative network are novel, useful,
and diverse based on this method. The practicality of the
dancing robot’s movements and running trajectories can also be
guaranteed. The results of the creative generation can be viewed
through a computer simulation engine and VR devices so that
people can feel immersed in the experience. For the results of
the creative generation process, this paper proposes CGC to
judge the creative generation ability of the system. Moreover, the
evaluation result data are input to the dancing robot to realize
the robot’s dancing performance and trajectory calculation in
a specific scene. In this paper, the robot data are generated by
simulation technology, and the writing and debugging work is
completed in the simulation engine. This is helpful in reducing
the time cost and hardware loss of the dance robot’s multiple
runs and debugging, and can map the real robot in the model
of the simulation engine through digital twin technology. The
benefits of this are to facilitate the analysis and preservation of
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FIGURE 12 | Entanglement entropy, quantum system information entropy, and

complex system information entropy.

FIGURE 13 | Information volume and creative generation coefficient.

data and to ensure information fidelity and intelligent control of
the dancing robot. At present, in terms of the performance of
dance robots, we have found that, in the process of generating
creative dance movements, the continuity of movements needs
to be optimized by algorithms because the creative movements
are fragmented and the dynamic model movements are rigid.
The goal of the next stage is to be able to generate a complete

set of coherent and smooth dance movements. In terms of the
experimental data of the system, because of the small number
of subjects, the EEG and creative label data are not sufficient,
resulting in a slow system iteration speed, which affects the
current generation effect of dance creativity. The next step will be
to invest more research in the process of increasing test data and
accelerating iteration.
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A Proportional Integral Derivative (PID) controller is commonly used to carry out tasks like

position tracking in the industrial robot manipulator controller; however, over time, the PID

integral gain generates degradation within the controller, which then produces reduced

stability and bandwidth. A proportional derivative (PD) controller has been proposed to

deal with the increase in integral gain but is limited if gravity is not compensated for. In

practice, the dynamic system non-linearities frequently are unknown or hard to obtain.

Adaptive controllers are online schemes that are used to deal with systems that present

non-linear and uncertainties dynamics. Adaptive controller use measured data of system

trajectory in order to learn and compensate the uncertainties and external disturbances.

However, these techniques can adopt more efficient learningmethods in order to improve

their performance. In this work, a nominal control law is used to achieve a sub-optimal

performance, and a scheme based on a cascade neural network is implemented to

act as a non-linear compensation whose task is to improve upon the performance of

the nominal controller. The main contributions of this work are neural compensation

based on a cascade neural networks and the function to update the weights of neural

network used. The algorithm is implemented using radial basis function neural networks

and a recompense function that leads longer traces for an identification problem. A

two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme

and compare it with conventional PD control compensation.

Keywords: cascade neural networks, robot manipulator, PD control, radial basis function, control compensation

1. INTRODUCTION

An industrial robot manipulator frequently works at high velocities to reach its desired position.
Common tasks performed by robot manipulators include trajectory tracking, reaching positions,
and picking and dropping objects. These tasks need the robot controllers to maintain satisfactory
dynamic behavior in spite of possible external perturbations, unknown dynamic parameters, and
sensor information loss (Armendariz et al., 2014). Several controllers that are often implemented
to manage these features are also mentioned (Luo and Kuo, 2016; Makarov et al., 2016; Nicolis
et al., 2016; Pan et al., 2018; Hwang and Yu, 2020). Over time, the Proportional Integral Derivative
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(PID) control has been used to design industrial robots due
to their simple structure and simple hardware implementation.
However, during operation, the PID integral gain provokes the
controller to reduce its bandwidth and stability (Rahimi Nohooji,
2020). PD control with uncertainty compensation has been
proposed to manage the increase of integral gain due to the
steady-state error. The PD controllers are also limited without
gravity compensation, which requires a dynamic model (Wen Yu
and Rosen, 2013). In practice, the non-linearities of a dynamic
robot system are generally unknown.

To solve this issue, different approaches have been developed
in order to compensate for unmodeled uncertainties (i.e., noise,
gravity, and friction). Intelligent compensation is a model free
and it has been applied to well-known algorithms such as the
neural networks (NNs) and fuzzy logic (FL) (Krishna and Vasu,
2018;Wang et al., 2019b). In Liu et al. (2020), the authors propose
an adaptive NN backstepping control design for fractional-
order non-linear systems with actuator faults whose parameters
and patterns are fully unknown. Baek et al. (2016) present an
adaptive sliding mode control scheme that implements the time-
delay estimation. In Xu et al. (2018), a fuzzy NN sliding mode
control is designed to improve controller performance against
system uncertainty and external disturbances. Kumar et al. (2012)
proposed a hybrid trajectory tracking controller for redundant
robot manipulators. The adaptive controller is implemented to
estimate unstructured uncertainties and error reconstruction. In
He et al. (2018), one Radial Basis Function Neural Network
(RBFNN) is used to estimate the unknown dynamics robotic
manipulator. Jung and Hsia (2000) proposed two NN control
schemes for a non-model-based robot manipulator, which show
advantages over feedback error learning. In Zhang et al. (2018),
the authors proposed a gravity compensation based on an
RBFNN and robustness analysis, and the results were compared
with a classic PID and PD with fixed gravity compensation.
Gandolfo et al. (2019) propose a control scheme that combines
a classical PD and a robust adaptive compensator based on NNs.

Although adaptive controllers are addressed for systems
with non-linear and uncertainties dynamics, thus their slow
convergence can lead to performance degradation or even
affect operational safety. In Liu et al. (2019), an adaptive
NN control with optimal number of hidden nodes and less
computation is formulated for approximating the trajectory of
robot manipulator. Similarly, Yang et al. (2018) develop a control
and identification scheme in order to identify the unknown
robot parameters with an enhanced convergence rate. Another
approach is to relax the linear parameterized assumption and the
requirements of system knowledge, thus, NNs have been used
as function approximators. In time series modeling, RBFNN is
commonly used for function approximation, since its value is
different from zero in infinite space, and its approximation can
avoid the local minimum (Wang et al., 2019a). An RBFNN uses
a Gauss function as its activation function. In general, RBFNN
controllers waste less computational resources in comparison
to other NN controllers (He et al., 2018). In Wang et al.
(2012), the authors proposed an RBFNN to compensate for non-
linear dynamics of the robotic manipulator and a robust control
designed to suppress the modeling error of NN.

However, update laws commonly increase the weight
magnitudes until the output error has been mitigated, without
a robust design continued training can lead to excessive control
effort. In order to avoid this, adaptive controls frequently update
the neural weights according to robust adaptive laws, which are
computed with Lyapunov methods (Razmi and Macnab, 2020).
In this work, a robust adaptive control design to compensate
a nominal controller for robot manipulator with uncertainties
and external perturbations is formulated. Moreover, a scheme
based on two RBFNN in cascade is proposed in order to
improve the response of the nominal controller. In the scheme
aforementioned, the first NN is used to estimate the error and
the second uses the estimation error value to improve the output
of the nominal controller. NN weights are online updated by
developing new adaptive laws. The adaptive law based on the
gradient is modified by introducing a recompense function of
the online error in order to improve the convergence of the
NN weights.

In this work, a PD control with a scheme based on NNs in
cascade is designed to manage the compensation of uncertainties
in a robot manipulator. The main contributions of this paper are
summarized as follows:

• In order to improve the robustness of the system against
external disturbance, and unknown system parameters, a
scheme of cascade NNs is proposed.

• A recompense function for neural weights updates is proposed
in order to improve the NNs’ weights convergence.

• The response of the nominal controller is improved.

To validate the proposed scheme and compare it with
conventional neural compensation, a two-degree-of-freedom
robot manipulator (TDOFRM) is proposed. This paper is
organized as follows: Section 2 presents the preliminary
mathematical model of the TDOFRM, the conventional PD
compensation with RBFNN. Section 3 describes the controller
design based on NNs in cascade. Section 4 presents simulation
experiments and compared with the conventional compensation,
and finally, section 5 presents the conclusions.

2. ADAPTIVE CONTROL TO ROBOTIC
MANIPULATOR

2.1. Dynamic Model of Robotic Manipulator
The dynamic model of an n degree of freedom robot manipulator
can be described as follows (Spong and Vidyasagar, 1989):

M(q)q̈+ C(q, q̇)q̇+ g(q) = τ + d (1)

M(q) is a n × n inertia matrix, C(q, q̇) is a n × n is a centrifugal
and Coriolis matrix, and g(q) is a n×1 vector of gravity. q, q̇, q̈ are
the position, velocity, and acceleration of each link, respectively.
τ ∈ Rn is the control input and d denotes disturbances.

2.2. Proportional Derivative Control
Scheme
In industrial application, the exact model is difficult to obtain and
external disturbances are always present in practice. According
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to Liu (2013), a nominal model of robot manipulator can be
computed as M0(q), C0(q, q̇), and g0(q). Considering 1M =

M0 − M, 1C = C0 − C, and 1g = g0 − g, Equation (1) is
reordered as follows:

(M0(q)−1M)q̈+ (C0(q, q̇)−1C)q̇+ (g0(q)−1g) = τ +d (2)

Thus,

M0(q)q̈+ C0(q, q̇)q̇+ g0(q) = τ + 1Mq̈+ 1Cq̇+ 1g + d (3)

Defining f (·) = 1Mq̈+ 1Cq̇+ 1g + d and if f (·) is known, the
control law is designed as

M0(q)(q̈d − κvė− κpe)+ C0(q, q̇)q̇+ g0(q)− f (·) = τ (4)

Submitting Equation (4) into Equation (3), the close loop system
can be expressed as follows:

ë+ κvė+ κpe = 0 (5)

where e = q − qd, ė = q̇ − q̇d, and ë = q̈ − q̈d. Frequently, f (·)
in industrial applications is unknown, hence, f (·) requires to be
estimated and compensated.

2.3. Radial Basis Function Neural Network
Approximation
The NNs approximates M(q), C(q), and g(q) when they are
unknown. The Radial Basis Function (RBF) algorithm can
approximate a continuous function and it is defined as

φi = exp

(

−
‖x−ci‖

2

b2i

)

, i = 1, 2, . . . , n (6)

y = Wφ (7)

where x is the input vector, φ = [φ1,φ2, . . . ,φn] is the output
of the Gaussian function, y is the output of the NN, W is the
weight values matrix, and ci is the center and bi is the width of
the Gaussian function. In Gandolfo et al. (2019), Liu et al. (2019),
it has been shown that an RBFNN can approximate a non-linear
function f (·) under the following assumptions

1. The output f̂ (x,W∗) is a continuous function.
2. Given a small positive constant ǫ0 and a continuous function

f (·), a weight vectorW∗ exists so that f̂ (·) satisfies.

max‖f (·)− f̂ ∗(·)‖ ≤ ε0 (8)

and W∗ = argmin
W∈β(MW )

{

sup
W∈β(MW )

‖f (·)− f̂ ∗(·)‖

}

, where W∗

is n × n matrix that denotes the optimal weigh values for
f (·) approximation.

2.4. Adaptive Law to Compensation Control
In the controller scheme proposed (Feng, 1995), the close loop
system is given by the following equation:

τ = M0(q)(q̈d − κvė− κpe)+ C0(q, q̇)q̇+ g0(q)− f̂ (·) (9)

where f̂ (·) = Ŵφ(x) and Ŵ is an estimation ofW∗. Equations (1)
and (9) have the same term, and the substitution result is shown
in the following equation:

M(q)q̈+ C(q, q̇)q̇+ g(q)− d

= M0(q)(q̈d − κv ė− κpe)+ C0(q, q̇)q̇+ g0(q)− f̂ (·) (10)

Then, the equationM0(q)q̈+C0(q, q̇)q̇+ g0(q) is subtracted with
Equation (10) in both sides as follows:

M0(q)q̈+ C0(q, q̇)q̇+ g0(q)−
[

M(q)q̈+ C(q, q̇)q̇+ g(q)− d
]

= M0(q)q̈+ C0(q, q̇)q̇+ g0(q)−
[

M0(q)(q̈d − κvė− κpe)

+C0(q, q̇)q̇+ g0(q)− f̂ (·)
]

(11)

The result is given as follows:

M−1
0 (q)

[

1Mq̈+ 1Cq̇+ 1g(q)+ d
]

= ë+ κvė+ κpe+M−1
0 (q)

[

f̂ (·)
]

(12)

Equation (12) can be rewritten as follows:

ë+ κvė+ κpe = M−1
0 (q)

[

f (·)− f̂ (·)
]

(13)

Select to x = ( e ė )T . Equation (13) turns into

ẋ = Ax+ B(f (·)− f̂ (·)) (14)

where

A =

(

0 I
−κp −κv

)

;B =

(

0

M−1
0 (q)

)

(15)

Setting f (·) − f̂ (·) = f (·) − f̂ ∗(·) + f̂ ∗(·) − f̂ (·) = ζ + W∗Tφ −

ŴTφ = ζ − W̃Tφ and W̃ = Ŵ − W∗, ζ = f (·) − f̂ ∗(·),
where ζ denotes the modeling error due to the use of the NN.
The modeling error ζ is bounded by a finite constant ζ0, where

ζ0 = sup
t≥0

‖f (·)− f̂ ∗(·)‖. Finally,

ẋ = Ax+ B(ζ − W̃Tφ) (16)

The Lyapunov function is given by the following equation:

L =
1

2
xTPx+

1

2ϕ
‖W̃‖2;ϕ > 0 (17)

where W̃ = Ŵ −W∗ is a definition that describes the estimation
error. In Equation (17), P is a positive definite matrix that satisfies
the Lyapunov equation

PA+ ATP = −Q;Q ≥ 0 (18)
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Equation (17) can be rewritten in terms of the next definition

‖W̃‖2 =
∑

i,j

|wij|
2 = tr(W̃W̃T) = tr(W̃TW̃) (19)

Thus, the derivative of V is given as follows:

L̇ =
1

2
[xTPẋ+ ẋTPx]+

1

ϕ
tr( ˙̃WTW̃) (20)

Substituting Equation (16) for (20), the results is given by

L̇ =
1

2
[xTP(Ax+ B(ζ − W̃Tφ))

+(Ax+ B(ζ − W̃Tφ))TPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xTPAx+ xTPB(ζ − W̃Tφ)+ xTATPx)

+(ζ − W̃Tφ)TBTPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xTPAx+ xTATPx+ xTPB(ζ − W̃Tφ))

+(ζ − W̃Tφ)TBTPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xT(PA+ ATP)x+ xTPBζ − xTPBW̃Tφ)

+ζTBTPx− φTW̃BTPx]+
1

ϕ
tr( ˙̃WTW̃)

= −
1

2
[xTQx]+ ζTBTPx− BTW̃φTPx+

1

ϕ
tr( ˙̃WTW̃)(21)

Considering that xTPBζ = ζTBTPx, xTPBW̃Tφ = φTW̃BTPx
and φTW̃BTPx = tr[BTPxφTW̃] in Equation (21), this results in

L̇ = −
1

2
[xTQx]+ ζTBTPx+

1

ϕ
tr(−ϕBTPxφTW̃+

˙̃WTW̃) (22)

2.5. Adaptive Control Based on Cascade
Neural Network
The PD control has been widely implemented in robot control
to deal with the drawbacks presented by the integer gain in PID
control. However, the PD control can have similar deficiencies
if the derivative gain has high values (Wen Yu and Rosen,
2013). The PD control with compensation presents positive
results to avoid high derivative gains and identify uncertainties
that occur in the real operation of robot manipulators. In this
work, a compensation of the nominal controller is proposed. The
adaptive control scheme is shown in Figure 1. Two RBFNN in
cascade are proposed to deal with the tracking error and the NN
weight estimation error.

2.5.1. NN Weight Estimation Error
The input of NN is an error vector defined as follows:

x =

[

e
ė

]

=

[

qi − qϑ i

q̇i − q̇ϑ i

]

(23)

FIGURE 1 | Proposed adaptive control scheme.

where i and ϑ denote the real and desired position and velocity
of the n-link of the robot. The NN estimation error anticipates
which action to take in order to improve the output of the
nominal control. Thus, the prediction of estimation error is also
given as the output of RBFNN as follows:

x̂ =

J
∑

j=1

Weφe (24)

where φe is the Gaussian function given by Equation (6).
The criterion for the weight update is proposed in the
following equation:

Ẇe = γerφe(x)
TPB (25)

where r =‖e−x2e ‖ is a function that represents the recompense
signal. The goal of the recompense function is to lead longer
traces for an identification problem.

2.5.2. Adaptive Law to Compensate the Nominal

Controller
A novel adaptive control scheme is proposed to ensure that
the output of the nominal controller for the system defined in
Equation (1) reaches the position desired, and the estimated
NN can converge an ideal weight. An RBFNN is selected to
approximate the system dynamics and deals with uncertainties
and external disturbances, which is given as follows:

f̂ ∗ =

J
∑

j=1

Ŵφc (26)

where φc is a Gaussian function given by the equation form 6.
The NN actor provides compensation to the PD controller to,

that is, f̂ (·) = f̂ ∗. The weigh update of the NN actor is proposed
according to the following equation:

˙̂W = γcφc(x̂+ (x̂− x))TPB (27)

If we select the parameter update law as ˙̃W =
˙̂W, we assume

that the value x ≈ x̂ + (x̂ − x). Substituting Equation (27) into
Equation (22), the result is given as

L̇ = −
1

2
[xTQx]+ ζTBTPx (28)
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As it is well-known, ‖ζT‖ ≤ ‖ζ0‖ and from Equation (15),
‖B‖ = ‖M−1

0 (q)‖, and Equation (28) can be written as follows:

L̇ ≤ − 1
2λmin(Q)‖x‖

2 + ‖ζ0‖‖M
−1
0 (q)‖λmax(P)‖x‖ (29)

L̇ = − 1
2‖x‖

[

λmin(Q)‖x‖ − 2‖ζ0‖‖M
−1
0 (q)‖λmax(P)

]

(30)

where λmin denotes the minimum eigenvalues of matrix Q and
λmax denotes the maximum eigenvalues of matrix P. In order to
satisfy L̇ ≤ 0, the value of ‖x‖ should be satisfied as follows:

‖x‖ ≤
2‖M−1

0 (q)‖λmax(P)

λminQ
‖ζ0‖ (31)

According to Equation (28), L̇ is negative semidefinite, that is
L(x,W, t) ≤ L(x,W, 0). It implies that x, andW are bounded. Let
function � = L̇ and integrate � with respect to time as follows:

∫ t

0
�(s)ds ≤ L(x,W, t) ≤ L(x,W, 0) (32)

Due to L(x,W, 0) is bounded, and L(x,W, t) is non-increasing
and bounded, the following result can be computed:

lim
t→∞

∫ t

0
�(s)ds < ∞ (33)

Since �̇(s) is bounded, by Barbalat’s lemma (Slotine and Li, 1991),
limt→∞ �(s) = 0, that is x → 0 as t → ∞.

3. RESULTS

In order to validate the proposed scheme of control, a set of
simulations was carried out. Two simulations are proposed, the
first considers an adaptive control using an RBFNN, and the
second is based on the proposed scheme using two RBFNNs in
cascade. The controllers were also implemented in a TDOFRM,
which is shown in Figure 2. The main objective of controllers is
the position tracking in the presence of external disturbances.

[

τ 1

τ 2

]

=

[

M11(q) M12(q)
M21(q) M22(q)

] [

q̈1
q̈2

]

+

[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

] [

q̇1
q̇2

]

+

[

g1(q̇)
g2(q̇)

]

(34)

where:

M11(q) = m1l
2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2cos(q2)+ I1 + I2

M12(q) = m2l
2
c2 +m2l1lc2cos(q2)+ I2

M21(q) = m2l
2
c2 +m2l1lc2cos(q2)+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2sin(q2)q̇2

C12(q, q̇) = m2l1lc2sin(q2)(q̇1 + q̇2)

C21(q, q̇) = m2l1lc2sin(q2)q̇1

C22(q, q̇) = 0

FIGURE 2 | Model of two degree-of-freedom (DOF) robot manipulator.

TABLE 1 | Robot manipulator parameters.

Parameter Value Units

l1 0.45 m

l2 0.45 m

lc1 0.091 m

lc2 0.048 m

m1 23.902 kg

m2 3.880 kg

I1 1.266 kgm2

I1 0.093 kgm2

g 9.81 m
s2

g1(q) = (m1lc1 +m2l1)gsin(q1)+m2lc2gsin(q1 + q2)

g2(q) = m2lc2gsin(q1 + q2) (35)

The parameters came from Kelly and Santibáñez (2003) and
presented in Table 1.

The desired position vector is defined as follows:

qd =

[

q1d
q2d

]

=

[

π
6 sin(

1
4π t)

π
6 sin(

2
3π t)

]

(36)

The initial positions are given by q0 =
[

π
12

π
12

]T
. The

uncertainties and unknown disturbances are defined as follows:

d =

[

sin(2π t)+ cos( 14π t)

sin(2π t)+ cos( 14π t)

]

(37)
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FIGURE 3 | Real and desired links positions of the robot manipulator.

FIGURE 4 | Tracking error of the robot manipulator joints by scheme proposed and conventional compensation.
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FIGURE 5 | Control inputs of links 1 and 2.

FIGURE 6 | Convergence of neural networks parameters.
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The matrix Q, A, and B are

Q =









50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50









;

A =









0 0 1 0
0 0 0 1

−0.25 0 −1 0
0 −0.25 0 −1









;B =









0 0
0 0
1 0
0 1









(38)

Two RBFNNs are proposed for critic and actor agents. Here, γe
is the learning rate of the RBFNN estimation error and γc is the
learning rate of the RBFNN tracking error; ci is the center vector
of neural net i and b is the width value of Gaussian function for
neural net i. The next values are proposed due to the optimal
weight for the actor NN and critic NN could take arbitrary large
values, but in order to avoid any numerical problems, this work
considers γe = 0.5, γc = 0.4, ci =

[

−2 −1 0 1 2
]

, bi = 0.5,
and i = 4.

Figure 3 shows the tracking position of links 1 and 2,
where NN and NNc indicate an RBFNN compensation and a
compensation based on two RBFNN in cascade, respectively.
The green lines show the desired tracking position. The red
lines indicate the tracking position of NN compensation. The
blue lines show the tracking position of the proposed controller.
The uncertainties and disturbances were added to the controller.
According to the RBFNN in cascade, an RBFNN predicts the
NN estimation error, and this value is included in adaptive laws
to update the RBFNN compensation in order to take adequate
action for the disturbances and guarantee the convergence of
tracking error. The proposed recompense function helps to
maintain longer traces for the identification task over time.

The compensation of proposed algorithm is compared with
an RBFNN compensation. Figure 4 shows tracking errors for
links 1 and 2. The red line represents the tracking error of an
RBFNN for compensation, which presents overshoot to reach
the desired positions and oscillations in steady state. The blue
line indicates the tracking error of the proposed algorithm,
which present robustness against uncertainties and disturbances.
The green line indicates the desired tracking positions for
links 1 and 2.

The simulations were proposed in order to show the difference
between adaptive conventional control and the proposed scheme.
In this sense, two desired tracking signal was proposed that
goes at different velocities, and link 1 follows a slow signal and
link 2 follows a fast signal. Figure 5 shows the control inputs
to links 1 and 2, and it also exhibits the improvement of the
nominal controller under our scheme proposed in comparison
with adaptive conventional control.

In Figure 6, the NN weights convergence process of the two
RBFNN in cascade are shown. Figure 6 also denoted as the
identification process in order to deal with the uncertainties and
external disturbances is reached.

The important factors that usually must be considered
together are time and error. A performance index is a measure
that indicates those features of the response that are regarded

TABLE 2 | Comparison of different errors, ITAE, ITSE, IAE, and ISE as

performance indices.

Controller Indices Link 1 Link 2

PD+NN

IAE 0.3758 0.4992

ISE 0.0554 0.0869

ITAE 0.5162 1.0030

ITSE 0.0340 0.0578

PD+NNC

IAE 0.3057 0.3077

ISE 0.0373 0.0370

ITAE 0.3898 0.4148

ITSE 0.0232 0.0231

to be important. In order to evaluate the performance of the
proposed controller, a comparison of different performance
indices is shown in Table 2. Hence, Table 2 is based on the
next four equations, integral absolute error (IAE), integral square
error (ISE), integral time absolute error (ITAE), and integral time
square error (ITSE).

ISE =

∫

e(t)2dt (39)

IAE =

∫

| e(t) | dt (40)

ITSE =

∫

t e(t)2dt (41)

ITAE =

∫

t | e(t) | dt (42)

Table 2 shows that the proposed controller presents a better
response than the conventional PD control compensation based
on an RBFNN. According to the performance indices of links
1 and 2, the proposed scheme presents an adequate response
against external disturbance. Moreover, it presents less oscillation
in steady state and less time in the transient response than the
conventional compensation based on an RBFNN.

4. CONCLUSIONS

The algorithm proposed has been implemented to compensate
for the PD control of a TDOFRM. A PD control was selected
because the common knowledge that if designed with gravity
compensation, it can reach asymptotic stability. The cascade
scheme was implemented by two RBFNN in cascade, which
compensates for the control input in order to deal with the
estimation error, uncertainties, and external disturbances. The
proposed algorithm was validated using a simulation of a
TDOFRM. Two adaptive algorithms for compensating for the
controller of robot manipulators were implemented. The first was
based on a conventional RBFNN, and the second is the proposed
algorithm that uses two RBFNN. An adaptive law is proposed
to deal with the simultaneous convergence of both NNs, which
are used to estimate for tracking error and estimation error. The
results showed that the proposed compensation scheme based
on RBFNN presents robustness against external uncertainties
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and disturbances, also an adequate convergence for the NN
weights. Position tracking has been reached without overshoots
and oscillations in steady state in comparison to compensations
with a conventional RBFNN scheme.
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In order to fully utilize the spectrum resources, this work considers a unmanned aerial

vehicle (UAV) uplink communication system based on non-orthogonal multiple access

technology (NOMA), in which the UAV receives information from the ground users with a

certain flying altitude. As an initial study, we consider a simplified setup with two ground

users to draw some insightful results. Explicitly, we first formulate an optimization problem

that maximizes the sum throughput subject to each user’s transmit power constraint

and their corresponding minimum transmission rate requirement. Then, both the optimal

transmit power and UAV’s deployment location are derived with the aid of employing

the Karush-Kuhn-Tucher (KKT) conditions. Simulation results show that the proposed

UAV’s deployment scheme with the users’ power allocation can achieve a higher sum

throughput compared with two existing benchmark schemes.

Keywords: UAV network, uplink NOMA, power control, UAV’s deployment, transmit power design

INTRODUCTION

Non-orthogonal multiple access (NOMA) is one of the key technologies for future wireless
networks, which meets the heterogeneous demands on low latency, massive connectivity, high
throughput, etc. (Dai et al., 2015; Ding et al., 2017). Technically, NOMA combined several modern
wireless technologies, including multiple-input multiple-output (MIMO), massive MIMO and
millimeter wave communications was studied in Vaezi et al. (2019) andWang et al. (2020). Besides,
the intelligent reflecting surface (IRS) aided NOMA systems were investigated in recent work (de
Sena et al., 2020). The apparent benefit of NOMA which blends those compelling techniques is
that it has ability in improving scalability, spectral efficiency and energy efficiency. Compared
with traditional orthogonal multiple access (OMA) schemes, such as frequency division multiple
access (FDMA), time division multiple access (TDMA) and code division multiple access (CDMA),
NOMA simultaneously share the time, frequency and code resources. Consequently, the inter-
user interference is introduced actively. Notably, correct demodulation is achieved at the receiver
through successive interference cancellation (SIC) (Saito et al., 2013; Chen et al., 2017). In Ding
et al. (2014) and Timotheou and Krikidis (2015), downlink NOMA networks were studied, where
the authors have demonstrated that NOMA can achieve better outage performance than that of
OMA schemes, when both the users’ rate and power allocation are carefully designed. In Zhang
et al. (2016) and Al-Imari et al. (2014), uplink NOMA networks were discussed, where they showed
that the uplink NOMA can improve both the spectrum efficiency and fairness index compared with
OMA technique.
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The researches related to unmanned aerial vehicles (UAVs)
has become a hot topic due to their wide application prospects,
such as goods delivery, search and rescue, aerial photography,
and telecommunications (Zeng et al., 2016). For example, Jiao
et al. (2020) presented an intuitive end-to-end interaction
system between a human and an UAV in which the UAV can
be commanded by natural human poses. Moreover, a brain-
inspired decision-making spiking neural network (BDM-SNN)
was proposed in Zhao et al. (2018), which can help UAV making
decisions in some tasks. In realistic communications, UAVs
can be regarded as aerial stations for serving ground users
within certain areas. In order to prolong the network lifetime,
energy efficient of UAV networks was studied in Amoiralis
et al. (2014), Zeng and Zhang (2017), and Zhan et al. (2018).
In addition, the authors of Wu et al. (2019) investigated the
fundamental throughput, delay, and energy tradeoffs in UAV
networks. Furthermore, the authors in Wu and Zhang (2017,
2018) and Wu et al. (2017) pointed out that the fundamental
tradeoff between the delay and the throughput in multi-user
UAV networks with OMA. For reducing the access latency and
improving the communication quality of UAV-based networks, it
is reasonable to graft the NOMA technique into UAV networks,
which is termed as UAV-enabled NOMA networks (Sharma
and Kim, 2017; Cui et al., 2018; Sohail et al., 2018; Liu et al.,
2019; Nasir et al., 2019; Zhao et al., 2019; Do et al., 2020).
Against this background, a number of works related to the UAV-
enabled downlink NOMA networks have been comprehensively
studied in Sharma and Kim (2017), Cui et al. (2018), and
Sohail et al. (2018). Specifically, a power allocation scheme that
maximizes the sum-rate of the UAV networks for reducing
the energy consumption was studied in Sohail et al. (2018).
In Cui et al. (2018) and Sharma and Kim (2017), the authors
proposed a novel algorithm to maximize the minimum average
rate by jointly optimizing the UAV’s trajectory and its transmit
power. Additionally, an UAV-enabled NOMA network with user
pairing was studied in Nasir et al. (2019), where one user
having the minimum throughput was maximized. Furthermore,
to maximize the sum rate of the ground users, the authors
in Liu et al. (2019) studied both the UAV’s location and
its transmit power. Moreover, the UAV-enabled relay NOMA
networks were investigated in Do et al. (2020), and it was
demonstrated that full-duplex mode can provide better outage
performance than half-duplex mode. However, the extension
from the downlink NOMA to uplink NOMA is not trivial
because the decoding order of SIC in uplinkNOMA is completely
opposite to that of downlink NOMA. It is worth mentioning
that the aforementioned literatures only considered the downlink
scenarios, hence these existing contributions are unsuitable for
the uplink scenarios, such as the data collection in the upcoming
Internet of Things (IoT).

Motivated by above-mentioned reasons, this paper considers
an UAV-enabled uplink NOMA with power multiplexing
network, where an UAV is deployed to collect the messages
transmitted from the ground users. We note that UAV-enabled
uplink NOMA systems with multi-user is difficult to obtain the
optimal design since the formulated optimization problem is
generally difficult to tackle directly. As an initial study, similar

FIGURE 1 | UAV-enabled uplink NOMA network with two users.

to Wu et al. (2018), which explores the capacity of UAV-
enabled/aided two user communication systems, as shown in
Figure 1 we consider the optimal UAV’s deployment and each
user’s power allocation in UAV-enabled uplink NOMA systems
with two ground users to get some insightful results. Our goal
is to maximize the sum rate by jointly designing the UAV’s
deployment location and each user’s transmit power subject to
the transmit power constraints and the quality of service (QoS)
constraints. We should point out that our proposed algorithm is
significantly different from the recent work (Duan et al., 2019)

and (Du et al., 2020). Specifically, Duan et al. (2019) studies
the multi-UAV aided uplink NOMA systems, where the transmit
power is solved by the proposed SCA-based iterative algorithm,
but the UAVs’ deployment locations are not optimized. Although
Du et al. (2020) designed the UAV deployment location, the
proposed algorithm has high computational complexity and only
obtains a sub-optimal solution. The main contributions of this
work are summarized as follows.

• The analytical solution to the transmit power allocation policy
that maximizes the sum rate for the considered dual-user
systems is derived. Besides, the result can be further extended
to general multi-user systems in a similar way.

• We prove that the optimal UAV deployment location lies
on the line segment connected by the two users. Following
this fact, the formulated optimization problem is transformed
into a univariate quadratic optimization problem. Then the
optimal UAV deployment location can be achieved.

• Numerical results confirm the validity of the analytical
solution to the optimal UAV deployment location. In addition,
our examinations demonstrate that our proposed scheme
significantly outperforms the baseline schemes in terms of the
sum rate.

The rest of this paper is organized as follows. In section System
Model and Problem Formulation we present the system model
for an UAV-enabled uplink NOMA network with two users
and formulate the optimization problem. The corresponding
algorithm for solving problem is introduced in section Proposed
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Algorithm for Problem (P1). In section Numerical Results,
simulation results are provided to demonstrate the performance
gain of our proposed algorithm. Finally, our conclusion is
provided in section Conclusion.

SYSTEM MODEL AND PROBLEM
FORMULATION

In this work, we consider a two user UAV-enabled uplink NOMA
network, where the UAV is adopted to collect the messages
transmitted from the ground users. We consider a 3-D Cartesian
coordinate system where the origin is the geometric center of
the two users and the x-axis is the straight line connecting them.
Assume that the distances between the two users and the origin
as D, then the horizontal coordinates of the two users can be
denoted as u1 = [D, 0]T and u2 = [–D, 0]T , respectively. It is
also assumed that the UAV flies at a fixed altitude H, and the
horizontal coordinate of the UAV is denoted as Q = [x, y]T .

To capture the essential characteristics of dual-user UAV-
enabled NOMA systems, following Zeng et al. (2019) and the
recent 3GPP specification1, we assume that the air-to-ground or
ground-to-air channel is mainly dominated by line of sight (LoS)
link. Thus, the channel gain from user i(i = 1, 2) to the UAV is
given by

hi =

√

η0

||Q− ui||2 +H2
, i = 1, 2 (1)

where η0 denotes the channel power gain at the reference distance
d0 = 1 m. Since the NOMA transmission scheme is adopted
in this work, the received signal at the UAV is a series of
superimposed message, which can be expressed as

y =
√

P1h1x1 +
√

P2h2x2 + n (2)

where x1 and x2 denote the message transmitted by user 1 and
user 2, respectively. P1 and P2 are the corresponding transmit
power. n denotes the zero-mean additive white Gaussian noise
(AWGN) with the variance σ 2 at the UAV. To manage the inter-
user interference, the transmit power constraints are given by

P1 + P2 ≤ Pmax

Pi ≥ 0, i = 1, 2 (3)

where Pmax denotes the maximum total transmit power of the
two users. For symmetry, we only consider the scenario of x ≥ 0
in this work. Consequently, the channel gain of user 1 is greater
than that of user 2. According to the principle of NOMA, the SIC
is employed at the UAV to decode the messages received from
different users. In particular, the UAV first decodes the message
from user 1 while treating the message from user 2 as inter-user

13GPP. TR 36.777: Enhanced LTE Support for Aerial Vehicles. Available online at:

https://www.3gpp.org/ftp/Specs/archive/36_series/36.777 2017.

interference. Then, the decodedmessage fromuser 1 is subtracted
from the superimposed received signal. Finally, the UAV decodes
the message from user 2 without inter-user interference. As a
result, the achievable rate of these two users can be expressed as

R1 = log2(1+
P1h̃1

1+ P2h̃2
) (4)

R2 = log2(1+ P2h̃2) (5)

where h̃i =
h2i
σ 2 =

ζO
||Q−ui||2+H2 , and ζ0 =

η0
σ 2 . As a result, the sum

rate of the both users is given by

Rsum = R1 + R2 = log2(1+ P1h̃1 + P2h̃2) (6)

Our goal is to maximize Rmax by jointly optimizing the UAV
deployment location and the transmit power of the both users
with QoS constraints

Ri ≥ r∗, i = 1, 2 (7)

where r∗ denotes the minimum rate for reliable communication.
As a result, the optimization problem can be written as

(P1) : max
Q,P1 ,P2

Rsum (8)

s.t.(3), (7) (9)

Problem (P1)2 is a non-convex optimization problem due to
the non-concavity of the objective function (8) and the non-
convexity of the constraint (7), which is, in general, difficult
to solve. In the next section, we develop an algorithm to solve
this problem.

PROPOSED ALGORITHM FOR PROBLEM
(P1)

This section devises an algorithm to solve problem (P1) based
on the solution to the transmit power of both the users. The
analytical solution to problem (P1) is given as follows.

Solution to Transmit Power
Denote Q∗ as the optimal UAV deployment location and let h∗1
and h∗2 be the corresponding channel gains of the user 1 and user
2, respectively. We note that the transmit power optimization
problem is a convex problem, which can be efficiently solved the
by Lagrangian.More explicitly, the corresponding Karush-Kuhn-
Tucher (KKT) conditions are listed as

λ ≥ 0, vi ≥ 0, i = 1, 2 (10)

2In problem (P1), we assume that x ≥ 0. However, there is also a symmetric

solution to problem (P1) for x ≤ 0, where the optimal UAV deployment is

symmetric with that for x ≥ 0 with respect to y-axis, and the optimal transmit

power policy reverses.
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λ(P1 + P2 − Pmax) = 0 (11)

v1

[

r∗ − log2(1+
P1h̃

∗
1

1+ P2h̃
∗
2

)

]

= 0 (12)

v2

[

r∗ − log2(1+ P2h̃
∗
2)

]

= 0 (13)

λ −
(1+ v1)h̃

∗
1/ ln 2

1+ P1h̃
∗
1 + P2h̃

∗
2

= 0 (14)

λ −
h̃∗2/ ln 2

1+ P1h̃
∗
1 + P2h̃

∗
2

−
v2h̃

∗
2/ ln 2

1+ P2h̃
∗
2

+
v1P1h̃

∗
1 h̃

∗
2/ ln 2

(1+ P2h̃
∗
2)(1+ P1h̃

∗
1 + P2h̃

∗
2)

= 0 (15)

where λ, v1 and v2 are the Lagrange multipliers. As per Equation
(14), we can obtain

λ =
(1+ v1)h̃

∗
1/ ln 2

1+ P1h̃
∗
1 + P2h̃

∗
2

> 0 (16)

According to Equation (11), we have P1 + P2 = Pmax. Upon
substituting Equation (16) into Equation (15), we have

v2h̃
∗
2

1+ P2h̃
∗
2

=
h̃∗1 − h̃∗2 + h̃∗1v1

1+ P1h̃
∗
1 + P2h̃

∗
2

+
v1P1h̃

∗
1 h̃

∗
2

(1+ P2h̃
∗
2)(1+ P1h̃

∗
1 + P2h̃

∗
2)

> 0 (17)

where v2 > 0. As per Equation (13), we have

log2(1+ P2h̃
∗
2) = r∗ (18)

Based on the above derivation, the optimal solution to transmit
power can be expressed as

P∗2 =
2r

∗
− 1

h̃∗2
(19)

P∗1 = Pmax − P∗2 . (20)

Solution to UAV Deployment Location
To determine the optimal UAV deployment location, we have the
following Lemma 1.

Lemma 1. The optimal horizontal coordinate of the UAV for
maximizing Rsum should be on the line segment that linked by the
two users.

Proof of Lemma 1. Assume Q∗ = [x∗, y∗]T , (y∗ 6= 0), i.e.
the optimal deployment location deviates from the line segment.
Let us define the achievable rates of the two users at the optimal
solution as R1

∗ and R2
∗, respectively. Then, aided with the results

in the above subsection, we can obtain

R1
∗ = log2(1+

P*1h̃
∗
1

2r
∗ ) ≥ r∗ (21)

R2
∗ = log2(1+ P*2h̃

∗
2) = r∗ (22)

However, if we deploy the UAV at Q′ = [x∗, 0]T , the

corresponding channel gains h̃1
′ and h̃2

′ will be larger than h̃∗1
and h̃∗2 , respectively. Assuming that P1

′ and P2
′ are the optimal

transmit power at this time, then we have

R1
′ = log2(1+

P1
′h̃1

′

2r
∗ )

(a)
> log2(1+

P∗1 h̃
∗
1

2r
∗ ) = R∗1 ≥ r∗ (23)

R2
′ = log2(1+ P2

′h̃2
′) = r∗ = R∗2 (24)

where (a) holds since P2
′ = 2r

∗
−1

h̃2 ′
< P2

∗, and thus having P1
′ =

Pmax − P
′

2 > Pmax − P∗2 = P∗1 . As a result, Q
′ = [x∗, 0]T is also a

feasible deployment location. Apparently, the corresponding sum
rate will be larger than that at Q∗.

Similarly, if x∗ > D, we can deploy the UAV at Q′′ = [D, 0]T ,
and the corresponding sum rate is larger. Consequently, the
optimal UAV deployment location has to be located at one point
on the line segment linked by the two users. This completes
the proof.

Based on the above results, problem (P1) can be further
reformulated as

(P2) :max
x∗

φ(x∗) (25)

s.t.0 ≤ x∗ ≤ D (26)

where

φ(x∗) = P∗1 h̃
∗
1 =

ζ0Pmax

H2+(D−x∗)2

−
(2r

∗
−1)[H2+(D−x∗)2]

H2+(D+x∗)2

(27)

Clearly, problem (P2) is a univariate quadratic optimization
problem. The derivative of φ(x∗) is given by

dφ(x∗)

dx∗
=

2[2D− (x∗)2 − Ŵx∗ + ŴD− 2D(H2 + D2)]

[H2 + (D− x∗)2]
2

(28)

where Ŵ =
ζ0Pmax

2r
∗
−1

. We note that dφ(x∗)
dx∗

is equivalent to

2D(x∗)2 − Ŵx∗ + ŴD− 2D(H2 + D2) = 0 (29)

It can be observed that Equation (29) is a quadric equation. To
proceed, we define 1 = Ŵ2 − 8ŴD2 + 16D2(H2 +D2). If 1 < 0,
φ(x∗) is a monotonically increasing function with respect to x∗,
and therefore the optimal deployment location is arrived when
xopt = D. By contrast, as 1 ≥ 0, the two stationary points x∗1 and
x∗2 can be derived as

x∗1 =
Ŵ −

√
1

4D
(30)
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x∗2 =
Ŵ +

√
1

4D
(31)

Based on the relation between x∗1 ,x
∗
2 and the interval (0,D),

the solution to the optimal UAV deployment location xopt can
be obtained via Algorithm 1. Finally, we have to check these
obtained solutions until finding the one meets the condition
of R∗1 ≥ r∗.

Algorithm 1 Solution to the optimal UAV deployment location.

Input: D, H, r∗, Pmax, and ζ0.
1: Calculate x∗1 and x∗2 according to Equations (30) and (31),

respectively.
2: If x∗1 ∈ (0,D), x∗2 ∈ (0,D), then xopt =

argmax{φ(0),φ(x1
∗),φ(x2

∗),φ(D)}.
3: If x∗1 ∈ (0,D), x∗2 /∈ (0,D), then xopt =

argmax{φ(0),φ(x1
∗),φ(D)}.

4: If x∗1 /∈ (0,D), x∗2 ∈ (0,D), then xopt = argmax{φ(0),φ(D)}.
5: If x∗1 /∈ (0,D), x∗2 /∈ (0,D), then xopt = argmax{φ(0),φ(D)}.

Output: The optimal UAV deployment location xopt.

Solution to Problem (P1)
According to the results of the previous two subsections,
the optimal solution to problem (P1) can be obtained via
Algorithm 2 given below, and the flow chart of the proposed
algorithm is shown in Figure 2. Specifically, the optimal UAV
deployment location is first obtained via Algorithm 1. Then, the
corresponding channel gains of user 2 is calculated. Finally, the
optimal solution to the transmit power can be obtained based
on Equations (19) and (20). It is easy to calculate that, in the
worst case, the proposed algorithm requires 59 multiplications
and 44 additions.

Algorithm 2 Solution to Problem (P1).

Input: D, H, r∗, Pmax, and ζ0.
1: Calculate the optimal UAV deployment position xopt via

Algorithm 1.

2: Calculate the corresponding channel gain of user 2 h̃2.
3: Calculate the optimal transmit power P*1 and P*2 based on

Equations (19) and (20).
Output: xopt, P

*
1, and P*2.

NUMERICAL RESULTS

In this section, simulation results are provided to demonstrate
the effectiveness of our proposed algorithm (denoted as N-LPJO).
Referring to the existing the literatures (Wu and Zhang, 2017,
2018; Wu et al., 2017, 2019; Zeng and Zhang, 2017; Cui et al.,
2018; Sohail et al., 2018; Zhan et al., 2018), the simulation
parameters, unless otherwise specified, are set as: the maximum
total transmit power of the two users Pmax = 10dBm, the UAV
altitude H = 200 m, the distance between the two users and the

FIGURE 2 | Flow chart of the proposed algorithm.

origin D = 400 m, and the reference signal-to-noise ratio (SNR)
ζ0 = 80 dB.

For comparison, the following three baseline schemes
are invoked:

1) FDMA: The UAV collects the messages in FDMA manner,
where both the UAV deployment location and transmit power
are jointly optimized;

2) N-FLPO: The scheme in Duan et al. (2019), where only the
transmit power is optimized while the UAV is fixed at the
geometric center of two users, i.e., [0, 0]T ;

3) N-LOFP: The UAV collects the messages in NOMA manner,
where only the UAV deployment location is optimized while
the transmit power is fixed as P1 = 2 mW and P2 = 8 mW.

Figure 3 plots the optimal UAV deployment location of the N-
LPJO scheme vs. r∗, where the numerical results (obtained by
1-D search method) are invoked to reveal the optimality of our
proposed algorithm. It can be noted that the sum rates achieved
by 1-D search method meets that arrived by our developed
analytical solution. This phenomenon implies the optimality of
the analytical solution. We also observe that the optimal UAV
deployment location is close to user 1, which is beneficial for
improving the achievable rate of user 1. Moreover, we observe
that the optimal UAV deployment location moves toward the
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FIGURE 3 | Optimal UAV’s deployment location for N-LPJO scheme vs. r∗.

origin as r∗ increases. This is due to the fact that it will cost
less transmit power to meet user 2’s QoS constraint if the UAV
is deployed close to the origin.

Figure 4 plots the achievable sum rates of the four different
schemes vs. r∗. We observe that the sum rates of the N-LPJO
and the FDMA schemes decreases as r∗increases. This is mainly
because the poorer user has to increase the transmit power for

meeting QoS requirement. Meanwhile, the stronger user has to
decrease its transmit power. However, the sum rate of the N-
FLPO scheme remains unchanged regardless of r∗, this is due

to the fact that h̃1 = h̃2 and thus Rsum = log2(1 + P1h̃1 +

P2h̃2) = log2(1+(P1 + P2)h̃2) = log2(1 + Pmaxh̃2) is a constant.
Besides, different from the other three schemes, the sum rate
of the N-LOFP scheme remains unchanged when r∗ ≤ 1.1 bps
and decreases when r∗ = 1.2 bps. This is because the optimal
UAV deployment location can naturally meet the QoS constraints
if the QoS constraints are not very tight. It is clearly shown
that our proposed N-LPJO scheme outperforms both the N-
FLPO scheme and the N-LOFP scheme, which demonstrates
the necessity of optimizing the UAV deployment position and
the transmit power, respectively. Furthermore, our proposed N-
LPJO scheme also outperforms the FDMA scheme since NOMA
can provide higher spectral efficiency than OMA.

Figure 5 shows that the sum rate of our proposed N-LPJO
scheme vs. the distance D between the two users and the origin.
Firstly, we observe that the sum rate decreases as D increases for
each QoS requirement r∗. This can be explained as: the channel
gain of user 2 sharply decreases onceD increases. As a result, user
2 has to improve the transmit power to meet the minimum rate
requirement, while user 1 has to decrease its transmit power, thus
leading to the decrease in the sum rate. Secondly, we note that the
difference of the sum rate achieved by the different r∗ becomes
apparent with the increasing of D.

FIGURE 4 | Sum rates of four schemes vs. r∗.

FIGURE 5 | Sum rate of N-LPJO scheme vs. distance D between both users.

Figure 6 shows the sum rate of our proposed N-LPJO scheme
vs. UAV’s altitudeH. It is observed that all the sum rates decrease
as H increases for each QoS requirement. This is due to the
fact that both the channel gains of the two users decrease as H
increases, hence user 2 has to increase its transmit power for
satisfying the QoS requirement, leading to the received power
from user 1 decreases. Additionally, we observe that all the
performance gains attained by the different r∗ decrease as H
increases. This is because that the effect of H on the two users’
channel gains will be rather small asH becomes sufficiently large.
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FIGURE 6 | Sum rate of N-LPJO scheme vs. UAV altitude H.

CONCLUSIONS

In this paper, we have investigated an UAV-enabled uplink
NOMA system under a total power constraint. To maximize
the sum rate of two users, we have demonstrated that the UAV
should be deployed at a certain point over the line segment linked
by the two users. Then, we have translated the corresponding
optimization into a univariate quadratic optimization problem,

which can be efficiently solved by our developed scheme.
Simulation results showed that our proposed scheme significantly
outperforms both the two benchmarks in terms of the sum rate.
It should be pointed out that the proposed power allocation
policy can be extended to general multi-user systems in a similar
way, but extending the proposed UAV deployment scheme to
general multi-user systems is not trivial. Our future works will
commit to solving the sum rate maximization problem in general
multi-user networks.
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In order to effectively prevent sports injuries caused by collisions in basketball training,

realize efficient shooting, and reduce collisions, the machine learning algorithm was

applied to intelligent robot for path planning in this study. First of all, combined with

the basketball motion trajectory model, the sport recognition in basketball training was

analyzed. Second, the mathematical model of the basketball motion trajectory of the

shooting motion was established, and the factors affecting the shooting were analyzed.

Thirdly, on this basis, the machine learning-based improved Q-Learning algorithm was

proposed, the path planning of the moving robot was realized, and the obstacle

avoidance behavior was accomplished effectively. In the path planning, the principle of

fuzzy controller was applied, and the obstacle ultrasonic signals acquired around the

robot were taken as input to effectively avoid obstacles. Finally, the robot was able to

approach the target point while avoiding obstacles. The results of simulation experiment

show that the obstacle avoidance path obtained by the improved Q-Learning algorithm

is flatter, indicating that the algorithm is more suitable for the obstacle avoidance of the

robot. Besides, it only takes about 250 s for the robot to find the obstacle avoidance

path to the target state for the first time, which is far lower than the 700 s of the previous

original algorithm. As a result, the fuzzy controller applied to the basketball robot can

effectively avoid the obstacles in the robot movement process, and the motion trajectory

curve obtained is relatively smooth. Therefore, the proposed machine learning algorithm

has favorable obstacle avoidance effect when it is applied to path planning in basketball

training, and can effectively prevent sports injuries in basketball activities.

Keywords: machine learning algorithm, intelligent robot, basketball training, sports injury, athlete injury prevention

INTRODUCTION

Basketball is widely accepted as one of the world’s top sports. In the process of training, there are
more comprehensive requirements on the physical and competitive ability of athletes (Coglianese
and Lehr, 2017; Liu and Hodgins, 2018; Ji, 2020). Sports injury is an inevitable problem faced by
athletes in all sports, and it is also an unavoidable situation in training and competition. Basketball
increases the risk of injury due to the high intensity and high-speed collisions between players in
the sport. Especially, excessive use of joints, muscles, and ligaments will lead to joint sprains and
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muscle strains (Li et al., 2016). Sports injuries not only damage
the physical and mental health of individual athletes, but also
affect their competitive ability and restrict the development of
the whole team (Li et al., 2019). To prevent sports injuries
caused by collisions in training or competitions, it is necessary
to optimize the offensive and defensive paths by intelligent
basketball training robots.

In modern basketball, the advantages of intelligent robots
based on artificial intelligence, machine learning, and other
algorithms in sports training gradually appear (Zhao et al.,
2018). In the context of the Internet of Things, Lv (2020)
combined high-tech achievements in multiple fields to realize
human-computer interaction in a natural and intelligent
way. Information processing and operation through computer
programs can form an interactive and simulated natural state and
three-dimensional environment on the display terminal, which
can make people feel immersed. This is also of great reference
value for intelligent basketball training (Lv, 2020). Toyota has
developed a basketball robot called “Cue,” with the internal visual
feedback system as its core. Before shooting the shot, “Cue”
will determine the 3D image of the surrounding environment
via its limbs and torso, calculate the height and force of the
basketball through the algorithm, and thus achieve the goal of
accuracy (Narayanan et al., 2020). Shooting results show that
it is considerably more accurate than professional basketball
players, because it can continue to learn and improve itself under
strong support of artificial intelligence technology. Some scholars
combined the labVIEW software development platform and
visual developmentmodule of the American company. In relative
motion state , the basketball could achieve the goal of precise
positioning and meet the adoption requirements of basketball
robots in actual games (Bing et al., 2020). At present, there
is an ultrasonic-based multi-degree-of-freedom basketball robot
complex path tracking control system. Ultrasound can accurately
provide the distance information of obstacles encountered by
the robot. If there is an obstacle, the received information is
converted and fed back to the main control board in the form
of an electrical signal, which ultimately effectively improves the
recognition rate of the basketball robot to the obstacle. Since
most sports injuries in basketball activities are caused by failure
to avoid obstacles and errors in cooperation between attack and
defense, the machine learning algorithm is utilized to plan the
movement posture and autonomous path of basketball players,
so as to effectively avoid obstacles and prevent sports injuries.

In this study, a robot system for basketball training
based on machine learning algorithm was proposed from the
perspective of preventing athletes from training injuries and
the characteristics of fierce confrontation in basketball. The
autonomous path planning problem of the robot system applies
the improved Q-Learning algorithm. On this basis, combined
with the basketball trajectory model, the motion robot controller
system based on fuzzy control principle was analyzed. Finally, the
feasibility of the improved algorithm to solve the autonomous
motion was verified through simulation experiments. According
to the obstacle avoidance ability of the sports robot based
on machine learning algorithm in basketball training, the
occurrence of sports injuries was effectively prevented.

MATERIALS AND METHODS

Sport Recognition in Basketball Training
The movements involved in basketball constitute a relatively
complex and comprehensive movement system. The recognition
of basic basketball movements is of great value to further
improve the training efficiency of athletes, and the division of
basketball posture composition is shown in Figure 1. In ordinary
training, basic training movements mainly include dribbling, ball
control, passing, catching, shooting, and pace adjustment (Lobos-
Tsunekawa et al., 2018). In specific training, basketball posture
can be divided into two states: static and moving based on the
different states of the body. The basketball action can also be
divided into two kinds according to whether it is periodic or not:
instantaneous and continuous. During continuous movement,
the athletes’ upper and lower limbs keep a continuous periodic
transformation. Therefore, unit actions can be divided according
to specific action data (Chau et al., 2019; Yoon et al., 2019;
Stübinger et al., 2020). When the body movement is described,
angular velocity can be taken as the reference base of data division
due to its intuitive advantage of data.

After data division, the unit action data composed of
acceleration and angular velocity can be obtained. The
acceleration vector sum and the angular velocity vector
sum are expressed as an and gn, respectively.

an =

√

(

axn
)2

+
(

a
y
n

)2
+

(

azn
)2

(1)

gn =

√

(

gxn
)2

+
(

g
y
n

)2
+

(

gzn
)2

(2)

where, axn, a
y
n, and azn represent the acceleration of the three axes

of the nth sampling point x, y, and z, respectively; and gxn , g
y
n,

and gzn represent the angular velocity of the three axes of the nth
sample point x, y, and z, respectively.

Each unit action was taken as a sample in this study.
Among them, N represents the number of sampling points in
each unit action, then each sample is a dimensional matrix
(the composition of the 8-dimensional vector includes the
acceleration and angular velocity of the three axes, as well as
the combined acceleration and the combined angular velocity).
The calculation of the mean value and variance of a certain
component of the acceleration in the unit action are as Equations
(3) and (4), respectively.

µa = E (a) =
1

N

∑N

i=1
ai (3)

δ2 =
1

N

∑N

i=1
(ai − µa)

2 (4)

where, a represents a certain component of acceleration.
The signal is converted from the time domain to the frequency

domain through discrete Fourier transform, Fourier transform
result SDFT (n) of the nth sampling point is calculated as Equation
(5), and the corresponding frequency f after Fourier transform is
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FIGURE 1 | The composition of the sports posture of basketball training.

calculated as Equation (6).

SDFT (n) =
∑N

i=1
aie

−j 2πN in (5)

f = k×
fs

N
(6)

where, j represents the imaginary unit, k represents the sampling
point corresponding to the peak value of the Fourier transform,
and fs represents the sampling frequency of the sensor.

After a series of operations such as data collection,
preprocessing, and feature extraction, a set of feature
vectors describing basketball actions can be obtained, and
the classification to which these abstract features belong can be
obtained using the classifier model (Hildebrandt, 2019).

The process of basketball sport recognition mainly includes
data acquisition, data preprocessing, data division, feature
extraction, and classifier training, as shown in Figure 2. During
data acquisition, the physiological signal or physical signal
of individual athletes is generally collected through sensor
equipment. During data preprocessing, the data collected are
desiccated and normalized to obtain more accurate signals.
During data partition, the data extraction of single action in
time domain and frequency domain is realized, and the data
characteristics are analyzed separately. In the next step of feature
extraction, the unit action is analyzed, and the attribute features
are extracted and taken as samples. At the final classifier stage, the
sample data are constructed into a classification model according
to different classification principles to complete the classification
of the sample data (Mejia-Ruda et al., 2018; Mullard, 2019; Starke
et al., 2020).

Intelligent Path Autonomous Planning
Based on Machine Learning Algorithm
From the perspective of sports cognition, the decision-making
of basketball players directly affects the tactical performance
and game result of the whole team (Žemgulys et al., 2018; Kim

FIGURE 2 | The process of basketball sport recognition.

and Lee, 2020). Therefore, players are required to be able to
capture the basketball target in real time and complete relevant
information processing when make decisions. Not only do they
need to lock in the basketball target that is active, but they
also need to make decisions as quickly as possible. Planning
the trajectory of real-time change can improve the hit rate. The
shooting action was taken as an example in this study, and a clear
route should be established before athlete shot a basketball shot.
With the parabolic form taken as the premise, a reasonable angle
needs to be adjusted in the global path planning (Pan and Li,

Frontiers in Neurorobotics | www.frontiersin.org 3 January 2021 | Volume 14 | Article 620378113

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xu and Tang Intelligent Basketball Training Robot

FIGURE 3 | Correct and incorrect basketball path planning results.

TABLE 1 | The best shot angle and minimum shot speed for different shot heights

and vertical distances.

Basketball

shooting

height (m)

Vertical distance

needed to move

(m)

Minimum

release angle

(◦)

Minimum

release speed

(m/s)

2.89 0.16 46.09 6.55

2.68 0.37 47.58 6.72

2.25 0.80 50.49 7.06

2.06 0.98 51.56 7.21

1.94 1.10 52.26 7.31

1.76 1.29 53.55 7.45

1.72 1.34 53.78 7.50

2020). The correct and incorrect basketball path planning results
are shown in Figure 3.

The learning system mainly implements the decision-making
and motion planning of the intelligent basketball robot through
environmental map construction and path planning. Machine
learning includes supervised learning, unsupervised learning,
and reinforcement learning (Zhu et al., 2019; Zhang et al.,
2020). Among which, reinforcement learning emphasizes how to
evaluate selection actions based on the environment to maximize
the expected benefits. Through continuous trial and error, the
system gradually improves the action selection strategy, and
finally achieves the purpose of learning. Q-Learning learning
algorithm is one of the most widely used important algorithms
in reinforcement learning. A robot based on the Q-Learning
algorithm only knows the set of actions that can be selected at the
moment. To represent the action reward value from one to the
next state, a corresponding matrix is usually constructed, from
which theQmatrix that can guide the robot’s activities is obtained
(Hung et al., 2018; Tieck et al., 2019; Wong et al., 2019).

First, the value Q(s,a) should be initialized. In the current
state, the robot selected a strategy according to the action, the
next state was obtained after the strategy-guided exercise, and
then the above selection process was repeated according to the
Q(s,a) value corrected by the update rule until the end of the
learning. The Q-Learning algorithm needed to choose through
continuous trial and error and action selection. Therefore, only
through continuous correction of feedback information could the

final suitable strategy be obtained, and that’s why the algorithm
had slow update speed (Sombolestan et al., 2019).

In the Q-Learning algorithm, the ε-greedy strategy was
utilized to balance the exploration, but the value of the
exploration factor ε would decrease as the algorithm training
time increased (Maryasin et al., 2018). The purpose of balancing
the exploration process was obtained by dynamically updating
the value of the exploration factor ε. The number of successful
path-finding and the number of different paths found by the
robot were taken as the basis for controlling the ε value. The
robot had a low number of successful pathfinding initially, so it
should maintain a high ε value at the beginning and keep trying
new actions. When the robot was gradually familiar with the
environment, the number of successful pathfinding would exceed
the threshold, and then the robot state action value function
would stabilize.

When the Q-Learning algorithmwas applied to the robot path
planning, in the initial state st , a certain action at was selected
according to the strategy; when the state was transferred to the
state st+1, an immediate return could be obtained. The Q reality
can be expressed as Equation (7).

Q (st , at) = rt+1 + γmax
α

(st+1, at+1) (7)

When the robot chose the next state, the probability method
could be adopted to select the action to avoid maximizing
the deviation. The calculation of probability is expressed as
Equation (8).

P (s|ak) =
Q (s, ak)

∑

j
Q

(

s, aj
) (8)

As for the slow update speed of Q-Learning algorithm, a counting
threshold was supplemented. The update of the Q value was
determined according to the cumulative access times to the
“state-action pair” <s, a>. When the cumulative access times
reached the threshold, the Q value of “state-action pair” would
be updated to improve the efficiency of the algorithm.

Basketball Trajectory Model
A key indicator for evaluating basketball players is shooting
accuracy, which is also the primary issue for most basketball
players to improve their competitive ability. If the basketball
movement is quantified and the data of basketball movement
is calculated from the perspective of mechanics, the athletes
can be trained scientifically according to the numerical results
(Gonzalez et al., 2018). This not only improves the training
efficiency of athletes, but also avoids fatigue sports injuries caused
by additional training. In the shooting action, the basketball shot
from the optimal shooting corner not only consumes the least
effort, but also the basketball has the farthest flight distance
and the highest scoring rate (El-Shamouty et al., 2019). In
basketball training, if athletes can find their optimal shooting
angle and form muscle inertia through repeated training, the
athlete’s training level can be greatly improved.

The main external influence on basketball trajectories was air
resistance, so the basketball trajectory in the absence of is mainly
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FIGURE 4 | The coordinate system of the moving robot system.

analyzed in this study. The basketball and the athletes with arms
outstretched was taken as a whole for measurement. Among
this, x and y represent the uniform movement in the horizontal
and vertical directions, respectively, and the Equation (9) can
be obtained.

{

x = vt cosα
y = −gt/2+ vt sinα

(9)

where, v represents the speed when the basketball is shot, and α

represents the angle when the basketball is shot.
The common diameter standard for basketball is 24.6 cm, the

diameter of the standard basket is 0.45 meters, and the basket
is 3.05 meters above the ground. The backboard specifications
are 1.80 meters in length, 1.05 meters in vertical height, and
0.03 meters in thickness. The horizontal distance from the center
of the basket is 4.21m for free throws, and 6.25m for three-
pointers. On the free throw line, the optimal shooting angle and
the minimum shooting speed can be calculated according to the
height of the basketball shot and the vertical distance needed to
move, as shown in Table 1.

It is obvious that the optimal shooting angle of the basketball
decreases with increasing shooting height and increases with
increasing shooting speed. Therefore, for the taller players,
the basketball shooting angle or speed should be reduced
appropriately during the jump shot. By shortening the flight
arc of basketball and reducing the external influence of
environmental factors as much as possible, the players can
improve their shooting percentage. In addition, due to the
increase in the height of shooting, the optimal shooting angle
of basketball has a great change. In the jump shot training, the
sensitivity of the athlete’s fingers should be improved.

Design of Obstacle Avoidance Algorithm
Based on Fuzzy Control of Motion Robot
Fuzzy control simulates human behavior and then makes
decisions based on fuzzy reasoning. The core of fuzzy control is
fuzzy controller, which is mainly responsible for fuzzy processing
of input variables, rule design and reasoning, and de-fuzzy.
Generally, a complete fuzzy controller consists of four modules:
fuzzy interface, knowledge base, reasoning mechanism, and

FIGURE 5 | Artificial neuron model.

FIGURE 6 | Obstacle Avoidance Path Planning of the Traditional Q-Learning

Algorithm before Improvement.

de-fuzzy. The precision of the fuzzy controller completely
determines the performance of the entire fuzzy control system
to a certain extent (Alonso-Martín et al., 2017). First of all,
the precise amount of input can only be utilized by the fuzzy
controller after the fuzzy transformation of the variable. The finer
the fuzzy subset division, the more the fuzzy rules. The inference
machine realizes fuzzy inference by selecting a certain inference
algorithm and combining fuzzy rules, and finally completes the
output of the control quantity. After fuzzy reasoning, a fuzzy set
can be obtained, and it can be applied by the control system only
by defuzzing the set into precise values.

The control structure of the moving robot designed in this
work is divided into two parts, that is, to approach the target
point and to avoid obstacles. First, a two-dimensional coordinate
system is established for the mobile environment of the moving
robot, including global coordinate system and local coordinate
system, as shown in Figure 4. The distance between the robot and
the target point is D, the direction angle of the robot is θ , and the
direction angle between the robot and the target point is α.

The activities of a moving robot are divided into two kinds:
the obstacle-free tendency behavior and the obstacle-avoiding
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behavior, both of which are realized by fuzzy controller. During
the barrier-free approach to the target point, the distance of
the robot from the target point, the difference between the
direction angle of the mobile robot and the direction angle of
the target point, and the difference between the heading angle
and the direction angle of the target are taken as input, then
the angular velocity and linear velocity of the robot are output.
The linear speed and angle are controlled, so that the robot can
constantly adjust posture and approach the target. In the obstacle
avoidance behavior with obstacles, the ultrasonic signals acquired
around the robot are taken as input to ensure that the robot can
effectively avoid obstacles.

The obstacles are set to be at the right front and left front of the
robot, respectively, and two fuzzy controllers are applied. When
the robot detects an obstacle, it first judges the specific orientation
and then chooses to enter the obstacle-avoidance fuzzy controller
to calculate the speed that can avoid the obstacle. When the robot
leaves the obstacle, it switches to the fuzzy controller which tends
to the target point and moves toward the target. According to
the fuzzy segmentation of each input variable, the fuzzy control
rules are as follows. If the obstacle is at the right of the robot, it
is set to turn counterclockwise. If the obstacle is at the left of the
robot, it is set to turn clockwise. The linear velocity and angular
velocity of the robot are affected by the distance from the obstacle.
When the robot is far away from the obstacle, its output linear
velocity and angular velocity are larger. When the robot is close
to the obstacle, the output linear velocity and angular velocity
are smaller.

In the actual basketball game, since the defender is dynamic,
dynamic obstacles should be adopted in the training strategy.
An artificial nerve is an abstract model that can be implemented
by a circuit or control program, as shown in Figure 5. In this
model, neurons receive signals from more than one neuron and
use them as input. After these signals are compared through the
threshold, they are finally processed by the activation function
to produce the output of the neuron (Fu et al., 2019; Lesort
et al., 2020). Artificial neuron model can simulate the working
principle of neuron cells, and get better decision-making data
through constant intelligent training, so as to improve the
decision-making efficiency and level.

Robot Simulation Experiment
Windows 10 operating system and Inter Core I7-2600 were
adopted for the simulation experiment in this study. The path
planning algorithm of the robot system was written in Matlab
programming language. The traditional Q-Learning algorithm
adopted Markov decision process for modeling. The learning
rate was initialized to 0.01, the deduction factor was set to 0.8,
and the initial value of the exploration factor was set to 0.4.
Adopting convolutional neural network to approximate the Q
value function, that is, utilizing Q-Network to represent the Q
value. The aim of marking the deviation value of the signal and
the output of the convolutional neural network is to minimize
the loss function. Therefore, a certain training sample is needed,
including a large amount of labeled data. Then, backpropagation
and gradient descent are adopted to update the parameters of
the convolutional neural network. The experience playback is

FIGURE 7 | Obstacle Avoidance Path Planning of the Improved Q-Learning

algorithm.

FIGURE 8 | Comparison of the Convergence time of Q-Learning Algorithm

before and after Improvement.

added. First, the sample information discovered by the system
is stored in experience pool D. The sample information is a
four-tuple consisting of the current state St , the current state
action value at , the immediate reward rt obtained by the current
action, and the next state St+1. During training, a set of samples
is randomly selected from the samples stored in the experience
pool D through the experience playback mechanism, and then
the gradient descent method is adopted for iterative learning.

si =
(

si1, s
i
2, ...s

i
n

)

represents the obstacle avoidance path of
the i-th robot. However, since the number of steps (length) of
the path is different, the robot with few steps is expanded, and
the target state is filled into the static obstacle avoidance path
of a single robot. In addition, since the state vector is adopted
in the multi-robot system, the static obstacle avoidance path of
each robot is combined into a state vector for representation.
First, the Q value is initialized to 0. When the multi-robot system
performs

(

s11, s
2
1, s

3
1

)

to
(
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2
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3
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)

, the action value function of
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FIGURE 9 | Simulation Results of Fuzzy Obstacle Avoidance of the Robot. (A) Obstacle is on the left. (B) Obstacle is on the right. (C) Obstacles on both sides.

state transition is set to a reasonable value >0. It can force
the multi-robot system to have a certain understanding of the
environment and tend to choose the optimal static obstacle
avoidance path instead of randomly trying actions.

Besides, the 12× 12 grid map was adopted, and the location of
obstacles was random. The traditional Q-Learning algorithm and
the improved Q-Learning algorithm were utilized in this study to
plan the motion path of the robot, and the two algorithms were
compared with regard to convergence performance.

RESULTS

The Algorithm Performance Analysis of the
Improved Robot in Path Planning
The robot planning path obtained from the simulation
experiment of the traditional Q-Learning algorithm and the
improved Q-Learning algorithm are shown in Figures 6, 7,
respectively. Among these, black represents obstacles, and
yellow grid represents the robot movement path. There are
more obstacle avoidance path turning points obtained by the

traditional Q-Learning algorithm. The obstacle avoidance path
based on the improved algorithm is smoother, indicating that the
improved Q-Learning algorithm is more suitable for robots to
solve obstacle avoidance problems.

The time it takes for the traditional Q-Learning algorithm
and the improved Q-Learning algorithm to converge in the
training process is shown in Figure 8. It takes about 700 s for
the robot to find the obstacle avoidance path to the target for
the first time under the traditional Q-Learning algorithm, but the
improved Q-Learning algorithm-based robot only needs about
250 s. Moreover, it is difficult for the traditional Q-Learning
algorithm to find a path to the target in the initial training stage,
while the improved Q-Learning algorithm can find a path to the
target faster during the initial training.

Obstacle Avoidance Function Test of the
Robot
Matlab programming was adopted to simulate obstacle avoidance
behavior of the robot. The simulation results of the obstacle
avoidance behavior when there are obstacles exist on the left,
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right, and left and right sides at the same time were shown
in Figure 9. The starting heading angle was set to 60◦, and
the starting position and final target were randomly selected.
According to the simulation experiment results, the basketball
robot fuzzy controller established in this work can effectively
avoid obstacles encountered during the robot movement.
Moreover, since multiple fuzzy controllers were combined, the
fuzzy rules were simplified, it was easier for the fuzzy control
to implement, and the obtained motion trajectory curve was
relatively smooth.

CONCLUSION

In order to improve the practical adoption efficiency of basketball
training strategies, and avoid chronic or acute injuries caused by
blind training and collisions in basketball training, in this study,
the scientific and effective training of athletes were improved
based on the adoption of basketball intelligent robots. Firstly,
according to the basic training actions in basketball training,
the sport recognition in basketball training was analyzed, and
in-depth analysis of the shooting action was implemented. In
the training of the shooting action, a mathematical model
was utilized to simulate the flying situation of the basketball
without resistance, and the improved Q-Learning algorithm
based on machine learning was proposed to plan the path
of the sports robot. The improved algorithm supplemented
a count threshold, and adopted the cumulative access times
to the “state-action pair” <s, a> to determine the update
of the Q value. In path planning, the fuzzy controller was
applied to make the robot complete the approach to the target
point and avoid obstacles at the same time. Sun et al. (2018)

and Zheng and Liu (2020) showed that an optimized fuzzy
control algorithm based on path planning could overcome the
problem of excessively subjective fuzzy boundary selection and
generate the optimal path, which was basically consistent with
this research.

In the simulation experiment, the path planning of the
robot through the improved machine learning algorithm shows
that the improved Q-Learning algorithm can find a path to
the target faster during initial training (Zheng and Ke, 2020).
Moreover, the convergence time of the algorithm is considerably
shorter than that of the traditional algorithm. In the subsequent
obstacle avoidance performance test, the established basketball
robot fuzzy controller can effectively avoid obstacles encountered
during the robot movement. In addition, due to the combination
of multiple fuzzy controllers, the fuzzy rules are simplified and
the fuzzy control is easier to implement, making the obtained
motion trajectory curve relatively smooth. In the research of
the motion robot system, this work only discusses the motion
planning of a single robot, but doesn’t analyze the motion
planning of the multi-robot system, which will be the focus of
the next research.
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The purpose is to solve the problems of large positioning errors, low recognition speed,

and low object recognition accuracy in industrial robot detection in a 5G environment.

The convolutional neural network (CNN) model in the deep learning (DL) algorithm is

adopted for image convolution, pooling, and target classification, optimizing the industrial

robot visual recognition system in the improved method. With the bottled objects as

the targets, the improved Fast-RCNN target detection model’s algorithm is verified; with

the small-size bottled objects in a complex environment as the targets, the improved

VGG-16 classification network on the Hyper-Column scheme is verified. Finally, the

algorithm constructed by the simulation analysis is compared with other advanced CNN

algorithms. The results show that both the Fast RCN algorithm and the improved VGG-16

classification network based on the Hyper-Column scheme can position and recognize

the targets with a recognition accuracy rate of 82.34%, significantly better than other

advanced neural network algorithms. Therefore, the improved VGG-16 classification

network based on the Hyper-Column scheme has good accuracy and effectiveness

for target recognition and positioning, providing an experimental reference for industrial

robots’ application and development.

Keywords: machine vision, artificial intelligence, deep learning, industrial robot, 5G environment

INTRODUCTION

In the early 1960s, the United States was the first country in the world to manufacture industrial
robots. After that, industrial robot technology and its products developed rapidly. At present,
industrial robots have provided productivity tools for automation in various industries (Li et al.,
2018). At the same time, the growing use of artificial intelligence technology in industrial robots
that have been widely used has dramatically changed the way people produce and live.

An industrial robot is a machine that automatically performs industrial production tasks. It
can accept commands, perform corresponding functions according to programming procedures,
or operate according to the principles of artificial intelligence technology. Its main applications
include plundering, assembly, acquisition, placement, product inspection, and testing. The ability
of industrial robots to perform these functions relies on accurate detection and identification of
targets (Dönmez et al., 2017; Fernandes et al., 2017; Song et al., 2017; Zhang et al., 2017). The basis
for realizing the above functions is the industrial robot vision system, which realizes the visual
function of the robot through a computer, enabling the robot to recognize the objective world.
Therefore, the vision system plays an important role in improving the performance of industrial
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robots. Industrial robot vision systems are used for target
detection and task identification. Image feature extraction
technology is the basis of machine vision. It refers to the
extraction of certain key information that can be used to
represent images from image data for machine vision tasks
such as subsequent recognition and classification (Ertuğrul and
Tağluk, 2017; Sung et al., 2017; Wang et al., 2018) With
the rapid development of communication technology, artificial
intelligence, and machine learning, the precondition of the
5G environment has matured. The new generation of wireless
communication technology not only means faster transmission
speed but also better security performance for industrial robots
(Bogue, 2017). The application of these intelligent algorithms
to the development of industrial robots with higher service
levels will bring new opportunities for the development of
industrial robots.

However, a large amount of existing research is at the level
of simple industrial devices. With the diversification of industrial
devices, the traditional positioning and recognition algorithm
has the problems of serious positioning errors, slow recognition
speed, and low accuracy, which leads to the fact that the sorting
work in complex environments is still in the manual operation
stage. Therefore, to improve the accuracy of industrial robots for
object recognition and positioning in complex environments, a
visual recognition and localization algorithm based on artificial
intelligence deep learning is proposed. The deep learning
network model is used to convolve and pool the image layers,
and the target classification algorithm is used to optimize the
industrial robot visual recognition system. Besides, the Fast
R-CNN algorithm and the improved VGG-16 classification
network based on the Hyper-Column scheme can identify
and classify the target objects in a complex background. The
simulation results have shown that the proposed algorithm has
good stability and accuracy.

LITERATURE REVIEW

The Development Trend of Deep Learning
With rapid science and technology development, artificial
intelligence (AI) has been applied in more fields. As a new
intelligent algorithm in the 21st century, DL has been studied
by many scientific researchers. In 2006, Hinton, the expert in
the field of artificial intelligence of the University of Toronto,
proposed the concept of deep learning. He proposed an algorithm
for fast training of deep neural networks, which opened up
the craze for deep learning in the field of artificial intelligence
(Hinton et al., 2017). Deep learning mathematical models
generally include deep convolution neural networks using
supervised learning methods, and superposition self-coding
networks and deep belief networks using hybrid supervised
learning methods. Stani et al. (2017) proved that the deep
learning algorithm has superior non-linear approximation ability
and generalization ability than BP neural network, support vector
machine (SVM), and other network models, and can exhibit
very powerful performance in complex pattern recognition
occasions. To overcome the limitations of existing hybrid
precoding schemes, Huang et al. (2019) proposed a mmWave

massive MIMO hybrid precoding framework based on deep
learning, which regarded each selected pre-coder as the mapping
relationship in Deep Neural Network (DNN). Simulations
found that the DNN-based method could minimize the bit
error rate and improve the spectrum efficiency of mmWave’s
massive MIMO. While significantly reducing the computational
complexity, hybrid precoding could provide better performance
than traditional schemes. Sun et al. (2020) proposed an
adaptive Deep Learning-aided Digital Pre-Distorter (DL-DPD)
using optimized deep Recurrent Neural Networks (RNN). The
experimental results proved the effectiveness of the proposed
adaptive DL-DPD and revealed that the online system switched
sub-DPD modules more frequently than expected.

Research of Target Recognition
Technology
Traditional detection and recognition technologies include
segmentation-based method, feature analysis method, image
recognition, and decision-classification method, and pattern
learning and shape matching method, which are widely used
in the industrial fields. With AI technologies’ development,
such as machine learning, the target recognition accuracy has
attracted many scholars’ attention. You et al. (2017) built a
SCARA robot automatic recognition and positioning plug-
in system platform based on monocular vision. Through the
calibration of the crawling system parameter model and the
establishment of camera parameters, the color recognition of
the workpiece and the position information of the workpiece
could be achieved. Besides, the robot’s jaws could be controlled
to accurately grasp the target workpiece, meeting the real-time
requirements of grasping the workpiece in general industrial
production. Sampedro et al. (2019) proposed a fully autonomous
aerial robot scheme for performing complicated Search And
Rescue (SAR) tasks in an unstructured indoor environment.
The algorithm integrated a new type of deep reinforcement
learning method to identify and interact with targets in multiple
environments. Wang et al. (2020) proposed a small humanoid
combat robot design scheme based on the target recognition
algorithm for the low recognition rate of mobile robots in
complicated working environments. This scheme could fuse
information by adding visual information, which was simpler
and ran faster and more effectively. Finally, the simulation
experiment proved its effectiveness. Li et al. (2020) investigated
the control performance of the visual servo system under planar
cameras and RGB-D cameras. They segmented the color images
collected by RGB-D cameras based on optimized normalized
cut sets. A control cycle could be completed by calculating the
end angle and speed of the robot, and the entire process was
iterated until the servo task was completed. Finally, experiments
verified that the proposed RGB-D image processing algorithm
had an excellent performance in the above aspects of the visual
servo system.

According to the above works, the DL algorithm is applied
in many fields, and its application in industrial robot target
recognition is scarce. Therefore, based on the DL algorithm,
CNN is improved based on the Hyper-Column scheme. The
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FIGURE 1 | The basic flow chart of target detection technology.

constructed algorithm’s performances are analyzed to study

industrial robot target recognition, which has significant research
value (Wen, 2020).

PROPOSED METHOD

Target Detection Technology Based on
Deep Learning of Artificial Intelligence
Deep learning (DL) is one of the technical and research fields
of machine learning. By establishing an artificial neural network
with a hierarchical structure, artificial intelligence is realized in
the computing system. The artificial intelligence target detection
technology of images refers to the application of techniques such
as machine vision to determine the type, position, size, and
confidence of the target object, and the predetermined target
object is automatically detected from the image (Wang et al.,
2019). The basic process of target detection technology is shown
in Figure 1.

Researchers have proposed a Fast Region Convolution Neural
Network (Fast R-CNN) detection method in recent years, which
transfers feature extraction to the convolution feature map of
the last layer (Matson et al., 2019). The region convolution
neural networks (CNN) need to repeat the problem of multiple
convolution calculations for the same image; at the same time,
the discrimination of the proposed area and the bounding box
regression are integrated into one framework, which effectively
improves the accuracy and efficiency of target detection. Fast
R-CNN uses a single network joint training convolution neural
network, classifiers, and bounding box regenerators to extract
image features (CNN), classification (SVM), and compact
bounding boxes (regressors). The Fast R-CNN network takes
the entire image and a set of candidate frames as input, first
using several convolution layers and a maximum pooling layer
to process the entire image, producing a convolved feature map,
and then for each candidate box, the pooling layer of regions of
interest extracts a fixed-length feature vector from the feature

map. Each feature vector is fed into a series of fully connected
layers, which are finally branched into two output layers; one
outputs k object categories and the probability estimation for
a background category, and the other one outputs four real
values for k object categories. Fast R-CNN solves many problems
of R-CNN with faster training speed; however, there are still
many problems. Fast R-CNN uses the Selective Search algorithm
to extract the candidate regions, while the target detection
consumes a lot of time. The candidate region extraction takes
2∼3 s, and the single image detection time reaches 0.32 s. The
extraction efficiency of the recommended region is low, which
still cannot meet the demand of the real-time application.

Convolution and Pooling of Image Layers
by the Artificial Intelligence-Based Deep
Learning Network Model
The deep learning network receives the recorded visual feedback
image in real-time and performs deep learning processing on
each frame of the received image, i.e., themulti-level convolution,
pooling operation, and classification processing to obtain the
coordinates, angles, and time of the detection target on the image
in the image coordinate system, focuses on the coordinates and
angle of the detection target on the captured visual feedback
image, and sends the processed image and the coordinates,
angles, and time information of the detection target on the image
to the intermediate result synthesis processing unit; the processed
image sent to the human error correction interface is shown in
Figure 2.

The time mentioned in the above content refers to the image
capturing time, the angle is the angle between the target re-
axis and the image coordinate system X; the image coordinate
system describes the position coordinates of a single-pixel in the
whole image, and the pixel point in the upper left corner of
the coordinate system is the origin coordinate (0,0), the abscissa
axis of the image coordinate system is horizontal, the maximum
value is 1,400, the ordinate axis of the image coordinate system is
vertical, and the maximum value is 1,040, i.e., the image width is
1400× 1050.

It is assumed that the numerical matrix of the input image is
P0 and the size is P × Q. In the scheme, 1400 × 1050 is used,
and the numerical matrix P0 and the convolution kernel Mk1

is convoluted:

P1k = P0 ⊗Mk1 (1)

In the equation, ⊗ is the matrix convolution; Mk1 is the k-th
output in the first layer of the deep network, k= 1. . . 256, i.e., the
first layer consists of 256 feature convolution kernels, parameters
of Mk1 is obtained from VGG-16 model. P1k is the convolution
output of the first layer in the deep network, with 256 outputs
in total.

The convolution result of the first layer P1k is pooled. In the
scheme, the maximum pooling method is adopted, i.e., every
2×2 local matrices in P1k are merged into one element, and the
maximum value among the four elements is used as the result;
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FIGURE 2 | The model of layered convolution kernel pooling of deep learning

network.

the step size of pooling is 2. The pooling result P1k is P1k the size
of P1k is 1/2 of the original size.

The convolution and pooling result of the first layer P1kc is
input to the second layer, and the result of the second layer is
P2kc, the results of the l-1 layer P(l−1)kc are sequentially obtained.

The operations of convolution and pooling of the first layer
are obtained through recurrence:

Plk = P(l−1)kc ⊗Mkl (2)

In the equation, Mkl is the convolution kernel matrix of the k-th
feature of the first layer, the parameters Mkl are obtained. Plk is
the k-th output of the first layer in the deep network.

FIGURE 3 | The improved VGG-16 classification model.

Improvements in the Target Classification
Algorithm
To accurately identify objects, the Hyper-Column scheme is used.
The Hyper-Column scheme refers to a way to fuse the responses
of neurons at various levels. It overcomes the information loss
caused by multiple convolutions in the high-level convolution
network, which makes the small target information in the high-
level features be seriously missed and the detection effects on
small targets are poor. Meanwhile, due to the addition of the
underlying features, the bottom layer features have rich direction
information, which can help the angle prediction (Capparelli
et al., 2019; Toğaçar et al., 2020). Based on the original VGG-
16 architecture, the 3rd, 4th, and 5th layers of the VGG-16
convolution layer are fused so that the model can have good
detection robustness of smaller bottle objects on the conveyor
belt; meanwhile, the information on the angle prediction of the
object is increased by introducing a low-level neural response,
thereby reducing the error of the angle prediction.

In summary, the following three improvements are made
to the original VGG16 classification network: (1) the VGG-16
network structure with angle prediction is increased, and the
response images of Conv3-4, Conv4-4, and Conv5-4 layers are
fused to enhance the system performance through the feature
fusion method; (2) the traditional classification regression loss is
decoupled with angle prediction so that they are independently
trained and predicted; and (3) the full connection layer is
canceled, and the whole network is trained by using a full
convolution network so that the network parameters are reduced
to prevent over-fitting, and the training speed of the system is also
improved. The improved VGG-16 classification model is shown
in Figure 3.
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TABLE 1 | Parameter settings used in training in the laboratory environment.

Item Results Item Results

Training set 1620 images (image resolution

1400 × 1050)

The test set 162 images (image resolution

1400 × 1050)

Learning rate 0.00114 Momentum 0.9

Number of anchor nodes 901 Weight-decay 0.0005

Dimension of anchor nodes [600, 1000] Iterations Fine-tune: 40000 times

Number of images selected VGG16 classification network: 2 NMS parameter 0.7

Number of Minni-batch in RPN 64 Detection threshold 0.99

The ratio of the prospect to the backdrop in RPN [0, 0.3] Flipped image The first shift

Intersection-over-Union range of RPN prospect

samples

No Number of anchor nodes 901

Weight of criteria function Position weight: 1; angle weight: 5 Training the updated layer The 1st time: update the

convolution layer and the FC

layer; the 2nd time: update the

FC layer. Shared convolution

strategy applied

EXPERIMENT

To verify the correctness of the target recognition algorithm,
in terms of the experimental method, the design adopts the
method of pushing the input image, and the system performs
the recognition and detection to verify whether the system can
identify the target in the system. In the experiment, the bottle
objects are used as the test objects.

Verification of Fast R-CNN Algorithm
In the laboratory environment, 1,800 images are acquired and the
collected data are grouped according to the ratio of the training
set and test set, which is 9:1. The image resolution of images
used in the test is 1400 × 1050. Hyperparameter settings are
significant for CNN performance. Many optimization techniques
can reduce the neural network model’s hyperparameter setting
difficulty and manually set hyperparameters. Table 1 shows the
hyperparameter settings adopted in training to enable the CNN
framework to obtain qualified prediction results.

In the training process, the proportional selection of positive
and negative samples will also have a great impact on training
performance. In the task of detecting bottle-shaped objects, the
identification of bottles is taken as the research object; thus, the
samples are divided into two categories, i.e., bottles and non-
bottles. Based on the above situation, the classified output layer
of RPN and VGG-16 is set to 2 nodes, and the corresponding
VGG-16 regression layer includes 4×2+1 = 9 nodes. The batch
size of the RPN network is set to 64. Besides, the ratio of positive
and negative samples is 1:1, which can ensure that the image has
enough positive samples.

In the experiment, 1,800 images are used for the test, in which
the total number of bottles is 260. During the measurement,
whether the bottle is successfully detected is determined by
the Intersection-over-Union (IoU) of the test result to the
true position of the bottle being >0.5. The evaluation criteria
used in the experiment are the false detection rate and the

FIGURE 4 | The angle detection result of the improved Fast R-CNN model in

the laboratory environment.

missed detection rate, which are defined as Equations (3) and
(4), respectively:

The false detection rate =

number of false detection cases

number of t arg ets detected
× 100%

(3)

The missed detection rate =

number of missed detection cases

the total number of t arg ets
× 100%

(4)

The detection results of the Fast R-CNN algorithm are shown in
Figure 4 and Table 2. As can be seen from Figure 4, 200 angles
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are detected within 5 degrees, 50 are detected from 5 degrees to
10 degrees, and 8 are detected above 10 degrees. It can be seen
from the results that in the laboratory environment, the predicted
angle of the bottle-shaped article is predicted accurately, and the
data of Table 2 shows that the false detection rate and the missed
detection rate are 3.2 and 8.7%, respectively. In terms of the
detection time, since the CNN network itself has a long forward
propagation time, the time is 220 ms.

Figure 5 shows the detected images of objects in the laboratory
environment. As can be seen from Figure 5, the Fast R-CNN
algorithm can accurately detect the position and angle of
the bottle.

TABLE 2 | The detection result of the improved Fast R-CNN model in the

laboratory environment.

Average

error

Standard

deviation

Threshold False

detection

rate/%

Missed

detection

rate/%

Time

consumption

7.70 13.56 250 3.3 8.9 210 ms

FIGURE 5 | Physical graph of the test in the laboratory environment.

The results in the laboratory environment show that the
improved algorithm model of deep learning can accurately
predict the position and angle of the bottle, whichmeets the needs
of industrial robot target recognition.

Verification of VGG-16 Classification
Network Model Algorithm Based on
Hyper-Column Scheme Improvement
The above simulation verification is carried out in the
experimental environment. To verify the target recognition effect
of the improved VGG-16 classification network based on the
Hyper-Column scheme, field verification is carried out through
collecting 1,600 bottles in the real environment from a waste
treatment plant in Xi’an City, Shaanxi Province. Similar to the
above method, a 9:1 training test ratio is used, in which the total
target number of the bottle is 160. The parameter settings for the
training phase are shown in Table 3.

In the experiment, a total of 1,600 images are tested, in which
the total number of bottles is 204 (some images have no bottles,
and the crossover threshold is 0.5). The evaluation criteria are
the false detection rate and the missed detection rate (as defined
in section Verification of Fast R-CNN Algorithm), and the test
results are shown in Figure 6 and Table 4. It can be seen that the
actual missed detection rate and false detection rate are high due
to the poor image pixels captured in the real environment. As
shown in Figure 6, in the decoupling model, 100 are detected
for angles within 5 degrees, 42 for angles between 5 and 10
degrees, and 33 for angles >10 degrees. In the coupled model,
98 angles are detected to be within 5 degrees, 45 are detected
between 5 and 10 degrees, and 30 are detected above 10 degrees.
In the meantime, the results of coupling and decoupling models
are compared, and the results are summarized in Table 4. The
three loss decoupling models can provide lower false detection
rate and missed detection rate, thereby obtaining more accurate
detection results.

TABLE 3 | Parameter settings used in training in the real environment.

Item Results Item Results

Training set 1440 images (image resolution

1600 × 1200)

The test set 160 images (image resolution

1600 × 1200)

Learning rate 0.00114 Momentum 0.9

Number of anchor nodes 901 Weight-decay 0.0005

Dimension of anchor nodes [600, 1000] Iterations Fine-tune: 40,000 times

Number of images selected VGG16 classification network: 2 NMS parameter 0.7

Number of Minni-batch in RPN 64 Detection threshold 0.99

The ratio of the prospect to the backdrop in RPN [0,0.3] Flipped image No

Intersection-over-Union range of RPN prospect

samples

No Number of anchor nodes 901

Weight of criteria function Position weight: 1; angle weight: 5 Training the updated layer The 1st time: update the

convolution layer and the FC

layer; the 2nd time: update the

FC layer. Shared convolution

strategy applied
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Figure 7 shows the test results in the real environment. It can
be seen that even in the case of poor image quality (even difficult
to distinguish by the naked eye), the algorithm can still obtain
better detection results.

The test results of the real waste treatment plant images show
that the improved Hyper-Column-based VGG-16 model can
better detect the position and angle of the bottle, which meets
the task requirements.

Comparison of the Improved VGG-16
Classification Network Model Based on
the Hyper-Column Scheme and Other
Advanced CNNs
The VGG-16 classification network model improved based on
the Hyper-Column scheme is verified on the Matlab network
simulation platform. The NYU Depth V2 database is introduced
(Chen et al., 2019) with the leave-one-out evaluation method
adopted; that is, the dataset with a sample space of 1100 is
divided into subsets of 1000 and 100, with the subset of 1000
used as the training set and subset of 100 as the test set. The
constructed system model is compared with advanced CNNs

FIGURE 6 | The angle detection result of the improved Fast R-CNN model in

the real environment.

(AlexNet, GoogleNet, LeNet, ZF-Net, and ResNet) (Wang et al.,
2017; Fadlullah et al., 2018; Luo et al., 2019; Hosny et al., 2020;
Wang and Jia, 2020). The following equation shows the accuracy.

ACC =
TP + TN

TP + TN + FP + FN
(5)

In Equation (5), TP represents a positive sample with
positive prediction, FP represents a negative sample with
positive prediction, FN represents a positive sample with
negative prediction, and TN represents a negative sample with
negative prediction.

Figure 8 shows the accuracy comparison between the
improved algorithm and other advanced neural networks.

Figure 8 shows the accuracy comparison of the improved
algorithmwith other advanced neural networks. The result shows
that the improved algorithm’s accuracy reaches 82.34%, at least
3% higher than other advanced CNN algorithms such as AlexNet,
GoogleNet, LeNet, ZF-Net, and ResNet.

DISCUSSION

Comparison of the Results of Fast R-CNN
Algorithm and Improved Network Model
Based on Hyper-Column Scheme
The detection effects of the Fast R-CNN algorithm on the
detection of bottle-like objects in the laboratory environment
and the detection effects of the VGG-16 algorithm based on the

FIGURE 7 | Physical graph of the test in the real environment.

TABLE 4 | The detection result of the improved Fast R-CNN model in the real environment.

Model Average

error/degree

Standard

deviation/degree

Numbers within

the threshold

False detection

rate/%

Missed

detection rate/%

Time

consumption

3 loss

coupling

model

7.71 13.53 176 7.4 21.3 230

3 loss

decoupling

model

6.95 11.41 174 5.8 19.4 260
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FIGURE 8 | Accuracy curves compared with advanced CNNs.

Hyper-Column scheme on detecting complex bottled objects in a
realistic and complex environment are verified. The experimental
results show that the Fast R-CNN algorithm can accurately
detect bottled objects under the experimental environment, and
the distribution of detection rate and the error rate is <10%.
The improved VGG-16 algorithm based on the Hyper-Column
scheme can accurately detect bottled objects in a complex real-
world environment with a missed detection rate of <10% and
an error rate of <30%. Both algorithms have better positioned
and identified the target objects. In comparison, the Fast R-
CNN algorithm in the experimental environment can complete
the detection of the target item in 0.2 s, while the VGG-16
algorithm based on the Hyper-Column scheme can complete
the detection in 0.24 s in the 3 loss coupling models, and the
3 decoupling models are completed in 0.28 s. Although the
false detection rate and the missed detection rate of the 3 loss
decoupling models are small, they are slightly inferior to the 3
loss coupling models in terms of detection consumption time.
The constructed algorithm’s accuracy is compared with that of
other advanced neural networks. The analysis shows that the
constructed algorithm’s accuracy reaches 82.34%, at least 3%
higher than other advanced CNN algorithms such as AlexNet,
GoogleNet, LeNet, ZF-Net, and ResNet. The reason may be that
the original DL algorithm’s feature fusion and the training speed
increase improve industrial robot target recognition accuracy.

Results Discussions
The applications of the Fast R-CNN algorithm and the
improved Hyper-Column-based VGG-16 classification network
in industrial robot target recognition and classification are
explored. The experimental results show that deep learning plays
an important role in the visual recognition of industrial robots.
Compared with the previous research, the improvement of the
algorithm makes the industrial robots convolve and pool in the
visual recognition, leading to the results that the average false
detection rate is <5.5% and the average missed detection rate

is 17%. The test results have shown the high precision and
high accuracy of the algorithm. The deep learning algorithm is
suitable for industrial applications. Meanwhile, it also shows that
artificial regularization can improve the learning and recognition
of the algorithm. It can be seen from the experimental results
that the algorithm model proposed in the experiment can
meet the requirements of modern industry for industrial robot
vision works.

DISCUSSION

Artificial intelligence has superior feature extraction performance
and great development potential in the industry 4.0 era.
Therefore, to solve these problems, the image layers are
convolved and pooled through the deep learning model of
artificial intelligence, and the visual recognition system of
industrial robots is optimized through the advanced methods
of the target classification algorithm. In the aspect of visual
recognition, the recognition algorithm of target objects in a
complex background environment is studied. The results have
shown that both the Fast-RCN algorithm and the improved
VGG-16 classification network based on the Hyper-Column
scheme can complete the localization and recognition of the
target objects, indicating that the Fast-RCN algorithm and the

Hyper-Column-based scheme have improved the accuracy and
effectiveness of target recognition and positioning of VGG-16
classification network.

At present, the research on industrial robots in artificial
intelligence has yet to be improved in China. The application
of deep learning in artificial intelligence to the visual system of
industrial robots has achieved preliminary results through the
experiment. If the relevant algorithms of artificial intelligence can
be applied in the research, development, and production process
of industrial robots in future research, it will certainly promote
the industrial robot technology to develop more rapidly. There
are many algorithms in the deep learning theory of artificial
intelligence, which can be used to solve a series of problems
that occurred in the development of industrial robots. With
the rapid development of communication technology, the 5G
era has arrived. The new generation of wireless communication
technology not only means faster transmission speed but also
better security performance for industrial robots. The application
of these intelligent algorithms to the development of industrial
robots with higher service levels will bring new opportunities for
the development of industrial robots.
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Ertuğrul, Ö. F., and Tağluk, M. E. (2017). A novel machine learning method

based on generalized behavioral learning theory. Neural Comput. Appl. 28,

3921–3939. doi: 10.1007/s00521-016-2314-8

Fadlullah, Z. M., Tang, F., Mao, B., Liu, J., and Kato, N. (2018). On

intelligent traffic control for large-scale heterogeneous networks: a value

matrix-based deep learning approach. Commun. Lett. IEEE 22, 2479–2482.

doi: 10.1109/LCOMM.2018.2875431

Fernandes, C. M., Mora, A. M., Merelo, J. J., and Rosa, A. C. (2017). Kants:

a stigmergic ant algorithm for cluster analysis and swarm art. IEEE Trans.

Cybern. 44, 843–856. doi: 10.1109/TCYB.2013.2273495

Hinton, M., He, Z., Xiao, L., et al. (2017). An automatic assembling

system for sealing rings based on machine vision. J. Sens. 2017, 1–12.

doi: 10.1155/2017/4207432

Hosny, K. M., Kassem, M. A., and Foaud, M. M. (2020). Classification of skin

lesions into seven classes using transfer learning with alexnet. J. Digit. Imaging

33, 1325–1334. doi: 10.1007/s10278-020-00371-9

Huang, H., Song, Y., Yang, J., Gui, G., and Adachi, F. (2019). Deep-learning-

based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh.

Technol. 68, 3027–3032. doi: 10.1109/TVT.2019.2893928

Li, J., and Yang, F.,. (2018). Research on multi-robot scheduling algorithms

based on machine vision. EURASIP J. Image Video Process. 2018, 1–11.

doi: 10.1186/s13640-018-0355-x

Li, S., Li, D., Zhang, C., Wan, J., and Xie, M. (2020). RGB-D image processing

algorithm for target recognition and pose estimation of visual servo system.

Sensors 20:430. doi: 10.3390/s20020430

Luo, P., Tian, L. P., Ruan, J., and Wu, F. (2019). Disease gene prediction by

integrating ppi networks, clinical rna-seq data, and omim data. IEEE/ACM

Trans. Comput. Biol. Bioinfor. 16, 222–232. doi: 10.1109/TCBB.2017.2

770120

Matson, T., Farfel, M., Levin, N., Holm, E., andWang, C. (2019). Machine learning

and computer vision for the classification of carbon nanotube and nanofiber

structures from transmission electron microscopy data.Microsc. Microanal. 25,

198–199. doi: 10.1017/S1431927619001727

Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., and

Campoy, P. (2019). A fully-autonomous aerial robot for search and rescue

applications in indoor environments using learning-based techniques. J. Intell.

Robot. Syst. 95, 601–627. doi: 10.1007/s10846-018-0898-1

Song, Y., Liu, Y., Liu, L., Zhu, D., Jiao, J., and Chen, L. (2017). Extraction

method of navigation baseline of corn roots based on machine vision.

Trans. Chin. Soc. Agric. Mach. 48, 38–44. doi: 10.6041/j.issn.1000-1298.201

7.02.005

Stani, I., Musi, J., and Gruji, T. (2017). Gesture recognition system for real-time

mobile robot control based on inertial sensors and motion strings. Eng. Appl.

Artif. Intell. 66, 33–48. doi: 10.1016/j.engappai.2017.08.013

Sun, J., Wang, J., Guo, L., Yang, J., and Gui, G. (2020). Adaptive deep learning aided

digital predistorter considering dynamic envelope. IEEE Trans. Veh. Technol.

69, 4487–4491. doi: 10.1109/TVT.2020.2974506

Sung, M., Cho, S. H., Kim, J., Lee, J. K., Lee, J. H., and Chung, H. S. (2017).

Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz

millimeter wave. J. Light. Technol. 36, 601–609. doi: 10.1109/JLT.2017.2763156
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This study was developed to explore the role of the intelligent badminton training robot

(IBTR) to prevent badminton player injuries based on the machine learning algorithm.

An IBTR is designed from the perspectives of hardware and software systems, and

the movements of the athletes are recognized and analyzed with the hidden Markov

model (HMM) under the machine learning. After the design was completed, it was

simulated with the computer to analyze its performance. The results show that after the

HMM is optimized, the recognition accuracy or data pre-processing algorithm, based on

the sliding window segmentation at the moment of hitting reaches 96.03%, and the

recognition rate of the improved HMM to the robot can be 94.5%, showing a good

recognition effect on the training set samples. In addition, the accuracy rate is basically

stable when the total size of the training data is 120 sets, after the accuracy of the robot

is analyzed through different data set sizes. Therefore, it was found that the designed

IBTR has a high recognition rate and stable accuracy, which can provide experimental

references for injury prevention in athlete training.

Keywords: intelligent badminton training robot, machine learning, hidden markov model, athlete injury, motion

recognition

INTRODUCTION

Today, people’s living standards have significantly improved with the rapid development of science
and technology. As one of human beings’ greatest inventions in the era of artificial intelligence
(AI), after years of development, robots already possess a considerable amount of AI. The
robot combines high-tech technologies with multiple other technologies, including mechanics,
informatics, mechanics, AI, electronics, biology, and control system engineering. Robotics has
experienced several stages maturity in its research and development. At this stage, its functions
are becoming more mature, and its applicational prospects are also extremely broad (Mizuno et al.,
2019; Cao et al., 2020). AI has also begun to be applied in sports. There are some data analyses
and intelligent sports products in the popular badminton sport, which initially demonstrate the
appeal of applying AI technology to traditional sports (Mutaqin et al., 2020). At present however,
the application of AI in badminton sports is limited in both depth and breadth. Most badminton
training methods are still realized with the one-to-one or one-to-many manual teaching methods,
which can be extremely restrictive to the improvement of a players’ own level (Chia et al., 2019; Gao
et al., 2020). Therefore, applying machine learning and other related algorithms to the training of
badminton players has become the focus of scientific research in recent years.
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Badminton is a net-to-net confrontation sport, and the
athletes on both sides compete in skill and tactics without
physical contact. Therefore, the possibility of injury due to
collision is very small in badminton. However, athletes are
required to play in a short time, combining the consistency of
running and jumping, and the upper limb variability of lower
limbs to complete the game (Huang et al., 2019; Wang et al.,
2019; Mansec et al., 2020). Therefore, improper operation during
training may cause physical injury to the athlete. Preventing
physical injury of the athletes is therefore particularly important.
Machine learning is an important algorithm in AI. Many
scientific researchers have adopted machine learning to study
the action and behavior recognition of the human body. For
example, standing, walking, running, and lying down in daily
actions can be recognized and classified by algorithms (Li and
Zhang, 2017; Polydoros and Nalpantidis, 2017; Wang et al.,
2018). Similarly, machine learning can also detect abnormalities
and falling in the human body, mainly by collecting human
electromyographic signals, acceleration signals, and video signals.
For badminton, table tennis, tennis, football, and other complex
activities, the wearable acceleration sensor can be adopted to
collect the data, and then the machine learning and other related
algorithms are adopted for recognition and classification (Li
et al., 2019b). Machine learning and AI technology therefore have
broad applicational prospects in the field of sports.

In summary, the recognition and regulation of actions during
sports is of extreme significance, so as to reduce the damage
caused to badminton players during training and to further
improve their abilities. The innovation of this study lies in
the design of the IBTR system, and the use of HMM in
the machine learning algorithm to recognize movements of
athletes. Finally, computer simulation is adopted to test and
analyze its performance in multiple directions, which provides
experimental evidence for the future development of sports and
injury prevention in athletes during training.

LITERATURE REVIEW

Research Trends in the Application of
Machine Learning
As the core content, machine learning has been applied to various
branches of AI, and there are many studies based on it. In
wireless networks, Jiang et al. (2017) adopted machine learning
techniques to propose applying them in attractive applications
in 5G networks, including cognitive radio, massive multi
input multi output (MIMO), femto /Small cells, heterogeneous
networks, smart grids, energy harvesting, and communication
between devices, to meet the diverse needs of wireless networks,
which provided experimental support for extremely high speeds
and new applications of future wireless networks. In the medical
field, Walsh et al. (2018) used machine learning to predict the
suicidal behavior of adolescents through the collection of clinical
data, and screened the risks of non-fatal autotomy attempts of
the adolescents through a retrospective analysis of historical data.
In electric power, Dalal et al. (2019) proposed a data-driven
distributed opportunity-constrained optimization equation and

built an agent that predicts the results of the operation process
for the power system using machine learning, so as to solve
the traction in large-scale power grids; the simulation results
revealed that the proposed solution is cheaper and more reliable
than other candidate solutions. In the field of physics, Namba
et al. (2020) took the three-dimensional alignment control of
asymmetric top molecule sulfur dioxide (SO2) as an example
to study a machine learning method for drawing landscape
maps in a low-dimensional control parameter space, and studied
the control of a set of mutually orthogonal linearly polarized
laser pulses; these pulses were parameterized by time delay and
fluence ratio; the parameters could be represented by points in
the parameter space or time and frequency resolved spectra;
and the simulation analysis disclosed that the machine learning
model based on convolutional neural network (CNN) is trained
using a small number of training samples, and can construct
mapping with sufficient accuracy to predict temperature-related
control mechanisms.

Based on the analysis of scholars in the above-mentioned
related fields, machine learning is an important algorithm
in AI. Although its fields of application involve wireless
communications, medical and health, power grids and physics,
the training and movement analysis in sports basically rely
on the traditional coaching experience and training and skill
improvement. Therefore, it is of great significance to apply
AI technologies, such as machine learning, to sports such as
badminton like we have done in this study.

Research Status of Badminton Robot
As a product of multiple disciplines, the badminton robot
involves a variety of theoretical knowledge. Generally speaking,
the robot is large in size, and requires engineers from multiple
disciplines to collaborate and discuss to complete all the work.
The badminton robot developed by Sapiee and Annuar (2018)
is composed of a robotic arm fixed on the rails of the court
and an off-court processor. During training, the shuttlecocks
flight trajectory is read through the two off-court cameras;
the data is processed in the off-court desktop computer and
is then transmitted back to the controller to control the
motor-driven manipulator to hit the shuttlecock, which can
realize the function of playing against an opponent (Sapiee and
Annuar, 2018). Mizuno et al. (2019) developed a fully automatic
badminton game robot, which could receive and serve in the
same environment as the human athlete; the Kinect sensor and
the space shuttle in this system were applied to predict and
detect the motion trajectory of the shuttlecock. Liu et al. (2020)
collected depth images of the scene using a depth camera and
applied the machine vision theory to process the obtained depth
images. The position of the badminton camera coordinate system
in the three-dimensional space was obtained by combining the
image depth information. The position of the field coordinate
system was thus realized. Finally, the position information of the
shuttlecock in the multi-frame image was adopted to predict the
drop point of the shuttlecock; then, the badminton robot quickly
ran to the predetermined position to complete the hitting task
(Liu et al., 2020).
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In summary, the above-mentioned research shows that
related machine learning has been applied to many fields,
and the development and performance of badminton robots
are constantly improving. However, there are relatively few
related studies about applying the machine learning to predict
the shuttlecock trajectory. Therefore, the machine learning is
adopted to recognize the movement of badminton players and
to predict the badminton trajectory to realize the hitting task and
sparring effect with the players, which has important value for the
application of AI in sports.

METHOD

Design Idea of Intelligent Badminton
Training Robot
In the era of intelligence, the development and promotion of
intelligent robots has become an important direction for the
transformation and upgrade of the domestic sports industry.
For example, various ball pitching machines, ball pickers, and
human-robot sports robots have gradually entered professional
sports and ordinary sports practices. Badminton is a national
sport that is suitable for all ages and can involve several people
synchronously (Sato et al., 2017). With the rapid development of
science and technology, automatic machines used for training,
fitness, and entertainment (such as badminton ball machines and
badminton companion robots) have been successfully developed
and have been applied to a certain extent. However, there are not
many types of badminton pitching machines, and the pitching
system is not perfect. It is not only because the service life of the
badminton robot is reduced due to the serious damage caused by
the pitching equipment, but also because its intelligence is low.

Therefore, a new type of badminton training robot was
researched, developed, and designed from both hardware and
software aspects, and was applied in this study in the training of
badminton players, enhancing the function and performance of
the pitching system.

Hardware Design of the Intelligent
Badminton Training Robot
In the designed badminton robot, the hardware mainly includes
two aspects: the swing movement of the badminton racket and
the movement of the mobile chassis for the robot. During the
movement of the badminton racket, the module fixed on the
bottom of the racket collects the three-axis acceleration and
the three-axis angular acceleration in real time and receives the
original data through the integrated digital motion processor
(DMP) (Lau et al., 2018) of the module for next posture fusion.
Then, the calculated motion posture data is transmitted to the
main control chip through mobile communication, and then
the main control chip recognizes the motion mode through the
machine learning algorithm. Finally, the final result is sent to
the upper computer through the Bluetooth module for the user
to observe. The hardware framework of the IBTR is shown in
Figure 1.

The mobile chassis model of badminton requires the speed of
each wheel axis and the roller speed to calculate the true speed of

the wheel (Matsuo, 2017; Singh and Singh, 2018). First, a plane
coordinate system is established to decompose the movement of
the chassis into three independent components: translation along
the X axis, translation along the Y axis, and rotation along the
yaw axis. vtx , from left to right, refers to the movement speed of
the chassis on the X axis, and vty from the bottom to the top,
refers to the movement speed of the chassis on the Y axis. Eω

takes clockwise rotation as the positive direction, and refers to the
rotational angular velocity of the yaw axis. The speed expression
can be written as:

Ev = Evt + Eω × Er (1)

In the above equation, Ev represents the vector where the center of
the chassis points to one of the wheel axis; Er represents themotion
speed vector of the wheel axis; and Evt refers to the speed vector at
time t. The following equation can be obtained by decomposing
Ev along the X and Y axes:

{

Evx = Evtx + ω × ry
Evy = Evty + ω × rx

(2)

According to the above-mentioned wheel axis speed, the speed
Ev⊥ perpendicular to the direction of the roller and the speed Ev||
of the roller movement direction can be decomposed. Since Ev⊥ is
provided by the friction between the ground and the roller during
the movement, its value can be adapted to the needs as long as the
maximum friction is large enough. The value of Ev|| can be derived
according to the following equation:

Ev|| = Ev ·
⌢
u = −

1
√
2
vx +

1
√
2
vy (3)

Where,
⌢
u is the unit vector along the direction of the roller, so the

speed of the wheel can be obtained as below:

vω =
Ev||

cos 45◦
=

√
2(−

1
√
2
vx +

1
√
2
vy) = −vx + vy (4)

In this study, a = 320mm and b = 290mm can be obtained
based on the installation position of the wheels on the chassis of
the vehicle. Based on the above-mentioned wheel axis speed and
roller speed, the rotating speeds of four wheels can be expressed
as Equation (5) below:















vω1 = vty − vtx + ω(a+ b)

vω2 = vty + vtx -ω(a+ b)

vω3 = vty − vtx + ω(a-b)

vω4 = vty + vtx -ω(a-b)

(5)

In the cylindrical coordinate system, the coordinate (x, y, z) is to
represent the point P, Pz refers to the position of the point P on
the Z axis, and d represents the projection length of the vector P
on the plane XOY. The angle between X axis and the vector P on
the XOY axis is expressed with α (Victor et al., 2018). Then, the
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FIGURE 1 | The hardware framework of the intelligent badminton training robot.

cylindrical coordinates of point P can be expressed with z,α, d,
as follows:







0 ≤ d ≤ +∞

0 ≤ α ≤ 2π
−∞ < z < +∞

(6)

The position can be represented by the cylindrical coordinate,
which can also be regarded as the x-axis translation for a certain
length, rotation around the z-axis, and translation along the z-
axis on the Cartesian coordinate system (Chen et al., 2019). In
order to facilitate the association of the positions in the Cartesian
coordinate system and the cylindrical coordinate system, point P
can be expressed as the following equation:

Cyl(pz ,α, d) = Trans(0, 0, pz)Rot(A,α)Trans(d, 0, 0) (7)

In the above Equation (7), Cyl(pz ,α, d) refers to the position in
cylindrical coordinates, and Trans(0, 0, pz) refers to its translation
transformation. Of which, the translation along the X, Y, and Z
axes can be represented by Px, Py, and Pz , respectively, and the
rotation transformation is represented by Rot(A,α). The rotation
axis is the A axis, and α refers to the rotation angle.

When the robot receives and sends instructions for routine
operations, the robot’s posture changes according to the instant
instructions due to the different description instructions for the
robot. This is related to the steel body of the robot (the object
with fixed dimensions, fixed size, and a fixed form, and its basic
properties and volume are not easy to change under the action of
force) (Zagatto et al., 2018). By connecting many steel bodies, the
movement posture and position of the object can be described
using the Cartesian coordinate system, so as to complete
the corresponding command actions, which mainly include
translational coordinate transformation, rotation coordinate
transformation, composite coordinate transformation, and
homogeneous coordinate transformation (Kawata et al., 2019).

Software Design of the Intelligent
Badminton Training Robot
In the designed badminton robot system, its software
system mainly includes four parts: the machine supervised
learning system, the posture calculation system, the Bluetooth
communication system, and the Android user terminal
software. The software design of the control system is mainly
developed around the machine learning system. The control chip
receives the three-axis posture angle and three-axis acceleration
transmitted by the movement processing module through the
Inter-Integrated Circuit (IIC) communication protocol and
processes the sensor data through machine learning algorithms
to analyze the physical fitness and swing movements of the
player. The flowchart of the software control system is shown in
Figure 2.

Data Collection and Pre-processing
After the controller of the intelligent robot is started, the
Microprocessor Unit (MPU) data processing module is first
initialized, and then the current three-axis acceleration, three-
axis angular acceleration, and geomagnetic declination are
measured by its own inertial elements and Hall sensors. The
internal integrated digital motion processing is adopted for
posture fusion, and the three-axis posture angle is calculated.
Finally, the obtained data is transmitted to the main control chip
through the serial port, thereby completing the data collection
of the intelligent feather robot. After the data collection is
completed, the signal denoising algorithm (Li et al., 2019a) is
adopted to denoise the original data and the data information of
a single shot action is extracted with the window segmentation
technology (Liang et al., 2019). Next, the single hitting motion
is processed by time series and framing to obtain multiple meta-
motions. The accuracy of k-means clustering (Mao et al., 2019) is
evaluated onmultiple waveform features (such as peak values and
average values) of each meta-action. The feature with the most
obvious clustering characteristics is selected as the characteristic
information of each meta-motion. The meta-action is assigned to
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FIGURE 2 | The flowchart of the software control system of the intelligent badminton training robot.

the corresponding codebook space with vector quantization, and
the observation sequence of the hitting motion can be obtained
as the input of the subsequent algorithm model. The data pre-
processing process is shown in Figure 3.

Motion Recognition Based on Machine Learning
Due to the time sequence of the shuttlecock motion, a probability
model about time sequence (named as HMM) is adopted to
model the hitting motion. The recognition process of the racket
motion is to extract the observation sequence of the current
hitting motion through the pre-processing algorithm as the input
of each established hitting motion HMM. In addition, the Viterbi
algorithm (Vu et al., 2018) is utilized to obtain the appearance
probability of the best state sequence for the current hitting
motion under each model. The hitting motion of the model with
the largest probability output result is deemed as the recognition
result of the current observation sequence.

HMM modeling mainly relies on three parameters: initial
probability, transition probability, and observation probability. A
set of applicable HMM is established for each hitting motion, and
each hitting action is divided into nmeta-motions with sequence.
The codebook corresponding to eachmeta-motion is determined
by vector quantization, which is considered to be the observation
set defined for HMM. Therefore, each hitting motion can be
regarded as a set of observation sequences with the length of n.
For this observation sequence, the parameters of each model are
trained through the Baum-Welch algorithm (Jalal andKim, 2020)
until the parameters can meet the convergence requirements.

The Baum-Welch algorithm is an unsupervised model
learning and training algorithm. It is assumed that a given
training data value contains S observation sequences of length

T {O1,O2, ...,OS} without a corresponding state sequence,
then the parameters of the model can be learned with the
forward algorithm and the backward algorithm. The observation
sequence data is regarded as observation data O, and the state
sequence data is regarded as unobservable hidden data I, so the
following equation can be obtained:

P(O|λ) =
∑

I

P(O|I, λ)P(I|λ) (8)

The parameter learning can be realized by the expectation-
maximization algorithm (EM algorithm) (Polydoros and
Nalpantidis, 2017), in which, E finds the Q function Q

(

λ, λ̄
)

,
as follows:

Q
(

λ, λ̄
)

=
∑

I

logP(O, I|λ)P(O, I|λ̄) (9)

In the Equation (9), λ̄ refers to the current estimated value
of the model parameter, and λ refers to the maximized model
parameter. The M in the EM algorithm is to obtain the
model parameter λ= (A,B,π) by maximizing the Q function
Q

(

λ, λ̄
)

. First, the parameter πi is calculated using Lagrangian
multiplication to find the partial derivative of it, then the
following equation can be obtained:

πi =
P(O, i1 = i|λ̄)

P(O|λ̄)
(10)

The parameter A can then be obtained by the Lagrangian

multiplication of the constraint condition
N
∑

j=1
aij = 1. The aij can
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FIGURE 3 | The data pre-processing process.

be expressed as Equation (11):

aij =

T−1
∑

t=1
P(O, it = i, it+1 = j|λ̄)

T−1
∑

t=1
P(O, it = i|λ̄)

(11)

Finally, the parameter B is obtained. The constraint condition is

set to
M
∑

k=1

bj(k) = 1, and the partial derivative of bj(ot) to bj(k) is

not 0 when ot = vk is satisfied, which is represented by I(ot = vk).
The following equation can be obtained:

bj(k) =

T
∑

t = 1
P(O, it = j|λ̄)I(ot = vk)

T
∑

t=1
P(O, it = j|λ̄)

(12)

However, there are multiple data sets for the same hitting motion
in the sample in the designed IBTR, but the training HMM
parameter model is based on a single sample, so the model data
may fall into the local optimum, and the recognition rate of
other samples is low. Therefore, two schemes are proposed for
multi-sample training. One scheme refers to the mean training
method. The input of the model (the observation sequence of the
sample) is treated to realize the data layer fusion, and the model
training is realized after the average of multiple sets of training
data is obtained under the same model. The other scheme refers
to the frequency weighted training method. The frequency of
the sample observation sequence in the model is adopted for
linear weight, and the parameters in the Baum-Welch algorithm
are corrected. It is supposed that the sequence of M observation
values O(m) (m= 1, 2, . . . m), and Pm is the frequency of themth
observation sequence, then the correction equations are given

as follows:

π̄i =

M
∑

m

α
(m)
1 (i)β

(m)
1 (i)

P(O(m)|λ)
(13)

āij =

M
∑

m
Pm

Tm−1
∑

t=1
α
(m)
t (i)aijbi

(

O
(m)
t+1

)

β
(m)
t+1(j)

M
∑

m
Pm

Tm
∑

t=1
α
(m)
t (i)β

(m)
t (j)

(14)

b̄j(k) =

M
∑

m
Pm

Tm−1
∑

t=1
α
(m)
t (i)β

(m)
t (j)I(ot = vk)

M
∑

m
Pm

Tm−1
∑

t=1
α
(m)
t (i)β

(m)
t (j)

(15)

In the above equations, α
(m)
t (i) and β

(m)
t (j) are the forward

probability and backward probability of the mth sequence,
respectively. π̄i, āij, and b̄j(k) are the revised initial, transition,
and observation probability parameters, respectively.

Bluetooth Communication Connection
After the control system is started, its working mode is
automatically set to allow surrounding devices to initiate
connections. After the connection is successful, the control
system transmits motion analysis data to the integrated memory
through the serial port and sends it to the mobile phone
application (APP) through the low-power Bluetooth protocol. If
it fails to connect to the APP, the microprocessor will save the
data in the integrated Flash memory (Steels et al., 2020) inside the
processor.When the control system establishes a connection with
the mobile phone APP, it will immediately send the unsent data
to the client APP through the Bluetooth function. In addition,
the control system will clear the data that has been uploaded to
the client APP to avoid duplicate data recording.

Running Simulation of Badminton Robot
The performance of the IBTR was simulated and analyzed in
this study. Multiple sets of controlled experiments were designed
to test the motion recognition accuracy of the system under
different training data sizes. Six representative basic motions
were selected based on the rules and playing methods of
badminton, including high and far ball, smash, flat driving, flat
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TABLE 1 | Multiple-dimensional comparison of recognition rate of the intelligent

badminton training robot.

Dimension Method

Data pre-processing Sliding window segmentation based on hitting

time

Sliding window segmentation based on the

maximal value

Window segmentation based on the event

Motion recognition Motion recognition based on support vector

machines (SVM)

Action recognition based on traditional HMM

Action recognition based on improved HMM

Recognition of training objects Same athlete

Different athletes

block, lifting, and chop. These motions were demonstrated by
a professional badminton player and 30 records were collected
as the training sample set of the system. In the simulation,
the accuracy on the different training set sizes (N = 120
and 300 groups, respectively) and recognition rate on different
dimensions of the system were mainly determined and analyzed
comprehensively. Of which, the recognition rate of the IBTR was
compared from three dimensions, as shown in Table 1.

RESULTS AND DISCUSSION

Comparison of Recognition Rates in
Different Dimensions
The recognition rate of IBTR is compared and analyzed from the
three dimensions: data pre-processing, motion recognition, and
recognition of training objects.

Analysis on recognition rate of the IBTR in the data
pre-processing dimension discloses that the sliding window
segmentation based on the hitting motion has a higher
recognition rate than the other two dimensions, and the highest
recognition rate can reach 96.03% (as shown in Figure 4).
The recognition rate in the motion recognition dimension is
compared and analyzed based on the SVM, traditional HMM,
and improved HMM. The results indicate that the traditional
HMM training has the lowest recognition rate, followed by SVM,
and improved HMM action has the highest recognition rate,
which can be up to 94.50% (as given in Figure 5). In terms of
the recognition of training objects, the recognition rate based on
the same athlete is up to 97.98%, and the average recognition rate
of the system based on different athletes is up to 96.711%. Thus,
it is obvious that recognition rate is highest when the subject is
the same athlete (as illustrated in Figure 6 below).

Comparative Analysis of Model Simulation
Accuracy
In this study, the training data set size N is selected as 120
groups and 300 groups for the simulation test, and the results are
shown in Figure 7. The simulation test results indicate that the
test accuracy for most types of motions reached a higher level
when the size of the training data is 120 sets. In addition, the

FIGURE 4 | Analysis on recognition rate of the intelligent badminton training

robot in the data pre-processing dimension.

FIGURE 5 | Comparison on recognition rates of the intelligent badminton

training robot with the three training algorithms.

FIGURE 6 | Analysis on recognition rates when the object is a same athlete or

different athletes.

improvement in accuracy is extremely insignificant when the size
of the training data is increased to 300. Therefore, the system
takes into account the operation efficiency and stability. When
the total scale of the training data is 120 groups, that is, the
training data scale of each action type is 20 groups, the accuracy
rate is basically stable.
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FIGURE 7 | Comparative analysis on accuracy of the model in different data

set sizes.

Discussion
Analysis on recognition accuracy of the IBTR reveals that the
recognition accuracy of the data pre-processing algorithm, based
on the sliding window segmentation, at the moment of hitting
can reach 96.03% after the optimization of the HMM model,
and the application of the improved HMM algorithm shows a
recognition rate for the robot of 94.50%. Thus, the recognition
effect to the training set samples is good. In addition, there
is no obvious difference between the recognition accuracy in
whether the recognition object is the same athlete or not, and the
recognition of each action is above 90%. This obviously shows
that in the IBTR designed in this study, its recognition rate is
significantly improved, and the recognition effect of the training
set samples is good after the parameters of each dimension are
adjusted and optimized.

Therefore, by applying the designed IBTR to the daily
training of badminton players it can better recognize the athletes’
movements, and it can significantly reduce the athletes’ injuries
during the training process.

CONCLUSION

The overall hardware and software framework of the IBTR
system was first designed in this study, and the HMM under

the machine learning algorithm was adopted to recognize the
motions of the athletes. The designed IBTR was then tested
and analyzed multi-directionally in terms of motion recognition
accuracy, using the computer simulation. Finally, it was found
that the recognition rate and accuracy of the designed IBTR
are both high, and the system runs stably, which provides
an experimental reference for the injury prevention in athlete
training. However, there were also some shortcomings in this
study. For example, the study focuses on the design of the IBTR
and is less concerned with the cooperative training of athletes.
In addition, the specific calculation method of the three-axis
posture angle is relatively complicated in the hardware design of
the IBTR, and is therefore not clearly pointed out in this study.
Therefore, a cloud platform for big data analysis will be built
in follow-up research for data mining and data analyses on a
large amount of player games and training data, so as to analyze
the technical advantages and shortcomings of various athletes,
thereby promoting the ability of athletes faster and preventing
the injury of athletes.
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The trajectory tracking and control of incomplete mobile robots are explored to improve

the accuracy of the trajectory tracking of the robot controller. First, the mathematical

kinematics model of the non-holonomic mobile robot is studied. Then, the improved

Backpropagation Neural Network (BPNN) is applied to the robot controller. On this

basis, a mobile robot trajectory tracking controller combining the fuzzy algorithm and

the neural network is designed to control the linear velocity and angular velocity of the

mobile robot. Finally, the robot target image can be analyzed effectively based on the

Internet of Things (IoT) image enhancement technology. In the MATLAB environment,

the performances of traditional BPNN and improved BPNN in mobile robots’ trajectory

tracking are compared. The tracking accuracy before and after the improvement shows

no apparent differences; however, the training speed of improved BPNN is significantly

accelerated. The fuzzy-BPNN controller presents significant improvements in tracking

speed and tracking accuracy compared with the improved BPNN. The trajectory tracking

controller of the mobile robot is designed and improved based on the fuzzy BPNN. The

designed controller combining the fuzzy algorithm and the improved BPNN can provide

higher accuracy and tracking efficiency for the trajectory tracking and control of the

non-holonomic mobile robots.

Keywords: backpropagation neural network, Internet of Things, image enhancement, non-holonomic mobile

robot, trajectory tracking and control

INTRODUCTION

As human society enters the era of science and technology, computers, and artificial intelligence
have developed rapidly; machines to replace human labor to improve production efficiency
have become a reality (Ma et al., 2020). However, Lv et al. (2019) also proposed that
the existing network structure migrated computing tasks to the cloud, while the increase
in cloud data transmission put huge pressure on the core network and affected the
quality of service (Lv and Xiu, 2019). Internet of Things (IoT) is a famous object vision.
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Information-sensing equipment, such as sensors and electronic
tags installed on the object, transmits information collected
back and forth through the internet connection according
to the agreed protocol. Connecting a simple robot to the
internet will become valuable because it can obtain updated
information about its environment from sensors or understand
the user’s whereabouts and the status of nearby devices (Marques
et al., 2019). In short, robots integrated with IoT can use
IoT data to help machines interact with each other and take
necessary actions, enabling robots to communicate effectively
and make appropriate decisions by themselves. The core of
“IoT+Robot” is the ubiquitous sensors, cameras, and actuators
embedded in the environment, as well as autonomous robots
that collect data in real-time (Rehman et al., 2019). Sensors
provide not only raw data but also interpretation and abstraction
to some degree, which can be utilized for decision-making
or high-level automation. Lv et al. (2019) applied the sensor
technology of the ZigBee wireless network organization, which
could provide people with a smarter and more comfortable
living environment (Lv et al., 2019). Connecting machine vision
systems to IoT can create powerful network functions that can
recognize objects from cameras. Such functions can enhance the
local nodes’ intelligence and autonomy, reducing the processing
load on the central server and achieving a better-distributed
control architecture.

The IoT-based multi-robot collaborative operation utilizes
the intelligent perception inside and outside the robot, makes
timely judgments and control decisions according to the signals
collected by the network, and timely issues control instructions
to the robot to ensure that multiple robots complete tasks safely
and efficiently (Özdemir, 2019; Michie et al., 2020). Mobile
robots are highly intelligent systems that can continuously obtain
information of the surrounding environment and themselves
through sensors in real-time, make decisions, analyze, plan
for different environments, and control the drive motors to
move autonomously toward the targets, thereby completing
specific tasks.

Tracking control in mobile robots’ motion control has always
been a sophisticated problem, which has received extensive
attention from researchers in this field. Yang and Pan proposed
a sliding mode control method for wheeled mobile robots,
established a motion control model for mobile robots, and
designed a sliding mode trajectory tracking controller, which
effectively reduced the jitter of sliding mode control’s input,
accelerated the convergence speed, and improved the tracking
accuracy (Yang and Pan, 2018). Tinh and Linh improved the
online weight adjustment algorithm based on backpropagation
and proposed an adaptive tracking controller based on a three-
layer neural network, which could ensure the stability of the
entire closed-loop system and realize the desired mobile robots’
trajectory tracking performance (Tinh and Linh, 2018).

In practical applications, trajectory tracking of mobile robots
should ensure versatility while ensuring stability and robustness
optimization. Therefore, the focus is on the trajectory control
of mobile robots. Here, a trajectory tracking method combining
improved Backpropagation Neural Network (BPNN) and fuzzy
neural network is proposed, denoted as fuzzy-BPNN. Then

this method’s feasibility and accuracy in robots’ trajectory
tracking and control are verified through simulation. On this
basis, the IoT multi-sensor data fusion and target infrared
image enhancement technology are researched. The multi-robot
system can fuse the sensor data, enhance the target images,
and provide new ideas for robot obstacle avoidance through
fuzzy control.

MATERIALS AND METHODS

Mathematical Kinematics Models of
Non-holonomic Mobile Robots
In mechanics, mathematical equations containing coordinate
parameters can express constraints. The motion constraints that
mobile robots are subjected to include holonomic constraints and
holonomic constraints. Holonomic constraints are restrictions
on the configuration space, and non-holonomic constraints are
restrictions on system motion (Chu et al., 2018). The holonomic
constraint reduces the dimensionality of the configuration
space. The system can transform the holonomic constraints it
receives into the constraints on the position through integration
during the motion. The non-holonomic constraints reduce the
dimensionality of the velocity. The equations of holonomic
constraints and non-holonomic constraints can be expressed as
Equations (1) and (2):

h
(

q, t
)

= 0 (1)

h
(

q,
·
q , t

)

= 0 (2)

In Equations (1) and (2), q represents the coordinate vector of
the system,

·
q represents the velocity vector of the system, and t is

the time parameter.
For practical problems, the motion constraint can be

transformed into a linear relationship with the system velocity
·
q ; that is, the Pfaffian constraint:

h
(

q,
·
q , t

)

=

n
∑

i=1

Ai

(

q
)

·

(

·
q
)

= A
(

q
)

·

(

·
q
)

= 0 (3)

In Equation (3), A
(

q
)

∈ Rm×n represents a set of m velocity
constraints, and Ai

(

q
)

∈ R1×n is the row vector of A
(

q
)

, which
is a constraint on the direction of the generalized velocity q of
the system.

A wheel moves on the ground, as shown in Figure 1. Four
parameters can describe the wheel’s configuration: the contact
points x and y with the ground, the current rotation angle θ ,
and the forward direction Φ . If the wheel makes a non-slip
motion, the direction of the wheel will always be (cosφ, sinφ). The
non-slip constraint does not reduce the dimension of the wheel
configuration space; that is, the wheel can reach any position on
the plane. However, this constraint reduces the dimensionality
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of the wheel’s velocity space so that the wheel can only move in
direction (cosφ, sinφ) at a particular time.

Assuming that the wheel’s radius is r, the distance between
the wheel’s center

(

xc, yc
)

and the ground track is always the
same during the non-slip rolling motion of the linear track. The
non-slip rolling between it constrains the wheel’s motion and the
ground, expressed as the instantaneous velocity v of the wheel’s
contact point and the ground track is zero. Therefore, the wheel’s
motion can be regarded as a rapid rotation around the contact
point, and the constraint equation can be expressed as:

yc = r (4)

A
(

q
)

·

(

·
q
)

= [1 0 -r]







·
xc
·

yc
·
φ






=

·
xc −r

·
φ = v = 0 (5)

Equation (4) is a geometric constraint on the wheel, and
Equation (5) represents a linear motion constraint, which can be
further expressed by integral:

xc − rφ = C (6)

In Equation (6), C is the integral constant.
The non-holonomic constraint equation does not have

a corresponding geometric constraint. Hence, it puts no
restriction on the position vector but only restrictions
on the particle’s velocity at each position. Therefore,
the non-holonomic constraint does not reduce the
number of independent generalized coordinates; instead,
it only reduces the number of independent generalized
velocities (Gutiérrez-Giles et al., 2018).

A non-holonomic mobile robot is also a non-holonomic
system, and the non-holonomic constraint equation can reflect

FIGURE 1 | Non-slip rolling constraints of wheels on the ground.

its motion characteristics. While the robots are moving, two
physical phenomena, tire rolling and sliding, will occur when the
wheels contact the ground. The structure of a non-holonomic
mobile robot is shown in Figure 2. One coordinate system
is the global coordinate system XOY ; the other coordinate
system is the local coordinate system xoy (the mass center
of the robot is the origin). In Figure 2, R is the radius of
the robot’s driving wheel, θ is the robot’s forward direction
angle, q is the robot’s pose, [v ω]T is the robot’s control
quantity (linear velocity and angular velocity), vL and vR are
the linear velocity of the robot’s left and right wheels, and
L is the distance between the centers of the robot’s two
driving wheels.

For error reduction, assuming that the mobile robot
moves along a linear track gradually, the wheels do not
slide left and right. Then the non-holonomic constraints
and the kinematics model can be expressed as in Equations
(7) and (8):

·
y cosφ−

·
x sin θ = 0 (7)







·
x
·

y
·
θ






=





cos θ 0
sin θ 0
0 1





[

v
ω

]

(8)

The non-holonomic mobile robot’s left and right wheels’ linear
velocities vL and vR share the following relationship with its linear
velocity v and angular velocity ω :

[

vL
vR

]

=

[

1/R L/2R
1/R L/2R

] [

v
ω

]

(9)

FIGURE 2 | Structure of a non-holonomic mobile robot.
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In summary, the kinematics model of the discussed non-
holonomic mobile robot is:







·
x
·

y
·
φ






=





R
2 cos θ

R
2 cos θ

R
2 sin θ R

2 sin θ
R
L −R

L





[

vL
vR

]

(10)

Robot Trajectory Tracking Based on
Improved BPNN
Mobile robots are widely used in unmodeled spaces and
environments; thus, accurate trajectory tracking is the basis of
practical applications (Alshakarchi and Al-Maliky, 2018; Singh
and Thongam, 2018; Tu et al., 2019; Wang et al., 2019). The
traditional control method depends too much on the dynamic
model, resulting in low robustness. The intelligent neural
networks have strong robustness and adaptability, presenting
significant advantages in trajectory tracking and control of
mobile robots. As the core of the feedforward network in artificial
neural networks, BPNN is widely applied to solve problems
such as function approximation and pattern recognition (Yi
et al., 2019). The most commonly used transfer functions of
backpropagation neurons are log function and tan function,
and the output can be expressed as y = log sig

(

Wp+ b
)

.
Generally, BPNN presents a multi-layer structure. The model of
backpropagation neuron and the two-layer structure diagram are
shown in Figure 3.

BPNN needs to adjust the weights according to each training
sample, which requires a massive amount of training data in
practical applications, resulting in reduced efficiency of weight
adjustment and failure to meet the real-time requirements (Singh
and Thongam, 2019). Therefore, the traditional BPNN is divided
into several smaller sub-networks, which are trained separately to
improve computational efficiency.While dividing the BPNN into
n sub-networks, it is also necessary to divide the training samples
into n groups of sub-samples. It is also necessary to compare
the current training sample with the previous training sample
to calculate the corresponding group’s mean square error sum.
Finally, according to the comparison result, whether to input the
data into BPNN for operation is decided. The improved BPNN
eliminates the need for repeated calculations, which significantly

shortens the calculation time for large-scale neural networks and
improves weight adjustment efficiency.

The improved BPNN is adopted to model the unknown
parameters of the robot, and a dynamic controller that meets the
real-time requirements of mobile robots is designed. First, the
kinematic equation of the mobile robot is expressed as:







·
x= v cos
·
y= v sin
·
θ = ω

(11)

In Equation (11),
(

x, y
)

is the actual position of the mobile robot,
θ is the azimuth angle, and both the linear velocity v and the
angular velocity ω are control inputs in the kinematic model.
Robot trajectory tracking is to track the target robot with pose

qr =
[

xr , yr , θr
]T

and velocity
·
q r = [vr ,ωr]

T . The tracking error
of the mobile robot is expressed as:

e =





e1
e2
e3



 = Te

(

qr − q
)

(12)

The error change rate of the mobile robot can be expressed as:

·
e=





·
e 1
·
e 2
·
e 3



 =





ωe2 − v+ vr cos e3
−ωe2 + vr sin e3

ωr − ω



 (13)

The improved BPNN is applied to robot dynamics control. If
a vector P (·) is a variable function, a static neural network
is utilized for modeling, and the following equation will
be obtained:

P (·) =

[

{WP}
T · {ξP (·)}

]

+ EP (·) (14)

In Equation (14), {WP}
T and {ξP (·)} are OpenGL vectors, each

element is a model error vector, and (·) represents a general
vector or matrix.

FIGURE 3 | Model of backpropagation neuron and the two-layer structure diagram. (A) BP neuronal structure. (B) BP neural structure.
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Robot Trajectory Tracking Based on the
Fuzzy Algorithm Combining Neural
Networks
In fuzzy systems, the design of fuzzy sets, membership functions,
and fuzzy rules are based on empirical knowledge. This analysis
method has a lot of subjectivity (Lu et al., 2018). Hence,
the learning mechanism is introduced into the fuzzy system
to modify and improve the membership function and fuzzy
rules through continuous learning. The connection between
the fuzzy system and the fuzzy neural network shows that the
fuzzy neural network is essentially the realization of the fuzzy
system. The difference between the two reveals that the fuzzy
neural network has the characteristics of the neural network.
Introducing the learning ability of the neural network into
the fuzzy system and representing the fuzzy processing, fuzzy
reasoning, and precise calculation of the fuzzy system through
a distributed neural network is an important way to realize the
self-organization and self-learning of the fuzzy system (Amador-
Angulo et al., 2016). In a fuzzy neural network, the input
and output nodes are used to fuzzify the input and output
signals of the system (Caraveo et al., 2017; Lagunes et al.,
2019). The hidden nodes of this neural network express the
membership function and fuzzy rules, and the parallel processing
capability of the neural network makes the inference ability of
the fuzzy system greatly improved. The fuzzy neural network
combines fuzzy system and neural network. A fuzzy neural
network is essentially a conventional neural network that assigns
fuzzy input signals and fuzzy weights. Its learning algorithm
is usually a typical neural network’s learning algorithm or
its extension.

According to the kinematic model of the non-holonomic
mobile robot, the current pose of the robot can be obtained
as long as u = [v ω]T is controlled. Assuming that the actual

pose of the robot is p =
[

x y θ
]T
, the actual motion velocity is

[v ω]T ; the reference pose is pr =
[

xr yr θr
]T
, and the reference

motion velocity is [vr ωr]
T . Then the error vector between

the actual pose and the reference pose is pe =
[

xe ye θe
]T
.

Essentially, trajectory tracking of a non-holonomic mobile robot
is to find a bounded input for any initial pose and velocity error
and make:

lim
t→∞

∥

∥

∥

[

xe ye θe
]T

∥

∥

∥
= 0 (15)

The error vector between the actual pose and the reference pose
can be expressed as:

pe =





xe
ye
θe





T

=





cos θ sinθ 0
−sinθ cos θ 0

0 0 1



 ·





xr − x
yr − y
θr − θ



 (16)

Equation (16) is derived to obtain the differential equation of the
mobile robot’s tracking error, expressed as:





·
x e
·
y e
·
θ e



 =





vr cos θe − v+ yeω
vrsinθe − xeω

ωr − ω



 (17)

According to the above principles and derivations, a fuzzy-
BPNN trajectory tracking controller for mobile robots is
designed, as shown in Figure 4. It can control the linear velocity
and angular velocity of mobile robots.

The actual trajectory tracking process will be disturbed by
obstacles and other external environmental factors. Hence, the
pose error will change significantly (Boujelben et al., 2017; Lu
et al., 2017; Bencherif and Chouireb, 2019). Fuzzy logic can
imitate the thinking way of the human brain and process systems
with unknown models. Therefore, fuzzy logic can determine
the location of obstacles while mobile robots are moving. Its
core is to process the pose error data to avoid problems such
as an increased number of fuzzy neural network’s rules and
the repeated change of weights. A data detection step is added,
which uses the averaged error changes of the previous pose as a
reference and compares it with the new pose error for decision-
making. The data detection step can eliminate the error data
with apparent mutations in the input. The fuzzy neural network’s
parameters do not need to be adjusted significantly. Therefore,
the stability of the system and the overall calculation efficiency
can be improved.

IoT Multi-Sensor Data Fusion and Image
Enhancement
A primary function of IoT technology is information perception.
The object is connected to the network for information exchange
through the installed sensors, electronic tags, and other sensing
devices, realizing intelligent identification, positioning, and

FIGURE 4 | A fuzzy-BPNN trajectory tracking controller for mobile robots.
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supervision operations. In the process of information collection,
the mobile robots’ sensors summarize multiple sensors’ data
through data fusion, thereby reducing the transmission of
redundant information and improving the stability and accuracy
of the system (Jing et al., 2017).

IoT intelligent image enhancement establishes an image
enhancement model through a wavelet conversion scale, which
can adaptively adjust the window of different digital image
frequencies to intelligently and adaptively enhance the IoT
images. To improve the accuracy of environmental information
collection, a mobile robot often uses an adaptive fusion algorithm
to process the environmental information collected by its system
(Yamashita et al., 2017; Ravi and Krishnan, 2018; Fan et al.,
2019). Since the background of the original image collected by the
infrared thermal imager and the monitored target robot are not
notable, the details of the target image are difficult to identify, and
the image feature cannot be clearly extracted. Hence, the image
enhancement method is adopted to process the target image.
The grayscale transformation method is adopted to enhance the
image’s contrast and improve its visual effects. Standard methods
include (1) direct grayscale transformation; (2) transformation
with the help of histogram; (3) transformation with a series of
operations between images (such as addition and subtraction)
(Chen et al., 2020). The direct grayscale transformation is the
most commonly used and most convenient method. First, in the
process of negating the gray, the image needs to be negated; that
is, to reverse the gray value of the original image. Second, the
image’s contrast enhances the contrast of each part of the original
image. Sometimes the dynamic range of the original image
can exceed the allowable range of display devices. Therefore,
if the original image is used directly, some details will be
lost (Long et al., 2018; Singh et al., 2018). The solution is
to compress the original image in grayscale. The principle of
grayscale negation, contrast enhancement, and dynamic image
compression is shown in Figure 5.

Moreover, image noise processing is vital in image
enhancement, including impulse noise and Gaussian noise.
Usually, image denoising separates the image into two kinds
of noise; then, the median filter algorithm and the mean filter
algorithm are used to eliminate these noises. The median filter
algorithm arranges the to-be-processed pixels’ gray values in the

neighborhood from large to small. Then it selects the median
value to replace the to-be-processed pixel value in the template
center. The mean filtering algorithm removes the sudden change
by calculating the mean value of a central point and several
surrounding points, thereby removing the noises.

Simulations Experiments
MATLAB is chosen as the simulation software to analyze the
performances of the improved BPNN and the fuzzy-BPNN in
robot trajectory tracking and control. MATLAB is one of the
excellent science and technology application software. It has
powerful calculation and visualization functions but is simple
and easy to operate. In particular, the accompanying toolbox that
supports more than 30 different fields has made it the basic tool
and preferred platform for computer-aided design and analysis
in various fields.

The performance differences between the two algorithms are
compared. The reference linear velocity of the target robot is
set to vr = 3 m/s, the reference angular velocity is set to ωr =

2 rad/s, the initial pose is set to
[

xr yr θr
]

= (−5, 0.25, 0), and

the initial pose error is set to [e1 e2 e3]
T = [2.6 2.4 π/2]T . Ten

groups of samples are taken for training. Each group of samples is
divided into five groups of sub-samples equally. The mean square
errors of the corresponding sub-samples of each group of samples
(Table 1) are summed. The errors eventually converge to 0, the
convergence speed is fast, and satisfactory results can be achieved.

RESULTS AND DISCUSSION

Trajectory Tracking Performance of
Fuzzy-BPNN
The effects of traditional BPNN and improved BPNN in mobile
robots’ trajectory tracking are compared, and the results are
shown in Figures 6 and 7. The improved BPNN algorithm
has a slight improvement in tracking accuracy than the
traditional BPNN; however, the difference between the two is
not notable. On the contrary, the improved BPNN algorithm
has a significant improvement in training speed, showing its
performance advantages in processing huge samples in reality.

FIGURE 5 | Principle of each image enhancement step. (A) Inversion of gray scale. (B) Enhance contrast. (C) Dynamic image compression.
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The fuzzy-BPNN algorithm is applied to track the
mobile robot’s trajectories, whose effects are compared
with the improved BPNN. The simulation results are
shown in Figure 8. The fuzzy-BPNN controller has
significantly improved tracking speed and tracking
accuracy compared with the improved BPNN, proving
its effectiveness.

Non-holonomic Mobile Robot’s Trajectory
Tracking and Control Results
The designed fuzzy-BPNN is integrated with the sliding mode
trajectory tracking controller to solve the trajectory tracking
and control problems of non-holonomic mobile robots. The
tracking and control of typical circular and curved trajectories
are simulated. Figures 9 and 10 show the tracking effects
and pose error changes in circular trajectory tracking, and
Figures 11 and 12 demonstrate the tracking effects and pose error
changes in curve trajectory tracking. The designed algorithm
integrating the sliding mode trajectory tracking controller shows

TABLE 1 | The sum of the mean square errors of the sub-samples of each

training sample.

Training samples (1) (2) (3) (4) (5)

Group 1 0 0 0 0 0

Group 2 3.4 53.5 6.6 12.3 78.9

Group 3 11.3 5.6 5.3 4.3 53.5

Group 4 30.4 11.2 54.5 45.7 6.6

Group 5 6.9 22.3 34.1 23.6 5.9

Group 6 12.5 91.3 1.8 66.5 45.6

Group 7 34.5 11.7 7.2 4.8 12.3

Group 8 88.9 23.5 4.7 67.8 3.4

Group 9 2.2 23.4 44.6 32.4 11.1

Group 10 77.4 32.5 38.8 44.6 65.4

FIGURE 6 | Trajectory tracking effect of the improved BPNN algorithm.

good trajectory tracking and control effects for these two
different trajectories.

CONCLUSION

As an essential branch of robotics, mobile robots can
continuously obtain the surrounding environment’s status
through sensors to make decisions and complete highly
intelligent tasks. Robot intelligence is embodied in planning
and executing an optimal path for mobile robots. Its core
is trajectory tracking and control. Here, the mathematical
kinematics models of non-holonomic mobile robots are analyzed
first. Then the advantages of BPNN being widely used in
pattern recognition and other problems are discussed. The
traditional BPNN is improved, considering loads of data need
to be trained in practical applications. The computational

FIGURE 7 | Trajectory tracking error curve of the improved BPNN algorithm.

FIGURE 8 | Trajectory tracking effect of fuzzy-BPNN.
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FIGURE 9 | Circular trajectory’s tracking effect.

FIGURE 10 | Changes in pose error in circular trajectory tracking.

efficiency is improved by dividing BPNN into several smaller
sub-networks for separate training. A fuzzy-BPNN tracking
controller for mobile robot trajectories is designed to control
the robot’s linear velocity and angular velocity, in an effort
to improve the accuracy of trajectory tracking. In addition,
adaptive fusion algorithms and image enhancement techniques
are used to process the environmental information collected by
mobile robots to improve the accuracy of the environmental
information collection.

A simulation experiment is run in the MATLAB environment
to analyze the performances of the improved BPNN and the
fuzzy-BPNN in robot trajectory tracking and control. Compared
with traditional BPNN, the improved BPNN algorithm has a
significant improvement in training speed, which has better
application value for the large sample problems in reality. The
fuzzy-BPNN controller has notably improved the tracking speed
and accuracy compared with the improved BPNN algorithm.

FIGURE 11 | Curve trajectory’s tracking effect.

FIGURE 12 | Changes in pose error in curve trajectory tracking.

The designed fuzzy-BPNN algorithm is integrated with the
sliding mode trajectory tracking controller, whose performances
in tracking and controlling circular and curve trajectories are
simulated. The designed fuzzy BPNN algorithm is integrated
with the sliding mode trajectory tracking controller. The circular
and curved trajectories are simulated, and both show good
trajectory tracking and control effects. However, the external
environment is complicated and changeable; maintaining the
stability of the mobile robot controller will be the principal
direction of the following research.
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