About this Research Topic
At present the CFD method has been widely adopted in the nuclear industry, across both light water reactors and liquid metal cooled fast reactors, providing an effective solution for complex issues of thermal hydraulic analysis. However, the CFD method employs empirical models for turbulence simulation, heat transfer, multi-phase interaction and chemical reactions. Such models must be validated before they can be used with confidence in nuclear reactor applications. In addition, user practice guidelines play a critical role in achieving reliable results from CFD simulations.
This Research Topic will provide the necessary comprehensive coverage of CFDs, including application, development, current status and challenges. It aims to publish the most advanced and latest CFD research from around the world, applied to the simulation of issues affecting the safety of nuclear systems. Themes of interest include, but are not limited to:
1. CFD single phase simulation
2. CMFD simulation
3. Multi-scale coupling with CFD
4. Multi-physics coupling with CFD
5. Open source CFD code development and application
6. LES and DNS
7. Best Practice Guidelines (BPGs) research
8. Porous medium model application
9. Key components simulation using CFD method
10. Other applications of CFD in nuclear engineering
Keywords: CFD, nuclear reactor, thermal-hydraulics, two-phase flow, high-fidelity simulation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.