About this Research Topic
Many reported biomedical nanomaterials need multiple steps to prepare, and functionalizing these nanomaterials need complex synthesis, which limit their potential application in clinic. The goal of this Research Topic is to prepare functional nanostructures (liposome, micelle, nanofibers, etc.) by making full use of supramolecular self-assembly techniques. The prepared nanostructures may have targeting, environmental responsiveness, or other functions, which can overcome some drawbacks (eg. lack of targeting, low encapsulation efficiency, complex preparation procedures, etc.) of current nanomaterials. To achieve these aims, the functional molecules (building blocks) should be rationally selected and designed; the prepared nanostructures should have uniform morphology with enough stability; the functions of these nanostructures can meet the demand of bio-imaging, drug delivery or other bio-medical applications.
In this Research Topic, authors are encouraged to construct self-assembled nanostructures by using rational designed functional molecules. The type of supramolecular interactions forming the nanostructures should be clarified. The prepared nanostructures can (or have the potential to) achieve bio-imaging (MRI, CT, fluorescence, etc.), drug (small molecules, genes, proteins) delivery or other bio-medical applications. The scope includes the following areas:
1) Molecular design and self-assembly
2) Mechanism investigation (simulation) of self-assembled structures
3) Targeting bio-imaging or drug delivery
4) Aggregation-induced emission (AIE) nanostructures
5) Environmental (pH, enzyme, light, ultrasound, etc.) responsive nanostructures
6) Self-assembly based hydrogels
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.