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Peptide-Major Histocompatibility 
Complex Class I Binding Prediction 
Based on Deep Learning With 
Novel Feature
Tianyi Zhao 1, Liang Cheng 2, Tianyi Zang 1* and Yang Hu 1*

1 Department of Computer Science and Technology, School of Life Science and Technology, Harbin Institute of Technology, 
Harbin, China, 2 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Peptide-based vaccine development needs accurate prediction of the binding affinity between 
major histocompatibility complex I (MHC I) proteins and their peptide ligands. Nowadays 
more and more machine learning methods have been developed to predict binding affinity 
and some of them have become the popular tools. However most of them are designed by 
the shallow neural networks. Bengio said that deep neural networks can learn better fits with 
less data than shallow neural networks. In our case, some of the alleles only have dozens of 
peptide data. In addition, we transform each peptide into a characteristic matrix and input 
it into the model. As we know when dealing with the problem that the input is a matrix, 
convolutional neural network (CNN) can find the most critical features by itself. Obviously, 
compared with the traditional neural network model, CNN is more suitable for predicting 
binding affinity. Different from the previous studies which are based on blocks substitution 
matrix (BLOSUM), we used novel feature to do the prediction. Since we consider that the 
order of the sequence, hydropathy index, polarity and the length of the peptide could affect 
the binding affinity and the properties of these amino acids are key factors for their binding 
to MHC, we extracted these information from each peptide. In order to make full use of the 
data we have obtained, we have integrated different lengths of peptides into 15mer based 
on the binding mode of peptide to MHC I. In order to demonstrate that our method is reliable 
to predict peptide-MHC binding, we compared our method with several popular methods. 
The experiments show the superiority of our method.

Keywords: peptide-major histocompatibility complex class I binding prediction, deep learning, convolutional 
neural network, epitope prediction, human leukocyte antigen

INTRODUCTION
Many scholars try to find personalized treatment for melanoma and other cancers through major 
histocompatibility complex (MHC) (Kreiter et al., 2015; Bentzen et al., 2016; Johnson et al., 2016). 
Two successful phase I clinical trials proved that cancer vaccines are not a dream. These studies 
showed that 66.7 and 61.5% of resected melanoma patients have been cured during the period of 
20–32 months and 12–23 months separately following vaccination (Ott et al., 2017; Sahin et al., 
2017). These works were published in Nature, which have attracted more attention to personalized 
neoantigen vaccines (Chu et al., 2018).
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Since neoantigens are ideal targets for immunotherapy, 
understanding the binding affinity between specific peptides and 
MHC alleles is an essential step in designing vaccines (Rolland 
et  al., 2011; Cheng et al., 2017). The large number of peptide 
chains makes the research time-consuming and laborious. With 
the improvement of sequencing technology and bioinformatics, 
the binding affinity between predicted peptides and MHC alleles 
has become more flexible and economical (Jensen et al., 2018).

MHC is a gene family found in most vertebrate genomes and 
is closely related to the immune system. The MHC of humans 
is also known as human leukocyte antigen (HLA). There are 
two types of MHC; the first type of MHC processes internal 
decomposition of the protein (such as the virus), the second type 
of MHC is only located on antigen-presenting cells (APC), such 
as macrophages. For example, if there is bacterial invasion in the 
tissue, and the macrophage is swallowed, the bacterial fragments 
are prompted by MHC to the helper T cells to initiate an immune 
response. The regulated DNA is located on chromosome 6 
(6p21.31) (Cheng et al., 2018; Cheng et al., 2019) and includes 
a series of tightly linked loci that are closely related to human 
immune system function (Neefjes et al., 2011). Some of these 
genes encode cell surface antigens, which are the “characteristics” 
that are not confusing for each person’s cells. They are the basis 
for the immune system to distinguish itself from foreign bodies. 
The HLA complex is located in the 21.31 region (6p21.31) on 
the short arm of chromosome 6, and is composed of 3.6 million 
base pairs. It is the region with the highest gene density and the 
most polymorphic region in human chromosomes. Known as 
“chemical fingerprints in humans”.

Recently, many researchers have focused on the field of 
predicting the binding affinity between peptide and MHC alleles. 
Some of them focused on the MHC-I and some of them focused 
on the MHC-II. There are also lots of tools and algorithms which 
are developed for this work. We classified these methods into three 
categories: Machine learning, neural network and deep learning.

Machine learning methods extracted features and constructed 
models to predict peptide-MHC interactions. Giguere S. et al. 
(2013) used kernel ridge regression to predict peptide-protein 
binding affinity. Uslan V and Seker H. (Uslan and Seker, 2016) 
used support vector regression (SVR) based on fuzzy model to 
do this work. Pavel P. Kuksa et al. (Kuksa et al., 2015) proposed a 
high-order semi-RBM to pretrain feed-forward high-order neural 
network (HONN). After that, high-order nuclear SVM was used 
to predict peptide-MHC binding. Although these methods can 
capture nonlinear interactions between different peptides, they 
fail to model the direct strong high-order interactions between 
features.

Recently, neural network (Hao et al., 2016; Hao et al., 2017) 
and deep learning (Peng et al., 2019a; Peng et al., 2019b) are the 
most common used methods in this field. Kasper W. Jorgensen 
(Jørgensen et al., 2014) developed a novel tool-NetMHCstab to 
predict stability of peptide-MHC complexes. They used Artificial 
neural network (ANN) to identify the stability of 10 different 
HLA class I molecules. Recently more studies tried to integrate 
peptides of different lengths into a machine-learning frame. 
These methods such as MHCflurry (O'Donnell et al., 2018) and 
NetMHCpan (Trolle et al., 2015) can involve more training data 

into their model and become popular tools for this task (Jurtz 
et al., 2017). NetMHC trained models for each MHC allele and 
this model is based on allele-specific approach (Andreatta and 
Nielsen, 2015). Whereas NetMHCIIpan (Jensen et al., 2018) is 
based on the pan-allele approach. Actually, they both used basic 
ANN with the immune epitope database (IEDB) (Vita et al., 2018; 
Salimi et al., 2019). NNAlign (Alvarez et al., 2018) which is a 
method based on neural network has been a common method to 
build models. Barra et al. (2018), Garde et al. ( 2019) all developed 
their own methods based on NNAlign. With the development 
of Mass Spectrometry (MS), the precision of identifying MHC 
ligands has been improved. Some researchers have proved that 
using MS data to do the training the model could be more robust. 
In the most recently released NetMHCpan 4.0 (Jurtz et al., 2017), 
they added MS data into their training set and improved their 
prediction accuracy.

Deep learning methods have shown their powerful ability of 
prediction and classification in recent years and have attracted more 
and more scholars’ attention (Peng et al., 2019c). Zeng and Gifford 
(2019) purposed a deep residual network-based computational 
approach that quantifies uncertainty in peptide-MHC affinity 
prediction. Sidhom et al. (2018) present Allele-Integrated MHC 
(AI-MHC), a deep learning architecture for human Class I and Class 
II MHC binding prediction. More researchers’ work (Bulik-Sullivan 
et al., 2019; Phloyphisut et al., 2019; Tran et al., 2019) have proved 
that deep learning methods have better performance than shallow 
neural networks.

The other important step to predict peptide-MHC binding 
affinity is extraction of feature. In the previous studies, most 
of the studies focused on the 9-mer peptides because most 
presented MHC class-I ligands are 9 mer (Bassani-Sternberg 
et al., 2015). However, for some alleles, they prefer other lengths 
of peptides. For example, Mamu-A2*05 preferentially binds 
8-mer peptides (de Groot et al., 2017) and HLA-B*44:03 (Rist 
et al., 2013) prefers 10 and 11 mer peptides. Recently more and 
more researchers found methods to make all peptides into the 
same length so they can train their models with more data. 
Massimo Andreatta and Nielsen et al. (2015) added or deleted 
the primary sequence to ensure all the peptides are 9 mer. As a 
result, they involved the length of the deletion/insertion and the 
length and the composition of the peptide flanking regions in 
the feature. Youngmahn Han and Dongsup Kim (Han and Kim, 
2017) considered each peptide as an image and each data in the 
feature is a pixel.

Although most previous studies have achieved high accuracy 
of prediction, there should be a novel method to use chemical 
properties of peptides to predict the binding affinity. In this 
paper, we used sequence comparison based on BLOSUM62 
coding and to chemical properties of peptides extract feature and 
used convolutional neural network (CNN) to build models.

MeTHODs

Feature extraction
For the MHC-I complex, the alpha chain has three domains, 
wherein the grooves formed by the α1 and α2 regions can bind 
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to an antigen peptide and the α3 region is a CD8 binding region. 
The β chain has only one domain of β2, forming a microglobulin 
structure. As shown in Figure 1, the binding core of nine amino 
acids plays a major role in the binding of the MHC-I molecule 
to the affinity peptide. At the same time, the peptide flanking 
residues (PFR) on both sides also plays a certain role in the 
binding. In the binding core, positions one, four, six, seven, nine 
are called “anchors” and play a more important role in binding 
than other locations. Based on this theory, we proposed a novel 
method that can convert the 8–14mer peptide to 15mer. Since 
one, four, six, nine are much more important than the other 
locations, we try to ensure that the two sequences of one to four 
and six to nine are not inserted into the new ‘amino acid’ (X). As 
we can see in Figure 2, we take 9–12mer peptide as an example. 
X is an artificial amino acid which is only related to itself and not 
related to the other 20 amino acids.

After converting all peptides to 15mer, all the peptides should 
be encoded by BLOSUM62 matrix (Styczynski et al., 2008). X is 
encoded as a vector of zeros but the score between X and itself is 
one. Then the feature of each peptide is a matrix 15*21.

The chemical properties of peptides have been reported to 
strongly affect the binding affinity. When the body is infected, 
inflammatory factors such as IFN-γ can change the β subunit 
composition of the proteasome 20S, making the proteasome 
more likely to cleave hydrophobic and alkalinous amino acids 
(so that the peptide is more easily bound to MHC-I). As said by 

Udaka et al. (1995) there is a general preference for hydrophobic 
amino acids. They also divided MHC-I into eight positions and 
found that the dominance of amino acids with hydrophobic side 
chains is unequivocal for some positions. Conversely, neutral or 
positively charged hydrophilic side chains are preferred in some 
other positions. In addition, Some positions allow hydrophobic as 
well as hydrophilic amino acids and appear to be less constrained 
than other positions.

Therefore, we proposed a novel way to extract the feature 
of peptides. We extracted four kinds of features: Sequence, 
Hydropathy index, Polarity, Length.

For the first feature: Sequence, we sorted the 21 kinds of 
amino acids by the BLOSUM62. ‘A’’, ‘R’, ‘N’, ‘D’, ‘C’, ‘Q’, ‘Ev, ‘G’, ‘H’, 
‘I’, ‘L’, ‘K’, ‘M’, ‘F’, ‘P’, ‘S’, ‘T’, ‘W’, ‘Y’, ‘V’, ‘X’ are represented by the 
numbers 1 to 21 respectively.

For the second feature: Hydropathy index, we used Eisenberg 
consensus scale (ECS) (Eisenberg, 1984) to value each amino 
acid’s hydropathy index. X’s hydropathy index is zero. Table 1 
shows the score of every amino acid.

For the third feature: Polarity, we divided 21 amino acids into 
five classes. According to the polarity of R group or the trend 
of interaction with water at physiological pH (approaching pH 
7.0), they can be divided into non-polarity, polarity without 
charge, positive charge (alkalinity) and negative charge (acidity) 
(Wolfenden et al., 2015). X’s class is zero. Table 2 shows the 
classification of every amino acid.

FIgURe 1 | Binding of major histocompatibility complex -I molecules to affinity peptides.

FIgURe 2 | Encoding peptides of different lengths.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 11916

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Peptide-MHC Class I Binding PredictionZhao et al.

4

For the fourth feature: Length, we use the length of peptide 
as a feature.

The detailed flow is as in the following Figure 3.
As shown in Figure 3, each peptide would be encoded as a 

4*15 matrix. N is the number of training set.

Building Model by Convolutional Neural 
Network
Each peptide could be put into the CNN as a “picture” whose size 
is N*15. So we should set the structure of CNN firstly.

Figure 4 shows the structure of CNN. It contains two 
convolution layers. Each convolution layers have 20 filters. We 
used rectified linear unit (‘ReLu‘) as the activation function in the 
activation layer. ‘Max’ method is used in the Pool layer.

We built four models for different lengths of the peptides. 
We grouped the peptides by their length (L). The four groups 
are L < = 8, L = 9, L = 10 and L = > 11.

ResULTs

Data Description
We downloaded three different datasets. The detailed information 
is shown in Table 3.

We totally obtained 525,672 peptides and the data include 
their allele, peptide, measurement value, measurement inequality, 
measurement type, measurement source, and original allele.

We only selected those alleles whose number of peptides are 
larger than 20. Then 522,268 peptides are left. These peptides 
belongs to 193 kinds of alleles. As shown in Figure 5, one allele 
has more than 60,000 peptide data and some alleles’ data are 
much smaller.

Among these 522,268 peptides, there are 338,978 positive 
peptides. As we know, different alleles have different preferences 
for length of peptides. As shown in Figure 6, we found that most 
of the alleles prefer the length nine.

Therefore, it is much reasonable to put length of peptide into 
the feature matrix.

evaluation of the Convolutional Neural 
Network & Based on New Feature
We used both binding affinity (BA) data and eluted ligand (EL) 
data. After integrating the two data sets together, in order to 
prevent the uneven distribution of the negative and positive 
peptides, we sorted the data in disorder. Then, we did fivecross 
validation.

HLA type alleles are the data we care about most. There are 
43 HLA-A alleles and 82 HLA-B alleles in our dataset. In the 
Youngmahn Han and Dongsup Kim’s paper (Han and Kim, 
2017), they used Deep CNN to compare with NetMHCPan, 
SMM(47), ANN, and PickPocket (Zhang et al., 2009). We used 
their statistical data and evaluated our CNN which is based on 
the novel feature. We call our method CNN-NF.

TaBLe 2 | Five Classes of amino acids based on polarity.

Class Label amino acids

NONE 0 X
Polarity without charge 1 A, G, I, L, F, P, V
Non-polarity 2 N, C, Q, S, T, W, Y, M
Negative charge (acidity) 3 D, E
Positive charge (alkalinity) 4 R, H, K

TaBLe 1 | Hydropathy Index of 21 amino acids.

amino acids Hydropathy 
Index

amino acids Hydropathy 
Index

R −2.5 K −1.5
D −0.9 Q −0.85
N −0.78 E −0.74
H 0.40 S −0.18
T −0.05 P 0.12
Y 0.26 C 0.29
G 0.48 A 0.62
M 0.64 W 0.81
L 1.1 V 1.1
F 1.2 I 1.4
X 0

FIgURe 3 | Detailed flow of generating training set and testing set.
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F1 score is used to evaluate models. It can be calculated as:

 F TP
TP FN FP

1 2
2

=
+ +

 (1)

Here, true positive (TP) denotes positive samples whose 
predictions are positive. false negative (FN) denotes positive 
samples whose predictions are negative. false positive (FP) 
denotes negative samples whose predictions are positive.

As we can see in Table 4, Tables 4A, B summarize the prediction 
results for HLA-A and HLA-B alleles, respectively. The mean values 
of the F1 Score of the CNN-NF were 0.643 and 0.692. The values are 
slightly higher than those of other methods. In addition to that, the 
standard deviation of the two experiments are lower than those of 
other methods’ either. It means that CNN-NF is more stable.

Since we totally obtain 193 alleles, we calculated 193 F1 
scores. As shown in Figure 7, there are 19% alleles whose F1 
score are more than 0.9. In addition, there are 34% alleles whose 
F1 score are lower than 0.5. We can know that different alleles 
have different accuracy and even polarization.

We also are interested in the area under curve (AUC) of 
the 193 allele experiments. We draw Figure 8 for each allele’s 
performance of AUC and another figure for the distribution of 
AUC in 193 experiments.

As we can see in Figure 9, although there are some alleles 
whose accuracy are lower than 0.5, most of the alleles have an 
accuracy more than 0.7. The low accuracy of some alleles may 
be due to the small amount of data. It may also be caused by the 
extreme imbalance of data.

Peptide-Length Preference Of Major 
Histocompatibility Complex Molecules
Although we have known that most of the alleles mostly prefer the 
nine length peptide, different alleles have different preferences in 
8,9,10,11,12,13,14,15mer peptides. We should verify the ability 
of our method to capture peptide long preferences for different 
MHC molecules. Therefore, we randomly generated 10,000 
peptides for each MHC molecules. These 10,000 peptides’ length 
range from 8 to 15. The number of peptides of each length is 
the same so each length has 1,250 peptides. Then we put these 
artificial peptides into the models and the models would tell 
us the probability of being positive. We selected the top 2% 
probabilities and calculated the distribution of different lengths.

As shown in Figures 10–12, we randomly selected an allele for 
each HLA-A, B, and C coding site to verify the ability of our method 
to capture peptide long preferences for different MHC molecules.

CNN-NF prefer to identify the 9mer peptide as the binding 
peptide. Besides, if the number of the specific length peptide is 
small, CNN-NF can hardly give a high score. We can consider this 
phenomenon as a way that CNN guarantee the training accuracy.

CONCLUsIONs
In this paper, we purposed a novel method for peptide-MHC-I 
binding prediction. Since deep learning is developing fast, 
we consider that it has more advantages than shallow neural 

FIgURe 4 | The structure of convolutional neural network.

TaBLe 3 | Detailed information of data.

Name source

IEDB affinity data Vita et al. (2018) 
BD2013 Kim et al. (2014) 
MS data Abelin et al. (2017) 

FIgURe 5 | The distribution of the number of peptides of 193 alleles.

FIgURe 6 | Length preference of 193 alleles.
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networks. The other more important reason to introduce CNN 
to this field is that the most commonly used format of feature 
for each peptide is a matrix. Therefore most researchers usually 
first convert the feature matrix into a line or a column. However, 
CNN could find out the real feature of each peptide by the initial 
feature matrix. In brief, CNN is more suitable for predicting 
peptide-MHC-I binding affinity.

Another novel thought of our paper is the way of extracting 
feature. The most common way to extract feature is based on 
BLOSUM nowadays. Although BLOSUM is a typical way to 
do sequence alignment, the order of the sequence and the 
characteristic of the acid amino would undoubtedly affect the 
binding of peptides to genes. Therefore, we extracted four kinds 

FIgURe 10 | Predicted length preference of HLA-A*24:06.

FIgURe 11 | Predicted length preference of HLA-B*27:05.

TaBLe 4 | Prediction results for human leukocyte antigen-1 (HLA-I) alleles(A).

(a) summary of prediction results for HLa-a alleles (F1 score)

CNN-NF DCNN NetMHCPan SMM ANN PickPocket
Mean 0.643 0.638 0.608 0.601 0.579 0.561
Median 0.603 0.696 0.667 0.667 0.667 0.625
Standard Deviation 0.166 0.23 0.267 0.250 0.286 0.318
(B) summary of prediction results for HLa-B alleles (F1 score)

CNN-NF DCNN NetMHCPan SMM ANN PickPocket
Mean 0.692 0.593 0.606 0.578 0.606 0.560
Median 0.621 0.667 0.625 0.615 0.643 0.593
Standard Deviation 0.228 0.286 0.286 0.302 0.290 0.277

FIgURe 7 | The distribution ratio of F1 score.

FIgURe 8 | AUC of each allele.

FIgURe 9 | The distribution of AUC in 193 experiments.
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of feature for each peptide. They are the order of the sequence, 
hydropathy index, polarity, and length.

Our work flow can be concluded in three steps. Firstly, 
we convert every length of peptide into 15mer based on the 
binding mode of peptide to MHC I. Then, we extracted feature 
of each peptide based on the order of the sequence, hydropathy 
index, polarity, and length. For each peptide, the feature of it 
should be a matrix with 4 * 15 dimension. Finally, we built a 
frame of CNN and put these features and their corresponding 
label into it.

We put three data sets together and obtain 525,672 peptides. 
We built model for each alleles so we totally built 193 models. 
To verify the accuracy of our model, we did five cross validation. 
We compared our method with DCNN, NetMHCPan4.0, SMM, 
ANN and PickPocket. In most cases, the accuracy of CNN-NF 
is higher than that of other methods. In addition, we also use 

our model to test the preference of different alleles to length. 
The length preference obtained by prediction is very close to 
the true preference.
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Accurate target detection and association are vital for the development of reliable target

tracking, especially for cell tracking based on microscopy images due to the similarity

of cells. We propose a deep reinforcement learning method to associate the detected

targets between frames. According to the dynamic model of each target, the cost matrix

is produced by conjointly considering various features of targets and then used as the

input of a neural network. The proposed neural network is trained using reinforcement

learning to predict a distribution over the association solution. Furthermore, we design a

residual convolutional neural network that results in more efficient learning. We validate

our method on two applications: the multiple target tracking simulation and the ISBI cell

tracking. The results demonstrate that our approach based on reinforcement learning

techniques could effectively track targets following different motion patterns and show

competitive results.

Keywords: cell tracking, linear assignment problem, deep learning, deep reinforcement learning, data association,

residual CNN

1. INTRODUCTION

Tracking individual cells in a group is the fundamental of many biomedical analysis tasks, including
understanding how genotypes are related to phenotypes, tracking the early development of organs
and meristems, and potentially tracking the development of cancerous tumors (Cheng et al., 2019,
2020; Han et al., 2019; Hu et al., 2019). It is often necessary to identify individual cells and follow
them over time to gain biological insights from time-lapse microscopy recordings of cell behavior.
Microscopic target tracking can provide technical support for the analysis of other features in
biological andmedical research (Cheng, 2019; Zhao et al., 2020). Therefore, it is of great significance
to find an automatic and reliable way to track multiple cells.

There are many procedures andmethods for tracking objects at the microscopic level. Tracking-
by-detection methods are widely used in multi-target tracking, in which detection and association
are two primary issues. Extensive research efforts have focused on detection, especially in cell-
tracking applications. For target association between frames, the naïve nearest-neighbor method
is commonly adopted but provides unsatisfactory association accuracy. Target association is a
combinatorial optimization problem, which is widely studied in computer science andmathematics
and many such problems are NP-hard. In general, the linear assignment problem is to find
the optimal assignment that maximizes or minimizes the sum of the costs in a cost matrix.
Classic algorithms for the linear assignment include the Hungarian method (Kuhn, 1955), auction
algorithms (Bertsekas, 1992), and certain variant algorithms.

Recently, some data-driven methods have been proposed to solve combinatorial problems.
Vinyals et al. (2015) first proposed a pointer network (PN) to solve combinatorial problems such
as the traveling salesman problem and convex hulls. Inspired by the PN, in Milan et al. (2017), a
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recurrent neural network is used to find the marginal probability
based on the costmatrix. A deepHungarian network based on the
recurrent neural network has also been proposed for multi-object
tracking (Xu et al., 2019).

Substantial progress in artificial intelligence has been made in
supervised learning, where systems are trained on vast amounts
of labeled data (Peng et al., 2019a,b,c, 2020). However, supervised
learning predominantly works in domains with an abundance of
human-labeled data. In many challenging domains, supervised
learning fails due to a lack of available data. Reinforcement
learning (RL) seeks to create intelligent agents that adapt to an
environment by analyzing their own experiences. Bello et al.
(2016) and Khalil et al. (2017) suggested using the RL method
to train the network without the ground-truth labels. Because
it is difficult to obtain optimal solutions for certain NP-hard
combinatorial problems. RL is a branch of machine learning that
focuses on obtaining an optimal policy to solve specific problems.
Following the work of Bello et al. (2016), some researchers have
proposed different deep reinforcement learning (DRL)-based
methods for solving combinatorial problems that have yielded
good performance (Emami and Ranka, 2018; Nazari et al., 2018;
Fu et al., 2019).

This work is motivated by several recent proposed DRL
methods for NP-hard problems. We propose a DRL approach
to automatically search for assignment solutions for a given cost
matrix. Specifically, we first modeled the association of cells
between frame as an linear assignment problem and formulated
the assignment problem with the one-to-one constraint as a DRL
problem. Then, with the objective of minimizing the sum of the
assignment costs, we used DRL to obtain the optimal assignment
solution. To convert the cost matrix into a finite action space, we
employ the residual learning and convolutional neural network
(CNN) to extract features from a set of training samples and use
the pointing mechanism (Bello et al., 2016) to satisfy the one-to-
one constraints of the linear assignment problem. Then, the CNN
is trained with the REINFORCE algorithm (Williams, 1992) to
search for assignment solutions, and the sum of the cost matrix of
the selected solution is used as a reward to adjust the parameters
of the neural networks.

Our contributions are the following:(1) A simple framework
for cell detection and association based on the idea of (2) We
introduce a formulation that translates the decision making in
the linear assignment problem algorithm into an RL problem. (3)
We propose a novel neural network architecture that end-to-end
maps the inputs to the decision outputs.

The organization of this paper is as follows. Related work is
introduced in section 2. The framework of the proposed method
and training details are presented in section 3. In section 4, some
experiments are conducted to evaluate the performance of our
proposed method. The conclusion is given in section 5.

2. RELATED WORK

2.1. Cell Tracking
A large variety of cell tracking methods have been described in
the existing literature. These cell trackingmethods can be broadly

grouped into two categories: (i) tracking by model evolution and
(ii) tracking by detection.

In tracking by model evolution methods, cell segmentation
and tracking are solved simultaneously in each frame of a cell
video. Typically, thesemethods are driven by data in some feature
space and make a regularity assumption on the smoothness of
the curve. In this framework, cells are represented by parametric
or implicit active contour models. Parametric models utilize
the explicit representations of cell boundaries such as Gaussian
Mixture Models (GMM) (Amat et al., 2014), active meshes
(Dufour et al., 2010), or active contours (Zimmer et al., 2002).
Implicit models often use the level set to represent the cell
contours (Dzyubachyk et al., 2010). These cell tracking methods
have some shortcomings. For example, the parametric method
depends on the chosen parameterization, and the implicit
method is computationally expensive.

Existing cell tracking methods generally adopt the tracking
by detection strategy. The tracking by detection method
typically consists of two stages: the cell detection stage and
cell association stage. In the first stage, the cells are detected
by image segmentation methods. Subsequently, in the second
stage, detected cells are associated with neighboring frames in
real-time or all frames offline. Cell detection can be achieved
by classic image segmentation algorithms based on intensity
features, gradient features, or texture features (Chenouard et al.,
2013; Xing and Yang, 2016). Recently, several deep learning
approaches have shown significant success in cell segmentation
tasks (Ronneberger et al., 2015; Falk et al., 2019; Gupta et al.,
2019).

3. METHODS

In this section we present a tracking by detection approach
to construct the cell trajectories from a time-series microscopy
image sequence. The framework consists of two modules: cell
detection and cell association. The U-Net segmentation method
is employed to detect all the cells in each frame, and then we
adopt the traditional single hypothesis tracking method with
Kalman filter and frame-by-frame data association to produce the
cell trajectories.

3.1. Initial Cell Segmentation
Ronneberger et al. (2015) proposed a new neural network for
cell segmentation, namely U-Net, which has achieved state-of-
the-art results on a wide array of biomedical image segmentation
tasks (Ronneberger et al., 2015; Falk et al., 2019). Since then, most
attempts to improve the performance of cell tracking methods
have been based on the U-Net architecture (Li et al., 2018). In
our approach, cell segmentation is performed using the U-Net
implementation of Ronneberger et al. (2015).

3.2. Cell Time-Series Model
In this work, we assume that each cell can be modeled as a
discrete-time Markov process:

xt = Axt−1 + Qt (1)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 April 2020 | Volume 8 | Article 29813

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Wang et al. DRL for Cell Tracking

where A is the transition matrix and Qt is the process noise
matrix, which follows a Gaussian distribution. Once the detected
cells are retrieved, the detection results Zt can be viewed as the
measurements, where each measurement zit ∈ Zt is defined as

zit = Hxit + Rt (2)

A Kalman filter can be adopted to use those cell detection
results to predict the state of cells, which can then be used
to formulate the cell association between frames as a linear
assignment problem.

3.3. Deep Reinforcement Learning Based
Cell Association
To solve the target association problem by DRL, we present our
solution architecture in three parts: (1) Problem Formulation.
We formulate the procedure for selecting an assignment solution
as an RL problem to associate target states and measurements.
(2) Neural network architecture. An end-to-end architecture that
maps from the state space to the action space is designed. (3)
Training algorithm. We present the RL algorithm used for the
policy search.

3.3.1. Problem Formulation

3.3.1.1. The formulation of linear assignment problem
Assume that the cell trajectories can be denoted as a set �t−1 =
{ω1

t−1,ω
2
t−1, ...,ω

Mt−1
t−1 } at time t − 1. Each element of �t−1

corresponds to a cell trajectory. To find their associated new
measurements at time step t, each trajectory would be predicted
by a Kalman filter and then find the possible association between
predicted cell states and new measurements. Let the set B =
{x̂1t|t−1, x̂

2
t|t−1 · · · , x̂

Mt−1
t|t−1)} represent the predicted states for all the

existing cells at time t−1. Then the association mapping from set

B to the measurement set Zt = {z1t , z2t , ..., z
Nt
t } can be treated as

an assignment problem.
The values of the cost matrix D are calculated through

the location distance between the elements of set B and the
measurements as shown in Figure 1. Unlike the conventional
association cost matrix, we construct a new cost matrix that
considers the association event. To be specific, matrix D
is defined as

D =
(

3 ϒ

Ŵ 3T

)
(3)

where D is a (Mt−1 + Nt) × (Mt−1 + Nt) square matrix, with
the row and column indices representing the Mt−1 prediction
from trajectories and Nt measurements. The matrix D consists of
four sub-matrices 3(Mt−1 × Nt),ϒ(Mt−1 ×Mt−1), and Ŵ(Nt ×
Nt) implies that the corresponding target’s state is judged as
"Tracked", "Lost," and "New," respectively. In the sub-matrices
ϒ(Mt−1 × Mt−1) and Ŵ(Nt × Nt), we define the value of the
diagonal element as a distance threshold and other elements to
be ∞. Here, when a predicted state is highly self-associated, we
consider it to be lost. An estimated state that highly associates

FIGURE 1 | Illustration of the proposed association matrix. {x̂it|t−1}2i=1 is the

prediction by the Kalman filter. {ẑit}3i=1 are the measurements.

itself is considered as a new target. The elements of the sub-
matrix 3(Mt−1 × Nt) are the distances between the prediction
state and measurements.

3.3.1.2. RL formulating for the linear assignment problem
The standard RL formulation starts with an MDP: at time step
t ≥ 0, an agent is in a state st ∈ S , takes an action at ∈ A,
receives an instant reward rt ∈ R and transitions to the next state
st+1 ∼ p(·|st , at). A policy π :S 7→ P(A) gives a mapping from
any state to a distribution over actions π(·|st). The objective of RL
is to search for a policy that maximizes the expected cumulative

rewards over a horizon T, i.e., maxπ J(π) : = E[
∑T−1

t=0 rtγ
t;π],

where γ ∈ (0, 1] is a discount factor and the expectation is
w.r.t. randomness in the policy π as well as the environment
[e.g., the transition dynamics p(·|st , at)]. In practice, we consider
parameterized policies πθ and aim to find θ∗ = argmax J(πθ ).

To formulate the procedure of selecting assignment solution
algorithms into an MDP, we specify below the state space S ,
action space A, reward function rt and transition dynamics
st+1 ∼ p(·|st , at).
State Space S. The set of states (S) is defined as all costs of the
predicted cell assigned to the detected cell. In this sense, the set S
varies according to the number of tasks in the instance.
Action SpaceA.The agent can choose to either assign a predicted
cell to a detected cell or not. Thus, we define the action space as

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 April 2020 | Volume 8 | Article 29814

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Wang et al. DRL for Cell Tracking

A = {0, 1}, where 1 represents the predicted cell assigned to a
detected cell and 0 represents otherwise.
Reward rt. Formost RL applications, designing a reward function
is always a critical part, especially when the agent needs to
precisely perform actions in a complicated task. A good reward
function will make the agent learn more efficiently and achieve
better results. By contrast, an agent with a poor reward function
may suffer slow convergence or even produce undesirable results.
The objective of the linear assignment problem is to minimize the
total cost of the assignment solution. To achieve this objective,
we design the reward function as the sum of the assignment cost
after producing an assignment solution. Given a cost matrix
C = {cij}, i = 1, ...,N, j = 1, ...N and a selected assignment
solution X = {xij}, i = 1, ...,N, j = 1, ...N, the reward rt can be

defined as rt =
∑N

i=1

∑N
j=1 cijxij.

Transition st. In our work, the state transition is deterministic
after an action has been chosen because it can directly assign the
corresponding task to the person.

3.3.2. Architecture Details
The input of our residual CNN (ResCNN) is a cost matrix C
that can be treated as the sum of a probability distribution for
matching X and a noise V as

C = X + V (4)

The sequence-to-sequencemodels the linear assignment problem
(Milan et al., 2017; Emami and Ranka, 2018) with the aim of
learning a mapping function F(C) = X to directly predict
the probability distribution. For ResCNN, we adopt the residual
learning framework to train a residual mapping R(C) ≈ V , and
then we have X = C−R(C). Figure 2 illustrates the architecture
of the proposed ResCNN for learningR(C). In the following, we
explain the architecture of ResCNN.

Our proposed neural network is similar to the image
denoising network introduced in Zhang et al. (2017). The input
of the neural network is a cost matrix that can be regarded
as a single-channel image. With the cost matrix C as input,
the following ResCNN consists of a series of different types of
fundamental blocks. The first block consists of a convolution
layer (Conv) and a rectified linear unit (ReLU) (Krizhevsky et al.,
2012) layer, where the convolution layer utilizes 8 filters of size
3 × 3 × 1 to generate 8 feature maps. Then, the 8 feature maps
are fed into three Conv+BN+ReLU-type blocks. For these three
blocks, 8 filters of size 3×3×64 are used, and batch normalization
(BN) (Ioffe and Szegedy, 2015) is added between convolution and
ReLU. Then, the noise V is computed by the last convolution
layer, and the probability distribution of the assignment matrix X
is subtracted from its input (cost matrix). Finally, the probability
distribution is clipped by the tanh activation function so that the
intensities of the output lie in the range [–1,1].

In summary, the main feature of our ResCNN is the adoption
of residual learning to learn R(C) rather than the probability
distribution directly. In addition, borrowing the idea of Zhang
et al. (2017), batch normalization is incorporated into the

ResCNN to speed up the training procedure and improve
the performance.

In the following, we will give some important details about our
network design and training.

3.3.2.1. Integration of Residual Learning and Batch

Normalization
Batch normalization is a standard technique that is widely used
in image classification CNN models. Training a deep neural
network model is often difficult not only because of the gradient
vanishing/exploding problem but also because the distribution
of data changes between layers, which is called the “internal
covariate shift" phenomenon. Batch normalization is a technique
that can relieve this phenomenon by introducing several simple
operations to the input data. The goal of the normalization step
for batch normalization is to transform the layer input t before
non-linearity as follows:

t′ = t − E[t]√
Var[t]

(5)

where E[t] and Var[t] are the expectation and variance computed
over all training data. It is usually impractical to exactly calculate
E[t] andVar[t] with stochastic optimization. Batch normalization
instead approximates E[t] and Var[t] via the mini-batch statistics
during training. It would be beneficial if the mini-batch statistics
agree well with the full training data statistics.

Batch normalization and residual learning are two important
algorithms for designing a neural network architecture. Residual
learning and batch normalization can benefit from each other
(Zhang et al., 2017). In this paper, we adopt this strategy
by integrating these two technologies. Specifically, such an
integration not only can significantly increase the training speed
but also tends to improve the performance.

3.3.2.2. Zero Padding to Avoid Boundary Artifacts
In the linear assignment problem, the input and output need to
be consistent. However, due to the characteristics of convolution,
the neural network is prone to producing boundary artifacts
without proper handling. There are two common ways to solve
this problem: symmetrical padding and zero padding. In our
work, we select zero padding to maintain a consistent matrix size.

3.3.2.3. Pointing Mechanism to Satisfy the Constraints
Unlike ordinary visual tasks, for the linear assignment problem,
one major characteristic is that one detected cell can only be
assigned to one predicted cell. The neural network output should
satisfy one-to-one constraints. Let X = C−V denote the outputs
of the neural networks. To avoid collisions whereby one task may
be assigned to multiple cells simultaneously, we use a mask to set
the probability of detected cell that have already been assigned to
a predicted cell to−∞, as shown in Equation (6)

uij =
{
Yij if j 6= πi′ ∀i′ < i
−∞ otherwise.

(6)

where uij is the probability that predicted cell i at time t − 1 is
assigned to detected cell j at time t. πi′ is the solution for cell i′.
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FIGURE 2 | The architecture of the proposed ResCNN network.

Next, a normalized softmax operation is applied to u to compute
the final output probability matrix.

3.3.3. Training With Policy Gradients
In this paper, we utilize the RL to train the neural network. The
input of the network can be denoted as C = cij. The output
of the network is the assignment solution π . In this work, we
use the sum of the selected costs AC(S|C) as the reward. More
specifically, the parameters of the neural network can be denoted
as θ , and the goal of training is the expected reward, which is
given by an input cost matrix C defined as follows:

J(θ |C) = Eπ∼p(π |C;θ)AC(π |C) (7)

In our work, p(π |C; θ) is the stochastic policy of a neural network
with parameters θ . We learn θ using the Adam optimizer based
on the REINFORCE algorithm (Williams, 1992). REINFORCE
can make weight adjustments in a direction that lies along the
gradient of expected reinforcement. Based on REINFORCE, in
each step of training, if the reward, baseline value and probability
distribution of prediction are obtained, then the parameters of
the neural network, θ , are incremented by an amount

∇θ J(θ |C) = Eπ∼pθ(·|C)

[
(AC(π |C)− b(C))∇θ log pθ (π |C)

]
(8)

where b(C) denotes the baseline value of the assignment cost
and is used to reduce the variance of the gradients. If we
randomly obtain M i.i.d. samples, then the above gradients can
be approximated by

∇θ J(θ |C) ≈
1

M

M∑

i=1

[(
AC (πi|Ci) − b (Ci)

)
∇θ log pθ (πi|Ci)

]

(9)
For a cost matrix, the baseline value b(Ci) is initialized by
calculating the sum of the cost of the assignment solution that is
generated by the neural network. In each step, the baseline value
is updated as follows:

b′ (Ci) = b (Ci) + α
(
AC (πi|Ci) − b (Ci)

)
(10)

Algorithm 1 gives the pseudo-code of the training procedure of
the neural network.

Algorithm 1: Training Procedure

1: Training set {Ci}Mi=1, number of training steps T, batch size B.
2: Initialize the neural net params θ .
3: Initialize baseline value.
4: for t = 1 to T do

5: Select a batch of samples Ci for i ∈ {1, · · · ,B}.
6: Sample solution πi based on pθ (·|Ci) for i ∈ {1, · · · ,B}.
7: Let gθ=

1
B

∑B
i=1[(AC(πi|Ci)− b(Ci))∇θ logpθ (πi|Ci)].

8: Update θ = ADAM(θ , gθ ).
9: Update baseline b(Ci) = b(Ci)+ α(AC(πi|Ci)− b(Ci)) for

i ∈ {1, · · · ,B}.
10: end for

11: return neural net parameters θ .

4. EXPERIMENTS

To evaluate the performance of our proposed method, we
consider two applications of the linear assignment problem:
maximum weight matching (MWM) and data association for
multi-target tracking. We first compare our method with the
state-of-the-art DRL method for maximum weight matching.
Then, we test our method on a multi-target tracking scenario.
Finally, we evaluate our proposed method on three cell
microscopy datasets, Fluo-N2DH-GOWT1, PhC-C2DH-U373,
and Fluo-N2DH-SIM+ from the ISBI 2015 Cell Tracking
Challenge (Maška et al., 2014). Each datasets contains 2 training
sequences and 2 challenge sequences. Since it’s hard to get the
ground truth of segmentation and trajectories in the challenge
datasets, we performed tracking experiments on testing datasets.

In all experiments, we used 500, 000 training samples for the
data association. To produce the training samples, we randomly
sample M + N points in the euclidean space to simulate the
data association between two frames. We use the same hyper-
parameters to train our model. The initial learning rate for the
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TABLE 1 | Median optimality ratios on the MWM test set.

N = 15 N = 20 N = 25

AC+Matching 0.935 0.897 0.725

SPG+Matching 0.904 0.895 0.889

Ours 0.977 0.968 0.965

Adam optimizer is 10−3 and decays every 5,000 steps by a factor
of 0.96.

4.1. Maximum Weight Matching
Define a weighted bipartite graph G = (V = {V1,V2},E), where
V is the vertex set containing two disjoint vertex sets V1 and
V2, with |V1| = N and |V2| = N, and E is the set of all edges
between every node v1 ∈ V1 and v2 ∈ V2. Let wij, i ≤ i ≤
N, 1 ≤ j ≤ N denote the associated weight for the edges in
the graph. Then, a matching in a graph G is a subset of E such
that no two edges share a common vertex. A maximum weight
matching is a matching such that the sum of the weights of the
edges in the matching is maximal (Emami and Ranka, 2018). In
our simulation, each vertex of the graph is represented by a point
(xi, yi), and Wij is the Euclidean distance between vertex i and j.

We select the optimality ratio as predicted matching weight
optimal matching weight ∈ [0, 1] to

measure the performance of our proposed method. The optimal
matching weight is computed by the Hungarian algorithm, and
the predicted matching weight is obtained by our method.

We trained our method on MWM with N = {15, 20, 25}.
The results are comparedwith SPG+Matching andAC+Matching
(Emami and Ranka, 2018), two DRL method solvers for the
MWM problem. The results in Table 1 are the median optimality
ratios on the test set. As a baseline, the performances of
SPG+Matching and AC+Matching also are presented in Table 1.
We observe drastic drops in median optimality ration for the
AC+Matching methods with an increasing number of nodes. By
contrast, the performances of SPG+Matching and our method
show less drastic drops. The results clearly show that our model
is competitive with AC+Matching and SPG+Matching methods.

4.2. Simulated Multiple Target Tracking
One major application of linear assignment is data association
for multi-target tracking. Therefore, we set up a simulated multi-
target tracking scenario to evaluate the performance of the
proposed method similar to Milan et al. (2017). Five targets cross
each other at a certain time. The track state x is represented
by a vector

[
x y ẋ ẏ

]
, which contains the position (x, y) and

velocity (ẋ, ẏ) information. Figure 3A shows the ground truth of
the five targets. The measurements provide noisy positions for
the targets, i.e., zt = Hxt+ vt , whereH =

[
1 0

]
⊗ I2×2 and vt ∼

N {0,R}. Figure 3B gives the measurements for R = 0.05I2×2.
We replace the data association part of JPDA with our

method and call it JPDA-RL. The input matrix C ∈ R
N×N

is the Mahalanobis distance between the estimated target
states and the measurements. We compare JPDA-RL with the
traditional joint probabilistic data association (JPDA) filter
(Fortmann et al., 1980), an approximation of the JPDA filter

TABLE 2 | Average OSPA-T distance and IDSW for different methods over 100

random runs.

Method
R = 0.01I2 R = 0.05I2 R = 0.1I2

OSPA-T IDSW OSPA-T IDSW OSPA-T IDSW

JPDA 0.19(0.05) 0.90(0.88) 0.34(0.11) 0.70(0.82) 0.41(0.12) 0.40(0.70)

JPDA10 0.23(0.10) 0.70(0.67) 0.37(0.11) 0.90(0.88) 0.43(0.09) 1.10(0.99)

JPDA-HA 0.28(0.06) 0.60(0.84) 0.37(0.10) 0.70(0.95) 0.46(0.14) 1.30(0.82)

JPDA-RL 0.28(0.06) 0.60(0.84) 0.36(0.08) 0.60(0.70) 0.45(0.13) 1.10(0.99)

LSTM 0.11(0.01) 1.07(0.84) 0.21(0.01) 1.00(0.74) 0.37(0.11) 0.60(0.89)

The standard deviations are given in parentheses.

with the 10 best association hypotheses (Hamid Rezatofighi
et al., 2015), an approximation of the JPDA filter with the
Hungarian algorithm used to solve the association probabilities
and the supervised LSTM used to solve the association problem
in Milan et al. (2017).

Figure 3 shows the tracking results from the traditional JPDA
filter and our proposed method with the JPDA filter of a single
run. The traditional JPDA filter cannot handle the coalescence
phenomenon. Our method can correctly distinguish the targets
after they have crossed each other.

We employ two metrics to evaluate the tracking results: the
Optimal Sub-pattern Assignment metric for track (OSPA-T) and
Number of Identity Switch (IDSW). The OSPA-T distance (Ristic
et al., 2011) is a metric used to evaluate differences between the
real tracks Tt =

{
X1
t , . . . ,X

m
t

}
and the estimated tracks T̂t ={

X̂1
t , . . . , X̂

n
t

}
by computing the quantity

d
(c)
p

(
Tt , T̂t

)
=
(
1

n

(
min
π∈5n

m∑

i=1

d(c)
(
Xi
t , X̂

π(i)
t

)p

+cp(n−m)

))1/p

ifm ≤ n

d
(c)
p

(
Tt , T̂t

)
=d

(c)
p

(
T̂t ,Tt

)
elsewhere

(11)

where d(·, ·) is the L2-norm, 5n is the permutations in {1, . . . , n}
and d(c)

(
Xi
t , X̂

j
t

)
is the distance between Xi

t and X̂
j
t such that

d(c)
(
Xi
t , X̂

j
t

)
= min

(
c, d

(
Xi
t , X̂

j
t

))
(12)

To compute the OSPA-T distance for the estimated tracks and
true tracks, two parameters, the cardinality penalty c and outlier
sensitivity p, need to be set. In our simulations, we set c = 1
and p = 1.

In Table 2, we present a comprehensive comparison of the
average OSPA-T distance and IDSW for different algorithms for
different measurement noise levels. Interestingly, the IDSW of
our method is lower for other algorithms at low measurement
noise levels.
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FIGURE 3 | Comparison of the track maintenance performance of different algorithms: (A) Ground-truth trajectories of the five targets, (B) the measurements of the

five targets, (C) the JPDA filter, (D) our proposed method. Each color corresponds to a particular target. Note that our method correctly resolves this crossing case,

whereas the JPDA filter switches the two trajectories after the targets cross.

TABLE 3 | TRA, SEG and OPT performance for our method, CPN, KTH

(Magnusson and Jaldén, 2012), BLOB (Akram et al., 2016), U-Net (Ronneberger

et al., 2015), U-Net-S (Gupta et al., 2019), and GC-ME (Bensch and

Ronneberger, 2015).

TRA SEG OPT

Fluo-N2DH-GOWT1-01

CPN 0.9864 0.8506 0.9185

BLOB 0.9733 0.7415 0.8574

KTH 0.9462 0.6849 0.8155

Ours 0.9875 0.8585 0.9230

Fluo-N2DH-GOWT1-02

CPN 0.9719 0.8725 0.9222

BLOB 0.9628 0.9046 0.9337

KTH 0.9452 0.8942 0.9197

Ours 0.9575 0.9181 0.9378

PhC-C2DH-U373-01

CPN 0.9594 0.7336 0.8456

U-Net 0.9869 0.9375 0.9622

GC-ME 0.9779 0.8748 0.9264

Ours 0.9919 0.8527 0.9223

PhC-C2DH-U373-02

CPN 0.9346 0.7376 0.8361

U-Net 0.9547 0.8303 0.8925

GC-ME 0.9040 0.7567 0.8304

Ours 0.9318 0.7735 0.8527

Fluo-N2DH-SIM+-01
U-Net-S 0.9862 0.8866 0.9364

Ours 0.9841 0.8854 0.9348

Fluo-N2DH-SIM+-02
U-Net-S 0.9597 0.7381 0.8489

Ours 0.9618 0.7616 0.8617

The best TRA and SEG values for each sequence are highlighted.

4.3. Cell Tracking
The segmentation task by U-Net and data association by
DRL are conducted on AMD Ryzen 9 3900X 12 core

processors with a GeForce GTX 2060 graphics card. For
comparison, segmentation (SEG), tracking (TRA) accuracy
measures and overall performance (OP) are adopted to
evaluate the tracking performance. For TRA, Acyclic Oriented
Graph Matching (AOGM) is used to count the changes
needed to transform the cell tracking family tree into the
ground-truth graph. OP is defined as the mean of TRA
and SEG.

The results of this work are compared against the best
performing available methods for each dataset. For the Fluo-
N2DH-GOWT1-01 dataset, we compare our method with the
two tracking-by-detection [CPN (Akram et al., 2017) KTH
(Magnusson and Jaldén, 2012)] and one joint cell detection
and tracking [BLOB (Akram et al., 2016)] methods as the
baselines. For the PhC-C2DH-U373 dataset, we use the best
performing U-Net (Ronneberger et al., 2015) and a graph cuts
and model evolution-based tracking method (GC-ME) (Bensch
and Ronneberger, 2015) as the baselines. For the Fluo-N2DH-
SIM+ dataset, we use a Siamese matching-based tracker based on
the U-Net segmentation results (U-Net-S) (Gupta et al., 2019) as
the baseline.

Table 3 lists the TRA, SEG and OPT scores for all methods
over three datasets. It can be observed that our method yields
the best TRA, SEG and OPT over the Fluo-N2DH-GOWT1-01
sequence. However, our method has a lower TRA score over the
Fluo-N2DH-GOWT1-02 sequence. One reason for the lower TRA
score of our method is that the Fluo-N2DH-GOWT1-02 sequence
has multiple cell events, including mitosis, apoptosis and cell
fusion. Our method does not consider the complex process of
cell differentiation.

For the PhC-C2DH-U373 sequences, the U-Net tracking

method uses the cell segmentation model trained from two

sequences. Therefore, the SEG score of U-Net is the best

among all algorithms over the PhC-C2DH-U373 sequences.

However, even with that advantage, our method still obtains
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a higher TRA score on the PhC-C2DH-U373-01 sequence. U-
Net produces very accurate cell segmentation masks on PhC-
C2DH-U373 sequences, but for the data association step, it
often fails to associate correctly. The reason is that U-Net
utilizes the greedy search method to link the cell segmentation
between frames.

For Fluo-N2DH-SIM+ sequences, our method has similar
performance withU-Net-S. Once the cells have been detected, our
method for cell tracking is able to achieve high overall accuracy
in linking the cells between frames.

5. CONCLUSION

In this paper, we presented a solution to the problem of
data association in cell tracking using the deep reinforcement
learning. We formulated the data association problem into
a linear assignment problem and then proposed a deep
reinforcement learning framework which utilizes a residual CNN
neural network. In simulation results, we compare the proposed
method with other state-of-the-art approaches on various cell
tracking datasets, and the results show that the proposed method
achieves better comprehensive performance. Thus, our method
likely has applications in the field of biomedical engineering.
There are also some limitations of our tracking method that
leave room for improvement. In future research, we plan to

improve the data association method to deal with one-to-many
and many-to-one association problems.
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Detection, characterization and classification of patterns within time series from

electrophysiological signals have been a challenge for neuroscientists due to their

complexity and variability. Here, we aimed to use graph theory to characterize and classify

waveforms within biological signals using maxcliques as a feature for a deep learning

method. We implemented a compact and easy to visualize algorithm and interface in

Python. This software uses time series as input. We applied themaxclique graph operator

in order to obtain further graph parameters. We extracted features of the time series by

processing all graph parameters through K-means, one of the simplest unsupervised

machine learning algorithms. As proof of principle, we analyzed integrated electrical

activity of XII nerve to identify waveforms. Our results show that the use of maxcliques

allows identification of two distinct types of waveforms that match expert classification.

We propose that our method can be a useful tool to characterize and classify other

electrophysiological signals in a short time and objectively. Reducing the classification

time improves efficiency for further analysis in order to compare between treatments or

conditions, e.g., pharmacological trials, injuries, or neurodegenerative diseases.

Keywords: visibility graphs, graph theory, maxcliques, electrophysiological signals, deep learning, pre-Bötzinger

complex, XII nerve, sigh

1. INTRODUCTION

To understand brain functioning neuroscientists use electrophysiological techniques (e.g., macro-
patch and patch-clamp recordings) to assess activity of neurons. Whereas, sharp-electrode and
patch-clamp techniques are used to record the activity of a single neuron, extracellular field
recordings and macropatch techniques allow recording the activity of many neurons within a
population. Macropatch suction electrodes are widely used to record motor nerve activity. The
inspiratory phase of the respiratory rhythm is generated in the pre-Bötzinger complex (pre-BötC),
a neuronal network in the ventrolateral medulla. In an in vitro preparation containing the pre-BötC,
inspiratory-related motor output can be recorded from the XII nerve. Nerve activity is integrated
and used to classify and characterize the inspiratory-related burst. Frequently, researchersmade this
manually; however, this is a time-consuming and very subjective task. Spike sorting, traditionally,
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is made measuring properties of the waveform (e.g., peak
latency, spike half-width, amplitude), determining which of these
properties or features are relevant (e.g., principal component
analysis) and performing cluster analysis (Rey et al., 2015). In
the literature, one can find several algorithms employed for
the spike sorting, following different steps and approaches. For
instance, some of the techniques are based on wavelets, or
combinations of wavelets and different approaches of principal
components, for a review one can see Rey et al. (2015) and
Lefebvrea et al. (2016). A more recent approach is based on
the shape, phase, and distribution features of each spike and
a clustering algorithm based on k-means (Caro-Martín et al.,
2018). Along with the spike sorting algorithms, methods that
validate them are necessary (Einevoll et al., 2012). However, in
the field of respiratory rhythm there are not automated methods
for the identification of sighs. In plethysmographic recordings,
sighs are identified visually by the expert. In electrophysiological
recordings from reduced preparations in vitro, the criteria
for defining a sigh are determined by the researcher and
therefore vary between research groups. Some groups consider
the amplitude as a relevant parameter (Lieske et al., 2000; Lieske
and Ramirez, 2006a,b; Ruangkittisakul et al., 2008); others the
presence of biphasic burst (Kam et al., 2013; Li P. et al., 2016).
Here, based on our analysis we propose to use graph theory
to characterize and classify waveforms within biological signals
using maxcliques as a feature for a deep learning method.

A network or graph is one of the most intuitive, explicit and
clear representation of a complex system. Such graphs consist
of nodes and links representing the participating elements and
the interactions among them. Therefore, graphs characterize the
structure of complex systems and how its elements interact. That
is, they can reflect the dynamics or functions of the complex
system if states and transitions are represented by nodes and
links, respectively (Gershenson and Niazi, 2013). If one can
understand the relationship between structure and function, then
the characterization and classification of complex systems can be
studied further.

In this work, each time series is associated with a simple
graph called visibility graph, as defined in Lacasa et al. (2008) and
studied in Lacasa and Flanagan (2015). As a remark, this graphs
inherits either the periodicity or the randomness of the original
time series. Even more, fractal time series are transformed
into scale-free graphs (Lacasa et al., 2008). We aimed to use
Graph Theory to characterize and classify visibility graphs using
maxcliques as a feature for a deep learning method. Here, we
analyzed in vitro recordings of XII nerve inspiratory activity to
classify sighs and non-sighs waveforms. The visibility graph of a
non-sighs shows a simpler structure than sighs. The interest of
the authors in sighs is its relevance in preventing lung collapses.

Recently, visibility graphs have been employed to analyze
the resulting time series from physiological data as in Hou
et al. (2016), Jiang et al. (2013), and Shao (2010), in the
analysis of complex networks for cardiorespiratory interactions
(Long, 2015) or a modified visibility graph for the suicidal
tendency (Bhaduri et al., 2016). However, in these works, the
concept of maxcliques from graph theory was not implemented
in the characterization and classification of waveforms.

We present a graphical interface, written in Python, that
helped in the process of constructing the visibility graph
from the time series and determining several parameters of
the resulting graph. Python is an open source interpreted
programming language. The simplicity of Python syntax makes
its code readable and understandable, facilitating its learning.
There are several Python libraries, such as pandas, numpy,
SciPy, and others that allow the user to process and analyze
data easily and quickly. Although a Python package with the
implementation of the algorithm described in Lacasa et al. (2008)
can be found in García-Herrera (2015), the one showed in
this work is more convenient and, as a consequence, easier to
visualize. The interface employs two Python libraries: NetworkX
(https://networkx.github.io/), where several algorithms of Graph
Theory have been already implemented, and matplotlib (https://
matplotlib.org/) for the graphs.

We claim that several aspects of a time series can be deduced
from certain parameters of the associated visibility graphs. In this
work in particular, that was the case with the maximum degree,
the clique number, and the number of cliques. They allowed to tell
sighs from non-sighs in the time series obtained in the waveforms
from in vitro recordings of XII nerve inspiratory activity.

2. MATERIALS AND METHODS

2.1. Graph Theory
As a mathematical concept, a graph G is composed by a set of
points denoted with V(G), and a set denoted by E(G) whose
elements are unordered pairs of elements of V(G). The elements
of V(G) are called vertices or nodes, and the elements of E(G)
are called edges or links. The number of vertices in a graph G
is called the order of the graph G and is denoted by |G|. If the
nodes v1, v2 are such that {v1, v2} ∈ E(G), we say that the vertices
v1, v2 are adjacent, and we denote that by v1 ∼ v2. Given a
vertex v, the number of vertices adjacent to v is called the degree
of v. As a starting point for the concepts from graph theory, we
recommend Harary (1969) and McKee and McMorris (1999).

Lacasa et al. (2008) associated for the first time a graph to
a given time series by a procedure they called the visibility
algorithm, which we now describe. Given a time series with data
pairs {(ta, ya)}, they obtain the visibility graph of the time series
as the graph where the vertex set is the set of all data pairs,
and define that the pairs (ta, ya), (tb, yb) are adjacent whenever
we have:

yc < yb + (ya − yb)
tb − tc

tb − ta
, (1)

for all data pairs (tc, yc) with ta < tc < tb. The geometric
visualization of this condition is shown in Figures 1A,B.

Given a graph G, a maxclique C is a subset of its nodes such
that every two nodes in C are adjacent, and there is no vertex inG
not in C that is adjacent to all the vertices of C. We follow McKee
and McMorris (1999) in the use of the term “maxclique,” in order
to avoid the ambiguity found in the literature on the meaning of
the word “clique.”
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FIGURE 1 | (A) The vertices (3, 2.2) and (5, 1.7) are adjacent in the visibility graph. (B) The vertices (2, 1.7) and (4, 1.5) are not adjacent in the visibility graph.

The maxclique graph is the graph that has as vertices the
maxcliques of G, and where two maxcliques C1, C2 are adjacent
whenever there is at least a vertex ofG that belongs to bothC1 and
C2. As a reference for maxclique graphs we mention Szwarcfiter
(2003). The maxclique graph of G will be denoted as K(G). It
follows then that a graph G has |K(G)|maxcliques.

We now define further parameters of a graph G that will be
considered in this work:

• Maximum degree: This is denoted by 1(G), and is the
maximum among all degrees of vertices of G.

• Clique number: This is the number of elements of the largest
maxclique of G. It is denoted by ω(G).

As an example of the concepts described here, consider the
time series given by

[(0, 1), (1, 1.3), (2, 1.7), (3, 2.2), (4, 1.5), (5, 1.7), (6, 0.8)] (2)

In Figure 1A, we show two vertices adjacent in the visibility
graph and in Figure 1B we show two non-adjacent vertices.

The visibility graphG of this time series is shown in Figure 2A.
The vertex with maximum degree is the vertex 3, and its degree
is 5, and so 1(G) = 5. The graph G has three maxcliques, so that
|K(G)| = 3. The three maxcliques are: {0, 1, 2, 3}, {3, 4, 5} and
{5, 6}, with 2, 3, and 4 vertices each. Since the greatest maxclique
of G has four elements, we obtain that ω(G) = 4. Finally, note
that the second clique intersects each of the other two, and the
first and the third do not intersect. So the graph K(G) has three
vertices, as it is shown in Figure 2B.

2.2. Interface to NetworkX in Python
The graph algorithms described in section 2.1 were implemented
in a Python interface using the PyQT5 library. The supported
files are of one or two columns (.txt or .csv format). One can
select the percentage of sampling frequency (recommended for
large signals), visibility graph style and an option to create the
maxclique graph (Figure 3).

With the signals loaded and setting the parameters, the
visibility graph G is created. The visibility graph G, the
maxclique graph K(G) (in format .png) and the parameters
that are calculated in each algorithm (in format .txt) are

saved to the signals folder. The interface has also a tool to
segment or auto segment signals (Figure 3). The button Start
segmentation enables a bar to select a region in the signal loaded.
For auto segment signals the user must introduce an upper
threshold, lower threshold, segment width and distance between
spikes. In Figure 3, we show a schematic representation of the
process to classify electrophysiological signals using maxclique
graph parameters.

2.3. Experiment
The pre-BötC (pre-Bötzinger complex) is a heterogeneous
network of interneurons. In rats this contains a population
of ∼1,000 neurons. In synaptic interactions between pre-BötC
neurons each neuron produces inspiratory rhythmic activity in
the form of synchronous depolarization of 10–20 mV with a
duration of 0.3–0.8 s and with waveforms called inspiratory
bursts. In addition to its role in the generation of the respiratory
rhythm, pre-BötC is essential for the formation of the respiratory
pattern. The protocol for obtaining respiratory rhythm records
consists in sectioning the brain stem of neonatal rats under the
microscope until the ambiguous nucleus and the inferior olive
appear (Figure 4).

We describe the electrophysiology in brief. Coronal sections
were cut (500–600µm) and the rhythmic activity was recorded
from the roots of the XII nerve (XIIn). Then the signal of the
XIIn motor neurons excited by pre-BötC neurons is transmitted,
obtaining the rhythmic activity of the XIIn (Figure 4). Once
baseline activity was established, drug application was performed
in the slice bath. In each experiment, two time series were
obtained, the first corresponding to control respiratory activity
(Figure 5A) and the second when the pre-BötC slice was exposed
to bombesin (Figure 5B). In Figure 4 we can observe two
components: normal respiratory rhythm (non-sigh) and long
inspirations known as sighs. Sighs are biphasic inspiratory bursts.
However, sighs can fulfill important regulatory functions. More
specifically, a sigh acts as a general restorative of the respiratory
system (Patroniti et al., 2002). In general, the pre-BötC generates
a normal inspiratory burst every 7–8 s (non-sigh) and every 30–
40 s generates a disturbance called a sigh. For more information
on how the experiment was done see Munoz-Ortiz et al. (2016).
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FIGURE 2 | (A) Visibility graph G. (B) Maxclique graph K(G).

FIGURE 3 | Schematic representation of the methodology. First, the interface identify and segment each potential of the electrophysiology recording. Then, a visibility

graph is created for each potential, for large signals a reduction of the sampling frequency is recommended. After that, from the maxcliques determined of the visibility

graph, the maxclique graph is created and its parameters are estimated. Finally, a K-means clustering is performed on the maxclique graph parameters. In this work,

the result is a classification of the potentials as sighs or non-sighs.
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FIGURE 4 | Coronal brainstem section that presents the anatomical marks to locate the pre-Bötzinger complex. Representative integrated activity of the XII nerve

showing characteristic waveform of sigh and non-sigh.

FIGURE 5 | Respiratory rhythm. (A) Control record and (B) Bombesin record. In asterisk (*) are shown sighs.

2.4. Statistical Analysis
Given that data did not follow a normal distribution
(Shapiro-Wilk test), the Box-Cox transformation was used,
as implemented in the R package fpp. With that, λ = −0.475
was determined as the value that maximized the log-likelihood
function and yield the best transformation to normality. Some
parameters of the visibility graph G associated to the time
series (1(G), ω(G), and |G|) and of the maxclique graph K(G)
(1(K(G)), ω(K(G)), and |K(G)|) were compared between
sigh and non-sigh using a two-way ANOVA, followed by

a Bonferroni’s multiple comparisons test. To evaluate the
performance of classification based on visibility or maxclique
graph parameters, we compared the number of sighs and non-
sighs identified by the three classifiers performing a chi-squared
test and a pairwise comparison with Bonferroni’s correction.
Then, we compared both classifications vs. the classifications
based on an expert determining the number of successes and
failures of each classification. Then, we performed a McNemar’s
test. Two-way ANOVA was performed in GraphPad Prism (v.
6.00, GraphPad Software, Ca, USA). Box-Cox transformation,
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FIGURE 6 | (A) Inspiratory burst recordings with its sampling frequency reduced to 5% of non-sigh and sigh time series from respiratory rhythm in vitro recordings.

(B) Circle visibility graphs constructed from time series shown in (A), for non-sigh G1 and sigh G2, respectively. The non-sigh circle visibility graph may appear to show

fewer connections than the sigh one. (C) Maxclique graphs for non-sigh and sigh. In this case, it is apparent that the number of connections (that is, edges) is much

larger for sigh (K(G2)) than non-sigh (K(G1)).

chi-squared andMcNemar’s tests were performed in R (v. 3.6.1—
“Action of the Toes”). Significant differences were considered at
P ≤ 0.05. Data is showed as mean± S.E.M.

3. RESULTS AND DISCUSSION

3.1. Results
As an example of usefulness, we employed in vitro recordings
from XII nerve respiratory rhythm activity of rats in order to
obtained time series describing burst amplitude. In this time
series, we can differentiate between sigh and non-sigh waveforms,
which were recorded in control and bombesin conditions. First
of all, we wanted to determine if the classification between sigh
and non-sighs was correct, independently of the experimental
condition. To achieve the latter, we used a short time series
composed of 17 potentials of control recording (Figure 5A),
which were previously classified by an expert in 14 non-sighs and
3 sighs. Likewise, we used a bombesin recording composed of 27
inspiratory bursts (Figure 5B), 22 non-sighs and 5 sighs.

To create the visibility graphs the sampling frequency of each
inspiratory burst was reduced to 5%, in both sighs and non-
sighs waveforms (Figure 6A). The visibility graph of the non-sigh
and sigh will be denoted by G1 and G2 (Figure 6B), respectively.
Now, for each visibility graph, G1 and G2, we constructed their
maxclique graphs, denoted as K(G1) and K(G2) (Figure 6C),
respectively. From both graphs, we calculated their maximum
degree 1(G1),1(G2), clique number ω(G1),ω(G2), and number
of cliques |K(G1)|, |K(G2)|.

Classification of waveforms was performed using K-means
clustering analysis with the three graph parameters [clique
number: ω(G), number of maxcliques: |K(G)|, and maximum
degree: 1(G)] of each graph [visibility, G and maxclique, K(G)],
comparing in pairs. Of these parameters, we observed that
clique number and number of maxcliques classify better both
waveforms, independently of experimental condition.

K-means clustering analysis with visibility graph parameters
resulted in 13 non-sighs and 4 sighs in the control recording,
and 21 non-sighs and 6 sighs in the bombesin recording
(Figure 7A). In contrast, K-means clustering analysis with
maxclique graph parameters resulted in 14 non-sighs and 3
sighs in the control recording, and 21 non-sighs and 6 sighs
in the bombesin recording (Figure 7B). In Figures 7C,D, we
show the inspiratory bursts as classified by the maxclique
graph parameters, in both control and bombesin condition,
which shows that this classification is accurate. Altogether,
these results show that the clique number and the number of
max cliques of the maxclique graph have a better classifying
waveforms performance.

In the previous description, we used an expert delimited
and classified waveforms. However, we created an automatic
segmentation and performed the same analysis to evaluate if the
classification remained consistent. In this case, we used a time
series composed of 39 and 99 inspiratory bursts, recorded in
control and bombesin conditions, respectively (Figure 8).

The automatic segmentation identified every single burst.
Classification based on visibility graph parameters resulted in
10 sighs and 29 non-sighs, in the control recording and 42
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FIGURE 7 | Classification according with clique’s parameters. Control on first column and bombesin recording on second column. (A) Visibility graph and (B)

Maxclique graph K-means cluster analysis, (C) non-sighs, and (D) sighs inspiratory bursts. In red are shown the means of all inspiratory bursts classified with

Maxclique graph.

sighs and 57 non-sighs, in the bombesin recording. On the
other hand, classification based on maxclique graph parameters
resulted in 5 sighs and 34 non-sighs, in the control recording
and 6 sighs and 93 non-sighs, in the bombesin recording.
The inspiratory bursts as classified by the maxclique graph
parameters, in both control and bombesin condition, are shown

in Figures 9A,B, respectively. This suggests that automatic
segmentation properly identifies potentials, regardless of the
waveform and experimental condition.

On previous results, we observed that maxclique parameters
seem to classify more accurately between both waveforms. Thus,
in order to determine if this is robust enough, we performed the
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FIGURE 8 | Respiratory rhythm recording and corresponding visibility graphs for (A) control with 39 and (B) bombesin with 99 inspiration burst. In asterisk (*) are

shown sighs.

analysis with a larger time series, composed of 182 potentials.
After K-means classification based on visibility or maxclique
parameters we compared between putative sigh (20 potentials)
and non-sigh (162 potentials) waveforms. Our analysis showed
that both visibility and maxclique graph parameters show
statistical difference between sigh (S) and non-sigh (NS) (graph
parameters, F5, 1080 = 579.2, P < 0.0001; waveform, F1, 1080 =
508.4, P < 0.0001; graph parameter*waveform, F5, 1080 = 14.66,
P < 0.0001). Bonferroni’s post-hoc test showed thatGmax degree
(S, 44.10 ± 1.60 vs. NS, 26.62 ± 0.48; P < 0.0001; Figure 10), G
clique num (S, 11.00 ± 0.27 vs. NS, 8.77 ± 0.10; P < 0.0001;
Figure 10), G number of max cliques (S, 260.60 ± 14.01 vs. NS,
92.10 ± 2.21; P < 0.0001; Figure 10), K(G) max degree (S,
137.40±10.26 vs. NS, 43.10±1.42; P < 0.0001; Figure 10), K(G)
clique num (S, 71.55 ± 6.69 vs. NS, 24.25 ± 0.85; P < 0.0001;
Figure 10), and K(G) number of max cliques (S, 779.40± 142.80
vs. NS, 66.32 ± 3.94; P < 0.0001; Figure 10) differed between
sighs and non-sighs. This suggest that the groups generated by
the K-means are authentic groups.

However, the above does not imply that these groups represent
real sighs and non-sighs. First, we compared the number of
sighs and non-sighs classified with both parameters and by an
expert, which resulted to be different (χ2 = 40.84; df = 2;
P < 0.0001). Our pairwise comparison analysis showed that
classification based on visibility graph parameters (S, 61; NS, 162)
is statistically different from that performed by the expert (S, 20;

NS, 162; χ2 = 25.41; df = 1; P < 0.0001). In contrast, the
classification based on maxclique graph parameter (S, 20; NS,
162) did not differ from the classification performed by the expert
(S, 20; NS, 162; χ2 = 0; df = 1; P = 1).

Although our previous results showed that maxclique
parameters identify the same number of sigh and non-sigh as
the expert, we determined the number of successes and failures
to assess the accuracy of classification. Our results showed that
the classification based on maxclique graph parameters had
six failures (three sighs and three non-sighs) and 176 success,
whereas classification based on visibility graph parameters had 41
failures (all non-sighs) and 141 successes. McNemar’s test showed
that maxclique graph parameters were better to correctly identify
and classify sigh and non-sigh waveforms (McNemar’s χ2 =
82.747, df = 1, P < 0.0001). Altogether, these results indicate
that the classification based on maxclique graph parameters is
robust to classify accurately between sighs and non-sighs. Also,
this suggests that these parameters should be used to classify
other waveforms.

3.2. Discussion
In this paper, we have presented a classification and
characterization of electrophysiological signals using graph
parameters applied to visibility graphs and to the result of a
graph operator called the maxclique graph, which is denoted by
K(G). The parameter ω(G), and the enumeration of the maximal

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 April 2020 | Volume 8 | Article 32428

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Rodriguez-Torres et al. Classification of Electrophysiological Signals

FIGURE 9 | Inspiratory burst classification according with clique’s parameters in Maxclique graph. (A) Control with 39 inspiratory burst and (B) bombesin with 99

inspiratory burst. In red are shown the means of all inspiratory bursts classified.

FIGURE 10 | Visibility (1(G), ω(G), and |G|) and maxclique (1(K(G)), ω(K(G)), and |K(G)|) graph parameters of sigh and non-sigh waveforms. Data is showed as mean

± S.E.M. Significant differences between non-sigh and sigh were determined using a two-way ANOVA, followed by Bonferroni’s multiple comparisons. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. Sighs, n = 20; non-sighs, n = 162.

cliques have already been considered in bioinformatics, for
example in proteins and genes (see Tomita et al., 2011).

The maxclique graph operator has already been applied
to Loop Quantum Gravity (for example see Requardt, 2000).
To the best of our knowledge, this is the first time that the
maxclique graph operator has been used in electrophysiological
signals characterization. We have verified the usefulness of
this operator for the task of identifying sighs and non-sighs
waveforms, using in vitro recordings of XII nerve respiratory

rhythm, and implementing in Python an interface using the
algorithms described in this work. We think that it is apparent
that this software can also be applied to characterize other
electrophysiological recordings. The advantage of using cliques
is the following:

• As shown in Figures 7A,B, the maxclique graph K(G) allows
us to differentiate sighs and non-sighs better than the visibility
graph alone.
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These results suggest that maxclique graph (K(G)), and
particularly its parameters of number of cliques (|K(G)|), and
clique number (ω(G)) have a better performance characterizing
and classifying these electrophysiological signals than a visual
inspection of the time series. This is because if the time series has
many small fluctuations (like sighs), then the visibility graph will
have many small cliques, therefore, the graph parameter |K(G)|
will be relatively big and the parameter ω(G) will be relatively
small. On the other hand, if in the time series there are few
fluctuations and a value of the data much larger than the others,
then there will be a big clique in the visibility graph, resulting in a
small value of |K(G)| and a larger value of ω(G) (like non-sighs).
Sighs, and other breathing patterns are embedded within eupneic
(normal breathing) signals. Unbiased detection of patterns is
a challenge for electrophysiologist. The use of visibility graphs
and maxclique analysis provides a tool for sorting waveforms
probing a larger number of parameters, instead of commonly
used peak amplitude, burst durations or the presence of
biphasic shape.

Our statistical analysis showed that visibility and maxclique
parameters differ between sigh and non-sigh. Nevertheless,
we need further studies to correlate these parameters with
their biological meaning to determine what these differences
could mean in physiology. Allowing us to implement these
graph parameters to compare between different conditions
and treatments.

3.3. Conclusion
Applying graph theory to electrophysiological recordings we
were able to characterize and classify sighs and non-sighs. The

visibility graphs and maximum degree allowed to characterize
and classify between sighs and non-sighs. Even though the
visibility graphs were not effective, the maxclique graphs and
parameters of clique algorithm generated a characterization
more effective with more successes. Altogether, these results
suggest that maxclique graphs and its parameters are more
suitable to characterize and classify electrophysiological signals.
Likewise, the graphical interface developed allows applying this
methodology to other electrophysiological signals.
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Multiple sclerosis (MS) is an autoimmune disease for which it is difficult to find

exact disease-related genes. Effectively identifying disease-related genes would

contribute to improving the treatment and diagnosis of multiple sclerosis. Current

methods for identifying disease-related genes mainly focus on the hypothesis of

guilt-by-association and pay little attention to the global topological information of

the whole protein-protein-interaction (PPI) network. Besides, network representation

learning (NRL) has attracted a huge amount of attention in the area of network analysis

because of its promising performance in node representation and many downstream

tasks. In this paper, we try to introduce NRL into the task of disease-related gene

prediction and propose a novel framework for identifying the disease-related genes

multiple sclerosis. The proposed framework contains three main steps: capturing the

topological structure of the PPI network using NRL-based methods, encoding learned

features into low-dimensional space using a stacked autoencoder, and training a support

vector machine (SVM) classifier to predict disease-related genes. Compared with three

state-of-the-art algorithms, our proposed framework shows superior performance on the

task of predicting disease-related genes of multiple sclerosis.

Keywords: multiple sclerosis, network embedding, disease gene prediction, PPI network, deep learning

1. INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease that disrupts themyelin and axons, which leads to
inflammatory disorder of the brain and spinal cord (Compston and Coles, 2002), and it is difficult
to find exact pathogens and disease-related genes. In recent studies, some of the disease-related
genes of multiple sclerosis have been collected and made available, such as in the DisGeNet
database (Pinero et al., 2017). However, there are still many unknown MS disease-related genes
that need to be discovered. Identifying such genes will effectively contribute to discovering the
inner molecular mechanisms of MS as a disease and will help researchers to learn more about MS.
Thus, it is essential and of importance to develop a novel algorithm to identify the disease-related
genes of MS rapidly and effectively.
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Predicting disease-related genes has attracted a huge amount
of attention in recent years, and many computational methods
have been proposed because of the natural advantages of such
methods in terms of time and money saved (Peng et al., 2017,
2019a, 2020a; Ma et al., 2018a; Hu et al., 2019; Xue et al., 2019b).
Furthermore, computational methods are effective and precise
enough to guide wet experiments (Liu et al., 2019a,b; Peng et al.,
2019c). Thus, it is necessary to explore the area of predicting
disease-related genes using computational methods. Most of the
existing methods for predicting disease-related genes are based
on the assumption of the guilt-by-association hypothesis (Peng
et al., 2019a). Specifically, genes associated with the same or
similar diseases usually have a higher probability of sharing
the same topological structure or similar neighbors as others
in the gene interaction networks. Thus, based on this guilt-
by-association hypothesis, the core of predicting disease-related
genes is calculating the distance or similarity between candidate
genes and disease-related genes effectively and correctly.

Many approaches have been proposed to measure distance
or similarity between gene nodes. The simplest method is direct
neighborhood counting (Oti et al., 2006), which mainly counts
the number of disease-related genes among their neighborhoods.
If the neighbors of gene g are associated with multiple sclerosis
disease, gene g is likely to be a disease-related gene. However,
this method overlooks disease-related genes that do not connect
with g in the protein-protein-interaction (PPI) network. To
solve this problem, several methods are proposed to utilize the
shortest path length model to measure the distance between
genes (Krauthammer et al., 2004). However, these methods have
not achieved satisfying performance, because both the directing
neighborhood counting and shortest path length methods only
consider the local topological structure of the PPI network
instead of the global information of the network topology. Many
papers suggest that global topological information would be
able to improve the performance of gene node presentation and
downstream tasks (Ma et al., 2018b, 2019; Peng et al., 2019b,
2020b; Xue et al., 2019a). Thus, some papers have tried to
capture global topological information through random walk
with restart (Li and Patra, 2010; Ma et al., 2017; Peng et al., 2018).
Borrowing ideas from random walk with restart, we aim, in
the current study, to introduce network representation learning
(NRL) methods, which represent genes in the network as low-
dimensional features, into the task of predicting the disease-
related genes of MS.

In this paper, we implement an existing NRL method, termed
NRL-based algorithms, for the task of predicting MS disease-
related genes and transform non-linear feature vectors into low-
dimensional space with a stacked autoencoder. The contributions
of this paper can be listed as follows:

• NRL-based algorithms learn global non-linear topological
information of the protein-protein-interaction network based
on node2vec, DeepWalk, and LINE.

• The deep learning model of a stacked autoencoder is
implemented in our proposed framework to extract low-
dimensional feature vectors.

• NRL-based algorithms show superior performance in the task
of predicting the disease-related genes of MS.

2. METHODS

In this paper, we introduce NRL algorithms, termed NRL-
based algorithms, for the task of predicting the disease-related
genes of MS. The framework used contains three main parts:
NRL-based algorithms, a Stacked AutoEncoder (Bengio et al.,
2006), and a Support Vector Machine (SVM) (Chang and Lin,
2011). Here, we use three classical NRL algorithms to transform
the PPI network into high-dimensional feature space, namely
node2vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), and LINE (Tang et al., 2015). After obtaining the PPI
network embedding features, we run a stacked autoencoder
model to extract useful feature vectors into low-dimensional
space. Finally, a SVM classifier is implemented to predict the
disease-related genes of MS. The whole workflow of the model
is shown in Figure 1.

2.1. NRL-Based Protein-Protein Interaction
Network Embedding
In our method, we use three classical NRL algorithms (node2vec,
DeepWalk, and LINE) to capture the global features of the PPI
network and represent genes as non-linear feature vectors. The
details of the three algorithms are introduced in the next part.

DeepWalk (Perozzi et al., 2014) is the first-proposed NRL
algorithm. It tries to represent nodes as novel latent feature
vectors. It first learns topological information from the network
using a random walk algorithm. Then, it can be treated as
a natural language process problem. The learned sequence
information is inputted into the Skip-Gram model. The aim of
the DeepWalk model is to maximize the probability of neighbors
of the node ni in the walk sequence. The objective function can
be shown as:

maxϕPr({ni−w, ..., ni+w} \ ni|ϕ(ni)) =
i+w∏

j=i−w,j6=i

Pr(nj|ϕ(ni)) (1)

where w is the size of the window and ϕ(ni) and {ni−w, ..., ni+w}
are the current feature representation and neighborhood
nodes of ni, respectively. Finally, the DeepWalk algorithm
uses hierarchical softmax to generate the low-dimensional
representation vectors. The overall overflow can be seen in
Figure 2A. node2vec (Grover and Leskovec, 2016) is an extended
version of the DeepWalk algorithm. In the process of learning
the network topology, node2vec integrates two neighborhood
sampling strategies, Breadth-First Search (BFS) and Depth First
Search (DFS). These two strategies for capturing topological
information are shown in Figure 2B. The node2vec algorithm
proposes a novel random walk strategy with two parameters,
p and q. The random walk procedure of node2vec can be
seen in Figure 2C. Parameter p mainly controls the probability
of revisiting a node in the process of random walk, and q
controls the possibility of capturing “local” or “global” nodes. In
particular, if p = 1.0 and q = 1.0, then the node2vec algorithm
can be seen similarly as the DeepWalk method.

LINE (Tang et al., 2015) is designed for large-scale NRL,
mainly capturing the first-order and second-order topological

Frontiers in Genetics | www.frontiersin.org 2 April 2020 | Volume 11 | Article 32833

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. Predicting Multiple Sclerosis’s Disease Genes

FIGURE 1 | The workflow of the proposed NRL-based framework. The framework contains three main parts: (A) learning the topological structure of the

protein-protein-interaction network, (B) transforming network embedding features into low-dimensional space, and (C) training the support vector machine classifier

to predict disease-related genes.

FIGURE 2 | (A) Overview of DeepWalk. It consists of three main parts: random walk generation, representation learning, and hierarchical softmax. This figure was

extracted from the original paper. (B) Two types of search strategies from node 5, BFS and DFS. (C) The random walk procedure in node2vec.

information. The idea of second-order information in LINE can
be learned from Figure 2B. In this figure, nodes 5 and 2 have
the same neighborhood, 3, 8, and 6. Although nodes 2 and 5
are not linked directly, we think that they are similar to each
other. The first-order and second-order topological information
between two nodes ni and nj can be measured as:

P1(ni, nj) =
1

1+ exp(−uTi uj)
P2(nj|ni) =

exp(ūTj ūi)∑
k exp(ū

T
k
ūi)
(2)

where ui describes the representation of node ni. By optimizing
the KL-divergence of these first-order and second-order
distributions, we can obtain the final representations of
gene nodes.

2.2. Extracting Low-Dimensional Feature
Vectors
In our NRL-based MS disease-related gene prediction
model, we use a stacked autoencoder model to transform

high-dimensional non-linear features learned by NRL-
based algorithms into low-dimensional feature space.
Commonly, many models use Principal Component
Analysis (PCA) (Abdi and Williams, 2010) or Independent
Component Analysis (ICA) (Hyvärinen and Oja, 2000) to
reduce the dimensionality of the feature matrix. However,
these methods cannot capture non-linear feature vectors
effectively. Also, these linear dimensionality reduction
methods would distort the original data structure and
cannot keep original features in the low-dimensional feature
space. A stacked autoencoder (SAE) model can address
these shortcomings.

An autoencoder is an unsupervised model that is widely
used in feature extraction and dimensionality reduction. An
autoencoder contains two main parts, an encoder and a decoder,
and its aim is to minimize the reconstruction error between input
and output. The encoded features of the hidden layer are the final
low-dimensional output that is used in the downstream tasks.
Assuming that the i−th input node vector is xi, the reconstructed
node vector can be described as x̂i = g(W′ · f (W · xi + b) + b′),
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TABLE 1 | The experimental results of NRL-based methods and other baselines.

Abc F1 AUROC AUPRC

ED 0.6032 (0.0165) 0.5933 (0.0204) 0.6439 (0.0163) 0.6356 (0.0216)

SPL 0.6136 (0.0296) 0.6033 (0.0198) 0.6703 (0.0205) 0.6531 (0.0208)

RWR 0.5312 (0.0113) 0.5203 (0.0305) 0.5431 (0.0195) 0.5321 (0.0233)

LINE-SAE-SVM 0.5527 (0.0102) 0.5403 (0.0218) 0.5838 (0.0106) 0.5716 (0.0198)

node2vec-SAE-SVM 0.7011 (0.0212) 0.6944 (0.0138) 0.7647 (0.0186) 0.7472 (0.0283)

DeepWalk-SAE-SVM 0.6941 (0.0288) 0.6914 (0.0315) 0.7554 (0.0204) 0.7478 (0.0243)

The bold values indicate the best performance.

where f and g are activation functions, and 2 = {W, b,W′, b′}
are the parameters to be learned. Then, the loss function of a
three-layer autoencoder can be represented as follows:

argmin
θ∈2

n∑

i=1

‖ x̂i − xi ‖22 (3)

The stacked autoencoder has been widely used in many areas
to extract feature vectors and reduce the dimensionality (Peng
et al., 2019b). Thus, we also add a stacked autoencoder model
in our framework to improve the performance of predicting MS
disease-related genes.

2.3. Predicting Disease-Related Genes
Based on an SVM Classifier
After obtaining low-dimensional gene feature vectors, we train
the SVM algorithm to predict the disease-related genes of MS.
This prediction task can be treated as a label classification
problem. SVM is applied widely on many classification tasks
because of its stability, simplicity, and effectiveness. Here, we
also select SVM as the classifier for our model. The disease-
related genes of MS are chosen as positive samples, and then we
randomly select several unrelated genes as negative samples from
the PPI network. The number of negative samples is the same as
that of positive samples.

In order to evaluate the performance of the SVM classifier
in the task of MS disease-related gene prediction, we randomly
select 80% of the dataset as a training dataset and 20% as
the test dataset. We choose the standard RBF kernel for the
SVM classifier and use the grid search method to select the
optimal hyper-parameters.

3. RESULTS

3.1. Datasets and Baselines
In the experimental part, we mainly use two datasets: the
protein-protein interaction network (PPI) and the disease-
related genes of MS. The PPI network contains 13,460
nodes and 141,296 edges, which is the same as in the
paper (Menche et al., 2015). Candidate genes associated
with MS disease were downloaded from the DisGeNet database
(https://www.disgenet.org/browser/0/1/1/C0026769) (Pinero
et al., 2017). After preprocessing, we can obtain 924 genes that
relate to MS disease. In order to evaluate the performance
of our proposed method, we compare NRL-based methods

FIGURE 3 | Accuracy and AUPRC values of three network representation

learning algorithms with four different numbers of dimensions. The x-axis

represents three different methods. The y-axis represents the values of

Accuracy (left) and AUROC (right).

with three classical methods, including Random Walk with
Restart (RWR) (Li and Patra, 2010), Shortest Path Length
(SPL) (Krauthammer et al., 2004) and Euclidean distance
(ED) (Díaz-Uriarte and de Andrés, 2006). Random walk with
restart is a classical path learning method, which is widely used in
biological network analysis to capture the topological structure
of the network. Shortest path length and Euclidean distance are
both typical path-based disease-related gene prediction methods.
We, in this paper, compare NRL-based methods with these
path-based methods to validate the superiority of NRL on the
task of disease-related gene prediction.

On the task of disease-related gene prediction, we adopt
accuracy, F1, area under the ROC curve (AUROC), and area
under the PR curve (AUPRC) as the evaluation criterion. All
of the experiments adopt five-fold cross-validation. After several
experimental validations, the optimal number of dimensions
of the PPI network embedding and the final dimensionality
of features after running stacked autoencoder are 512 and 64,
respectively.

3.2. Performance in Predicting
Disease-Related Red Genes of MS
In order to validate the performance of NRL-based algorithms
on the task of predicting the disease-related genes of MS, we
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FIGURE 4 | Accuracy, F1, AUPRC, and AUPRC values of three network representation learning algorithms with four different numbers of dimensions and different

autoencoder structures. The x-axis represents four different evaluation metrics. The y-axis represents the value of the evaluation metric.

TABLE 2 | The experimental results of NRL-based methods with different classifiers.

Acc F1 AUROC AUPRC

Logistic
LINE 0.5272(0.0131) 0.5172(0.0125) 0.5596(0.0138) 0.5391(0.0248)

Regression
node2vec 0.6483(0.0163) 0.6483(0.0163) 0.6899(0.0236) 0.6409(0.0208)

DeepWalk 0.5793(0.0250) 0.5793(0.0150) 0.6658(0.0216) 0.6153(0.0200)

Random
LINE 0.6176(0.0188) 0.6276(0.0188) 0.6208(0.0216) 0.6057(0.0263)

Forest
node2vec 0.7172(0.0117) 0.7012(0.0217) 0.7400(0.0126) 0.7191(0.0203)

DeepWalk 0.6959(0.0215) 0.6759(0.0163) 0.7336(0.0185) 0.7008(0.0202)

FIGURE 5 | AUROC with different parameter combinations of p and q in the node2vec algorithm. The x-axis represents different parameter combinations. The y-axis

represents the value of AUROC.

compare our model with three classical methods: random walk
with restart, shortest path length, and Euclidean distance. The
experimental results of the NRL-based methods and baselines
are shown in Table 1. The node2vec-based and DeepWalk-based
methods are obviously superior to the other algorithms. For
node2vec, the values of accuracy and AUROC reach 0.7011

and 0.7647, respectively, much higher than the three classical
methods. The performance of DeepWalk is similar to that of
node2vec, and the AUPRC value of DeepWalk is the highest
among the six algorithms. However, the performance of LINE is
not as good as the other two NRL-based methods. LINE mainly
considers the first-order and second-order information of the
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network topology in the process of embedding. The PPI network
is very sparse and many isolated nodes exist, which may lead to
the poor performance of LINE. Overall, the NRL-based methods
contribute to improving the performance of MS disease-related
gene prediction.

3.3. Effects of Different Parameters on
Disease-Related Gene Prediction
The whole process of the NRL-based methods consists of three
main parts: capturing the topological information of the PPI
network, extracting low-dimensional features, and predicting
disease-related genes based on the SVM classifier. Among
different parameters, the most influential is the number of
dimensions of embedding. Thus, we mainly explore the effects
of the number of embedding dimensions on the task of disease-
related gene prediction. In detail, we run three NRL algorithms
with four different numbers of dimensions, namely 64, 128,
256, and 512. The experimental results are shown in Figure 3.
In general, the values of accuracy and AUROC are stable, and
the number of embedding dimensions has less impact on the
experimental results in predicting the disease-related genes of
MS. For node2vec, the values of accuracy and AUROC are
around 0.67 and 0.73, respectively, in the case of the four
different dimensionalities.

Except for the dimensionality of network embedding, we
also consider the effects of the stacked autoencoder. Here,
we also embed the PPI network with four different numbers
of dimensions. We, then, implement the stacked autoencoder
to transform high-dimensional features into low-dimensional
space. The final number of dimensions through the stacked
autoencoder is 64. The experimental results are shown in
Figure 4. Comparing the experimental results with the model
without an autoencoder, we can clearly see the effects of the
autoencoder on extracting low-dimensional features. Besides,
with the increase in the number of autoencoder layers, the model
shows better performance in the task of predicting MS disease-
related genes. Thus, we adopt five layers [512-256-128-64] as
our model’s stacked autoencoder structure. In the third part, an
SVM classifier is used in our model to predict disease-related
genes. This step is flexible: we can train other classifiers to finish
prediction tasks. Here, we also train Logistic Regression and
Random Forest classifiers to predict the disease-related genes of
MS. The detailed experimental results are shown in Table 2.

node2vec performs better than the other two algorithms,
DeepWalk and LINE. Thus, we also explore the effects of
the two parameters in the node2vec algorithm, p and q. We

randomly select parameters p ∈ {2.0, 20.0, 200} and q ∈
{0.1, 0.01, 0.001, 0.0001}. The experimental results are shown in
Figure 5. The AUROC values are fluctuating within a certain
range [0.72, 0.77]. When p = 20 and q = 0.01, the AUROC value
of the node2vec algorithm achieve its maximum (0.7647).

4. CONCLUSION

Identifying the disease-related genes of MS effectively is essential
for the treatment and diagnosis ofMS. In this paper, we introduce
NRL methods into the task of identifying disease-related genes
and propose a novel NRL-based framework to predict the
disease-related genes of MS. The NRL-based algorithms consist
of three main components: capturing the global topological
structure of the PPI, encoding non-linear representation vectors
into low-dimensional feature space using a stacked autoencoder,
and training a SVM classifier to predict disease-related genes. We
compare our proposed method with three classical algorithms.
The experimental results show the superior performance of
the NRL-based algorithms. Moreover, the proposed NRL-based
algorithms are scalable and robust enough to be applied to many
other tasks of disease-related gene prediction.
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Detecting gene sets that serve as biomarkers for differentiating patient survival groups

may help diagnose diseases robustly and develop multi-gene targeted therapies.

However, due to the exponential growth of search space imposed by gene combinations,

the performance of existing methods is still far from satisfactory. In this study, we

developed a new method called BISG (BIclustering based Survival-related Gene sets

detection) based on a rectified factor network (RFN) model, which allows efficiently

biclustering gene subsets. By correlating genes in each significant bicluster with

patient survival outcomes using a log-rank test and multi-sampling strategy, multiple

survival-related gene sets can be detected. We applied BISG on three different cancer

types, and the resulting gene sets were tested as biomarkers for survival analyses.

Secondly, we systematically analyzed 12 different cancer datasets. Our analysis shows

that the genes in all the survival-related gene sets are mainly from five gene families:

microRNA protein coding host genes, zinc fingers C2H2-type, solute carriers, CD (cluster

of differentiation) molecules, and ankyrin repeat domain containing genes. Moreover,

we found that they are mainly enriched in heme metabolism, apoptosis, hypoxia and

inflammatory response-related pathways. We compared BISG with two other methods,

GSAS and IPSOV. Results show that BISG can better differentiate patient survival groups

in different datasets. The identified biomarkers suggested by our study provide useful

hypotheses for further investigation. BISG is publicly available with open source at https://

github.com/LingtaoSu/BISG.

Keywords: rectified factor network, biclustering, survival analysis, biomarker, variational inference

INTRODUCTION

Identifying biomarker genes for survival risk prediction allows earlier detection of mortality risk
and design of individualized therapy (Wang and Liu, 2018). Due to the exponential growth of
search space imposed by the combination explosion of genes, most proposed survival prediction
models mainly focus on a single gene. However, the genes perform their functions as groups rather
than individually. Identifying robust gene sets that can consistently predict a patient’s survival
outcome has become a main challenge in the field.
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In gene expression experiments, functionally related genes
often exhibit a similar pattern in only a subset of samples or
under specific experimental conditions (Padilha and Campello,
2017). This problem can be solved by biclustering, which can
be used to detect latent row and column groups of different
response patterns (Zhang et al., 2017; Saelens et al., 2018). By
combining patient survival information, whether the resulting
subset of genes are related to patient survival can be tested.
Sparse coding has demonstrated its advantage in biclustering
gene expression data (Hochreiter et al., 2010). Using sparse
representations, the biclustering model tends to have a smaller
number of row and column groups since a large amount of
variation is already explained by these observed covariates (Blei
et al., 2017). In fact, sparse coding has been well-developed
in deep learning obtained by rectified linear units (ReLU) (Xu
et al., 2016) and dropout (Srivastava et al., 2014). Recently,
the rectified factor network (RFN) model (Clevert et al., 2015)
was introduced, which aims at finding a sparse, non-negative
representation of the input, and extracting the covariance
structure of the data. The RFN model uses the posterior
regularization method (Ganchev et al., 2010), which separates
model characteristics from data dependent characteristics and
restricts the posterior means to be non-negative. As computing
posterior is very time consuming, variational inference is utilized
in RFNmodel, which approximates probability densities through
optimization. Furthermore, by utilizing the projected Newton
and projected gradient update strategies during optimization,
RFN can efficiently carry out biclustering with high accuracy.

In this study, we adapted RFN for biclustering analysis of
integrated mutation and gene expression datasets from the same
sets of samples, and developed a new method called BISG
(BIclustering based Survival-related Gene sets detection). As in
Hochreiter et al. (2010), a bicluster is defined as a pair of a row
(gene) set and a column (sample) set for which the rows are
similar to each other on the selected columns and vice versa. The
motivation for developing BISG is to predict such biclusters using
gene expression data and associate these biclusters with diseases
and disease subtypes. BISG is a rectified factor analysis model,
which extracts the covariance structure of the input data and
enforces the posterior has to be non-negative and normalized.
Non-negative constraints lead to sparse and non-linear codes,
while normalization constraints scale the signal part of each
hidden unit. For computing the posterior, a family of variational
distribution Q of allowed posterior distributions is introduced.
In this way, we transform the biclustering problem into an
optimization problem, which is optimized by a generalized
alternating minimization algorithm (Gunawardana and Byrne,
2005). To speed up computation in the generalized expectation
maximization algorithm, we perform a gradient step in both E-
step and M-step with fast GPU implementations. We correlate
genes in each significant bicluster with patient survival outcomes
using a log-rank test and multi-sampling strategy, and only
keep the gene sets that can differentiate sample groups by their
significantly different survival curves in training and validation
datasets. The identified biomarkers suggested by our study can be
used as hypotheses for further investigation in improving cancer
patient survival.

MATERIALS AND METHODS

Methods Overview
The overall design of BISG is shown in Figure 1. BISG mainly
comprises of four parts: (1) data preprocessing, (2) bicluster
detection, (3) survival analysis, and (4) result analysis. BISG takes
RNAseq data, single nucleotide polymorphisms (SNP) data and
sample survival data as input. In the data preprocessing, only
genes having at least one SNPmutation and samples with survival
information are kept. The expression data are normalized to
a range between 0 and 1. Each time 90% of the samples are
iteratively used as a training set to detect significant biclusters,
and the remaining 10% are then used as a validation set. For
bicluster detection, a multi-sampling strategy is applied. Each
time we randomly select expression data of 100 different samples
from the training set to detect significant biclusters using the
RFN model, bicluster extraction, quality control and significance
test methods. Biclusters passing all these tests are then used for
survival analysis. Based on the genes in each bicluster, BISG
separates samples (patients) in the training set into two groups
G1 (with over 80% bicluster genes significantly up-regulated)
and G2 (with all bicluster genes express normally). The survival
curves of the two groups are statistically tested by a log-rank
test. A multi-sampling strategy is also used in this test, i.e.,
each time we randomly select the same number of samples
from G2 as in G1 (or from G1 as in G2, depending on which
one has more samples). If a bicluster gene set can differentiate
sample groups by their significantly different survival curves in
80% samplings in the training set, we then validate whether
the bicluster genes can separate patients in the validation set
into two different survival groups. We random sample 1,000,
5,000, and 10,000 times respectively, and after all iterations only
commonly occurred significant bicluster gene sets that can well
separate patients in the validation set into different survival
groups are selected as biomarkers. In the result analysis, we
conduct an independent test of biomarkers with new datasets
from GEO (Gene Expression Omnibus) database, and do KEGG
and hallmark gene sets enrichment analysis, and also identify
common gene families of all the biomarker genes.

Data Preprocessing
Table 1 summarizes the data of the 12 cancer types used in
training and validation of BISG. We downloaded their RNAseq
median Z-score datasets, SNP mutation datasets and clinical
datasets from the cBioPortal database (Cerami et al., 2012; Gao
et al., 2013). Based on the median Z-score value we normalized
each gene expression values to a range between 0 and 1 (0 means
no change, 1 means highly up-regulated).

After the biomarkers were predicted, we utilized three
microarray datasets GSE16011 (Gravendeel et al., 2009),
GSE3494 (Palazon et al., 2017), and GSE11969 (Takeuchi
et al., 2006), as well as their corresponding sample survival
information from the GEO as independent test datasets to
confirm these biomarkers detected in gliomas, breast cancer
and lung adenocarcinoma, respectively. Two datasets, GSE1456
(Pawitan et al., 2005), which was used by GSAS (Varn et al.,
2015) but not BISG, and GSE32062 (Yoshihara et al., 2012),
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FIGURE 1 | Overview of BISG.

which was used by IPSOV (Shen et al., 2019) but not BISG,
were used to compared the classification performance of gene
sets detected by BISG, GSAS, and IPSOV. Another dataset
GSE3494 (new data for BISG and GSAS) was used to test
whether the core gene set detected by GSAS and the top-ranked
gene set identified by BISG with breast cancer datasets from
cBioPortal database can differentiate samples in GSE3494 into
different survival groups. These datasets were normalized the
same as in the cBioPortal database, and the datasets were shown
in Table 2.

Bicluster Detection
Given a normalized gene expression matrix, V = (X,Y), with a
set of rows X = {x1, . . . , xN}, a set of columns Y =

{
y1, . . . yM

}
,

and the element vij ∈ V represents the expression value of gene i
in sample j. A bicluster B = (I, J) is a n×m submatrix ofV, where
I = (i1, ...in) ⊂ X is a subset of genes and J = (j1, . . . jm) ⊂ Y
is a subset of samples. The biclustering aims to identify a set of
biclusters B = {B1, . . .Bs} such that each bicluster Bk = (Ik, Jk)
satisfies specific homogeneity criteria. The RFN model is a single
or stacked factor analysis model as in Equation (1), which extracts
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TABLE 1 | Cancer data used for training and validating biomarkers.

ID Cancer type Gene

number

SNP

number

Sample

number

1 Brain lower grade glioma 2,511 3,141 282

2 Colorectal adenocarcinoma 10,680 23,982 222

3 Glioblastoma 4,148 5,974 130

4 Head and neck squamous

cell carcinoma

11,767 27,742 500

5 Kidney renal clear cell

carcinoma

6,572 9,923 435

6 Lung adenocarcinoma 8,180 16,625 221

7 Ovarian serous

cystadenocarcinoma

3,641 4,573 183

8 Pancreatic adenocarcinoma 6,101 9,415 150

9 Papillary thyroid carcinoma 1,320 1,437 313

10 Prostate adenocarcinoma 7,673 12,658 496

11 Thyroid carcinoma 1,656 1,835 395

12 Breast Invasive Carcinoma 7,079 11,089 448

TABLE 2 | Independent test datasets used for confirming predicted biomarkers

and for comparison.

ID Cancer name Gene

number

Sample

number

GSE3494 Breast cancer 4,883 236

GSE11969 Lung Adenocarcinoma 5,273 149

GSE16011 Gliomas 2,061 264

GSE1456 Breast cancer 14,204 159

GSE32062 Ovarian cancer 19,592 260

the covariance structure of the data.

V = Wh+ ε (1)

where V = {V1, . . .VN) is the input data (visible units), h ∼
N(0, I) is the hidden unit (where N is a normal distribution), W
is the weight matrix, ε ∼ N(0,ϒ) is the noise error vector, and ϒ

is the noise covariance matrix. The parameters of the model are
W and ϒ . If h is given, then only the noise ε is a random variable
and we have V|h ∼ N(Wh,ϒ).

Let E denote the expectation of the data including the prior
distribution of the factors and the noise distribution. We can
get E(VVT) = WWT + ϒ . The marginal distribution for V is
V ∼ N(0,WWT + ϒ). The log-likelihood of the input data is
given in Equation (2).

log
∏n

i=1 p(Vi) = − nm
2 log(2π)− n

2 log |WWT + ϒ |
− 1

2

∑n
i=1 V

T
i (WWT + ϒ)

−1
Vi

(2)

For the mean-centered input vector V , the posterior p(hi|Vi) is
Gaussian with the mean vector (up)i and covariance matrix Kpp

FIGURE 2 | Significant bicluster extraction process. W[i] and h[i] are the gene

and sample membership vectors. max (W[i]) and max(h[i]) are maximum values

of W[i] and h[i], respectively. t_w, t_h, thr_w, and thr_h are threshold values

used to filter bicluster membership genes and samples. B represents bicluster.

P-value (B) is p-value of a bicluster B. Nonzero_ratio (B) is used for bicluster

quality control, which is calculated as the ratio of non-zero elements in a

bicluster.

as in Equation (3):

(up)i = (I +WTϒ−1W)
−1

WTϒ−1Vi,Kpp

= (I +WTϒ−1W)
−1

(3)

To maximize the likelihood, we introduce a variational
distribution Q, and the objective function F of our model is
shown in Equation (4):

F = 1

n

n∑

i=1

log p(Vi)−
1

n

n∑

i=1

DKL(Q(hi|Vi)||p(hi|Vi))

= 1

n

n∑

i=1

∫
Q(hi|Vi) log p(Vi|hi)dhi −

1

n

n∑

i=1

DKL(Q(hi|Vi)||p(hi)) (4)

where Q is a variational distribution for the approximate
of the posterior p(hi|Vi). We constrain Q to the family of
rectified and normalized Gaussian distributions. DKL > 0
is the KL distance. F is the objective of the EM algorithm.
The E-step maximizes F with respect to Q; therefore, the E-
step minimizes DKL(Q(hi|Vi)||p(hi|Vi)). The M-step maximizes
F respect to the parameters (W,ϒ); therefore, the M-step
maximizes

∫
Q(hi|Vi) log p(Vi|hi)dhi. Considering the quadratic

problem of the posterior regularization method, to speed up the
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computation using fast GPU implementations, we perform a
gradient step in both E- and M-steps. In the E-step, we use the
projected Newton method as in Equation (5).

min
µi

1

n

n∑

i=1

(µi − (µp)i)
T(µi − (µp)i), s.t. µi ≥ 0,

1

n

n∑

i=1

µ2
ij = 1 (5)

In Equation (5), with 1
n

∑n
i=1 µ2

ij = 1,µi ≥ 0 we constrain

the variational distributions to the family of normal distributions
with non-negative mean components, and can avoid the
explaining away problem as shown in Clevert et al. (2015).

In M-step, we decrease the expected reconstruction error, as
in Equation (6).

ε = 1

2

(
m log (2π)

)
+ log |ϒ | + Tr

(
ϒ−1C

)
− 2Tr

(
ϒ−1WT

)

+ Tr
(
WTϒ−1WZ

)
(6)

Where P = 1
n

∑n
i=1 Viµ

T
i , Z = 1

n

∑n
i=1 Viµ

T
i + Kpp and C =

1
n

∑n
i=1 ViV

T
i . In combination, we get the updates for E-step:

EQ(hi) = µi,EQ(hihTi ) = µiµ
T
i + Kpp and M-step: Wnew =

PZ−1,ϒnew = C − PWT −WPT + WZWT .
To get the sparse, non-negative and non-linear of the input

representations, and also to model the covariance structure of the
input, we choose the maximum likelihood factor analysis as the
model and apply the posterior regularization method (Ganchev
et al., 2010). To enforce sparse codes, a Laplace prior on the
weight matrix and dropout strategy are used. To further enforce
sparseness of the sample and gene membership vectors, we
propose a new bicluster extraction strategy as shown in Figure 2.
For each gene and sample membership vectors, firstly, we get
their maximum values, and then for each non-zero element, we
get the ratio between the maximum value and the element. If the
ratio fulfills the threshold value and at least two genes and two
samples are included, then the bicluster is filtered for quality and
significance test. For each bicluster passing the quality measure, a
p-value (Equation 7) is calculated and the Bonferroni correction
is used to control the overall type I error.

Pr(B(m, n, q) ≥ k) ≥ Pr(B
(
m, n, q

)
≥ mnq

(
1+ k

mnq
− 1

)
)(7)

According to Koyuturk et al. (2004), if there is no association in
a data matrix, each element can be assumed to an outcome of an
independent Bernoulli trial with success probability q. Given a
normalized gene expression matrix V with M rows, N columns
and K none zero elements, we look for a subset of rows and
columns such that a bicluster induced by these rows and columns
is dense enough to be considered statistically significant. Assume
that Pr(V(i, j) 6= 0) = q, where q can be estimated by the density
of the matrix, i.e., q = K/MN. For an arbitrary bicluster, with
m rows and n columns, we assume that the number of non-
zero elements is k. Then kfollows a binormal distribution. The
p-value of statistical significance test for anm×n bicluster is given

in Equation (7). By using Chernoff’s bound (Theodosopoulos,
2007), we get:

Pr(k ≥ mnp (1+δ) ) ≤ e−mnpδ2/3 (8)

where δ > 0. Assume that the probability of observing k non-
zero elements in the bicluster is less than P∗, then by Equation
(8), the bicluster is significant if k ≥ mnp(1 + δ), and δ ≥√
3(− ln P∗)/mnp. In summary, according to Koyuturk et al.

(2004) the bicluster is statistically significant if:

C(m, n, k) = k−mnp−
√
3(− ln P∗)/mnp ≥ 0 (9)

For each bicluster identified, the Bonferroni correction is used to
control the overall type I error. The level of significance is set at
0.05
b
, where b is the number of biclusters identified. Besides, we

use the none zero ratio in a bicluster to do quality control of the
biclustering results. As defined above, the higher the k value, the
better the quality of the identified bicluster.

Survival Analysis
Weuse Kaplan-Meier plots (Goel et al., 2010) to visualize survival
curves and with a log-rank test (Singh andMukhopadhyay, 2011)
to compare the survival curves of patients with and without
changed expression of the bicluster gene sets. The survival
probability, also known as the survivor function S(t), is the
probability that an individual survives from the time origin (e.g.,
diagnosis of cancer) to a specified future time t. The survival
probability at time ti, S(ti) is calculated as below:

S(ti) = S(ti−1)(1− di/ni) (10)

where S(ti−1) is the probability of being alive at ti−1. ni is the
number of patients alive just before ti. di is the number of events
at ti. t0 = 0 and S(0) = 1.

Considering genes in each significant bicluster, both samples
in the training set and validation set can be divided into two
groups G1 (with over 80% bicluster genes significantly changed)
and G2 (with bicluster genes express normally). To test the
survival difference of samples in G1 and G2, a multi-sampling
strategy is utilized, each time the same number of samples are
selected. The survival curves of the two selected sample groups
can be compared statistically by testing the null hypothesis i.e.,
there is no difference regarding survival among two groups. This
null hypothesis is statistically tested by a log-rank test. In the log-
rank test, we calculate the expected number of events in each
group, i.e., E1 and E2, while O1 and O2 are the total number of
observed events in each group, respectively. The test statistic is:

Log − rank test = (O1 − E1)
2/E1 + (O2 − E2)

2/E2 (11)

The test statistic and the significance can be drawn by
comparing the calculated value with the critical value (using the
chi-square table). To guarantee that the bicluster genes are more
likely survival-related, for each significant bicluster, considering
samples in the training set, we repeat the log-rank test 100
times. If the genes in the bicluster can separate patient groups
in more than 80% sampling times, then we use the validation
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datasets to test whether they can also separate them into two
different survival groups. Only bicluster gene sets passing all
these significance tests are filtered out as the final biomarkers.
We also confirm some biomarkers with independent datasets
from the GEO database. In this study, the log-rank test and
survival analysis are conducted based on functions in the lifelines
python package.

RESULTS

Biomarker Gene Sets in Brain Lower Grade
Glioma, Lung Adenocarcinoma, and Breast
Invasive Carcinoma
We applied BISG on the datasets of brain lower grade glioma,
lung adenocarcinoma and breast invasive carcinoma from
the cBioPortal database (Table 1). Under the default and the
same parameter setting as in Su et al. (2019), we identified
24, 7, and 6 significant cancer survival-related biomarker gene
sets for lower grade glioma, lung adenocarcinoma and breast
invasive carcinoma, respectively (as shown in Figure 3, and
Supplementary Figures S1, S2 and Supplementary Table S4).
The identified gene sets include 109, 82, and 58 genes,
respectively. Multiple cancer survival-related genes were
found in these genes, including CDH17 (Qiu et al., 2019),
PTPRJ (D’Agostino et al., 2018), SLC16A14 (Elsnerova et al.,
2017), TMTC2 (He et al., 2018), and NOTCH4 (Wang
et al., 2018). Moreover, the results of gene set enrichment
analysis and pathway analysis showed that most of the genes
have known involvement in cancers. The survival curves
of patients with (over 80% bicluster genes significantly
upregulated) and without (others) top-ranked four most
significant biclusters for each of the three cancer types are shown
in Supplementary Figure S3, where the bicluster gene sets
identified by our methods can well separate patients into two
different survival groups.

System Analysis Survival-Related
Biomarker Gene Sets in 12 Different
Cancer Types
We systematically detected significant survival-related biomarker
genes sets in 12 different cancer types with datasets in Table 1.
The number of significant biomarker gene sets and their
corresponding gene IDs for each cancer are shown in
Supplementary Table S2. To find their relationships and
functions of these significant biomarker gene sets, firstly,
we conducted a function enrichment analysis with the
GSEA hallmark gene sets from MSigDB (Liberzon et al.,
2015). As shown in Figure 4, the function enrichment
is mostly in heme metabolism, apoptosis, hypoxia, and
inflammatory response. These are consistent with current
findings. For example, according to Kalainayakan et al.
(2019), cyclopamine tartrate suppresses tumor growth in
the lung by inhibiting heme metabolism and OXPHOS
(oxidative phosphorylation). A hallmark of cancer is the
ability of malignant cells to evade apoptosis (Hanahan and
Weinberg, 2011). Avoiding apoptosis is integral to tumor

FIGURE 3 | Twenty four significant survival-related gene sets detected in brain

lower grade glioma with datasets from the cBioPortal database (Table 1). The

corresponding genes of each gene set are shown in

Supplementary Tables S1, S4.

development and resistance to therapy. According to Muz
et al. (2015), hypoxia stimulates a complex cell signaling
network in cancer cells, including the HIF, PI3K, MAPK,
and NFγB pathways. According to Nishijima et al. (2019),
inflammatory markers are predictive of poorer survival,
independent of traditional prognostic factors in older adults
with cancer.

We also analyzed the enriched KEGG pathways of all the
bicluster gene sets. As shown in Supplementary Figure S4, focal
adhesion, neuroactive ligand receptor interaction, endocytosis
and pathways in cancer are the most commonly enriched
pathways by these gene sets. Finally, we systematically analyzed
gene family information of all the biomarker gene sets of each
cancer type. Results were shown in Supplementary Table S3.
According to our analysis, genes in all the survival-related gene
sets mainly from five gene families: microRNA protein-coding
host genes, zinc fingers C2H2-type, solute carriers, CDmolecules
and ankyrin repeat domain-containing genes. Many of these
genes are known survival-related (detailed information and the
corresponding literature are shown in Supplemental Material).
Furthermore, we found that many cancer survival-related genes
identified so far are also from these gene families. For example,
LEMD1 and EPHB2 are microRNA protein coding host genes,
and SLC2A3 from solute carriers (Martinez-Romero et al.,
2018). Other two survival-related genes RAD21 and CKS2
are microRNA protein coding host genes (van’t Veer et al.,
2002). In addition, CDH1 is from CD molecule (Gao et al.,
2019). Of the 68 cancer survival-related gene sets in Varn
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FIGURE 4 | Enriched GSEA hallmark gene sets of all the biomarker gene sets of all the 12 cancer types. Names on the right Y-axis are the hallmark gene sets. Names

on the bottom X-axis are the names of the 12 cancer types. Count means the number of cancers whose significant gene sets enriched in corresponding hallmark

gene sets. Values in this figure are 0 or 1. Zero means the biomarker gene sets of the corresponding cancer are not enriched in the hallmark gene sets.

et al. (2015), HMMR from CD molecules, MCM7 and CKS2
are microRNA protein coding host genes. Of the 129 ovarian
cancer survival-related genes in Shen et al. (2019), 17 are
from CD molecules gene family, 7 from microRNA protein-
coding host genes, 1 from ankyrin repeat domain-containing
gene family.

Results Independent Tests
To test whether biomarker gene sets detected by BISG with
datasets from cBioPortal database can differentiate patients
into different survival groups with new independent datasets,
we collected three microarray datasets GSE16011, GSE3494,
and GSE11969, as well as their corresponding sample survival
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FIGURE 5 | Kaplan-Meier plots of the survival analysis of the samples from brain lower grade glioma (GSE16011), lung adenocarcinoma (GSE11969), and breast

invasive carcinoma (GSE3494) patients. 1, 3 means the first and the third top-ranked biomarker gene sets detected by BISG with corresponding cBioPortal datasets.

The patients were separated into two groups according to the expression profiles of biomarker genes in the selected biomarker gene set. These genes provided the

best split between patients of high and low risk based on their expression levels. In the case of genes in biomarker gene sets (labeled in brown) the over-expression is

correlated with poor survival (only up-regulated genes were considered); and in the case of patients without biomarker genes (labeled in blue) the over-expression is

correlated with good survival. In all cases the adjusted p-values of the analyses are highly significant, indicating that the two populations represented by the two

curves have a very clear difference in their overall survival.

information (Table 2) from GEO as independent test datasets to
confirm the biomarkers detected in gliomas, breast cancer and
lung adenocarcinoma, respectively. For comparison, we selected
the top-ranked first and third biomarker gene sets (as shown

in Figure 3, and Supplementary Figures S2, S3) for each of the
three cancer types. For any selected biomarker gene set, patients
can be separated into two groups, one group with biomarker
genes significantly changed, and the other with bicluster genes
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FIGURE 6 | Comparison of gene set based patient survival group classification. “With gene set” means patients with over 80% expression of genes in the gene set

significantly changed. “Without the gene set” means patients with the expression of genes in gene set are normal. (A) The survival curve of core gene set identified by

the GSAS algorithm applied on the GSE1456 dataset. (B) The survival curve of the top-ranked gene set identified by our method applied on the GSE1456 dataset.

(C) The survival curve of core gene set identified by the GSAS algorithm applied on the GSE3494 dataset. (D) The survival curve of the top-ranked gene set identified

by our method applied on the GSE3494 dataset.

express normally. For survival analysis, we randomly selected the
same number of patients from the two groups and test whether
their survival curves are significantly different. As shown in
Figure 5, the biomarker genes can well separate patients into
different survival groups.

Comparison With GSAS and IPSOV
To further validate our method, firstly, we compared our
methods with GSAS. GSAS quantitatively assesses a gene set’s
activity score with the BASE algorithm (Cheng et al., 2007), along
with patient time-to-event data, to perform survival analyses to
identify the gene sets that are significantly correlated with patient
survival. Different from our method, they got gene sets directly
from MSigDB. By applying on seven independent datasets, one
core gene set with 68 genes were filtered out as most related
to breast cancer survival. For comparison, we test whether the
core gene set detected by GSAS and the top-ranked gene set
identified by BISG with breast cancer datasets from cBioPortal
database can different samples in GSE1456 (used by GSAS but

not BISG) andGSE3494 (new to both twomethods) into different
survival groups. We run each method many times, and each
time we randomly selected the same number of genes from their
respective gene sets. The best performing results of each method
are shown in Figure 6, where the gene set identified by BISG
can better separate patients into different survival groups. In
Figures 6A,C, patients with and without the biomarker genes
based on GSAS have similar survival rates, while as shown in (B)
and (D), the patients with biomarker genes identified by BISG
have different survival rates from the rest. In this comparison, all
the datasets are new and independent data that were not used
in training BISG. Results indicate that the gene sets identified by
BISG can better separate patients into different survival groups.

Furthermore, we also compared BISG with IPSOV. We tested
whether the ovarian cancer survival-related gene sets detected
by IPSOV (with data from GSE32062) and the top-ranked gene
set identified by BISG with ovarian cancer datasets from the
cBioPortal database can differentiate samples in GSE32062 (used
by GSAS but not BISG) into different survival groups. Detailed
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results are shown in Supplementary Figure S5. Results showed
that the biomarker gene set identified by BISG can better separate
patients into different survival groups. Again, all the samples for
comparison with GSASwere not used by BISG for the selection of
biomarker gene sets, which means the biomarker genes identified
by BISG are more likely cancer survival related genes.

Based on the fast GPU implementation of the RFN model,
BISG can do biclustering analysis of large input datasets in a fast
and accurate way, which enables BISG using a multi-sampling
strategy to iteratively detect survival-related biomarker gene sets.
In contrast to the standard clustering, the samples of a bicluster
are only similar to each other on a subset of genes. As a result,
genes in each significant bicluster can better differentiate samples
into different survival groups. Compared with GSAS and IPSOV,
the biomarker gene sets of our method are directly detected from
biclustering analysis of the expression datasets, which can well
capture the dynamic change of gene sets, and can reflect the real
relationships of these genes.

CONCLUSION

In this paper, we proposed BISG for identifying cancer
survival-related biomarker gene sets. BISG can efficiently
conduct biclustering for high-dimensional gene expression
matrix, and along with patient time-to-event data perform
survival analyses. To speed up computation, BISG performs
a generalized alternating minimization algorithm with GPU
implementations. In this way, BISG can efficiently construct
very sparse, non-linear, high-dimensional representations of the
input via their posterior means. To identify robust biomarker
gene sets, multiple iterations and a random sampling strategy
were utilized, and each time only bicluster genes that can
significantly differentiate patient survival groups were kept. To
detect patterns in survival-related gene sets, we systematically
analyzed 12 different cancer types, and identified their enriched
pathways and their gene families. The results indicated that the
identified gene families and genes are biologically meaningful
and consistent with the existing scientific findings. With several
independent test datasets, identified biomarkers were confirmed.
We also compared BISG with two related methods, and BISG
outperformed them. The predicted biomarker gene sets can
be further investigated for improving cancer patient survival.

BISG is now based on a simple factor analysis model, which
can be further extended into multi-layers with a deep learning
network structure.

Our method has the potential to be extended for single-cell
RNA-seq analysis, which has been widely applied in studying
cell heterogeneity such as cells of different cancer types or
subtypes. A pertinent question in such analyses is to identify
cell subpopulations. Our methods can conduct biclustering
effectively and efficiently especially for big expression matrices.
Ongoing consortium efforts have generated extensive atlases
of single-cell datasets covering diverse biological contexts with
thousands of samples (Xie et al., 2019), and our methods may be
suitable for analyzing them. We will explore applications of our
method on single-cell RNA-seq analyses as our future work.
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Protein interactions play an essential role in studying living systems and life phenomena.

A considerable amount of literature has been published on analyzing and predicting

protein interactions, such as support vector machine method, homology-based method

and similarity-based method, each has its pros and cons. Most existing methods

for predicting protein interactions require prior domain knowledge, making it difficult

to effectively extract protein features. Single method is dissatisfactory in predicting

protein interactions, declaring the need for a comprehensive method that combines the

advantages of various methods. On this basis, a deep ensemble learning method called

EnAmDNN (Ensemble Deep Neural Networks with Attention Mechanism) is proposed

to predict protein interactions which is an appropriate candidate for comprehensive

learning, combining multiple models, and considering the advantages of various

methods. Particularly, it encode protein sequences by the local descriptor, auto

covariance, conjoint triad, pseudo amino acid composition and combine the vector

representation of each protein in the protein interaction network. Then it takes advantage

of the multi-layer convolutional neural networks to automatically extract protein features

and construct an attention mechanism to analyze deep-seated relationships between

proteins. We set up four different structures of deep learning models. In the ensemble

learning model, second layer data sets are generated with five-fold cross validation from

basic learners, then predict the protein interaction network by combining 16 models.

Results on five independent PPI data sets demonstrate that EnAmDNN achieves superior

prediction performance than other comparing methods.

Keywords: protein-protein interaction network, protein-protein interaction, ensemble learning, deep learning,

attention mechanism, multi-layer convolutional neural network

INTRODUCTION

Protein interactions and interaction networks take part in vital activities of each living cell,
including signal transduction, immune response, metabolism of energy substance, cell cycle
control, etc. (Keskin et al., 2016). The exact identification of protein interactions is therefore
important not only to understanding the functions of proteins but also to structure-based drug
design and treatment of diseases (Li et al., 2009).
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Majority of existing methods for predicting PPI are based
on Gene Ontology and annotations, phylogenetic profile, gene
fusion, the interacting proteins co-evolution pattern and the
similarity of proteins in sequence, structure, domain and
subcellular localization (Boxem et al., 2008; Zhang et al.,
2012; Planas-Iglesias et al., 2013; Sun et al., 2017). However,
as their accuracy and reliability depend heavily on collected
prior knowledge, they are hardly applied widely. Several
methods based on amino acid sequence computation have been
explored to predict PPI, such as support vector machine with
traditional auto-correlation, k-nearest neighbor (kNN) with local
description (LD) (Yang et al., 2010), support vector machine
(SVM) with conventional auto covariance (AC) (Guo et al., 2008)
or local description (LD) (Zhou et al., 2011), deep neural network
with amphiphilic Pseudo amino acid composition (PseAAC)
descriptor (Du et al., 2017b) and so on. The above methods
provide different techniques of protein sequences such as AC, LD,
MCD, PseAAC, with each technique extracting different feature
information of protein interactions (Zhang et al., 2019a). AC and
CT considered the physical properties of amino acids and their
dipole and side-chain volumes respectively. Then LD uses triples
to describe composition, transition and distribution of sequence,
while PseAAC further studies order information of sequences.
We propose to combine different descriptors to achieve PPI
prediction to obtain more information from protein interactions.

Ensemble learning is a machine learning method, which uses
a series of learners and uses some rules to integrate the learning
results so as to obtain better performance than a single learner.
And ensemble learning has broad application prospects in many
fields such as protein phosphorylation site prediction, genome
function prediction and cancer prediction in bioinformatics
(Gomes et al., 2017; Krawczyk et al., 2017). The previous works
also demonstrate the effectiveness of classifier ensemble and
provide some guidelines to generate an ensemble classification
model (Martin et al., 2005; Han and Huang, 2006; Huang and
Zheng, 2006; Huang and Du, 2008). Wang used a boosting
technique to generate multiple classifiers iteratively to solve the
problem of imbalance between positive and negative data when
predicting the phosphorylation sites (Wang et al., 2017). Wang
took a random forest and voting method as a basic classifier
integration strategy separately to predict PPI sites (Wang et al.,
2019). You et al. (2019) chose the basic classifiers with optimal
performance, leaving the classifiers with small differences and

FIGURE 1 | For a grouped sequence “2762247,” the numerical code string of consecutive amino acids are “276,” “762,” “622,” “224,” “247,” and “*27,” “47*”

according to Shen, and “*” is considered to be the first or second amino acid of an amino acid in a continuous amino acid. So its triad types are F276, F762, F622,

F224, F427.

using the max-wins voting (MWV) strategy to predict DNA
binding proteins. Zhang et al. (2019a) trained 27 models by
combining AC, MCD, LD with 9 DNN models of different
configurations, and integrated these models through Double-
layers BP Neural Network.

Furthermore, when exploring protein interactions and
interaction networks, it is nonnegligible to quantify the
interaction/non-interaction relationship between two proteins.
One solution is to directly concatenate the features of the two
proteins to form a feature vector (Zhang et al., 2019b), which
lacks the information characteristics of the interaction/non-
interaction between two proteins; another solution is to extract
two features with two different networks and combine the
features to form a new feature vector as the input of the model
(Du et al., 2017b; Hashemifar et al., 2018), which is incapable
of learning inherent relation of the proteins. Recently in
natural language processing domain, researches have shown that
attention mechanisms can effectively emphasize the relatively
important parts of the input sentences and help boost the
performance of relation extraction (Chen et al., 2017; Du et al.,
2017a). In bioinformatics, attentionmechanism is also adopted in
chemical-protein interaction (CPI) (Zhang et al., 2019b), kinase-
specific phosphorylation site prediction (Wang et al., 2017) and
so on. In Xuan et al. (2019) model, exploiting the attention
mechanism module to learn features or extract the relationship
between IncRNA and disease provides more information. Wang
et al. (2017) designed a two-dimensional independent attention
mechanism for predicting phosphorylation sites, which enabled
the model, called MusiteDeep, to automatically search important
positions of the output sequences to estimate the contribution
of each element in the sequences and feature dimensions.
However, the above researches concern only single attention
mechanism in the deep neural network model, which can be
replaced by the multi-head attention mechanism that can exert
attention multiple times and divide attention information into
multiple heads. Liu et al. (2018) integrated attention pooling

TABLE 1 | Division of amino acid into seven groups based on the dipoles and

volumes of the side chains.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

A, G, V C F, I, L, P M, S, T, Y H, N, Q, W K, R D, E
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into the gated recurrent unit (GRU) model to extract CPIs.
Verga et al. (2018) combined the Multi-head attention with
convolution neural networks to construct a transformer model to
extract the document-level biomedical relations. Thus, a multi-
head attention mechanism will make it easier to capture the
relevant important information for deep neural networks in
PPI extraction.

Motivated by attention mechanisms and ensemble learning,
we propose an algorithm called EnAmDNN, which at first
extracted the biophysical-chemical information of protein
sequences throughAC, CT, LD, and PseAAC and association with
the interactive description of each protein in protein interaction
network; then it automatically extracted the protein features
by multi-layer convolutional neural network, adopted attention
mechanism to analyze deep-seated relationship of proteins and
then forms the feature vectors. In EnAmDNN, 16 kinds of
DNN models are trained through 4 characteristic bases which
are the inputs of 4 DNNs with different layers and different
neurons. In the integration module, the outputs of 16 DNNs
are taken as the inputs of deep neural networks finally, and the
five-fold cross validation is adopted to comprehensively predict
protein interactions and interaction networks. Our contributions
can be summarized as follows: (1) the new network structure
can automatically extract highly abstract representations and
detect the sequence specificity of proteins; (2) the attention
mechanism is adopted to analyze internal links between the
two proteins and the network description of each protein,
instead of directly concatenating the two proteins, to improve
the prediction accuracy; (3) ensemble learning considers the
advantages of different descriptors and different DNNs to achieve
comprehensive learning.

PRELIMINARIES

Deep Neural Network
It turns out that deep neural network (DNN) plays an
important role in bioinformatics (Alipanahi et al., 2015; Zhou
and Troyanskaya, 2015; Liu et al., 2016), i.e., predicting
inner-organization and trans-organization RNA splicing patterns
(Leung et al., 2014). DeepMind applied DNN to the detection
of sequence specificity of the DNA-RNA binding protein, which
is superior to other methods (Alipanahi et al., 2015); DeepSEA
applied DNN to learn the code of regulatory sequences from
chromatin map sequences in order to discern priorities of
other functional varieties (Zhou and Troyanskaya, 2015); other
examples include genome informatics extraction, detection of
protein structure and medicine discovery. In short, compared
with other sequence-based methods, DNN has the following
advantages: (1) it can automatically learn certain protein
sequences; (2) it can reduce the influence of noise on the raw data
and extract the hidden high dimension representation (Bengio
et al., 2013). However, the performance of DNN is closely
related to the network configuration and may vary greatly for
different configurations.

Protein Representation Technique
Different representation techniques of protein features may have
a strong impact on the performance of PPI prediction, making it a
challenge to effectively express the protein features and describe
the connections of two proteins. We choose four representative
protein techniques instead of one to avoid the limitation brought
by a single technique.

FIGURE 2 | Ten regions (A–J) of the entire protein sequence. The regions (A–D) are generated by dividing the whole sequence into four equal regions, and regions

(E,F) are generated by dividing the whole sequence into two equal regions. The region (G) stand for the central 50% of the entire sequence. And the regions (H–J)

stand for the first 75%, the final 75% and the central 75% of the entire sequence respectively.
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Auto Covariance Technique
Two proteins interact with each other through electrostatic,
hydrophobic, steric and hydrogen bond, which can be reflected
by the seven physicochemical properties of amino acids,
including hydrophobicity (H1), hydrophilicity (H2), volumes of
side chains of amino acids (VSC), polarity (P1), polarizability
(P2), solvent-accessible surface area and net charge index of side
chains. The above properties are exploited by the auto-covariance
method to transform amino acid sequence into uniformmatrices
which reveal the special connection of two residues under a
certain distance and are widely applied in protein-encoding. For
example, a protein sequence of length L is calculated as follows
(Guo et al., 2008):

AC(lag, j) = 1

L− lag

L−lag∑

i=1
(Xi,j −

1

L

L∑

i=1
Xi,j)× (X(i+lag),j

− 1

L

L∑

i=1
Xi.j) (1)

Xij represents the j-th physical property of the i-th amino acid
in the protein sequence; lag represents the distance between
residues; then proteins of various lengths are encoded as vectors
of equal length lg ∗ p, where lg is the maximum lag (lag = 1, 2,
. . . , lg), p is the number of physical properties. In this study, p
was 7, reflecting the characteristics of the seven amino acids. As
with Guo, we set the log to 30 (Guo et al., 2008). Therefore, each
protein sequence is represented as a 210-dimensional vector.

Conjoint Triad Technique
Shen et al. (2007) introduced a conjoint triad technique to
represent sequence information of each protein, in which any
three contiguous amino acids are regarded as a unit and the
characteristics of one amino acid and its vicinal amino acids
are fully considered. First, the conjoint triad divides 20 standard
amino acids into 7 groups according to their dipole and side-
chain volumes, then the triads can be distinguished according to
the type of amino acid. According to Shen’s settings, there are 343
(7× 7× 7) triad types (Shen et al., 2007), as shown in Figure 1.

Finally, the PPI information of protein sequences are
projected into the homogeneous vector space according to the

FIGURE 3 | Flowchart of EnAmDNN for predicting protein-protein interactions. First, the interaction pairs and non-interaction pairs of related proteins are obtained

from IntAct, and all protein sequence data of UniProt are obtained; the appropriate proportion of interaction pairs and non-interaction pairs are selected, and each

group of protein pairs (including interaction pairs and non-interaction pairs) is vectorization by AC, CT, LD, and PseAAC techniques; put vector protein into convolution

neural network for feature extraction of each protein; extracted features are transferred to attention mechanism module for deep analysis of interaction between each

group of protein pairs; then the analyzed features are input into deep neural network of different models for training; finally, the final prediction results are obtained by

integrating the prediction results of different models.
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FIGURE 4 | (A) Multi-Head Attention consists of several attention layers. (Vaswani et al., 2017) First, query, key and value go through a linear transformation, and then

enter them into scaled dot-Product attention to generate many heads; then concatenate these heads to keep relevant information in different representation

subspaces. (B) Scaled dot-product attention (Vaswani et al., 2017). Obtain weights by similarity calculation between query and each key, and the weights are

normalized by softmax function; then attention is obtained by the weight and the corresponding value.

FIGURE 5 | Ensemble strategy composed of deep neural networks. The first layer results (Pn, Tn) (0 < n < t+1) are predicted by T primary learners, where Pn and Tn
stand for training data and the prediction result; then use recombined (Pn, Tn) as training data features of the second-level classifier and put it into deep neural

networks to predict protein interaction networks.
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frequency of each triad type, where each protein is represented
by a 343-dimensional vector.

Local Descriptor Technique
The Local descriptor technique (Zhou et al., 2011) also divided
20 standard amino acids into 7 groups as shown in Table 1 and
divided the entire protein sequence into 10 regions as shown in
Figure 2. For each sub-sequence, three descriptors, composition
(C), transition (T) and distribution (D), are applied to describe
its trait where C represents the proportion of each amino acid
group; T represents the frequency with which amino acids in one
group are followed by amino acids of another group; D measures
the proportion of chain length where the top 25, 50, 75, and
100% of the amino acids of a particular group are located. For the
local descriptor method, each region produces 63 values, where C
represents 7, T represents 7, and D represents 35, and then each
protein is encoded as a 630-dimensional vector.

For example, according to Table 1, the sequence
“ACLACLCCLAALLCCCLALALAAALL” is converted into

TABLE 2 | AD with various methods.

Methods Accuracy Recall Precision F1 AUC

EnsAmDNN 0.9467 0.9329 0.9541 0.9433 0.9463

SVM_AC 0.7886 0.6369 0.8956 0.7435 0.7831

kNN_LD 0.7549 0.7507 0.7602 0.7542 0.7556

SVM_LD 0.804 0.6735 0.9174 0.7754 0.805

NDDs_APAAC 0.898 0.9093 0.8907 0.8993 0.8977

EnsDNN 0.9372 0.9255 0.9531 0.9388 0.938

The highest score of each evaluation criteria is emphasized in bold.

TABLE 3 | PD with various methods.

Methods Accuracy Recall Precision F1 AUC

EnsAmDNN 0.895 0.8568 0.9275 0.8903 0.8951

SVM_AC 0.797 0.62 0.9373 0.7444 0.7904

kNN_LD 0.8057 0.8042 0.7906 0.7958 0.8064

SVM_LD 0.8315 0.7337 0.9084 0.8108 0.831

NDDs_APAAC 0.8773 0.8247 0.9058 0.8627 0.8906

EnsDNN 0.8917 0.8433 0.9311 0.8846 0.8915

The highest score of each evaluation criteria is emphasized in bold.

TABLE 4 | Cancer with various methods.

Methods Accuracy Recall Precision F1 AUC

EnsAmDNN 0.8502 0.8062 0.8863 0.8436 0.8508

SVM_AC 0.6524 0.4848 0.7347 0.5811 0.6545

kNN_LD 0.6475 0.6761 0.6202 0.6458 0.6471

SVM_LD 0.6673 0.5591 0.715 0.6263 0.6681

NDDs_APAAC 0.7551 0.7224 0.7764 0.7474 0.7555

EnsDNN 0.8008 0.7549 0.8362 0.7925 0.802

The highest score of each evaluation criteria is emphasized in bold.

the amino acid group “1231232231133232131131311133133”
so that the sub-sequence contains 9 “1”, 7 “2,” and 10 “3.”For
feature C, 9/(9 + 7 + 10) = 0.3461, 7/(9 + 7 + 10) = 0.2693,
10/(9+ 7+ 10)= 0.3846; for feature T, there are 2 cases that “1”
is converted to “2” or “2” is converted to “1,” then 2/25 = 0.08;
similarly, transitions between “3” and “1” as well as “2” and “3”
are 3/25= 0.12, 6/25= 0.24, respectively; for feature D, there are
nine “1”s, then the D descriptor for 1 is 1/26= 0.0384, [0.25∗9+
0.5]/26 = 0.0769, [0.5∗9 + 0.5]/26=0.1923, [0.75∗9 + 0.5]/26 =
0.2692, [1∗9+ 0.5]/26= 0.3462.

Pseudo Amino Acid Composition (PseAAC)

Technique
Tian et al. (2019) used a sequence encoding technique based on
pseudo amino, that is, PseAAC. Given a protein sequence P with
L amino acid residues:

S1S2S3S4.......SL

where Si represents the ith residue of the protein P, 1≤i≤L.
According to the PseAAC technique, the protein P can be

formulated as

P = [x1, x2, ..., x20, x21, ..., x20+λ]
T , (λ < L) (2)

where the 20+ λ components are given by

xk =





fk
20∑
i=1

fi+ω
λ∑
j=1
θj

, (1 ≤ k ≤ 20)

ωθk−20
20∑
i=1

fi+ω
λ∑
j=1
θj

, (21 ≤ k ≤ 20+ λ)
(3)

TABLE 5 | Cancer with various methods.

Methods Accuracy Recall Precision F1 AUC

EnsAmDNN 0.907 0.8523 0.96 0.9018 0.9088

SVM_AC 0.7356 0.6316 0.806 0.7037 0.7371

kNN_LD 0.7671 0.7246 0.7934 0.7565 0.7675

SVM_LD 0.7819 0.7545 0.7962 0.774 0.7816

NDDs_APAAC 0.8454 0.8326 0.837 0.8339 0.8446

EnsDNN 0.9039 0.8747 0.9252 0.899 0.9034

The highest score of each evaluation criteria is emphasized in bold.

TABLE 6 | Diabetes with various methods.

Methods Accuracy Recall Precision F1 AUC

EnsAmDNN 0.8333 0.871 0.7941 0.8308 0.8355

SVM_AC 0.7891 0.6667 0.7941 0.7128 0.7819

kNN_LD 0.7568 0.8571 0.75 0.8 0.7411

SVM_LD 0.7813 0.8269 0.7361 0.7742 0.7885

NDDs_APAAC 0.803 0.9118 0.7561 0.8267 0.7996

EnsDNN 0.8030 0.7576 0.8333 0.7937 0.8030

The highest score of each evaluation criteria is emphasized in bold.
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In Equation (3), fk(k = 1, 2, . . . , 20) are the normalized
occurrence frequencies of 20 amino acids in protein P; ω is
the weighting factor set to 0.05 in general work; and θj(j =
1, 2, . . . , λ) denotes the order relationship between two residues
that are j residues apart, which is shown as follows:

θj =
1

L− j

L−j∑

i=1
Ji,i+j(j < L) (4)

Ji,i+j =
1

3

3∑

p=1

[
Hp(Ai+j)−Hp(Ai)

]
(5)

where Jij denotes the order relationship function between amino
acid Ai and Aj, Hp(Ai) denotes the pth property of Ai. H1(Ai),
H2(Ai) and H3(Ai) are the hydrophobicity value, hydrophilicity
value and side-chain mass for the amino acid, respectively. This
coding method contains more sequence characteristics because it
considers not only the physicochemical properties of the protein
but also the order information of sequences.

MATERIALS AND METHODS

Data Sets
We collect the dataset information of Parkinson’s disease (PD),
Alzheimer’s disease (AD), cancer, cardiac and diabetes, whose
interactive information is from IntAct database (Kerrien et al.,
2007) and sequence information from Uniprot (Bairoch et al.,
2004). We are concerned about positive-negative selection in
our work. For the positive set, proteins and protein pairs
that contain less than 50 amino acids and 40% of sequence
identity are removed to eliminate the variance caused by minor
bias proteins to the model. The negative set was obtained by
pairing proteins whose subcellular localization is different (Guo
et al., 2008) or GO Cellular Component (CC) and Biological
Process (BP) ontology with experimental evidence codes (Muley
and Ranjan, 2012). The subcellular location information on
the proteins is extracted from Uniprot. According to this
information, a protein can be divided into several types of
localization cytoplasm, nucleus, mitochondrion, endoplasmic
reticulum, Golgi apparatus, peroxisome and vacuole. The way to
construct negative set must meet the following requirements: (1)
the non-interacting pairs cannot appear in the positive data set;
(2) the contribution of proteins in the negative set should be as

FIGURE 6 | Comparison of evaluation indexes of each basic model and ensemble model with AD data set.
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harmonious as possible. In our work, the ratio between positive
and negative set is 1:1, where the negative sets are randomly
chosen from non-interactive pairs.

Finally, we have five independent PPI datasets: Parkinson’s
disease (PD) (4,127 interacting pairs and 4,127 non-interacting
pairs), Alzheimer disease (AD) (4,096 interacting pairs and 4,096
non-interacting pairs), Cancer (6,352 interacting pairs and 6,352
non-interacting pairs), Cardiac (2,663 interacting pairs and 2,663
non-interacting pairs) and Diabetes (163 interacting pairs and
163 non-interacting pairs).

Evaluation Criteria
The following metrics are taken into account to perform
evaluation: Overall Prediction Accuracy, Recall, Precision, F1
score values, andArea under the ROCCurve (AUC) (Zhang et al.,
2019a). The first four metrics are defined as follows:

Accuracy = TP+ TN

TP+ TN+ FP+ FN
(6)

Recall = TP

TP+ FN
(7)

Precision = TP

TP+ FP
(8)

F1 =
2TP

2TP+ FP+ FN
(9)

where TP (true positive) is the number of true interacting pairs
found in the positive data set, TN (true negative) is the number
of true non-interacting pairs with correct prediction, FP (false
positive) is the number of the predicted interacting pairs not
found in the positive data set, and FN (false negative) is the
number of the true interacting pairs with false prediction.

Ensemble Deep Neural Networks
This section describes EnAmDNN model that predicts PPI
based on protein sequences, which consists of the input module,
the convolution module, the attention mechanism module,
the DNN module and the integration module. Each protein
sequence is encoded, by the input module, through the protein
representation techniques, as a vector, whose feature is extracted
by the convolution module. Then, the internal link in the protein
pair is detected through the attention module, and then the
analyzed protein pair is provided to 16 dependent learners.
After the training is completed, these learners will be integrated

FIGURE 7 | Comparison of evaluation indexes of each basic model and ensemble model with Cancer data set.
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through a two-layer hidden layer neural network. The working
process of an EnAmDNN is shown as Figure 3.

Deep Convolutional Module
The convolution module is a batch of normalized layers, a
stack of convolutional layers and activation layers, which can
automatically extract features of vectorized protein sequences. In
our model, the output of the convolution module is calculated by
an expression that starts with a convolution layer and ends with
a convolution layer:

Int+1 = RELU
(
Batchβ ,δ (Convλ (Int))

)
(10)

Out = Convγ (Inn) (11)

Repeat In n times and enter the result Inn into Equation
11. Where Out is the output vector, In is the input vector
and β, γ, δ, λ are the parameters of batch normalization and
convolution layers.

The convolution layer searches the sequences according
to their input orders and outputs the corresponding features;
the batch normalization layer takes in the feature vectors
and normalizes their mean values and the variances;
ReLU layer takes in the normalized vectors and introduces
non-linearity to achieve complex function approximation.

Then the above processes repeat n times to obtain the
feature vector.

Attention Module
Convolution layer can automatically learn potential features from
input sequences, but only a small part of these potential features
are very important in PPI. In our model, we use the multi-
attention mechanism to adjust the weight of the input sequences
to further emphasize the relatively crucial features. Applying
the attention multiple times may learn more important features
than single attention and allowing the model to learn relevant
information in different representation subspaces (Vaswani et al.,
2017). It can be understood that attention selectively selects
a small amount of important information that is beneficial
to PPI from a large amount of information and focuses
on important information, ignoring most of the insignificant
information. We choose the mechanism of multiple attention
rather than directly connecting the two protein eigenvectors to
increase the exploration of protein pairs and further use the
indirect relationship between residues to obtain more accurate
information. The Multi-head attention calculates the output
based on the query and a set of key-value pairs, where Q, K, V
denote query, key, and value respectively. The specific structure
is shown in Figure 4:

FIGURE 8 | Comparison of evaluation indexes of each basic model and ensemble model with Cardiac data set.
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Query, key and value go through a linear transformation first,
and then enter them into scaled dot-Product attention. At this
time, the attention calculation formula is as follows:

Attention(Q,K,V) = softmax(
QK ′√
dk

)V (12)

Where
√
d is scaling factor. The core of the Multi-head attention

is employing the above attention multiple times, and one time
attention means one head. Suppose the Multi-head attention
needs to be done h times to generate h heads, the Atthead can be
calculated as follows:

Attheadi(Q,K,V) = Attention(QWQ
i ,KW

K
i VW

V
i ), 1 < i ≤ h

(13)

where W
Q
i ,W

K
i ,W

V
i are parameter matrices. Finally,

these heads are concatenated and once again linearly
transformed by

MultiHead(Q,K,V) = Linear(Concat(Atthead1, ...,Attheadh)W
µ)

(14)

In order to keep the invariance of features, we introduce average
pooling and maximum pooling to reduce the errors caused
by model parameters and retain information of global and
local features.

newMultiHead(Q,K,V)
= Concat(AvgPool(MatMul(MultiHead(Q,K,V),Q)),
MaxPool(MatMul(MultiHead(Q,K,V),Q)))

(15)

where AvgPool is the function of average pooling andMaxPool is
the function of maximum pooling.

For a protein pair (P1, P2), it is expressed as S1, S2 respectively
after convolution layer.We use themerge layer to fuse the protein
pairs that are redistributed by the attention mechanism. The
calculation formula of the merge layer is as follows:

S1
′ = newMultiHead(S1, S2, S1),

S2
′ = newMultiHead(S2, S1, S2) (16)

Merge(S1
′, S2
′) = Concat(

S1
′ · S2′∣∣S1′
∣∣×

∣∣S2′
∣∣ , S1

′AS2
′, S1
′, S2
′)(17)

where A is weight.

FIGURE 9 | Comparison of evaluation indexes of each basic model and ensemble model with PD data set.
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The basic model of our work is mainly constructed by 3.3.1
the deep convolution module, 3.3.2 the attention mechanism
module and the deep neural network. The specific basic learning
algorithm is shown in algorithm 1.

Algorithm 1: Basic learning algorithm based on multi-head
attention with pooling

Input:interaction data D = {xi, yi}ni=1, encoded protein sequence
pairxi = (si1, si2)
Return: basic learning algorithm parameters W, b

1: for i= 1 to n:
2: S1, S2 ← xi(si1, si2) represent encoded protein p1 and protein

p2
3: for iter = 1 to t:
4: S1,iter+1 = RELU

(
Batchβ ,δ

(
Convλ

(
S1,iter

)))

5: S2,iter+1 = RELU
(
Batchβ ,δ

(
Convλ

(
S2,iter

)))

6: end for

7: S1 ← Convγ
(
S1,t
)

8: S2 ← Convγ
(
S2,t
)

9: calculate the importance value of single attention by

AttenheadiS1 = softmax

(
S1S2

′
√
dk

)
S1,

AttenheadiS2 = softmax

(
S2S1

′
√
dk

)
S2

10: connect multiple attentions by S*
1

=
MultiHead(S1, S2, S1),S*2 = MultiHead(S2, S1, S2)

11: Calculate new feature importance value of multi-head
attention with pooling by

S**1 = newMultiHead(S∗1 , S
∗
2 , S
∗
1),

S**2 = newMultiHead(S∗2 , S
∗
1 , S
∗
2)

12: merge the sequence feature pairs as the input of the network

by Concat(
S**1 ·S**2∣∣S**1
∣∣×
∣∣S**2

∣∣ , S
**
1 AS

**
2 , S

**
1 , S

**
2 )

13: output = softmax
(
W ·merge+ b

)

14: end for

15: ReturnW, b

Ensemble Strategy
Ensembles of independent deep neural networks can improve the
performance of a single network (Bairoch et al., 2004). In the
Otto group product classification challenge, the first one won
the championship by stacking 30 models. The model achieved
remarkable results, and we also adopted the stacking method of
ensemble learning in our work. Secondly, to predict the effect
better, the trainers of each primary model keep stability and
diversity as much as possible.

We modify the internal structure of the algorithm and learn
from different feature representations, which are two strategies
to maintain diversity and achieved improvement, so we also take

TABLE 7 | Comparison of EnAm-Con and EnAm-Sep.

Data sets EnsAC EnsLD EnsCT EnsPseAAC EnsCon EnAMDNN

AD 0.8502 0.9029 0.8949 0.7759 0.9338 0.9456

PD 0.8378 0.8788 0.8820 0.8059 0.9242 0.8951

Cancer 0.7638 0.7911 0.7889 0.6928 0.8468 0.8508

Cardiac 0.8201 0.8789 0.8888 0.7455 0.9020 0.9088

Diabetes 0.7516 0.7576 0.7917 0.6921 0.8459 0.8787

The highest score of each evaluation criteria is emphasized in bold.

the same measures (Zhang et al., 2019a). In practice, we choose
four feature representations to quantify the characteristics of each
protein and set different parameters of DNNS according to the
characteristics of each representation. Then we use the stacking
method to combines with five-fold cross validation, the primary
learners are trained from the initial data set, and a new data set
is generated by the primary learners for training the secondary
learner. It means the output of each primary trainer is input
as an example to the secondary trainer for fusion output and
PPI prediction. Here, the secondary trainer is composed of deep
neural networks. Its structure is shown in Figure 5 and ensemble
strategy is described in algorithm 2.

RESULT

Comparing the Prediction Performance
With Other Methods
All the experiment were carried out on a computer with
CentOs, Cuda version 10.1.243, CuDnn version 7.0 and software
environment python3.7+keras2.0+torch1.3.

In order to evaluate the performance of EnAmDNN, we
compared it with the approaches proposed by Guo et al. (2008),
Zhou et al. (2011), Du et al. (2017b), Yang et al. (2010), Zhang
et al. (2019a) emphasized the highest score of each evaluation
criteria in bold and present the results in Tables 2–6, which
separately utilize AC, LD, CT, APAAC, PseAAC to encode
amino acid sequence, and predicted PPI with SVM, k-nearest
neighbor (kNN) or DNNs, all of which share the same training
sets and the same testing sets. It can be seen from Table 2

that EnAmDNN generally outperforms these predictors, where
EnAmDNN achieved optimal prediction performance in all the
datasets, especially in AD, with an accuracy of 94.67%, and a
recall rate of 93.29%. The accuracy is 95.41%, F1 is 94.33%,
and AUC is 94.63%. This is because, in EnAmDNN, feature
representations in protein sequences are coordinated, and new
features are obtained through different classifiers. Compared
with the recent EnsDNN model, in five independent data sets,
the AUC index DnAmDNN has increased by 0.89, 0.41, 0.61, 0.6,
3.90%, and the accuracy of PPI prediction are relatively high. The
EnAmDNN model takes advantage of the multi- head attention
mechanism, that is, extracts the internal links of the PPI, thereby
improving the performance of the model.

To further demonstrate the effect of ensemble strategy, five-
fold cross-validation is employed to improve the reliability of the
results. Figure 6 shows the performance of each basic learner,
where it can be observed, taking AD dataset as an example,
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Algorithm 2: EAM algorithm

Input: interaction data; basic learning algorithmψ1,ψ2,. . . ,ψM; L
layers; learning rate η; Max iterations and iteration threshold ε;
class k∈ {0, 1}
Return: ensemble strategy parametersW, b

1: initialize weight matrixW and Bias b, iter as 1
2: extract protein sequence from uniprot
3: vectorize protein sequence by AC, LD, CT, PseAAC
4: divide training data TrD = {Di}Ki=1 = {xi, yi}ni=1 and testing

data TeD
5: form= 1 toM do
6: for k= 1 to K do
7: train hm = φm(D̄k) with D̄k

8: predict Dk and require predicted value Pmk = hm(Dk)
9: predict T and and require predicted value Tk = hm(T)
10: end for

11: splicing predicted value of training data through mth basic
model by Pm = (Pm1, Pm2, ..., PmK)T

12: splicing predicted value of testing data through mth basic
model by Tm = (T1 + T2 + ...+ TK)/K

13: end for

14: construct new training data by
15: and construct new testing data by newT = (T1,T2, ...,TM)
16: Repeat:

17: iter+1
18: for i= 1 to n:
19: set a(1) = x∗i
20: for l=2 to L: al = σ (W lal−1 + bl)
21: calculate probability pk divided into class k

22: calculate lossL = −
1∑

k=0
yL
k
· log(pk)

22: for l=2 to L:
23: end for

24: for l=2 to L:
25: ∇W l = µ

n∑
i=1

lossl(al−1)
T
,∇bl = µ

n∑
i=1

lossl

26: W l ←W l −∇W l, bl ← bl −∇bl
27: end for

27: Until ∇W,∇b < ε

28: ReturnW, b

that each basic learner, associated with five-fold cross-validation
method, shows fairish prediction performance, which is reflected
on all the evaluation criteria Accuracy, Recall, Precision, F1,
AUC. The result indicates that our model extracts and trains the
features produced by basic learners and that the shortcoming
of each basic learner is overcome to a certain degree. It’s also
confirmed with PD, Cardiac and Cancer in Figures 7–9.

Performance of PPI Prediction
To further study the effectiveness of the ensemble strategy, we
designed two different network architectures: (a) concatenating
four feature representations (AC, LD, CT, PseAAC) as the
input to the first layer classifiers (namely EnAm-Con) and (b)

separately taking one feature representation as the input to
the first layer classifiers (namely EnAm-Sep including EnsAC,
EnsLD, EnsCT, EnsPseAAC). EnAm-Con first concatenates four
feature representations and then integrated 12 trained DNNs
in the same way as EnAmDNN. For EnAm-Sep, we separately
trained 12-model DNNs based AC, LD, CT, and PseAAC, and
integrated these DNNs in the same way as EnAmDNN. The
performance of EnAm-Con and EnAm-Sep which emphasized
in bold are also listed in Table 7 where it can be observed that
the LD method performs better than AC and PseAAC method.
The LD method of AUC value obtained from the first four data
sets are 6.2, 4.89, 3.57, 7.17, 0.8 and are 16.37, 9.05, 14.19, 17.89,
9.46% higher than AC and PseAAC methods separately, which is
because LD can encode more interaction information. It can be
seen from Table 6 that EnAm-Con performs better than EnAm-
Sep, proving that concatenating different feature representations
as new feature vector can improve the accuracy of the ensemble
strategy. It can be concluded that these four representations
are complementary to each other and our ensemble strategy is
effective and feasible.

The number of basic learners greatly influences the overall
prediction performance, where the efficiency of the model
continues to grow as the number of learners increases, to a point
that the performance tends to be stable. To evaluate the influence
of the EnAmDNN, we assign different numbers of DNNs to
protein represent technique, such as 1, 3, 5, 7, 9. The result is
presented in Figure 10, where it can be observed that the AUC
of the EnAmDNN tends to be stable when the number reaches
16. The efficiency of the EnAmDNN may also be affected by the
performance of each basic learner, for which we prepare 16 basic
learners, iterate them for 600 times, and combine them through
deep neural network. The result is shown as follows. It can be
seen that the prediction performance improves as the iteration
continues and the model tends to remain stable at the point
of 200.

Table 8 reports the process running time of EnAmDNN based
on fold cross-validation with 16 basic learners and iterate each
basic learner for 600 times.

Meanwhile, to further investigate the contribution of using
an ensemble predictor with fold cross-validation, we integrated
the simplified EnAmDNN, which don’t use fold cross-validation.
To reduce the impact of data dependency in the experiment,
we constructed data sets on Cardiac based on Muley and
Ranjan (2012) to observe the performance of proposed model.
From Table 9, we can see that EnAmDNN achieves competent
prediction performance with an average accuracy of 85.66%,
precision of 89.47%, F1 of 85.16%, and AUC of 85.76. It has
better performance than simplified EnAmDNN across evaluation
metrics. The prediction results show that EnAmDNN with fold
cross-validation is capable of predicting PPIs.

CONCLUSIONS

In this paper, we propose an ensemble deep learning framework
(EnAmDNN) with an attention mechanism that aims to predict
protein interaction networks. EnAmDNN firstly extracts the
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FIGURE 10 | (A) The influence of the number of basic learners on the EnAmDNN. It can be observed that the AUC of the EnAmDNN tends to be stable when the

number reaches 16. (B) The influence of the number of training iterations of the basic learners on the EnAmDNN. It can be seen that the model tends to remain stable

at the point of 200.

TABLE 8 | Running time of EnAmDNN based on fold cross-validation.

Date sets AD PD Cancer Cardiac Diabetes

Time (s) 1,273,589.80 835,292.29 2,618,297.11 1,145,029.32 101,784.60

TABLE 9 | Comparison of EnAmDNN and simplified EnAmDNN.

Models Accuracy Recall Precision F1 AUC

EnAmDNN 0.8749 0.8138 0.9337 0.8688 0.8765

Simplified EnAmDNN 0.8566 0.8142 0.8947 0.8516 0.8576

feature information of protein sequences through AC, LD, CT,
and PseAAC, and projects the information into various feature
spaces to segment information of AC, LD, CT, PseAAC amino
acid from different perspective; then the multi-head attention
mechanism is adopted to capture the internal connections of
interactions; each technique is assigned 4 independent DNNs
with different configurations, resulting in 16 basic learners,
and finally combined by deep neural network. To further
evaluate the prediction performance of EnAmDNN, we apply
it to 5 independent data sets, where improvements of various
degrees can be observed for indicators AUC, ACC, Recall,
Precision, F1, from which it can be concluded that EnAmDNN
learns better than previous approaches from different DNNs
and representations.
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The study of disease-relevant gene modules is one of the main methods to discover

disease pathway and potential drug targets. Recent studies have found that most

disease proteins tend to form many separate connected components and scatter across

the protein-protein interaction network. However, most of the research on discovering

disease modules are biased toward well-studied seed genes, which tend to extend

seed genes into a single connected subnetwork. In this paper, we propose N2V-HC, an

algorithm framework aiming to unbiasedly discover the scattered disease modules based

on deep representation learning of integratedmulti-layer biological networks. Our method

first predicts disease associated genes based on summary data of Genome-wide

Association Studies (GWAS) and expression Quantitative Trait Loci (eQTL) studies, and

generates an integrated network on the basis of human interactome. The features of

nodes in the network are then extracted by deep representation learning. Hierarchical

clustering with dynamic tree cut methods are applied to discover the modules that are

enriched with disease associated genes. The evaluation on real networks and simulated

networks show that N2V-HC performs better than existing methods in network module

discovery. Case studies on Parkinson’s disease and Alzheimer’s disease, show that

N2V-HC can be used to discover biological meaningful modules related to the pathways

underlying complex diseases.

Keywords: disease module identification, GWAS, eQTL, node2vec, hierarchical clustering

1. INTRODUCTION

The genome-wide association studies (GWAS) have successfully identified vast of variants
associated with complex diseases (Visscher et al., 2017). However, the gene targets responsible for
GWAS signals largely remain elusive, which hinders the way of illuminatingmolecular mechanisms
of complex diseases and developing novel drug targets (Gallagher and Chen-Plotkin, 2018; Cheng
et al., 2019b). The challenge of transforming GWAS signals into clinical useful gene targets is
mainly due to the fact that most susceptibility variants locate in non-coding regions and thus
do not alter the protein sequence directly. Emerging evidence has shown that regulation of
gene expression is important mechanism associated with disease susceptibility variants (Westra
et al., 2013; GTEx Consortium, 2017; Watanabe et al., 2017). Thus, to understand the molecular
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mechanism underlying GWAS signals, there is an urgent need
to investigate the genes regulated by disease-associated variants
and gene modules which could be disturbed by these potential
disease genes.

The development of genome-wide assay of genetic variants
and gene expressions, makes it possible to systematically associate
genetic variations with quantitive levels of gene expression in
a population, which is known as expression quantitative trait
loci (eQTL) analysis (GTEx Consortium, 2017). Advances in
eQTL studies enable rapid identification of potential casual
genes (i.e., eQTL regulated genes, egenes) genome-widely in
relevant tissues of complex diseases (Fairfax et al., 2012; Cheng
et al., 2018b; Dong et al., 2018; Wang et al., 2019a,b). The
public available eQTL and other molecular signatures have
become useful resources to nominate candidate casual genes of
complex diseases (GTEx Consortium, 2017; Cheng et al., 2019a,
2020). However, the detailed understanding of the molecular
mechanisms through which these egenes jointly affect disease
phenotypes remains largely unclear, and their discovery is a
challenging computational task (Cheng et al., 2019b; Peng et al.,
2020a). Instead of analyzing binary relationships between single
SNP and single gene, network-based analyses provide valuable
insights into the higher-order structure of gene communities or
pathways that those potential disease genes may work together
in the etiology of complex diseases (Fagny et al., 2017; Cheng
et al., 2019b; Peng et al., 2020b; Wang et al., 2020). And
advances in deep learning and graph representation learning
technologies improve the accuracy of identifying disease related
biomarkers (Peng et al., 2019a,b). In this paper, our purpose is to
derive disease related modules from an integrated network with
multi-layer information including human interactome (mainly
protein-protein interactions, PPI), and summaries of GWAS and
eQTL studies. To aid this purpose, we present a novel algorithm
named N2V-HC, which could learn deep representing features
of nodes in the integrated molecular network, and unbiasedly
detect gene communities enriched with potential disease genes
(i.e., egenes in the context).

The identification of disease modules is driven by the primary
observation that disease-related proteins tend to interact closely
in biological network (Agrawal et al., 2018). In recent years,
many studies have applied network-based methodologies to
predict disease modules (Califano et al., 2012; Mäkinen et al.,
2014; Ghiassian et al., 2015; Sharma et al., 2015; Calabrese
et al., 2017). However, there are several challenges in current
disease modules detection methods: (1) most methods rely
on seed genes to expand the connected module. They adapt
“seed-extend” strategy, starting from the well-studied disease
genes and expanding the module by adding directly connected
neighborhood. However, some complex diseases have no or only
a few known disease genes, such as neurodegenerative disorders
(e.g., Parkinson’s disease, Alzheimer’s disease etc.). This makes
the process biased toward well-studied disease genes, and the
discovery ability is largely limited by selected seed genes. (2)
Recent studies have shown that most disease pathways do not
correspond to single well-connected component in PPI network.
Instead, disease proteins tend to form many separate connected
components and scatter across the network (Agrawal et al., 2018).

However, current methods tend to extend the seed genes into
a large connected component or sub-network which might be
less sufficient for discovering global disease modules. (3) The
principle of node similarity measurement in current methods
is mainly based on homophily, while ignoring the structural
equivalence. Under the homophily hypothesis, nodes in the
same module have higher similarity while under the structural
equivalence hypothesis, nodes that have similar structural roles in
network also have higher similarity. Studies have shown that the
structural equivalence is also an important feature in measuring
node similarity (Perozzi et al., 2014; Grover and Leskovec, 2016),
which should also be considered.

To solve these challenges, our proposed method, N2V-HC,
first predicts the disease genes based on genetic associations
from summaries of GWAS and eQTL studies and integrates
eQTL SNP (eSNP), eQTL regulated gene (egene) with human
interactome network. Second, we use node2vec (Grover and
Leskovec, 2016), an advanced network embedding method, to
learn node features through a biased random walk process.
The embedding process considers both the homophily and
structural equivalence of nodes in the network. Third, nodes are
clustered based on their embedding features using an iterative
hierarchical clustering strategy. Modules are determined by a
dynamic tree-cut strategy, and candidate disease modules are
prioritized by evaluating whether the module is enriched for
predicted disease genes. To evaluate the clustering performance
of N2V-HC, we compared it with several state-of-the-art graph
clustering methods including Markov clustering (MCL) (Enright
et al., 2002), affinity propagation (AP) (Frey and Dueck, 2007),
spectral clustering (Shi and Malik, 2000), mCODE (Bader and
Hogue, 2003), GLay (Su et al., 2010), and hierarchical clustering
on several real-world networks with ground truth labels, and
also on multiple simulated networks. The experimental results
showed that our method has better clustering performance
than compared methods. We also performed case studies on
Parkinson’s disease (PD) and Alzheimer’s disease (AD), and
found biological meaningful modules associated with PD and
AD, which might help to explain the pathology of diseases.

2. METHODS

2.1. Overview
In order to pinpoint key disease related modules, we propose
a novel algorithm named N2V-HC, which could learn global
connectivity features for nodes in an integrated molecular
network, and automatically detect gene communities enriched
with potential disease genes. The N2V-HC algorithm mainly
consists of three steps as shown in Figure 1. Step 1: construction
of integrated complex network. The integrated network is
constructed based on known experimental molecular interaction
networks, such as PPI network, and additional edges are added
based on disease relevant signals from GWAS and the eQTL
links between GWAS signals to network genes (section 2.2).
Step 2: representation learning in network. N2V-HC learns
features or embeddings for each node in the network by using
node2vec (section 2.3). Step 3: identification of disease modules.
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FIGURE 1 | Framework of N2V-HC algorithm. The left-most panel shows input data sources of the integrated network: summary statistics of GWAS and eQTL

studies, and PPI network or other types of networks. The edge width represents weight on edge. Representation learning step extracts global connectivity features for

N nodes of the integrated network by using a biased random walk technology and the Skip-gram model. Each feature is a numeric vector of d dimension.

Unsupervised hierarchical clustering method and dynamic tree-cut method are applied in an iterative module convergence process. The circle with red dash line

represents the disease module which is significantly enriched with egenes.

Unsupervised hierarchical clustering method and dynamic tree-
cut method are applied to partition network nodes into modules,
and an iterative module convergence strategy is used. The disease
module is finally prioritized by enrichment performance (section
2.4). Other methods are also detailed here (sections 2.5–2.7).

2.2. Construction of Integrated Complex
Network
We project the eQTLs significantly associated with specific
disease onto a gene interaction network, i.e., a PPI network in this
work, and generate an integrated biological complex network,
where disease modules are discovered. To make the network
construction proceduresmore clear, we use susceptibility variants
of Parkinson’s disease (PD) and Alzheimer’s disease (AD) as cases
to illustrate the whole process.

2.2.1. GWAS Data Preparation
First, we extract GWAS index SNPs of PD and AD from the
most recent and largest GWAS papers conducted by Nalls et al.
(2019) and Jansen et al. (2019). Second, we calculate proxy SNPs
in linkage disequilibrium (LD) with index SNPs by setting LD
R2 ≥ 0.6 using EUR population of 1000G genome reference
panel (Genomes Project Consortium, 2015). Proxy SNPs are
derived separately for PD and AD using SNiPA platform (https://
snipa.helmholtz-muenchen.de/snipa3/?task=proxy_search), and
other parameters are set in default.

2.2.2. eQTL Data Preparation
As eQTL and gene expression are tissue-specific and PD and
AD are also relevant to brain tissue, we first download eQTL
summaries of brain frontal cortex from GTEx portal (https://
gtexportal.org/). Then, we extract associations involving those
GWAS-derived SNPs (index SNPs and their proxies). FDR is
calculated based on the nominal P-values of the extracted eQTL
associations. We use FDR ≤ 0.05 as cutoff to determine
significant eQTL-egene associations.

2.2.3. Human Interactome Preparation
First, we use the molecular physical interaction network
complied by Menche et al. (2015), consisting of 141,296 physical
interactions and 13,460 proteins. The edges of the network are
experimentally documented in human cells, including protein-
protein and regulatory interactions, metabolic pathway, and
kinase-substrate interactions. Since some genes are not active in
human brain, we filtered out 2,736 genes with low expression
levels in frontal cortex based on the gene expression profiles in
GTEx portal.

2.2.4. Network Integration
We first projected the significant eQTL-egene pairs onto the
human interactome. Since the input proxy SNPs can be tagged
by index SNPs, we used the corresponding index SNPs to replace
the proxy SNPs in the merged network.

2.3. Representation Learning of Network
Structure
Node2vec (Grover and Leskovec, 2016) is applied to learn the
global features or representations of nodes in the network.
Node2vec is a network embedding method based on random
walk, which has been successfully applied in bioinformatics
applications (Grover and Leskovec, 2016; Cheng et al., 2018a).
It learns node representations following two principles:
nodes in the same community have similar embeddings (i.e.,
homophily); and nodes sharing similar structure roles have
similar embeddings (i.e., structural equivalency).

Node2vec extends the Skip-gram model to networks. Given a
graphG = (V ,E), it learns the representation Ezu = f (u) of node u
by optimizing the objective function given by Equation 1, where
NS(u) represents network neighborhood of node u generated by a
sampling strategy S, and f :V → Rn×d, where d is the dimension
of the embedding space (i.e., the feature dimension of nodes). By
making assumptions of conditional independence and symmetry
of feature space, the objective function is further transformed into
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Equation (2).

max
f

∑

u∈V
logP(NS(u)|f (u)) (1)

max
f

∑

u∈V
{− log [

∑

v∈V
exp(f (u) · f (v))]+

∑

ni∈NS(u)

f (ni) · f (u)} (2)

In order to obtain the node neighborhood NS(u), node2vec uses
a biased random walk method, which can perform flexible trade-
offs between DFS and BFS. It calculates the node neighborhood
by simulating a random walk of length l. Suppose the current
position is node v, the previous position is node t, and the next
step is to walk to node x. To determine the next node x, the
transition probability is designed as shown in Equation (3), where
αpq(t, x) is given by Equation (4) and dtx = {0, 1, 2} represents
the shortest path distance from node t to node x, and the p and
q parameters constrain the direction of random walk (that is, a
large p indicates closer to DFS, while a large q indicates closer to
BFS). Let ci represents the walker in step i, then the probability
of visiting node x is given by Equation (5). Among them, Z
represents a normalized constant, that is, Z =

∑
(v,x)∈E πvx.

πvx = αpq(t, x) · wvx (3)

αpq(t, x) =





1

p
, dtx = 0;

1, dtx = 1;
1

q
, dtx = 2.

(4)

P(ci = x|ci−1 = v) =
{ πvx

Z
, (v, x) ∈ E;

0, othersize.
(5)

2.4. Identification of Disease Modules
2.4.1. Hierarchical Clustering and Dynamic

Dendrogram-Cut
After learning the global connectivity features for each node in
the network, we perform bottom-up hierarchical clustering to
distinct modules. The hierarchical clustering initially treats each
node as a cluster, and then iteratively merges the two clusters
that have best similarity until the last one. Typically, N2V-HC
uses Euclidean distance and average linkage method by default
to construct the dendrogram. Then we apply Dynamic Hybrid
tree-cut method on the dendrogram to obtain a flexible number
of clusters.

The Dynamic Hybrid tree-cut method adopts bottom-up
merging strategy (Langfeldera et al., 2008). Let N be the total
number of nodes in a cluster, and N0 be the minimum number
of nodes in a cluster. The cluster core is defined as the lowest Nc

nodes in the cluster, where Nc = min{int(N0

2
+

√
N − N0

2
),N}.

The core scatter d̄ is the average dissimilarity of the node pairs in
the cluster core. The cluster gap g is the difference between d̄ and
the height of the cluster. The first step of the “Dynamic Hybrid”
method is to merge the nodes/branches in the dendrogram

FIGURE 2 | Steps of disease module identification.

bottom to up to get initial clusters. These clusters should satisfy
the following four conditions: (1) N > N0; (2) the height of
the cluster is less than the maximum tree height hmax; (3) the
cluster’s core scatter d̄ < dmax; (4) The cluster gap g > gmin.
(N0, hmax, dmax, gmin) can be specified by the user. This will leave
out some single nodes or tiny clusters (cluster that meet the
above conditions except N > N0), which are called outliers. The
second step is to merge these outlier into the clusters generated in
the first step. For these outliers, the outlier-cluster dissimilarity
is calculated one by one, and is classified into the cluster most
similar to it (Langfeldera et al., 2008).

2.4.2. Iterative Module Selection Process
After global clustering, the initial clusters are generated, some
of which may be enriched with disease associated egenes, while
other may not consist of any egenes. To boil down the number
of candidate modules, we filter out modules that do not consist
of any disease relevant egenes. The genes in left modules are
then extracted as a subnetwork, and we repeat the clustering
and dynamic dendrogram-cut processes. These steps will be
iteratively performed until the modules are stable, which means
current clustering results stay same with last clustering results.
After the process is convergent, all left modules consist of disease
relevant egenes, which are the candidate disease modules. The
iterative module selection process is shown in Figure 2.

2.4.3. Prioritizing Disease Modules by Enrichment

Analysis
We then test whether egenes are enriched in the candidate disease
modules. The enrichment analysis is performed by Fisher’s exact
test. All genes shown in the network with size n are used as
background genes, and are assigned to four cells of a two by two
contingency table, according to if a gene is in amodule or not, and
if it is a egene or not. For example, given a moduleM, suppose a
is the number of genes that are in module M and are egenes; b
represents the number of genes that are egenes but not inM; c is
number of genes in module M, but are not egenes; d represents
number of genes that are not egenes and not in module M, the
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fisher’s exact test P-value is given by the Equation 6:

P =
(a+b

a

)(c+d
c

)
( n
a+c

) (6)

2.5. Module Mapping
To evaluate the performance of module detection on ground
truth datasets or simulated datasets, it is essential to first match
the modules discovered by methods under evaluation with the
ground truth modules. We model this module mapping problem
by a classical task assignment algorithm. The task assignment
problem is a fundamental combinatorial optimization problem.
Suppose there are N agents and N tasks, each agent will be
assigned to perform a task, and there will be a cost generated
for each agent-task assignment, the object is to find the best
task assignment strategy to minimize the cost. In context of
the module mapping problem, our purpose is to find the best
bijection between predicted module set and ground truth module
set, which maximize the size of module intersections. In formula,
let the intersection matrix as

{
Si,j

}
N∗N , where si,j = 1 represents

the number of overlapping nodes between module i and module
j, and the binary matrix as

{
Mi,j

}
N∗N , where mi,j = 1 if and

only if module i is matched with module j, otherwise mi,j = 0.
To guarantee one-to-one correspondence, two conditions are
needed:

∑N
i=1mi,j = 1 and

∑N
j=1mi,j = 1. The objective is to

optimize the binarymatchingmatrix
{
Mi,j

}
N∗N whichmaximizes∑N

i=1

∑N
j=1 si,j ∗mi,j.

In addition, there is a common case that the number of
predicted modules is not equal to the module number in ground
truth. And this is an unbalanced task assignment problem.
As a solution, we manually add empty modules to the short
module sequence, to make sure the two module sequences have
same length. Then, the problem is transformed to balanced task
assignment problem, as described above.

2.6. Micro F1 Score
In binary classification problem, the F1 score is commonly
used performance indicator, as shown in Equation (7), where

precision = TP

TP + FP
, and recall = TP

TP + FN
.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(7)

The module detection is similar to multi-label classification
problem. To compare the module detection performance of
different methods on ground truth datasets, we use micro F1
score as the indicator. The micro F1 score is a variant of F1
score, as shown in Equation (8), where precisionMicro is defined in
Equation (9) and recallMicro is defined in Equation (10). Suppose
there are N predicted modules, the TPi, FPi, FNi in Equations (9)
and (10) represent the number of true positive nodes, false
positive nodes and false negative nodes in module i, respectively.

F1Micro =
2 ∗ recallMicro ∗ precisionMicro

recallMicro + precisionMicro
(8)

precisionMicro =
∑N

i=1 TPi∑N
i=1(TPi + FPi)

(9)

recallMicro =
∑N

i=1 TPi∑N
i=1(TPi + FNi)

(10)

2.7. Gene Set Enrichment Analysis
Gene enrichment analysis is performed by overlapping genes in a
module with Gene Ontology (GO) gene sets using GSEA with the
C2 and C5 collection of the MSigDB. Genes shown in candidate
disease modules are mapped onto MSigDB and are evaluated
by fisher’s exact test. The top 50 significantly enriched terms
are used.

3. RESULTS AND DISCUSSION

The accuracy of disease module detection in N2V-HC largely
depends on the unsupervised clustering process. In this section,
we first compared N2V-HCwith several classical graph clustering
methods, including Affinity propagation, GLay, MCL, Spectral
clustering, mCODE, and Hierarchical clustering on various types
of testing networks with labels of ground truth modules. Next, we
applied N2V-HC to Parkinson’s disease and Alzheimer’s disease
with PPI network, the latest GWAS summaries and brain eQTL
summaries. We found (1) our method significantly performs
better than compared methods; (2) most of the identified disease
modules correspond to core disease-relevant pathways, which
often comprise therapeutic targets.

3.1. Clustering Performance on Real-World
Networks
To evaluate the clustering performance of N2V-HC, we
compared it with several state-of-the-art graph clustering
methods, including Markov clustering (MCL) (Enright et al.,
2002), affinity propagation (AP) (Frey and Dueck, 2007),
spectral clustering (Shi and Malik, 2000), mCODE (Bader
and Hogue, 2003), GLay (Su et al., 2010), and hierarchical
clustering. Six real-world networks with various sizes,
densities, types (weighted/unweighted, directed/undirected)
and ground truth cluster labels were used as testing datasets,
including: Zachary’s karate club network (Zachary, 1977),
UKfaculty social network (Nepusz et al., 2008), Dolphin
Social Network (Lusseau et al., 2003), College football game
network (Girvan and Newman, 2002), US Political Books
network (Krebs, 2004), and Cora citation network (Fakhraei
et al., 2015). The six real-world networks are summarized in
Table 1.

To evaluate their performance, micro F1 score was chosen as
the indicator of performance (see section 2). We first map the
predicted modules with ground truth modules by maximizing
the overlap size of all modules (see section 2). Then, true positive
(TP), false positive (FP), true negative (TN) and false negative
(FN) number of nodes in each predicted module were calculated
and leveraged into the micro F1 score (see section 2). To be
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TABLE 1 | Summary of real-world network datasets.

Dataset #Nodes #Edges Density #Clusters Graph type References

Karate 34 78 1.4E-1 2 w, ud Zachary, 1977

Dolphins 62 159 8.4E-2 2 uw, ud Lusseau et al., 2003

UKfaculty 81 817 2.5E-1 4 w, ud Nepusz et al., 2008

Polbooks 105 441 8.1E-2 3 uw, ud Krebs, 2004

Football 115 613 9.4E-2 12 uw, ud Girvan and Newman, 2002

Cora 2,708 5,429 1.4E-3 7 uw, ud Fakhraei et al., 2015

w, weighted graph; uw, unweighted graph; ud, undirected graph.

TABLE 2 | Clustering performance on real-world networks.

Datasets AP GLay MCL SC HC mCODE N2V-HC (MMS,DS,NPC)

Karate 0.844 0.847 0.529 0.588 0.588 0.623 0.941 (10, 2, 2)

Dolphins 0.935 0.804 0.677 0.613 0.565 0.533 0.984 (10, 2, 2)

UKfaculty 0.494 0.889 0.951 0.370 0.333 0.397 0.963 (10, 2, 3)

Polbooks 0.609 0.816 0.838 0.400 0.438 0.451 0.848 (10, 2, 4)

Football 0.113 0.583 0.930 0.235 0.235 0.435 0.922 (5, 2, 11)

Cora 0.356 0.512 0.294 0.298 0.287 0.295 0.661 (100, 0, 6)

AP, affinity propagation; MCL, Markov cluster; SC, spectral clustering; HC, hierarchical clustering; MMS, minModuleSize; DS, DeepSplit; NPC, number of predicted clusters. Parameter

setting: MCL inflation factor setting: Karate 2.0, Dolphins 2.0, UKfaculty 2.5, Polbooks 2.1, Football 2.0, Cora 1.8. Parameters in AP, GLay, SC, HC, and mCODE were in default except

that cluster number was set to the ground truth if available. Bold Values indicate the best micro F1 scores.

noted, we fine-tuned the corresponding parameters of N2V-
HC and compared methods to make the number of predicted
modules close to the true module numbers. The experiment
results were summarized in Table 2. As we can see, our method
performs significantly better thanmost compared methods in the
six real-world networks.

As a case, we illustrated the clustering effect of N2V-HC
on Dolphins social network as shown in Figure 3. The original
Dolphins social network is shown on the left panel, with red
and blue colors representing two ground truth modules. The
right panel shows the hierarchical dendrogram constructed by
N2V-HC, where the leaf nodes represent the original dolphin
members in the network, and the two predicted modules are
also colored in red and blue. Only one node, with label “40,”
is wrongly classified into opposite module, which is colored in
yellow. However, we can see from the original network, the node
“40” actually appears at the border of both modules, and could be
arbitrarily classified.

3.2. Clustering Performance on Simulated
Networks
We then evaluated the performance of N2V-HC on simulated
networks in various scales. We used the network simulation tool
LFR-benchmark (Lancichinetti et al., 2008), to generate small-
to-large scale networks, with weighted and directed edges. The
character of simulated networks can be adjusted by function
LFR(N, k, maxk, muw, t1, t2), where N controls the number of
network nodes, k controls the average degree of the node, maxk
controls the maximum degree of the node, muw controls the
mixing parameter for the weight, t1 controls minus exponent

for the degree sequence, and t2 controls minus exponent for
the community size distribution. We set muw = 0.5, t1 = 2,
t2 = 1 in their default values. By setting different combination
of parameters N, k, and maxk, we generated five networks
in different scales (shown in Table 3). Then we run N2V-HC
and compared methods on these five networks, the resulting
micro F1 score is shown in Table 4. We can see that N2V-HC
still performs much better than compared methods in different
schema. With the network getting larger and more complex,
the performance of compared methods tend to dramatically
decline, while our method has better stability, indicating the
robustness of N2V-HC. Combining the above experiments, we
can conclude that N2V-HC can accurately extract the intrinsic
network modules, which enables the ability to predict disease-
relevant modules.

3.3. Case Studies on Parkinson’s Disease
and Alzheimer’s Disease
Alzheimer’s disease and Parkinson’s disease are the top two
neurodegenerative disorders, whose etiological mechanisms are
still unclear. To predict the disease-relevant modules, we first
constructed the networks integrated from GWAS, eQTL data,
and human interactome by following steps (see section 2):
(1) 90 and 32 independent GWAS index SNPs were obtained
from the latest largest-scale to date GWAS of PD (Nalls
et al., 2019) and AD (Jansen et al., 2019), respectively. (2)
7,194 and 1,270 proxy SNPs were derived separately based on
1000G EUR population for PD and AD. (3) eQTL associations
were extracted for those GWAS-derived SNPs (index SNPs
and their proxies) from summaries of GTEx brain frontal
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FIGURE 3 | The clustering effect of N2V-HC on Dolphins social network (Lusseau et al., 2003). (A) The topology of original network, with colors represents the ground

truth communities. (B) The hierarchical clustering dendrogram constructed by N2V-HC, where each leaf node represents a member in original network. Two predicted

modules are colored in red and blue. Node “40,” which is misclassified, is labeled in yellow.

TABLE 3 | Summary of LFR simulated networks.

LFR(N, k,maxk) Nodes Edges Density Clusters

LFR (100, 10, 30) 100 1,047 0.212 7

LFR (500, 10, 50) 500 5,269 0.042 36

LFR (1000, 20, 100) 1,000 19,115 0.038 39

LFR (2000, 30, 200) 2,000 60,946 0.030 34

TABLE 4 | Clustering performance on LFR-benchmark datasets.

Datasets AP GLay MCL SC HC mCODE N2V-HC(MMS,DS,NPC)

LFR (100, 10, 30) 0.304 0.131 0.350 0.28 0.26 0.35 0.615 (6, 2, 8)

LFR (500, 10, 50) 0.090 0.127 0.120 0.128 0.14 0.138 0.496 (4, 3, 38)

LFR (1,000, 20, 100) 0.097 0.075 0.692 0.103 0.109 0.145 0.620 (6, 3, 40)

LFR (2,000, 30, 200) 0.092 0.033 0.651 0.080 0.082 0.135 0.682 (5, 2, 34)

AP, affinity propagation; MCL, Markov cluster; SC, spectral clustering; HC, hierarchical clustering; MMS, minModuleSize; DS, DeepSplit; NPC, number of predicted clusters. Parameter

setting: MCL inflation factor was set in default (2.5) for all networks. Parameters in AP, GLay, SC, HC, and mCODE were in default except that cluster number was set to the ground

truth if available. Bold Values indicate the best micro F1 scores.

cortex (version V7). After filtering by threshold FDR ≤ 0.05,
41,538 significant associations, representing 248 egenes and 4,821
eSNPs were extracted for PD; and 370 significant associations,
representing 19 egenes and 150 eSNPs were extracted for AD.
(4) We downloaded the molecular physical interaction network
complied by Menche et al. (2015), which consists of 110,913
physical interactions and 10,724 proteins after removing genes
with low expression levels in frontal cortex. (5) Finally, we
projected the significant eQTL-egene pairs onto the human
interactome. Since the input proxy SNPs can be tagged by index
SNPs, we used the corresponding index SNPs to replace the
proxy SNPs in the merged network. The outcome integrated
network for PD consists of 10,912 nodes, including 10,852
genes and 60 independent PD susceptibility SNPs, and 111,038
edges. The outcome integrated network for AD consists of
10,736 nodes, including 10,727 genes and 9 independent AD
susceptibility SNPs, and 110,803 edges. Then we performed
N2V-HC on these two integrated networks, by setting the

dimension of representing features as 128, and the Dynamic
Hybrid tree-cut parameter as minModuleSize = 20 and
deepSplit = 2.

For integrated network of PD, the module detection process
converged after four iterations, resulting in 51 candidate
disease modules containing at least one egene (Table S1).
Fisher’s exact test was conducted for each module to test
whether egenes were over-expressed in the module. And
FDR was calculated to evaluate the enrichment significance.
After filtering by FDR ≤ 0.05, 15 modules were predicted
as the PD disease modules, which on average covered
80 genes. We next investigated the module function by
performing gene set enrichment analysis (GSEA) (Mootha et al.,
2003; Subramanian et al., 2005). Specifically, we computed
the overlaps between module genes and gene sets in C2
(curated gene sets) and C5 (GO gene sets) categories of
MSigDB (Liberzon et al., 2015). Among the 15 predicted
PD modules, 12 (80%) modules have been annotated with
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TABLE 5 | Gene set enrichment analysis of PD modules.

ID # Gene # PD egene P-value FDR GSEA inferred module function PD-relevant evidence

PD36 39 20 2.94E-23 1.50E-21 GPCR ligand binding Martin et al., 2005

PD41 33 17 5.62E-20 9.55E-19 Retinoic acid biosynthesis Jacobs et al., 2007; Esteves et al., 2015,

PD42 32 13 7.47E-14 9.52E-13 GPI-anchor biosynthesis,

ER/Golgi trafficking,

Membrane lipid biosynthesis

Wang et al., 2014,

Abeliovich and Gitler, 2016

PD12 126 19 5.45E-11 5.56E-10 Endocytosis, Immune response Mosley et al., 2012; Abeliovich and Gitler, 2016

PD20 80 13 2.57E-08 2.18E-07 Immune response, Integrin cell surface Wu and Reddy, 2012

PD37 38 9 1.28E-07 9.35E-07 Potassium channels,

Glycogen metabolism

Chen et al., 2018

PD44 30 7 3.75E-06 2.12E-05 Hemoglobin complex Freed and Chakrabarti, 2016

PD10 135 13 1.18E-05 6.00E-05 Oxidoreductase activity Parker et al., 2008

PD34 42 7 3.94E-05 1.82E-04 Glycosaminoglycans biosynthesis Lehri-Boufala et al., 2015

PD45 29 5 4.43E-04 1.74E-03 Immune response,

Natural killer cell mediated immunity

Mihara et al., 2008

PD35 42 5 2.49E-03 9.08E-03 Lysosome,

Sphingolipic metabolism

Dehay et al., 2013,

Lin et al., 2019

PD46 29 4 3.96E-03 1.34E-02 WNT signaling pathway,

Dopaminergic neuron differentiation

Arenas, 2014

# Gene, number of genes in a module; # PD egene, number of egene regulated by PD susceptibility variants in a module.

TABLE 6 | Gene set enrichment analysis of AD modules.

ID # Gene # AD egene P-value FDR GSEA inferred module function AD-relevant evidence

AD1 88 6 6.36E-09 5.09E-08 Immune response Wang et al., 2018

AD2 42 3 5.16E-05 2.07E-04 WNT signaling pathway,Dopaminergic neuron differentiation dos Santos and Smidt, 2011

AD3 177 4 2.28E-04 6.08E-04 Immune response,JAK/STAT signaling pathway Nicolas et al., 2013

AD4 52 2 3.73E-03 7.47E-03 ER/Golgi trafficking,Glycosaminoglycans metabolism Placido et al., 2014

functions relevant to known PD pathways (Table 5, Table S1).
For example, the cellular pathways including oxidative stress,
immune response, endosomal-lysosomal dysfunction, intra-
cellular trafficking stress etc., have been widely reported
associated with PD pathology in literatures (Parker et al., 2008;
Mosley et al., 2012; Dehay et al., 2013; Abeliovich and Gitler,
2016).

Similarly, we also obtained eight candidatemodules associated
with AD, among which four modules had FDR ≤ 0.05 based on
Fisher’s exact test (Table 6, Table S2). These molecular pathways
include immune response, WNT signaling pathway, JAK/SAT
signaling pathway and intra-cellular trafficking, which also have
been reported associated with AD pathology in literatures (dos
Santos and Smidt, 2011; Nicolas et al., 2013; Placido et al., 2014;
Wang et al., 2018). Interestingly, the predicted AD modules
and PD modules have similar functions, for example, AD1,
AD3, PD12, PD20, and PD45 are all associated with immune
response; AD2 and PD46 are associated with WNT signaling
pathway and dopaminergic neuron differentiation; AD4 and
PD42 are associated with intracellular trafficking. Three module
pairs have high similarity including (AD1, PD20), (AD2, PD46),
and (AD4, PD34), whose intersection size and Jaccard index are

(67, 0.68), (21, 0.44), and (18, 0.26), respectively. There is no
similarity (Jaccard index = 0) or very low similarity (Jaccard
index < 0.05) between other AD-PD module pairs. These
evidence indicate that AD and PD might share remarkably
similar dysregulated pathways; and multiple modules may work
together in the same disease pathway (e.g., immune response),
where shared modules might be involved between AD and
PD pathology.

In order to investigate the relationship between the predicted
disease modules, our method is able to built the dendrogram of
all candidate modules based on the module eigen feature, defined
as the eigen vector of node features in a module corresponding
with the first principle component. For example, the module
dendrogram of Parkinson’s disease was shown in Figure 4. We
found several module blocks (modules with high similarity
covered by shaded rectangle as shown in Figure 4) are annotated
with similar functions. For example, PD10, PD15, and PD48
are related to oxidative stress; PD3, PD20, PD31, and PD45 are
related to immune response; PD4, PD14, PD19, and PD43 are
related to intracellular trafficking; PD33 and PD34 are related
to glycosaminoglycans biosynthesis. Especially, PD24 and PD49
are both annotated as Parkinson’s disease pathway (GSEA FDR
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FIGURE 4 | Module dendrogram of Parkinson’s disease. Dendrogram of modules is built based on module eigen feature, i.e., the eigen vector corresponding with the

first principle component of node features in a module. Distance is measured as one minus Pearson’s correlation coefficient. Modules covered by the shaded

rectangle share similar functions as illustrated.

= 1.2 ∗ 10128 and 7 ∗ 1015) and mitochondrial process (GSEA
FDR = 5.7 ∗ 10141 and 1.5 ∗ 1020) by GSEA. The module
dendrogram provide guidance to merge multiple modules into
a super module, and can also be used to infer module functions.

As a secondary finding, we found some of the provisionally
insignificant candidate modules were also associated with
functions relevant to AD and PD pathology. For example,
two modules were directly annotated as Parkinson’s
disease pathway (PD24, GSEA FDR = 1.2 ∗ 10128) and
Alzheimer’s disease pathway (AD6, GSEA FDR = 2 ∗ 108).
We also found modules associated with autophagy
(PD13), apoptosis (PD1), post-synapse (PD11), SNARE
binding (PD19), and mitochondria (PD15, PD48, PD49,
PD9), which are believed to have played a role in PD
etiology (Dehay et al., 2013; Abeliovich and Gitler,
2016).

Furthermore, our method generates disease modules without
bias toward the seed genes. The traditional methods adapt
“seed-extend” strategy, starting from the disease seed genes and
expanding the module by adding neighborhood. For example,
the DIAMOnD algorithm (Ghiassian et al., 2015) first defines
the disease module as the subnetwork only consisting of
the well-studied disease genes (seed genes). Next, for each
iteration, one gene (named DIAMOnD gene) with highest
connectivity score with the module will be added to grow the
module, until all genes in the network are added. The first
added N DIAMOnD genes (N is arbitrarily defined by user)
together with the seed genes will form the final disease module.
Thus, the module generated under “seed-extend” strategy is
biased toward seed genes. However, in our N2V-HC method,
the seed genes are masked during the hierarchical clustering
procedure. In other words, our module generation process
is not based on seed genes. Instead, we use seed genes as
posterior knowledge to prioritize modules based on enrichment
significance.

4. CONCLUSIONS

Disease module identification is often a crucial step to discover
disease pathway and potential drug targets. In this article,
we present a new algorithm framework, named N2V-HC, to
predict disease modules based on deep feature learning of
biological complex networks. Our method includes three steps:
First, integrating a network from GWAS, eQTL summaries,
and human interactome; Second, learning the node representing
features in the integrated network; Third, detecting modules
based on hierarchical clustering, and evaluating whether
some of modules may be candidates for specific disease by
determining their enrichment with egenes that are regulated
by disease susceptibility variants. Experiments on network
datasets with ground true labels suggest our method has better
performance in module detection than compared methods.
In addition, we apply N2V-HC on Parkinson’s disease and
Alzheimer’s disease, and find significant modules associated
with PD and AD. In general, our method can be used to
incorporate with other types of networks beside PPI. We
believe it will be a powerful tool for researchers to understand
the molecular mechanisms of complex diseases in the post-
GWAS era.
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Bronchopulmonary dysplasia (BPD) is a complex disorder resulting from interactions
between genes and the environment. The accurate molecular etiology of BPD remains
largely unclear. This study aimed to identify key BPD-associated genes and pathways
functionally enriched using weighted gene co-expression network analysis (WGCNA).
We analyzed microarray data of 62 pre-term patients with BPD and 38 pre-term patients
without BPD from Gene Expression Omnibus (GEO). WGCNA was used to construct a
gene expression network, and genes were classified into definite modules. In addition,
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses of BPD-related hub genes were performed. Firstly, we constructed a weighted
gene co-expression network, and genes were divided into 10 modules. Among the
modules, the yellow module was related to BPD progression and severity and included
the following hub genes: MMP25, MMP9, SIRPA, CKAP4, SLCO4C1, and SLC2A3; and
the red module included some co-expression molecules that displayed a continuous
decline in expression with BPD progression and included the following hub genes: LEF1,
ITK, CD6, RASGRP1, IL7R, SKAP1, CD3E, and ICOS. GO and KEGG analyses showed
that high expression of inflammatory response-related genes and low expression of T
cell receptor activation-related genes are significantly correlated with BPD progression.
The present WGCNA-based study thus provides an overall perspective of BPD and lays
the foundation for identifying potential pathways and hub genes that contribute to the
development of BPD.

Keywords: bronchopulmonary dysplasia, weighted gene co-expression network analysis, hub gene, biological
process, biomarkers

Abbreviations: AUC, area under the curve; BPD, bronchopulmonary dysplasia; GEO, Gene Expression Omnibus; GS,
gene significance; MEs, module eigengenes; MM, module group members; PPI, protein–protein interaction; ROC, receiver
operating characteristic; TOM, topological overlap matrix; WGCNA, weighted gene co-expression network analysis.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD) is a chronic lung disease
in pre-term infants that is characterized by arrested lung
development due to early lung injury (Jobe, 1999; Speer, 2006a).
Since its first description in Northway et al. (1967), with the
survival of increasing number of premature babies having very
low birth weights, the incidence of BPD has remained high.
However, few specific treatments are available for reducing the
burden of the disease (Lemons et al., 2001; Farstad et al.,
2011). Survivors of BPD have an increased risk of pulmonary
hypertension, growth retardation, neurodevelopmental delay,
and other long-term sequelae that have a major impact on
families and health care system (Bhandari and McGrath, 2013).
However, the mechanism of BPD formation is complex and
includes many processes, such as inflammation, oxidative stress,
abnormal angiogenesis, and damaged lung repair. Some of these
processes remain to be elucidated (Coalson, 2003; Chess et al.,
2006; Collins et al., 2017; Yang et al., 2017).

Weighted gene co-expression network analysis (WGCNA)
is an algorithm that defines modules of genes with similar
expression patterns in complex diseases (Langfelder and
Horvath, 2008). WGCNA can effectively integrate gene
expression and clinical trait data to appraise functional pathways
and candidate molecular biomarkers (Presson et al., 2008).
WGCNA facilitates a global interpretation of gene expression
data through the construction of gene networks based on the
similarity of expression profiles among samples (Oldham et al.,
2008). WGCNA has been used for the study of gene-network
signatures, co-expression modules, and hub genes involved in
human respiratory syncytial virus infection (Vieira et al., 2019),
autoimmune diseases (Medina and Lubovac-Pilav, 2016; Ma
et al., 2017), and various cancers (Giulietti et al., 2016; Tian et al.,
2019). A hub gene is a key gene that plays a vital role in regulatory
pathways; the regulation of other genes is often affected by this
gene (Luscombe et al., 2004). Thus, WGCNA can be used to
elucidate gene-network signatures and hub genes associated with
BPD to better understand the pathogenesis of this disease. To our
knowledge, however, WGCNA, as a system biology approach,
has not been applied to the analysis of BPD-derived data thus far.

In the present study, we used WGCNA to explore the gene-
network signatures of peripheral blood from pre-term infants
with and without BPD. The pathogenesis of BPD was explored
using pathway enrichment analysis to investigate the biological
pathways and key hub genes that were associated with BPD.
Finally, enrichment analysis was used to determine the potential
functions of these hub genes and to identify key genes potentially
involved in the pathogenesis of BPD.

MATERIALS AND METHODS

Data Collection and Preprocessing
A flow chart illustrating the data preparation, processing, and
analysis is displayed in Figure 1. We used ‘bronchopulmonary
dysplasia’ as the key word to search the Gene Expression
Omnibus (GEO) database and to select datasets containing

samples from different pathological stages and normal controls.
Finally, the dataset GSE324721, was found to meet our
requirements and was therefore downloaded. To identify the
molecular networks and hub genes related to the pathological
progress of BPD, WGCNA was conducted. GSE32472 provided
microarray profiles of blood samples of newborns with
BPD, including microarray assessment of gene expression at
approximately the 5th, 14th, and 28th days of life. To ensure the
stability of the selection, 100 blood samples at about the 28th day
were selected, when a more definite diagnosis of BPD had been
made. These samples were obtained from 38 controls, and 38
mild, 10 moderate, and 14 severe BPD cases. The expression data
were normalized using quantile normalization function in limma
package of R software (Ritchie et al., 2015). The genes with the
highest variance in expression values (top 25%) were selected for
co-expression network construction. Cluster analysis using the
Pearson’s correlation matrices and the average linkage method
were conducted to detect whether outlier samples existed for the
purpose of ensuring the reliability of the network construction.
A brief design of the study is shown in Figure 1A.

Construction of a Co-expression
Network
A co-expression network was constructed using the WGCNA
algorithm package in R (Presson et al., 2008). First, the Pearson’s
correlation matrices were constructed for all pair-wise genes.
Next, a weighted adjacency matrix was constructed by using the
power function amn = | Cmn| β (Cmn = Pearson correlation
between gene m and gene n; amn = adjacency between gene
m and gene n) (Zhang and Horvath, 2005). The parameter
β served as a soft threshold parameter to expand strong
correlations and penalize weak correlations between genes. To
ensure a scale-free topology of the network, β was selected
when the scale independence value was equal to 0.9. The
adjacency was transformed into a topological overlap matrix
(TOM) to measure the network connectivity of a gene, which
is defined as the sum of its adjacency with all other genes.
Hierarchical clustering was performed according to TOM-based
dissimilarity to distribute genes with similar expression patterns
into modules with a minimum cluster size of 50 (Ravasz
et al., 2002). Highly similar modules were merged with a cut-
off of 0.25.

Identification of Modules Significantly
Associated With BPD Severity
Module eigengenes (MEs) were considered the major component
in the principal component analysis for each gene module,
and the expression patterns of all genes could be summarized
into a single characteristic expression profile within a given
module. To identify modules significantly associated with BPD
severity, the correlation between MEs and BPD stage was
evaluated by the Pearson’s correlation test with p < 0.05 as
the cut-off. The modules most significantly related to BPD
severity were considered as key modules and subjected to
further analysis.

1http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Outline of the study design.

Identification of Candidate Hub Genes
A module hub gene is a highly connected in-module gene that
has the highest module member (MM) score of its corresponding
module (Horvath and Dong, 2008). The MM score for every
gene was calculated by the WGCNA function KME, which
correlates the expression profile of a gene with the ME of
a module to quantify the relationship between a gene and a
given module. The absolute value of gene significance (GS)
represents the Pearson’s correlation between a given gene and
clinical features. We removed hub genes based on the cut-
off criteria (| MM| ≥ 0.85, | GS| ≥ 0.45). Further, all
genes in key modules were uploaded to STRING2 to acquire
information about the interaction between genes. Protein–
protein interaction (PPI) networks were constructed with the
species limited to ‘Homo sapiens’ and a confidence > 0.9.
In the PPI network, genes with a degree ≥ 10 were defined
as hub nodes. Hub genes common in both co-expression
network and PPI network were selected for candidate hub
genes identification.

Hub genes common in both co-expression network
and PPI network were analyzed by ROC curve, and area

2http://string-db.org

under the curve (AUC) was calculated to distinguish the
control group from the BPD group. In addition, one-way
ANOVA and Pearson’s correlation tests were conducted
to explore the relevance of the hub genes common in
both co-expression network and PPI network in terms
of disease severity. Candidate hub genes were identified
using the following criteria: (1) a significant P value in the
one-way ANOVA test and the Pearson’s correlation and
(2) an AUC > 0.8.

qRT-PCR Validation and Real Hub Genes
Identification
To validate the candidate hub genes obtained by WGCNA,
pre-term infants with or without BPD blood samples were
collected from the Department of Neonatology of the
Sixth Affiliated Hospital of Sun Yat-sen University. This
research was approved by the ethics review board of Sixth
Affiliated Hospital of Sun Yat-sen University (2019ZSLYEC-
80), and written informed consent was provided by the
participants’ legal guardians. From each sample, 100 ng of
cDNA was obtained for RT-PCR amplification reaction, and
the expression of an endogenous control (housekeeping gene:
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GAPDH) was used for the determination of the relative
expression levels of the hub genes. Primer sequences for
related hub genes are listed in Supplementary Table S1.
Real hub genes were identified if the results of RT-PCR have
significant difference.

Functional and Pathway Enrichment
Analyses
To gain further insights into the functions of hub genes in
the module most related to BPD, we performed biological
process analysis and KEGG pathway enrichment analysis with
‘c2.cp.kegg.v7.1.symbols’ as background3.

Gene Set Enrichment Analysis (GSEA) for
Hub Biological Pathways Confirmation
Mapping to KEGG (Kyoto Encyclopedia of Genes and Genomes)
database4, GSEA5 (Subramanian et al., 2007) was performed
between control and BPD groups to confirm the expression
pattern of hub biological pathways.

Statistical Analysis
Non-parametric tests or t-tests based on data distribution
characteristics were used to analyze the statistical
significance of the difference in hub gene expression
levels between the two groups. Analyses were conducted
in GraphPad Prism 8.0.2. P < 0.05 was considered
statistically significant.

RESULTS

Weighted Co-expression Network
Construction
Figure 1 shows the flow chart of data preparation, processing,
analysis, and validation for this study. The data were normalized
using the limma package of R software (Figure 2A and
R code in Supplementary Table S2). The co-expression
analysis included 100 samples with clinical information,
sample information, and expression matrix. Input files are
provided in Supplementary Tables S3, S4. Sample clustering
was performed based on Pearson’s correlation matrices and
the average linkage method. No outliers were detected
(Figure 2B). The genes showing the highest expression
variance (top 25%) were selected for subsequent WGCNA
using the WGCNA package in R software. Genes with similar
expression patterns were then grouped by average linkage
hierarchical clustering. In our study, β = 23 (scale-free
R2 > 0.901) was selected as the soft threshold to ensure a
scale-free network (Figures 3A,B). Next, we constructed a
systematic clustering tree using the WGCNA package. In
Figure 3C, each short vertical line represents a gene, and
each color represents one module composed of genes with

3https://www.gsea-msigdb.org/gsea/downloads.jsp
4http://www.genome.jp/kegg/pathway.html
5http://software.broadinstitute.org/gsea/index.jsp

similar expression patterns. The genes shown in gray were the
genes that could not be merged. A total of 10 modules were
identified (Figure 3C).

Identification of Key Modules Associated
With BPD Severity
We tested the relevance of each module for BPD clinical
information, focusing on different BPD stages. As
displayed in Figure 3D, the yellow module (P = 5e-
08, R2 = 0.51) was most significantly and positively
correlated with BPD severity, whereas the red module
(P = 3e-11, R2 = −0.60) showed the opposite result. The
correlation between the yellow module and BPD severity
gradually increased and finally became positive. The red
module showed the opposite pattern. Based on the above
findings, the red and yellow modules were identified as
key modules correlated with BPD severity and were thus,
further analyzed.

PPI Network Construction With
Corresponding Module Genes
PPI networks of the red and yellow modules were constructed
with a cutoff confidence > 0.9 (Figures 4A,B). A total of
31 genes in the red module and 41 genes in the yellow
module were identified with a degree ≥ 10 as hub genes
in each PPI network. Based on | MM| ≥ 0.85 and |
GS| ≥ 0.45, a total of 76 genes in the red module and
77 genes in the yellow module were selected as hub genes
in each co-expression network (Figures 4C,D). A total of
21 genes in the red module and 13 genes in the yellow
module were identified in both the PPI and co-expression
networks (Figures 4E,F). All GS, MM, and intramodule
connectivity values of each identified module are listed in
Supplementary Tables S5–S7.

Identification of Real Hub Genes
All the 21 candidate hub genes in the red module showed
significance in the one-way ANOVA. A total of nine genes had
an AUC ≥ 0.80, and 19 showed a significant correlation with
disease severity in the Pearson’s correlation analysis. Eventually,
nine genes in the red module with an AUC ≥ 0.80 and
significant P values in the Pearson’s correlation as well as one-
way ANOVA were regarded as candidate hub genes (Figure 4G).
Similarly, of the 13 candidate hub genes in the yellow module,
12 showed significance in the one-way ANOVA, 11 genes had
an AUC ≥ 0.80, and 10 showed a significant correlation with
disease severity in the Pearson’s correlation analysis. Nine genes
in the yellow module had an AUC ≥ 0.80 and significant
P values in the Pearson’s correlation as well as in the one-
way ANOVA, and were thus, selected as candidate hub genes
(Figure 4H). Detailed information about the red and yellow
modules in relation to the Pearson’s correlation, ROC, and one-
way ANOVA has been provided in Supplementary Tables S8–
S11. The severity plot for the candidate hub genes is shown in
Figure 5A. The expression levels of candidate hub genes in the
yellow module increased with disease severity, and the expression
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FIGURE 2 | Data normalization and sample clustering dendrogram. (A) Data were normalized using the limma package of the R software. (B) Sample clustering was
performed using the Pearson’s correlation matrices and the average linkage method.

levels of candidate hub genes in this module were significantly
increased in different BPD severity conditions compared with
those of normal controls. In contrast, candidate hub genes

in the red module showed decreasing expression levels with
greater disease severity, and markedly decreased expression levels
in different BPD severity conditions (Figure 5B). To further
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FIGURE 3 | Determination of soft-thresholding power and grouping of genes with similar expression into modules using weighted gene co-expression network
analysis (WGCNA). (A) Analysis of the scale-free fit index for soft-thresholding powers (β). (B) Analysis of the mean connectivity for soft-thresholding powers.
(C) Dendrogram of clustered genes. (D) Identification of modules associated with clinical information.
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FIGURE 4 | Protein–protein interaction (PPI) networks of genes corresponding to the two key modules. (A) PPI network of the nodes in the red module. (B) PPI
network of the nodes in the yellow module. (C) Scatter plot of module eigengenes (MEs) in the red module. (D) Scatter plot of MEs in the yellow module. (E) Common
red hub genes in the co-expression and PPI networks. (F) Common yellow hub genes in the co-expression and PPI networks. (G) Common genes in the red module
shared characteristics with an area under the curve (AUC) ≥ 0.80 and had significant P values in the Pearson’s correlation and one-way ANOVA tests. (H) Common
genes in the yellow module shared characteristics with an AUC ≥ 0.80 and had significant P values in the Pearson’s correlation and one-way ANOVA tests.

clarify the clinical significance and identify real hub genes,
we collected the BPD patient’s blood for qRT-PCR validation
in vitro. The results showed that most of these genes had

statistically significant differences and were considered as real
hub genes, except for MAPK14, CEACAM3, CSF2RB, and
CD3G (Figure 6).
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FIGURE 5 | Severity plot of the real hub genes. (A) Severity plot of the identified hub genes in the yellow module. (B) Severity plot of the identified hub genes in the
red module. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Functional and Pathway Enrichment
Analysis
To learn more about the function of the identified hub genes,
they were subjected to perform the biological process and KEGG

pathway enrichment analyses. Real hub genes in the red module,
which exhibited a negative correlation with disease severity,
were significantly enriched in 20 BPs: T cell activation, positive
regulation of leukocyte cell-cell adhesion, positive regulation
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FIGURE 6 | Validation of hub genes by qRT-PCR. (A) Severity plot of the identified hub genes in the yellow module analyses by qRT-PCR. (B) Severity plot of the
identified hub genes in the red module analyses by qRT-PCR. *P < 0.05 and **P < 0.01.

of cell-cell adhesion, regulation of leukocyte cell-cell adhesion,
leukocyte cell-cell adhesion, positive regulation of cell adhesion,
regulation of cell-cell adhesion, positive regulation of T cell
activation, regulation of cell-cell adhesion, positive regulation of

T cell activation, positive regulation of lymphocyte activation,
positive regulation of leukocyte activation, regulation of T
cell activation, positive regulation of cell activation, regulation
of lymphocyte activation, regulation of leukocyte activation,
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T cell differentiation, lymphocyte differentiation, interleukin-4
production, T cell differentiation in thymus, positive regulation
of T cell differentiation in thymus, and regulation of cell-
cell adhesion mediated by integrin (Figure 7A). The real hub
genes were also enriched in three KEGG pathways: T cell
receptor signaling pathway, primary immunodeficiency, and
hematopoietic cell lineage (Figure 7B). The real hub genes in the
yellow module, which showed a positive correlation with disease
severity, were enriched in 4 BPs, neutrophil degranulation,
neutrophil activation involved in immune response, neutrophil
mediated immunity, and neutrophil activation (Figure 7C).

KEGG pathway enrichment analysis showed that real hub genes
in the yellow module were enriched in the bladder cancer
pathway, and leukocyte transendothelial migration (Figure 7D).

Gene Set Enrichment Analysis for Hub
Biological Pathways Confirmation
As bladder cancer pathway is not related to BPD, it was not
considered in GSEA confirmation. According to the results of
the GSEA, the terms ‘T cell receptor signaling pathway’ and
‘primary immunodeficiency’ were significantly enriched in the

FIGURE 7 | Biological process and KEGG pathway enrichment analyses of hub genes. (A) Biological process analysis for the hub genes in the red module.
(B) KEGG pathway enrichment for the hub genes in the red module. (C) Biological process enrichment for the hub genes in the yellow module. (D) KEGG pathway
enrichment for the hub genes in the yellow module.
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control group while the term ‘hematopoietic cell lineag’ was not
(Figures 8A,B and Supplementary Table S12). On the contrary,
the term ‘leukocyte transendothelial migration’ was significantly
enriched in the BPD group (Figure 8C and Supplementary
Table S13). These results successfully confirmed the expression
pattern of hub biological pathways.

DISCUSSION

To our knowledge, our study reports the first application of
WGCNA to construct a BPD-related gene-network. We found
two key gene modules and several hub genes that were associated
with BPD progression. This research provides new insights into
the molecular etiology of BPD, as well as potential therapeutic
targets for this disease. Ten co-expression modules were obtained
through WGCNA. The yellow module was associated with
progression and severity of BPD and the red module included co-
expressed genes that displayed a continuous decline in expression
with BPD progression.

Among the 10 modules, the yellow module was especially
involved in BPD pathogenesis. Some genes showed greater
positive association with the progression of BPD including
MMP25, MMP9, SIRPA, CKAP4, SLCO4C1, and SLC2A3. The
red module contained genes showing greater negative association
with the progression of BPD including LEF1, ITK, CD6,
RASGRP1, IL7R, SKAP1, CD3E, and ICOS. These genes can be
considered as hub genes and also play important roles in other
co-expression modules.

Functional enrichment analysis is widely used to classify
biological entities into functionally related groups (Rue-Albrecht
et al., 2016). In the present study, we used the GO and
KEGG analyses to elucidate the biological functions of hub
genes in the yellow module, that were significantly up-regulated
with the increase of BPD severity. The genes in the yellow
module were mainly enriched in the response to cellular protein
metabolic processes, leukocyte migration, and TNF signaling
pathway. The inflammatory response plays critical roles in the
development of BPD (Shahzad et al., 2016). Consistent with

previous reports (Ma et al., 2017), we found a significant
increase in levels of MMP9 and MMP25 in infants with BPD
compared with those in infants without BPD. This consistency
not only further demonstrates the reliability of our results,
but also provides additional confirmation of the pivotal role
of MMP proteins in BPD progression. Disease-related gene
expression analysis revealed signaling pathways involved in
BPD progression, including protein kinase A, MAPK, and
neuromodulin/epidermal growth factor receptor signal. In a
newborn Sprague-Dawley rat BPD model, activation of the
MAPK and PI3K/AKT signaling pathways in lung tissues was
monitored during prolonged exposure of newborn rats to
hyperoxia (Liu et al., 2018). This previous study suggested that
MAPK14 could be used as a biological marker to monitor
disease progression.

The most notable down-regulated pathway in BPD
progression is the T cell receptor signaling pathway. Our
data showed that the expression of T cell receptor molecules,
including CD3E, CD6, and ICOS, decreased significantly during
BPD progression. These molecules had not been confirmed in
previous studies. T cell response depends on the type of ligand
that binds to the receptor, the duration of cooperation, and
the presence of co-receptors or co-inhibitors (Cheng et al.,
2011; James et al., 2011). In our study, transcription factors
and related pathways, such as CD3E, CD6, and ICOS, were
under-expressed in children with BPD, suggesting that reduced
T receptor expression may lead to decreased receptor density at
the cell surface, which in turn may be a risk factor for bacterial
translocation and further infection. These results are consistent
with the fact that pulmonary infection is a risk factor for BPD
(Speer, 2006b).

Enrichment analysis revealed the signaling pathways that may
be related to the pathogenesis of the disease. The results can
be considered in two ways. One is by placing our findings
in the context of the existing knowledge, and the other is
by studying genes known to be potentially involved in the
pathogenic mechanism of BPD. The overexpression of pathways
involved in inflammatory cytokine production and leukocyte
migration in the present study confirms the generally accepted

FIGURE 8 | Gene set enrichment analysis of real hub genes. (A) Enrichment result of ‘T cell receptor signaling pathway’ between the control group and the
bronchopulmonary dysplasia (BPD) group. (B) Enrichment result of the term ‘primary immunodeficiency’ between the control group and the BPD group.
(C) Enrichment result of ‘leukocyte transendothelial migration’ pathway between the control group and the BPD group.
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contribution of inflammatory responses to the etiology of BPD.
By contrast, we found a low expression of genes related to
other immune response pathways, including the T cell receptor
pathway. Pietrzyk et al. (2013) reported that overexpression of
pathways involving cytokines and their receptors confirms the
widely accepted role of inflammatory responses in the etiology
of BPD, and that T cell response pathways are closely related
to infant maturity (Pietrzyk et al., 2013). Therefore, based on
the above-mentioned research studies, our research has revealed
more specific regulatory molecules to provide new targets for the
prediction of BPD and for targeted interventions.

In summary, this study applied WGCNA to a large dataset to
explore BPD-related co-expression gene networks. Our results
revealed the roles of key co-expression module genes, hub
genes, and functional biological pathways were associated with
the down-regulation of the T cell receptor signaling pathway,
the enrichment of the TNF signaling pathway and leukocyte
migration in BPD pathogenesis, thus providing new insights
into the development of BPD. However, the exact molecular
mechanisms connecting hub genes and functional pathways of
BPD need further exploration.
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Long noncoding RNAs (lncRNAs) play an important role in many life activities, but the
expression pattern and function of lncRNAs in Japanese flounder skeletal muscle are
unclear. In this study, 751 lncRNAs were selected from skeletal muscle in different
development stages of the Japanese flounder [stage A: larval 7 days post hatching
(dph); stage B: juvenile about 90 dph; stage C (female) and stage D (male): adult
about 24 months] using coding potential analysis methods. In total, 232, 211, 194,
28, 29, and 14 differentially expressed lncRNAs and 9549, 8673, 9181, 1821, 1080,
and 557 differentially expressed mRNAs were identified in comparisons of A versus B,
A versus C, A versus D, B versus C, B versus D, and C versus D, respectively. We
identified the cis- and trans-regulatory target genes of differentially expressed lncRNAs,
and lncRNA–gene interaction networks were constructed using the Cytoscape program.
In total, there were 200, 200, 200, 93, 47, and 11 cis-regulation relationships, and
29, 19, 24, 38, 8, and 47 trans-regulation relationships in the comparisons between
A versus B, A versus C, A versus D, B versus C, B versus D, and C versus D,
respectively. These results indicate that lncRNA may participate in the development
of Japanese flounder skeletal muscle through cis- or trans-acting mechanisms, thus
providing a scientific basis for further study of the biological function of lncRNA in
Japanese flounder skeletal muscle. Based on these relationships, functional annotation
of the related lncRNAs was performed by gene ontology and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis. Differentially expressed genes
associated with muscle development were enriched in multiple pairs of comparisons
(e.g., differentially expressed genes LOC109640370, LOC109634180, LOC109643555,
rusc1, and LOC109626999 were enriched in the actin-binding term, and differentially
expressed genes LOC109640370, was, LOC109644970, LOC109643555, and itga9
were enriched in the regulation of the actin cytoskeleton pathway in the KEGG
pathway analysis in the comparison of stages C and D). We predicted lncRNA–mRNA,
miRNA–mRNA, and lncRNA–miRNA regulatory relationships and constructed interactive
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networks using Cytoscape software. Co-expression networks show that most lncRNAs
interact with one or two predicted miRNAs involved in muscle growth and development.
These results provide a basis for further study of the function of lncRNAs on skeletal
muscle in different developmental stages of Japanese flounder.

Keywords: Japanese flounder, skeletal muscle, lncRNA, integrated analysis, transcriptome

INTRODUCTION

LncRNAs are defined as transcripts that are more than 200
nucleotides in length and are not translated into proteins (Perkel,
2013). This length limitation distinguishes long ncRNAs from
small noncoding RNAs, such as microRNAs (miRNAs), small
interfering RNAs (siRNAs), Piwi interacting RNAs (piRNAs),
small nucleolar RNAs (snoRNAs), and other short RNAs (Lina
et al., 2013). Note that only one fifth of transcriptions are
associated with protein-coding genes in the human genome
(Philipp et al., 2007). Large-scale cDNA library sequencing and
transcriptome sequencing indicate that tens of thousands of
intergenic sites are transcribed to noncoding RNAs in mammals.
Approximately 78% of lncRNAs are tissue specific, and only
∼19% of mRNAs are tissue specific (Cabili et al., 2011). At
present, more and more lncRNAs have been found in mammals,
such as humans (Pieter-Jan et al., 2013; Iyer et al., 2015), mice
(Phillip et al., 2013; Lv et al., 2015), and sheep (Bakhtiarizadeh
et al., 2016) as well as in plants, such as rice (Zhang et al., 2014).
It has been reported that lncRNA plays an important role in
the regulation of gene transcription (Goodrich and Kugel, 2006),
post-transcriptional regulation (Ming-De et al., 2005), epigenetic
regulation (Mercer and Mattick, 2013; Morlando et al., 2014), and
aging and disease (Lukiw et al., 1992). Although there is growing
evidence that most of them may be functional (Mercer et al.,
2009), only a relatively small proportion has been shown to be
biologically relevant.

Skeletal muscle is a striated muscle tissue composed of muscle
cells with contractile capacity. It is well known that the fetal
stage is the main stage of skeletal muscle development, and
there is no net increase in the number of muscle fibers after
birth (Nishina et al., 2003). Muscle development is a complex
process that requires interactions between multiple factors
(Buckingham, 2006). At present, studies on skeletal muscle
growth and development generally focus on the expression
and function of related coding genes (Thomas and Mathias,
2011; Eng et al., 2013). The skeletal muscle fiber phenotype is
regulated by various independent signaling pathways, including
the mitogen-activated protein kinase (MAPK) pathway (Keren
et al., 2006), calcineurin (Naya et al., 2000), calcium/calmodulin-
dependent protein kinase IV (Takayuki et al., 2004), and the
peroxisome proliferator γ coactivator 1 (PGC-1) (Handschin
et al., 2003). Studies show that some miRNAs are also involved
in the development of skeletal muscle (Tang et al., 2015; Jebessa
et al., 2018). Several recent studies show that lncRNAs also play
a crucial role in skeletal muscle development (Zhan et al., 2016;
Liang et al., 2017; Zhou et al., 2018). In addition, lncRNAs
can interact as a competitive endogenous RNA (ceRNA) with

miRNAs involved in the regulation of target gene expression,
thereby regulating muscle development (Cesana et al., 2011).

Japanese flounder is a valuable marine fish and an important
economic fish for marine aquaculture in Asia. Therefore, it
is important to reveal the molecular mechanisms of Japanese
flounder skeletal muscle formation and development. Studies
show that some coding genes play important roles during the
development of Japanese flounder skeletal muscle (Huang et al.,
2018; Wu et al., 2018). In addition, some studies focus on the
effects of noncoding RNA on skeletal muscle development of
Japanese flounder. Some micRNAs (mir-1, mir-133, mir-206)
play an important role in muscle development during Japanese
flounder metamorphosis (Fu et al., 2011, 2012). However,
information on lncRNAs related to skeletal muscle development
in the Japanese flounder is still limited.

In this study, we used the Illumina HiSeq 2500 platform
to identify lncRNAs and mRNAs involved in skeletal muscle
development in Japanese flounder. Our study provides useful
information for further study of the function of lncRNA during
skeletal muscle development in a fish species, and these results
will help study skeletal muscle development from the perspective
of noncoding RNAs.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the respective Animal Research
and Ethics Committees of Ocean University of China. The field
studies did not involve endangered or protected species. The fish
were all euthanized by tricaine methanesulfonate (MS-222) prior
to experimentation.

Experimental Animal Collection
Japanese flounder were collected from the Donggang District
Institute of marine treasures in Rizhao, Shandong province. The
fish were transported to the Ocean University of China and
temporarily reared in a 500-L white bucket for 24 h. The Japanese
flounder were collected at various stages: larval 7 days post
hatching (dph) (stage A), juvenile ∼90 dph (stage B), female
adult ∼24 months (stage C), and male adult ∼24 months. In our
experiment and data analysis, 3 fish were used in all stages except
for stage A (here fish were very small in size, so ∼50 individuals
were combined and considered to be one sample). All fish were
euthanized with MS-222, and tissue samples were collected. In
stage A, we used a microscope to cut off redundant tissue and only
retain muscle tissue. Samples were immediately frozen in liquid
nitrogen and then stored at −80◦C until further processing.
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Illumina Deep Sequencing and Sequence
Analysis
Total RNA for RNA sequencing (RNA-seq) was extracted
using TRIzol Reagent (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s protocol. The concentration of
RNA was quantified by the nucleic acid analyzer Biodropsis
BD-1000 (OSTC, China) and the integrity by agarose gel
electrophoresis examination. Ribosomal RNA (rRNA) was
removed from the total RNA using the Epicenter Ribo-ZeroTM

rRNA Removal Kit (Epicenter, Madison, WI, United States)
following the manufacturer’s instructions. The constructed
cDNA library was quality tested on an Agilent Bioanalyzer 2100
system, and then high-throughput sequencing was performed
on the Illumina HiSeqTM 2500 platform. The paired-end
sequencing raw reads were cleared by removing reads containing
adapters, including ploy-N reads and low-quality reads to obtain
clean reads. At the same time, the Phred score (Q20), Q30,
and GC contents of the clean data were calculated. All the
downstream analyses were based on the high-quality clean data.
The clean reads were mapped to the Japanese flounder reference
genome1 using the Tophat2 software.

Reconstructing transcripts for clean readings was based on
probabilistic models using Cufflinks 2.0.2 software. Based on
the characteristics of lncRNA, we used a rigorous three-step
screening method to obtain candidate lncRNAs (Figure 1A).
First, Cuffcompare software was used to screen out transcripts
that were perfectly matched or similar to other ncRNAs,
mRNAs, etc., while clarifying the location type of the remaining
transcripts. We then retained transcripts annotated as “i”
(intergenic lncRNA), “u” (intronic lncRNA), “x” (anti-sense
lncRNA), and “o” (sense-overlapping lncRNA) by screening for
candidate lncRNA transcripts. Second, single-exon transcripts
and transcripts < 200 bp long were removed. Finally, we
used four analytical tools, including CPC (encoding potential
calculator) (Lei et al., 2007), CNCI (coding-non-coding-
index) (Liang et al., 2013), Pfam Scan (Finn et al., 2014),
and PLEK (Li et al., 2014) to predict the coding potential
of the transcripts. CPC score ≤ 0, CNCI score ≤ 0, Pfam:
E-value ≤ 0.001, and coding_potential_score ≤ 0 were
conditions for screening lncRNA. The transcript expression
levels were calculated using the fragments per kb per million
(FPKM) reads method, which is the number of fragments
per kilobase length from a gene per million fragments. The
transcript differential expression was calculated according
to the negative binomial distribution test in the DESeq
(Anders and Huber, 2012) software2. Transcripts with p < 0.05
and | (fold change) | ≥ 2 were designated as differentially
expressed. The sequencing data obtained from RNA-seq were
released to the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) database under the
accession numbers SRR12102079, SRR12102078, SRR12102077,
SRR12102076, SRR12102075, SRR12102074, SRR12102073,
SRR12102072, SRR12102071, SRR12102070, SRR12102069,
and SRR12102068.

1https://www.ncbi.nlm.nih.gov/genome/?term=Japanese+flounder
2http://bioconductor.org/packages/release/bioc/html/DESeq.html

Cis- and Trans-Analyses and Enrichment
Analysis
We searched for all of the coding genes 100 kb upstream
and downstream of differentially expressed lncRNA that had
significant co-expression (Pearson correlation calculation) with
the lncRNA. These genes that are genomically adjacent and
coexpressed in the expression pattern are likely to be the cis-
target genes of the lncRNA. Based on the results of differential
co-expression, lncRNA and mRNA not on the same chromosome
were selected as candidate targets. The RNA interaction software
RIsearch-2.0 was used to predict the binding of candidate
lncRNA and mRNA at the nucleic acid level. The number
of bases in which two nucleic acid molecules directly interact
with each other is not less than 10 and the free energy of
base binding is not more than −50 were used as screening
conditions, and they determined the potential that the lncRNA
was trans-acting. Differentially expressed lncRNAs and their
corresponding differentially expressed cis- and trans-target genes
were used to construct lncRNA–gene interaction networks
using the Cytoscape program. Predicting the main functions
of lncRNA was done by functional enrichment analysis of
lncRNA target mRNA genes. We performed gene ontology
(GO) enrichment analysis (Young et al., 2010). The number of
differential transcripts included in each GO entry was counted,
and the significance of differential transcript enrichment in each
GO entry was calculated using the hypergeometric distribution
test method. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Minoru et al., 2008) is the main public database of
Pathway and is used to perform Pathway analysis on differential
transcripts (combined with KEGG annotation results). The
significance of differential transcript enrichment in each Pathway
entry is calculated by a hypergeometric distribution test.

Quantitative Real-Time-PCR (qRT-PCR)
Analysis
Four differentially expressed lncRNAs target genes that affect
muscle development were selected for qRT-PCR verification,
including calcium voltage-gated channel subunit alpha1 D
(cacna1d) (Krasnyi and Ozernyuk, 2011), actin-related protein
3B-like (Tseng et al., 2002), kin of IRRE like 2 (kirrel2) (Durcan
et al., 2014), myosin-7B-like (Girgenrath et al., 2005), and their
corresponding lncRNA regulatory factors (TCONS_00034769,
TCONS_00041871, TCONS_00089031, and TCONS_00038291).
The qRT-PCR primers for these lncRNAs and genes are shown
in Table 1. Quantitative real-time PCR was conducted with the
Roche LightCycler480 (Germany) and SYBR Premix Ex TaqTM

(TliRNaseH Plus) Kit (Takara, Japan) to determinate the relative
expressions of each gene. Primers are listed in Table 1, and the
Japanese flounder 18 s (GenBank accession no. EF126037.1) was
used as the endogenous reference gene. The amplified system
was formed from 10µL SYBR R©Premix Ex Taq (TliRNaseH Plus),
0.4µL ROX reference dye, 0.4µL PCR forward primer, 0.4µL
PCR reverse primer, 2µL cDNA template, and 20 µL of RNase-
free water. The reaction was completed according to the following
procedure: 95◦C for 30 s, 40 cycles of 95◦C for 5 s, and Tm
for 30 s. All samples were run in triplicate. Then, we calculated
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TABLE 1 | Primers used for real time PCR.

LncRNA and
gene

Primer sequence (5′-3′) Product
length (bp)

Annealing
temperature (◦C)

TCONS_
00041871

F: CTCCTGAACCCTTTTCTCCT
R:GCTCAGTCTGACTTTAGTGCC

153 60

TCONS_
00034769

F: ACTGCTCTGGCCTGAGGATG
R: CGGCTCTATTGTGGGGAACC

198 65

TCONS_
00089031

F: CTCACTGTGGGTTTTCAAGC
R: TTTGAGCCAGAACAGAGGGT

173 65

TCONS_
00038291

F:GACGCAGAGGAAAGAAGCAC
R: GGAGCAACTTCCTCAGACCT

176 65

Actin-related
protein 3B-like

F:TGAGTGGAGGACGGATAAAG
R: TCGGACCAATCTCATCGTAG

159 60

Cacna1d F: ACGCTACTCTGTTTGCTCTG
R:AACTTCCCCACTGTTACCTC

178 60

Kirrel2 F: CGTGGTGCTCAGTAATGGTA
R: CGTCTGCTGTGATGATAGGT

155 60

Myosin-7B-like F:AGATTGAGGGGATAGAGTGG
R: CCCAGATGGTTGTCATAGAG

169 60

18S F:ATTGACGGAAGGGCACCAC
R:ATGCACCACCACCCACAGA

134 65

the relative expression by the method of comparative threshold
(2 − 11Ct) (Livak and Schmittgen, 2001).

LncRNA–miRNA–mRNA Network
Construction
Cytoscape is an open source software for biological network
integration, visualization, and analysis, loading molecular and
genetic interaction data sets in many standard formats in
the fields of molecular and systems biology, genomics, and
proteomics (Saito et al., 2012). In this study, lncrRNA–mRNA,
miRNA–mRNA, and lncRNA–miRNA relationship pairs with
regulatory relationships were predicted, and Cytoscape software
was used to construct the interaction network diagram among
them. The nodes in the network diagram are the mRNAs related
to muscle development in the GO enrichment and KEGG
pathways; the lncRNAs that have a regulatory relationship with
mRNAs; the miRNAs that have a regulatory relationship with
mRNAs. The sequencing data obtained from miRNA-seq were
released to the NCBI SRA database under the accession numbers
SRR11968806, SRR11968805, SRR11968804, SRR11968803,
SRR11968802, SRR11968801, SRR11968800, SRR11968799,
SRR11968798, SRR11968797, SRR11968796, and SRR11968795.

Statistical Analysis
The data were presented as means ± SEM. The statistical
differences were analyzed by one-way ANOVA and Duncan’s
multiple range tests in SPSS 19.0 software. P < 0.05 was
considered to be statistically significant.

RESULTS

Overview of RNA-Sequencing
High-throughput RNA-seq was performed on the Illumina Hiseq
2500 platform. Each library produced more than 90 million raw

reads. After filtering low-quality reads, clean reads still accounted
for more than 93% of the raw reads. More than 67.32% of the
clean reads perfectly mapped to the reference genome of the
Japanese flounder. The uniquely mapped reads ranged from 62.16
to 75.55% of the clean reads (Table 2).

Identification of lncRNAs in Japanese
Flounder Skeletal Muscle
According to the characteristics of lncRNAs, RNA-seq produced
751 lncRNA transcripts after strict screening and filtering of
RNAs that did not meet the requirements (Figure 1B). The length
of lncRNAs ranged from 201 to 9381 bp; the length of lncRNAs
between 201 and 1000 bp was 53.3%, 1000–2000 bp was 30.5%,
and the average length of lncRNAs was 1243 bp (Figure 1C).
The lncRNAs with 2 exons were 68% and with 3 exons were
18% (Figure 1D). The number of predicted lncRNAs types was
436 for intergenic lncRNA (u), 146 for intronic lncRNA (i), 85
for anti-sense lncRNA (x), and 84 for sense-overlapping lncRNA
(o) (Figure 1E).

Differential Expression Analysis of
lncRNAs and mRNAs
In order to display the information on differentially expressed
lncRNAs and mRNAs more intuitively, the differential expression
of lncRNAs and mRNAs in the same differential comparison
group was shown by using Circos software (Figure 2 and
Supplementary Figure S1). In the A versus B comparison,
232 differentially expressed lncRNAs were detected, 67 of
which were upregulated and 165 were downregulated. A total
of 9549 differentially expressed mRNAs were detected, 3041
of which were upregulated and 6508 were downregulated
(Figure 2 and Supplementary Table S1). In the A versus C
comparison, 211 differentially expressed lncRNAs were detected,
60 of which were upregulated and 151 were downregulated.
A total of 8673 differentially expressed mRNAs were detected,
2665 of which were upregulated and 6008 were downregulated
(Supplementary Figure S1 and Supplementary Table S2).
In the A versus D comparison, 194 differentially expressed
lncRNAs were detected, 63 of which were upregulated and
131 were downregulated, and 9181 differentially expressed
mRNAs were detected, 2854 of which were upregulated and
6327 were downregulated (Supplementary Figure S1 and
Supplementary Table S3). In the B versus C comparison, 28
differentially expressed lncRNAs were detected, 13 of which were
upregulated and 15 were downregulated, and 1821 differentially
expressed mRNAs were detected, 978 of which were upregulated
and 843 were downregulated (Supplementary Figure S1 and
Supplementary Table S4). In the B versus D comparison, 29
differentially expressed lncRNAs were detected, 12 of which were
upregulated and 17 were downregulated, and 1080 differentially
expressed mRNAs were detected, 532 of which were upregulated
and 548 were downregulated (Supplementary Figure S1 and
Supplementary Table S5). In the C versus D comparison, 14
differentially expressed lncRNAs were detected, 7 of which were
upregulated and 7 were downregulated, and 557 differentially
expressed mRNAs were detected, 245 of which were upregulated
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TABLE 2 | Summary of draft reads of 12 libraries by RNA-sequencing.

Sample Raw reads Clean reads Total mapped Multiple mapped Uniquely mapped

A_1_1 95,070,396 90,140,748 (94.81%) 68,921,334 (76.46%) 2,510,198 (2.78%) 66,411,136 (73.67%)

A_1_2 95,386,604 90,562,700 (94.94%) 71,317,689 (78.75%) 2,896,374 (3.20%) 68,421,315 (75.55%)

A_1_3 98,029,082 92,699,826 (94.56%) 72,020,838 (77.69%) 2,679,887 (2.89%) 69,340,951 (74.80%)

B_2_1 96,622,226 91,173,512 (94.36%) 67,805,686 (74.37%) 6,443,523 (7.07%) 61,362,163 (67.30%)

B_2_2 96,239,174 91,922,114 (95.51%) 66,710,930 (72.57%) 5,541,344 (6.03%) 61,169,586 (66.55%)

B_2_3 96,343,382 90,217,708 (93.64%) 60,737,386 (67.32%) 4,662,151 (5.17%) 56,075,235 (62.16%)

C_3_1 95,721,552 91,153,382 (95.23%) 71,011,936 (77.90%) 10,055,963 (11.03%) 60,955,973 (66.87%)

C_3_2 95,830,852 91,285,636 (95.26%) 72,297,477 (79.20%) 1,278,4703 (14.01%) 59,512,774 (65.19%)

C_3_3 97,999,946 93,132,198 (95.03%) 73,007,033 (78.39%) 12,142,118 (13.04%) 60,864,915 (65.35%)

D_4_1 98,391,502 92,247,994 (93.76%) 65,722,331 (71.25%) 8,110,885 (8.79%) 57,611,446 (62.45%)

D_4_2 98,380,634 93,523,450 (95.06%) 73,108,525 (78.17%) 10,076,310 (10.77%) 63,032,215 (67.40%)

D_4_3 96,840,342 92,390,402 (95.40%) 73,089,193 (79.11%) 9,858,949 (10.67%) 63,230,244 (68.44%)

and 312 were downregulated (Supplementary Figure S1 and
Supplementary Table S6).

lncRNA–Gene Interaction Network
Construction
To address how lncRNA interacts with its target gene (mRNA)
to regulate Japanese flounder muscle development and identify
key molecular players in the process, we predicted cis- and
trans-targets of differentially expressed lncRNAs and constructed
the possible regulatory networks for these interactions. Previous
studies have demonstrated that lncRNAs regulate the expression
of adjacent protein-coding genes via a cis-acting mechanism
(Han et al., 2012; Qian et al., 2012). In the present study,
we screened for all the coding genes in the 100k that
were upstream and downstream of the differentially expressed
lncRNAs and significantly coexpressed with the lncRNAs
(Pearson correlation calculation, Supplementary Tables S14–
S19). These genes that are genomically adjacent and coexpressed
in expression patterns are predicted to be cis-target genes
of lncRNAs. In addition, lncRNAs regulate the expression
of genes located on other chromosomes through a trans-
acting mechanism (Han et al., 2012). Based on the results
of differential co-expression, the lncRNAs and mRNAs that
are not on the same chromosome were selected as candidate
targets. The RNA interaction software RIsearch-2.0 was used
to predict the binding of candidates of lncRNA and mRNA
at the nucleic acid level. The lncRNAs and mRNAs that
may have direct regulation were screened, and these genes
were predicted to be trans-target genes. For the comparison
of A and B, the lncRNA-gene interaction network contained
304 network nodes, 83 lncRNAs, 221 protein-coding genes,
200 pairs of cis-regulation relations, and 29 pairs of trans-
regulation relations (Figure 3 and Supplementary Table S7).
For the comparison of A and C, the lncRNA–gene interaction
network contained 285 network nodes, 70 lncRNAs, 215
protein encode genes, 200 pairs of cis-regulation relations,
and 19 pairs of trans-regulation relations (Supplementary
Figure S2 and Supplementary Table S7). For the comparison
of A and D, the lncRNA–gene interaction network consists
of 278 network nodes, 69 lncRNAs, 209 protein-coding

genes, 200 pairs of cis-regulation relations, and 24 pairs
of trans-regulation relations (Supplementary Figure S2 and
Supplementary Table S7). For the comparison of B and C,
the lncRNA–gene interaction network contained 157 network
nodes, 26 lncRNAs, 131 protein-coding genes, 93 pairs of cis-
regulation relations, and 38 pairs of trans-regulation relations
(Supplementary Figure S2 and Supplementary Table S7). For
the comparison of B and D, the lncRNA–gene interaction
network contained 108 network nodes, 22 lncRNAs, 86 protein
encode genes, 47 pairs of cis-regulation relations, and 8 pairs
of trans-regulation relations (Supplementary Figure S2 and
Supplementary Table S7). For the comparison of C and D,
the lncRNA–gene interaction network contained 97 network
nodes, 12 lncRNAs, 85 protein-coding genes, 11 pairs of cis-
regulation relations, and 47 pairs of trans-regulation relations
(Supplementary Figure S2 and Supplementary Table S7). We
then analyzed the expression correlation between the network
lncRNA and its corresponding target gene. In the network
constructed from the differentially expressed lncRNAs and target
genes identified from the A versus B comparison, 212 lncRNA–
gene linkages were positively correlated, and the other 18
linkages were negatively correlated (Figure 3 and Supplementary
Table S7). For the A versus C comparison, 210 lncRNA–
gene connections were positively correlated, and 9 connections
were negatively correlated (Supplementary Figure S2 and
Supplementary Table S7). For the comparison of A and
D, 213 lncRNA–gene connections were positively correlated,
and 11 connections were negatively correlated (Supplementary
Figure S2 and Supplementary Table S7). For the B versus
C comparison, 73 lncRNA–gene connections were positively
correlated, and 58 connections were negatively correlated
(Supplementary Figure S2 and Supplementary Table S7). For
the B versus D comparison, 46 lncRNA–gene connections
were positively correlated, and 9 connections were negatively
correlated (Supplementary Figure S2 and Supplementary
Table S7). For the C versus D comparison, 24 lncRNA-gene
connections were positively correlated, and 34 connections
were negatively correlated (Supplementary Figure S2 and
Supplementary Table S7). The directional analysis shows that
the positive correlation number between lncRNA–gene pairs
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FIGURE 1 | The features of Japanese flounder lncRNAs. (A) Identification and verification of lncRNA in skeletal muscle of Japanese Flounder. (B) Venn diagram of
Candidate lncRNA coding ability prediction result. (C) Exon length distribution of Japanese flounder lncRNAs. (D) Exon numbers per transcript of Japanese flounder
lncRNAs. (E) The lncRNAs types of Japanese flounder skeletal muscle, “I” (intergenic lncRNA), “u” (intronic lncRNA), “x” (anti-sense lncRNA), “o” (sense-overlapping
lncRNA).
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FIGURE 2 | Circos diagram of differential expression of lncRNA and mRNA in A vs. B. In the figure, the outermost circle is the autosomal distribution of the Japanese
flounder; the second circle is the lncRNA of differential expression on the chromosome, the red line indicates up-regulation, the green line indicates down-regulation;
the third circle is the histogram of differentially expressed lncRNAs at different positions. Red indicates up-regulation, green indicates down-regulation, and the higher
the column, indicates the more differentially expressed gene numbers. The fourth circle is the distribution of differentially expressed mRNAs on the chromosome, and
the color distribution is the same as lncRNA; the innermost circle is the column with differentially expressed mRNAs at different positions, color distribution is the
same as lncRNA.

was higher than the negative correlation number except for
comparison networks of C and D.

GO and KEGG Pathway Analysis
We enriched the biological processes and pathways in all
comparisons. In the A versus B comparison, 3805 terms were
enriched, and 3720 terms were enriched in the A versus C

comparison, 3627 terms in A versus D, 1779 terms in B
versus C, 1780 terms in B versus D, and 741 terms were
enriched in the C versus D comparison (p < 0.05). We
selected the top 30 terms in the GO enrichment analysis for
each comparison (screening GO entries with corresponding
transcript numbers greater than 2, sorting from large to small
according to the corresponding −log10P-value for each entry
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FIGURE 3 | LncRNA – gene interaction network diagram in A vs. B. Red indicates up-regulation, green indicates down-regulation, triangles represent lncRNA, and
circles indicate mRNA. The dashed line indicates the interaction between the differentially expressed lncRNA and its corresponding cis target gene, while the solid
line indicates the interaction between the differentially expressed lncRNA and its corresponding trans target gene.

and then selecting 10 terms in each of the three categories)
analysis (Supplementary Tables S8–S13). Many GO terms that
were enriched in more than one comparison were related to
myosin filament, epidermal cell differentiation, and calcium- and

calmodulin-responsive adenylate cyclase activity. In all of these
GO terms, there were enriched muscle-related terms, such as
muscle myosin complex, myosin filament, and actin binding.
In all of these GO terms, muscle-related terms, such as muscle
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myosin complex, myosin filament, and actin binding, were
enriched. Figure 4A is a GO enrichment map of the C versus
D comparison in which actin binding is significantly enriched
in the top 30. For A versus B, A versus C, A versus D, B

versus C, B versus D, and C versus D comparisons, 79, 85, 72,
31, 31, and 31 enrichment pathways were detected, respectively
(p < 0.05). We selected the top 20 terms in the KEGG pathway
analysis for each comparison (screening the pathway entries with

FIGURE 4 | Histogram of gene ontology (GO) classification (A). GO analysis of C vs. D differentially expressed lncRNAs target genes. The horizontal axis indicates
the GO entry name and the vertical axis indicates −log10Pvalue. Red bars: biological process; Green bars: cellular component; Blue bars: molecular function. KEGG
pathway enrichment of C vs. D differentially expressed lncRNAs target genes (B). The horizontal axis is the enrichment score, the vertical axis indicates the name of
the pathway.
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transcript numbers greater than 2 and sorting from large to
small according to the corresponding −log10P-value for each
entry) (Supplementary Tables S8–S13). The regulation of the
actin cytoskeleton pathway was significantly enriched in the C
versus D comparison (Figure 4B). These results suggest that
some lncRNAs may be involved in the growth and development
of skeletal muscle.

Verification of Gene Expression Profiles
Using qRT-PCR
To confirm the accuracy and reproducibility of differentially
expressed lncRNAs and differentially expressed gene expression
levels obtained from RNA-seq, we selected four differentially
expressed lncRNA target genes that affect muscle development
and performed qRT-PCR verification. The expression of cacna1d
was downregulated in stage C compared with that in stage A. The
expression of TCONS_00034769 was downregulated in stage C
compared with that in stage A. The expression of actin-related
protein 3B-like was upregulated in stage B compared with that in
stage A. The expression of TCONS_00041871 was downregulated
in stage B compared with that in stage A. The expression of kirrel2
was downregulated in stage B compared with that in stage A. The
expression of TCONS_00089031 was downregulated in stage B
compared with that in stage A. The expression of myosin-7B-
like was downregulated in stage D compared with that in stage A.
The expression of TCONS_00038291 was upregulated in stage D
compared with that in stage A. All four lncRNAs and their target
genes showed similar expression patterns compared to RNA-seq
data, indicating the reliability of our RNA-seq data (Figure 5).

Bioinformatics Analysis of
lncRNA–miRNA–mRNA Networks
Recent studies show that lncRNAs can act as a competitive
endogenous RNA affecting post-transcriptional regulation by
interfering with the miRNA pathway. To further elucidate the

role of lncRNAs in the growth and development of skeletal
muscle in Japanese flounder, we used TargetScan and miRanda to
predict miRNAs that have a regulatory relationship with the given
muscle development–associated mRNAs and the differentially
expressed lncRNAs and established the basic lncRNA linkage
(Figure 6). The lncRNA–miRNA–mRNA interaction network
(Figure 7, Supplementary Figure S2,S3 and Supplementary
Table S7) was constructed using Cytoscape software. In the A
versus B comparison, there were 18 miRNAs, 13 mRNAs, and
101 lncRNAs, which had at least one predicted target miRNA.
There were 18 miRNAs, 13 mRNAs, and 110 lncRNAs in the A
versus C comparison. There were 18 miRNAs, 13 mRNAs, and 95
lncRNAs in the A versus D comparison. There were 19 miRNAs,
13 mRNAs, and 11 lncRNAs in the B versus C comparison. There
were 19 miRNAs, 13 mRNAs, and 12 lncRNAs in the B versus D
comparison. There were 19 miRNAs, 13 mRNAs, and 4 lncRNAs
in the C versus D comparison. Some of these lncRNAs (including
TCONS_00003213, TCONS_00006684, and TCONS_00023918)
were found to interact with at least three target miRNAs.

DISCUSSION

More and more lncRNAs have been discovered in different tissues
and cells by high-throughput sequencing technology, some of
which have been proven to play important roles in the growth or
disease development of some mammals (Geng et al., 2013; White
et al., 2014; Gao et al., 2017) and other model organisms (Pauli
et al., 2012; Grote et al., 2013). In this study, only 67.32% of the
B_2_3 sample in the RNA-seq results was mapped to the Japanese
flounder genome, and the mapping rate was a bit low. The main
reason for the low reference genome-mapping rate is that the
genome assembly of the reference species is not ideal. NCBI has
two reference genomes of Japanese flounder, and the assembly
quality is not high. ContigN50 is 30K and 36K, respectively. In

FIGURE 5 | Quantitative real-time PCR validation of differentially expressed lncRNAs and their corresponding target genes. Values are shown as mean with SEM.
Significant differences between stages are indicated by *. *, **, and *** indicate p < 0.01, p < 0.001, and p < 0.0001, respectively.

Frontiers in Genetics | www.frontiersin.org 10 September 2020 | Volume 11 | Article 103497

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-01034 September 9, 2020 Time: 12:21 # 11

Wu et al. Identify and Characterize Muscle lncRNA

FIGURE 6 | The process of building lncRNA – miRNA-mRNA interactive
network. DElncRNA: differentially expressed lncRNA; DEmRNA: differentially
expressed mRNA.

general, the longer the contigN50, the better the assembly result.
Previous reports have shown that the mapping rates were only 74
and 85% (Zhang et al., 2016; Sun et al., 2020), which are relatively
low. There are still few analyses of Japanese flounder with the
reference genome, most of which are Denovo strategies, which
also reflects that the Japanese flounder genome is not very good.

The identification and characterization of lncRNAs in
Japanese flounder, especially in skeletal muscle development, are
very limited compared to those of lncRNAs in mammals. In
this study, we identified 751 lncRNAs in four stages (A, B, C,
D) of Japanese flounder skeletal muscle development through
high-throughput sequencing. We also identified differentially
expressed mRNAs and lncRNAs among the A versus B, A
versus C, A versus D, B versus C, B versus D, and C versus
D comparisons, respectively, 9549, 8673, 9181, 1821, 1080, and
557 differentially expressed mRNAs and 232, 211, 194, 28, 29,
and 14 differentially expressed lncRNAs. These may have specific
biological functions in skeletal muscle development of Japanese
flounder. In recent years, the biological effects of some lncRNAs
in muscle have been reported. For example, it is reported that
lncRNA AK 017368 can promote the proliferation and inhibit the
differentiation of skeletal muscle myoblasts (Liang et al., 2017).
Linc-MD1 is the first identified lncRNA specifically involved
in muscle differentiation (Cesana et al., 2011). In addition, the
newly identified lncRNA MAR promotes muscle differentiation
and regeneration and may also be a novel therapeutic target
for the treatment of aging or muscle atrophy (Zhang et al.,
2018). Therefore, differentially expressed lncRNAs identified
here may also affect the development of skeletal muscle in
Japanese flounder.

It is well known that lncRNAs can function by targeting
protein-encoding genes. In this study, we hypothesized their
potential biological function by predicting the cis- and trans-
regulated target genes of lncRNAs. Recent studies have also

shown that lncRNAs are involved in cis-regulatory activity in
muscle development. Studies have shown that lncRNA-Six1,
located 432 bp upstream of the protein-encoding gene Six
homeobox 1 (Six1), promotes cell proliferation and participates
in muscle growth through cis-acting regulation of genes (Cai
et al., 2017). Previous studies show that the lncRNA Dum
located upstream of the developmental pluripotency-associated
2 (Dppa2) gene is involved in myogenic differentiation and
muscle regeneration (Wang et al., 2015). Here, we screened all the
coding genes 100k upstream and downstream of the differentially
expressed lncRNAs as cis-targets. In the comparisons of A versus
B, A versus C, A versus D, B versus C, B versus D, and C
versus D, 200, 200, 200, 93, 47, and 11 pairs of lncRNAs and
genes were found to have cis-regulation relations, respectively.
The identified cis-regulatory genes have important significance
for predicting the function of lncRNAs. Thus, the regulatory role
of lncRNAs on muscle development needs to be investigated
further. Many studies have shown that lncRNA participates
in muscle development through trans-acting. The synergistic
activity of the two DNA enhancer elements CE and DRR
located in the ∼24 kb upstream region of MYOD1 regulates
the level of MyoD expression in the myogenic lineage, whereas
DDRRNA promotes the expression of myogenin by trans-acting
(Mousavi et al., 2013). MUNC, also known as DRR (eRNA), is
located 5 kb upstream of the transcription start site of MyoD
and promotes the function of MyoD during skeletal muscle
development (Mueller et al., 2015). Based on the results of
differential co-expression, the lncRNAs and mRNAs that are not
on the same chromosome were selected as candidate targets.
In the comparisons of A versus B, A versus C, A versus D, B
versus C, B versus D, and C versus D, 29, 19, 24, 38, 8, and 47
pairs of LncRNAs and genes were found to have trans-regulation
relations. These results suggest that lncRNA may participate in
the development of Japanese flounder skeletal muscle through
cis- or trans-acting mechanisms.

To identify the potential function of lncRNAs, in this study, we
performed GO and KEGG enrichment analysis on the predicted
cis- and trans-target genes of differentially expressed lncRNAs
to understand the function of these differentially expressed
lncRNA target genes and further predict the biological function
of lncRNAs. In these enrichment analysis results, we find that the
cis-acting regulatory gene LOC109635692 is enriched for the term
“myosin VII complex, actin filament binding.” Furthermore,
LOC109635692 is also found to be the cis-target gene predicted
by lncRNA TCONS_00056200 and TCONS_00056180. The gene
shows a downward trend in the comparison of A and B. During
fish growth, increasing muscle fiber number or muscle size is the
major muscle growth process. This gene is related to one of the
factors that affect muscle development. A negative correlation
is observed between LOC109635692 and TCONS_00056200,
and a positive correlation is observed between LOC109635692
and TCONS_00056180, indicating that different lncRNAs may
regulate the same target gene in different ways to regulate
muscle development. Some coding genes regulated by lncRNA
trans-action are also enriched in terms and pathways related to
muscle development. For example, LOC109626851 identified in
the comparison of B and C is enriched in the myosin filament
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FIGURE 7 | The lncRNA – miRNA-mRNA interaction network in A vs. B. In the network, blue triangles represent mRNAs, red ovals represent lncRNAs, and green
rectangles represent miRNAs.

term, LOC109648097 identified in the comparison of B and D
is also enriched in the term of myosin filament, and the genes
identified in the comparison of C and D, such as LOC109626999
and LOC109643555, are enriched in terms, such as actin binding.
These genes are all cis- or trans-regulated with lncRNA. These
results indicate that lncRNA may participate in the development
of skeletal muscle in Japanese flounder.

Previous studies show that cacna1d is an important regulator
of muscle development (Krasnyi and Ozernyuk, 2011, Park et al.,
2018). In the lncRNA–gene network comparing A and C, the
cacna1d gene -s the predicted cis-target of TCONS_00034769
(Figure 3B). In addition, it is enriched in the term of “skeletal
muscle fiber development” in GO enrichment analysis. Moreover,
the expression levels of cacna1d and TCONS_00034769 in stage
A are higher than those in stage C. These results indicate
that TCONS_00034769 targets cacna1d through a cis-regulatory
mechanism to regulate skeletal muscle development in Japanese
flounder. In the lncRNA–gene network comparing A and B,
the actin-related protein 3B-like gene is the predicted cis-target

of TCONS_00041871 (Figure 3A). In addition, it is enriched
in the terms of “regulation of myosin II filament organization,
positive regulation of actin filament polymerization, and actin
binding” in GO enrichment analysis. In the skeletal muscle of
Japanese flounder, the expression level of actin-related protein
3B-like in stage B is higher than that in stage A, indicating
that this gene may be related to one of the factors that
affect muscle development. The predicted regulatory lncRNA,
TCONS_00041871, can control the expression of actin-related
protein 3B-like through the cis-regulatory mechanism and is
expressed at a higher level in skeletal muscle in stage A than in
stage B. This negative correlation between LncRNA and target
genes indicates that lncRNA regulates the muscle development
of Japanese flounder by inhibiting the expression of the gene. Kin
of IRRE like 2 (kirrel2) is predicted to be a cis-acting target of
TCONS_00089031 (Figure 3A), and it is enriched in the terms
of “myosin binding and positive regulation of actin filament
polymerization” in GO enrichment analysis. In the skeletal
muscle of Japanese flounder, the expression level of kirrel2 in
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stage A is higher than that in stage B. The predicted regulatory
lncRNA, TCONS_00089031 can regulate the expression of kirrel2
through the cis-regulatory mechanism and is expressed at a
higher level in skeletal muscle in stage A than in stage B. This
positive correlation between lncRNA and target genes indicates
that lncRNA regulates the muscle development of Paralichthys
olivaceus by promoting the expression of the gene. In the
lncRNA–gene network comparing A and D, the myosin-7B-like
gene is the predicted cis-target of TCONS_00038291 (Figure 3C).
In addition, it is enriched in the term of “myosin filament” in GO
enrichment analysis. These results indicate that these lncRNAs
play a role in the development of Japanese flounder skeletal
muscle by regulating the related genes.

Both lncRNA and miRNA have their own regulatory
networks. Their regulatory networks are not independent but are
intertwined and interdependent, and they also have regulatory
relationships and form complex regulatory networks with
mRNA. In the study of pancreatic cancer, the large-scale effects
of interrelated miRNAs are revealed by establishing an lncRNA–
miRNA–mRNA regulatory network and constructing a model
for predicting the disease mechanisms of miRNAs (Ye et al.,
2014). In this study, we also predicted the biological function
of lncRNAs by establishing lncRNA–miRNA–mRNA networks.
Co-expression networks show that most lncRNAs interact with
one or two predicted miRNAs that are involved in muscle
growth and development. Some of these lncRNAs (including
TCONS_00093971, TCONS_00096817, TCONS_00032744, etc.)
have established interactions with at least three target miRNAs.
Although these lncRNAs require further experimental validation,
this information may help us explore the potential regulatory
mechanisms of lncRNAs during Japanese flounder skeletal
muscle growth and development.
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Epigenetic gene regulation is a major control mechanism of gene expression. Most

existing methods for modeling control mechanisms of gene expression use only a

single epigenetic marker and very few methods are successful in modeling complex

mechanisms of gene regulations using multiple epigenetic markers on transcriptional

regulation. In this paper, we propose a multi-attention based deep learning model that

integrates multiple markers to characterize complex gene regulation mechanisms. In

experiments with 18 cell line multi-omics data, our proposed model predicted the gene

expression level more accurately than the state-of-the-art model. Moreover, the model

successfully revealed cell-type-specific gene expression control mechanisms. Finally, the

model was used to identify genes enriched for specific cell types in terms of their functions

and epigenetic regulation.

Keywords: gene regulation mechanism, gene regulatory network, multi-omics, deep learning, cell-type-specific

1. INTRODUCTION

Epigenetic gene regulation is a major control mechanism of gene expression. Histonemodifications
one of the most versatile modes of chromatin regulation among diverse epigenetic regulatory
mechanisms are defined as covalent modifications of a set of specific amino acids at N-terminal
tails of histone proteins. Combinations of the type of amino acids and their modifications
constitute “histone codes” that are distributed across the genome and are known to regulate
overall chromatin states. On the other hand, DNA methylation occurs directly at the cytosine
bases of DNA and regulates gene expression in part by altering the binding affinity of most
of the transcription factors. Besides the individual effect of each epigenetic modification, the
complexity of epigenetic gene regulation mostly arises from the crosstalk between the different
types of epigenetic modifications. For example, positive interplay between histone marks (1)
H2BK120u1 and H3K4me3, and (2) H3K4me3 and H3/H4 acetylation (Zhang et al., 2015) is
an example of the complex epigenetic regulation. Furthermore, some histone modifications are
known to be associated with DNA methylation (Cedar and Bergman, 2009). De novo DNA
methyltransferases, DNMT3A andDNMT3B, are known to physically interact with specific histone
marks, H3K36me3 and H3K4me0, through their internal PWWP and ADD domain, respectively.
Methyl-CpG-binding domain (MBD) proteins have been reported to “read” methylated CpG,
and recruit chromatin-modifying complexes such as SWI/SNF components (Fatemi and Wade,
2006). Subtle epigenetic interactions between different types of histone modifications and DNA
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methylation can therefore be regarded as a major determinant
of the general chromatin structure of cells that govern the
accessibility of transcription factors to the chromatin.

Given the essential role of epigenetic alterations in regulating
gene expression, a number of studies on modeling the regulatory
effects of these epigenetic markers have been performed.
However, existing modeling methods utilize only a single
epigenetic marker. Some studies have investigated the role of
histone marks in the context of gene regulation. DeepChrome
(Singh et al., 2016) used a Convolutional Neural Network
based model to model gene regulation. It was the first deep
learning approach to predict the gene expression level, and it
captured local characteristics of histone marks. Another study,
AttentiveChrome (Singh et al., 2017), proposed a hierarchy of
multiple Long Short-Term Memory modules with an attention
mechanism to predict gene expression levels. AttentiveChrome
predicted gene expression more accurately than DeepChrome,
and it showed which histone marks or which gene loci were
used, using an attentionmechanism. Both studies used individual
deep learning approaches to understand gene regulation but
utilized histone marks only. There have also been studies to
identify relationships between genome-wide DNA methylation
and gene expression. Wagner et al. (2014) investigated the
relationships between DNAmethylation and the gene expression
profile of primary fibroblast samples from 62 individuals. More
recently, Zhong et al. (2019) predicted gene expression using
DNAmethylation in human populations, using linear regression-
based methods. Recent studies investigated the relationships
between mutation and gene expression. Zeng et al. (2017) used
a linear regression-based model to predict gene expression with
cis-SNPs. Xie et al. (2017) examined the effectiveness of a deep
auto-encoder to predict the gene expression profile measured in
yeast with SNP. These prior studies on gene expression prediction
revealed relationships between gene expression and a single
epigenetic marker of histone marks, DNA methylation, or SNP.
However, these studies were not designed to model complex
transcriptional control mechanisms involving the interplay of
various epigenetic regulatory modules.

We therefore introduce an explainable deep learning model
with a multi-attention network for epigenetic regulation
mechanisms. Our model integrates multiple markers such as
histone marks, DNA methylation, and transcription factors
and explains the complex interactions between the molecular
regulators. The attention network modules of our model
allow human experts to understand the gene regulation
mechanisms. Moreover, the model characterizes cell-type-
specific gene regulation mechanisms for 18 cell lines, based on
the weights of the Multi-Attention network. In summary, the
proposed model provides a better understanding of cell-type-
specific gene regulation.

2. MATERIALS AND METHODS

We propose a two-step ensemble deep learning model for
gene expression prediction and the architecture is illustrated in
Figure 1. At the first layer of the model, separate neural networks

vectorize epigenetic and transcriptional markers with different
strategies, and then at the second layer, output vectors from
the first layer are integrated by a Multi-Attention network. To
predict gene expression, we used the same outputs previously
used in DeepChrome (Singh et al., 2016) and AttentiveChrome
(Singh et al., 2017). All genes are divided into highly expressed
genes (HEG) and lowly expressed genes (LEG) according to
their expression levels, which formulates the problem as a binary
classification task.

To begin, separate models embed histone marks, DNA
methylation, and transcription factors into a regulatory latent
space. First, histone marks are embedded into the latent
space by a Convolutional Neural Network (CNN) followed by
a Bi-directional Long Short-Term Memory (LSTM) network
with attention. Second, DNA methylation is vectorized by a
Dynamic Bi-directional LSTM with attention. Lastly, a Self-
AttentionNetwork (SAN) embeds the transcription factors. After
embedding features in three vectors, a Multi-Attention network
combines these vectors to predict whether a gene would be
highly expressed or lowly expressed.While the end-to-endmodel
predicts the gene expression level as a whole, the Multi-Attention
network determines which types of epigenetic markers are most
influential for controlling gene expression and how epigenetic
features interact with each other in each cell type.

We used datasets from the Roadmap Epigenomics Projects
(Kundaje et al., 2015) to predict the gene expression level of 18
cell lines, for which data measuring levels of histone marks, DNA
methylation, and transcription factors are available (Table 1,
Supplementary Figure 1). The epigenetic and transcriptional
markers near the transcription start site (TSS) mainly involve
in gene expression. We therefore focused on the gene region of
4,000 base-pair (bp) around the TSS for histone markers or DNA
methylation and 200 bp around the TSS for transcription factors.
To implement the model, we used Pytorch, an open-source
machine learning library based on Python. Implementation of
our model can be found at Github (https://github.com/pptnz/
deeply-learning-regulatory-latent-space).

In the following sections, deep learning models for each of the
epigenetic and transcriptional markers are explained.

2.1. Embedding Histone Marks
We used seven core histone marks: H3K4me1, H3K4me3,
H3K9me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac.
Among 31 histone marks in the Roadmap Epigenomics Projects,
the seven core histone marks had been profiled and investigated
the most. Each of the seven histone marks were profiled for more
than 62 cell lines, whereas other histone marks were profiled for
less than 24 cell lines (Supplementary Figure 2). To investigate
cell-type-specific gene regulation mechanisms, we used the seven
histone marks with abundant cell line data.

To vectorize the histone marks, we used CNN, followed by Bi-
directional LSTM with an attention mechanism. CNN is a deep
learning architecture proposed for extracting local features of
various sizes in two-dimensional images (Min et al., 2016). In this
model, CNN captures local patterns of the seven histone marks.
RNN is a deep learning architecture with a cyclic structure,
which has caught the limelight in natural language processing
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FIGURE 1 | An overview of the proposed model. To predict gene expression level and to model the regulation mechanism, a Multi-Attention based deep learning

model with regulatory latent space is designed. It consists of two steps: (1) embedding multi-omics features into a regulatory latent space, and (2) integrating latent

vectors with a Multi-Attention network. In the first step, different deep learning architectures are utilized to reflect the characteristics of each omics feature. By

omics-specific layers, multi-omics features are transformed into latent vectors in the regulatory latent space. In the second step, the latent vectors are integrated by a

Multi-Attention network. The attention weights of multi-omics features represent their effects on the gene regulation.
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TABLE 1 | Cell line data used in this study.

Cell line Group Standardized

epigenome name

E003 ESC H1 Cells

E004 ES-deriv H1 BMP4 derived mesendoderm cultured cells

E005 ES-deriv H1 BMP4 derived trophoblast cultured cells

E006 ES-deriv H1 derived mesenchymal stem cells

E007 ES-deriv H1 derived neuronal progenitor cultured cells

E011 ES-deriv hESC derived CD184+ endoderm cultured cells

E016 ESC HUES64 cells

E038 Blood & T-cell Primary T helper naive cells from peripheral blood

E047 Blood & T-cell Primary T CD8+ naive cells from peripheral blood

E066 Tissue & Primary cell Liver

E087 Tissue & Primary cell Pancreatic islets

E114 Cancer cell line A549 EtOH 0.02pct lung carcinoma cell line

E116 Cancer cell line GM12878 lymphoblastoid cells

E117 Cancer cell line HeLa-S3 cervical carcinoma cell line

E118 Cancer cell line HepG2 hepatocellular carcinoma cell line

E119 Tissue & Primary cell HMEC mammary epithelial primary cells

E120 Tissue & Primary cell HSMM skeletal muscle myoblasts cells

E123 Cancer cell line K562 leukemia cells

fields (Min et al., 2016). LSTM is one of the architectures of the
Recurrent Neural Network, proposed for considering long-term
dependencies (Gers et al., 2000). Unlike other RNN architectures,
LSTM has a forget gate, which allows the model to forget
irrelevant parts of a sequence and deal with a long sequence.
In our model, LSTM captures sequential patterns. The attention
mechanism reveals important gene loci.

The histone marks in a gene region of 4,000 bp around TSS
are divided into 40 bins with a bin size of 100 bp. On each bin,
log read counts are calculated for each histone mark, respectively.
The preprocessed histone mark matrix of size 7× 40 is fed into a
CNN that consists of a convolutional layer, a batch normalization
layer, and a 1Dmax-pooling layer. In the convolutional layer, 100
kernels of size 7 × 7 are used, so that a vector of size 1 × 34
is produced. In the max-pooling layer, a kernel with size 3 and
stride 3 is used with left and right padding. Afterward, the output
vector of the CNN is fed into the Bi-directional Long Short-Term
Memory (LSTM) with attention, producing a hHM of size 80.

2.2. Embedding DNA Methylation
We used methylation values at all CpG sites within up/down-
stream of 2,000 bp from TSS. DNA methylation is vectorized
by a Dynamic Bi-directional LSTM with attention. The number
of CpG sites vary for different genes. Thus, the “Dynamic”
LSTM deals with the variable number of CpGs, and the “Bi-
directional” LSTM considers both directions of the DNA strands.
Dynamic Bi-directional LSTM produces the output vector hME of
a fixed size 20.

2.3. Embedding Transcription Factors
We first selected candidate binding transcription factors (TFs)
for each gene, based on prior knowledge of human transcription

factors in Lambert et al. (2018), and the motif detection tool,
HOMER (Heinz et al., 2010). We utilized TFs that have their
binding sites within the region of 200 bp around the TSS. Based
on this configuration, an input matrix for TFs is processed
as a matrix of size 3 x 1016. Three rows of an input matrix
represent TF expression values, the number of binding sites,
and the binding scores of TFs by HOMER. One-thousand-and-
sixteen columns of the matrix represent human transcription
factors. Except for the candidate binding transcription factors, all
columns are masked to zero.

Since the data of transcription factors are discrete rather than
sequential, CNN or LSTM cannot be employed. Thus, a Self-
Attention Network (SAN) is used to embed the input matrix
in vector a hTF of size 5. As a result of SAN, the attention
weight matrix is produced, providing vital information about
relationships and interactions between transcription factors.

2.4. Integrating Latent Vectors
To integrate latent vectors, we used the Multi-Attention Block
from the Multi-Attention Recurrent Network (MARN) (Zadeh
et al., 2018). MARN was proposed for the comprehension
of human communication with multi-modal data (language
modality, vision modality, and acoustic modality). As it was
designed to deal with data with different characteristics, MARN
is suitable for dealing with three latent vectors from different
multi-omics data.

First, all three latent vectors hHM , hME, and hTF are
concatenated. The concatenated vector h is fed into a fully
connected layer A. Multiple attention weights a1, a2, ..., ak are
then produced, where k is the number of attentions. The k
attention weights are multiplied to the concatenated vector, the

vectors h̃1, h̃2, ..., h̃k are produced by element-wise multiplication

of the concatenation and the k attention weights as h̃i = h⊗ ai.
Finally, a fully connected layer produces the predicted labels,

which represents whether a gene is highly expressed (HEG, +1)
or lowly expressed (LEG, -1).

3. RESULTS

To evaluate our proposed model, we split 18,070 genes into four-
folds for each cell line. The first and second folds were used as a
test and validation set, respectively, and the remaining two folds
were used as a training set. Every result is averaged from a 4-fold
cross-validation.

3.1. Performance Evaluation of Models
With Histone Modification Only
We set a baseline with the state-of-the-art method for gene
expression level prediction, AttentiveChrome (Singh et al., 2017).
As AttentiveChrome was designed for histone marks only,
instead ofmultiple epigenetic features, we trained both ourmodel
and AttentiveChrome using only seven histone marks for a fair
comparison. We evaluated them with two metrics. (1) First, we
performed a classification task on whether a gene is highly or
lowly expressed in that cell line. (2) Second, gene expression
value prediction was performed in terms of rank concordance
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FIGURE 2 | Performance evaluation of models in predicting the gene expression levels. The performance of our model surpassed that of a baseline model,

AttentiveChrome, in both criteria of (A) AUC and (B) Rank Concordance for two models for every cell line.

between the gene expression values and the final output values
of the model.

In terms of AUC, rank concordance, and AUPR, our model
outperformed AttentiveChrome for every cell line (Figure 2,
Supplementary Figure 3). On average, the proposed model
achieved 91.05% of AUC, while AttentiveChrome achieved
89.72%. Moreover, the model demonstrated its robustness by
showing higher rank concordances between the gene expression
value and the final output of the model. Our model showed
56.83% of rank concordance on average, while AttentiveChrome
showed only 53.85%. We conjecture that the performance
difference is due to the difference in model architectures.
AttentiveChrome first uses an individual LSTM structure for
each histone mark, and then integrates histone marks with
an additional LSTM. On account of the individual LSTM, the
interactions of numerous types of histone marks are likely to be
neglected. Consequently, AttentiveChrome was not successful in
capturing the local characteristics of seven histone marks. On the
other hand, our model used both CNN and LSTM to capture
local and sequential features of histone marks in a single model.
Our model is therefore suitable for modeling not only the roles of
histone marks but also interactions among them.

3.2. Performance Evaluation of Models
With Multi-Omics Markers
Since our model is designed to utilize multi-omics biomarkers,
we measured performance in terms of the average AUC
and AUPR of our models that were trained on all
possible combinations of multi-omics features (Figure 3,
Supplementary Figure 4). The average AUC of the model
improved when adding and integrating multi-omics features.
In particular, the model with histone marks (HM, TF+HM,
ME+HM, and TF+ME+HM) showed remarkable levels of
AUC, exceeding the AUC of AttentiveChrome. This result is
attributed to the fact that genes can be expressed if chromatins

FIGURE 3 | Average AUC of 18 cell lines for different subsets of multi-omics

features. TF, ME, and HM stand for transcription factors, DNA methylation,

and histone marks, respectively. The model showed improvement in AUC,

adding multiple epigenetic markers.

are opened, and thus histone marks are a major determinant of
chromatin regulation.

3.3. Modeling Gene Regulation
Mechanisms Using Multi-Omics Markers
Multi-omics markers are required to model gene regulation
mechanisms. We focused on HeLa cell since its accuracy
has been improved significantly by adding multiple markers
(Supplementary Figure 5). In the HeLa cell, genes exist that
cannot be predicted correctly using histone modification marks
alone. Figure 4 shows the average ChIP-seq reads of histone
modification marks of genes with the same labels and predictions
of the HM model. The model prediction is consistent: genes
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FIGURE 4 | The average ChIP-seq reads of seven histone modification marks of (A) highly expressed genes (HEG) predicted as HEG. (B) lowly expressed genes

(LEG) predicted as HEG. (C) HEG predicted as LEG. (D) LEG predicted as LEG.

with the same prediction curves have common characteristics
regardless of their true labels.

There were three differences between genes predicted as
highly expressed genes (HEG) (Figures 4A,B) and genes
predicted as lowly expressed genes (LEG) (Figures 4C,D). First,
ChIP-seq reads of the genes predicted as HEG had a larger scale
than the genes predicted as LEG. Second, the genes predicted as
HEG had a noticeable peak around TSS for each histone mark
associated with the activation of genes (H3K27ac, H3K4me3, and
H3K9ac). Third, the genes predicted as HEG had a higher value
of H3K4me1 around TSS, which is related to enhancers.

There are LEG even with an open chromatin state (Figure 4B)
and HEG with weak signals of activation histone marks
(Figure 4C). A model that only uses histone marks is
limited in both predicting the gene expression level and
characterizing the gene regulation mechanisms. In other words,
multiple epigenetic markers such as DNA methylation and
transcription factors are required to understand the complex
gene regulation mechanisms.

RNF212, one of the enriched genes in theHeLa cell, epitomizes
a gene that can be fully understood only by the multi-omics
model, especially the TF+ME+HM model. The gene is a highly
expressed gene but the model with histone marks alone failed
to predict the gene expression level. This is due to the weak
activation of histone marks. The intensities of histone marks

associated with the activation of genes (H3K27ac, H3K4me3,
and H3K9ac) were much smaller than those of other HEGs (i.e.,
SLF1) (Figure 5A). However, the gene was predicted correctly by
the model with three epigenetic markers (TF+ME+HM). This
is because the model could learn the regulation mechanisms of
DNAmethylation and transcription factors. Figure 5B illustrates
the DNAmethylation levels of RNF212 and the attention weights
of Dynamic LSTM. Surprisingly, the attention weight near TSS
was high, and the region was unmethylated. The unmethylated
promoter region enabled transcription factors to bind to the gene.
Figure 5C shows all the possible binding transcription factors
of the promoter region. These transcription factors were up-
regulated especially in the HeLa cell compared to the other 17
cell lines (Figure 5D). Therefore, we can infer that RNF212 could
be highly expressed, despite weak signals of activation marks,
thanks to the help of the “highly expressed” transcription factors,
which bound to the unmethylated promoter region. As shown in
the example, our multi-omics model reflected the multiple gene
regulation mechanisms of histone marks, DNA methylation, and
transcription factors.

3.4. Characterizing Cell-Type-Specific
Gene Regulation Mechanisms
Figure 6 demonstrates the weights of the Multi-Attention Block
in 18 cell lines. Every weight is normalized by the average weight
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FIGURE 5 | Modeling the epigenetic regulation mechanism of RNF212 in HeLa cell line. (A) The ChIP-seq reads of histone modification marks of RNF212 and SLF1.

(B) The DNA methylation levels and attention weights of RNF212. (C) The candidate binding transcription factors of the promoter region of RNF212. (D) The average

expression value of the binding transcription factors of RNF212 in HeLa cell line and other cell lines.

of 18 cell-lines in order to compare the importance of markers
in each cell line. The attention weight of each feature shows
how the model attends to the feature to predict gene expression
level. The attention weight of each epigenetic marker therefore
represents the importance of the markers in gene regulation.
We compared the attention weights to reveal the important
regulatory mechanisms in 18 cell lines and 5 cell types: ESC,
ES-deriv, Blood & T-cell, Tissue & Primary Cell, and Cancer
Cell Line.

There was no big difference in the weights of histone marks
between the 18 cell lines. This is because histone modification
plays a key role in the activation of genes, irrespective of cell type.
Only after the chromatin structure of the gene is opened, can the
gene be expressed. The higher AUC of the HM model (91.05)
compare to that of the TFmodel (73.54) or theMEmodel (79.54),
supports the importance of histone marks.

In contrast, weights of DNA methylation or transcription
factors vary among cell types. In other words, DNA methylation
and transcription factors determine the cell-type-specific gene
regulatory mechanism. In general, cancer cell lines showed
high attention weights of DNA methylation. The result
is intuitive because DNA methylation is important in the
development of cancer (Wajed et al., 2001; Kulis and Esteller,
2010). The abnormal patterns of methylation can inhibit
gene expression and increase the probability of mutation

(Wajed et al., 2001; Kulis and Esteller, 2010). It is commonly
known that the hypermethylation of CpG islands inactivates
tumor suppressor genes. Moreover, global hypomethylation
significantly contributes to genome instability and aberrant
gene expression.

In addition, embryonic stem cells showed the high attention
weights of transcription factors. This reflects the crucial role
of transcription factors in determining the fate of stem
cells between self-renewal and differentiation. Transcriptional
circuitry involving transcription factors like OCT4, SOX2, and
NANOG is well-known to be a core regulatory mechanism of
stem cells to maintain their stemness (Pan et al., 2002; Li, 2010).
Furthermore, the significance of transcriptional regulation in
embryonic stem cells has been highlighted since the prominent
discovery, showing that ectopic overexpression of four essential
transcription factors (OCT4, SOX2, KLF4, MYC), which are often
referred to as “Yamanaka factors,” are sufficient to induce the
pluripotency of somatic cells.

Furthermore, we evaluated the cell-type-specificity and
compatibility of our model, by training on one cell line and
testing on other cell lines. For each cell line, the greatest AUC
of the model was achieved when the model was trained on the
cell line, demonstrating the cell-type-specificity. Moreover, it is
notable that cell lines in the same group showed similar AUC
patterns (Figure 7). By performing hierarchical clustering with

Frontiers in Genetics | www.frontiersin.org 7 September 2020 | Volume 11 | Article 869109

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kang et al. Deeply Learning Regulatory Latent Space

FIGURE 6 | The weights of the Multi-Attention Block in 18 cell lines. Based on relative attention weights, the importance of histone marks was not significantly

different among cell lines. Moreover, methylation and transcription factors showed quite different weights among each cell line. In case of methylation, cancer cell lines

were more focused on methylation compared to other cell lines. In case of transcription factor, ESC type cell lines had higher attention weights than those of others.

the Euclidean distance, cell lines in the same group were clustered
together. The result highlights the transferability between the
models in the same group, i.e., transfer learning. In other words,
each cell line can be explained well by the model of the other cell
lines if they are in the same group. For instance, the blood and T-
cell group, E038 and E047, showed the best AUC for each other’s
model. This is probably because the cell lines in the same group
tend to have similar gene regulation mechanisms.

3.5. Identification of Enriched Genes: Case
Studies on HeLa and K562
Performances of the multi-omics model on the HeLa cell
line and K562 cell line were quite improved compared to
AttentiveChrome (Supplementary Figure 5). In addition,
the multi-omics model better captured cell line enriched
genes that were obtained from the Human Protein Atlas
(http://www.proteinatlas.org; Uhlen et al., 2017). In the
case of the HeLa cell line, the multi-omics model predicted
12 genes correctly among 20 enriched genes, while 9-10
genes were predicted correctly by the HM, TF+HM, and
ME+HM models (Supplementary Table 1). On the other hand,
in the case of the K562 cell line, 38 out of 62 genes were
predicted correctly with the multi-omics model. Similar to the
HeLa cell case, other models showed poor performances
(34-37 genes, Supplementary Table 2). The number of

correctly predicted HEG by each model is summarized in
Supplementary Figures 6, 7 for HeLa and K562, respectively.

We further investigated functions and epigenetic regulation
mechanisms of cell-type enriched genes on the HeLa and K562
cell lines (Figure 8). RNF212 was one of the HeLa cell enriched
genes and was predicted correctly with the multi-omics only
model. RNF212 creates a cellular memory of DNA damage by
tagging the lingering breaks (Qiao et al., 2018) and is known as
a prognostic marker in cervical cancer in The Human Protein
Atlas http://www.proteinatlas.org. The TF+HM and ME+HM
model failed to predict the expression level of RNF212, while
the TF+ME+HM model predicted it as an expressed gene. This
result therefore implies that the expression of RNF212 may
be modulated by DNA methylation and transcription factors.
It is also shown in the weights of the Multi-Attention Block
in Figure 8.

PPARGC1A was also predicted correctly by the multi-
omics model of the HeLa cell line. PPARGC1A belongs to
the PCG-1 family that is associated with the regulation of
mitochondrial biogenesis, promoting cell growth, proliferation,
and evasion of the apoptosis signal (Lin et al., 2005; Jones
et al., 2012). In particular, PPARGC1A modulates telomere
function and the DNA damage mechanism in diabetes and
cardiovascular disease (Lai et al., 2008; Xiong et al., 2015).
Interestingly, the TF+ME+HM and ME+HM model, but not the
TF+HM model, correctly predicted expression of the gene. In

Frontiers in Genetics | www.frontiersin.org 8 September 2020 | Volume 11 | Article 869110

http://www.proteinatlas.org
http://www.proteinatlas.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kang et al. Deeply Learning Regulatory Latent Space

FIGURE 7 | The compatibility test results between cell lines. The AUC values of each test cell line were normalized with the AUC value of the model trained on that cell

line. As a result of hierarchical clustering, cell lines in the same group showed similar AUC patterns. This result highlights the transferability between the models in the

same group.

Figure 8, methylation was relatively more highlighted than other
omics data. According to this observation, we speculated that
methylation is one of the main regulators of PPARGC1A. This
epigenetic regulation was already reported in other tissues such
as brown adipose tissue or skeletal muscle tissue (Gillberg et al.,
2013, 2014; Gill and La Merrill, 2017).

In the case of the K562 cell line, the TRIM6 gene was captured
by the multi-omics model. It belongs to the Tripartite motif
(TRIM) family which is related to the cancer stem cell self-
renewal process. TRIM6, more specifically, directly interacts with
the MYC gene to modulate stem cell differentiation (Jaworska
et al., 2019). Attention weights of TF were relatively higher than
the weights of ME. Besides the TF+ME+HMmodel, the TF+HM
only model predicted the activation of genes correctly. Therefore,
it is thought that HM and TF co-regulate the expression
of TRIM6.

Lastly, CDKN1A, also known as p21, is a kind of tumor
suppressor gene. CDKN1A plays a crucial role in regulating
cell cycles to prevent cancer progression. In Figure 8, histone
and methylation were relatively highlighted. Based on this
observation, we thought that methylation might be a key
factor in epigenetic regulation of CDKN1A. In addition to
the TF+ME+HM model, the ME+HM model also predicted
correctly. From previous studies, expression of DNMT1 and

FIGURE 8 | The epigenetic mechanisms of highly expressed genes in the

HeLa and K562 cell lines. Among correctly predicted highly expressed genes

by the TF+ME+HM model, four genes are selected for a further case study of

epigenetic gene regulation mechanism: RNF212 and PPARGC1A for HeLa,

and TRIM6 and CDKN1A for the K562 cell line. To elucidate the importance of

each omics on the gene regulation, the relative attention weights of the

Multi-Attention Block were used.

CDKN1A showed a negative regulation mechanism on chronic
myelogenous leukemia (Kaufman-Szymczyk et al., 2019). It was
also reported that DNMT3B knock-down induced up-regulation
of a number of tumor suppressor genes including CDKN1A
(Poole et al., 2017).
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Based on the case study of enriched genes of the HeLa
and K562 cell line, we could investigate the epigenetic
regulatory mechanisms of gene expressions by the weights
of the Multi-Attention Blocks. Although it was possible to
infer the involvement of histone marks, DNA methylation,
and transcription factor for each gene, and to analyze their
importance, there are other epigenetic and transcriptional factors
that regulate gene expression. MicroRNA (miRNA) is one of the
famous epigenetic factors that was not included in the model.
MiRNAs are actually genes that are controlled by epigenetic
mechanisms and TFs. For example, EWS is known to regulate
Drosha, which controls biogenesis of miRNA (Kim et al., 2014).
miRNA can then affect the transcription and translation of genes.
To study the effects of miRNAs, we collected the genes that
were correctly predicted by the TF+ME+HM model, not by the
HM model in the HeLa cell line and 275 genes were selected as
candidate genes. Using a biomedical literature search platform,
BEST (Lee et al., 2016), 14 genes were related to miRNA in
the context of the HeLa cell line, cervical cancer, or ovarian
cancer (Supplementary Table 3). For example, the expression
of LPAR2 was repressed by miR-377, and oncogenic processes
such as cell proliferation or migration are known to be repressed
by that inhibition mechanism (Zhang et al., 2020). As another
example, ITGB1 was targeted by miR-183. It is known that
miR-183 may play a role in tumor suppressors, such as the
inhibition of cell invasion or the decrease of migration capacities
of HeLa cells (Li et al., 2010). Incorporation of miRNA in our
deep learning model can certainly be helpful in understanding
complex gene regulation mechanisms. We plan to investigate
how roles of miRNA can be seamlessly integrated into our deep
learning model.

4. CONCLUSION

In summary, the proposed model learned cell-type-specific
gene regulation mechanisms through Multi-Attention based
deep learning strategies. To the best of our knowledge, the
model is the first of its kind to use multiple epigenetic and
transcriptional markers for predicting gene expressions. Our
model achieved higher prediction accuracy than the state-of-
the-art model. Additionally, the proposed method provided
useful insight into cell-type-specific gene regulationmechanisms.
Specifically, the weights of theMulti-Attention Block revealed the
relative importance of each marker in the specific cell line. Lastly,
we identified themechanism of enriched genes in HeLa and K562
cell lines.

Our model investigated the roles of three markers: histone
marks, DNA methylation, and transcription factors. However,
the gene regulatory network may also involve additional
epigenetic and transcriptional markers such as microRNA,
competing endogenous RNA, or long non-coding RNA.
Thus, future studies on other epigenetic markers need to
be conducted.
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The Illumina Infinium HumanMethylation450 Beadchips have been widely utilized in

epigenome-wide association studies (EWAS). However, the existing two types of probes

(type I and type II), with the distribution of measurements of probes and dynamic

range different, may bias downstream analyses. Here, we propose a method, MGMIN

(M-values Gaussian-MIxture Normalization), to correct the probe designs based on

M-values of DNA methylation. Our strategy includes fitting Gaussian mixture distributions

to type I and type II probes separately, a transformation of M-values into quantiles

and finally a dilation transformation based on M-values of DNA methylation to maintain

the continuity of the data. Our method is validated on several public datasets on

reducing probe design bias, reducing the technical variation and improving the ability to

find biologically differential methylation signals. The results show that MGMIN achieves

competitive performances compared to BMIQ which is a well-known normalization

method on β-values of DNA methylation.

Keywords: DNAmethylation, design bias, normalization, M-value, Gaussian mixture model, Illumina Infinium 450K

1. INTRODUCTION

DNAmethylation, as a well-known epigenetic marker, plays an essential role in biological processes
and complex genetic diseases like cancer and diabetes (Irizarry et al., 2009; Paul et al., 2016).
The Illumina Infinium HumanMethylation450 (450K) BeadChip (Bibikova et al., 2011) provides
measurements of the level of methylation at over 480K CpG sites and has been widely used in
epigenome-wide association studies (EWAS) and large-scale projects, such as The Cancer Genome
Atlas (TCGA). The probes in the Infinium 450K BeadChip come in two different designs, type I
(n = 135,501) and type II (n = 350,076), in order to increase the genomic coverage of the assay.
However, the methylation values (β-values or M-values) derived from the two types of designs
exhibit different distributions. Particularly, the type I probes possess a larger range of measurement
than the type II probes (Dedeurwaerder et al., 2011). The differences between the two types of probe
designs may impact the downstream analyses.

Several approaches have been published to correct the probe design bias. A peak-based
correction (PBC) method normalizes type II probes to render them comparable with type I probes
(Dedeurwaerder et al., 2011). In fact, PBC gets poor performance when the density distribution of
methylation values does not show well-defined peaks. SQN (Touleimat and Tost, 2012) and SWAN
(Maksimovic et al., 2012) select subset of probes with similar biological category to adjust the probe
design bias. Beta MIxture Quantile dilation (BMIQ) is a model-based normalization approach to
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correct β-values of type II probes according to the beta
distribution of β-values of type I probes, which appears to
outperform PBC, SQN, and SWAN (Teschendorff et al., 2012).

In this work, we propose a method to correct the probe design
bias based on the Gaussian Mixture Model (GMM) of the M-
values of DNA methylation, which is called M-value Gaussian-
MIxture Normalization (MGMIN). The method includes three
steps: (i) fit Gaussian-mixture distributions to type I and type
II probes separately, (ii) utilize a transformation of M-values
into quantiles, (iii) perform a dilation transformation based on
M-values to maintain the continuity of the data. We evaluate
MGMIN using several independent datasets in terms of reducing
the replicate technical variance and correcting the type II bias. By
comparison with BMIQ, the results show that MGMIN improves
the overall performance of normalization.

2. MATERIALS AND METHODS

2.1. Measure DNA Methylation With
M-value
The β-value of DNA methylation for each probe is defined by
the ratio of the methylated intensity (M) and the overall intensity
(sum of methylated intensity and unmethylated intensity:
M+ U):

β − value = M

M + U + α

where α is a constant offset (by default, α = 100) to regularize
the β-value when the overall intensity is low. The β-value falls
between 0 and 1 which follows a Beta distribution naturally. A
β-value of 0 indicates the CpG site of the measured sample is
fully unmethylated and a value of 1 indicates that the CpG site is
completely methylated.

The M-value is calculated by the log2 ratio of the methylated
intensity (M) vs. the unmethylated intensity (U):

M − value = log2(
M + α

U + α
)

where α here is also an offset (by default, α = 1) to counteract the
big changes caused by small intensity estimation errors. An M-
value close to zero indicates that the measured CpG site is about
hemimethylated. A positive M-value suggests that more copies
of the measured CpG site are methylated than unmethylated
and a negative M-value means more copies of the CpG site are
unmethylated. The M-value has been widely used in two-color
expression microarray analysis (Du et al., 2010).

Due to more than 95% CpG sites have intensities more than
1,000 in Illumina methylation data, the α in β-value andM-value
has an insignificant effect on observed results. So the relationship
between β-value andM-value is shown as (with α ignored):

β = 2M

2M + 1
;M = log2(

β

1− β
)

According to the conclusions in Du et al. (2010), the M-value is
more statistically valid in an analysis bymodeling the distribution

TABLE 1 | Comparison of MGMIN and BMIQ on detecting the differentially

methylated probes (DMPs) associated with HPV status was performed by

counting the number of DMPs (Dataset 2), the number of validated differentially

methylated probes (nTPs) (Dataset 3: GSE38266 and Dataset 4: GSE95036) and

corresponding estimates for the positive predictive value (PPV = nTP/nDMPs).

Metric Raw BMIQ MGMIN

nDMP 51 (51a) 239 (252a) 220

nTP (GSE38266) 16 (13a) 55 (51a) 37

PPV (GSE38266) 0.31 (0.25a) 0.23 (0.20a) 0.17

nTP (GSE95036) 3 13 27

PPV (GSE95036) 0.06 0.05 0.12

aValues reported in Teschendorff et al. (2012).

ofM-values because of it’s homoscedastic. So we choose to adjust
the M-values of type II probes into the distribution property of
type I probes to correct the probe design bias.

2.2. MGMIN: M-value Gaussian-MIxture
Normalization
Gaussian Mixture Model (GMM) has been widely applied as
a clustering method in analyzing gene-expression microarray
data (Yeung et al., 2001; Pan et al., 2002) and used to detect
differential gene expression (McLachlan et al., 2006). In this
paper, we apply GMM to distinguish different methylation
states of CpG sites for further correction. The M-values of
a single 450K microarray can be viewed as a finite Gaussian
mixture model of several methylation states (hypomethylated-
U, hemimethylated-H, hypermethylated-F). The probability
density function of the M-value for a single CpG site (Mi) is
defined as:

p(Mi; θ) =
K∑

k=1

πkN(Mi|µk, σ
2
k ) (1)

where p(Mi, θ) represents the model density for Mi with
unknown parameter vector θ , K is the number of different
methylation states (components),N(Mi|µk, σ

2
k
) is the probability

density function of the kth Gaussian component, and πk is the
mixing proportions which satisfy the constraint that

∑K
k=1 πk =

1 and 0 ≤ πk ≤ 1. The parameter vector θ consists of the mixing
proportions πk, the mean valueµk and the standard deviation σk,
which can be estimated by the EM algorithm.

Next, we describe MGMIN in detail. First, M-values of type
I and type II probes are modeled by GMM separately. Let µS

T
and σ S

T denote the mean value and standard deviation where
S ∈ (U,H, F) and T ∈ (I, II). KI and KII are the numbers of
components for type I and type II probes, which are both set as 3
by default.

Second, each probe is assigned to hypomethylated (UT),
hemimethylated (HT), or hypermethylated (FT) states by using
the maximum probability criterion. Let UL

T (UR
T ) denote the UT

probes with M-values smaller (larger) than µU
T , and let FLT (FRT)

represent the FT probes with M-values smaller (larger) than
µF
T where T ∈ (I, II). Then, we calculate the probabilities of
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FIGURE 1 | The density curves of β-values for the three replicates in Dataset 1. The left panel is for the case of raw data with no normalization, middle panel for BMIQ

and right panel for MGMIN.

FIGURE 2 | Boxplots of the standard deviations of β-values for the three replicates in Dataset 1, for raw β-values (RAW), normalized β-values by BMIQ (BMIQ), and

normalized β-values by MGMIN (MGMIN). RAW-1 represents the type I of raw values and RAW-2 represents the type II of raw values, and so on.

UL
II probes, i.e.,

p = P(MUL
II
|µU

II , (σ
U
II )

2) (2)

where P represents the cumulative distribution function of the
Gaussian component. These probabilities are transformed back
to quantiles (M-value) by using the parameters µU

I and σU
I of
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FIGURE 3 | Barplots of the average absolute difference in β-values of type II probes between two samples in each of the three pairs of the three replicates in Dataset 1.

type I probes, i.e.,

q = P−1(p|µU
I , (σ

U
I )2) (3)

where P−1 returns the value of the inverse cumulative density
function given the probability p and q is the normalizedM-values
for UL

II . The similar operation is performed on FRII probes.
Then, we merge the UR

II , HII , and FLII probes into one set G on
which a conformal (shift + dilation) transformation is performed.
Some parameters are identified as minG = min{MG}, maxG =
max{MG} and 1M

G = maxG − minG. Similarly, the minimum
value of FRII and the maximum value ofUL

II are also identified, i.e.,
minF = min{FRII} and maxU = max{UL

II}. Two distance values
can be calculated as

1UG = minG−maxU

1GF = minF −maxG

The new normalized maximum and minimum values of G-
probes are expected to satisfy the constraint that

maxG′ = min{FRII ′} − 1GF

minG′ = max{UL
II
′} + 1UG

where FRII
′ and UL

II
′ are new normalized values for FRII and UL

II ,
respectively. So the new normalized range value of setG is1M

G
′ =

maxG′ − minG′. The normalized M-values of set G, MGII
′, is

calculated by

MGII
′ = minG′ + df (MGII −minG) (4)

where df = 1M
G
′/1M

G is the dilation factor. So, the normalized

M-values for type II probes consist of q for UL
II , MGII

′, and q for
FRII .

MII
′ = (qUL

II
,MGII

′, qFRII )

Lastly, the normalizedM-values are transformed to β-values.
There are some important points to notice: (i) the initial

values for µ and σ in EM algorithm are set as (−4,0,4)
and (1,1,1) and small perturbations to the initial µ and σ

will not affect the final model because MGMIN captures the
natural property of the M-value of DNA methylation, (ii) KI

will be changed to 4 automatically when µF
I − σ F

I is smaller
than µF

II − σ F
II in order to ensure that µF

I can always be
larger than µF

II and avoid the presence of an unexpected
peak in transformed M-values of hypermethylated type II
probes, (iii) if KI = 4, the FI will be the set of probes
belonging to the component with the largest µ, while the
UI contains the probes belonging to the component with
the smallest µ and the other two components are assigned
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FIGURE 4 | The density curves of β-values for type I probes, type II probes and normalized type II probes (type II-MGMIN) for sample GSM815138 from GEO29290.

to HI , (iv) no thresholds need to be set by default or
estimated by manual to distinguish the three different states of
DNA methylation.

2.3. Datasets
We selected several public 450K datasets as following:

Dataset 1: GSE29290 downloaded from GEO
considered in Dedeurwaerder et al. (2011). We used
the three replicates (GSM15136, GSM15137 and
GSM15138) from the HCT116WT cell-line and matched
bisulfite pyrosequencing (BPS) date for nine type
II probes of sample GSM815138 (r3) (Table 1 in
Dedeurwaerder et al., 2011) to evaluate the performance of
different methods.

Dataset 2: GSE38268 downloaded from GEO considered in
Lechner et al. (2013) which consists of 6 fresh frozen HNC
samples. We selected 5 samples as same as (Teschendorff et al.,
2012), of which 2 were HPV+ and 3 HPV− (GSM937820
to GSM937824).

Dataset 3: GSE38266 downloaded from GEO considered in
Lechner et al. (2013) which contains 21 FFPE HPV+ HNSCC
samples and 21 FFPE HPV− HNSCC samples. Note that the
entire quality of the dataset GSE38266 is not high.

Dataset 4: GSE95036 downloaded from GEO considered in
Degli Esposti et al. (2017) which contains 6 HPV+ HNC samples
and 5 HPV−HNC samples.

3. RESULTS

3.1. MGMIN Needs No Default Initial Values
of Parameters
Similar to themixturemodel of BMIQ,MGMIN applies Gaussian
mixture models for M-values instead of beta-mixture models
for β-values. MGMIN also uses quantile information to correct
the M-values of the type II probes into a distribution which
is comparable with that of type I probes. MGMIN complies
the inherent Gaussian mixture distributions for M-values of
type I and type II probes to avoid setting any parameters
manually, which is different from the default breakpoints in
BMIQ. Thus, MGMIN needs less manual intervention than
BMIQ. However, MGMIN is slightly inferior to BMIQ on some
dataset (Table 1) due to the entire low quality of the dataset. Note
that the PPV of BMIQ on Dataset 3 is lower than that of no
normalization (RAW).

3.2. MGMIN Reduces Technical Variation
MGMIN is applied to Dataset 1 to identify the ability to
improve reproducibility. The standard deviation (SD) for each
probe across the three replicates was computed using no
normalization (RAW), BMIQ, and MGMIN separately. As
can be seen in Figure 1, both MGMIN and BMIQ almost
made the density curves for the three replicates coincide with
each other and reduced the technical variation significantly
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FIGURE 5 | Barplots for the maximum (MAX), mean (MEAN) and root mean square error (RMSE) of the absolute deviation from the matched BPS values of nine type II

probes for GSM815138 (r3) in Dataset 1 considered in Dedeurwaerder et al. (2011) using no normalization (RAW), BMIQ, and MGMIN, respectively.

compared to no normalization. Compared to BMIQ, the
standard deviation for type II probes adjusted by MGMIN is
smaller (Figure 2). MGMIN also provided significant reduction
of average absolute difference in β-values of type II probes
between two samples in each of the three pairs of the three
replicates (Figure 3).

3.3. MGMIN Reduces Probe Design Bias
MGMIN reduces the probe design bias via correcting the M-
values of the type II probes such that the distribution curves
for the M-values of the type I and type II probes show similar
dynamic ranges and peaks (Figure 4). In Dedeurwaerder et al.
(2011), the β-values for nine probes of type II by bisulfite
pyrosequencing technique for sample GSM815138 (r3) were
provided, which can be used as a gold-standard to evaluate
the performance of different correction methods. Hence, we
compared the normalized results of the nine type II probes in
450K arrays by MGMIN and BMIQ. As shown in Figure 5,
although MGMIN performed slightly worse than BMIQ at
the maximum value of the absolute deviation from BPS data,
MGMIN significantly reduced the type II bias than BMIQ
and raw data in terms of mean and root mean square
error (RMSE) of the absolute deviation from the matched
BPS values.

3.4. MGMIN Robustly Finds Informative
Differential Methylation Probes Associated
With HPV Status
The goal of a bias correction approach is to reduce the technical
variation and identify the biological informative signals at the
same time. We used a strategy similar to Teschendorff et al.
(2012) to compare the result between MGMIN and BMIQ in
identifying the differential methylation probes (DMPs) associated
with HPV status. First, Dataset 2 consisting of two HPV+
and three HPV− fresh frozen HNC samples were used as the
training set to obtain the DMPs associated with HPV status by
the limma method (Smyth, 2005) and an FDR threshold 0.35
which was as same as (Teschendorff et al., 2012). Both Dataset
3 and Dataset 4 described in the methods section were used
as test set. We reanalyzed Dataset 2 and got similar numbers
of DMPs to those reported in Teschendorff et al. (2012) with
no normalization method (Raw) or BMIQ method (shown in
Table 1). The results in Table 1 shows that the positive predictive
value (PPV) of MGMIN is slightly less than BMIQ in terms of
GSE38266 (Dataset 3) whereas MGMIN outperforms BMIQ in
GSE95036 (Dataset 4). The reason for MGMIN slightly inferior
to BMIQ in Dataset 3 may be the entire low quality of the
dataset (see Figure 6) which is that the ratio of samples passing
filters is <0.9 (r = 0.88) under the least restrictive condition.
Let τp represent the p-value threshold for bad probes and τr
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FIGURE 6 | Barplots of the ratio of good samples in GSE38266 under different quality control options (τp&τr ).

represent the threshold for the ratio of bad probes in a sample.
Themaximum value of τr is set to 0.3 here in our opinion because
a sample with more than 30% bad probes is vulnerable. We can
get the same test dataset from GSE38266 with the one described
in Teschendorff et al. (2012) which consists of 18 HPV+ and 14
HPV− samples under the following conditions: (i) τp = 1e − 4
or 1e − 3 and τr = 0.2 or 0.25, (ii) τp = 1e − 2 and τr = 0.1
or 0.15. Overall, MGMIN identified more true positive features
than BMIQ.

4. DISCUSSIONS

In this paper, we have proposed a method called MGMIN for
correcting the probe design bias of type II probes in Illumina
Infinium 450K BeadChips, which can reduce the technical
variation and improve the ability to find biologically differential
methylation signals. We have shown that MGMIN outperforms
BMIQ on multiple evaluation datasets in correcting the type II
design bias and improving the data quality.

Similar to BMIQ, MGMIN uses quantile information to
correct the M-values of type II probes while leaving the M-
values of type I probes unchanged. The three-state beta-mixture
distribution model in BMIQ sets two default breakpoints (0.2,
0.75) to divide the β-values into three classes: hypomethylated,
hemimethylated, and hypermethylated, which works well for
most cases. However, the result curves of BMIQ show obviously
inconsistent in some samples with high heterogeneity.We set 3 or
4 classes for probes depending on the result of µF

T −σ F
T to ensure

that the fitted hypermethylated component of type II probes can

be located in the left of the hypermethylated component of type I
probes, which can partly eliminate the effects of the heterogeneity
of samples.

Based on the results of Dataset 3, we think the high
quality of dataset is the base of normalization, in other
words, there is no meaning to correct the samples with
low quality. It should be pointed out that the parameter
estimation of MGMIN is slower than that of BMIQ (about
1.5 times), which can be relieved by reducing the number
of iterations.

MGMIN can be used in the 450K methylation data
preprocessing with other methods to normalize the values of the
two type probes and improve the data quality.
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