About this Research Topic
In this Research Topic, review and original research papers on the hysteresis properties, description, and effective applications of electrorheological/magnetorheological materials are to be published. Specifically, the fundamentals of constitutive relations of the materials, in forms of phenomenological and parametric approaches, are expected for the topic. Hysteretic properties-based mechanical design and optimization of the electrorheological/magnetorheological materials-based actuators and sensors for controllable damping, torque transmission, robotic end effectors, active valves, and haptic feedback or smart skin will also be included. Nonlinear control problems of the hysteresis systems (related to full range of velocity, temperature, and frequency conditions), including hysteresis modeling and inverse modeling, are expected to be solved. Specific applications of vehicular/seat suspensions with vibration control and induced shock mitigation, engine mount, brake and torque transmission systems, anti-earthquake structures for civil buildings, medical rehabilitation actuators, robotic end effectors, active vales/actuators with electrorheological/magnetorheological materials, are also particularly emphasized in this Research Topic.
The proposed topics for this Research Topic include (but are not limited to):
- Hysteresis characterization of electrorheological/magnetorheological materials
- Design/optimization of electrorheological/magnetorheological actuators and sensors
- Potential applications of electrorheological/magnetorheological materials
- Hysteresis models and inverse models of electrorheological/magnetorheological structures
- Nonlinear control of electrorheological/magnetorheological systems
Keywords: electrorheological materials, magnetorheological materials, smart structures, hysteretic behavior characterization, hysteresis model, inverse problem and control
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.