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Editorial on the Research Topic

Data-Driven Cognitive Manufacturing - Applications in Predictive Maintenance and Zero
Defect Manufacturing

Closed-Loop Lifecycle Management (CL2M) is an integral part of the circular economy. Managing
the CL2M enables manufacturers and associated digital factories to connect in-service issues back to
process conditions and product information at manufacturing and other stages of the life cycle with
the aim of having Zero Defect Manufacturing (ZDM).

ZDM can be implemented through two approaches: product-oriented and process-oriented
ZDM. Product-oriented ZDM studies defects in the actual parts., Process-oriented ZDM studies
defects in the manufacturing equipment that have led, or might lead to product defects this is
implemented through Predictive Maintenance.

The Industrial Internet of Things (IIoT) and associated computing continuum Cloud and Edge
Technologies and Industrial AI (Artificial Intelligence) provide valuable data for Predictive
Maintenance and product-oriented ZDM. Associated to that, ontologies and associated semantic
technologies such as Knowledge Graphs are rapidly becoming popular in various domains and
applications to deal with adding semantic meaning to this data and enable reasoning and queries.

All of the above is making the smart maintenance and manufacturing development with
increasing “cognitive” and “predictive” characteristics to augment the human-machine
collaboration.

In this Research Topic, we present a compilation of eight papers presenting and demonstrating
results of recent research and innovation activity in a variety of topics within Data Driven Cognitive
Manufacturing with applications in ZDM and Predictive Maintenance.

The first paper, “Product Quality Improvement Policies in Industry 4.0: Characteristics, Enabling
Factors, Barriers, and Evolution Toward Zero Defect Manufacturing” by Foivos Psarommatis,
Sylvain Prouvost, Gökan May and Dimitris Kiritsis presents a literature review on the
implementation of these philosophies to improve quality of processes and products in a system,
and also covers the commonalities and differences with Zero Defect Manufacturing (ZDM)
philosophy. In this study, 45 articles have been analyzed. A categorization of quality
improvement methods and the way toward ZDM is also presented and discussed.

The second paper, “Physically Inspired Data Compression and Management for Industrial Data
Analytics” by Ramin Sabbagh, Zicheng Cai, Alec Stothert and Dragan Djurdjanovic describe a novel
method that facilitates automated signal parsing into a set of exhaustive and mutually exclusive
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segments, which is coupled with extraction of physically
interpretable signatures that characterize those segments. The
resulting numerical signatures can be used to approximate a wide
range of signals within some arbitrary accuracy, thus effectively
turning the aforementioned signal parsing and signature
extraction procedure into a signal compression process.
Application to multiple large datasets of sensor readings
collected from several advanced manufacturing plants showed
the feasibility of physics-inspired compression of industrial data.

The aim of the third paper, “Ontology-Based Context
Modeling in Physical Asset Integrity Management” by Ali Al-
Shdifat, Christos Emmanouilidis, Muhammad Khan and Andrew
G. Starr is 2-fold: to analyse current approaches to addressing IoT
context information management, mapping how context-aware
computing addresses key challenges and supports the delivery of
monitoring solutions; and to develop a maintenance context
ontology focused on failure analysis of mechanical
components so as to drive monitoring services adaptation. The
approach is demonstrated by applying the ontology on an
industrially relevant physical gearbox test rig.

The fourth paper, “Predictive Maintenance for Injection
Molding Machines Enabled by Cognitive Analytics for
Industry 4.0” by Vaia Rousopoulou, Alexandros Nizamis,
Thanasis Vafeiadis, Dimosthenis Ioannidis and Dimitrios
Tzovaras introduces a cognitive analytics, self- and
autonomous-learned system bearing predictive maintenance
solutions for Industry 4.0. A complete methodology for real-
time anomaly detection on industrial data and its application on
injection molding machines are presented.

The fifth paper, “Prognostics and Health Management of
Industrial Assets: Current Progress and Road Ahead” by Luca
Biggio and Iason Kastanis presents a thorough review of existing
works both in the contexts of fault diagnosis and fault prognosis,
highlighting the benefits and the drawbacks introduced by the
adoption of AI techniques. The goal of the authors in this paper is
to highlight potentially fruitful research directions along with
characterizing the main challenges that need to be addressed in
order to realize the promises of AI-based Prognostics and Health
Management systems.

In the sixth paper, “Implementation and Transfer of Predictive
Analytics for Smart Maintenance: A Case Study” by Sebastian
Von Enzberg, Thanasis Naskos, Ifigeneia Metaxa, Daniel
Köchling and Arno Kühn, the authors present a case study
motivated by a typical maintenance activity in an industrial
plant. The paper focuses on the crucial aspects of each phase

of the Predictive Maintenance implementation process, towards
the holistic integration of the solution within a company. A
concept is derived for the model transfer to a different factory.
This is illustrated by practical examples from a lighthouse factory
within the BOOST 4.0 H2020 project.

The seventh paper, “Intelligent Predictive Maintenance and
Remote Monitoring Framework for Industrial Equipment based
on Mixed Reality” by Dimitris Mourtzis, John Angelopoulos
and Nikos Panopoulos propose an approach for the modelling,
design and development of a Predictive Maintenance and
Remote Monitoring system, based on the utilization of AI
algorithms for the data acquisition, fusion, and post-
processing. In addition to that, the proposed framework will
integrate a Mixed Reality application for the intuitive
visualization of the data, that will ultimately facilitate
production and maintenance engineers to monitor the
condition of the machines and most importantly to get an
accurate prediction of the oncoming failures.

The final paper, “RECLAIM: Towards new era of
refurbishment and re-manufacturing of industrial equipment”
by Angeliki Zacharaki, Thanasis Vafeiadis, Nikolaos Kolokas,
Yuchun Xu, Michael Pesch, Dimosthenis Ioannidis and Dimitrios
Tzovaras presents a new idea on refurbishment and re-
manufacturing based on big data analytics, machine learning,
predictive analytics and optimization models using deep learning
techniques and digital twin models with the aim of facilitating the
stakeholders to make informed decisions about whether to re-
manufacture, upgrade or repair heavy machinery that is towards
its end-of-life.
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Product Quality Improvement
Policies in Industry 4.0:
Characteristics, Enabling Factors,
Barriers, and Evolution Toward Zero
Defect Manufacturing
Foivos Psarommatis*, Sylvain Prouvost, Gökan May and Dimitris Kiritsis

ICT for Sustainable Manufacturing, École Polytechnique Fédérale de Lausanne, SCI-STI-DK, Lausanne, Switzerland

In the competitive market of manufacturing, quality is a criterion of primary importance in

order to win market share. Quality improvement must be coupled with performance point

of view. Lean Manufacturing, Six Sigma, Lean Six Sigma, Total Quality Management,

Theory of Constraints, and their combination are philosophies dedicated to this goal.

This study is a literature review on the implementation of these philosophies to improve

quality of processes and products in a system, and also covers the commonalities and

differences with Zero Defect Manufacturing (ZDM) philosophy. In this study, 45 articles

have been analyzed. These articles have been selected by a research on several scientific

libraries with specific keywords. The methodology is based on a list of information

extracted from each paper. The data searched are on the tool selections, critical factors of

implementations and the benefits obtained from them. Based on the review and analysis

of the literature and practices, we provide the top 10 main components of the tools

used for quality improvement, enabling factors, benefits, and barriers to implementation.

Moreover, we present and discuss categorization of quality improvement methods and

the way toward ZDM. The need of standardized toolkits for different levels of maturity

in quality management systems and a better education have been enlightened. Thanks

to technological improvement in information flow management, ZDM seems close to

be achieved even though some new risks and wastes have to be taken care of within

the implementation.

Keywords: quality improvement philosophies, zero defect manufacturing, lean, six sigma, theory of constraints,

total quality management, state of the art, review

INTRODUCTION

“If people were all the same we would not need to make so many kinds of printers, but
people are different” (Yamashina, 1995). In the context of this globalized, ultra-connected world,
benchmarking leads to a large number of competitive solutions to answer a need (Martins et al.,
2015; Gillen, 2017). For a company, increasing and even keeping its market share is tougher than
ever. One of the main factors that drives a product’s commercial success is its quality (Wilson et al.,
2016). The willingness to live of an organization then depends on strongly feeding research on
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quality in order to provide to the customers a product that
satisfies the most of their needs and even sublimates them.
Nevertheless, a need is not defined in a fixed manner. It
evolves and so does the manufacturing to produce the items.
This evolution has organizations permanently questioning the
quality of their products and processes, and binds them into
a continuous improvement (CI) initiative to stay competitive
(Singh and Singh, 2012; Kumar et al., 2018).

CI is done using Quality Management Systems (QMS)
which rely on philosophies such as Lean Manufacturing (LM),
Six Sigma (SS), Theory of Constraints (TOC), Total Quality
Management (TQM), and Lean Six Sigma (L6S) (Hutchins,
2016). These philosophies are implemented through a large
number of tools. The QMS efficiency may vary depending
on some factors which can lead to failure of implementation
(Nanda, 2005). It is important to understand these reasons in
order to learn from the past and evolve positively (Cannon and
Edmondson, 2005). Concerning quality improvement principles,
several literature reviews have already been done in the past.
Some new implementations are done every day and change
is permanent (Rothwell et al., 2015). Moreover, thanks to
technology improvement, Zero Defect Manufacturing (ZDM)
is a philosophy for which the implementation is closer than
ever (Eleftheriadis and Myklebust, 2016). This justifies a
literature review of LM, SS, L6S, TOC, and TQM. The purpose
of this review is to analyze the quality improvement tools
used in manufacturing, the critical factors and benefits of
implementation of these philosophies, and to investigate how
they are related to ZDM. In addition to that, critical success
and failure factors, and benefits of the five quality improvement
philosophies, have been identified and ranked in order to get a
better understanding of their impact.

The structure of the paper is as follows: section Research
Method describes the methodology of the research, and section
Previous Literature analyses the previous literature. Section 4
presents the results of the review by providing the Critical
Success Factors (CSF), Critical Failure Factors (CFF), benefits,
and analysis of quality improvement tools. Next, section
Review of Results highlights the need for standardization
and categorization of quality improvement tools, along with
discussions on CSF, CFF, and benefits illustrating the evolution
toward ZDM. Finally, section Discussion ends the paper by
highlighting the main findings and outcomes of the study. For
the ease of the reader a list with all the abbreviations used in the
paper are summarized in Table 1.

RESEARCH METHOD

The purpose of this paper is to do a systematic review of the
quality improvement tools used in the manufacturing domain.
In order to acquire a representing sample of papers, the
following steps have been followed. The first step was to create
a search query for conducting the search. The query used can be
seen below.

• TITLE(((Lean) OR (Six sigma OR 6S OR SS) OR ((Lean
six sigma) OR LSS OR L6S) OR (TQM OR (total quality

TABLE 1 | Abbreviation list.

Abbreviation Description

5S Sort, Set In order, Shine, Standardize and Sustain

CFF Critical Failure Factors

CI Continuous Improvement

CSF Critical Success Factors

DMAIC Define, Measure, Analyse, Improve, and Control

FMEA Failure Mode and Effects Analysis

JIT Just in Time

L6S Lean Six Sigma

LM Lean Manufacturing

QMS Quality Management Systems

SME Small Medium Enterprises

SPC Statistical Process Control

SS Six Sigma

TOC Theory of Constrains

TPM Total Productive Maintenance

TQM Total Quality Management

VSM Value Stream Mapping

ZDM Zero Defect Manufacturing

management)) OR (ToC OR (Theory of constrains))) AND
(review OR (State of the art) OR (literature review)) AND
(manufacturing OR production)).

This query was used in different scientific databases; more
specifically, the search was done in Engineering Village
(Compendex and Inspec), Scopus, Web of Science, and Science
Direct. In total, 383 articles were found, after removing the
duplicates. The next step was to filter them based on the relevance
and if the full article was available. After this filtering, 45 articles
have been selected to conduct the analysis.

The acronyms LM, SS, L6S, TOC and TQM stand for:

• LM: Lean Manufacturing is a philosophy oriented toward
waste reduction. Seven wastes have been identified:
overproduction or asynchrony (producing too much or
in an inadequate timing), inventory (store raw material, work
in process, and finished products), motion (unnecessary body
movement), defectiveness (non-conforming product),
transportation (unnecessary movement of product),
overprocessing (processing beyond customer expectations),
and waiting (time spent before next activity) (Chiarini, 2013).

• SS: Six Sigma is a statistical philosophy oriented to product
or process variability reduction. The desired result is
defined depending on the customer need and its vision
of defect in order to ensure the customer satisfaction
(Linderman et al., 2003).

• L6S: Lean Six Sigma is a combination of LM and SS. The idea
is that SS focuses well on quality while LM focuses on the
speeding process. Their combination helps to reach a state of
statistical control and operational improvements (Atmaca and
Girenes, 2011).
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• TOC: Theory of Constraints is a philosophy is based on
the idea that a manufacturing system is constrained. Its
quality can be measured by throughput, inventory, and
operational expenses. The goal is to maximize throughput
while decreasing the inventory and operational expenses.
This is done by identifying the constraints, deciding how
to exploit them, aligning the system on the exploitation
decision, elevating the system’s constraints, and by iterating,
if during the process, one of the constraints has been broken
(Goldratt, 2020).

• TQM: Total Quality Management is a philosophy focused on
the organization’s culture of quality. It is mainly a mindset
that everyone in an organization must be dedicated to give its
best in order to provide high standards quality on the result of
activities done. The goal is to reduce errors, improve customer
and employee experience (Martínez-Lorente et al., 1998).

PREVIOUS LITERATURE

The selected articles are literature review articles. As
manufacturing and quality management evolve over time,
the findings and conclusions of literature reviews may differ
depending on when the review had been carried out. Therefore,
it is important to take the time to analyze this evolution by
reviewing these previous works. They have been categorized
depending on the quality philosophy they focus on. The
classification takes into account the main philosophy studied

and if it is studied combined with other philosophies. Only
one paper (Kedar et al., 2008) studied a combination of the
five philosophies. Seven papers (Arnheiter and Maleyeff,
2005; Bendell, 2006; Kasemset, 2011; Alhuraish et al., 2015;
Pacheco et al., 2015; Costa et al., 2018; Stankalla et al., 2018;
Makwana and Patange, 2019) have focused on a combination
of two philosophies and the rest has concentrated the effort
on one main one. Figure 1 illustrates the distribution by year
of the analyzed review articles. The results show that there is
an increasing trend after 2014 for review articles regarding
the five philosophies. Further to that, Figure 1 shows the
corresponding percentage of each philosophy; the highest
percentage corresponds to SS (30.19%), and then the LM and
L6S follow with 24.53 and 26.42%, respectively. The philosophy
with the least number of review papers is the TOC, mostly
because it has already been proved to be inefficient to solve
multi-constraints problems (Rahman, 1998; Ikeziri et al., 2019).

While Figure 1 shows that there is a higher interest for the
studying philosophies the past 6 years, the results does not
capture in detail the trends, because the articles used for Figure 1
were review papers. In this regard, the references of those 45
analyzed papers were considered and classified based on their
year. In total, the 45 analyzed papers had 4,125 references that
they were considering. The results from the year analysis of
those 4,125 articles are shown in Figure 2. The period that those
references were covering was from 1970 to 2019. From 1970 to
2004, all the philosophies show an increasing trend, with the

FIGURE 1 | Distribution of the philosophy focus regarding the literature.
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FIGURE 2 | Distribution of the references mentioned in the reviewed papers through time.

most popular being the SS approach, followed by LM. After
2004 there is a decreasing trend, and also SS stops being the top
category; its place is taken by L6Sm followed by LM. TOC and
TQM have the smallest percentages, but they show similar trend
as the leading philosophes; they have an increasing trend until
1999, and afterwards, they decrease to a point that becoming
significantly less than the other three methods. Lately, the main
focus of the research done is to understand which tool can be
used for which purpose and how to standardize them. On one
hand, TQM is more a philosophy and a mindset to spread in the
organization than a toolbox, and hence, less studies investigate
this topic. On the other hand, the philosophies LM, SS, and their
more recent combination, L6S, have seen their toolbox being
more and more furnished thanks to technology, for example
(Gladysz and Buczacki, 2018).

Finally, the decreasing trend on the last year is also due to
some inertia. Indeed, the time data presented in Figure 2 presents
the range of publication years of the references of the 45 reviewed
papers analyzed. Therefore, inevitably there is a delay between
the publication year of an article and its use in other articles, but
it captures the current trend.

REVIEW OF RESULTS

This section deals with an analysis of the current philosophies
(LM, SS, L6S, TOC, and TQM) used for quality improvement
management. Of the 45 articles reviewed, CSF, CFF, and benefits
have been pulled out in order to get an understanding for some
causes in the success of an implementation of the different

philosophies. For these three categories, the top 10 are listed
in Tables 2–4. The ranking has been established depending on
the number of different articles citing the notion. The more a
notion is mentioned, the higher the ranking is. For example, in
Table 2 for the CSF “Trained workers on the philosophies of quality
improvement,” there are nine different articles mentioning it. Its
weight is then of 9. This is more than “A good identification
and prioritization of improvements to do” with a weight of 8
and less than “A visible Top Management commitment” with
11. Therefore, they are ranked in the order as second, third,
and fourth CSF. In this analysis, the three studied notions are
defined as:

• CSF, as a strong cause that has helped in previous successful
implementations of quality improvement philosophy.

• CFF, as a strong cause that has hampered successful
implementations of quality improvement philosophy.

• Benefit, as a positive consequence from successful
implementations of quality improvement philosophy.

Enabling Factors and Benefits
Based on the review and analysis of the literature and practices,
the enabling factors for quality improvement in the form of Top
10 CSFs are presented below:

• Use of proper communication to avoid misunderstanding:

As explained in the first point, strategies of quality
improvement are defined by the top management.
Afterwards, the message is carried by intermediates across the
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TABLE 2 | Top 10 of CSF identified in the articles reviewed.

1 CSF Use of a proper communication to avoid misunderstanding

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Sundar et al., 2014; Yusup et al., 2015)

SS (Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Stankalla et al., 2018)

L6S (Lande et al., 2016; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Stankalla et al., 2018)

2 CSF Visible management commitment

LM (Costa et al., 2018)

SS (Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Tjahjono et al., 2010; Costa et al., 2018; Stankalla et al., 2018)

L6S (Lande et al., 2016; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Stankalla et al., 2018)

TQM (Al-Khalili and Subari, 2014)

3 CSF Trained workers on the philosophies of quality improvement

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Sundar et al., 2014; Costa et al., 2018)

SS (Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Costa et al., 2018; Stankalla et al., 2018)

L6S (Lande et al., 2016; Muraliraj et al., 2018; Ruben et al., 2018; Stankalla et al., 2018)

4 CSF Good identification and prioritization of improvements

LM (Alhuraish et al., 2015)

SS (Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Alhuraish et al., 2015; Alcaide-Muñoz and Gutierrez-Gutierrez, 2017; Stankalla et al., 2018)

L6S (Lande et al., 2016; Alsaffar and Ketan, 2018; Muraliraj et al., 2018; Stankalla et al., 2018)

TOC (Kirche and Srivastava, 2005)

5 CSF Strong link between philosophy, business strategy, and customer satisfaction

SS (Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Tjahjono et al., 2010; Stankalla et al., 2018)

L6S (Lande et al., 2016; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Stankalla et al., 2018)

6 CSF Good understanding of tool choice depending on the goal

LM (Gupta and Jain, 2013)

SS (Tjahjono et al., 2010; Stankalla et al., 2018)

L6S (Ruben et al., 2018; Stankalla et al., 2018)

TOC (Kasemset, 2011)

TQM (Al-Khalili and Subari, 2014)

7 CSF Use of precise quantification tools

LM (Bendell, 2006; Alhuraish et al., 2015; Pacheco et al., 2015)

SS (Bendell, 2006; Gamal Aboelmaged, 2010; Alhuraish et al., 2015; Pacheco et al., 2015; Alcaide-Muñoz and Gutierrez-Gutierrez, 2017)

L6S (Lande et al., 2016)

8 CSF Linking QMS to the global supply chain

LM (Bhamu and Singh Sangwan, 2014)

SS (Kumar and Antony, 2008; Tjahjono et al., 2010; Stankalla et al., 2018)

L6S (Lande et al., 2016; Muraliraj et al., 2018; Stankalla et al., 2018)

9 CSF Systemic approach to improve by iterations

LM (Bhamu and Singh Sangwan, 2014; Sundar et al., 2014)

TOC (Rahman, 1998; Kasemset, 2011; Ikeziri et al., 2019)

10 CSF Strong involvement of employees

LM (Bhamu and Singh Sangwan, 2014; Sundar et al., 2014)

SS (Kumar and Antony, 2008)

L6S (Lande et al., 2016; Ruben et al., 2018)

organization. Proper communication helps to avoid distortion
of the message or even distortion of the need.

• Visible management commitment: Quality strategies are
determined by the top management of the organization.
These guidelines have to be broadcast across the whole
structure up to the shop floor. The more intermediates (like
managers) are used to carry the message—themore distant the
decision makers seem, the less concerned the employees may

be. Therefore, top management must shorten this distance
by being committed to these guidelines and showing the
employees they care about it.

• Trained actors on the philosophies of quality improvement:

Trained workers are used to implement new systems. They
understand well the causes and consequences of choices in
terms of impact on the system, the products, the employees,
and more, in order to do their best to succeed.
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TABLE 3 | Top 10 benefits (BFT) identified in the articles reviewed.

1 BFT Cost reduction

LM (Bendell, 2006; Gupta and Jain, 2013; Nithia et al., 2015; Pacheco et al., 2015; Costa et al., 2018; Ismail et al., 2019)

SS (Bendell, 2006; Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Pacheco et al., 2015; Costa et al., 2018; Patel and Desai, 2018)

L6S (Alsmadi and Khan, 2010; Antony et al., 2017; Alexander et al., 2019; Siregar et al., 2019)

TOC (Kasemset, 2011)

2 BFT Lead-time reduction

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Pinho and Mendes, 2017; Costa et al., 2018; Gladysz and Buczacki, 2018)

SS (Oke, 2007; Kumar and Antony, 2008; Costa et al., 2018; Patel and Desai, 2018)

L6S (Alsmadi and Khan, 2010; Antony et al., 2017; Alexander et al., 2019)

TOC (Rahman, 1998; Ikeziri et al., 2019)

TQM (Nandurkar et al., 2014)

3 BFT Quality improvement

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Yusup et al., 2015; Pinho and Mendes, 2017; Costa et al., 2018; Ismail et al., 2019)

SS (Oke, 2007; Gamal Aboelmaged, 2010; Alcaide-Muñoz and Gutierrez-Gutierrez, 2017; Costa et al., 2018)

L6S (Albliwi et al., 2015; Antony et al., 2017; Alexander et al., 2019; Siregar et al., 2019)

4 BFT Inventory reduction

LM (Gupta and Jain, 2013; Sundar et al., 2014; Pinho and Mendes, 2017; Gladysz and Buczacki, 2018)

SS (Oke, 2007; Gamal Aboelmaged, 2010)

L6S (Alsmadi and Khan, 2010; Albliwi et al., 2015; Antony et al., 2017; Siregar et al., 2019)

TOC (Rahman, 1998; Ikeziri et al., 2019)

TQM (Nandurkar et al., 2014)

5 BFT Cycle time reduction

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Nithia et al., 2015; Yusup et al., 2015)

SS (Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010)

L6S (Albliwi et al., 2015; Antony et al., 2017; Alsaffar and Ketan, 2018; Siregar et al., 2019)

6 BFT Increased production

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Costa et al., 2018)

SS (Oke, 2007; Kumar and Antony, 2008; Gamal Aboelmaged, 2010; Costa et al., 2018)

L6S (Alsmadi and Khan, 2010; Albliwi et al., 2015; Alsaffar and Ketan, 2018; Alexander et al., 2019; Siregar et al., 2019)

TQM (Nandurkar et al., 2014)

7 BFT Increased customer satisfaction

LM (Bendell, 2006; Kedar et al., 2008; Bhamu and Singh Sangwan, 2014)

SS (Bendell, 2006; Kedar et al., 2008; Gamal Aboelmaged, 2010; Patel and Desai, 2018)

L6S (Albliwi et al., 2015; Antony et al., 2017; Siregar et al., 2019)

TQM (Al-Khalili and Subari, 2014)

8 BFT Reduction of variability in quality

LM (Kedar et al., 2008; Bhamu and Singh Sangwan, 2014; Sundar et al., 2014; Alhuraish et al., 2015)

SS (Kedar et al., 2008; Gamal Aboelmaged, 2010; Alhuraish et al., 2015; Alcaide-Muñoz and Gutierrez-Gutierrez, 2017)

L6S (Kedar et al., 2008; Alsmadi and Khan, 2010; Albliwi et al., 2015; Siregar et al., 2019)

9 BFT Employee morale improvement

LM (Gupta and Jain, 2013; Sundar et al., 2014; Pacheco et al., 2015; Pinho and Mendes, 2017)

SS (Kumar and Antony, 2008; Pacheco et al., 2015)

L6S (Alsaffar and Ketan, 2018; Alexander et al., 2019; Siregar et al., 2019)

10 BFT On-time delivery increase

LM (Bhamu and Singh Sangwan, 2014; Pacheco et al., 2015; Pinho and Mendes, 2017; Ismail et al., 2019)

SS (Oke, 2007; Gamal Aboelmaged, 2010; Pacheco et al., 2015; Patel and Desai, 2018)

TOC (Rahman, 1998; Ikeziri et al., 2019)

• Good identification and prioritization of improvements:An
organization may have several domains of improvement. First
of all, it is important to identify all opportunities. This is
of primary importance, as some improvements might have

precedence over another. Moreover, some improvements are
more critical than others. Therefore, one must be able to
identify the full list of improvements and determine the right
timing for each one to be done.
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TABLE 4 | Top 10 of CFF identified in the articles reviewed.

1 CFF Lack of implementation experience and training for actors

LM (Arnheiter and Maleyeff, 2005; Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Sundar et al., 2014; Nithia et al., 2015; Yusup et al.,

2015; Pinho and Mendes, 2017; Costa et al., 2018)

SS (Arnheiter and Maleyeff, 2005; Oke, 2007; Kumar and Antony, 2008; Van Iwaarden et al., 2008; Tjahjono et al., 2010; Costa et al., 2018)

L6S (Albliwi et al., 2015; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Alexander et al., 2019; Siregar et al., 2019)

TQM (Al-Khalili and Subari, 2014; Dedy et al., 2016)

2 CFF Lack of top management commitment

LM (Gupta and Jain, 2013; Bhamu and Singh Sangwan, 2014; Alhuraish et al., 2015; Nithia et al., 2015)

SS (Kumar and Antony, 2008; Van Iwaarden et al., 2008; Tjahjono et al., 2010; Alhuraish et al., 2015)

L6S (Alsmadi and Khan, 2010; Albliwi et al., 2015; Muraliraj et al., 2018; Ruben et al., 2018; Alexander et al., 2019; Siregar et al., 2019)

TQM (Al-Khalili and Subari, 2014; Dedy et al., 2016)

3 CFF Resistance to change

LM (Gupta and Jain, 2013; Alhuraish et al., 2015; Nithia et al., 2015; Costa et al., 2018)

SS (Kumar and Antony, 2008; Van Iwaarden et al., 2008; Tjahjono et al., 2010; Alhuraish et al., 2015; Costa et al., 2018)

L6S (Alsmadi and Khan, 2010; Albliwi et al., 2015; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Alexander et al., 2019)

4 CFF Lack of resources

LM (Gupta and Jain, 2013; Alhuraish et al., 2015; Nithia et al., 2015; Pinho and Mendes, 2017)

SS (Kumar and Antony, 2008; Tjahjono et al., 2010; Alhuraish et al., 2015; Stankalla et al., 2018)

L6S (Albliwi et al., 2015; Antony et al., 2017; Muraliraj et al., 2018; Ruben et al., 2018; Stankalla et al., 2018; Alexander et al., 2019)

5 CFF Lack of employee involvement

LM (Bendell, 2006; Yusup et al., 2015)

SS (Bendell, 2006; Oke, 2007; Kumar and Antony, 2008; Van Iwaarden et al., 2008)

L6S (Alsmadi and Khan, 2010; Muraliraj et al., 2018; Ruben et al., 2018; Siregar et al., 2019)

6 CFF Lack of framework of implementation

LM (Bhamu and Singh Sangwan, 2014; Pacheco et al., 2015; Pinho and Mendes, 2017)

SS (Oke, 2007; Gamal Aboelmaged, 2010; Tjahjono et al., 2010; Pacheco et al., 2015; Alcaide-Muñoz and Gutierrez-Gutierrez, 2017; Patel and

Desai, 2018)

L6S (Antony et al., 2017)

7 CFF Need for a specialist

LM (Bendell, 2006; Kedar et al., 2008)

SS (Bendell, 2006; Oke, 2007; Kedar et al., 2008; Gamal Aboelmaged, 2010)

L6S (Kedar et al., 2008; Antony et al., 2017; Muraliraj et al., 2018; Alexander et al., 2019; Siregar et al., 2019)

TOC (Kedar et al., 2008)

TQM (Talha, 2004; Kedar et al., 2008)

8 CFF Poor communication system

LM (Bendell, 2006; Nithia et al., 2015; Yusup et al., 2015)

SS (Bendell, 2006)

L6S (Albliwi et al., 2015; Ruben et al., 2018; Siregar et al., 2019)

TQM (Dedy et al., 2016)

9 CFF Data control infrastructure implementation difficulties

LM (Kedar et al., 2008; Bhamu and Singh Sangwan, 2014; Alhuraish et al., 2015)

SS (Kedar et al., 2008; Gamal Aboelmaged, 2010; Alhuraish et al., 2015)

L6S (Kedar et al., 2008; Albliwi et al., 2015; Siregar et al., 2019)

10 CFF Poor selection of projects

SS (Kumar and Antony, 2008; Tjahjono et al., 2010)

L6S (Albliwi et al., 2015; Antony et al., 2017; Muraliraj et al., 2018; Alexander et al., 2019)

• Strong link between philosophy, business strategy, and

customer satisfaction: The main goal of a manufacturing
system is to bring products that will fulfill one or more
customer needs. Therefore, strategic manufacturing choices
must be linked to the customer need in order to ensure their

satisfaction. Once the choices are made, the changes induced
must be treated with the adequate philosophy leading to the
greatest customer satisfaction.

• Good understanding of tool choice depending on the

goal: Several philosophies exist to implement quality
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improvements, as well as several goals for quality
improvement. Therefore, tools may be useful to reach
some targets, but not all. A good knowledge of which tool is
useful for which purpose is important in order to use them in
the appropriate manner.

• Use of precise quantification tools: Improvement is defined
as a positive change from an initial state to a final one. These
states must be well-determined to precisely estimate the gain.
Therefore, tools must be able to accurately quantify the chosen
units for improvement.

• Linking QMS to the global supply chain: The manufacturing
department strongly relies on suppliers, logistic department,
marketing department, etc. Therefore, QMS implementation
will face some barriers which can be overcome by linking the
actors of the supply chain to the QMS.

• Systemic approach to improve by iterations: An
improvement is a change, and that means to move to a less
known situation, as compared to before. A systemic approach
helps to reduce the unknown during the implementation by
applying a global method and avoiding particularities. By
reducing the complexity and the impact of singularities on the
system, a systemic approach helps to progress by iterations
following a framework determined in advance.

• Strong involvement of employees: The different philosophies
of quality improvement require that everyone is dedicated
to providing the best quality possible. This means that
ensuring the commitment of all the employees toward quality
improvement is important to successfully evolve.

Based on the analysis performed on the selected articles, the
Top 10 benefits as a result of the quality improvement policies
are listed below. Furthermore, Table 3 presents those benefits as
classified permethod, and provides the corresponding references.

Barriers
Some of the CSF previously presented can also turn out to
be weaknesses if they are badly used. Besides, some important
aspects must be taken into account to help avoid some failures.
These barriers to the improvement of quality are explained in the
form of Top 10 CFFs as follows:

• Lack of implementation experience and training for actors:

In order to implement a QMS, people must have a certain
knowledge of the philosophy and tools to avoid failures and
useless expenses.

• Lack of top management commitment: The implementation
of quality improvement systems needs the dedication of
everyone in the organization. The will to increase quality
often comes from the top management, which has a wider
perspective on the product and the customer satisfaction. The
top management then pushes the quality initiatives. In order
to be credible, they must stay committed to this position to
ensure a sustainable development.

• Resistance to change: Change means going from a well-
understood state to another less known one. The actors of the
organizations have to make an effort then to change. Some
inertia may occur before benefits appear and then the will to

go back to the previous state might pressure the organization.
This is a resistance to change.

• Lack of resources: In order to change and improve, resources
(human, financial, infrastructure) are used. Sometimes the
change requires more resources than affordable for example
in small and medium enterprises (SMEs).

• Lack of employees’ involvement: As explained before, a
strong involvement of employees is a strength whereas a weak
one is a drawback.

• Lack of framework of implementation: The process of
quality improvement is iterative and relies on several levels
of maturity. There is no standard framework or procedure to
follow. Thus, improvement is hardly reproducible.

• Need for a specialist: There is considerable knowledge in
the quality management field. A CSF is to have a trained
population. Therefore, there is the need of a specialist to
accomplish this mission and have an expertise. This is an
additional resource for the implementation of QMS.

• Poor communication system: As explained before, proper
communication is important to ensure that actors are
on the same page, and that results are provided and
dynamically improve.

• Data control infrastructure implementation difficulties:

Once the improvement is implemented, there is a phase
of monitoring to measure the impact of the change. The
measurements need an adequate data control infrastructure.
Otherwise, the conclusion on benefits of the change is
less precise.

• Poor selection of projects: In order to be sustainable, a
strategic plan of improvements has to be designed. A poor
selection and sequencing of projects may lead to failures or not
fixing the main problems.

Analysis of Quality Improvement Tools
An analysis of the tools listed in the articles reviewed has been
done. It is important to define what is considered to be a tool.
First of all, a mechanism is considered to be a tool when the action
of applying this mechanism enhances the quality of the product
or the process. The top 10 tools are described in Table 5. The
ranking is based on the weight attributed to each tool. The weight
is determined as the number of different articles mentioning the
tool all philosophies combined. In total, 144 tools have been
listed. The focus of the study is on the tools which are mentioned
in at least two different articles, which results in the further
analysis of 99 tools. The total number of citations is 586 for these
99 tools, and each tool may be listed in several philosophies.

Furthermore, the tools have been clustered in two classes,
based on the nature of the approach and the targeted goal.
The first classification regroups the tools depending on their
focus. The results from this classification are shown in Table 6

and Figure 3. Table 6 contains the overall results for all the
philosophies with the corresponding percentages occurred from
the analysis. There are five main categories regarding the focus of
the tools, i.e., global improvement with 34.81% is the dominant
category, followed by flow mapping and quality with 19.80
and 16.89%, respectively. The least developed tool is on the
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TABLE 5 | Top 10 of listed tools in the literature review.

Rank Tool Definition %

1 DMAIC (Define, Measure, Analyze, Improve,

and Control)

DMAIC is a strategy of improvement originated from SS, but can be extended to LM and L6S. 4.09%

2 VSM (Value Stream Mapping) VSM is a lean flow mapping tool. It is a process-oriented tool which map the value creation of

the product, the time, resources spent, and information generated.

3.75%

3 5S (Sort, Set In Order, Shine, Standardize,

and Sustain)

5S is an iterative lean tool which helps to sort, order, clean, and standardize a workplace in

order to make it more efficient and improve the work life of the workplace’s user. 5S stands for

the initials of 5 Japanese words.

3.41%

4 JIT (Just In Time) JIT is a lean flow timing management tool. Its goal is to align the timings in order the piece

parts arrive just when needed for them to reach the next step of manufacturing for the product.

The same reasoning stands for the finished good which arrive when needed. The purpose is to

reduce the inventory of parts and finished goods and then the waiting time.

3.41%

5 Kaizen Kaizen is a lean general approach for improvement in a system in order to reduce wastes. 2.90%

6 Standardization Standardization is a tool which helps to reduce the variability of a process and product to

ensure a consistent quality

2.90%

7 TPM (Total Productive Maintenance) TPM is a tool designed to program the maintenance of the machines. The goal is to reduce the

downtime and the unexpected stops.

2.90%

8 Kanban Kanban is a lean tool to reach a pull system of quality. This relies on a visual tracking system of

the product progress to well manage the flow.

2.73%

9 SPC (Statistical Process Control) SPC is a statistical tool to quantify the variability of a process and monitor the current state of

the situation.

2.55%

10 FMEA (Failure Mode and Effects Analysis) FMEA is a tool listing the potential failures of a system. It lists and ranks the risks on human,

methods and utilization, security and environmental factors to help tackle them in a cost and

impact limited way.

2.38%

FIGURE 3 | Distribution of the mentions for the focus of the tools for each philosophy.

prioritization of the improvement to make with 6.31% of the
category importance.

Figure 3 shows that most of the tools used in SS approach are
used for global improvement. In addition to that, prioritization
and statistics tools are almost equally used by SS, LM,
and L6S approaches. Flow mapping and time tools are

used more for LM, followed by SS and L6S, with similar
mentions accordingly.

The second classification splits the tools depending on
their goal. The results are shown in Table 7 and Figure 4.
In Table 7, there are two main goals that are dominant,
i.e., the goal of determining current state of a system and
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TABLE 6 | Definition of the different options of the first classification of tools on

their nature.

Focus of

tool

Definition Percentage

Flow

mapping

Tools that focus on modeling the succession of

processes and identify value added (or not)

steps.

19.80%

Global

improvement

The tools that focus on several of the previous

aspects and combine them to improve the

quality of a system.

34.81%

Prioritization Tools that focus on the prioritization of

improvements, in order to efficiently improve

the quality output of a system.

6.31%

Quality Tools that focus on the quality of the product or

process and how to avoid mistakes.

16.89%

Statistics Tools that focus on statistics for a product

(finite or not) at a fixed step of progress.

7.34%

Time Tools that focus on time spent at each step of

the manufacturing.

14.85%

the goal of preventing problems from occurring, at 31.57
and 30.89% accordingly. The rethink goal is the least used
among others with only 9.90%. Figure 4 illustrates the goals
of the identified tools per philosophy. In the two dominant
categories, “Determining current state” and “Prevention,” the
philosophies with the highest use are SS and LM, followed
by L6S. Furthermore, SS is the philosophy that uses all
four goals the most. TQM shows a steadier presence in all
five categories.

DISCUSSION

This section discusses the results and findings of the study. First,
in section Need for Standardization of Quality Improvement
Tools, we illustrate that some work on the standardization
of the tool and the establishment of different toolkits to
use depending on the level of maturity of the quality
management system should be done. Subsequently, section
Categorization of the Quality Improvement Tools provides
two categorizations that help understand the way QMS are
implemented and elaborates further on these categories and
their implications. Next, section Discussions on CSF, CFF,
and Benefits discusses and provides insights into the CSF,
CFF, and benefits, previously highlighted in section Review of
Results. Section Evolution Toward ZDM ends the discussion
by linking the findings from the review on LM, SS, L6S, TOC,
and TQM with some important factors and new possibilities
of ZDM.

Need for Standardization of Quality
Improvement Tools
The latest philosophy integrated inQMS is L6S, for which interest
has risen since 2003 (Albliwi et al., 2015). After almost 20 years
of study, more than the other four philosophies discussed in this
article, many tools have been developed to help one implement

TABLE 7 | Definition of the different options of the second classification of tools

on their goal.

Tool goal Definition Percentage

All The tool focus combines all the

aspects of the previous impacts.

11.95%

Determining

current state

The tool focus is on clearly determine

the current situation of the system.

31.57%

Prevention The tool focus is on preventing

identified undesired quality scenarios

to happen.

30.89%

Rethinking The tool focus is on redesigning an

element of the system. It has not

necessarily presented problems, but

quality improvements can be done to

reach a better system.

9.90%

Solving The tool focus is on solving a quality

problem, which has already occurred.

15.70%

a QMS. Through the literature review conducted, 99 tools have
been listed as cited in more than one of the articles included in
the scope. Several points can be brought to light from this listing.

Indeed, dealing with this amount and variety can feel like a
barrier to increasing quality for those who are not specialists
in their field. It means that first, the practitioner would have
to spend a considerable amount of time to understand the
tools, how they relate to each philosophy, and the critical points
to ensuring the viability of the implementation of these tools.
The manager can then decide either to do the work himself
or to call for a specialist. In the end, both of these options
represent a considerable consumption of resources (time or
financial resources).

Moreover, different names of tools may refer to the same
one. For example, some tools have been designed in Japan. For
the sake of easier understanding and discussion, an English
translation has been accepted by the community. Nevertheless,
the translation is not standardized and several are accepted. A
good example is about the tool Poka-Yoke. The goal of this tool
is to add a visual alert if an error is made by an actor during the
manufacturing. For example, imagine a production with batch
of 10 items. On the shop floor, someone’s mission is to create
this batch. If he misses one item and puts 9 items in the cart
for the batch, then an alert would appear to mention that the
number of items is incorrect. In English, the accepted translations
are fool-proofing andmistake proofing. Other examples exist, like
Heijunka, which is production leveling; Jidoka, which is process
autonomation; or Ishikawa, which is fishbone diagram. A more
extended list of examples is in Table 8. These numerous names
referring to same thing could be confusing when used. Indeed,
in a team working on project, some may know one name and
some another one. Training and educating the population is hard
enough to avoid this confusion.

Education for these tools also bears discussion and adds to this
confusion. Indeed, as pointed out by Gamal Aboelmaged (2010),
there is growing student interest on the topic. Three problems
have appeared. First, courses and the way of thinking have to
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FIGURE 4 | Distribution of the mentions for the goal of the tools for each philosophy.

TABLE 8 | Tools synonyms in Japanese and English.

Japanese name English name

Kaizen Improvement project

Poka-Yoke Mistake proofing/Fool proofing

Gemba walk Go to the field

Jidoka Process autonomation

Andon Emergency stop for root-cause analysis

Heijunka Production leveling

Hoshin Policy deployment

Ishikawa Fishbone diagram/Cause-and-effect diagrams

Taguchi Design of experiments

be integrated to the spine of the education system. The second
problem is inherent to the certifications provided by external
institutions. Several institutions give lectures and certification
known as belts. There is no standardization of them, as explained
by Albliwi et al. (2015). Last but not least are issues explained by
Edgeman andDugan (2008). Edgeman andDugan (2008) explain
that SS is more than an engineering aspect. It is a philosophy
which encompasses also human, societal, and environmental
considerations. Therefore, there is a lack of harmonization for the
content provided to become a specialist, whose expertise level can
vary from one to another.

To conclude this discussion section, some work on the
standardization of the tool and the establishment of different
toolkits depending on the level of maturity of the QMS should
be done.

Categorization of the Quality Improvement
Tools
The two categorizations presented in Figures 3, 4 help to
understand the way QMS are implemented. It is possible to
reach to three conclusions. When studying these figures, it is
useful to keep in mind how the construction was made. Tools
have been cited in the articles reviewed. These articles were
categorized depending on the main philosophies they focus on.
Tools have also been categorized depending on the main goal
they fulfill and the nature of their impact. When a tool is cited
in an article for a philosophy, an increment of +1 is added on
the categories of the corresponding main goal and nature for
the conforming philosophy. One tool may appear in articles for
different philosophies. Therefore, one tool can be found in only
one category, but in several philosophies. If the same tool is cited
several times in different articles of a same philosophy, then this
tool will add an increment as big as the number of different
articles on the same philosophy citing it. Tools that are cited in
only one article have been removed from the focus of the study.
A small column does not mean that none or few tools exist, but
rather that they are less cited and then less studied. For example,
LM tools are the most studied ones.

First of all, regarding the goals targeted, it is clearly visible
that the dominant ones are about determining the current state
of the organizations or preventing undesirable situations from
occuring. In order to improve a system, it is important to know
first where the organization stands initially. This will help to
determine the quality improvement strategy (What objective can
be chosen? What should be prioritized? How much effort will
the change need?). The prevention of errors is also important.
This shows a mindset turned toward a balanced system without
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various unexpected perturbations (like change in customer need,
operator errors, capacity disequilibrium, etc.). A considerable
category of goals is all. In this category, we grouped the tools that
are mainly on global perspective in order to determine the way
to proceed. Under that name are the methods of kaizen, DMAIC,
DMADV, and DFSS, which are sequences of the work to do in
order to reach successful improvements (Ishak et al., 2019). There
are also the specialists (belt experts) and ERP systems, which are
more resources than tools of primary importance for a QMS.
ERP systems and specialists are a good symbol of integration
of the quality preoccupations in the operational excellence
management. This tool is part of the spine of companies in
terms of management. Indeed, this goes further than just quality
management. It encompasses also human resource management,
for example. Also, the majority of the information flows in ERP.
This represents well how quality management is part of a whole
management system in order to reach operational excellence.

Moreover, concerning the type of improvement provided by
the tools, global improvement tools are the most studied. The
main tools in this category are DMAIC, 5S, kaizen, control
charts, and Pareto Analysis. The tools do not require a high
level of maturity in QMS. This is one of the reasons for the
numerous studies done on it, as many cases exist and they
have been documented for a long time. This also points that
quality initiatives are desired but not understood enough to
have important breakthrough on a very well-defined domain.
Another important fact to notice is the small contribution
of tools to prioritize the improvements. From the literature
review, it has been found that the selection and prioritization
of improvement projects is of primary importance in order to
successfully implement a QMS. Therefore, a gap is identified
between the knowledge of an important factor and the actual
practice in the field. It underlines a second crucial factor, which is
a trained population to act in QMS. This inconsistence between
knowing a critical factor and not digging fully in its direction
shows that people do not understand the topic well enough.

Finally, even if less documented, TOC and TQM are not useful
for prioritization and statistics studies. As a matter of fact, TOC
is a philosophy focused on removing existing bottlenecks, but
does not reveal further achievable improvements. TQM is more
a philosophy than a quantified tool. Its purpose is to gather the
people around a quality objective more than to statistics on the
activities going on in the organization.

Discussions on CSF, CFF, and Benefits
Many articles, like Patel and Desai (2018), Dedy et al. (2016),
Lande et al. (2016), and Stankalla et al. (2018) list critical factors
to be taken into account during the implementation of a QMS.
These factors can be presented as success factors or as barriers
to avoid during implementation. These lists are not exhaustive,
but rather rank and present crucial ones. The same idea has been
followed for this review study. The top 10 critical factors from
the articles reviewed can be found in Tables 2, 4. Often, the CSF
are presented and the CFF are left on the side (Albliwi et al.,
2014). Knowing how to successfully reach its goal also benefits
from learning from the failures, as explained in Cannon and
Edmondson (2005).

An important factor is the categorization of the articles
mentioning each critical factor per philosophy focused on.
Besides the rankings, some conclusions can be reached. SS
is a philosophy based on statistics. It is the most quantified
philosophy among LM, SS, L6S, TOC, and TQM. Therefore,
the numbers are less subject to misinterpretation than policies
and LM philosophies. This may explain why on the SS Poor
communication system is weaker than on other philosophies. In
addition, TOC seemsmainly absent from the critical factors. This
is mainly due to the fact that this philosophy has already proven
some limits and is less studied then by the scientific community
(Rahman, 1998; Ikeziri et al., 2019). Nevertheless, this philosophy
still has a strong point in being defined well in terms of steps
(Rahman, 1998; Kasemset, 2011; Ikeziri et al., 2019), which is a
weakness presented in LM, SS, and L6S.

Moreover, regarding the benefits, they seem homogeneous on
LM, SS and L6S. Inventory reduction is less cited for SS than
for LM and L6S. This derives from the core of the definition of
the philosophies. The LM aspect focuses on reducing the waste,
while SS’s main goal is to reduce the variability and not the
quantity directly.

Finally, it is clearly visible that the critical factors and benefits
mainly refer to the LM, SS and L6S more than the TOC and
TQM. This is partly due to the trend present in the research. As
explained previously in section Previous Literature, the research
community lately have more focused on these three philosophies
rather than on TOC and TQM. The method of ranking may
be biased by these trends. An absence of article cited for a
philosophy and factor may not mean that it is not important to
be considered. A good opportunity to confirm the hypotheses
relying on these rankings would be to survey the experts in
quality management who are black belts and master black belts.
They would be the most qualified people to address to.

Evolution Toward ZDM
The selection process for articles included in this literature
review does not integrate ZDM. The idea of this section is more
to link the findings from the review on LM, SS, L6S, TOC,
and TQM with some important factors and new possibilities
of ZDM. ZDM is a way of thinking of QMS with regards
to product and process quality. It is based on a simple yet
hard to achieve goal: Do right on the first attempts. For
this reason, ZDM must be integrated into the production
process right from the beginning, rather than trying to address
the issues at a later stage and should follow a continuous
improvement cycle based on standardized benchmarks. In fact,
the standard SS methodology embraces ZDM as one of its core
concepts, defining it as allowing a maximum of 3.4 defects
per million products, since achieving zero defects in a real
context is practically impossible. To achieve this, the evolution of
Industry 4.0-enabling, data-driven innovation leads to an easier
implementation of the ZDM concept, due to the availability of the
required amount of data for techniques such as machine learning
to work properly.

As explained in Psarommatis et al. (2019), the ZDM fulfills
four missions: detect, repair, prevent, and predict. The first
three missions are shared with the current quality philosophies.
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Prediction, however, is new aspect. In fact, LM, SS, L6S, TOC,
and TQM do not learn from defects. They just remove them.
These philosophies analyze the past to improve in the future.
Therefore, there is a loss of potentially important information
from the present. Not analyzing the present creates an inertia
between the occurrence of an event and the identification of an
improvement linked to this event. One major change in ZDM
is on the flow of information. Indeed, ZDM uses real-time data
to prevent product from defect. Doing this, ZDM combines
several quality control applications concerning production lines,
machinery, automation applications, and supply chain processes.
This is possible thanks to the development of IT systems and
Industry 4.0. This helps to anticipate defects in order to fix
them before too late. It is crucial to reach a state of early
detection in order to have a sustainable system (Yusup et al.,
2015). Moreover, this flow of information helps to better connect
the global supply chain (Pagliosa et al., 2019), which is known
to be a critical success factor for an efficient QMS. Another
aspect on the predictive aspect is to predict defects not only in
the product, but also in the process. In ZDM, the use of real-
time data helps to dynamically monitor and tune the parameters
in order to adapt the predictive maintenance. Downtime of a
machine is known to be very costly. Reducing this downtime by
a predictive maintenance of higher accuracy is a strong quality of
ZDM (Dreyfus and Kyritsis, 2018).

In addition, Eleftheriadis and Myklebust (2016) have
presented important aspects. First, a framework has been
derived. This is an important point, since a critical failure factor
for the current philosophies has been a lack of framework for
implementation and systematic approach. This framework
presents a systematic approach on the information data
management. The idea is to dynamically deal with them in
terms of real-time data to meet industry’s new requirements
so as to ensure a reliable, flexible, and sustainable system.
Secondly, in this framework, corrections are autonomously
dealt with. Therefore, the management team has less to focus
on and can instead work on the human aspects. As pointed
out in the critical factors, implementing a good culture of
change is of primary importance and requires some time,
newly provided by autonomous ZDM. Indirectly, this time
combined with a fast information flow from customer online
reviews helps to more quickly tackle the changes in customer
needs and defaults of manufacturing that would have not been
understood before.

Nevertheless, this connected flow of information exposes
the organization to new risk and waste. Accordingly, this
information must be secured (Seetharaman et al., 2019). The
security department has to be trained for this new risk of data
transformation and on how to prevent them. In addition, an
accurate and fast data management system has to be established
in order to avoid creating new waste. If not chosen with
precaution, themonitored data may be very large. The processing
time of this information increases with the volume of data. This
could lead to some delay in predictive detection and the defect
might have appeared. Moreover, a commonly used tool for QMS
is JIT. As long as defects will be present in the quantities of items

produced, a perfect JIT will be impossible, as some safety stock is
necessary to compensate for these defects. Finally, an important
weakness which has been pointed out is the lack of education of
the organization’s population. Implementing ZDM faces a similar
barrier. A first step before inserting ZDM in QMS is to train
actors in this QMS.

To conclude, hypotheses have been made and further research
should be done in order to confirm or disprove them. Indeed, this
discussion is only based on comparison aspects with the critical
factors of LM, SS, L6S, TOC, TQM, and the trends concerning
the new tools of information management.

CONCLUDING REMARKS AND FURTHER
RESEARCH

In this multi-competitor market, an adequate QMS is essential
to satisfy customer needs from a sustainable perspective. The
implementation of this QMS relies on LM, SS, L6S, TOC,
and TQM. These philosophies and mainly LM, SS, and L6S
have proven to provide significant benefits like cost reduction,
lead-time reduction, quality improvement, and more, when
implemented in an appropriate manner. To achieve this
implementation, some critical factors are to be taken into
account like, a proper communication system, a visible top
management commitment, a population trained in CI, and
more, which have been described. An educated population is
a key point to efficient improvement. Currently, the most-used
tools that determine the current situation to prevent defects
are flow mapping, global improvement, prioritization, quality
improvement, statistical analysis, and time focus tools. Several
goals can be achieved with many different tools. Nevertheless,
due to a lack of understanding and a very large range of tools, the
practitioner may be confused when choosing the one to use and
miss other important ones. In that regard, an effort in education
in universities and companies must be made. It can also be
done thanks to quality institutions who lecture the experts.
It is important to notice that institutions nowadays do not
provide a standardized education on the quality management.
Some work to standardize the knowledge to have in order to
become a certified belt expert should be pursued. Also the
research on tools should be pushed further in order to determine
toolkits corresponding to several levels of maturity of quality
management systems (Abdolshah and Jahan, 2006).

Finally, ZDM is an additionally more recent philosophy that is
more and more enabled thanks to technological improvements.
It allows a new goal, which is to predict defects. ZDM opens the
gate for real-time data management to increase the efficiency of
manufacturing organizations and to connect them better to the
global supply chain. Nevertheless, the integration of these new
technologies may raise new risks and waste. Indeed, the security
of the information has to be ensured. The perimeter is then wider
than physically securing the organization. This newly accessible
flow of information can be so large that it may introduce a new
sort of waste in the data management. Some research should be
done to better identify and define them and how to reduce them.
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• To conclude, this study investigated structured tools, critical
factors, and benefits to give a better understanding of the topic.
It has also provided insights on the new perspective offered
by ZDM.

• From the findings of this article, some further steps should be
followed in order to strengthen the understanding of QMS.

• Pursue research on tools used in order to propose a
standardized toolkit corresponding to several level of maturity
of the QMS.

• Standardize and develop the education on the improvement
philosophies in order to increase the number of
experts and ensure that they have the same level
of knowledge.

• Confront the hypothetical findings on ZDMwith experimental
cases and experts point of view.
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With the huge and ever-growing volume of industrial data, an enormous challenge of how

this data should be handled, stored, and analyzed emerges. In this paper, we describe

a novel method that facilitates automated signal parsing into a set of exhaustive and

mutually exclusive segments, which is coupled with extraction of physically interpretable

signatures that characterize those segments. The resulting numerical signatures can

be used to approximate a wide range of signals within some arbitrary accuracy,

thus effectively turning the aforementioned signal parsing and signature extraction

procedure into a signal compression process. This compression converts raw signals

into physically plausible and interpretable features that can then be directly mined in

order to extract useful information via anomaly detection and characterization, quality

prediction, or process control. In addition, distance-based unsupervised clustering is

utilized to organize the compressed data into a tree-structured database enabling rapid

searches through the data and consequently facilitating efficient data mining. Application

of the aforementioned methods to multiple large datasets of sensor readings collected

from several advanced manufacturing plants showed the feasibility of physics-inspired

compression of industrial data, as well as tremendous gains in terms of search speeds

when compressed data were organized into a distance-based, tree-structured database.

Keywords: industrial data analytics, physically-interpretable data compression, industrial database organization,

industrial database searching, industrial internet of things

INTRODUCTION

It is not widely known that industrial equipment already generates more data than computer and
social networks, with almost double the growth rate, leading to tremendous amounts of pertinent
data (Kalyanaraman, 2016). This provides an ever-growing opportunity to mine that data for useful
information via e.g., prediction of outgoing product quality, process monitoring and control or
optimization of operations.

Nevertheless, applications of Artificial Intelligence (AI) andMachine Learning (ML) in industry
are lagging behind advancements in the realm of computer and social networks (Nasrabadi, 2007).
The main reason is that the nature and characteristics of the data in physical processes or industrial
internet of things (Gilchrist, 2016) are different from what we see in computer and social networks
(Atzori et al., 2010). In the realm of computer science, information about events that are relevant
to modeling and characterization of the underlying system are directly available in the data—e.g.,
who is talking to whom, for how long and what the relevant locations are, or which website you
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FIGURE 1 | Illustration of the traditional data processing and management for data mining in manufacturing.

are on, for how long and which website you are going to go
after that, etc. On the other hand, in the industrial internet
of things (IIoT), events are embedded in the data and are not
directly visible. For instance, beginning and ending moments of a
reaction in a chemical reactor, or moment and location of particle
emission and trajectory of that particle in a semiconductor
vacuum tool—all this information is not directly observable and
is embedded in the signals emitted during the corresponding
processes. Finding and characterizing such events in industrial
data can link the mining of useful information from those
signals to the realm of discrete mathematics and thus leverage
tremendous advancements of AI and ML in the domains of
computer and social networks. The work presented in this paper
can be seen as an effort in the direction of establishing such a link.

At this moment, let us note that one of the main problems
in utilizing the ever-growing volume of industrial data is the
way that the data is handled at the very source. When it
comes to sensor readings from manufacturing machines and
equipment, industries tend to store the raw time-series (Kendall
and Ord, 1990), with occasional use of various, usually lossless
compression methods adopted from computer science in order
to cope with the enormous data volumes (Sayood, 2002).
These compression tools, such as run-length based compression
(Hauck, 1986), Huffman compression (Tharini and Ranjan,
2009), delta compression appliance (Mogul et al., 2002), or the
Lempel–Ziv–Welch (LZW) compression methods (Ping, 2002),
are inherently designed to maximize compression rates, while
minimizing information loss.

The purpose of the aforementioned compression tools is to
turn raw signals into a set of coefficients that is much smaller
than the original signal and is able to represent it perfectly,
or very close to perfection, thus achieving compression and
enabling storage of larger amounts of data. However, the resulting
coefficients in the compressed domain do not have any relevance
to the physical characteristics of the relevant processes and in
order to perform mining of useful information from such data,

one needs to decompress (reconstruct) the signal and extract the
informative signatures out of it (Alves, 2018), as illustrated in
Figure 1. Those informative signatures include metrics such as
mean value, standard deviation, peak-to-peak values and other,
usually statistics-inspired or expert-knowledge based quantities
calculated for one or multiple signal portions deemed to be
interesting for the data mining process1.

Nevertheless, determination of the informative signal portions
and relevant signatures involves a tremendous amount of expert
process knowledge to insure the necessary information is indeed
embedded in them (Djurdjanovic, 2018), which inherently makes
this stage subjective and error prone. In addition, one is
effectively blind to events in signal segments that were not
selected for analysis, or to whatever is not depicted in the
characteristics extracted from the raw signals. These drawbacks
will be addressed in this paper by introducing a method for
automated time-domain based segmentation of a signal into a set
of exhaustive andmutually exclusive segments of steady state and
transient behaviors, out of which we will extract a set of statistics-
based and dynamics-inspired signatures that approximate the
signal in those segments. Based on such signal segmentation and
signatures extracted from each segment, one could approximately
reconstruct the signal, which means that this procedure could
be seen as a signal compression tool. In addition, physical
interpretability of the newly proposed signal segmentation and
signature extraction will enable mining for useful information
about the underlying process directly in that compressed domain,
without blind spots (segments) and without the need for human
involvement in the process of signal parsing and extraction
of signatures. Figure 2 illustrates the novel data curation

1These signatures can be extracted from descriptions of relevant signal segments

in various domains, such as time-domain, frequency-domain, or time-frequency-

domain of signal representations (Chen and Lipps, 2000; Phinyomark et al., 2009;

Suresh et al., 2013; Celler et al., 2019).
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FIGURE 2 | Illustration of the newly enabled paradigm for data processing and management for data mining in manufacturing.

process that could be facilitated via the methods proposed
in this paper.

More details can be found in the rest of the paper, which is
organized as follows. In Methodology section, we will present
the method for automated parsing of signals into a set of
exhaustive and mutually exclusive steady state and transient
segments, along with methods to characterize those segments
using a set of physically interpretable signatures that facilitate
approximate reconstruction of the signal and thus can be seen
as its approximate compression. Furthermore, this section will
present an approach to organize the compressed data into
a distance-based tree structure that is much more efficient
for search and retrieval than the temporally organized, list-
based database structure traditionally utilized for industrial
data. In Result section, we will present results of applying the
newly introduced data compression and organization methods
to sensor data gathered from several modern semiconductor
manufacturing fabs. Finally, Conclusion and future work section
gives conclusions of the research presented in this paper and
outlines possible directions for future work.

METHODOLOGY

This section describes the novel physically-inspired data
compression andmanagement methodology. In Physics-inspired
signal parsing & feature extraction for approximate signal
compression section, the method for automated signal parsing
and signature extraction will be explained, including a novel
method for approximation-oriented physically-interpretable
characterization of automatically detected transient portions of
the signal. This signature extraction approach enables better
reconstruction of the signal than what can be achieved using
signal characterization based on only standard transient features
described in IEEE 2011 (Pautlier et al., 2011). In Tree-
structured data organization section, a distance-based tree-
structured organization of industrial data will be proposed,
enabling quick and accurate search of industrial databases
directly in the compressed domain of coefficients extracted from
the signals.

Physics-Inspired Signal Parsing & Feature
Extraction for Approximate Signal
Compression
Traditional signal parsing in the time domain is performed using
human-defined windows based on physical knowledge of the
process and human expertise. Such signal windows are selected

FIGURE 3 | Illustration of signal windowing utilized in traditional signal parsing

and feature extraction.

usually because they correspond to a key portion of the process
or are for whatever reason known or assumed to contain useful
information. This often implies that the analysis ends up focusing
on the steady state portions of the signals, where the processes
actually take place. From these portions, a number of time
and/or frequency domain signatures can be extracted, including
mean, standard deviation, kurtosis, frequency peak locations
and intensities, instantaneous frequency, group delay and so on.
Consequently, large portions of the signal can be left unanalyzed,
especially if the signal contains significant portions of transient
behaviors (Kazemi, 1969; Hughes et al., 1979; Ramirez-Nunez,
2018; Yeap et al., 2018). Figure 3 illustrates such traditional signal
parsing based on user-defined windows, which leads to blind
spots, redundancies in signatures and usually leaves out of the
analysis process at least some (usually many or all) transient
signal portions.

Recent publication (Haq et al., 2016) proposed a method
for automatic segmentation of time-domain signal descriptions
into a series of exhaustive and mutually exclusive segments of
transient and steady state behaviors, as illustrated in Figure 4.
From each steady state, statistics-inspired features, such as
segment durations, or expected value and standard deviations
of the sensor readings within the segment are extracted. On
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FIGURE 4 | Result of applying the automated signal parsing method

introduced in (Haq et al., 2016) to the same signal as the one shown in

Figure 3.

the other hand, from the transient portions, standard dynamics-
inspired features, such as transition amplitudes, settling times,
rise times, as well as post-shoot and pre-shoot features are
derived (Pautlier et al., 2011). This ability for automated mining
of the entire signal rather than only a selected subset of its
portions led to great improvements in virtual metrology (Haq
and Djurdjanovic, 2016) and defectivity analysis (Haq and
Djurdjanovic, 2019) in advanced semiconductor manufacturing.

In addition, this automatic signal analysis opens the door
to a significantly novel way of managing and utilizing densely
sampled machine signals that are increasingly frequently
encountered in modern industry. Namely, we can fully leverage
the automatic parsing capabilities reported in (Haq et al., 2016)
to enable encoding of a raw signal via a set of physically-
interpretable statistical and dynamics-inspired signatures that
compress the data into a domain which can be directly mined.

More specifically, within each transient segment, we can
approximate the data using linear combination of sufficiently
many complex exponential functions of the form

ŷ (t)=
∑

N
i=1Ci · e

λit (1)

where ŷ (t) is the compressed transient model and for a given
model order N, coefficients2 Ci and λi can be determined using
the well-known least squares fitting to the data. This form can be
seen as a decomposition of a signal segment into contributions
each of which can be associated with a dynamic mode of a
linear differential equation (coefficients λi can be seen as roots
of the characteristic polynomial of the differential equation that
generated that segment, while coefficients Ci can be seen as
strengths of the corresponding dynamic contribution to that

2These coefficients can be real or complex.

segment). In this paper, the appropriate model order N in
(1) was determined using Akaike Information Criterion3 (AIC)
(Sakamoto et al., 1986), though other information-theoretical
or statistical approaches could be utilized for this purpose.
Moreover, in addition to what was reported in (Haq et al., 2016),
for each transient portion of the signal we also evaluated whether
it can be better described as a single segment of form (1), or as
a concatenation of two distinct segments of that form4, with the
more favorable option also selected using the AIC metric.

The original signals can be approximately reconstructed
utilizing the signatures extracted from the steady state and
transient segments. Specifically, in this paper, each steady
state segment was approximated via the expected value of the
amplitudes of the data points in that segment, while Equation
(1) fit to any given transient section of the signal was used to
approximate that signal portion.

In order to evaluate the efficacy of reconstructing the original
signal from the compressed domain, adjusted R-squared (R2)
metric is utilized (Miles, 2014). Furthermore, in order to evaluate
compression efficacy of our approach, we employ the intuitive
metric expressing compression rate as

Compression Rate = 1−
NC

L
(2)

where NC is the number of coefficients (approximately)
representing the signal in the compressed domain and L is the
total length of the original signal.

In order to facilitate comparison and mining of the extracted
signatures, one must ensure that corresponding signal segments
populate consistent portions of the feature vector. Namely,
though signals emitted by industrial processes usually have
a fairly consistent structure, with a great majority of them
having consistent number of segments, inherent process noise
and inconsistencies could lead to situations when some of the
signals have a slightly5 larger or smaller number of segments, as
compared to the majority of signals (Kosir and DeWall, 1994;
Haq et al., 2016). For example, Figure 5 shows signals emitted
by the same sensor during processing of 4 distinct wafers in
a semiconductor manufacturing tool. Signals A and B are two
different signals with the segmentation form that appeared most
frequently in that process, while Signal C contains two extra
segments and Signal D has a missing segment. All these signals

3AIC is a well-known information-theoretical criterion that can be utilized to

elegantly indicate when further increases in model complexity are not justified by

the corresponding improvements in model accuracy.
4In a very similar manner, one could certainly explore possibilities to describe

signal transients using concatenation of more than two segments of form (1).

Nevertheless, our experience with real industrial data indicates that representing

signal transients with up to two concatenated segments described by Eq. (1)

led to excellent representation of a wide range of signals. This is why we only

implemented a procedure that considers up to two distinct segments within each

transient, though we once again acknowledge that a more general procedure

should consider a more elaborate transient segmentation.
5For industrial processes, which are usually behaving in a fairly consistent manner,

the difference in numbers of segments is small, with signals having at most a

couple of extra or missing segments, and even such inconsistencies not appearing

too often.
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FIGURE 5 | Four distinct signals from a throttle valve angle sensor used in a Plasma Enhanced Chemical Vapor Deposition (PECVD) process operating in a major

300mm wafer semiconductor fab. Signals (A,B) have the segmentation that appeared most frequently among the relevant process signals. Compared to signals

(A,B), signal (C) has one additional steady state segment and one additional transient segment. Signal (D) has one missing transient compared to signals (A,B).

Please note that steady state and transient segments are denoted as “S” and “T,” respectively.

with different feature vectors need to be aligned in order to be
consistently compared.

In order to perform the alignment of feature vectors, we
identify all feature vectors in the available data that have the
maximum number of segments and use them to create a standard

vector,
−→
SV , that has the same (maximal) number of steady-

state and transient segments, each of which is characterized by

averages of relevant coefficients, with any order inconsistencies
within transient segments being resolved by adding appropriate
number of zeros to lower order transients. For a feature vector

that has fewer segments compared to the standard vector, we
add appropriate placeholder segments to match the number and

type of segments (steady state or transient) between that feature

vector and the standard vector. Each steady state placeholder
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FIGURE 6 | Illustration of comparison between a feature vector with one missing segment and the standard vector before the alignment (A), and after the alignment

(B). Based on segmentation of the standard vector, feature vector X misses a transient segment and hence, a placeholder corresponding to a transient segment

should be inserted into it. Plot (B) illustrates how segments in the feature vector X are aligned with their corresponding segments in the standard vector by inserting a

transient placeholder between segments T1 and S2 of the signal X, as well as by adding appropriate number of zeros to the set of C and λ coefficients in the T1

segment. Please note that insertion location for the transient placeholder is determined via the method described in sec Physics-inspired signal parsing & feature

extraction for approximate signal compression.

segment was characterized by statistical characteristics set to
zero (duration, mean, standard deviation, kurtosis, min, max,
etc.), while each transient placeholder segment was characterized
by the duration and all dynamic coefficients Ci and λi set to
zero, with the number of dynamic coefficients in the transient
placeholder depending on where in the signal it was inserted. The
appropriate locations for placeholder insertions were found by
evaluating all possibilities, with each candidate insertion option

yielding a feature vector
−→
FV of the same dimensionality as the

standard vector
−→
SV , and its similarity to the standard vector being

evaluated via the cosine between the two vectors

Alignment Similarity =

〈−→
SV ,

−→
FV

〉

∥

∥

∥

−→
SV

∥

∥

∥

∥

∥

∥

−→
FV

∥

∥

∥

(3)

where 〈·, ·〉 denotes Euclidean inner product between two vectors
and ‖·‖ denotes the corresponding vector norm. The option that
yielded the highest similarity metric (3), i.e., insertion option
that ended being the most co-linear with the standard vector
was ultimately chosen. Figure 6 demonstrates how the proposed
alignment methodology is performed in a situation where a
feature vector with a missing transient segment is being aligned
to the standard vector6.

It should be noted that as new data arrives, one could observe
new feature vectors containing extra segments compared to the
standard vector. In that case, the standard vector can be updated
and all previously collected and aligned feature vectors would

6Please note that in Figure 6, FV and SV associated with the Eq. (3) are the

concatenated vectors containing all the extracted feature from feature vector X and

the standard vector respectively.
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then need to be realigned based on the new standard vector. This
could obviously be a rather computationally involved process,
especially in large datasets. Nevertheless, our experience with
real industrial data indicates that after a certain amount of data,
the standard vector settles and rarely gets changed. Hence, it
is recommended to perform feature vector alignments using
sizeable initial datasets in order tomake arrivals of feature vectors
with extra segments less likely.

Tree-Structured Data Organization
Indexed databases with tree-based structures can be searched
with logarithmic gains over databases organized as lists
(Ramakrishnan and Gehrke, 2000). This is well-known within
the computer science community, but is less known within the
general engineering, and especially manufacturing research and
practice communities. Recently, Aremu et al. (2018) suggested
what is essentially a tree-based organization of industrial
databases for the purpose of data curation for condition
monitoring. The authors propose a hierarchical organization of
the industrial data based on a number of criteria, including
the underlying equipment condition and behavior modes.
Nevertheless, the details of how to differentiate those condition
and behavior modes when such information is not explicitly
visible in the data, which is usually the case in real-life
industrial processes, was not discussed. In addition, the authors
did not discuss nor demonstrate quantitative benefits of such
data organization.

To that end, in this paper, we propose the use of unsupervised
clustering to autonomously identify underlying operating modes
and conditions that are embedded in the physically-interpretable
signatures obtained via compression of equipment sensor
readings described in the previous section. Specifically, we use
a Fritzke’s growing gas based Growing Self-Organizing Map
(GSOM) (Fritzke, 1994, 1995) to represent a given database
of equipment sensor signatures via an appropriate number of
clusters of data entries that are near to each other, as expressed via
some distance matric7. GSOM-based clustering is accomplished
through growth and adaptation of so-called weight vectors
that tessellate the underlying data space into Voronoi sets,
each of which consists of points that are nearest to a specific
weight vector in the GSOM (Kohonen, 1990). Each cluster
is formed by data entries that are inside a specific Voronoi
set, which means that the data inside a cluster are closer to
the weight vector associated with that cluster than any other
weight vector in the GSOM. Following abundant research in
machine condition-monitoring (Siegel and Lee, 2011; Lapira
et al., 2012; Siegel, 2013; Hendrickx et al., 2020), clusters yielded
by unsupervised clustering of equipment sensor signatures, such
as those extracted through physically-interpretable compression
described in section Physics-inspired signal parsing & feature
extraction for approximate signal compression, can be seen
as representative of the underlying equipment condition and

7E.g. Euclidean, Mahalanobis, Manhattan or some other distance metric.

Furthermore, please note that one same database can be indexed in multiple ways,

usingGSOM-based clustering based on different distancemetrics. This would yield

multiple sets of centroids (database keys) that parse that database and facilitate

acceleration of searches.

operating regimes, and can thus serve as the foundation
for the hierarchical tree-based organization of databases of
those signatures.

Figure 7 illustrates the structure of such a database. Searching
within it would consist of first identifying the nearest GSOM
weight vector, thus identifying the cluster of entries similar to the
query entry, after which only entries inside that cluster should
be searched rather than the entire database. Of course, with
large size databases, the number of clusters in the GSOM could
grow as well, leading to the possibility to cluster the weight
vectors (clusters) themselves and facilitate a multi-level tree-
based database, as reported in (Sabbagh et al., 2020). Generally,
such a “divide and conquer” approach that focuses the search
onto areas of the database that are similar to the query item rather
than exploring the whole database is the key factor enabling
logarithmic acceleration of searches within such hierarchical,
tree-based databases (Chow and Rahman, 2009).

The abovementioned acceleration, however, does come with
some costs. Namely, if a query items falls close to the boundary
of a Voronoi set (i.e., close to the boundary of a cluster),
then some database entries similar to it could reside in the
neighboring cluster or clusters. Search that focuses only on
the cluster to which that query item belongs (i.e., only to
the cluster corresponding to the weight vector nearest to the
query item) will miss entries that reside in the neighboring
clusters, which leads to deteriorated search precision and
recall metrics (Buckland and Gey, 1994; Bhattacharya, 2014).
These problems are well-known in computer science, which
is why searches in tree-based databases can be augmented by
expanding the search to database sections in the neighborhood
of the section identified in the initial stages of the search
(leaves of the database tree that are in the neighborhood
of the tree leaf to which the search initially focuses).
Consequently, in this paper, we explored possibilities to search
database clusters in the topological neighborhood of the
cluster identified by the nearest (best matching) GSOM weight
vector (Balaban, 1982). Such expanded search takes longer
time to accomplish, but it improves the search precision and
recall metrics.

RESULTS

The newly proposed data compression methodology described
in Physics-inspired signal parsing & feature extraction for
approximate signal compression section of this paper was
evaluated on two large datasets. One of those datasets (Dataset
A) includes sensor readings obtained from a Plasma Enhanced
Chemical Vapor Deposition (PECVD) process performed on
a 300mm wafer tool operating in a major semiconductor
manufacturing fab. Sensor readings in Dataset A were collected
from 50 different sensors at a 10Hz sampling rate during
production of over 45,000 wafers. The other dataset (Dataset
B) contains sensor readings emitted by a 300mm wafer plasma
etch tool operating in another high-volume semiconductor
manufacturing fab. Dataset B contains readings from 110
different sensors collected at 5Hz during etching of 4,500 wafers.
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FIGURE 7 | Tree-based database organization enabled by unsupervised clustering of equipment signatures implemented using self-organizing maps (SOM).

TABLE 1 | Performance metrics associated with signal reconstruction.

Experimental Results Performance Measures Dataset A Dataset B

All signals Average Adjusted R2 0.926 0.987

Minimum Adjusted R2 0.737 0.879

Maximum Adjusted R2 0.994 0.998

Average Processing Time (s) 5.21 (s) 119 (s)

Average Compression Rate (%) 53.94 % 71.26%

FIGURE 8 | Examples of the original and reconstructed signals for one pressure sensor reading (Signal A) and one throttle valve angle sensor reading (Signal B)

observed in the Dataset A. The compression rate for the pressure sensor reading on the left of this figure was 0.6975, while the R-Squared metric for the reconstructed

signal was 0.9987. Compression rate for the throttle valve signal on the right of this figure was 0.3355, while the R-Squared for the reconstructed signal was 0.9846.

Table 1 summarizes key metrics characterizing the
compression rates and signal reconstruction performance in the
relevant datasets. In terms of computational times8, average time
to process all signals relevant to a single wafer was 5.2 s in Dataset
A, and 119 s in Dataset B. For illustration purposes, Figure 8
shows two examples of original and reconstructed signals, with

8The times reported here correspond to processing on a regular Personal

Computer with 32.0 GB RAM and a 6-core Intel R© Xeon R© CPU E5-1650 v4 @

3.60GHz processor.

corresponding signal compression and reconstruction metrics.
Both signals in Figure 8 were taken from Dataset A.

Furthermore, Dataset A was large enough to realistically
evaluate benefits of the distance-based data organization
methodology proposed in Tree-structured data organization
section. Signatures extracted via compression of the initial
1,000 signals from the Dataset A were clustered using Fritzke’s
growing gas GSOM method to yield the initial tree-based data
organization. From the remaining 46,000 wafers, we randomly
selected 200 wafers and for each vector of signatures extracted
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from signals emitted during manufacturing of those wafers,
we evaluated the search performance of finding 10 nearest
neighbors in the database. Such queries of industrial databases
are of paramount importance for e.g., condition monitoring,
where one needs to rapidly and correctly identify sensory
signatures in the database that lookmost alike the newly observed
(query) signature.

Growth and updating of the database were simulated by
adding compressed sensor signatures from successive batches
of 1,000 wafers from the Dataset A and adapting the GSOM
to facilitate clustering and subsequent tree-based organization
of the ever-growing dataset. Figure 9 shows evolution of the
number of clusters of the resulting SOM, while Figure 10

shows computational times it took the GSOM to settle after

FIGURE 9 | Number of GSOM clusters in unsupervised clustering-based organization of the database of compression signatures obtained from the Dataset A.

FIGURE 10 | Behavior of elapsed times needed for adjustments of the database of signatures obtained using newly proposed physically-interpretable compression of

signals from Dataset A.
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FIGURE 11 | Plot (A) shows the average ratio of times needed to search the GSOM-based database and times needed to conduct the corresponding search in the

traditional, temporally organized database on the form of a list. Plots (B,C), respectively, show the average precision and recall metrics of those searches. All tests

were evaluated for searches that involved only the cluster corresponding to the weight vector nearest to the query item (blue curves), clusters in the immediate

neighborhood of the one corresponding to the weight vector nearest to the query item (green curves), and clusters whose topological distance away from the one

corresponding the weight vector nearest to the query item is less or equal to two (orange curves).
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each introduction of signals from 1000-wafer batches9. Each
time compressed signal signatures from a new batch of 1000
wafers were added to the database and the GSOM adaptation
stopped, we again randomly selected 200 wafers that were not
yet presented to the database and for each vector of compressed
sensory signatures obtained from those wafers, we evaluated
the search performance in finding 10 nearest neighbors in
the database.

Search performance was evaluated using average precision
and recall metrics, as well as the average speed of those searches
for the cases when only the nearest database cluster was searched,
as well as when GSOM clusters with topological distance 1 and 2
from the nearest cluster were searched10. Figure 11A shows the
average ratio of times needed to search the GSOM-based database
and times needed to conduct the corresponding search in the
traditional, temporally organized database on the form of a list,
while Figures 11B,C, respectively, show the average precision
and recall metrics of those searches.

As expected, one can see from Figure 11 that expanding the
search into neighboring regions of the tree-based database leads
to improved precision and recall metrics (more accurate search
results). It can also be seen that these improvements come at
the cost of additional times needed to conduct the searches.
Nevertheless, it is clear that the tree-based database organization
consistently yields search-time improvements that grow with
the size of the database, with expanded searching of the tree
slightly slowing the search, while delivering nearly perfect search
results (average precision above 98% and average recall above
97% when one searches GSOM clusters, i.e., segments of the
database tree, with topological distance 2 away from the best
matching cluster).

Conclusion and Future Work
This paper presents an automated method for approximate
compression of a signal based on extracting physically
interpretable signatures from its time-domain description.
Thus, the proposed data compression approach is appropriate
for signals for which useful information is embedded directly
in the time domain. Those are usually sensors of thermofluidic
variables, such as flow, temperature, and pressure sensor
readings in semiconductor tools, petrochemical plants, or
pharmaceutical industries. However, in signals for which
information is embedded in the frequency or joint time-
frequency domain, such as vibrations from gearboxes and
bearings, or acoustic emissions signals from cutting tools in
machining, or civil engineering structures, this compression
method is not appropriate.

The newly proposed method converts raw signals into
signatures that can then be directly used for mining of useful

9These times correspond to the so-called computational overhead needed to

maintain the tree-based database organization (Bhattacharya, 2014). In the case

of a list-based database organization, this time is essentially zero, since there are no

adaptations needed to maintain the database organization.
10Such searching of database segments (bins) in the neighborhood of the initial

search focus within a tree-based database is yet another common practice utilized

to improve accuracy of database search results (Bhattacharya, 2014).

information via e.g., detection and characterization of anomalies,
quality prediction, or process control. The method also reduces
the data storage burden since the signal could be approximately
reconstructed from the extracted signatures. In addition, an
unsupervised clustering method was used to organize the
compressed data into a distance-based, tree-structured database.
Such tree-based data organization is known in computer science
to offer significant advantages in terms of speeding up searches
in large databases. The benefits of the proposed methodology
for data compression and organization were evaluated utilizing
two large datasets from modern semiconductor manufacturing
fabs. The results illustrate the feasibility of the aforementioned
data compression method, as well as superior performance in
terms of speed and accuracy of data searches in the newly
proposed database structure, compared to searches in the
conventionally organized industrial databases in the form of
temporal lists.

Methodologically, a natural next step forward in this
research would be to explore the possibilities of enabling
physically plausible signal compression methodology in the
frequency and time-frequency-domains. Such capabilities
could be of tremendous benefits for condition-monitoring
applications in rotating machinery and other mechanical
systems. Another direction for future work should be the
use of more powerful and general distance-based measures
to organize the compressed database. e.g., stochastic
automata (Eilenberg, 1974) could be used to yield alternative
distance measure to determine the “similarity” between
data points. which would greatly improve one’s ability
to compare signals even when novel segments that were
not previously seen appear in the signal, or a segment
that is usually there, but does not appear in the newly
observed signal.

From the practical point of view, the methods described
in this paper can be developed and implemented in an actual
industrial setting, where the sheer volume of data represents
a unique challenge. e.g., a modern semiconductor fabrication
facility processing 300mm wafers can stream well over 100K
signals, each of which can be (is) sampled at 10Hz or higher.
Effectively enabling data curation capabilities described in this
paper in such a setting requires methodologies and solutions
that intricately and innovatively link the software implementing
data curation methodologies with the hardware that enables
moving and processing of such enormous amounts of data.
Such solutions require highly interdisciplinary skills in both
hardware and software and their pursuit is outside the scope of
this paper.
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Asset management is concernedwith themanagement practices, technologies and tools

necessary to maximize the value delivered by physical engineering assets. IoT-generated

data are increasingly considered as an asset and the data asset value needs to

be maximized too. However, asset-generated data in practice are often collected in

non-actionable form. Collected data may comprise a wide number of parameters, over

long periods of time and be of significant scale. Yet they may fail to represent the

range of possible scenarios of asset operation or the causal relationships between

the monitored parameters, and so the size of the data collection, while adding to

the complexity of the problem, does not necessarily allow direct data asset value

exploitation. One way to handle data complexity is to introduce context information

modeling and management, wherein data and service delivery are determined upon

resolving the apparent context of a service or data request. The aim of the present paper

is, therefore, 2-fold: to analyse current approaches to addressing IoT context information

management, mapping how context-aware computing addresses key challenges and

supports the delivery of monitoring solutions; and to develop a maintenance context

ontology focused on failure analysis of mechanical components so as to drive monitoring

services adaptation. The approach is demonstrated by applying the ontology on an

industrially relevant physical gearbox test rig, designed to model complex misalignment

cases met in manufacturing and aerospace applications.

Keywords: internet of things, context information management, maintenance ontology, context sharing, physical

asset management

INTRODUCTION

Typical applications of internet of things (IoT) technologies amalgamate the ability to identify,
sense, compute, communicate and sometimes actuate, for the purpose of monitoring and remotely
controlling the environment (de Matos et al., 2020). According to a Statistica report. (2020), it is
predicted that the amount of devices with Internet connectivity will exceed 50 billion by 2030.
Such devices produce significant volumes of data which are communicated through networks, and
upon processing enable better informed decision making and actions. One method of handling
the high complexity of such volumes of data is by introducing context information management.
Context is a key aspect in the process of leveraging information concerning situations and enabling
applications to be adapted according to the perceived context (Pradeep andKrishnamoorthy, 2019).

Systems with context awareness are employed within IoT environments for the purpose of
sensing the operational environment and for delivering an appropriate response to both the user
and application (Perera et al., 2014). Such systems are capable of analyzing the data generated by
IoT devices, generating a high-level of semantic organization of data and then converting it into
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context information. This information is subsequently utilized in
determining an environment’s status so as to drive appropriate
responses. In general, the status of the environment is
determined by a combination of circumstances, including users,
applications, location, or devices (Abowd et al., 1999), which
constitute the context information. As IoT technologies become
more embedded in monitoring activities, there is a growing
necessity to manage their context information in industrial
environments. This entails gathering, modeling, reasoning, and
disseminating context in order to efficiently manage the data
generated by multiple devices and to ensure that they can
be effectively integrated into enterprise systems. Nonetheless,
data contributing to context information are often modeled
or processed within the narrow scope of isolated subsystems,
restricting interoperability. Moreover, even when similar systems
for collecting context are applied in distinct settings, information
is infrequently shared between them (Perera et al., 2014).

The ability to share context among different applications
is a critical necessity for the IoT, making data shared between
heterogeneous systems reusable in multiple applications
(Ramachandran and Krishnamachari, 2019). Context
information management has been recognized as a challenge
for relevant research and early on Bernardos et al. (2008)
developed a data fusion framework for context-awareness
systems that included the following stages: (i) Obtaining context,
(ii) processing context, (iii) reasoning and decision-making.
Perttunen et al. (2009) have surveyed popular context reasoning
and representation techniques and provided an overview of
the requirements for context representation, arguing that
such requirements were insufficiently covered in the literature
regarding the interplay between efficiency, expressiveness,
soundness, and completeness, with ontology-based approaches
achieved improved scalability and reuse compared to other
approaches. This finding is consistent with that of Bettini et al.
(2010), although scalability of on-line reasoning with a large
number of entities is raised as a significant challenge. This is the
case when dealing with data of significant complexity and scale,
as typically encountered in IoT applications (2020), making
it important that the semantics of IoT data are captured by
appropriate context modeling to gain valuable insights (Perera
et al., 2014).

Context information management has largely dealt with
the challenges of ubiquitous environments, as well as the
data heterogeneity and services scalability. Nonetheless, while
substantial research efforts have been devoted to context
information management in web-based, mobile and ubiquitous
computing, including IoT-enabled computing, little attention
has been given to translate these advances to tangible
progress in industrial monitoring services (Al-shdifat and
Emmanouilidis, 2018). Context modeling in the literature
is typically handled via ontologies. However, when dealing
with monitoring services in manufacturing environments,
developed approaches often lack expressiveness concerning the
representation of the domain knowledge. To address such needs,
this paper analyses requirements and produces a design for the
components required to develop effective context-aware systems
to enhance monitoring services in industrial environments. It

then presents the development of a context resolution service
focused on failure analysis of mechanical components so as to
drive monitoring services adaptation. The paper is structured
as follows. Section related work briefly discusses literature
related to context information sharing and ontologies in
maintenance and asset management. Section system framework
and methodology presents the system framework and the
ontology development process, based on established practice
and maintenance vocabulary standards. An instantiation of the
developed ontology is implemented for testing on an industrially
relevant test rig and is presented in section implementation on a
case study. Section results and discussion presents and discusses
the ontology design and its implementation, including examples
of context resolution results. The final section summarizes the
key contributions of the paper and suggests potential further
research pathways.

RELATED WORK

The following section presents a discussion on the basic concepts
in the field of context-aware systems including context, context-
awareness in IoT, the context information sharing, as well as the
ontologies in maintenance and asset management.

Context Information Management
The concept “context-aware” system was originally proposed
by Schilit and Theimer in 1994 stating that “A system is
context-aware, if it uses context to provide relevant information
and/or services to the user.” Other early works have defined
context as “any information that can be used to characterize
the situation of an entity, an entity is a person, place, or object
that is considered relevant to the interaction between a user
and an application” (Abowd et al., 1999). Abowd and Mynatt
(2000) specified the basic elements required for analyzing and
understanding context, namely the five Ws (what, who, where,
why, and when). According to Byun and Cheverst (2004), a
system is defined as being context aware if it is capable of
extracting, interpreting and using context information and its
functionality can be adapted to the prevailing context of use.
In the domain of asset and maintenance management, the early
definition of context by Abowd et al. (1999) can be adopted
and extended by specifying that context is relevant to the
asset and its hierarchy, the user, the production or service
business circumstances, as well as overall system and operating
environment aspects (Emmanouilidis et al., 2019). Despite the
generally acknowledged definitions of what is regarded as context
awareness, a standard format and representation of the concept
has not been established (Xu et al., 2014; Perera et al., 2015; de
Matos et al., 2017). Various researchers have determined different
typologies of context. Abowd et al. (1999) differentiated between
primary and secondary context, in addition to conceptual and
operational. Liu et al. (2011) stated that context can be classified
as user, physical or networking. Table 1 provides a summary of
the different approaches adopted for categorizing context.

According to Perera et al. (2015), the steps required for a
system to deliver context information are acquisition, modeling,
reasoning, and distribution which combined form the context
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TABLE 1 | Different context categorization schemes.

References Context categorization

Abowd et al. (1999) Who, Where, When What, and Why

Chen and Kotz (2000) User, Computing, Physical, and When

Henricksen (2003) Sensed, Static, Profiled, and Derived

van Bunningen et al. (2005) Operational and Conceptual

Chong et al. (2007) Computing, Physical, Historical, and Sensor

Rizou et al. (2010) Observable and Non-Observable

Liu et al. (2011) User, Physical, and Networking

Emmanouilidis et al. (2013) User, Environment, System, Social, Service

Valverde-Rebaza et al. (2018) Location and Social

lifecycle. In the acquisition step, the raw data are collected
from sensors, databases or the surrounding environment. In
the modeling stage, the data is brought into a particular
representation so it can be converted into input for the reasoning
stage. Various approaches have been described in the current
literature for the modeling process, including key-value pairs,
ontology, and markup schemes (Bettini et al., 2010; Snidaro et al.,
2015). The semantic processing stage in the context lifecycle
is the reasoning process, where different methods can be used
for inferring context, such as such as supervised/unsupervised
learning, rules, ontologies, probabilistic approaches, as well as
data aggregation and fusion mechanisms (Perera et al., 2015).
Hence, the context-awareness of a system is determined by its
ability to utilize the context acquired via the context lifecycle
to deliver beneficial information/services to users (Abowd et al.,
1999). Several context-aware systems utilize context purely for
decision support/making or direct distribution to the end user.
Nevertheless, certain systems allow context information to be
shared with other interested actors or subsystems. This is
defined as context information sharing and represents one of key
challenges in the field of context-awareness for IoT (Perera et al.,
2015; Boavida et al., 2016).

Industry 4.0 and Context Interoperability in
IoT
When considering IoT usage in industrial environments, the
term Industrial Internet of Things (IIoT), or simply Industrial
Internet, is employed, and is being considered as fundamentally
linked to Industrie 4.0 (I4.0) (Jeschke et al., 2017). Comprising
technologies such as IIoT, robotics/automation/control,
additive manufacturing, simulation, cloud-based computing
and platforms, industrial security, cognitive computing and
artificial intelligence, mobility and wearables, big data and
analytics, systems integration, augmented and virtual reality,
as well as smart and new materials, I4.0 gives rise to new
services and business models (Frank et al., 2019), driven by such
technologies. Product Lifecycle Management (PLM) systems
are particularly benefitting from such technologies to connect
physical assets and products, processes, data, people and business
systems (Keivanpour and Ait Kadi, 2019) exploiting product
embedded sensor and intelligence capabilities, including product

or process Condition Monitoring (CM) capabilities. Recent
developments in IoT technologies have led to a renewed interest
in context-aware computing. Context-awareness plays a central
role in defining what data needs to be collected and how to
be processed, as well as in determining what information and
services are required to be made available to a consumer of
data or services (Perera et al., 2014; Sezer et al., 2018). Context
management is considered to comprise context acquisition,
modeling, reasoning, and dissemination (Perera et al., 2014).
Table 2 summarizes surveys of IoT context-aware systems from
2010 to 2020.

Context information can be provided in various different
ways, including variations in format, length, type, and
representation of the data (de Matos et al., 2020). Hence,
there is a need to ensure that context sharing platforms
offer context interoperability. Context-relevant data can be
produced by IoT entities and context management needs
to be handled through a context management information
processing layer. This layer would be expected to handle context
data produced from multiple sources, including third-party
software. Therefore, context sharing functionality is facilitated
by a context sharing platform. The platform is capable of
creating semantic interconnections between domains via the
sharing of context information. As IoT environments can be
highly complex, context-sharing platforms must be capable
of dealing with a range of situations and implement service
adaptation mechanisms driven by context building blocks (de
Matos et al., 2020). These building blocks can be categorized as
Properties and Architectural Components. The former applies
to predominantly software aspects of context sharing platforms,
including Modeling, Reasoning, Dissemination, Processing,
Interoperability, Privacy, Scalability, and Availability, as shown
in Table 3.

Architectural considerations regarding enabling hardware
for the deployment of a context sharing platform, include
communication technologies, storage space, and processing
layers. Furthermore, some building blocks are strictly related to
the context sharing properties (e.g., Modeling, Reasoning, and
Dissemination), which are those that are specifically required
in industrial monitoring. There are a variety of different IoT
platforms, frameworks, services and middleware that are capable
of collecting, processing and analyzing sensor data. In this
regard, various researchers (Perera et al., 2015; Mineraud et al.,
2016; Sezer et al., 2018; Pradeep and Krishnamoorthy, 2019;
de Matos et al., 2020) have produced surveys of such IoT
platforms, frameworks, systems, prototypes, middleware, and
various different techniques and some representative examples
are listed in Table 4, showing also their context modeling,
reasoning, and dissemination features.

While all the approaches deal with some form of context
management, starting from acquisition and modeling, eventually
actionable context needs to be domain—specific. In the
application domain of asset and maintenance management,
context strongly depends on assets and their hierarchy. Unless
such context is captured, it is hard to convert IoT-generated data
from industrial systems to actions. Therefore, it is important to
create a representation that integrates qualitative and quantitative
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TABLE 2 | Summary of IoT context-aware system surveys.

Survey title Year Contribution References

A survey of context modeling and

reasoning techniques

2010 State-of-the-art in context modeling and reasoning in

pervasive computing.

Bettini et al., 2010

Context aware computing for the internet

of things: a survey

2014 Comprehensive survey and analysis of context awareness for

internet of things.

Perera et al., 2014

Engineering context-aware systems and

applications: a survey

2016 Context-aware systems and applications in engineering. Alegre et al., 2016

Internet of things: a review of surveys

based on context aware intelligent services

2016 A meta-survey of surveys on context awareness Gil et al., 2016

Context-aware computing, learning and

big data in internet of things: a survey

2018 Context awareness for IoT Sezer et al., 2018

The MOM of context-aware systems: a

survey

2019 Comparison of several context-aware systems Pradeep and

Krishnamoorthy, 2019

Context information sharing for the

internet of things: a survey

2020 Presented essential building blocks for the development of

context sharing platforms and reviewed the challenges and

open issues for such platforms.

de Matos et al., 2020

data, wherein data and service delivery is determined upon
resolving the apparent context of a service or data request. The
most common approaches to achieve this, as seen in Table 3,
is through ontology-based modeling. An ontology formally
represents knowledge through concepts and relationships that
exist in a specific domain and are a key construct of the semantic
web (Gayathri and Uma, 2018).

Ontologies in Predictive Maintenance and
Asset Management
As the manufacturing environment is becoming knowledge-
intensive and more dynamic, maintenance is becoming more
and more crucial in Asset Lifecycle Management. The use
of semantic technologies, particularly ontology-based modeling
for predictive maintenance, has become an important research
topic and thus many ontologies have been offered to promote
knowledge representation and reuse within the context of
predictive maintenance. Medina-Oliva et al. (2014) developed a
knowledgemodel for fleet predictivemaintenance to handle fleet-
wide contextual knowledge, arguing that fleet-wide Prognostics
and Health Management (PHM) requires a knowledge-based
system capable of handling contextual information. Thus,
decision-making processes for diagnosis and maintenance are
strengthened by semantic modeling, which deals the definition
of concepts and relationships between them. In another example,
an ontology was developed for the predictive maintenance in the
wind energy domain and used as a basis for the identification
and diagnosis of faults for monitoring the condition of wind
turbines (Papadopoulos and Cipcigan, 2010). The proposed
ontology model was used, by conducting ontology queries, to
detect potential failures and their specific locations in the gearbox
of the Wind Energy Converter (WEC).

When considering the manufacturing domain, it is of interest
to capture the functional impact of asset integrity level on the
actual manufacturing process. Castet et al. (2018) presented
an approach for capturing fault information in a modeling
environment using ontology of fault management and a set

of plugins designed to automatically extract two reliability
artifacts, the FMECA and fault tree. FMECA offers a sound
basis upon which to express the organizational and functional
association between a manufacturing asset hierarchy and its
linkage with the functional integrity of the production facility.
In the same year, Nuñez and Borsato (2018) conducted another
study proposing an ontological model called OntoProg, serving
as a widely agreed data and knowledge representation scheme
for diagnostic-oriented maintenance, capable of being used in
different types of industrial machines, and a set of SWRL
rules to improve the ontology’s expressiveness were suggested.
In another recent example of an ontology-based approach to
predictive maintenance, fuzzy clustering is employed to infer
the criticality of failures, while SWRL rules are employed for
predictive reasoning for the transition between states of different
criticality, without though applying context-specific modeling an
reasoning (Cao et al., 2019). Ontological approaches to support
maintenance management that employ industrial scenarios
have been developed for a range of assets, including urban
infrastructure (Wei et al., 2020), highway infrastructure (France-
Mensah and O’Brien, 2019), Building Information Management
(BIM) (Farghaly et al., 2019), transport infrastructure (Ren et al.,
2019; Li et al., 2020), and railway infrastructure (Dimitrova et al.,
2020). Table 5 summarizes of ontologies in maintenance and
asset management.

The review of the related research work reveals two
issues. Firstly, there is a missing link between knowledge
constructs and context-dependent operational reliability-based
services adaptation actions. Focusing on the asset context,
relevant domain knowledge can be modeled in many forms
but of particular interest are knowledge constructs relevant
to reliability analysis, such as Fault Modes, Effects (and
criticality) Analysis, FME(C)A. FMEA or FMECA models are
however often utilized as a design-stage engineering study.
Maintenance services, on the other hand, need to be invoked
during the operating time and, thus, relevant information
representations need to be enriched to enable dynamic context
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TABLE 3 | Context sharing concerns.

Context sharing properties Type Aim Implementation features References

Modeling (M) Properties Responsible for mapping context

into a predefined format.

Key-value, markup scheme,

graphical, object oriented,

logic-based, ontology-based,

and hybrid context modeling.

Chen and Kotz, 2000;

Perera et al., 2015

Reasoning (R) Properties Defined as the process to obtain

high-level information from less

enriched, or even raw data

Supervised and unsupervised

learning, rules, fuzzy logic,

ontology-based, probabilistic

reasoning.

Bettini et al., 2010;

Perera et al., 2015

Data Dissemination (D) Properties The context information is

shared to relevant entities

Static and dynamic. Perera et al., 2015

Privacy (P) Properties Data on the context includes

private data, such as User ID,

preferences, activities, and

location. Although these drive

context, privacy preservation

should apply.

Access control policies,

anonymization, cryptography.

Tiburski et al., 2015

Interoperability (I) Properties Heterogeneity of data requires

that different subsystems or

systems must be interoperable

Interoperability through format,

source, length, and

representation, and semantic

alignment

de Matos et al., 2020

Context Processing (CP) Properties It aims to obtain, produce, and

share context information to

service a data or service request

Searching, filtering, and

aggregation.

Lunardi et al. (2015)

Availability (AV) Properties The context must be always

available for possible sharing

Availability ensured via cloud

platforms or cached data

de Matos et al., 2020

Communication technologies (C) Architectural Components It refers to all equipment and

programs that are used to

process and communicate

information

Communication devices,

channels, and protocols for

external and internal networks

Doukas et al., 2015; de

Matos et al., 2020

History (Hi) Architectural Components Past data or inferred context

stored locally or over the cloud.

Locally or cloud—based de Matos et al., 2020

Architectural model Architectural Components Architecture can follow different

patterns to support context

sharing

Cloud-based, centralized-edge,

and decentralized-edge

de Matos et al., 2020

inference and the composition of contextually relevant services.
Secondly, existing predictive maintenance approaches in the
manufacturing domain are still limited to the deployment of
condition monitoring systems for identifying the failure mode
and effects analysis in mechanical components. Therefore, the
resolution of asset context is needed to analyse mechanical
systems and logically connect measurements, observed behavior
and intended function, with machinery operating condition
and faults. To this end, FMEA offers appropriate grounding
for the baseline of the knowledge mapping. According to
Keivanpour and Ait Kadi (2019), failure mode analysis based
on FME(C)A is recommended to ensure that maintenance
activities are consistent with established fundamental practice-
oriented knowledge. The following section presents an ontology-
based development to describe knowledge through concepts and
relationships that exist in a specific domain.

SYSTEM FRAMEWORK AND
METHODOLOGY

This section presents the design of a system framework
to develop a maintenance context ontology focused on

failure analysis of mechanical components so as to drive
monitoring services adaptation. The proposed ontology for the

context resolution mechanism is relevant to failure analysis of
mechanical components, and the terminology and relationships
between concepts are structured on the basis of relevant

standards with a reliability-oriented knowledge grounding. A
mechanism for reasoning is being utilized for the delivery
of context resolution and the obtained context can introduce
a metadata layer on data or events produced by either

automation or human-driven means. An example of 6health

management of rotating machinery is utilized to offer a basis

for the domain context, but the actual upper level ontology

expressiveness is such that can apply to a range of machines
by extending it through more specialized or application specific
detailed ontologies.

The ontology is being utilized for the storage of knowledge
relevant to fault diagnosis and reliability analysis through
monitoring techniques. Hence, it is possible to query which
type of approach for condition monitoring should be used
and in what manner. Thus, queries can be made about
what kind of condition monitoring technique that should be
used and how. Additionally, inferences can be drawn in the
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TABLE 4 | Comparison of context-awareness features of existing approaches.

Approach name Year Category Modeling Reasoning Dissemination References

Context Toolkit 2001 Toolkit Key-value (X) Provided but not mentioned Query Dey et al., 2001

Aura 2002 Middleware Markup Schemes Rules Publish Garlan et al., 2002

CoBrA 2004 Middleware Ontology-Based Rules, ontology-based Query Chen et al., 2004

CARS 2005 System Key-Value Un-Supervised (X) Provided but

not mentioned

Wilson et al., 2005

MoCA 2007 Middleware Markup Schemes,

Ontology-Based

Ontology-Based Publish, Query de Rocha and Endler,

2006

CoSM 2009 Model Ontology-Based Ontology-Based Dynamic Yamamoto et al., 2009

ConCon 2014 Middleware Key-Value Ontology-Based Static Madhukalya and

Kumar, 2014

RCOS 2016 Middleware Ontology-Based Ontology-Based Dynamic Dhallenne et al., 2016

PSW 2017 Model Ontology-Based Ontology-Based, Rules Dynamic Ruta et al., 2017

CoaaS 2018 Middleware (X) Provided but

not mentioned

Rules, Pro Dynamic Hassani et al., 2018

SCENTS 2019 Middleware (X) Provided but

not mentioned

Rules Dynamic Liu et al., 2019

TABLE 5 | Summary of ontologies in maintenance and asset management.

Survey Title Ontology

domain

Contribution References

A formal ontology for semantics in maintenance

platforms

Production system An ontology to produce new knowledge in the field of

industrial maintenance that supports decision-making in the

maintenance process.

Karray et al., 2012

Ontology-based implementation of an

advanced method for time treatment in asset

lifecycle management

Lathe machine Implemented a method for exploiting the characteristics of

time in maintenance asset lifecycle management (ALM)

systems.

Matsokis and Kiritsis,

2012

Ontology-based schema to support

maintenance knowledge representation with a

case study of a pneumatic valve

Pneumatic valve A methodology for knowledge representation using ontology

concepts is proposed to overcome the problems of

heterogeneity and inconsistency in maintenance records.

Ebrahimipour and

Yacout, 2015

A novel maintenance system for equipment

serviceability improvement

Manufacturing

machine

A maintenance system for real-time equipment that integrates

augmented reality (AR) for context-aware overlay of textual

and graphical maintenance instructions on the maintenance

scene.

Ong and Zhu, 2013

Context-aware recommendation for industrial

alarm system

A power

generation plant

An industrial alarm management system through semantic

web technology and machine learning techniques.

da Silva et al., 2018

Semantic data model for operation and

maintenance of the engineering asset

N/A Proposed a semantic data model for engineering asset

management, focusing on the operation and maintenance

phase of its life cycle.

Koukias et al., 2013

Context modeling with situation rules for

industrial maintenance

knowledge

gateway system

A knowledge modeling approach and a technical architecture

of a gateway system developed to support maintenance

personnel.

Aarnio et al., 2016

A research on intelligent fault diagnosis of wind

turbines based on ontology and FMECA

Wind turbine A method of intelligent wind turbine fault diagnosis based on

ontology and FMECA is proposed.

Zhou et al., 2015

Building an ontological knowledgebase for

bridge maintenance

Transport

infrastructure

“An ontology to achieve automatic rule checking and improve

the management and communication of knowledge related to

bridge maintenance.”

Ren et al., 2019

sense that it is possible to make a comparison between an
obtained value and specific thresholds based on relevant ISO
standards in order to determine whether the value can be
categorized as Good, Satisfactory, Alert or Alarm. Therefore,
if the recorded value is considered to be in the Alert
category, the system diagnoses that a failure could occur and
a maintenance notification is issued for the machine indicating

that intervention is required. Subsequent to the identification
of an alert notification, it is then necessary to connect it with
diagnostic information of the mechanical part being investigated,
which will allow the failure mode and the potential causes to
be determined.

Nonetheless, such simple threshold-based rules often fail
to apply in practice and in view of that the ontological
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approach does not seek to replace actual diagnostics techniques,
which may involve far more efficient and sophisticated data
processing. Instead it acts as a meta-layer of knowledge to drive
services adaptation, and as such could work in synergy with
other techniques of data processing and condition monitoring
approaches. The intended end result is that the proposed
maintenance intervention is more directed, and tailored to
the apparent context of a situation. The process was applied
as follows:

• A concept knowledge base is established and created on the
basis of the professional expertise of mechanical engineers.
The fundamental concept knowledge pertaining to the domain
of condition monitoring is founded on professional expertise,
associated studies and standard specifications. Extraction
and representation of the necessary signal functions is
then performed.

• The knowledge is then transformed into ontology and SWRL
rules. The ontology editor Protégé 5.5 along with its plugins
(e.g., SWRL editor) are utilized in this stage.

• Implicit knowledge is extracted from the knowledge base by
the ontology management system according to the SWRL
rule engine.

• Identification of the source of the vibration is performed
using the obtained signal as input and then conducting Pellet
reasoning. Figure 1 provides more details about the system.

Maintenance Ontology Development
The development of ontology can be based on one of the
numerous procedures described in the literature, including
Uschold and King, Grüninger and Fox, Methodology, Ontology
Development 101 (Noy and McGuinness, 2001) (OD1) and
KACTUS. The OD1 is utilized in this study as it is broadly
employed (Gong and Janssen, 2013; Lau et al., 2014; Nuñez
and Borsato, 2018; Ren et al., 2019), has been demonstrated
to be highly appropriate for maintenance modeling, and
has been extensively documented for application in the
Protégé environment.

The OD1 initial step is to determine the scope and domain. In
this phase, the focus of the maintenance ontology is on modeling
failure analysis of mechanical components to answer queries
regarding how faults manifest themselves and how they can be
prevented or addressed, so as to adapt relevant diagnostics or
maintenance actions in a Condition-Based Maintenance setting.
Therefore, the domain of the model is Maintenance.

The next OD1 steps are to consider reuse and enumerate
terms. In this regard, ontological models developed by other
researchers should be considered to determine their adaptability
to the current research proposal such as those proposed
in Nuñez and Borsato (2018), Sanislav and Miclea (2015).
Moreover, this phase involves the enumeration of all terms
pertinent to the area of the ontology being developed.
Therefore, the main terminology and the associated definitions
are based on consolidated academic literature and mostly
on established international standards, such as condition
monitoring, diagnostics and maintenance (ISO, 2012, 2017),
vibration analysis (ISO, 2018), failure analysis (IEC 6030

0–1, IEC 6030 0-3-1), monitoring parameters: (ISO, 2011),
asset management (ISO, 2014), and MIMOSA (www.mimosa.
org) standards.

In the next phase, all classes and sub-classes are classified
following a top-down approach. It starts with the most
general definition of a domain concept and then continues
with the more specialized concepts. In this context, the main
class is of the Maintenance Ontology includes the subclasses
Asset, FMEA_Technique and ConditionMonitoringParameters.
Every such class has its own subclasses for example, subclass
FMEA_Technique has subclasses: FailureEffect, FailureMode,
PotentialCause, and Symptom. An example of class hierarchy is
shown in Figure 2A.

The next steps in this process include the design of entities
and properties. Entities are all the subjects of the studied
domain; properties are verbs that clarify the relations between
subjects and objects, or between-subjects themselves. Subsequent
to defining the class hierarchy, it is important to determine
the class relationships. They need to be accompanied by three
distinct types of properties: object properties, data properties.
The object attribute explains the associations among distinct
classes. The data property explains the properties of certain
occurrences both quantitatively and quantitatively. Figures 2B,C
show the aforementioned object properties, data properties. The
final stage is to create specific individual class instances within
the class hierarchy, which involves: (1) selection of the class, (2)
creation of an individual occurrence of the class, and (3) filling
slot values. These instances are used in the representation of
particular elements. Figure 2D presents class individuals.

Along with identification of the procedure that has been
adopted, the development of ontology models requires tools that
can support all activities in the development process. Such tools
include TopBraid and OntoStudio, as well as open ones, such as
the popular OntoEdit, HOZO and Protégé. Specifically, Protégé is
the most dominant ontology publisher due to the fact that it is an
open platform that offers plug-in extensibility as well as XML (S),
OWL, RDF (S), and Excel support, along with graphic taxonomy,
queries in SPARQL, rules in SWRL language, and a reasoner
(Pellet). The combination of OWL/SWRL provides a more
flexible ontology language for modeling knowledge domains
with a greater degree of expressiveness than using OWL alone
(Lawan and Rakib, 2019). The SWRL is a W3C recommendation
that extends horn-clause rules to OWL. OWL has demonstrated
significant expressive powers over other ontology languages as
the recommended ontology language for the semantic web.
While OWL ontologies provide simple, reusable and easy to
understand domain knowledge models, they lack the declarative
expressiveness offered by rules developed in SWRL.

IMPLEMENTATION ON A CASE STUDY

The applicability of the developed ontology model is shown
by utilizing a real physical asset. Gearboxes have broad
utilization in numerous applications such as machine tools,
industrial devices, conveyors and essentially any form of
rotatory power transmission equipment in which the torque
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FIGURE 1 | Prototype framework.

FIGURE 2 | Ontology classes, object property, data property, and individuals. (A) Classes. (B) Object property. (C) Data property. (D) Individuals.

and speed requirements need to be changed. If such devices
fail, the results can often be catastrophic accidents with
serious consequences. Therefore, a proactive approach must
be adopted that enables such components to be monitored
in real-time utilizing predictive maintenance methods (Khan
et al., 2019). In the present study, the technique of vibration

analysis is approached. Techniques used for assessing the health
of components based on vibration are regarded as applicable
for numerous reciprocating and rotating machines (Giurgiutiu
et al., 2001; Bajrić et al., 2011). A laboratory-based test rig
was employed and data was collected from its operation, and
maintenance records. This has been designed for emulating
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FIGURE 3 | CAD rendering of drive system and bearing locations.

complex cases of misalignment, relevant to manufacturing and
aerospace engineering assets.

In order to capture the operational health of the machine, the
test rig must be analyzed, allowing for an understanding on how
to best capture the degradation effect on the test machine. As
stated in ISO/FDIS 17359:2002(E), which details the flowchart
for starting the condition monitoring process, the start is to
choose the machine components in the maintenance ontology.
Then, the necessary functionality of each of the components
is explained for the machine to operate correctly. Additionally,
all failure modes, effects, causes, symptoms and measurement
approaches pertaining to the machine components are inputted
utilizing the FMEA method. Subsequently, the implementation
of the FMEA method indicates the most suitable measurement
locations and their limits for the measurement of values by
employing the vibration analysis method for prediction, which
are based on ISO (2002), ISO (2016), and ISO (2009). The
most pertinent components along with the most appropriate
measurement methods are identified by utilizing the FMEA
classification, which assigns weights according to the highest
severity (SEV), occurrence (OCC), detectability (DET), and risk
priority number (RPN).

Failure Mode and Effect Analysis
Asset context must be resolved for the analysis of mechanical
systems and to establish logical connections between
measurements, perceived behavior and the desired functionality,
and the operating health and defects. In this regard, Fault Modes
and Effects Analysis (FMEA) provides a suitable basis for the
baseline of the knowledge mapping (IEC, 2018) due to various
reasons. First, the qualitive components renders it suitable for
the abstraction of maintenance knowledge focused on reliability.

Second, the quantitative component allows maintenance tasks
to be prioritized on the basis of measurements conducive to an
approach based on risk. Third, its bottom-up structure allows
failure to be assessed starting from the basic level of production
systems; in other words, data are analyzed from machinery
parts through to the overall system. The initial stage involves
the determination of the specific aspects of the machine that
have the potential to fail and then to comprehend the causes
and effects of such failures (FMEA). Based on the study, it
will become apparent where the data will be most accurate
in highlighting the degradation of the machine being tested.
Alongside the misalignment testing carried out on the machine,
the rig can test the effects of loading through the dynamometer
and the subsequent effects that loading will have on the system
(Figure 3). Based on the FMEA Table 6 (del Castillo et al., 2020),
the most frequent outcome of misalignment of the gearbox
will be vibration and power transfer loss through gearbox,
as revealed by the RPN values. Subsequently, the vibration is
spread across the machine and is most pronounced in specific
locations, namely the bearings, and it is possible to easily capture
the transfer loss by calculating the RPN difference between the
driving motor and the loading dynamometer. As determined by
the FMEA analysis, the two potential failures that are identified
as having the greatest level of severity if misalignment or
loading occur in the system are degradation of the gear teeth
in the gearbox (RPN 150) as well as the bearing degradation
(RPN 140).

Wearing of the teeth is generally caused by misaligned gears,
excessive loading and lastly, a lack of lubrication. Degradation
of the bearings is caused by wearing of the teeth in the gears
as well as the impact of gear vibration being transferred to the
shaft and then to the bearings. If the shaft of the gear is short
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TABLE 6 | FMEA of test rig.

Item (ID) Function

(requirements)

Failure

mode

Failure effects SEV Failure causes OCC Mitigation DET RPN

Bearing “To achieve a smooth,

low-friction rotary

motion or sliding action

between two surfaces”

Abrasive wear Reduce fatigue life and

misalignment in the

bearing

6 lubricant condition, grease

degradation, and improper

isolation

4 Lubricant inspection

and proper isolation,

Monitor Shaft

alignment

4 96

Bearing

seizure

Crack formation on

rings and balls or

rollers—Skidding

4 Inadequate heat removal

capability—Loss of

lubricant—High

temperature—Excessive

speed

3 3 36

Noisy bearing Surface fatigue—

Glazing—Microspalling

of stressed surfaces

4 Loss of lubricant—Housing

bore out of

round—Corrosive

agents—Distorted bearing

seals

3 2 24

Fatigue

(Spalling)

Bearing failure 3 Excessive loading (cyclic),

misalignment

5 1 15

Vibration Scuffing—Fretting—

Pitting of

surfaces

7 Misalignment—Housing

bore out of round—

Unbalanced/excessive

load

4 5 140

Gear “To transmit shaft

power on

predetermined or

designed angular

velocities”

Tooth wear Loss of rotation

transfer, eventual gear

vibration, noise

6 Contaminants in the gear

mesh area or lubrication

system

5 “Lubricant inspection,

Regular inspection

surface sanding”

5 150

Scuffing Wear and eventual

tooth failure

5 Lubrication breakdown 2 4 40

Tooth shear Fracture 6 Tooth failure 2 3 36

Spalling Mating surface

deterioration, welding,

galling, eventual tooth

failure

4 Fatigue 1 2 8

Root filet

cracking;

Tooth end

cracks

Surface contact fatigue

and tooth failure

5 Tooth bending fatigue 2 2 20

Pitting Tooth surface damage 6 Cyclic contact stress

transmitted through

lubrication film

2 2 24

The bold values refer to components of high significance (RPN) in failure analysis.

and hard, and the bearings are situated in close proximity to the
center where meshing of the gears occurs, this can be a source
of vibration, which can be measured by placing sensors at the
bearings as shown in Figure 3.

RESULTS AND DISCUSSION

The aim of ontology-based context modeling is to produce
a semantic organization of data so as to drive maintenance
services adaptation. When users interact with systems in this
regard, the proposed maintenance ontology can help them (e.g.,
maintenance engineers) to narrow down the list of options by
providing answers to questions such as:

• What are the common failures and diagnostic approaches for
a given machine type?

• Which physical parameters to measure/use?

• What is the recommended preventive or corrective action for
a specific failure mode of an asset?

An example of a typical utilization scenario is that during
condition monitoring queries could be raised to resolve the
monitoring service context. For instance, this could be related
to determining the failure modes of a part, the functional effect
of a defect on the operation of the test rig, the measurement
alternatives suitable for specific defects and parts, in addition
to the relevant measurement parameters. In the context of the
present study, SPARQL queries were designed for the resolution
of these queries. SPARQL additionally allows the federation of
queries across different sources of data. By applying the following
query, it is possible to determine “what are the main components
of the Test rig?”

Figure 4 shows the results of a query to identify the main
components of an asset type. These components are bearing,
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FIGURE 4 | Query result to identify the main components.

coupling, lubricant, rotor, seals, and shaft. Moreover, the present
implementation allows a query in the maintenance ontology
to resolve key analysis characteristics, such as components
function, failure modes, causes, and effects. This query can
be useful to a maintenance engineer in order to link faults
to functional impacts, and other information to ensure the
correct identification of the component being analyzed as shown
in Table 7.

Another query can be applied based on FMEA to answer
what are the common gearbox problems and diagnosis methods.
For example, problems that arise in relation to gearboxes are
misalignment, lubrication issues, bearing problems, gear teeth
defects, thermal instability, and torsional and lateral vibration.
Considering that the test rig under study was designed to
study complex cases of misalignment in industrial machinery,
the focus here will be on misalignment cases. Misalignment in
gearbox arrangements can cause gear and bearing pitting, which
eventually leads to complete failure. It may lead to vibrations
and excessive loads that harm functioning components of the
machine, such as bearings and oil seals. It is therefore important
to detect and fix such issues to avoid incurring any unnecessary
costs. As shown in Figure 5, this can take four forms: Axial
misalignment; Offset or Parallel misalignment, when the centers
of shafts are on different lines; Angular misalignment, when a
motor shaft is at an angle to a driven component shaft; and
Combination misalignment, when both angular misalignment
and parallel misalignment occur.

After identifying the common gearbox problems, then it
is important to identify parameters to be measured for fault
detection. The developed ontology links physical measurement
entities with appropriate measurement techniques. This allows
to associate common faults with the physical asset and to match
themwith parameters or techniques appropriate for detecting the
occurrence of such faults. For example, a component that has
high significance in failure analysis is the bearing (Table 8). A
critical failure mode is gear tooth wear and the typical failure
effects for this is partial tooth contact (Misalignment). Another
query can be applied to determine failure modes, failure causes,
failure effects, symptoms, and fault severity (SEV), but also to
determine the faults with highest diagnostic potential (DGN) or
faults which pose the highest impact risk. SEV and DGN scale
from 1 to 10, with the higher number representing the higher
seriousness or risk and an appropriate query can return the faults
with the highest DGN (Table 8) or risk. Therefore, parameters
such as SEV, DGN and DET from the FMEA technique can
be used within the ontology model to enable queries which
in turn can identify components or processes of priority for
maintenance actions.

Real data collection from the shop floor or simulated data
(with “hasCurrentValue” data property) can be used to infer
the component’s health status and trigger alerts for decision
making, such as the prognosis of a failure and the scheduling of
Condition Based Maintenance (CBM) actions. In this regard, the
SWRL language is being used in object properties to construct
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TABLE 7 | Function, failure mode, failure cause, and failure effect for test rig.

Component Function Failure

mode

Failure cause Failure effect

“Shaft” “It has the ability to

translate in its axial

direction, thereby

changing the gear”

Misalignment1 “Angular misalignment of shaft due to

mounting incorrect”

Abnormal temperature rise and

excessive loading

Corrosion “Bearings exposed to corrosive

environment”

Increased vibration and noise

“Lubricant” “Lubricating the teeth

and bearing / removing

heat generated from

operations”

Lubricant

Degradation1

“Loss of lubricant, contaminated lubricant,

aged lubricant, lubricant system failure,

blocked lubrication filters, leakage”

Components failure and

environmental pollution

“Bearing” “To achieve a smooth,

low-friction rotary

motion or sliding action

between two surfaces”

Fatigue “Fatigue in rolling bearing parts by housing

misalignment”

bearing failure

Wear_1 “Lubricant condition, grease degradation,

and improper isolation”

Sound_1

Vibration “misalignment” Crack propagation

“Motor” “Motors convert

electrical energy into

mechanical energy”

Overheating “Cooling system failure, Temperature

above limit, Temperature sensor failure.”

UnableOperateMachine_1

Shaft failure “Overloading, fatigue, misalignment” Halt generator operation and

Increased vibration

Bearing failure “Bearing fatigue, Improper lubrication,

lubricant contamination from dirt,

abnormal vibration.”

Increased vibration and noise

FIGURE 5 | Types of shaft misalignment adapted from Khan et al. (2019).

transitive rules (Nuñez and Borsato, 2018) and new connections
are applied to the classes that allow assertion inferences to
be improved. In this way the ontological approach becomes
scalable: specifically SWRL built-ins (SWRLb) allow further
extensions within a taxonomy. This greatly enhances the model
by allowing multiple arguments according to specific real-
world requirements, enabling greater expressiveness of OWL 2
languages. A transitive property is considered in cases such as:
if subclass Component Type (C1) has object property has Mode,
and subclass Failure Mode (FM) has object property has Cause

(CA) related to subclass Potential Cause (PC), then subclass
Component Type (C1) has the object property has Cause (CA)
related to subclass Potential Cause (PC). Then the SWRL rule is:
has Mode (?C1, ?FM1) Failure Mode (?FM1) Component (C1)
Potential Cause (?PC1) has Cause (?FM1, ?PC1)—> has Cause
(?C1, ?PC1). As part of the SWRL rules within the suggested
ontology, (ISO, 2009) is utilized for the evaluation of the data
gathered from the vibration measurements and analysis. The test
rig employed in the pilot example is regarded as a mid-level
asset in an asset hierarchy that includes a rolling-element bearing
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TABLE 8 | Query outcome for failure mode with highest DGN.

Component type Failure mode Failure effect Failure cause Symptom SEV DGN Technique

Rolling bearing Tooth wear Partial tooth

contact

(Misalignment)

Tooth failure Vibration 3 4 5 Vibration analysis

(lower level in asset hierarch) that includes an accelerometer
acting as a transducer in the data collection process. The resulting
assessed parameters can be for example the velocity of the
vibration in RMSmm/s, with themeasurement sites as defined by
standard MIMOSA VB-00, while the operating zone limits based
on the (ISO, 2009) standard. To determine the machine’s health
status and recommended actions, the followingmain SWRL rules
are set:

• Component Health (?CH1, ?E), equal(?E, “Good”),
Measurement Location(?M1) -> has Warning(?CH1,
“Collect new data in 1 month”).

• Component Health (?CH 1, ?F), Measurement
Location(?M1), equal(?F, “Satisfactory”) -> has
Warning(?CH1, “Collect new data in 2 weeks”).

• Component Health (?CH 1, ?H), Measurement
Location(?M1), equal(?H, “Alert”) -> has Warning(?CH1,
“Schedule Condition-based Maintenance”).

• ComponentHealth (?CH 1, ?I),Measurement Location(?M1),
equal(?I, “Alarm”) -> has Warning(?CH1, “Turn off

the machine”).
• Has Health (?CH1, ?E), equal(?E, “Good”), Measurement

Location(?M1) -> is Caused By (?CH1, “NoMisalignment ”).
• Has Health (?CH1, ?F), Measurement Location(?M1),

equal(?F, “Satisfactory”) -> is Caused By (?CH1, “Loss
of lubricant - Housing bore out of round - Corrosive

agents—Distorted bearing seals”).
• Has Health (?CH1, ?H), Measurement Location(?M1),

equal(?H, “Alert”) -> is Caused By (?CH1, “Excessive
loading (cyclic), misalignment ”).

• Has Health (?CH1, ?I), Measurement Location(?M1),
equal(?I, “Alarm”) -> is Caused By (?CH1, “Misalignment—

Housing bore out of round—Unbalanced/excessive load”).

Let’s assume that when the data for the rolling bearing part
exhibits an RMS mm/s value between zero and ≤2.3, then it
should display a “good” notification. When values that exceed 2.3
but are below 4.5 are detected, it should display a “satisfactory”
notification; a value between 4.5 and 7.1 should trigger an
“alert” notification, and values in excess of 7.1 should cause an
“alarm” notification that will instantly terminate the machine
operation. Given this, let’s assume that a value of 4.7 mm/s RMS
is recorded. This is fed through the ontology, activating the Pellet
plugin reasoner in the Protégé ontology editor. The outcome
will be that the component’s health will be inferred to be set as
“Alert,” producing a recommendation to “Schedule Condition-
based Maintenance. Moreover, once an ALERT warning has
been issued, it is then important to associate it with the
diagnostic information of the analyzed mechanical component,
associating the identified the failure mode with potential causes
(Figure 6). In this way, the maintenance intervention becomes

context-depended and is therefore more focused and relevant to
the identified context of the monitoring situation.

While simple single-parameter threshold-based rulesmight be
easy to interpret, they do not often hold in practice. Instead, more
complex multi-parameter rules are more likely to apply. The
reasoning process can replace simple rules with the activation of
more complex decision functions which may be produced as a
result of machine learning over monitoring historical data. The
value of the described process is that it sits at a higher level
of abstraction and can therefore work with different lower level
computational rules.

CONCLUSION AND FURTHER RESEARCH

This paper presented the development of a context resolution
service mechanism for industrial diagnostics, based on the
design of a maintenance ontology focused on modeling and
reasoning failure analysis of mechanical components. The
maintenance ontology has been developed employing established
methodologies and upon consulting a range of domain-
relevant international standards. The ontology development
was further applied on a physical mechanical transmission
test rig. Thus, queries could be raised in terms of the
resolution of the monitoring service context to determining
the failure mode and its potential causes of the test rig, in
addition to the relevant measurement parameters. Moreover,
SWRL reasoning rules were used based on (ISO, 2009)
for the evaluation of the data gathered, the prognosis of
failure is being performed, sending a maintenance message
for intervention in the machine. In this way, the maintenance
intervention is more directed, ceasing to be exploratory. This
highlighted the need for handling the whole context information
management lifecycle and ontologies in maintenance and asset
management to maximize the value delivered by physical
engineering assets.

The outcomes of the work can be used in other industrially
relevant application scenarios to drive maintenance service
adaptation. While the application focus is quite specific, the
ontology abstraction level is actually such that it could also
be implemented on other application cases, as it offers a
sound baseline for further customization or extensions. When
serving different application scenarios, the derived abstract
model developed with the process described in section system
framework and methodology still holds, as the employed
terms and relationships were developed employed established
standards. However, after going through a similar process
for deriving the application-specific part of the ontology as
described in section implementation on a case study and
the developed queries, as described in section results and
discussion, additional needs can be identified, which may require
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FIGURE 6 | SWRL rules for generating warning and potential causes.

the inclusion of additional entities, relationships, and queries
development. This will be determined by going through an
ontology assessment and evaluation cycle in the context of
the new application scenario, especially regarding the ontology
expressiveness and coverage. Nonetheless, this will affect largely
lower abstraction level terms, rather than upper hierarchy
classes and associated object or data properties. For example
asset types and their associated terms if need be may be
complemented by additional asset types. The higher level classes,
object properties, and data properties will retain the structure
of Figures 2A–C but the population of lower tier terms and
individuals for such class structures will need to be developed
for the additional asset types, as typically holds in managing
ontologies. However, the example reasoning rules presented in
Section results and discussion can be re-used but can be extended
with additional ones to cover the coverage and expressiveness of
the updated ontology.

Consequently, further research should be carried out to link
the current ontology implementation with a live condition
monitoring service, as well as to apply it to real industrial
environments as an enabler of more efficient IoT-enabled
monitoring services.
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Prognostic and Health Management (PHM) systems are some of the main protagonists
of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has
deviated from its normal operating condition or predicting when a fault will occur are the
main challenges these systems aim at addressing. Efficient PHM methods promise to
decrease the probability of extreme failure events, thus improving the safety level of industrial
machines. Furthermore, they could potentially drastically reduce the often conspicuous
costs associated with scheduled maintenance operations. The increasing availability of data
and the stunning progress of Machine Learning (ML) and Deep Learning (DL) techniques
over the last decade represent two strong motivating factors for the development of data-
driven PHM systems. On the other hand, the black-box nature of DL models significantly
hinders their level of interpretability, de facto limiting their application to real-world scenarios.
In this work, we explore the intersection of Artificial Intelligence (AI) methods and PHM
applications. We present a thorough review of existing works both in the contexts of fault
diagnosis and fault prognosis, highlighting the benefits and the drawbacks introduced by the
adoption of AI techniques. Our goal is to highlight potentially fruitful research directions along
with characterizing the main challenges that need to be addressed in order to realize the
promises of AI-based PHM systems.

Keywords: prognostic and health management, predictive maintenance, industry 4.0, artificial intelligence, machine
learning, deep leaning

1 INTRODUCTION

Supporting the constant growth of modern industrial markets makes the optimization of operational
efficiency and the minimization of superfluous costs essential. A substantial part of these costs often
derives from the maintenance of industrial assets.

Recent studies1 show that, for the average factory, inefficient maintenance policies are responsible
for costs ranging from 5 to 20% of the plant’s entire productive capacity. Furthermore, according to
the International Society of Automation (ISA)2, the overall burden of unplanned downtime on
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industrial manufacturers across all industry segments is estimated
to touch the impressive figure of $647 billion per year.

If, on one hand, the above considerations highlight the
fundamental impact of maintenance operations on
manufacturers’ balances, on the other hand a large number of
companies are still not satisfied with their maintenance strategies.
According to a recent trend study gathering interviews with more
than 230 senior European business3, roughly 93% of them deem
their maintenance policy inefficient.

As discussed later, the current most popular approaches to
maintenance are divided into two categories, namely reactive
maintenance and scheduled maintenance. Roughly speaking, the
first implements maintenance operations immediately after a
system failure occurs, whereas the second is based on
scheduling maintenance operations at regular time intervals.
These strategies naturally introduce significant extra costs due
to machine downtime, component replacement or unnecessary
maintenance interventions.

On the other hand, Predictive Maintenance (PM) represents a
completely different paradigm that holds the promise of
overcoming the inefficiencies of the aforementioned methods.
PM is one of the hallmarks of the so-called Industry 4.0
revolution, i.e., the process of modernization of the industrial
world induced by the advent of the digitalization era. The goal of
PM systems is to implement a smarter and more dynamical
approach to maintenance leveraging recent advances in sensor
engineering and data analysis. The health state of a machine is
now constantly monitored by a network of sensors and future
maintenance operations are based on the analysis of the resulting
data. An increasing number of organizations, motivated by their
need for reducing costs and by the potential of PM, are starting to
invest significant amounts of resources on the modernization of
their current maintenance strategies1.

One natural question arising now is to what extent PM
solutions can actually improve a company’s efficiency in terms
of reduction of downtime, cost savings and safety. A recent PWC
study4 investigates the actual potential of PM beyond the hype
generated around it in the last few years. The results are quite
impressive: 95% of the interviewed organizations claim that the
adoption of PM strategies contributed to the improvement of
several key performance indicators. Roughly 60% of the involved
companies report average improvements of more than 9% of
machines uptime, and further enhancements in terms of cost
savings, health risks, assets lifetime.

As mentioned above, as a key player in the fourth industrial
revolution, PM exploits some of the most recent advances
introduced in the last few years in computer science and
information engineering. Among them, ML is arguably one of
the technologies that is experiencing the most impressive growth
in terms of investments and interest of the private sector. This
increasing attention in AI technologies is mainly due to the

tremendous contributions they have brought in fields such as
Computer Vision (CV), Natural Language Processing (NLP) and
Speech Recognition in the last decade.

PM approaches are heavily based on ML techniques. The
increasing availability of relatively cheap sensors has made much
easier to collect large amounts of data, which are in turn the main
ingredients ML systems necessitate.

However, AI-based technologies should not be considered as a
“silver bullet” capable of immediately addressing all the issues
affecting current maintenance strategies. ML and DL, in
particular, are constantly evolving fields and, despite their
significant achievements, a number of drawbacks still limit
their wide application to real-world scenarios. It is, therefore,
necessary to be cautious and try to understand the limitations of
current AI approaches in the context of PM and drive further
research toward the resolution or the alleviation of these
shortcomings.

The goal of this manuscript is to provide an updated critical
review of the main AI techniques currently used in the context of
PM. Specifically, we focus on highlighting the benefits introduced
by modern DL techniques along with the challenges that these
systems are not yet able to solve. Furthermore, we present a
number of relatively unexplored solutions to these open problems
based on some of the most recent advances proposed in the AI
community in the last few years.

This manuscript is structured as follows: Section 2 briefly
describes classic maintenance strategies and introduces the core
ideas from Prognostic and Health Management (PHM). Section
3 discusses the benefits of data-driven approaches and presents
some of the most popular AI-based methods used in PHM.
Section 4 summarizes the main open challenges in PHM and
presents some of their possible solutions. Finally, Section 5
concludes the paper.

2 ELEMENTS OF PROGNOSTIC AND
HEALTH MANAGEMENT

Prognostic and Health Management (PHM) is an engineering
field whose goal is to provide users with a thorough analysis of the
health condition of a machine and its components (Lee et al.,
2014). To this extent, PHM employs tools from data science,
statistics and physics in order to detect an eventual fault (anomaly
detection) in the system, classify it according to its specific type
(diagnostic) and forecast how long the machine will be able to
work in presence of this fault (prognostic) (Kadry, 2012).

First, we present the most popular maintenance approaches,
highlighting the advantages and disadvantages of these different
methods in terms of costs and overall machine downtime. Then,
we describe the entire PHM process by describing the role of its
main sub-components in the context of the previously introduced
maintenance approaches.

2.1 Different Approaches to Maintenance
The choice of an efficient maintenance strategy is crucial for
reducing costs and minimizing the overall machine’s downtime.
The adoption of a particular maintenance strategy primarily

3https://www.ge.com/uk/sites/www.ge.com.uk/files/PAC-Predictive-Maintenance-
GE-Digital-Full-report-2018.pdf
4https://www.pwc.be/en/documents/20180926-pdm40-beyond-the-hype-report.
pdf

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 5786132

Biggio and Kastanis PHM: Progress and Road Ahead

51

https://www.ge.com/uk/sites/www.ge.com.uk/files/PAC-Predictive-Maintenance-GE-Digital-Full-report-2018.pdf
https://www.ge.com/uk/sites/www.ge.com.uk/files/PAC-Predictive-Maintenance-GE-Digital-Full-report-2018.pdf
%20https://www.pwc.be/en/documents/20180926-pdm40-beyond-the-hype-report.pdf
%20https://www.pwc.be/en/documents/20180926-pdm40-beyond-the-hype-report.pdf
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


depends on the needs and the characteristics of the company’s
production line. Indeed, each maintenance policy introduces some
benefits and disadvantages directly impacting costs in different
modalities. In this review, we identify four distinct approaches to
maintenance, namely: Reactive Maintenance (RM), Scheduled
Maintenance (SM), Condition-Based Maintenance (CBM), and
Predictive Maintenance (PM) (Fink, 2020).

2.1.1 Reactive Maintenance
RM consists of repairing or substituting a machine component
only once it fails and it can no longer operate. The immediate
advantage of this approach is that the amount of maintenance
manpower and expenses related to keeping machines running are
minimized (Swanson, 2001). Furthermore, since machines are
active until they break, their utilization time is maximized. On the
other hand, this approach is risky from many perspectives. First
and foremost, it is potentially dangerous from the point of view of
safety. Waiting for a machine to reach its maximum stress level
can result in catastrophic failures. Moreover, this type of failures
usually introduce larger costs and need a significant amount of
time to be repaired. Therefore, by adopting this maintenance
strategy, one might expect conspicuous costs arising both from
reparations of severe failures and from relatively large unplanned
machines downtimes.

2.1.2 Scheduled Maintenance
SM is based on maintenance interventions carried out at regular
time intervals. The goal is to minimize the probability of failures
and thus avoid costly unplanned downtimes by performing
maintenance activities even when the machine is still
operating under normal conditions. SM strongly relies on a
meaningful schedule that has to be tailored to the specific
properties of the equipment. In particular, experts have to
provide a detailed evaluation of the failure behavior of the
machines and of their components in order to maximize the
level of accuracy on the prediction of the next failure time. This
analysis typically results in the so-called “bathub” curves
(Mobley, 2002), as shown in Figure 1.

The bathtub curve illustrated in Figure 1 shows that a machine
component presents a high risk of failure right after it is installed
(because of installation errors or incompatibility issues with other
components) and after its normal operation interval (because of
natural degradation and wear out.). Between these two phases, the
machine is supposed to work properly and its failure probability
is low and constant.

The main advantage of SM is that it significantly reduce
unplanned downtime. Furthermore, the reparation costs are
generally less dramatic than those encountered in RM, since,
now, machines are not allowed to operate until their breaking
point. On the other hand, a SM approach presents the concrete
risk of carrying out several relatively expensive maintenance
interventions even when the equipment is still working
properly. Sticking to a fixed degradation model of a certain
machine might lead maintenance operators to miss anomalies
caused by external factors or internal malfunctions that make
the machine’s degradation pattern deviate from its
predicted trend.

2.1.3 Condition Based and Predictive Maintenance
CBM and PM differ from the types of maintenance strategies
previously described in that they employ data-driven techniques
to assist technicians to efficiently set times for maintenance
activities. The goal of these methods is to provide a good
compromise between maintenance frequency and its relative
costs (Ran et al., 2019).

The difference between CBM and PM lies entirely in their
different responses when a defective system condition is detected.
In this case, a CBM approach would intervene on the system
immediately after the detection time. This method could lead to
the replacement or repair of a component of the equipment even if
it could have continued its normal routine for a longer time
without affecting other parts of the machine. Furthermore,
intervening immediately after the fault has been detected might
result in stopping the machines’ working cycle at an inconvenient
stage from the point of view of production efficiency.

To the contrary, PM tries to predict the useful lifetime of a
component at a certain time step in order to indicate the point in
the future where maintenance has to be performed. This last
approach inevitably results in lower maintenance costs compared
to CBM, since each component can be fully exploited without
sacrificing safety and efficiency (Fink, 2020).

Figure 2 summarizes the maintenance strategies presented
above by illustrating the costs resulting from their different
approaches.

2.2 Prognostic and Health Management
Process
As mentioned before, PHM makes use of information extracted
from data to assess the health state of an industrial component
and driving maintenance operations accordingly. Figure 3
illustrates the main components constituting the typical PHM
pipeline, from data acquisition to decision making.

The very first step of the PHM process consists of selecting a
suitable set of sensors and devices, setting them up in the most
appropriate location and deciding on an optimal sampling

FIGURE 1 | The bathub curve shows that the most likely times for a
machine to break are right after the installation and after its normal
operating time.
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frequency for data collection. The communication system
between sensors and databases must be implemented in order
to allow for both real-time machine health monitoring and offline
data handling. To this extent, a widely adopted solution by
industries is the Open Platform Communication Unified
Architecture (OPC UA), a popular communication protocol
that allows information to be shared across sensors, industrial
assets and the Cloud in a highly secure way (Bruckner et al.,
2019).

Once the sensor array is in place, data can be acquired. These
data are typically in forms that are not compatible with the input
shape requested by AI algorithms. Therefore, a data pre-
processing step must be implemented in order to clean the
data, mitigate the effects induced by noise or simply reshape

them so that their new format can be interpreted by data analysis
techniques.

The resulting data are cleaner than the original ones but can
still contain a substantial amount of redundant information. This
motivates the application of feature extraction techniques to
reduce the dimensionality of the data and retain only the most
meaningful pieces of information. As we see in the next section,
most modern AI techniques are designed to automatically extract
informative features without any need for expert knowledge and
manual feature engineering.

2.2.1 Condition-Based Maintenance
CBM consists of two main elements: anomaly detection and
diagnosis [see Figure 3 (left)]. Both these processes immediately

FIGURE 2 | Scheme of the behavior of the different maintenance approaches described above. Figure adapted from Fink (2020).

FIGURE 3 |Main steps of the typical PHM process. This can be divided into CBM (left) and PM (right). RUL estimation is enhanced by information extracted at the
CBM level, such as the time step where degradation starts to show its effects. Figure adapted from Khan and Yairi (2018).
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follow the data extraction and data pre-processing pipelines
described above and aim at supporting the decision making
step with meaningful information about the state of the
system. The information extracted by the anomaly detection
and diagnosis modules can subsequently be exploited at the
PM level in order to provide an even richer description of the
machine’s health state [see Figure 3 (right)].

2.2.1.1 Anomaly Detection
Anomaly detection is responsible for automatically establishing
whether the input data present any discrepancy compared to
some internal model of the normal machine’s behavior (Khan
and Yairi, 2018). This internal representation can be learned by
extracting and storing representative features from data gathered
from healthy machines. It is important to note that, in general,
healthy data, i.e., data gathered from machines working under
normal working conditions, are much more abundant than faulty
data. This is because, typically, a machine can incur in several
different types of faults, each of which is, luckily, relatively rare.
As a conclusive remark, we highlight that the detection of an
anomaly does not necessarily imply that it corresponds to a fault.
It might be, for instance, that it represents a new healthy feature
that does not have any representatives into the historical data or
has not been modeled by the anomaly detection algorithm’s
internal model.

2.2.1.2 Fault Diagnosis
Fault diagnosis moves one step forward with respect to anomaly
detection since, besides detecting that an outlier is present, it also
identifies the cause at the basis of that anomaly (Hess, 2002). Fault
diagnosis models are based on historical data representing
different faulty conditions. These data are used to characterize
each type of fault and allow the models to classify new previously
unseen data within a predefined set of fault cases.

2.2.2 Predictive Maintenance
Themain difference between CBM and PM is that PM algorithms
deal with the problem of predicting the Remaining Useful Life
(RUL) of an industrial component before a complete failure
occurs and the machine is no longer able to operate
(Medjaher et al., 2012; Fink, 2020). Therefore, the key enablers
of PM strategies are algorithms capable of efficiently forecasting
the future state of a machine, i.e., provide prognostic information
about its RUL.

2.2.2.1 Fault Prognosis
As mentioned before, fault prognosis is about providing an as
accurate as possible prediction of the RUL of a certain machine
component. The RUL estimation process starts from the
identification of a time-step where a fault begins to show its
effects. The final goal is to infer how long the machine can
continue operating even in the presence of a degradation trend
due to the previously detected fault.

Contrarily to diagnosis, time plays a crucial role in prognosis,
since the objective is now to provide an estimate of the future time
step when a certain event will occur (Lee et al., 2014). It is
important to note that RUL predictions are strongly affected by

various sources of noise. These can arise from noisy sensor
readings, the inherent stochasticity of the RUL forecasting
problem and the choice of an imperfect model for the
machine degradation process.

3 ARTIFICIAL INTELLIGENCE-BASED
PROGNOSTIC AND HEALTH
MANAGEMENT
The attempt of devising artificial agents with the ability to
emulate or even improve some aspects characterizing human
intelligence is what makes AI an extremely exciting field of
research both from a fundamental and a practical points of
view. ML, as a branch of AI, studies the problem of designing
machines capable of learning through experience and by
extracting information from data (Mitchell, 1997). “Learning
from experience” represents a distinctive human feature that
enables us to actively interact with the world we live in. It
allows us to build a progressively more accurate internal
model of the surrounding environment by processing and
interpreting the external signals our body is able to perceive.

Similarly to humans, intelligent systems can process the
information perceived by an array of sensors about a given
industrial component and provide a model of its operating
condition and its health status. The increasing availability of
data and the high level of computational power reached by
modern hardware components make the application of AI
techniques even more appealing.

ML has witnessed an increasing interest in the last few
decades. A turning point has been set by the introduction of
the first state-of-the-art DL technique almost 10 years ago by
Krizhevsky et al. (2012) in the context of Image Recognition (IR).
This event has triggered a new era in the field of data analysis
characterized by a plethora of new applications of DL to a series of
disparate engineering fields, ranging from NLP to CV.

The goal of this section is to give the reader an insight into the
intersection of ML and PHM and the progress made by the
scientific community hitherto. First, we present the main steps
involved in the application of “traditional” ML techniques to
PHM and we discuss how these can be utilized in the contexts of
diagnosis and prognosis. Then, we present a number of popular
DL techniques and we review some of their most interesting
applications in this context.

3.1 “Classical” Machine Learning Methods
Before the explosion of DL almost one decade ago, the typical
process followed by the majority of data-driven approaches to
PHM is illustrated in Figure 4. The raw measurements provided
by a battery of sensors can not be straightforwardly linked with
the health state of the machine or its RUL. Indeed, they are often
affected by a significant amount of noise that can be introduced
by either external factors, such as a sudden temperature increase,
or imperfect signal transmissions. Furthermore, often these data
are represented by complex time-series or images, that are
typically characterized by a highly redundant information
content that tends to hide the relatively limited discriminative
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features of interest. For the above reasons, once data are acquired,
a set of candidate features have to be extracted and then, only the
most informative among them have to be properly selected. Once
these steps are completed, the final set of extracted features can be
used to train a ML algorithm to perform the desired diagnosis or
prognosis task.

In the following, we briefly go through all the aforementioned
steps, discussing some of the main techniques involved in each
of them.

3.1.1 Feature Extraction and Feature Selection
3.1.1.1 Feature Extraction
According to Yu (2019), feature extraction can be defined as the
task of transforming raw data into more informative features that
serve the need of follow-up predictive models and that help in
improving performances on unseen data.

A general recipe for the feature extraction task does not exist
and a set of key context-dependent factors must be taken into
account. Some of these are, for example, the specific type of task
to be performed, the characteristics of the data, the application
domain and the algorithmic and efficiency requirement (Guyon

et al., 2006). For instance, traditional choices of features in the
context of IR are those obtained by the SIFT (Lowe, 2004) and
SURF (Bay et al., 2008) algorithms, whereas mel-cepstral
coefficients (Davis and Mermelstein, 1980; Kopparapu and
Laxminarayana, 2010) are typically chosen in speech
recognition applications.

In the context of PHM, data recorded for the purpose of
equipment maintenance come often in the form of time-series.
Therefore, an opportune set of features must be chosen according
to the properties of the signals under consideration, e.g., its
physical nature (temperature, pressure, voltage,
acceleration,. . .), its dynamics (cyclic, periodic, stationary,
stochastic), its sampling frequency and its sample value
discretization (continuous, discrete)5. Typical examples of
features extracted from raw time-series data can be divided
into three categories (Lei et al., 2020): time domain, frequency
domain and time-frequency domain. The first includes statistical

FIGURE 4 | Main steps characterizing the approaches based on traditional ML algorithms. Adapted from Zhao et al. (2016).

5https://www.phmsociety.org/sites/phmsociety.org/files/Tutorial_PHM12_Wang.
pdf
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indicators such as mean, standard deviation, root mean square,
skewness, kurtosis, crest factor, signal-to-noise ratio. Other
standard time-domain feature extraction methods are
traditional signal processing techniques such as auto and
cross-correlation, convolution, fractal analysis (Yang et al.,
2007) and correlation dimension (Logan and Mathew, 1996).
Finally, model-based approaches such as autoregressive (AR,
ARMA) or probability distribution models where features
consist of the model parameters (Poyhonen et al., 2004) are
also commonly used.

Features extracted from the frequency domain are typically
obtained through spectral analysis of the signal of interest. Fast-
Fourier-Transform is applied to raw data to extract the power
spectrum and retrieve information about the characteristic
frequencies of the signal. Finally, time-frequency domain
feature extraction techniques include short-time Fourier
transform, wavelet transform and empirical mode
decomposition, among others. The goal of these methods is to
capture how the frequency components of the signal vary as
functions of time and are particularly useful for non-stationary
time-series analysis.

3.1.1.2 Feature Selection
The goal of feature extraction is to obtain a first set of candidate
features that are as informative as possible for the problem under
consideration. Feature selection aims at reducing the dimension
of the feature space by individuating a subset of features that are
maximally relevant for a certain objective. According to the
pioneering work of Guyon et al. (2006), feature selection
methods can be divided into three categories: filters, wrappers
and embedded methods. The first class of approaches consists of
finding a subset of features that is optimal according to a specified
objective measuring the information content of the proposed
candidates. This objective is independent of the particular ML
algorithm used to perform the PHM task and therefore the
resulting features will be typically more general and potentially
usable by different ML algorithms. Several feature selection
techniques are based on the calculation of information-
theoretic quantities such as the Pearson coefficient or the
information gain. For instance, the Minimum-Redundancy-
Maximum-Relevance (mRMR) technique is based on the idea
that the optimal subset of features should be highly correlated
with the target variable (which might be, for example, the
classification label indicating a specific fault type) and
mutually far away from each other.

Wrapper-based methods differs from their filter-based
counterpart in the criteria they use for assessing the
“goodness” of a specific set of features. Specifically, they
directly employ the ML algorithm to get feedback, usually
in form of accuracy or loss function, about the selected
candidates. Wrappers are usually able to achieve better
performances than filters since they are optimized with
respect to a specific ML algorithm which is in turn tailored
for a specific task. On the other hand, wrappers are biased
toward the ML algorithm they are based on and therefore the
resulting feature subset will not be generally adequate for
alternative ML techniques.

The final class of feature selection methods is represented by
the so-called embedded approaches. These techniques integrate
the feature selection process directly into the ML algorithm in an
end-to-end fashion. A popular example of embedded approach is
the LASSO (Least Absolute Shrinkage and Selection Operator)
(Tibshirani, 1996) which is a method for linear-regression that
solves the following optimization problem:

min
w,b

1
n
∑n
i�1

(yi − wTxi − b)2 + λw1 (1)

with

||w||1 � ∑d
j�1

∣∣∣∣∣∣∣∣∣∣w(j)
∣∣∣∣∣∣∣∣∣∣ (2)

The L1 norm forces the learnt solution ŵ to be sparse and
therefore, only the least redundant features are selected. Other
methods used for end-to-end feature selection are, for instance,
the Akaike Information Criterion (AIC) (Sakamoto et al., 1986)
and the Bayesian Information Criterion (BIC) (Neath and
Cavanaugh, 2012) which are both based on finding features
that are generalizable and not problem-specific.

As a conclusive remark, it is worth mentioning that, similarly
to feature selection approaches, also dimensionality reduction
methods aim at reducing the level of redundancy andmaximizing
the amount of informativeness present among the feature
candidates. Techniques such as Principal Component Analysis
(PCA) (Jolliffe, 1986) are used to project data onto a lower-
dimensional linear subspace perpendicular to the feature
removed. Other popular dimensionality reduction techniques
are Linear Discriminants Analysis (LDA) (McLachlan, 2004),
Exploratory Projection Pursuit (EPP) (Friedman, 1987),
Independent Component Analysis (ICA) (Hyvärinen and Oja,
2000) and T-distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten and Hinton, 2008), among others.

3.1.2 Traditional Machine Learning Algorithms
As shown in Figure 4, once features are extracted and properly
selected, they can be used as input for a ML algorithm responsible
for performing the diagnosis or prognosis task we are interested
in. In this section, we focus on “traditional” ML algorithms,
i.e., popular AI methods widely employed before the advent of
DL. These techniques can be divided into four main sub-
categories, namely: (shallow) Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), Decision Trees
(DTs), and K-Nearest Neighbor (KNN).

3.1.2.1 Diagnosis
All the aforementioned classes of algorithms have been applied to
fault diagnosis in several different contexts. In the following, we
first briefly discuss the basic principles of these methods and then
we list some of their most interesting applications.

3.1.2.1.1 Artificial Neural Networks. ANNs are popular ML
algorithms whose design draws inspiration from the biological
mechanism at the basis of neural connections in the human brain.
They consist of elementary processing units, called neurons,
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connected to each other by means of dynamic weights of variable
magnitudes, whose role is meant to emulate the behavior of
synaptic connections in animals’ brains. Different types ANNs
topologies can be constructed by differently organizing the
neurons and their relative connections. The choice of the
specific ANN architecture crucially depends on the nature of
the task to be performed, the data structure under consideration
and the availability of computational resources.

Over the last two decades, ANNs have been used to detect and
classify faults incurring in several diverse types of machines. For
instance, they have been applied to fault diagnosis of rolling
element bearings (Samanta and Al-Balushi, 2003), induction
motors (Ayhan et al., 2006), gears (Samanta, 2004; Abu-
Mahfouz, 2005), engines (Lu et al., 2001), turbine blades (Kuo,
1995; Ngui et al., 2017), electrical (Moosavi et al., 2016) and
photovoltaic (Chine et al., 2016) devices, among others.

The choice of output layer directly reflects the kind of task we
are interested in. For instance, for fault detection tasks, two
neurons can be used to output the probability that the input
corresponds to a healthy instance or a faulty one. On the other
hand, if we are interested in fault diagnosis, the number of
output neurons is equal to the number of faults affecting the
machine under consideration. A typical example of ANNs
application to fault detection is provided by Samanta and Al-
Balushi (2003). In this work, five time-domain features (RMS,
skewness, variance, kurtosis, and normalized sixth central
moment) are extracted from raw vibration signals. These
features are then used as inputs to a shallow ANN consisting
of two hidden layers with 16 and 10 neurons respectively and
one output layer with two neurons (indicating if the input
corresponds to normal or failed bearing).

3.1.2.1.2 Support Vector Machines. Given a dataset {xi, yi}Ni�1,
where xi ∈ Rd and y � ± 1, SVMs aim at separating the two
classes of data by finding the optimal hyperplane with the
maximum margin between them. The margin is the distance
between the nearest training data points of any class. In most real-
world problem, data are not linearly separable. In these cases, the
so-called kernel trick (Hofmann et al., 2008) can be used to tackle
nonlinear classification tasks by implicitly mapping the data into
a high-dimensional feature space.

Standard SVMs, along with a number of improved variants,
have been extensively applied to fault diagnosis. For example,
they have been used for assessing the health state of rolling
element bearings (Yang et al., 2005; Abbasion et al., 2007; Gryllias
and Antoniadis, 2012; Fernández-Francos et al., 2013; Islam et al.,
2017; Islam and Kim, 2019b), induction motors (Widodo and
Yang, 2007), gearboxes (Liu et al., 2013), engines (Li et al., 2012),
wind turbines (Santos et al., 2015) and air conditioning systems
(Sun et al., 2016a).

In order to perform fault diagnosis tasks, SVMs are typically
employed alongside One-Against-One (OAO) (Yang et al., 2005;
Islam et al., 2017) or One-Against-All (OAA) (Abbasion et al.,
2007; Gryllias and Antoniadis, 2012) strategies. Furthermore,
SVMs can also be applied to anomaly detection. For example,
Liu et al. (2013) train a one-class SVM only on healthy data to
detect anomalies in bearings vibrational data.

Generally, SVMs are particularly well suited for problems
characterized by high-dimensional features. On the other
hand, the computation of the N × N kernel matrix can be
highly expensive when the number of data instances is
relatively large.

3.1.2.1.3 Decision Trees. Decision trees (DTs) represent a class
of non-parametric supervised ML algorithms commonly used for
regression and classification. DTs are trained to infer a mapping
between data features and the corresponding output values by
learning a set of relatively simple and interpretable decision rules.
As the name suggests, these classification rules correspond to
paths linking the root node to the leaf nodes. Indeed. each internal
node can be seen as a condition on a particular attribute. The
different outcomes of this test are represented by the branches
generated from that node. The C4.5 algorithm (Quinlan, 2014) is
one of the most popular approaches to learn a DT.

DTs have been widely employed in the context of fault
diagnosis over the last two decades. For example, they have
been applied to process data gathered from rolling element
bearing systems (Sugumaran and Ramachandran, 2007;
Sugumaran, 2012), gearboxes (Saravanan and Ramachandran,
2009; Praveenkumar et al., 2018), wind turbines (Abdallah et al.,
2018), centrifugal pumps (Sakthivel et al., 2010), and photovoltaic
systems (Benkercha and Moulahoum, 2018).

Multiple DTs can be employed jointly to form a random forest
(RF), an ensemble learning algorithm capable of overcoming
some shortcomings of single decision trees, such as limited
generalization and overfitting. RFs have been successfully
applied to fault diagnosis of induction motors (Yang et al.,
2008), rolling bearings (Wang et al., 2017), and aircraft
engines (Yan, 2006) among others.

The main advantages provided by DTs stand in their high level
of interpretability, resulting from the easily decipherable decision
rules they implement. Moreover, they often achieve reasonably
high accuracies in most of the classification problems they are
applied to. On the other hand, these methods are often prone to
overfitting and therefore tend to provide poor generalization
performances.

3.1.2.1.4 K-Nearest Neighbor. KNN is non-parametric
algorithm widely used for classification tasks. Given a set of
input-output pairs {xi, yi}Ni�1 and a test datum x̂, the KNN
algorithm searches the k closest training inputs to x̂ in the
feature space and label the test datum with the label having
more representatives among the k selected training data.
Closeness can be measured by an arbitrary similarity measure,
such as the Euclidean distance. Due to its simplicity and its high
level in interpretability, KNN-based approaches have found
many applications in fault diagnosis. For example, the
literature includes example of applications in the context of
rolling element bearings (Mechefske and Mathew, 1992;
Moosavian et al., 2013; Tian et al., 2016) and gears (Lei and
Zuo, 2009; Gharavian et al., 2013).

Enhanced versions of the basic KNN algorithms have been
gradually introduced to boost its classification performances and
to overcome some of its limitations, such as the computational
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load it requires to process large-sized datasets. For instance,
Appana et al. (2017) introduce a new type of metric which
augments the information provided by the distance between
sample pairs with their relative densities. Also, Lei et al. (2009)
apply a combination of weighted KNN (WKNN) classifiers to
fault diagnosis of rolling bearings in order to cope with the
problem of data instances belonging to different classes
overlapping in the feature space. Finally, in Dong et al. (2017)
and (Wang and Ma, 2014), KNN was optimized with the particle
swarm algorithm (Kennedy and Eberhart, 1997) to alleviate the
storage requirements of the former.

Overall, KNN and its enhanced versions can be considered as
relatively effective algorithms for fault diagnosis, especially
because of their simplicity and interpretability. Their main
limitations stand in the high computational cost and their
considerable sensitivity to noise.

3.1.2.2 Prognosis
Generally, prognosis is a more challenging problem than
diagnosis and therefore effective methods in this context are
less simple to find. Below, we list some of the most interesting
applications of ANNs, SVMs, and DTs to fault prognosis. KNNs
are not as widespread as in fault diagnosis and their application is
not common in RUL estimation.

3.1.2.2.1 Artificial Neural Networks. Two of the first attempts
of applying ANNs to fault prognosis problems are introduced in
Shao and Nezu (2000) and Gebraeel et al. (2004). Both approaches
are proposed in the context of bearings RUL prediction. In Shao and
Nezu (2000), a three-layer neural network is used to forecast the
value of the bearing health indicator. In Gebraeel et al. (2004)
several fully-connected models are trained on either individual or
on clusters of similar bearing features. Both methods use manually
extracted statistical features as input of the corresponding ANNs.
More recent approaches include, for example, Elforjani and Shanbr
(2018) and Teng et al. (2016). The first work proposes a comparative
study of the performance of SVM, Gaussian Processes (Rasmussen,
2003) and ANNs for RUL estimation from features extracted from
acoustic emission signals. The study reveals that the proposedANN is
the best performing model for the RUL prediction task under
consideration. In Teng et al. (2016), ANNs are used to provide
short-term tendency prediction of a wind turbine gearbox
degradation process. The approach is validated by a series of
experiments on bearing degradation trajectories datasets, showing
good RUL prediction performances.

3.1.2.2.2 Support Vector Machines. SVM-based methods have
been extensively applied to fault prognosis tasks. Huang et al.
(2015) provide an extensive review of the most relevant
techniques employing SVM-related approaches in the context
of RUL prediction. Application examples include RUL
estimation of bearings (Sun et al., 2011; Chen et al., 2013; Sui
et al., 2019), lithium-ion batteries (Khelif et al., 2017; Wei et al.,
2018; Zhao H. et al., 2018; Zhao Q. et al., 2018) and aircraft
engines (Ordóñez et al., 2019). For instance, in Wei et al. (2018)
Support Vector Regression (SVR) is used to provide a state-of-
health state-space model capable of simulating the battery aging

mechanism. Comparison of the performances provided by an
ANN-based model of the same type shows the superiority of the
proposed approach over its neural network-based counterpart.
In the context of bearings fault prognosis, Sun et al. (2011)
introduce a multivariate SVM for life prognostics of multiple
features that are known to be tightly correlated with the bearings’
RUL. The proposed method shows good prediction performance
and leverages the ability of SVM of dealing with high-
dimensional small-sized datasets.

3.1.2.2.3 Decision Trees. DTs and RFs have also been applied to
fault prognosis, in particular in the contexts of RUL estimation of
bearings (Satishkumar and Sugumaran, 2015; Patil et al., 2018;
Tayade et al., 2019), lithium-ion batteries (Zheng H. et al., 2019;
Zheng Z. et al., 2019) and turbofan engines (Mathew et al., 2017).
In Patil et al. (2018), the authors train a RF to perform RUL
regression by using time-domain features extracted from the
bearings vibration signals. The model is evaluated on the
dataset provided by IEEE PHM Challenge 2012 (Ali et al.,
2015), showing improved results than previous benchmarks.
One further example is provided by Satishkumar and
Sugumaran (2015), who cast the RUL estimation problem into
a classification framework. In particular, statistical features in the
time domain are extracted from five different temporal intervals
from normal condition to bearing damage. A DT is then used to
classify new data into one of these intervals, resulting in about
96% accuracy.

3.1.3 Discussion
3.1.3.1 Dependency on Feature Extraction
Traditional ML algorithms have been widely applied both to fault
diagnosis and fault prognosis tasks. They present the relevant
advantage of combining rather good performances and a
relatively high degree of interpretability. On the other hand,
most of them rely on good quality features that have to be
carefully extracted and selected by human experts. This
dependency on the feature extraction step limits the potential
of traditional ML methods and imposes a strong inductive bias in
the learning process. As we discuss in the next section, “deep”
algorithms can extract information directly from raw data and
can often improve the generalization performances of traditional
ML approaches.

3.1.3.2 Model Selection
It is important to observe that it is not possible to identify a
specific algorithm, among those discussed above, that clearly
outperforms the others in all possible settings. Selecting a
specific technique highly depends on the requirements and
characteristics of the PHM problem at hand. For example, a
black-box ANN approach might be more suitable when one is
mainly interested in performances and less in interpretability,
SVMs can be useful in the low-data regime and DTs can be a
sensible choice if interpretability is prioritized. Ultimately, the
final algorithm is often chosen by calculating a set of performance
metrics for each candidate technique and selecting the method
providing the highest scores. Some standard example of these
measures are accuracy, precision, Recall, F1 Score, Cohen Kappa
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(CK), and Area Under Curve (AUC). A description of these
metrics can be found, for instance, in Bashar et al. (2020).

3.1.3.3 Overfitting
The long-standing problem of overfitting (or over-training) is a
well-known pathology affecting data-driven approaches. In
essence, it stems from the imbalance between model capacity
and data availability. If on one hand, the adoption of ML
techniques can be significantly beneficial in PHM, on the
other hand, it also requires to think about effective solutions
to contrast overfitting in order to fully exploit the advantages of
data-driven approaches. In the context of PHM applications, a
key requirement for the deployment of a given ML algorithm
stands indeed in the robustness of its performances when data
different from the training ones kick in. Although algorithm-
specific techniques exist to tackle overfitting, held-out-cross
validation (Hastie et al., 2001) is probably the most popular
one and can be used independently on the particular ML
algorithm (see, for instance, Gebraeel et al., 2004), for ANNs
(Islam et al., 2017), for SVMs (Abdallah et al., 2018), for decision
trees and (Tian et al., 2016) for KNN).

As regards DTs, overfitting is typically tackled by pruning the
tree in order to prevent it to merely memorize the training set and
improve performances on unseen data (Praveenkumar et al.,
2018). Random forests have also been used for the same
purpose (Yang et al., 2008). They consist of ensembles of DTs
and one of their main benefits is to mitigate the overfitting
tendency of standard DTs.

A widely used strategy to contrast over-training in SVMs is to
introduce a set of so-called slack variables in order to allow some
data instances to lie on the wrong side of the margin (Hastie et al.,
2001). The extent to which this class overlapping effect is
permitted is regulated by a regularization constant C.
Furthermore, the smoothness of the margin can be adjusted
by appropriately tuning the hyperparameters of the kernel.
Sun et al. (2016a), for instance, use cross validation to find
optimal values of the constant C and of the gaussian kernel
width parameter.

In ANNs, the effects of overfitting get increasingly more
pronounced as the number of hidden layers increases
(Samanta, 2004). Two typical strategies to alleviate its impact
are early stopping and regularization. The first consists in
stopping the training phase once the first signs of over-
training kick in. The second introduces a penalizing term in
the loss function (typically in the form of L2 or L1 norms on the
network weights) to keep the values of the weights as small as
possible. In Ayhan et al. (2006) for instance, the authors use early-
stopping by arresting the training phase once the validation error
keeps increasing for a specific number of epochs.

Finally, the KNN algorithm yields different performances
depending on the value of k. Small values of k result in very
sharp boundaries and might lead to overfitting. On the other
hand, large ks are more robust to noise but might result in poor
classification performances. This hyperparameter is then typically
chosen via cross-validation by selecting the best performing value
among a set of candidates. In Gharavian et al. (2013), for instance,
K is varied from 1 to the number of the training samples.

3.2 The Deep Learning Revolution
Most of the methods we have discussed so far are characterized
by relatively “shallow” architectures. This aspect results in two
main consequences: first, their representational power can be
fairly limited and second, their input often consists of high-
level features manually extracted from raw data by human
experts.

DL is a quite recent class of MLmethods that provide a new set
of tools that are able to cope with the aforementioned
shortcomings of traditional approaches. Essentially, DL
techniques arise as an extension of classical ANNs. DL
models, in their simplest form, can be seen as standard ANNs
with the addition of multiple hidden layers between the network’s
input and output. An increasingly large corpus of empirical
results has shown that these models are characterized by a
superior representational power compared to shallow
architectures. Once deep networks are trained, their inputs
pass through a nested series of consecutive computations,
resulting in the extraction of a set of complex features that are
highly informative for the task on interest. This characteristic is
one of the hallmarks of DL and can be seen as one of the key
factors of its success.

In light of its improved representational power, its ability to
automatically extract complex features, its dramatic achievements
across different engineering fields and its multiple dedicated
freely available software libraries (Jia et al., 2014; Abadi et al.,
2016; Theano Development Team, 2016; Paszke et al., 2019), DL
has the potential to provide effective solutions also in the context
of PHM applications. Big data handling, automated end-to-end
feature extraction from different data structures (e.g., images,
time-series) and improved generalization are some of the targets
on which DL models can make a difference compared to
traditional ML approaches.

In the following, we introduce some of the most popular DL
techniques used in PHM. Specifically, we focus on Autoencoder
(AE) architectures, Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) and some of their
variants and combinations. For each model, we list some
interesting applications both in the context of fault diagnosis
and prognosis.

3.2.1 Methods and Techniques
3.2.1.1 Autoencoders
AEs, in their simplest form, consist of feed-forward neural
networks that are trained to output a reconstructed version of
their input. They are composed of two sub-networks, namely an
encoder and a decoder. The encoder, h, implements a mapping
from the input space to a typically lower-dimensional space.
More concretely, we have:

h � ψ(W1x + b1) (3)

where x ∈ Rd is the input vector, ψ is the activation function and
W1 ∈ Rq×d and b1 ∈ Rq are the parameters of the encoder. The
decoder implements a mapping from the embedding to the input
space in order to reconstruct the original input vector. In
formulas:
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~x � ψ(W2h + b2) (4)

where ~x ∈ Rd is the reconstructed input vector and W2 ∈ Rd×q
and b2 ∈ Rd are the parameters of the decoder. Given a dataset of
N data instances {xi}Ni�1, the accuracy of the model can be
measured with, for example, the Root-Mean-Squared-Error
(RMSE), which evaluates the reconstruction error made by the
autoencoder:

RMSE(θ) �

���������������
1
N

∑N
i�1

(xi − ~xi(θ))2
√√

(5)

In the equation above, the symbol θ has been used to indicate the
parameters of the network, i.e., W1, W2, b1, b2. The value of the
parameters is found byminimizing the RMSEw. r.t the parameter
θ of the model. Figure 5 shows an illustration of the typical AE
architecture.

Note that the model assumes a so-called bottle-neck shape,
characterized by an embedding space with a lower dimension
than the input space. By setting q< d, we can force the
algorithm to find a more expressive representation of the
input by getting rid of redundant pieces of information and
keep only the most relevant ones for the reconstruction
purpose. It is important to point out that here we have
limited our description to a one-hidden-layer architecture
for the sake of simplicity. However, deep models can be
simply obtained by consecutively stacking multiple hidden
layers. following the bottle-neck architecture.

There exists several more powerful extensions of the basic AE
discussed before. Some examples include Sparse AEs (SAEs) (Ng
et al., 2011), denoizing AEs (DAEs) (Vincent et al., 2008) and
variational AEs (VAEs) (Kingma and Welling, 2013). Sparse AEs
regularize the standard AE loss function with an additional term
that forces the model to learn sparse features. This regularization
term can be, for instance, the L1 norm of the activations:

Loss(θ) � RMSE(θ) + λ∑
i

∣∣∣∣∣∣∣∣∣hi∣∣∣∣∣∣∣∣∣, (6)

where hi is the ith component of the embedding h. Alternatively,
one can consider the KL divergence between the average ith
activation and a small sparsity parameter α, yielding the following
loss:

Loss(θ) � RMSE(θ) + λ∑
i

KL(α∣∣∣∣∣∣∣∣ρi), (7)

where ρi � ∑ m
j hi(xj) and m is the number of training examples.

DAEs take as input corrupted version of the data and aim to
output a reconstructed version of the original uncorrupted data.
The assumption is that the algorithm is forced to select only the
most informative part of the input distribution in order to recover
the uncorrupted data instance.

VAEs differ from the previous AE techniques since they
belong to the class of generative models. They aim at learning
a parametric latent variable model through the maximization of a
lower bound of the marginal log-likelihood of the training data.

The goal of these approaches is to provide a way to learn a so-
called disentangled representation of the latent space, i.e., a
representation where the most relevant independent factors of
variations in the data are decoupled amd clearly separated. To
conclude this part it is worth mentioning that it is possible to
design autoencoders where the encoder and the decoder are not
limited to simple feed-forward neural networks but can also
assume the form of CNNs and RNNs. We discuss these
methods later within the section.

3.2.1.2 Convolutional Neural Networks
CNNs are some of the most successful and widely applied DL
models. They reached the peak of their popularity thanks to their
state-of-the-art performances in CV tasks, such as IR, pose
estimation and object tracking. They have also been
successfully applied in the contexts of NLP, Reinforcement
Learning and time-series modeling. Their design draws
inspiration from the organization of animal visual cortex
(Hubel and Wiesel, 1968). Indeed, it turns out that single
cortical neurons fire in response of stimuli received from
relatively narrow regions of the visual field called receptive
fields. Furthermore, neurons that are close to each other are
often associated with similar and partially overlapping receptive
fields, allowing them to map the whole visual field. These
properties are useful to recognize specific features in natural
images independently of their location.

CNNs implement these concepts by modifying the way
computations are usually performed in standard feed-forward
neural networks. In particular, CNNs convolve the input image
with filters composed of learnable parameters. These parameters
are trained to automatically extract features from the image in
order to perform the task specified by a final loss function.

The standard CNNmodel shown in Figure 6 is composed of a
set of elementary consecutive blocks. First, the input layer defines

FIGURE 5 | Typical Autoencoder architecture.
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the data structure. A convolutional layer follows the input layer
and performs the convolution operation over the input data. The
size of the filters depend on the input structure. Two-dimensional
filters are used for grid-like inputs, whereas, one-dimensional
filters are used for time-series. Each filter has a user-specified size,
which defines its receptive field. Batch normalization (Ioffe and
Szegedy, 2015) is often applied right after the convolutional
module in order to reduce the so-called covariate shift
phenomenon and introduce a regularization effect. Then, a
point-wize nonlinear activation function (e.g., ReLU) is applied.

The convolutional layer is then followed by a so-called pooling
layer, whose role is to reduce the number of parameters by sub-
sampling the filtered signals. One common strategy to perform
this operation is called max-pooling and consists of extracting
only the maximum value of a fixed-sized batch of consecutive
inputs.

Several instances of convolutional and pooling layers are
typically alternated through the network. The final filtered
signals are then flattened and fed into a sequence of fully-
connected layers that map them into the output layer. The
dropout (Srivastava et al., 2014) technique can be used both
between the fully connected and the convolutional layers in order
to contrast overfitting.

3.2.1.3 Recurrent Neural Networks
RNNs form another class of DL methods that has achieved
impressive results in a wide variety of ML fields. In particular,
RNNs are particularly effective in processing data characterized by
a sequential structure. These types of data are widespread in fields
such as NLP, Speech Recognition, Machine Translation, Sentiment
Analysis to name a few, where recurrent architectures have been
employed successfully. Given their particular suitability in
analyzing sequential data, it is not surprising that RNN models
have been widely applied in the context of PHM applications. We
review some of these applications later in this section.

The architecture of the simplest possible recurrent model is
shown in Figure 7.

Given a sequential input vector x � [x1, . . . , xt , . . . , xT], where
xt ∈ Rd at each time-step the RNN shown above performs the
following operations:

ht � ψ1(W1xt +W2ht−1 + b1)
ot � ψ2(W3ht + b2) (8)

where,W1,W2,W3, b1, b2 are the parameters of themodel, ψ1 and
ψ2 are activation functions, ht is the so-called hidden state at time
t and ot is the output at time t. Predictions are performed at each
time step by mapping the current hidden state to the output. ot ,
through a nonlinear activation. The hidden state is constantly
updated at each iteration by combining the previous hidden state
and the current input. This allows us to store past information
and propagate it over time through the network. The basic

FIGURE 6 | Typical 1D-CNN architecture. Adapted from Jiao et al. (2020).

FIGURE 7 | Most elementary RNN architecture.
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architecture described above, however, suffers from the so-called
vanishing gradient problem. This phenomenon is caused by the
structure of simple RNNs which typically perform the
composition of the same function sequentially at each time
step. As shown by Bengio et al. (1994), this results in
increasingly small magnitudes associated with the gradients of
long term interactions. To cope with this problem, a number of
refinements have been introduced to the elementary architecture
discussed before. The most popular ones are arguably the Long-
Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber,
1997), Bidirectional RNNs (Bi-RNN) (Schuster and Paliwal,
1997) and Gated-Recurrent Units (GRUs) (Cho et al., 2014).
These techniques have been largely applied, over the last few
years, to PHM, both for diagnosis and prognosis tasks. Current
state-of-the-art methods in NLP complement the
aforementioned recurrent architectures with the so-called
attention mechanism (Devlin et al., 2018), which has resulted
in significant performance improvements. Despite its success in
NLP and related fields, attention-based networks do not find
many applications in PHM, indicating a probably fruitful
research direction.

3.2.2 Diagnosis
3.2.2.1 Autoencoder
AEs provide a first example of how DL methods can overcome
some of the limitations of classical approaches. Indeed, typically
AEs are used to automatically extract complex and meaningful
features from raw data or to obtain more informative
representations of a set of already extracted features. AEs have
been applied to data gathered from several machines and
industrial components, such as rolling element bearings (Jia
et al., 2016; Liu et al., 2016; Lu et al., 2016; Jia et al., 2018),
gearboxes (Jia et al., 2018), electrical generators (Michau et al.,
2017; Michau et al., 2019), wind turbines (Yang et al., 2016),
chemical industrial plants (Lv et al., 2017), induction motors (Sun
et al., 2016b), air compressors (Thirukovalluru et al., 2016),
hydraulic pumps (Zhu et al., 2015), transformers (Wang et al.,
2016), spacecrafts (Li and Wang, 2015) and gas turbine
combustors (Yan and Yu, 2019).

As mentioned before, AEs are often used in combination with
other classifiers, such as simple softmax classifiers (Liu et al.,
2016), feed-forward neural networks (Sun et al., 2016b), RFs
(Thirukovalluru et al., 2016) and SVMs (Sun et al., 2016b; Lv
et al., 2017). In Sun et al. (2016b), feed-forward NNs trained on
top of the features learned by the AE model provide excellent
classification results in terms of fault diagnosis accuracy. An SVM
trained on the same features performs only slightly worse. Liu
et al. (2016) propose a combination of stacked SAEs and a
softmax classifier for element bearings fault diagnosis. Short-
time-Fourier transformed raw inputs undergo several nonlinear
transformations implemented by the sparse AEs. The resulting
features are fed into a softmax classifier which outputs the
classification results.

Lu et al. (2016) compare the features extracted by stacked
DAEs with some manually extracted features. The comparison is
based on the fault classification accuracies provided by an SVM
and a RF model trained on top of the two classes of features. The

results show that the first set of features possess a larger
discriminative power for the task under consideration.

Another interesting application of AEs is shown in the work of
Jia et al. (2016). Here, the nonlinear mapping implemented by
deep AEs is exploited to pre-train an ANN which is in turn used
to perform fault diagnosis both on rolling element bearings and
planetary gearboxes. More specifically, the weights between two
hidden layers are initialized by training an AE to minimize the
reconstruction error of the input values specified by the first
hidden layer. With this pre-training strategy, the feature
extraction ability of AEs is used to encode relevant properties
of the data directly into the ANN weight configuration.

AE architectures can also be used to estimate a health indicator
which measures the “distance” of a test data point to the training
healthy class (Michau et al., 2017; Michau et al., 2019; Wen and
Gao, 2018). For example, in the work of Michau et al. (2019) a
system comprising of an AE and a one class-classifier is trained
with only healthy data to assess the health state of a complex
electricity production plant. In this work, both AE and one-class
classifier have the structure of a particular type of neural network
called Extreme Learning Machine (ELM). ELM-based AEs have
been also successfully employed in Michau et al. (2017) and Yang
et al. (2016), among others.

3.2.2.2 Convolutional Neural Networks
CNNs are particularly advantageous in the context of fault
diagnosis since they implement the feature extraction and
classification tasks in an end-to-end fashion. Moreover, they
can be applied to several data structures, including both time-
series and images (Jiao et al., 2020). A common strategy to
employ 2D-CNNs6 in PHM applications is to feed these
models with image-like data. This poses the problem of
how to convert sensor measurements, which are typically in
the form of multivariate time-series, into a grid-like structure.
Examples of this procedure can be found, for example, in Ding
and He (2017), Sun et al. (2017), Guo et al. (2018b), Wen et al.
(2018), Cao et al. (2019), Islam and Kim (2019a), Li et al.
(2019a), Wang et al. (2019). Most of these works employ
popular signal processing techniques to perform the two-
dimensional mapping. In particular, Li et al. (2019a) use the
S-transform to map bearing vibrational data into a time-
frequency representation. Similarly, in Ding and He (2017),
Sun et al. (2017), Guo et al. (2018b), Cao et al. (2019), Islam
and Kim (2019a) transformations based on the wavelet
transform are used to process data gathered from bearings,
rotating machinery and gears. An additional strategy is
proposed in Wen et al. (2018), where the following
mapping is applied to convert time-series data into two-
dimensional images:

P(j, k) � round{L((j − 1) ×M + k) −Min(L)
Max(L) −Min(L) × 255}, (9)

6We use the notation “(1D)2D-CNN” to indicate a CNN architecture with (one)
two-dimensional filters.
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where the input signal is a vector of size M2, L(j) is signal
magnitude at the jth time step and P(j, k) is the intensity of the
(j, k) pixels in the output image. This technique has been applied
to data extracted from rolling element bearings and hydraulic and
centrifugal pumps resulting in nearly optimal fault classification
accuracy in all three cases.

Another class of methods applies CNNs directly to image data,
thus leveraging the great success of these architectures in CV
tasks. For example, Janssens et al. (2018); Jia et al. (2019) use
CNNs to perform fault diagnosis of rotating machinery based on
infrared thermal videos and images respectively. Yuan et al.
(2018) propose a method that fuses features extracted from
different data structures, including infrared images, for CNN-
based fault classification of a rotor system.

Alternatively to 2D-CNNs, 1D-CNNs can be used to directly
process time-series data. The literature contains a large number of
examples that propose to apply 1D-CNN to bearing (Eren, 2017;
Chen et al., 2018; Eren et al., 2019; Qin et al., 2019; Xueyi et al.,
2019) and gears (Jing et al., 2017; Yao et al., 2018; Han et al., 2019b)
fault diagnosis. Chen et al. (2018), for instance, propose a novel DL
model, based on the popular Inception architecture (Szegedy et al.,
2015) and a particular type of dilated convolution (Holschneider
et al., 1990). The model is trained with data generated from
artificial bearing damages and achieves very good performances
on real data. The proposed method is pre-processing-free since it
takes as input raw temporal signals directly.

The ability of CNN architectures to extract features in an end-to-
endmanner is tested in Jing et al. (2017). Here, the authors compare
the quality of these features with a number of benchmarks
consisting of conventional feature engineering approaches. The
results show the superiority of the feature-learning pipeline
implemented by CNNs over manual feature extraction.

Finally, CNN have also been applied to generate health
indicators and to estimate the degradation trend of rolling
bearings (Guo et al., 2018a; Yoo and Baek, 2018). In Yoo and
Baek (2018), for instance, the authors apply a continuous wavelet
transform to the data and feed the resulting two-dimensional
images into a 2D-CNN which, in turn, outputs the health
indicator.

3.2.2.3 Recurrent Neural Networks
RNNs have been mainly used for fault prognosis and only a
relatively small number of works focus on their application to
fault diagnosis. Some examples are (Li et al., 2018a; Li et al., 2018b
Qiu et al., 2019) for bearings (Zhao H. et al., 2018; Zhao Q. et al.,
2018 Yuan and Tian, 2019), for chemical processes control [see
Tenessee Eastman dataset (Chen, 2019)] and (Lei et al., 2019) for
wind turbines.

These methods can be divided into two categories: “RNN +
classifier” and end-to-end approaches. The works of Li et al.
(2018a, 2018b) and Yuan and Tian (2019) belong to the first
category. The first employs an LSTM-based architecture to
extract informative features from the input data. The so-
obtained features are then fed into a softmax classifier that
performs fault classification. Yuan and Tian (2019) use a GRU
network to obtain dynamic features from several sub-sequences
extracted from the raw signals. Multi-class classification is

performed by a final softmax layer fed with the features
obtained by the GRU module.

Zhao H. et al., 2018; Zhao Q. et al., 2018 Qiu et al. (2019); Lei
et al. (2019) use RNN architecture in an end-to-end manner. For
instance, Qiu et al. (2019) use a variant of Bi-LSTMs specifically
designed to process long-term dependencies, to directly classify
fault types. The network is trained with a set of features extracted
by means of wavelet packet transform and employs softsign
activation functions to contrast the vanishing gradient problem.
Another end-to-end approach is proposed in Lei et al. (2019) where
the authors use an LSTM-based model for fault diagnosis of a wind
turbine. In this work, features are directly extracted by the network
and there is no need for manual feature extraction. The proposed
method is shown to outperform existing fault diagnosis techniques,
such as ANNs, SVMs and CNNs.

3.2.2.4 Hybrid
With hybrid approaches we mean all those methods that combine
the benefits provided by AEs, CNNs and RNNsmodels into single
powerful systems.

For example, Li et al. (2019d); Park et al. (2019) propose
techniques leveraging the efficacy of AEs in extracting valuable
features and the advantages provided by RNN-architectures in
analyzing time-dependent data. In Li et al. (2019d), first stacked
AEs generate a latent representation of the raw input rotary
machinery data. An LSTM network is then used to predict the
value corresponding to the 10-th time step in the feature sequence
given the previous 9. The reconstruction error between prediction
and ground truth value is used to determine if the datum is
anomalous or not.

An alternative approach consists in using recurrent models in
the form of AEs to better deal with time-series data. In Liu et al.
(2018), for instance, a GRU-based DAE is proposed for rolling
bearing fault diagnosis. Specifically, the proposed GRU model is
used to predict the next period given the previous one. As many
such models as the number of faults are trained and classification
is performed by selecting the model providing the lowest
reconstruction error.

CNN-based architectures can also be combined with other
types of networks for the purpose of fault diagnosis. In Liu et al.
(2019b), for instance, a one-dimensional convolutional-DAE is
proposed to extract features from bearing and gearbox data. This
model is given corrupted time-series as input and its goal is to
clean and reconstruct them at the output level. The so-learned
features are then fed into an additional CNNmodel that performs
the classification task.

In Zhao et al. (2017), Pan et al. (2018), Xueyi et al. (2019), the
combination of CNNs and RNNs is investigated. For example, in
Xueyi et al. (2019) a 1D-CNN and a GRU network are used to
extract discriminative features from acoustic and vibration
signals respectively. The so-obtained features are then
concatenated and fed into a softmax classifier which performs
gear pitting fault diagnosis. This hybrid method is shown to
outperform CNN and GRU applied individually to the same data.

Pan et al. (2018), instead, proposes a method fusing a 1D-CNN
and an LSTM network into a single structure. The LSTM takes as
input the output of the CNN and performs fault diagnosis over
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bearing data. The proposed algorithm provides nearly optimal
performances on the test set.

3.2.3 Prognosis
3.2.3.1 Autoencoder
AEs are typically used in combination with other regression
techniques for the purpose of fault prognosis. The literature
contains examples of AE-based techniques applied to RUL
estimation of bearings (Ren et al., 2018; Xia et al., 2019),
machining centers (Yan et al., 2018), aircraft engines (Ma
et al., 2018) and lithium-ion batteries (Ren et al., 2018b). The
role of AEs in all the above references is to perform automatic
feature extraction to facilitate the work of regression or
classification methods used for health state assessment or RUL
estimation. Xia et al. (2019), for example, utilize a DAE and a
softmax classifier trained on top of the AE embedding to classify
the inputs into different degradation stages. Then, ANN-based
regressors are used to model each stage separately. The final RUL
is obtained by applying a smoothing operation to all the
previously computed regression models.

In Ma et al. (2018), AEs are used in a similar manner. The
authors propose a system composed of a DAE, a SAE and a
logistic regressor to predict the RUL on an aircraft engine. The
first AE module generates low-level features which are in turn fed
into the second AE model which outputs a new set of high-level
features. Finally, the logistic regressor predicts the RUL based on
the features extracted by the second AE.

3.2.3.2 Convolutional Neural Networks
CNN architectures have been extensively explored also for fault
prognosis. These methods have been mainly applied to open-
source evaluation platforms such as the popular NASA’s
C-MAPSS dataset (Saxena and Goebel, 2008) for aero-engine
unit prognostics (Babu et al., 2016; Li et al., 2018a; Li et al., 2018b
Wen et al., 2019a) and the PRONOSTIA dataset (Ali et al., 2015)
for bearings health assessment (Ren et al., 2018a; Zhu et al., 2018;
Li et al., 2019c; Wang et al., 2019b; Yang et al., 2019).

In Li et al., 2018a; Li et al., 2018b a 1D-CNN model is used to
predict the RUL on the C-MAPSS dataset. Data are first chunked
in fixed-length windows and then directly fed into the network
without any pre-processing step. Despite the relative simplicity
of the employed architecture, the proposed technique is able to
provide pretty good prediction results, especially in proximity of
the final failure.

In Wen et al. (2019a) the authors build upon the work of Li et
al., 2018a; Li et al., 2018b and propose a novel CNN model for
RUL estimation which draws inspiration from the popular
ResNet architecture (He et al., 2016). The proposed technique
is shown to outperform traditional methods such as SVMs,
ANNs, LSTM and the model proposed by Li et al., 2018a; Li
et al., 2018b in terms on RULmean and standard deviation on the
C-MAPSS dataset.

In the context of bearing fault prognosis, Ren et al. (2018a)
propose a new approach based on manual feature extraction and
CNNs for RUL estimation. First, a new method for feature
extraction is proposed to generate a feature map which is
highly correlated with the decay of bearing vibration over

time. This feature map is then fed into a deep 2D-CNN which
outputs the RUL estimate. Linear regression is then used as a
smoothing method to reduce the discontinuity problem in the
final prediction result. Experiments show that the proposed
method is able to provide improved prediction accuracy in
bearing RUL estimation.

3.2.3.3 Recurrent Neural Networks
The application of RNN architectures to fault prognosis have
been explored on various industrial components such that
lithium-ion-batteries (Zhang et al., 2018), gears (Xiang et al.,
2020), fuel cells (Liu et al., 2019a), and on the C-MAPSS dataset
(Yuan et al., 2016; Zheng et al., 2017; Wu et al., 2018a; Wu et al.,
2018b; Chen et al., 2019; Elsheikh et al., 2019; Wu et al., 2020).
One of the most popular RNN-based approaches proposed in the
literature is the work of Wu et al. (2018b). The authors first
extract dynamic features containing inter-frame information and
then use these features to train a vanilla-LSTM model to predict
the RUL. An SVM model is employed to detect the degradation
starting point. The proposed technique is shown to consistently
outperform a standard RNN and a GRU model trained on the
same dataset. The remarkable performances of LSTM networks
on the RUL estimation task are further confirmed by the work of
Zheng et al. (2017). The authors combine LSTM layers with a
feed-forward neural network, showing that the proposed
approach provides better performances than ANNs, SVM and
CNNs. In Xiang et al. (2020), the attention mechanism is used to
enhance the performances of an LSTM network on the prediction
of the RUL on gears. The aforementioned model, named LSTMP-
A, is trained with time-domain and frequency-domain features
and its comparison with other recurrent models shows that it
provides the best prediction accuracy.

3.2.3.4 Hybrid
Hybrid approaches have been also applied in the context of fault
prognosis. For instance, the literature contains examples of AE +
RNN (Lal Senanayaka et al., 2018; Deng et al., 2019) and CNN +
RNN (Zhao et al., 2017; Mao et al., 2018; Li et al., 2019b)
combinations. In Zhao et al. (2017) sensory data from milling
machine cutters are processed by a novel technique combining a
CNN component and an LSTM network. The CNN is used to
extract local features, whereas a bi-LSTM captures long-term
dependencies and take into account both past and future
contexts. A sequence of fully connected layers and a linear
regression layer takes as input the output of the LSTM and
predicts the tool-wear level.

Similarly, Mao et al. (2018) combine LSTM and CNN models
for feature extraction and RUL prediction. In particular, time-
series from the C-MAPPS dataset are first sliced by applying a
time-window. The resulting data are then independently fed into
an LSTM network and a CNN. The features extracted by these
two networks are then combined and further processed by an
additional LSTM network and a fully connected layer which
predicts the RUL.

Deng et al. (2019) propose amethod based on the combination
of stacked SAEs and a GRU model. The AE is used for automatic
feature extraction and the GRU is used to model the mapping
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from the features extracted by the AE to the RUL values. The
proposed method is applied to the C-MAPPS dataset, showing
satisfactory results.

3.2.4 Discussion
3.2.4.1 Dependency on Feature Extraction
One of the key advantages of DL algorithms over traditional ML
approaches stands in their lower degree of dependence on the
feature extraction step. Their input can consist of either raw data
or a set of manually extracted features, depending on the amount
of prior information available to the user about the task under
consideration.

3.2.4.2 Model Selection
As already discussed for traditional ML algorithms, a universal
approach valid for all possible application scenarios does not
exist. In general, the nature of the problem dictates which method
to utilize. For instance, when the PHM problem at hand involves
image data, the usage of 2D CNN might be preferred. On the
other hand, when sensor measurements consisting of time-series
data have to be analyzed, 1D CNN and RNN architectures are
more sensible choices. Ultimately, the final model can be selected
by evaluating each candidate on the same metrics mentioned at
the end of paragraph 3.1.3.2 and comparing the corresponding
scores.

3.2.4.3 Overfitting
As already mentioned before, a larger number of hidden layers is
often associated with a higher risk of overfitting. Beyond the
techniques already discussed for ANNs (e.g., cross-validation,
early-stopping and regularization), deep models can be equipped
with more advanced tools to contrast over-training. A popular
example is the Dropout technique (Srivastava et al., 2014) which
randomly drops neurons from the neural network at training
time. Intuitively, this prevents the network to specialize on a
particular set of data. Dropout is used, for instance, in Han et al.
(2019b) andWang et al. (2019) with the corresponding parameter
fixed at 0.5. Finally, data augmentation can be also used to
generate new images by applying simple transformations (e.g.,
rotation, mirroring, cropping, padding) to the training data. For
instance, this technique is applied in Wang et al. (2019) to time-
frequency images obtained from bearing accelerometers, in order
to increase the size and the level of diversity of the training set.

4 CRITIQUE AND FUTURE DIRECTIONS

In the previous section, we have discussed some of the most
popular DL techniques that have been applied to PHM problems
over the last few years. We have compared traditional ML
approaches with DL techniques, trying to highlight the
strengths of both methods and emphasizing the change of
paradigm introduced by the so-called DL revolution.

The goal of this section is to shed some light over a number of
open challenges that need to be addressed to bridge the gap
between research and industrial applications. We start by briefly
discussing some of these open questions and some limitations of

DL models that hinder their solution. Then, we discuss some first
attempts to cope with these challenges along with some proposals
of future investigations. Our goal is to provide the reader with a
set of possible fruitful research directions that we consider as
valuable candidates to further increase the impact of DL to PHM.

4.1 Open Challenges
4.1.1 Reliability and Interpretability
One of the most common criticisms to DL models arises from
their black-box nature, i.e., the sometimes opaque mechanism by
which they make their decisions. This characteristic of deep
models derives from one of the properties that allows them to
successfully tackle several different tasks: the complex sequence of
nonlinear operations they implement across their deep
architectures. A complete mathematical characterization of the
behavior of DL models in light of their inherent complexity is
very hard to obtain. This negative property of deep networks
represents a significant limitation to their deployment in areas
such as healthcare, finance, and PM. In these delicate contexts,
humans need to have control over their tools and it is not always
possible to sacrifice trust and transparency for better
performances. It is therefore urgent to enhance the level of
interpretability of these models in order to make them fully
deployable while minimizing the risks.

However, it is not straightforward to provide a unique
definition of the concept of interpretability (Lipton, 2018). DL
models can be, for instance, enhanced with complementary
functionalities responsible for providing a post-hoc
explanation of their actions. Alternatively, one can build some
notion of interpretability directly into the models in order to
constrain their learning process to align with some inductive
biases that we might deem trustworthy. The strategy of providing
post-hoc explanations of the model behavior have been widely
investigated in CV (Ribeiro et al., 2016; Zhou et al., 2016;
Lundberg and Lee, 2017). Few attempts, however, have been
made to extend these approaches to time-series data [see for
example (Fawaz et al., 2019), (Guillemé et al., 2019)].

Imposing appropriate inductive biases on DL models have
been recently identified as a key step to perform unsupervized
learning tasks (Locatello et al., 2019a; Locatello et al., 2019b).
Some possible inductive biases can derive from a-priori available
physical knowledge of the problem under consideration. This
complementary information can be incorporated directly into the
network architecture or can be used to drive a model towardmore
meaningful output decisions. We discuss some of these
approaches later in this section.

To conclude this discussion, it is worth mentioning that
another important requirement for interpretable and
transparent models stands in their ability to provide
uncertainty estimates about their predictions. Uncertainty can
derive both from the intrinsic stochasticity of the task (aleatoric
uncertainty) and from the approximations introduced by our
imperfect model (parametric uncertainty). Bayesian approaches
can in principle deal with uncertainty estimation and their
combination with DL methods is a hot research area
(Damianou and Lawrence, 2013; Blundell et al., 2015; Garnelo
et al., 2018).
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4.1.2 Highly Specialized Models
An increasing amount of experimental evidence (Zhang et al.,
2017; Beery et al., 2018; Arjovsky et al., 2019) has recently
attracted the attention of the scientific community on an
additional relevant limitation of deep models: they often
tend to learn “shortcuts” instead of the underlying physical
mechanisms describing the data. For instance, let’s consider
the task of classifying cows and camels based on a training set
containing labeled images where cows are mostly found in
green pastures and camels in sandy deserts (Beery et al., 2018).
Testing our model on images of cows taken in a different
environment, such as beaches, leads to a wrong classification
decision. Similar generalization deficiencies can be also
observed in the context of PHM applications. Typically,
labeled data are available only for a single machine;
training a model on these data can lead to good
performances on a test set extracted from the same
machine but to very disappointing results on a similar
machine operating at slightly different operating
conditions. The variability in the machines’ operational
modes can arise from differences in specific choices in their
design, or to external factors (e.g., environmental variables
such as humidity, temperature, seasonality). Ideally, an
efficient model should be able to deal with these factors of
variability and provide predictions that are robust to changing
operating conditions. On the other hand, the majority of the
DL approaches proposed in the literature do not address this
point and focus on relatively narrow systems without taking
generalization into account. If we really aim at designing
“Intelligent” systems that can take decisions following
similar cognitive patterns as those characterizing human
decision making, we have to provide new solutions to the
aforementioned shortcomings.

4.1.3 Data Scarcity
An immediate consequence of using DL models is that, by
increasing the depth of the network, the number of parameters
associated with it grows accordingly. As a result, finding an
optimal weight configuration requires training these networks
with very large datasets. In particular, supervised learning
approaches are based on the availability of large numbers of
labeled data instances for each class under consideration. This
aspect poses a significant practical limitation on the application
of DL models to the industry domain. In the case of fault
diagnosis, for example, it is difficult to find an adequately large
number of data for each possible fault. This is mainly because,
luckily, faulty data tend to be relatively rare compared to
healthy ones. Furthermore, it might also be the case that
some faults are not even a-priori known and it is, therefore,
impossible to precisely characterize them. This lack of
representativeness (Michau et al., 2018) of the training data
delineates a very common scenario in practical applications.
Two possible alternative approaches can be adopted to cope
with it: the first is to design algorithms that are less data-
intensive, whereas the second is to generate artificial data that
strongly resemble real ones. We discuss some of these methods
in the next section.

4.2 Possible Solutions
4.2.1 Fusing Deep Learning With Physics
One possible way to cope with the aforementioned challenges is
to incorporate information about the physics of the system
under consideration into the learning process. DL algorithms,
in and of themselves, are not able to capture the primitive
causal mechanisms at the basis of the input observations (Pearl,
2019). On the other hand, physical models of complex systems
are built from fundamental laws of physics but often rely on
relatively strong approximations which result in poor predictive
power. Taking prior physics knowledge into account can be helpful
in inducing a higher level of interpretability into deepmodels and in
improving their generalization performances. Hybrid models
integrating the flexibility of modern data-driven techniques and
the transparency of physics models have the potential of
overcoming the limitations of the two stand-alone approaches by
exploiting their individual strengths.

In the context of PHM, a relatively small number of works have
been proposed in this direction. For example, in Chao et al. (2019), a
high-fidelity performance model of an aircraft engine is first
calibrated on real data by using an Unscented Kalman Filter
(Julier and Uhlmann, 1997) and then used to generate
unobserved physical quantities that are in turn employed to
enhance the input space of a DL model. The results show that the
new input space including both observed and virtual measurements
contributes in significantly improving the performances of themodel.

An alternative way to fuse physics knowledge and data-driven
methods is described in Dourado and Viana (2020) and
Nascimento and Viana (2019). In these works, well-known
physics-based cumulative damage models are complemented
by data-driven techniques whose goal is to explain some
additional phenomena that the original model is not able to
accurately describe. The final model has a sound physical
interpretation and provides refinements over the original
physics model thanks to its data-driven component.

We conclude this part by noticing that physics knowledge
could also be incorporated into deep models directly at the
architecture level. Recent research in Graph Neural Networks
(Sanchez-Gonzalez et al., 2018; Cranmer et al., (2020)) shows that
these kind of models are particularly suitable to encode and
exploit prior physics knowledge, for instance, given in the form of
Partial Differential Equations over space and time. An example of
an industrial application of these models is provided by Park and
Park (2019) who use a specific type of GNN to estimate the power
generated by a wind farm by modeling the physics interactions
between the individual turbines.

4.2.2 Domain Adaptation
The high variability of machines’ operating conditions and the
problem of data scarcity motivate the introduction of
techniques capable of transferring the knowledge gained
from a well-known machine to another for which data are
not as abundant. Transfer Learning (TL) is a class of ML
methods whose goal is to address this problem. Traditional
TL approaches (Yosinski et al., 2014) are based on the following
rationale: first, a deep network is trained on a large dataset to
perform a specific task. Then, the same network is used to

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 57861317

Biggio and Kastanis PHM: Progress and Road Ahead

66

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


perform a similar task simply by fine-tuning its final layers on a
few instances from the new dataset. Recent works in the context
of fault diagnosis and fault prognosis have successfully applied
this idea on datasets from induction motors (Shao et al., 2019a;
Shao et al., 2019b), gearboxes (Cao et al., 2018; He et al., 2019;
Shao et al., 2019a; Shao et al., 2019b), bearings (Shao et al.,
2019a; Shao et al., 2019b Wen et al., 2019b) and centrifugal
pumps (Wen et al., 2019b).

Besides traditional TF methods, unsupervized Domain
Adaptation (DA) techniques have also been recently applied to
PHM tasks. DA is a sub-field of TF, whose goal is to maximize the
performances on the target domain for which only few unlabeled
data are available by exploiting a labeled data from the so-called
source domain. The two domains are commonly assumed to share
similar features even though a model trained on the source
domain will usually provide poor performances on the target
domain. This is typically due to a distributional shift between the
marginal distributions describing the two sets of data. DA
techniques have witnessed an increasing attention since the
introduction of the so-called adversarial DA methods (Ganin
and Lempitsky, 2014; Ganin et al., 2016; Tzeng et al., 2017).
These approaches draw inspiration from the training procedure
used by the popular Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) to efficiently align source and target
domain features in a common latent-space. Several new
techniques (Han et al., 2019a; Wang et al., 2019a; Wang and
Liu, 2020) based on this class of DA approaches have been recently
proposed in the PHM literature. Other references on DA and TF
approaches in the context of fault diagnosis can be found in the
recent review works of Li et al. (2020) and Zheng H. et al., 2019;
Zheng Z. et al., 2019.

4.2.3 Artificial Data Generation
Generative models such as GANs and VAEs have achieved
impressive results in generating photo-realistic artificial data in
the context of CV. However, the task of generating realistic
problem-specific time-series data is still relatively unexplored
compared to artificial image generation. Unsurprisingly,
existing approaches in this context make large use of GANs.
In Donahue et al. (2018), for instance, GANs are used for music
and speech synthesis. In Nik Aznan et al., (2019), Haradal et al.
(2018), and Hyland et al., (2017) the authors propose new GAN-
based methods that generate medical data such as
electroencephalographic (EEG) brain signals, and time-
dependent health parameters of patients hospitalized in the
Intensive Care Unit (ICU). The recent method proposed by
Yoon et al. (2019) provides new state-of-the-art performance
for realistic time-series generation.

The benefits of such approaches in the context of PHM
could be significant. One of their most direct application is to

perform data augmentation in order to tackle to problem of
lack of representativeness and therefore improving the
performance of data-intensive DL models. To the authors’
knowledge, only a small number of works have started
exploring this idea and some first interesting results have
already been produced (Mao et al., 2019; Shao et al., 2019a;
Shao et al., 2019b Wang et al., 2019).

5 DISCUSSION

PM, as a key player in the Industry 4.0 paradigm, strongly relies
on some of the most recent advances in hardware technology,
communication systems and data science. Among them, DL
techniques have gained popularity over the last few years in
light of their excellent performances in processing complex data
in an end-to-end fashion. In this review, we have described
several applications of these methods to PHM. In particular,
we have discussed the advantages they introduce over traditional
ML techniques, stressing on their improved representational
power and their ability to automatically extract informative
features from data. Despite its great success, DL presents some
shortcomings that limit its large-scale deployment in industrial
applications. Its low level of interpretability, its generalization
deficiencies and its data-intensive nature are some of the main
weaknesses DL needs to overcome to close the gap between
academia and industrial deployment. In this review, we
identified three research areas that we believe could address or
alleviate the aforementioned open challenges, namely: physics-
enhanced techniques, domain adaptation and artificial data
generation. The first aims to improve interpretability by
grounding data-driven methods on well-understood physics
models of the system under consideration. Furthermore,
incorporating prior physics knowledge into DL algorithms can
be seen as imposing meaningful inductive biases into the learning
process, resulting in improved generalization and reasoning.
Domain adaptation provides a set of tools to transfer the
knowledge acquired on a well-known industrial component to
other similar assets for which data are less abundant. Finally,
artificial data generation techniques can be used to cope with the
lack of representativeness problem and the data-intensive nature
of DL algorithms. Some of these lines of research have already
shown interesting results, while others, although very promising,
are only in their infancy.
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Predictive Maintenance for Injection
Molding Machines Enabled by
Cognitive Analytics for Industry 4.0
Vaia Rousopoulou*, Alexandros Nizamis, Thanasis Vafeiadis, Dimosthenis Ioannidis and
Dimitrios Tzovaras

Centre for Research and Technology Hellas-Information Technologies Institute (CERTH/ITI), Thessaloniki, Greece

The exploitation of big volumes of data in Industry 4.0 and the increasing development of
cognitive systems strongly facilitate the realm of predictive maintenance for real-time
decisions and early fault detection in manufacturing and production. Cognitive factories
of Industry 4.0 aim to be flexible, adaptive, and reliable, in order to derive an efficient
production scheme, handle unforeseen conditions, predict failures, and aid the decision
makers. The nature of the data streams available in industrial sites and the lack of
annotated reference data or expert labels create the challenge to design augmented and
combined data analytics solutions. This paper introduces a cognitive analytics, self- and
autonomous-learned system bearing predictive maintenance solutions for Industry 4.0.
A complete methodology for real-time anomaly detection on industrial data and its
application on injection molding machines are presented in this study. Ensemble
prediction models are implemented on the top of supervised and unsupervised
learners and build a compound prediction model of historical data utilizing different
algorithms’ outputs to a common consensus. The generated models are deployed on a
real-time monitoring system, detecting faults in real-time incoming data streams. The key
strength of the proposed system is the cognitive mechanism which encompasses a real-
time self-retraining functionality based on a novel double-oriented evaluation objective, a
data-driven and a model-based one. The presented application aims to support
maintenance activities from injection molding machines’ operators and demonstrate
the advances that can be offered by exploiting artificial intelligence capabilities in
Industry 4.0.

Keywords: cognitive analytics, artificial intelligence in manufacturing, predictive maintenance, ensemble learning,
injection molding, Industry 4.0

1 INTRODUCTION

Nowadays, the continuous accelerating pace of data creation and gathering from a wide range of
sources such as sensors, posts to social media sites, transaction records, traffic data, pictures and
videos, health data, mobile devices, and users’ activities led to significant changes in data analytics
solutions by boosting machine learning (ML) and artificial intelligence (AI) methodologies to a wide
range of domains (Salamanis et al., 2016; Vatrapu et al., 2016; Galetsi et al., 2020). Themanufacturing
domain was not an exception. The adoption of state-of-the-art algorithms and cutting-edge
technologies in the years of Industry 4.0 enables the automation of processes and the creation of
novel predictive maintenance solutions based on predictive and prescriptive analytics (Rojko, 2017).
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Nonetheless, the full potential of the fast growing and
changing data in manufacturing domain has not been
unlocked yet. The application of human-like intelligence in the
form of cognitive analytics in manufacturing domain is still in
initial stages. Some initial approaches for cognitive
manufacturing manage to improve analytics services’ quality
and consistency. However, cognitive applications that can get
smarter and more effective over time by learning from their
interaction with data and by evaluating their own performance
indicators in terms of precision, is still an ongoing activity. To this
aim, the work presented in this study introduces a cognitive
framework that exploits the capabilities of retraining mechanisms
by continuous learning. Its application for predictive
maintenance services in injection molding machines of a large
electronics manufacturer’s shop floor demonstrates the
advantages of this cognitive solution in terms of predictions’
accuracy.

An injection molding machine is commonly used in plastic
processing industry and has to work continuously for long hours,
so as to enable a continuous production line. A series of
prediction, prevention, and inspection activities in order to
alert machine problems and failures are vital for the normal
and stable operation of a molding machine. This category of
machines consists of different parts such as hydraulic,
mechanical, and electrical parts that can cause failures.
Usually, a failure is related to abnormal rise of temperature in
an injection molding machine. The problem can be related to
various factors such as problems in cooling system, improper
pressure regulator, and high pressure in hydraulic system
alongside with long period of overheating. Besides the
temperature, the abnormal generated noise can be a real-time
failure indicator if this kind of data is available. Damaged
hydraulic and mechanical components can lead to significant
variations of sound. The detection of substandard products with
lower quality could be the last indicator of an injection molding
machine failure.

The current study introduces a predictive solution based on
the application of cognitive analytics in feature parameters
coming in real time from injection molding machines by using
IDS connectors (Otto et al., 2019; Otto and Jarke, 2019). The
proposed predictive models aim to detect abnormalities out of the
available temperature, pressure, and energy consumption data.
Since both labeled and unlabeled data exist in the aforementioned
machines, supervised and unsupervised learning algorithms have
been deployed based on the availability or not of ground truth in
the data, respectively. Ensemble learning was implemented upon
different learners in order to combine their independent decisions
and boost the fault detection mechanism. In the case that ground
truth is available by the machines, the Adaptive Boosting (Freund
and Schapire, 1995; Nath and Behara, 2003; Schapire and Freund,
2012) ensemble technique was applied to the deployed supervised
learning methodologies in order to increase predictive
performance. Accordingly, the major voting method is
implemented on the top of unsupervised learning. As the
injection molding machine condition monitoring forms a
nonstationary environment, an adaptive and evolving
approach is presented, capable of accommodating changes. So,

the produced predictive models are continuously evaluated
through a double-oriented evaluation objective, a data-driven
and a model-based one. The latter enables a novel real-time self-
retraining functionality for boosting the cognitive capabilities of
the proposed solution.

The paper is structured as follows. Following the Introduction,
a related work review is presented. Section 3 contains a detailed
description of the proposed methodology, while Section 4
demonstrates the experimental results of the study. Finally, the
conclusions of the study are drawn at Section 5.

2 RELATED WORK

There are several available methodologies, concepts, and
solutions related to predictive maintenance services in
Industry 4.0. The selected related work in this section is
presented by the perspectives of cognition in manufacturing
domain, predictive maintenance for injection molding
machines, and ensemble methods for the enhancement of
predictive services. The three aforementioned categories
constitute the main advances of the current work and the
corresponding bibliography was considered as the most
suitable one to be mentioned in this section.

The advances in nowadays software and hardware
technologies enable computer systems to mimic human brain
activities and acquire cognition capabilities. The alleged
capabilities introduce cognitive computing which is based on
software that learns by itself, without reprogramming, and it is
able to automate cognitive tasks. Industry 4.0 solutions have
adopted various cognitive computing approaches for predictive
maintenance, planning optimization, and performance and
quality improvement. To this direction, the concept of the
Cognitive Factory is supposed to be flexible, adaptable,
reliable, and efficient in various momentary situations (Zaeh
et al., 2009). This type of factory is moving from perception to
action by using continuous learning and cognitive mechanisms.
The advantages, disadvantages, and future challenges in the field
of cognitive manufacturing have been widely studied (Bannat
et al., 2011; Iarovyi et al., 2015). Iarovyi et al. (2015) present a
documentation of different architectures for cognitive
manufacturing systems that can be benefited from Industrial
Internet of Things and cognitive control. Bannat et al. (2011)
investigate methods to realize cognitive control and cognitive
operation of production systems by highlighting self-optimizing
and self-learning procedures. Iarovyi et al. (2015) again propose
an architecture for cognitive manufacturing systems by
combining approaches from PLANTCockpit (2012) and
CogNetCon (Boza et al., 2011), enabling efficient data
integration in manufacturing environments and providing
connectivity between data on shop floor level and data in
MES, ERP, and other systems. A cognition layer in the
architecture contains a cognition engine, a model repository,
and knowledge representation components. By adopting the
aforementioned components, the architecture targets higher-
level decision-making, self-learning, reconfiguration, and self-
optimization in manufacturing domain.
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Comprehensive research has been held toward predictive
maintenance in manufacturing, including the study and
analysis of sensor data and industrial machines for early fault
detection, condition base monitoring, and decision support
systems. Specifically, injection molding machines have been
investigated as a real-world industrial application of predictive
analytics (Gatica et al., 2016; Park et al., 2016; Jankov et al., 2017).
An overview of industrial analytics methods and applications for
predictive maintenance in manufacturing is presented by Gatica
et al. (2016), encompassing an injection molding machines’ use
case. The work of Gatica et al. (2016) classifies the machinery
analytic approaches in offline and online analysis. The offline
analytics contain the “hypothesis-driven” strategy which is based
on the analysis of the machine behavior and the “data-driven”
strategy which focuses on exploration of the information
provided by sensors and machine logs. Online analytics
resolve predictive maintenance through data monitoring and
machine state recognition by employing machine learning
models. Jankov et al. (2017) introduce another real-time
anomaly detection system dealing with injection molding
machines. The presented system performs anomaly detection
using K-means for cluster finding and Markov model for data
training. Jankov et al. (2017) describe a custom-built system and
concentrate on the system’s performance through parallel and
real-time processes. Furthermore, the method proposed by Park
et al. (2016) distinguishes the different maintenance items of an
injection molding and maps each one of these items to selected
parameters in the collected data. Thereafter, a live parameters’
monitoring process takes place and abnormal trends or patterns
are detected based on statistical techniques. The detected
abnormalities for different machine’s parts are available to the
maintenance operators. Last but not least, in the field of predictive
analytics in manufacturing, a study which introduces an
application on industrial ovens is worth mentioning
(Rousopoulou et al., 2019). This study’s methodology could as
well be applied to injection molding machines, as it concerns the
usage of both existing machine sensors with their log data and
deployed sensors and achieves early fault diagnosis in an
industrial machine.

Finally, on the subject of ensemble learning, ensemble
techniques contribute to the performance of supervised and
unsupervised machine learning models and enhance the
predictive maintenance analytics solutions. A recent work
regarding ensemble learning proves the improvement of
individual learning models in terms of accuracy as well as
training time by implementing ensemble learning and creating
an integrated model through majority voting, experimenting on
refrigerator system’s datasets (Zhang et al., 2020). Additionally, in
terms of assessing the ensemble techniques, a thorough
benchmarking evaluation of outlier detection algorithms was
reviewed (Domingues et al., 2018). Unsupervised machine
learning algorithms were tested and compared on multiple
datasets, highlighting their strengths and weaknesses. Within
this context, an application of unsupervised outlier detection
on streaming data containing travel booking information was
implemented (Domingues et al., 2016). The study of Domingues
et al. (2016) performs fraud detection by examining aggregation

functions and interpolation in order to address unsupervised
ensemble learning.

3 METHODOLOGY

The proposed methodology constructs a real-time anomaly
detection solution with cognitive retraining, applied to an
industrial machine. Starting with the training of historical data
by state-of-the-art ML algorithms and meta-learners, prediction
models are created. The models are fed with live incoming data
streams and detect abnormalities in real time. This live
monitoring process is enhanced by an automated retraining
mechanism which inspects the characteristics of the new input
data and the models’ performance in order to update the
prediction models and maintain the high performance of the
fault detection system. The methodology consists of the following
components:

(1) Data Preparation
(2) Online Training
(3) Ensemble Learning
(4) Live Prediction
(5) Cognitive Check

Figure 1 is an illustration of the proposed methodology. The
process starts with historical data that are inserted for data
preparation. The online training includes the training of
several algorithms which are afterward enhanced by the
ensemble learning step. The above steps examine and
determine the optimum models for live prediction which
performs real-time anomaly detection. New live data are
coming through the predictive models which are constantly
evaluated by a cognitive check and updated by automatic
model retraining. The proposed method aims to form a
regularly updated system which can monitor an injection
molding machine and predict machine or part failures in
order to reduce or even prevent machine downtime and save
time and cost in the production line. The remainder of this
chapter is a detailed description of the proposed solution,
underlining the methods and algorithms combined in a
complete anomaly detection pipeline.

3.1 Data Preparation
The current study’s dataset is composed of measurements from
injection molding machines which carry out the process of
shaping rubber or plastic parts by injecting heated material
into a mold. Specifically, the injection molding process deals
with the fabrication of plastic components for electric shavers.
The available measurements are expressed in time-series format,
including different kinds of measurements, such as temperature,
pressure, energy consumption, and time. Anomalies in time-
series data indicate “bad” shots during injection, which leads to
rejected products.

Six different injection molding machines are available in the
dataset; four of them contain labeled data and the other two
contain unlabeled data. Table 1 shows the features that each
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machine contains. The labeled datasets include a quality indicator
feature (label). The zero label suggests a normal instance, while a
nonzero label indicates an abnormality in machine’s
performance. The values of the quality indicator feature
correspond to a specific error, but since this aspect goes

beyond the context of the current research, the label is
converted to binary, with zero meaning normal and one
meaning abnormal instance.

In order to transform raw data into refined information assets,
first cleansing of the data takes place. The constant, empty, and
duplicated columns are removed from the dataset. The columns
with insignificant variance measure, namely, lower than 0.01, are
removed as well. In order to resolve the real-world data
inconsistency or incompleteness, the following preprocessing
and cleansing methods are implemented for the data
preparation step:

• Interpolation for estimating missing values between known
data points is used.

• Zero variables are eliminated by zero removal process,
as well.

• Normalization is used in order to scale and translate each
feature individually in the range between zero and one.

After the preprocessing phase the features of each dataset are
reduced as shown in Table 2. The dataset is split into 70% of
samples for training and 30% for testing.

3.2 Online Training
A set of supervised and unsupervised learners is applied to the
machine data, depending on the needs of each injection molding
machine. The nature of the data led us to address the anomaly

FIGURE 1 | Overview of the cognitive system’s methodology architecture.

TABLE 1 | The available datasets from injection molding machines.

Feature description Injection
molding machine #

Timestamp 1, 2, 3, 4, 5, 6
Part counter 1, 2
Bad part counter indicator 1, 2
Last value of cycle time 1, 2, 3, 4, 5, 6
Peak of hold pressure 1, 2, 3, 4, 5, 6
Injection pressure 1, 2
Peak of injection pressure 1, 2, 5, 6
Flow number 1, 2, 3, 4, 5, 6
Melt cushion 1, 2, 3, 4, 5, 6
Hydraulic pressure 1, 2
Peak of injection pressure 1, 2, 3, 4, 5, 6
Value of switchover position 1, 2
Corrected position of plasticizing 1, 2, 3, 4, 5, 6
Clamp force 1, 2, 3, 4, 5, 6
Value of mold protection time 1, 2, 5, 6
Oil temperature 1, 2, 3, 4
Temperature of zone X 1, 2, 3, 4, 5, 6
Number of cavities 3, 4
Cooling time 3, 4, 5, 6
Screw position 3, 4, 5, 6
Injection time 3
Switchover pressure 3, 4, 5, 6
Shot counter 3, 4
Bad shot counter 3, 4
Peak of back pressure 3, 4, 5, 6
Plasticizing time 3, 4, 5, 6
Set value of temperature of zone X 3, 4, 5, 6
Heating energy consumption 3, 4, 5, 6
Motor energy consumption 3, 4, 5, 6
Total energy consumption 3, 4, 5, 6
Quality indicator (label) 3, 4, 5, 6

TABLE 2 | The available datasets from injection molding machines.

Dataset Label Initial feature size Final feature size

Injection molding machine 1 Yes 63 48
Injection molding machine 2 Yes 63 47
Injection molding machine 3 Yes 75 42
Injection molding machine 4 Yes 73 47
Injection molding machine 5 No 34 23
Injection molding machine 6 No 34 21
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detection problem through classification and clustering methods.
The algorithms reported at this chapter were selected for the
current research due to the sufficient results that they have
achieved in terms of prediction models’ performance.
However, the solution is extensible enough, so as to
incorporate new methods within the overall architecture.

The online training of labeled datasets is addressed by well-
known supervised training methods. The methods classify the
input datasets and are capable of creating prediction models that
detect faults in this input. Specifically, Support Vector Machines
(SVMs) classifier is one of the most convenient and widespread
classification algorithms, able to construct a hyperplane as a
decision boundary as the maximum margin between classified
classes based on kernel functions. In this work, two kernel
functions are applied: Polynomial and Radial Basis Function.
Decision tree learning is a technique for approximating discrete-
valued functions, in which the learned function is represented by
a decision tree (or classification tree or learning tree) (Lee and
Siau, 2001). Random forest is an ensemble of decision trees and
each decision tree is constructed by using a random subset of the
training data, while the output class is the mode of the classes
decided by each decision tree (Breiman, 1999). Finally, Artificial
Neural Networks (ANNs) are used and especially Back
Propagation Network (BPN) which is a feed-forward model
with supervised learning (Rumelhart et al., 1986), and for the
need of this work a fully connected neural network is used with
one hidden layer.

On the other side, for the online training of unlabeled
datasets, unsupervised learning techniques were implemented
aiming to detect anomalies through data clustering. Thus, in
this section we present state-of-the-art unsupervised learning
methodologies that have been used in this work. DBSCAN is
the data clustering algorithm which discovers clusters of
arbitrary shape in spatial dataspaces with noise. Next is the
Local Outlier Factor (LOF), which provides a factor of how
close a data point is to its neighbors in respect to its neighbor
being also close to it. The One-Class Support Vector Machine
(One-Class SVM) algorithm classifies the points that lie
outside some boundaries of the data space as outliers.
Finally, K-means iteratively tries to partition the dataset
into clusters with each data point belonging to only one
cluster.

3.3 Ensemble Learning
On the top of individual learners, ensemble methods are
techniques that utilize multiple models so as to combine them
in order to produce improved results. Ensemble methods are
incorporated into our methodology so as to generate a more
accurate solution comparing with the results of single models.
Our methodology proposes two ensemble algorithms for
supervised and unsupervised learners, Adaptive Boosting and
majority voting, respectively.

Adaptive Boosting (or AdaBoost) technique is a conjunction
of many classification algorithms (also called weak learners),
either from different families or from the same family with
different internal parameters, aiming to improve classification
performance compared to a single and simple classification

algorithm. AdaBoost takes as input the outcome of a weak
learner and iteratively improve it by recalculating its weights
for the incorrectly classified cases in the training set. Adaboost is
adaptive in the sense that subsequent weak learners are tweaked
in favor of those instances misclassified by previous classifiers.
There are many forms of boosting algorithms (Nath and Behara,
2003; Schapire and Freund, 2012), but the most popular is the one
where the weak classifiers are decision trees (Freund and
Schapire, 1995). In this work, we use the AdaBoost
SAMME–Stagewise Additive Modeling using multiclass
exponential loss function, which is an extension of
AdaBoost.M1 algorithm, so as to perform both two-class and
multiclass classification scenarios.

Majority vote (Jung and Lease, 2012) is a simple method for
generating consensus among different algorithms by picking the
label receiving the most votes. The rationale of the method is to
calculate the average label coming from multiple learners and
round according to a decision threshold. The majority vote is
used as an enhancement for the individual learner’s anomaly
detection. It is also used as a replacement for the ground truth in
case of unlabeled datasets, especially on the cognitive check taking
place in the live prediction step of the proposed methodology
(Section 3.5).

The aforementioned ensemble methods are applied
automatically to the trained algorithms. In the case of
supervised learners the AdaBoost methods provide an
enhancement in terms of accuracy of single learners. In the
case of unsupervised learners, the majority voting is used as a
combined learner which performs better than a single learner or
as a substitute of ground truth values in order to facilitate the
cognitive check described in the next sections.

3.4 Live Prediction
When the training phase is over each machine dataset acquires
one prediction model and its metadata (preprocessing models,
statistic measures, and logs). The prediction model with the
highest accuracy metric prevails in case of supervised learning,
whereas the model with the highest silhouette score prevails in
case of unsupervised models. Both supervised and unsupervised
optimal models are specified as the “default” model. These
models perform the outlier prediction on new live incoming
data streams. The machine data are constantly monitored and for
each instance of measurements, the system recognizes normal
behavior or detects anomalies.

The incoming data stream is being edited and brought to the
same format as the training dataset. The preprocessing methods
used in training phase are applied precisely to the input data
stream which will next be imported in the “default” prediction
model. The anomaly detection results are kept in order to be used
for evaluation and cognitive updating. The live monitoring
procedure is constantly operating and updated in the
aforementioned way.

Technically, the injection molding machine live data are
retrieved through a custom IDS connector system that was set
up for the purposes of the presented work. Figure 2 illustrates the
integration of real-timemachine data with the cognitive analytics.
The system is based on two IDS Trusted Connectors. The first
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connector is deployed on the factory site. The machines send data
to the cloud infrastructure that is available to the factory and from
there, the data are provided to IDS connector through an MQTT
Broker. The factory cloud repository is the data provider of IDS
architecture, whereas the cognitive analytics framework is the
data consumer. A second IDS Trusted Connector was set up on
consumer site alongside with a MQTT Broker in order to enable
data exchange with the data provider. The IDS Trusted
Connectors were selected because they offer an open platform
which connects sensors with cloud infrastructures and other
connectors in a secure and trusted way. In particular, the
connectors are based on containers logic and provide apps
isolation. They are isolated from each other and from the
Internet. Furthermore, the connectors offer cross-enterprise
authorization based on identity tokens. Another advantage of
the data exchange between connectors is the ability to control and
document the data usage. In addition to access control, the usage
control allows for controlling data flows between apps and
connectors. Based on the aforementioned advantages of IDS
Trusted Connectors, they were selected as the ideal candidates
to support the major requirement for secure transmission of the
sensitive and private industrial data.

3.5 Cognitive Check
A cognitive mechanism is implemented at this point toward
automated update of the prediction models. This mechanism
triggers the retraining of the running models in two specific
circumstances:

• the dataset’s characteristics are changed
• the model’s performance starts to downgrade

The new data that are constantly inserted in the prediction
models are reassessed in order to capture possible variations

compared to the historical data. The variance of the features of
the historical datasets is stored and every new incoming data
stream is compared with this value. If the newmeasurements are
not statistically related to the training dataset, then the model
training has to be repeated on the new dataset. In any case, the
cognitive mechanism observes repeated measurements with
variations until it finally triggers the retraining of the dataset,
so as to eliminate accidental discrepancies of the machine
live data.

The retraining is also activated by monitoring of the
prediction model performance. An Initial Prediction Window
(IPW) is determined at the training phase, which is a specific
number of real-time predictions tested against the real ones
when those are available. In case of the machines with labeled
data, the real values are given and compared to the predicted
ones. In case of the machines with unlabeled data, the result of
major voting method substitutes the labels of data instances and
is compared with the predicted results in order to extract the
performance metrics. In both cases, a confusion matrix is
created and the metrics, precision, recall, accuracy, and
f-measure are calculated.

Based on the values of f-measure, the IPW is changed
(increases or decreases) or remains the same. More
specifically, a minimum and maximum value are defined for
the IPW values, along with a threshold for the f-measure value.
Starting from the maximum IPW value, f-measure is calculated
for this window. If f-measure exceeds the defined threshold, the
training model remains as it is, whereas IPW increases by 10 if
f-measure is higher than 90%, decreases by 10 if f-measure is
lower than 80%, and remains as it is if f-measure falls between 80
and 90%. This process is repeated until the IPW equals the
minimum IPW. In case that f-measure falls behind the defined
threshold, the retraining mode is triggered and the IPW value
resets to the maximum value.

FIGURE 2 | Overview of the connection of the injection molding machines factory site with the proposed cognitive analytics.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 5781526

Rousopoulou et al. Cognitive Analytics for Injection Molding

79

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


4 EXPERIMENTAL RESULTS AND
COMPARISON WITH PRIOR WORK

The methodology described in the previous chapter refers to a
dynamic and automatic system for real-time anomaly
monitoring. The online training functionality is the basis for
the live monitoring and is automatically triggered according to
the cognitive mechanism. Since it is a live system, in order to
evaluate its functionalities and performance, an indicative
instance of training and testing of the prediction models is
presented below. Furthermore, an experiment of the cognitive
mechanism is presented at this chapter, showing the robustness of
the proposed method. Finally, a comparison between our method
and prior related work is performed.

4.1 Evaluation Metrics Overview
In order to assess our supervised models, we use the measures of
precision, recall, accuracy, and f-measure, which are computed
from the contents of the confusion matrix of the classification
predictions. Because of the fact that we do not have binary
classification, all the evaluation metrics are computed
accordingly. From the confusion matrix true positive and false
positive cases are denoted as TP and FP, while true negative and
false negative are denoted as TN and FN, respectively. Precision
is the ratio of predicted true positive cases to the sum of true
positives and false positives and is given by the equation

Precision � TP
TP + FP

.

Recall is the proportion of the true positive cases to the sum of
true positives and false negatives and is given by the equation

Recall � TP
TP + FN

.

Accuracy is the fraction of the total number of predictions that
were correct and is given by the equation

Accuracy � TP + TN
TP + FP + TN + FN

.

Precision or recall alone cannot describe a classifier’s
efficiency. Therefore, f-measure is introduced as a combination
of these two metrics. It is defined as twice the harmonic mean of
precision and recall and is the metric we will be most referring to.
The equation of f-measure is given below:

f −measure � 2 × Precision × Recall
Precision + Recall

.

A value closer to one means better combined precision and
recall of the classifier, whereas lower values imply worst accuracy
or precision or both.

Accordingly, the unsupervised model assessment is performed
by four clustering performance evaluation metrics: Silhouette

Coefficient, Calinski–Harabasz index, Davies–Bouldin index,
and Dunn index. Those are metrics for evaluating clustering
algorithms following an internal evaluation scheme, where the
metric result is based on the clustered data itself. The Silhouette
Coefficient is an example of evaluation using the model itself
(Rousseeuw, 1987). The Silhouette Coefficient for a single sample
is given as

Silhouette � b − a
max(a, b),

where a is the mean distance between a sample and all other
points in the same class and b is the mean distance between a
sample and all other points in the next nearest cluster. The
Silhouette Coefficient for a set of samples is given as the mean
of the Silhouette Coefficient for each sample. Higher Silhouette
Coefficient scores indicate a model with better defined clusters.

Another evaluation metric, in case that the ground truth labels
are not known, is the Davies–Bouldin index (Davies and Bouldin,
1979). The “similarity” between clusters is measured by this
metric by comparing the distance between clusters with the
size of the clusters themselves. The Davies–Bouldin index is
specified as

DB � 1
K

∑k
i�1

maxi≠ jRij,

where Rij is the similarity measure defined as

Rij � si + sj
dij

for each cluster Ci for i � 1, . . ., k and its most similar one Cj:

• si is the average distance between each point of cluster i and
the centroid of that cluster.

• dij is the distance between the cluster centroids i and j.

The lowest possible score is zero and values closer to zero
suggest a better partition. Next is the Calinski–Harabasz index
also known as the Variance Ratio Criterion (Caliński and
Harabasz, 1974). The index is the ratio of the sum of the
between-clusters dispersion and inter-cluster dispersion for all
of them:

CH � tr(Bk)
tr(Wk) ×

nE − k
k − 1

,

where tr(Bk) is trace of the between-group dispersion matrix and
tr(Wk) is the trace of the within-cluster dispersion matrix defined
by

Wk � ∑k
q�1

∑
x ∈ Cq

(x − cq)(x − xq)T
and

Bk � ∑k
q�1

hq(cq − cE)(cq − cE)T ,
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where Cq is the set of points in cluster q, cq is the center of cluster
q, cE is the center of E, and nq is the number of points in cluster q.
The higher Calinski–Harabasz score implies a model with better
defined clusters. Last is Dunn index (Dunn, 2008), another metric
that aims to identify the compact sets of clusters and the well-
separated ones. The metric is given by the following equation:

DI �
min

1≤ i≤ j≤m
δ(Ci,Cj)

max
1≤ k≤m

Δk
,

where δ(Ci,Cj) is the distance between clusters Ci and Cj, and Δk
is the intracluster distance within cluster Ck. The higher the Dunn
index value is, the better the model performance is.

4.2 Training Simulation Results
The section of experimental results regarding online training is
divided into three subsections. In the first subsection, the
performance of all tested classifiers is presented, while in the
second subsection the boosted version of the classifier with the
best predictive performance among tested ones is presented. The
third subsection presents results from the unsupervised training.
Out of all experiments conducted in this research in order to test
and evaluate the proposed methodology, some indicative results
are given below in order to show the potential of the system and
the attempt to create a compound solution for the injection
molding machines. The evaluation of the system presented at
this point focuses on both the functionalities of the proposed
solution and the performance of the available algorithms
presented in Section 3.

4.2.1 Nonboosted Version of Classifiers
In order to evaluate the predictive performance of tested
classifiers, a series of 100 Monte-Carlo simulations was
performed, for each parameter schema. The idea behind
Monte-Carlo simulations is the generation of a large number
of synthetic datasets that are similar to experimental data. In the
case of time series the simulation setup of the match for Monte-

Carlo realizations is 100-fold cross-validation. For SVM-POLY,
parameter θ takes the values θ � (start � 30, end � 60, step � 6)
and the polynomial degree p takes the values p � (2, 5, 1). For
SVM-RBF, parameter σ varies the same as θ and the constant C
as C � (1,000, 7,000, 2,000). In Tables 3, 4, we present the
simulation results of SVM-POLY and SVM-RBF classifiers,
percentage averages for 100 Monte-Carlo iterations for
precision, recall, accuracy, and f-measure. The classic BPN
has a single hidden layer and the number of neurons varies
as n � (100, 200, 20). The simple decision tree was tested as is
while the random forest has an ensemble of estimators � (20,
100, 20) decision trees. In Tables 5, 6, we present the simulation
results of BPN and random forest classifiers, percentage
averages for 100 Monte-Carlo iterations for precision, recall,
accuracy, and f-measure. From all the simulation results
presented in Tables 3-6, it is more than clear that random
forest classifier outperforms SVM-POLY, SVM-RBF, and BPN

TABLE 3 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for SVM-POLY classifier.

p θ Precision (%) Recall (%) Accuracy (%) f-Measure (%)

2 30 75.24 88.92 78.53 81.51
2 36 77.82 85.91 79.24 81.67
2 42 77.54 86.27 79.32 81.67
2 48 78.35 86.98 79.54 82.44
2 56 78.78 86.11 79.23 82.28
3 30 75.39 87.92 79.21 81.17
3 36 76.41 87.69 79.11 81.66
3 42 76.12 87.77 78.92 81.53
3 48 78.01 87.34 78.24 82.41
3 56 78.09 86.92 77.88 82.27
4 30 77.98 85.43 77.87 81.54
4 36 77.15 86.13 77.46 81.39
4 42 77.26 86.24 77.79 81.50
4 48 78.65 86.71 77.92 82.48
4 56 78.92 87.01 78.01 82.77

TABLE 4 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for SVM-RBF classifier.

C σ Precision (%) Recall (%) Accuracy (%) f-Measure (%)

1,000 30 78.66 83.41 79.58 80.97
1,000 36 77.65 83.45 79.61 80.45
1,000 42 78.24 83.98 79.54 81.01
1,000 48 78.54 84.14 80.13 81.24
1,000 56 78.98 84.35 79.98 81.58
3,000 30 79.13 83.85 79.32 81.42
3,000 36 79.24 83.24 79.45 81.19
3,000 42 79.47 84.25 79.33 81.79
3,000 48 80.13 84.27 80.24 82.15
3,000 56 79.91 82.78 80.76 81.32
5,000 30 73.37 89.86 80.18 80.78
5,000 36 74.27 88.24 80.27 80.65
5,000 42 73.45 88.15 80.13 80.13
5,000 48 73.26 88.97 80.54 80.35
5,000 56 73.15 88.48 79.93 80.09

TABLE 5 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for BPN classifier.

Neurons Precision (%) Recall (%) Accuracy (%) f-Measure (%)

100 72.28 90.21 80.52 80.26
120 72.37 89.25 80.24 79.93
140 72.56 89.76 80.52 80.25
160 72.89 89.91 80.59 80.51
180 73.24 90.73 81.11 81.05

TABLE 6 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for random forest classifier.

Decision trees Precision (%) Recall (%) Accuracy (%) f-Measure (%)

20 92.24 93.47 91.24 92.85
40 92.37 94.13 91.78 93.24
60 93.91 93.71 91.25 93.81
80 93.63 94.61 91.51 94.12
100 93.24 94.28 91.39 93.76
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for about 11–12%. Thus, random forest is the one classifier that
will be promoted to test also in its boosted form.

4.2.2 Random Forest Boosted Version
In order to have a more clear view about the potential of random
forest, we simulate different schemas of estimators and calculate
again precision, recall, accuracy, and f-measure. In this
simulation scenario, denoted hereafter as RF-Boost, five weak
learners (or five random forest classifiers) were used where the
estimator of each one of the weak learners is estimators � [40, 60,
80, 100, 120] decision trees. The simulation results of RF-Boost
scenario are given in Table 7. Comparing Tables 6, 7, one can see
that, with the RF-Boost scenario, the predictive performance is
increased by 3–4% on f-measure, a fact that indicates the
dominance of boosted form compared to any other predictive
approach, tested here.

4.2.3 Unsupervised Learning Results
As mentioned before, two of the available injection molding
machines lack ground truth values. The simulation results of
the unsupervised training applied to these machines are shown in
Table 8. The values of the table refer to both machines trained
with historical data. According to the evaluation metric
description in Section 4.1 it seems that One-Class SVM is the
weaker learner and LOF and DBSCANhave given better results in
machines five and six, respectively. The challenge of the unlabeled
data is to be well evaluated in order to use the corresponding
models as fault detectors. It may be a weaker method compared to
supervised evaluation but the system aims to give a handful
solution in case where ground truth is missing and give accurate
results in cooperation with the ensemble enhancement given by
majority voting and also with the retraining module of the
proposed methodology.

4.3 Cognitive Mechanism Testing
The prediction models generated by the online training (Section
3.2) are used in live prediction phase (Section 3.4) where real-

time data are monitored and anomalies are detected. The
cognitive mechanism operates at the same time as live
prediction and triggers the retraining of a prediction model
when needed. In order to test this feature, the performance of
models was recorded as live prediction and cognitive check are
operating. Specifically, four prediction models are monitored:

decision tree and random forest models for the supervised
learning of labeled data and DBSCAN and K-means models
for the unsupervised learning of unlabeled data. The accuracy
evaluation metric is recorded for the supervised learning and the
silhouette score for the unsupervised. The model performance
was recorded for as long as it takes for the cognitive mechanism to
trigger 200 retraining times of the models.

Figure 3 shows some indicative results of this testing. It
illustrates the diagrams of the evaluation metric throughout
200 retraining times of a single model (accuracy for supervised
and silhouette score for unsupervised learning). The diagrams
indicate that the models’ performance is maintained in high
levels after the model retraining: decision tree classifier’s
accuracy does not fall under 0.997 and random forest under
0.992 and DBSCAN and K-means’ silhouette scores are kept
over 0.2 and 0.14, respectively. The model retraining is triggered
by variations noticed in the real-time data compared with the
historical ones, so it is crucial that it will be accomplished the
time that is being triggered, regardless of the results that it will
induce.

As a follow-up to the above diagrams, the times where the
model was improved after retraining were calculated. Table 9
shows that most of the times the execution of retraining improves
the performance of the model. The aim of the retraining module
is to automatically update the predictive models when their
performance diverges. These indicative results explain the need
of the complete system to be updated occasionally in order to be
able to maintain high quality and accuracy in the anomaly
detection pipeline.

4.4 Comparison with Prior Work
In order to support our proposed methodology, we present a
determinate comparison between our methodology and other
works from literature. The comparison concerns the studies
that deal with injection molding machines as this is the core of
our research and focuses on aspects of each proposed
methodology, since the results of each work are disparate or

TABLE 7 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations of AdaBoost on random forest classifier.

Parameters
of weak learners

Precision
(%)

Recall
(%)

Accuracy
(%)

f-Measure
(%)

20, 40, 60, 80, 100 97.63 97.28 95.32 97.45

TABLE 8 | Unsupervised evaluation metrics on injection molding machine 5/6.

Algorithms Injection machine Silhouette Davies–Bouldin Calinski–Harabasz Dunn

LOF Machine 5 0.05 4.57 119.89 0.11
Machine 6 0.11 2.83 400.44 0.03

K-means Machine 5 0.15 3.29 774.63 0.05
Machine 6 0.21 2.16 1,041.22 0.02

DBSCAN Machine 5 0.05 4.80 1,456.17 0.02
Machine 6 0.42 1.51 1,449.55 0.41

One-Class SVM Machine 5 0.05 17.18 134.61 0.01
Machine 6 0.01 18.52 98.59 0.01
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unavailable. The first study includes an injection molding
machine’s use case and explores the available data while the
machine operates (Gatica et al., 2016). The study extracts
normal behavior models and notices deviations from the
expected behavior. The authors use trend analysis functions
to predict already known failures and achieve reduction of
machine downtime.

The second study deals with anomaly detection on streaming
data applied to injection molding machines (Jankov et al., 2017).
A sliding window observes the streaming data and finds clusters
by using K-means algorithm. The clusters are used for training of
a Markov model for the window. New models are trained as the
window slides over new data. Anomalies are detected in the
streaming data by calculating transition probability and
comparing it with a threshold. The advantage of Jankov et al.

(2017) work is the computational capabilities of the system which
is augmented by real-time parallel task distribution.

Park et al. (2016) address the problem of machine condition
monitoring by identifying the injection molding operational
parameters. Statistical analysis is applied to these parameters
in order to distinct the most significant ones. Real-time data series
are monitored by prediction models and the results are evaluated
by Nelson rules. The method detects abnormal patterns of the
parameters and identifies the machine parts where maintenance
actions should aim.

Our proposed method follows a similar approach to the
aforementioned works. The aim is to investigate abnormal
operations in the injection molding process starting with data
analysis and resulting in prediction models that determine
anomalies. In contrast with the studies above, we proposed a
methodology which can handle both labeled and unlabeled data
and also address the challenge of unknown errors in case of
machine abnormal behavior. Additionally, the other works derive
prediction models using one specific analytical method, but the
current study includes multiple classification and clustering
learners for the generation of prediction models. From the set
of trained models, the one with higher performance will be used
for real-time anomaly monitoring. Also, there is the capability of
meta-learning as described in Section 3.3.

The distinguishing feature of the current work though is the
constant updating of the system’s prediction models through

FIGURE 3 |Cognitive mechanism performance monitoring. The horizontal axis of the graphs shows the times of retraining and the vertical axis shows the accuracy
(A,B) and silhouette score (C,D) of the model.

TABLE 9 | The percentage of retraining times that accuracy improvement is
noticed.

Algorithm Machine Retraining improvement
(%)

Decision tree
classifier

Injection molding machine 1 63

Random forest Injection molding machine 2 63
K-means Injection molding machine 5 75
DBSCAN Injection molding machine 6 73
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cognitive retraining. Except Jankov et al. (2017) work which
trains new prediction models as they cross by data streams,
the remaining studies do not focus on the potential changes
that can be noticed in live data or the possible degradation of the
prediction methods. This is the core of the cognition aspect of the
current work which achieves steady performance of the real-time
anomaly detection system.

5 CONCLUSIONS

In this paper a cognitive analytics application is presented,
focusing on predictive maintenance applied to injection
molding machines. A complete solution was described in
detail including different stages of training of historical data,
live prediction on real-time data, and automated retraining which
aims to keep the prediction process up to date. The proposed
solution manages both labeled and unlabeled datasets and applies
ensembles methods to top of individual supervised and
unsupervised learners. The generated prediction models
receive real-time data streams and perform anomaly detection
on the features of the injection molding machine measurements.
A cognitive mechanism was developed and tested, which
monitors the dataset changes, on the one hand, and the model
performance, on the other hand, and constantly updates the
predictive models.

The main findings of our research are summarized below:

• The proposed solution achieves combining different
training methods and detecting faults in different
machines, located in the same factory site.

• Ensemble methods can enhance the prediction models’
performance results.

• Automatic updating of trained models addresses the
problem of possible deviations of new incoming machine
data or potential prediction models’ degradation.

• High model performance is preserved in real-time anomaly
detection and data monitoring through automatic triggering
of model retraining.

As a result of these assets, the presented method can constitute
an assisting tool for the decision support system of factory sites
facilitating injection molding machines, in order to prevail
failures in production and downtime of machines.

Current ongoing work is implementing the creation of user
interfaces for the proposed real-time anomaly detection
methodology. Advanced visualizations are incorporated,
offering an enhanced user experience and a thorough view of
raw data, processed and clean data, model training, evaluation,

and results, as well as real-time monitoring. Two user views are
set up: the data scientist view and the regular end user. The data
scientist can choose parameters and methods for online training
which will operate the live monitoring for the regular end user.
The anomalies are detected and visualized so as the predictive
maintenance manager canmake the necessary decisions in case of
machine abnormalities.

Future work will concentrate on applying the presented
methodology to different machine data of the Industry 4.0
domain and investigate a generic cognitive analytics
framework for predictive maintenance. The development of
more learning techniques is being considered as a next step,
especially regarding the field of ensembled methods. Lastly,
there is definitely a room for improvement in the unsupervised
learning area regarding evaluation and meta-learning
processes.
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Smart maintenance offers a promising potential to increase efficiency of the maintenance

process, leading to a reduction of machine downtime and thus an overall productivity

increase in industrial manufacturing. By applying fault detection and prediction algorithms

to machine and sensor data, maintenance measures (i.e., planning of human resources,

materials and spare parts) can be better planned and thus machine stoppage can

be prevented. While many examples of Predictive Maintenance (PdM) have been proven

successful and commercial solutions are offered by machine and part manufacturers,

wide-spread implementation of Smart Maintenance solutions and processes in industrial

production is still not observed. In this work, we present a case study motivated by

a typical maintenance activity in an industrial plant. The paper focuses on the crucial

aspects of each phase of the PdM implementation and deployment process, toward the

holistic integration of the solution within a company. A concept is derived for the model

transfer to a different factory. This is illustrated by practical examples from a lighthouse

factory within the BOOST 4.0 project. The quantitative impact of the deployed solutions

is described. Based on empirical results, best practices are derived in the domain and

data understanding, the implementation, integration and model transfer phases.

Keywords: smart maintenance, predictive analytics, model transfer, industrial data science, best practices

1. INTRODUCTION

1.1. Process Models for Implementation of Predictive
Maintenance
A range of process models describe the software development and implementation process. A
widely used process model for the domain of data analytics is the cross-industry standard process
for data mining (CRISP-DM, Shearer, 2000). It describes an iterative process starting with domain
and data understanding, data preparation, modeling, evaluation, and deployment. It has already
been subjected to adaptions and advancement, especially in the context of Industrial Data Science,
e.g., by (Reinhart, 2016).

When implementing Predictive Maintenance (PdM) solutions, an important consideration is
the overall use case context in which data analytics is integrated. For example, the fault prediction
of an electric engine is embedded into a manufacturing process where the electric engine serves a
certain function (e.g., driving a belt for transport of material), the malfunction is accompanied by
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effects (e.g., stop of material transport), as well as consecutive
maintenance processes (e.g., repair of the engine). While this
may be covered by the domain understanding, an explicit use
case analysis and definition phase is necessary for a benefit-
and business-driven selection of a use case and its further
development. In addition to the original deployment of a PdM
solution, a transfer to similar scenarios and other plants is desired
(e.g., fault prediction for the engines of other transport belts).

Figure 1 summarizes our proposed overall business-driven
process for the implementation of predictive analytics. It can
be divided into three main phases: Use Case Analysis, Proof of
Concept, and Deployment. Next to the process-oriented view,
the implementation can be divided into four interdisciplinary,
functional layers of data analytics according to Kühn et al. (2018).
It offers different views of the implementation process, covering
the Use Case, Data Analytics, Data Pools, and Data Sources view.
The process steps are integrated into the layer model in Figure 2.

In this article, we analyze the PdM implementation process
with a strong real-world application and business-oriented focus.
This process originates from the implementation experiences
of the lighthouse factory of BENTELER Automotive within the
BOOST 4.0—Big Data for Factories project. The BOOST 4.0
project is an EU-funded Innovation Action aiming to improve
the competitiveness of the European manufacturing industry, to
introduce Industry 4.0 technologies and to provide the necessary
tools for obtaining the maximum benefit of Big Data.

We have gathered and grouped the best practices derived from
the followed process. It should be mentioned that our goal is to
take advantage of these observations, in our effort to bridge the
gap between research work and industrial application.

The article is divided into four main sections, covering the
domain understanding and use case definition (section 2), data
infrastructure (section 3), data understanding and modeling
(section 4), as well as the process integration and transfer

FIGURE 1 | Overall process for the implementation of predictive analytics.

of models (section 5). We summarize the best practices and
conclude our observations in sections 6 and 7, respectively.

1.2. State of the Art
In recent years, technologies for big data management and
processing as well as algorithms for fault and anomaly detection
have matured to allow industry-grade application of smart
maintenance. While smart maintenance features are offered
by individual component providers of production systems,

FIGURE 2 | Integration of process steps into the layer model for development

of data analytics applications and overview of the best practice contributions in

this paper.
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widespread adoption of smart maintenance in manufacturing
is still limited. Many companies cannot identify good business
cases. High initial investments, as well as insufficient availability
of mature or ready-to-use solutions, keep companies from the
holistic integration of smart maintenance within the company.
A stream-lined implementation and deployment process, along
with easily transferable prediction models are key to the wide-
spread application of smart maintenance within a company.
It allows the transfer of a solution to different factories or
different parts of a company, or even to other companies with
similar settings.

The two-part study by Bokrantz et al. (2020b) and
Bokrantz et al. (2020a) acknowledges the lack of empirically
driven, conceptual work for smart maintenance. By means
of an empirical study, it conceptualizes four main smart
maintenance dimensions: data-driven decision making, human
capital resources, internal integration and external integration.
The conceptual framework offered by Zheng et al. (2018) ranges
from sensors, data collection, and analytics to decision making.
These framework dimensions are viewed in context of real-world
scenarios, naming it as an important research aspect in Industry
4.0. It does not offer a specific guidance for smart maintenance.

Moens et al. (2020) offer an Industrial Internet of Things
(IIoT) framework, in which smart maintenance solutions are
embedded. They expose robustness and scalability of solutions
as well as the availability of well-trained machine learning
models for fault recognition as major challenges to be addressed.
Bumblauskas et al. (2017) describe a decision support system as a
smart maintenance framework. It is based on corporate big data
analytics with integrated anomaly and fault detection methods.
In Uhlmann et al. (2019), the process integration aspect of
smart maintenance is focused. The authors propose an assistance
systems, which helps to embed smart maintenance solutions
integrally into service processes.

In summary, a range of recent work has focused on concepts
for implementation of smart maintenance, rather than entirely
technically-driven work. Dimensions that need to be addressed
range from sensor data, data infrastructure to analytics and
process integration of smart maintenance.

2. DOMAIN UNDERSTANDING AND USE
CASE DEFINITION

The practical examples presented in this work are obtained
from real industrial use cases of the BENTELER automotive
lighthouse factory of the BOOST4.0 project. BENTELER
produces and distributes safety-relevant products, serving
customers in automotive technology, the energy sector and
mechanical engineering. The production of such plants employs
complex machinery to a large extent with several mechanical
and hydraulic systems, which entail frequent and/or periodic
maintenance. A thorough understanding of the problem domain
is precondition to defining valuable use cases, data understanding
and successful modeling and process integration. These steps are
detailed in the following paragraphs.

2.1. Domain Understanding
The understanding of the application domain is of equal
importance as the development of the actual smart maintenance
solution. The domain and business understanding is a multi-
phase iterative process, comprised by interviews with the
maintenance engineers, interviews with the industrial IT and
automation experts and knowledge transfer.

Initially, organizing interviews with the domain experts, i.e.,
maintenance engineers, is a necessary prerequisite in order to
understand the underlying systems and behavior of signals,
which are later considered in data cleaning, data pre-processing
and algorithm development. Semi-formalized methods such as
CONSENS (Conceptual Design Specification Technique for the
Engineering of Complex Systems, Gausemeier et al., 2009) have
been used in our use cases, giving effective structure diagrams for
the machinery under consideration. For the use case of the scrap
belt, an example of the effective structure of the scrap belt is given
in Figure 3.

Understanding of Data and Infrastructure has been
accomplished via interviews with industrial IT and industrial
automation experts, as a necessary prerequisite in order to
understand details of data collection, which directly affect
data properties. This includes knowledge about data collection
at OPC-UA level from industrial automation experts, which
affects e.g., naming of measurements, timing of acquisition,
etc. Also, knowledge from industrial IT experts allows a better
understanding of data transfer to databases and resulting
effects, e.g., generation and synchronization time stamps, data
quantization. This information is important for correct selection
and parameterization of algorithms for data pre-processing and
filtering. Insights from data understanding and data preparation
have been fed back to the domain and business understanding in
weekly meetings with maintenance and IT experts.

In various workshops and online conferences, the domain,
business and data understanding has been transferred between
the end users and the technology providers. For the technology
providers, a profound technical understanding of the production
line at BENTELER is essential to allow goal-driven algorithm
development. This is accelerated by proper documentation of
domain understanding. The effective structure as shown in
Figure 3, allows for successful transfer of domain and business
know-how. For example, an observation of a maintenance
incident is unambiguously assigned to a system component
(red dot in Figure 3). Root Causes can be traced within the
system and relevant data sources can be identified and located
(white dot Figure 3). Preliminary algorithm results can be
interpreted directly during their development, leading to quicker
iterations. However, regular feedback from domain experts is still
necessary. Weekly meetings of the core partners have allowed
for continuous identification of bottlenecks in the knowledge
transfer process.

2.2. Use Case Selection and Definition
In order for a Smart Maintenance solution to be evaluated and,
if suitable, adopted in production line to the optimal degree,
the costs and benefits need to be considered. The baseline
cost is composed by the installation and operation of the IT
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FIGURE 3 | Structure of the scrap belt.

infrastructure (hardware and software for Big Data storage and
processing). This represents a significant investment, which also
facilitates a wide range of possible subsequent benefits, it is thus
a mostly strategic decision. Operative decision-making focuses
cost-benefit considerations on a use case basis. The necessary
steps are use case identification, use case selection and use
case definition.

For use case identification, we propose a workshop-based
approach with domain experts, that can be held in conjunction
with the collection of domain understanding. A high-level
overview of the systems is used as a guide for the identification
process. This can be a schematic, floor-plan or domain-specific
descriptions as wiring diagrams or hydraulic plans. The effective
structure as shown in Figure 3 is useful, as it can be easily
understood by various stake holders. In Figure 4, we show how
two possible use cases for data analytics, the prediction of spikes
in motor current and the correlation of machine outage and
product number, are identified alongside the effective structure.
Additionally, details about the use cases can be directly recorded
on a plot (e.g., typical failures and failure propagation, aremarked
in red on Figure 4). Other systematic approaches can also be
exploited for use case identification, e.g., FailureMode and Effects
Analysis (FMEA).

The use case selection is based on a qualitative assessment
of use cases. For each identified use case, two dimensions are
considered: strategic value and possible benefit and simplicity
of implementation and realization. As shown in Figure 5, this

allows a simple overview and selection of most relevant use
cases. The two use cases “oil leakage at hydraulic press” and
“outage of scrap belt” have been identified for the BENTELER
automotive lighthouse factory, as they rank high in both observed
dimensions. Furthermore, a clustering allows the identification
of neighboring use cases that be considered subsequently. In
the example shown, a Machine-Health-Index is an overarching
application scenario for several use cases.

Lastly, in the use case definition a more detailed but concise
description is created, which allows the definition of the subject
for further planning or a quantitative cost-benefit calculation.
This work focuses on two practical use cases dealing with the
hydraulic system of press and a conveyor belt moving scrap
produced by presses. This step by step process has been adopted,
in order to provide of a Proof of Value (POV) approach,
which is necessary before considering an overarching Smart
Maintenance solution, spanning more machines and failures of
production lines.

2.2.1. The Scrap Belt Use Case
The scrap belt is connected to several lines and runs underground
the BENTELER factory hall. Any scrapmetal accumulated during
the production process is placed onto the scrap belt. Scrap metal
parts are then transported from the production line to a scrap
metal container, and then to recycling. The proper functionality
of the scrap belt is crucial to production, since a halt of the scrap
belt means a potential halt of several production lines.
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FIGURE 4 | Identification of Use Cases along the machine structure.

FIGURE 5 | Selection of Use Cases with a portfolio. Colored boxes represent Use Cases (partly anonymized), where similar colors represent logic groups of Use

Cases. Additionally, clusters can be found (e.g., all Use Cases contribute to “Machine-Health-index,” marked green). The two example Use Cases “oil leakage at

hydraulic press” and “outage of scrap belt” are located in the upper right quadrant, thus being most simple to implement, yet yielding most benefit.

The focus of our study is to early detect pile-up of scrap metal
and, thus, allow for time to take counter-measures in order to
prevent a halt of the scrap metal belt. Even in the case of a

complete halt, maintenance can be triggered much faster due
to the continuous condition monitoring. In addition, diagnostic
algorithms can provide maintenance or repair advice, suggesting
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FIGURE 6 | Hot forming press process step.

possible causes of the failure. This significantly limits the manual
fault diagnosis in the underground tunnel and allows a faster
restoring of the regular belt functionality.

2.2.2. The Hydraulic Press Use Case
The hydraulic press use case is a complex hot forming line
consisting of five consecutive process steps as presented in
Figure 6. Its main task is the stamping of a sheet metal into a
three-dimensional shape. The metal is heated before stamping
and rapidly cooled down during stamping. This causes the
material to be hardened, which is important for structural
components for the automobile industry.

Our study focuses on the early detection of oil leakage
occurrences. Despite the fact that, typically, oil is mostly stored in
large tanks equipped with oil level sensors, oil leakage detection
is a challenging problem due to the continuous movement of oil
across the machinery equipment parts. Such movement results
in frequent increases and decreases of oil level. Therefore, and
somehow counter-intuitively, simply monitoring the oil level is
not adequate to provide concrete evidence about oil leakage.

This business process is heavily affected by the installment of
predictive and smart maintenance processes. The main objective
of smart maintenance algorithms is the detection (condition
monitoring) and prediction of oil leakages. Based on our results,
maintenance processes can be triggered much faster or even in
advance. Maintenance and repair activities can be planned more
efficiently, and manual diagnosis is prevented.

2.3. Best Practices
It has been verified by the current work that domain
understanding is important in order to build goal driven
solutions. Interviews with domain experts (i.e., maintenance
engineers, industrial IT, automation experts) are the most direct
means for knowledge transfer. Semi-formalized methods like
CONSENS assist the knowledge transfer process providing
visualizations (effective structure diagrams) of the machinery.

The utilization of reactive (i.e., fault detection) and proactive
(i.e., failure prediction) monitoring approaches can potentially
increase the speed of reaction to crucial maintenance issues,
enabling the prescriptive maintenance in which the maintenance
and repair activities can be planned a priory.

3. DATA INFRASTRUCTURE

Efficient data handling is a crucial factor on the application of the
smart maintenance approaches and on the model and knowledge
transfer processes. The amount of sensor and production data
produced on the BENTELER plants on daily basis is of the size of
Big Data. In order to allow the analysis of this massive amount of

data BENTELER is deploying a common policy of data handling
for all distinct plants.

Each plant has a local time series database infrastructure,
where through OPC-UA and other proprietary tools and
protocols, all the produced data are persisted. For the
development and testing of new smart maintenance solutions,
BENTELER has created a remotely hosted cluster infrastructure,
orchestrated by a containerized applications management
software, called Developers Space. On this containerized
infrastructure, the data of each distinct BENTELER plant can
be mirrored on a local time series database, Figure 7, using an
advanced distributed data streaming platform.

Deploying a smart maintenance solution in the Developers
Space virtually deploys the same solution in all the connected
with the Developers Space plants. If the deployed solution
satisfies specific quality and performance aspects it can either
remain deployed in the Developers Space, or if it is necessary it
can be deployed on a local containerized infrastructure in one of
the plants, in order to place the solutions closer to the use case
that it monitors.

The components of our smart maintenance platform as
deployed in the Developers Space are presented in Figure 7. The
platform uses a micro-service architecture, where all the micro-
services communicate with each other through a common event
bus. ADashboard allows the user to instantiate the services and to
visualize the results. Themain components of the platform are:

• DataProvider: Responsible to communicate with the time
series database in order to fetch the latest sensorial data.

• Detection: A Fault Detection service to detect anomalies is the
sensor measurements.

• Prediction: A Failure Prediction service to predict prominent
failures based on the current sensor measurements.

• Fusion: Responsible to combine the output from multiple
either Detection or Prediction services into a single result
based on a pre-specified strategy.

• Reporter: Reports the results of the data analytics services, for
further processing and visualization.

The utilized micro-service architecture enables the distributed
deployment of the platform into decoupled entities, which are
developed and evolve independently to each other providing a
flexible smart maintenance solution.

3.1. Best Practices
A central data infrastructure, as the one presented in this section
(i.e., Developers Space), enables the faster testing of prototypes
in a wider range of use cases. After the successful evaluation
phase in the sandboxed environment, the application may be
moved closer to the application scenario using fog computing
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FIGURE 7 | BENTELER data infrastructure for smart maintenance.

and edge devices in order to achieve faster data transfer for
critical cases. If the requirement for instant data transfer is
relaxed, then the application may continue being deployed in the
central infrastructure facilitating its maintenance.

A containerized environment in the central infrastructure
assists the deployment of multiple solutions utilizing the
minimum hardware resources. Another advantage is that if a
solution tested to work in the central data infrastructure like in
our case, it is also going to work on premises in other BENTELER
plants in containerized environments.

The micro-service architecture of the software solution is the
most appropriate for containerized environments, as it allows the
distribution of the work among different containers providing
the same functionality. Critical parts of the software solution that
demand instant data transfer rates can be deployed on premises
in fog nodes (i.e., node of fog computing), while the software
components that need more computation resources and allow
more relaxed data transfer rates can be deployed in a remote
location like the Developers Space.

4. DATA UNDERSTANDING AND
MODELING

4.1. Data Inventory and Semantics
In industrial applications, availability of data is a concern. Data
may be produced within old machinery or legacy system. In

industrial manufacturing, a numerous range of heterogeneous
data sources and IT systems of different types can be found,
spanning various areas and processes along the enterprise.
Commonly, machine data is collected from programmable logic
controllers (PLC). However additional measurements can be
added by retrofitting sensors to existing systems. Various control
systems can be in place that facilitate acquisition of machine
data, known as SCADA systems (supervisory control and data
acquisition). A various range of protocols, e.g., OPC/UA or
MQTT, are common in industrial automation and can be
operated in parallel for several subsystems of one plant. Higher
order systems also collect or provide relevant machine and
process data, e.g., MES (manufacturing execution systems),
ERP (enterprise resource planning), or CAQ systems (computer
aided quality).

When planning a smart maintenance solution, it is necessary
to get an overview of various data sources and systems within
production, their availability and context. References to data
sources can be made on different levels:

• Reference to availability within data infrastructure
• Reference to the machine function and operation
• Reference to the manufacturing and maintenance process.

The main purpose of a data inventory is to identify relevant
data sources within the production and maintenance context.
It is a prerequisite to integrate data sources and to make them
available for smart maintenance solutions. A data inventory is
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FIGURE 8 | Data Map for the visualization of data sources and data flow along the manufacturing process.

built by interviewing stakeholders relevant to producing data
(e.g., automation experts, production planners, shift leaders,
maintenance experts) and using existing documentation.

The structure models built within the domain understanding
can be enhanced by adding references to data sources. In
Figure 4, circles denote points of measurement at system
elements. By back-tracing possible failures through the energy
or information flow within the system (red arrows in Figure 4),
signals can be found that are possible indicators for impeding
failure (red circles in Figure 4). This gives data scientists
important information about the data points and their relation to
a machine function and operation and is also used for the design
of models for smartmaintenance.

Within a data map as described by Joppen et al. (2019), the
identified data sources are shown in context of themanufacturing
and maintenance processes. The interconnection of data sources,
as well as data flows between IT systems and production
resources are given. The data map is based on the data inventory
and gives context to the process information collected during
domain understanding. It aids the project team and especially
data scientists with the overall design of a smart maintenance
solution and its embedding into the maintenance process from
a use case point of view.We have enhanced the data map (Joppen
et al., 2019) by improving the visibility of data flow in various data
bases and IT systems. An example of our proposed enhanced data
map is given in Figure 8, where the information is given in three
lanes. The top lane shows a simplified view of production and
maintenance process steps. In the middle lane, documents and
databases are visualized that affect each process step. Documents

and databases are structured by IT-Systems (colored rows). The
bottom lane lists the data sources by their identifiers underneath
the respective document or database. In the middle and lower
lane, lines are used to visualize data flows.

The above-mentioned models for data inventory, structure
models, and data map, are used for informal or semi-
formal information gathering. They are informal means for
semantic data modeling. The main intention is to enable
the communication between different stakeholders in the
manufacturing and maintenance domain, automation, IT
systems, management and data analysts. The utilization of
expert’s knowledge is an important factor to implement efficient
solutions, as it broadens the understanding of the analysts
for the mechanical equipment of interest. These methods are
assisting the knowledge transfer and, thus, the design of smart
maintenance solutions from data and machine learning models
to use case design.

Semantic data models also support the transfer to other plants.
The equipment and the production process might differ between
plants. However, the type of the machines used in the shop-
floor in most of the cases is common, as the context of the
production is the same (i.e., automotive parts). In addition to
the informal and semi-formal models, formal semantic data
models based on ontologies can be built. Especially in the case
of common context, e.g., hot/cold-forming presses, scrap-belts,
this semantic model can be a common dictionary of ontologies,
offered to semantically describe each aspect of the production
of each distinct plant, applying a uniform approach. Deploying
smart maintenance solutions developed to process the data based
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on their semantics, increases the agility and the portability of the
deployment, ameliorating multiple model transfer issues. Formal
semantic models are also an important step toward automated
setup and adaption of smart maintenance models, since they
allow to overcome the problems of heterogeneous, unstructured
data sources by giving context. However, the increased degree
of formalization comes with an increased effort for building the
respective semantic model. Hence, the semantic model and its
degree of formalization (e.g., basic data inventory vs. a fully
modeled ontology) should be decided based on cost and benefit
considerations. Strategic arguments should be also considered,
since a semantic model is also relevant in the context of building a
digital twin of the production, which offers application scenarios
and benefits.

4.2. Data Understanding
Data understanding is required in order to build detailed
data models tailored to each specific use case. In BENTELER
case, we have applied two monitoring approaches, a failure
prediction and a fault detection one. For the current analysis,
the difference between failures and faults is that, the former
are serious equipment malfunctions that stop the production
potentially for several hours, while the latter can cause minor
deviations from the normal behavior for the equipment that
usually affect the quality of the end product and might lead
to a failure.

Both monitoring approaches are applied on preprocessed
data in order to filter out noisy values usually encountered
at the beginning or at the end of the production batches, or
during idle periods of the equipment (e.g., applying maintenance
actions, replacing specific equipment artifacts for the production
of the next batch), or idle periods caused by bottlenecks in the
production chain. A characteristic example is the scrap-belt use
case, where the electrical current of the motors moving the belt is
instantly increased in abnormal levels on every cold start and it
drops to zero when the belt is not moving.

There are also monitoring policies that apply on the idle state
of the equipment that consider the values obtained during the
normal functionality as noise. An example is the monitoring of
the hydraulic oil level of the hot-forming press use case. The
oil tank of the hydraulic system is attached on the press, hence
during the normal functionality of the press there are serious
deviations in the oil level measurement due to the movement of
the stamper of the press. In this specific use case we apply two
policies, one that monitors the oil level at the highest pressure
applied from the press (i.e., during the production of an item)
and one that monitors the oil level when the press is idle.

4.3. Data Modeling
Each distinct monitoring policy uses a different data model to
identify when the press is moving or not. The failure prediction
monitoring approach uses a motif detection algorithm (Yeh et al.,
2017), to map sets of sensor measurements to artificial events,
in order to apply algorithms for event-based prediction inspired
by the aviation industry, like the one proposed in Korvesis et al.
(2018). The reasoning behind themeasurement to eventmapping
is that, before a major failure in the equipment, there might be
indications in the form of repeating events (e.g., minor faults,

anomaly behavior), which, if be identified early, can potentially
predict the upcoming failure. These repeating events along with
historical information regarding major failures, are used to train
Random Forests models for failure prediction.

The fault detection approach is used to complement the
prediction approach as it can be used on cold start with some
basic parameterization. The detection is based on an ensemble
of unsupervised monitoring approaches. As the nature of the
faults (i.e., the sensor measurements footprint) might differ
between different fault types, a single monitoring approach
would not be enough to cover all the cases. For example, a
fault might have a footprint with spikes on the measurements,
hence an approach that monitors the trend of the measurements,
would not be able to detect it. Our proposed fault detection
approach uses (i) a distance-based outlier detection algorithm
on streaming data (Georgiadis et al., 2013), to detect abnormal
values (including spikes) in the measurements, (ii) a linear
regression algorithm combined with lower-upper thresholds for
detection based on the trend of the measurements and (iii) a
simple threshold-based approach as a fail-safe mechanism if all
the other approaches fail to identify a fault.

4.4. Best Practices
The semantic representation of each aspect of the production
enhances the uniformity toward the model transfer goal. When
deciding for the needed degree of formalization for a semantic
representation, cost-benefit and strategic considerations
should be considered. In the example of BENTELER, graphic
system structured models have been selected in lieu of full-
fledged ontology models, since it followed a more hands-on
approach and straight exploitation in the design of a smart
maintenance solution.

The understanding of the data based on the obtained domain
knowledge is important, in order to identify the relevant data
sources and to select, filter, transform and combine the most
appropriate features in each use case. The latter preprocessing
steps need to take place in isolation from the actual data
processing for fault detection and failure prediction, in order to
provide context agnostic solutions toward the utilization of the
full spectrum of the capabilities that the semantic representation
can offer.

5. PROCESS INTEGRATION AND
TRANSFER

5.1. Process Integration
The data infrastructure presented in section 3, offers a
containerized applications management system for the
automation of the deployment and the handling of the scaling
in the BENTELER Developers Space. It offers a web interface,
on which developers can upload configuration files for the
deployment of the docker containers. The same configuration
files are used to deploy multiple containers, supporting different
instances of the same micro-services, upon request, for scenarios
where the availability of the service is crucial or when the
incoming throughput of sensorial measurements is above
the capacity of a single container. Developers also provide
configuration files for deployment using the docker-compose
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FIGURE 9 | Process integration scenario.

tool outside the provided container management environment
of the Developers Space, in order to support the deployment
on BENTELER plants that might not communicate with the
Developers Space or they do not have a local Developers
Space infrastructure.

The platform offers a batch run feature, where configuration
files are uploaded, containing information regarding the tasks
that need to be started and their configuration. A single file can
be constructed by the data scientists, either per use case, or per
BENTELER plant containing multiple use cases, which includes
the required information to deploy the tasks in the platform with
minimum effort. For the monitoring and handling of the running
tasks, the platform offers a web interface, where the user can
start, stop or get details (i.e., parameterization) regarding each
running task.

Figure 9 presents a process integration scenario depicting
the communication between the different components in order
to obtain the data, analyze them, provide the results to the
maintenance engineers and receive their feedback. The figure is
divided into two areas, the Developers Space and the Shop floor.
We consider that the developers and the data scientists act in the
Developers Space, while the maintenance engineers in the Shop
floor interacting with the respective components of the system.

The first step of the process is the Data Collection, where
appropriate bridges are built to transfer the data from the Shop
floor to the Data Analysis components. The data are analyzed,
and the results are sent to the Results Reporting component,
which is responsible for the circulation of the results. In the
presented scenario the results are stored in a time series database
and sent to a Decision Support System (DSS).

The smart maintenance platform encapsulates a Grafana
platform1 for the visualization of the results. Grafana uses
the time series database of the Developers Space as a data
source, hence it can visualize both the analysis results and the
persisted sensorial measurements. Multiple Grafana dashboards
are provided visualizing valuable information for both the data
scientists and the maintenance engineers. The data scientists can

1https://grafana.com/

visually assess the sensitivity of the different parameterizations
of the data analysis tasks, inspecting the number of reports per
task, in combination with information from the maintenance
logs. The maintenance engineers can set automated rules in
Grafana, in order to get alerted inside the Grafana platform
when a plotted measurement satisfies specific criteria, e.g.,
when two or more detection monitoring tasks with different
parameterizations report that something is going wrong on the
same sensorial input.

Apart from the Grafana dashboards, maintenance engineers
are equipped with mobile devices with a notification’s application
installed, which directly communicates with the DSS. Whenever
a data analysis result arrives in the DSS, a set of pre-defined
rules is activated, in order to apply an initial assessment of the
situation and, if deemed necessary, to notify the appropriate
maintenance engineers. The engineers apply the final assessment
and the required actions based on the provided information.
A feedback mechanism is also deployed, which allows the
engineers to evaluate the analysis results providing a rating and
a free text comment. The rating information can be directly
used for the retraining of the failure prediction models or
the reconfiguration of the fault detection tasks. The provided
comments can be manually processed by the data scientist in
order to extract knowledge.

5.2. Transfer of Models
The aforementioned phases from domain understanding to data
modeling and process integration have been described in context
of a single production line in one plant. However, the solution can
be transferred to similar production lines, as well as other plants,
thus reducing the overall development cost for one deployed
smart maintenance solution. A successful transfer requires the
transfer of detection or prediction models and must consider the
underlying data models, infrastructure, as well as the specifics
of the use case, i.e., details about machines together with the
specific production and maintenance processes at the plant
under consideration.

A solution pattern combines all necessary technical
components, as well as supporting documentation for
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FIGURE 10 | Components of a smart maintenance solution pattern.

deployment and application of the solution. As a reusable
pattern, it facilitates the adaption and deployment on new
infrastructure. It thus covers the following items of a smart
maintenance solution:

• Program code or container of the implemented
detection/prediction model,

• Program code or container for the visualization or dashboard,
• End-user manual for the deployed dashboard or visualization

and its application within the production and maintenance
process, e.g., how to handle alerts,

• Guide to parameterization of the model according to specific
machines and sensors, e.g., how to set thresholds,

• Guide to technical configuration according to specific
data infrastructure, e.g., local service architecture, data
base schemes.

A solution pattern is preceded by a scenario description. It
is a short briefing describing the scope and the requirements
to the solution and allows a quick selection and decision for
a fitting solution to a problem at hand. In Figure 10, the
technical components, as well as documentation components
constituting a solution pattern are summarized. It is important
that guides and manuals are kept concise and consistent between
various solutions. This reduces documentation effort during
development and implementation effort during deployment at
the same time.

The modular description of the solution pattern ensures a
clear distinction between general-purpose parts of a solution
and individual parts. Even if use case specific implementation
may be necessary for an individual smart maintenance solution,
the modular description still allows the efficient reuse of tested
components of solution patterns. Overall, using pre-tested

and evaluated components not only allows the transfer
of functionality, but it also increases acceptance of smart
maintenance among different plants and users.

In a next maturation level, an automated configuration and
parameterization can be developed based on the documentation.
A good data quality and the availability of formal and semantic
data models based on a common vocabulary are required, in
order to allow a profound automation. Automated solutions
simplify the application in other plants and push toward a
commoditization and servitization of smart maintenance, e.g., in
the form of a smart maintenance app store.

However, most current real-world scenarios, even within a
corporation like BENTELER, are characterized by individual
specificities and preconditions. The development effort for
unified and standardized infrastructure and/or common
semantic models needs to be justified, to proceed to such an
investment. The aforementioned solution patterns thus offer a
good balance between individual adaption efforts and general-
purpose development efforts. They are a prerequisite to fully
automated deployment, and thus a practical and useful solution
for most current use cases.

5.3. Best Practices
Containerization solutions facilitate the deployment of the
solutions enhancing ITS transfer capability to other plants.
Maintenance engineers should focus on the results of the data
analysis and not on the parameterization and the configuration
of the analysis. Hence, it is important to automate to the possible
extend the configuration or provide a set of pre-configured
tasks. Clean and user-friendly interfaces should be provided
for the results presentation and visualizations provide a safe
option as they clearly depict the issue and allow its tracing

Frontiers in Computer Science | www.frontiersin.org 11 November 2020 | Volume 2 | Article 57846996

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


von Enzberg et al. Predictive Analytics for Smart Maintenance

FIGURE 11 | Summary of best practices for successful implementation and deployment of a smart maintenance solution in industrial manufacturing.

through the plotting of historical information. A mobile device-
based notifications mechanism is also useful, to make sure
that the engineers are informed on time for the detected or
predicted faults.

The utilization of solution patterns, facilitates the adaption
and deployment of the PdM solution on new infrastructure, by
reducing the documentation and implementation effort during
the development and deployment phases, respectively.

6. EMPIRICAL RESULTS AND BEST
PRACTICES

This section, provides an outline of the best practices and the
proposed tools and methods, presented in the previous sections.
As Figure 11 depicts, the communication between the domain
experts, the data scientists and the developers, is important
in order to achieve the knowledge transfer for the domain
understanding and the use case definition. The process can be
supported by semi-formalized methods.

In the process integration phase, the focus should be on the
maintenance issues and the results of the models. Automated or
assisted configuration of the software solution and user-friendly
interfaces are proposed, to avoid distracting the maintenance
experts’ attention from the actual maintenance issue and the
guidelines for its mitigation. The adoption of a solution pattern
aids the transfer of the software implementation to similar use
cases providing a holistic PdM solution to the company.

The data infrastructure contributes significantly to the
implementation and model transfer phases. A centralized

infrastructure offering a containerized environment eases the
development of a micro-service based PdM solution offering
flexibility and easy distribution of the workload.

The context awareness is important for the domain and
data understanding, which in turn are important for the data
modeling. However, the end solution should be context agnostic
in order to be easily transferable to a wider range of use cases.
The utilization of semantic models and semi-formalized methods
strengthen the agnostic nature of the PdM solution.

For the scrap belt use case, a fault detector could be developed
rapidly using the presented methodology. Already within the
observed period of roughly 1 year, four alarms have been given
for respective incidents by the fault detector. The mean time to
repair (MTTR) has thus been reduced from 6 to 4 h, and the
mean time between failure (MTBF) has increased from 30 to 180
days. With further improvement of the fault detector, a higher
sensitivity or even prediction is expected to increase the number
of predicted incidents to 11 per year, thus resulting in an expected
further reduction of MTTR to 2 h and increase of MTBF to
365 days.

Fault detection and maintenance dashboards have been
transferred to multiple sites, thus leveraging the benefit for
BENTELER even further.

7. CONCLUSION

This work highlights the crucial aspects of the PdM
implementation process, toward the integration of a smart
maintenance solution within a company. Through practical
examples, which are derived from a lighthouse factory (i.e.,
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BENTELER plant) within the BOOST 4.0 project, a business-
driven process for the implementation of predictive analytics
is proposed.

The process is divided into three main phases Use Case
Analysis, Proof of Concept, and Deployment, while four main
aspects need to be considered in each phase: Analytics Use
Case, Data Sources, Data Infrastructure and Data Analysis. The
first process phase, Use Case Analysis, includes the domain
understanding and the use case analytics sub-phases, which
enable the Use Case definition. The Proof of Concept phase is
comprised by the data acquisition, data fusion and data pre-
processing sub-phases, which facilitate the data understanding
and modeling. The final phase, i.e., Deployment, includes the
process integration, the roll-out and the scale-up sub-phases,
providing a holistic solution to the company.

In order to effectively address the PdM implementation
process, the work presents a set of best-practices, proposed tools
and methods for each one of the Domain Understanding and
Use Case Definition, Data infrastructure, Data Understanding
and Modeling and Process Integration and Transfer of
Models sub-processes.

The proposed methodology has been successfully applied to
multiple BENTELER plants, leading to reduced mean time to
repair and significantly increased mean time between failure.
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Intelligent Predictive Maintenance and
Remote Monitoring Framework for
Industrial Equipment Based on
Mixed Reality
Dimitris Mourtzis*, John Angelopoulos and Nikos Panopoulos

Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of
Patras, Patras, Greece

The currently applied maintenance strategies, including Reactive and Preventive
maintenance can be considered obsolete. The constant improvements in Information
and Communication Technologies as well as in Digital Technologies along with the
increase of computational power, have facilitated the development of new Artificial
Intelligence algorithms to integrate cognition in computational systems. This trend is
posing a great challenge for engineers, as such developments will enable the creation
of robust systems that can monitor the current status of the machines and by extension to
predict unforeseeable situations. Furthermore, Smart Computers will be capable of
examining all possible scenarios and suggest viable solutions in a fraction of time
compared to humans. Therefore, in this paper, the modelling, design and development
of a Predictive Maintenance and Remote Monitoring system are proposed, based on the
utilization of Artificial Intelligence algorithms for data acquisition, fusion, and post-
processing. In addition to that, the proposed framework will integrate a Mixed Reality
application for the intuitive visualization of the data, that will ultimately facilitate production
and maintenance engineers to monitor the condition of the machines, and most
importantly to get an accurate prediction of the oncoming failures.

Keywords: artificial intelligence, predictive maintenance, remote monitoring, augmented reality, machine learning

INTRODUCTION

Maintenance of industrial equipment as a part of the manufacturing lifecycle, approaches 60–70% of
the overall cost of production. Therefore, being able to predict and perform machine maintenance
operations in a short period of time can lead to successful troubleshooting, and at the same time
increase the availability of machine tools (Mourtzis et al., 2015). Currently, inadequate maintenance
techniques can reduce the total productive ability of the plant by between 5 and 20% (Wollenhaupt,
2016). Traditionally, maintenance professionals have combined several techniques, both quantitative
and qualitative, with the aim to anticipate potential problems and alleviating downtime in their
production plants. Predictive maintenance gives them the potential to optimize maintenance tasks in
real time, maximizing the useful life of their equipment while avoiding disruption of operation.
Recent studies also show that unplanned downtime is costly, with an estimation of $50 billion per
year for global producers (Deloitte, 2017a). In the Industry 4.0 environment, maintenance should do
much more than simply prevent the downtime of individual assets. Predictive maintenance increases
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uptime by 10–20%, while reducing overall maintenance costs by
5–10% and maintenance planning time by 20–50%. Furthermore,
due to increased interconnectivity and new opportunities for
collecting, processing, and analyzing information, predictive
maintenance can be a very powerful strategy (Deloitte, 2017b).

In addition to failure prediction, a significant challenge is the
implementation of reliable and error-free maintenance operations
and, as a result, the constant validation of fully working equipment
as soon as possible. To that end, a significant amount of
development work has been made to design and improve real-
time technical service systems and software focused onmobile apps
to prevent unwanted errors andmalfunctions (Masoni et al., 2017).
Moreover, the handling of complex cases of smart factories,
intelligent maintenance, self-organized adaptive logistics,
customer-integrated engineering and smart factory architectures
require the integration of production data into modeling that can
only be achieved with the use of advanced simulation and
Information Technology (IT) (Mourtzis, 2020). Moreover, the
value of products will eventually be focused on their software
parts not on their specification or implementation functions under
the Product Service Systems (PSS) paradigm (Mourtzis et al., 2018).
With the advancement of Information and Communication
Technology (ICT) and cutting-edge technologies such as Mixed-
Reality (MR), Augmented Reality (AR) and Virtual Reality (VR),
the academic domain is expanding this strategy by leveraging the
advantages of AR for data visualization during maintenance
operations (Mourtzis et al., 2017; Mourtzis et al., 2018;
Palmarini et al., 2018). Emerging technologies such as the
Internet of Things (ΙoΤ), cyber-physical networks and cloud
computing have enabled the processing of vast volumes of
tracking data, which is intended to significantly increase
manufacturing productivity (Tao et al., 2018; Fantini et al.,
2020). However, as a core topic in prognostics and health
management, the remaining useful life (RUL) prediction based
on monitoring data ca be used to prevent a failure triggered (Lei
et al., 2018). RUL prediction is thus a hot topic that has drawnmore
andmore interest in recent years (Yang et al., 2019). Most research
studies on intelligent prognosis and health management (PHM)
analysis using data-driven approaches by deducing correlations
between data from different sensors ( e.g. accelerometers, acoustic
energy emission) to determine the remaining useful life (e.g.
accelerometers, acoustic energy sounders, etc.). In order to limit
the complexity inherent in the dynamic updating of online data,
Machine Learning has arisen as a way of analyzing vast volumes of
data for statistical purposes. Especially in the implementation of
neural network-based techniques, complex multidimensional non-
linearities can be used for automated learning, allowing for efficient
processing of data features in an attempt to provide optimized
solutions (Vogl et al., 2019).

Having identified the above-mentioned challenges, this research
work presents the design and development of a predictive
maintenance framework for industrial equipment. Further to
that the contribution of this research work extends to the
presentation of a custom Data Acquisition (DAQ) device and a
framework for processing the data via the Digital Twin of the
equipment for the calculation of Remaining Useful Life of critical
components. The remainder of the paper is structured as follows. In

State of the Art the most pertinent literature is reviewed, and
commercial devices are compared. In Proposed System
Architecture, the proposed system architecture is presented. In
System Implementation the practical implementation steps are
discussed. Then in Case Study, an experimental case study that
has derived from Industry is presented and the results are discussed.
Finally, in Concluding Remarks and Outlook, the paper is
concluded, and future research points are discussed by the authors.

STATE OF THE ART

Machine Learning
Among the latest trends in the modern manufacturing world, is
the so-called AI. An also well-known subset of the above-
mentioned concept is Machine Learning (ML). Concretely ML
algorithms are defined as computer-based algorithms that
improve their efficiency through experience, i.e. data
processing (Mitchell, 1995). Globally the AI adoption is
surging at enormous rates, as it becomes apparent in the
report presented in (Hupfer, 2019), from where it can be
concluded that AI adoption marked a surprising 270%
increase in a timespan of 4 years along with an increase in
global spending of around 80 billion dollars Figure 1.

Additionally, Deep Learning (DL) techniques have been
applied for the integration of systems in edge computing,
setting edge nodes in edge services and terminal devices, using
DL architectures for predictive analysis with quick preprocessing
and accurate performance classification to assess the life
expectancy of components. A classification of the most
common DL frameworks is as follows:

• Neural Networks (NN) (Chryssolouris, 2006; Chen et al.,
2019)

• Deep Neural Networks (DNN) (Zhao et al., 2017)
• Convolutional Neural Networks (CNN) (Li et al., 2018;

Mourtzis et al., 2020a)
• Recurrent Neural Networks (RNN) and Long Short-Term

Memory (LSTM) (Zhao et al., 2017)
• Gated Recurrent Units (GRU) (Chen et al., 2019)
• Recurrent Neural Network (CNN-RNN) (Banerjee et al.,

2019)
• Convolutional Neural Network and Long Short-Term

Memory (CNN-LSTM) (Kong et al., 2019)
• Convolutional Neural Network and Gated Recurrent Unit

(CNN-GRU) (Lei et al., 2018)

As Industry 4.0 continues to evolve, many companies are
struggling with the realities of AI implementation. Indeed, the
benefits of PdM such as helping determine the condition of
equipment and predicting when maintenance should be
performed, are extremely strategic. The implementation of ML
frameworks can lead to major cost savings, higher predictability,
and increased availability of the systems. Therefore engineers
have focused their efforts on the development of new technologies
and techniques for facilitating the prediction of manufacturing
equipment malfunctions and therefore to further optimize
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existing maintenance policies as well as to introduce more
adaptive maintenance policies. PdM can be defined as a series
of processes, where data is collected over time in order to monitor
the state of equipment, in a manufacturing system. Ultimately,
the goal is to identify/recognize patterns that in turn will facilitate
engineers to predict and ultimately prevent failures
(Rezaeianjouybari and Shang, 2020). Some of the most
common problems that can be addressed with PdM include,
the calculation of Remaining Useful Life (RUL), which aims at the
suitable scheduling of future Maintenance and Repair Operations
(MRO), Flagging Irregular Behavior, which is based on anomaly
detection by the utilization of time series analysis, and Failure
Diagnosis and Recommendation of Mitigation after failure (Lei
et al., 2018; Mourtzis et al., 2020a). While certain Facility
Managers perform PdM, this has been done traditionally by
using Supervisory Control and Data Acquisition (SCADA)
systems set up with human-coded/hard-coded thresholds, alert
rules, and configurations. However, this is a semi-manual
approach that does not take into consideration the more
complex dynamic behavioral patterns of the machinery, or the
contextual data relating to the manufacturing process, thus
lacking adaptability relative to the current status of the
industrial equipment (Nicholson et al., 2012). What is more,
in recent research works SCADA systems are integrated with ML
algorithms, in order to extend their usability as well as to shift
towards prognostics (Pang et al., 2020; Ruiming et al., 2020;
Zhang and Lang, 2020). In the research work of Wang et al.

(2020), the authors have developed a framework based on
Convolution Auto Encoder and Long-Short Term Memory
(LSTM) in an attempt to estimate RUL more accurately in
comparison to conventional methods. For the recognition of
patterns, which facilitates the process of building the
predictive model, data exploration techniques must be utilized
so that the engineer can determine whether the data includes
degradation or failure patterns (Erfani et al., 2016; Li et al., 2019).

Remaining Useful Life
As the name indicates, Remaining Useful Life, also referred to as
RUL, describes a wide variety of algorithms which aim to predict
the remaining life of assets and/or their components, ultimately
developed under a predictive maintenance framework. According
to Baru (2018) there can be identified three basic techniques
regarding the calculation of RUL based on the data that are
available, namely lifetime data, run-to-failure data, and known
threshold data. An interesting approach in presented in (Loutas
et al., 2013) for the calculation of RUL for rolling bearings based
on the utilization of ε-Support Vector Regression (ε-SVR),
concluding that linear models cannot provide accurate results
since there is non-linear between the features extracted by the
data spectral analysis and the RUL prediction. Another aspect of
the usefulness of RUL estimation is presented by (Sun et al.,
2020). The authors have implemented a framework for the RUL
calculation of cutting tools, thus managing to increase the
environmental sustainability of the cutting tools by 8.39% per

FIGURE 1 | Machine Learning Types & algorithms (Adapted from Ahmed and Khan, 2019).
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flute. From the investigation of the available literature it can be
concluded that the estimation of RUL is a challenging topic,
requiring exhaustive data processing. Further to that in the
majority of the publications it is implied that linear
approximations regarding the degradation of the physical
system are not sufficient in terms of accuracy, as presented in
(Yang et al., 2021), where the authors investigated the prediction
of RUL in inductionmotors. The authors in (Wen et al., 2021) has
proposed a generalized methodology for the prediction of RUL
based on the fusion of multiple signals. It is worth noting that they
achieved an increase in terms of accuracy of approximately 10
percent. Kozjek et al. (2020) have also presented an interesting
research work on the prediction of RUL with the utilization
reinforcement learning, which is compared with two other
algorithms, indicating promising results. In the research work
of (Liu et al., 2019), a RUL prediction framework is proposed
based on Health Index comparison, making it suitable for cases
where there is limited amount historical data. It is stressed out
that the topic of RUL prediction is still challenging for engineers
and by extension there is plenty of room for improvement. In
addition to that, the use of Digital Twin could compensate the
lack of raw data from machines, with the generation of fault
datasets.

Extended Reality
Among the latest developments of the current industrial
revolution, advances in high-end digital technologies are
entailed, including Extended Reality (XR). In its essence, XR
is an umbrella term, often used by engineers and researchers
around the world, in order to describe technologies such as
Augmented Reality (AR), Mixed Reality (MR), and Virtual
Reality (VR) (Mourtzis et al., 2020b). The two former
technologies are very close, since they are based on the
partial immersion of the user to a virtual environment, while
the latter, implies the total user immersion in a virtual,
computer generated environment. In addition to that, what
differentiates AR from MR is the fact that MR is based on
the user interaction with the digital information, also known as
holograms in that case (Fast-Berglund et al., 2018). The use of
AR in maintenance is an important aspect that has to be further
researched under the Industry 4.0 framework. Since new
technologies are constantly becoming available, existing
techniques could be leveraged so as to increase the efficiency
of maintenance tasks, minimize the errors and the risks imposed
in such operations. As presented in the research work of
Vorraber et al. (2020), both maintenance technicians and
experts are keen on integrating AR and MR solutions in their
line of job, in order to achieve better communication and most
importantly to limit the complexity of the maintenance
procedures. Although the maturity level of AR applications
has increased during the last decades (Mourtzis et al., 2020c),
there are constantly arising new challenges, such as the
integration of Predictive Maintenance and AR/MR so that
digitalization of the manufacturing processes becomes a
reality (Wolfartsberger et al., 2020). Further to that in two
recent systematic literature reviews, presented by Palmarini
et al. (2018) and Egger and Masood (2020) the current

implementations of AR are based on manual solutions and
the use of Predictive Analytics/Prognostics has not been yet
faced, thus indicating that there is fertile ground for further
research in that field.

PROPOSED SYSTEM ARCHITECTURE

In the following paragraphs the proposed system architecture will
be discussed in detail. The key aspects of the proposed
methodology are the DAQ device, which conforms to the
latest IoT standards. However, in order to efficiently monitor
the status of professional refrigeration systems, they have to be
analyzed into two subsystems, namely the cooling chamber of the
refrigerator and the compressor compartment. These two
subsystems often are not located in the same room/building,
thus require different DAQ devices to be installed. By the virtue of
the diversity of installed sensors, crosschecking the measured
values, is enabled and therefore more accurate predictive models
can be trained. The general architecture of the proposed is
depicted in Figure 2.

Data Acquisition Device
In this section the architecture of the framework for the DAQ
device will be discussed. For the DAQ module, two main aspects
will have to be investigated, namely the DAQ device and the
communication interfaces as well. The development of the DAQ
device is based on the design of a custom circuit board in
combination with an Arduino micro-controller which
incorporates all the required modules for the data acquisition
from the sensors attached to the board, the pre-processing of the
data, an interface for user interaction and a wireless network
module for the data transmission to the Cloud Database. In order
to make the DAQ device adaptive to the customer needs, and
subsequently to support a wide variety of configurations, the
sensor modules are not hardwired/soldered on the main PCB of
the DAQ device. More specifically, the PCB supports wired
connectivity, through 3.5 mm jack ports for the sensors.
However, in order to enable the communication between the
DAQ device (Fig. 3A) and the Cloud Database an RF-based
Wireless Sensor Network (WSN) is utilized. For the setup of the
WSN, XBee modules are utilized. More specifically, an XBee
module (Figure 3B) is installed on each of the DAQ devices and
another one is installed on a computer which acts as the network
coordinator. For the correct communication of the DAQ devices
to the computer, each RF module is tagged. Furthermore, during
the data transmission, the data packets are also including the tag
of each RF tag, so that the received data can be correlated to the
corresponding machine.

As far as the sampling rate is concerned, the DAQ device
collects feedback from the installed sensors on a varying rate. The
sampling rate for the accelerometer sensor is set to one (1) second
or 1 Hz. As far as the sampling rate for the temperature sensor is
set to 5 s and for the pressure sensor is set to 10 ms (milli-second)
as soon as a surge event is detected. However, if the customers
require a different resolution regarding the data collection and by
extension the estimations made by the framework, then they
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adjust the sampling rates. In Figure 3, the prototype board for the
DAQ device is presented.

Digital Twin Development
In order to create a suitable framework for the predictive
maintenance functionality of the equipment, the design and
development of a Digital Twin is required. The aim is to
analyze the data gathered from the DAQ devices and based on
the simulation model to predict future equipment malfunctions.
Therefore, in the case of the refrigerators, the physical model is
created in the Simulink programming environment. For the
simulation of the model, MATLAB is also utilized for
handling the imported data as well as setting up the
simulation parameters. The physical model of the refrigerator
is fully parametrically designed so that it can be adapted to the
technical specifications of the physical system. In Figure 4, the
developed model within the Simulink environment is presented.

It is stressed out that the model consists of several subsystems,
or else functional blocks, in an attempt to increase the resolution
of the simulation model, such as the compressor, the evaporator,

the condenser, and the refrigerator compartment. In the “Data
Input” block, the data from the DAQ device are imported to the
model. Then the standard refrigeration cycle for refrigeration is
run and the results are plotted. Through the plots, crucial
parameters of the refrigerator, such as temperature, power
consumption and pressures within the refrigerant distribution
network can be observed. For the simulation, the fluid properties
of the R134a refrigerant were also imported in the model. As a
result with the proposed methodology, it is possible to predict
future asset malfunctions based on the simulation of the
refrigeration cycle and plan accordingly their production
schedule so that the equipment downtime is further
minimized. In addition to that, the simulation results are also
combined/fused with the data gathered from the physical
machine so as to predict the RUL of specific components of
the equipment. The usability of the Simulink model extends also
to the generation of fault data. For instance, in the refrigerators a
common failure is the loss of pressure in the refrigerant
distribution network. Therefore, in the existing model the
“fault” is simulated with the addition of an array of blocks,

FIGURE 2 | Proposed System Architecture.

FIGURE 3 | Prototype DAQ device.
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based on which the differential pressure in specific subsystems,
such as the compressor pressure differential is offset to a fault
value. Then after the corresponding datasets for the healthy state
and the fault state have been generated, the model automatically
recalls the RUL algorithm.

In its essence the RUL algorithm utilizes data from both the
digital twin and the physical model for the prediction of the
time, in hours, before maintenance is required. The first step in
the RUL algorithm is the Fourier transformation of the signals
to the frequency domain. The next step is the creation of the
spectrograms for each of the under-examination parameters,
e.g. pressure inlet and outlet in the compressor, vibration
signal from rotational components. In this step, two
spectrograms are created, one for the fault data and one for
the healthy data. Based on the spectrograms of the faulty and
the healthy datasets, features can be extracted and classified for
future use via the use of a Support Vector Machine (SVM).
Therefore, boundary conditions can be formed for the under-
examination parameters. As soon as the above-mentioned
model is trained, then the model is constantly running and
gets updated at a regular basis, given that there are new data
posted on the Cloud database. In an attempt to generate a fault
dataset, modification of the Simulink model is required. The
modification involved the creation of additional subsystems
which are used for the simulation of faults. Ultimately, the goal
of this experiment series is to generate fault datasets, i.e.
datasets containing measurements of the physical model
operating under malfunction. For the generation of the
fault datasets, a pressure drop in the refrigerant network/
piping was simulated and increased humidity within the
cooling chamber. In order to process the data derived from

the simulation runs, the outputs were transformed via Fourier
Transformation, in order to represent the events in the
frequency domain. Then, with the use of spectrograms,
useful features were extracted and based on these features,
with the use of a Support Vector Machine, the faults could be
classified.

Augmented Reality Module
An ARmodule is provisioned in order to facilitate the monitoring
process of the industrial equipment. This module can be realized
as a multi-platform application, from which the customers can
either remotely or on-site visualize crucial information about
their equipment and interact with it, easily and intuitively with
the use of this cutting-edge digital technology. Concretely, the
current implementation of the framework supports handheld
Android-based platforms, e.g. mobile phones and tablets, as well
as Head Mounted Displays (HMD), such as the Microsoft
HoloLens.

User tracking and pose estimation for the Android-based
devices is based on the recognition of a feature-rich image
target, as in the one presented in Figure 5. Further to that, in
Figure 5A the physical form of the image target, whereas in
Figure 5B, the features recognized by the device are overlaid on
the image target.

As soon as the image target is recognized by the device,
through the integrated camera, then the transformation
matrix, denoted as T, between the camera and the marker is
Eq. 1:

xc � T pX (1)

Where:

FIGURE 4 | Refrigerator model in MATLAB Simulink.
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xc is the projection of a point in ideal image coordinates.
T is the pose matrix.
X expresses the points in world coordinates.
Therefore for the calculation of xc a 3 × 3 rotation matrix is

utilized, denoted by R, as per the Eq. 2.

xc � [R|t] pX0⎡⎢⎢⎢⎢⎢⎣ xy
z

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

tx
ty
tz

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ X
Y
Z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Afterwards, in order to translate the result in pixel coordinates,
denoted by xpix , i.e. as a 2D representation, calibration matrix is
used, denoted by C. Consequently, xpix based on Eq. 3 becomes:

xpix � K p xc0⎛⎜⎝ xpix
ypix
1

⎞⎟⎠ � ⎡⎢⎢⎢⎢⎢⎣ f 0 px
0 f py
0 0 1

0
0
0

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ xc
yc
zc

⎞⎟⎠ (3)

Based on the pose estimation steps described in the previous
paragraph, for the registration of the AR content using Android-
based platforms, a fiducial image target is required. As soon as it is
recognized by the device camera, then by calculating the user’s
position and pose, the augmentations are overlaid on the physical
environment.What is more, in order to enhance the user experience,
the application supports the functionality called “Extended
Tracking”, based on which, the handheld device can continue
overlaying the augmentations in the physical environment in the
event of the camera loosing direct contact with the image target.

However, for the implementation of the AR module in the
Microsoft HoloLens HMD, the user pose estimation is
approached in a different way, as the HMD is integrated with
four (4) greyscale tracking cameras. As a result the Depth,
denoted by D, is calculated with the use of Eq. 4.

D � R����������
U2 + V2 + 1

√ (4)

Where:
D Is the Depth
R is the Range, which is measured from the integrated
HoloLens ToF (Time-of-Flight) camera.
U and V are the distance values of a certain point.

Therefore the depth value into real, 3D world coordinates can
be derived from Eq. 5.

⎛⎜⎝ x
y
z

⎞⎟⎠ � D⎛⎜⎝U
V
1

⎞⎟⎠ (5)

Consequently, for the user pose estimation in the case of
Microsoft HoloLens, the developed application initially prompts
the user to select/setup an initial point of reference. This reference
point is then automatically translated into a 3D world anchor
based on which the AR visualizations are positioned and rendered
in the physical environment.

One of the main aspects of the AR module/application, is the
condition monitoring of the assets. This can be done in two ways.
The first solution is for remote monitoring, where the responsible
engineer uses either device to visualize a scaled 3D model of the
refrigerator, upon which important information are displayed.
The second solution is for monitoring the condition of the asset
while inspecting it physically. In the case of the refrigerators,
which is presented in the following paragraphs, it is impossible
for the responsible engineer to monitor the current status/health
of the refrigerator group without having to physically inspect the
compressor unit, which is located away from the cooling
chamber. However, with the proposed framework, it is
possible to recognize the refrigerator, by utilizing the image
targets, discussed previously and retrieve data for the
corresponding refrigerator group from the Cloud database. As
a result, the equipment/asset inspection can be performed in
near-real-time.

Another aspect of the AR application is the provision of a
communication tool, which enables the communication between
the OEM and customer, in order to inspect the equipment in real
time, and in addition to that to create basic AR instructions also in
real time, by performing common “drag and drop” operation in
the field of view of the user. Further to that, this functionality
enables both the OEM and the client to communicate via a video
call session, where the OEM can visualize the field of view of the
user and with the use of basic 3D tool representation, the client
can perform maintenance tasks in real time. The above-
mentioned functionalities are based on the adaptation of the

FIGURE 5 | Example of Image Target used in Android-based AR applications.
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methodology presented in the research work of Mourtzis et al.
(2020b) Figure 6.

SYSTEM IMPLEMENTATION

The proposed architecture can be realized as a multi-sided
application. The first aspect of the application is a desktop-
based application, which communicates with the server in
order to retrieve the data from the server and process them
through the predictive algorithm. The predictive algorithm is
responsible for the identification of patterns within the processed
data. Each of these patterns represents a classification of the
possible situations of the under-examination machine, or cluster
of machines. A predictive algorithm will have to analyze the data
gathered from the sensors so that a prediction of unforeseeable
machine malfunctions can be identified. However, since the data
are available on the server, it is of great importance to create an
application for monitoring the current situation of the machines.

From a software point of view, for the setup of the DAQ
device, the Arduino IDE (Arduino, 2020) was used. Moreover, for
the setup of the WSN the X-CTU (X-CTU, 2020) application
fromDigi has been utilized. For the development of the Graphical

User Interfaces (GUI), a Universal Windows Platform (UWP)
(Microsoft, 2018) application has been developed. The benefits of
using UWP is the multi-platform implementation, the ease of
configurability, ease of implementing security protocols,
serviceability of the framework and updates’ distribution. In
the following paragraphs the functionalities and the GUIs
designed and developed so far will be discussed in detail. In
order to do so, the Unity 3D game engine is utilized (Unity, 2020).
As regards the code scripts, the Microsoft Visual Studio IDE is
used (Microsoft, 2020). More specifically, for the development of
the main functionalities of the application, the code scripts are
written in C# programming language. Since the application
supports two user groups, one for the OEM supplier/service
provider and one for the customers, a common login/register
system is implemented. Upon installation of the application on
the end-user’s desired platform, the application prompts the user
to register an account which automatically saved in the Cloud
database. Therefore each time the user is connected, after getting
authorized, their user group is automatically retrieved by the
Cloud database and the suitable GUIs are loaded. It is stressed out
that although the development of a UWP application enables
multi-platform support, the AR functionalities are only available
for handheld devices, such as Android-based mobile phones and

FIGURE 6 | (A) AR visualization of compressor and its working parameters; (B) Cooling chamber cluster and the current working conditions.
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tablets, and Head Mounted Displays (HMD) such as Microsoft
HoloLens.

As long as the login is successful, if the user is listed as a client,
then the available options are to create a new cluster of
refrigerators or process/monitor an existing cluster. The “Set
Up New Line” functionality is targeted for new customers, or
customers that acquired new equipment, i.e. new refrigerator
group(s) or new DAQ device(s), as presented in Figure 7A.

The core functionality of the developed framework lies within
the monitoring functionalities. In the corresponding GUIs, the
customer can visualize in 3D a scaled version of their refrigerator
group and upon request to visualize the available information,
which are automatically fetched by the Cloud database. Then, in
continuation, if requested, the data can be transformed into
statistical figures, so that the client can visualize the current
status of their equipment. All of the above-mentioned data
can also be visualized in the form of augmentations in case
the customer is close to the refrigerator. In order to further
notify the customer about an upcoming maintenance action or if
any piece of equipment requires special attention, certain alerts
have been implemented as presented in Figures 6 and 7.
Regarding the communication interfaces between the DAQ
device, the end-user application and the Cloud Platform,
RESTful API services have been developed. As regards the
communication interface between the DAQ device and the
Cloud Database, the DAQ device as a client can send POST,
and PUT requests to the Cloud Platform, so as to enable the data
to be posted on the database if they are not existent, or updated as
needed. On the contrary, the majority of the services
implemented on the end-user application send only GET
requests, in order to fetch data to the end-user’s device, with
the exception of user registration, where a POST request is sent in
order to record the user’s data on the database. However, due to
the large volumes of sensitive data that are circulated within the
proposed framework, a set of security measures are taken.
Initially, all the HTTP requests are of type HTTPS (Hypertext

Transfer Protocol Secure). Secondly, DELETE requests are not
allowed for anyone trying to connect to the Cloud Platform.
Therefore, in order to delete any records from the database, this
process has to be undertaken manually by the authorized system
administrator. In an attempt to make the proposed framework
more general, a custom editor has been developed for supporting
the functionalities of the framework itself. More specifically, the
development team assisted by the editor can create virtually any
configuration of systems and functionalities, so that the
framework can be adapted to the actual needs of the
corresponding company.

From a hardware point of view, a desktop PC has been utilized
for the development of the application as well as the Cloud
Database and its services. For the implementation of the
developed AR-based application, an Android-based tablet and
a Microsoft HoloLens HMD are used. As regards, the DAQ
device, an Arduino Mega 2560 microcontroller is paired with the
custom board presented in the previous paragraphs. In addition
to that for the XBee RFmodules, the Arduino XBee shield and the
Adafruit explorer shield were used.

CASE STUDY

In manufacturing systems the profit is derived by the subtraction
of operating costs from total income. Therefore, the profit
becomes a problem with two possible solutions, either the
minimization of operating costs, or the maximization of
income. As regards, operating costs, industrial equipment
maintenance costs are also included. Production equipment
affects operating costs with machine deterioration and failures
as well.

The applicability of the developed framework has been tested
and validated in a real-life industrial scenario,derived from an
OEM supplier of professional refrigerator systems. The OEM is
looking forward to transforming their business model based on

FIGURE 7 | (A) Settings for a new refrigerator line; (B) Settings for new/old sensors.
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the PSS paradigm, by providing the proposed framework as a
service, in an attempt to improve their after-sales policy. What is
more, it is estimated that based on the monitoring and analysis
from the AI algorithms, the engineering department of the OEM
will be able to gather insightful feedback, aiming at the
improvement of the design process and the quality of their
products. The main benefit of the proposed methodology, is
that it can provide time estimations about future equipment
malfunctions, which by extension can enable both the OEM and
the client to act proactively and in time, in order to further
minimize the equipment downtime. Further to that, with the
provision of the AR application knowing beforehand the
upcoming equipment failures, can facilitate maintenance
engineers to prepare the AR content timely and communicate
it to the client. Therefore, the need for an external maintenance
technician is further minimized, thus reducing both the overall
time and cost of maintenance.

In order to test and validate the proposed framework, the
DAQ device was installed, on an experimental refrigerator group
located at the premises of the OEM, used for test purposes. It is
stressed out that the OEM has already integrated sensing systems
on the majority of their products for monitoring purposes.
However, the existing solution is wired and requires a
computer and an engineer close to the refrigerator
compartment, in order to monitor their status. Therefore, the
first step was the installation of the DAQ device, presented in the
previous paragraphs as well as the setup of the required WSN
network. The WSN follows the star topology, meaning that the
one XBee is connected to a PC and acts as the WSN coordinator.
Then, each DAQ connects to the coordinator and transmits the
data at the defined rate. Afterwards, in order to handle the data
arrived at the WSN coordinator, the corresponding COM port is
listened by the PC via a Python script and the data are uploaded to
the database and saved within the corresponding CSV file. Then
the data saved in the Cloud database are automatically input to
the Digital Twin of the refrigerator in order to simulate its
condition and calculate the RUL for the critical components.
Based on this setup the monitoring and simulation runs were
executed at the premises of the case study provider. For the
purposes of the experiments, a scenario of compressor
malfunction has been examined. For the maintenance of the

refrigerator in such case, the inspection of the equipment from an
OEM technician would require travelling and inspection which
according to the OEM it would account for approximately 28 h,
the order and acquisition of the replacement compressor would
require approximately 24 h and the installation on the
refrigerator group would require approximately 5 h. However,
with the adoption of the proposed framework, and based on the
calculation of the compressor RUL, the client is capable to order
the failing part timely, thus minimizing the waiting time. Further
to that, with the utilization of the AR application the inspection of
the equipment can be facilitated, thus eliminating the need for an
OEM maintenance technician to visit the client. The time for
inspection was calculated to be approximately 5 h. In the
following figure, the time estimations for the current situation
as well as the corresponding times with the adoption of the
proposed methodology are presented Figure 8.

CONCLUDING REMARKS AND OUTLOOK

The scope of this research work was to present the latest trends
regarding the fields of predictive maintenance and XR and
furthermore to propose a novel framework that will facilitate
engineers to constantly monitor the status of the manufacturing
equipment and in advance to predict the forthcoming
maintenance activities. By extension, the prediction of
malfunctions will enable companies to schedule their
production more efficiently, whilst it makes them more
adaptive to any disturbances caused within the company
limits. From the practical implementation of the developed
framework in the industrial partner, it became evident that the
refrigerator downtimes can be reduced by approximately 20%,
since both the clients and the OEM were capable to monitor the
status of their equipment and by extension, with the use of the AI
algorithm, the RUL prediction for crucial components of the
refrigerator system, the client got a trustworthy estimation of
when their equipment should be maintained. In addition to that,
since the customer, could get an estimation of the upcoming
failure, they are able to schedule a maintenance session with the
OEM much faster and fitted to both ends’ schedule without
creating great disturbances. An equally important finding is that

FIGURE 8 | Time distribution per task, as-is situation vs proposed
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the maintenance costs can be reduced by approximately 10%
since the OEM can order and acquire the needed components
beforehand, thus eliminating overnight delivery costs. Along with
that, by predicting and scheduling timely the maintenance
session, the equipment is not left to run until failure, which
could affect the operation of other components, thus leading to
increased maintenance cost, due to additional technician labor
and extra replacement parts.

Although the development and the implementation of the
proposed framework have yielded promising results, there are
several implications that must be addressed before such solutions
reach an acceptable maturity level and by extension, become
commercially available. The most important implication faced, is
that the calculation of the RUL cannot be performed in real-time
thus inducing a certain amount of latency in the AR
visualizations. The amount of latency is affected by two major
issues, first the network speed and second the computational
power of the system handling the Digital Twin. Another
implication is the authoring of the AR visualizations in the
field of view of the end-users. Currently, this is a manual task,
which in the future must be addressed, so that AR applications
can become useful tools in the modern manufacturing
environment rather than increasing the complexity of the
systems, by increasing the time and effort to prepare the so-
called “AR scenes”.

In the future, the Digital Twin will also be improved. It is
estimated that following the implementation of the proposed

framework in similar equipment, i.e. a fleet of assets, will enable
the creation of data ensembles. The idea behind this is to utilize
similar datasets in order to improve the predicting accuracy of the
Digital Twin.
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RECLAIM: Toward a New Era of
Refurbishment and Remanufacturing
of Industrial Equipment
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Refurbishment and remanufacturing are the industrial processes whereby used products
or parts that constitute the product are restored. Remanufacturing is the process of
restoring the functionality of the product or a part of it to “as-new” quality, whereas
refurbishment is the process of restoring the product itself or part of it to “like-new” quality,
without being as thorough as remanufacturing. Within this context, the EU-funded project
RECLAIM presents a new idea on refurbishment and remanufacturing based on big data
analytics, machine learning, predictive analytics, and optimization models using deep
learning techniques and digital twin models with the aim of enabling the stakeholders to
make informed decisions about whether to remanufacture, upgrade, or repair heavy
machinery that is toward its end-of-life. The RECLAIM project additionally provides novel
strategies and technologies that enable the reuse of industrial equipment in old, renewed,
and new factories, with the goal of saving valuable resources by recycling equipment and
using them in a different application, instead of discarding them after use. For instance,
RECLAIM provides a simulation engine using digital twin in order to predict maintenance
needs and potential faults of large industrial equipment. This simulation engine keeps the
virtual twins available to store all available information during the lifetime of a machine, such
as maintenance operations, and this information can be used to perform an economic
estimation of the machine’s refurbishment costs. The RECLAIM project envisages
developing new technologies and strategies aligned with the circular economy and in
support of a newmodel for the management of large industrial equipment that approaches
the end of its design life. This model aims to reduce substantially the opportunity cost of
retaining strategies (both moneywise and resourcewise) by allowing relatively old
equipment that faces the prospect of decommissioning to reclaim its functionalities
and role in the overall production system.

Keywords: refurbishment and remanufacturing, decision support framework, in situ repair, big data analytics,
predictive analytics, industry, machine learning
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1. INTRODUCTION

The industrial sector in Europe is very important as a “driver of
sustainable growth and employment” (EP (2019)). High
industrial productivity and efficiency are closely linked to well-
functioning and well-maintained equipment, thus highlighting
the critical role of machinery. However, not only in Europe is
industry so vitally important for the economy. Currently, there is
an estimated 40 billion dollars’ worth of outdated machinery in
use at US factories (M.NET (2016)), leading to an estimated loss
of 50 billion dollars each year due to unplanned downtime
resulting from machine failures (Studios (2018)). This is to
some extent expected since many machines currently in use in
production lines were installed well over 30 years ago and have
exceeded their projected lifetime. In order to remain competitive,
manufacturing companies should constantly improve the
productivity and reliability of their production processes and
equipment. In this perspective, maintenance activities have
become even more crucial for business success. It is worth
noticing that, nowadays, poor maintenance strategies reduce
the industry’s overall capacity between 5 and 20 percent
(Wollenhaupt (2017)). This underlines the urgent need for
improving the maintenance process, emphasizing the methods
of refurbishment and remanufacturing. Refurbishment and
remanufacturing are activities of the circular economy model,
the purpose of which is to keep the high value of products and
materials, as opposed to the currently employed economic model,
thus targeting the extension of equipment and materials’ life and
reducing the unnecessary and wasteful use of resources. These
two activities, along with health status monitoring, are the key
elements for lifetime extension and reuse of large industrial
equipment.

The EU Factory of the Future project, RECLAIM (RE-
manufaCturing and Refurbishment LArge Industrial
equipment), focuses on establishing and demonstrating
technologies and techniques in order to support a new
approach for refurbishment and remanufacturing of large
industrial equipment in factories, setting forth the way to a
circular economy. The project’s main aim is to improve the
maintenance process, emphasizing the methods of
refurbishment and remanufacturing. Its ultimate objective is to
preserve valuable resources by reusing equipment instead of
discarding it. In this context, the project will develop new
models and strategies for repairing and upgrading equipment
and redesigning factory layouts to benefit the manufacturing
sector from an economic perspective. These strategies are as
follows: improving the machinery operation and avoiding
unplanned downtime due to machine failure; estimating life
cycle costs and contributing to the reuse of old machinery
assets in renewed and new factories; providing maintenance
able to identify equipment failures before they occur, in order
to minimize the additional costs and downtime associated with
the disassembly and transportation of the machinery and
maximize the performance of the machinery during its lifetime.

Themain scope of this work is to present the new paradigm for
refurbishment and remanufacturing of large industrial
equipment in factories, paving the way to a circular economy.

In particular, firstly, we conducted a bibliographic review of the
technologies, strategies, and tools that have been used to date to
achieve the refurbishment and remanufacturing of the large
industrial equipment in order to extend its lifetime. Then, the
usefulness of the integrated technological solution RECLAIMwas
analyzed to prove that having RECLAIM technology available
drastically increased efficiency, enhanced lifetime extension, and
achieved high economic benefit and a significant step toward
100% reuse will be made. The added value of this article is to
contribute to a better understanding of how the integration of
RECLAIM technological solutions into industrial environments
can lead to industries having an extra economic income from the
extended lifetime of manufacturing systems and their
components, which can be achieved by adopting
refurbishment and remanufacturing solutions.

The rest of this article is organized as follows. In Section 2, the
related work regarding key aspects that the RECLAIM project will
face along with the proposed solutions dealing with these
problems is analyzed, whereas the conceptual architecture is
presented in Section 3. In Section 4, the main components of
the architecture are described in full, and, finally, in Section 5, our
conclusions are drawn.

2. RELATED WORK AND PROPOSED
SOLUTIONS

In this section, in the beginning, the related works on key aspects
of refurbishment and remanufacturing in the manufacturing
environment are presented along with the ambition and
solutions proposed by the project. The limitations of the
RECLAIM platform are given at the end of the current section.

2.1. RECLAIM Solutions
The RECLAIM integrated architecture encompasses several
modules and components, which are described in the
following sections. These components are as follows: (a)
decision support framework (DSF), (b) refurbishment and
remanufacturing techniques for industrial equipment, (c)
smart sensors’ network for industrial environments, (d)
prognosis and health management, (e) cost analysis and cost
modeling, (f) optimization planning on refurbishment and
remanufacturing, (g) digital twin simulation engine, (h)
cybersecurity for IoT devices, and (i) augmented reality (AR).

2.1.1. Decision Support Framework of Used Industrial
Equipment for Sustainable Manufacturing
Several methodologies and approaches for decision-making have
been developed, addressing either single or multiple decisions, in
order to enable the users and the process experts to assess the
reusability or remanufacturability of production machines when
they are facing the end of their production life. Ziout et al. (2014)
provided a decision-making methodology for considering the
end-of-life (EoL) product as a recovery option for all interested
parties involved in the process. Thus, the decision taken is more
accurate and more informative on the selection of appropriate
recovery options. Remery et al. (2012) have provided an EoL
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scenario assessment methodology to evaluate the various
solutions for the EoL scenario of a product during the early
design phase, based on fuzzy techniques. Dhouib (2014) proposed
a multicriteria decision analysis based on an extended (fuzzy)
version of Measuring Attractiveness by a Categorical Based
Evaluation Technique (MACBETH) methodology to take into
consideration the imprecise and linguistic assessments provided
by a decision-maker. Ovchinnikov et al. (2014) presented an
analytical model and a behavioral study to demonstrate that
remanufacturing frequently aligns the economic and
environmental objectives of firms by increasing profits and
reducing their overall impact on the environment. Ondemir
and Gupta (2014) developed a multiple objective advanced
order remanufacturing and disassembly (ARTODTO) system
as an order-driven component and product recovery
(ODCPR) system. The main objective of the proposed system
was to evaluate whether a product needs remanufacturing,
disassembly, repair, or recycling and to accomplish a variety of
conflicting financial, environmental, and quality-based goals. Ng
and Song (2015) introduced a method for determining the
optimal for EoL product recovery options, using multiple
factors of product condition and recovery values aiming to
achieve better environmentally friendly decision-making
regarding the maintenance, repair, or remanufacturability
planning of the product. Dehghanbaghi et al. (2016) proposed
an integrated approach, based on a fuzzy rule-based system and a
fuzzy Analytic Hierarchy Process (AHP), to provide an accurate
and valid decision-making mechanism to rank the recovery/
disposal strategies. Kremer (2015) demonstrated a framework
based on fuzzy logic and analysis that takes into account
quantitative indicators (residual value and ecoindicators) and
the social impact of each EoL option of the machinery.

Table 1 presents the key requirements for effective
remanufacturing decision-making that are presented above
compared to the aspects that RECLAIM DSF (Decision
Support Framework) take into account.

The aforementioned studies introduced several decision-
making methodologies and frameworks that utilize fuzzy logic
and include background of the product, environmental criteria,
and stakeholders with the intention of providing a reasonable
decision for the recovery or rejection of the product. Nevertheless,
few of them could help to achieve bothmachine- and component-
level health-based recovery planning while taking into account at
the same time both environmental and economic reverberations.
Thus, RECLAIM aims to develop a flexible recovery DSF to assist
the machinery operators and machinery manufacturers in
making efficient remanufacturing, repair, or rejection decisions
at different service life periods on electromechanical machines
and robotic systems. The proposed solution will combine inputs
from optimization techniques, machine learning, digital twins,
fault diagnosis, and predictive maintenance simulations.

2.1.2. Uses of Refurbishment and Remanufacturing in
Industrial Equipment
Refurbishment and remanufacturing can contribute significantly
to well-being in Europe, as they are important lifetime extension
strategies of resource-efficient manufacturing. In particular, the

refurbishment process restores the system to meet its original
specifications without replacing parts of the system (Varde et al.
(2014)). Numerous methods have been used as refurbishment
processes in a variety of industrial sectors (e.g., automotive,
electrical, and electronics) in order to prolong the remaining
useful life (RUL) of industrial infrastructure (Freiberger et al.
(2011); Hatcher et al. (2013)). Atasu et al. (2008) have identified
that the refurbishment process can be used as a productivity
enhancement measure and as a marketing strategy. In this
direction, Kerr and Ryan (2001) have reported that the
refurbishment process reduces the total life cycle cost of the
industrial infrastructure and is an ecofriendly method. However,
many works have identified that the extension of the product life
can also be achieved by using the remanufacturing process, which
is also a value recovery option in order to extend industrial
equipment’s original lifespan (Chari et al. (2014)). In the work
conducted by SteingrímssonPinar et al. (2011), the authors have
introduced competitive business approaches regarding the
remanufacturing market of production equipment. In a similar
work, Cunha et al. (2011) have established a technology
roadmapping methodology so as to portray the
interconnections between market, equipment, and technology
variables in the remanufacturing process. Moreover, a different
make-to-order production strategy for automotive equipment
was introduced by Schraven et al. (2012). In this work, the authors
proposed a modular concept that enables consideration of
recovered equipment components in engineering and design.
Sharma et al. (2015) have explored the benefits of the
remanufacturing process and showed that this process meets
the requirements and needs of industries. In a more
contemporary work, Darghouth et al. (2017) focused on the
requirements of OEM perspectives for an effective
remanufacturing process. Finally, the usefulness of the
remanufacturing process was identified in many research
works that were devoted either to machine tools (Ullah et al.
(2016)) or to a special kind of production machines (Geng et al.
(2016)).

With RECLAIM, a set of novel tools and methodologies will be
developed for enhancing the refurbishment and remanufacturing
processes for industrial electromechanical machines and robotic
systems, differentiating the approach according to the level of
action (whole machine, modules. and components). This
approach is aiming not only to improve refurbishment and
remanufacturing processes but also to participate in effective
decision-making so as to achieve measurable performance
improvements. The adaptive sensor network and digital
retrofitting infrastructure will have the ability to be attached
to machines, modules, and even components to be refurbished
or remanufactured. This will allow legacy equipment to be a part
of the IoT with advanced vertical and horizontal
communication capabilities and also enable sophisticated
data analysis, such as predictive maintenance. Those
services will be supported by AR mechanisms (AR glasses)
that will help technicians and manufacturers with a novel
way to visualize and localize information on equipment
refurbishment and remanufacturing operations directly
situated on top of the physical equipment.
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2.1.3. Smart Sensor Network for Industrial
Environment
Applications in the manufacturing domain, regarding real-time
monitoring, maintenance planning, fault detection, etc., based on
sensor network and data have yet to be widely adopted. Mourtzis
et al. (2014b) focused on the integration of the customer into
product personalization and aimed to support the design of
manufacturing networks on the move through the
development of apps for Android devices. Mori and Fujishima
(2013) introduced a remote monitoring and maintenance system
for machine tool manufacturers that uses a mobile phone.
Tapoglou et al. (2015) adopted a cloud-based approach for
monitoring the use of manufacturing equipment through a
network of sensors dispatching assignments to designated
computer numerical control machines and generating the
optimum machining code. Teti et al. (2010) demonstrated that
the primary requirements for sensorial monitoring systems in
production involving sensors of any type (mostly vibration,
acoustic, and temperature) are robustness, reconfiguration
capability, intelligence, reliability, and cost-efficiency. Si et al.
(2011) pointed out the increasing interest in the use of multiple
sensors for condition monitoring and illustrated various
multisensor data fusion methods and recent developments in
diagnostics and prognostics of mechanical systems implementing
condition-based maintenance. Rehorn et al. (2005) presented
sensor and signal processing techniques used for tool
condition monitoring systems in industrial machining
applications. Moreover, D. Mourtzis et al. (2014) have
proposed a framework of machine monitoring techniques for
almost real-time machine status recognition that facilitates a
predictive maintenance engine to minimize machine tool failures.

In order to provide automated knowledge extraction from big
data gathered by the industrial partners, RECLAIMwill use smart
real-time control and data analytics, monitoring forecasted
production lines and allowing prescriptive and preventative
actions. RECLAIM will enable “just-in-time manufacturing” to
continuously adjust to the business environment. The analytic
tools will allow to easily adapt a) the quantity and variability of

heterogeneous information sources across the factory life cycle,
b) the different types of targeted manufacturing sectors and
their structure, and c) the differences in the enterprise
hierarchy level.

2.1.4. Prognostics and Health Management Approach
To determine if a machine is worth refurbishing or
remanufacturing, a Prognostics and Health Management
(PHM) technique will be used for the estimation of the life
cycle cost in relation to the maintenance activities of the
machine. Many works have indicated that PHM techniques
are used to reduce losses due to reliability issues (Pecht
(2012)). Moreover, He et al. (2011) have successfully
implemented the PHM techniques in the case of
electromechanical migration on circuit boards, and more
specifically, they proved that PHM techniques could be used
in cases where the available physics-of-failure (PoF) models are
unable to deliver satisfactory results, such as in Li-ion batteries
and LEDs. Sun et al. (2012) have presented the challenges and
benefits of the PHM techniques implementation and, more
specifically, demonstrated that PHM techniques are based on
the PoF approach, the data-driven approach, and the fusion
approach. Toward this direction, Pecht and Jaai (2010) have
reported that the physical understanding of the system failure
mechanism, modeled mathematically, can determine the RUL.
The main output of relevant research works has proved that
machine learning techniques relying on the use of historical data
can be classified as supervised and unsupervised learning
techniques.

RECLAIM PHM will address the three main challenges
concerning the refurbishment of a machine. First, is the
machine worth refurbishing? Second, what is the best time to
perform refurbishment at the least cost? Finally, how should the
machine be refurbished? To determine if a machine is worth
refurbishing, the RECLAIM implements well-established PHM
techniques to estimate the life cycle cost associated with the
refurbishment of the machine. If the cost of refurbishment is
lower than that of a newmachine, then it is a cost-effective option.

TABLE 1 | Key requirements for effective remanufacturing decision-making.

Author(s) Key requirements for
effective remanufacturing decision-making

Limitations

Ziout et al. (2014) Recovery options for end-of-life products Costs, environmental and health safety, durability, and viability
of upgraded machine

Remery et al. (2012) Fuzzy techniques during the early product design phase Circular economy strategies
Dhouib (2014) Extended (fuzzy) version of Measuring Attractiveness by a Categorical Based

Evaluation Technique (MACBETH) methodology
Circular economy strategies, recovery options, durability, and
viability of upgraded machine

Ovchinnikov et al.
(2014)

Economic and environmental objectives Circular economy strategies, recovery options, durability, and
viability of upgraded machine

Ondemir and Gupta
(2014)

Multiple objective advanced order remanufacturing and disassembly (ARTODTO)
system as an order-driven component and product recovery (ODCPR) system

Durability

Ng and Song (2015) Environmentally friendly decision-making Circular economy strategies, recovery options, durability, and
viability of upgraded machine

Dehghanbaghi et al.
(2016)

Fuzzy rule-based system and a fuzzy AHP Recovery options

Kremer (2015) Quantitative indicators (residual value, ecoindicators, etc.) and the social impact Circular economy strategies, recovery options, durability, and
viability of upgraded machine
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In RECLAIM, the optimal time to perform refurbishment is
determined by extracting a machine health indicator through
PHM and estimating the RUL of the machine based on the
indicator. Ideally, the machine should be refurbished close to the
end of its life. To determine how the machine should be
refurbished, in situ edge-monitoring of PHM provides
diagnosis information so that the degradation levels of critical
components are estimated in near real-time. The outcome of edge
analysis is combined with machine specifications and historical
trends to create a trustworthy RECLAIM DSF that can bring
benefits in terms of reduced costs and the environmental
footprint of manufacturing activities.

Therefore, detailed knowledge of the health status of the
machinery and its components and the whole production line
based on data of the RECLAIM PHM toolkit will offer peer-to-
peer health evaluation of the machine and component predictive
methods to increase asset uptime; RECLAIM will be able to
identify the optimal time and the appropriate components for
refurbishment or/and remanufacturing.

2.1.5. Cost Analysis and Cost Modeling
Cost analysis andmodeling cover the cost throughout the product
life cycle, including design, manufacturing, service, and disposal.
Manufacturing cost analysis and modeling have been well
researched. Manufacturing costs normally include material
costs, machining costs, and assembly costs, and the machining
and assembly costs are normally calculated on the basis of the
process design conducted by the production engineers (Xu et al.
(2012)). The processing time can be determined based on the
work rate of the resource used to perform each operation defined
in the process. When the processing time is known, the
machining or assembly costs can be estimated with the use of
the cost rate of the resource utilization. For example, Xu et al.
(2008a) adopted this approach to calculate the manufacturing
costs in different applications, e.g., for aircraft life cycle cost
modeling and automotive product manufacturing and
remanufacturing cost modeling (Xu et al. (2014)).
Maintenance costs are normally researched in the life cycle
cost modeling covering different aspects. Xu et al. (2008b)
developed aircraft life cycle cost modeling by using the
Systems Engineering approach. In Xu and Feng (2014), a
framework and cost model for the quantitative evaluation of
the benefits of remanufacturing techniques to assist the decision-
making on EoL strategies have been developed. Firstly, the
additive manufacturing-based remanufacturing process has
been modeled first; then, the cost breakdown structure for the
process has been created; finally, the cost model has been
developed.

Within RECLAIM, a real-time (or nearly real-time) accurate
cost estimation model will be developed. This cost model will
allow responsive and optimized decision-making regarding
production and maintenance. This is achieved by conducting
dynamic data collection based on the project’s backbone big data
infrastructure so that a real-time (or nearly real-time) accurate
cost estimation can be carried out, which reflects the cost
implications of real-time maintenance and projected
disruptions to the production.

2.1.6. Optimization Planning for Refurbishment and
Remanufacturing
Refurbishment and remanufacturing activities in a finite planning
horizon are discussed thoroughly in the scientific literature. In the
work of Ferrer (1997), the complexity of personal computing
remanufacturing and the difficulties in developing adequate
recovery processes are addressed. Guide and Wassenhove
(2001) have devised a framework for profitability estimation of
reuse activities demonstrating the way the product returns
management influences operational requirements and stating
that the acquisition of used products may be used as a
leverage mechanism for the management and productivity of
reuse activities. An overview of quantitative models taking into
account logistic environment issues arising in the context of
reverse logistics was given in Fleischmann et al. (1997). In
Fleischmann et al. (1997), the authors have proposed a
heuristic solution methodology based on a mathematical
programming model for the reverse distribution problem. This
approach is attributed to the complexity of the proposed model.
Pirkul and Jayaraman (1996) followed a similar approach, as they
developed a mixed integer programming model to address the
location issue with the objective to minimize the total
transportation and distribution costs and the fixed costs for
opening and operating plants and warehouses by employing
Lagrangian relaxation to the model.

Although several researchers have suggested various
remanufacturing models, fewer researchers have been able
to address the problems in both business and strategic
decision-making at the same time. In this project, some
mathematical models for decision-making at both business
and strategic levels in a remanufacturing environment are
proposed. The functionality and the performance of the
suggested models are thoroughly examined through
computational experiments, simulation schemas of model
parameters, and extensive data analysis from multimodal
data sources.

2.1.7. Digital Twin Simulation for Machinery Fault
Diagnosis
The first attempt to analyze the concept of “twin” was made by
NASA’s Apollo Project in which researchers simulated the
aircraft’s twin body in a real physical system (Rosen et al.
(2015)). In this way, astronauts could remotely observe the
ship’s condition and make decisions for emergency situations
(Wang et al. (2015); Negri et al. (2017)). Beyond this application
of the solution, Tao et al. (2018) have demonstrated the usefulness
of the digital twin model throughout a machine’s life cycle
enabling the prediction of potential machine failures and
closed-loop optimization of the machine design, production,
operation, and maintenance. Moreover, in the same work, the
authors have proved that the digital twin model allows
technicians to verify the appropriate machine operation and
monitor machine productivity. More specifically, they have
demonstrated that the digital twin model can be used to
control possible changes in the production phase before they
are implemented since it could also be used to monitor the
machine in all its operating phases and to reprogram it when
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necessary (e.g., frommass production to customized production).
Finally, during the operation phase, the authors have affirmed
that the digital twin model could be used as a verification tool for
data collected by the factory on the performance of a product.
Therefore, the digital twin model can offer value-added services
with the support of physical simulation and data-driven
intelligence. In more recent work, Magargle et al. (2017) have
introduced a multiphysical twin model for monitoring the brake
system status through multiple angles. To this end, the digital
twin model can be implemented as a fault diagnostic service and
as a RUL prediction and maintenance simulation tool, which can
be utilized for prompt decisions and accident risk reduction.

In order to optimize maintenance activities (refurbishment,
remanufacturing, etc.), RECLAIM will deploy a simulation
engine that will create a virtual environment similar to the
actual machine using the digital twin model. This model will
analyze patterns in real-time and compare them with historical
data about the machinery life cycle. The aim is to monitor and
predict the performance and status of factory assets. In this
manner, all the necessary information for the preparation and
implementation of proper maintenance activities on the
machines will be provided so that failures and production line
stoppages are avoided. For this purpose, RECLAIM’s digital twin
model will be divided into three parts, i.e., the physical system
(real industrial infrastructure), the digital system (simulated
industrial infrastructure), and the data and information

connection system that links the digital system with the
physical system. RECLAIM’s digital twin model saves time
and money and helps reduce costly production downtimes as
it predicts promptly possible failures in infrastructure.

Digital twin component, given in Figure 1 includes the
following subcomponents: a) the artificial intelligence (AI)
environment, an engine leveraged to host and run the Fault
Diagnosis and Predictive Maintenance algorithms; b) the AI
engine, that is hosted in the AI environment and used to
abstract the heterogeneous algorithms of Fault Diagnosis and
Predictive Maintenance and to control their interactions; c) an
orchestrator, that is used to orchestrate all tasks of the
component, coordinating the interactions among AI engine
and the distributed simulation environment, and receives the
historical and real-time data, stores them, and processes them
with data quality mechanisms; d) the simulation environment
that is capable of running on different machines, each one
wrapped by a simulation manager.

2.1.8. Cybersecurity for IoT Devices for Connected
Smart Environments
Poor usability of cybersecurity solutions tends to be the effect of
security constraints. Finding the right trade-off between usability
and security or the preferable integration of usability and security
requirements is part of a major research challenge, which recently
has been addressed by scholars (Realpe et al. (2015)). For

FIGURE 1 | Fault diagnosis and predictive maintenance simulation engine using digital twin.
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instance, user-centered approaches are recommended as means
to accomplish usable security, while the definition of objectives
for both security and usability is suggested as a way to decide on
the right balance between the two (Dhillon et al. (2016)).
Understanding the security and usability collectively is
recognized as a critical factor for the successful development,
implementation, and usage of information systems (Andriotis
et al. (2016)). As far as the IoT is concerned, usability and security
are identified as two of the four major research challenges (the
other two being performance and reliability); privacy concerns
are growing, as IoT device manufacturers for smart homes are
acquired by large corporations, such as Google (Alur et al.
(2016)). The most recent research suggests new usable security
frameworks, particularly for modeling security and privacy risks
in smart homes at the consumer level. For example, the
framework presented in Nurse et al. (2016) aims to support
home users with a highly usable security decision support tool.
However, it still needs to address improvements on usability and
scalability and validate the real utility offered to the user.

Within this project, the edge-computing capabilities of the
proposed RECLAIM Solution will be enhanced with lightweight
security methods in order to empower resilience to cyberattacks
and intrusion detection and prevention. This will allow shared
access and flexibility in data governance for edge-based
applications and reconfiguration and actuation. Moreover, in
order to ensure seamless and trusted service provision over
different data, the RECLAIM Solution will be enhanced with
capabilities related to the dynamic coupling of microservices
offered and embedded devices involved.

2.1.9. Augmented Reality on the Plant Floor
AR is an emerging technology that can help manufacturers and
maintainers, providing the necessary information which are
needed regarding the maintenance/refurbishment/remanufacturing
procedure by displaying virtual information on top of it. The main
challenges faced by manufacturers or maintainers are as follows: (a) a
large variety of tasks from diagnosis to repair; (b) varying complexity
of maintenance requirements; (c) long life of equipment causing
varying levels of quality, standards, and depth in documentation;
(d) a large number of equipment types to maintain. It is noteworthy
that AR offers opportunities for industrial maintenance applications
by displaying contextualized information and accessing end-user data.

AR has received increasing attention from researchers in the
manufacturing technology community as it is an interactive
experience of a real-world environment and a technology that
expands the physical world, adding on top of it layers of digital
(virtual) information (Ong and Zhu (2013)). ARmakes it possible
for the user to gain information about a real-life process or
procedure directly related to the work environment. This is the
main coefficient factor for considering AR as an effective tool to
be also used in through-life engineering services (Dini and Dalle
(2015)). Several applications of AR in the industrial domain
(maintenance, fault diagnosis, etc.) have been considered, but
their research still remains at an exploratory level (Wang et al.
(2016)). In order to study the effectiveness and the usability of AR
integration in industrial fields (Oliveira et al. (2013)), new topics,
such as authoring and context awareness, have arisen in this area

(Erkoyuncu et al. (2017)). Authoring is a system component
enabling the maintenance experts to develop, modify, and update
applications’ AR contents (Gimeno et al. (2013); Roy et al.
(2016)), whereas context awareness is a system using context
to provide to the user task-oriented information and/or services
(Manuri (2016)). These main properties of AR focus on how
information regarding maintenance is acquired, transformed,
and presented to the process experts and maintainers so that
they decide instantly about further maintenance steps and assure
that the process will not be fatally disturbed in any way.

The RECLAIM project aims at using AR techniques to support
maintenance operations in the industrial domain by creating
augmented features in real-time. More specifically, the RECLAIM
AR-enabledmultimodal interaction systemwill address the above
challenges as it will provide a novel way to visualize and localize
information on equipment refurbishment and remanufacturing
operations directly situated on top of the physical equipment.
During the refurbishment and remanufacturing operations, the
system will also provide animated 3D stepwise instructions on
disassembly and reassembly required, as well as support in the
form of on-the-job remote assistance with real-time audio-visual
communication and 3D annotation to technicians during the
procedure. In this way, the variety of tasks from diagnosis to
repair is addressed by showing the steps that the technician must
follow to repair or maintain the machine. Also, information about
the useful lifetime of the machine will be displayed as pop-up
messages. At the end of the repair, a function registration message
will appear that will take into account the different quality levels,
standards maintained, etc. One more functionality of this
solution is that the system itself performs the authoring steps
that require AR expertise andmaintainers have to indicate the key
information for display, defining its format and sequence. The
Authoring Platform is a human-machine interaction interface
that allows maintainers to interact with the “Information
Frameworks” used for creating AR features. The Application
Platform Modules automatically generate AR features according
to maintainers’ feedback. Apart from contextualizing and
rendering maintenance information, they ensure that the
information is displayed in the right sequence. The developed
system is versatile and effective regarding the support of the
maintenance work of both novice and more experienced
technicians.

2.2. RECLAIM Platform Limitations
Despite the numerous advances of the RECLAIM Solution, some
possible limitations have been considered. First of all, some pilots had
not stored any related data before the beginning of the project, so
training machine learning models or statistical analyses cannot be
done based on many data from the past. This will raise the need for
estimations based on information found in the bibliography about
similar equipment. Also, probably some data (e.g., end-user actions)
cannot be provided automatically by some hardware, so the end-
userswill have to interact with the RECLAIMplatform to insert them
manually. Furthermore, due to the complexity of interdependencies
among software components and the algorithm underlying each of
these components, it is possible for computational delays to occur
due to the communication latency and/or time complexity of
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algorithms. In addition, the memory aspect should be taken into
account. Given the plenty of pilot raw data, corresponding to several
machines and their physical components, and output data from
numerous software components, it may be challenging for a single
database to store all of them.

2.3. RECLAIM Framework Validation
Several pilot sites across Europe will be used for demonstration,
evaluation, and assessment activities of the RECLAIM project.
Due to confidentiality issues, the pilot sites will not be named
here. The RECLAIM framework will be tested on a white goods
company for (a) refurbishment and renovation of robot cells in
B-Cell for making tubs (they reach the end of their life and have a
large number of failures in their operation, unexpected stoppages,
and delays in the production line); (b) modernization and
refurbishment of an automatic spraying cabin, using enamel
powder applied with help of spraying guns, in a shoe-making
factory for maintenance and upgrade of cutting machines
(prognostics and health assessment and predictive maintenance
or refurbishment or remanufacturing methodologies in terms of

production system efficiency, production cost, and product quality),
in a wood manufacturing plant for predictive maintenance and
refurbishment of the woodworking large production line (refurbish
the system with additional sensor capable of monitoring product
quality and identify the cause of deviations and predict failures and
breakdown(s)), in friction welding machinery for lifetime extension
by remanufacturing and predictivemaintenance (lifetime prediction,
remanufacturing of the machine in order to meet the today’s
requirements, continuous online monitoring of the machine’s
state, and predictive maintenance features), and finally in a
bleaching machine for maintenance, refurbishment, and
upgrading (holistic core process parameters optimization,
monitoring and process control tool, a safe and stable operation,
and improving the resource efficiency).

3. CONCEPTUAL ARCHITECTURE

Figure 2 presents the envisioned architecture of RECLAIM. The
integrated architecture encompasses several modules and

FIGURE 2 | RECLAIM conceptual architecture.
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components, which are described in the following sections. The
physical layer of the conceptual architecture will be supported by
several manufacturing pilots providing the necessary and on-
point business scenarios on industrial machine remanufacturing,
refurbishment, and maintenance. The IoT infrastructure will be
based on a three-stage design, where stage 1 comprises the
existing wireless sensors (monitoring, smart object,
environmental, and legacy), stage 2 includes sensor data
aggregation systems enabling analog-to-digital data conversion,
and in stage 3, edge IT functions and modules perform
preprocessing on multimodal data before moving on to the
data center for the main processing. Furthermore, the
machinery operational and historical data, along with life cycle
and business models and digital retrofitting data, will be collected
and stored at the data repository for use by the data analytics
algorithms. The core component of the proposed architecture is
the RECLAIM platform, a dedicated environment that contains
three key components: the DSF, the in situ repair data analytics,
and the refurbishment and remanufacturing framework. Finally,
the topmost part of the proposed conceptual architecture is the
User(s) Interfaces (UI), along with the manufacturing industries,
the maintenance supportive companies, and the European
Remanufacturing Network (ERN).

3.1. Architecture’s Main Components
Description
As mentioned above, the key components of the RECLAIM
platform are the DSF, the in situ repair data analytics, and the
refurbishment and remanufacturing framework, which are
described in detail as follows.

3.1.1. Decision Support Framework
The DSF component is designed to support and improve the
effectiveness of decisions concerning the refurbishment and
remanufacturing of production infrastructure. The DSF will
identify the most suitable actions/strategies based on different
criteria such as the impact and the value of refurbishment or
enhanced maintenance to extend asset life, the optimal time for
replacing an asset, the machines’ condition and possible
upcoming failures, production planning, and resources
allocation. The DSF will include novel tools as follows: the
Cost Modeling and Financial Analysis toolkit (providing an
effective cost estimation and financial impact analysis by using
a combination of parametric and activity-based costing methods,
while having the ability to take into account considerations of
generality and reusability for the adaptation and uptake in wider
industrial environments); the Adaptive Sensorial Network and
Fog Computing Framework (providing information on the state of
the machinery, such as temperature, operating speed, rotating
speed, power consumption, torque, and vibration so as to
minimize human interaction, increase mechanical automation,
and identify pain points of machinery); the Prognostic and Health
Management toolkit (providing a peer-to-peer health evaluation
and component prediction methods to increase machine lifetime,
productivity, and service quality); the Fault Diagnosis and
Predictive Maintenance Simulation Engine using Digital Twin

(creating a digital twin of the factory environment so as to use it to
monitor and predict the performance and status of factory assets,
while providing the user with all the features needed to schedule
the maintenance works on the machines in order to avoid failures
and to perform proper maintenance planning); the Optimization
Toolkit for Refurbishment and Remanufacturing Planning
(supporting the planning optimization through multivariable
monitoring of the machine’s operational parameters where the
effects of variable changes will be possible to determine and
combine best-known practices methodologies for model-based
plant-site/shop-floor control). The proposed DSF will have
attributes from both knowledge-driven and model-driven types
of DSF based on the implementation of nondeterministic finite-
state automata (finite number of states for the specified
machine), simple scoring mechanisms, rule-based decision-
making, and AI algorithms. Moreover, the implementation of
data mining algorithms such as decision trees, genetic
algorithms, and support vector machines will ensure the
extraction of valuable information from IoT data. A Visual
Analytics Suite will be built on the top of DSF in order to provide
users with the most effective presentation of DSF output in the
form of strategies, alternatives process models, KPIs
visualization, and real-time health assessment of different
production aspects.

3.1.2. In Situ Repair Data Analytics
Industrial analytics are used to identify and recognize machine
operational and behavioral patterns, make fast and accurate
predictions, and act with confidence at the points of decision.
Situational awareness as a mental state can be considered as a
state of knowledge, which can be achieved using various
techniques. In particular, in order to raise awareness of the
health status of the machine and the situation of the shop
floor during maintenance activities, data analytics techniques
can be deployed. So, the knowledge about the situation of
machines or/and shop floor can be gained from descriptive
analytics (gain insight from historical or current data streams),
predictive analytics (creation of predictive models utilizing
statistical and machine learning techniques for the
identification of machine and processes behaviors), and
prescriptive analytics (finding optimal solutions based on
descriptive and predictive analytics aspects). In addition, big
data methodologies (e.g., visual analytics and visualization
techniques) for the analytics of the big and diverse volume of
available data gathered by the industrial partners also can give
some valuable information about situational awareness. Visual
analytics and advanced information visualization technologies
can be exploited to present relevant information to different users
(shop-floor manager(s), technician(s), manufacturer(s), etc.) in a
user-friendly and effective manner. In particular, visual analytics
has historically played a key role in business processes
optimization. Existing tools can be of great assistance for the
visualization of spatiotemporal data in the plant-site/shop-floor,
providing temporal plots and heat maps indicating specific types
of activities and representation of process time series data along
with statistical analysis suitable to assist in discovering variable
correlation. The proposed visual analytics suite will be developed
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based on two major stages so as to support situational awareness:
perception (monitoring), which refers to the knowledge of the
elements in the environment of plant-site/shop-floor, and
comprehension (inspection and exploring), which refers to the
combination and the integration of elements received by the
sensors network. In terms of on-site repair analytics, both
streaming analytics from the field of the repair (e.g., work
process of repair) and batch analytics results based on on-
demand queries will be applied in a planning time horizon so
as to ensure enhancing human decisions and understanding and
generating significant confidence in the final decision.

3.1.3. Refurbishment and Remanufacturing
Framework
Production planning, scheduling, and control of the fleet of an
industrial ecosystem are major managerial challenges in the field
of management operations in a manufacturing environment. A
complete system approach is important to address all aspects of
the production planning optimization, taking into account
refurbishment and remanufacturing activities. This component
aims to support the planning optimization through multivariable
monitoring of the machine’s operational parameters where the
effects of variable changes will be possible to determine and
combine best-known practices methodologies for model-based
plant-site/shop-floor control. Based on the multimodal data
provided by the IoT infrastructure, new approaches of real-
time production planning optimization algorithms, from the
perspective of machine learning techniques, will be researched
and developed to apply proven optimization methodologies,
provide the answers an end-user needs for effective decision-
making, and consequently delivers measurable performance
improvements. The data and information requirements are
integral parts of the optimization phase. To create clear value
from this information, production monitoring and surveillance is
the first step in the measurement phase and is a prerequisite to
analysis, improvement, and control. This monitoring might take
into consideration the data collected from the Adaptive Sensorial
Network together with recognition of any system constraints and
behaviors.

3.2. Architecture’s Core Innovations
RECLAIM is an ambitious project that will create and deploy an
integrated DSF for machinery lifetime extension. The DSF for the
optimization of refurbishment and remanufacturing process in
itself is a significant step beyond the state of the art in the
provisioning of infrastructure, tools, and services for
experimentation in the digital manufacturing domain. The
RECLAIM project will offer the following core innovations:

• DSF for refurbishment and remanufacturing optimization
goes beyond the state of the art by allowing automatic and
concurrent multiobjective (particularly for three or more
objectives) decision-making and assessing multiobjectives
in the same turn, so it provides efficient and optimized
decision support.

• In Situ Repair Data Analytics for situational awareness will
be a flexible tool, allowing the end-users to connect and

integrate with any data source in real-time so as to have the
ability for online visualization of significant KPIs for the
current status of the machine (inspection) and the repair
process. Condition analytics will be a key component that
will combine state-of-the-art condition monitoring in order
to go beyond machine health management.

• Refurbishment and Remanufacturing Framework will be
enhanced with RECLAIM Solution having a sole
objective; that is, the quality of remanufacturing/
refurbishment process will have to follow strict
reconditioning operations (steps). This effort will be
supported by AR tools that utilize the sense of the
worker, the ambient environment, and the context of
work in the plant-site/shop floor.

4. CONCLUSION

The RECLAIM framework ensures that the remanufacturing and
refurbishing interventions make a positive contribution not only
toward business (i.e., increased return on investment, lifetime
extension of the machinery, and alignment of its capabilities with
the actual and future needs of the industry) but also toward the
environment (i.e., improved material and resource efficiency and
lower environmental impact). In particular, the proposed
framework answers the following questions: when is the right
time to refurbish or remanufacture industrial machinery, what is
the appropriate strategy to follow, which benefits should the
manufacturing company expect, and how this strategy will be
implemented to deliver those benefits while providing enhanced
reliability and safety of the refurbished or remanufactured
equipment. The advanced RECLAIM framework aims to assist
the machinery operators and machinery manufacturers in
making efficient EoL decisions at different service life periods.
This framework will consist of the following: a) the core
RECLAIM toolkit (e.g., a Cost Modeling and Financial
Analysis toolkit, a Prognostic and Health Management toolkit,
a Fault Diagnosis and Predictive Maintenance Simulation Engine
using Digital Twin, an Optimization Toolkit for Refurbishment
and Remanufacturing Planning, and an In Situ Repair Data
Analytics for Situational Awareness); b) a reference
architecture along with a set of circular economy strategies
and methodologies for manufacturing companies and OEMs.

RECLAIM is an ambitious project that will create and deploy
an integrated DSF for machinery lifetime extension. The DSF for
optimization refurbishment and remanufacturing process in itself
is a significant step beyond the state of the art in the provisioning
of infrastructure, tools, and services for experimentation in the
digital manufacturing domain. The RECLAIM project will offer
the following key novelty aspects: (a) a DSF for refurbishment
and remanufacturing optimization by allowing automatic and
concurrent multiobjective (particularly for three or more
objectives) decision-making and assessing multiobjectives in
the same turn, so it provides efficient and optimized decision
support; (b) a Fault Diagnosis and Predictive Maintenance
Simulation Engine using Digital Twin to keep the virtual twins
that could store all available information during the lifetime of a
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machine, such as maintenance operations, and this information
can be used to perform an economic estimation of the machine’s
refurbishment costs; (c) In Situ Repair Data Analytics for
Situational Awareness that allows the end-users to connect
and integrate with any data source in real-time so as to have
the ability for online visualization of significant KPIs for the
current status of the machine (inspection) and the repair process.
Therefore, RECLAIM could answer when is the right time to
refurbish/remanufacture industrial machinery, what is the
appropriate strategy to follow, which benefits should the
manufacturing company expect, and how this strategy will be
implemented to deliver those benefits while providing for
enhanced reliability and safety of the refurbished/
remanufactured equipment. Through the proposed framework
(DSF and associated tools, methodologies, and services),
RECLAIM ensures that the remanufacturing and refurbishing
interventions make a positive contribution not only businesswise
(i.e., increased return on investment, lifetime extension of the
machinery, and alignment of its capabilities with the actual and
future needs of the industry) but also toward the environment
(i.e., improved material and resource efficiency and lower
environmental impact).

The next step after the implementation of RECLAIM is the
validation of the proposed technology and the DSF through
demonstrations. Those demonstrations will focus on large
industrial equipment (e.g., industrial robotic systems,
machines, AND production lines) from distinct industrial
sectors: footwear manufacturers, white goods (cookers,
dishwashers, etc.) manufacturers, wood manufacturing, friction

welding machines, and textile manufacturers. Pilots will be
supported by existing circular economy methods, which will
be classified according to the preferable operation mode.
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