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Editorial on the Research Topic

Mitophagy in Health and Disease

Mitophagy is the major degradation pathway, by which cells regulate mitochondrial number
and integrity, in response to metabolic and physiological state. Research in mitophagy has
grown exponentially over the last decade, revealing the intricate signaling pathways regulating
mitophagy and the complexities of themolecularmachinery involved in carrying outmitochondrial
elimination. A diverse repertoire of mitophagy-related proteins has been discovered, highlighting
an elaborate regulatory network of mitochondrial homeostasis that responds differentially to
developmental, hormonal, and/or environmental signals. Moreover, the multi-layered crosstalk
between mitophagy signaling pathways sustains energy metabolism, which is critical for tissues
and organs homeostasis. Indeed, defective mitophagy causes accrual of dysfunctional mitochondria
leading to bioenergetic stress, elevated ROS levels and pronounced inflammation that is
accompanied by cellular and tissue degeneration. Thus, mitophagy is a pivotal contributor to
cellular physiology, and tissue integrity, in addition to organismal development, healthspan,
and survival.

The Research Topic on “Mitophagy in Health and Disease” in Frontiers in Cell and
Developmental Biology includes a series of 11 articles that discuss recent advances in the field
of mitophagy research and highlight challenges and outstanding questions, that need to be
addressed before mitophagy modulation can be considered for the development of effective
therapeutic interventions.

Several molecular mechanisms have been identified that mediate mitochondrial removal in
a cell type- and tissue-specific manner. In their review, Ravanelli et al. discuss the critical
role of the ubiquitin/proteasome system (UPS) in mitochondrial quality control. Alterations
in the ubiquitination status of mitochondrial proteins contribute to the remodeling of the
mitochondrial proteome in response to stress conditions. The authors discuss the tight crosstalk

between the UPS and mitochondria that contributes to prevent proteostasis collapse and promote
energy metabolism.

The article by Wang et al. surveys the regulation of mitochondrial removal by the phosphatase
and tensin homolog (PTEN) isoforms. The authors introduce the molecular function of PTEN-
short and PTEN-long proteins and their association with the mitophagic machinery. In addition,
the authors highlight post-translational modifications as a central node of mitophagy, suggesting
that their modulation can be used for the development of novel intervention approaches toward
tackling mitochondrial-related disorders.
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In their review, Ravanidis and Doxakis address the role of
RNA-binding proteins (RBPs) in mitochondrial homeostasis.
The authors describe the vital role of RBPs in the maintenance
of mitochondrial metabolism through the regulation of
mRNA splicing, stability, targeting to mitochondria and
translation. Importantly, substantial evidence indicates that
impaired expression, or mutations in RBPs, contribute
to mitochondrial dysfunction that has been implicated in
the development and progression of several age-associated
neurodegenerative disorders.

Although several components of the mitophagic machinery
have been uncovered, the origin of mitoautophagosomal
membranes remains elusive. In their review, Zachari and
Ktistakis survey the molecular mechanisms that govern
mitochondrial degradation, with a particular focus on
the early signaling events of mitophagy initiation and
mitoautophagosome formation.

A growing body of evidence suggests an intricate
communication between mitophagy and cell death pathways.
In their review, Ma et al. focus on how excessive mitochondrial
damage can trigger innate immune responses and apoptotic
cell death via BCL2 protein family members. The authors
explore the molecular mechanisms that uphold mitochondrial
homeostasis, including mitochondrial dynamics, mitochondrial
biogenesis, and mitophagy among others, as well as, how
these cellular events interfere with cell fate. Moreover, a
relevant review by Joaquim and Escobar-Henriques discusses
the pro-survival and pro-apoptotic role of mitophagy. The
authors describe the involvement of mitofusins in mitophagy,
through the modulation of mitochondrial morphology and
endoplasmic reticulum (ER)-mitochondria contact sites. Finally,
they summarize emerging findings, suggesting that impaired
mitochondrial dynamics and mitophagy contribute to the
pathogenesis of non-alcoholic liver disease.

Several studies have revealed a progressive, age-related decline
of mitophagic flux in multiple tissues, including as heart, kidney,
liver, and brain. In their article, Luo et al. discuss the contribution
of mitophagy deregulation during aging to the homeostasis
and viability of post-mitotic neurons and cardiomyocytes.
Furthermore, the authors discuss recent studies that link
impaired mitophagy to the development of neurodegenerative
and cardiovascular pathologies.

The article by Xie C. et al. survey the role of defective
mitophagy in the pathogenesis of Alzheimer disease (AD).
Increasing evidence indicates that accumulation of damaged
mitochondria, due to mitophagy impairment contributes to
Aβ/Tau proteinopathies and stimulates persistent inflammation,
causing neuronal loss, and cognitive decline. In addition, the
authors discuss the potential use of mitophagy inducers, such as
NAD+ precursormolecules and urolithin A, toward ameliorating
aging, and AD pathological features.

The review by Xie Y. et al. surveys the molecular pathways
that govern mitochondrial elimination, focusing on the essential
role of mitophagy receptors. Furthermore, the authors discuss
the involvement of mitophagy receptors in tumorigenesis, and

highlight the therapeutic potential of mitophagy modulation in
cancer therapies.

The last two articles discuss emerging findings that highlight
the anti-aging properties of mitophagy. In their review, Chen
et al. delineate the molecular pathways and mechanisms
of mitophagy in several model organisms, and discuss the
significant contribution of mitophagy defects in age-related
pathologies. In their article, Bakula and Scheibye-Knudsen
introduce the term “mitophaging” pointing to the fundamental
role of mitochondrial integrity in the maintenance of cellular
fitness and organismal health. Both articles discuss interventions
that target different steps in the process of mitophagy, by
utilizing small molecular compounds as a means toward the
development of novel, effective treatments against currently
incurable pathologies.

In closing this Editorial piece, we would like to thank
all the authors and referees, for their valuable contributions,
toward compiling this up-to-date and timely Research Topic on
mitophagy in health and disease. Moreover, we hope that the
collection of articles included in the topic will provide a useful
point of reference and a stimulus for further research aiming to
ultimately decipher the complex contributions of mitophagy to
cellular and organismal homeostasis.
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Mitophagy is a selective engulfment and degradation of damaged mitochondria through
the cellular autophagy machinery, a major mechanism responsible for mitochondrial
quality control. Increased accumulation of damaged mitochondria in the Alzheimer’s
disease (AD) human brain are evident, although underlying mechanisms largely elusive.
Recent studies indicate impaired mitophagy may contribute to the accumulation of
damaged mitochondria in cross-species AD animal models and in AD patient iPSC-
derived neurons. Studies from AD highlight feed-forward vicious cycles between
defective mitophagy, and the principal AD pathological hallmarks, including amyloid-β
plaques, tau tangles, and inflammation. The concomitant and intertwined connections
among those hallmarks of AD and the absence of a real humanized AD rodent model
present a challenge on how to determine if defective mitophagy is an early event
preceding and causal of Tau/Aβ proteinopathies. Whilst further studies are required to
understand these relationships, targeting defective mitophagy holds promise as a new
therapeutic strategy for AD.

Keywords: Alzheimer’s disease, mitophagy, aging, neuroprotection, memory

MOLECULAR MECHANISMS OF MITOPHAGY AND ITS ROLES
IN NEUROPLASTICITY

Mitophagy is a highly conserved cellular process of removing damaged or superfluous
mitochondria to maintain mitochondrial homeostasis (Pickrell and Youle, 2015; Scheibye-Knudsen
et al., 2015; Fang et al., 2016b; McWilliams et al., 2016; Fivenson et al., 2017). In neurons,
accumulation of damaged mitochondria is noxious to cellular function and survival. Mitophagy,
at physiological level, maintains neuroplasticity and the functions of glial cells (Gustafsson and
Dorn, 2019). Recent findings in human cell lines and multiple animal models have extended our
knowledge in the molecular mechanisms of mitophagy from the PINK1-Parkin pathway, to the
PINK1-independent pathways, including pathways that depend on NIP3-like protein X (NIX),
B-cell lymphoma 2 interacting protein 3 (BNIP3), B-cell lymphoma 2-like 13 (BCL2L13), FK506
binding protein 8 (FKBP8), prohibitin (PHB2), breast cancer gene 1 protein (NBR1), optineurin
(OPTN), calcium binding and coiled-coil domain 2 (NDP52), Autophagy and Beclin 1 Regulator 1
(AMBRA1), Tax1 binding protein 1 (TAX1BP1), FUN14 domain-containing protein 1 (FUNDC1),
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PGAM family member 5 (PGAM5), Nipsnap Homolog 1
(NIPSNAP1), NIPSNAP2, among others (Fivenson et al., 2017;
Kerr et al., 2017; Palikaras et al., 2018; Lou et al., 2019;
Princely Abudu et al., 2019).

The PINK-1-dependent mitophagy is one of the well-
characterized mitophagy pathways, with mutations of PINK1
associated to familial Parkinson’s disease (PD) (Plun-Favreau
and Hardy, 2008; Gandhi et al., 2009; Burchell et al., 2013;
Pickrell and Youle, 2015). Under physiological conditions,
mitochondrial membrane potential (MMP) drives mitochondrial
import of the 63 kDa full length PINK1. Presenilin-associated
rhomboid-like protein (PARL) is an inner mitochondrial
membrane (IMM) protease. PARL cuts the mitochondrial
targeting sequence (MTS) and trans-membrane domain of
PINK1, leading to the cytosolic release of the N-terminal-deleted
PINK1 (1N-PINK1) (Deas et al., 2011). The N-terminal-deleted
PINK1 (1N-PINK1) is degraded by the N-end rule pathway
and the ubiquitin proteasome system (Pickrell and Youle,
2015). However, under various stressors or MMP fluctuations,
PINK1 is shunted and retained on the outer mitochondrial
membrane (OMM), promoting Parkin recruitment to the
defective mitochondrial surface with the help of PINK1
autophosphorylation (Hasson et al., 2013; Lazarou et al., 2015).
Parkin, an E3 ubiquitin ligase, ubiquitinates several OMM
proteins, including voltage-dependent anion-selective channel
protein (VDAC), mitofusin 2 (Mfn2), and dynamin-1-like
protein (DRP1), leading to their recognition by autophagic
adaptors: OPTN, NDP52, sequestosome 1 (SQSTM1/p62),
TAX1BP1, or NBR1 (Sarraf et al., 2013; Lazarou et al., 2015;
Ordureau et al., 2018).

Growing evidence indicates the existence and importance
of PINK1- and/or Parkin-independent pathways. In addition
to Parkin, other E3 ubiquitin ligases, such as mitochondrial
ubiquitin ligase activator of NF-kB1 (MUL1), seven in absentia
homolog 1 (SIAH1), Gp78, SMAD ubiquitin regulatory factor
1 (SMURF1), and Ariadne RBR E3 ubiquitin protein ligase 1
(ARIH1) participate in mitophagy. These E3 ubiquitin ligases are
localized on OMM to generate ubiquitin chains, in order to direct
coupling to the autophagy protein LC3, enabling the engulfment
of the ubiquitin chain-tagged mitochondria by phagosomes,
and finally fusion with the acidic lysosome to degrade the
damaged mitochondria (Szargel et al., 2016; Villa et al., 2017).
In addition to ubiquitin ligase-dependent mitophagy, OMM
proteins can act as mitophagy receptors, targeting damaged
mitochondria directly for mitophagy-mediated degradation.
Examples include: BNIP3, NIX/BNIP3L, and FUNDC1 that
mediate mitochondrial elimination via display of the N-terminus
LIR domain into the cytosol which interact with LC3 or gamma-
aminobutyric acid receptor-associated protein (GABARAP)
(Sandoval et al., 2008; Liu et al., 2012; Zhang et al.,
2016; Palikaras et al., 2018; Villa et al., 2018; Lou et al.,
2019). Additionally, PHB2 and cardiolipin are amongst the
recently discovered mitophagy proteins, which can externalized
to OMM and couple with LC3 following mitochondrial
membrane depolarization (Shen et al., 2017; Wei et al., 2017).
In summary, while the PINK1/Parkin-dependent mitophagy
pathway is well-characterized, the molecular mechanisms

of multiple new mitophagy pathways are still not fully
understood (Figure 1).

DEFECTIVE MITOPHAGY IN AD

Whilst accumulated extracellular Aβ plaques and intraneuronal
Tau tangles are the disease-defining pathological features
of Alzheimer’s disease (AD), inflammation is now widely
recognized as a key additional hallmark of AD. Relationships
between mitophagy and each of the hallmarks of AD are
summarized below.

Mitophagy and Amyloid-β (Aβ)
Neurons affected in AD models undergo defective mitophagy
that contribute to the disease-defining Aβ pathologies, while
Aβ accumulation may exacerbate impaired mitophagy and vice
versa (Du et al., 2017; Kerr et al., 2017; Fang, 2019; Fang
et al., 2019). Impaired mitochondrial proteostasis, including
impaired mitochondrial unfolded protein response (UPRmt),
may link to Aβ proteotoxicity (Sorrentino et al., 2017). The
activating transcription factor-associated with stress (ATFS-1)
protein plays a fundamental role in the maintenance of UPRmt

and mitochondrial function, especially in stress conditions
(Nargund et al., 2012). RNAi knockdown of atfs-1 in an Aβ

Caenorhabditis elegans model (GMC101) repressed mitophagy
as well as basal and maximal respiration, and exacerbated
Aβ toxicity; However, restoration of UPRmt diminished AD
pathology in both C. elegans and mouse models of AD
(Sorrentino et al., 2017). Mechanistically, ATFS-1 transfers into
and is degraded within mitochondrial matrix, which negatively
impacts UPRmt , at physiological condition (Melber and Haynes,
2018). Under the condition of mitochondrial stress, ATFS-1
favors importation into the nucleus, whereby it promotes the
expression of genes with encoded proteins involved in the
protection of mitochondrial function and the elimination of
AD pathology (Melber and Haynes, 2018). In support of this
model, mutations that cause amino acid substitutions within
the MTS of ATFS-1 prevent the protein from being imported
into the mitochondrial matrix, and result in constitutive UPRmt

activation (Rauthan et al., 2013). Abnormal mitochondrial
homeostasis was reported in the mutant APP-HT22 cells relative
to non-transfected HT22 cells, including increased levels of
mitochondrial fission proteins (Drp1 and Fis1) and decreased
levels of fusion proteins (Mfn1, Mfn2, and Opa1) (Manczak
et al., 2018; Reddy et al., 2018). In addition to impaired
UPRmt , defective mitophagy is another major cause of impaired
mitochondrial proteostasis and Aβ proteinopathy in AD. On one
hand, defective mitophagy in post-mortem brain tissues from
AD patients as well as in AD iPSC-derived neurons and cross-
species Aβ-based AD animal models have been demonstrated
(Fang et al., 2019). On the other, restoration of neuronal
and microglial mitophagy ameliorated Aβ proteinopathy and
rescued memory loss in the APP/PS1 mouse models of AD,
highlighting the important contribution of defective mitophagy
in AD (Fang et al., 2019). Disrupted−in−schizophrenia−1
(DISC1), an LC3-binding mitophagy protein, has been shown
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FIGURE 1 | A summary of possible molecular mechanisms on how mitophagy induction ameliorates AD pathologies. Experimental studies from C. elegans and
mouse models of AD and from AD iPSC-derived neurons indicate genetic or pharmacological up-regulation of mitophagy inhibits Aβ/Tau proteinopathies and
inflammation, as well as promotes synaptic plasticity and neurogenesis. Robust health-benefit mitophagy inducers include the NAD+ precursors, nicotinamide
riboside (NR) and nicotinamide mononucleotide (NMN), urolithin A (UA), and actinonin (AC). NAD+ augmentation activates the NAD+-dependent SIRT1/3/6 activities,
and increases the expression and/or activities of autophagic/mitophagic proteins, including LC3-II and PINK1 and NIX, among others. Whether mitophagy induction
improves histone modification and DNA methylation, neuronal DNA repair, cell-to-cell communication, and limits senescence remain to be determined. See text for
more details as well as references.

to be reduced in human AD brain samples and in the APP/PS1
mice. In fact, Aβ−induced mitochondrial dysfunction, loss
of spines, and impaired long−term potentiation (LTP) were
rescued upon DISC1 overexpression in the APP/PS1 mice
(Wang et al., 2019). Collectively, the current studies implicate
that impaired mitochondrial proteostasis as a contributor to
Aβ-based neurotoxicity via impaired UPRmt and compromised
mitophagy. However, the detailed molecular mechanisms remain
to be determined.

Mitophagy and Tau
Tau binds and stabilizes microtubules, contributing in multiple
physiological functions, such as neurite outgrowth, neuronal
development, axonal transport, and synaptogenesis (Ballatore
et al., 2007; Dixit et al., 2008). Studies in experimental AD
models have provided evidence that mitochondrial dysfunction,
defective mitophagy and phosphorylated-Tau (p-Tau) interact
to form a vicious cycle (Kerr et al., 2017). The toxic
N-terminal truncation of human Tau (NH2-hTau) strongly
affects the interplay between the mitochondria dynamics and
mitophagy affecting subcellular trafficking or recruitment of
both Parkin and ubiquitin-C-terminal hydrolase L1 (UCHL-
1) (Amadoro et al., 2014; Corsetti et al., 2015). In C. elegans
and neuroblastoma cells, expression of human wild-type (hTau)
and frontotemporal dementia mutant tau (hP301L) completely
inhibited mitophagy by blocking the recruitment of Parkin to
damaged mitochondria (Cummins et al., 2019). Furthermore,
APP and tau overexpression lead mitophagy impairment in
human unmodified fibroblasts (Martin-Maestro et al., 2019).
Furthermore, mitophagy was impaired in hippocampus tissues
from 3xTgAD mice (with both Aβ and Tau proteinopathies)
(Fang et al., 2019). In addition, pharmacological restoration of
mitophagy, via administration of NAD+ precursor nicotinamide
mononucleotide (NMN), urolithin A (UA), or actinonin (AC),
reduced the phosphorylation of pTau at several sites (such as
Thr181, Ser202/Thr205, Thr231, and Ser262) (Fang et al., 2019).
Collectively, emerging evidence suggests that pathological Tau

inhibits mitophagy, highlighting defective mitophagy as a novel
therapeutic target for AD.

Mitophagy and Inflammation
Numerous preclinical and clinical studies have shown
that immune activation in AD, including microglia, and
several cytokines, has the capacity to trigger and drive the
pathophysiology of AD (Heppner et al., 2015). Mitochondrial
stress leads to the release of damage-associated molecular
patterns (DAMPs) which activate innate immunity, with the
Cyclic GMP-AMP synthase (cGAS)-STING pathway as a
central regulator of the type I interferon response to cytosolic
DNA (Ishikawa and Barber, 2008; Ishikawa et al., 2009; Chen
et al., 2016). Mitophagy mitigates inflammation through the
restriction of inflammatory cytokine secretion and the regulation
of immune cell homeostasis, correlating with the pathogenesis
of autoimmune diseases at multiple levels (Xu et al., 2019).
Multiple studies have demonstrated that PINK1 and Parkin
regulate both innate and adaptive immunities. First of all,
there is a strong inflammatory phenotype in both Pink1−/−

and Parkin−/− mice, both of which were central regulators
in the mitophagy process. Furthermore, PINK1 and Parkin
mitigated STING-induced inflammation and rescued the loss of
dopaminergic neurons from the substantia nigra (SN) in both
Pink1−/− and Parkin−/− mice following exhaustive exercise
(Sliter et al., 2018). Additionally, PINK1 and Parkin regulate
immunity by repressing mitochondrial antigen presentation
(MitAP) via mitochondria-derived vesicles (MDVs) (Matheoud
et al., 2016). While the roles of STING and MitAP in the
inflammation phenotype of AD is obscure, impairment of the
PINK1/Parkin pathway in AD (Sliter et al., 2018; Fang et al.,
2019), points to a possibility of an overlapping effect between PD
and AD. The concomitant and intertwined molecular pathways
that link defective mitophagy to Aβ and Tau proteinopathies,
and inflammation need further exploration. Lastly, restoration
of neuronal mitophagy (through NAD+ supplementation, UA,
and AC) reduced AD pathologies in the APP/PS1 AD mice via
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enhanced microglial phagocytosis of extracellular Aβ plaques
and the mitigation of pro-inflammatory cytokines released by
continually activated microglia (Fang et al., 2019). Changes of
mitophagy in AD astrocytes are elusive. It has been show that
astrocytes play an important role in mitophagic degradation
of damaged mitochondria from adjacent neurons (Davis et al.,
2014), thus mitophagy induction may also improve different
functions of astrocytes in AD. A recent development of a three-
dimensional (3D) human AD triculture model, with neurons,
astrocytes, and microglia (Park et al., 2018), may enable the
studies of cell type-specific mitophagy in an environment which
mimic the human brain. Collectively, while defective mitophagy
plays a pivotal role in AD progression, and turning up mitophagy
forestalls AD pathology, further molecular mechanisms on
how mitophagy induction impacts neurons, astrocytes and
microglia are necessary.

DEFECTIVE MITOPHAGY IN OTHER
NEURODEGENERATIVE DISEASE

PD is a progressive neurological disorder that observably impairs
patients’ ability to control body balance and movements due
to lack of dopaminergic neurons in the substantia nigra (SN),
which exhibits abnormal accumulation of α-synuclein fibrils in
their cell body and neurites (Poewe et al., 2017). Mitochondrial
dysfunction and its related oxidative stress and inflammation are
increasingly appreciated as common features of dopaminergic
neuronal susceptibility in PD patient brain samples, PD animal
models, and/or PD iPSC-derived neurons (Ryan et al., 2015;
Schondorf et al., 2018). As a classical mitophagy pathway, the
PINK1/Parkin pathway eliminates damaged mitochondria. Loss-
of-function mutations in PINK1 and/or PARK2/Parkin lead to
inability of the cell to eliminate damaged mitochondria, and
this has been related to early onset PD (Ryan et al., 2015). In
addition, PINK1 and Parkin also suppress mitochondrial antigen
presentation (MitAP) probably through inhibition of Sorting
nexin 9 (Snx9)-dependent formation of MDVs (Matheoud
et al., 2016). Meanwhile, Parkin- and Pink1-mutant fly models
recapitulate major phenotypes of PD, including mitochondrial
dysfunction, dopaminergic neuronal loss, motor disabilities
and reduced lifespan (Yang et al., 2006). For mice, while the
Parkin−/− and Pink1−/− animals do not show PD phenotypes
at standard laboratory living condition, they do exhibit PD
phenotypes (e.g., the loss of dopaminergic neurons) at stress
living conditions, such as intestinal infection, exhaustive exercise,
and mitochondrial stress (Perez and Palmiter, 2005; McWilliams
et al., 2018; Sliter et al., 2018; Matheoud et al., 2019). These
rodent data suggest compensation of the loss of PINK1-
dependent mitophagy by PINK1-independent pathways under
physiological conditions are sufficient; however, the PINK1-
pathway is necessary at stress/pathological conditions for the
function and survival of PD-related dopaminergic neurons.

Amyotrophic lateral sclerosis (ALS) is a fatal
neurodegenerative disease (predominately sporadic, nearly
90%) characterized by the accumulation of aggregated proteins
partially resulted from mitochondria dysfunction and oxidative

stress within affected motor neurons in the spinal cord, brain
stem, and motor cortex (Rowland and Shneider, 2001). Genetic
studies of familial ALS have identified several genes linked to ALS
(Cirulli et al., 2015). Most of the genes involved in cellular quality
control pathways, and more specifically to selective autophagy
and mitophagy, including mitophagy receptors OPTN, RIPK1,
p62/SQSTM1, as well as TBK1 (Cirulli et al., 2015; Hawk et al.,
2018). In this way, mutant OPTN and TBK1 can interfere with
the process of mitophagy, while mutant p62 shows a lower
affinity to LC3-II which leads to impaired mitophagy (Moore and
Holzbaur, 2016). These data suggest that the inefficient turnover
of damaged mitochondria and also aggregates, may contribute
to disease progression in ALS (Weishaupt et al., 2016). In line
with the argument that impaired autophagy/mitophagy as a
driver of ALS, pharmacological or genetic up-regulation of the
SIRT1/NAD+-mitophagy axis alleviates disease phenotypes in
ALS mice and ALS patients (Blacher et al., 2019; de la Rubia
et al., 2019; Lautrup et al., 2019). A detailed summary of defective
mitophagy in AD, PD, ALS, and Huntington’s disease is available
(review in Lautrup et al., 2019; Lou et al., 2019). In summary,
mounting evidence from animals and post-mortem human brain
tissues suggests that defective mitophagy is a common feature,
and likely plays a causative role in many neurodegenerative
pathologies. We summarized the relationships between AD, PD,
and ALS, and defective mitophagy/autophagy (Figure 2).

MITOPHAGY INDUCERS

Since reduced mitophagy is common in AD, and maybe a
causal mechanism, up-regulating mitophagy might provide a
therapeutic strategy for AD (Kingwell, 2019). Small molecules
that do not have toxicity to mitochondria (mitochondrial
toxicants), but can induce the expression of mitophagy proteins
or enhance mitophagy machinery hold translational promise
(Ryu et al., 2016; Andreux et al., 2019; Fang, 2019; Lou
et al., 2019). The classical mitochondrial uncouplers, e.g.,
carbonyl cyanide-p-(trifluoromethoxy)phenyl hydrazine (FCCP)
and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and
mitochondrial toxins that damage mitochondrial respiration
(such as valinomycin, salinomycin, antimycin A and oligomycin)
(Georgakopoulos et al., 2017), may have limited translational
value for AD because treatment with those drugs will result in
dysfunction of normal mitochondria.

In addition, multiple novel mitophagy inducers acting
independently of the respiration failure without perturbing
the organelle have been reported, offering new momentum
to comprehend the process and underlying strategy for
therapeutic revolution (Georgakopoulos et al., 2017). One
example is to enhance the PINK1/Parkin-mediated mitophagy
by supplementation with the ATP analog kinetin triphosphate
(KTP) which can amplify catalytic activity of both PD related
mutant PINK1G309D and PINK1wt (Hertz et al., 2013) or the
application of a p53 inhibitor pifithrin-a, which can release Parkin
from binding to the cytosolic p53 in pancreatic β-cells (Hoshino
et al., 2014). Moreover, the anti-diabetic natural compound
Metformin has been shown to maintain mitochondrial integrity
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FIGURE 2 | Schematic of mitophagy pathway and its linkages to different neurodegenerative diseases. A simplified version of mitophagy is presented. Initiation of
mitophagy is activated via the activity of the ULK1 complex and PI3K complex. Precursor vesicles fuse to form pre-phagophore structures that further elongate to
eventually become double-membraned mitophagosomes. The completed autophagosomes are then trafficked to fuse with lysosomes to form mitolysosome.
Dysfunction throughout this pathway, from initiation of mitophagosome formation to degradation in the mitolysosomes, have been suggested to be involved in AD,
PD, and ALS (marked in blue).

FIGURE 3 | Roles of defective mitophagy in AD with a vicious cycle between them. In normal condition, different mitophagy pathways are activated to efficiently
eliminate damaged or superfluous mitochondria. E.g., the PINK1-Parkin pathway is a well-characterized mitochondrial recycling pathway. PINK1 is stabilized on the
OMM of a damaged mitochondrion, promoting Parkin recruitment. Parkin ubiquitinates several outer membrane components. Poly-Ub chains are subsequently
phosphorylated by PINK1 for the autophagic machinery. Adaptor proteins (e.g., p62, OPTN, NDP52, ULK1, and TBK1) recognize phosphorylated poly-Ub chains on
mitochondrial proteins and initiate autophagosome formation through binding with LC3. Furthermore, the PINK1–Parkin pathway modulates mitochondrial dynamics
and motility by targeting MFN and Miro for proteasomal degradation. However, aging, genetic, and non-genetic factors cause impairment of the NAD+-mitophagy
axis, which exacerbates disease defining pathologies of AD, including higher Aβ, pTau, and inflammation. These disease pathologies can further cause the damage
of mitochondria and the inhibition of mitophagy, thus, generating a vicious cycle.

and boost mitochondrial biogenesis through Parkin-mediated
mitophagy induction via p53 inhibition (Song et al., 2016;
Palikaras et al., 2018). Targeting the up-regulation of the
mammalian NF-E2 related factor 2 (Nrf2) (SKN-1, the C. elegans
ortholog) pathway also enhances mitophagy, with molecules
like the compound p62-mediated mitophagy inducer (PMI)

(East et al., 2014) and the natural compound Tomatidine
affluent in the green tomato (Fang et al., 2017b). NAD+ is
a fundamental molecule in human health and life since it
participates in glycolysis, TCA cycle, OXPHOS, β-oxidation, and
many other bioenergetic and metabolic pathways (Verdin, 2015;
Fang et al., 2017a; Aman et al., 2018; Mitchell et al., 2018).
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NAD+ is reduced in biological aging, accelerated aging,
and in common neurodegenerative diseases, including AD
(Mouchiroud et al., 2013; Fang et al., 2014; Hou et al.,
2018). Interventional studies support a causative role of NAD+
depletion in neurodegeneration, as augmentation of tissue
NAD+, through the supplementation of nicotinamide riboside
(NR) and NMN, can improve neuronal resilience and survival
in both premature aging conditions and in AD, through
a mitophagy-dependent manner (Fang et al., 2014, 2016a,
2019). Mechanistically, NAD+ induces mitophagy through the
NAD+/Sirtuins-dependent pathways and several other pathways
as we summarized elsewhere (Fang, 2019). In conclusion, small
molecule which can induce mitophagy in vivo, but circumvent the
cellular toxicity, hold promise for further clinical studies on AD.

FUTURE PERSPECTIVES

Accumulating data suggest the existence of PINK1/Parkin-
dependent and –independent mitophagy pathways that are
critical in the maintenance of mitochondrial homeostasis
as well as neuronal resilience against proteinopathies and
stressors. A growing understanding of AD pathology suggests
that accumulation of damaged mitochondria due to impaired
mitophagy, contributes to Aβ/Tau proteinopathies and
inflammation, which may ultimately lead to neuronal loss
and memory impairment. Accordingly, experiments from
C. elegans and mouse models of AD and from AD iPSC-
derived neurons suggest that turning up mitophagy might
mitigate AD pathologies and retain cognition (in AD animals)
with possible mechanisms summarized (Figure 3). Some
outstanding questions need to be further addressed. First,
whether defective mitophagy is an early event preceding and
causing Aβ/Tau proteinopathies? Second, what are the additional
molecular mechanisms of defective mitophagy in AD? Cellular
signaling and progresses, including histone modification and
DNA methylation, DNA repair, senescence, and cell to cell
communication (including neurons and glial cells) link to
neural plasticity and cognitive function (Halder et al., 2016;
Fang et al., 2019; Zhang et al., 2019). Possible linkages of
mitophagy in these processes should be explored (Figure 1).
Third, whether pharmacological restoration of mitophagy could
rescue/delay the progression of memory loss in AD patients?

Because no single strategy has been effective in treating AD, it is
possible that a multi-targeted combinational approach, and even
personalized treatments will be necessary to treating AD. Since
long-term multidomain intervention, including intervention of
diet, exercise and cognitive training, could improve or maintain
cognitive functioning in at-risk elderly people from the general
population, a role of mitophagy is worthy of further exploration
(Ngandu et al., 2015). The availability of new experimental
systems, including the AD patient-oriented neuronal and glial
cells (Haenseler et al., 2017; Lin et al., 2018; Volpato et al., 2018),
the 3D tri-culture system (Park et al., 2018), and the application of
artificial intelligence (Aman et al., 2019) will enable mechanistic
studies in models more closely resembling the human AD brain,
and will propel drug development.
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Mitophagy, a conserved intracellular process by which mitochondria are eliminated via
the autophagic machinery, is a quality control mechanism which facilitates maintenance
of a functional mitochondrial network and cell homeostasis, making it a key process in
development and longevity. Mitophagy has been linked to multiple human disorders,
especially neurodegenerative diseases where the long-lived neurons are relying on
clearance of old/damaged mitochondria to survive. During the past decade, the
availability of novel tools to study mitophagy both in vitro and in vivo has significantly
advanced our understanding of the molecular mechanisms governing this fundamental
process in normal physiology and in various disease models. We here give an overview
of the known mitophagy pathways and how they are induced, with a particular emphasis
on the early events governing mitophagosome formation.

Keywords: autophagy, mitophagy, mTOR, endoplasmic reticulum, membrane potential

INTRODUCTION

Macroautophagy (or simply here autophagy) is a conserved quality control pathway by which a
double membrane structure, called an autophagosome, grows to engulf cytoplasmic components
in order to deliver them to the lysosome for degradation. Different stimuli can induce either
“bulk autophagy” which is a non-selective process degrading random portions of the cytoplasm
or “selective autophagy” which is activated to specifically degrade cellular components such as
whole organelles (e.g., mitochondria, ER, peroxisomes - to name a few) and protein aggregates
(Kirkin, 2019). One of the best understood pathways of selective autophagy is mitophagy - the
selective degradation of mitochondria via autophagy. Mitochondria are dynamic organelles whose
main function is to produce energy to support the many intracellular processes our cells are
constantly undertaking. Mitochondrial quality control is crucial as defects to these organelles can
lead to apoptosis or tissue damage, and, unsurprisingly, such mitochondrial defects have been
linked to numerous human diseases (Murphy and Hartley, 2018). Thus, elimination of damaged
and potentially toxic mitochondria is of extreme importance in favor of homeostasis and survival.
A major pathway for the clearance of these mitochondria - and maintenance of mitochondrial
network integrity and quality control - is mitophagy. Autophagosomes engulfing mitochondria
are called mitophagosomes. Mitophagy occurs in a basal level (with different cell types exhibiting
different levels of basal mitophagy) but can also be induced upon stresses such as exercise and
ischemia in vivo and by mitochondrial disrupting/damaging agents in cultured cells (Montava-
Garriga and Ganley, 2019). Impaired mitophagy has been associated with aging and numerous
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human disorders such as Parkinson’s disease (PD), Alzheimer’s
disease (AD), Huntington’s disease (HD), cancer, but also
cardiovascular and liver diseases (Palikaras et al., 2017; Um and
Yun, 2017; Palikaras et al., 2018). Pharmacological modulation of
mitophagy has been suggested to have potential as a therapeutic
strategy for the treatment of these diseases. Although there is
evidence that mitophagy is involved in pathogenesis, the exact
role of mitophagy and mitophagy-related genes in pathological
conditions is yet unclear. Ongoing in vivo and in vitro studies
are aiming to elucidate this as well as to explore whether
mitophagy could make a good pharmacological target in the
context of disease. Over the past two decades, key studies
have significantly advanced our understanding of the molecular
mechanisms governing mitophagy. Here, we will aim to review
the main mitophagy pathways with a particular focus on the early
signaling events.

AUTOPHAGY MACHINERY

The process of forming a double-membrane autophagosome
depends on a series of hierarchical steps that bring together
more than 30 proteins or protein complexes. Upon inactivation
of mTOR (in pathways of non-selective autophagy) the ULK
complex composed of the protein kinase ULK1 (or its
homolog ULK2), and the adaptors FIP200, ATG13, and ATG101
translocates to endoplasmic reticulum (ER) tubulovesicular
membranes that have been “marked” by the presence of ATG9-
containing vesicles (Hara et al., 2008; Ganley et al., 2009;
Hosokawa et al., 2009b,a; Karanasios et al., 2016). These
membranes then recruit the VPS34 complex composed of
the PI 3-kinase VPS34 [synthesizing phosphatidylinositol 3-
phosphate (PI3P)] and the adaptors VPS15, ATG14, and Beclin-
1 which generates PI3P on ER-associated membranes termed
omegasomes (Axe et al., 2008). The PI3P-enriched omegasomes
then recruit the WIPI effectors and DFCP1, with the former
group responsible for bringing on site the lipidation machinery
that mediates the covalent modification of ATG8 family members
(LC3 and GABARAP families) with phosphatidylethanolamine
(PE) (Dooley et al., 2014). These PE-modified ATG8 proteins
become part of the autophagosomal membrane whereas all of
the other proteins come off as the double membrane closes
and travels to the lysosomes for degradation (Axe et al., 2008;
Karanasios et al., 2013). One challenge specific to our topic is
how this very complicated machinery for making the double
membrane autophagosome co-ordinates with the machinery
that selects damaged cargo during selective autophagy. We will
address this question in later sections.

MAIN MITOPHAGY TRIGGERS IN VITRO
AND IN VIVO

Induction of Mitophagy in vivo
It was recently shown that mitophagy occurs in vivo in multiple
tissues of mice at steady state without the need of external
stimuli. This so-called basal mitophagy occurs presumably to

ensure quality control of mitochondria as a housekeeping
mechanism (McWilliams et al., 2016; Sun et al., 2017; McWilliams
et al., 2018). Apart from its basal occurrence, mitophagy is
also induced to support many physiological processes in vivo
during organismal development. For example, during early
embryogenesis, mitophagy has been reported to be responsible
for the degradation of paternal mitochondria from the fertilized
oocyte and early embryo (Rojansky et al., 2016). Furthermore,
during reticulocyte maturation, mitophagy is a key pathway in
regulating elimination of mitochondria for the production of
mature erythrocytes (Kundu et al., 2008; Sandoval et al., 2008).
Mitophagy has been reported to trigger a metabolic switch from
oxidative phosphorylation to glycolysis, which is required for
retina ganglion cell (RGC) and M1 macrophage differentiation
(Esteban-Martinez et al., 2017). Similarly, mitophagy is key in
promoting a switch from glycolysis to oxidative phosphorylation
in myoblast differentiation (Sin et al., 2016). Apart from its
role during embryonic development, mitophagy induced in
response to infection has been proposed to have a protective
inhibitory effect on the inflammasome, to avoid an excessive
immune response which can lead to tissue damage (Kim et al.,
2016; Zhong et al., 2016). Multiple physiological stresses have
been reported to induce mitophagy in mice, including exercise,
starvation, a switch to high fat diet, ischemia and hypoxia. More
specifically, acute exercise is a strong mitophagy inducer in
heart and skeletal muscle to mediate mitochondrial remodeling
(Moyzis et al., 2015; Laker et al., 2017; Drake et al., 2019).
Starvation is well known to induce general autophagy in mice,
but this stress has also been reported to induce mitophagy, and
interestingly there is evidence for canonical and non-canonical
mechanisms occurring during starvation-induced mitophagy
(discussed below) (Mizushima et al., 2004; Nishida et al., 2009;
Hirota et al., 2015; Saito et al., 2019). Cardiomyocytes from
mice subjected to high fat diet were shown to exhibit elevated
levels of mitophagy to prevent cytotoxicity (Tong et al., 2019),
although this resulted in reduced mitophagy in liver (Sun et al.,
2015). Myocardial ischemia and energy stress (48 h starvation)
have been shown to induce mitophagy in cardiomyocytes of
mice, whereas ischemic preconditioning as well as ischemia-
reperfusion injury were shown to induce mitophagy in kidney
and brain tissues (Tang et al., 2016; Livingston et al., 2019; Saito
et al., 2019; Tang et al., 2019). Hypoxic conditions also result in
mitophagy induction in multiple tissues in mice and in various
cell lines in vitro (Zhang et al., 2008; Allen et al., 2013; Sun et al.,
2015, Zhang W. et al., 2016).

Induction of Mitophagy in vitro
Apart from the above more physiological ways to trigger
mitophagy, chemical inducers of mitophagy have proved
to be great tools and have allowed the dissection of the
molecular mechanisms of this pathway in vitro (mostly in
tissue cultured cells). Multiple compounds have been reported
to induce mitophagy and have been recently reviewed in detail
(Georgakopoulos et al., 2017). For the purpose of this review we
will mention a few recent and widely used mitophagy inducers
for which some mechanistic detail is known. The mitochondrial
uncouplers CCCP and FCCP are proton ionophores which cause
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severe loss of mitochondrial membrane potential, leading to a
robust activation of mitophagy. A combination of the F0F1-
ATPase inhibitor oligomycin and the complex III inhibitor
antimycin A (symbolized as O/A treatment) also causes
membrane depolarization and is known to be a strong mitophagy
inducer in cultured cells (Georgakopoulos et al., 2017). The
iron chelators depheriprone (DFP) and deferoxamine (DFO) are
hypoxia mimicking agents and robustly induce mitophagy in a
HIF1α-dependent manner (Allen et al., 2013).

Celastrol, a plant-derived pentacyclic triterpene with reported
anti-inflammatory, anti-cancer and anti-obesity effects, was
shown to induce mitophagy via Nur77 in a pathway that
will be described later on in more detail (Hu et al., 2017).
Lastly, we recently reported that the lactone Ivermectin acutely
induces a strong mitophagic response upon fragmentation of
mitochondria and is the fastest mitophagy inducer to our
knowledge (Zachari et al., 2019). The mechanism by which
mitophagy is induced by Ivermectin is currently unknown, but it
is unlikely that its action is similar to CCCP or FCCP as it reduces
oxygen consumption rate (OCR) whereas CCCP and FCCP
are well known to dramatically increase OCR (Georgakopoulos
et al., 2017; Juarez et al., 2018; Zachari et al., 2019). On the
other hand, treatment with Oligomycin/Antimycin A results in
decreased OCR as Ivermectin does, although in this case the
timings of the two responses are very different with Ivermectin
causing a much faster induction of mitophagy. Furthermore,
it is unlikely that it acts through a HIF1α-dependent pathway,
as this type of mitophagy stimulation requires transcriptional
activity and usually takes longer time to occur. Thus, the above
compounds appear to act through different mechanisms in
inducing mitophagy.

MITOPHAGY SIGNALS BEFORE
ENGAGING THE AUTOPHAGY
MACHINERY: UBIQUITIN DEPENDENT
AND INDEPENDENT PATHWAYS

Different pathways can regulate mitophagy and one of the
main differences among them is their dependency or not on
ubiquitin. The best studied mitophagy pathway is regulated
by the Parkinson’s disease related proteins PINK1 and Parkin
(Bingol and Sheng, 2016). An illustration of the PINK1/Parkin
pathway is shown in Figure 1A. PINK1 is a serine/threonine
kinase which contains a mitochondrial-targeting signal. In
healthy mitochondria, PINK1 is imported into the mitochondria
via the TOM and TIM complexes, following cleavage by
mitochondrial proteases including PARL (Jin et al., 2010; Greene
et al., 2012). Cleaved PINK1 is exported back to the cytoplasm in
an unstable form which is subjected to proteasomal degradation
(Yamano and Youle, 2013). Upon mitochondrial depolarization,
a loss of mitochondrial membrane potential inhibits import of
PINK1 triggering its stabilization on the outer mitochondrial
membrane (OMM), which results in its autophosphorylation and
dimerization (Okatsu et al., 2012, 2013). PINK1 then regulates
E3 ligase Parkin recruitment by phosphorylating ubiquitin at

serine 65 attached on multiple OMM proteins (Narendra et al.,
2010; Kane et al., 2014; Kazlauskaite et al., 2014). Phosphorylated
ubiquitin acts as a key signal for the recruitment and activation of
Parkin (Wauer et al., 2015). Parkin activation also requires direct
phosphorylation by PINK1 at serine 65 (Kondapalli et al., 2012;
Shiba-Fukushima et al., 2012). Parkin then further conjugates
ubiquitin on OMM proteins, marking the mitochondria for
degradation by the autophagic machinery (Narendra et al., 2008).
It is worth mentioning here that phosphorylation of ubiquitin by
PINK1 has been reported to be sufficient to recruit mitophagy
cargo receptor proteins (primarily optineurin and NDP52)
independently of Parkin but this is enhanced by Parkin activity
(Lazarou et al., 2015). Recent work revealed that the phosphatase
PPEF2 is responsible for dephosphorylating ubiquitin at serine
65 to oppose the PINK1 effect and inhibit mitophagy (Wall
et al., 2019). The deubiquitinating enzyme that reverses this
process by removing ubiquitin from the OMM is USP30 (Bingol
et al., 2014). Another E3 ligase that has been reported to act in
parallel with Parkin, is MUL1 (Yun et al., 2014; Rojansky et al.,
2016). The upstream signals that regulate MUL1 recruitment
and activity require further study, as the process has been
reported to be both dependent and also independent of PINK1,
raising the possibility of context dependent regulation of this
protein (Yun et al., 2014; Rojansky et al., 2016). Multiple other
proteins have been reported to regulate PINK1/Parkin-mediated
mitophagy. More specifically, choline dehydrogenase (CHCD),
a mitochondrial enzyme regulating methionine synthesis, was
shown to act as a ubiquitin “eat me” signal and to associate with
p62 for phagophore recruitment (Park et al., 2014). Depletion of
CHCD was reported to impair PINK1/Parkin mitophagy induced
by CCCP (Park et al., 2014). Similarly, two mitochondrial matrix
proteins required for PINK1/Parkin mitophagy, NIPSNAP1
and NIPSNAP2, were recently reported to accumulate on
mitochondria upon CCCP or hypoxia treatment, to act as “eat
me” signals by directly recruiting mitophagy adaptor proteins
(NDP52 and p62) as well as LC3/GABARAPs (Princely Abudu
et al., 2019). Apart from receptor proteins, cardiolipin, a
phospholipid normally localized in the inner mitochondrial
membrane (IMM), translocates to the OMM upon Rotenone
(a complex I inhibitor) and FCCP/CCCP treatment to act as a
receptor for LC3 and thus mediate autophagosomal engulfment
of damaged mitochondria (Chu et al., 2013). Cardiolipin
potentially acts downstream of PINK1/Parkin signaling, although
further research is required to confirm this scenario (Chu et al.,
2013). An inner membrane mitochondrial protein, prohibitin 2,
was also reported to mediate mitophagy by binding to LC3 upon
proteasomal-dependent OMM rupture caused by O/A treatment
(Wei et al., 2017). The presence of prohibitin 2 is important for
PINK1/Parkin mitophagy but also for elimination of paternal
mitochondria upon oocyte fertilization in C. elegans (Wei et al.,
2017). It was recently suggested that prohibitin 2 might be
involved in PINK1/Parkin mitophagy by positively regulating
PINK1 stabilization onto mitochondria (Yan et al., 2019).

We recently reported a second ubiquitin-dependent
mitophagy pathway which is rapidly induced by the lactone
Ivermectin (Zachari et al., 2019). Ivermectin treatment results
in acute mitochondrial damage as observed by a decrease in
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FIGURE 1 | (A) Cartoon of the PINK1/Parkin pathway. Upon loss of membrane potential (19), PINK1 stabilizes on the OMM, dimerizes and autophosphorylates.
PINK1 next phosphorylates Ubiquitin attached onto OMM proteins, leading to the recruitment of Parkin, which also gets phosphorylated and activated by PINK1.
Parkin further ubiquitinates OMM proteins leading to the recruitment of receptor proteins for the generation/recruitment of an autophagosome and subsequent
degradation of the mitochondrion. (B) Representation of mitophagy pathways which do not rely on ubiquitin. Various mitochondrial proteins can act as mitophagy
receptors including: (a) NIX/Bnip3, (b) FUNDC1, (c) Bcl2-L-13, and (d) FKBP8. (C) Ivermectin-induced mitophagy relies on mitochondrial fragmentation and
ubiquitylation via TRAF2/CIAP1/CIAP2. Upon ubiquitylation, TBK1 is required for FIP200 recruitment, which results in optineurin recruitment and downstream
activation of ATG13 and the rest of the autophagic machinery for mitophagy. (D) An alternative autophagy pathway which does not rely on LC3 lipidation can also
mediate mitophagy. This pathway requires mitochondrial fission, ULK1 and Rab9-possitive membranes.

OCR and severe fragmentation of the mitochondrial network.
This leads to induction of mitophagy, independently of PINK1
and Parkin, but dependent on the E3 ligases TRAF2, CIAP1,
and CIAP2 which work synergistically (and potentially in
complex) to conjugate ubiquitin onto fragmented mitochondria.
Upon ubiquitination, TBK1 becomes activated in order to
regulate recruitment of the adaptor protein optineurin, to
mediate mitophagy in a pathway which will be discussed later
in more detail (Zachari et al., 2019) (Figure 1C). The DUB
enzyme(s) reversing this process is yet to be identified. Apart
from optineurin and NDP52, several other adaptor proteins are
involved in mitophagy of ubiquitinated mitochondria including
TAX1BP, p62, and NBR1 (Geisler et al., 2010; Moore and
Holzbaur, 2016; Zachari et al., 2019). Another TRAF2/ubiquitin-
dependent mitophagy pathway occurs in the presence of celastrol
and the cytokine TNFa (Hu et al., 2017). More specifically,

under these conditions, celastrol binds to Nur77 (a transcription
factor nuclear receptor protein which can translocate to
mitochondria to induce apoptosis), resulting in its translocation
to mitochondria. When on mitochondria, Nur77 recruits TRAF2
resulting in mitochondrial ubiquitination and p62 recruitment
for autophagic elimination in an anti-inflammatory mechanism
(Hu et al., 2017).

Mitophagy can also occur independently of the presence of
ubiquitin on the mitochondria (Figure 1B). These mitophagy
pathways are regulated by adaptor proteins containing
mitochondrial-targeting domains and LC3-interacting region
(LIR) motifs. Whereas only one yeast mitophagy receptor
has been identified so far (the protein ATG32) (Kanki et al.,
2009), multiple mitochondrial receptors have been identified in
mammals, namely: BNIP3, NIX (or BNIP3L), FUNDC1, and
Bcl2-L-13. BNIP3 and NIX are two very similar proteins with
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pro-apoptotic functions that are transcriptionally upregulated
upon hypoxia in a HIF1α-dependent manner to mediate
hypoxia-induced mitophagy (Zhang et al., 2008; Hanna et al.,
2012, Ney, 2015; Yuan et al., 2017). NIX is also required
for mitophagy to mediate mitochondrial removal during
reticulocyte maturation (Schweers et al., 2007) and was
recently reported to mediate ischemia-reperfusion-induced
mitophagy in the brain (Yuan et al., 2017). Furthermore, NIX
overexpression can rescue mitophagy induced upon CCCP
treatment in cells deficient for Parkin-mediated mitophagy
(Koentjoro et al., 2017). The interaction of NIX with LC3
during mitophagy has been suggested to be regulated by
phosphorylation of NIX (at serine residues 34 and 35),
although the kinase mediating these events is not yet identified
(Rogov et al., 2017). Furthermore, NIX was recently reported
to be a substrate of Parkin during mitophagy (Gao et al.,
2015). Parkin-mediated ubiquitination of NIX results in
the recruitment of NBR1 to mitochondria to mediate their
autophagosomal engulfment and removal (Gao et al., 2015).
Interestingly, BNIP3 has been reported to promote PINK1-
dependent mitophagy as well, by stabilizing PINK1 levels onto
mitochondria in hypoxic conditions (Zhang T. et al., 2016).
Of note, overexpression of BNIP3 alone causes membrane
potential loss and is sufficient to induce mitophagy, highlighting
its significant role in activating this pathway (Rikka et al.,
2011). The OMM protein FUNDC1 has been reported to
regulate mitophagy induced upon hypoxia, but also upon
mitochondrial depolarization with FCCP (Liu et al., 2012;
Chen et al., 2014). Basal phosphorylation of FUNDC1 by Src
(at tyrosine 18) and CK2 (at serine 13) inhibit its interaction
with LC3 and concomitantly mitophagy, whereas hypoxia-
induced dephosphorylation increases its interaction with LC3
to promote mitophagy (Liu et al., 2012; Chen et al., 2014).
FUNDC1 has also been reported to be regulated by direct
phosphorylation by ULK1 (at serine 17) to promote mitophagy
both in the context of hypoxia and of FCCP treatment (Wu
et al., 2014). Recently, NIX and FUNDC1 have been reported
to be essential for mitophagy during cardiac progenitor cell
differentiation, mediating mitochondrial network remodeling
(Lampert et al., 2019). Bcl2-L-13 has been suggested to be
the mammalian homolog of the yeast Atg32 due to sequence
similarity and because it can rescue mitophagy in yeast upon
loss of Atg32 (Murakawa et al., 2015). Bcl2-L-13 is thought
to regulate mitophagy both by binding to LC3 but also by
mediating mitochondrial fission (Murakawa et al., 2015).
Another recently discovered mitophagy adaptor, FKBP8
with a preferred binding to LC3A, induces mitochondrial
fragmentation and mitophagy when overexpressed in cells,
independently of the PINK1/Parkin pathway (Bhujabal et al.,
2017) (Figure 1B).

RECRUITMENT OF THE AUTOPHAGIC
MACHINERY

Since receptor proteins are central in mediating mitophagy and
can bind both mitochondria and LC3/GABARAP proteins, it

was thought until recently that they mediate recruitment of the
autophagic machinery by binding to LC3/GABARAP-positive
forming phagophores. Recent evidence suggests that
both ubiquitin dependent and independent mitophagy
adaptor/receptor proteins can also act as hubs for the
recruitment of proteins involved in early autophagy events
and working upstream of LC3/GABARAPs such as ULK1
complex components and the PI3P-binding proteins WIPIs
and DFCP1. These data reveal that mitophagy can occur
not only by utilizing already forming autophagosomes but
also by direct initiation of autophagosome formation via
activation of early components. A study by Itakura et al. showed
that during Parkin-mediated mitophagy, early autophagy
proteins such as ULK1, ATG14, DFCP1, WIPI1, and ATG16L1
translocated onto damaged mitochondria even in the absence
of LC3 conjugation on membranes (Itakura et al., 2012). It
was later shown by the Youle laboratory that this is mediated
in a receptor-dependent manner (Lazarou et al., 2015). More
specifically, upon mitochondria depolarization, phospho-
ubiquitin produced as a result of PINK1 activation, recruits
the receptor proteins NDP52 and optineurin, which are
required for the recruitment of ULK1 and the omegasome
markers WIPI1 and DFCP1 (Lazarou et al., 2015). Interestingly,
later work showed that ectopic targeting of NDP52 onto
mitochondria is sufficient to recruit the ULK1 complex (via
a direct interaction of NDP52 with FIP200), ATG14 and
ATG16L1 and concomitantly induce mitophagy in both Parkin-
dependent and independent mechanisms (Vargas et al., 2019).
In the same study it was shown that targeting of ULK1 to
mitochondria was sufficient to induce mitophagy (even when
NDP52 or TBK1 are absent), supporting the notion that the
function of early ubiquitin/receptor signals is to recruit the
autophagy initiation machinery for the de novo formation
of an autophagosome on the target mitochondrion. The key
event regulated by NDP52-mediated recruitment of the ULK1
complex is a direct interaction between NDP52 and FIP200
which requires the presence and activation of TBK1 (Vargas
et al., 2019). Binding of receptor proteins to FIP200 is not a
mitophagy specific mechanism. It was recently reported to
be the key event in other types of selective autophagy as well
including ER-phagy, aggrephagy, xenophagy, and pexophagy
(Smith et al., 2018; Ravenhill et al., 2019; Turco et al., 2019)
highlighting that different selective autophagy pathways share
common features. In addition, it was recently shown that
LC3/GABARAP proteins can mediate recruitment of the
adaptor proteins optineurin and NDP52 to mitochondria, in
a positive feedback loop in order to accelerate PINK1/Parkin
mediated mitophagy (Padman et al., 2019). Interestingly,
LC3/GABARAPs likely play different roles during PINK1/Parkin
mitophagy as GABARAPs appear to be more essential than
the LC3s (Nguyen et al., 2016). Furthermore, loss of all
LC3/GABARAPs did not abolish autophagosome formation
(as seen by EM and recruitment of earlier autophagy markers
such as ULK1 on mitochondria) but it rather caused defects
in mitophagosome-lysosome fusion (Nguyen et al., 2016).
Independently of PINK1 and Parkin, we recently showed
that ubiquitination of fragmented mitochondria induced by
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Ivermectin leads to activation of TBK1 which is required
for optineurin recruitment and mitophagy (Zachari et al.,
2019). In this mitophagy pathway, recruitment of optineurin
required FIP200 but not ULK1/2 or ATG13, revealing that
the activity of the ULK1/2 kinases is not essential for certain
mitophagy pathways. [It is worth mentioning here that the
FIP200 and ATG13 proteins have been previously reported
to act independently of the complex during autophagy (Alers
et al., 2011) although the exact mechanisms underlying these
functions are poorly understood.] Furthermore, TBK1 activation
was hierarchically earlier than FIP200, and was required for
optineurin recruitment. Given the recently published evidence
discussed above, it is possible that a direct interaction between
optineurin (and possibly more adaptors) and FIP200 is key also
for the progression of Ivermectin-induced mitophagy. ATG13
was required for the formation of the omegasomes, within
which the LC3-positive mitophagosomes formed (Zachari et al.,
2019). ATG9 vesicles - essential components of the autophagic
machinery - have been involved in both PINK1/Parkin and
Ivermectin-induced mitophagy, although their exact role during
mitophagy remains elusive (Itakura et al., 2012; Yamano et al.,
2018, Zachari et al., 2019).

Mitophagy induced via Bcl2-L-13 was also recently reported
to involve recruitment of ULK1 to mitochondria, even though
this was shown to occur in an indirect manner whereby Bcl2-
L-13 recruits LC3B, leading to recruitment of ULK1 which
binds to LC3B via a LIR motif (Murakawa et al., 2019). As
mentioned earlier, FUNDC1-dependent mitophagy also involves
recruitment of ULK1 to the mitochondria. In this case FUNDC1
is phosphorylated by ULK1 which causes enhanced binding to
LC3 during mitophagy (Wu et al., 2014). Predictably, ULK1
kinase activity is required for this pathway (Wu et al., 2014)
(Figure 1B).

Even though mitophagy generally is reported to occur via
the canonical autophagic machinery that we described earlier,
a non-canonical mitophagy pathway which does not require
LC3 lipidation was reported to occur in cardiomyocytes upon
ischemic stress and starvation as well as in HeLa cells upon
starvation and hypoxia (Hirota et al., 2015; Saito et al., 2019).
In cardiomyocytes, this pathway depends on ULK1 but not
on ATG5 and does not involve LC3-positive autophagosomes;
instead it is mediated by Rab9 positive membranes/vesicles which
drive lysosomal degradation of mitochondria. It is currently
unknown whether ubiquitin signals and receptor proteins are
involved in ULK1-Rab9 dependent mitophagy (Saito et al., 2019)
(Figure 1D). Rab9-mediated autophagy has been previously
reported as a non-canonical/alternative non-selective autophagy
pathway in cells lacking ATG5, where it was also suggested that
it plays a role in mitochondrial clearance during erythrocyte
differentiation (Nishida et al., 2009).

It is important to mention here that mitochondrial fission (the
separation from the network or fragmentation), appears to be
an essential (but not sufficient) step for mitophagy (Twig et al.,
2008; Williams and Ding, 2018). A key regulator of mitochondrial
fission is Drp1 - a member of the dynamin family of large
GTPases (Labrousse et al., 1999). Although multiple reports have
shown that Drp1 is required for both PINK1-dependent and

independent mitophagy pathways (Lee et al., 2011; Kageyama
et al., 2014; Wu et al., 2016; Li et al., 2019; Zachari et al., 2019),
other studies suggest that it might be dispensable for mitophagy
(Murakawa et al., 2015; Yamashita et al., 2016; Burman et al.,
2017). Thus, mitophagy dependency on Drp1 could be potentially
context specific and further investigation is needed to understand
its role in this pathway. A generalized illustration of our current
understanding of mitophagy signaling is shown in Figure 2.

DOES MTORC1 REGULATE
MITOPHAGY?

As mentioned earlier, one of the master regulators of bulk
autophagy is mTORC1, which when active, suppresses autophagy
via direct phosphorylation of the ULK complex components
ULK1 and ATG13 (Ganley et al., 2009; Hosokawa et al.,
2009a; Kim et al., 2011; Puente et al., 2016). Even though
mTORC1 has a well-established role during starvation-induced
autophagy, its role during mitophagy is unclear. Inhibition
of mTORC1 with rapamycin has been reported to improve
mitochondrial health (Nacarelli et al., 2018). Studies with CCCP
and FCCP in a non-mitophagy context, have reported that
these proton uncouplers cause a reduction in mTORC1 activity,
suggesting that PINK1/Parkin mitophagy might require mTOR
inactivation as bulk autophagy does (Inoki et al., 2003; Kim
et al., 2013; Bartolome et al., 2017). Furthermore, recent reports
suggest that mTORC1 hyperactivation can have an inhibitory
effect on PINK1/Parkin mediated mitophagy as well as general
autophagy (Bartolome et al., 2014, 2017; Bordi et al., 2019).
Importantly, hypoxia leads to a reduction in mTORC1 activity
as well, meaning that mTORC1 might play a role in hypoxia-
induced mitophagy (Vadysirisack and Ellisen, 2012). Ivermectin
did not appear to affect mTORC1 activity in the time points
and concentrations we used to induce mitophagy (although
treatments of 24–48 h have been shown to have an inhibitory
effect on mTORC1) (Dou et al., 2016; Liu et al., 2019; Zachari
et al., 2019). This might mean that the ULK complex can
mediate mitophagosome formation even if it is phosphorylated
by mTORC1 or that mitophagy is mediated by a pool of ULK
complex that has escaped inhibition of mTORC1. Vargas et al.
(2019), showed that mitophagy-induced due to ULK1 targeting
to mitochondria was unaffected by mTOR overexpression and
concomitant increase in ULK1 phosphorylation. It is important
to mention here that amino acid (or full nutrient) starvation
has been shown to block mitophagy in multiple cell lines
as a result of reduced mitochondrial fission, even though
mTORC1 activity is lost in these conditions (Gomes et al.,
2011; Rambold et al., 2011). Thus, mTORC1 inactivation does
not necessarily lead to mitophagy induction. Most of the
mitophagy studies do not evaluate mTORC1 activity and our
knowledge on this is limited. In conclusion further research
is required to understand its involvement during mitophagy.
Of note, AMPK appears to play an important (but not fully
understood) role during mitophagy in multiple contexts and
it is worth mentioning that mTORC1 regulates AMPK and
that both these kinases can potentially influence mitophagy via
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ULK1. The literature on this topic has recently been reviewed
(Herzig and Shaw, 2018).

IS THERE A MEMBRANE SOURCE
SPECIFIC FOR MITOPHAGY?

The origin of the autophagosomal membrane during bulk
autophagy induced by amino acid starvation is a long-standing
question: autophagosomes form de novo and the membranes
contributing to autophagosomal growth are devoid of protein-
markers of the donor membranous compartments, making it
hard to identify their provenance. Different organelles and
membrane compartments have been proposed to contribute
membrane to the autophagosome forming upon amino acid
starvation, and these include the ER, Golgi, plasma membrane,
mitochondria, and endosomes (Ktistakis and Tooze, 2016; Wei
et al., 2018). As discussed earlier, during amino acid starvation
autophagosomes form in ER platforms called omegasomes which
are marked by the omegasome marker DFCP1 (Axe et al.,

2008). Thus, a candidate membrane donor has been proposed
to be the ER, with contributions from virtually all intracellular
membranes in a way not entirely clear (Ktistakis, 2020). When
it comes to mitophagy and other types of selective autophagy
our understanding of the membrane source(s), and whether this
differs from bulk autophagy, is even less clear. For Ivermectin-
induced mitophagy we recently showed that at an early step
of the process mitochondria became entrapped within ER
strands prior to omegasome formation and mitophagosome
generation (Zachari et al., 2019). In our analysis by both
live imaging and electron tomography it appeared that the
autophagosomal membrane engulfing the mitochondria grew
as an extension of the neighboring ER strands-such close
apposition of ER with targeted mitochondria was evident in some
older publications studying PINK1/Parkin-induced mitophagy
(discussed in Zachari et al., 2019). Since observations from
other research groups support the notion that mitophagosomes
(independently of induction mode) form within omegasomes
(Yang and Yang, 2013; Wong and Holzbaur, 2014; Gelmetti et al.,
2017; Hsieh and Yang, 2019) it is possible that the ER plays
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a key role as a membrane source for mitophagy in general. It
will be interesting to determine if the different ER proteins that
have been reported to be involved in autophagosome biogenesis
upon amino acid starvation are also important for mitophagy
as well (Walker and Ktistakis, 2019; Ktistakis, 2020). It was
recently reported that in yeast mitochondria-ER contact sites
are crucial for mitophagy (and pexophagy) to occur (Bockler
and Westermann, 2014; Liu et al., 2018). Given the importance
of ER-mitochondrial contacts in autophagosome formation in
general, it is likely that they are crucial for mitophagy in
mammals too, although this is yet to be confirmed experimentally
(Hamasaki et al., 2013).

CONCLUSION AND FUTURE
PERSPECTIVES

Our understanding of mitophagy signaling process and function
has significantly advanced in the past decade. It is now clear that
multiple proteins are involved in the regulation of mitophagy
and various physiological events or types of stress can induce
different mitophagy pathways both in vivo and in vitro. The
PINK1/Parkin pathway has attracted a lot of attention, partially
due to the importance of these proteins in Parkinson’s disease
and undoubtedly as a result of the detailed mechanistic studies
that have dissected it. However, it is now evident that this
pathway is not required for the regulation of basal mitophagy
(as well as other types of mitophagy) in mice and it might
be more relevant in clearing mitochondria following particular
damage/stress. Thus, more work is required to understand its
physiological relevance (McWilliams et al., 2018; Drake et al.,
2019). In terms of other types of mitophagy, there are still a lot of

unanswered questions remaining in the field. For example, what
kind of damage exactly do the mitophagy-inducing agents cause
to the mitochondria? How can this relate to mitochondrial stress
in humans (e.g., exposure to environmental hazards or aging)?
How can this lead to disease? Can mitophagy be targeted for
the development of therapeutics? Related to the last question,
biochemical advances in the autophagy field, led to the generation
of therapeutically promising compounds called “AUTACs” which
can bind to mitochondria causing their ubiquitylation and
induction of mitophagy (Takahashi et al., 2019). This way,
AUTACs were shown to successfully drive mitochondria to the
autophagosomal lumen for degradation, opening up an exciting
new era in preclinical research on selective autophagy and its
potential in treatment development.
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Mitochondrial dysfunction constitutes one of the hallmarks of aging and is characterized
by irregular mitochondrial morphology, insufficient ATP production, accumulation of
mitochondrial DNA (mtDNA) mutations, increased production of mitochondrial reactive
oxygen species (ROS) and the consequent oxidative damage to nucleic acids,
proteins and lipids. Mitophagy, a mitochondrial quality control mechanism enabling
the degradation of damaged and superfluous mitochondria, prevents such detrimental
effects and reinstates cellular homeostasis in response to stress. To date, there
is increasing evidence that mitophagy is significantly impaired in several human
pathologies including aging and age-related diseases such as neurodegenerative
disorders, cardiovascular pathologies and cancer. Therapeutic interventions aiming at
the induction of mitophagy may have the potency to ameliorate these dysfunctions. In
this review, we summarize recent findings on mechanisms controlling mitophagy and its
role in aging and the development of human pathologies.

Keywords: mitophagy, aging, mitochondria, caloric restriction, ROS

INTRODUCTION

Mitochondria are highly organized and dynamic organelles that undergo continuous fission
and fusion (Chen and Chan, 2009; Pham et al., 2012). They originated from endosymbiotic
proteobacteria and conferred substantial advantages for eukaryotic cells during evolution. Thus,
mitochondria play a critical role in ATP synthesis via oxidative phosphorylation (OXPHOS),
β-oxidation regulating fatty acid metabolism, the synthesis of intermediate metabolites through
the TCA cycle, as well as calcium homeostasis. On the other hand, like a double-edged sword,
mitochondria can turn into a potential threat to cellular homeostasis and survival. In the past
decades it has been well documented that mitochondria are the central organelle controlling
apoptotic cell death and that the permeabilization of the mitochondrial outer membrane, with
the resultant release of pro-apoptotic proteins such as cytochrome c, SMAC/DIABLO, ENDOG,
OMI/HTR and AIF, irrevocably leads to cellular demise (Susin et al., 1999; Du et al., 2000; van
Loo et al., 2002; Green and Kroemer, 2004; Liu et al., 2009; Wang and Youle, 2009; Li et al.,
2017). Moreover, mitochondria are the major source of reactive oxygen species (ROS). During
OXPHOS electrons originating mostly from complexes I and III of the electron transport chain,
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can generate ROS that in turn oxidizes proteins, lipids, and
nucleic acids, inside (and outside) the mitochondria, leading
to mitochondrial malfunction and cellular damage (Paradies
et al., 2000; Hamilton et al., 2001; Short et al., 2005; Miyoshi
et al., 2006; Zorov et al., 2014; Redza-Dutordoir and Averill-
Bates, 2016). Furthermore, mitochondria serve as an origin
of damage associated molecular patterns (DAMP) and in
particular mitochondrial DNA (mtDNA), which, once released
from mitochondria into the cytosol, can trigger inflammatory
responses (Iyer et al., 2009, 2013; Tschopp, 2011; Nakahira et al.,
2015; West et al., 2015; Contis et al., 2017).

During aging a wide spectrum of alterations in mitochondrial
structure and function can occur. Thus, although cellular
antioxidants and free radical scavenging enzymes eliminate
most of the generated ROS, a small proportion that escapes
clearance can oxidize proteins, lipids and DNA, particularly
within the mitochondria. The resulting mutational damage
accumulates over lifetime, in particular affecting respiratory
chain complexes, which itself results in the overproduction
of ROS, forming a vicious cycle that ultimately leads to
mitochondrial dysfunction (Greco et al., 2003; Petersen et al.,
2003; Short et al., 2005; Lee and Wei, 2012). Morphologically,
aging in flies and mammalians manifests with the enlargement
of mitochondria, irregular cristae shape and size as well as a
decrease in mitochondrial number (Miquel et al., 1980; Terman
and Brunk, 2005; Yoon et al., 2006; Leduc-Gaudet et al., 2015).
Functionally, OXPHOS activity, and thus ATP synthesis declines
with age while ROS production increases in aged animals
(Lee and Wei, 2012). As a result, it is not surprising that
mtDNA deletions and mutations are detected in tissues from
aged animals and humans (Fayet et al., 2002; Eshaghian et al.,
2006; Trifunovic, 2006; Lee and Wei, 2012). Consistent with
these observations, mtDNA mutator mice that express a proof-
reading-deficient version of the mitochondrial DNA polymerase
G (POLG) show reduced lifespan and exhibit a premature onset
of aging-associated phenotypes including weight loss, reduced
subcutaneous fat, alopecia (hair loss), kyphosis (curvature of
the spine), osteoporosis, anemia, reduced fertility, and heart
enlargement (Trifunovic et al., 2004).

Macroautophagy, which is generally referred to as autophagy,
is a conserved intracellular degradation mechanism that
removes dangerous, unnecessary or dysfunctional cytoplasmic
constituents and invading microbes (Mizushima, 2007; Schuck
et al., 2014; Dou et al., 2015; Mochida et al., 2015; Chai et al.,
2019). Autophagic activity declines during aging, and autophagy
is required for lifespan extension by caloric restriction or caloric
restriction mimetics (CRM) such as resveratrol, spermidine, and
several chalcones (Eisenberg et al.; Rubinsztein et al., 2011;
Lopez-Otin et al., 2016; Madeo et al., 2018; Carmona-Gutierrez
et al., 2019). Although the relation between autophagy and
aging has been firmly established as an important mitochondrial
quality control mechanism, the role of mitophagy in aging
and age-related disorders has remained elusive for a long time.
However, recent studies have shown that mitophagy has a
key function in delaying aging and age-related disorders such
as neurodegenerative disorders, cardiovascular pathologies, and
cancer. Here, we provide an update on mechanisms that control

mitophagy, its role in aging and therapeutic interventions that
harness mitophagy to treat age-related disorders.

MOLECULAR MECHANISMS OF
MITOPHAGY

Mitophagy shares the core molecular machinery with general
macroautophagy and can occur in an either selective or non-
selective fashion (Levine and Kroemer, 2019). Thus, during
nutrient starvation mitochondria were found in autophagosomes
together with cytosolic proteins and organelles such as ER and
peroxisomes indicative for non-selective mitophagy (Kopitz
et al., 1990; Takeshige et al., 1992; Scott and Klionsky, 1998;
Kim et al., 2007; Figure 1). Studies in yeast revealed that
mitochondria can be selectively degraded by mitophagy, a
process that involves the outer mitochondrial membrane
protein SUN family protein Uth1 (Uth1), and type 2C
protein phosphatase Ptc6 (Ptc6, better known as Aup1), a
phosphatase localizing in the mitochondrial intermembrane
space (Petros et al., 1991; Kissova et al., 2004). Mitophagy has
been shown to occur under a series of potentially harmful
conditions, such as oxidative stress, hypoxia, mitochondrial
transmembrane potential loss, the accumulation of unfolded
proteins and iron starvation. Moreover, impaired mitophagy
and dysfunctional mitophagic mechanisms were associated
with numerous physiological and pathological processes
including development, differentiation, aging, neurodegenerative
disorders, cardiovascular pathologies and cancer.

PINK1 AND PARKIN-REGULATED
MITOPHAGY

Mutations in PTEN-induced putative kinase 1 (PINK1)
and parkin RBR E3 ubiquitin protein ligase (PRKN, better
known as Parkin) are associated with autosomal recessive
juvenile parkinsonism characterized by motor disturbances
and dopaminergic neurodegeneration. Later, genetic analysis
showed the molecular mechanism which links PINK1 and
Parkin in a common pathway regulating mitophagy, with
PINK1 sensing mitochondrial transmembrane potential loss,
followed by the recruitment of the E3 ubiquitin ligase Parkin
to damaged organelles (Clark et al., 2006; Park et al., 2006). In
healthy state, PINK1 led by an N-terminal targeting sequence
is imported into mitochondria through the translocase of the
outer mitochondrial membrane (TOM) and the translocase of
the inner mitochondrial membrane (TIM) complexes, where it is
cleaved by matrix processing peptidase (MPP) and presenilins-
associated rhomboid-like protein (PARL) (Jin et al., 2010; Deas
et al., 2011; Meissner et al., 2011; Greene et al., 2012). Cleaved
PINK1 is retro-translocated and released into the cytosol for
proteasomal degradation (Yamano and Youle, 2013). However,
the loss of mitochondrial transmembrane potential in damaged
mitochondria abolishes cleavage, and stabilizes PINK1 on the
outer mitochondrial membrane. Recently, the adenine nucleotide
translocator (ANT) complex was reported to stabilize PINK1 by
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FIGURE 1 | Non-selective mitophagy. Mitophagy shares the core molecular machinery with general macroautophagy and can occur in a non-selective fashion. Thus,
mitochondria are engulfed during the nucleation and elongation phase into the forming phagophore together with other cellular content such as protein aggregates,
endoplasmic reticulum (ER) derived structures and invasive bacteria. The fusion of the phagosome with lysosomes leads to the formation of the autophagolysosome
and the degradation of its content.

inhibiting the pre-sequence translocase TIM23 independently of
its nucleotide translocase catalytic activity (Hoshino et al., 2019).

The accumulation of full length PINK1 leads to the
phosphorylation (on serine 65) of pre-existing ubiquitin
molecules, which are already attached to the outer mitochondrial
membrane. Phosphorylated ubiquitin in turn recruits cytosolic
Parkin to the mitochondrial membrane and triggers the
activation of its ubiquitin ligase activity (Koyano et al.,
2014; Wauer et al., 2015). Furthermore, PINK1-dependent
phosphorylation of the ubiquitin-like domain of Parkin
(Kondapalli et al., 2012; Shiba-Fukushima et al., 2012; Iguchi
et al., 2013; Kane et al., 2014) leads to the release of the
catalytic RING2 domain and locks Parkin in a functionally
active state. Activated Parkin exhibits low substrate specificity
and ubiquitylates outer mitochondrial membrane proteins
including voltage-dependent anion-selective channel (VDAC)
and mitochondrial Rho GTPase (MIRO) proteins (Sarraf et al.,
2013; Ordureau et al., 2014; Gladkova et al., 2018).

Studies in cardiomyocytes demonstrated that PINK1
phosphorylates (at serine 442 and threonine 111) mitofusin
2 (MFN2), a GTPase that mediates mitochondrial fusion,
which in turn mediates the recruitment of Parkin to damaged
mitochondria for mitophagy initiation (Chen and Dorn, 2013;
Xiong et al., 2019). Furthermore, it has been suggested that
mitochondrial fission might be yet another prerequisite for
the initiation of mitophagy. Thus, it was reported that Parkin,
among other substrates, ubiquitylates mitofusin 1 (MFN1) and
MFN2, leading to their proteasomal degradation, and subsequent
mitochondrial fission preceding mitophagy, while the inhibition
of mitochondrial fission prevented Parkin-induced mitophagy
(Tanaka et al., 2010). Parkin-mediated poly-ubiquitination of
outer mitochondrial membrane proteins triggers the recruitment
of autophagy receptors such as optineurin (OPTN), calcium
binding and coiled-coil domain 2 (CALCOCO2, better known as
NDP52) and Tax1 binding protein 1 (TAX1BP1), concomitantly
with the activation of the TANK binding kinase 1 (TBK1) that
phosphorylates OPTN (at serine 177, 473, and 513) further
enhancing its ubiquitin chain binding ability (Wild et al., 2011;
Wong and Holzbaur, 2014; Heo et al., 2015; Lazarou et al., 2015).
Once recruited to the mitochondria, autophagy receptors can
employ initiator proteins from the autophagic machinery such
as unc-51 like autophagy activating kinase 1 (ULK1), zinc finger

FYVE-type containing 1 (ZFYVE1, better known as DFCP1)
and WD repeat domain, phosphoinositide interacting 1 (WIPI1,
also known as ATG18) to assemble the autophagosome (Wong
and Holzbaur, 2014; Lazarou et al., 2015; Ravenhill et al., 2019;
Turco et al., 2019; Vargas et al., 2019) and ATG8s, which could
further recruit autophagy receptors to amplify mitophagy signals
(Padman et al., 2019). The key function of the ULK1-containing
complex for selective autophagy has been recently discussed
elsewhere (Turco et al., 2020). Additionally, independently
of Parkin, PINK1 may recruit NDP52 and optineurin to
mitochondria to directly stimulate mitophagy (Lazarou et al.,
2015). It has also been suggested that Parkin mediates the broad
proteasomal degradation of outer mitochondrial membrane
proteins which leads to membrane rupture and the exposure of
the mitophagy receptor prohibitin 2 (PHB2) (Chan et al., 2011;
Wei et al., 2017). Conversely, PHB2 can promote PINK1/Parkin-
dependent mitophagy by inhibiting the function of PARL and the
resultant stabilization of PINK1 on the surface of mitochondria
(Yan et al., 2019). However, cells deficient of all Atg8 family
members could still undergo mitophagy although the overall size
of mitophagosomes is smaller (Nguyen et al., 2016).

Although mutations or deletions of Parkin or PINK1 cause
Parkinson disease in humans, mice deficient in either PINK1
or Parkin do not display any related phenotype. However,
accumulating evidence shows that Parkinson’s disease is
accompanied by immune responses that lead to an increase in
serum levels of pro-inflammatory cytokines such as interleukin-6
(IL6), tumor necrosis factor alpha (TNFα), interleukin-1β

(IL1B), and interferon gamma (IFNG) (Brodacki et al., 2008;
Koziorowski et al., 2012; Lindqvist et al., 2012; Dzamko
et al., 2015; Houser and Tansey, 2017; Caggiu et al., 2019).
Consistently, the challenge of PINK1 or Parkin deficient mice
with immunogenic stress leads to the onset of Parkinson disease-
like symptoms (Frank-Cannon et al., 2008; Sliter et al., 2018;
Matheoud et al., 2019). Thus, administration of low-dose
lipopolysaccharide (LPS) can cause subtle fine-motor deficits
and selective loss of dopaminergic neurons in substantia nigra in
Parkin deficient mice, although LPS treatment triggered similar
persistent neuroinflammation in both wild type and Parkin−/−

mice (Frank-Cannon et al., 2008). The loss of dopaminergic
neurons and motoric defects also occur in aged Parkin−/−;
mutator mice (Sliter et al., 2018), which accumulate mutations
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in mtDNA, as well as in Pink1−/− mice that were orally
infected with Gram-negative bacteria (Matheoud et al., 2019). In
macrophages, dysfunctional mitochondria are marked by Parkin-
dependent ubiquitylation and then recognized by sequestosome
1 (SQSTM1, better known as p62), which is transcriptionally
upregulated by nuclear factor kappa B (NF-κB), followed by
mitochondrial clearance via mitophagy. This NF-κB and p62-
dependent mitophagy pathway prevents excessive inflammation
by restraining NLRP3-inflammasome overactivation (Zhong
et al., 2016). Moreover, mtDNA released from damaged
mitochondria can promote stimulator of interferon response
cGAMP interactor 1 (STING1)-dependent interferon regulatory
factor 3 (IRF3)-mediated signaling triggering inflammatory
response (West et al., 2015), while Parkin-mediated mitophagy
prevents inflammation by mitophagic mtDNA clearance (Sliter
et al., 2018). Additionally, PINK1 and Parkin signaling can
suppress inflammation by repressing mitochondrial antigen
presentation delivered by mitochondrial derived vesicles
(Matheoud et al., 2016).

The roles of PINK1 and Parkin in heart function have been
extensively studied. PINK1 protein levels significantly decrease
in humans with end-stage heart failure. PINK1 deficient mice
develop left ventricular dysfunction and pathological cardiac
hypertrophy, characterized by an increase in oxidative stress and
impaired mitochondrial function (Billia et al., 2011). Different
from PINK1, Parkin deficiency sensitizes mice to myocardial
infarction resulting in reduced overall survival. Morphologically,
Parkin deficiency manifests with a disorganized mitochondrial
network and a significant decrease in mitochondrial size.
Nevertheless, Parkin-deficient mice exhibit normal cardiac
function for up to 12 months of age (Kubli et al., 2013). In
response to cardiac ischemia, Parkin-mediated mitophagy is
induced to mitigate detrimental effects of a prolonged lack
of oxygen supply in the heart of wild type mice, indicating
the important role of mitophagy for heart homeostasis (Kubli
et al., 2013). Simvastatin, an HMG CoA reductase inhibitor
used to lower low-density lipoprotein (LDL) and triglycerides
levels and thus to prevent heart attack, can stimulate Parkin-
dependent mitophagy. Simavastin has the ability to reduce
the size of the infarction caused by ischemia/reperfusion in
wild-type mice but not in Parkin-deficient animals (Andres
et al., 2014). Interestingly, mtDNA released from damaged
mitochondria triggers inflammatory responses in cardiomyocytes
that culminate in myocarditis and dilated cardiomyopathy (Oka
et al., 2012). Moreover, Parkin mediated mitophagy turns over
fetal cardiomyocyte mitochondria to facilitate the replacement
of mature adult mitochondria, an effect that likely contributes to
the perinatal maturation of cardiac metabolism (Kageyama et al.,
2014; Gong et al., 2015; Lampert et al., 2019).

FUNDC1-MEDIATED MITOPHAGY

FUN14 domain containing 1 (FUNDC1) is an outer
mitochondrial membrane protein with three transmembrane
domains, which serves as a mitophagy receptor in mitochondrial
uncoupling-, and hypoxia-mediated mitophagy as well as

paternal mitochondrial clearance in C. elegans (Liu et al.,
2012; Chen et al., 2014; Lim et al., 2019). FUNDC1 contains
a conserved microtubule associated protein 1 light chain 3
beta (MAP1LC3B better known as LC3)-interacting region
(LIR) domain facing the cytosol, which is necessary for its
interaction with LC3, a key regulator of autophagy (Liu et al.,
2012). FUNDC1-deficiency blocks hypoxia-induced mitophagy,
which can be rescued by re-expressing wild-type FUNDC1 but
not with a LIR-mutated protein, indicating a key role of LIR-
mediated LC3 interaction in FUNDC1 activity (Liu et al., 2012).
Indeed, FUNDC1 is constitutively phosphorylated (at tyrosine
18 and serine 13) by the protein kinases SRC proto-oncogene,
non-receptor tyrosine kinase (SRC) and casein kinase 2 (CK2),
respectively, which reduces its interaction with LC3 (Liu et al.,
2012; Chen et al., 2014). Upon hypoxia or loss of mitochondrial
transmembrane potential, dephosphorylation (of tyrosine 18 and
serine 13) mediated by the mitochondrial phosphatase PGAM
family member 5 (PGAM5) and concomitant phosphorylation
(of serine 17) by ULK1 enhances the interaction of FUNDC1
with LC3 to promote mitophagy (Liu et al., 2012; Chen et al.,
2014; Wu W. et al., 2014). However, the phosphatase responsible
for (tyrosine 18) dephosphorylation remains elusive.

The activity of PGAM5 is fine-tuned to regulate FUNDC1-
mediated mitophagy, thus during homeostasis PGAM5 activity
is inhibited by BCL2-like 1 (BCL2L1 better known as BCL-XL),
and the degradation of BCL-XL induced by hypoxia leads to the
dephosphorylation of FUNDC1 and the induction of mitophagy
(Wu H. et al., 2014). Under oxidative stress conditions, PGAM5
forms multimers to release BCL-XL, which in turn is followed
by an increase in BCL-XL phosphorylation and ultimately
leads to apoptosis. Once liberated from BCL-XL sequestration,
multimeric PGAM5 is able to dephosphorylate FUNDC1, to
augment mitochondrial fission and induce mitophagy. Thus,
the reciprocal interaction between PGAM5 with BCL-XL and
FUNDC1 may serve as a molecular switch between mitophagy
and apoptosis under oxidative stress conditions (Ma et al., 2019).
Recent studies suggested additional factors such as syntaxin
17 (STX17), a SNARE protein located in the mitochondria-
associated membranes (MAM) and mitochondria is also required
for PGAM5 to dephosphorylate FUNDC1 during mitophagy
(Sugo et al., 2018).

Moreover, in addition to this tight control, mitochondrial
dynamics participate in FUNDC1-mediated mitophagy.
Thus, it was reported that FUNDC1 interacts with both the
mitochondrial fission key factor dynamin 1 like (DNM1L, better
known as DRP1) and inner membrane fusion regulator OPA1
mitochondrial dynamin like GTPase (OPA1) to coordinate
mitochondrial dynamics and mitophagy. Mitophagic stress
stimulates the disassembly of the FUNDC1-OPA1 complex,
while enhancing the association of FUNDC1 with DRP1,
leading to mitochondrial fission, thus fostering mitophagy
(Chen et al., 2016). FUNDC1 was described to associate with
the ER protein calnexin (CANX) in mitochondria-associated ER
membranes (MAMs). During hypoxia, the association between
FUNDC1 and CANX is decreased, thereby liberating FUNDC1
for its interaction with DRP1, triggering mitochondrial
fission and mitophagy (Wu W. et al., 2016). Interestingly,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2020 | Volume 8 | Article 20029

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00200 March 24, 2020 Time: 16:1 # 5

Chen et al. Mitochondrial Breakdown-Mediated Homeostasis

membrane associated ring-CH-type finger 5 (MARCHF5)
can ubiquitylate FUNDC1 for proteasomal degradation, and
desensitize mitochondria to hypoxia-induced mitophagy thus
constituting a negative regulation mechanism at early stages of
hypoxia (Chen et al., 2017).

The physiological role of FUNDC1 has been studied
in detail and it has been shown that FUNDC1 plays an
important role in liver cancer and obesity. In a mouse
model of human hepatocellular carcinoma (HCC) induced
by the chemical carcinogen, diethylnitrosamine (DEN), liver
specific knockout of FUNDC1 facilitates the cytosolic release
of mtDNA due to a defect in mitophagy, resulting in
an accumulation of dysfunctional mitochondria, an elevated
release of proinflammatory cytokines, such as IL1B and
hyperproliferation of hepatocytes, finally culminating in the
initiation and progression of DEN-induced HCC (Li et al., 2019).
Furthermore, skeletal-muscle-specific knockout of FUNDC1
impairs mitochondrial energetics and negatively affects physical
fitness. However, FUNDC1 deficiency decreases the susceptibility
to high-fat-diet-induced obesity with improved insulin sensitivity
and glucose tolerance. In fact, FUNDC1 deficiency elicits a
retrograde response in muscle with an upregulation of fibroblast
growth factor 21 (FGF21) expression, and thereby promotes
the thermogenic remodeling of adipose tissue (Fu et al.,
2018). FUNDC1 and BCL2 interacting protein 3 like (BNIP3L,
better known as NIX) but not PINK1/Parkin-dependent
mitophagy facilitates the removal of impaired mitochondria and
thus maintains mitochondrial network reorganization during
cardiac progenitor cell (CPC) differentiation. Interestingly,
mice expressing a proofreading-defective mitochondrial DNA
polymerase G gamma (PolGD257A/D257A), experience premature
aging and develop accelerated age-related cardiomyopathy due to
the accumulation of mtDNA mutations (Lampert et al., 2019).

BNIP3 AND NIX-DEPENDENT
MITOPHAGY

BCL2 interacting protein 3 (BNIP3) and NIX, belong to the BH3
only domain proteins of the BCL2 family, which localize at the
outer mitochondrial membrane and are involved in stress sensing
and the induction of cell death when cellular stress prevails
(Zhang and Ney, 2009). More recently, the role of BNIP3 and NIX
in autophagy has been extensively studied. Both BNIP3 and NIX
are hypoxia-inducible genes (Bruick, 2000; Sowter et al., 2001;
Kubasiak et al., 2002), and play an important role in hypoxia-
induced macroautophagy and mitophagy (Zhang and Ney, 2009).
An increase in BNIP3 protein levels can lead to the liberation of
Beclin1 (BECN1) from BCL2 apoptosis regulator (BCL2) and/or
BCL-XL sequestration to initiate mitophagy, to prevent ROS
production and subsequent cell death (Zhang et al., 2008).

NIX is known for its prominent function in the mitophagy-
dependent maturation of red blood cells. Mammalian erythroid
cells undergo enucleation and the removal of organelles during
terminal differentiation, in which the maturation process of
enucleated immature reticulocytes to erythrocyte necessitates
complete mitochondrial clearance depending on NIX (Schweers

et al., 2007; Sandoval et al., 2008). During erythrocyte
differentiation NIX expression is significantly increased, and
leads to a decrease in mitochondrial transmembrane potential
and the induction of mitophagy (Aerbajinai et al., 2003). Cells
from Nix-deficient mice exhibit defects in the incorporation of
mitochondria into autophagosomes and further autophagosomal
maturation (Schweers et al., 2007; Sandoval et al., 2008).
Furthermore, the elimination of mitochondria does not require
the core autophagic gene ATG5, but depends on the autophagic
kinase ULK1, indicating a specific function of ULK1 in
mitophagy during red blood cell maturation (Kundu et al., 2008;
Honda et al., 2014).

Mechanistic analysis indicated that NIX functions as a
mitophagy receptor that interacts with LC3 via its LIR domain
and thus recruits LC3 family proteins to damaged mitochondria.
Ablation of the NIX-LC3/GABA type A receptor-associated
protein (GABARAP) interaction retards mitochondrial clearance
in maturing murine reticulocytes (Novak et al., 2010). Similarly,
the mutation of the LIR motif within the BNIP3 gene leads to
the ablation of BNIP3-LC3 interaction and impairs mitophagy
and ERphagy, although it does not affect the pro-death activity
of BNIP3 (Hanna et al., 2012). Interestingly, the interaction of
BNIP3 and NIX with LC3 are fine-tuned by the phosphorylation
state of moieties adjacent to the LIR domain. Thus, the
phosphorylation of serine 17 and serine 24 flanking the BNIP3
LIR motif promotes its binding affinity to LC3 and GABA type
A receptor associated protein like 2 (GABARAPL2) (Zhu et al.,
2013). Likewise, phosphorylation of NIX (at serine 34 and 35)
in close proximity to the LIR stabilizes the NIX-LC3 complex
and enhances autophagosomal recruitment to mitochondria
(Rogov et al., 2017). However, the kinases and phosphatases
specific for BNIP3 and NIX phosphorylation remain elusive.
Moreover, high oxidative phosphorylation activity leads to the
recruitment of the small GTPase Ras homolog, mTORC1 binding
(RHEB) to the mitochondrial outer membrane which promotes
mitophagy through physical interaction with NIX and LC3
(Melser et al., 2013).

In several human cancer types, including hematological
malignancies, lung, breast, gastric, pancreatic, and liver cancer,
the epigenetic silencing of BNIP3 expression is reported to
correlate with invasiveness and metastasis (Okami et al., 2004;
Koop et al., 2009; Chourasia et al., 2015). Conversely, some
studies indicate that BNIP3 and NIX are upregulated in human
breast ductal carcinoma in situ, which manifest with high-grade,
necrotic lesions and invasive tumors (Sowter et al., 2001, 2003).
In malignant glioma cells, ceramide induces autophagic cell
death via lethal mitophagy (Sentelle et al., 2012), through the
activation of BNIP3 (Daido et al., 2004). However, the role
of BNIP3- and NIX-mediated mitophagy in cancer has to be
carefully reevaluated, considering the fact that BNIP3 and NIX
are proapoptotic BH3-only proteins. Furthermore, the expression
of BNIP3 is upregulated in post-natal ventricular myocytes and
adult rat hearts subjected to hypoxia, and in animals that exhibit
a chronic heart failure, which is associated with myocardial
cell death. Both the pan-caspase inhibitor z-VAD-fmk and the
mitochondrial permeability transition pore (MPTP) inhibitor
bongkrekic acid prevent BNIP3-induced mitochondrial defects
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and cell death (Regula et al., 2002). In yet another ischemia
model, hypoxia upregulates mRNA and protein levels of BNIP3,
while acidosis stabilizes the protein and increases its association
with mitochondria for the induction of cell death (Kubasiak et al.,
2002). In ischemia induced injury, BNIP3 is engaged in pro-
death signaling, whereas its role in mitophagy in this setting
needs further investigation (Hamacher-Brady et al., 2007). It
has been reported that mitophagy is significantly impaired in
neurodegenerative disorders such as Alzheimer’s disease (AD)
and Ataxia telangiectasia (A-T), while mitophagy stimulation
induces beneficial effect including an increase in cognition and
an extended lifespan in a NIX- or PINK1 and Parkin-dependent
manner (Fang et al., 2016, 2019). Mitophagy restoration enhances
the phagocytic efficacy of microglia to diminish the aggregation of
insoluble amyloid-β, and thus reduces pro-inflammatory factors
such as IL6 and TNFA while increasing the anti-inflammatory
cytokine interleukin-10 (IL10) which has been shown to promote
mitophagy in macrophages (Ip et al., 2017; Fang et al., 2019).

ATG32/BCL2L13-CONTROLLED
MITOPHAGY

In yeast, mitophagy selectively occurs in post-log phase cells
under respiratory conditions. Mitophagy protein Atg32 (Atg32)
is a transmembrane protein imbedded in the outer mitochondrial
membrane with a ubiquitin-like protein Atg8 (Atg8) interacting-
motif (AIM) for the recruitment of autophagosomes (Okamoto
et al., 2009). In addition, Atg32 interacts with the adaptor
autophagy protein Atg11 (Atg11) to facilitate the incorporation
of mitochondria into the nascent autophagic vacuole (Kanki
et al., 2009). The activity of Atg32 is additionally regulated
via proteolytical cleavage by the mitochondrial i-AAA protease
Yme1 (Yme1), which is essential for the interaction between
Atg32 and Atg11 and the induction of mitophagy (Wang
et al., 2013). Atg32 activity is further fine-tuned via the
phosphorylation at Ser114 and Ser119 by casein kinase 2
(CK2) downstream of the mitogen-activated protein kinases
(MAPK) Hog1 and Pbs2 to promote its interaction with Atg11
(Aoki et al., 2011; Mao et al., 2011; Kanki et al., 2013).
Alternatively, yet another MAPK signaling pathway implicating
Slt2 can regulate both mitophagy and the selective degradation
of peroxisomes (pexophagy), although the mechanism remains
elusive (Mao et al., 2011). Mitochondrial dynamics appear to
constitute another regulatory instance for the induction of
mitophagy in yeast. Thus, Atg11 recruits the fission machinery
to mitochondria via its interaction with Dnm1 to segregate
degrading mitochondria from the network for mitophagy
(Mao et al., 2013). The mammalian homolog of Atg32 has
been identified as Bcl-2-like protein 13 (BCL2L13), which
also contains a LIR domain to interact with LC3 and can
induce mitophagy in mammalian cells and Atg32 deficient yeast
(Murakawa et al., 2015, 2019). A recent study indicated that
Atg32 might be implicated in age asymmetry between the mother
and daughter cells in yeast (Jiang et al., 2019). However, the
detailed roles of Atg32 and/or BCL2L13 in aging and age-related
diseases need further research.

OTHER MITOPHAGY RECEPTORS

During recent years with increasing interest in the exploration of
mitophagy, additional mitophagy receptors have been identified
to mediate mitophagy including autophagy and beclin 1
regulator 1 (AMBRA1), which acts in a PARKIN- and p62-
independent manner (Di Rita et al., 2018; Strappazzon et al.,
2019), FK506 binding protein 8 (FKBP8) that specifically
interacts with microtubule associated protein 1 light chain 3
alpha (MAP1LC3A better known as LC3A) and thus facilitates
mitophagy (Bhujabal et al., 2017), and NLR family member
X1 (NLRX1) which contains an LIR domain and is harnessed
by Listeria during infection to induce mitophagy for its
survival in macrophages (Zhang et al., 2019). Interestingly,
upon mitochondrial depolarization, 4-nitrophenylphosphatase
domain and non-neuronal SNAP25-like protein homolog 1
(NIPSNAP1) and NIPSNAP2 translocate from the mitochondrial
matrix to the surface of the organelle and recruit autophagy
receptors and ATG8 proteins for mitophagy. It is worthy to note
that NIPSNAP1-deficient zebrafish larvae display parkinsonian
phenotypes, including the loss of tyrosine hydroxylase (Th1)-
positive dopaminergic (DA) neurons, reduced motor activity, and
increased oxidative stress, as well as reduced mitophagy in the
brain (Princely Abudu et al., 2019).

Lipids can also function as mitophagy receptors by interacting
with LC3. Thus, ceramide has been reported to target
autophagolysosomes to mitochondrial membranes and provoke
lethal mitophagy (Sentelle et al., 2012). However, in acute myeloid
leukemia (AML) cells, ceramide synthesis is suppressed by
Fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication
(ITD) signaling, which confers its resistance to cell death.
Molecular or pharmacologic inhibition of FLT3-ITD in AML
cells reactivated ceramide synthesis, mitochondrial division,
mitophagy and cell death, indicating a potential application
for the therapeutic induction of mitophagy in cancer (Dany
et al., 2016). While cardiolipin, a phospholipid mainly localized
at the inner mitochondrial membrane, can externalize to the
outer membrane and serve as a mitophagy receptor in neuronal
cells (Chu et al., 2013). Cardiolipin mediated mitophagy has
been shown to play an important role in traumatic brain injury
(TBI) by removing damaged mitochondria thus mitigating ROS
overproduction and decreasing apoptosis (Chao et al., 2019).

PIECEMEAL MITOPHAGY

Besides the wholesale mitophagy described above, a piecemeal
mitophagy mechanism exists to deliver small vesicles budded
off from mitochondria to lysosomes for degradation, which is
important for the maintenance of mitochondrial homeostasis
(Figure 2). In a screen aiming at the identification of autophagic
protein substrates, metaxin1 (MTX1) was shown to be degraded
by piecemeal mitophagy, in which MTX1-containing vesicles are
segregated from mitochondria and then degraded by lysosomes
in a microtubule associated protein 1 light chain 3 gamma
(MAP1LC3C better known as LC3C)- and p62-dependent
manner (Le Guerroue et al., 2017). When mitochondria
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FIGURE 2 | Piecemeal mitophagy. Mitophagy can occur through the formation of mitochondria-derived vesicles (MDV), which in turn are degraded by the
autophagic machinery in a piecemeal fashion.

face unfolded protein stress, PINK1 and Parkin facilitate
a DRP1-dependent segregation of mitochondrial subdomains
from the network for degradation by mitophagy to prevent
proteotoxicity spreading (Burman et al., 2017). Furthermore,
under oxidative stress, TOMM20 positive mitochondrial derived
vesicles deliver oxidized proteins to lysosomes for degradation
(Soubannier et al., 2012a,b). Strikingly, this process does not
require ATG5 or LC3, but is driven by PINK1 and Parkin
and depends on syntaxin 17 (STX17) to mediate the fusion
between vesicles and endolysosomes (Soubannier et al., 2012a;
McLelland et al., 2014, 2016).

THE ROLE OF MITOPHAGY IN AGING

Heteroplasmy of mtDNA is a hallmark of aging. The
homogeneity of mtDNA in newborn life is ensured by the
selective removal mechanism of deleterious mtDNA in the
female germline (Lieber et al., 2019) and paternal mitochondrial
removal after fertilization (Al Rawi et al., 2011; Sato and
Sato, 2011; Politi et al., 2014; Rojansky et al., 2016; Sato
et al., 2018), in both of which mitophagy is highly involved.
As mtDNA mutations and deletions accumulate with age,
which are associated with a variety of diseases, such as cancer,
neurodegenerations, and cardiovascular diseases (Liu et al.,
1996; Petros et al., 2005; Sharma et al., 2005; Wallace, 2005;
Turnbull et al., 2010), mitochondrial respiration activity and
mitochondrial function are damaged, which lead to decreased
mitochondrial potential. It has been reported that Parkin is
recruited to mitochondria with low potential and required for
the mitophagic degradation of malfunctional mitochondria
with mtDNA mutations (Gilkerson et al., 2012). And long-
term overexpression of Parkin can increase the ratio between
the mitochondria with wild type mtDNA and the ones with
deleterious COXI mutations (Suen et al., 2010). Interestingly,
in mice, even heteroplasmy of normal mtDNA leads to reduced
activity, food intake, respiratory exchange ratio; accentuated
stress response; and cognitive impairment (Sharpley et al.,
2012), which might be related to the absence of mitophagy-
dependent elimination of paternal mitochondria. Although
mitochondria are mostly of maternal origin, resulting from
the mitophagy-dependent clearance of paternal mitochondria,
exceptional cases are reported in human (Luo et al., 2018),

sheep (Zhao et al., 2001), mouse (Gyllensten et al., 1991), and
drosophila (Nunes et al., 2013; Dokianakis and Ladoukakis,
2014) in which paternal inheritance of mtDNA and thus mtDNA
heteroplasmy exist. In C. elegans, mitophagy-dependent paternal
mitochondrial elimination has been extensively studied, and
delayed clearance of paternal mitochondrial after fertilization
leads to an increase in embryonic lethality (Zhou et al., 2016).
However, the effect of normal mtDNA heteroplasmy on aging
needs further research.

The involvement of mitophagy in aging has been extensively
studied in C. elegans. Mitophagy mediated by dct-1, the ortholog
of NIX, plays an important role during C. elegans aging.
Mitochondria accumulate with age in wild type worms, and
deficiency in dct-1, as well as the autophagy key gene bec-
1, recapitulates the effect of aging on mitochondrial mass
in young adult animals. Pronounced induction of mitophagy
was observed in long-lived daf-2 mutants, and impairment
of mitophagy by knockdown of dct-1, pink-1, and pdr-1 (the
nematode Parkin homolog) significantly shortens the lifespan of
daf-2 mutants. In fact, dct-1 is transcriptionally induced under
the control of skn-1 and daf-16 [the nematode homolog of
mammalian nuclear factor, erythroid 2 like 2 (NFE2L2, better
known as NRF2) and forkhead box O3 (FOXO3), respectively]
to remove dysfunctional mitochondria via mitophagy and
coordinate mitochondrial biogenesis and mitophagy (Palikaras
et al., 2015). Mitochondrial biogenesis and mitophagy may
cooperate to antagonize the aging process (Palikaras et al.,
2015; Fang et al., 2017). Interestingly, tomatidine, a natural
compound abundant in unripe tomatoes, inhibits age-related
skeletal muscle atrophy in mice and extends health- and life-
span in C. elegans. Mechanistic analysis showed that tomatidine
stimulates mitochondrial biogenesis and PINK1- and DCT1-
related mitophagy and increases healthspan (Fang et al., 2017).
Moreover, dct-1, pink-1, and pdr-1 are engaged in lifespan
extension induced by mild mitochondrial stress achieved by
frataxin depletion-induced iron-starvation in C. elegans (Schiavi
et al., 2015). Excessive iron chelation also stimulates mitophagy
in mammalian cells, which however does not require PINK1 or
Parkin activation but depends on glycolysis (Allen et al., 2013).

Exercise has long been known to promote healthy aging
and decrease the susceptibility to age-related diseases probably,
depending on the induction of autophagy (He et al., 2012;
Escobar et al., 2019). Mitophagy may also be involved in the
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beneficial effects of exercise. A recent study has shown that
exercise activates the AMPK-ULK1 cascade to provoke the
removal of damaged mitochondria via mitophagy. Moreover,
exercise improves glucose tolerance in wild type mice but not in
ULK1 deficient mice (Laker et al., 2017).

Caloric restriction is yet another way to extend healthy
lifespan. Similar to exercise, nutrient deprivation activates the
AMPK-ULK1 cascade that is required for mitophagy to remove
damaged mitochondria and promote cellular survival (Egan et al.,
2011). Nutrient starvation causes the rapid depletion of cytosolic
acetyl-coenzyme A, and subsequently reduces the activity of the
acetyltransferase E300, which is known to acetylate ATG proteins
and to inhibit their pro-autophagic function (Lee and Finkel,
2009; Marino et al., 2014). The depletion of general control
of amino acid synthesis 5-like 1 (GCN5L1), a component of
the mitochondrial acetyltransferase machinery that counteracts
deacetylation mediated by SIRT3 (Scott et al., 2012), results in
p62 and Atg5-mediated mitochondrial autophagy (Webster et al.,
2013). Furthermore, the depletion of GCN5L activates both the
transcription factor EB (TFEB), which is a master regulator
of autophagy, and PPARγ coactivator 1α (PGC-1α), which
controls mitochondrial biogenesis, coordinating the turnover and
biogenesis of mitochondria (Scott et al., 2014).

Due to the difficulties to maintain long-term caloric
restriction, the concept of caloric restriction mimicry has been
developed (Madeo et al., 2019). The intracellular concentration of
spermidine, a natural polyamine and prototype caloric restriction
mimetic (CRM), declines during aging, and the administration
of spermidine can extend the lifespan of yeast, flies and worms,
and human immune cells (Eisenberg et al., 2009). Interestingly,
spermidine stimulates mitophagy in cardiomyocytes of both
young and aged mice, which might impinge on spermidine-
mediated cardioprotection (Eisenberg et al., 2016). However, the
role of mitophagy in spermidine induced lifespan extension needs
further investigation. Aspirin, another CRM, induces autophagy
by inhibiting EP300 and stimulates mitophagy in the heart of
mice (Pietrocola et al., 2018). Additionally, dct-1, the C. elegans
ortholog of the mammalian mitophagy receptor NIX and BNIP3,
mediates longevity and mitophagy in nematodes (Palikaras
et al., 2015), and silencing of dct-1 abolished aspirin induced
autophagy in C. elegans (Pietrocola et al., 2018). Different from
spermidine and aspirin which stimulate autophagy by inhibiting
acetylase EP300, induction of autophagy by resveratrol, a
naturally occurring polyphenol (and yet another CRM), requires
the nicotinamide adenine dinucleotide–dependent deacetylase
sirtuin 1 (SIRT1) (Morselli et al., 2011). Apparently, resveratrol
has the capacity to induce mitophagy through increasing the
expression of PINK1, Parkin, and Beclin1, and AMPK activation
by resveratrol participates in neurodegenerative diseases, cerebral
ischemia, muscular dystrophy, and inflammation (Ferretta et al.,
2014; Wu J. et al., 2016; Sebori et al., 2018; Wang et al., 2018; Cao
et al., 2019; Pineda-Ramirez et al., 2019).

Additional compounds exert their lifespan extending effect
via mitophagy. Thus, urolithin A, the end-products of both
ellagitannins and ellagic acid, extends lifespan and improves
fitness during C. elegans aging and improves muscle function and
exercise capacity in rodents. In-depth analysis demonstrates that

mitophagy is required for the beneficial effect of urolithin A (Ryu
et al., 2016). Recently, it was reported that Urolithin A reverses
memory impairment through PINK1-, PDR1-, or DCT1-
dependent mitophagy in both amyloid-β (Aβ) and tau C. elegans
models of Alzheimer’s disease (Fang et al., 2019). A clinical
investigation suggests that urolithin A improves mitochondrial
and cellular health following regular oral consumption in humans
(Andreux et al., 2019). However, one report suggests that
urolithin A stimulates autophagy but not mitophagy to inhibit ER
stress in a model of ischemic neuronal injury (Ahsan et al., 2019).

Nicotinamide adenine dinucleotide (NAD) is a critical
metabolite involved in many physiological processes, including
metabolism, post-translational protein modification, and DNA
repair and its concentration is closely associated with aging. NAD
levels decrease with age, while the upregulation or replenishment
of NAD metabolism has been shown to exhibit beneficial
effects against aging and age-associated diseases (Li et al., 2001;
Mouchiroud et al., 2013; Yaku et al., 2018). Treatments that
increase intracellular NAD+ improve mitochondrial quality via
mitophagy and thus extend health- and life-span in Ataxia
Telangiectasia models and reverse cognitive deficits in models
of Alzheimer’s disease (Fang et al., 2016, 2019). Sirtuins, whose
activity depend on NAD+, may also participate in NAD+
administration stimulated mitophagy, and it appear that their
function declines with aging (Li et al., 2001; Mouchiroud et al.,
2013; Feldman et al., 2015; Kerr et al., 2017). Interestingly,
in response to oxidative stress, SIRT3, a mitochondrial sirtuin,
deacetylates the transcription factor FOXO3 to regulate BNIP3,
NIX and LC3 expression, thereby stimulating mitophagy as well
as mitochondrial biogenesis and dynamics (Tseng et al., 2013).

Rapamycin, an allosteric inhibitor of mechanistic target of
rapamycin (mTOR), prolongs life in yeast, worms, flies, and mice.
Rapamycin also prevents age-related conditions in rodents, dogs,
nonhuman primates, and humans (Blagosklonny, 2019). mTOR
is a critical nutrient sensor and has multiple downstream effects,
including protein synthesis, and autophagy. Recent studies
indicate that eliminating damaged mitochondria via mitophagy
may be one of the mechanisms responsible for the beneficial
effects of rapamycin. Tuberous sclerosis complex 2 (TSC2) is
upstream of mTOR and its inhibition leads to constitutive mTOR
activation. Interestingly, TSC2 deficiency impairs mitophagic

FIGURE 3 | Impact of Mitophagy on age-related pathologies. Mitophagy is a
key mechanism for mitochondrial quality and quantity control. Thus,
mitophagy limits the production of reactive oxygen species (ROS), the
accumulation of mutations in and the release of mitochondrial DNA (mtDNA),
appearance of transmembrane potential loss and the decrease in ATP
production. Taken together, mitophagy controls various factors that can drive
pathologies such as aging-related disorders and neurodegeneration,
cardiovascular disease and cancer.
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flux, as indicated by reduced expression of PINK1 and PARK2
translocation to uncoupled mitochondria, a defect that can
be restored with rapamycin administration (Bartolome et al.,
2017). Moreover, axonal and global mitophagy of damaged
mitochondria is impaired in neuronal in vitro and in vivo models
of tuberous sclerosis complex, contrasting with the fact that
blocking mTORC1 or inducing mTOR-independent autophagy
restores mitochondrial homeostasis (Ebrahimi-Fakhari et al.,
2016). In another study, rapamycin significantly enhanced
mitophagy by increasing the translocation of p62 and Parkin
to the damaged mitochondria in a mouse spinal cord injury
model (Li et al., 2018). Consistent with these findings, PINK1
and Parkin-dependent mitophagy is impaired and mTOR is
hyperactivated in primary human fibroblasts derived from
individuals with Down syndrome. In this context, inhibition
of mTOR using AZD8055 restores autophagic flux, as well as
mitophagy initiated by PINK1 and Parkin (Bordi et al., 2019).

PERSPECTIVES

Mitochondria are important for cellular life and death, implying
that mitochondrial homeostasis must be tightly controlled
and fine-tuned when cells respond to stress. Mitophagy is
the primordial mechanisms for mitochondrial quality and
quantity control and multiple mechanisms control this process.
Some studies indicate an ample crosstalk between different
mitophagy pathways that may coordinate and complement to
deal with environmental challenges. Nevertheless, the detailed
mechanism that link the different pathways in the complex
network of mitophagy control need further investigation
(Chen et al., 2014; Gao et al., 2015; Zhang et al., 2016).

Dysfunction of mitochondria is one of the major characteristics
of aging and age-related disease. Increasing evidence shows that
mitophagy (by removing damaged mitochondria) is significantly
involved in counterbalancing age-related pathological conditions
(Figure 3). Thus, chronic stimulation of mitochondrial turnover
by enhancing mitophagy is a promising approach to delay age-
related diseases and to extend health- and lifespan.
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MitophAging: Mitophagy in Aging
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Maintaining mitochondrial health is emerging as a keystone in aging and associated
diseases. The selective degradation of mitochondria by mitophagy is of particular
importance in keeping a pristine mitochondrial pool. Indeed, inherited monogenic
diseases with defects in mitophagy display complex multisystem pathologies but
particularly progressive neurodegeneration. Fortunately, therapies are being developed
that target mitophagy allowing new hope for treatments for previously incurable
diseases. Herein, we describe mitophagy and associated diseases, coin the term
mitophaging and describe new small molecule interventions that target different steps in
the mitophagic pathway. Consequently, several age-associated diseases may be treated
by targeting mitophagy.

Keywords: autophagy, mitophagy, aging, mitophaging, monogenic disorders, interventions

MITOCHONDRIAL INTEGRITY DEFINES ORGANISMAL HEALTH

Mitochondria, the powerhouses of eukaryotic cells, are the key organelles for energy production
allowing organismal growth and survival. Besides serving as adenosine triphosphate generators,
mitochondria act as signaling hubs for programmed cell death, regulate calcium homeostasis
and are required for cholesterol, nucleotide and amino acid synthesis (Sun et al., 2016). To
fulfil their broad range of biological roles, mitochondria contain more than 1,000 proteins that
localize and function in four specialized compartments, the outer membrane, the inner membrane,
the intermembrane space and the matrix. The minority of mitochondrial proteins are encoded
by the circular mitochondrial genome, whereas the vast majority is encoded in the nuclear
genome. However, mutations in both genomes can cause a heterogeneous group of disorders,
known as mitochondrial diseases, which are characterized by severe metabolic and neurological
defects. Due to their highly variable clinical features, the prevalence of mitochondrial diseases
has likely been underestimated (Haas et al., 2007; Wallace, 2018). Nevertheless, advances in next
generation sequencing technologies have simplified the clinical diagnosis and enabled molecular
characterization of so far undescribed mitochondrial diseases (Calvo et al., 2012; Cui et al., 2013;
Legati et al., 2016). Notably, computational approaches relying on phenotypic description of
mitochondrial diseases can help to characterize new mitochondrial diseases of previously unknown
pathogenesis (Scheibye-Knudsen et al., 2013).

Increased evidence indicates that mitochondrial integrity is disrupted during the aging process
and contributes to the pathogenesis of age-related disorders in humans (Kauppila et al., 2017; Youle,
2019). In line with this, mice that carry a defective proof-reading mitochondrial DNA polymerase
gamma show an accelerated aging phenotype that may be driven by the accumulation of mutations
in the mitochondrial DNA (mtDNA) (Trifunovic et al., 2004). The described correlation between
levels of mtDNA deletions in human brain and aging as well as the association between mtDNA
haplogroups and diseases, further supports the direct influence of mitochondria on health- and
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lifespan in organisms (Cortopassi and Arnheim, 1990; Corral-
Debrinski et al., 1992; Hudson et al., 2014; Wallace, 2015). Indeed,
dysfunctional degradation of mitochondria through the process
of mitophagy is increasingly associated with degenerative diseases
and aging, a phenomenon we call mitophaging. Evidently, the
maintenance of functional mitochondria is necessary to sustain
cellular homeostasis and organismal health.

MITOCHONDRIAL QUALITY CONTROL
MECHANISMS

Mitochondria have evolved multiple mechanisms ensuring
mitochondrial quality. For instance, mitochondrial chaperones
and proteases are constantly preventing the accumulation of
misfolded and aggregated proteins by monitoring proteostasis
through the mitochondrial unfolded protein stress response
(UPRmt) (Melber and Haynes, 2018), a mechanism that has been
shown to be critical for longevity in mammals (Houtkooper
et al., 2013; Mouchiroud et al., 2013). Further, mitochondria are
dynamic organelles existing in large tubular and highly dynamic
networks that constantly undergo fission and fusion processes,
thereby leading to the dilution of non-functional mitochondria
(Youle and van der Bliek, 2012).

Nevertheless, autophagy is the only known pathway that
mediates the turnover of whole mitochondria to avoid cellular
damage and apoptosis. The degradation process is mediated by
a double-membrane vesicle, known as the autophagosome, and
it was first observed in mammalian cells by electron microscopy
(De Duve and Wattiaux, 1966). For a long time, autophagy was
considered a non-selective bulk degradation pathway, however,
when the yeast mitochondrial protein Uth1p was found to be
involved in the selective degradation of mitochondria (Kissová
et al., 2004), the term “mitophagy” was subsequently introduced
(Lemasters, 2005).

Herein, we discuss the role of mitophagy in impacting
human disease development and the aging process itself. Further,
interventions that target mitophagy will be discussed that may
provide a promising strategy for the treatment of a broad
spectrum of diseases.

WHAT IS MITOPHAGY?

The process of mitophagy can act either as a response to various
stress stimuli including nutrient starvation and oxidative stress
or as a programmed removal of mitochondria (Palikaras et al.,
2018; Pickles et al., 2018). Different pathways are known to
regulate mitophagy, the best-studied pathway is mediated by
the phosphatase and tensin homologue (PTEN)-induced putative
kinase 1 (PINK1) and the E3-ubiquitin ligase Parkin (Figure 1A).
Mutations in both genes encoding PINK1 and Parkin (PARK2),
have been reported to cause autosomal recessive forms of
Parkinson’s Disease (PD) (Kitada et al., 1998; Valente et al.,
2004). Under un-stressed conditions, PINK1 is imported via
the translocase of the outer membrane and translocase of the
inner membrane (TOM/TIM) complex in a membrane potential

dependent manner into mitochondria, leading to proteolytic
cleavage of PINK1 (Jin et al., 2010; Deas et al., 2011; Meissner
et al., 2011). The N-terminal truncated PINK1 is subsequently
released to the cytosol, and degraded by the proteasome (Yamano
and Youle, 2013). Loss of mitochondrial membrane potential
disrupts the transport of PINK1 across the mitochondrial
membrane leading to the accumulation of uncleaved PINK1
at the outer mitochondrial membrane. Subsequently, PINK1
regulates the recruitment and activation of the cytosolic Parkin
via direct phosphorylation of the Parkin Ub-like (UBL) domain
or via the phosphorylation of ubiquitin (Kondapalli et al., 2012;
Shiba-Fukushima et al., 2012; Iguchi et al., 2013; Kane et al.,
2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Ordureau
et al., 2014; Wauer et al., 2015). Once activated, Parkin drives the
ubiquitination of multiple substrates, which leads to a positive
feed forward mechanism through the generation of additional
substrates for Pink1 (Ordureau et al., 2014).

In recent years, several substrates, in particular mitochondrial
outer membrane proteins and autophagy receptors, have been
identified to be ubiquitinated by the PINK1/Parkin-mediated
signaling pathway (Sarraf et al., 2013). For instance, the
mitochondrial fusion proteins mitofusin 1 and 2 (Mfn1 and
Mfn2) are degraded in a PINK1/parkin dependent manner to
make mitochondria accessible for degradation and to prevent
fusion of damaged mitochondria with the healthy network (Gegg
et al., 2010; Tanaka et al., 2010). However, conditional double-
knockout of Mfn1 and Mfn2 in mice leads to mitochondrial
dysfunction and, in line with this, Mfn2-depleted cardiomyocytes
are deficient in Parkin recruitment to the mitochondrial outer
membrane (Chen et al., 2011; Chen and Dorn, 2013). A similar
priming function of mitochondria has been described for other
mitochondrial proteins such as Miro1 and VDAC1 (Geisler
et al., 2010; Wang et al., 2011; Sun et al., 2012; Safiulina
et al., 2019). Recently, the apoptotic protein BAK has been
identified as a Parkin target, further connecting Parkin-mediated
mitophagy to the regulation of cellular apoptosis (Bernardini
et al., 2019). The ubiquitination events driven by PINK1 and
Parkin enable the recruitment of autophagy substrate receptors
to the mitochondrial membrane including p62, Optineurin and
NDP52, thereby promoting the engulfment of mitochondria by
autophagosomes (Geisler et al., 2010; Wong and Holzbaur, 2014;
Lazarou et al., 2015).

Notably, transcriptional regulation is a crucial process
for functional PINK1-Parkin-mediated mitophagy. For
instance, PINK1-Parkin-mediated mitophagy induction
upon cellular stress such as through reactive oxygen species
or ethanol exposure leads to the nuclear translocation of several
transcription factors, including the transcription factor EB
(TFEB) and the nuclear respiratory factors (NRFs), controlling
the expression of mitochondrial, autophagy and lysosomal
genes (Nezich et al., 2015; Ivankovic et al., 2016; Eid et al.,
2019). Parkin expression itself has also been shown to be tightly
controlled by stress pathways such as the unfolded protein
response pathway and its activating transcription factor 4
(ATF4) (Bouman et al., 2011). Altogether, this highlights the
great number of potential therapeutic avenues to target the
PINK1-Parkin signaling pathway.
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FIGURE 1 | Mitophagy pathways. (A) Ubiquitin-dependent PINK1/Parkin-mediated mitophagy. Upon mitochondrial damage, PINK1 is stabilized at the outer
mitochondrial membrane, leading to Parkin activation and subsequent ubiquitination of mitochondrial proteins. Finally, autophagy receptors such as NDP52, OPTN,
and p62 are recruited to mediate the engulfment of mitochondria by the autophagosomal membrane through the interaction with LC3. A possible source of the
autophagosomal membrane is provided by the endoplasmic reticulum, where the autophagy core complexes VPS34 and ULK1 initiate the membrane formation.
The membrane formation is further mediated by WIPI1 and WIPI2, leading to the recruitment of the ATG16L1-complex and LC3, thereby facilitating the formation of
autophagosomes. Finally, autophagosomes fuses with acidic lysosomes, a step that is regulated by concerted action of autophagosomal and lysosomal proteins.
(B) Ubiquitin-independent receptor-mediated mitophagy. Ubiquitin-independent receptor mediated mitophagy is mediated by the recruitment of autophagy receptor
proteins such as NIX, BNIP3, and FUNDC1 to the mitochondrial membrane. The receptor proteins recruit LC3, which enables the engulfment of mitochondria by
autophagosomes. (C) Alternative degradation pathways. Piecemeal mitophagy and mitochondrial-derived vesicle degradation are cellular pathways that mediate
localized degradation of mitochondria.

Pink1/Parkin-independent mitophagy pathways mainly rely
on receptor proteins which mediate the recruitment of
LC3/GABARAPs for the removal of mitochondria (Figure 1B).

For instance, the BCL2-related protein NIX (also known as
BNIP3L) mediates mitophagy in mammals during reticulocyte
differentiation, a process that requires the elimination of
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mitochondria (Schweers et al., 2007; Sandoval et al., 2008; Novak
et al., 2010). In line with this, NIX knockout mice develop
anemia and reticulocytosis (Schweers et al., 2007; Sandoval
et al., 2008). The interaction of NIX with LC3 protein members
is mediated via the LC3-interacting (LIR) motif, however, re-
expression of LIR-mutant NIX in NIX deficient reticulocytes
partially rescued the observed phenotype, indicating LC3-
independent or even autophagy-independent mechanisms for
mitochondrial clearance in reticulocyte differentiation (Novak
et al., 2010). Another LIR-motif containing protein, FUNDC1,
regulates mitophagy under hypoxic conditions by promoting
mitochondrial fission (Liu et al., 2012; Chen et al., 2016). During
cardiac progenitor cell differentiation, FUNDC1 and NIX, but
not Pink1 and Parkin, are upregulated to maintain a functional
mitochondrial network (Lampert et al., 2019). Mitophagy is
therefore also regulated in a lineage dependent fashion.

Localized removal of mitochondrial subdomains can be
mediated by piecemeal mitophagy or mitochondrial-derived
vesicles (Figure 1C). Mitochondrial-derived vesicle formation
is thought to be dependent on PINK1/Parkin but independent
of the canonical autophagy machinery (Soubannier et al., 2012;
McLelland et al., 2014). Whereas, the accumulation of misfolded
mitochondrial protein aggregates leads to localized recruitment
of Parkin and autophagy proteins, thereby facilitating the
degradation of mitochondrial subdomains (Burman et al.,
2017). A PINK1/Parkin-independent piecemeal mitophagy has
been recently reported that drives LC3C- and p62-mediated
degradation of mitochondrial subregions (Le Guerroué et al.,
2017). However, the protein machinery for these mitochondrial
degradation pathways may overlap with the classic mitophagy
pathways as well as their physiological relevance needs to be
further investigated.

MITOPHAGING

A decline in mitochondrial function is a hallmark of the aging
process and is connected to other aging hallmarks such as
telomere dysfunction, genome instability and cellular senescence.
However, it remains largely unclear how these processes are
interconnected and finally provoke disruption of the cellular and
tissue integrity (López-Otín et al., 2013). There is accumulating
evidence that mitophagy impacts health- and lifespan in different
model organisms. Using a transgenic mouse strain that expresses
the fluorescent mitophagy reporter mt-Keima, a decreased
mitophagy level was observed in the hippocampal dentate gyrus
in 21-month old mice compared to 3-month old mice (Sun
et al., 2015). A decline in mitophagy was also observed in
aged mouse hearts, in line with this, altered mitophagy has
been shown to influence different cardiac pathologies (Hoshino
et al., 2013; Bravo-San Pedro et al., 2017). Other tissues that
contribute to aging phenotypes are also characterized by defective
mitophagy, as shown recently for aged skeletal muscle satellite
cells isolated from humans or mice (García-Prat et al., 2016).
Notably, decreased expression of mitophagy genes was observed
in the skeletal muscle of physically inactive elderly women
(Drummond et al., 2014).

The effect of changes in mitophagy on health- and lifespan
has been particularly demonstrated by using the model
organisms C. elegans and D. melanogaster. Several genetic
studies in D. melanogaster revealed that the overexpression
of mitochondrial and mitophagy genes leads to increased
health- and/or lifespan. For instance, the overexpression of the
mitochondrial fission protein dynamin-related protein 1 (DRP1)
increased the lifespan along with a prolonged healthspan in flies
(Rana et al., 2017). The importance of mitochondrial fission on
drosophila lifespan was further demonstrated by the observation
that lifespan extension caused by the overexpression of p62 was
abrogated in DRP1 mutant flies (Aparicio et al., 2019). Lifespan
extension in flies was also observed after overexpression of
Parkin and Pink1, whereby, Parkin overexpression counteracted
increased Mfn2 levels, which can be observed during aging
(Todd and Staveley, 2012; Rana et al., 2013). These findings
are consistent with studies in C. elegans, where mitophagy has
been shown to contribute to lifespan regulation (Palikaras et al.,
2015; Schiavi et al., 2015). Evidently, there is substantial data
supporting a role of declining mitophagy, mitophaging, in aging.

WHAT HAPPENS WHEN MITOPHAGY
GOES WRONG?

Impaired mitophagy contributes to the pathogenesis of
several human diseases, in particular to age-related sporadic
disorders, such as Parkinson’s disease, Alzheimer’s disease,
cardiomyopathies and cancer (Bernardini et al., 2017; Fivenson
et al., 2017; Levine and Kroemer, 2019). While these observations
yield interesting correlations between certain disease states
and alterations in mitophagy it is difficult to deduct causation.
Here, monogenic diseases with specific defects in mitophagy
may give us mechanistic understanding of pathogenesis and
biology (Table 1). Thus, monogenic disorders may provide
valuable tools for studying molecular pathomechanisms that are
driven by defective mitophagy. To explore the clinical phenotype
of autophagy diseases, we identified the clinical descriptions
in the literature of all the diseases in Table 1 and performed
hierarchical clustering based on the prevalence of those features
(Figure 2A; Scheibye-Knudsen et al., 2013; Andreassen et al.,
2019). Although the clustering did connect clinically similar
diseases (such as Charcot–Marie–Tooth 2A2 and 2B), it became
immediately apparent that there is no good correlation between
clinical outcome and the putative molecular function of the
gene responsible for the disease. Indeed, principal component
analysis also did not show any obvious separation of clinical
groups based on proposed molecular functions (Figure 2B). This
suggests that our knowledge of the pathogeneses of most of these
disorders is quite limited. Nevertheless, when looking at the
average prevalence of clinical features across all aging diseases
there was a considerable overrepresentation of neurological
features suggesting that defects in autophagy often leads to
brain disease (Figure 2C). More specifically, the phenotype in
the autophagy disorders show significant overlap with what is
seen in mitochondrial diseases indicating that mitochondrial
dysfunction may be driving diseases in many autophagy-related
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TABLE 1 | Examples of autophagy/mitophagy-related monogenic disorders.

Disease Gene Protein function Symptoms References

Amyotrophic lateral sclerosis OPTN (AD) Autophagy receptor Motor neuron degeneration Weil et al., 2018

Alzheimer’s disease APP (AD) Transmembrane protein Dementia Fang et al., 2019

Ataxia-telangiectasia ATM (AR) DNA-damage response Cerebellar degeneration,
Telangiectasia,
Radiosensitivity

Fang et al., 2016

Autosomal dominant optic
atrophy

OPA1 (AD) Mitochondrial fusion protein Optic atrophy White et al., 2009; Liao
et al., 2017

Barth syndrome TAZ (XLR) Mitochondrial protein 3-Methylglutaconic aciduria,
Cardiomyopathy,
Neutropenia; Muscle
weakness

Hsu et al., 2015

Charcot–Marie–Tooth
disease

MFN2, RAB7 (AD, AR) Mitochondrial fusion protein,
endolysosomal protein

Neuropathy, Muscle
weakness

Yamano et al., 2014; Rizzo
et al., 2016

Charlevoix-Saguenay spastic
ataxia

SACS (AR)* Co-chaperone Cerebellar degeneration,
Neuropathy, Spasticity

Bradshaw et al., 2016;
Morani et al., 2019

Cockayne syndrome ERCC6 (AR) DNA damage repair Cerebellar degeneration,
Short stature, Sun sensitivity

Scheibye-Knudsen et al.,
2012

Danon disease LAMP2 (XLD) Autolysosome formation Cardiomyopathy,
Developmental delay,
Myopathy

Tanaka et al., 2000; Hashem
et al., 2017

Fabry disease GLA (XL) Lysosomal enzyme Nephropathy,
Cardiomyopathy, Hearing
loss, Neuorpathy

Chévrier et al., 2010;
Ivanova et al., 2019

Fanconi anemia FANCC (AR) DNA damage repair Short stature, Anemia, Skin
pigmentation changes,
Osteopenia

Sumpter et al., 2016

Frontotemporal dementia
and/or amyotrophic lateral
sclerosis

TBK1, SQSTM1 (AD) Serine/threonine protein
kinase, autophagy receptor

Dementia, Motor neuron
degeneration,

Geisler et al., 2010; Richter
et al., 2016

Gaucher disease GBA1 (AR) Lysosomal enzyme Hepatosplenomegali,
Pancytopenia, Gaucher cells

Osellame et al., 2013

Intellectual developmental
disorder with short stature
and variable skeletal
anomalies

WIPI2 (AR) Autophagosome formation Mental retardation, Cerebral
atrophy, Short stature

Zachari et al., 2019

Krabbe disease GALC (AR)* Lysosomal enzyme Spasticity, Leukodystrophy,
Myoclonus

Del Grosso et al., 2019

Lafora disease EPM2A (AR) Glycogen synthesis Seizures, Mental retardation Lahuerta et al., 2018

Microcephaly 18 WDFY3 (AD) Selective autophagy,
aggrephagy

Cognitive deficits,
Microcephaly

Napoli et al., 2018

MRXST HUWE1 (XL) E3-ubiquitin protein ligase Mental retardation,
Macrocephaly,
Macroorchidism, Seizures

Di Rita et al., 2018

Mucolipidosis II GNPTAB (AR)* Lysosomal enzyme Developmental delay, Short
stature, Cardiomegaly,
Dysostosis multiplex

Otomo et al., 2009

Multiple sulfatase deficiency SUMF1 (AR)* ER-resident enzyme Cerebellar degeneration,
Mental retardation,
Hepatosplenomegaly

Settembre et al., 2008

NADGP SQSTM1 (AR) Autophagy receptor Cerebellar degeneration,
Mental retardation, Vertical
gaze palsy, Dystonia

Geisler et al., 2010

NBIA5 WDR45 (XLD)* Autophagosome formation Cerebellar degeneration,
Developmental delay, Brain
iron accumulation, Dystonia

Saitsu et al., 2013

NEDSBAS WDR45B (AR)* Autophagosome formation Seizures, Developmental
delay, Spasticity, Cerebral
atrophy

Bakula et al., 2017;
Suleiman et al., 2018

(Continued)
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TABLE 1 | Continued

Disease Gene Protein function Symptoms References

Neuronal Ceroid
Lipofuscinosis

PPT1 (AR)* Lysosomal enzyme Mental retardation, Seizures,
Cerebellar degeneration

Mukherjee et al., 2019

Niemann-Pick disease NPC1 (AR)* Lysosomal protein Seizures, Jaundice,
Hepatosplenomegaly, Mental
retardation

Pacheco et al., 2007

Parkinson’s disease LRRK2, PARK2, PARK6 (AD) Mitochondrial proteins Bradykinesia, Rigidity,
Tremor, Dementia

Ryan et al., 2015

Pompe disease GAA (AR)* Lysosomal enzyme Muscle weakness,
Cardiomyopathy, Hypotonia

Raben et al., 2012

Spastic paraplegia 15 ZFYVE26 (AR)* Autophagosome formation Spasticity, Hyperactive
reflexes, Mental retardation

Vantaggiato et al., 2013;
Denton et al., 2018

Spastic paraplegia 49 TECPR2 (AR)* LC3/GABARAP binding
protein

Developmental delay,
Spasticity, Dysmorphism,
Microcephaly, Hypotonia,
Short stature

Oz-Levi et al., 2012

Spinocerebellar ataxia 25 ATG5 (AR) Autophagosome formation Developmental delay,
Cerebellar degeneration,
Mental retardation

Sun et al., 2015

Spinocerebellar ataxia 4 VPS13D (AR) Lysosomal enzyme Hyperactive reflexes, Muscle
atrophy, Cerebeller
degeneration

Anding et al., 2018

Vici syndrome EPG5 (AR)* Autolysosome formation Cataracts, Cardiomyopathy,
Developmental delay,
Hypotonia, Immune
deficiency, Corpus callosum
agenesis

Cullup et al., 2013

Wolfram syndrome WFS1 (AR) Calcium homeostasis Diabetes mellitus type 1,
Optic atrophy, Hearing loss,
Diabetes insipidus

Cagalinec et al., 2016

Xeroderma pigmentosum
group A

XPA (AR) DNA damage repair Sun sensitivity, Cerebellar
degeneration, Cancer,
Neuropathy

Fang et al., 2014

Zellweger syndrome PEX13 (AR) Peroxisome biogenesis Developmental delay,
Dysmorphism,
Hepatosplenomegaly,
Seizures

Lee et al., 2017

For genes that are marked with an asterisk the function in mitophagy remains largely unknown, however, defects in autophagy and mitochondrial dysfunction have been
reported. Abbreviations: AD, autosomal dominant; AR, autosomal-recessive; XLR, X-linked recessive; XLD, X-linked dominant.

disorders ranging from lysosomal diseases to bonafide mitophagy
deficiencies (Figures 2C,D). In the following we will examine a
few key examples of these disorders.

Defects in the Autophagic Machinery
To date, only a few monogenic diseases caused by single
mutations in the autophagy core machinery have been reported.
One of them, spinocerebellar ataxia-25 (SCAR25), is caused by
a mutation in the autophagy-related 5 gene (ATG5), encoding
a protein that is part of the ATG12-ATG5-ATG16L1 complex,
which facilitates LC3/GABARAP conjugation (Mizushima,
2020). So far, two siblings have been identified with SCAR25,
presenting with clinical symptoms such as truncal ataxia
and intellectual disability (Kim et al., 2016). In line with the
neurological phenotypes, a neuron-specific knockout of ATG5 in
mice causes neuronal degeneration, by contrast, a complete ATG5
knockout is neonatal lethal (Kuma et al., 2004; Hara et al., 2006).
Ataxia is a common feature of many mitochondrial disorders
(Scheibye-Knudsen et al., 2013), however, mitochondrial

viability in SCAR25 has not been investigated so far. Thus,
the contribution of mitochondrial defects to the reported
clinical features in SCAR25 remains speculative, since ATG5-
independent mitophagy pathways have been reported (Honda
et al., 2014; Hirota et al., 2015).

Mutations in members of the human WD-repeat protein
interacting with phosphoinositides (WIPI) family are known
to cause neurological deficits. The WIPI protein family
consists of four members, WIPI1–WIPI4, that contribute
to the early steps of autophagosome formation (Proikas-
Cezanne et al., 2004). The family member WIPI2 localizes
in a phosphatidylinositol 3-phosphate-dependent manner to
the autophagosomal membrane, where it facilitates ATG16L1
recruitment and LC3 lipidation (Dooley et al., 2014; Bakula et al.,
2017). Recently, patients with mutations in the WIPI2 gene have
been described with multisystemic clinical features, primarily,
neurological and skeletal deficiencies that are characterized by
severe mental retardation and short stature (Jelani et al., 2019).
Notably, WIPI2 overexpression prevents age-related autophagy
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FIGURE 2 | Phenotype clustering of autophagy diseases. (A) Hierarchical clustering of diseases based on the published prevalence of clinical features in the
diseases (for data and references see www.mitodb.com). (B) Principal component analysis of diseases based on the prevalence of clinical features. (C) The average
prevalence of top-20 clinical features in all autophagy-related disorders (Red, shared with the top-20 features in mitochondrial disorders). (D) The average prevalence
of clinical features in mitochondrial diseases.

decline in dorsal root ganglion neurons (Stavoe et al., 2019).
Patients with mutations in the genes WIPI3 (WDR45B) or
WIPI4 (WDR45) show severe and progressive neurodegenerative
phenotypes (Haack et al., 2012; Hayflick et al., 2013; Saitsu
et al., 2013; Suleiman et al., 2018). Notably, WIPI4 mutations
result in degeneration of the substantia nigra, a target area of
the brain affected in Parkinson’s disease (Mann et al., 1992). In
line with these observations, WIPI3 or WIPI4 knockout mice
show neurological defects, possibly caused by defective neuronal
autophagy (Zhao et al., 2015; Ji et al., 2019). WIPI3 and −4

knockout mice display mitochondrial dysmorphology, which was
also evident in WIPI4 mutant human fibroblast cells (Zhao et al.,
2015; Seibler et al., 2018; Ji et al., 2019). The patient phenotypes
caused by mutations in the WIPI genes highlight the importance
of the WIPI protein members for neuronal function, however,
the contribution of WIPI-mediated clearance of mitochondria in
neurodegeneration remains unclear.

Deficiency in the late stage of autophagy is observed in
the autosomal recessive neurological disorder, Vici syndrome.
The disease is caused by mutations in the ectopic P-granules
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autophagy protein 5 gene (EPG5), encoding for a Rab7 effector
protein that is required for the fusion of late autophagosomes
with lysosomes (Cullup et al., 2013; Wang et al., 2016). The
disease is characterized by multisystemic defects that show
some overlap with mitochondrial diseases, such as agenesis of
corpus callosum, cardiomyopathy, immunodeficiency, cataracts
and hypopigmentation (Cullup et al., 2013). Mitochondria with
abnormal shape and distribution were observed in muscle
tissue biopsies from patients with Vici syndrome or EPG5
knockout mice (Cullup et al., 2013; Zhao et al., 2013). The
importance of EPG5 in mitochondrial homeostasis was further
highlighted by a study showing deficient mitochondrial clearance
during spermatogenesis in an EPG5-deficient medaka fish line
(Herpin et al., 2015).

Cargo recognition and degradation in selective autophagy is
mediated by autophagy receptor proteins, such as optineurin
and p62. Both proteins are associated with the progressive
neurological disorder amyotrophic lateral sclerosis (ALS), which
is primarily caused by loss of motor neurons (Maruyama et al.,
2010; Fecto et al., 2011). Around 10% of ALS cases are caused by
inherited single gene mutations and frequently show comorbidity
with frontotemporal dementia (FTD). Interestingly, optineurin
and p62 are phosphorylated by tank-binding kinase 1 (TBK1),
a serine/threonine kinase that has also been implicated in ALS-
FTD disease development (Cirulli et al., 2015; Freischmidt et al.,
2015; Pottier et al., 2015). Thus, there is a striking correlation with
mutations in multiple mitophagy players leading to ALS.

Defects in Mitochondrial Quality Control
Proteins involved in the regulation of mitochondrial quality
control are essential modulators of mitophagy, consequently,
understanding their molecular mechanisms may give important
insights into the consequences of impaired mitophagy. In recent
years, mitochondrial dysfunction has been extensively discussed
as an important contributor to neurodegeneration in familial
Parkinson’s disease, as well as in idiopathic forms (Bose and Beal,
2016). Early onset recessive familial Parkinson’s disease can be
caused by mutations in the genes Park2 (Parkin), Park6 (Pink1),
or Park7 (DJ-1). All three proteins localize to mitochondria and
loss of each of them leads to increased sensitivity toward oxidative
stress along with mitochondrial and energetic dysfunction
(Dodson and Guo, 2007). Pink1 and Parkin are directly involved
in the mitophagy pathway, whereas, the precise function of
DJ-1 remains under discussion. Interestingly, overexpression of
Pink1 and Parkin rescues the observed phenotype caused by DJ-
1 deficiency, suggesting partial redundancies in the mitophagic
apparatus (Irrcher et al., 2010).

Mitochondrial fission and fusion are critical events for
controlled degradation of damaged mitochondria. Optic atrophy
1 (OPA1) is an inner mitochondrial membrane protein that
regulates the fusion of mitochondria, together with MFN1 and
MFN2. Mutation in the OPA1 gene has been observed to cause
autosomal dominant optic atrophy (ADOA) often accompanied
by myopathy and progressive ataxia (Yu-Wai-Man et al., 2010).
Myopathy and neurodegeneration is also observed in patients
with Charcot–Marie–Tooth syndrome caused by loss of the
MFN2 gene (Calvo et al., 2009), underscoring the importance

of mitochondrial function in muscle and brain tissues. For both
diseases impaired mitophagy has been reported, suggesting that
dysfunctional mitophagy may contribute to the described disease
pathology (White et al., 2009; Rizzo et al., 2016; Liao et al., 2017).

Defects in Lysosomal Function
Another group of diseases that may be partial driven by deficient
mitophagy, are lysosomal storage disorders, a heterogenous
group of more than 60 rare monogenic diseases that are
caused by defects in lysosomal function (Platt et al., 2018).
Some of the most well described are Gaucher disease and
Niemann–Pick type C. Gaucher disease is caused by mutations
in the glucocerebrosidase (GBA) gene, encoding a lysosomal
enzyme required to hydrolyze the glycolipid glucosylceramide.
Patients with Gaucher disease display features in multiple organs
caused by lysosomal accumulation of glucosylceramide with
a subset of patients display progressive neurodegeneration.
Notably, the GBA gene represents a major risk locus for
inherited Parkinson’s disease supporting the idea that mitophagy
is important in this disease (Goker-Alpan et al., 2004; Lwin
et al., 2004). Reduced mitochondrial respiration, increased ROS
production and increased alpha-synuclein accumulation can be
observed in various GBA deficiency models, cellular changes
that are also described to be central drivers of neuronal loss
in Parkinson’s disease (Osellame et al., 2013; Chen et al.,
2019). Nieman Pick type C is caused by mutations in the
NPC1 gene and is characterized by developmental delay,
progressive neurodegeneration, dysphagia and vertical gaze
palsy, a combination of phenotypes that can also be observed
in mitochondrial disorders. In patient-derived fibroblast cells
and NPC1-deficient neuronal cells impaired autophagy and an
accumulation of mitochondrial fragments have been observed
upon lysosomal cholesterol accumulation (Pacheco et al., 2007;
Elrick et al., 2012; Ordonez et al., 2012).

Secondary Defects in Mitophagy
In addition to diseases with primary defects in mitophagy,
several diseases have been described with secondary mitophagic
dysfunction. In the context of monogenic diseases displaying
premature aging, loss of mitophagy was first described in
Cockayne syndrome, a disease characterized by progressive
neurodegeneration reminiscent of mitochondrial disorders
(Scheibye-Knudsen et al., 2012). The pathogenesis likely
involves dysregulation of uncoupling proteins (U) due to
decreased activity of the PGC-1alpha transcription factor. UCPs
regulate mitochondrial membrane potential and consequently a
reduction in UCPs lead to increased mitochondrial membrane
potential and loss of PINK1 mediated mitophagy. Accordingly,
overexpression of UCP2 can rescue mitochondrial and
mitophagic defects in Cockayne syndrome. Notably, the
same pathogenesis is found in related DNA repair disorders
xeroderma pigmentosum group A and ataxia-telangiectasia
(Fang et al., 2014, 2016).

Another disease that is characterized by mitochondrial
deficiency is Zellweger syndrome, which belongs to a subgroup
of peroxisome biogenesis disorders (Salpietro et al., 2015).
Zellweger syndrome is caused by mutations in one of 14 human
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PEX genes, encoding for peroxin proteins that are required
for the maintenance of peroxisomes (Waterham and Ebberink,
2012). Zellweger syndrome patients show dysmorphic features
and suffer from severe neurological symptoms. Recently, PEX13
was shown to be required for mitophagy, but interestingly,
dispensable for starvation-induced autophagy (Lee et al., 2017).
Similarly, PEX5, an interaction partner of PEX13, has been shown
to modulate autophagy via regulation of the mTOR signaling
pathway (Eun et al., 2018), in line with this, mitochondrial defects
can be observed in PEX5 knockout models (Baumgart et al.,
2001). However, it is still unclear, to what extent the clinical
features of Zellweger syndrome are driven by mitophagic defects.

IS MITOPHAGY A THERAPEUTIC
TARGET?

An increasing number of human diseases have been associated
with impaired mitophagy, thus, interventions that modulate
mitophagy may provide the possibility of counteracting disease
development or progression (Figure 3). In recent years, multiple
small molecules as well as lifestyle interventions have been
shown to modulate autophagy, thereby causing health- and
lifespan benefits in different organisms (Galluzzi et al., 2017).
Due to the dependency on core autophagy regulators, mitophagy
is modulated by most of the classic autophagy inducers such
as the mTOR inhibitor rapamycin, the AMP-activated protein
kinase (AMPK) activator AICAR as well as caloric restriction
and exercise. In particular, the effectiveness of rapamycin and
rapalogs has been intensively studied in the context of lifespan
regulation and human disease development and rapamycin
remain the most well documented compound for life- and
healthspan extension in laboratory animals (Saxton and Sabatini,
2017). Further connections between longevity and mitophagy
comes from work on the metabolite NAD+ and the NAD+-
dependent acetylase Sirtuin 1 (SIRT1). Here, it has been shown
that stimulation of SIRT1 through NAD+ augmentation or small
molecules leads to activation of the energy responsive kinase
AMPK that in turns regulates a central autophagy regulator, Unc-
51-like kinase 1 (ULK1) (Egan et al., 2011; Price et al., 2012).
Further, SIRT1 and AMPK also regulate the transcription factor
PGC-1alpha, a key regulator of mitochondrial function that was
initially found to control UCP levels and thereby mitochondrial
membrane potential (Puigserver et al., 1998; Cantó et al.,
2009). Indeed, SIRT1 activation leads to UCP-2 upregulation,
stimulation of mitophagy and rescue of aging features in
models of premature aging (Fang et al., 2014; Scheibye-Knudsen
et al., 2014). Notably, direct stimulation of AMPK through
the AMP-mimetic compound AICAR regulates mitochondrial
dynamics via the induction of mitochondrial fission, further
highlighting the broad effect of AMPK on mitochondrial function
(Toyama et al., 2016).

Due to their great diversity, natural compounds are a
tremendous source for novel mitophagy modulators. Urolithin
A, a gut metabolite of ellagic acid, extends health- and lifespan
in C. elegans as well as improving muscle function in rodent
models via the induction of mitophagy (Ryu et al., 2016). The

effectiveness of urolithin A was further highlighted in animal
models of Alzheimer’s disease, where the disease pathology was
ameliorated in the group of urolithin A-treated mice (Fang et al.,
2019). In a human clinical trial study, the safety of urolithin
A was evaluated, and signatures of improved mitochondrial
function were demonstrated (Andreux et al., 2019). Similar to
Urolithin A, the potency of antibacterial compound actinonin
was demonstrated in Alzheimer’s disease models (Fang et al.,
2019). Actinonin inhibits mitochondrial translation, thereby
inducing mitophagy via the activation of the PINK1/Parkin-
regulated signaling pathway (Richter et al., 2013; Sun et al., 2015;
Burman et al., 2017). Another natural compound that has been
suggested as a potential intervention for aging and diseases is
the polyamine spermidine (Eisenberg et al., 2009; Madeo et al.,
2018; Schwarz et al., 2018). The administration of spermidine
leads to an induction of mitophagy in cardiomyocytes, along
with cardio protection in mice (Eisenberg et al., 2016). The
induction of autophagy via spermidine has been associated,
among others, with the inhibition of the acetyltransferase EP300
and the ATM-driven activation of the PINK1/Parkin-regulated
mitophagy pathway (Pietrocola et al., 2015; Qi et al., 2016).

Transcriptional regulation of mitophagy has also been
shown as a viable pathway for increased mitochondrial health.
An example is the synthetic compound PMI that stimulates
mitophagy via the activation of the transcription factor Nrf2,
which controls the expression of mitophagy genes including
p62 (East et al., 2014; Bertrand et al., 2015). PMI treatment
facilitates LC3 recruitment and mitochondrial ubiquitination in a
PINK1/Parkin-independent manner, notably without disrupting
the mitochondrial membrane potential (East et al., 2014).

Besides targeting mitophagy core proteins, intervention
strategies targeting mitochondrial proteins may present a useful
approach for disorders that are characterized by abnormal
mitochondrial dynamic. Mdivi-1, has been identified in a
yeast screen for mitochondrial fission inhibitors and several
studies indicate its therapeutic potential for the treatment of
neurological disorders (Cassidy-Stone et al., 2008; Cui et al.,
2010; Solesio et al., 2012). However, the specificity of Mdivi-
1 toward its putative target Drp1 has recently been questioned
and needs to be further clarified (Bordt et al., 2017). USP30, a
deubiquitinase that targets mitochondrial proteins, may present
another promising target to facilitate mitophagy, since improved
mitochondrial function was obtained upon USP30 depletion
in different Parkinson’s disease models (Bingol et al., 2014).
Notably, MF-094 has been recently identified as a selective
inhibitor of USP30 that may thereby facilitate mitophagy through
increased ubiquitination of outer membrane proteins (Kluge
et al., 2018). Thus, a number of mitophagy modulators have
been identified, yet the main goal will be the precise and specific
targeting of damaged mitochondria. One possible way is to apply
chimeric molecules such as the recently generated autophagy-
targeting chimeric molecule (AUTAC4) that selectively targets
the mitochondrial membrane for ubiquitination and subsequent
degradation (Takahashi et al., 2019). These approaches may be
particularly efficacious in conditions of mitophaging where the
mitophagy apparatus is likely intact but mitophagy occurs at
suboptimal levels.
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FIGURE 3 | Mitophagy interventions. An overview of different mitophagy modulating compounds and their targets. Abbreviations: Ac, Acetylation; HAT, Histone
acetyltransferase.

In diseases characterized by dysfunctional lysosomes,
stimulation of mitophagy may be detrimental due to an
accumulation of undigested cargo material. In this regard, the
inhibition of mitophagy is considered as a therapeutic strategy.
In a mouse model of Pompe disease autophagy inhibition next
to an enzyme replacement therapy has been proposed as a
potential intervention (Raben et al., 2010). In line with this,
knockdown of the mTOR pathway inhibitor TSC2 in muscle

of Pompe disease mice reduced accumulation of autophagy
markers and a decline in muscle atrophy was osberved (Lim
et al., 2017). However, strategies to facilitate the fusion of
autophagosomes and lysosomes in lysosomal storage disorders
are also proposed for the treatment of several lysosomal storage
disorders (Spampanato et al., 2013; Bartolomeo et al., 2017).
TFEB, which controls the expression of autophagy as well as
lysosomal genes and longevity (Napolitano and Ballabio, 2016),
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may provide a promising target since its agonists, such as
the clinically approved cardiac drug digoxin or the natural
compound ikarugamycin, improve metabolic function in mice
and extend lifespan in C. elegans (Wang et al., 2017). The
therapeutic potential of TFEB in Parkinson’s disease was further
highlighted by a recent study that showed restored TFEB and
improved neurological function upon rapamycin treatment in
Q311X mutant parkin mice independently of the parkin E3 ligase
(Siddiqui et al., 2015).

In summary, great progress has been made in recent years,
however, the clinical safety of mitophagy modulating drugs
needs to be further clarified. More refined tools that allow the
distinction between mitophagy and general macroautophagy may
be beneficial and could accelerate future discoveries. Altogether,
this will enable us to step closer toward clinical validation of
mitophagy modulators.

CONCLUDING REMARKS

Mitophagy is emerging as a central process preserving organismal
and, especially, neurological health. Since most trials targeting
age-associated neurodegeneration in the last decades have been
disappointing, new pharmaceutical avenues are direly needed.
Here, mitophagy stimulators could play a key role. Indeed, several
clinical trials are underway testing the efficacy of mitophagy
modulating compounds and the outcome of these studies will
undoubtedly prove critical for the future translatability of the
field. Nonetheless, the regulatory mechanism of mitophagy and

its contribution to age-associated diseases still remains elusive
and potential issues with artificially augmenting mitophagy
have not been considered. However, given the central role of
mitophaging in multiple age-related pathologies it appears highly
likely that these new promising approaches may present possible
interventions in age-associated diseases. The future is bright!
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Mitochondria are essential organelles important for energy production, proliferation,
and cell death. Biogenesis, homeostasis, and degradation of this organelle are tightly
controlled to match cellular needs and counteract chronic stress conditions. Despite
providing their own DNA, the vast majority of mitochondrial proteins are encoded
in the nucleus, synthesized by cytosolic ribosomes, and subsequently imported into
different mitochondrial compartments. The integrity of the mitochondrial proteome is
permanently challenged by defects in folding, transport, and turnover of mitochondrial
proteins. Therefore, damaged proteins are constantly sequestered from the outer
mitochondrial membrane and targeted for proteasomal degradation in the cytosol
via mitochondrial-associated degradation (MAD). Recent studies identified specialized
quality control mechanisms important to decrease mislocalized proteins, which affect
the mitochondrial import machinery. Interestingly, central factors of these ubiquitin-
dependent pathways are shared with the ER-associated degradation (ERAD) machinery,
indicating close collaboration between both tubular organelles. Here, we summarize
recently described cellular stress response mechanisms, which are triggered by defects
in mitochondrial protein import and quality control. Moreover, we discuss how ubiquitin-
dependent degradation is integrated with cytosolic stress responses, particularly
focused on the crosstalk between MAD and ERAD.

Keywords: C. elegans, mitochondria, proteostasis, mitochondria-associated degradation (MAD), ubiquitin,
Cdc48, p97, Msp1

INTRODUCTION

Mitochondrial integrity relies on a sophisticated network of quality control machineries, which
have been evolved to counteract challenges associated with the endosymbiotic integration of
this organelle into eukaryotic cells (Youle, 2019). Along with a precise coordination between
nuclear and mitochondrial gene expression (Couvillion et al., 2016), transcriptional stress response
programs emerged as central mitochondrial surveillance mechanisms (Andréasson et al., 2019).
Mitochondrial functionality is further supported by ubiquitin-dependent degradation of proteins
accumulating under stress conditions. The outer and inner mitochondrial membrane (OMM and
IMM) separate the lumen into the intermembrane space (IMS) and the matrix. Mitochondria are
equipped with an elaborate set of proteases acting on the different sub-compartments, to maintain
the mitochondrial proteome from the inside (Koppen and Langer, 2007; Quirós et al., 2015; Glynn,
2017). Otherwise, the integrity of the mitochondrial proteome is largely supported by the UPS

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 April 2020 | Volume 8 | Article 27057

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00270
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.00270
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00270&domain=pdf&date_stamp=2020-04-24
https://www.frontiersin.org/articles/10.3389/fcell.2020.00270/full
http://loop.frontiersin.org/people/949854/overview
http://loop.frontiersin.org/people/949902/overview
http://loop.frontiersin.org/people/149971/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00270 April 22, 2020 Time: 19:18 # 2

Ravanelli et al. Mitochondrial Quality Control Governed by Ubiquitin

localized in the cytosol (Franz et al., 2015; Bragoszewski et al.,
2017; Braun and Westermann, 2017; D’Amico et al., 2017;
Escobar-Henriques et al., 2020).

Besides the important role in ATP production and synthesis
of amino acids, nucleotides, and iron-sulfur clusters (Lill and
Mühlenhoff, 2008), mitochondria are also required for calcium
buffering and apoptosis regulation (Wang and Youle, 2009;
Contreras et al., 2010). Notably, mitochondria are tightly
interconnected with other cellular organelles, especially the
endoplasmic reticulum (ER) (Helle et al., 2013; van Vliet et al.,
2014; Phillips and Voeltz, 2016). The contact between ER and
mitochondria has been associated with aging and age-related
diseases (Moltedo et al., 2019). In fact, the physical interaction
between these tubular organelles supports the transfer of lipids,
calcium ions and other metabolites, localizes to DNA nucleoids
and regulates mitochondrial dynamics (Helle et al., 2013; Raturi
and Simmen, 2013; van Vliet et al., 2014; Phillips and Voeltz,
2016; Moltedo et al., 2019). Recent studies suggest an intricate
cooperation between ER and mitochondria in proteostasis
(Dederer et al., 2019; Matsumoto et al., 2019), which constitute
a newly developing research field promising for the development
of therapeutic interventions as proposed for cardiac pathologies
(Arrieta et al., 2020).

In this review we focus on quality control pathways
that maintain mitochondrial functionality, involving
cross-communication with the ER and other cellular
compartments. We discuss recent discoveries on the role of
the ubiquitin/proteasome-system (UPS) in mitochondrial quality
control, including pathways that are constitutively active or
triggered by metabolic stress to ensure mitochondrial integrity.

PROTEIN DEGRADATION MECHANISMS

Protein quality control is required at all steps originating
from protein synthesis and involves a series of mechanisms
dedicated to the surveillance of protein translation, transport,
and turnover (Kaushik and Cuervo, 2015). Central players of the
proteostasis network are molecular chaperones which mediate
folding, targeting, and degradation of proteins (Klaips et al.,
2018). The two major degradation pathways for proteins in
the cytosol are the UPS and the autophagy-lysosomal pathway
(Pohl and Dikic, 2019). In both proteolytic systems post-
translational attachment of the small polypeptide ubiquitin serves
as a targeting signal for protein turnover. The modification
with ubiquitin (ubiquitylation) is mediated by a three-step
enzymatic cascade (Kerscher et al., 2006). First, the ubiquitin-
activating enzyme (E1) forms a high-energy thioester bond
between its catalytic cysteine and the C-terminal glycine residue
of ubiquitin, which is then transferred to a cysteine of an
ubiquitin-conjugating enzyme (E2). The E2 cooperates with
specific ubiquitin ligases (E3) to mediate the covalent attachment
of ubiquitin mainly to a lysine residue in the selected substrate.
Repeated cycles of this reaction either results in multiple mono-
ubiquitylation of different lysine residues of a given substrate
or formation of ubiquitin chains by targeting one of the
seven lysines of ubiquitin (K6, K11, K27, K29, K33, K48,

or K63) (Haakonsen and Rape, 2019). These different ubiquitin-
dependent modifications termed “the ubiquitin code” serve as
signals for different downstream events mediated by specialized
binding proteins. Moreover, ubiquitylation can be reversed by
different deubiquitylating enzymes (DUBs), which completely
remove ubiquitin from substrates or trim ubiquitin chains to
alter their composition (Clague et al., 2019). A prominent role of
ubiquitylation is to target proteins for lysosomal or proteasomal
turnover, which is often mediated by attachment of K48-linked
ubiquitin chains (Dikic, 2017).

The turnover of soluble ubiquitylated proteins is mainly
conducted by the 26S proteasome (Bard et al., 2018). It constitutes
a multicatalytic complex of a barrel-shaped core subunit known
as 20S proteasome and the 19S regulatory particle, attached
to one or both ends of the 20S core. The regulatory particle
is composed of a hexameric complex of AAA-ATPases that
coordinates unfolding and translocation of the substrate into the
core subunit. The 19S subunit also contains scaffold proteins
involved in substrate recognition and deubiquitylation as well
as gate opening and binding with other external factors. The
core subunit is composed of four stacked heptameric rings and
contains the proteolytic activity required for the cleavage of
unfolded polypeptides.

In contrast to soluble substrates, proteins organized in
multimeric complexes or membrane bound, require an additional
extraction step prior to proteasomal degradation. This function
is mainly executed by Cdc48 (p97 or VCP in vertebrates),
which belongs to the family of AAA-ATPases associated with
diverse cellular activities (AAA+), commonly using ATP to
perform mechanochemical reactions (Sauer and Baker, 2011;
Glynn, 2017). In collaboration with substrate-specific cofactors,
Cdc48 binds ubiquitylated proteins and targets them to the 26S
proteasome (Franz et al., 2014; Barthelme and Sauer, 2016).

Larger structures such as aggregated proteins or organelles
are targeted for degradation inside lysosomes (vacuole in yeast
and plants), which contain promiscuous proteolytic enzymes
for degradation of engulfed cargoes. In this process termed
macroautophagy (hereafter autophagy), substrates are recognized
by autophagy receptors bound to autophagosomal membranes,
which triggers substrate engulfment by the autophagosomal
membrane and subsequent lysosomal fusion (Khaminets et al.,
2016). Similar to soluble misfolded proteins, protein aggregates
are targeted for autophagic degradation by ubiquitylation, which
is a common feature of the two proteolytic pathways (Lu
et al., 2017). Moreover, a specialized form of autophagy, called
mitophagy, allows the selective turnover of entire mitochondria.
This process can either be mediated by autophagy receptors
residing in the OMM or by ubiquitylation of OMM proteins
(Palikaras et al., 2018; Pickles et al., 2018).

UBIQUITIN-DEPENDENT
SURVEILLANCE OF THE
MITOCHONDRIAL PROTEOME

The degradation of ER-resident or mitochondrial proteins is
regulated by two mechanistically similar ubiquitin-dependent
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pathways termed ER-associated degradation (ERAD) and
mitochondria-associated degradation (MAD) (Heo and Rutter,
2011; Guerriero and Brodsky, 2012; Ruggiano et al., 2014; Braun
and Westermann, 2017; Mehrtash and Hochstrasser, 2018). For
both tubular organelles, proteins residing in the outer membrane
are directly accessible for ubiquitylation. By contrast, proteins
localized inside these organelles have to be transported across
the membrane to be exposed to the ubiquitin-conjugation
machinery. Cdc48 triggers ERAD by retro-translocation of
substrate proteins out of the ER lumen and proteasomal
degradation at the cytosolic side of the ER membrane. Therefore,
substrates proteins are ubiquitylated by membrane-bound
ubiquitin ligase complexes. These ERAD ligases interact with
accessory factors such as the UBX-domain protein Ubx2
to recruit Cdc48 for coordinating substrate extraction and
turnover (Neuber et al., 2005; Schuberth and Buchberger, 2005).
Increasing evidence suggests that a comparable system employs
the UPS in controlling quality control of mitochondrial proteins.

UPS-Dependent Turnover of
Mitochondrial Proteins
The mitochondrial mass is efficiently regulated by the balanced
coordination between biogenesis and degradation. In addition
to the degradation of damaged mitochondrial proteins the UPS
also contributes to remodeling of the mitochondrial proteome
in response to metabolic changes (Figure 1) (Bragoszewski
et al., 2017). Mitochondria form a highly dynamic network
shaped by continuous fusion and fission events with adaptive
morphology according to cellular needs. These fission and
fusion events are mediated by large dynamin-like GTPases
that provide the mechanical force to either fuse or separate
membranes. In mammals, fission is induced by DRP1 (Dnm1
in yeast), whereas fusion is driven by mitofusins (Fzo1 in
yeast) in the outer membrane and by OPA1 (Mgm1 in
yeast) in the inner membrane (Escobar-Henriques and Anton,
2013). Fusion is known to enhance the exchange of important
molecules and can temporarily compensate for defects in
mitochondrial sub-populations. On the other hand, fission
promotes mitochondrial motility and allows separation of
damaged organelles for mitophagy (Lackner, 2014; Roy et al.,
2015; Wai and Langer, 2016). Residing in the OMM, these
GTPases present cytosolic domains which are targeted for
ubiquitin-dependent degradation. Thus, the UPS provides a
crucial role in the regulation of mitochondrial morphology and
function (Bragoszewski et al., 2017).

Notably, the first identified MAD substrate was in fact the
yeast mitofusin Fzo1 (Neutzner and Youle, 2005), which is
embedded into the OMM by two transmembrane domains,
exposing most of its amino acid residues to the cytosol.
Ubiquitylation of Fzo1 mainly depends on the F-box protein
Mdm30, which is part of the multi-subunit SCF (Skp, Cullin,
Fbox) ubiquitin ligase complex (Fritz et al., 2003; Escobar-
Henriques et al., 2006; Cohen et al., 2008) (Table 1). The
ubiquitin-modification of Fzo1 provides a regulatory role in
the fusion of mitochondrial outer membranes, which is not
necessarily linked to degradation (Anton et al., 2011; Cohen
et al., 2011). In fact, proteasome-dependent turnover of Fzo1

largely depends on the nature of ubiquitylation, since the
DUB Ubp2 is able to remove or trim down ubiquitin chains
that are attached to Fzo1, which regulates its degradation
(Anton et al., 2013) (Table 1).

Depending on the physiological conditions, Cdc48 also
appears to be required for Fzo1 regulation (Heo et al., 2010;
Esaki and Ogura, 2012). Under oxidative stress conditions, Cdc48
together with its co-factors Vms1 and Npl4 facilitates Fzo1
degradation (Heo et al., 2010). Under non-stressed conditions
Fzo1 and additional other OMM proteins are targeted by another
Cdc48 complex involving Npl4, Ufd1, and Doa1, also called Ufd3
(Wu et al., 2016) (Figure 1 and Table 1). This might however
reflect protein quality control triggered by experimental tagging
of the membrane-bound proteins, since non-tagged endogenous
Fzo1 is rather stabilized by Cdc48, which exerts a regulatory role
during OMM fusion (Simões et al., 2018; Anton et al., 2019).
Turnover of mitofusins by MAD is widely conserved among
species including Marf in flies (Ziviani et al., 2010; Wang et al.,
2016) and Mfn1/2 in mammals (Tanaka et al., 2010; Chan et al.,
2011; Xu et al., 2011). A common role of MAD in this case is
the inhibition of mitochondrial fusion by mitofusin degradation,
resulting in mitochondrial fragmentation. In mammals, the E3
ligases Parkin and MARCH5 mediate p97 dependent extraction
and proteasomal turnover of mitofusins, inducing mitochondrial
fission and mitophagy (Karbowski et al., 2007; Ziviani et al., 2010;
Chan et al., 2011; Xu et al., 2011; Wang et al., 2016). Moreover,
MAD was observed to play a role in regulation of apoptosis, since
it targets the anti-apoptotic BCL2 protein MCL1 for degradation
in mammals (Inuzuka et al., 2011; Xu et al., 2011).

Besides Cdc48, Msp1 (ATAD1 in humans) supports extraction
and degradation of mitochondrial proteins (Figure 1 and
Table 1). Despite being an AAA-ATPase similar to Cdc48, Msp1
contains a membrane spanning domain at the N-terminus and is
mainly localized at the OMM, but is also attached to peroxisomes
(Nakai et al., 1993; Chen et al., 2014; Okreglak and Walter, 2014).
Msp1/ATAD1 plays a key role in mitochondrial proteostasis since
it mediates the degradation of mislocalized tail-anchored proteins
(TA-proteins) from the OMM. A baseline degradation of TA-
proteins by the UPS occurs to maintain a dynamic stationary
level and ensure insertion into the outer membrane of the
correct organelle (Chen et al., 2014; Okreglak and Walter, 2014).
Moreover, TA-proteins destined to the ER can mislocalize to
the OMM, when their import system, termed the GET pathway
in yeast and TRC in mammals, is impaired. These mislocalized
TA-proteins are recognized by Msp1 at the OMM and targeted
for proteasomal degradation. For instance, the TA-protein Pex15
is partly inserted in the OMM, even in the presence of the
fully functional GET pathway, suggesting that TA-proteins are
constitutively inserted into the OMM, where they have to be
removed by Msp1 (Chen et al., 2014; Okreglak and Walter, 2014).
Recently, a similar role of Msp1 was described at peroxisomes
(Weir et al., 2017). Of note, the proposed ATP-dependent activity
of Msp1 in the extraction of TA-proteins from mitochondrial
membranes was confirmed in an in vitro system of reconstituted
proteoliposomes (Wohlever et al., 2017).

Surprisingly, mistargeted TA-proteins extracted by Msp1
are ubiquitylated by Doa10, an E3 ligase residing in the
ER membrane and degraded in a Cdc48-dependent manner
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FIGURE 1 | UPS-dependent turnover of mitochondrial proteins. The cytosolic UPS mediates mitochondrial protein turnover by ubiquitylation (orange arrows) and
targeting (blue arrows) of substrates for degradation by the 26S proteasome. (1) Mislocalized tail-anchored proteins are extracted from the OMM by Msp1,
ubiquitylated by the ER-associated E3 ubiquitin ligase Doa10 and then translocated to the proteasome by the Cdc48Ufd1/Npl4 complex. (2, 3) Degradation of OMM
proteins occurs via Cdc48-dependent translocation to the 26S proteasome. (2) Upon oxidative stress, Vms1 translocates to the OMM where it recruits Cdc48 and
its co-factor Npl4. (3) Under normal conditions OMM proteins are ubiquitylated and translocated to the 26S proteasome by Cdc48 together with the co-factors Ufd1,
Npl4, and Doa1/Ufd3. (4) Proteins residing in the IMS and IMM are retro-translocated via the TOM complex into the cytosol for ubiquitin-dependent proteasomal
degradation. (5) Prior import, mistargeted or damaged mitochondrial precursor proteins are degraded by the UPS.

(Figure 1 and Table 1). This initial observation suggests a role
of ERAD in the turnover of OMM proteins (Dederer et al.,
2019; Matsumoto et al., 2019). Indeed, Msp1 co-localizes with
its substrates at ER-mitochondria contact sites, which however,
seem to be dispensable for Doa10/Cdc48 dependent turnover
of Msp1 substrates (Matsumoto et al., 2019). Therefore, it was
proposed that Msp1 extracted TA-proteins are inserted into the
ER membrane for Doa10-mediated ubiquitylation. Subsequently,
Cdc48 is recruited together with the cofactors Ufd1 and Npl4
to translocate mistargeted TA-proteins to the 26S proteasome
(Matsumoto et al., 2019). Intriguingly, Msp1 appears to extract
only monomeric proteins and not multi-complexes, suggesting
that the recognition of mistargeted TA-protein is based on the
weak interaction with the membrane of a single transmembrane
domain (Dederer et al., 2019). Interestingly, Msp1 emerged as an
MAD substrate itself, whose degradation depends on the Doa1–
Cdc48−Ufd1−Npl4 complex (Wu et al., 2016). This might indicate
a role of the UPS in the regulation of mitochondrial protein
half-life by controlling Msp1 level and extraction of TA-proteins.

Intriguingly, besides membrane bound proteins also inner
mitochondrial proteins have been reported to be ubiquitylated.
In analogy to ERAD, retro-translocation of mitochondrial
proteins across IMM and/or OMM has been suggested to enable

ubiquitylation at the cytosolic surface of the organelle (Figure 1).
Indeed, such activity has been demonstrated for IMS proteins,
which upon unfolding, translocate into the cytosol (Bragoszewski
et al., 2015). The export of these proteins seems to depend
on the translocase of the outer membrane (TOM) complex
also required for import, however, further studies are required
to investigate the exact mechanism of mitochondrial retro-
translocation. Notably, this degradation of IMS proteins appears
to be utilized to rewire the mitochondrial proteome to changing
metabolic conditions upon shift from respiration to fermentation
(Bragoszewski et al., 2015). A major challenge in exploring this
novel mechanism is to carefully distinguish ubiquitin-dependent
degradation of retro-translocated mitochondrial protein versus
cytosolic precursor proteins that accumulate when mitochondrial
import is impaired (Figure 1).

Mitochondrial Import Control
Nuclear-encoded mitochondrial proteins are synthetized as
precursors in the cytosol and subsequently imported and sorted
to different mitochondrial compartments. After passing through
the TOM complex, precursor proteins are redistributed to their
final intra-mitochondrial destination. At least five distinct but
interconnected import pathways have been identified, each one
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TABLE 1 | Regulators of ubiquitin-dependent mitochondrial quality control.

Function Yeast Mammals
Other species

Function Pathways Reference

Translocation Cdc48 VCP/p97
cdc-48 (C. elegans)
TERT94/ VCP
(D. melanogaster)

AAA-ATPase ERAD, MAD, RQC,
mitoTAD

Heo et al., 2010; Tanaka et al.,
2010; Xu et al., 2011; Brandman
et al., 2012; Defenouillère et al.,
2013; Kim et al., 2013; Wang et al.,
2016; Wu et al., 2016; Izawa et al.,
2017; Rendón et al., 2018; Verma
et al., 2018; Mårtensson et al.,
2019; Matsumoto et al., 2019

Vms1 VMS1/ANKZF1
vms-1 (C. elegans)

Cdc48 recruitment MAD, RQC Heo et al., 2010; Izawa et al., 2017;
Rendón et al., 2018; Verma et al.,
2018

Ubx2 Cdc48 recruitment ERAD, mitoTAD Mårtensson et al., 2019;
Matsumoto et al., 2019

Doa1/ Ufd3 Cdc48 co-factor MAD Wu et al., 2016

Ufd1 UFD1L Cdc48 co-factor MAD, ERAD, mitoTAD,
RQC

Brandman et al., 2012; Wu et al.,
2016; Izawa et al., 2017; Verma
et al., 2018; Mårtensson et al.,
2019; Matsumoto et al., 2019

Npl4 NPL4 Cdc48 co-factor MAD, ERAD, mitoTAD,
RQC

Heo et al., 2010; Brandman et al.,
2012; Wu et al., 2016; Izawa et al.,
2017; Verma et al., 2018;
Mårtensson et al., 2019;
Matsumoto et al., 2019

Msp1 ATAD1 AAA-ATPase MAD, mitoCPR Chen et al., 2014; Okreglak and
Walter, 2014; Weidberg and Amon,
2018; Dederer et al., 2019;
Matsumoto et al., 2019

Cis1 Msp1 recruitment mitoCPR Weidberg and Amon, 2018

Ubiquilins Itakura et al., 2016; Whiteley et al.,
2017

Ubiquitylation Mdm30 E3 ligase MAD Fritz et al., 2003;
Escobar-Henriques et al., 2006;
Cohen et al., 2008

Rsp5 E3 ligase MAD Wu et al., 2016

Parkin E3 ligase MAD Tanaka et al., 2010; Chan et al.,
2011; Kim et al., 2013; Wang et al.,
2016

Ltn1 Listerin E3 ligase RQC Brandman et al., 2012;
Defenouillère et al., 2013; Shao
et al., 2013

MARCH5/MITOL E3 ligase MAD Yonashiro et al., 2006; Karbowski
et al., 2007; Park et al., 2010

Doa10 E3 ligase ERAD Dederer et al., 2019; Matsumoto
et al., 2019

Cue1 Doa10 co-factor ERAD Dederer et al., 2019; Matsumoto
et al., 2019

Ubc6 E2 ERAD Dederer et al., 2019; Matsumoto
et al., 2019

Ubc7 E2 ERAD Dederer et al., 2019; Matsumoto
et al., 2019

De-ubiquitylation Ubp2 DUB MAD Anton et al., 2013

Transcriptional
regulation

Pdr3 Transcription factor mitoCPR Weidberg and Amon, 2018

Rpn4 Transcription factor Response to clogging Boos et al., 2019

ATF5
atfs-1 (C. elegans)

Transcription factor UPRmt Nargund et al., 2012; Fiorese et al.,
2016

ERα Transcription factor UPRmt Papa and Germain, 2011

Msn2/4 Transcription factor IPTP Suhm et al., 2018
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FIGURE 2 | Mitochondrial import control. The cytosolic UPS supports quality control and mitochondrial import by removing damaged proteins. Substrate
ubiquitylation (orange arrows) is followed by translocation (blue arrows) and proteasomal degradation. (1) Ubx2 localizes both in the ER membrane and in proximity
of the TOM complex at the OMM, where it recruits Cdc48 and its cofactors Ufd1 and Npl4 to degrade ER and mitochondrial proteins, respectively. (2, 3, 4) In case of
co-translational import of mitochondrial proteins, induction of RQC is central to the handling of stalled ribosomes. (3) Ltn1-dependent ubiquitylation of the nascent
polypeptide chain recruits Cdc48 with its cofactors Ufd1 and Npl4 for proteasomal targeting. (4) Vms1 counteracts Rqc2-dependent CAT-tail formation and
safeguards tRNA release of the nascent polypetide, which is subsequently degraded in the matrix by mitochondrial proteases. (5) Upon mitochondrial import
defects, Cis1-recruited Msp1 moderates the release of mitochondrial proteins stalled in the TOM complex. (6) In mammals, ubiquilins bind transmembrane domains
of mitochondrial proteins and either support mitochondrial translocation or proteasomal targeting.

directed by a specific targeting signal (Neupert and Herrmann,
2007; Chacinska et al., 2009; Wiedemann and Pfanner, 2017;
Pfanner et al., 2019). In order to avoid the import of
aberrant proteins into mitochondria and to ensure mitochondrial
proteostasis, specialized surveillance mechanisms monitor the
nuclear-encoded proteins before and during mitochondrial
import (Figures 1, 2).

Interestingly, it was shown that mitochondrial precursor
proteins are constantly degraded in a ubiquitin-dependent
manner. For example, both the wild-type and mutant IMS
protein endonuclease G (endoG) are degraded by the UPS
before their import (Radke et al., 2008). However, in contrast
to the mutant form, wild-type endoG can be alternatively
degraded by the IMS protease Omi, supporting the idea that the
proteasome plays a role in degradation of defective mitochondrial
proteins prior to import. In line with this conclusion, the
UPS was reported to assist the import of intermembrane
proteins by constantly degrading precursor proteins before they
enter mitochondria (Bragoszewski et al., 2013; Kowalski et al.,
2018) (Figure 1).

In mammalian cells, quality control of membrane
proteins recruited to mitochondria is provided by ubiquilins

(Itakura et al., 2016; Whiteley et al., 2017), which are substrate
receptors supporting proteasomal turnover. They typically
possess a ubiquitin-binding UBA domain for recognition of
ubiquitylated substrates and a ubiquitin-like UBL domain for
proteasome targeting. Ubiquilins bind to mitochondrial proteins
containing transmembrane domains, thereby preventing their
aggregation (Itakura et al., 2016). As long as the substrate remains
unmodified, the UBA domain of ubiquilin is bound to its own
UBL domain, promoting mitochondrial import. Upon substrate
ubiquitylation, the UBL domain is released, which results in
targeting the mitochondrial substrate proteins for proteasomal
degradation. Thus, ubiquilins exert an important triage function
regulating mitochondrial import (Figure 2).

Mitochondrial targeting and protein import are governed at
the mitochondrial import channel by a newly proposed MAD
pathway. A subpopulation of Ubx2 binds to the TOM complex,
which recruits Cdc48 to initiate degradation of partially imported
proteins similarly to ERAD (Mårtensson et al., 2019) (Figure 2
and Table 1). This mechanism is termed mitochondrial protein
translocation-associated degradation (mitoTAD). Interestingly,
Ubx2 binding with Cdc48 depends on the co-factor Ufd1,
whereas the other Cdc48 partners implicated in MAD, Vms1 and
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Doa1/Ufd3, are not involved in mitoTAD. However, combined
deletion of Ubx2 with either Vms1 or Msp1 caused strong
mitochondrial defects and an increase of ubiquitylated proteins
bound to the TOM complex, suggesting redundant roles of the
described mitochondrial import control pathways (Mårtensson
et al., 2019). Indeed, Msp1 has been reported to function in
degrading substrates from the TOM channel as well (Weidberg
and Amon, 2018). Mitochondrial import stress induces the
expression of Cis1, which mediates the recruitment of Msp1
to the import pore (Weidberg and Amon, 2018; Boos et al.,
2019). Subsequently, Msp1 triggers proteasomal turnover of
proteins clogging the TOM complex, thereby maintaining
mitochondrial protein import and proteostasis (Figure 2)
(Weidberg and Amon, 2018).

Ribosome-Associated Quality Control of
Mitochondrial Proteins
The first contact of mitochondrial proteins with the cytosolic
proteostasis network occurs already during translation at
cytosolic ribosomes. It was recently shown that stalling of
ribosomes, which indicates aberrant mRNA, defective ribosome
assembly, or an accumulation of nascent protein, triggers
ribosome-associated quality control (RQC) (Brandman and
Hegde, 2016; Joazeiro, 2019). Stalled ribosomes are sensed by
the yeast RQC complex subunit Rqc2 (NEMF in mammals),
recruiting the E3 ligase Ltn1 (listerin in mammals) for
polyubiquitylation of the nascent peptide. The polyubiquitin
chain serves as signal to attract Cdc48 and its cofactors Ufd1
and Npl4 (UFD1 and NPLOC4 in mammals), which together
shuttle the polypeptide to the proteasome. In case the accessible
nascent polypeptide does not contain any lysine residues, Rqc2
can induce a peptide extension by addition of a C-terminal
alanine and threonine (CAT) tail. Through this elongation, more
residues of the nascent chain get exposed outside of the ribosome
exit tunnel, until a lysine becomes available for Ltn1 dependent
ubiquitylation. In addition, CAT-tails have been reported to
induce aggregation of proteins, which might act as a protective
mechanism in case of RQC failure.

Since the targeting sequence of many mitochondrial
proteins is at the N-terminus, import can occur either post-
translationally or co-translationally (Neupert and Herrmann,
2007; Wiedemann and Pfanner, 2017). If import and translation
occur simultaneously, part of the nascent polypeptide chain
is sequestered inside the mitochondrial import machinery
before completion of translation and release from the ribosome.
Thus, in contrast to cytosolic proteins, ubiquitylation of
mitochondrial proteins emerging at the ribosome might fail
due to the close proximity between the ribosome and the
mitochondrial translocation machinery and reduced accessibility
of the co-translationally imported nascent polypeptide chain.
Consequently, Rqc2 dependent CAT tailing can induce protein
aggregation inside the mitochondrial matrix and subsequent
degeneration of the mitochondrial respiratory capacity (Izawa
et al., 2017). The formation of protein aggregates is counteracted
by Vms1 (ANKZF1 in mammals) activity, which mediates the
release of nascent polypeptides from the tRNA and thereby

terminates CAT tail formation (Izawa et al., 2017; Rendón et al.,
2018; Verma et al., 2018) (Figure 2 and Table 1).

MITOCHONDRIAL STRESS RESPONSE
MECHANISMS

Based on the intricate network of ubiquitin-dependent quality
control mechanisms, stressed or defective mitochondria often
affect UPS activity, which largely relies on the abundance and
activity of the 26S proteasome (Marshall and Vierstra, 2019).
Central to this regulatory relationship are reactive oxygen species
(ROS), that are generated inside mitochondria via oxidative
phosphorylation (Lefaki et al., 2017). Changes in ROS level have
been linked to reversible disassembly of the 26S proteasome
into 20S and 19S subunits. These changes in proteasomal
composition and activity might reflect a protective strategy by
favoring ATP/ubiquitin-independent degradation of oxidized
proteins via 20S proteasomes (Wang et al., 2010; Grune et al.,
2011; Livnat-Levanon et al., 2014). In C. elegans, mitochondrial
impairment was linked to defective turnover of cytosolic UPS
model substrates despite no increase in ROS, suggesting the
existence of a distinct response mechanisms regulating UPS
activity (Segref et al., 2014). Mitochondrial translation accuracy
has been as well-linked to cytosolic proteostasis (Suhm et al.,
2018). Particularly, mitochondrial ribosome mutations in yeast
either improving or reducing translation accuracy showed an
increased or decreased turnover of a cytosolic proteasome
substrate, respectively. However, in both studies, proteasome
activity was not altered in comparison to wild-type controls,
suggesting that the regulation occurs upstream of proteasomal
degradation (Segref et al., 2014; Suhm et al., 2018).

Interestingly, recent studies have demonstrated that
specialized stress response pathways induced by mitochondrial
impairment affect the UPS by regulating gene expression in
the nucleus and protein translation in the cytosol (Papa and
Germain, 2011; Nargund et al., 2012; Wrobel et al., 2015;
Weidberg and Amon, 2018; Boos et al., 2019). Along with the
well-known heat shock response (HSR) in the cytosol (Richter
et al., 2010) and the unfolded protein response (UPR) in the
ER (Walter and Ron, 2011), a mitochondrial UPR (UPRmt)
has been thoroughly investigated (Münch, 2018; Shpilka and
Haynes, 2018). These three stress response mechanisms are
characterized by one or more signal transduction pathways that
activate transcription of protective genes, encoding molecular
chaperones, proteases, and UPS components. Consequently,
induction of HSR, UPR, and UPRmt supports proteostasis by
inducing UPS function.

Even though first detected in mammalian cells (Martinus
et al., 1996; Zhao et al., 2002), the UPRmt mechanism has
been characterized in C. elegans (Yoneda, 2004; Haynes et al.,
2010; Nargund et al., 2012). Central to this mitochondrial stress
response is the transcription factor ATFS-1, which translocates
into the nucleus when mitochondrial import is blocked (Nargund
et al., 2012). Although the downstream transcriptional regulation
induced in case of mitochondrial stress is similar to C. elegans,
the regulatory signaling of the mammalian UPRmt emerged

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 April 2020 | Volume 8 | Article 27063

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00270 April 22, 2020 Time: 19:18 # 8

Ravanelli et al. Mitochondrial Quality Control Governed by Ubiquitin

FIGURE 3 | Mitochondrial stress response mechanisms. Mitochondrial stress pathways regulate nuclear gene transcription and cytosolic protein translation to
sustain proteostasis. (1) Overexpression of bipartite signal-containing proteins activates the mitoCPR, which triggers Pdr3-dependent expression of MDR genes,
from which Cis1 promotes the recruitment of Msp1 to the TOM complex. (2) TOM clogging activates Hsf1-dependent expression of Rpn4, which drives expression
of proteasomal subunits and mitoCPR-induced Pdr3. (3) The accumulation of mitochondrial precursor proteins caused by import defects boosts proteasomal activity
and depletes general protein translation in the cytosol. (4) In mammals, protein aggregation in the IMS induces proteasome activity by ligand-independent activation
of ERα and subsequent upregulation of NRF1.

to be more complex and a general consensus model is still
missing (Münch, 2018). Notably, a specialized mammalian
UPRmt was reported to enhance proteasomal activity in response
to protein aggregation in the IMS (Papa and Germain, 2011).
The proposed molecular mechanism is based on the ligand-
independent activation of the estrogen receptor alpha (ERα),
which upregulates NRF1, a transcription factor involved in the
expression of proteasomal subunits (Figure 3 and Table 1) (Papa
and Germain, 2011). Accordingly, the C. elegans NRF homolog
SKN-1 has also been identified as a downstream target of the
UPRmt (Nargund et al., 2012). In yeast, increased proteasome
activity was detected in consequence of mitochondrial import
defects, indicating an UPR activated by the mistargeting
of proteins (UPRam) (Wrobel et al., 2015). Thus, defective
mitochondrial import generates an accumulation of misfolded
proteins in the cytosol, which aggravates proteasomal assembly
and proteolytic activity (Figure 3).

The use of deep transcriptome sequencing, combined with
proteomics allowed to monitor transcriptional and translational
changes over time after ‘clogging’ of the TOM complex
in yeast. Under these conditions the heat shock responsive
transcription factor Hsf1 is activated and triggers the expression
of molecular chaperones. Interestingly, one Hsf1-dependent
target gene encodes the transcription factor Rpn4, which

specifically upregulates proteasomal subunits, constituting a
second layer of response that is activated upon prolonged
stress (Boos et al., 2019). In addition to Hsf1 activation, the
expression of nuclear encoded respiratory chain subunits is
downregulated, which might serve to reduce the mitochondrial
import load (Figure 3). Another transcriptional stress response
activated by import defects is the mitochondrial compromised
protein import response (mitoCPR) (Weidberg and Amon,
2018). Here, import inhibition caused by overexpression of
bipartite signal-containing proteins, which are normally inserted
into the IMS, provokes expression of multi drug resistance
(MDR) response genes by the transcription factor Pdr3. One
of the most upregulated genes is Cis1, which is recruited
to the OMM and, by interacting with Tom70 and Msp1,
supports the Msp1 and proteasome-dependent degradation of
non-imported mitochondrial precursor proteins. Interestingly,
the correct functionality of this pathway is fundamental for
cell survival upon defective mitochondrial import but not
under normal growth conditions (Figure 3 and Table 1)
(Weidberg and Amon, 2018).

Although a general transcriptional program has not been
identified yet, an intricate cooperation of the different quality
control pathways becomes evident. For example, Rpn4 is not
only initiated upon TOM “clogging,” but also in import-defective
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FIGURE 4 | Mitochondrial quality control governed by the UPS. The
mitochondrial proteome is regulated by constant degradation of mitochondrial
proteins, which are sequestered from the organelle and translocated (blue
arrows) to the 26S proteasome for degradation. In addition, mitochondrial
precursor proteins are degraded by the 26S proteasome if not efficiently
imported into mitochondria. Upon mitochondrial stress, transcription and
translation of mitochondrial genes are diminished, reducing the substrate load
of both the mitochondrial import machinery and the 26S proteasome (red
arrows). Moreover, transcription of protective genes is induced to enhance
UPS activity (solid green arrow). Stress-induced inhibition of global protein
translation triggers the expression of specialized transcription factors
responsible for the activation of inducible stress response programs
mentioned before (violet arrow), while other gene products might support UPS
function (dashed green arrow).

yeast mutants related to UPRam (Wrobel et al., 2015; Boos
et al., 2019). However, in contrast to clogging the TOM
channel (Boos et al., 2019), import-defects do not induce the
expression of proteasome subunits but of proteasome assembly
chaperones (Wrobel et al., 2015). These discrepancies suggest
that Rpn4 might be activated in case of mitochondrial defects,
but probably distinct transcriptional programs characterize
specific types of import-related stress. Moreover, the Pdr3-
dependent transcriptional induction of Cis1 upon accumulation
of bipartite signal-containing proteins also requires Rpn4
(Figure 3) (Boos et al., 2019).

An additional cellular strategy to avoid UPS overload
under prolonged mitochondrial stress conditions is based on
suppression of protein translation both inside and outside
of the organelle (Münch, 2018; Samluk et al., 2018; Shpilka
and Haynes, 2018). The predominant mechanism of cytosolic
translation inhibition is mediated by phosphorylation of
the eukaryotic transition initiation factor 2 alpha (eiF2α),
which prevents formation of the translation initiation complex
(Sonenberg and Hinnebusch, 2009). However, oxidative stress
generated upon dysfunctional mitochondrial import was recently
reported to reduce cytosolic translation independently of eiF2α

phosphorylation. For instance, the translation machinery can be

directly modulated by the redox status of proteins participating
in translation (Figure 3) (Topf et al., 2018). Besides reducing
global protein translation, mitochondrial import defects have also
been proposed to induce translation of particular mRNAs (Wang
and Chen, 2015; Topf et al., 2016). Specialized translation of
stress-related transcription factors has already been described as
a downstream event of eiF2α phosphorylation, which therefore
trigger numerous stress responses, including the UPRmt (Fiorese
et al., 2016; Pakos-Zebrucka et al., 2016; Quirós et al., 2017).

Even though a common mechanism has not been identified
yet, it is obvious that diverse, overlapping mitochondrial
signaling pathways are activated to support proteostasis and
cellular survival. These pathways influence gene expression to
adapt mitochondrial and cytosolic protein degradation pathways
under mitochondrial stress conditions.

CONCLUSION

Each cellular sub-compartment is equipped with specialized
quality control machineries, which are intricately connected
and cross-communicate. The reported studies support the
idea that ubiquitin-dependent mitochondrial quality control
pathways efficiently adapt in response to environmental and
metabolic changes. However, in case of acute stress conditions,
specialized response programs are induced to adjust the
UPS capacity and thereby restore organellar proteostasis
(Pakos-Zebrucka et al., 2016; Braun and Westermann,
2017; D’Amico et al., 2017; Pickles et al., 2018; Andréasson
et al., 2019; Zheng et al., 2019; Escobar-Henriques et al.,
2020). Besides understanding the mechanistic details of
individual pathways, the regulation of cell-type specific and
organismal composition of mitochondrial quality control
need to be further addressed. Mechanistically, ubiquitin-
dependent mitochondrial proteostasis follows a series of
common regulatory events: stress sensing, substrate targeting
and modification, protein translocation, and proteasomal
degradation. Mitochondrial quality control is further regulated
by nuclear gene transcription and cytosolic protein translation
events (Figure 4). Overall, these proteostasis strategies
are highly adaptive and can efficiently and dynamically
modulate the stability of the mitochondrial proteome according
to cellular needs.

FUTURE PERSPECTIVES

Regulation of mitochondrial quality control by the UPS emerged
to be conserved in all eukaryotes, involving Cdc48/p97 and
the 26S proteasome. However, mechanistic details on substrate
selection and ubiquitin ligases remain largely unclear. In contrast
to proteasomal degradation of OMM proteins, little is known
about the turnover of intra-mitochondrial proteins. Especially
how mitochondrial substrates are retro-translocated from the
different inner mitochondrial compartments into the cytosol
is of central importance for understanding the regulation of
MAD. Conversely, a novel functional role of the mitochondrial
translocation machinery has been identified, which seems to
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import cytosolic aggregation-prone proteins into mitochondria
for efficient degradation (Ruan et al., 2017). A more detailed
view on the protein shuttling between mitochondria and cytosol
will extend our current view on the cellular mechanisms
dedicated to proteostasis maintenance and the reciprocal role of
mitochondrial and cytosolic proteolytic systems.

Besides the high degree of mechanistic similarities between
the MAD and ERAD pathways, mitochondrial quality control
is further defined by functional mitochondria-ER interactions.
For example, substrates extracted from the OMM by Msp1
are targeted to the ER for subsequent proteasomal degradation
(Dederer et al., 2019; Matsumoto et al., 2019). Moreover,
mitochondrial precursor proteins have been identified to
associate with the ER membrane before being imported. The
recently proposed ER-surface mediated targeting (ER-SURF)
model describes the association of mitochondrial precursor
proteins with the ER membrane and their rerouting to
mitochondria by the ER-localized chaperone Djp1 (Hansen
et al., 2018). Thus, the interaction between mitochondria and
ER might play a conceptual role in protein quality control of
mitochondrial proteins.

Mitochondrial impairments have been associated to several
pathologies not only limited to metabolic diseases or myopathies,
but including cancer (Vyas et al., 2016; Denisenko et al.,
2019), pulmonary hypertension (Chen et al., 2019) and
neurodegenerative disorders such as Alzheimer’s and Parkinson’s

disease (Kim and Mook-Jung, 2019; Tapias, 2019). Thus, further
understanding of mitochondrial surveillance mechanisms might
help to establish therapeutic interventions for treatment of
mitochondrial pathologies. The multiple layers of mitochondrial
regulation that can lead to disease progression if defective
makes mitochondrial quality control a challenging but exciting
research field, which is more and more integrated in the
context of specialized cellular pathways, from basic research to
clinical studies.
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Mitochondrial dysfunction is a hallmark of aging and is a major contributor to
neurodegenerative diseases and various cardiovascular disorders. Mitophagy, a
specialized autophagic pathway to remove damaged mitochondria, provides a critical
mechanism to maintain mitochondrial quality. This function has been implicated in
a tissue’s ability to appropriately respond to metabolic and to bioenergetic stress,
as well as to recover from mitochondrial damage. A global decline in mitophagic
flux has been postulated to be linked to pathological alterations that occur in the
heart and the brain as well as a general age-dependent decline in organ function.
Cellular observation suggests multiple mechanistically distinct pathways converge upon
and activate mitophagy. Over the past decade, additional molecular components
within mitophagy have been discovered, including several disease-associated genes
that are functionally implicated in mitophagy. However, the pathophysiological role
of mitophagy, and how it is regulated within normal physiology or various disease
states, is less well established. Here, we will review the evidence that a decline in
mitophagy contributes to impaired mitochondrial homeostasis and may be particularly
detrimental to postmitotic neurons and cardiomyocytes. We will discuss mitophagy’s
pathological significance in both neurodegenerative diseases and cardiovascular
disorders. Additionally, signaling pathways regulating mitophagy are reviewed, with
emphasis placed on how these pathways might contribute to disease progression.
Understanding mitophagy’s role in the mechanisms of disease pathogenesis should
allow for the development of more efficient strategies to battle pathological conditions
associated with mitochondrial dysfunction.

Keywords: mitophagy, neurodegenerative diseases, cardiovascular disorders, mitochondrial, autophagy

INTRODUCTION

Autophagy is the regulated process that targets unnecessary or dysfunctional cellular components
for lysosomal-mediated removal (Mizushima et al., 1998; Klionsky and Emr, 2000; Kim and Lee,
2014; Yan and Finkel, 2017). This process is a crucial recycling mechanism to maintain cellular
homeostasis under normal physiological states as well as in disease conditions as it facilitates
the orderly degradation of damaged organelles and other cellular components, (Levine, 2005;
He et al., 2012; Kim and Lee, 2014; Fernández et al., 2018). The removal of mitochondria through
autophagy, a process called mitophagy, is an important element of mitochondrial quality control
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(Youle and Narendra, 2011; Palikaras et al., 2018). This
system mediates the selective engulfment of defective or
damaged mitochondria by autophagosomes and their subsequent
catabolism by lysosomes, preserving overall mitochondrial
homeostasis (Youle and Narendra, 2011; Palikaras et al., 2018).
Significant evidence suggests that mitophagy may be required
for adaptation to various stresses, and that dysregulation of
mitophagy may contribute to a host of diseases, most notably
neurodegenerative conditions such as Parkinson’s disease (PD)
(Narendra et al., 2008; Geisler et al., 2010; Lazarou et al., 2015).
The products of two PD-associated genes, the phosphatase and
tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and
the cytosolic E3 ligase Parkin, can sense mitochondrial damage
and mediate ubiquitin-dependent mitophagy (Narendra et al.,
2008; Youle and Narendra, 2011; Pickrell and Youle, 2015;
Yamano et al., 2016; Palikaras et al., 2018). Loss-of-function
mutations in the regulatory kinase PINK1 and the ubiquitin ligase
Parkin have each been identified as a cause for familial, early-
onset PD, suggesting that impaired mitophagy may contribute
to the loss of dopaminergic neurons that occurs during the
PD disease progression (Kitada et al., 1998; Valente et al.,
2004; Lazarou et al., 2015; Palikaras et al., 2017; Harper et al.,
2018). Similarly, the preservation of mitochondrial function
through mitophagy is also important for mitochondria-rich and
bioenergetically demanding organs such as the heart (Murphy
et al., 2016; Bravo-San Pedro et al., 2017). Cardiac mitophagy may
be required for the myocardium to recover from mitochondrial
damage that occurs, for instance, during cardiac hypertrophy or
ischemic injury (Murphy et al., 2016; Bravo-San Pedro et al.,
2017). Evidence suggests a decline in mitophagy may contribute
to the myriad of pathological events that occur under metabolic
stress or in the elderly heart (Eisenberg et al., 2016; Leon and
Gustafsson, 2016; Lesnefsky et al., 2016; Murphy et al., 2016;
Shirakabe et al., 2016a,b).

Considerable interest has been focused on elucidating
the molecular mechanisms of mitophagy, particularly on
PINK1/Parkin’s ability to catalyze the reaction to ubiquitinate
a range of outer mitochondrial membrane (OMM) proteins
(Narendra et al., 2008, 2010; Matsuda et al., 2010; Lazarou et al.,
2015; Palikaras et al., 2017; Harper et al., 2018). PINK1 is a
mitochondrial-targeted kinase whose stability is regulated, at least
in part, by mitochondrial membrane potential (MMP) (Narendra
et al., 2008, 2010; Matsuda et al., 2010; Lazarou et al., 2015).
When MMP is dissipated following mitochondrial damage,
PINK1 accumulates on the OMM, where it can phosphorylate
ubiquitin attached to OMM and recruit Parkin to impaired
mitochondria, thereby triggering its latent E3 ubiquitin ligase
activity to ubiquitinate OMM proteins (Narendra et al., 2008,
2010; Matsuda et al., 2010; Lazarou et al., 2015). This post-
translational tagging of OMM proteins with ubiquitin can serve
as a signal to recruit receptors such as optineurin and NDP52,
which act as a signal facilitating autophagosomal engulfment of
individual damaged mitochondria (Itakura et al., 2012; Lazarou
et al., 2015) (Figure 1). PINK1/Parkin-independent mechanisms
can also initiate mitophagy (Novak et al., 2010; Hanna et al.,
2012). The proapoptotic Bcl2 family proteins Nix and Bnip3 on
the OMM participate in autophagic engulfment of mitochondria

through direct interaction with LC3 on autophagosomes (Novak
et al., 2010; Hanna et al., 2012) (Figure 1). Newly formed
erythrocytes, also known as reticulocytes, eliminate their
membrane-bound organelles, including mitochondria, during
the course of development (Koury et al., 2005; Schweers
et al., 2007). Nix regulated mitophagy may contribute to the
rapid and coordinated clearance of mitochondria, also called
the programmed mitochondrial degradation, in the process of
erythropoiesis, whereas loss of Nix in mice impairs mitochondrial
degradation during erythroid maturation (Schweers et al.,
2007; Sandoval et al., 2008). The OMM protein FUNDC1
(FUN14 domain containing 1) can also bind LC3 to recruit
autophagosome and promote mitophagy (Liu et al., 2012; Chen
et al., 2016) (Figure 1). FUNDC1-mediated mitophagy may
depend on its phosphorylation status regulated by the Unc-
51 Like Autophagy Activating Kinase 1 (ULK1), casein kinase
2 (CK2), and PGAM5 phosphatase (Chen et al., 2014, 2016;
Palikaras et al., 2018). Recent progress has demonstrated a crucial
role for the inner mitochondrial membrane (IMM) proteins
in mitophagy regulation. Notably, IMM protein prohibitin 2
(PHB2), a component of the mitochondrial prohibitin complex,
may serve as a mitochondrial receptor for mitophagy upon
mitochondrial depolarization (Wei et al., 2017).

While there has been considerable mechanistic insight into
the regulatory pathways of mitophagy, investigation into the
role of mitophagy in healthy and disease conditions has only
just begun. Mouse tissue analysis has revealed a variation in
basal mitophagy levels (Sun et al., 2015; McWilliams et al.,
2018b), which might be required for continuous mitochondrial
housekeeping. Stressed-induced mitophagy has been implicated
in a tissue’s ability to recover from mitochondrial damage, as
well as appropriately responding to metabolic and bioenergetic
stressors (Sun et al., 2016; Bravo-San Pedro et al., 2017; Palikaras
et al., 2018). In energetically demanding tissues such as the heart
and the brain, the mitophagic removal might require exquisite
regulatory mechanisms, which merit further investigation.
Additionally, recent studies have demonstrated an essential
role for programmed mitophagy that directs the developmental
metabolic transitioning of cardiac mitochondria (Gong et al.,
2015). In summation, the preservation of mitochondrial function
is crucial for all tissues, but it is undoubtedly critical for
bioenergetically demanding organs such as the brain and
the heart. Here, we will review how mitophagy represents a
major pathway to help sustain mitochondrial quality and how
alterations in mitophagy can contribute significantly to both
neurodegenerative and cardiovascular diseases (Figure 1). The
ability to genetically and pharmacologically modulate mitophagic
flux may provide considerable insight into mitochondria related
disease mechanisms and allow for the development of novel
therapeutic approaches.

MITOPHAGY IN NEURODEGENERATIVE
DISEASES

There is a growing appreciation regarding the critical role
of altered mitochondrial function in the pathogenesis of
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FIGURE 1 | Mitophagy is a critical mechanism to maintain mitochondrial quality in the brain and heart. Mitophagy can be regulated by multiple mechanistically
distinct pathways: the PINK1/Parkin dependent mitophagy, which is mediated by mitophagy receptors such as optineurin and NDP52; BNIP3 and NIX regulated
mitophagy to facilitate autophagic engulfment of mitochondria; and FUNDC1 mediated mitophagy. Manipulating autophagy/mitophagy activity may preserve
mitochondrial function and serve as a novel therapeutic strategy, such as spermidine (Eisenberg et al., 2016), rapamycin (Sciarretta et al., 2012; Yan et al., 2013; Dai
et al., 2014; Ranek et al., 2019), nicotinamide mononucleotide (Fang et al., 2019), urolithin A (Ryu et al., 2016; Fang et al., 2019), actinonin (Fang et al., 2019), and
Tat-Beclin 1 (Shoji-Kawata et al., 2013; Shirakabe et al., 2016b).

neurodegenerative diseases (Valente et al., 2004; Youle and
Narendra, 2011; Subramaniam and Chesselet, 2013; Hsieh et al.,
2016; Palikaras et al., 2018). Selective identification and removal
of damaged or dysfunctional mitochondria through mitophagy
is thought to be an effective mechanism in maintaining
neuronal mitochondrial homeostasis (Hwang et al., 2015;
Hsieh et al., 2016; McWilliams et al., 2018b). Evidence
suggests a decline in mitophagy might contribute to many
neurodegenerative diseases (Burchell et al., 2013; Bingol et al.,
2014; Fivenson et al., 2017; Fang et al., 2019).

Attention to mitophagy has been augmented by its link
to genes related to inherited forms of early-onset PD (Kitada
et al., 1998; Valente et al., 2004; Lazarou et al., 2015; Bingol
and Sheng, 2016; Sliter et al., 2018). PD is one of the most
common neurodegenerative disorders characterized by a series
of motor impairments including tremors, rigidity, bradykinesia
(slowness of movement), and postural instability (poor balance),
which are caused by the progressive loss of dopaminergic
neurons in the substantia nigra of the brain (Ascherio and
Schwarzschild, 2016). Although medical and surgical treatments

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 May 2020 | Volume 8 | Article 29472

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00294 May 4, 2020 Time: 17:25 # 4

Luo et al. Overview of Mitophagy in Health and Disease

may provide symptomatic relief, there is no cure for PD
(Deep-Brain Stimulation for Parkinson’s Disease Study Group,
2001; Narendra et al., 2009; Gao et al., 2011; Brod et al.,
2012; Richard et al., 2012; Burchell et al., 2013; Hauser et al.,
2013; Olanow et al., 2014; Gan-Or et al., 2015; Ascherio
and Schwarzschild, 2016). Identification of genes mutated in
monogenic forms of PD has provided valuable insight into
the etiology of the disease (Narendra et al., 2009; Burchell
et al., 2013; Gan-Or et al., 2015; Ascherio and Schwarzschild,
2016). Specifically, mutations or variants of PINK1 and Parkin
have been found in the inherited forms of early-onset PD’s
patient (Kitada et al., 1998; Valente et al., 2004; Lazarou et al.,
2015; Bingol and Sheng, 2016; Sliter et al., 2018). Biochemical
and genetic studies reveal the products of these two genes,
PINK1 and Parkin, normally function within the same genetic
pathway to govern mitochondrial quality control (Lazarou et al.,
2015; Bingol and Sheng, 2016; Sliter et al., 2018). PINK1 can
detect and accumulate on the damaged mitochondria, which
results in activation of Parkin’s E3 ubiquitin ligase activity
and recruitment of Parkin to the dysfunctional mitochondrion
(Narendra et al., 2008; Matsuda et al., 2010; Hasson et al.,
2013; Lazarou et al., 2015). Parkin then ubiquitinates OMM
proteins to promote mitophagy (Hasson et al., 2013; Lazarou
et al., 2015; Sliter et al., 2018). The realization that PINK1 and
parkin can work together in the same pathway to coordinate
mitophagy strengthens the notion that mitophagy may play an
important role in PD (Hasson et al., 2013; Lazarou et al., 2015;
Sliter et al., 2018). Therefore, the biochemical mechanisms of
PINK1/Parkin mediated mitophagy, along with their roles in
various models of PD, have been studied extensively over the
past 10 years. While the generation of Parkin and PINK1 mutant
flies has elucidated the functions of these genes in regulating
mitochondrial integrity (Clark et al., 2006; Park et al., 2006;
Palikaras et al., 2018), PINK1 and Parkin knockout mouse
models poorly recapitulate dopamine neurodegeneration and the
pathophysiology of human PD (Goldberg et al., 2003; Itier et al.,
2003; Kitada et al., 2007; Billia et al., 2011; Hasson et al., 2013;
Lazarou et al., 2015; Sliter et al., 2018). A significant portion
of basal mitophagy occurs within the PD-relevant dopamine
neurons of the substantia nigra pars compacta and in microglia,
indicating a critical role of mitophagy in these cells under
physiological conditions (McWilliams et al., 2018b). However,
PINK1 or Parkin does not appear to influence basal mitophagy
(McWilliams et al., 2018a,b). This data suggests that the precise
role of PINK1/Parkin under physiological conditions remains to
be defined. The pathophysiological basis of the cross-regulation
between various mitochondrial quality control pathways will be
of prime importance in understanding how mitophagy occurs
and how it relates to PD progression.

Insight into the mechanisms underlying mitophagy and the
importance of mitochondrial quality control have extended
to other common neurodegenerative diseases associated with
mitochondrial dysfunction such as Alzheimer’s disease (AD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS) (Trushina et al., 2004; Ye et al., 2015; Palikaras et al.,
2017; Chakravorty et al., 2019; Evans and Holzbaur, 2019).
Impaired mitophagy is closely related to AD, another important

age-related neurodegenerative disease (Fivenson et al., 2017;
Fang et al., 2019). AD is an irreversible, progressive brain
disorder, characterized by cognitive defects and a progressive
decline in memory (Fivenson et al., 2017; Fang et al., 2019).
Like PD, the symptoms of AD are related to the loss of
important neurons in certain areas of the brain, including the
hippocampus, entorhinal cortex, temporal lobe, parietal lobe,
and frontal lobe (Fivenson et al., 2017; Fang et al., 2019).
Although the etiology of AD remains unclear, the accumulation
of intracellular hyperphosphorylated tau (p-tau) and extracellular
amyloid β-peptide (Aβ) have been identified in the onset and
progression of the disease (Braak and Braak, 1995; Fivenson et al.,
2017; Fang et al., 2019; Thal et al., 2019). Aβ and p-tau pathologies
can contribute to mitochondrial defects, and in AD, neurons
may display mitochondrial dysfunction and a bioenergetic deficit
(Mattson et al., 2008; Kapogiannis and Mattson, 2011; Fang
et al., 2019). Impairment of mitochondrial function has been
identified in the brain tissues of AD mouse models, as well
as in human samples of both sporadic and familial types of
AD (Lustbader et al., 2004; Fang et al., 2019). Mitochondria
dysfunction can accelerate Aβ deposit at the cellular level and
contribute to hyperphosphorylation of tau in neurons (Esposito
et al., 2006; Mattson et al., 2008; Kapogiannis and Mattson, 2011;
Fang et al., 2019). Accumulating evidence demonstrates that a
decline in mitophagy may contribute to impaired mitochondrial
homeostasis in AD (Fivenson et al., 2017; Chakravorty et al.,
2019; Fang et al., 2019). Under AD-linked pathophysiological
conditions, Parkin-mediated mitophagy is altered in AD mutant
neurons and in AD patient brains (Ye et al., 2015). Inadequate
mitophagy capacity may contribute to the aberrant accumulation
of dysfunctional mitochondria in AD-affected neurons (Ye
et al., 2015; Fivenson et al., 2017; Chakravorty et al., 2019;
Fang et al., 2019). Interestingly, using postmortem human AD
brain samples, induced pluripotent stem cell-derived human
AD neurons, and a set of AD animal models, a recent study
demonstrates defective mitophagy in AD (Fang et al., 2019).
Of note, pharmacological restoration of mitophagy ameliorates
memory loss in both Caenorhabditis elegans and mouse models of
AD (Fang et al., 2019). Thus, targeting the mitochondrial quality
control system may provide a novel therapeutic strategy for AD.

Mitochondrial dysfunction also has been implicated in
the pathology of HD, another progressive neurodegenerative
disease caused by a genetic mutation in the huntingtin gene
(Shirendeb et al., 2011; Hwang et al., 2015). In HD, the
pathological expansion of CAG trinucleotide repeat encoding
a polyglutamine (polyQ) tract in the amino-terminal region of
the Huntingtin protein results in an abnormal polyglutamine
stretch and in accumulation of polyQ-expanded HTT (Mattson
et al., 2008; Song et al., 2011; Martin et al., 2015). Due to
the loss of GABAergic neurons in the basal ganglia HD is
characterized by motor dysfunction, psychiatric disturbance,
and a decline in cognition (Ross and Tabrizi, 2011). The
mutant huntingtin protein may affect a wide range of cellular
pathways and functions, including transcriptional regulation,
axonal trafficking of vesicles, mitochondrial function, ubiquitin-
mediated proteolysis, and the autophagic systems (Luthi-Carter
and Cha, 2003; Gauthier et al., 2004; Trushina et al., 2004;
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Wong and Holzbaur, 2014; Martin et al., 2015). Damaged
mitochondria and impaired mitophagy are closely related to
neuronal death and disease progression in HD (Mattson et al.,
2008; Song et al., 2011; Martin et al., 2015). Mutant HTT
can bind the mitochondrial fission GTPase dynamin−related
protein−1, and perturb mitochondrial dynamics in HD, leading
to the accumulation of damaged mitochondria and increased
reactive oxygen species (ROS) (Shirendeb et al., 2011; Song
et al., 2011). Research has indicated that mutant HTT mediated
transcriptional dysregulation of autophagy-related genes, cargo
recognition failure of autophagosomes, and impaired trafficking
of lysosomes contribute to inefficient autophagy in HD
(Martinez-Vicente et al., 2010). Additionally, recent studies
demonstrate that mutant HTT can interact with the Ser/Thr-
kinase ULK1 and p62/SQTM12 (Lim et al., 2015; Wold et al.,
2016), thereby potentially regulating mitophagy. Furthermore,
expression of mutant HTT with expanded polyglutamine repeats
may alter GAPDH-mediated mitophagy, thus contributing to the
pathology of HD (Hwang et al., 2015). Using mt-Keima mice
to measure in vivo mitophagic flux, markedly reduced levels
of mitophagy have been observed in mutant HTT-expressing
mice (Sun et al., 2015). Therefore, the presence of the expanded
polyQ tract can affect the neuronal mitophagy, and consequently
promote mitochondrial dysfunction, contributing to disease
progression in HD.

Defects in mitophagy appear to have significance with regards
to familial ALS, also known as motor neuron disease or Lou
Gehrig’s disease (Evans and Holzbaur, 2019). ALS is characterized
by a progressive degeneration of motor neurons in the spinal
cord and brain (Evans and Holzbaur, 2019). Several of the ALS-
associated genes have been functionally implicated in autophagy
or the mitophagy process (Evans and Holzbaur, 2019). These
include VCP, encoding valosin-containing protein, implicated
in autophagy (Buchan et al., 2013) and the maintenance of
lysosomal function (Papadopoulos et al., 2017), as well as
the noncoding sequence of the C9ORF72 gene, mutations
of which account for approximately 40% of familial ALS
(DeJesus-Hernandez et al., 2011; Renton et al., 2011; Floeter
et al., 2017). C9ORF72 may regulate ULK1 and may function
in the regulation of lysosomal fusion or function (DeJesus-
Hernandez et al., 2011; Renton et al., 2011; Floeter et al., 2017).
Mutations in the serine/threonine kinase Tank-binding kinase
1 (TBK1) and the autophagy receptor optineurin (OPTN) are
associated with ALS (Moore and Holzbaur, 2016). ALS-linked
mutations in OPTN and TBK1 can interfere with mitophagy
suggesting, an inefficient turnover of damaged mitochondria
may represent a key pathophysiological mechanism contributing
to neurodegenerative disease. The TBK1-OPTN axis can target
damaged mitochondria and promote autophagosome formation
around mitochondria triggering mitophagy (Lazarou et al., 2015;
Palikaras et al., 2017; Harper et al., 2018). Inhibition of TBK1
or expression of ALS-linked TBK1 mutant can block efficient
autophagosome formation (Moore and Holzbaur, 2016). In
neurons, an ALS-associated mutation in OPTN is sufficient
to disrupt mitochondrial function under basal conditions,
due to the slow kinetics of mitophagy (Evans and Holzbaur,
2020). Mutant Cu/Zn superoxide dismutase (SOD1) also causes

alterations of mitochondrial function in ALS (Palomo et al.,
2018). Interestingly, a recent study demonstrates that Parkin
genetic ablation slows down motor neuron demise, delays
ALS disease progression, and thus extends the lifespan of the
SOD1−G93A mutant mice (Palomo et al., 2018). Therefore,
understanding the molecular basis for autophagy and mitophagy
in familial ALS should provide considerable insight into the
disease-causing mechanisms involved in ALS pathogenesis, and
may lead to the development of more effective therapeutic
approaches for ALS.

Mitochondrial defects have been linked to neuronal
dysfunction and the pathogenesis of neurodegenerative diseases.
In neurons, mitophagy serves as a major pathway required for the
preservation of mitochondrial function. Mitophagy deficit’s role
in neurodegenerative diseases has only been recently recognized
despite the significant advancements in understanding the
molecular and the cellular mechanisms that govern mitophagy.
Given the fact that neurons have an exceptionally high demand
for ATP, the quality control of mitochondria is essential for
neuronal functions. The same can be said for cardiomyocytes,
in which mitochondria occupy approximately one-third of the
cell volume (Schaper et al., 1985; Murphy et al., 2016; Bertero
and Maack, 2018). Therefore, defective mitophagy may impair
mitochondrial homeostasis and can be particularly detrimental
for these terminally differentiated cells such as the postmitotic
neurons and cardiomyocytes (Youle and Narendra, 2011;
Bravo-San Pedro et al., 2017; Palikaras et al., 2018). Interestingly,
researchers recently have noticed a link between various
cardiovascular abnormalities and neurodegenerative diseases.
For instance, Aβ aggregations have been reported to be present
in the hearts of patients with idiopathic dilated cardiomyopathy
(Gianni et al., 2010). And recent studies have demonstrated
compromised myocardial function and intramyocardial deposits
of Aβ in AD patients (Troncone et al., 2016). Likewise, clinical
studies on HD patients at various stages of disease progression
have revealed a high incidence of cardiovascular events (Melik
et al., 2012; Stephen et al., 2015; Kobal et al., 2017). Although
neurons and cardiomyocytes vary a lot in their structure and
function, these findings depict a possible biological framework
linking neurodegenerative diseases to cardiovascular risks.
However, evidence of a possible role that mitochondria play calls
for further analysis of this connection.

MITOPHAGY IN CARDIOVASCULAR
DISEASE

The heart demands a substantial amount of energy to fuel
myocardial contraction and is subsequently rich in mitochondria
(Murphy et al., 2016; Bertero and Maack, 2018). The cardiac
mitochondria account for ∼30% of myocellular volume and
possess the capacity to use multiple metabolic substrates
to generate ATP under a wide range of physiological and
pathological conditions (Schaper et al., 1985; Murphy et al.,
2016; Bertero and Maack, 2018). Also, mitochondria are essential
organelles in the regulation of metabolic substrate utilization,
cell death, calcium storage, and ROS levels (Wallace et al., 2010;
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Mishra and Chan, 2016; Sun et al., 2016). Mitophagy plays
a critical role in preserving mitochondrial quality in normal
cardiovascular physiology and in pathological circumstances.
During the early perinatal period, changes in oxygen and nutrient
availability catalyze a switch in cardiac substrate preference from
glucose to fatty acids (Gong et al., 2015; Dorn, 2016). Recent
studies have demonstrated an essential role for mitophagy in
the normal perinatal transformation of myocardial metabolism
(Gong et al., 2015). During cardiac stress and injury, mitophagy
increases to help clear damaged mitochondria, as well as prevent
oxidative damage and cell death (Hoshino et al., 2013; Kubli et al.,
2013). In response to pressure overload-induced mitochondrial
dysfunction, mitophagy can be activated dynamically and play
a protective role against heart failure (Shirakabe et al., 2016b).
Over the past decade, significant progress has been made in
understanding of the physiological and pathological roles of
cardiac mitophagy (Billia et al., 2011; Murphy et al., 2016;
Tong and Sadoshima, 2016; Bravo-San Pedro et al., 2017;
Wang et al., 2018).

The functional significance of cardiac mitophagy has
been revealed by analyzing loss-of-function mouse models
of autophagy achieved by cardiac-specific ATG5 or ATG7
ablation (Nakai et al., 2007; Taneike et al., 2010). In most
cases, a functional macroautophagy machinery is needed for
selective removal of damaged mitochondria, while ATG5 and
ATG7 are essential genes for optimal autophagic responses
(Youle and Narendra, 2011; Palikaras et al., 2018). Mice with
temporally controlled cardiomyocyte-specific deletion of ATG5
exhibit left ventricular dilatation, with an accumulation of
damaged mitochondria in the heart (Nakai et al., 2007; Taneike
et al., 2010). ATG7-dependent activation of cardiac mitophagy
recently has been reported to protect the myocardium from
the metabolic stress of a high-fat diet (Tong et al., 2019).
Therefore, interventions designed to stimulate autophagy in
the cardiovascular system may prevent the accumulation of
damaged mitochondria under cardiac stress and exhibit potential
cardioprotective effects. Eisenberg et al. reported that the
polyamine spermidine, delivered as a dietary supplement, can
enhance cardiac autophagy/mitophagy, ameliorate age-related
cardiac hypertrophy and preserve diastolic function in older mice
(Eisenberg et al., 2016). Interestingly, a functional autophagy
system in cardiomyocytes is required for the cardioprotective
effects of spermidine (Eisenberg et al., 2016). Furthermore,
genetic studies have demonstrated the key role of the Ser/Thr-
kinase ULK1 in mediating mitophagy and early autophagosome
formation (Wu et al., 2014). ULK1-regulated mitophagy is
activated in response to energetic stress and may play an essential
role in preserving mitochondrial function following myocardial
ischemia (Saito et al., 2019).

The impact of PINK1 and Parkin has been extended
in the cardiovascular system. In Drosophila models, genetic
deletion of either PINK1 or Parkin can lead to mitochondrial
dysfunction and poor cardiac contractibility (Guo, 2012;
Bhandari et al., 2014). Genetic deletion of PINK1 in mice results
in cardiac hypertrophy and progressive cardiac dysfunction
(Billia et al., 2011). These mice also exhibit increased infarct size
in response to ischemia-reperfusion injury (Siddall et al., 2013).

Furthermore, PINK1-mediated mitochondrial quality control
could be important during acute cardiac mitochondria stress
following exhaustive exercise (Sliter et al., 2018). Mice with
Parkin deletion demonstrate normal baseline cardiac phenotypes
(Kubli et al., 2013; Piquereau et al., 2013), but exhibit an increased
sensitivity to stress conditions from myocardial infarction (MI)
or cardiac aging, along with a decline in cardiac mitophagy
and accumulation of dysfunctional mitochondria (Hoshino et al.,
2013; Kubli et al., 2013). It is worth mentioning those cardiac
abnormalities, such as cardiomyopathy, arrhythmia, and sudden
cardiac death, are still under investigation, though rare may
occur in PD patients (Scorza et al., 2018). Therefore, under
specific cardiac pathophysiological circumstances, PINK1 and
Parkin may serve as a regulatory mechanism of mitophagy in
the heart. Additional mitochondrial quality control pathways
regulated by NIX and BNIP3 (Dorn, 2010), FUNDC1 (Zhang
et al., 2017; Lampert et al., 2019) or general autophagy may
compensate for the loss of PINK1/Parkin-mediated mitophagy.
The functional significance of PINK1 and Parkin may require
further investigation.

Recent progress also has linked mitophagy to the processes
of mitochondrial dynamism, fission and fusion (Youle and
Narendra, 2011; Palikaras et al., 2018; Pickles et al., 2018).
Cell biological observations suggest that a group of fission and
fusion proteins regulate mitochondrial morphology depending
on the metabolic status (Mishra and Chan, 2016). Mitofusins,
MFN1, and MFN2, as well as optic atrophy protein 1
(OPA1) promote the mitochondrial fusion (Mishra and Chan,
2016), whereas the dynamin-related protein 1 (DRP1) mediates
mitochondrial fission (Friedman and Nunnari, 2014; Mishra and
Chan, 2014, 2016) (Figure 1). MFN2 can be phosphorylated
by the PINK1 kinase on the OMM, which facilitates Parkin
translocation to promote mitophagy (Chen and Dorn, 2013).
MFN2 deletion in mouse hearts disrupts mitophagic flux
independent of its activity in fission/fusion regulation (Song
et al., 2014). Mitochondrial fission, on the other hand, allows
for mitochondrial fragmentation and has been suggested to
regulate mitophagy (Rambold et al., 2011; Mishra and Chan,
2014, 2016). Several studies have demonstrated that genetic
manipulation of DRP1 in mouse hearts can alter myocardial
mitochondrial function and mitophagy (Kageyama et al., 2014;
Song et al., 2015; Shirakabe et al., 2016b). Cardiomyocyte-
specific homozygous deletion of DRP1 suppresses mitophagy,
and leads to dilated cardiomyopathy in mouse models, while
the heterozygous DRP1 knockout mice are more susceptible to
ischemia/reperfusion injury (Ikeda et al., 2015). Furthermore, in
the murine heart, DRP1 may mediate mitophagy in response
to mitochondrial dysfunction under pressure overload, while
haploinsufficiency of DRP1 exacerbates the progression of
heart failure (Shirakabe et al., 2016b). The particular role
for fission/fusion mediated mitophagy in healthy and in
diseased hearts, as well as how PINK1 and Parkin participate
in the regulatory mechanisms associated with mitochondrial
fission/fusion is still under investigation (Kageyama et al., 2014;
Song et al., 2015).

Cardiovascular disease imposes a huge burden worldwide,
in terms of mortality, morbidity, and healthcare costs
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(Dokainish et al., 2017; Benjamin et al., 2019). Despite significant
progress in understanding the pathophysiology of the disease,
the prevalence of cardiovascular disease and its mortality rates
remain high (Dokainish et al., 2017; Benjamin et al., 2019).
Although preclinical studies suggest the potential benefit of
mitochondria-targeted therapies in cardiovascular disease,
it remains to be established whether the preservation of
mitochondrial function through modulating mitophagy will
result in improved clinical outcomes in patients (Murphy et al.,
2016; Bravo-San Pedro et al., 2017). A better understanding of
the regulatory mechanisms of mitophagy in the heart and its
pathophysiologic role in cardiovascular disease are needed to
develop effective mitophagy-targeted therapeutic agents and
translate this innovative treatment strategy.

PERSPECTIVES

Mitophagy serves as a critical mechanism to eliminate damaged
mitochondria and is regulated by multiple mechanistically
distinct pathways (Youle and Narendra, 2011; Palikaras et al.,
2018). Cellular level studies have provided valuable insight
into the signaling pathways regulating mitophagy, as well as
mapping out how and when mitophagy occurs in a wide
range of physiological and pathological conditions to counter
cellular stressors such as ROS or damaged mitochondria
(Youle and Narendra, 2011; Bravo-San Pedro et al., 2017;
Palikaras et al., 2018). A better understanding of mitochondrial
turnover mechanisms, with an improved focus on how
these pathways might contribute to disease pathogenesis,
should allow for the development of more efficient strategies
to battle numerous pathological conditions associated with
mitochondrial dysfunction.

Mitophagy is an important element of overall mitochondrial
quality control. Defective mitophagy is thought to contribute
to normal aging as well as various neurodegenerative and
cardiovascular diseases (Youle and Narendra, 2011; Sun et al.,
2016). In fact, aging by itself is a major risk factor for
the pathophysiology of cardiovascular and neurodegenerative
diseases (Eisenberg et al., 2016; Fivenson et al., 2017; Bonora
et al., 2018). Increasing evidence suggests that mitophagy failure
accelerates aging (Eisenberg et al., 2016; Sun et al., 2016;
Fivenson et al., 2017; Bonora et al., 2018). Interestingly, a
marked age-dependent decline in mitophagy has been observed
in the hippocampus of the mouse brain (Sun et al., 2015), an
area where new memory and learning are encoded. Similar
effects have been noted in mouse models of HD (Sun et al.,
2015). This strengthens the hypothesis that mitophagy might
regulate neuronal homeostasis and that a decline in mitophagy
might predispose to age-dependent neurodegeneration. Age-
related mitochondrial function deterioration is underlined as
a key feature of other diseases, such as obesity, diabetes, and
cancer (Eisenberg et al., 2016; Sun et al., 2016; Fivenson et al.,
2017; Bonora et al., 2018). Therefore, maintaining a healthy
mitochondrial network via functional mitophagy may serve as an
attractive therapeutic strategy in the treatment of a wide range of
age-related diseases, and potentially regulate longevity.

The emergence of nutritional and pharmacological
interventions to modulate autophagy/mitophagy and to
serve as a potential therapeutic model is quite encouraging.
Accumulation of ubiquitinated OMM proteins has been
proposed to act as a signal for selective mitophagy (Youle and
Narendra, 2011; Palikaras et al., 2018). As described above,
ubiquitination of mitochondrial proteins is positively regulated,
in part, by the E3 ubiquitin ligase, Parkin (Narendra et al.,
2008, 2010; Matsuda et al., 2010; Youle and Narendra, 2011).
In contrast, removal of ubiquitin is achieved by the action of
resident mitochondrial deubiquitinases, most notably USP30,
thereby acting to antagonize mitophagy (Bingol et al., 2014;
Cunningham et al., 2015; Bingol and Sheng, 2016; Gersch
et al., 2017). Inhibition of USP30 enzyme activity may provide
an unambiguous avenue to pursue the role of mitophagy
as a therapeutic target. In addition, the natural polyamine
spermidine can preserve cardiac diastolic function in older
mice by inducing mitophagy (Eisenberg et al., 2016). Inhibitors
of mTOR can induce autophagy, and protect against various
cardiac pathologies, and prolong lifespan in diverse species
(Sciarretta et al., 2012; Yan et al., 2013; Dai et al., 2014;
Ranek et al., 2019). Recently, three promising candidates
that may stimulate and reinvigorate mitophagy process have
been demonstrated to reduce the accumulation of amyloid-
beta and phosphorylated tau in Alzheimer’s mouse brains
(Fang et al., 2019). These compounds, including nicotinamide
mononucleotide, urolithin A, and actinonin, can improve
symptoms of AD and dementia symptoms in preclinical models
(Fang et al., 2019). In addition, Tat-Beclin 1 peptide, derived
from a region of the autophagy protein, beclin 1, can promote
autophagy/mitophagy and improve mitochondrial function in
heart failure animal models (Shirakabe et al., 2016b). Therefore,
identifying more efficient and specific agents that can modulate
the clearance of defective mitochondria are likely to have
significant therapeutic benefits.

Recent advances have greatly expanded our knowledge of how
mitophagy functions in health and disease. The magnitude and
kinetics of mitophagy in various disease conditions, however,
remains to be elucidated. Although mitophagy has many
potential benefits, under certain conditions, uncontrolled or
overactive mitophagy may disrupt organelles’ integrity and
may prove detrimental to cell health (Liu et al., 2013; Saito
and Sadoshima, 2015). Therefore, it is essential to elucidate
how mitophagy collaborates with other cellular processes, such
as autophagy, mitochondrial fission/fusion, and mitochondrial
biogenesis to restore unhealthy mitochondria and maintain
overall mitochondrial homeostasis. Furthermore, it is critical to
determine when and to what extent manipulating mitophagy
activity may regulate and keep mitochondria in health to prevent
disease progression.
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Mitophagy is a key mitochondrial quality control mechanism for effective and selective
elimination of damaged mitochondria through the autophagy-lysosome machinery.
Defective mitophagy is associated with pathogenesis of important human diseases
including neurodegenerative diseases, heart failure, innate immunity, and cancer. In
the past two decades, the mechanistic studies of mitophagy have made many
breakthroughs with the discoveries of phosphatase and tensin homolog (PTEN)-
induced kinase protein 1 (PINK1)-parkin-mediated ubiquitin (Ub)-driven pathway and
BCL2/adenovirus E1B 19 kDa protein-interacting proteins 3 (BNIP3)/NIX or FUN14
domain containing 1 (FUNDC1) mitochondrial receptor-mediated pathways. Recently,
several isoforms of dual phosphatase PTEN, such as PTEN-long (PTEN-L), have
been identified, and some of them are implicated in the mitophagy process via their
protein phosphatase activity. In this review, we aim to discuss the regulatory roles of
PTEN isoforms in mitophagy. These discoveries may provide new opportunities for
development of novel therapeutic strategies for mitophagy-related diseases such as
neurodegenerative disorders via targeting PTEN isoforms and mitophagy.

Keywords: mitophagy, PINK1, Parkin, BNIP3, PTEN, PTEN-L

INTRODUCTION

Autophagy is an evolutionarily conserved process to degrade or recycle intracellular materials
through lysosomes or vacuoles (Mizushima, 2018). In mammalian cells, there exist three different
types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy
(CMA). Among them, macroautophagy (referred to as autophagy hereafter) is the most well-
studied form, which is orchestrated by a group of proteins encoded by autophagy-related-genes
(ATGs) and characterized by the formation of double-membraned autophagosomes (Zachari and
Ganley, 2017; Dikic and Elazar, 2018; Mizushima, 2018). The formation of autophagosomes
can be briefly divided into three main steps: (1) The initiation step is regulated by unc51-like
activating kinase 1 (ULK1) complex comprised of ULK1, ATG13, FIP200, and ATG101 to form
the phagophore; (2) the vesicle nucleation step is regulated by Beclin1-ATG14 and Vps34/class
III phosphatidylinositol 3-kinases (PI3K) complex to generate phosphatidylinositol 3-phosphate
(PI3P); and (3) the vesicle elongation step is mediated by two ubiquitination conjugation systems,
ATG12-ATG5-ATG16L1 and LC3-PE (phosphatidylethanolamine) systems, as well as ATG9-
containing vesicles to form the autophagosomes (Mizushima et al., 2011; Hurley and Young,
2017; Lahiri et al., 2019). Autophagy can be either a general non-selective process to randomly

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 May 2020 | Volume 8 | Article 29981

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00299
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.00299
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00299&domain=pdf&date_stamp=2020-05-13
https://www.frontiersin.org/articles/10.3389/fcell.2020.00299/full
http://loop.frontiersin.org/people/908620/overview
http://loop.frontiersin.org/people/964757/overview
http://loop.frontiersin.org/people/118864/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00299 May 11, 2020 Time: 19:30 # 2

Wang et al. PTEN Isoforms in Mitophagy

uptake cargos for degradation (bulk autophagy) or a selective
process to remove or degrade specific organelles, aggregated
proteins, DNA, and/or invading pathogens (selective autophagy).
Up to date, several types of selective autophagy have been
recognized, including mitophagy, ribophagy, xenophagy,
reticulophagy, lysophagy, and aggrephagy (Rogov et al., 2014;
Kirkin, 2020).

Among them, mitophagy represents the most well-studied
form of selective autophagy to degrade dysfunctional or
superfluous mitochondria through the autophagy-lysosome
machinery, which is regulated by multiple factors with distinct
posttranslational modifications (Montava-Garriga and Ganley,
2020; Wang et al., 2020). The phenomenon of mitophagy was
first described by Christian De Duve and Robert Wattiaux in
1966 when they observed that mitochondria were engulfed by
autophagic vacuoles (De Duve and Wattiaux, 1966). The term
of “mitophagy” was coined by John J. Lemasters to distinguish
this selective autophagy that degrades mitochondria from the
bulk autophagy (Lemasters, 2005). Mitophagy is usually initiated
by an “eat me” signal, such as labeling damaged mitochondria
with ubiquitin (Ub) or autophagy receptors (Harper et al.,
2018; Pickles et al., 2018; Wang et al., 2020). Owing to its
critical role in maintaining mitochondrial homeostasis and close
implication in multiple human diseases, such as Parkinson’s
disease (PD) and Alzheimer’s disease (AD) (Williams and Ding,
2018; Lou et al., 2019), the machinery of mitophagy has drawn
substantial attention in the past two decades. The discoveries of
PINK1-Parkin-mediated Ub-driven pathway and BNIP3/NIX or
FUNDC1 receptor-mediated pathways represent the milestones
in the mitophagy field. In this review, we will discuss some
of these key factors, especially the newly identified protein
phosphatase, in the regulation of mitophagy.

PINK1-PARKIN-MEDIATED
UBIQUITIN-DRIVEN MITOPHAGY

One breakthrough in the understanding of the molecular
mechanisms of mitophagy is the discovery of PINK1-Parkin-
mediated pathway (Narendra et al., 2008, 2010; Vives-Bauza et al.,
2010). PINK1 (encoded by the PARK6 gene) is a serine/threonine
kinase, which was identified in 2001 (Unoki and Nakamura,
2001) and contains a mitochondrial targeting sequence (MTS)
at its N-terminus as well as an outer mitochondrial localization
signal (OMS) next to the transmembrane domain (TMD)
(Okatsu et al., 2015a). Two homozygous mutations, including
G→A in transition in exon 4 and G→A transitions in exon
7, in PINK1 were found in autosomal recessive early onset
familial forms of PD patients (Valente et al., 2004). Parkin
(encoded by the PARK2 gene) is an E3 Ub ligase, which
was identified in 1998 and was named “Parkin” due to its
important roles in the pathogenesis of autosomal recessive
juvenile parkinsonism (AR-JP) (Kitada et al., 1998; Lucking
et al., 1998; Abbas et al., 1999). Parkin contains a Ub-
like (UBL) domain, a classic RING (RING1) domain, three
zinc-coordinating domains termed in between RING (IBR)
domain, a RING2 domain, and a RING0 domain that is a

Parkin unique domain (Hristova et al., 2009; Trempe et al., 2013;
Walden and Muqit, 2017). Numerous studies have reported that
PINK1 and Parkin work in the same pathway to remove
dysfunctional mitochondria and to maintain mitochondrial
homeostasis, with the well-established feedforward model of
PINK1-Parkin mitophagy activation (Harper et al., 2018; Pickles
et al., 2018; Wang et al., 2020).

When mitochondria are healthy, PINK1 is constantly
maintained at a low level due to mitochondrial import, protease
cleavage, and proteasome degradation (Jin et al., 2010; Deas
et al., 2011; Lazarou et al., 2012; Sekine et al., 2019). Upon
mitochondrial damage and depolarization, PINK1 is rapidly
accumulated on the outer mitochondrial membrane (OMM)
and activated through dimerization and autophosphorylation
(Okatsu et al., 2012, 2013; Aerts et al., 2015; Rasool et al.,
2018). Therefore, PINK1 acts as a mitochondrial damage sensor
to initiate mitophagy. Once activated, PINK1 phosphorylates
mitochondrial pre-existing Ub at Ser 65 (pSer65-Ub) (Kane
et al., 2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Shiba-
Fukushima et al., 2014). pSer65-Ub serves as a key receptor
to recruit Parkin from cytosol to mitochondria through direct
binding (Shiba-Fukushima et al., 2014; Okatsu et al., 2015b).
Binding to pSer65-Ub releases the UBL domain of Parkin from
its RING1 domain (Sauve et al., 2015; Wauer et al., 2015a;
Aguirre et al., 2017), which promotes the phosphorylation of the
UBL domain by PINK1 at Ser 65 (pSer65-Parkin) (Kondapalli
et al., 2012; Shiba-Fukushima et al., 2012; Wauer et al.,
2015a; McWilliams et al., 2018). Subsequently, the phospho-UBL
domain rebinds to the RING0 domain of Parkin to release the
catalytic RING2 domain to achieve full activation (Gladkova
et al., 2018; Sauve et al., 2018). Activated Parkin then conjugates
more Ub onto OMM proteins for PINK1 phosphorylation, which
mediates further rounds of Parkin translocation to mitochondria;
thus, PINK1, pSer65-Ub, and Parkin form a positive feedforward
amplification loop to initiate mitophagy.

Another important function of pSer65-Ub is to recruit
autophagy receptors, such as NDP52 (CALCOCO2) and
Optineurin (OPTN) to damaged mitochondria, a process that
is TANK-binding kinase 1 (TBK1) dependent (Heo et al.,
2015; Lazarou et al., 2015; Richter et al., 2016). TBK1 is a
serine/threonine kinase and phosphorylates these autophagy
receptors to promote their binding ability to various Ub chains
(Heo et al., 2015; Richter et al., 2016). Interestingly, activation
of TBK1 also requires OPTN binding to Ub chains in the
presence of PINK1 and Parkin (Heo et al., 2015; Richter et al.,
2016). In the prevailing model of mitophagy, after binding to
the pSer65-Ub chains, OPTN and/or NDP52 recruit phagophore
onto mitochondria by directly binding to LC3 through their
LC3-interacting regions (LIR motifs) (Gatica et al., 2018;
Palikaras et al., 2018). However, emerging studies suggest that
LC3/GABARAP family proteins are dispensable in the selective
recognition of damaged mitochondria, based on the observation
that, in LC3/GABARAP knockout cells, mitochondria can still be
engulfed by autophagosomes (Itakura et al., 2012; Nguyen et al.,
2016; Padman et al., 2019). One very recent study has highlighted
the role of NDP52 to recruit ULK1 complex to damaged
mitochondria (Vargas et al., 2019). NDP52 directly interacts with
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FIP200 in a TBK1-dependent manner to recruit ULK1 complex,
leading to autophagosome biogenesis on damaged mitochondria
and initiation of autophagy machinery.

Interestingly, besides PINK1-mediated pSer65-Ub, several
other PINK1-independent phosphorylation sites of Ub have
been identified, including pThr7-Ub, pSer20-Ub, and pSer57-
Ub (Wauer et al., 2015b). Among them, pSer57-Ub has been
reported to hyperactivate Parkin (George et al., 2017). Obviously,
more studies are needed to understand the functional implication
of such Ub phosphorylation in mitophagy. In addition to
Ub and Parkin as described above, a number of additional
PINK1 substrates have been reported. For instance, PINK1
phosphorylates mitofusin 2 (MFN2) at Thr 111 and Ser 442,
leading to Parkin mitochondrial recruitment through promoting
the interaction between MFN2 and Parkin, suggesting that
MFN2 may serve as a mitochondrial receptor for Parkin (Chen
and Dorn, 2013). However, another study indicates that MFN2
antagonizes mitophagy through tethering mitochondria and
endoplasmic reticulum (ER) and limiting the accessibility of
other mitochondrial proteins to PINK1 and Parkin (McLelland
et al., 2018). It is known that some OMM proteins such as
MFN2 undergo ubiquitination and proteasomal degradation at
the beginning of the mitophagy (Tanaka et al., 2010; Ding et al.,
2012; McLelland et al., 2018). Therefore, it is possible that such a
process may facilitate mitophagy by removing the barrier among
PINK1, Parkin, and other mitochondrial proteins. PINK1 can
also phosphorylate Miro (also called RhoT) at Ser156, which
recruits Parkin onto mitochondria and results in ubiquitination
and proteasomal degradation of Miro, and thus blocking
mitochondrial motility (Wang et al., 2011; Shlevkov et al.,
2016). Interestingly, a recent report found that Miro, through
direct protein–protein interaction, recruits Parkin at healthy
mitochondria independent of PINK1, and such pre-existing
Parkin is essential for Parkin further recruitment and activation
upon mitochondrial damage in a PINK1-dependent manner
(Safiulina et al., 2019). In addition, in a phosphoproteomic
screening study for PINK1 substrates, Lai and colleagues reported
that the phosphorylation of Rab GTPases such as Rab8A at
the conserved Ser 111 is indirectly regulated by PINK1, and
this phosphorylation can block the phosphorylation of Rab8A
at Thr72 by leucine-rich repeat kinase 2 (LRRK2), suggesting
the interplay of PINK1 with other PD-related genes (Lai et al.,
2015; Vieweg et al., 2019). Thus, identification of more PINK1
substrates will not only provide new insights into the molecular
mechanisms of PINK1-Parkin-mediated mitophagy but also
provide deeper understanding of the molecular mechanisms of
important neurodegenerative disorders such as PD.

BNIP3/NIX (BNIP3L)-MEDIATED
MITOPHAGY

BNIP3, a member of prodeath BCL2 family proteins, was first
found as an E1B 19-kDa interacting proteins (Boyd et al.,
1994). NIX (also named BNIP3L) is a homolog of BNIP3 with
∼55% identical similar amino acid sequence (Matsushima et al.,
1998). Both proteins contain an atypical BCL2-homology 3

(BH3) domain and C-terminal TMD, which is essential for their
proapoptotic activity and mitochondrial localization (Yasuda
et al., 1998; Imazu et al., 1999). Moreover, BNIP3 and NIX both
contain an identical LIR motif, which makes them to interact
with LC3s/GABARAP subfamilies and recruit autophagosomes
to sequester damaged mitochondria, especially under hypoxia
conditions (Novak et al., 2010; Hanna et al., 2012; Birgisdottir
et al., 2013). Under hypoxia, the expression of BNIP3 and NIX
are increased through the transcriptional regulation of hypoxia-
inducible factor 1α (HIF-1α) or FOXO3 (Sowter et al., 2001;
Mammucari et al., 2007; Zhang et al., 2008). Mutation of the
LIR motif abolishes the interaction of BNIP3/NIX with LC3 and
thereby attenuates mitochondrial clearance (Novak et al., 2010;
Hanna et al., 2012; Zhu et al., 2013), while phosphorylation of
the LIR motif enhances the interaction with LC3 and promotes
mitophagy (Zhu et al., 2013; Rogov et al., 2017). However, the
kinase(s) and phosphatase(s) regulating this phosphorylation of
LIR remain to be identified.

It should be noted that NIX, but not BNIP3, plays an
important role in the development of reticulocytes through
the regulation of mitophagy. Mitochondria were not cleared
in reticulocytes when NIX is deficient (Diwan et al., 2007;
Schweers et al., 2007; Zhang and Ney, 2008; Zhang J. et al., 2012).
Interestingly, treatment with mitochondrial uncoupling agents
could restore the removal of mitochondria in the absence of
NIX, suggesting that the regulatory effect of NIX on mitophagy
was probably due to its role in regulating mitochondrial
depolarization (Sandoval et al., 2008; Zhang and Ney, 2008).
However, there is still no direct evidence to show that NIX
could cause mitochondrial depolarization, and further studies
are thus needed.

Intriguingly, several studies have revealed the crosstalk
between BNIP3/NIX receptor-mediated pathway and PINK1-
Parkin-mediated pathway. For instance, both BNIP3 and NIX
can promote Parkin mitochondrial recruitment (Ding et al.,
2010; Lee et al., 2011), while NIX can also be ubiquitinated
by Parkin to promote autophagy receptor recruitment to
damaged mitochondria (Gao et al., 2015). In addition, BNIP3
is able to inhibit PINK1 proteolytic degradation and stabilize
PINK1 on OMM to facilitate Parkin mitochondrial recruitment
and mitophagy (Zhang et al., 2016). These findings suggest
that these pathways cooperate with each other to ensure
efficient mitophagy.

FUNDC1-MEDIATED MITOPHAGY

FUNDC1 is another important hypoxia-induced mitophagy
receptor (Liu et al., 2012). As a mitochondrial outer membrane
protein, FUNDC1 contains three TMDs and an LIR motif in
its N-terminus exposed to the cytosol that interacts with LC3
to recruit autophagosome (Liu et al., 2012; Wu et al., 2016).
Mutation or deletion of LIR motif of FUNDC1 significantly
reduces or blocks mitophagy (Liu et al., 2012). Similar to the
cases of other mitophagy key factors, the activity of FUNDC1
is also regulated by phosphorylation and dephosphorylation.
Under normal conditions, FUNDC1 is phosphorylated by Src
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and CK2 at the sites of Tyr18 and Ser13, which blocks the
interaction of FUNDC1 with LC3 (Liu et al., 2012; Chen
et al., 2014). Another study showed that FUNDC1 can be
phosphorylated by ULK1 at Ser17 to promote mitophagy
(Wu et al., 2014). However, upon induction of hypoxia, Src
and CK2 are inhibited, then phosphoglycerate mutase family
member 5 (PGAM5), one unique mitochondrial phosphatase,
dephosphorylates FUNDC1 at Ser13, which in turn promotes the
interaction between FUNDC1 and LC3 to facilitate mitophagy
(Chen et al., 2014). Interestingly, the same group reported that
FUNDC1 is accumulated at the ER-mitochondrial contact site
in response to hypoxia, which is essential for the mitochondrial
recruitment of DRP1 to facilitate mitochondrial fission prior to
mitophagy (Wu et al., 2016).

CANONICAL PTEN (PTEN-SHORT) AS A
NEGATIVE REGULATOR OF MITOPHAGY

PTEN is a powerful tumor suppressor with both lipid
phosphatase and protein phosphatase activity, which was
identified in 1997 (Li and Sun, 1997; Li et al., 1997;
Steck et al., 1997). PTEN contains 403 amino acids with a
N-terminal phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]-
binding domain (PBD), a catalytic phosphatase domain, a C2
domain, a C-tail domain, and a PDZ-binding motif (Figure 1A;
Lee et al., 1999). Loss of PTEN leads to cancer, neurological
disorders, metabolic diseases, and tissue homeostasis defects
(Backman et al., 2001; Kwon et al., 2006; Chen et al., 2018; Lee
et al., 2018). PTEN is also vital for embryonic development, as
its homozygous deletion causes lethality in mice (Di Cristofano
et al., 1998; Stumpf and den Hertog, 2016). All these findings
reveal that PTEN’s function is not only important for tumor
suppression but also vital for other biological processes.

The probably most important function of PTEN is to block
the activation of pro-oncogenic class I PI3K–AKT–mTOR
signaling pathway through its lipid phosphatase activity (Cantley
and Neel, 1999). PI3K phosphorylates PI(4,5)P2 to generate
phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3],
which recruits AKT at the cell membrane, and then AKT
is phosphorylated via PDK1 and mTORC2 to indirectly
activate mTORC1 (King et al., 2015). PTEN opposes this
pathway through dephosphorylating PI(3,4,5)P3 to PI(4,5)P2
via its lipid phosphatase activity, leading to reduced AKT
phosphorylation and inactivation (Worby and Dixon, 2014).
Thus, the phosphorylation level of AKT has been widely used as
an indicator for PTEN activity.

Due to the inhibitory effects of PTEN on the PI3K–AKT–
mTOR signaling pathway, several studies have shown that PTEN
can positively regulate autophagy (Arico et al., 2001; Ueno et al.,
2008; Cai et al., 2018). Intriguingly, two independent groups
reported that inhibition of AKT signaling impaired PINK1
accumulation, Parkin recruitment, and subsequent efficient
mitophagy in response to mitochondrial depolarization (McCoy
et al., 2014; Soutar et al., 2018). However, the role of PTEN in
the regulation of mitophagy is still largely unclear. Harper and
colleagues reported that RAB7A could be directly phosphorylated

by TBK1 at Ser 72 (pSer72-RAB7A) to facilitate the efficient
recruitment of ATG9A vesicles to damaged mitochondria
and promote PINK1-Parkin-mediated mitophagy, and non-
phosphorylated RAB7A failed to support this process (Heo et al.,
2018). Importantly, PTEN has been found to dephosphorylate
pSer72-RAB7A via its protein phosphatase activity (Shinde and
Maddika, 2016; Hanafusa et al., 2019), thus suggesting a potential
role of PTEN in regulating mitophagy. A more direct study
showed that deletion of PTEN increased MFN2 expression and
rescued mitophagic flux via the AMP-activated protein kinase
(AMPK)–cAMP response element-binding protein (CREB)
pathways (Li et al., 2019). Interestingly, both PTEN and MFN2
have a distribution at ER-mitochondrial contact site (de Brito
and Scorrano, 2008; Bononi et al., 2013; Naon et al., 2016).
As discussed above, MFN2 can be phosphorylated by PINK1
and serves as a mitochondrial receptor for Parkin (Chen
and Dorn, 2013). Moreover, phosphorylated MFN2 dissociates
mitochondria from ER to initiate mitophagy (McLelland et al.,
2018). Thus, it will be interesting to explore whether PTEN
can dephosphorylate MFN2 at the ER-mitochondrial contact site
to suppress mitophagy. In addition, overexpression of PTEN
inhibits mitophagy via blockage of Toll-like receptor 4 (TLR4)–
c-JUN N-terminal kinase (JNK)–BNIP3 pathway (Li M. et al.,
2018).

Moreover, several in vivo studies have highlighted that PTEN
deletion in dopamine neurons provides neuroprotective effects in
both genetic and neurotoxin-induced PD mouse models (Diaz-
Ruiz et al., 2009; Domanskyi et al., 2011; Zhang Y. et al.,
2012). Another study showed that the protein level of PTEN
is significantly increased in neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-treated mice
and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y
cells, leading to enhanced neurotoxicity and apoptosis (Zhao
et al., 2020). In addition, inhibition of PTEN is able to attenuate
amyloid-β (Aβ)-induced synaptic toxicity and rescue cognitive
function in AD models (Knafo et al., 2016). Consistently, a
PTEN inhibitor, bisperoxovanadium-pic [bpV(pic)], provides
neuroprotective effects in Aβ-induced neurotoxicity in a human
neuroblastoma cell model (Liu et al., 2017). Apparently, more
studies are needed to explore whether the above processes are due
to the regulative effects of PTEN on mitophagy.

NOVEL PTEN-L (PTEN-LONG) AS A
BRAKE OF MITOPHAGY

PTEN-L is the first characterized isoform of canonical PTEN,
which was identified in 2013 (Hopkins et al., 2013). PTEN-
L and PTEN shares the same mRNA, but PTEN-L translates
from a non-AUG start codon (CUG start codon), adding an
alternatively translated region (ATR) at the N-terminus of PTEN
(Hopkins et al., 2013). PTEN-L can be secreted from one
cell and taken up by other neighboring cells to inhibit PI3K–
AKT signaling pathway both in vitro and in vivo (Hopkins
et al., 2013). Intriguingly, Liang et al. reported that PTEN-L
(also termed as PTENα) is a mitochondrial protein to regulate
mitochondrial energy metabolism (Liang et al., 2014). They
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FIGURE 1 | Domain structure of phosphatase and tensin homolog (PTEN) isoforms. (A) PTEN-short (canonical PTEN), translated from an AUG start codon, contains
five functional domains: a N-terminal PtdIns (4,5) P2 (PIP2)-binding domain (PBD), a dual phosphatase domain, a C2 domain, a C-tail domain, and PDZ-binding
motif. (B) PTEN-long (PTEN-L) is translated from a CUG start codon upstream from the classic AUG start codon. In addition to the same five functional domains with
the canonical PTEN, PTEN-L contains an alternatively translated region (ATR) adding 173 amino acids at the N-terminus. The extended ATR is composed of a
secreted polyalanine signal sequence (Poly-A, residues 12–17), a cell permeable polyarginine motif (Poly-R, residues 47–52), a nuclear localization sequence (NLS,
QKKPRH, residues 150–155) as well as a membrane-binding α-helix (MBH, residues 151–173).

found that somatic deletion of PTEN-L resulted in much smaller
mitochondria with irregular shape and led to mitochondrial
depolarization (Liang et al., 2014). It is known that, in addition
to the same domains with canonical PTEN (PTEN-short), the
extended ATR of PTEN-L contains a secreted polyalanine signal
sequence (Poly-A), a cell permeable polyarginine motif (Poly-
R), a nuclear localization sequence (NLS, QKKPRH) as well
as a membrane-binding α-helix (MBH) (Figure 1B; Hopkins
et al., 2013; Malaney et al., 2013; Masson et al., 2016; Shen
et al., 2019). In addition, most parts of the ATR are intrinsically
disordered and probably contain various postmodification sites
and protein-binding motifs (Malaney et al., 2013; Masson et al.,
2016), indicating that PTEN-L may modify distinct substrates
compared with PTEN.

Recently, our group has revealed that PTEN-L functions as a
protein phosphatase for Ub and antagonizes the PINK1-Parkin-
mediated mitophagy pathway (Wang et al., 2018a,b). First,
topology assay and immunogold electron microscopy revealed
that a significant proportion of PTEN-L was associated with the
mitochondrial outer membrane. Second, PTEN-L overexpression
blocked mitophagy induced by mitochondrial damage agents
including carbonyl cyanide 3-chlorophenylhydrazone (CCCP),
combination of oligomycin and antimycin A (O/A), and
valinomycin, whereas PTEN-L knockout accelerated mitophagic
flux. Third, PTEN-L overexpression was able to strongly
prevent Parkin mitochondrial recruitment, autoubiquitination,
and subsequent activation of its E3 ligase activity. Finally, PTEN-
L could dephosphorylate various types of pSer65-Ub chains
in vivo and in vitro via its protein phosphatase activity but
independent of its lipid phosphatase activity, leading to the
disruption of the feedforward amplification loops formed by
PINK1, Parkin, and pSer65-Ub chains. Since Ub modification is
a vital posttranslational process in mitophagy, deubiquitinating

enzymes (DUBs) become potential regulators to maintain the
mitochondrial homeostasis, especially in the PINK1-Parkin-
mediated Ub-driven mitophagy pathway. There are more than
100 putative DUB genes in humans, which can be grouped
into two classes: cysteine proteases and metalloproteases. Among
them, ubiquitin-specific proteases (USPs), which are encoded by
58 different genes, such as USP30, USP15, and USP8, have been
widely studied in the field of mitophagy (Bingol et al., 2014;
Cornelissen et al., 2014; Durcan et al., 2014; Marcassa et al.,
2018; Ordureau et al., 2020). Recently, USP36 has been reported
as a positive regulator of mitophagy; knockdown of USP36
impairs Parkin mitochondrial translocation, leading to blockage
of mitophagy (Geisler et al., 2019). Interestingly, they also found
that the protein level of PTEN-L was increased after USP36
knockdown, which was associated with reduced pSer65-Ub level
and consistent with our findings (Geisler et al., 2019).

Intriguingly, Li et al. demonstrated that PTEN-L promotes
mitophagy through interaction with Parkin by its MBH motif to
promote Parkin self-association and mitochondrial localization
(Li G. et al., 2018). Further studies are thus needed to examine
the precise role of PTEN-L in this pathway and more importantly
to explore whether PTEN-L is implicated in the pathology of
mitophagy-related diseases, such as PD and AD.

CONCLUSION AND FUTURE
DIRECTIONS

Mitochondria are one of the essential organelles in eukaryotic
cells, with critical functions including energy (ATP) production,
cell survival/cell death, cell signaling, and immune response.
Dysfunctional mitochondria are implicated in many pathological
processes and diseases such as cell death, inflammation,
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FIGURE 2 | Key effectors involved in mitophagy machinery. When mitochondria are healthy, phosphatase and tensin homolog-induced kinase protein 1 (PINK1) is
imported into the mitochondria, cleaved by protease, and degraded by proteasome, while Parkin keeps in an inactive conformation in the cytosol through
intradomain–domain interactions. Upon mitochondrial damage or depolarization, PINK1 is stabilized and activated at the outer mitochondrial membrane (OMM) À,
which leads to the phosphorylation of its downstream targets, such as ubiquitin (Ub) Á. Parkin has a high affinity to phosphorylated Ub (pSer65-Ub), which recruits
Parkin from cytosol to mitochondria Â. Several other factors, such as mitofusin 2 (MFN2), Miro, Rab7A, as well as BCL2/adenovirus E1B 19 kDa protein-interacting
proteins 3 (BNIP3) are also involved in Parkin mitochondrial recruitment. Binding to pSer65-Ub releases the Ub-like (UBL) domain of Parkin from RING1 domain,
partially activating Parkin Ã. Then, PINK1 phosphorylates the UBL domain at Ser65 Ä, which drives the phospho-UBL to rebind to the RING0 domain of Parkin to
expose RING2′ catalytic site (Cys431) and fully activate Parkin Å. On the other hand, phosphatase and tensin homolog long (PTEN-L) located at OMM
dephosphorylates Ub to inhibit mitophagy, whereas PTEN in the cytosol suppresses mitophagy through targeting Rab7A, MFN2, or BNIP3.

neurodegenerative diseases, and cancer. Thus, removal of
damaged mitochondria by mitophagy has been shown to
be an important mitochondrial quality control mechanism
to maintain the mitochondrial homeostasis. However, this
process must be restricted to dysfunctional mitochondria.
Excessive degradation of essential mitochondria will cause cell
death (Ordureau and Harper, 2014; Shi et al., 2014; Guo
et al., 2016; Sharma et al., 2019). In addition, during the
mitochondria fission process, the membrane potential of healthy
mitochondria is temporarily compromised (Twig et al., 2008),
which possibly activates PINK1-Parkin pathway to remove
healthy mitochondria. Therefore, the mitophagy machinery
is orchestrated by key mitophagy effectors with reversible
posttranslational modifications, such as phosphorylation and
dephosphorylation, to determine a finely tuned mitophagic
activity in response to diverse stresses (Figure 2).

We now appreciate that phosphorylation of Ub by PINK1
(pSer65-Ub) plays central roles in the regulation of Ub-
dependent mitophagy pathway. pSer65-Ub levels are very
low in healthy mitochondria, but dramatically increased after

mitochondrial damage and also increased during aging or in PD
patient brain, which highlights its roles in diseases (Fiesel et al.,
2015; Hou et al., 2018). Although PINK1 is the only reported
kinase to generate pSer65-Ub, pSer65-Ub could be detected in
PINK knockout cells (Ordureau et al., 2014) and in PINK1-
deficient yeast (Swaney et al., 2015), suggesting another kinase
exists to phosphorylate Ub at Ser 65. However, the function of
PINK1-independent pSer65-Ub remains largely unclear. Another
question is whether pSer65-Ub can be involved in other selective
autophagy, such as xenophagy, which shares several key factors
with mitophagy, including TBK1, NDP52, OPTN, and SQSTM1.

Recent studies have indicated that PTEN family proteins
are involved in the regulation of both PINK1-Parkin-mediated
Ub-driven and BNIP3 receptor-mediated mitophagy. Some
important questions need to be further addressed. First is how the
cells determine the expression level of different PTEN isoforms to
function under different conditions. Second is whether there is a
specific recruitment of PTEN-L and PTEN to mitochondria in
response to mitochondrial damage. Third and more importantly
is whether PTEN isoforms can serve as molecular targets for
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development of novel interventional approaches in the regulation
of mitophagy to benefit mitophagy-related human diseases.
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The mitochondrial lifecycle comprises biogenesis, fusion and cristae remodeling, fission,
and breakdown by the autophagosome. This cycle is essential for maintaining proper
cellular function, and inhibition of any of these processes results in deterioration of
bioenergetics and swift induction of apoptosis, particularly in energy-craving cells such
as myocytes and neurons. Regulation of gene expression is a fundamental step in
maintaining mitochondrial plasticity, mediated by (1) transcription factors that control the
expression of mitochondrial mRNAs and (2) RNA-binding proteins (RBPs) that regulate
mRNA splicing, stability, targeting to mitochondria, and translation. More recently, RBPs
have been also shown to interact with proteins modulating the mitochondrial lifecycle.
Importantly, misexpression or mutations in RBPs give rise to mitochondrial dysfunctions,
and there is strong evidence to support that these mitochondrial impairments occur
early in disease development, constituting leading causes of pathogenesis. This review
presents key aspects of the molecular network of the disease-relevant RBPs, including
transactive response DNA-binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell
intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and pumilio (PUM) that drive
mitochondrial dysfunction in the nervous system.

Keywords: mitochondria, RNA-binding proteins, TDP43, FUS, TIA1, TIAR, PUM, mitophagy

INTRODUCTION

Adenosine triphosphate (ATP) production by mitochondria is essential for most cellular activities.
In addition to ATP generation, however, mitochondria are heavily involved in calcium homeostasis,
production and modulation of reactive oxygen species (ROS), and in the execution of apoptosis.

Mitochondria are highly dynamic organelles characterized by rapid movement and undergo
some five fusion-fission cycles every hour to properly maintain their function (Twig et al.,
2008; Pernas and Scorrano, 2016). Mitochondrial fusion is the process in which mitochondria
fuse together to spread metabolites, proteins, and DNA throughout the network to maintain
mitochondrial (mt) DNA replication and oxidative phosphorylation (OXPHOS) capacity (Chen
et al., 2005, 2010; Silva Ramos et al., 2019). It is mediated by optic atrophy 1 (OPA1), and mitofusin-
1 and 2 (MFN1/2) (Chen et al., 2003; Olichon et al., 2003). Mitochondrial fission, on the other hand,
is the process in which mitochondria divide to separate dysfunctional/depolarized mitochondrial
sections in a daughter mitochondrion that will be targeted by autophagy, otherwise known as
mitophagy (Twig et al., 2008). It is primarily regulated by dynamin-related protein 1 (DRP1) and
dynamin-2 (DYN2) with the aid of adaptor proteins mitochondrial fission 1 (FIS1), mitochondrial
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fission factor (MFF), and mitochondrial dynamics proteins 49
and 51 (MiD49/51) (Smirnova et al., 1998; Yoon et al., 2003;
Gandre-Babbe and van der Bliek, 2008; Otera et al., 2010; Palmer
et al., 2011; Lee et al., 2016). Additionally, folds of the inner
membrane of the mitochondrion (known as cristae) that are
formed to increase the surface area for housing the electron
transport chain (ETC) complexes and ATP synthase continuously
remodel to improve mitochondrial function (Enriquez, 2016).
Collectively, these mitochondrial morphology events comprise
the mitochondrial life cycle.

Mitochondrial dynamics are altered according to the energy
requirements of the cell, nutrient availability, stress, and
aging, and depend on transcriptional and post-transcriptional
mechanisms. While transcription factors mediate the expression
of nuclear and mitochondrial genes, RNA-binding proteins
(RBPs) regulate splicing, stability, localization, and translation
events. More recently, RBPs have been shown to interact
directly with proteins on mitochondrial surface, too. In this
review, we present findings that implicate RBPs misregulation in
mitochondrial damage. We focus on transactive response DNA-
binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell
intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and
pumilio (PUM), as there is substantial experimental data that
show their involvement in mitochondrial pathology. General
features, such as the neurological symptoms associated with their
perturbation, molecular and cellular function, target mRNAs
and subcellular localization have been described in our previous
review, and are thus not described here (Ravanidis et al., 2018).

TDP43

Mutations or deregulation of transactive response DNA binding
protein 43 (TDP43 or TARDBP) expression have been associated
with a spectrum of neurodegenerative diseases including
frontotemporal lobar degeneration (FTLD) and amyotrophic
lateral sclerosis (ALS) (Ravanidis et al., 2018). Electron
microscopy (EM) analyses of patient brain samples as well as
cellular and animal models of TDP43 proteinopathy revealed
prominent mitochondrial impairment, including abnormal
cristae architecture and diminished cristae surface area (Wang
et al., 2019). Further, increased TDP43 expression induced
mitochondrial dysfunction, including decreased mitochondrial
membrane potential and elevated production of ROS (Wang
et al., 2019; Figure 1).

Alzheimer’s disease (AD) pathology includes mitochondrial
perturbations such as alterations in respiratory function,
mitochondrial biogenesis, and mitophagy (Cai and Tammineni,
2017; Chakravorty et al., 2019). Using the APP/PS1 transgenic
mouse model co-expressing the familial AD Swedish mutations
(APPK 595N,M596L) and mutant human presenilin 1 (PSEN1-
1E9) under stress conditions, Davis et al. (2018), found
increased accumulation of the N-terminal (27 kDa, N27)
and C-terminal (30 kDa, C30) fragments of TDP43 in
mitochondria. Immunoprecipitation from cortex lysates, to
reveal the interacting partners of TDP43, showed enrichment
for mitochondrial proteins, including prohibitin-2 (PHB2)

and voltage-dependent anion channel 1 (VDAC1). PHB2 is
a scaffold protein and a mitophagy receptor located in the
inner mitochondrial membrane. It is involved in targeting
mitochondria for autophagic degradation by interacting with
microtubule-associated protein 1A/1B-light chain 3 (LC3)
conjugated to phosphatidylethanolamine (LC3-II), which is
found in autophagosomal membranes (Lahiri and Klionsky,
2017; Wei et al., 2017). Accordingly, PHB2 knockdown was
shown to drastically reduce mitochondrial clearance (Wei
et al., 2017). In addition, PHB2 is involved in mitochondrial
membranes’ fusion by stabilizing indirectly the long forms of
dynamin-like GTPase OPA1, which mediates mitochondrial
inner membrane fusion and cristae morphogenesis. Loss of
PHB2 impairs the stability of OPA1, affects mitochondrial
ultrastructure, and induces the perinuclear clustering of
mitochondria (Merkwirth et al., 2012). Overexpression of TDP43
was found to increase PHB2 levels, whereas TDP43 knockdown
reduced PHB2 and LC3-II expression in HEK293T cells treated
with carbonyl cyanide m-chlorophenylhydrazone (CCCP),
an inducer of mitophagy (Davis et al., 2018). Accordingly, an
increase in the E3 ubiquitin ligase parkin (PRKN)-positive
punctate staining (indicative of mitophagy) in cells treated
with CCCP was observed, which was enhanced with TDP43
overexpression and reduced when TDP43 levels were knocked
down (Davis et al., 2018). In parallel with these findings, in
NSC34 cells that exhibit motor neuron features, overexpression
of full length or C-terminal fragments of TDP43 (TDP25 and
TDP35) led to increased levels of LC3-II and decreased levels
of autophagy receptor p62 (SQSTM1) (Hong et al., 2012).
Collectively, these results suggest that TDP43 overexpression is
linked to enhanced mitophagic flux.

TDP43 expression also affects mitochondrial dynamics. Using
transgenic mice expressing full-length human TDP43, Xu et al.
(2010) observed aggregates of mitochondria, with decreased
cristae and vacuoles within the mitochondrial matrix, adjacent to
the nucleus, accompanied by enhanced levels of FIS1 and pro-
fission phosphorylation of DRP1 at Ser616, both key mediators
of the mitochondrial fission machinery (Taguchi et al., 2007).
Conversely, a marked reduction in MFN1 expression, which
plays an essential role in mitochondrial fusion, was observed
(Xu et al., 2010).

Corroborating evidence came from Wang et al. (2013),
showing that overexpression of wild-type TDP43 in primary
motor neurons reduced mitochondrial length and density
in neurites. Further, transgenic mice overexpressing wild-
type or mutant TDP43 displayed significantly shorter, smaller,
and damaged mitochondria (Wang et al., 2013). In contrast,
artificial miRNA-mediated suppression of TDP43 in primary
motor neurons resulted in significantly increased mitochondrial
length and density in dendrites (Wang et al., 2013). In
addition, co-expression of MFN2 with mutant TDP43 completely
prevented all TDP43-induced mitochondrial abnormalities
(Wang et al., 2013).

Informative findings have also arisen from work in Drosophila.
Khalil et al. (2017) found that overexpression of human wild-type
TDP43 in neurons resulted in abnormally small mitochondria.
The mitochondrial fragmentation was correlated with a specific
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FIGURE 1 | Mitochondrial perturbations induced by TDP43. PRKN in complex with HDAC6, ubiquitinates nuclear TDP43 promoting its cytoplasmic localization and
proteasomal degradation. However, as revealed from research in aging or neurodegenerative diseases, TDP43 often persists in the cytosol and forms aggregates.
Excess cytosolic TDP43 interacts with VDAC1, located in the outer mitochondrial membrane, but it is still unclear if interferes with its functions. Polyubiquitination of
VDAC1 by PRKN is essential for driving mitophagy. Moreover, cytosolic TDP43, translocated to the outer mitochondrial membrane, directly interacts with PHB2 and,
in parallel, increases its protein levels. PHB2 is known to interact with LC3-II to induce mitophagy. PHB2 is also involved in mitochondrial membranes fusion by
stabilizing indirectly the long forms of OPA1. Additionally, TDP43 directly interacts with MFN2, a mitochondrial membrane protein regulating mitochondrial fusion, and
possibly stabilizes its expression. Concurrently, TDP43 leads to reduced levels of another fusion protein, MFN1, and increases levels of FIS1 and DRP1
phosphorylated at Ser616, proteins promoting mitochondrial fission. Finally, TDP43 downregulates PRKN mRNA and protein levels, and impairs the proteasome,
leading to the accumulation of cleaved PINK1 (cPINK1) in the cytosol. During stress conditions cPINK1 aggregates recruit PRKN to the mitochondria launching
mitophagy in otherwise healthy mitochondria (non-selective mitophagy).

decrease in the levels of Marf, the MFN ortholog in Drosophila.
Importantly, overexpression of Marf or inactivation of pro-
fission Drp1 ameliorated the defects (Khalil et al., 2017). Similar
mitochondrial dysfunctions were observed in another Drosophila
study, and likewise the mitochondrial fission defects were
rescued by co-expression of mitochondrial pro-fusion genes
Marf, Opa1, and the dominant negative mutant form of Drp1
(Altanbyek et al., 2016).

Using immunoprecipitation from cortical human brain tissue,
TDP43 was found to also interact directly with pro-fusion
factor MFN2 (Davis et al., 2018). Knocking down TDP43 in
HEK293T cells led to a reduction in MFN2 expression levels,
whereas TDP43 overexpression marginally increased MFN2
levels (Davis et al., 2018). Previously, MFN2 repression was

shown to inhibit mitophagy and result in the accumulation of
damaged mitochondria in muscles during aging (Sebastian et al.,
2016), indicating that changes in the balance of mitochondrial
fission/fusion machinery affect not only architecture dynamics
but mitophagy as well.

Under steady-state conditions, PTEN-induced kinase 1
(PINK1), a mitochondrial serine/threonine kinase, is imported
in the inner mitochondrial membrane where it is cleaved by
the serine protease presenilin-associated rhomboid-like (PARL)
(Yamano and Youle, 2013). Following cleavage, PINK1 is released
into the cytosol where it is recognized by the N-end rule E3
enzymes, ubiquitin protein ligase E3 component N-Recognin
1 (UBR1), UBR2, and UBR4 for constitutive and rapid
proteasome-mediated degradation (Yamano and Youle, 2013).
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When mitochondria are damaged, PINK1 is not cleaved and is
subsequently anchored to the outer mitochondrial membrane
where it recruits and activates, via phosphorylation, the E3
ubiquitin ligase PRKN to trigger selective mitophagy (Pickrell
and Youle, 2015). Both PINK1 and PRKN exhibit mutations that
have been linked to autosomal recessive early-onset Parkinson’s
disease (PD) (Kitada et al., 1998; Hatano et al., 2004; Rohe et al.,
2004; Valente et al., 2004).

Using human TDP43 knock-in flies, TDP43-infected mouse
primary neurons, TDP43-transfected HEK293T cells, and
TDP43Q331K transgenic mice, Sun et al. (2018), showed
that TDP43 downregulates PRKN mRNA and protein levels
via mechanisms requiring both the RNA-binding and the
protein-protein interaction functions of TDP43. Unlike PRKN,
TDP43 did not regulate PINK1 at the mRNA level. Instead,
overexpression of TDP43 lead to cytosolic aggregates of cleaved
PINK1 due to impaired proteasomal activity, and compromised
mitochondrial respiration (Sun et al., 2018). Upregulation of
PRKN expression or RNAi-mediated downregulation of PINK1
levels suppressed TDP43-induced degenerative phenotype in
Drosophila, indicating that PRKN and PINK1 are important
components of TDP43-induced proteinopathy (Sun et al., 2018).
Additionally, it has been reported that accumulation of cleaved
PINK1 induces non-selective mitophagy and non-apoptotic cell
death (Lim et al., 2015). In this article, it is shown that
cleaved PINK1 cytosolic aggregates trigger PRKN translocation
to healthy mitochondria, leading to non-selective mitophagy
(Lim et al., 2015).

In another study, PRKN was shown to ubiquitinate nuclear
TDP43, and together with HDAC6, promote cytosolic TDP43
accumulation reminiscent of ubiquitinated wild-type or mutant
TDP43 found in the cytosol in several neurodegenerative diseases
(Hebron et al., 2013). Moreover, Prkn knockout mice exhibited
high levels of TDP43, underscoring an indispensable role for
PRKN in mediating TDP43 clearance and cytosolic localization
(Wenqiang et al., 2014).

A dual regulation of mitophagy and apoptosis by PRKN via
VDAC1, a direct partner of TDP43 in mitochondria (Davis
et al., 2018), has also been revealed. Previously, VDACs have
been shown to mediate mitophagy via recruitment of PRKN
in the mitochondria (Geisler et al., 2010; Sun et al., 2012;
Li et al., 2014). More recently, PRKN was shown to mono-
or poly-ubiquitinate VDAC1. Polyubiquitination was required
for PRKN-mediated mitophagy, whereas mono-ubiquitination
was required for mitochondrial calcium influx and apoptosis
(Ham et al., 2020). The role of TDP43 in the mono- or poly-
ubiquitination of VDAC1 by PRKN has yet not determined.

FUS

Mutations in the FUS or translocated in liposarcoma (FUS/TLS)
gene give rise to familial ALS and occasionally FTLD-FUS,
both displaying FUS-positive inclusions (Ravanidis et al., 2018).
Interestingly, however, in the majority of FTLD-FUS cases, no
FUS mutations have been identified, but rather an increase in
wild-type FUS expression highlighting a dose-dependent role

in neurodegeneration (Sabatelli et al., 2013; Deng et al., 2015).
Several systems have been used to model FUS-proteinopathies,
in all of which wild-type or ALS-mutant FUS overexpression led
to progressive neurodegeneration reiterating findings in patients
(Huang et al., 2011; Ravanidis et al., 2018).

Several studies implicate mitochondrial damage as an early
event that precedes cell death in FUS proteinopathies (Deng et al.,
2015, 2018; So et al., 2018; Figure 2). Deng et al. (2015) showed
that overexpression of wild-type or ALS-associated mutant
FUS in HEK293 cells reduced the mitochondrial membrane
potential and increased the production of mitochondrial ROS.
Increased levels of ROS drive mitochondrial translocation of
the pro-fission protein DRP1 in ASTCa1 cells, leading to
mitochondrial fragmentation (Wu et al., 2011). Likewise, Deng
et al. (2015) observed mitochondrial fragmentation in wild-type
or mutant FUS-overexpressing HT22 cells, cultured neurons,
and transgenic fly motor neurons. They then performed EM to
compare healthy control and FTLD-FUS brain mitochondria.
While in controls most mitochondria appeared healthy with
well-organized cristae as packed-stacks of membrane sheets
and with only a few FUS-immunostaining signals, in FTLD
patients mitochondria displayed a marked loss or disruption of
cristae with frequent detection of “onion-like” deformed shapes
and FUS-immuno-positive signals, in close association with the
mitochondria (Deng et al., 2015).

Similarly, So et al. (2018), using transgenic hFUS mice,
revealed that FUS, which is abundant at the pre-synaptic terminal
of the neuromuscular junction (NMJ), caused a significant
decrease in the number of mitochondria, while many of
those that remained had pronounced abnormalities including
disorganized cristae and large vacuoles as early as postnatal
day 15. Interestingly, mitochondria in the post-synaptic muscle
endplate were abundant and of normal appearance, consistent
with other studies demonstrating that mitochondria at distal
axon terminals undergo the earliest damage in the course of ALS
disease (Magrane et al., 2012; Ruffoli et al., 2015).

Deng et al. (2015) moved on to demonstrate that heat shock
protein 60 kDa (HSP60), an ATP-dependent mitochondrial
chaperone, interacted with FUS and mediated FUS mitochondrial
localization. siRNA-based downregulation of HSP60 levels
reduced mitochondrially localized FUS without altering its
overall cellular levels; in fact, levels of nuclear and cytoplasmic
FUS increased as a result. Accordingly, HSP60 downregulation
increased the size of mitochondria and partially rescued
mitochondrial defects as well as neurodegenerative phenotypes
caused by wild-type or mutant FUS overexpression in transgenic
fly photoreceptors. Finally, they found that HSP60 protein
levels were elevated in the brains of FTLD-FUS patients (Deng
et al., 2015). These observations indicate that HSP60 plays an
important role in mediating the translocation of excess FUS in
mitochondria, a critical early step in mitochondrial impairment
and thereafter neurodegeneration.

Additional mechanisms by which FUS induces mitochondrial
damage have been brought forward. Wild-type or mutant
FUS were found to interact with the mitochondrial ATP
synthase β-subunit (ATP5B) (Deng et al., 2018), which is
the essential catalytic subunit of mitochondrial ATP synthase
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FIGURE 2 | Mitochondrial perturbations induced by FUS. HSP60 mediates FUS translocation to the outer mitochondrial membrane. Mitochondrial-localized FUS
binds to the β subunit of the F1 catalytic domain of ATP synthase (Complex V). The binding leads to disassembly of the F1 domain and accumulation of
unassembled ATP synthase subunits, including ATP5B, which activates the UPRmt response leading to non-apoptotic cell death. Additionally, disruption of the F1
domain of the ATP synthase complex results in impaired ATP production and thereafter, deformed cristae. FUS induces mitochondrial perturbations in several other
manners while being in excess in the cytoplasm. Mutant FUS binds to mature mRNAs coding for important mitochondrial proteins including Kif5b, Dnm1l, and
Csde1, inhibiting their translation. This inhibition progressively leads to mitochondrial fission. Excess FUS drives the accumulation of PINK1 and PRKN proteins. As a
consequence, RHOT1, also known as Miro1, a component of the primary motor/adaptor complex that anchors kinesin to the mitochondrial surface and a direct
target of PRKN, is ubiquitinated leading to disruption in axonal motility and retrograde transport of mitochondria. Additionally, FUS has an impact on the OXPHOS
process by deregulating the expression of the subunits NDUFS3 and UQCRC2 of Complexes I and III, respectively. OXPHOS deregulation leads to respiratory
impairment and subsequent ATP production deterioration and deformed cristae. Finally, FUS decreases the levels of ser9 phosphorylation in GSK-3β, leading to
increased GSK-3β activity. Activated GSK-3β deregulates the interaction of mitochondrial tethered membrane protein PTPIP51 and the inner protein of the ER,
VAPB, disrupting mitochondria-ER associations. The ER-mitochondria disruption decreased Ca2+ uptake by mitochondria following release from ER stores,
resulting in reduced ATP production and deformed mitochondria.

(Wang and Oster, 1998). FUS binding to ATP5B disrupted
the assembly of ATP synthase super-complex, suppressing ATP
synthesis (Deng et al., 2018). Previously, ATP synthase complex
assembly has been closely associated with mitochondrial cristae
formation (Paumard et al., 2002). ATP synthase mutants show
disorganized cristae in yeast (Paumard et al., 2002; Strauss et al.,
2008), which could explain the disruption or loss of cristae
observed following FUS overexpression (Deng et al., 2015, 2018;
So et al., 2018).

On top of that, whereas ATP synthase complex activities
and formation were decreased, mitochondrial ATP5B protein

levels were increased in FUS-overexpressing HEK293 cells
and flies (Deng et al., 2018). This has given rise to an
accumulation of unassembled ATP synthase subunits,
including ATP5B, which activated the mitochondrial
unfolded protein response (UPRmt) (Deng et al., 2018).
UPRmt is an adaptive mechanism to ensure mitochondrial
proteostasis and quality control. However, excessive activation
of UPRmt following severe or extended mitochondrial
stresses can induce non-apoptotic neurodegeneration
(Martinez et al., 2017). That is likely the case here, as
downregulation of UPRmt genes ameliorated wild-type
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or mutant FUS-induced retinal degeneration in flies
(Deng et al., 2018).

A different perspective was brought forward by Stoica et al.
(2016). They found that wild-type or ALS-associated mutant
FUS decreased the endoplasmic reticulum (ER)-mitochondria
associations in NSC34 motor neuron cells and in spinal
cord motor neurons from FUS transgenic mice (Stoica et al.,
2016). Specifically, they showed that FUS disrupted the
interaction between the integral ER protein, vesicle-associated
membrane protein-associated protein B (VAPB), and the outer
mitochondrial membrane protein, protein tyrosine phosphatase
interacting protein 51 (PTPIP51) that serve as scaffolds to tether
the two organelles (De Vos et al., 2012). This disruption was
accompanied by a decrease in Ca2+ uptake by the mitochondria
following its release from ER stores. Since mitochondrial ATP
production is linked to Ca2+ levels (De Vos et al., 2012),
uncoupling of ER-mitochondria by FUS resulted in impaired
ATP production (Stoica et al., 2016). Immunoprecipitation
revealed that FUS did not bind either VAPB or PTPIP51. Instead,
FUS reduced the inhibitory phosphorylation of ser9 in GSK-
3β, resulting in its activation (Stoica et al., 2016). Previously,
the same group has shown that GSK-3β inhibition increases
the VAPBPTPIP51 interaction; however, the precise mechanism
is not yet determined (Stoica et al., 2014). Hence, using the
GSK-3β inhibitors AR-A014418 and CT99021H, they showed
that FUS-induced defects in ER-mitochondria association as
well as mitochondrial Ca2+ levels were restored (Stoica et al.,
2016). Considering that damaged ER-mitochondria associations
have also been described in AD and PD (Zampese et al., 2011;
Cali et al., 2012; Hedskog et al., 2013; Ottolini et al., 2013;
Guardia-Laguarta et al., 2014), this indicates that perturbation
of the ER–mitochondrial axis may be a general feature in
neurodegeneration.

Another way by which disease-causing FUS mutations induce
mitochondrial impairment and neurotoxicity was deciphered
by Nakaya and Maragkakis (2018). They showed that unlike
wild-type FUS that predominantly binds pre-mRNAs, the
ALS-associated R495X FUS mutant binds mature mRNAs
in the cytoplasm (Nakaya and Maragkakis, 2018). Although
R495X binding had only a moderate effect on mRNA levels,
it significantly reduced the translation of mRNAs that are
associated with mitochondrial function such as Kif5b, Dnm1l,
and Csde1 (Nakaya and Maragkakis, 2018). These alterations
were accompanied by a reduction in mitochondrial size, as
previously reported (Deng et al., 2015, 2018; So et al., 2018).
Importantly, by introducing multiple mutations in the RRM
RNA-binding domain of R495X FUS, to reduce its RNA-binding
ability (Daigle et al., 2013), they partially abrogated R495X-
induced effects on mRNA translation, mitochondrial size, and
neurotoxicity, uncovering a novel RNA-mediated pathway of
FUS proteinopathy (Nakaya and Maragkakis, 2018).

Insights into the role of PRKN in FUS-mediated
mitochondrial dysfunction were revealed by Cha et al. (2020).
Using Drosophila flies, they showed that when PRKN was co-
overexpressed with FUS, it was able to rescue locomotive defects
(Cha et al., 2020). At the cellular level, PRKN co-overexpression
did not lead to any significant mitochondrial morphological

improvements compared to the flies only overexpressing FUS;
in fact, PRKN overexpressed alone also exhibited fragmented
mitochondria (Cha et al., 2020). Instead, they found that PRKN
restored the expression of mitochondrial subunits I (NDUFS3)
and III (UQCRC2), which are significantly decreased in FUS-
induced ALS flies. As a result, flies overexpressing both FUS
and PRKN had partially restored ATP levels (Cha et al., 2020).
Interestingly, complex III is one of the five mitochondrial
distinct multi-subunit complexes (I–V) whose activity is
reported to be dampened in spinal cord tissues of ALS patients
(Sasaki and Iwata, 2007). Taken together, these observations
demonstrated a protective role of PRKN in FUS-induced
mitochondrial dysfunction.

Contradictory findings concerning the role of PRKN in
FUS-mediated defects have also been reported (Chen et al.,
2016). Overexpression of wild-type or mutant FUS in HEK293
cells lead to the accumulation of PINK1 and PRKN proteins
(Chen et al., 2016). As a consequence, the Ras homolog family
member T1 (RHOT1, also known as Miro1), a component
of the primary motor/adaptor complex that anchors kinesin
to the mitochondrial surface and a direct target of PRKN,
was ubiquitinated leading to the disruption in axonal motility
and retrograde transport of mitochondria (Chen et al., 2016).
Previously, Miro1 was shown to be phosphorylated by PINK1,
which promoted its proteasomal degradation by PRKN (Wang
et al., 2011; Liu et al., 2012). RNAi-mediated downregulation
of both PINK1 and PRKN restored locomotive defects in
FUS transgenic flies (Chen et al., 2016). As the PINK1/PRKN
pathway also promotes mitochondrial fission (Poole et al.,
2008; Yu et al., 2011), Chen et al. (2016) proposed that the
upregulation of PINK1 and PRKN is partly responsible for
mitochondrial fragmentation induced by wild-type and mutant
FUS overexpression.

TIA1 AND TIAR

T-cell intracellular antigen 1 and TIA-related/like protein share
an extended identity in the amino acid sequence, and like other
RBPs, they translocate to the cytoplasm following cellular stress
conditions forming stress granules (SG) (Ravanidis et al., 2018).
Missense mutations in the TIA1 gene cause both Welander distal
myopathy (WDM) (Hackman et al., 2013) and ALS, characterized
by delayed SG disassembly and accumulation of non-dynamic
SGs that harbor TDP43 (Mackenzie et al., 2017).

Early in the analysis of TIA1 cell models, it became
evident that TIA1 and TIAR affect mitochondrial dynamics
(Figure 3). Using EM, Carrascoso et al. (2017) found that
TIA1 or TIAR overexpression in HEK293 cells promoted
mitochondrial clustering and fission. Closer inspection of
mitochondria revealed changes in cristae organization, with
many cristae having a slightly wider and more loosely organized
intermembrane space than those of control cells (Carrascoso
et al., 2017). Further, the mtDNA/nDNA ratio was similar
between control and TIA1- or TIAR- overexpressing cells,
suggesting that the changes in mitochondria were linked to
reorganization dynamics rather than de novo mitochondrial
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FIGURE 3 | Mitochondrial perturbations induced by TIA1 and TIAR. TIA1 and TIAR mediate exon 4b inclusion in the pre-mRNA of OPA1 generating the OPA1
variant 5, which is associated with a smaller mitochondria, mitochondrial clustering, and remodeling around the perinuclear region. Further, cytosolic TIA1 enhances
the translation of MFF mRNA and promotes DRP1 translocation to mitochondria leading to mitochondrial fragmentation. In parallel, TIA1 and TIAR induce modest
downregulation of the pro-fusion proteases OMA1, YMEL1, and MFN2, further contributing to the pro-fission phenotype and mitophagy. TIA1 also has pro-apoptotic
properties inhibited by FAST. FAST is released from its mitochondrial tether during stress, a process mediated by tBID and BAX. Following its release, FAST binds to
TIA1 and prevents TIA1-mediated silencing of mRNAs encoding inhibitors of apoptosis, such cIAP-1 and XIAP. When TIA1 is in excess, it binds FAST and obstruct
its anti-apoptotic events. Finally, TIA1 and TIAR increase LC3-II levels, yet the mechanism is unknown, leading to increased mitophagic events.

biogenesis. Mitochondrial respiration and ATP production
were impaired as a result (Carrascoso et al., 2017). When
switched from glucose to galactose or fatty acids as cell
culture substrates, to promote a switch from glycolysis
to OXPHOS and determine the degree of mitochondrial
dependency in cell growth, TIA1- or TIAR- overexpressing
cells showed reduced proliferation rates (Carrascoso et al.,
2017). Additionally, they displayed increased mitophagy rates
and ROS production. Enhanced cleaved poly (ADP-ribose)
polymerase 1 (PARP1) levels and delay in G1/S cycle phase
transition, phenomena of early apoptosis, correlated with
increased mitophagy (Carrascoso et al., 2017). Increased
mitochondrial DNA damage were also observed in TIA1- or
TIAR- overexpressing cells following H2O2 treatment suggestive
of impaired antioxidant defense (Carrascoso et al., 2017).
Collectively, these results indicate that TIA1 or TIAR provoke

respiratory deficiency and compromised mitochondrial function
(Carrascoso et al., 2017).

Mechanistically, TIA1 and TIAR mediated exon 4b inclusion
in the pre-mRNA of OPA1 generating the OPA1 variant 5.
OPA1 is a dynamin-like GTPase that regulates cristae junction
numbers and stability, and the different OPA1 protein isoforms
(eight in humans) relay instructions that help determine fusion,
build cristae, and tune the morphology of mitochondria (Olichon
et al., 2007; Song et al., 2007; Glytsou et al., 2016). OPA1v5,
specifically, promotes mitochondrial clustering and remodeling
around the perinuclear region (Song et al., 2007; Carrascoso et al.,
2017). Ablation of TIA1 or TIAR in mouse embryonic fibroblasts
(MEFs) favored the expression of short forms of OPA1, and
the appearance of elongated mitochondria indicative of fusion
phenotypes (Carrascoso et al., 2017). Furthermore, knockdown
of OPA1 or overexpression of OPA1v5 triggered mitochondrial
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clustering mimicking TIA1 or TIAR effects (Carrascoso et al.,
2017). In addition, proteases associated with fusion (OMA1,
YMEL1, and MFN2) were modestly downregulated in TIA1- or
TIAR-overexpressing cells, whereas the fission-associated protein
MFF was slightly upregulated, further contributing to the pro-
fission phenotype (Carrascoso et al., 2017).

Tak et al. (2017) independently reported similar mitochondrial
phenotypes following TIA1 modulation, but provided different
mechanistic insights. Likewise, they showed that TIA1
overexpression in CHANG liver cells enhanced mitochondrial
fission, while downregulation enhanced mitochondrial
elongation. In addition, TIA1 downregulation increased
mitochondrial activity, including the rate of ATP synthesis and
oxygen consumption (Tak et al., 2017). Further, they identified
MFF 3’UTR as a direct target of TIA1 and showed that TIA1
promoted mitochondrial fragmentation by enhancing MFF
translation. Accordingly, Tia1-null MEF cells had decreased
levels of MFF and mitochondrial DRP1, thereby leading to
mitochondrial elongation (Tak et al., 2017).

Studies investigating the p.E384K mutant form of TIA1
(TIA1WDM) responsible for WDM revealed similar findings
(Carrascoso et al., 2019). TIA1WDM overexpression in HEK293
cells resulted in mitochondrial fission and mitochondrial swelling
with an abnormal distribution of cristae. This led to decreased
mitochondrial membrane potential and enhanced redox status
(Carrascoso et al., 2019). Additionally, there was an increase in
the formation of autophagosomes and autolysosomes, as well as
mitophagic and apoptotic rates (Carrascoso et al., 2019). Taken
together, these results revealed that similar to wild-type TIA1,
disease-associated mutant TIA1 overexpression has a negative
impact on mitochondrial dynamics, leading to mitochondrial
dysfunction and cell death.

Sanchez-Jimenez and Izquierdo (2013) used Tia1 and
Tiar knock-out MEFs to study the molecular and cellular
consequences. They found that TIA1 and TIAR knockout cells
had two to threefold more mitochondria, six to sevenfold
higher mitochondrial membrane potential, and twofold higher
ROS levels. Mitochondria had atypical morphology, with some
being enlarged and others being fragmented (Sanchez-Jimenez
and Izquierdo, 2013). These alterations were associated with
nuclear DNA damage, revealed by 8-hydroxy-2′-deoxyguanosine
(8-oxo-dG) staining, and high rates of autophagy, possibly as a
compensatory mechanism toward survival. Consequently, TIA1
and TIAR knockout MEFs displayed defects in cell proliferation
and increased cell death (Sanchez-Jimenez and Izquierdo, 2013).

A different perspective by which TIA1 is promoting apoptosis
was brought forward by Li et al. (2004b). They proposed that
during stress, TIA1 silences (Kedersha et al., 2000; Anderson
and Kedersha, 2002), among others, the translation of mRNAs
encoding inhibitors of apoptosis, and that the Fas-activated
serine/threonine kinase (FAST) phosphoprotein is counteracting
this function (Li et al., 2004b). They showed that FAST,
which is tethered to the outer mitochondrial membrane in
association with BCL-XL (Li et al., 2004a), is a constitutive pro-
survival protein (Li et al., 2004b). RNAi-mediated silencing of
endogenous FAST in HeLa cells resulted in apoptosis, whereas
overexpression of FAST inhibited both Fas- and UV- induced

apoptosis (Li et al., 2004b). Mechanistically, they found that a
FAST mutant lacking its TIA1-binding domain did not inhibit
apoptosis, and overexpressed TIA1 inhibited the antiapoptotic
effects of FAST. They proposed that in response to stress, tBID
and BAX move to the outer mitochondrial membrane, where
they sequester BCL-XL, releasing FAST from its mitochondrial
tether. FAST then binds to TIA1 and prevents TIA1-mediated
silencing of mRNAs, including those encoding inhibitors of
apoptosis, such as cIAP-1 and XIAP (Li et al., 2004b). Hence,
FAST serves as a cellular sensor of mitochondrial stress, that in
response to stress, modulates TIA1-regulated posttranscriptional
silencing responses.

PUMILIO

Pumilio belongs to the evolutionary conserved Pumilio and FBF
(PUF) family of RBPs comprised two paralogous members in
vertebrates (Pum1 and 2), and one in Drosophila (Pum). It
is an important mediator of neurological processes, including
olfactory learning and motor function (Ravanidis et al., 2018). In
humans, a PUM1 mutation is associated with adult-onset ataxia,
whereas haploinsufficiency due to deletions or missense variants
cause developmental delay and seizures (Gennarino et al., 2018).

Several study systems ranging from yeast to mice highlighted
the role of PUFs in regulating mitochondrial biogenesis and
mitophagy (Figure 4). In yeast, Puf3p was shown to specifically
associate with 135 mRNAs, 87% of which are nucleus-encoded
mitochondrial mRNAs (Gerber et al., 2004). Among these
mitochondrial mRNAs, 59% (80 genes) are involved in protein
biosynthesis, including structural components of the ribosome;
16% (22 genes) in mitochondrial organization and biogenesis;
13% (17 genes) in aerobic respiration; 9% (12 genes) in
mitochondrial translocation; 9% are tRNA ligases (12 genes);
and 7% are translational regulators (nine genes) (Gerber et al.,
2004). Interestingly, when Puf3p was deleted in yeast, Puf3p-
associated mRNAs were not only selectively increased compared
to all other mRNAs (Gerber et al., 2004), but also mislocalized
away from mitochondria (Eliyahu et al., 2010), indicating
that Puf3p regulates the stability and localization of mRNAs
expressing mitochondrial proteins. Consequently, yeast strains
overexpressing Puf3p exhibited respiratory dysfunction and
abnormal mitochondrial morphology and motility (Gerber et al.,
2004; Garcia-Rodriguez et al., 2007).

Studies in Drosophila backed yeast findings. Work by
Gehrke et al. (2015), revealed that nuclear mRNAs encoding
respiratory chain complexes (nRCC) are localized in a
PINK1/Tom20-dependent manner to the mitochondrial
outer membrane, where they are de-repressed and translated
by PINK1/PRKN pathway through the displacement of
translation repressors, including PUM and hnRNPF; in this
case, PINK1 displayed an RNA-binding capacity competing
with PUM for mRNA-binding, while PRKN mono-ubiquitinated
the RBPs lowering their affinity for nRCC mRNAs (Gehrke
et al., 2015). Accordingly, inhibiting PUM via RNAi was
found to increase, whereas PUM overexpression decreased
nRCC mRNAs abundance (Gehrke et al., 2015). In addition,
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FIGURE 4 | Mitochondrial perturbations induced by PUM2. PUM2 reduces cytochrome c oxidase complex (Complex IV) activity, leading to impaired respiration and
deformed cristae. Interestingly, the long non-coding RNA NORAD inhibits PUM2 function by sequestering PUM2 from binding to mitochondrial mRNA targets.
Further, PINK1 in association with Tom20 promote the expression of nuclear-encoding mitochondrial (nRCC) mRNAs in the outer mitochondrial membrane by
competing with PUM and other translation repressors. PINK1 competes with PUM for mRNA-binding, while PRKN mono-ubiquitinates PUM and HNRNPF lowering
their affinity for nRCC mRNAs and possibly leading to their proteasomal degradation. However, when PUM is in excess, it binds to the nRCC mRNAs and represses
their translation. Finally, PUM2 binds to MFF mRNA and represses its translation, leading to reduced fission and mitophagy.

PUM inhibition rescued ATP production, mitochondrial
morphology, and neuromuscular-degeneration phenotypes
of PINK1, but not PRKN mutant flies (Gehrke et al., 2015).
Collectively, these findings revealed that besides its well-
known serine/threonine kinase activity, PINK1 is also an RBP
competing with PUM to control mitochondria biogenesis
(Gehrke et al., 2015).

Electron microscopy of skeletal muscles from PUM2-
overexpressing mice revealed the accumulation of
subsarcolemmal, irregularly shaped and abnormally enlarged
mitochondria lacking normal cristae (Kopp et al., 2019).
Furthermore, a global reduction in cytochrome c oxidase
(complex IV, COX) activity was observed. In addition,
transient expression of PUM2 in MEFs or stable expression
of either PUM1 or PUM2 in HCT116 cells significantly
impaired respiration, providing compelling evidence that PUM
hyperactivity results in mitochondrial dysfunction (Kopp et al.,
2019). Interestingly, a non-coding RNA called NORAD acts as
a guardian of the transcriptome by being a preferred target of

PUM2, thereby inhibiting its translation suppressive functions
(Kopp et al., 2019).

Research findings from D’Amico et al. (2019) associated
PUM2 with aging defects via impaired mitochondrial dynamics.
They reported that elevated levels of PUM2 are found in muscle
and neocortex of aged mice (Edwards et al., 2007; Oberdoerffer
et al., 2008; D’Amico et al., 2019) as well as muscle biopsies
of aged humans (Yang et al., 2015). Additionally, Pum2 levels
in the brains of mice strains BXD and LXS are inversely
correlated with longevity (Gelman et al., 1988; Liao et al., 2010).
To experimentally validate this suggestive effect on lifespan,
they used Caenorhabditis elegans to show that PUF8, ortholog
of PUM2, knockdown was associated with increased lifespan
(D’Amico et al., 2019). Consistently, knock-down of puf8 and
Pum2 improved both basal and maximal respiration in old
worms and mouse myoblasts, respectively (D’Amico et al., 2019).
Like in previous studies, using multi-tissue gene set enrichment
analysis (GSEA) in the human GTEx cohort, they found that
PUM2 expression levels were inversely correlated with clusters
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of genes responsible for mitochondrial function, including genes
important for OXPHOS and cellular respiration (D’Amico
et al., 2019). Furthermore, from CLIP-Seq data (Hafner et al.,
2010), they identified a perfect PUM2 site in the 3′UTR of
MFF mRNA and showed that PUM2 negatively regulated MFF
translation in C2C12 and HeLa cells (D’Amico et al., 2019).
Consequently, Pum2 silencing increased the percentage of C2C12
cells undergoing fission and mitophagy, and this was reversed by
simultaneously performing Mff RNAi. Similarly, puf8 depletion
improved mitochondrial homeostasis during nematode aging
and canceled by mff1 co-depletion (D’Amico et al., 2019).
Lastly, Pum2 depletion using CRISPR-Cas9 in the muscle of
old mice increased MFF levels and mitophagy, and improved
respiration. Collectively, these data suggest that PUM2 regulates
mitochondrial dynamics and mitophagy via MFF.

CONCLUSION

Over the years, several lines of evidence have implicated
mitochondrial dysfunctions in many diseases, particularly

those associated with neurodegenerative disorders and aging.
Following recent findings that mutations or misexpression
of RBPs can cause neurological impairments, there has been
tremendous interest in identifying their molecular pathogenetic
mechanisms. Interestingly, it turned out that mitochondria are
also direct and early targets of RBP misregulation reiterating their
importance for cellular homeostasis. These findings suggest that
pharmaceutical agents improving mitochondrial life cycle can
be attractive therapeutics for easing mitochondrial dysfunction
in these diseases.
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Mitochondria are highly plastic and dynamic organelles that have graded responses to
the changing cellular, environmental, and developmental cues. Mitochondria undergo
constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy,
which coordinately control mitochondrial morphology, quantity, quality, turnover, and
inheritance. Mitophagy is a cellular process that selectively removes the aged and
damaged mitochondria via the specific sequestration and engulfment of mitochondria
for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular
homeostasis in normal physiology and conditions of stress. Damaged mitochondria
may either instigate innate immunity through the overproduction of ROS or the release of
mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic
factors when mitochondria damage is beyond repair. Distinct molecular machineries and
signaling pathways are found to regulate these mitochondrial dynamics and behaviors.
It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2
family proteins interact within family members to regulate mitochondrial outer membrane
permeabilization and apoptosis. They were also described as global regulators of
mitochondrial homeostasis and mitochondrial fate through their interaction with distinct
partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial
dynamics and behaviors. In this review, we summarize recent findings on molecular
pathways governing mitophagy and its coordination with other mitochondrial behaviors,
which together determine cellular fate.

Keywords: mitophagy, mitochondrial dynamics, mitochondrial apoptosis, cell fate, mitophagy receptors

INTRODUCTION

Mitochondria are organelles that govern energy transformation and ATP production through the
tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS). Moreover, mitochondria
control redox homeostasis, Ca2+ signaling, iron metabolism, innate immunity, and apoptotic cell
death (Zorov et al., 2014; Zong et al., 2016; Paul et al., 2017; Pathak and Trebak, 2018). Mitochondria
are both the major source and the main targets of reactive oxygen species (ROS). Under homeostatic
conditions, mitochondrial ROS serve as retrograde signaling molecules for cell growth (Diebold
and Chandel, 2016). However, in conditions of stress or aging, mitochondrial ROS elicit oxidative
damage to mitochondrial proteins, lipids, and DNA (mtDNA), causing the malfunction of
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mitochondria. Dysfunctional mitochondria may produce even
more ROS via vicious cycle that further amplify the release of
ROS and mtDNA into the cytosol, which in turn can act as
instigators of inflammation (Nakahira et al., 2011; Zhou et al.,
2011). Non-reparable and severe damage of mitochondria leads
to the release from the intermembrane space into the cytosol of
cytochrome c and other pro-death factors (Sinha et al., 2013)
altogether triggering apoptosis, a specific form of programmed
cell death. This process is governed by the BCL2 protein family
that integrates apoptotic signals and controls mitochondrial outer
membrane permeabilization (MOMP).

Mitochondria are highly dynamic organelles that undergo
continuous fission and fusion, constant turnover through
mitochondrial biogenesis and mitophagy to maintain
mitochondrial morphology, homeostasis, and inheritance.
When facing bioenergetic or oxidative challenges, mitochondria
exhibit a graded response that involves changes in their
morphology and dynamics through the activation of
distinct molecular machineries that regulate mitochondrial
fission, fusion, mitophagy, and mitochondrial biogenesis.
Mitochondrial fission and fusion are tightly regulated by
a complex protein machinery involving dynamin 1 like
(DNM1L better known as Drp1), mitosfusin 1 (MFN1),
mitosfusin 2 (MFN2), and Optic atrophy protein 1 (OPA1)
in mammalian cells. Mitochondrial fission was found to
contribute to mitochondrial apoptosis and was also suggested
to be a prerequisite for mitophagy, while mitochondrial
fusion is linked to an increase in mitochondrial metabolism.
How these molecular machineries sense cellular stresses and
how these complex mitochondrial behaviors are coordinated
at the molecular level remains elusive. It is important to
address these questions, as mitochondrial dynamics and
homeostasis are tightly linked with cellular physiology and
eventually cell fate.

John Lemasters first termed selective mitochondrial
autophagy as “mitophagy” (Lemasters, 2005). Mitophagy is
a process that selectively sequesters damaged or depolarized
mitochondria into double-membraned autophagosomes for
subsequent lysosomal degradation. The removal of damaged
or unwanted mitochondria, mitophagy was found to be
essential for maintaining cellular fitness. Both ubiquitin-
and receptor-mediated mitophagy pathways have been
described and extensively studied. Intriguingly, BCL2 family
proteins were reported to participate in both mitochondrial
dynamics and mitophagic processes, which puts them in
the center of mitochondrial homeostasis. We recently have
shown that PGAM5, a mitochondrial phosphatase, serves
as a molecular switch for determining mitochondrial fate
(apoptosis or mitophagy) by dephosphorylating BCL-xL, a
key apoptosis inhibitor and FUNDC1, a mitophagy receptor.
These results demonstrated the integration of stress signals
and the coordinated execution of graded responses in
response to mitochondrial stress conditions (Ma K. et al.,
2019). Here, we provide a focused overview on the molecular
mechanisms of mitophagy and its interplay with mitochondrial
dynamics and behaviors, thus contributing to aging and
aging-related diseases.

MOLECULAR REGULATION OF
MITOPHAGY

Mitophagy in Yeast
Electron microscopy has revealed that, in Saccharomyces
cerevisiae, mitochondria can be specifically sequestered by
autophagosomes, or be engulfed together with cytosolic material
(Kissova et al., 2007). This process depends on the complete
set of Atg-proteins such as Atg11, Atg17, and Atg29, as well as
specific adaptor proteins (Farre et al., 2009). The mitochondrial
outer membrane protein, Uth1, and mitochondrial protein
phosphatase homolog, Aup1, have both been implicated in
mitophagy (Kissova et al., 2007; Tal et al., 2007). Pioneering
work from Ohsumi’s and Klionsky’s laboratories have identified
that, Atg32, a mitochondria-anchored protein, is essential for
mitophagy in yeast. It acts as a mitophagy-specific receptor
and interacts with autophagy key proteins such as Atg8
via an Atg8 interacting motif (AIM) and Atg11 to recruit
autophagosomes to mitochondria for their engulfment and
final degradation (Kanki et al., 2009; Okamoto et al., 2009).
Atg32 undergoes both transcriptional and post-translational
regulation in response to mitophagy induction. Expression of
Pichia pastoris Atg32 (PpAtg32, Atg32 homolog in P. pastoris)
is highly suppressed in nutrient-rich media caused by the DNA-
binding protein Ume6 and the histone deacetylase complex
Sin3–Rpd3, which interact with the promoter region of the gene
encoding PpAtg32 to repress its transcription (Aihara et al.,
2014). Kang’s group provided evidence that the kinase CK2 could
phosphorylate N-terminal cytosolic region of Atg32 at serine
114 and serine 119 to promote the Atg32–Atg11 interaction and
further accelerate the mitophagic process (Kanki et al., 2013),
but how CK2-dependent phosphorylation takes place during
starvation remains elusive. The C-terminal intermembrane space
domain of Atg32 was found to be proteolytically processed
by inner membrane i-AAA (ATPases associated with various
cellular activities) protease Yme1 during mitophagy induction
(Wang et al., 2013).

Mitophagy in Mammalian System
It has become clear that the regulation of mitophagy in
mammalian cells appears to be more complex. Thus, both
ubiquitin-mediated and receptor-mediated pathways have been
described to facilitate mitophagy in response to cellular,
developmental, and environmental cues in mammalian systems.

Ubiquitin Pathways
In mammalian cells, the PTEN-induced putative kinase protein
1 (PINK1) and Parkin-mediated ubiquitination pathway is one
of the most-studied mitophagy mechanisms so far. Two key
factors, the serine/threonine kinase PINK1 and the E3 ubiquitin
ligase Parkin, cooperatively sense cellular stress and mediate
the removal of damaged mitochondria. Under physiological
conditions with normal mitochondrial membrane potential,
PINK1 is continuously imported into mitochondria where it
is cleaved by the intramembrane protease presenilin associated
rhomboid like (PARL), leading to its retro-translocation into
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the cytosol and rapid proteasomal degradation (Sekine and
Youle, 2018). When mitochondrial membrane potential drops,
PINK1 escapes from PARL-dependent cleavage and aggregates on
the outer mitochondrial membrane to exert its pro-mitophagic
function. Stabilized PINK1 phosphorylates both Parkin and
ubiquitin (at Ser65) to promote ubiquitination of outer
mitochondrial membrane proteins (Kane et al., 2014; Koyano
et al., 2014). Phosphorylated ubiquitin binding to Parkin further
unleashes Parkin from its autoinhibited state (Kazlauskaite
et al., 2015). Activated Parkin appends ubiquitin moieties
on specific mitochondrial outer membrane proteins such as
MFN1, MFN2, FIS1, and translocase of outer mitochondrial
membrane (TOMM) proteins, thus inducing their proteasomal
degradation, which in turn promotes mitochondrial fission
and mitophagy (Tanaka et al., 2010; Desai et al., 2018). The
phosphatase and tensin homolog (PTEN)-long (PTEN-L) is
able to dephosphorylate (Ser65 of) both ubiquitin and Parkin,
which reduces the mitochondrial translocation of Parkin and
negatively regulates mitophagy (Wang et al., 2018). On the other
hand, the Parkin-mediated formation of ubiquitin chains on
mitochondrial outer membrane proteins or even PINK1 itself
can recruit ubiquitin-binding adaptor proteins such as optineurin
(OPTN) and Calcium Binding And Coiled-Coil Domain 2
(CALCOCO2, better known as NDP52) onto mitochondrial
surfaces, followed by the assembly of autophagy factors on Parkin
and ubiquitin-marked mitochondria (Wong and Holzbaur, 2014;
Lazarou et al., 2015). Ubiquitination of sperm mitochondria
in both Caenorhabditis elegans and mammalian systems serves
as “eat me” signal for their elimination by receptor-mediated
mitochondrial degradation (Sutovsky et al., 1999; Molina et al.,
2019). Both mitochondrial E3 ubiquitin protein ligase 1 (MUL1)
and Parkin are necessary to remove paternal mitochondria from
mouse embryos via mitophagy to ensure maternal mitochondrial
inheritance (Rojansky et al., 2016).

Moreover, deubiquitinases play a crucial role in modulating
the efficiency of PINK1 and Parkin-mediated mitophagy. Thus,
ubiquitin-specific peptidase 8 (USP8) directly deubiquitinates
Parkin and removes non-canonical Lys6-linked ubiquitin chains
from Parkin, thereby promoting its translocation to depolarized
mitochondria. In contrast to USP8 (Durcan et al., 2014),
USP15 deubiquitinates the mitochondrial substrates of Parkin
to inhibit mitophagy (Cornelissen et al., 2014). Recently, several
deubiquitinases such as USP30, USP35, and USP33 were
reported to antagonize Parkin-mediated ubiquitination and thus
oppose Parkin-mediated mitophagy (Bingol et al., 2014; Wang
et al., 2015; Niu et al., 2019). In addition, PINK1 and Parkin
have been suggested to be required for mitochondria-derived
vesicle (MDV)-dependent mitophagy such that vesicles budding
from mitochondria under oxidative stress can be delivered to
the lysosomes independent of LC3 (Soubannier et al., 2012;
McLelland et al., 2014).

Mitophagy Receptor Pathway
Several mitophagy receptors have been identified in mammalian
cells, significantly advancing the field of both mitochondrial and
selective autophagy. Mitophagy receptors in mammalian cells are
characterized by the presence of at least one LC3 interacting

region (LIR) that can directly bind to the autophagy mediator
LC3 to recruit autophagosomes to mitochondria.

BCL2 interacting protein 3 like (BNIP3L, better known
as NIX) was identified as an essential mitophagy receptor
for the autophagic clearance of mitochondria during the
maturation of erythroid cells (Sandoval et al., 2008). Recently,
the phosphorylation of the LIR domain of NIX was shown to
further enhance the affinity of the interaction between NIX and
LC3 (Rogov et al., 2017). Moreover, BCL2 interacting protein 3
(BNIP3), a homolog of NIX, was found to mediate mitophagy in
conditions of hypoxia (Quinsay et al., 2010).

We have discovered that FUNDC1 acts as an important
mitophagy receptor, whose function is regulated by its
phosphorylation state (Liu et al., 2012). Structural analysis
revealed the functional importance of the close proximity
of Tyr18 of FUNDC1 with Asp19 of LC3. Consistently,
phosphorylation of Tyr18 of FUNDC1 via SRC proto-oncogene,
non-receptor tyrosine kinase (SRC) kinase significantly weakens
its binding affinity for LC3 due to electrostatic repulsion in vitro
(Kuang et al., 2016). The dephosphorylation (of Ser13) of
FUNDC1 can promote mitophagy by recruiting Drp1 while
dissociating it from OPA1, thus inducing mitochondrial fission
(Chen et al., 2016).

Other mitophagy receptors have been reported such as BCL2
Like 13 (BCL2L13) (the functional homolog of ATG32 in
mammals) (Otsu et al., 2015), FKBP prolyl isomerase 8 (FKBP8)
(Bhujabal et al., 2017), NLR family member X1 (NLRX1)
(Zhang Y. et al., 2019), autophagy and Beclin 1 regulator 1
AMBRA1 (Strappazzon et al., 2015), as well as the mitochondria
inner membrane protein prohibitin 2 (PHB2) (Wei et al.,
2017). All of them were found to interact with LC3 via the
conserved LIR motif to mediate mitophagy when mitochondria
become damaged. However, the molecular regulation and their
cooperation in response to mitochondrial stresses are not
completely understood. Moreover, mitophagy receptors are not
limited to proteins, as certain types of lipids such as cardiolipin
and ceramide have been reported to interact with LC3 and to
mediate mitophagy (Sentelle et al., 2012; Chu et al., 2013).

The Interplay Between Mitochondrial
Dynamics and Mitophagy
Distinct molecular machineries have been identified to regulate
mitochondrial fission and fusion. In mammalian cells, the
GTPase MFN1, MFN2, and OPA1 mediate the fusion of the
outer and inner membranes of mitochondria, respectively.
Mitochondrial fission is regulated by Drp1 that normally
resides in the cytosol and is recruited to mitochondria by
mitochondrial fission factors such as FIS1, MFF, MIEF1, or
MIEF2 (Mishra and Chan, 2014). ER tubules, which are in
contact with mitochondria, play an active role in the initial
step of mitochondrial division and mediate mitochondrial
constriction before Drp1 recruitment (Friedman et al., 2011).
At the final step of mitochondrial division, the Drp1-mediated
constriction promotes dynamin-2 (DNM2) assembly, which can
induce membrane fission to complete division (Lee et al., 2016).
In response to bioenergetic crisis and oxidative stress, these
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mediators of mitochondrial dynamics are posttranslationally
modified to fine-tune their activities. Phosphorylation of
Drp1 by protein kinase A (PKA, also known as cAMP-
dependent protein kinase) at Ser637 (Chang and Blackstone,
2007) and Ser656 (Cribbs and Strack, 2007) inhibits Drp1,
resulting in mitochondrial elongation, while dephosphorylation
of Drp1 at Ser65 by the calcium-dependent protein phosphatase
calcineurin or by protein phosphatase 2A (PP2A) enhances
mitochondrial fragmentation (Cribbs and Strack, 2007). Another
report suggested that Drp1 is phosphorylated at Ser616
by the cyclin-dependent kinase 1 (CDK1)/cyclin B complex
during mitosis (Taguchi et al., 2007; Marsboom et al., 2012).
The phosphorylation of the Drp1 receptor MFF by energy-
sensing adenosine monophosphate (AMP)-activated protein
kinase (AMPK) results in the recruitment of Drp1 and final
mitochondrial fragmentation (Toyama et al., 2016). Other Drp1
modifications include S-nitrosylation (Cho et al., 2009) and
ubiquitination by MARCH5 to mediate mitochondrial division
(Karbowski et al., 2007) or by Parkin to inhibit mitochondrial
fission (Wang et al., 2011).

The mitochondrial fusion molecule MFN1 can be
phosphorylated by extracellular regulated kinase (ERK) at
Thr562 to inhibit fusion (Pyakurel et al., 2015), ubiquitinated
by MARCH5 (Park et al., 2014), and deubiquitinated by USP30
(Yue et al., 2014) to regulate protein stability and fusion activity,
while MFN2 can be phosphorylated by mitogen-activated
protein kinase 8 (MAPK8 better known as JNK) at Ser27 and
ubiquitinated for degradation by HUWE1 (Leboucher et al.,
2012), Parkin (Gegg et al., 2010), and MARCH5 (Sugiura
et al., 2013), and deubiquitinated by USP30 (Yue et al., 2014).
During mitophagy, MFN2 also functions as a mitochondrial
receptor for the PINK1-dependent recruitment of Parkin. PINK1
phosphorylates MFN2 at Thr111 and Ser442 to promote the
recruitment of Parkin to depolarized mitochondria (Chen
and Dorn, 2013). OPA1 can be proteolytically processed by
mitochondria-resident proteases, including YME1-like 1 ATPase
(YME1L) (Griparic et al., 2007) and zinc metallopeptidase
(OMA1) (Head et al., 2009), in response to intra-mitochondrial
signals, to regulate fusion of the inner mitochondrial membrane.

It was suggested that mitochondrial fission is necessary
for mitochondrial degradation by mitophagy because fission
enables the separation of depolarized mitochondria from
the mitochondrial network and allows their engulfment by
autophagosomes. Mitochondrial stress-induced mitophagy is
accompanied by enhanced mitochondrial fission. The inhibition
of mitochondrial fission processes by overexpression of dominant
negative Drp1K38A or knockdown of FIS1 decreases mitophagy
and leads to the accumulation of oxidized mitochondrial proteins
(Twig et al., 2008). In agreement with this, mitophagic players
were found to regulate mitochondrial dynamics. Thus, Parkin
is able to ubiquitinate MFN1 and MFN2 to promote their
degradation, leading to increased fragmentation of mitochondria
(Gegg et al., 2010). Our early work showed that Parkin also
ubiquitinates and degrades Drp1 (Wang et al., 2011). This may be
counterintuitive, as degradation of Drp1 prevents mitochondrial
fragmentation. It is possible that under homeostatic conditions,
Parkin monitors the molecular status of Drp1 to prevent

mitochondrial fragmentation, and upon stress conditions,
Parkin translocates to mitochondria to promote mitochondrial
fragmentation and mitophagy.

Mitophagy receptors such as FUNDC1 and BNIP3 were found
to promote mitochondrial fission in response to stress (Landes
et al., 2010; Chen et al., 2016). FUNDC1 directly interacts and
recruits Drp1 toward mitochondria for mitochondrial fission.
Interestingly, FUNDC1 is a transmembrane protein with a motif
that faces the mitochondrial intermembrane space and directly
interacts with OPA1 to promote mitochondrial fission.

It was noted that mitochondrial fission is necessary, but
not sufficient for mitophagy. Reports suggested that Drp1-
mediated mitochondrial fission was dispensable for mitophagy
(Song et al., 2015; Yamashita et al., 2016). We have found that
mitochondrial targeting of the LIR-containing cytosolic portion
of FUNDC1 is sufficient to induce mitophagy even in the
absence of mitochondrial fragmentation, when phosphorylation
of Tyr18 is blocked (Kuang et al., 2016). Recently, by using
structure illumination microscopy (SR-SIM), Xian et al. (2019)
observed that the overexpression of the SNARE protein syntaxin
17 (STX17) initiated mitophagy in FIS1-depleted cells but not in
other mitochondria dynamic factors-silenced cells. They further
demonstrated that FIS1 negatively regulated STX17 by inhibiting
its trafficking to mitochondria-associated membranes (MAMs)
and mitochondria independent of mitochondrial dynamics (Xian
et al., 2019). In summary, a sensitive reaction to various types
of stress mitochondrial fragmentation at early stages facilitates
segregation and clearance of dysfunctional mitochondria from
the mitochondrial network for maintaining mitochondrial and
cellular homeostasis.

Mitochondrial Dynamics and Cell Death
Mitochondria in mammalian cells sense apoptotic stress, mainly
through BCL2 and its family proteins, ultimately leading to
MOMP and the subsequent release of cytochrome c and other
apoptogenic factors for the activation of the caspase cascade
governing apoptotic cellular disintegration. The BCL2 protein
family is composed of antiapoptotic molecules including BCL2,
BCL-xL, MCL1, and proapoptotic molecules such as BCL2
associated X (BAX), BCL2 antagonist/killer 1 (BAK), and BH-
3-only subfamily proteins such as such as BIM, BAD, NOXA,
and BID (Doerflinger et al., 2015). In healthy cells, BAX and
BAK1 are blocked by antiapoptotic proteins such as BCL2, BCL-
xL, and MCL1, which contain four BH motifs (BH1–4). The
BH3-only proteins can induce apoptosis by direct interaction
with BAX and BAK or by binding to antiapoptotic members and
thus neutralizing the inhibitory sequestration of BAX and BAK
(Chen et al., 2005; Chipuk et al., 2010). The antiapoptotic protein
BCL-xL interacts with BAX to continuously retro-translocate
mitochondrial BAX into the cytosol and keep it from integrating
into the mitochondrial outer membrane (Edlich et al., 2011). In
apoptotic cells, BAX and BAK oligomerization triggers MOMP
and initiates the caspase cascade ultimately leading to cell death
(Tait and Green, 2010).

Emerging evidence indicates that the mechanisms governing
mitochondrial dynamics are also involved in the regulation of
apoptotic processes. Inhibition of mitochondrial fission reduces
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cytochrome c release and apoptosis (Frank et al., 2001; Cereghetti
et al., 2010). On the contrary, the dephosphorylation of Drp1
at Ser637 by the phosphatase calcineurin promotes Drp1-
mediated mitochondrial fragmentation and leads to apoptosis
(Cereghetti et al., 2010). Drp1-dependent mitochondrial fission
through MIEF2 facilitates apoptotic cristae remodeling during
the early phase of intrinsic apoptosis (Otera et al., 2016), and
moreover, Drp1 can stimulate truncated Bid (tBID)-induced Bax
oligomerization and cytochrome c release by promoting tethering
and hemifusion of membranes. Dephosphorylation of Drp1 by
the mitochondrial phosphatase PGAM5 can facilitate necroptosis
by enhancing mitochondrial fission (Wang et al., 2012). However,
other reports have shown that blocking mitochondrial fission
can just delay but does not block apoptosis (Parone et al., 2006;
Rolland and Conradt, 2010; Clerc et al., 2014).

On the other hand, BCL2 family members can affect the
morphology of mitochondria. In healthy cells, BAX and BAK
are required for mitochondrial fusion (Karbowski et al., 2006).
Mitochondria are fragmented and have less network continuity
in cells lacking BAX and BAK. The interaction between BAX and
MFN2 activates the assembly of the MFN2 complex and changes
its membrane mobility and distribution. However, the activation
of pro-apoptotic BAX and BAK promotes the fragmentation
of the mitochondrial network during apoptosis (Autret and
Martin, 2009; Montessuit et al., 2010), which is not inhibited
by the expression of BCL-xL, MCL1, or other members of
the BCL2 subfamily (Sheridan et al., 2008). BAX and BAK
form foci that colocalize with ectopic MFN2 and Drp1 at the
sites of mitochondrial division to promote mitochondrial fission
during apoptosis (Karbowski et al., 2002). Furthermore, BCL-
w, an antiapoptotic BCL2 family member, was proposed to
regulate mitochondrial fission in Purkinje cell dendrites (Liu
and Shio, 2008). BCL-xL overexpression induces the remodeling
of the mitochondrial network by altering the relative rates of
mitochondrial fusion and fission (Delivani et al., 2006; Li et al.,
2008). In neuronal cells, overexpression Bcl-xL can increase
the rates of both fission and fusion and mitochondrial biomass
(Berman et al., 2009). Other studies found that, in hippocampal
neurons, BCL-xL increases synapse dynamics and the localization
of mitochondria to synapses and vesicle clusters via a Drp1-
dependent manner (Li et al., 2013). Alternatively BCL-xL can
interact with Drp1 to function in mitochondrial fission during
neuronal development (Li et al., 2008). Although the mechanisms
of action require further clarification, these findings demonstrate
that the BCL2 protein family indeed orchestrates mitochondrial
morphology and apoptosis.

Mitophagy and Cell Death
The BCL2 family was initially recognized for their function
in apoptosis, and is now widely proven to also have other
roles in cellular function involving mitochondrial dynamics,
autophagy/mitophagy, and cellular metabolism. Early studies
have shown that the antiapoptotic protein BCL2 can interact
with Beclin 1 (BECN1) to inhibit autophagy (Pattingre
et al., 2005). Further analysis reveals that depending on its
phosphorylation status, BCL2 has dual roles in regulating
autophagy and apoptosis. It suggests that initial JNK1-mediated

BCL2 phosphorylation may promote cellular survival by
disrupting BCL2–BECN1 complexes and activating autophagy
(Wei et al., 2008a). At a point when autophagy is no longer
able to maintain survival, the phosphorylation of BCL2 serves
to inactivate its antiapoptotic function for progression of
regulated cell death (Wei et al., 2008b). Parkin-dependent
mitophagy is antagonized by BCL-xL and MCL1 in a BECN1-
independent manner. Specifically, BCL2 and BCL-xL suppress
Parkin translocation to depolarized mitochondria, while BH3-
only proteins (or BH3-only mimetics) can promote this process
(Hollville et al., 2014).

Several mitophagy receptors including BNIP3, NIX, and
BCL2L13 belong to the BCL2 family (Novak et al., 2010;
Hanna et al., 2012; Murakawa et al., 2015), highlighting an
intrinsic link of mitophagy with apoptosis. Apparently, these
BCL2 family proteins have dual roles in both apoptosis and
mitophagy. For example, BNIP3 and NIX can directly interact
with antiapoptotic BCL2 or BCL-xL, which antagonizes the
activation of proapoptotic BAX and BAK, to promote apoptosis
(Imazu et al., 1999; Dorn, 2010). As discussed above, NIX also
induces mitophagy via its interaction with LC-3, and enhanced
interaction of BNIP3 with Atg8 family members promotes pro-
survival mitophagy prior to cytochrome c release and apoptosis
(Zhu et al., 2013). It was also found that the mitochondrial
fragmentation is a prerequisite for BNIP3-induced mitophagy
in cardiac myocytes, and dominant negative Drp1K38E mutant,
or MFN1 overexpression inhibit BNIP3-induced mitochondrial
division and mitophagy (Lee et al., 2011). Similar to NIX,
BNIP3 induces the disintegration of elongated mitochondria into
numerous spherical particles, accompanied by the recruitment
of Drp1 to fragmented mitochondria in adult myocytes (Lee
et al., 2011). Moreover, BNIP3 can directly interact with OPA1,
promote the disassembly of OPA1 oligomers, and thus antagonize
its fusion activity in HeLa cells (Landes et al., 2010). Thus,
BCL2 family proteins act as general regulators of mitochondrial
dynamics and homeostasis, in addition to their role in apoptosis-
associated mitochondrial permeabilization.

Mitophagy was suggested to play a protective role in stress-
induced cell death and early studies showed that Parkin
strongly inhibits the translocation of BAX to mitochondria,
thus preventing apoptosis (Darios et al., 2003; Johnson
et al., 2012). Further studies revealed that Parkin is able to
directly ubiquitinate the apoptotic effector proteins such as
BAX and BAK, and the ubiquitination of BAK by Parkin
impairs its activation and the formation of oligomers to
suppress errant apoptosis (Bernardini et al., 2019). Parkin
suppression of BAX-dependent apoptosis will allow the effective
clearance of apoptotic mitochondria to limit their potential
pro-inflammatory effect (Bernardini et al., 2019). Parkin
suppression of apoptosis is likely the cellular context and
apoptosis inducer dependent. Studies from Seamus Martin’s
laboratory showed that upon mitochondrial depolarization,
the BCL2 family member MCL1 underwent rapid PINK1-
and Parkin-dependent polyubiquitination and degradation,
which sensitized cells toward apoptosis via opening of the
BAX and BAK-dependent pathway. Knockdown of BAX is
able to suppress Parkin-dependent apoptosis in HeLa cells
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(Carroll et al., 2014). It was also reported that NIX-mediated
mitophagy protects glioblastoma cells against hypoxia (Jung
et al., 2019). Furthermore, abrogating NIX- and FUNDC1-
mediated mitophagy during adult cardiac progenitor cells
(CPCs), differentiation leads to increased susceptibility to cell
death (Lampert et al., 2019).

In addition, there is certain evidence showing that mitophagy
plays an accelerative role in programmed cell death. Thus, LC3–
ceramide interactions provoked by ceramide treatment induce
mitophagy and can progress to autophagic cell death in human
cancer cells (Sentelle et al., 2012). Moreover, inhibition of
mitophagy and mitochondrial fission reduces cigarette smoke-
induced necroptosis in mice epithelial cells in vitro, and
in chronic obstructive pulmonary disease (COPD) in vivo
(Mizumura et al., 2014). Furthermore, in hippocampal neural
stem cells deprived of insulin, Parkin-mediated mitophagy is
necessary for autophagy-dependent cell death (Park et al.,
2019). Moreover, drug-induced mitochondrial dysfunction and
heme oxygenase 1 (HMOX1) overactivation synergize to trigger
lethal mitophagy in glioma cells, which is significantly blocked
by silencing of the mitophagy receptors BNIP3 and NIX
(Meyer et al., 2018).

We have found that BCL-xL, but not BCL2, strongly
suppresses FUNDC1-mediated mitophagy. BCL-xL interacts
with and inhibits the mitochondrial Ser/Thr phosphatase
PGAM5 to prevent the dephosphorylation of FUNDC1 (at
Ser13), thus further blocking hypoxia-induced mitophagy (Wu
et al., 2014). The functions of PGAM5 not only are limited to
the induction of mitophagy but also involve the regulation of
mitochondrial homeostasis (Figure 1). PGAM5 exists in an
equilibrium between a dimeric and a multimeric state, which

FIGURE 1 | The phosphatase PGAM5 regulates mitochondrial fate. The
phosphatase PGAM5 is a dimeric protein that can bind with and
dephosphorylate BCL-xL at Ser62, which increases its antiapoptotic function
and thus inhibits apoptotic cell death. Mitochondrial oxidative stress causes
the transformation of dimeric PGAM5 into a multimeric state that fails to bind
with BCL-xL, but instead interacts with and dephosphorylates FUNDC1 at
Ser13 to mediate mitochondrial fission and mitophagy. The dephosphorylation
of FUNDC1 cooperates with the phosphorylation of BCL-xL, aggravating cell
death when mitophagy is blocked.

is sensitive to oxidative stress. Dimeric PGAM5 binds with
and dephosphorylates BCL-xL in mitotically arrested cells,
thus exerting its antiapoptotic function in vitro and in vivo.
Mitochondrial oxidative stress enhances the multimerization of
PGAM5, resulting in its dissociation from BCL-xL. Liberated
multimeric PGAM5 dephosphorylates FUNDC1 to initiate
mitochondrial fission and mitophagy. When FUNDC1-
mediated mitophagy is blocked by the microtubule inhibitor
vinblastine, PGAM5 dephosphorylates FUNDC1 and mediates
mitochondrial fission that aggravates vinblastine-induced cell
death (Ma K. et al., 2019).

Mitophagy Is Balanced With
Mitochondrial Biogenesis for
Mitochondria Homeostasis
Mitophagy is balanced with mitochondrial biogenesis, together
defining mitochondrial turnover. Mitochondrial biogenesis is
a cellular process in which “new” mitochondria are produced,
depending on the cooperation of nuclear and mitochondrial
genome (Zhang and Xu, 2016). Mitochondrial biogenesis
preserves mitochondrial function and cellular homeostasis
(Rasbach and Schnellmann, 2007; Miwa et al., 2008; Gottlieb
and Carreira, 2010), while mitophagy mitigates the source of
oxidative stress that reduces the risk of apoptosis (Hickson-
Bick et al., 2008). The crosstalk between mitophagy and
mitochondrial biogenesis also allows cells to undergo metabolic
reprogramming during development and differentiation. Similar
to mitophagy, mitochondrial biogenesis is highly variable and
tightly regulated in response to diverse stimuli such as energy
demand, cell cycle, and intracellular stress (Zhang and Xu,
2016). Many cellular signaling pathways converge on the
regulation of both mitophagy and mitochondrial biogenesis
such as the mammalian target of rapamycin (mTOR), which
regulates cellular growth and energy homeostasis in conditions
of nutrient stress (Dibble and Cantley, 2015; Vyas et al.,
2016). The mTOR signal pathway can transcriptionally and
translationally regulate mitochondrial biogenesis. Thus, mTOR
controls mitochondrial function through the modulation of
PPARG coactivator 1 alpha (PGC1α) transcriptional activity
(Cunningham et al., 2007) and ablation of PPARGC1B (PGC1β)
is associated with the constitutive activation of mTORC1
(Camacho et al., 2012). At the transcriptional level, it can mediate
the activation of PGC1α, which is a key transcriptional co-
activator regulating mitochondrial biogenesis via its interaction
with a variety of transcription factors (Morita et al., 2015). Similar
to mTOR, the hypoxia-inducible factor 1 subunit alpha (HIF1A)
signaling in response to limited oxygen availability can impinge
on mitochondrial biogenesis, mitophagy, and mitochondrial
metabolism through regulation of PGC1α (LaGory et al., 2015).

mTORC1 phosphorylates UNC-51 like autophagy activating
kinase 1 (ULK1) and 2 (ULK2) and disrupts the interaction
between ULK1 and protein kinase AMP (AMPK), leading to
the inhibition of autophagy and mitophagy when nutrient
levels are sufficient. Under nutrient starvation, ATP depletion
leads to serine/threonine kinase 11 (LKB1)-mediated AMPK
activation (Garcia and Shaw, 2017), which in turn leads to the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 June 2020 | Volume 8 | Article 467109

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00467 June 22, 2020 Time: 18:0 # 7

Ma et al. Mitophagy and Cell Fate Determination

phosphorylation of ULK1 to initiate autophagy and mitophagy
(Kim et al., 2011; Tian et al., 2015). Tuberous sclerosis complex
(TSC1/2) is an inhibitor of the mTOR signaling pathway.
In TSC1/2-deficient neurons, axonal and global mitophagy is
impaired and mitochondrial homeostasis can be restored by
blocking mTORC1 (Ebrahimi-Fakhari et al., 2016). Moreover,
TSC2-deficient cells exhibit constitutive mTOR activation,
impaired autophagic flux, and accumulation of damaged
mitochondria, which associates with reduced PINK1 expression
and Parkin mitochondrial translocation to mitochondria. These
data link mTOR signaling to PINK1-Parkin-mediated mitophagy
(Bartolome et al., 2017).

Hypoxia-induced mtROS can activate HIFs leading to
the upregulation of target genes, including the mitophagy
receptor BNIP3 (Bell et al., 2007; Chourasia and Macleod,
2015). As a feedback mechanism, BNIP3-mediated mitophagy
reduces the generation of mtROS, which in turn can stabilize
HIF1A (Chourasia and Macleod, 2015). Nevertheless, ROS
can also activate JNK–PGC1α signaling pathway to promote
mitochondrial biogenesis and the expression of genes involved in
OXPHOS (Chae et al., 2013). Increased mtROS was also found to
promote cellular proliferation by activating NF-κB (Guha et al.,
2010). Recently, we found that a hypoxic microenvironment can
induce siah E3 ubiquitin protein ligase 2 (SIAH2)-dependent
ubiquitination and subsequent proteasomal degradation of
nuclear respiratory factor 1 (NRF1), a transcription factor crucial
for mitochondrial biogenesis. In conditions of cancer, this
signaling axis alters the level of mitochondrial biogenesis and
is involved in metabolic adaptations finally maintaining tumor
progression (Ma B. et al., 2019).

MITOCHONDRIAL QUALITY CONTROL
IN IMMUNE RESPONSES

The innate and adaptive immune systems are able to sense
pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) arising from exogenous
clues including bacteria, virus, fungi, and parasites, as well
as endogenous entities such as cancer cells and to mount
defensive immune responses. Mitochondria have emerged as
central organelles contributing to immune response at multiple
levels, such as adaptations of mitochondrial metabolism,
dynamics, biogenesis, and mitophagic turnover. Mitochondrial
DNA (mtDNA), once released into the cytoplasm, acts as
intrinsic DAMP, which can be sensed by toll-like receptor 9
(TLR9) and triggers nuclear factor kappa B (NF-κB) signaling
in human polymorphonuclear neutrophils (Zhang et al., 2010).
Moreover, mtDNA activates the NLRP3 inflammasome, which
in turn boosts the production of cytokines such as IL18 and
IL1β induces pyroptosis in immune cells (Liu et al., 2018).
Furthermore, cellular mtDNA activates the STING pathway
via cGAS and leads to the expression of IRF3-dependent
genes such as type I interferons and participates to antiviral
immune responses (West et al., 2015). Interestingly, live-
cell lattice light-sheet microscopy observed mouse embryonic
fibroblasts result has shown that BAK/BAX form macropores

after activation and allowed mitochondrial matrix components,
including the mtDNA releasing into the cytosol (McArthur et al.,
2018). In addition, evidence has shown that mtROS enhances
the NLRP3 inflammasome activation and upregulates NF-κB
signaling. Mitophagy counteracts chronic inflammation via the
elimination of damaged mitochondria, which are the major
sources of mtDNA and ROS.

Parkin-mediated mitophagy restrains excess ROS and
cytosolic mtDNA, and inhibits NLRP3 inflammasome activity
in macrophages and favors tissue repair via a NF-κB and
sequestosome 1 (SQSTM1, better known as p62)-dependent
mitophagic pathway (Zhong et al., 2016). Intriguingly, Parkin
is cleaved by caspase-1 to limit mitophagy and resultant
excess inflammation (Yu et al., 2014). Defective mitophagy
leads to the upregulation mRNA levels of inflammasome-
related proteins in primary hepatocytes under palmitic acid
treatment and in a murine model of NASH (Zhang N. P. et al.,
2019). Defects in mitophagy arising from deletion, mutation,
or silencing of mitophagy receptors, such as NIX, Parkin,
and p62, lead to mitochondrial dysfunctions and have been
linked to inflammasome activation and cancer (Drake et al.,
2017). Likewise, ablation of FUNDC1 causes the inhibition of
mitophagy and increases the accumulation of dysfunctional
mitochondria, which in turn results in inflammasome activation
and inflammatory responses that can promote hepatocyte
tumorigenesis in vivo (Li et al., 2019). Listeria monocytogenes
can induce mitophagy in macrophages to evade host immune
response. Mechanistically, Nod-like receptor (NLR) family
member X1 (NLRX1), a novel mitophagy receptor located at the
mitochondria, directly interacts with LC3 via its LIR motif, thus
contributing to the induction of mitophagy for the elimination
of ROS, and maintains the survival of L. monocytogenes (Zhang
Y. et al., 2019). Furthermore, interleukin 10 (IL-10), an anti-
inflammatory cytokine that promotes mitophagy, leads to a
decrease in the activation of the NLRP3 inflammasome and the
production of IL-1β in macrophages (Ip et al., 2017).

The mitochondrial outer membrane is a platform for MAVS-
mediated innate immune responses, which are activated by the
viral RNA sensors RIG-I-mediated signaling cascade culminating
in the activation by NF-κB and IRF3 (Seth et al., 2005).
Alternatively, MAVS can oligomerize upon sensing mtROS
independent of RIG-I to facilitate the production of type I
interferon (Buskiewicz et al., 2016). Intriguingly, MAVS has been
found to contain a LIR motif and act as a potential receptor for
mitophagy (Sun et al., 2016). Furthermore, the ubiquitination
of MAVS by ring finger protein 34 (RNF34) causes NDP52-
associated mitophagy to mitigate innate immune response upon
viral infection (He et al., 2019).

BCL2 family regulated mitochondria-dependent cell death
has also been reported to play an important role in innate and
adaptive immune responses. One of the therapeutic strategies
to Legionnaires’ disease is the pharmacological inhibition of
BCL-xL. Inhibition of BCL-xL can induce the apoptosis of
macrophages infected with virulent Legionella and thus abrogate
Legionella replication and disease progression in mice (Speir
et al., 2016). Additionally, it is well known that activated T cells
will undergo cell death once the antigen has disappeared. This
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mechanism is triggered by the BCL-xL- and BCL2-mediated
release of pro-apoptotic BAX and BAK or the fact that BCL-
xL without its unstructured loop, which cannot bind to any
form of BAX and BAK, binds BIM less well than wild-type
BCL-xL and thus sensitizes T cells to the induction of regulated
cell death (Liu et al., 2006). Overall, more and more evidence
demonstrates that mitochondrial quality control mechanisms
regulate essential functions in immune cell and are important
in controlling immune responses. Mitophagy plays a protective
role in cellular homeostasis to negatively regulate innate immune
response, but a systematic drawing of this intricate relationship
has not been completed yet due to its complexity.

DYSREGULATION OF MITOCHONDRIAL
HOMEOSTASIS IN AGING AND
AGING-RELATED DISEASES

Aging increases the risk for the onset of various chronic diseases
often associated with the accumulation of mtDNA mutations,
altered mitochondrial mass, compromised mitochondrial
functions, chronic immune activation, and accelerated cell death.
These pathogenic manifestations are likely due to dysregulated
mitochondrial dynamics and mitochondrial quality control
mechanisms, leading to the accumulation of dysfunctional
mitochondria, which enhances both chronic immune activation
(through the release of mtDNA and ROS) and mitochondrial
apoptosis (through the liberation of apoptogenic factors). There
is emerging evidence that compromised mitophagy causes aging,
while enhancing mitophagy by caloric restriction and physical
exercises increases healthy life span. Thus, the reduction of
mitophagy has been suggested as areas on for the accumulation
of mitochondria in aged C. elegans (Palikaras et al., 2015), and
the induction of mitophagy results in life span extension in
this model (Ryu et al., 2016). Overexpression of the Drosophila
PGC-1 homolog (dPGC-1/spargel) increases mitochondrial
activity, and intestinal stem cell (ISC) lineage-specific expression
of dPGC-1 leads to an extended life span in Drosophila
melanogaster (Rera et al., 2011). Physical exercise caused the
activation of AMPK that leads to ULK1 phosphorylation and
enhanced mitophagy in skeletal muscle, which in turn promotes
mitochondrial turnover and improves general health in murine
models (Laker et al., 2017).

Mitochondrial dysfunction is a common pathogenic factor for
neurodegenerative disorders. Mitochondria supply ATP, generate
mtROS, and regulate calcium homeostasis, all of which affect
neuronal cell physiology. Aberrations in mitochondrial ROS
and Ca2+ homeostasis have been implicated in Parkinson’s
disease (PD) (Ludtmann and Abramov, 2018). Both elevated
cytosolic Ca2+ levels and mitochondrial ROS are pathological
hallmarks of PD. Thus, PINK-1 deficiency in midbrain
neurons leads to mitochondrial Ca2+ overload in response
to dopamine, which further promotes ROS production and
neuronal cell death (Gandhi et al., 2009). The loss of
mitochondrial fission factor (MFF) increases mitochondrial
size and mitochondrial Ca2+ uptake during neurotransmission,
thus affecting neurotransmitter release and neuronal fitness

(Lewis et al., 2018). Production of mtROS caused by damaged
mitochondria in mice microglia promotes the secretion of
pro-inflammatory cytokines and results in neurodegeneration
(von Bernhardi et al., 2015). Furthermore, the accumulation
of Ca2+ and ROS in the mitochondria triggers mitochondrial
permeability transition pore (mPTP) opening, subsequently
releasing cytochrome c and other pro-apoptotic intermembrane
space proteins into the cytosol (Hunter and Haworth, 1979). It
needs to be noted that BCL2 family proteins are involved in the
regulation of Ca2+ dynamics of the ER and the mitochondria
(Vervliet et al., 2016). For instance, a fraction of NIX is localized
at the conjunction between mitochondria and the ER to regulate
ER and mitochondrial Ca2+ homeostasis (Diwan et al., 2009).
In addition, the upregulation of NIX in cardiac hypertrophy was
associated with the apoptotic death of cardiomyocytes (Yussman
et al., 2002). Altogether, mitochondrial quality control appears
crucial for protecting neurons from damage and death.

It has been well established that compromised mitophagy
contributes to the pathogenesis of Parkinson’s disease, and
enlarged or swollen mitochondria have been observed in several
disease models and in the brains of Parkinsonian patients.
Mutations in PINK1 and Parkin are involved in rare familial cases
of Parkinson’s disease (PD) (Kitada et al., 1998; Valente et al.,
2004). PGAM5 deficiency disables PINK1-mediated mitophagy
in vitro and causes a Parkinson’s-like phenotypes in mice model
(Lu et al., 2014; Sekine et al., 2016). It is still puzzling that
Parkin knockout mouse does not completely recapitulate PD
phenotype. When Parkin knockout mouse was crossed with
mouse that harbors high mtDNA mutation, the accumulation of

FIGURE 2 | Mitochondrial homeostasis and cell fate. Mitochondria are
dynamic organelles that constantly divide and fuse in healthy cells and
mitochondrial biogenesis and mitophagy cooperate to maintain mitochondrial
quality. Mitochondrial fission usually is a prerequisite for ubiquitin- and
receptor-mediated mitophagy facilitating the removal of aged and damaged
mitochondria. Severe stress-induced mitochondrial damage can lead to
mitochondria outer membrane permeabilization (MOMP) that in turn triggers
apoptosis. The clearance of depolarized mitochondria by mitophagy (before
MOMP occurs) mitigates this process. Besides, mitophagy reduces the
production of mtROS and the cytosolic secretion of mtDNA, which further
prevents excess immune response.
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mutated mtDNA in neuronal cells was observed, but these mice
does not have much increase of mitochondrial mass (Gautier
et al., 2008; Stevens et al., 2015; Pinto et al., 2018). Studies
using the recently developed mitophagy reporter mice and
Drosophila also show that mitophagy is rather constitutive and
is minimally impacted by loss of PINK1 or Parkin (McWilliams
et al., 2016; Whitworth and Pallanck, 2017; Lee et al., 2018;
McWilliams et al., 2018), suggesting that additional factors are
required in the absence of PINK1 or Parkin. Mitophagy has
been implicated with disease progression in Alzheimer’s disease
(Witte et al., 2009; Wilhelmus et al., 2011). Thus, Alzheimer’s
disease phenotype-related accumulation of mutant amyloid beta
precursor protein (APP) induces Parkin-dependent mitophagy in
cultured human neurons and in the brain of Alzheimer’s patients
(Ye et al., 2015). Recent studies showed that Tau pathology,
another hallmark of Alzheimer’s disease, impairs mitophagy by
inhibiting Parkin translocation to mitochondria (Cummins et al.,
2019). These studies indicate that insufficient mitophagy might
be the cause for the accumulation of damaged mitochondria
in Alzheimer’s disease-affected neurons. Conversely, there are
arguments that mitophagy improves the neuropathology of
Alzheimer’s disease and reverses cognitive deficits in animal
models (Kerr et al., 2017).

Moreover, recent studies have suggested that the loss of
mitophagy regulators is closely linked to cardiovascular disease.
Thus, Parkin-mediated mitophagy is required for the metabolic
transition in the perinatal murine heart (Gong et al., 2015).
Deletion of PINK1, Parkin, or other mitophagy receptors
such as FUNDC1, BNIP3, or NIX leads to the accumulation
of dysfunctional mitochondria and results in various heart
defects involved in exacerbated ischemia/reperfusion injury
and cardiomyopathy (Dorn, 2010; Kubli et al., 2013; Zhang
et al., 2016). Consistently, impaired PINK1 and Parkin-mediated
mitophagy affected by Parkin deficiency or mutations in MFN2
results in the retention of fetal cardiac mitochondria, reduced
oxidative metabolism, heart failure, and premature death (Chen
and Dorn, 2013; Gong et al., 2015), highlighting that mitophagy
underlies mitochondrial plasticity and metabolic transitioning in
developing cardiomyocytes.

SUMMARY AND FUTURE
PERSPECTIVES

Mitochondria are highly plastic organelles that adapt to cellular
and environmental stress and developmental cues by changes
in their morphology and their overall mass. Changes in the
mitochondrial behaviors are regulated by distinct but interlinked
molecular machineries that control mitochondrial dynamics
(fission, fusion) and mitochondrial homeostasis (mainly through

biogenesis and mitophagy), collectively allowing the graded
response to stress (Figure 2). BCL2 family proteins, and in
particular BCL-xL, act as global regulators of mitochondrial
homeostasis and quality control through their interaction with
various partners including DRP1, MFN1/2, and PGAM5, that are
tightly controlled by reversible phosphorylation, acetylation, and
ubiquitination, thereby modulating mitochondrial behaviors and
cell fate. This is further exemplified by our recent finding that
the mitochondrial phosphatase, PGAM5 exists in an equilibrium
between a dimeric and a multimeric state to dephosphorylate
FUNDC1 and BCL-xL, respectively, to switch on/off mitophagy
and apoptosis. Further research is needed to explore the (patho-)
physiological roles of this molecular switch in response to
environmental and cellular stresses.

By removing the damaged and unwanted mitochondria,
mitophagy is essential for mitochondrial quality control
and homeostasis. As discussed above, almost all mitophagy
players including both receptor-dependent pathway and
PINK1/Parkin pathway are found to regulate mitochondrial
dynamics and apoptosis. Furthermore, mitophagy not only
governs the mitochondrial quality and quantity, but also
controls mitochondrial dynamics and behaviors. Enhanced
mitophagy and mitochondrial turnover contributes to increased
mitochondrial function and cellular activity. Conversely,
the inhibition of mitophagy leads to accelerated aging and
the manifestation of aging-associated diseases. Moreover,
the accumulation of dysfunctional mitochondria, and the
associated release of mtDNA, the overproduction of mtROS,
and mitochondria-controlled apoptosis result in a chronic state
of immune activation, which is also the common etiology for
aging-associated neurodegenerative disease. We further suggest
that targeting mitophagy is an important strategy to fight
aging and aging-associated disease, which needs to be further
explored in the future.
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Mitochondria entail an incredible dynamism in their morphology, impacting death
signaling and selective elimination of the damaged organelles. In turn, by recycling the
superfluous or malfunctioning mitochondria, mostly prevalent during aging, mitophagy
contributes to maintain a healthy mitochondrial network. Mitofusins locate at the outer
mitochondrial membrane and control the plastic behavior of mitochondria, by mediating
fusion events. Besides deciding on mitochondrial interconnectivity, mitofusin 2 regulates
physical contacts between mitochondria and the endoplasmic reticulum, but also serves
as a decisive docking platform for mitophagy and apoptosis effectors. Thus, mitofusins
integrate multiple bidirectional inputs from and into mitochondria and ensure proper
energetic and metabolic cellular performance. Here, we review the role of mitofusins and
mitophagy at the cross-road between life and apoptotic death decisions. Furthermore,
we highlight the impact of this interplay on disease, focusing on how mitofusin 2 and
mitophagy affect non-alcoholic fatty liver disease.

Keywords: mitochondria, mitofusins, MFN2, mitophagy, apoptosis, NAFLD

INTRODUCTION

Mitochondrial biology has raised extensive research interest, thanks to its expanding roles in
tailored metabolic performance, in quality control responses, but also in inflammatory processes
and in cell death (Westermann, 2010; Nunnari and Suomalainen, 2012; Xiong et al., 2014; Angajala
et al., 2018; Pickles et al., 2018; Spinelli and Haigis, 2018; Figure 1). Mitochondria are double
membrane organelles, being its structure and biogenesis extensively described (Pfanner et al.,
2019). The outer membrane (OM) provides the first semi-permeable barrier to the cytoplasm. It
contains the protein and lipid receptors of mitophagy and is a critical determinant of cell death
triggers (Harper et al., 2018; Pickles et al., 2018; Xie et al., 2018; Sedlackova and Korolchuk,
2019). The OM also anchors the effectors of mitochondrial intraorganellar fusion and protein
complexes forming interorganellar contact sites. These sustain, for example, mitochondria and
endoplasmic reticulum (ER) exchanges, which are determinant for calcium (Ca2++) buffering
and phospholipid transfer (Marchi et al., 2017; Figure 1A). The inner membrane (IM), thanks
to its impermeability, maintains the proton motive force necessary for mitochondrial biogenesis
and energy conversion. By folding on itself, the IM creates invaginations called cristae, where the
mitochondrial oxidative phosphorylation system (OXPHOS) is located (Frey et al., 2002). Their
electron shuttling and proton pumping capacity sustains the mitochondrial membrane potential,
enabling the production of energy (Zhao et al., 2019). In addition to ATP production, the IM
is also in charge of phospholipid synthesis (Tatsuta and Langer, 2017). The different cristae are
spaced by IM portions lining parallel to the OM, called inner boundary membrane, being the
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FIGURE 1 | Mitochondrial roles in health and disease. (A) Despite the presence of an own DNA in the mitochondrial matrix (mtDNA), most mitochondrial proteins are
imported from the cytosol by two translocase complexes: the translocase of the outer membrane (TOM) and the translocase of the inner membrane (TIM).
Mitochondria are hubs for several cellular processes, such as iron-sulfur clusters (Fe-S) assembly, metabolite oxidation by the tricarboxylic acid (TCA) cycle and ATP
production via the oxidative phosphorylation chain (OXPHOS). Further, mitochondrial proximity to the endoplasmic reticulum (ER) regulates calcium (Ca2+) buffering
and phospholipid synthesis, e.g., cardiolipin (CL) and phosphatidylethanolamine (PE) from their ER precursors phosphatidic acid (PA), and phosphatidylserine (PS),
respectively. ER-mitochondrial contacts also regulate mitochondrial fission, by facilitating the recruitment of DRP1 to the mitochondria. In turn, mitochondrial fusion
requires the mitofusins MFN1 and MFN2 at the OM and OPA1 at the IM. (B) Mitochondrial function is kept in check by mitophagy, a quality control mechanism.
Mitophagy can occur dependently or independently of ubiquitin. The canonical ubiquitin-dependent PINK1/Parkin pathway initiates with the accumulation of the
kinase PINK1 at the OM, which recruits the E3 ligase Parkin. Ubiquitylation (U) of several OMM substrates (S) by Parkin and additional phosphorylation (P) of ubiquitin
and Parkin generates a positive feedback loop increasing Parkin activity. The ubiquitin chains formed on OM substrates bind to the lipidated autophagosome
receptor LC3, via receptors proteins (R). Mitochondria are then surrounded and engulfed by the autophagosome, which finally fuses with the lysosome for
degradation. The ubiquitin-independent mitophagy only requires the recognition of OM substrates (S) by lipidated LC3 directly via mitochondrial receptors (R).
(C) Mitochondria are directly involved in the initiation of apoptosis via the intrinsic apoptotic pathway. In this pathway, intrinsic death stimuli induce permeabilization of
the OM by oligomerization of the pro-apoptotic BCL-2 proteins BAX and BAK. Apoptotic molecules such as cytochrome c (c) are release form the IMS, activating the
apoptotic complex apoptosome. This complex is able to cleaved and thereby activate initiator caspases which, in turn, activate effector caspases.

connection points defined as cristae junctions. The inter
membrane space (IMS)–the small aqueous compartment
confined between both mitochondrial membrane-s is a signaling
hub reservoir, in both pro-survival and cell death responses. It
allows the accumulation of the protons released by the electron
transport chain and comprises cytochrome c (CytC) the high-
temperature requirement protein A2 (Htr2/Omi), the apoptosis
inducing factor (AIF), the second-mitochondria-derived

activator of caspases (Smac), the direct IAP-binding protein
with low PI (Diablo) and Endonuclease G, which differently
support mitochondrial metabolism (Herrmann and Riemer,
2010). However, once released from the mitochondria into the
cytoplasm, upon cristae opening, these pleiotropic proteins
convert into apoptosis initiators, pushing the cell toward a
deadly end (Snigirevskaya and Komissarchik, 2019). Besides
apoptosis, mitochondria are also recognized by regulating other
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types of cell death such as necroptosis, ferroptosis, pyroptosis,
and mitochondrial-mediated necrosis (Baines, 2010; Baker
et al., 2014; Marshall and Baines, 2014; Battaglia et al., 2020; Kai
et al., 2020; Wang et al., 2020; Wei et al., 2020). Finally, the IM
encloses the mitochondrial matrix, where essential reactions
take place, such as iron-sulfur cluster assembly (Cardenas et al.,
2018; Lill, 2020) or the tricarboxylic acid (TCA) cycle, which
feeds electrons to the respiratory chain and provides amino acid
precursors (Mailloux et al., 2007; Martínez-Reyes and Chandel,
2020). Finally, the matrix harbors the mitochondrial DNA and
respective transcription and translation machineries (Mazunin
et al., 2015; Figure 1A).

Mitochondria are constantly reshaped, by fusion and fission
events of the whole organelle, but also by alterations in cristae
organization, altering access of the IMS content to the OM
(Rampelt et al., 2017; Giacomello et al., 2020). Mitochondrial
adaptive morphology, through the shift in activity of its fission
and fusion machineries, is essential for their correct functioning
(Chan, 2012; Buck et al., 2016; Cantó, 2018; Tilokani et al., 2018;
Dorn, 2019; Whitley et al., 2019). It capacitates mitochondria
to respond to cellular cues both in healthy and stress situations
(Liesa and Shirihai, 2013; Mishra and Chan, 2016; Schrepfer
and Scorrano, 2016; Chen and Chan, 2017; Eisner et al., 2018;
Zemirli et al., 2018). While, for example, nutrient starvation
shifts the balance toward a tubular mitochondrial network
(Tondera et al., 2009; Gomes et al., 2011; Rambold et al.,
2011), loss of membrane potential and nutrient excess were
shown to induce mitochondrial fragmentation (Yu et al., 2006).
The mitochondrial morphology machinery is composed by
DRP1 (Dnm1 in yeast), responsible for fission, Mitofusin 1
and Mitofusin 2 (MFN1/MFN2) (Fzo1 in yeast), responsible
for OM fusion and OPA1 (Mgm1 in yeast), responsible for
IM fusion (Youle and van der Bliek, 2012; Tilokani et al.,
2018; Figure 1A). Recent developments highlighted novel
molecular determinants of mitochondrial ultrastructure
dynamics (Xie et al., 2018; Kondadi et al., 2019; Rastogi et al.,
2019; Snigirevskaya and Komissarchik, 2019). The fascinating
plasticity of mitochondrial morphology is also brought about
by post-translational modifications of the fusion and fission
components, including ubiquitylation, phosphorylation,
sumoylation, and proteolytic processing (Escobar-Henriques
and Langer, 2014; Hofer and Wenz, 2014; Macvicar and Langer,
2016; Mishra and Chan, 2016). The mitofusins MFN1 and
MFN2 are ubiquitylated by different E3 ligases, in response
to a big variety of stimuli, which tightly regulate their fusion
properties, mitochondria-ER contact sites, mitophagy and
apoptosis (Escobar-Henriques and Joaquim, 2019).

In sum, mitochondria are docking stations for cellular fitness
(Abate et al., 2019). By integrating external signals, which change
their metabolism, shape and signaling response properties,
mitochondria dictate life and death decisions. In turn, by
sequestering pro-apoptotic molecules that are only to be released
in the presence of death stimuli, mitochondria themselves must
be tightly regulated, to prevent undesired cell death. Thus,
elimination of dysfunctional mitochondria by mitophagy is
critical for cellular survival (Pickles et al., 2018; Allen and
Baehrecke, 2020; Markaki and Tavernarakis, 2020). Despite being

mostly pro-survival, mitophagy can also synergize with apoptosis
to instead promote cell death (Yee et al., 2010; Panda et al., 2018;
Ding et al., 2019; Han et al., 2019). Here, we discuss how the
mitochondrial fusion factors, mitofusins, impact on mitophagy
and apoptosis, present pro-survival and pro-apoptotic roles of
mitophagy and detail the roles of mitophagy and mitofusin 2 in
non-alcoholic fatty liver disease (NAFLD).

THE MITOFUSIN PROTEINS, MFN1 AND
MFN2

Mitofusin 1 and Mitofusin 2 are homologous conserved
transmembrane proteins, being mainly exposed to the cytosol
(Zorzano and Pich, 2006). They possess a GTPase domain at
the N-terminal and two hydrophobic heptad repeat domains,
separated by transmembrane anchor(s) (Hales and Fuller, 1997;
Rojo et al., 2002; Low et al., 2009; Qi et al., 2016; Cao
et al., 2017; Daste et al., 2018; Mattie et al., 2018; Yan L.
et al., 2018; Li et al., 2019). Despite having 77% of similarity,
their deletion differentially affects mitochondrial morphology
(Chen et al., 2003). While depletion of MFN1 leads to
highly fragmented mitochondria, organized in small fragments
dispersed throughout the cytosol, depletion of its homolog
MFN2 leads to bigger mitochondrial fragments that cluster
perinuclearly. However, overexpression of either Mfn1 or Mfn2
in single and double mitofusins knockout murine fibroblasts
leads to complete rescue of the mitochondrial morphology
phenotypes (Detmer and Chan, 2007). Although ubiquitously
expressed, MFN1 is mainly present in heart and testis, while
MFN2 is predominant in the brain and muscle tissues; in other
tissues, mitofusins present similar expression levels (Eura et al.,
2003; Santel et al., 2003). Murine homozygous deletion of Mfn1
or Mfn2 is lethal and double-knockout mice die even earlier
than single knockouts (Chen et al., 2003), suggesting that they
play non-redundant roles. Additionally, mice depleted for Mfn2
(but not for Mfn1) present placental defects within the giant
cell layer (Chen et al., 2007). If Mfn2 is only depleted after
placentation, it leads to cerebellar neurodegeneration (Chen et al.,
2007), highlighting different impact of these proteins according
to the developmental stage.

Although both mitofusins regulate mitochondrial fusion,
additional roles have been attributed to MFN2 (Chen and
Chan, 2017; Filadi et al., 2018; Mattie et al., 2019; Dorn, 2020).
MFN2 was proposed to regulate tethering and distance between
mitochondria and ER (De Brito and Scorrano, 2008; Cosson et al.,
2012; Filadi et al., 2015; Naon et al., 2016), controlling the Ca2+

exchange between both organelles (Rizzuto et al., 1998; Szabadkai
et al., 2006). Consistently, Mfn2 and ER-mitochondrial contacts
modulated Ca2+-dependent roles in vascular remodeling (Zhu
et al., 2017; Göbel et al., 2020). Moreover, mitochondria-ER
contact sites are essential for phospholipid transfer between the
two organelles (Kojima et al., 2016), being a direct role of MFN2
in lipid transfer recently proposed (Hernández-Alvarez et al.,
2019). However, it is still under debate under which conditions
Mfn2 acts as a spacer between both organelles, consistent with
decreased distance observed in its absence (Cosson et al., 2012;
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Filadi et al., 2015; Wang et al., 2015) or rather acts as an
ER-mitochondria tether (De Brito and Scorrano, 2008; Naon
et al., 2016; Basso et al., 2018; McLelland et al., 2018). MFN2
has also been extensively linked to mitophagy (Gegg et al.,
2010; Poole et al., 2010; Ziviani et al., 2010), to apoptosis
(Karbowski et al., 2002; Brooks et al., 2007; Hoppins et al., 2011),
as detailed below, and recently also to pyroptosis (Kai et al.,
2020) and ferroptosis (Wei et al., 2020). Furthermore, MFN2
is believed to play multiple roles in metabolism, explaining its
involvement in metabolic disorders such as obesity and diabetes
mellitus (Bach et al., 2005; Toledo et al., 2006; Sebastián et al.,
2012; Schneeberger et al., 2014; Boutant et al., 2017; Ramiréz
et al., 2017; Bell et al., 2019). MFN2 depletion leads to reduced
mitochondrial membrane potential, oxygen consumption rate
and mitochondrial proton leakage and impairs glucose, pyruvate
and fatty acid oxidation (Bach et al., 2003; Chen et al., 2005;
Pich et al., 2005; Mourier et al., 2015). Importantly, Mfn2 loss-
of-function represses nuclear-encoded subunits of OXPHOS
complexes I, II, III and V (Pich et al., 2005), independently of its
fusogenic role (Pich et al., 2005; Loiseau et al., 2007). Moreover,
mitofusins were shown to be required for mitochondrial DNA
(mtDNA) replication and nucleoid distribution (Chen et al.,
2010; Ramos et al., 2019). Both mitofusins have also been
associated with female fertility (Liu et al., 2016; Zhang et al.,
2019a,b). Mfn2 is important for oocyte and follicle development
(Liu et al., 2016) and both mitofusins are required for the
maintenance of the ovarian follicular reserve (Zhang et al.,
2019a,b). Regarding cell cycle progression, MFN2 overexpression
supressed cellular proliferation (Cheng et al., 2013) and MFN2
depletion increased it, dependent on the Ras-Raf-ERK signaling
pathway (Chen et al., 2014). The role of mitofusin 2 in controlling
cell proliferation possibly explains its link with cancer. Indeed,
MFN2 overexpression is able to slow the growth of different
cancer cell lines (Xie et al., 2015; Xu et al., 2017). Furthermore
and quite controversially, lack of MFN2 seems to equally impair
both stem cell self-renewal and differentiation capacity (Kasahara
et al., 2013; Fang et al., 2016; Khacho et al., 2016).

Mitofusin 1 and Mitofusin 2 have a clearly different biological
impact, perhaps explaining the inexistence of MFN1 mutations
causing human diseases. In contrast, more than a hundred
MFN2 mutations are known to cause the Charcot-Marie-Tooth
Type 2A (CMT2A) disorder (Stojkovic, 2016; Dohrn et al.,
2017), a subtype of the incurable peripheral neuropathy Charcot-
Marie-Tooth (CMT). CMT affects about 1 in 2500 people,
being the most common inherited neurological disease and is
characterized by progressive distal weakness, muscular atrophy,
and sensory abnormalities (Tazir et al., 2013; El-abassi et al., 2014;
Stuppia et al., 2015; Stojkovic, 2016; Barbullushi et al., 2019).
The restoration of mitochondrial fusion by either transgenic
overexpression of Mfn1 or by Mfn2 agonist molecules in murine
models led to reversion of some of the CMT2A defects (Rocha
et al., 2018; Zhou Y. et al., 2019). However, to date, the disease-
underlying functions of MFN2 in CMT2A remain elusive. So
far, reports have pointed to apoptosis resistance and increased
mitophagy, observed in iPSCs-derived CMT2A motor neurons
lines (Rizzo et al., 2016). Importantly, different CMT2A disease
mutant cell lines have displayed impaired ER-mitochondria

contacts, as well as ER stress, defective Ca2+ uptake and
phospholipid synthesis and transfer (Bernard-Marissal et al.,
2018; Larrea et al., 2019), pointing to a possible role of these
contact sites at the basis of CMT2A disease. Besides CMT2A,
MFN2 has been linked to a variety of diseases (Chandhok
et al., 2018; Filadi et al., 2018). The most described links are
with prevalent neuropathies such as Parkinson’s and Alzheimer’s
disease (Han et al., 2011; Lee et al., 2012; Stuppia et al., 2015; Gao
et al., 2017), cardiac dysfunction (Hall et al., 2014; Nan et al., 2017;
Dorn, 2018; Hernandez-Resendiz et al., 2020), type 2 diabetes,
obesity and insulin resistance (Zorzano et al., 2009; Dai and Jiang,
2019) and cancer (Allegra et al., 2019). Finally, MFN2 has also
been associated with progression of liver diseases such as acute-
on-chronic liver failure (ACLF) and NAFLD (Wang et al., 2013;
Hernández-Alvarez et al., 2019; Xue et al., 2019a,b) and proposed
as a possible therapeutic target for hepatic inflammation and
fibrosis (Zhu et al., 2020).

REGULATION OF MITOPHAGY BY
MITOFUSINS

Mitochondrial homeostasis is ensured by the coordination
between its biogenesis rate, enabling the replenishment of novel
healthy organelles, and the elimination of the superfluous or
damaged mitochondria by selective self-digestion, via mitophagy
(Harper et al., 2018; Pickles et al., 2018; Pfanner et al., 2019;
Allen and Baehrecke, 2020; Markaki and Tavernarakis, 2020).
Mitophagy requires the recognition of mitochondrial adaptors
by receptors on the autophagosome, the double membrane
autophagic vacuole responsible for engulfment of the material
to be degraded (Lahiri et al., 2019; Allen and Baehrecke,
2020; Figure 1B). Moreover, mitochondrial elimination requires
the ubiquitin-like modifier LC3 (Atg8), whose lipidated and
active form integrates into the autophagosome membrane.
LC3 is recognized by specific receptors, either present at the
mitochondrial OM, like Atg32, NIX and BNIP3, or instead
soluble at the cytoplasm and being recruited to the OM, like
Optineurin, NDP52, p62, NBR1, and TAX1BP1 (Geisler et al.,
2010; Narendra et al., 2010; Lazarou et al., 2015; Khaminets
et al., 2016; Mcwilliams and Muqit, 2017). In fact, these receptors
interact with both ubiquitin and LC3 interacting (LIR) motifs,
being therefore recruited to mitochondria by ubiquitylated
OM proteins. Once loaded with damaged mitochondria, the
autophagosome then fuses with the lysosome, forming the
autolysosome, where mitochondrial degradation takes place
(Allen and Baehrecke, 2020). Upon acute stress conditions,
fission and selective fusion were shown to facilitate segregation
and subsequent turnover of the damaged pieces (Twig et al.,
2008; Burman et al., 2017). Mitofusins have been extensively
implicated in mitochondrial quality control, mainly attributed
to their decisive role in mitochondrial length and their receptor
property for mitophagy effectors (Dorn, 2020).

The general ubiquitylation of OM proteins is one of the
early steps and a hallmark in mitophagy (Palikaras et al.,
2018; Wang Y. et al., 2019; Figure 1B). The most extensively
studied ubiquitin-dependent pathway is undertaken by the
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serine/threonine kinase PINK1 and by Parkin, a RING-between-
RING E3 ubiquitin ligase (Pickles et al., 2018). Under healthy
conditions, PINK1 is inactivated by proteasomal turnover. First,
PINK1 is imported through the TOM and TIM23 translocator
complexes (Lazarou et al., 2012; Sim et al., 2012; Sekine and
Youle, 2018). PINK1 is then constitutively cleaved by the
IM residing protease PARL, being its truncated soluble form
extracted back to the cytosol and degraded by the proteasome
(Yamano and Youle, 2013). However, upon mitochondrial stress,
decreased mitochondrial membrane potential prevents PINK1
import, consequently accumulating its full-length form at the
OM, exposing its kinase domain to the cytosol (Matsuda et al.,
2010; Vives-Bauza et al., 2010). Mitophagy is then initiated by
phosphorylation of ubiquitin molecules at serine 65 (Kane et al.,
2014; Koyano et al., 2014) and of Parkin (Shiba-Fukushima et al.,
2012; Figure 1A). This shifts Parkin to an active conformation,
fostering its recruitment to mitochondria and potentiating
ubiquitylation of OM proteins (Gegg et al., 2010; Poole et al.,
2010; Tanaka et al., 2010; Ziviani et al., 2010; Chan et al., 2011;
Glauser et al., 2011; Rakovic et al., 2011; Riley et al., 2013;
Spratt et al., 2013; Wauer and Komander, 2013; Caulfield et al.,
2014; Kane et al., 2014; Kazlauskaite et al., 2014; Koyano et al.,
2014; Swatek and Komander, 2016; Wauer et al., 2016; Kumar
et al., 2017; Mcwilliams et al., 2018; Gladkova et al., 2019).
The continuous phosphorylation of the poly-ubiquitin chains by
PINK1 creates a positive feed-forward cycle, which massively
increases Parkin recruitment to mitochondria and ubiquitylation
of OM proteins (Ordureau et al., 2014). Besides Parkin, other E3
ligases have been shown to ubiquitylate OM proteins and thus
signal mitophagy, like MARCH5, Gp78 and MGRN1, HUWE1,
MUL1, and SIAH-1 (Liu et al., 2012; Fu et al., 2013; Cilenti
et al., 2014; Yun et al., 2014; Tang et al., 2015; Mukherjee and
Chakrabarti, 2016a,b; Szargel et al., 2016; Chen et al., 2017;
Daskalaki et al., 2018; Di Rita et al., 2018; Ferrucci et al., 2018;
Lampert et al., 2019; Shefa et al., 2019).

Mitofusins are preferred targets at the OM, being
ubiquitylated by all above-mentioned E3 ligases (extensively
reviewed in Escobar-Henriques and Joaquim, 2019). They
are among the first substrates to be ubiquitylated by Parkin,
mostly observed upon Parkin overexpression (Chan et al.,
2011; Sarraf et al., 2013; McLelland et al., 2018) and therefore
possibly reflecting experimental artifacts. Nevertheless, the
ubiquitylation of mitofusins by Parkin was equally demonstrated
to occur and be important for mitophagy in the absence
of overexpression, with endogenous PINK1 and Parkin, in
reprogrammed induced neuron cells (Ordureau et al., 2020).
Upon mitophagy induction, ubiquitylation of mitofusins 1
and 2 targets them for degradation by the proteasome, quickly
leading to abrogation of mitochondrial fusion events, resulting in
mitochondrial fragmentation (Geisler et al., 2010; Narendra et al.,
2010; Lazarou et al., 2015; Khaminets et al., 2016; Mcwilliams
and Muqit, 2017). However, in the above-mentioned induced
neurons -a form of not fully differentiated immature neuronal
cells converted from human embryonic stem cells- extraction
from the OM and proteasomal degradation of mitofusins was
not required for mitophagy (Ordureau et al., 2020). This favors
the previously suggested pro-mitophagy role of mitofusins

as autophagic receptors (Chen and Dorn, 2013; Song et al.,
2015). Loss of MFN2/Mfn2 has also been connected with
a decrease in autophagosome formation and/or defects in
autophagosome-lysosome fusion, two events of mandatory
nature for mitophagy to occur (Zhao et al., 2012; Sebastián
et al., 2016; Peng et al., 2018). Consistently, depletion of both
Mfn1 and Mfn2 in murine cardiomyocytes caused accumulation
of defective mitochondria (Song et al., 2014, 2015). Equally
supporting a pro-mitophagic role of mitofusins, knockdown of
Mfn1 led to mitophagy inhibition caused by overexpression of
the E3-ligase Gp78 (Fu et al., 2013). In contrast, an active role
of MFN2/Mfn2 in preventing mitophagy was also proposed,
connected to the ER-mitochondrial tether function of MFN2
(Basso et al., 2018; McLelland et al., 2018). Consistently,
CMT2A-linked MFN2 mutants caused increased autophagic
flux, whereas MFN2 overexpression prevented autophagy (Rizzo
et al., 2016; Ying et al., 2017). Finally, as detailled bellow, upon
peripheral nerve injury Mfn1 depletion induced mitophagy and
apoptosis (Yang et al., 2020). Finaly, mitophagy progression
was even proposed not to depend on mitofusins (Narendra
et al., 2008; Chan et al., 2011). In brief, how mitofusins affect
mitophagy might be context-dependent, which is perhaps not so
surprising considering the multi-functionality of MFN2 and its
responsiveness to many different stress conditions.

MITOFUSINS AND APOPTOSIS

Cell death by apoptosis is an essential mechanism for cellular
turnover, which occurs via a programmed and tightly regulated
way (Kerr et al., 1972; Adams and Cory, 2007; Nair et al.,
2014). It is important in physiological conditions, e.g., during
embryonic development or neuronal network formation, but
also under pathological conditions, e.g., for tissue homeostasis
in response to stress (Elmore, 2007). Apoptosis can be induced
via two distinct pathways, extrinsic or intrinsic, culminating
in the activation of different cysteine-dependent aspartate-
directed proteases (caspases), the final effectors of apoptotic
cell death (Meier and Vousden, 2007). The extrinsic apoptotic
pathway is initiated by external cellular signals, followed by
binding of a death ligand to a cell-surface receptor (Jin and El-
Deiry, 2005; Nair et al., 2014). The intrinsic apoptotic pathway,
known as mitochondrial apoptotic pathway, is initiated by the
release of AIFs from the IMS to the cytosol (Bock and Tait,
2020), such as CytC, SMAC/DIABLO and HtrA2/Omi (Griffiths
et al., 1999; Antonsson et al., 2001; Wang and Youle, 2009;
Figure 1C). This requires mitochondrial OM permeabilization
(MOMP) (Edlich et al., 2011; Todt et al., 2015). MOMP
is mediated by oligomers of BAX and BAK, the two main
regulators of mitochondrial apoptosis, which in the absence
of stress are constantly translocated between the cytosol and
mitochondria (Todt et al., 2015). Upon death stimuli, BAX and
BAK accumulate at the mitochondrial OM, bind to death signal
sensors (BH3 domain-only proteins), undergo conformational
changes and oligomerize, enabling MOMP. Once in the cytosol,
CytC binds to the apoptotic protease activating factor-1 (APAF-
1), activating its nucleotide exchange factor activity and forming
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a homoheptameric APAF-1 complex, named apoptosome (Liu
et al., 1996; Li et al., 1997). Finally, the apoptosome cleaves and
activates pro-caspase-9, necessary for activation of downstream
effector caspases (Xiong et al., 2014). In general lines, effector
caspases induce endonucleases and proteases to degrade nuclear
material and key structural proteins (Hengartner, 2000; Slee et al.,
2001). The action of the effector caspases over their targets
leads to apoptotic morphological traces, such as cytoplasmic
disorganization, cell shrinkage, chromatin condensation, DNA
fragmentation and apoptotic body formation.

The key proteins mediating mitochondrial shape–OPA1,
mitofusins and DRP1- were also implicated in the regulation
of apoptosis (Campello and Scorrano, 2010; Karbowski, 2010;
Xie et al., 2018). The cristae remodeling events necessary
for release of CytC from cristae junctions were proposed to
be mediated by OPA1 (Scorrano et al., 2002; Cipolat et al.,
2006; Frezza et al., 2006). In turn, DRP1 and mitofusins have
been shown to interact with BAX and BAK (Karbowski et al.,
2002, 2006; Brooks et al., 2007). Upon apoptosis induction,
activated BAX is recruited to MFN2-containing puncta (Neuspiel
et al., 2005), suggesting a synergistic relation between MFN2
and pro-apoptotic proteins. Indeed, overexpression of MFN2,
and of its yeast homolog Fzo1, led to apoptosis induction
(Sugioka et al., 2004; Neuspiel et al., 2005). Further supporting
a positive role of mitofusins in apoptosis, MFN2 protein levels
are decreased in urinary bladder carcinoma tissues and its
overexpression in a cellular model of the disease decreased cell
viability via apoptosis induction (Jin et al., 2011). Similarly, in
atherosclerosis or restenosis, MFN2 expression is downregulated.
In vascular smooth muscle cells, overexpression of Mfn2 induces
growth arrest (Guo et al., 2007). In fact, adenoviral expression
of MFN2 showed an anti-tumor effect in vitro in a wide
range of different cancer cell lines (Wu et al., 2008). MFN1
overexpression was also shown to induce apoptotic cell death of
osteosarcoma cells, reducing malignancy, while the microRNA
miR-19b, predicted to downregulate MFN1, had the opposite
effect (Li X. et al., 2014). However, apoptosis is generally
accompanied by mitochondrial fragmentation and, indeed,
MFN2 was shown to be phosphorylated and proteasomally
degraded upon genotoxic stress, which also induced apoptosis
(Leboucher et al., 2012). Besides, Mfn2 depletion in murine
liver was shown to aggravate apoptosis provoked by bavachin,
a flavonoid causing ER-stress, and Mfn2 depletion in the
hippocampus led to neuronal death (Yang et al., 2018; Han et al.,
2020). Other than leading to mitofusins degradation, apoptosis
might inactivate the fusogenic capacity of mitofusins, perhaps
directly mediated by activated BAX/BAK oligomers (Karbowski
et al., 2006). Consistently, when in its apoptotic conformation,
BAX was proposed to inhibit Mfn2 activity (Hoppins et al.,
2011). Moreover, BAK was reported to promote mitochondrial
fragmentation during apoptosis by dissociating from Mfn2
and associating with Mfn1 (Brooks et al., 2007). Reciprocally,
in healthy cells, BAX and BAK were proposed to promote
mitochondrial fusion (Karbowski et al., 2006; Hoppins et al.,
2011). Mechanistically, BAX and BAK seem to be required for
Mfn2 assembly in fusion-prone complexes (Karbowski et al.,
2006). Indeed, Mfn2 foci observed in wild type cells were

impaired in the absence of these pro-apoptotic proteins, resulting
in a more even mitochondrial distribution of Mfn2. Finally,
BAX/BAK-loss induces mitochondrial fragmentation in similar
extent to Mfn2 knockout. Interestingly, mitofusins have also
been linked with other types of cell death such as necroptosis,
pyroptosis and ferroptosis (Xie et al., 2018; Bock and Tait, 2020).
Necroptosis induction promoted ubiquitination and degradation
of Mfn1, without affecting Mfn2 (Baker et al., 2014). Instead,
upregulation of Mfn2 levels correlated with reduced pyroptosis in
the liver, reverted by Oroxylin A, which allowed resisting to lipid
deposition and ROS overproduction (Kai et al., 2020). In contrast,
Mfn2 fusion activity was stimulated by the same BAX mutants
that induced necrosis (Whelan et al., 2012; Karch et al., 2013)
and hepatic knockdown of Mfn2 reduced ferroptosis, provoked
by arsenite (Wei et al., 2020). In sum, the dual interplay between
mitofusins and cell death points to multiple cross-talk effects that
require future clarification.

MITOPHAGY: A PRO-SURVIVAL OR A
PRO-APOPTOTIC MECHANISM?

Mitophagy, autophagy and apoptosis–as major quality control
mechanisms–are intimately related and often reported to affect
each other (Maiuri et al., 2007; Kubli and Gustafsson, 2012;
Anding and Baehrecke, 2015; Bloemberg and Quadrilatero,
2019). It is overall accepted that mitophagy prevents cell death,
by clearing damaged and toxic mitochondria, thus constituting
a pro-survival mechanism. However, pro-apoptotic and anti-
tumor consequences of mitophagy were also reported (Figure 2).

Anti-apoptotic Effects of Mitophagy
The majority of the findings showing a direct regulation of these
two processes support the idea that mitophagy occurs as a pro-
survival mechanism. Prevention of mitophagy, by Parkin and/or
PINK1 inhibition, or by cyclosporine A or 3-MA treatment,
induced CytC release and caspase activity, stimulating apoptosis
(Tian et al., 2019; Kang et al., 2020; Li C. et al., 2020; Lin
et al., 2020). Consistently, mitophagy induction via Urolithin
A or FCCP treatment prevented apoptosis (Tian et al., 2019;
Lin et al., 2020). Importantly, the inverse correlation between
apoptosis and mitophagy was also observed under physiological
conditions involving hypoxia. During follicle development, the
follicle stimulating hormone is responsible for ensuring survival
of porcine granulosa cells, despite their hypoxic environment
(Li C. et al., 2020). In fact, the follicle stimulating hormone
induced mitophagy, thereby protecting from hypoxia-induced
apoptosis. The anti-apoptotic effects of mitophagy are also
relevant in the context of liver, where an important role is
attributed to mitofusins, as detailed in the next two chapters. For
example, in murine hepatocytes, the impairment of mitophagy
by downregulation of Parkin or PINK1, or by the knockout of
both, was shown to significantly increase the hepatic apoptotic
rate (Chen et al., 2019; Wang H. et al., 2019; Zheng et al.,
2020). Similarly, in hepatocellular carcinoma HepG2 cells,
treatment with Mdivi-1, a mitophagy inhibitor, led to induction
of apoptosis (Kang et al., 2019). Inversely, interference with
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FIGURE 2 | Pro- and anti- apoptotic roles of mitophagy. Mitophagy is reported to both induce and inhibit apoptosis in different physiological and pathological
contexts. Inhibition of mitophagy via Parkin/PINK1 inhibition, Cyclosporine A, 3-MA or Mdivi-1 treatment has the ability to induce mitochondrial apoptosis, while
induction of mitophagy that occurs during follicle development or upon urolithin A, FCCP or trealose treatment, has the opposite effect. On the other hand,
pro-apoptotic roles of mitophagy were described upon mitophagy induction via valinomycin, AGG, abiraterone or MVD3100 treatment. Further, mitophagy
suppression by parkin inhibition also inhibited apoptosis. Finally, an anti-mitophagic role of apoptosis could be observed upon overexpression of the large tumor
suppressor gene 2 (LATS2) gene or by matrine treatment.

apoptosis also impacted on mitophagy. Apoptosis induction
via matrine treatment, or by expression of the large tumor
suppressor gene 2 (LATS2) suppressed mitophagy (Wei et al.,
2018; Tian et al., 2019). Cell death was prevented by mitophagy
activation, through HIF-1α-PINK1-Parkin, resolving hypoxic
stress. General autophagy was also linked to apoptosis. Induction
of autophagy with trealose delayed MOMP, while downregulation
of autophagy components activated apoptosis, by increasing
the levels of the p53-dependent apoptosis mediator (PUMA)
(Thorburn et al., 2014). Mechanistically, autophagy inhibition
caused accumulation of the transcription factor FOXO3a,
increasing PUMA mRNA levels, thus sensitizing cells to apoptosis
(Fitzwalter et al., 2018).

Pro-apoptotic Effects of Mitophagy
A pro-apoptotic mechanism of mitophagy was also reported.
Induction of mitophagy in cancer cells, by treatment with
valinomycin, Abrus agglutinin (AGG), abiraterone or MDV3100
(anti-cancer drugs), led to an increase in apoptosis, facilitating
cancer recovery (Panda et al., 2018; Ding et al., 2019; Han
et al., 2019). The Bcl-2 family member BCL-B and the levels of
phosphorylated Parkin appeared to be central in this response
(Ding et al., 2019). Consistently, Parkin silencing decreased the
death rate of hepatocellular carcinoma cells (Prieto-Domínguez
et al., 2016). Further, a concomitant increase in mitophagy
and apoptosis was observed upon PUMA overexpression or by
treatment with the ribosome inhibitor AGG, which depended on
BAX (Yee et al., 2010; Panda et al., 2018). Consistently, inhibition
of mitophagy led to decreased caspase activity and apoptosis
(Panda et al., 2018). Thus, synergistic induction of mitophagy
and apoptosis, observed in glioblastomas cells or in lymph
node prostate carcinoma cells (Panda et al., 2018; Han et al.,
2019), appears to be relevant in suppressing cancer proliferation.

However, given that anti-cancer drugs affect mitochondrial
function, a causal pro-apoptotic role of mitophagy induction is
still controversial.

Interestingly, beyond compensatory or synergistic effects,
the ubiquitylation state of VDAC was shown to differentially
affect either mitophagy or apoptosis. While polyubiquitylated
VDAC1 is able to induce mitophagy, monoubiquitylated VDAC1
seems to exert a protective effect over apoptosis (Ham et al.,
2020). However, the conditions by which VDAC gets mono or
polyubiquitylated and the respective E3 ligases involved are still
to be identified.

Interaction Between Mitophagic and
Apoptotic Components
The relationship between mitophagy and apoptosis is supported
by evidence of physical interactions between several players of
each process. First, the anti-apoptotic BCL-2 proteins Bcl-xL
and MCL1 were shown to prevent mitophagy by physically
interacting with Parkin, preventing its stable recruitment to
mitochondria (Hollville et al., 2014; Yu et al., 2020). Second, the
Bcl-2 pro-apoptotic family member BNIP3 is also a mitophagy
receptor that physically interacts with LC3, via its LIR domain,
promoting mitophagy. Interestingly, upon starvation, Beclin-1
participates in autophagosome formation, by associating with
the hVps34/Class III PI3K complex, which localizes autophagy
proteins to the autophagosome membrane. However, in nutrient
rich conditions, the anti-apoptotic protein Bcl-2 interacts
physically with the autophagic protein Beclin-1, preventing
autophagy (Pattingre et al., 2005). By binding to Beclin-1, Bcl-2
impedes the formation of the hVps34/Class III PI3K complex,
blocking autophagy. In contrast to this role of anti-apoptosis
components in preventing autophagy via Beclin-1 sequestration,
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Beclin-1 was shown to induce apoptosis, by localizing to
mitochondria (Wirawan et al., 2010). In fact, Beclin-1 is cleaved
by caspases during apoptosis induction (Cho et al., 2009; Luo and
Rubinsztein, 2010; Wirawan et al., 2010) and a Beclin-1 cleaved
form localizes to mitochondria, sensitizing cells to apoptosis by
enhancing CytC and HtrA2/Omi release (Wirawan et al., 2010).
Similarly, after being cleaved by calpain, the autophagic protein
Atg5 associated to the anti-apoptotic protein Bclx1, enhancing
apoptosis (Yousefi et al., 2006).

INTERPLAY BETWEEN
MITOCHONDRIAL FUSION, MITOPHAGY
AND APOPTOSIS

Mitofusins–mainly MFN2 but recently also MFN1–have been
broadly suggested as decision-making players in the interplay
between mitophagy and apoptosis. Several pathological contexts
affecting distinct physiological systems, such as heart, liver and
brain, have implied a role of mitofusins. Generally, mitofusins
are downregulated in disease states, being pathophysiology
improved by restoring mitofusin’s levels, thus highlighting
a broad therapeutic potential of these proteins (Figure 3).
Regarding Mfn1, peripheral nerve injury and consequent
muscular denervation upregulated the miRNA 142a-5p, which
was bioinformatically predicted to target Mfn1 (Yang et al., 2020).
Consistently, denervated muscles presented decreased levels of
Mfn1. Moreover, a miRNA-142a-5p mimic led to downregulation
of Mfn1 and to increased mitophagy and apoptosis of skeletal
muscle cells, which were rescued by a miRNA-142a-5p-inhibitor.
Experiments performed in vivo, in mice sciatic nerve transection
models, confirmed these observations, pointing to an important
role of Mfn1 in protecting from mitophagy and apoptosis
(Yang et al., 2020).

Decreased levels of MFN2 inhibited mitophagy and increased
apoptosis. While rather exacerbating damage caused by stress
in healthy cells, compromising mitophagy and MFN2 lead to
better disease prognoses in cancer. For example, in gastric cancer,
increased levels of Yes-associated protein (YAP) contribute
to cellular proliferation and metastasis (Yan H. et al., 2018).
Knockdown of YAP inhibited Sirtuin 1 (SIRT1) activity,
consequently decreasing MFN2 expression and mitophagy. This
increased apoptosis and oxidative stress, preventing migration
of the cancer cells. Upregulation of mitophagy in YAP-deficient
cells, with FCCP or by reactivation of SIRT1, reversed apoptosis
induction. This substantiated the importance of MFN2 and
mitophagy inhibition in gastric cancer treatment (Yan H. et al.,
2018). Similarly, upon treatment of esophageal squamous cell
carcinoma with the cytokine IL-24, drug-resistance responses
were associated with increased mitophagy (Zhang J. et al.,
2019). Drug-resistance also correlated with decreased levels
of macrophage stimulating factor 1 (MST1). Overexpression
of MST1 inhibited ERK activity, decreasing MFN2 levels and
consequently preventing mitophagy. This was accompanied by
better anti-cancer efficacy of IL-24. Importantly, independent
silencing of MFN2 or chemical inhibition of ERK led to the same
mitophagic outcome (Zhang J. et al., 2019). In sum, the pro-
survival role of MFN2 and mitophagy in cancer cells suggest it
as a potential target for inhibition in oncogenic treatments.

The role ERK-MFN2 in mitophagy was also described
in cerebral ischemia-reperfusion (IR) injury (Zhang and Yu,
2018). Here, decreased mitophagy and increased apoptosis
are associated with brain damage. The protein Nr4a1 was
upregulated upon IR injury, which induced brain damage by
increasing apoptosis and by inhibiting mitophagy. Mitophagic
rescue and apoptotic inhibition, caused by Nr4a1 deletion,
were lost in absence of Mfn2, pointing to a dependence of
Nr4a1on Mfn2 for IR injury. IR injury also repressed ERK and

FIGURE 3 | Regulation of mitophagy and apoptosis by mitofusins in disease. In cerebral ischemia-reperfusion (IR) injury and coronary heart disease, there is a
presumable decrease of Mitofusin 2 (MFN2) levels, which repressed mitophagy and induced apoptosis. Similarly, in the context of intervertebral disc degeneration,
acute-on-chronic liver failure and cardiac injury, decreased MFN2 levels were concomitant with decreased mitophagy and increased apoptosis. Consistently,
digestive track cancer presented increased levels of MFN2, increased mitophagy and decreased apoptosis. Moreover, MFN2 mutations causative of the neuropathy
Charcot-Marie-Tooth Type 2A were also reported to induce mitophagy and block apoptosis. In contrast, upon muscle denervation, low levels of Mitofusin 1 (MFN1)
lead to an induction of mitophagy which promoted apoptosis, supporting an anti-apoptotic role of mitofusins.
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CREB phosphorylation, again reverted by Nr4a1 loss, implying
the MAPK-ERK-CREB signaling pathway in this response.
Furthermore, in Nr4a1-deficient cells, blockage of the MAPK-
ERK-CREB signaling pathway decreased the levels of Mfn2 and
no longer allowed apoptotic inhibition. In sum, this study points
to an important role of Mfn2 and of the MAPK-ERK-CREB
pathway in the brain, by controlling mitophagy and apoptosis
upon IR injury (Zhang and Yu, 2018). The importance of
MFN2 in the interplay between mitophagy and apoptosis was
confirmed in the context of coronary heart disease, however
instead involving the AMPK-CREB pathway (Li P. et al., 2020).
Inflammation in human umbilical vein endothelial cells, caused
by oxidized low-density lipoprotein (ox-LDL), induced the
phosphatase and tensin homolog (PTEN), decreased mitophagy
and increased apoptotic cell death. PTEN downregulation
reversed these phenotypes, being the rescue dependent on the
presence of MFN2. Furthermore, ox-LDL treatment disrupted
AMPK activity and decreased CREB phosphorylation, being
both phenotypes rescued by PTEN deletion. Finally, AMPK
inhibition led to concomitant reduction of MFN2 expression,
pointing to a role of the AMPK-CREB pathway and of MFN2-
induced mitophagy in preventing apoptosis and heart injury
(Li P. et al., 2020). Also in heart, Mfn2 was implicated in
the regulation of cardiomyocyte cell death mediated by the
kinase Lats2 (Tian et al., 2019). Lats2 overexpression resulted
in decreased levels of Mfn2, reduced mitophagy and increased
cardiomyocyte apoptosis. Consistent with the usual association
of cardiomyocyte death with hypoxia, the levels of peroxiredoxin
3 (Prx3), a reactive oxygen species scavenger, were decreased
upon Lats2 overexpression. In Lats2 overexpression conditions,
Prx3 re-expression rescued Mfn2 levels and mitophagy, pointing
to an important role of Prx3 (Tian et al., 2019). Thus, it would
be interesting to test if reactivation of Prx3-Mfn2-mitophagy
reverses Lats2-induced cardiomyocyte death. In sum, stress
conditions seem to cause a decrease in mitophagy, caused
by Mfn2 depletion through the downregulation of associated
signaling pathways.

Mitofusin 2 downregulation, causing decreased mitophagy
or autophagy, was also observed in cardiac injury mimicked
by angiotensin II (Xiong et al., 2019), in intervertebral disc
degeneration (IVDD) (Chen et al., 2020) and in acute-on-chronic
liver failure (ACLF) (Xue et al., 2019a,b). Common to these
reports, low levels of MFN2/Mfn2 and concomitant decrease in
autophagy/mitophagy were accompanied by apoptosis induction.
Importantly, MFN2 re-expression rescued autophagy/mitophagy
levels and reversed apoptosis. Reinforcing the great dependence
of these two cellular processes on each other, Chen et al.
(2020) further showed that such protective effects of MFN2
over apoptosis are dependent on the autophagic flux during
IVDD (Chen et al., 2020). In sum, these reports correlate
disease to decreased MFN2, to decreased mitophagy and to
induction of apoptosis. Inversely, in CMT2A neuropathy models,
where MFN2 itself is present in a mutated form, mitophagy
was induced and apoptosis was reduced (Rizzo et al., 2016).
Indeed, using motor neurons differentiated from CMT2A
patient fibroblasts-derived iPSCs as a cellular model of the
disease, the authors observed increased autophagic clearance of
mitochondria and decreased levels of BAX, caspase 8 and caspase

3 cleavage as well as increased levels of the anti-apoptotic BCL-2
protein (Rizzo et al., 2016). In conclusion, mitofusins, especially
MFN2, regulate cell death by mediating mitophagy (Figure 3).

MFN2 AND MITOPHAGY IN
NON-ALCOHOLIC FATTY LIVER
DISEASE (NAFLD)

A high-incidence disease where a strong interplay between
mitophagy and apoptosis can be found is NAFLD, which
affects around 25% of the world’s population and is the most
common hepatic disease in the western countries (Kumar
et al., 2020). It is a step-wise liver disease characterized
by a spectrum of heterogeneous clinical manifestations. It is
initiated by the excessive accumulation of fat in the liver,
named steatosis. Although patients can exhibit steatosis without
further complications, in many cases steatosis evolves to hepatic
inflammation, fibrotic restructuring, cirrhosis, hepatocellular
carcinoma and ultimately liver failure (Parthasarathy et al.,
2020; Figure 4). Other disorders can constitute risk factors
for NAFLD development, such as type 2 diabetes mellitus,
obesity, metabolic syndrome, cardiovascular disease, and chronic
kidney disease (VanWagner and Rinella, 2017; Li A. A. et al.,
2020). Interestingly, a bidirectional link was observed for some
of these, since NAFLD is a risk factor for the development
of cardiovascular disease, atherosclerosis and chronic kidney
disease (VanWagner and Rinella, 2017).

NAFLD and Mitochondria
There are numerous scientific reports showing an induction of
apoptosis in the progression of NAFLD (Feldstein et al., 2003;
Ferreira et al., 2011; Li C. P. et al., 2014; Alkhouri et al., 2015;
Gonçalves et al., 2015; Kanda et al., 2018). Enhanced apoptosis
in NAFLD hepatocytes correlates with activation of caspases
(Feldstein et al., 2003; Ferreira et al., 2011) and both FAS -an
apoptosis signal transduction factor- and its ligand -FAS-L- were
found upregulated in NAFLD (Feldstein et al., 2003; Li C. P.
et al., 2014; Alkhouri et al., 2015). NAFLD and mitochondria
are also intimately related, being mitochondrial dysfunction and
structural changes hallmarks of this hepatic disease. Upon high
lipid intake, when adipocyte storage is no longer sufficient,
hepatocytes uptake, store and metabolize lipids as well (Singh
et al., 2009). In the liver, free fatty acids can then either
undergo β-oxidation within mitochondria or be esterified into
triglycerides (Figure 3). In early stages of NAFLD, mitochondria
upregulate their activity, resolving lipid overload. However,
continuous excess of lipid intake can impair mitochondrial
function (Flores-Toro et al., 2016; Lee et al., 2019). Both NAFLD
patient biopsies and animal models frequently present functional
impairment of β-oxidation and of the respiratory chain and
altered mitochondrial morphology (Paradies et al., 2014). Hence,
a failure in mitochondrial quality control by mitophagy, and
the subsequent accumulation of dysfunctional mitochondria, can
contribute to the pathological accumulation of fatty acids in the
liver (Figure 3). Consistently, reduced levels of PINK1/Parkin
and thus reduced mitophagy was found in a NAFLD mouse
model, upon high-fat diet (Gonçalves et al., 2015). Moreover,
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FIGURE 4 | Mitochondrial contribution for the development of non-alcoholic fatty liver disease (NAFLD). NAFLD consists of several heterogeneous clinical
manifestations, usually organized in a development-stepwise-spectrum. The first step (NAFL) consists of the pathological accumulation of fat in the hepatocytes, due
to excessive lipid intake and insufficient adipose storage. NAFL can evolve to further steatosis, accompanied by inflammation and scarring [(non-alcoholic
steatohepatitis (NASH)], followed by cirrhosis and, ultimately, hepatocellular carcinoma. Mitochondrial dysfunction, also caused by low levels of MFN2, contributes to
the development of NAFLD. In a healthy liver (left panel), free fatty acids are metabolized by β-oxidation into Acetyl-CoA (Ac-CoA), which can then enter the citric acid
(TCA) cycle, from which NADH is produced and further used by the oxidative phosphorylation chain (OXPHOS) to produce energy in the form of ATP. These healthy
mitochondria are kept in check by mitophagy (for details see Figure 1). Also in a healthy situation (left panel), MFN2 was proposed to serve as a tether between
mitochondria and ER and thereby to also bind to and promote the transfer of phosphatidylserine (PS) from the ER to mitochondria. In a situation of excessive lipid
intake and NAFLD development (right panel), mitophagy is impaired, leading to the accumulation of dysfunctional mitochondria, unable to metabolize fatty acids,
which accumulate in hepatic mitochondria and lead to steatosis. Furthermore, the absence of MFN2 impairs PS transfer to mitochondria, affecting further lipid
biosynthesis, consequently leading to ER stress in hepatocytes.

PINK1/Parkin-dependent induction of mitophagy, by the
administration of quercetin–a plant flavonoid–rescued hepatic
steatosis, both in in vitro and in vivo models of NAFLD (Liu
et al., 2018). Similar beneficial results were obtained when
using low doses of sorafenib, an anti-tumor drug used in
hepatocellular carcinoma treatment (Jian et al., 2020). Sorafenib
prevented progression of non-alcoholic steatohepatitis (NASH,
the primary stage of NAFLD), in mice and monkeys, by
inducing mitochondrial uncoupling, associated with activation of
mitophagy. Importantly, endurance training reversed the status
of several high fat-diet markers, leading to a decrease in Ca2+-
dependent mitochondrial swelling, in both BAX and caspase
8 and 9 activities and also a rescue of PINK1/Parkin levels
and of the mitochondrial biogenesis markers TFAM and PGC-
1α (Gonçalves et al., 2015). Thus, exercise can help mitigate
over-nutrition damage in mitochondrial functions and reverse
apoptosis induction, preventing the development of NAFLD
(Gonçalves et al., 2015).

Mechanistically, it is not well understood how mitophagy is
impaired in NAFLD. However, recent studies under high-fat
diet brought some insights onto why lack of mitophagy and

enhanced apoptosis disrupt liver functionality. Notably, these
NAFLD mouse models revealed increased levels of nuclear
receptor subfamily 4 group A member 1 (Nr4a1), which repressed
Bnip3 (Zhou et al., 2017). BNIP3 protein levels are regulated
by nutrient availability, being reduced in fasting conditions.
Moreover, although first annotated as a cell-death regulatory
factor, several studies reported roles of Bnip3 in mitochondrial
dysfunction and in mitophagy, being recognized as a mitophagy
receptor, which can also assist in cell survival (Gao et al.,
2020). Absence of Bnip3 as well as high-fat diet lead to
mitophagy inhibition along with increased cell death (Zhou
et al., 2017). BNIP3 deleted mice exhibit lipid accumulation
and steatosis, in vitro and in vivo, consistent with increased
hepatocyte lipogenesis and decreased β-oxidation of fatty acids
(Glick et al., 2012). Furthermore, BNIP3 null murine hepatocytes
present an increase in mitochondrial mass, associated with a
decline in mitochondrial function, consistent with defective
mitophagy (Glick et al., 2012). In NAFLD mouse models, loss
of Nr4a1 relieved Bnip3 repression and re-activated mitophagy.
Importantly, it also mitigated NAFLD-phenotypes, namely mice
body and liver weight, hepatocyte vacuolation, hepatic lipid
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accumulation, steatosis and hepatic fibrosis (Zhou et al., 2017).
Melatonine, used as anti-oxidant, anti-inflammatory and anti-
obesogenic drug, also attenuated NAFLD-associated phenotypes
induced by high-fat diet, suggesting it could possibly be used as a
supplement for the treatment of NAFLD (Zhou et al., 2017).

High-fat stress, both in vivo and in vitro, also led to
upregulation of the growth suppressor Mst1 (Zhou T.
et al., 2019). Mst1 deletion rescued the metabolic NAFLD
signature phenotypes, namely body weight, blood glucose
levels, triglycerides levels, total cholesterol and levels of lipid
metabolism enzymes (Zhou T. et al., 2019). Equally, Mst1
deletion suppressed abnormal liver structure, liver weight,
hepatocytes size and liver fibrosis. The effects of hepatic injury
reversion attained by Mst1 deletion were further attributed
to a reduction in oxidative stress and inflammation response.
Consistently, Mst1 deletion ameliorated hepatic steatosis (Jeong
et al., 2018). Finally, downregulation of Mst1 also rescued
mitochondrial potential and prevented mPTP opening, CytC
release and caspase activation (Zhou T. et al., 2019). Moreover,
rescue of apoptosis was dependent on Parkin (Zhou T. et al.,
2019), pointing to a strong correlation between apoptosis and
mitophagy in the development of NAFLD. Besides NAFLD,
MST1/Mst1 also repressed mitophagy during cardiac ischemia-
reperfusion injury and colorectal cancer (Li et al., 2018; Yu
et al., 2019). Thus, although still to be mechanistically defined,
Mst1 appears to generally cause inhibition of mitophagy. In
conclusion, Mst1 and Nr4a1 inhibition restored mitophagy and
reduced cell death, alleviating high-fat stress, of clinical relevance
in the context of NAFLD.

Despite most studies reporting an inhibition of mitophagy at
the basis of NAFLD development, mitophagy induction along
with hepatocytes’ apoptosis was also observed (Pang et al., 2018).
Upon oleic acid treatment, shown to induce NASH in HepG2
cells (Cui et al., 2010), reticulophagy is induced, preventing
the death of hepatocytes. However, continuous lipid intake
induced mitophagy, accompanied by an increase in hepatocytes’

apoptosis, which could be prevented by PINK1 downregulation
(Pang et al., 2018). Nevertheless, why excessive lipid intake
caused mitophagy induction, rather than the mostly described
mitophagy failure and mitochondrial dysfunction, is still unclear.

NAFLD and MFN2
Morphological alterations of mitochondria, characterized by
very enlarged organelles, have been broadly observed upon
liver dysfunctions, constituting a hallmark of NAFLD and
alcoholic liver injury (Caldwell et al., 1999; Wakabayashi,
2002; Noureddin et al., 2013; Lotowska et al., 2014; Neuman
et al., 2014; Kleiner and Makhlouf, 2016; Yamada et al., 2018).
Importantly, two recent studies provided causal implications
of mitochondrial shape and dynamics proteins in NAFLD
(Yamada et al., 2018; Hernández-Alvarez et al., 2019). First,
blocking either fusion or fission was harmful in hepatocytes,
suggesting that extreme mitochondrial lengths–fragmented or
hypertubular–affected liver functionality (Yamada et al., 2018).
Consistently, mitochondrial stasis, created by simultaneously
blocking mitochondrial division (Drp1 knockout) and fusion
(Opa1 knockout) re-established mitochondrial size and
mitigated pathological markers. Moreover, re-establishment
of mitochondrial size rescued mitophagy and liver damage
(Yamada et al., 2018). Second, MFN2 was proposed to directly
assist in phosphatidylserine (PS) transfer from the ER into
mitochondria, thus protecting against NAFLD (Hernández-
Alvarez et al., 2019; Figure 3). In this study, both liver biopsies
from NASH patients and mouse models of steatosis showed
reduced Mfn2 levels. Consistently, murine liver-specific
ablation of Mfn2 led to abnormal lipid metabolism, chronic
hepatic inflammation, apoptosis, fibrosis and liver cancer
(Hernández-Alvarez et al., 2019). Mechanistically, Mfn2 ablation
in the liver was accompanied by a decrease in the levels of
phosphatidylserine synthase 1 and 2. Moreover, Mfn2 was able
to selectively bind PS, indicating a direct role of MFN2 in
phospholipid regulation (Hernández-Alvarez et al., 2019). The

FIGURE 5 | Positive and negative interactions between mitofusins, mitophagy and apoptosis. The quality control processes of mitophagy and apoptosis can
positively and negatively regulate each other and, in turn, this interplay can be itself influenced by mitofusins (MFN1/2). Mitophagy mostly behaves as an
anti-apoptotic mechanism, promoting cellular survival. However, it can also contribute to cell death by apoptosis. Mitofusins add another layer of regulation since
they are known to promote both mitophagy and apoptosis. Nevertheless, these proteins can also be found to negatively impact mitophagy induction.
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authors therefore suggested that MFN2 hepatic deficiency leads
to inefficient PS transfer from ER to mitochondria. Then, the
subsequent inability to synthetize other phospholipids, such
as phosphatidylethanolamine, causes ER stress (Hernández-
Alvarez et al., 2019). Indeed, ER stress was shown to induce
NAFLD-related phenotypes (DeZwaan-McCabe et al., 2013).
Finally, re-expression of Mfn2 was able to restore normal
liver metabolism, suggesting therapeutic potential (Hernández-
Alvarez et al., 2019). In conclusion, MFN2 downregulation,
mitophagy defects and pathological accumulation of lipids are
determinant in the development of NAFLD disease.

CONCLUDING REMARKS

The crosstalk between the major surveillance mechanisms of
mitophagy and apoptosis amplifies the cellular capacity to
ensure cellular homeostasis. Recent studies placed mitofusins
at the cross-roads of these two quality control processes
(Figure 5). The identification of mitofusins’ manifold central
functions, as described here, provides the basis for future
mechanistic understanding of this interdependence. Future
studies will certainly shed light on the molecular details
involving mitofusins in mitophagy, apoptosis and their interplay.
As such, mitofusins hold promise for developing targeted
therapeutic approaches.
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Mitochondria are multifunctional organelles that regulate cancer biology by synthesizing
macromolecules, producing energy, and regulating cell death. The understanding
of mitochondrial morphology, function, biogenesis, fission and fusion kinetics, and
degradation is important for the development of new anticancer strategies. Mitophagy
is a type of selective autophagy that can degrade damaged mitochondria under various
environmental stresses, especially oxidative damage and hypoxia. The key regulator of
mitophagy is the autophagy receptor, which recognizes damaged mitochondria and
allows them to enter autophagosomes by binding to MAP1LC3 or GABARAP, and
then undergo lysosomal-dependent degradation. Many components of mitochondria,
including mitochondrial membrane proteins (e.g., PINK1, BNIP3L, BNIP3, FUNDC1,
NIPSNAP1, NIPSNAP2, BCL2L13, PHB2, and FKBP8) and lipids (e.g., cardiolipin and
ceramides), act as mitophagy receptors in a context-dependent manner. Dysfunctional
mitophagy not only inhibits, but also promotes, tumorigenesis. Similarly, mitophagy
plays a dual role in chemotherapy, radiotherapy, and immunotherapy. In this review,
we summarize the latest advances in the mechanisms of mitophagy and highlight the
pathological role of mitophagy receptors in tumorigenesis and treatment.

Keywords: mitophagy, cancer, cell death, autophagy, mitochondria

INTRODUCTION

Autophagy, which was first observed under an electron microscope by Belgian scientist Christian
de Duve in the 1950s, is a cellular phenomenon of “self-eating” by lysosomes (Yang and
Klionsky, 2010). At present, based on the transport mode of cytosolic cargoes to lysosomes,
autophagy is mainly divided into three types: macroautophagy (hereafter referred to as autophagy),
microautophagy, and chaperone-mediated autophagy (Dikic and Elazar, 2018). As an important
degradation mechanism, the process of autophagy involves the formation of lipid-related
autophagosomes by wrapping various cargoes (e.g., damaged organelles, unused proteins, and
invading pathogens), and then fusing them with lysosomes to form autophagosomes and degrading
their contents (Klionsky and Emr, 2000; Xie et al., 2020b). At the molecular level, autophagy-related
(ATG) genes and proteins play a vital role in regulating the dynamic formation of autophagic
membrane structures, mainly through protein-protein interactions (Kang et al., 2011; Dikic and
Elazar, 2018; Figure 1). These ATG protein interactions are further modulated by various factors,
especially kinase-mediated protein posttranslational modification (McEwan and Dikic, 2011; Xie
et al., 2015). Generally, the activation of autophagy is an important defense mechanism that
promotes cell survival and recovery under harmful stresses, such as starvation and hypoxia
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FIGURE 1 | Mechanisms and regulation of autophagy in mammalian cells. Autophagy is a dynamic process involving the formation of several specific membrane
structures, such as phagophores, autophagosomes, and autolysosomes. ATG proteins, in association with various regulators, are involved in regulating the dynamic
process of membrane structure formation, leading to the degradation of various cargoes in lysosomes.

(Kroemer et al., 2010). The autophagic degradation products can
be reused for protein synthesis and energy production, although
the underlying mechanism of this process is unclear. In contrast,
an excessive activation of autophagy may lead to cell death,
which is called autophagy-dependent cell death (Bialik et al.,
2018; Galluzzi et al., 2018; Tang et al., 2019). In particular, recent
studies indicate that ferroptosis is a type of autophagy-dependent
cell death (Hou et al., 2016; Bai et al., 2019; Li et al., 2020; Xie
et al., 2020a), highlighting the importance of autophagy in the
degradation of proteins involved in iron and lipid metabolism
(Zhou et al., 2020; Liu et al., 2020). It is also worth noting
that the term “autophagic cell death” is used to describe the
phenotype of increased autophagy during the induction of cell
death, regardless of the effect of autophagic response on cell
fate (Kroemer and Levine, 2008). Therefore, autophagy plays
a dual role in cell survival and cell death, which is related to
human disease, especially cancer and neurodegenerative diseases
(Levine and Kroemer, 2019).

Depending on whether specific autophagic receptors
(also known as autophagic adaptor proteins) are needed to
degrade specific substrates, autophagy can be non-selective
or selective (Zaffagnini and Martens, 2016). In recent
years, a large number of types of selective autophagy have
been found to regulate cell homeostasis, such as mitophagy
(Harper et al., 2018), pexophagy (Cho et al., 2018), lipophagy

(Kounakis et al., 2019), ferritinophagy (Mancias et al., 2014), and
clockophagy (Yang et al., 2019). Among them, mitophagy is the
most-studied selective autophagy, which eliminates damaged
or aging mitochondria by recognizing different components
of mitochondrial structure via various autophagy receptors
(Lemasters, 2005). Dysregulated mitophagy is closely related to
many physiological and pathological processes, such as aging,
neurodegenerative diseases, and cancer (Palikaras et al., 2018).
In this review, we first introduce the structure and function of
mitochondria, and then focus on the molecular mechanisms of
mitophagy. Finally, we describe the pathologic role of mitophagy
regulators in tumor development and therapy, and will discuss
new directions for cancer treatment.

Structure and Function of Mitochondria
Mitochondria are double-membrane organelles present in most
eukaryotic cells, and their size, number, and appearance are
different on different cells (Herst et al., 2017; Pfanner et al.,
2019). Like chloroplasts in plants and algae, mitochondria may
have evolved from primitive bacteria (Gray, 2012). The main
chemical components of mitochondria include water, protein,
and lipids. In addition, mitochondria have a small amount of
small molecules, such as coenzymes and nucleic acids. Proteins,
including soluble and insoluble proteins, account for 65 to
70% of the dry weight of mitochondria. Soluble proteins are
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mainly the enzymes located in the mitochondrial matrix and
the periphery of the membrane, whereas insoluble proteins
constitute the main body of the membrane, part of which is
composed of mosaic proteins or enzymes (Pfanner et al., 2019).
Lipids in mitochondria are mainly distributed in two layers
of membranes, accounting for 20 to 30% of the dry weight.
Phospholipids in mitochondria account for more than 75% of
total lipids. The amount of phospholipids in the mitochondrial
membrane of different tissues of the same organism is relatively
stable. Abundant cardiolipin and less cholesterol are the obvious
differences between the structure of mitochondria and other cell
membranes (Montero et al., 2010).

From the outside to the inside, the mitochondria can be
divided into four functional areas: the outer mitochondrial
membrane (OMM), the intermembrane space (the space between
the outer and inner membranes), the inner mitochondrial
membrane (IMM), and the matrix (space within the inner
membrane) (Pfanner et al., 2019). The OMM is smoother
and acts as the boundary membrane of organelles, while
the IMM folds inward to form mitochondrial cristae (e.g.,
lamellar cristae, tubular cristae, and vesicular cristae), which
complicate biochemical reactions. Mitochondria are the main
sites for oxidative phosphorylation and synthesis of adenosine
triphosphate (ATP) in cells, and provide chemical energy for
cellular activities as the “powerhouse of the cell.” In addition
to supplying energy for cells, mitochondria are also involved in
various processes, such as cell differentiation, signal transduction,
cell growth, the cell cycle, and cell death (Herst et al., 2017;
Bock and Tait, 2020). Dysfunctional mitochondria are unable to
execute oxidative phosphorylation and consequently accumulate
reactive oxygen species (ROS) in the cells. Mitochondrial
oxidative stress is associated with a variety of pathologies,
especially age-related diseases (e.g., cancer). In order to avoid
mitochondrial dysfunction, some conservative mechanisms have
evolved to control the quality of mitochondria. Among them,
mitophagy plays a central role in preventing mitochondrial
damage by promoting mitochondrial turnover. Understanding
the signal transduction and molecular modification of mitophagy
is important for improving the homeostasis of mitochondria
(Palikaras et al., 2018).

Molecular Mechanisms of Mitophagy
Mitochondrial depolarization refers to the process in which
the membrane potential of the mitochondria changes from
negative to positive in the direction of depolarization (Zorova
et al., 2018). During the electron transport process, as electrons
flow down the chain of the redox complex located in the
IMM, protons flow into the space between the IMM and
the OMM. Therefore, the intermembrane space becomes
positive, and the IMM becomes electrochemically polarized.
The backflow of protons is related to the production of ATP.
In this state, the mitochondria are polarized. When proton
flow is independent of ATP production, mitochondria are
considered to be depolarized (Zorova et al., 2018). Fission-
induced mitochondrial depolarization is an important factor that
triggers mitophagy to reduce oxidative stress (Twig and Shirihai,
2011). The molecular mechanisms involved in mitophagy are

complex, and recognition of depolarized mitochondria requires a
variety of cargo receptors and regulators. In general, mitophagy
can be mediated through ubiquitin (Ub)-dependent and Ub-
independent receptor pathways, as described below (Harper et al.,
2018; Figure 2).

Ub-Dependent Receptors
PTEN-induced kinase 1 (PINK1) is a serine/threonine protein
kinase that localizes to mitochondria (Valente et al., 2004).
Parkin RBR E3 ubiquitin protein ligase (PRKN/PARKIN/PARK2)
is a component of the multiprotein E3 ubiquitin ligase
complex, which can catalyze the covalent attachment of
the ubiquitin part to the substrate protein (Shimura et al.,
2000). Mutations in PINK1 and PRKN are implicated in
Parkinson’s disease, an aging-related disease associated with
mitochondrial abnormalities and motor nerve damage (Pickrell
and Youle, 2015). Importantly, the activation of the PINK1-
PRKN pathway is the first and most studied regulatory
mechanism of mitophagy. When mitochondria are damaged
or depolarized, PINK1 stabilizes on the OMM, where it
recruits and activates PRKN (Vives-Bauza et al., 2010). After
being transported from the cytoplasm to the mitochondria,
PRKN ubiquitinates many OMM proteins [e.g., translocase
of outer mitochondrial membrane 20 (TOMM20/TOM20),
mitofusin 1 (MFN1), and mitofusin 2 (MFN2)], resulting in
the recruitment of autophagy receptors such as sequestosome 1
(SQSTM1/p62) and optineurin (OPTN) (Geisler et al., 2010;
Wong and Holzbaur, 2014). The ubiquitinated proteins with
autophagy receptors are then bound to the autophagosome-
associated proteins [microtubule-associated protein 1 light chain
3 (MAP1LC3/LC3/Atg8) or GABA type A receptor-associated
protein (GABARAP)] via their LC3 interacting domain (LIR)
to direct the isolation membrane/phagophore of growing
autophagosomes to surround damaged mitochondria (Wild
et al., 2014). Finally, engulfed mitochondria are degraded and
eliminated in autolysosomes (Geisler et al., 2010; Wong and
Holzbaur, 2014). The activity and function of PINK1 or PRKN in
mitophagy is further regulated by various binding partners and
changes in mitochondrial dynamics (e.g., mitochondrial fission).
Of note, some mammalian cells (Eiyama and Okamoto, 2015) do
not express PINK1 or PRKN, indicating that PINK1- and PRKN-
mediated mitophagy may have tissue and cell-specific effects in
preventing mitochondrial dysfunction.

Ub-Independent Receptors
BCL2 Interacting Protein 3-Like
The BCL2 apoptosis regulator (BCL2) family includes pro-
apoptotic proteins [e.g., BCL2-associated X, apoptosis regulator
(BAX), BCL2 antagonist/killer 1 (BAK1/BAK), and BH3
interacting domain death agonist (BID)] and anti-apoptotic
proteins [e.g., BCL2 and BCL2-like 1 (BCL2L1/BCLXL)].
Members of the anti-apoptotic BCL2 protein family are
overexpressed in many malignant tumors and become targets
for tumor treatment (Adams and Cory, 2007). In addition to
regulating mitochondrial apoptosis by controlling mitochondrial
outer membrane permeabilization, the OMM protein BCL2
interacting protein 3-like (BNIP3L/NIX, a pro-apoptotic BCL2
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FIGURE 2 | The Ub-dependent and Ub-independent receptor pathways of mitophagy. Many components of the mitochondria, including mitochondrial membrane
proteins (e.g., PINK1, BNIP3L, BNIP3, FUNDC1, NIPSNAP1, NIPSNAP2, BCL2L13, PHB2, and FKBP8) and lipids (e.g., cardiolipin and ceramides), act as
mitophagy receptors in a context-dependent manner.

family member) is involved in mediating mitophagy (Schweers
et al., 2007; Sandoval et al., 2008). Unlike binding BCL2 during
apoptosis (Zhang and Ney, 2009), BNIP3L directly binds to
MAP1LC3 or GABARAP during mitophagy (Schwarten et al.,
2009). Moreover, BNIP3L-mediated mitophagy may not be
associated with the ubiquitination of BNIP3L, indicating that it
is an Ub-independent receptor for mitophagy (Ney, 2015).

Functionally, the activation of BNIP3L-dependent mitophagy
is essential for the programmed mitochondrial elimination
during erythroid maturation, and BNIP3L-depleted mice
show anemia (Schweers et al., 2007; Sandoval et al., 2008).
Furthermore, BNIP3L instead of PRKN is responsible for
mitophagy induction in HeLa cells (a cell line derived from
patients with cervical cancer) (Ding et al., 2010). In addition,
transcriptional factor hypoxia-inducible factor 1 subunit alpha
(HIF1A/HIF1α)-mediated BNIP3L upregulation is required for
hypoxia-induced mitophagy (Sowter et al., 2001), indicating
a potential role of BNIP3L-mediated mitophagy in hypoxic
tumor microenvironments (TMEs). Structurally, BNIP3L
positioning on OMM requires the transmembrane domain, and
BNIP3L dimerization is responsible for MAP1LC3 recruitment
(Marinkovic et al., 2020). BNIP3L further binds to MAP1LC3 at
the amino terminus of BNIP3L through the LIR motif (Schwarten
et al., 2009). These structural studies provide information for the
development of BNIP3L-targeted drugs.

BCL2 Interacting Protein 3
BCL2 interacting protein 3 (BNIP3) is a BH3-only protein and
acts as a pro-apoptotic BCL2 family member (Vande Velde
et al., 2000). It interacts with the anti-apoptotic BCL2, thereby
overcoming the inhibitory effect of BCL2 on apoptosis (Zhang
and Ney, 2009). BNIP3 at the OMM regulates the opening of

the pores in the mitochondrial double membrane to mediate
the transport of lysosomal proteins from the cytoplasm to
the mitochondrial matrix, thereby leading to the degradation
of damaged proteins in the mitochondria in response to
oxidative damage (Zhang and Ney, 2009). BNIP3 also has a LIR
domain through which it interacts with MAP1LC3 and mediates
mitochondrial degradation through mitophagy (Novak et al.,
2010; Park et al., 2013). Like its homolog BNIP3L, BNIP3 forms
a dimer during mitophagy and its expression is regulated by
HIF1A during hypoxia (Sowter et al., 2001; O’Sullivan et al.,
2015). BNIP3 is also highly expressed in the hypoxic environment
of solid tumors. Although both BNIP3 and BNIP3L mediate
hypoxia-induced mitophagy (Sowter et al., 2001), the functional
complementarity and differences of these two proteins in cancer-
related mitophagy remain largely unclear. In addition, BNIP3
may affect the fission or fusion of mitochondria by binding to
OPA1 mitochondrial dynamin-like GTPase (OPA1) or dynamin
1-like (DNM1L/DRP1), thereby promoting mitophagy (Lee
et al., 2011). These findings highlight the role of mitochondrial
dynamics in regulating mitophagy.

FUN14 Domain Containing 1
In addition to BNIP3L and BNIP3, FUN14 domain containing
1 (FUNDC1) was also found to be expressed in OMM as an
autophagy receptor for mitophagy during hypoxia (Liu et al.,
2012). The activity of FUNDC1 in hypoxia-induced mitophagy
is regulated by phosphorylation and dephosphorylation events.
Unc-51–like autophagy-activating kinase 1 (ULK1/ATG1) is
the only kinase of the ATG family and a component of the
ULK1-ATG13 RB1-inducible coiled-coil 1 (RB1CC1) complex,
which initiates the formation of autophagosomes in mammalian
cells (Hosokawa et al., 2009; Jung et al., 2009). ULK1 has
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many phosphorylation sites, and these phosphorylation sites
have different functions in regulating autophagy (Xie et al.,
2015). Phosphorylation of ULK1 at serine17 mediates ULK1
translocation to mitochondria and subsequently binds to
FUNDC1 during hypoxia (Wu et al., 2014). In contrast, the
dephosphorylation of FUNDC1 by PGAM family member 5,
mitochondrial serine/threonine protein phosphatase (PGAM5)
under hypoxia increases its binding to MAP1LC3 through
LIR, and recruits the isolation membrane that binds to
MAP1LC3, further forming autophagosomes to engulf damaged
mitochondria in mammalian cells (Liu et al., 2012; Chen et al.,
2014). Certain proteins [e.g., mitochondrial E3 ligase membrane-
associated ring CH-type finger 5 (MARCHF5/MARCH5) and
cytosolic molecular chaperone heat shock protein family A
(hsp70) member 8 (HSPA8/HSC70)] bind to FUNDC1, which
further regulate the protein stability of FUNDC1 to fine-
tune mitophagy during hypoxia (Chen et al., 2017; Li et al.,
2019b). Interestingly, the PRKN-mediated ubiquitination may
promote the transport of MARCHF5 from mitochondria to
peroxisomes, resulting in a decrease in mitophagy (Koyano
et al., 2019). FUNDC1 also acts as a platform for regulating
mitochondrial dynamics (e.g., fission and fusion) and mitophagy
by interacting with DNM1L and OPA1 (Chen et al., 2016).
In particular, the dissociation of FUNDC1 from DNML1 to
form a complex with OPA1 inhibits mitochondrial fission and
mitophagy (Chen et al., 2016). These findings further support
the idea that mitochondrial dynamics and quality control are
inseparably intertwined.

The 4-Nitrophenylphosphatase Domain and
Non-neuronal SNAP25-Like Protein Homolog 1
Both 4-nitrophenylphosphatase domain and non-neuronal
SNAP25-like protein homolog 1 (NIPSNAP1) and NIPSNAP2
play a major role in vesicular transport (Seroussi et al.,
1998). Under normal conditions, they are located in the
IMM and act as modulators of calcium channels (Brittain
et al., 2012). However, they also localize to the OMM during
mitochondrial depolarization to recruit autophagy receptors,
MAP1LC3 homologs, and other proteins, and effectively
serve as an “eat me” signal for triggering PRKN-dependent
mitophagy (Princely Abudu et al., 2019). For example, the
recruitment of autophagy receptors, such as calcium binding
and coiled-coil domain 2 (CALCOCO2/NDP52), SQSTM1,
NBR1 autophagy cargo receptor (NBR1), tax1-binding protein
1 (TAX1BP1), and WD repeat and FYVE domain containing
3 (WDFY3/ALFY), to depolarized mitochondria is mediated
by NIPSNAP1 and NIPSNAP2 during mitophagy (Princely
Abudu et al., 2019). Accordingly, NIPSNAP1 and NIPSNAP2,
which require OMM localization, interact with MAP1LC3 or
GABARAP as preferred interaction partners (Princely Abudu
et al., 2019). Although zebrafish lacking Nipsnap1 show a
decrease in mitochondria in the brain, which is coupled with
the production of ROS, the loss of dopaminergic neurons,
and a strong decrease in movement (Princely Abudu et al.,
2019), the impact of NIPSNAP1 or NIPSNAP2-mediated
mitophagy in neurodegenerative disease in mice or humans
remains unknown.

BCL2-Like 13
BCL2-like 13 (BCL2L13/Bcl-rambo) is an OMM protein, a
member of the pro-apoptotic BCL2 family with four conserved
BH domains (Murakawa et al., 2015). The overexpression of
BCL2L13 induces caspase-3–dependent apoptosis, which can
be blocked by co-expression of inhibitor of apoptotic proteins
(IAPs) (Kataoka et al., 2001). However, unlike other BCL2
members, BCL2L13 does not require the BH domains to induce
apoptosis, but instead relies on mitochondrial localization by the
transmembrane domain (Kataoka et al., 2001). In addition to
promoting apoptosis, BCL2L13 also acts as a homolog of Atg32
in mammalian cells, mediating mitochondrial fragmentation
and subsequent mitophagy (Murakawa et al., 2015). The OMM
protein Atg32 is an autophagy receptor for mitophagy in yeast,
and interacts with Atg8 and Atg11 (Liu et al., 2012). BCL2L13
interacts with MAP1LC3 through a conserved LIR sequence,
leading to autophagosome engulfment of damaged mitochondria
(Otsu et al., 2015). BCL2L13-mediated mitochondria also
require fission mechanisms to drive mitochondrial fragmentation
(Murakawa et al., 2015). The BCL2L13 gene is involved in a wide
range of cancers, but whether BCL2L13-mediated mitophagy
affects tumor development is still poorly understood.

Prohibitin 2
Prohibitin 2 (PHB2) is a conserved protein found in the
mitochondria and the nucleus of eukaryotic cells, and plays a
role in development, lifespan regulation, and various cellular
processes (including mitochondrial dynamics) (Wei et al.,
2017; Zhou et al., 2018). Notably, PHB2 was initially identified
as a specific repressor of estrogen receptor in the nucleus by
competitively inhibiting the binding between nuclear receptor
coactivator 1 (NCOA1/SRC-1) and estrogen receptors (Montano
et al., 1999; Kasashima et al., 2006). PHB2 can combine with
PHB1 to form a large ring complex on the mitochondrial
membrane and act as a molecular chaperone to stabilize
mitochondrial proteins, thereby supporting mitochondrial
morphogenesis and preventing cell death (Tatsuta et al., 2005).
Moreover, mitochondrial PHB2 acts as an autophagy receptor
for the clearance of damaged mitochondria in mammalian
cells and C. elegans (Wei et al., 2017). In many cases, the
IMM protein requires the rupture of the OMM to recruit the
mitophagy molecular machinery (including mitophagy receptors
and MAP1LC3) (Wei et al., 2017). However, in some cases,
this dynamic positional change of the IMM protein is not
necessary for mitophagy. Alternatively, PHB2 may act as a
direct autophagy receptor in the IMM and binds to MAP1LC3
through the classical LIR motif, thereby degrading mitochondria
(Wei et al., 2017). However, PHB2 promotes PINK1-PRKN–
mediated mitophagy in a MAP1LC3-independent manner via
the presenilin-associated rhomboid-like (PARL)-PGAM5 axis
(Yan et al., 2020). Thus, both OMM receptors and IMM receptors
participate in mitophagy-mediated mitochondrial removal.

FKBP Prolyl Isomerase 8
FKBP prolyl isomerase 8 (FKBP8/FKBP38) is a member of the
immunophilin family, which has a conserved peptidyl prolyl
cis/trans-isomerase domain. FKBP8 not only plays a role in
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immune regulation, but also participates in protein quality
control (e.g., protein folding and trafficking) (Okamoto et al.,
2006; Janssens et al., 2014; Xu et al., 2019). When combined
with calmodulin and calcium, FKBP8 becomes active (Edlich
et al., 2005). FKBP8 is anchored by the transmembrane domain
and is mainly distributed in mitochondria (Shirane-Kitsuji and
Nakayama, 2014). Mitochondrial FKBP8 acts as a molecular
chaperone of BCL2 or heat shock proteins to inhibit apoptosis
(Chen et al., 2008; Misaka et al., 2018). In addition to its
anti-apoptotic function in response to various mitochondrial
stresses, FKBP8 is also an autophagy receptor for damaged
mitochondria (Bhujabal et al., 2017). FKBP8 has a typical
LIR motif, and can strongly recruit MAP1LC3 to damaged
mitochondria in HeLa cells during mitophagy (Bhujabal et al.,
2017). Consequently, the overexpression of FKBP8 promotes
mitochondrial fission, leading to mitophagy (Bhujabal et al.,
2017). Unlike other autophagy receptors that usually degrade
with cargo, FKBP8 escapes autophagosome degradation during
mitophagy and instead relocates to the endoplasmic reticulum to
bind BCL2 (Bhujabal et al., 2017). Thus, FKBP8 partially protects
mitochondria from damage through mitophagy activation.

Mitochondrial Membrane Lipids
Cardiolipin is a diphosphatidylglycerol lipid, first found in
animal hearts. It is an important component of the IMM,
accounting for 20% of its total lipid composition (Paradies
et al., 2014). In addition to mitochondria, cardiolipin can also
be found in the membranes of most bacteria (Carranza et al.,
2017). Cardiolipin homeostasis plays a key role in regulating
mitochondrial function, and is involved in metabolism, cell
death, and mitochondrial quality control (Dudek, 2017). For
example, cardiolipin is necessary for the enzymatic activity of
the respiratory chain complex and acts as a proton trap for
oxidative phosphorylation (Dudek, 2017). The distribution of
cardiolipin on the OMM not only triggers apoptosis, but also
induces mitophagy to clear damaged mitochondria by interacting
with MAP1LC3 (Chu et al., 2013), indicating that cardiolipin is
an important eat me signal that regulates cell death and survival
after mitochondrial injury.

Other lipids that contribute to mitophagy come from
ceramides, which are composed of sphingosine and fatty acids.
For example, C18-ceramide synthesized by ceramide synthase
1 (CERS1) induces mitophagy and tumor suppression in head
and neck squamous cell carcinoma cells (Sentelle et al., 2012)
and acute myeloid leukemia cells (Dany et al., 2016) in vitro
and in vivo. Mechanistically, ceramide can bind to MAP1LC3
on the mitochondrial membrane to trigger mitophagy after
DNM1L-mediated mitochondrial fission (Dany and Ogretmen,
2015). These findings provide another strategy for removing
damaged mitochondria through the phospholipid components of
the mitochondrial membrane.

Mitophagy in Cancer
The role of autophagy in tumor biology is complex, which
depends not only on the type of tumor, but also on the stage and
context of the tumor (Levy et al., 2017). In general, autophagy
plays a role in blocking the initiation of tumorigenesis because

it inhibits genome instability and inflammation. In contrast,
in established tumors, cancer cells may use autophagy to meet
their metabolic requirements and enhance the resistance to cell
death, leading to increased growth and invasiveness. Similarly,
dysfunctional mitophagy is a characteristic phenomenon of
cancer. Most mitophagy receptors or regulators are involved in
cancer; however, whether they act as tumor promoters or tumor
suppressors seems to be highly dependent on tumor type and
TME (Table 1), which is described below (Panigrahi et al., 2019;
Praharaj et al., 2019; Vara-Perez et al., 2019; Ferro et al., 2020).

Mitophagy Inhibits Tumorigenesis
The PINK1-PRKN pathway is considered to be the main
pathway of mitophagy in cancer cells (Bernardini et al., 2017).
A loss of PINK1 or PRKN function impairs mitochondrial
quality control, which further leads to the accumulation of ROS,
thereby affecting cell function. The mutation or depletion of
PINK1 or PRKN is often detected in a variety of tumors, such
as lung cancer, glioma, and colon cancer (Bernardini et al.,
2017). For example, the PRKN gene and human colorectal
cancer are obviously associated with adenomatous polyps, and
the expression of PRKN can inhibit the proliferation of colon
cancer cells (Poulogiannis et al., 2010). The hybridization of
PRKN knockout mice with colorectal adenomatous polyposis
mice significantly accelerates the development of intestinal
adenomas in newborn mice, and the diversity of polyps is
also significantly increased, indicating that PRKN is a tumor
suppressor gene in colon cancer (Poulogiannis et al., 2010).
In addition, in a KRAS-driven tumor model, the depletion of
PINK1 or PRKN promotes pancreatic tumorigenesis in mice
(Li et al., 2018). Mechanistically, PINK1- and PRKN-mediated
autophagy degradation of mitochondrial iron importers [e.g.,
solute carrier family 25 member 37 (SLC25A37) and solute
carrier family 25 member 28 (SLC25A28)] suppresses pancreatic
tumors by attenuating mitochondrial iron accumulation,
inflammasome activation, high-mobility group box 1 (HMGB1)
release, and subsequent immune checkpoint expression (Li et al.,
2018). Therefore, the pharmacological or genetic inhibition
of mitochondrial iron-dependent signaling prolongs the
survival of animals and reverses the phenotype of mitophagy
deficient-mediated pancreatic tumors in vivo (Li et al., 2018).
These findings suggest that PINK1-PRKN pathway-mediated
mitophagy links iron metabolism to tumor immunity during
tumor formation (Kang et al., 2019). Unlike extracellular
HMGB1 that promotes tumor growth, intracellular HMGB1 can
regulate autophagy and mitophagy to inhibit the development of
pancreatic cancer (Tang et al., 2010, 2011; Kang et al., 2017; Kang
and Tang, 2018).

As discussed above, the activation of HIF1A increases the
expression of BNIP3 and subsequent mitophagy. In turn, the
expression of BNIP3 may affect HIF1A stability. This HIF1A-
BNIP3–mediated mitophagy pathway is also implicated in
controlling tumorgenesis in some cancers, such as triple-negative
breast cancer (TNBC) (Chourasia et al., 2015). In fact, during
the metastasis of TNBC, HIF1A-dependent BNIP3 expression
is often suppressed or absent (Chourasia et al., 2015). The
combination of BNIP3 deletion and high HIF1A expression
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TABLE 1 | Role of mitophagy regulators in tumorigenesis.

Mitophagy
regulator

Tumor type Function in
cancer

Mechanisms References

BNIP3 Breast tumor Tumor suppressor Inhibits glycolysis and angiogenesis Chourasia et al., 2015

BNIP3 Pancreatic cancer Tumor suppressor Promotes hypoxia-induced cell death Okami et al., 2004

BNIP3 Colorectal cancer Tumor suppressor Promotes hypoxia-induced cell death Murai et al., 2005; Bacon et al., 2007

BNIP3 Gastric cancer Tumor suppressor Promotes hypoxia-induced cell death Murai et al., 2005

BNIP3L Pancreatic ductal adenocarcinoma Tumor promoter Increases glucose metabolism and
antioxidant capacity

Humpton et al., 2019

Ceramide Head and neck squamous cell carcinoma,
acute myeloid leukemia cells

Tumor suppressor Promotes cell death Sentelle et al., 2012; Dany et al., 2016

FUNDC1 Hepatocellular carcinoma Tumor suppressor Inhibits inflammation Li et al., 2019a

FUNDC1 Laryngeal cancer Tumor promoter Promotes cell proliferation and survival Hui et al., 2019

FUNDC1 Cervical cancer Tumor suppressor Promotes apoptosis Hou et al., 2017

PHB2 Cervical/non-small cell lung/colorectal
cancer cells

Tumor suppressor Promotes activation of PINK1-PRKN
pathway

Yan et al., 2020

PHB2 Non-small cell lung carcinoma Tumor promoter Promotes cell proliferation and migration Zhang et al., 2020

PINK1 Pancreatic ductal adenocarcinoma Tumor suppressor Inhibits inflammation and antitumor
immunity

Li et al., 2018

PRKN Pancreatic ductal adenocarcinoma Tumor suppressor Inhibits inflammation and antitumor
immunity

Li et al., 2018; Yin et al., 2018

PRKN Colon cancer Tumor suppressor Inhibits cell proliferation Poulogiannis et al., 2010

predicts poor metastasis-free survival for TNBC (Chourasia et al.,
2015). The increased aggressiveness of breast tumors in BNIP3-
depleted mice is related to a decrease in mitophagy and the
increased stability of HIF1A, indicating that BNIP3 can inhibit
HIF1A and mitochondrial dysfunction (Chourasia et al., 2015).
In addition, BNIP3 has a tumor suppressor effect in pancreatic
cancer (Okami et al., 2004), colorectal cancer (Murai et al., 2005;
Bacon et al., 2007), and gastric cancer (Murai et al., 2005), which
is related to hypermethylation of the BNIP3 promoter. Whether
the epigenetic silencing of BNIP3 can help reduce mitophagy and
subsequent tumorigenesis remains unanswered.

FUNDC1 is another player in hypoxia-mediated mitophagy
through its dephosphorylation (Liu et al., 2012). In cervical
cancer, the expression of FUNDC1 was higher in tumors than in
adjacent normal tissues (Hou et al., 2017). This high FUNDC1
expression is negatively correlated with tumor progression and
patient prognosis, indicating a potential role of FUNDC1 in the
suppression of tumor growth of cervical cancer (Hou et al., 2017).
In addition, FUNDC1-mediated mitophagy protects laryngeal
cancer cells against oxidative stress (Hui et al., 2019), which
correlates with tumorigenic potential. Conditional knockout of
FUNDC1 in the liver also initiates liver cancer by activating
inflammation (Li et al., 2019a).

Mitophagy Promotes Tumor Progression
In some cases, the activation of a specific mitophagy pathway
may promote tumor growth and development. Although both
BNIP3 and BNIP3L are similar modulators of mitophagy and
apoptosis, BNIP3L, unlike BNIP3 which inhibits tumorgenesis,
plays an opposite role in promoting tumorigenesis. For example,
the loss of BNIP3L in the KPC (LSL-KrasG12D; Tp53R172H ;
Pdx1-Cre) model of pancreatic ductal adenocarcinoma (PDAC)
delays tumor occurrence, which is associated with reduced

mitophagy and attenuated progression from the pancreatic
intraepithelial neoplasia stage to PDAC (Humpton et al., 2019).
These findings raise an unsolved question about the role of
BNIP3L-dependent mitophagy in mutated KRAS and mutated
TP53-driven tumorigenesis. One possibility is that different types
of mitophagy may produce different TMEs, which further affects
inflammation response and tumor immunity. It is also a challenge
to distinguish the mitophagy-dependent and -independent role of
BNIP3L in tumor biology.

Mitophagy and Tumor Therapies
The main reason for treatment failure in cancer is the resistance
of cancer cells to drugs, which leads to tumor recurrence and
metastasis. Dysfunctional autophagy and mitophagy lead to drug
resistance through multiple mechanisms, including inhibiting
cell death, especially apoptosis (Levy et al., 2017). Cancer stem
cells (CSCs) are self-renewing cell types that contribute to tumor
onset, expansion, drug resistance, recurrence, and metastasis
after treatment (Reya et al., 2001; Ward and Dirks, 2007).
Mitochondria are an important source of ROS within most cells,
including cancer cells. Elevated ROS production is a powerful
inducer of apoptosis during chemotherapy. Mitophagy-mediated
mitochondria degradation limits the production of ROS, thereby
exerting a cytoprotective effect during chemotherapy and helping
CSCs resist apoptosis (Ianniciello et al., 2018; Levy et al., 2020).
Reversing mitophagy-mediated protective mechanisms may be
one of the ways to reverse CSC chemotherapy resistance (Wang
et al., 2020). For example, leukemia stem cells (LSCs) are resistant
to traditional chemotherapy drugs because LSCs can attain a
lower rate of energy metabolism and ROS production through
fission-dependent mitophagy (Pei et al., 2018). LSCs increase
the expression of fission, mitochondrial 1 (FIS1) through the
adenosine 5′-monophosphate-activated protein kinase (AMPK)
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pathway (Pei et al., 2018). Blocking FIS1 gene expression blocks
the mitophagy pathway by inhibiting glycogen synthase kinase 3
(GSK3) activity (Pei et al., 2018). The use of GSK3 inhibitors to
target the AMPK-FIS1-GSK3-mediated mitophagy pathway may
become a radical cure for acute myeloid leukemia (Pei et al.,
2018). Doxorubicin (brand name: adriamycin) is used to treat
different types of cancers. The inhibition of mitophagy enhances
the anticancer activity of doxorubicin in colorectal cancer cells
(Yan et al., 2017). Higher mitophagic levels are also found in
CSCs in cisplatin-resistant oral squamous cell carcinoma and
oxaliplatin-resistant human colorectal cancer (Naik et al., 2018;
Takeda et al., 2019), supporting a widely pro-survival role of
mitophagy in various chemo-resistant cancer cells.

In radiotherapy, increased mitophagy can also promote
survival, which is mediated by the PINK1-PRKN pathway.
Therefore, the inhibition of PINK1-PRKN–mediated mitophagy
restores the radiosensitivity of tumor cells (Zheng et al., 2015).
Temozolomide-perillyl alcohol (TMZ-POH) conjugate induces
lysosomal dysfunction and subsequent impaired mitochondrial
flux in non-small cell lung cancer cells and makes them
sensitive to radiation, thereby showing TMZ-POH as a potential
radiosensitizer (Chang et al., 2018). Ionizing radiation can
trigger a series of cellular DNA damage responses, and the
dynamic interaction between these responses and mitophagy
remains to be revealed.

Compared with chemotherapy and radiotherapy,
immunotherapy (e.g., using cytokines, antibodies, or immune
checkpoint inhibitors) has shown emerging and great potential
in inhibiting tumor growth. Accordingly, more research has
focused on the dual roles of mitophagy in immunotherapy. On
the one hand, inhibition of the mitophagic axis enhances tumor
necrosis factor-based immunotherapy to control the survival
and progression of cervical and gastric cancer cells (Yan et al.,
2018; Zhao et al., 2019). On the other hand, enhanced mitophagy
may induce immunogenic cell death, thereby inhibiting tumor
growth through the activation of cytotoxic T lymphocytes
in liver cancer cells (Yu et al., 2020). These findings further
support that mitophagy may be an effective target for modified
tumor immunotherapy.

CONCLUSION AND PERSPECTIVES

Mitochondria are multifunctional organelles that play
an important role in cancer through the synthesis of

macromolecules, energy production, and cell death regulation.
Understanding the regulation of mitochondrial morphology,
function, biogenesis, fission and fusion dynamics, and
degradation is important for the development of new anticancer
strategies. Dysfunctional mitophagy is a feature of the TME
in many cancers and plays multiple roles in regulating
tumor metabolism. On the one hand, mitophagy prevents the
accumulation of damaged mitochondria, thereby maintaining
energy production for tumor growth. On the other hand,
mitophagy may suppress tumors by limiting the production of
ROS, which is a well-known factor in causing gene mutation
and chromosomal instability. Therefore, it is not surprising that
mitophagy is a regulator of tumor biology, acting as either a
suppressor or a facilitator of tumorigenesis.

The identification of various mitophagy-related autophagic
receptors (including mitochondrial OMM, IMM, or lipid
components) has accelerated our knowledge of the complexity
of mitophagy in tumor biology. Therefore, understanding
the molecular mechanism and function of mitophagy during
different types of mitochondrial stress and damage may be critical
for developing the next generation of cancer treatment methods.
It is also important to develop convenient and reliable methods
or biomarkers to assess the activity of mitophagy in humans.
In addition, distinguishing the function of mitophagy between
normal cells and cancer cells may be important for improving the
targeting of tumor therapy and reducing its toxicity.
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