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Editorial on the Research Topic

Machine Learning in Natural Complex Systems

For many decades, scientists strive to develop intelligent machines to reproduce or improve human
intelligent actions. Machine Learning (ML), a research branch of artificial intelligence, aims to
learn and simulate specific intelligent human actions and has been applied to a large variety of
artificial and natural systems. At first glance, it is tempting to automize solving complex problems
by machines. Specifically, in ML this is done by learning features of a data training data set, i.e.,
learning hidden relations in the data. Since the learned patterns and the subsequent prediction is
based on the training set, the success of ML heavily depends on the training data. This renders
the application of ML to natural systems rather challenging, since natural systems’ dynamics are
complex, and the training data set has to reflect the diverse dynamics. Typically, this renders
the data set huge in size and thus such methods apply well to so-called Big Data. Examples for
applications are visual pattern recognition, language processing and signal processing. Moreover,
ML techniques compete with model approaches, which have built-in relations between system
elements and which do not depend on specific training sets. In certain research fields, such as
meteorology, systemmodels and corresponding techniques are already so powerful that a benefit of
ML is still unclear. However, recent techniques combine ML and models to achieve the best insight
into the dynamics of systems. The present Research Topic collects work from a large variety of
research fields on natural complex systems and provides a good up-to-date overview of the field
of ML.

An important percentage of ML applications focuses on classification of datasets. In medical
science, a combination of different data types has proven to improve patient classification and
prediction. In Zhu et al., the authors have shown that a deep learning classification of both patient
and radiograph variables allow to predict osteonecrosis and thus may prevent its aggravation at an
early stage. Similarly, Xue et al. shows that the combination of diverse patient variables, such as level
of cholesterol and patient age, permits to predict pulmonary complications after gastrointestinal
surgery byML techniques. The latter studies demonstrate that ML techniques permit predictions in
patients with a very high success rate. In line with this approach, Liu G. et al. reviewsML techniques
for epilepsy detection in electroencephalographic signals (EEG). Such latter techniques involve the
additional complexity of a temporal sequence in the data compared to the temporally static data in
the studies mentioned earlier. The authors of Liu J. et al. also consider EEG signals and demonstrate
how to classify emotions by ML techniques. A different application is considered in Peng et al.
considering observed time series in a meteorological model. Here, the authors successfully find
relationships between the climate variables using ML on the basis of precipitation observations.
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Although classification tasks play an important role in current
ML research, existing ML techniques may also serve as tools
to achieve a different research goal. For instance, Wang et al.
shows how ML techniques may assist to learn time-dependent
neural activity in order to understand better the relation of
neural activity to behavior. ML may also help to understand
complex systems on the basis of incomplete observations. Herzog
et al. demonstrate how to complete sparsely sampled mechanical
cardiac dynamics to predict electric heart activity by employing
a dynamical model. The combination of ML techniques and
mathematical models, as in this latter work, is especially powerful
and promises to boost theoretical models of complex systems.
This is shown nicely as well in Kigure, where the author
demonstrates a numerical speed-up in a computational fluid
dynamics model by employing ML.

In recent years, experimental observation techniques have
been improved and are providing more and more data with
increased temporal and spatial resolution. This progress demands
advanced analysis techniques. For instance, today it is possible to
observe neural activity in brain tissue by electrode grids with a
high spatial resolution. Since the corresponding observed time
series are correlated by virtue of the increased resolution, Geddes
et al. propose a new data analysis technique for multivariate
signals to extract novel underlying dynamic features. However,
an improved temporal resolution of observations also requests
improved analysis techniques that take into account multiple
time scales. To this end, Manneschi et al. propose an extended
reservoir computing technique to better learn computationally
observed time series. Moreover, new observational data may also
exhibit sparse dynamics that represents an important challenge
to existing ML techniques. Nascimento et al. investigates how
various sparse dynamics models can be combined with a
graphical approach on the basis of EEG data to retrieve valuable
insights into the brain’s network connectivity. These latter data
evolve on a certain grid in space and/or time and may be used to
identify hidden patterns of functional and effective connectivity
of brain networks. However, this is more difficult in other data,
such as the temporally-changing positions of single objects in an
environment. The authors Fromreide and Hansen address such
data and present a method to predict the motion of moving
ships. They demonstrate how to introduce movement patterns
dependent on the land/sea environment.

In data analysis, a first step identifies data properties which
are then examined in subsequent steps. In order to extract
knowledge from a dataset and learn more about the system
under study, it may be beneficial to look for structural patterns
in the data. For instance, certain symmetries in datasets may
immediately indicate pieces of redundant information and
permit a simplifying dimensionality reduction. Capobianco
addresses this issue and argues that data symmetriesmay enhance
ML performance. Moreover, it may be promising to define novel
similarity measures in life science data which are adapted to the
respective data type (e.g., genetic sequences, chromosome data or
chemical structure formulas). InMünch et al., the authors present
strategies and concepts how to employ data-driven similarity
measures in ML.

In conclusion, the Research Topic Machine Learning in
Natural Complex Systems showcases the powerful impact of ML
on the study of complex systems and the enormous potential
this approach holds for gaining further knowledge about the
complexities of their dynamics. We trust that the readers will
enjoy these articles as much as we did and hope that the
collection will help generate further discussion and inspire
further discoveries.
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Images
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Symmetry is a mathematical concept only partially explored in networks, especially at

the applicative level. One reason is a certain lack of interpretable inference obtained

from networks. While the network systemic associations (links) between entities (nodes)

emerge from the underlying dependence structure, this latter is only partially explicit

via the established direct interactors and remains to a certain extent latent (distant

node predicted paths). Verifiability of significant hubs, connectors, paths, and modules

allows to build a knowledge base useful to infer latencies and/or validate complex

associations. When symmetry is searched in images, reflection, translation and rotation

are applicable transformations in n-dimensional Euclidean space that computational

algorithms target. There is symmetry when original and transformed images cannot be

distinguished. Once collected together, such transformations form an automorphism

group, indicating a stable and robust global characteristic. It is common to step from

images to quantifiable features for conducting inference. Deep learning is typically used to

classify whole images reconstructed from the myriads of features in which these images

are decomposed. However, with images considered at multiple scales and locations,

symmetries are valuable for describing local characteristics. Casting local features into a

network framework enables their associations to be explored by similarity or dissimilarity

criteria. This is quite intriguing because network configurations may display topological

features and connectivity patterns associated with synchronization and symmetry that

reduce the redundancy of features to more compact functional descriptions. Then,

identifying anomalies from unusual events, behaviors, patterns would spot network

vulnerabilities and signs of symmetry breaking.

Keywords: networks, entropy, symmetry, controllability, synchronization, deep learning

INTRODUCTORY REMARKS AND METHODOLOGICAL

BACKGROUND

In physical systems, symmetry commonly means invariance. Therefore, this is like to say that a
system looks the same from different observation angles. Equivalently, due to the presence of
intrinsic regularities, a system’s characteristic may be an observable output in correspondence
with multiple interrelated inputs. As symmetries influence the system’s functionality and models
allow the interpretation of the function dynamics, a general concern is model misspecification.
This implies that an inference model m applied to sample data xǫX may fail due to the wrong
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choice of model family M(x,θ) characterized by parameters θǫ2
and likelihood function L(θ |x). For example, the identifiability
of parameters may be violated. Among other possible reasons,
parameter non-identifiability may occur due to the presence of
symmetry [1].

Formally, symmetry indicates a type of invariance such
that a mathematical object remains unchanged under a set of
transformations. For instance, a symmetry of a function is a
transformation of the function that leaves its graph unchanged.
More in general, a symmetry maps an object onto itself, thus
preserving its structure. In mathematical terms, a symmetry
s: θ → θ is a measurable function that makes θ in a model
no longer identifiable from the given data x. The natural way
to obviate to this effect of symmetry is to re-parameterize
the model, i.e., θ → ψ , with ψǫΨ . Alternatively, one can
constrain the parameters, i.e., θ → θ c. In such cases, the recourse
to “symmetry breaking” solutions can be needed to augment
the performance of inferential algorithms. Symmetry breaking
implies that small system’s fluctuations vary beyond established
thresholds and that the system may cross a critical point due
to the variation governing its state dynamics. Overall, this
determines the system’s fate because once such transition occurs,
it may orient the system toward a different state compared to the
initial one.

There are several types of symmetries, the most common
being permutations. Some symmetries are local and grouping
them leads to transformations that change the system in different
ways at different places in space and time. Instead, a symmetry is
global if it acts similarly at every point. The fact that for a global
symmetry the corresponding parameter is constant explains why
the transformation is applied uniformly across the entire system,
unlike with a local symmetry in which its parameter is a function
of position, and the transformation is applied differently at
different points in space and time.

In the system of interest here, i.e., a network N, symmetry
depends on the preferential attachment growth rule inducing
a bias toward multiple short branches that tend to repeat
themselves in a tree more than longer ones, and the definition
of symmetry is inherent to nodes and their permutations [2].
Given the N adjacency matrix A, in which Aij =1 (nodes
i,j are adjacent) and 0 (otherwise), a symmetry is present
when a permutation P is applied to A, leaving it unchanged,
i.e., PA = A. This so-called automorphism (Aut) means that
nodes are topologically equivalent if their permutation does
not affect the network structure. This offers a rationale for
considering network redundancy and its reduction into network
quotients or skeletons [3–5]. Here, structural network properties,
including heterogeneity and complexity, remain while repetitions
are excluded.

Symmetries may also be combined, but of interest are
especially theminimal ones calling all participating nodes to form
a symmetric structure, or an orbit O (in which a set of nodes is
mapped onto each other). Formally, given I(N) as a set of nodes
in N forming a group Aut(N), the orbit of the node iǫI(N) is a set
O(i) = {π • iǫI(N): πǫAut(N)} (see [4]). Thus, nodes belonging
to an orbit are intrinsically related by simple permutations in
Aut(N).A symmetric network partitioning of its nodes into orbits

is thus establishing disjoint equivalence classes for each node,
which forms an automorphism partition (Aut-P) [6]. Of interest
is also its entropy, which is a measure of the network structural
heterogeneity defined as:

EAut−P
= −

∑
k
pklogpk (1)

with k = 1,K, for K = dim(Aut-P), and with pk the associated
probabilities (computed as node ratios between Aut-P and
network). The normalized entropy is then defined as EAut−P

N =

EAut−P/log K.
It is important to consider a system in steady state

(equilibrium) vs. possible departure from it. Such dynamics
are regulated by the spectral characteristics. In particular, the
eigenvalues of a symmetric structure are decomposable into
two types: redundant and non-redundant. Redundancy is in
correspondence with the eigenvectors localized on the symmetric
structure. The non-redundant eigenvectors refer to eigenvalues
with the same values relatively to the nodes of a given orbit.
This is relevant for the purpose of reducing the network to
the consideration of orbits instead of nodes, which eliminates
the redundancy. Conversely, this is a structural property of
symmetric networks.

Networks are also a paradigm of complexity. If we insert
a probability measure PN in a network N, which defines a
probability distribution Pr(N) on its nodes, each having a
probability pri, we can also define a Network Entropy as:

EN = min
∑

i
prilogpri (2)

This entropy measures the randomness degree in the network
and implies the importance of stochasticity, with a role played by
symmetries too. Namely, measures may vary depending on fuzzy
symmetries [7] (based on fuzzy measure theory) and stochastic
symmetries [8] (based on network ensembles). Furthermore,
network communities (defined as cohesively connected sets
of functionally similar nodes) exert strong inference impacts,
although there are cases in which functional node similarity refers
to symmetry rather than community effects. A typical example of
such ambiguity is provided by studies of brain areas.

The role of symmetries is especially relevant with reference to
network synchronization (see [9]), and computational methods
to break such symmetries (isolated desynchronization) are
discussed in [10]. The construction of functional networks
depends on the relationships between their coupling
components, which makes synchronization motifs central
features. Functional networks are in general heterogeneous
or non-symmetrical structures. This reflects the fact that
disruption of the couplings generates symmetry-breaking in
the network, and also loosens the inherent distribution of
synchronization motifs. However, if the couplings are able to
sustain synchronization, then symmetry will be characterizing
the functional network [11].

Finally, controllability refers to the ability of a dynamical
system to step between states, say from an initial to a final state,
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in finite time [12, 13]. This possibility can be verified quite
straightforwardly in linear time-invariant systems by the so-
called Kalman’s rank condition. In particular, given a canonical
system dz = Az + Bv, with state vector z, and A, and B as state
and control parameter matrices, respectively, the requirement is:
rank[B,AB,. . . .., AP−1 B] = P. Naturally enough, a complication
is when the system’s parameters are unknown. Furthermore, a
common strategy to establish network controllability turns to
the identification of a minimal set of driver nodes. This implies
that controlling this set allows to exert control over the entire
system [14].

With reference to symmetry, what reported in [15] is relevant
for the focus on network controllability but considering the
impact of individual rather than global dynamics, thus departing
from network topology. In real-world networks, assumptions
like the independence of parameters must be relaxed to face
the presence of dependence and even interdependence structure.
Thus, a global symmetry aspect is a characteristic to consider in
assessing both single and combined networks, and establishing
the highest possible controllability, i.e., the lowest number of
critical nodes, becomes a primary goal in applications. Intuitively,
specific hub or module dynamics may remain locally informative
but become less relevant for controllability scopes compared with
the densities at which they present at network scale, which reflects
their possible influence. Figure 1 reconciles the main concepts in
this section.

Nevertheless, real networks complexity may be reduced by
considering node-specific hidden variables that once transformed
may reveal latent symmetries. Such transformations may extend
to statistical ensembles designed through families of stochastic
networks [16]. For the networks partition N = [N1, N2, . . . .,NQ]
and the associated probabilities assigned to each of them Pr(N)
= [Pr(N1), Pr(N2),. . . Pr(NQ)], it holds that

∑
NPr(N) =

∑
q

Pr(Nq) =1 for q = 1,Q. These networks will be stochastically
symmetric under a transformation if each member network has
the same properties under the transformation. An associated
entropy optimization problem is the one searching for the Pr(N)
that maximizes the Shannon-Gibbs entropy:

ESG = −

∑
N
Pr(N)logPr(N) (3)

This problem usually involves a topologically constrained
network, particularly when the ensemble network functions as a
null model (more details on probability functions and entropies
can be found in [8]).

COMPUTATIONAL ASPECTS OF

NETWORK SYMMETRY

Symmetry exerts several types if influences (see Figure 2). A
first main question generally addressed is how to quantify the
redundancy that is due to the presence of symmetry in a network.
One way is through the compression ratio [17], a measure that
compares the full network N to its quotient Q (counting one node
per orbit) computed in two possible ways as either:

C1r = (nN/nQ)
2 (4)

where the ratio is between the number of nodes nN and the
number of orbits nQ in the full network, or

C2r = lN/lQ (5)

this time with edges lN and lQ (representing average connectivity)
used in a sparse network.

It is between these two measures that the redundancy of
an arbitrary network can fluctuate. A direct compression of
symmetry is also possible, through the quotient matrix Q(A),
obtained from the adjacency matrix A and the characteristic
matrix S (i.e., referred to the network partition associated to
the quotient):

Q(A) = STAS (6)

Importantly, symmetry leaves also a spectral signature through
the presence of peaks in the spectral density, to which redundant
eigenvectors are associated, i.e.,

ρ(λ) = 1/N
∑

i=1,N
δ(λ− λi) (7)

or a sum of Dirac delta functions with λias the largest
eigenvalue [4].When the spectrum of a network adjacencymatrix
is considered, symmetries differentiate according to whether
a symmetric structure is present, for then the eigenvalues
can be decomposed into two classes: a) with redundant
eigenvalues, in correspondence to eigenvectors localized on the
symmetric structure and b) with non-redundant eigenvalues, i.e.,
whose eigenvectors have identical values in all elements that
correspond to nodes in the same orbit. As an alternative, similar
results were obtained for the Jacobian matrix in a food web
model [18].

Looking beyond partitions from nodes to orbits, one
can consider equitable partitions in which two node
clusters have a special relationship, one in which each
node of one cluster has exactly the same number of
neighbor nodes in the other cluster. Interestingly, this
complementary partition has relevance for synchronous
patterns, as in both types of partitions nodes in the
same cluster can synchronize and in different clusters
cannot [19].

It is consolidated nowadays as a practice the fact to
extensively use Deep Learning (DL) in image applications.
It is rarer to find symmetry at the core of studies, despite the
relevance [20]. An interesting study [21] of generative adversarial
networks (GAD) has exploited horizontal symmetry (usually
not considered in such form) by adopting two methods, one
checking what symmetry loss allows generated images and
flipped versions to be classified the same way, and another
that inverts the flipped images aiming at reconstructing
with minimal distortion. Another convolutional neural
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FIGURE 1 | Hierarchy of symmetry relationships in networks.

FIGURE 2 | Symmetry outreach.

neural networks (CNN) study [22] inspired by primary
visual cortex processes has investigated the impact of
symmetry constraints in convolutional layers for image
classification. As a result, similar performance was found
in a setting with reduced number of parameters due to
replacement of random weights by symmetry constraints
during backpropagation.

Interestingly, the imposition of symmetry constraints to
reduce the number of parameters was assessed in another
study [23] in which accuracy loss was absolutely limited
even in overparameterized settings (both CNN and recurrent
neural networks or RNN) from CIFAR, ImageNet etc. As a
general remark, data paucity and non-standard statistical settings
(non-independently identically distributed, unsupervised etc.)
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have suggested to embed learning architectures with invariance
under symmetry transformations. In a study [24] on probabilistic
symmetry, a link with functional symmetry was established
such that the structure of networks could be completely
characterized by invariance usable to construct both stochastic
and deterministic solutions.

Different applications have been presented by two further
studies. One study [25] was centered on a spreading model in
a setting of multilayer networks that considers non-equilibrium
phase transition when either susceptible-infected-susceptible
or susceptible-infected-recovered spreading dynamics being
integrated. Using a biased diffusion process among different
layers, the discontinuous transition goes together with a
spontaneous symmetry breaking in occupation probabilities of
individuals in each layer. Another interesting study [26] was
proposed on the symmetry of weighted brain networks to
decipher the roles of individual brain areas and the redundancy
of connectivity. The structural symmetry of every pair of nodes
in the network was quantified by the isomorphism of the residual
graphs. Then, fMRI was performed on subjects with a condition,
i.e., inattentive type of Attention Deficit Hyperactivity Disorder,
showing the emergence of higher level of network symmetry
compared to the development group. As a methodological note,
symmetry levels threshold-sensitivity was observed.

IMAGE NETWORKS AND ROLE OF

SYMMETRY

Radiomics [27–29] promotes the role of images as mineable
data [30]. These are features providing the medical imaging
community with a wealth of quantitative information usable
for diagnosis, therapy evaluation, patient risk profiling and
stratification. The literature of radiomics is dense of applications
centered on pipelines that leverage machine learning (ML)
implementation of feature selection and image fusion methods.
Especially the DL community found in radiomics a precious
source of data and a testing ground for ML and statistical
methods. In turn, the advent of this discipline has stimulated
increasingly integrative research on cancer biology, genomics and
clinics with unprecedented scale and resolution depth [31]. Thus,
it has become possible to investigate the complex hierarchical
organization of medical images.

The key factor is designing DL and ML solutions targeted to
a synthesis of various types of measurements and predictions,
either assembled together in the attempt to concentrate
information or distributed across network layers in order to
reconcile all the differently channeled information into scores.
These two types of approach, concentric one and distributed the
other, may present quite different symmetry scenarios, despite
a differentiation occurs according to the achievable precision,
thus depending on imaging technologies and combination of
modalities together with data gaps.

From a modeling standpoint, and by keeping symmetry in
mind, transfer learning (TL) [32–36] and ensemble modeling
(EM) seems especially relevant. The TL’s paradigm is that features
may be learned in a certain application domain and then applied

to different domains. The role of symmetry could be an important
criterion to judge generalizability first and feasibility after, for
then leaving to the ability of TL leveraging other similarity aspects
(related or not to symmetry). EM seems to match well the
distributed approach discussed earlier by suggesting strategies
for weighting scores and predictions from different models.
However, data features gathered at a variety of spatiotemporal
resolutions are hard to integrate into interpretable predictive
models. Quite evidently, there is strong need to identify and
measure heterogeneity in spatial and time, and then cross-
correlate all types of imaging features.

Structural symmetry is central to human brain functions and
thus the functional activities of areas that are symmetric at
an anatomic level can be strongly correlated, even if the areas
are distant in space. Experiments in [9] studied symmetry in
the human brain via coupled anatomical (DW-MRI data) and
functional (fMRI) connectivity graphs defined on the same set of
90 cortical areas. Interestingly from a network standpoint the fact
the relevance of anatomical symmetry in neural synchronization
because determining correlated functional modules across
distant locations. At one end anatomically symmetric regions
obtained via clustering of nodes with phase at stationary state,
at the other end a functional network with links indicating
statistically significant correlations between the timeseries of
cortical areas. For two nodes in spatially separated regions
showing no anatomical connection it appeared symmetry and
strong synchronization from fMRI. For other two nodes from
spatially adjacent regions and anatomically connected a gap in
phase emerged together with lack of fMRI synchronized patterns.

In an interesting study [37], non-contrast (nc) CT images with
follow-up magnetic resonance diffusion-weighted (MR-DW)
images have supported evidence on the differentiation between
ischemic and healthy brain tissue through quantification of
symmetry. Stroke spots were identified by spatially aligning MR-
DW images to the corresponding ncCT images. An interesting
observation is that three methods (AdaBoost, Support Vector
Machines, Decision Trees) were used to classify, but a basic
limitation in terms of accuracy remained when comparing
the textures only between the stroke lesions while considering
as normal the contralateral regions. Despite the symmetrical
acute strokes would be uncommon, other ischemic lesions or
pathologies might be present in the contralateral region and
require selection of features ad hoc for differentiating stroke
regions from normal ones.

In the above example networks were not used, but in general
our ability to carry or block information through a network
depends on its topology. Especially when the conductivity
or information transfer is considered then spatial symmetry
becomes central together with its density or average number of
links per node and topological dimension [38]. Therefore, an
alternative method of classification ideally fitting the experiments
in would involve encoding equivariance in learning [39]. In
order to approximate invariance to a class of transformations of
the input, a neural network would need training via with data
augmentation (see [40], and related references in this work).With
enough capacity, the network may learn such invariances but
without guarantee of generalization.
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The specific patterns of synchronization detectable in a
network provide information about the underlying couplings
dynamics and when considered in all their relationships can
well characterize the system under study. Even with non-
linear dynamics interaction regimes become identifiable and the
network structure inferable from similarity and connectivity. Co-
existing complex synchronized dynamics male a network stable
and robust against external factors (stressors/perturbations) and
heterogeneous motifs are probes for functional connectivity,
particularly when stable as they become an invariant feature (i.e.,
consistency of synchronization patterns). Thus, the relationship
between network symmetries and the consistency of the
synchronization patterns, particularly with coupling inducing
global synchronization and resulting in symmetrical networks
reflected onto functional ones, as shown in the brain context (see
[11] for all details and related references).

DISCUSSION

We keep a final point for discussion. Identifying anomalies
from unusual events, behaviors, patterns can be useful to
spot network vulnerabilities and may reveal presence of
symmetry breaking. Conversely, the control of large dynamical
complex networks may depend on the identification of just
a few input nodes or modules. Therefore, by keeping in
mind what the targets are, the results from exerting control
through networks can be quite efficiently achievable, although
only approximately.

The identification of symmetries in a complex network
remains important in order to decipher its organizational
principles and rules. It is key to understand the role of symmetries
in reconstructing or controlling network dynamics [41]. It
is important to decompose a network in two possible ways:
one into observable/controllable vs. unobservable/uncontrollable
sub-networks, and another one into symmetry-driven vs. non-
symmetry-driven sub-networks. Finally, it is key to study how
network components synchronize or desynchronize because
network functionalization depends on such coupled dynamics.
Naturally enough, the problems are always much harder in

non-linear networks as observability and controllability must
deal with more complex dependence relationships.

The last considerations go to the application domain.
Symmetry has several impacts on very transformative fields
like robotics, computer vision, computer graphics, medical
image analysis, radiomics all characterized by coupling artificial
intelligence and machine learning with geometry, group theory,
graphs, statistics etc. Recognizing symmetries is instrumental
to the retrieval of structure from redundant noisy systems,
therefore a statistical problem too, which brings in lots of
other applications and many possible model frameworks (see for
instance examples from network medicine applied to cancer data
of various complexities [31]).
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Emotion classification based on brain–computer interface (BCI) systems is an appealing

research topic. Recently, deep learning has been employed for the emotion classifications

of BCI systems and compared to traditional classification methods improved results

have been obtained. In this paper, a novel deep neural network is proposed for emotion

classification using EEG systems, which combines the Convolutional Neural Network

(CNN), Sparse Autoencoder (SAE), and Deep Neural Network (DNN) together. In the

proposed network, the features extracted by the CNN are first sent to SAE for encoding

and decoding. Then the data with reduced redundancy are used as the input features

of a DNN for classification task. The public datasets of DEAP and SEED are used for

testing. Experimental results show that the proposed network is more effective than

conventional CNN methods on the emotion recognitions. For the DEAP dataset, the

highest recognition accuracies of 89.49% and 92.86% are achieved for valence and

arousal, respectively. For the SEED dataset, however, the best recognition accuracy

reaches 96.77%. By combining the CNN, SAE, and DNN and training them separately,

the proposed network is shown as an efficient method with a faster convergence than

the conventional CNN.

Keywords: EEG, emotion recognition, convolutional neural network, sparse autoencoder, deep neural network

1. INTRODUCTION

The Brain–Computer Interface (BCI) directly connects human (or animal) brain activity with
artificial effectors (Kübler et al., 2009), which provides an interactive pathway between the human
brain and external devices for various applications. The process of such an interaction starts by
recording the brain activity through the signal processing and analysis to detect the users’ intent
(Tabar and Halici, 2016). BCI systems and their various implementations have been subjects
of ongoing study for decades, and one of the most appealing research directions is emotion
recognition due to its potential applications in numerous scenarios. Both non-physiological and
physiological signals could be employed for emotion detections. Non-physiological signals include
facial expression images (Lane et al., 1997), voice signals (Scherer, 1995), and body gesture
(Cheng and Liu, 2008). Compared to the non-physiological signals, physiological signals can
be detected by some wearable devices, such as an electroencephalogram (EEG) (Zheng, 2017),
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electromyogram (Hiraiwa et al., 1989), electrocardiogram
(Agrafioti et al., 2012), the galvanic skin response, blood volume
pressure, and a photoplethysmogram. Among these physiological
signals, EEG signals have been widely used for research into
emotion recognition (Chi et al., 2012; Huang et al., 2015; Li et al.,
2016; Liu et al., 2018c). Captured from the scalp by a number of
EEG electrodes, emotion could be reflected immediately by an
EEG signal once a subject receives the stimulations.

There are two conventional rules to follow when categorizing
human emotions, namely, the discrete basic emotion description
and the dimension approaches. According to the discrete basic
emotion description approach, emotions can be classified into
six basic emotions: sadness, joy, surprise, anger, disgust, and
fear (van den Broek, 2013). For the dimension approach, the
emotions can be classified into two (valence and arousal) or
three dimensions (valence, arousal, and dominance) (Zheng
and Lu, 2015). Among these dimensions, valence describes the
level of positivity or negativity of one person, and arousal
describes the level of excitement or apathy of emotion. The
scale of dominance ranges from submissive (without control)
to dominance (empowered). The emotion recognition is usually
based on the dimension approach because of its simplicity
compared to the discrete basic emotion description (Zheng and
Lu, 2015).

Early works on emotion recognition through analysing
EEG signal could be traced back to more than 50 years ago
(Fink, 1969). Many new methods on feature extraction and
classification have recently been proposed for emotion detection
(Petrantonakis and Hadjileontiadis, 2010). For the feature
extraction, two types of feature are commonly used to analyze
EEG signals: time-domain and frequency-domain features.
Time-domain features capture the temporal information
of signals, such as the fractal dimension (Hjorth, 1970),
Hjorth, and higher-order crossing features (Petrantonakis and
Hadjileontiadis, 2010). The frequency-domain features can
extract the useful information from the frequency perspective
under different frequency bands. For instance, the EEG signal
could be decomposed into δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz),
β (14–30 Hz), and γ bands (31–50 Hz) (Hjorth, 1970; Li and
Lu, 2009; Petrantonakis and Hadjileontiadis, 2010; Nie et al.,
2011), where the features can be extracted from each of them. In
addition, other features, such as Deep Forest (Zhou and Feng,
2017), Statistical Characteristics (SC), Differential Entropy (DE)
feature (Zheng et al., 2014), Pearson Correlation Coefficient
(PCC) feature (Lewis et al., 2007), and Principal Component
Analysis (PCA) (Subasi and Gursoy, 2010), are also used in
emotion recognitions.

In the meantime, various classification methods have been
used for emotion recognition, such as k-Nearest Neighbor
(Bahari and Janghorbani, 2013), Multi-Layer Perceptron (Orhan
et al., 2011). A Support Vector Machine (SVM) and Linear
Regression (LR) were used in Wang et al. (2019), but recognition
accuracy can be improved. In recent years, deep neural networks
(DNN) (Tripathi et al., 2017) has been developed into one
of the most effective and popular methods in many research
fields (Fu et al., 2017; Liu et al., 2018a,b, 2019; Luo et al.,
2018). Convolutional Neural Networks (CNN) are widely used in

computer vision, image classifications, visual tracking (Danelljan
et al., 2016), segmentation, and object detections (Girshick et al.,
2014). EEG emotion classification using the CNN method was
also explored in the approaches of Tripathi et al. (2017). Cascade
and parallel convolutional recurrent neural networks have been
used for EEG human-intended movements classification tasks
(Zhang et al., 2018). Additionally, before applying the CNN, EEG
data could be converted to image representation after feature
extraction (Tabar and Halici, 2016). However, the accuracy of
emotion recognition by using only CNN is not high. In the work
of Zhang et al. (2017), a deep learning framework consisting of
the sparse autoencoder (SAE) and logistic regression was used
to classify EEG emotion status. The sparse autoencoder was
employed for feature extraction, and logistic regression was used
to predict affective states. The SAE is an unsupervised machine
learning algorithm. By calculating the error between the output
of the SAE and original input, data could be reconstructed and
useful features could be extracted for classification task. However,
accuracy of that work is not high and there are no experiments for
comparing to verify the work of the SAE.

In this work, a novel network model combining the CNN,
SAE, and DNN to convert EEG time series into 2D images
for a good emotion classification performance is proposed. The
EEG signal is decomposed into several different bands. Based
on frequency, time, and location information, the 2D features
are extracted from EEG data. Then convolutional layers of the
CNN are trained and used for further extracting features. The
SAE is used for reconstructing data obtained from convolutional
layers, and the DNN is used for classification. Compared to
other approaches, the proposed neural network model, which
leverages the benefits of convolutional layers of the CNN and
sparsity of the SAE, demonstrates a good classification accuracy
and fast convergence. The procedure of the proposed method is
summarized in Figure 1. Original EEG data are pre-processed,
and features are extracted for deep learning model. After training
and testing on the model, final classification results are obtained.

The rest of this paper is organized as follows: the proposed
neural network model is presented in section 2. Datasets
and experimental results are provided in section 3. Section 4
summaries the work and discusses the future work.

2. DEEP LEARNING FRAMEWORK

In this section, fundamental principles and essential network
modules are presented. The novel model is also introduced
in detail.

2.1. Convolution Neural Network (CNN)
The features extracted from original EEG data are sent to
the CNN first. The CNN model includes several convolution-
pooling layer pairs and one output layer. Before sending to
the CNN, features are concatenated into image form which
is then convolved with several one-dimensional filters in
convolution layers. After the pooling layer, the data are further
subsampled to images with smaller size. Network weights and
filters in the convolution layers are learned through back-
propagation algorithm.
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FIGURE 1 | Emotion classification procedure in this work.

In our experiments, data extracted from EEG signal are from
four typical frequency bands, which include α (1–7 Hz), β

(8–13 Hz), θ (14–30 Hz), and γ bands (30–45 Hz), using a
Butterworth band-pass filter. After that, data are reformed into
two-dimensional features, such as PCC, which are the input
for CNN. Detailed methods of this procedure is presented in
sections 3.3 and 3.4. It is worth noting that the two-dimensional
features contain not only the frequency but also spatial location
information of each electrode (Tabar and Halici, 2016). To
preserve this information, one-dimensional filtering is applied in
this work instead of two-dimensional filtering.

The CNN structure is relatively straightforward. Input vector
is two-dimensional feature, which can be given by

x =





x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .

xm1 xm2 . . . xmn



 , (1)

where m × n is the shape of input vector x. The input
two-dimensional feature is convolved with filters Wk at the
convolution layer, which is given by

Wk =





W11

W21

. . .

Wi1



 , (2)

where i is length ofWk and i<m in Equation (1). After the image
convolution, output map is formed and the feature map at the
given layer is obtained by

f (α) = f (Wk × x+ bk), (3)

where Wk ∈ Ri×1 is the weight matrix and bk is the bias value,
k denotes the filter, for k = 1, 2, . . . , n and n denotes the
total number of filtering in convolutional layer. The activation
function is f , which is a rectified linear unit (ReLU) function

in this work. Compared with the traditional neural network
activation functions, such as sigmoid and tanh, ReLU is more
efficient in avoiding gradient disappearance. ReLU function is
defined by

f (α) = ReLU(α) = ln(1+ eα), (4)

where α is defined in Equation (3). At the max-pooling layer, the
feature map is down sampled through the max-pooling function.
Max-pooling is used because it is found that the maximum
value from the selected values of a given feature map could be
effectively extracted using this function.

After the last pooling layer, a fully connected layer follows
in which output data from pooling layer is flattened. After
that, fully connected layers named DNN are followed. In DNN,
the activation function of each layer is also ReLU. For the
output layer, because there are two classification tasks, including
binary classification and multi-class classification, sigmoid and
softmax are used, respectively. For the binary-classification task,
Adadelta is used as an optimizer, and loss is calculated by binary
crossentropy, which is given by

loss = −

N∑

n= 1

ŷilogyi + (1− ŷi)log(1− ŷi), (5)

where N is number of samples, yi is the value, which is a form of
one-hot code, and ŷi is the output from the output layer where
sigmoid is used. For multi-class classification, such as three-class
classification, Adam is used as an optimizer, and loss is calculated
by categorical crossentropy, which is given by

loss = −

N∑

n= 1

ŷi1logyi1 + ŷi2logyi2 + ŷi3logyi3, (6)

where N is number of samples, yi1, yi2, yi3 are values of the label,
which is also a form of one-hot code, and ŷi1, ŷi2, and ŷi3 are three
outputs from the output layer where softmax is used. Parameters
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FIGURE 2 | The autoencoder includes one input, one hidden, and one output

layer.

in the model are updated by using back-propagation algorithm.
The error between the desired output and the actual output is
computed and the gradient descent method is applied to update
parameters in order to minimize the error. Functions to update
the weight and bias are shown by

Wk = Wk − η
∂E

∂Wk
, (7)

bk = bk − η
∂E

∂bk
, (8)

where Wk is the weight matrix, bk is the bias, and η represents
the learning rate, E is the error. E is equal to loss in Equations
(5) and (6). The results obtained from this CNN will be used as a
benchmark for the performance comparison in section 3.

2.2. Sparse Autoencoder (SAE)
An autoencoder is a network including one input, one hidden,
and one output layer, which is used to preserve the essence of
the input data as much as possible and remove the potential
noise in an unsupervised manner. The output data are therefore
simplified, and important information from the input data are
retained, which is beneficial for classification.

The structure of autoencoder is shown in Figure 2. The whole
data processing is divided into encoding and decoding phases.
In the encoding phase, the dimension of input data are reduced
in one layer. When the decoded data arrives at the hidden layer,
the dimension of input data reaches the same as the number of
neurons predefined for this layer. The encoding function of the
hidden layer, h, is defined by

h = encoder(x) = f (Wk × x+ bk), (9)

whereWk ∈ R m×n is the weight matrix between input layer and
the next layer. As defined previously in CNN, bk is also the bias

vector, and f represents the output function. The output function
used in this part is ReLU, which is similar to the activation of
the CNN. Differently from the encoding phase, in the decoding
phase, the same number of neurons in output layers should be
set as that of layers in encoding phase, in order to guarantee
the output data has the same dimension as the input data. The
decoding function is shown by

y = decoder(x) = g(Wk × x+ bk), (10)

where Wk ∈ R n×m. After encoding and decoding phases,
the model is trained, and the parameters could be obtained by
minimizing the cost function, which is defined by

min
∑ ∣∣E(xi, yi)

∣∣ , (11)

where yi is output data and xi is original input data. When the
network is trained, output values are reconstructed, and the shape
of which is equal to that of input data. Parameters of the model
could be updated according to

Wk = Wk − η
∂E(xi, yi)

∂Wk
, (12)

bk = bk − η
∂E(xi, yi)

∂bk
, (13)

where η denotes the learning rate of the network. E is an error in
the SAE. For details of optimizer and E, they are the same as that
in section 2.1 in binary-classification task.

In order to increase the generalization of the network and
improve the training efficiency of the proposed network, a sparse
constraint on the activity of the hidden representations is added
in this work. Sparse constraint helps suppress activation of
neurons in the hidden layer, and useful features can be extracted
by autoencoder. Thus, the cost function in sparse autoencoder is
described by

Jsparse(W, b) = J(W, b)+ β

m∑

j= 1

KL(ρ||ρ̂j), (14)

where ρ̂j is the average activation of hidden unit j, ρ is the sparsity
level, and β is the weight of the sparsity penalty term. KL is
the Kullback–Leibler divergence, which ensures the sparsity of
neurons in hidden layer. KL is defined by

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ)

1− ρ

1− ρ̂j
, (15)

ρ̂j =
1

m

m∑

i= 1

fj(x
i), (16)

where m denotes the number of samples at unite j in the hidden
layer, and fj denotes the activation of hidden neuron j.
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2.3. Combined CNN-SAE-DNN
EEG signal is quite sensitive to a variety of factors during
acquisition, such as environmental interference and the
emotional fluctuations of humans. Therefore, EEG signals may
be mixed with a variety of noise, which would undoubtedly
influence the required brain patterns and the experimental
results. In addition, in some experiments, subjects were unable
to perform the emotion collection task successfully and the
experimental results were deviated greatly. In order to overcome
these problems, a deep learning network structure is proposed
in this work. The structure of the proposed network is shown in
Figure 3.

As shown by Figure 3, in the proposed network, the CNN
structure consists of two convolutional layers and one max-
pooling layer. Dropout connects to each convolutional layer.
The SAE consists of one encode, one hidden, and one decode
layer. In the DNN, there are three fully connected layers used
for classification. Given features, such as PCC for input of the
proposed network, the output of max-pooling layer is used as the
input for the SAE. Finally, the output of the SAE is used as the
input of the DNN for classification.

The training procedure is that the CNN with one fully-
connected output layer are trained for some epochs using all
samples and all features, and the output layer is abandoned after
training. Then, by sending features to input the trained CNN, the
output of the max-pooling layer can be obtained. The output is
flattened to one-dimension data, and it is set as the input of SAE.
After unsupervised learning of the SAE, data are reconstructed.
The reconstructed data are divided for training and testing in the
DNN, i.e., the CNN and SAE are trained separately. Thus, before
data are classified in the DNN, training in the CNN and SAE can
be seen as a part of feature extraction. It should be noticed that
the DNN used for finally classification is not the fully-connected
output layer abandoned from the CNN in the first step. The DNN
is never trained before output of the SAE is obtained as input data
for the DNN.

Another CNN with the same parameters and structure as the
whole proposed network is set as comparison in order to test the
performance of the proposed network fairly. When adding more
layers into this CNN, accuracy does not improve and leads to an
overfitting problem. For experiments on this CNN, features are
split directly into 80% for training and the rest for testing.

FIGURE 3 | The proposed network includes the CNN, SAE, and DNN; the CNN and SAE are used for feature extraction, and the DNN is used for classification.
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3. DATASETS AND EXPERIMENTS

In this section, two datasets of DEAP (Koelstra et al., 2012) and
SEED (Zheng and Lu, 2015) are used to evaluate the proposed
network model. Data processing methods and experiment results
are presented.

3.1. Emotional EEG Datasets
The DEAP dataset was collected from 32 subjects when
they were watching 40 sets of 1-min music and video
clips. The age of the subjects ranges between 19 and 37
years old, and half of them were males. During the 40
trials for each subject, various signals were recorded as 40-
channel data, including EEG, electromyograms, breathing zone,
plethysmographs, temperature, and so on (Koelstra et al., 2012).
The EEG signal was recorded at 512 Hz. The data was segmented
into trials of 60 s, and a bandpass frequency filter was applied
after that. After each trial, the participants were asked to do a self-
assessment about their emotional levels, including four different
scales, such as valence, arousal, dominance, and liking.

The EEG signal is downsampled into 128 Hz for the
experiments in this work, where the frequency of EEG data are
from 4.0 to 45.0 Hz. Valence and arousal are the two scales chosen
for this work. Each of them ranges from one (low) to nine (high),
and scales are divided into two parts to construct our binary-
classification tasks. Similarly to the work in Koelstra et al. (2012),
valence is divided into high (ranging from five to nine) and low
valence (range from one to five) according to the valence scale,
and according to the arousal scale, arousal is divided into high
(ranging from five to nine) and low arousal (ranging from one
to five).

The SEED dataset was collected from 15 subjects (sevenmales)
when they were asked to watch 15 film clips. The duration of each
film clip was about 4 min, and each film as easily understood
in order to elicit emotion of 15 subjects participating in the
experiments effectively. There were 15 trials for each subject and
each trial lasted for 305 s consisting of a hint of start for 5 s, a
movie clip for 4 min, a self-assessment for 45 s, and a rest for
15 s. EEG data in SEED dataset was collected from 62 electrodes,
which includes more information than the DEAP dataset. After
collection, EEG data was downsampled to 200 Hz and applied
with a bandpass filter from 0 to 75 Hz.

Similar to the DEAP dataset, in this dataset, the data are
applied with a frequency filter from 4.0 to 45.0 Hz in order
to equitably evaluate the proposed network. Negative, positive,
and neutral are emotion labels in this dataset that represent the
subjects’ emotion states during each experiment. Label value of
negative, positive and neutral is −1, 1, and 0, respectively. Thus,
labels in the SEED dataset include three categories.

3.2. Experiment Setting
In order to test the efficacy of the proposed network, the CNN
model and the proposed network are trained by using data
obtained from two time windows of different lengths; in total,
four groups of experiments were conducted. For experiments
in the CNN used for comparison, after feature extraction of
EEG data, 80% samples are used as training data and the rest

samples are used as test data among all of the data. Average
accuracy is calculated from accuracies of the last 10 epochs in
each experiment. For the proposed network, before training data
and testing data were divided, the CNN and SAE in the proposed
network were trained using features. After that, features are
sent to the input of the CNN, and the output data of SAE is
obtained. The output data after feature extraction were divided
into 80% for training and 20% for testing in the DNN. In this
work, Keras and Tensorflow (Abadi et al., 2016) ere used for the
proposed network implementation. For detailed free parameters
in the proposed network, they are described in sections
3.3 and 3.4, respectively.

3.3. Experiments on the DEAP Dataset
Length of data in the DEAP dataset is 63 s, and the first 3
s are removed in the experiments. Then band pass filtering is
then applied. Among 40 channels, EEG data are contained in
32 channels, which are chosen for experiments. After that, EEG
signals are decomposed into α (1–7 Hz), β (8–13 Hz), θ (14–30
Hz), and γ bands (30–45 Hz). After band pass filtering, signal
windowing on four frequency bands is applied. EEG signals
are divided into short time frames in order to facilitate signal
processing, thus time windows with different overlaps are applied
to EEG data in order to increase samples for training. Two
window sizes, 8 and 12 s, are used for evaluating the proposed
network. From the start of each recorded EEG signal, data are
segmented by a sliding time window with an overlap for each
frequency band. For each trial of 60 s, 14 segments are obtained
using an 8-s time window moving every 4 s, and seven segments
are obtained using a 12-s time window moving every 8 s. Finally,
from a total of 32 participants, 17,920 (14 segments × 40 trials
× 32 participants) and 8,960 (seven segments × 40 trials × 32
participants) samples are obtained using time windows of 8 and
12 s, respectively. Segment labels are the same as the label of the
original sample.

After that, three different features, namely PCC, PCA, and
SC, are extracted to evaluate the proposed network. For PCC-
based features, PCC of data in every two channels are calculated,
and a 32 × 32 PCC matrix is constructed for one sample. For
PCA-based features, dimension of data from each channel is
reduced into 32, and features with the shape of 32 × 32 are
obtained. For SC-based features, four different characteristics
are extracted, including variance, mean, kurtosis, and skewness.
These statistical characteristics of data are calculated together,
and a 32× 4 matrix is finally obtained. In the proposed work, the
features are separately extracted in each of the frequency bands
(α, β , θ , and γ bands). According to the work in Wang et al.
(2018) and other similar researches, data of four frequency bands
are used together in order to get the best results. After data are
processed, for the data obtained using a time window of 8 s, the
shapes of the above three different feature matrixes are 17,920 ×
4 × 32 × 32, 17,920 × 4 × 32 × 32, and 17,920 × 4 × 32 × 4,
respectively. For data obtained using a time window of 12 s, they
are 8,960 × 4 × 32 × 32, 8,960 × 4 × 32 × 32, and 8,960 × 4
× 32 × 4, respectively. Detailed configuration of the proposed
network for DEAP dataset is shown by Figure 4. For SC, input
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FIGURE 4 | Configuration of the proposed network for the DEAP dataset.

shape is 32 × 4. These features are two-dimensional, which are
suitable inputs for the CNN and the proposed network.

As shown in Figure 4, for the DEAP dataset, two
convolutional layers and one max-pooling layer are applied
for the proposed network. Kernel size is set to 3 × 1, and
pooling size is set to 3 × 3. The input data shape is 32 × 32.
The numbers of kernels in convolutional layer are set to 32
and 64, respectively. In the SAE, the numbers of neurons in
encode, hidden, and decode layers are set to 512, 128, and
512, respectively. In the DNN, the numbers of three fully
connected layers are set to 512, 256, and 2, respectively. In the
proposed network, the training epochs, batch size, and learning
rate in the CNN are set to 50, 128, and 0.01. Epoch, batch
size, and learning rate in the SAE are set to 100, 64, and 0.01,
respectively. For those of the DNN, they are set to 100, 128, and
0.01, respectively.

In the proposed network, the training epochs are carried out
in convolutional layers, and the SAE for features extraction,
training, and testing epochs are carried out in the DNN for
classification. Another CNN with the same parameters and
structure as the proposed network served as a baseline method to
evaluate the performance of the proposed network. The epoch,
batch size, and learning rate of this CNN were set to 100, 128,
and 0.01. Parameters in this CNN were the same as that of the
proposed network. The data results of the experiments using a
time window of 8 s are shown by Table 1.

From Table 1, among all features extracted from EEG data,
we can see the PCC feature was demonstrated to be better

TABLE 1 | Average accuracies comparisons of the DEAP dataset using different

features extracted from the data with a length of 8 s between two networks.

Network Labels PCC (%) PCA (%) SC (%)

CNN Valence

Arousal

78.80

82.25

73.32

72.76

71.10

73.04

Proposed network Valence

Arousal

89.49

92.86

75.59

85.87

81.93

82.94

than most of the other features on both the CNN and
the proposed network. The proposed network can reach a
recognition accuracy of 92.86% on arousal by using PCC.
Moreover, recognition accuracies of most experiments on the
proposed network are better than the CNN (3.27–13.11%
improvement). As described previously, this is due to the
inclusion of SAE, which can not only reconstruct data from
convolutional layers and pooling layer but can also extract
features further and make the data easier to be recognized than
the CNN.

Training for loss of SAE is shown in Figure 5; data
reconstruction is achieved when the loss does not change sharply,
and data reconstruction is fast during the training process of
SAE. For other extracted features (except PCC), the recognition
accuracy of each method is better than the work in Zhang et al.
(2016a) (81.21% for valence and 81.26% for arousal).

Figures 6, 7 show the accuracies of the CNN and the
proposed network. Red lines in figures denote the average
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accuracy of the last 10 epochs. It can be seen that the
accuracy of the CNN gradually converges. For the proposed

FIGURE 5 | Change of loss when data are reconstructed in the SAE on the

DEAP dataset.

network, the accuracy converges rapidly at the beginning
of the epoch after fewer than 10 epochs. This is because
features are easy to recognize using output data obtained
from the SAE before they are classified by the DNN. For
features extracted by the PCC and other methods, the
accuracy of a proposed network has a faster convergence
than CNN.

Similarly, results using data obtained from a time window of
12 s are shown in Table 2. From Table 2, we can see that the
accuracy obtained using data with a length of 12 s is lower than

TABLE 2 | Average accuracy comparisons on the DEAP dataset using different

features extracted from data with a length of 12 s between two networks.

Network Labels PCC (%) PCA (%) SC (%)

CNN Valence

Arousal

75.13

76.12

67.23

69.20

66.09

69.48

Proposed network Valence

Arousal

82.16

85.47

76.34

79.11

73.41

75.44

FIGURE 6 | Accuracy comparison of two networks on valence using data with a length of 8 s on the DEAP dataset in which (A) is result of the CNN and (B) the result

of the proposed network.

FIGURE 7 | Accuracy comparison of two networks on arousal using data with a length of 8 s on the DEAP dataset in which (A) is result of the CNN and (B) the result

of the proposed network.
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FIGURE 8 | Accuracy comparison of two networks on valence using data with a length of 12 s on DEAP dataset in which (A) is the result of the CNN and (B) the

result of the proposed network.

FIGURE 9 | Accuracy comparison of two networks on arousal using data with a length of 12 s on the DEAP dataset in which (A) is the result of the CNN and (B) the

result of the proposed network.

that of 8 s. It ismore difficult to collect emotion informationwhen
the stimulation time is increasing. Most studies related to the
classification of EEG data was focused on a short length of time.
In this experiment, higher classification accuracy is achieved on
data of 12 s than that of shorter length in other studies; this is like
the work in Zhang et al. (2017), which exhibits the effectiveness
of the proposed network.

Accuracies for classification on data of 12 s on both CNN
and the proposed network are shown by Figures 8, 9. It
can be found that higher recognition accuracy is obtained
by the proposed network. Moreover, the classification
accuracy of the proposed network has a faster convergence in
each experiment.

The results in this subsection demonstrate that accuracies
can reach 92.86% for data of 8 s and 85.47% for data of 12 s.
When the same feature is used for comparison, the proposed
network is more powerful in classifying the EEG emotion data
than the CNN. Finally, the proposed network has a quicker
convergence speed.

3.4. Experiments on SEED Dataset
There are a total of 675 trials in the SEED dataset. According to
the work in Zheng and Lu (2015), the first sample of each subject
was chosen, and a total of 225 samples were then obtained. Due
to the different data length of each channel, the 80 s data segment
was chosen to reduce the influence of unstable signals at the
beginning and end of the whole signal; finally, data with the shape
of 16,000 × 225 × 62 were obtained. Moreover, the data were
processed as the same way as in the DEAP dataset: each sample
was divided into different frames with different time windows.
Two time windows, 8 and 12 s, were also used in the SEED
dataset. A total of 19 and nine segments were obtained separately
from data using a time window of 8 s moving every 4 s and a time
window of 12 s moving every 8 s for each sample, respectively.
Thus, in a total of 225 trials, 4,275 (19 segments × 15 trials × 15
participants) and 2,025 (9 segments× 15 trials× 15 participants)
samples were obtained, respectively.

The detailed configuration of the proposed network for the
SEED dataset is shown in Figure 10. The amount of data
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FIGURE 10 | Configuration of the proposed network for the SEED dataset.

TABLE 3 | Average accuracy comparisons on SEED dataset using different

features extracted from data with a length of 8 s between two networks.

Network Data

length

(s)

PCC (%) PCA (%) SC (%)

CNN 8

12

93.71

91.53

77.66

70.59

83.32

75.48

Proposed network 8

12

96.77

94.62

88.90

70.62

87.73

79.09

extracted from this dataset is much less than from the DEAP
dataset, and the two classifiers used on this dataset are thus
a little different. For PCC, input data are 62 × 62, and the
numbers of kernels are separately set to eight and 16 in two
convolutional layers. In the SAE and DNN, the number of each
layer is set the same as that on the DEAP dataset except that
the number of the output layer is set to three because this is
a three-classification task on a SEED dataset. After training in
the CNN and SAE for feature extraction, the DNN is used for
the final classification. Similarly to the DEAP dataset, the same
features are extracted for the SEED dataset. For PCA and SC, the
input shape is 62 × 62 and 62 × 4, respectively. For the CNN
used for comparison, parameters are also set as the same as the
proposed network.

The experiment results of data obtained from time windows
of 8 and 12 s are shown in Table 3. The accuracy under

FIGURE 11 | Change of loss when data are reconstructed by the SAE on the

SEED dataset.

this dataset is higher than the DEAP dataset. The highest
average accuracy could reach 96.77%, which is better than the
work in Wang et al. (2018), 90.2%. For the data obtained
from time window of 12 s, the best accuracy could reach
94.62%, which shows that PCC-based features exhibit a better
performance than others. The reconstruction of data by the SAE
due to the change in loss on the SEED dataset is shown by
Figure 11. Loss drops immediately following several epochs, i.e.,
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the data reconstruction can be achieved quickly when the SAE is
being trained.

Accuracies under different features extracted from data of
8 and 12 s are depicted in Figures 12, 13. It is shown that
recognition accuracies of the proposed network are better
than the CNN for almost all features, especially the PCC-
based features. The proposed network can achieve faster
convergence on classification accuracy than the CNN on the
SEED dataset. Experiments on these two datasets shows that
the proposed network performs better than original the CNN in
emotion recognition.

Moreover, EEG data divided by a fixed time window with
different overlaps on the SEED dataset are tested. Besides a time
window of 8 s with an overlap of 4 s, overlaps of 6 and 8 s are
also tested. Due to the highest accuracy, PCC-based features are
used in these experiments, and classification results are displayed
in Figure 14.

As seen in Figure 14, recognition accuracy could reach
the highest value while the overlap is 4 s. The shorter the

overlap is, the more similar the neighboring data segments are,
i.e., features could be learned better when similar information
is included in each trial. However, when the overlap is
too short, the number of data segments increases, which
requires longer time for training. In this experiment, data
with a length of 8 s and overlap of 4 s could achieve the
best result.

In a short summary, the best recognition could reach
96.77% on the three-class classification. The proposed network
is demonstrates to be more powerful in classifying EEG
emotion data than the CNN on the SEED dataset. For the
data with the same length, length of overlap has an impact
on recognition accuracy where 4-s overlap obtained the best
performance. In addition to this, the proposed network is
also compared with other research works using the DEAP
and SEED datasets, and the results can be seen in Table 4.
For complexity analysis, the number of parameters are 7.55 ×

105 and 7.50 × 105 for the networks used for DEAP and
SEED, respectively.

FIGURE 12 | Accuracy comparison of two networks using data with length of 8 s on the SEED dataset in which (A) is the result of the CNN and (B) the result of the

proposed network.

FIGURE 13 | Accuracy comparison of two networks using data with a length of 12 s on the SEED dataset in which (A) is the result of the CNN and (B) the result of

the proposed network.
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FIGURE 14 | Accuracy comparison of two networks using features extracted from different lengths of overlap on the SEED dataset in which (A) is the result of the

CNN and (B) the result of the proposed network.

Table 4 shows the results of García et al. (2016) achieved
88.3% on valence and 90.6% on arousal. However, data used for
experiments are limited, and the classification model is a better
fit for classifying small amounts of data with high dimensions.
The approach of Koelstra et al. (2012) used a Gaussian Bayes
classifier, and experiment results proved that EEG signals are
effective in emotion recognition of the DEAP dataset. The recent
study (Tripathi et al., 2017) used extracted data for classification,
and better accuracy results were obtained by using the CNN,
where the classification accuracy of valence and arousal is 81.4
and 73.4%, respectively. The approaches of García et al. (2016)
and Wang et al. (2018) used DE-based features and dynamical
graph convolutional neural networks, and the accuracy achieved
93.7%. In the approach of Wang et al. (2019), BLSTM and other
machine learning classifiers, such as SVM and LR were used
for emotion recognition. BLSTM achieved the best accuracy of
94.96% on the SEED dataset, which is better than SVM and LR. In
the approach of Soroush et al. (2019), phase space dynamics were
introduced to classify emotions, achieving 87.42% on arousal
and 84.59% on valence, respectively. A sparse discriminative
ensemble was used for feature extraction inUllah et al. (2019) and
achieved 82.81% on valence and 74.53% on arousal, respectively.
In this work, both the DEAP and SEED datasets are used
for experiments, where accuracies achieve 89.49% and 92.86%
in valence and arousal on the DEAP dataset, respectively,
and 96.77% on the SEED dataset. Results demonstrate that
the proposed network is more powerful than the CNN and
other approaches.

4. DISCUSSION AND CONCLUSION

There are some points worth discussing. First, the proposed
model can be trained using an end-to-end method, which
is different from this work. The end-to-end training
method was tested, and it obtained a similar performance.
However, the training model can be further investigated

TABLE 4 | Performance comparisons with other approaches.

Classification methods DEAP dataset SEED

dataset

(%)
Valence

(%)

Arousal

(%)

CNN + statistical methods (Tripathi et al., 2017) 81.4 73.4 /

Gaussian Bayes (Koelstra et al., 2012) 57.6 62.0 /

Deep SAE + RSP (Zhang et al., 2017) 73.1 80.8 /

BDGLS + DE (Wang et al., 2018) / / 93.7

DGCNN + DE (Zhang et al., 2016) / / 90.4

GP + LVM (García et al., 2016) 88.3 90.6 /

BLSTM + DE (Wang et al., 2019) / / 94.96

Physe Space Dynamics (Soroush et al., 2019) 84.6 87.4 /

SDEL + PCA (Ullah et al., 2019) 82.8 74.5 /

This work [PCC] 89.49 92.86 96.77

and optimized in a future work. Second, labels are used
in feature extraction. It should be noted that many feature
extraction algorithms use labels such Relief and ReliefF (Kira
and Rendell, 1992), where feature weights are calculated
according to samples in the same and different classes.
Label information has been used in the feature extraction
process (Bohgaki et al., 2014; Zhang et al., 2016b). Third,
constructing an autoencoder-like structure is another method
of emotion recognition, and this can be investigated in a
future work.

In this work, a new deep network is proposed to classify EEG
signals for emotion recognition. The CNN and the proposed
network are applied for two different datasets, i.e., the DEAP
and SEED datasets. In the proposed network, the CNN and
SAE are trained for feature extraction in which, by combining
supervised learning of the CNN and unsupervised learning of
the SAE, more useful features are extracted. Experimental results
show that the proposed network achieves a better performance
than the CNN and other approaches. It also shows that when
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embedding an SAE structure into a CNN, the accuracy is better
compared to a CNN with the same parameters and structure as
the proposed network. In the proposed network, three different
features are extracted for classifications. Results showed that,
by using PCC-based features, the average recognition accuracy
of the proposed network can reach 89.49% on valence and
92.86% on arousal for DEAP and 96.77% for SEED, where
the proposed network has a faster convergence speed. In
addition, overlap length also affects the performance, and results
under the SEED dataset showed that data of 8 s with an
overlap of 4 s can achieve the best result. It is also found
that the data processed by the SAE is easily classified in the
proposed network, which indicates that the SAE is effective in
extracting features from EEG data. Future works will consider
using the SAE and other classifiers to further improve the
classification performance.
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The local field potential (LFP) is the low frequency part of the extracellular electrical

potential in the brain and reflects synaptic activity onto thousands of neurons around

each recording contact. Nowadays, LFPs can be measured at several hundred locations

simultaneously. The measured LFP is in general a superposition of contributions from

many underlying neural populations which makes interpretation of LFP measurements

in terms of the underlying neural activity challenging. Classical statistical analyses

of LFPs rely on matrix decomposition-based methods, such as PCA (Principal

Component Analysis) and ICA (Independent Component Analysis), which require

additional constraints on spatial and/or temporal patterns of populations. In this work,

we instead explore the multi-fold data structure of LFP recordings, e.g., multiple

trials, multi-channel time series, arrange the signals as a higher-order tensor (i.e.,

multiway array), and study how a specific tensor decomposition approach, namely

canonical polyadic (CP) decomposition, can be used to reveal the underlying neural

populations. Essential for interpretation, the CP model provides uniqueness without

imposing constraints on patterns of underlying populations. Here, we first define a

neural network model and based on its dynamics, compute LFPs. We run multiple trials

with this network, and LFPs are then analysed simultaneously using the CP model.

More specifically, we design feed-forward population rate neuron models to match

the structure of state-of-the-art, large-scale LFP simulations, but downscale them to

allow easy inspection and interpretation. We demonstrate that our feed-forward model

matches the mathematical structure assumed in the CP model, and CP successfully

reveals temporal and spatial patterns as well as variations over trials of underlying

populations when compared with the ground truth from the model. We also discuss

the use of diagnostic approaches for CP to guide the analysis when there is no ground

truth information. In comparison with classical methods, we discuss the advantages of

using tensor decompositions for analyzing LFP recordings as well as their limitations.

Keywords: tensor decompositions, neuroscience, local field potential (LFP), population rate model,

CANDECOMP/PARAFAC, independent component analysis (ICA), principal component analysis (PCA)
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1. INTRODUCTION

Most of what we know about the inner workings of the living
brain has been learned from extracellular electrical recordings,
that is, recordings of electrical potentials by sharp electrodes
placed in the extracellular space between nerve cells. The high-
frequency part of the signals, above a few hundred hertz,
measures action potentials of neurons in the vicinity of the
electrode contacts. The low-frequency part, the local field
potential (LFP), is more difficult to interpret. While it is thought
to mainly reflect processing of synaptic inputs by the neuronal
dendrites by populations of pyramidal neurons, a simple rule-of-
thumb interpretation in terms of the underlying neural activity
like we have for spikes, is lacking [1, 2].

A traditional way to record LFPs in layered structures,
such as hippocamapus or cortex is to record potentials with
a linear multielectrode with many recording contacts crossing
these laminarly organized brain structures. The resulting data
typically have a two-way (matrix) structure (channels, time), and
a standard analysis method has been to estimate the current-
source density (CSD) [3]. The CSD measures the net volume
density of electrical currents entering (sources) or leaving (sinks)
the extracellular space. Several methods are available for CSD
estimation, the standard CSD analysis assumes the neural activity
to be constant in the horizontal directions in layered cortical
or hippocampal structures [4], or other more recent methods
like the iCSD [5] or the kCSD methods [6] which make
different assumptions.

While the CSD is a more localized measure of neural activity
than the LFP, it does not directly informwhich neurons are active.
An alternative is thus to try to decompose the measured LFPs
into contributions from individual populations of neurons, for
example, using matrix decomposition techniques like principal
component analysis (PCA) [7] or independent component
analysis (ICA) [8–10]. Here, data matrices are decomposed into
outer products of pairs of vectors, and the vectors are interpreted
as LFP contributions from individual neural populations. The
decomposition of a matrix into outer products of vectors is not
unique, and the methods involve additional assumptions like
orthogonality (PCA) or statistical independence (ICA) of LFP
contributions from the various populations. These mathematical
assumptions cannot a priori be expected to be obeyed by
neuronal populations in real brains. An alternative is to impose
more physiological constraints in the decomposition [11]. An
example is laminar population analysis (LPA) [12, 13] which,
however, requires simultaneous recordings of action potentials
and further physiological assumptions.

We here consider a new approach to LFP decomposition
by considering three-way data (trial, channel, time) arranged
as third-order tensors and performing a decomposition into
outer products of triplets of vectors using an approach called
CANDECOMP/PARAFAC (CP) [14, 15]. Unlike for the case
with two-way data, this three-way decomposition is unique
under mild conditions [16], and no strong assumptions, such
as orthogonality or statistical independence on the components
are needed. The underlying assumption in the CP model is that
signals from each trial are a linear mixture of contributions
from neural populations, and temporal and spatial signatures

of neural populations stay the same across trials while each
population’s contribution to trials is scaled differently. Through
the CP model, we assume that the LFP is multi-linear, thus
linear in every argument (in our case tri-linear) since it assumes
linearity in each mode. When matrix-based approaches, such as
PCA and ICA are used on these signals from multiple trials by
flattening the third-order LFP recording tensor, that structure
cannot be maintained; therefore, additional assumptions, such as
orthogonality are needed to ensure uniqueness.

Tensor decompositions are extensions of matrix
decompositions, such as PCA to higher-order tensors (also
referred to as multi-way arrays) and have proved useful in
terms of finding underlying patterns in complex data sets in
many domains including social network analysis, chemometrics,
and signal processing [17–19]. As a result of its inherent
uniqueness properties, among the tensor decomposition
methods, the CP model has been quite popular since it can
easily be interpreted. The CP model has also been successfully
used in various neuroscience applications, e.g., the analysis
of electroencephalography (EEG) signals [20], event related
potential (ERP) estimation under the name topographic
component analysis [21, 22], and more recently, capturing
spatial, spectral, and temporal signatures of epileptic seizures
[23, 24] and dynamics of learning [25].

In this study, we use the CP model to study LFP signals with
the goal of disentangling individual neuronal populations. To
the best of our knowledge, the CP model has not been used
previously to analyze LFP recordings. In order to assess the
performance of the CP model, we first create benchmarking data
by simulatingmulti-channel LFP recordings acrossmultiple trials
based on a model of neuron populations. These simulated signals
are arranged as a third-order tensor with modes: trials, channels,
and time. Our numerical experiments demonstrate that the CP
model can successfully reveal the underlying neuron populations
by capturing their temporal and spatial signatures while more
traditional ICA-based and PCA-based approaches fail to separate
the populations. We also discuss advantages and limitations of
the CP model in the presence of noise and different models of
neuron populations.

2. METHODS

In the methods section we first describe the forward model used
to compute the model-based benchmarking data. This forward
modeling consists of two parts: (i) a population firing-rate model
simulating neural dynamics in a multi-population feed-forward
network model, and (ii) the computation of the local field
potential (LFP) stemming from these neural dynamics. Second,
we describe the tensor decomposition approach used in the
inverse modeling to reveal the individual neuronal populations.

2.1. Forward Modeling of Benchmarking
Data
2.1.1. Rate Model for Neuron Populations
A neuron is a cell that processes and transmits information. It
receives inputs called action potentials via synapses from pre-
synaptic neurons. This input will change the internal state of
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the neuron (e.g., its membrane potential), and the neuron may
itself generate action potentials that is forwarded to other post-
synaptic neurons. One option for modeling dynamics of neural
networks is to explicitly model the train of action potentials of
all neurons in the network. For large neural networks this not
only becomes numerically cumbersome, the results also become
difficult to interpret.

Firing-rate models thus offer an attractive alternative: if the
number of neurons grows, further simplifications can be used.
Given a subset of all neurons which have similar properties,
receive very similar input, and project to similar groups of
neurons, we can call them a population. Instead of taking every
action potential into account, the population activity can be
described by their instantaneous firing rate, that is, the average
number of action potentials fired in a time window across
the population. This presents a huge simplification since the
relative timing of all action potentials are neglected, but gives
a description of larger population dynamics. In many cases
the temporal evolution of the firing rate can be modeled by
means of ordinary differential equations (ODE). For an extensive
discussion of rate models, see, e.g., Ermentrout and Terman [26]
and Gerstner et al. [27]. A population rate model for I neuron
populations can be described by

τ
dr(t)

dt
= −r(t)+ F

(
Wr(t)+ µ(t)

)
(1)

where r(t) ∈ R
I
≥0 is the vector of instantaneous firing rates of

I populations (thus restricted to non-negativity), the vector τ ∈

R
I
≥0 contains the time constants for each population, W ∈ R

I×I

is the coupling matrix describing the synaptic strength between
populations, µ(t) is the instantaneous external stimulus received
by each population and F is the column-wise response function
of each population to input (both from other neuron population
as from external sources). The response function can in principle
take any form and in general adds a non-linearity to the system.
For simplicity we assume if not stated otherwise that F is the
identity function making the rate model fully linear.

The neural network is mainly characterized by the connection
matrix W. If several populations affect each other only in
a sequential way, we call these populations a feed-forward
network. If several populations drive each other in a loop, we
call those recurrent. If two neural populations are completely
independent, meaning that they do not affect each other directly
or indirectly via intermediate populations or do not share a
common input, we can regard them as separate networks. One
can further distinguish between excitatory and inhibitory neuron
populations. Excitatory populations increase firing rate of post-
synaptic populations, while inhibitory populations inhibit the
firing of post-synaptic populations. Thus, Wi,j > 0 for all j if
population i is excitatory and likewise Wi,j < 0 for i being an
inhibitory population.

By assuming initial conditions r(0) and external stimuli µ(t),
we fully define the ODE problem, which is solved using the
ode45 package from MatLab [28]. We discretize dimensionless
time between 0 and 1 in 1,000 steps and solve Equation (1) in this

range. In this paper, we use a boxcar function

µi(t) = ci

(
2(t − tstarti )− 2(t − tendi )

)
(2)

as stimulus with ci as the stimulus magnitude for each population
i and tstarti and tendi as the respective on and off-set for each
population. Solving the rate model takes few seconds on a
standard laptop and can thus be performed easily multiple times
for different values of W and stimuli µ(t) to explore the model.
Our choice of a linear model is a simplification which allows
easier analysis, but has limitations, as, for example, it allows for
(unphysical) negative firing rates.

2.1.2. Computation of LFP Signals
The local field potential (LFP) is the low-frequency part of
extracellular potential, and in vivo it is generated from the
superposition of the extracellular potential generated by many
neurons [1]. The LFP 8 is a three-dimensional physical scalar
field which can be continuously measured in time at any position,
thus 8(x, t). The LFP is measured by electrodes recording the
signal at one or, more typically, many discrete locations, typically
called channels. Thus, the recording becomes a vector of time
series. In this discrete case, each LFP recording can thus be
written as a matrix 8 ∈ R

nchannels×ntime steps where the rows are
the different channels and, the columns are the different discrete
time points.

In this study, we mimic a situation where the LFP is recorded
by a linear multielectrode at many positions through the depth
of cortex. In this set-up, the recorded LFP will typically contain
contributions from multiple populations of neurons with their
somas (cell bodies) positioned at different depths (see, e.g., [12]).
The multi-electrode probe records frommultiple depth locations
at the same time, and the spatial dependence x thus reduces to the
scalar depth x, which simplifies further discussion.We do not aim
to simulate any specific cortical system and instead keep things
general. Therefore, we regard our model as a toy-model, which
still incorporate key features of real LFPs. A method to efficiently
compute LFPs is the so-called kernel method [29, 30].

The kernel method consists of several steps: (I) Biophysical,
multi-compartment neuron models are used to generate a
large number of neurons which then represent a set neuron
populations. (II) All neurons in a single pre-synaptic population
i are forced to emit an action potential at the same point in
time. This mimics a δ-shaped firing rate. (III) The resulting
LFP generated by each post-synaptic population j is stored
separately for multiple locations, simulating a virtual probe with
multiple channels. This provides a kernel Hij, the expected LFP
if population i fires and projects to population j. (IV) Steps II
and III are repeated for each pre-synaptic population i, providing
a full set of kernels Hij. If W is constant, one can define the
population kernel as the sum over all post-synaptic kernels Hi =∑

jHij. However, it is advantageous tomaintain allHi,j so that the

contribution of individual populations to the total LFP can easily
be computed.

The kernels Hi(x, t) thus depend on space x and time t, in the
discrete case they can be represented as a matrix as well with
dimensions channels and time. The LFP contribution of the ith
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population 8i(x, t) is computed by a temporal convolution of
the corresponding kernel Hi(x, t) with the respective population
firing rate ri(t):

8i(x, t) = (ri ∗ Hi) (x, t). (3)

Since the electrical potential is additive, the total LFP is given by
summation over all populations

8(x, t) =

I∑

i=1

(ri ∗ Hi) (x, t) (4)

where ∗ denotes the convolution operation in time and ri(t) is
the firing rate of population i. In the discrete case, the result of
the convolution is thus a matrix with the dimensions channel
and time. This method has been developed as a part of the
HybridLFPy software (see [29]). The kernels used in this work
have been derived for a cat cortex model [31].

For each kernel Hi, there exists a rank-one approximation
which allows to write the kernel as the outer product of a
temporal ki and a spatial function ci:

Hi(x, t) ≈ ci(x) · k
T
i (t) (5)

where kT denotes the transposed vector. Since the projection
of the neural population to the various channel locations is
determined by their static morphology and the propagation of
the electrical signal through neurons is fast, there is little delay
at different locations. Therefore, the rank-one approximation
is very accurate (variance explained above 95% for all studied
cortical kernels, see Appendix). Due to this factorization of the
kernel into spatial and temporal parts, the resulting LFP can also
be factorized in a spatial and temporal part since the firing rate is
only convolved with the kernel in the temporal dimension:

8(x, t) ≈

I∑

i=1

ci(x) ·
(
ri ∗ ki

)T
(t), (6)

where ∗ denotes the convolution operator. If we discretize, spatial
and temporal factors of the kernel become vectors: ci(x) → ci,
ki(t) → ki, and the kernel itself turns into amatrixHi(x, t) → Hi.
Since the population firing rate r(t) is also solved numerically, the
continuous solution turns into a vector ri(t) → ri. Thus, the LFP
(Equation 6) can be written as a matrix 8 ∈ R

M×N :

8 ≈

I∑

i=1

ci · (ri ∗ ki)
T (7)

with M as the number of channels and N as the number of
time points. By repeating the simulation of 8 multiple (L) times,
e.g., for different connection matrices W mimicking changes of
the network over time, and stack the resulting LFPs, we get a
three-way tensor X ∈ R

L×M×N with modes: trials, channels,
and time.

2.2. CANDECOMP/PARAFAC (CP) Tensor
Model Used in Inverse Modeling
The CP model, also known as the canonical polyadic
decomposition [32], is one of the most popular tensor
decomposition approaches. Here, we use the CP model to
analyze the three-way LFP tensor with modes: trials, channels,
and time, and reveal temporal and spatial signatures of
underlying neuron populations. For a third-order tensor
(three-way array) X ∈ R

L×M×N , an R-component CP model
approximates the tensor as the sum of R rank-one third-order
tensors, as follows:

X ≈

R∑

r=1

sr ◦ cr ◦ tr (8)

where ◦ denotes the vector outer product following the notation
in Kolda and Bader [17], S = [s1 ... sR] ∈ R

L×R,C = [c1 ... cR] ∈
R
M×R,T = [t1 ... tR] ∈ R

N×R correspond to factor matrices
in trials, channels, and time mode, respectively. Note that the
outer product of three vectors is a third-order rank-one tensor,
i.e., Z = u ◦ v ◦ w ⇐⇒ zijk = uivjwk. The CP model
is unique under mild conditions up to permutation and scaling
[16, 17]; in other words, the same rank-one components, i.e.,
sr ◦ cr ◦ tr , for r = 1, . . . ,R, are revealed by the model at the
solution but the order of rank-one components is arbitrary and
within each rank-one component, factor vectors have a scaling
ambiguity, e.g., 2sr ◦ 1/2cr ◦ tr . By normalizing columns of the
factor matrices and introducing an additional scalar, λr , for each
rank-one component, we can rewrite Equation (8) as follows:

X ≈

R∑

r=1

λr · s̄r ◦ c̄r ◦ t̄r (9)

with s̄r , c̄r , and t̄r as unit-norm factor vectors.
The CP model is considered to be one way of extending

Singular Value Decomposition (SVD) to higher-order data sets.
As a result of its uniqueness properties, the CP model has the
benefit of revealing underlying patterns without imposing strict
and potentially unrealistic constraints, such as orthogonality or
statistical independence as in the case of matrix decomposition-
based approaches, such as PCA and ICA.When an R-component
CP model is used to analyze an LFP tensor, it extracts R
rank-one components.

Our motivation for using the CPmodel to analyze LFP tensors
is as follows: If the population rate model is fully linear (F in
Equation 1 is a linear function), then the solutions of equation
(Equation 1) are only linearly dependent of the connection
matrix W and/or the external stimulus µ(t). If trials with
variations of W and/or µ(t) are performed, the resulting firing
rates will thus only depend linearly onW and µ(t). Furthermore,
if we also assume that kernels are rank-one matrices, fulfilling
Equation (5), a tensor consisting of multiple trials of multi-
electrode LFP recordings will have an underlying CP structure
(see Equations 7 and 8).

We claim that these extracted tensor components correspond
to spatial and temporal signatures of neuron populations, i.e.,
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cr and tr correspond to spatial and temporal signatures of the
rth population (see Equation 7), due to the fact that the LFP of
each population can be written as a bi-linear form and given the
uniqueness of CP. Each component in the CP thus corresponds
to a neural population.

Given the number of components R, in order to fit a
CP model to a third-order tensor X, we solve the following
optimization problem:

min
S,C,T

∥∥∥∥∥X−

R∑

r=1

sr ◦ cr ◦ tr

∥∥∥∥∥

2

F

, (10)

where ‖ · ‖F denotes the Frobenius norm for tensors, i.e.,
‖X ‖

2
F =

∑L
l=1

∑M
m=1

∑N
n=1 x

2
lmn

. There are various algorithmic
approaches for solving this problem, such as alternating least
squares (ALS) and all-at-once optimization methods. In this
paper, we use a gradient-based all-at-once approach based on
CP-OPT [33], that solves the problem for all factor matrices,
S,C,T, simultaneously.

2.2.1. Diagnostics Tools
Determining the number of CP components (R) is a difficult
problem. For the exact case, where there is an equality in
Equation (8), R corresponds to the tensor rank and determining
the rank of a tensor is NP-hard [17, 34]. In practice, this
challenging problem has been mitigated using various diagnostic
tools, such as core consistency diagnostic [35], split-half and
residual analysis [36]. In this paper, we use the core consistency
values and model fit to determine the number of components
while modeling an LFP tensor using a CP model.
Core Consistency indicates whether an R-component CP model
is an appropriate model for the data, and is defined as
follows [35]:

Core Consistency = 100×

(
1−

∑R
i=1

∑R
j=1

∑R
k=1(gijk − tijk)

2

R

)
,

where G (of size R × R × R) is the estimated core array for a
Tucker model [37] given the factor matrices of the R-component
CP model, and T (of size R × R × R) is a super-diagonal core
array for the CP model with non-zero entries only on the super-
diagonal. Tucker is a more flexible tensor model; therefore, its
core G can be a full core array. If the R-component CP model is a
valid model, then off super-diagonal elements of Gwill be close to
zero giving high core consistency values close to 100%. Low core
consistency values indicate potentially an invalid CP model.
Model Fit is used to understand how much of the data
is explained by the model. Given a tensor X and its CP

approximation X̂ =
∑R

r=1 sr ◦ cr ◦ tr , the fit can be defined
as follows:

Fit = 100×



1−

∥∥∥X− X̂

∥∥∥
2

F

‖X ‖
2
F





When the number of components extracted from the data
increases, the fit also increases. However, the increase in

FIGURE 1 | Sketch of a four-population feed-forward neural model defined via

connection matrix in Equation (11) .

additional complexity due to additional components should often
be justified by an increase in model fit. In other words, we need
to assess if we gain a significant increase in fit by extracting more
components from the data.

To find the optimal number of components R, we examine
model fit and core consistency values across different number of
components. While heuristic in nature, these diagnostics are able
to be employed effectively in this study.

3. NUMERICAL EXPERIMENTS

As an example, we assume the simple model of four neuron
populations which are sequentially connected (see Figure 1).
Population 1 receives the same stimulus in every trial l while
the other populations only receive indirect input via projections
from other populations (µ(t) = (µ1(t), 0, 0, 0)

T). We further
assume that the network is purely excitatory (0 ≤ Wij).Wemodel
multiple trials by assuming that due to plasticity, W21, W32, and
W43 will change between trials. This mimics the situation where
a subject is exposed to the same stimulus at different times and
the neural network adapts and changes its connectivity due to
learning. This plasticity is not part of our model, but externally
enforced. We will show that the changes in weights across trials
can be recovered using the CP model and thus will allow to study
the learning process.

This network has the following sparse connectivity matrix:

W =





0 0 0 0
W21 0 0 0
0 W32 0 0
0 0 W43 0



 (11)

To indicate different trials, we use superscripts, e.g., Wl is the
connection matrix for the lth trial. We define the experimental
population strength slr as the strength of the rth population in
the lth trial. For the four population feed-forward model, we thus
have the relation

sl1 ∝ const

sl2 ∝ W l
21

sl3 ∝ W l
32W

l
21

sl4 ∝ W l
43W

l
32W

l
21. (12)

Since the convolution with the temporal factor of the kernel kr
(see Equation 7) is also a linear operation and the channel factor
cr does not change between trials, we expect that whenmulti-trial
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multi-electrode LFP signals from this model are analyzed using
an R-component CPmodel, the analysis will reveal the following:

• The trial population strength matrix (s1, s2, . . . , sR)

• The channel factor matrix (c1, c2, . . . , cR)

• The temporal factor matrix (r1 ∗ k1, r2 ∗ k2, . . . , rR ∗ kR)

Note that it is only possible to recover (1) the experimental
population strength slr (see Equation 12), not the connection
matrix entries W, and (2) the time-convolved temporal
components (rr ∗kr = tr) instead of the raw time traces rr . In the
following, we will refer to the time-convolved components simply
as the time components. To perform numerical simulations, we
impose learning by a controlled change ofW. Over a set of L = 30
trials, we modulateW21 with a sinusoidal and an offset, such that
over the trials, it performs a quarter period (W l

21 ∝ sin(π/2 ·
l/L) + const). W32 increases linearly (W

l
32 ∝ α · l/L + const) and

W43 decreases linearly (W
l
43 ∝ −α · l/L + const. We arbitrary set

τ = (0.1, 0.3, 0.3, 0.2))T and stimulate with a boxcar (Equation 2)
between 0 and 0.2 (tstart = 0, tend = 0.2). Here, we simulate
multi-electrode LFP recordings across multiple trials based on a
simple population rate model, and arrange the data as an LFP
tensor with modes: trials, channels, and time. We then analyze
the LFP tensor using an R-component CP model to disentangle
R populations by estimating their spatial signatures (cr),
temporal signatures (tr) and relative contributions to trials (sr),
for r = 1, ...,R.

In order to demonstrate the performance of the CP model
in terms of analyzing LFP tensors, we have constructed the
following tensors (all in the form of 30 trials × 16 channels ×
1,000 time points):

(i) A noise-free data set using full kernels: An LFP data set
simulated by using the full kernels (Equation 4). No noise was
added to the simulation.

(ii) A noise-free simulation using rank-one approximation of
kernels: An LFP data set was simulated using the rank-one
approximation of the kernels for each population (Equation
5). Let Hi = U6VT

=
∑R

r=1 σrurv
T
r be the SVD of

kernel Hi ∈ R
M×N of rank R for population i. Its rank-one

approximation is Ĥi = σ1u1v
T
1 . The rank-one approximation

of each selected kernel explains over 95% of the kernel matrix.
No noise was added to the simulation.

(iii) Noisy LFP with rank-one approximation of kernels: LFP data
set was simulated using the rank-one approximation of kernels
and then added noise as follows: Let X denote the LFP tensor
that is constructed using the rank-one kernel approximations.
The noisy LFP tensor with noise level α is given by Xα =

X + α
‖X‖F

‖N‖F
N where N is a tensor with entries randomly

drawn from the standard normal distribution.

Constructed LFP tensors are then analyzed using CP with
different number of components. We have also compared the
performance of the CP model with ICA and PCA.

3.1. Implementation Details
For fitting the CP model, cp_opt from the Tensor Toolbox
[38] using the non-linear conjugate gradient (NCG) algorithm,

as implemented in the Poblano Toolbox [39] is used. Multiple
initializations are used to fit each R-component CP model,
and the solution with the best function value is reported.
For computing core consistency values, we use the corcond
function from the Nway Toolbox [40].

For ICA, we use two different algorithms: (i) FastICA [41]
exploiting non-Gaussianity of the underlying sources, and (ii)
the ERBM (entropy-rate bound minimization) [42] algorithm
that takes into account both higher-order statistics and sample
dependence to find the underlying sources. For ICA algorithms,
again multiple initializations are used with R components and
among all the runs, we report the one that matches the true
factors best.

3.2. Performance Evaluation
In order to assess the performance of the CP model, we quantify
the similarity between CP factors and true signatures of neuron
populations in trials, channels, and timemodes.We use the Factor
Match Score (FMS) as the similarity measure defined as follows
[33, 43]:

FMS =
1

R

R∑

r=1

|s⊤r ŝr|

‖sr‖‖ŝr‖
×

|c⊤r ĉr|

‖cr‖‖ĉr‖
×

|t⊤r t̂r|

‖tr‖‖t̂r‖
, (13)

where ŝr , ĉr , t̂r for r = 1, ...,R denote the estimated components
by the CP model while sr , cr , tr for r = 1, ...,R denote
the true components, i.e., simulated trials, channels, and time
mode factors.

3.3. Results
Using numerical experiments, we demonstrate that the CPmodel
can successfully extract components revealing each population.
The model succeeds in revealing the populations from the noise-
free tensor constructed using full kernels and also from the noise-
free tensor constructed using rank-one approximation of kernels.
In the presence of noise, each population can still be unraveled
while their signatures are distorted by the noise. For the first
type of tensor constructed using full kernels, the 4-component
CP model can successfully capture the true factors as shown in
Figure 2. Note that even though the tensor is constructed with
full kernels, the true components in channels and timemodes are
assumed to be the leading singular vectors of each kernel matrix
under the assumption that kernels have a rank-one structure
with noise. Under this assumption, when true components
and CP components are compared quantitatively, the FMS is
0.9965 indicating the accurate recovery of true patterns using
the CP model. Here, the optimal number of components is
equivalent to the number of populations that contribute to the
data; therefore R = 4. We have also analyzed the data using
CP with different number of components. Figure 3 shows how
core consistency and model fit change with R. Since we expect
high core consistency values for valid CP models, we increase the
number of components until we see a drop in core consistency.
Both R = 4 and R = 5 potentially look valid models; however,
the model fit is already 100% for R = 4 and becomes flat after
R = 4 indicating that the 4-component CP model is the right
choice. Thus, we are able to identify the correct number of neural

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 September 2020 | Volume 6 | Article 4132

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Geddes et al. LFP Tensor Analysis

FIGURE 2 | True (simulated) components (blue solid line) vs. the factor vectors extracted by a 4-component CP model (red dashed) in trials, channels, and time

modes from a tensor constructed via full kernels (left column) and rank one approximated kernels (right column). Note also that what is extracted by the CP model is t̂r
which is then compared with rr*kr from the benchmarking data.

populations based on the diagnostic tools used for determining
the number of CP components.

In the second case, where a tensor is constructed via the
best rank-one approximation of each kernel, the 4-component
CP model can again unravel the four populations and their
corresponding signatures in trials, channels, and time modes as
shown in Figure 2. Core consistency and model fit values shown
in Figure 3 for different number of components and, in this case,
indicate that R = 4 is the true number of components since the
core consistency significantly drops after R = 4. Again, the true
number of components could be identified using diagnostic tools.

When noise is added to the tensor constructed using rank-one
approximated kernels, the CP model (with R = 4 components)
can still reveal the true signatures of the populations; however,
as we increase the noise level, we observe that factors become
distorted as shown in Figure 4. Table 1 shows that FMS values
are still high for different levels of noise, and the model
fit decreases as a result of the noise, as expected. Core

consistency values, however, are much lower and therefore
indicate noisy components.

3.4. Comparisons With ICA and PCA
Since ICA and PCA are more traditional approaches to
analyze multi-channel electro-physiology data, we compare the
performance of CP with both in terms of how well they recover
the true temporal components. For ICA and PCA, we unfold
the third-order LFP tensor in the time mode and arrange the
data as a trials-channels by time matrix. In our comparisons,
we use two different ICA algorithms: The FastICA algorithm
[44] and the ERBM algorithm [42]. We study the noise-free
case, analyze the LFP tensor using the correct number of
underlying populations with CP, ICA (R = 4), and PCA,
and compare the estimated sources in the time dimension in
Figure 5. FastICA only finds two independent components, even
if the correct larger number is given. The two reconstructed
components do not mimic the actual firing rate components.
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FIGURE 3 | Core consistency and model fit for CP models with R = 1, 2, . . . , 8 components for tensors constructed with full kernels and the rank-one approximations

of kernels.

FIGURE 4 | Factor vectors in each mode of a 4-component CP model of tensors with different noise levels (α).

The ERBM algorithm was able to reconstruct two components
which are similar to the ground truth, but the other two
components do not match the ground truth. The unfolded noise-
free tensor is of rank four, and when all four components
were taken into account, PCA was able to recover the first
component to some extent, but failed in the other components.
The CP model, on the other hand, was able to recover all

four components with high accuracy. This is a clear example
that illustrates the advantage of using CP over classical matrix
methods. Furthermore, the CP model also allows to estimate
the components in trials and channels modes, whereas matrix-
based methods like ICA or PCA require an unfolding of
the tensor, therefore, failing to estimate components in all
modes simultaneously.
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3.4.1. Further Interpretation
We have shown that CP is able to blindly recover the location
of each population (cr), but can only recover the population
firing rate convolved with the temporal part of the corresponding
kernel (rr ∗ kr). There is no method available which blindly
can deconvolve the kernel and firing rate. The potential kernel
kr can be constrained by values found in experimental studies.
Performing standard deconvolution algorithms [45] can then
be used to further estimate the actual population firing rate.
Another limitation of the blind CP approach is that it can only
recover the trial population strength sr , but not the underlying
connectivity matrix W due to the relation in Equation (12). If
one assumes a feed-forward network, a relation as described in

TABLE 1 | FMS, core consistency, and model fit for 4-component CP models of

noisy LFP tensors.

Noise level (α) FMS Core consistency (%) Model fit (%)

0.100 0.9997 38 99

0.225 0.9985 32 95

0.330 0.9967 21 90

Equation (12) can be assumed, but the order of components is
arbitrary by CP. Inspection of the firing rate components (see
for example Figure 4) can reveal a causal connection (purple →
blue → red → yellow) and identify the order of components.
Then, the elements ofW can be recovered by the simple iteration
W l

r+1,r = slr+1/slr. Also, if two neuron populations have identical
synaptic projection patterns, their LFP kernels will be also
identical, making it impossible to distinguish them. Therefore,
clearly identifying the spatial location of population LFPs relies
on the assumption that their projection patterns are different.

3.5. Application to a Non-linear Model
As stated in section 2.2, the assumption that a tensor consisting
of multiple trials of multi-electrode LFP recordings will have
an underlying CP structure relies on the assumption that F

(Equation 1) is linear. However, in general F will be non-
linear. To study the effects of introducing non-linearity, we use
a hyperbolic tangent function as suggested by beim Graben and
Kurths [46] instead of the identity function. To study the gradual
increase of non-linearity, our function is set to be in the form of

F(x) =
1

β
tanh

(
β(x− a)

)
+ b

FIGURE 5 | Comparing CP, FastICA, ERBM, and PCA estimates of temporal components. Data was generated without additional noise and the correct number of

components was provided to the algorithms.
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FIGURE 6 | Normalized convolved firing rates from all trials with

F(x) = 1
β
tanh

(
β(x − a)

)
+ b and β = 0.001 (left) and β = 5 (right).

with a = 0.5 so that the inflection is within the range of inputs,
and b = −

1
β
tanh(−β · a) to ensure that F(0) = 0. In this

form, the parameter β can be thought to represent the strength
of the non-linearity of the system. For small values of β , F is
approximately the identity function. As the value of β increases
F becomes more non-linear. Effects of the parameter β on the
convolved firing rates can be seen in Figure 6. Results of CP
decomposition of the LFP tensor generated with increasing non-
linearity (β) can be seen in Figure 7 with associated factor match
scores. Factor match scores are computed assuming that the
mean of the firing rates of each population across trials is the
ground truth. We observe FMS of 0.9995, 0.9964, and 0.7497 for
β = 0.001, 1, and 5, respectively. Note that with a weak non-
linearity, CP is able to recover components that are close to the
mean of the trials, thus the non-linearity can be regarded as a
small perturbation. In this case CP is stable and can produce
reasonable results. If the non-linearity becomes too strong, CP
will, as expected, eventually fail, as shown in Figure 7. Thus, CP
will provide a linear approximation of the data.

Also note that CP without non-negativity constraints reveal
temporal components with negative values. In the Appendix
(Figure A3), we also show the temporal factors obtained using
a CP model with non-negativity constraints in the time and trial
mode, for the different strength of non-linearity. We observe that
for small non-linearities, where CP gives reasonable (and already
non-negative) components, non-negativity constraint has almost
no effect. In cases of strong non-linearity where CP fails, the
constraint results in very different results.

4. DISCUSSION

4.1. Summary of Findings
In this paper we have applied the CP tensor decomposition
approach to disentangle different neural populations in LFP

FIGURE 7 | The mean ± 3 standard deviations of each population’s

convolved firing rate across trials (blue) with area between the two curves

shaded in green and CP reconstruction plotted as dashed red lines for

increasing amounts of non-linearity. Larger green regions represent larger

shape changes in the normalized firing rates.

recordings from multiple trials. The idea behind the CP model
is that signals from each trial are a mixture of signals from several
neural populations with specific temporal and spatial patterns.
While these population-specific patterns stay the same across
trials, contributions of the populations are scaled differently
from one trial to another. By jointly analyzing signals from
multiple trials, the CP model can uniquely reveal the underlying
neural populations and capture population-specific temporal
and spatial signatures without imposing ad hoc constraints on
those patterns like what is required for using PCA and ICA.
Physiologically, we have made several assumptions. We first
assume that if a neural population receives the same input but
with different magnitude in multiple trials, than its firing will
also be the same, but with a different magnitude proportional
to the input magnitude, thus we assume linear response of the
population. Second, we assume that the location, and thus the
recording channels a certain population projects to, is constant
over time and also does not change between trials. Last, we
assume that our input dominates the network activity and
background processes ongoing in the network can be regarded
as noise.

We used a linear feed-forward firing-rate toy model with
four populations in this study. The LFP was computed by
means of a kernel method, which allowed simple and fast
generation of LFP given the population activity of neurons
in the model. By repeating the model with different synaptic
weights and the same stimulus, we generated a multi-trial,
multi-channel time series tensor of LFP recordings. For this
toy-model, we found that CP works very well and is able
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to recover the temporal, spatial and trials modes of the
model as shown in Figure 2. This decomposition is unique,
which allows interpretation of those components as the neural
populations. We also found that the method is robust against
noise. Even if the noise is reflected in the components, the
components still cover the main feature of the model as shown
in Figure 4. We were able to uncover the true number of
components using the core consistency diagnostic (see Figure 3).
For applications with experimental recordings where the number
of components is not known, the core consistency diagnostic
is often an effective way to estimate the correct number
of components.

4.2. Comparison With Classical Matrix
Factorization Methods
Different ICA methods and PCA were not able to fully recover
the true components corresponding to individual populations.
ICA relies on the strong assumption of statistical independence
of components, even if that is relaxed in the ERBM approach.
In a biological network, this assumption is unlikely to be
met since it is expected to process and integrate information,
thus correlated patterns are expected. We suspect that ICA
methods failed because of highly correlated component vectors
in the time mode. PCA tried to minimize the correlation
between components, which is unlikely to be met in a neural
network. On the other hand, CP does not rely on the
assumption of independence and is, therefore, able to recover
the components successfully. Also, ICA and PCA methods
work on signals arranged as matrices, which requires unfolding
the tensor. Unfolding destroys the multi-linear structure the
CP model benefits from, and ICA/PCA cannot make use of
that structure.

4.3. Extensions of CP Model for Different
Models of Neuronal Populations Activity
In our toy feed-forward model, the data had a low-rank CP
structure and a CP decomposition was able to fully recover it. We
also studied the result of introducing non-linear neural response
and showed that, for a small amount of non-linearity, CP is
able to identify populations. However, for larger non-linearities
we see the failure of the CP method as the data violates the
CP assumptions to a larger extent. In a more realistic model,
we can introduce recurrent connections, multiple simultaneous
inputs and non-linear response of neural populations. In such
cases, in particular for the second case, using a CP model would
lead to uniqueness issues due to linearly dependent components.
For instance, this can occur when two different stimuli are
injected in the network, thus each stimulus in each neural
population would correspond to a single component, but all
components related to the same neural population would have
the same channel factor. Generalizations of the CP model, e.g.,
the Tucker model [17], are flexible enough to cover this. While
not unique by construction, additional constraints, such as non-
negativity, sparsity or the structure of the Tucker core can allow
for uniqueness.

When CP is applied to experimental LFP recordings
like in Verleger et al. [22], it is unlikely that a low-rank
approximation will fully explain the recording due to
multiple external sources, contributions from other brain
regions, noise effects and non-linearity of the system.
However, even if CP is not capable to model the entire
data using a low-rank approximation, CP will still pick
up low-rank parts, such as a feed-forward structure and
thus make it possible to understand sub-structures of
the network.

4.4. Measurements Other Than LFP Signal
Other multi-electrode recordings like EEG, electrocorticography
(ECoG) or magnetoencephalography (MEG) are very
similar to LFP in the sense that they also consist of
contributions of multiple sources. Due to the linearity of
electromagnetism, these contributions are also additive.
Recent work [47] allows to simulate not only LFP but also
other electrophysiological signals in the same framework.
Thus, the kernel method can also be applied to these other
observables. If the kernels have a good rank-one approximation,
this work would also apply to EEG, ECoG, or MEG. Since
all those observables are linked by the same underlying
population activity, it is also possible to combine several
observables in a fusion framework jointly analyzing multiple
tensors [48].
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APPENDIX

Kernels for LFP Approximation
The kernels used in this work were computed as described in
Hagen et al. [29] for a cat cortex model [31]. We selected a
random sequence of only excititory kernels where we made sure
that the first kernel projects from talamic input. We used the
following kernels: thalamus → layer 4, layer 4 → layer 6, layer
6 → layer 5, and layer 5 → layer 2/3. Kernels were computed
with ±20ms around the δ input. Due to causality, no response is
expected before the pulse. Figure A1 shows the selected kernels
as well as their rank one approximation. As it can be seen, a rank
one approximation approximates the original kernel well.

This is shown more systematically in Figure A2. This
plot shows the variance explained for all kernels that have

been computed for the cat cortex model [31], that is
all combinations from the four layers, both excititory and
inhibitory [(4 + 4)2 kernels] as well as talamic connections
to this layers (8). More than 90% of those kernels can be
approximated with more than 90% variance explained by a rank
1 approximation.

Non-linear Case: Analysis Using CP With
Non-negativity Constraints
Figure A3 demonstrates the temporal components captured by
the CP model with non-negativity constraints. Here, LFP tensors
are generated using different strength of non-linearity (β), and
analyzed using CP models with non-negativity constraints in the
time and trialmode.

FIGURE A1 | Comparison of the full kernels (left side) and their rank 1 approximation (right side). Plots have equal scale.
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FIGURE A2 | The plot shows the variance explained by a rank 1 approximation for all kernels that have been computed form the cat cortex model [31].

FIGURE A3 | Same as Figure 7, but with bounded CP to positive values in the firing rate and trial components. Note that for small non-linearities, the temporal

components are almost identical for constrained and unconstrained CP, while for strong non-linearities, where CP fails, the components are very different.
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Femoral neck fractures (FNFs) are a great public health problem that leads to a high

incidence of death and dysfunction. Osteonecrosis of the femoral head (ONFH) after

internal fixation of FNF is a frequently reported complication and a major cause for

reoperation. Early intervention can prevent osteonecrosis aggravation at the preliminary

stage. However, at present, failure to diagnose asymptomatic ONFH after FNF fixation

hinders effective intervention at early stages. The primary objective of this study was to

develop a predictive model for postoperative ONFH using deep learning (DL) methods

developed using plain X-ray radiographs and hybrid patient variables. A two-center

retrospective study of patients who underwent closed reduction and cannulated screw

fixation was performed. We trained a convolutional neural network (CNN) model using

postoperative pelvic radiographs and the output regressive radiograph variables. A less

experienced orthopedic doctor, and an experienced orthopedic doctor also evaluated

and diagnosed the patients using postoperative pelvic radiographs. Hybrid nomograms

were developed based on patient and radiograph variables to determine predictive

performance. A total of 238 patients, including 95 ONFH patients and 143 non-ONFH

patients, were included. A CNN model was trained using postoperative radiographs and

output radiograph variables. The accuracy of the validation set was 0.873 for the CNN

model, and the algorithm achieved an area under the curve (AUC) value of 0.912 for

the prediction. The diagnostic and predictive ability of the algorithm was superior to

that of the two doctors, based on the postoperative X-rays. The addition of DL-based

radiograph variables to the clinical nomogram improved predictive performance, resulting

in an AUC of 0.948 (95% CI, 0.920–0.976) and better calibration. The decision curve

analysis showed that adding the DL increased the clinical usefulness of the nomogram

compared with a clinical approach alone. In conclusion, we constructed a DL facilitated

nomogram that incorporated a hybrid of radiograph and patient variables, which can be

used to improve the prediction of preoperative osteonecrosis of the femoral head after

internal fixation.
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INTRODUCTION

Hip fracture is a significant public health concern that affects 4.5
million people worldwide each year and this number is expected
to increase to 21 million in the next 40 years (1, 2). Femoral
neck fracture (FNF) is one of the most common types of hip
fracture, accounting for 49–80% of all hip fractures (3, 4). Despite
the availability of multiple effective internal fixation procedures,
∼10–48.8% femoral neck fractures require reoperation (5–7).
Osteonecrosis of the femoral head (ONFH) is a major cause
of reoperation for FNF (8). Joint disfunction, pain, disability,
and mental anguish caused by ONFH result in great suffering
for patients (9–11). End-stage ONFH often inevitably requires
artificial joint replacement surgery, an invasive and economically
costly technique. Early diagnosis can facilitate the application of
interventions that can avoid or delay arthroplasty to a certain
extent (12–14). However, misdiagnoses and delayed diagnoses
are common due to the lack of preliminary symptoms, typical
features, and internal fixation interference on radiographs (14).
Different diagnostic criteria or simple visual estimates are used
by radiologists for practical imaging diagnosis, resulting in
unsatisfactory levels of diagnostic consistency and accuracy (15).
Therefore, early accurate and consistent prediction of ONFH
in patients after FNF internal fixation may hold the key for
improving patient outcomes.

Deep learning (DL) using radiographs has a proven ability
of classifying bone structures and features in specific sites with
expert-level accuracy (16, 17). Convolutional Neural Networks
(CNNs) are the most suitable models for image recognition of
DL, and have been widely used for the orthopedic diagnosis
of wrists and ankles (18, 19). Gale et al. developed a hip
fracture detector using DL and achieved an AUC of 0.994 (20).
Cheng et al. reported on a deep convolutional neural network
(DCNN) for the detection and localization of hip fractures using
pelvic radiographs, which achieved an AUC of 0.98 for the
identification of hip fractures (21). Recently, Chee et al. made a
breakthrough discovery for the diagnosis of early ONFH using
radiography through deep learning (22). This model achieved
an AUC of 0.93 and sensitivity and specificity that were not
inferior to the diagnosis made by both the less experienced
and experienced radiologists. Their study indicated the potential
of DL for the diagnosis and prediction of ONFH, especially
for X-ray imaging. However, the implementation of DL for
the diagnosis of postoperative ONFH using digital radiography
remains unexplored. Postoperative X-rays are highly affected
by interference, such as that of internal fixation devices, which
cause difference between the images on radiographs and the
original appearance of the femoral neck and femoral head. Since
postoperative X-rays are themost commonmethod used for early
examination, a consistent diagnosis based on postoperative X-
rays made using DLmay improve the prediction of postoperative
ONFH for better prognosis. In this study, we designed and
assessed the diagnostic performance of a DL algorithm based on
the CNN network model using postoperative X-rays. We also
compared the accuracy of the diagnosis of postoperative ONFH
between this DL model and assessments made by two orthopedic
doctors of different levels of experience.

In previous studies, a large number of research studies have
indicated that patient and interventional variables, including
demography, fracture classification, laboratory examination,
reduction quality, and initial postoperative rehabilitation, are
significantly associated with postoperative ONFH (23–26).
However, intraoperative, and postoperative factors, especially
radiographic variables, including intraoperative reduction and
fracture healing, have yet to be incorporated into routine
clinical postoperative ONFH prediction. In this study, a DL
facilitated predictive model using a hybrid of patient and artificial
intelligence (AI) radiographic variables, was also developed.
Comparisons were made with a single clinical prediction model
was performed to estimate whether DL could improve the
prediction of postoperative ONFH.

MATERIALS AND METHODS

Study Population
Data were obtained from two urban tertiary hospitals, The First
Affiliated Hospital of University of Science and Technology of
China (FAH) and the Southern Branch of the First Affiliated
Hospital of University of Science and Technology of China
(SBH). One hundred thirty-nine FAH patients and 99 SBH
patients who had received closed reduction and cannulated
screw fixation from June 2013 to January 2015 were enrolled
in this study. The patient inclusion criteria were as follows: (i)
Patients over 18 years of age with fresh FNFs; (ii) Postoperative
pelvic radiographs obtained 6 months after surgery; (iii)
Continuous follow-up for a minimum of 5 years with the
clinical characteristics available. The exclusion criteria were
as follows: (i) Pathological fractures and bilateral fractures;
(ii) Long-term hormone use. The treatment standard and
strategy used for femoral neck fracture was the cannulated
compression screws fixation technique, based on American
Academy of Orthopedic Surgeons guidelines (27). Postoperative
ONFH was diagnosed using pelvic MRIs or co-diagnosis by three
experienced orthopedic surgeons based on the pelvic radiograph
obtained at the last follow-up. This study was approved by the
Ethics Committees of both hospitals. Exemption of the informed
consent, the information disclosure, and a negative opportunity
are guaranteed in the Ethical approval (20-P-049).

Demographics, comorbidities, smoking status, alcohol use,
blood tests, preoperative Garden classification, Pauwels angle,
preoperative interval from injury, operation associated data,
postoperative Garden index, preoperative interval to weight
bearing and other baseline patient and clinical data were derived
from medical and follow-up records. The data were de-identified
after patient variables were collected.

Imaging Studies
Image acquisition and retrieval procedures were conducted
using Picture Archiving and Communication Systems (PACS)
on FAH and SBH patients. Digital radiographs of the hip
were obtained using Digital Diagnostics (Philips Healthcare)
on FAH patients and Discovery XR656 (GE Healthcare) on
SBH patients. The size of the stored images varied from 2,128
× 2,248 pixels to 2,688 × 2,688 pixels, with 8-bit grayscale
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color. Each radiograph was labeled based on the final diagnosis
of postoperative ONFH. Geometric, smooth, concave, bandlike
low-signal intensity lesions at the femoral head on the T1-
weighted images were regarded as pathognomonic MRI findings
of ONFH. For MRI data not obtained at the last follow-up
(45/238, 18.9%), diagnosis was based on pelvic plain radiographs
obtained at the last follow-up and was set as a reference for
labeling. The Association Research Circulation Osseous (ARCO)
classification system was used as the diagnostic standard for
ONFH (28).

Radiographic image files were loaded for processing using
a MATLAB library (version 2017b, MathWorks, USA). The 7
× 7 cm images centered on the bilateral femoral heads were
cropped. The center coordinates were manually recorded in
advance. Radiographs were standardized to a common size and
pixel intensity distribution. The images were down-sampled and
padded to a final size of 120 × 120 pixels. Mean pixel intensity
and standard deviation of each image was normalized.

Algorithm Development and Extraction of
Image Variables
For the development of a deep learning algorithm, we used
MATLAB (version 2017b, MathWorks, USA) to implement a
CNN model to compute abstract image features from input
image pixel arrays. The design of the CNN model is shown in
Table 1. The CNNmodel consisted of three convolutional blocks,
a dropout and full connection layers. Each convolutional block
comprised of convolutional operation, batch normalization, relu,
and average pooling. The input used was Pixel values were set
at 120∗120 using a digital image. Cubic convolution and pooling
were performed on each layer to adjust the weights of the neural
network, using the difference between the output and true labels.

The patients in the dataset were assigned to different groups
as follows: 149 (63%) for training, 17 (7%) for validation and
72 (30%) for testing. The output results underwent regression

TABLE 1 | The design of CNN model.

Type Operations Filter shape Input size

Conv1 Conv 8 × 7 × 7 × 1 120*120

batchnorm

relu

avgpool 8 × 120*120

Conv2 Conv 7 × 5 × 5 × 8 8 × 60*60

batchnorm

relu

avgpool 7 × 60*60

Conv3 Conv 5 × 3 × 3 × 7 7 × 30*30

batchnorm

relu

avgpool 5 × 30*30

Dropout Dropout 1*1 5 × 15*15

FC Fully connected 1,125*1 5 × 15*15

Regression Regression output 1*1 1*1

analysis. The network output was a probability distribution for
the continuous variables of the regression coefficient from 0 to
1.25, which was divided at 0.25 intervals into classified labels, 1–
5. Higher label values were more likely to be considered to more
strongly predict postoperative ONFH. In this study, this output
label was referred to as the AI index classification.

Algorithm Evaluation
Seventy-two independent datasets were used to test the trained
predictivemodel to evaluate its accuracy for postoperative ONFH
prediction. The probability of the diagnosis being postoperative
ONFH generated by the model was evaluated using the receiver
operating characteristic (ROC) curve and the area under the
curve (AUC). The sensitivity, accuracy, recall and specificity of
the radiographs for the prediction of ONFHweremeasured using
a cutoff level probability of 0.5. A training curve was used to
determine root mean squared error (RMSE) and loss, while a
precision-recall curve was used to determine precision and recall.

Image Predictive Variable Evaluation
We compared the AI index with the predictive measurement
scores assigned by the two orthopedic surgeons of different
levels of experience with the results of the DL algorithm
based on the same X-rays to evaluate the performance of the
algorithm. Radiographs obtained 6-months after anteroposterior
hip operations were randomly divided into two IPAC sequences
by the study coordinator. A less experienced orthopedic
doctor (Doctor A, 3rd year of residency in orthopedics) and
an experienced orthopedic doctor (Doctor B, 18 years in
orthopedics) participated in the reading session. Both doctors
were not involved in surgery, data collection or reference labeling.
A score based on the subjective prediction of the doctors using
the postoperative X-ray to determine the most likely outcome
at final follow-up was assigned using a 1–5 grading system. One
indicated that the development of ONFH was considered to be
impossible, while 5 indicated that the development of ONFH
was considered to be certain. Each doctor independently graded
the predictive variables for ONFH. Comparison between the
performance of the AI index and the evaluation made by the two
doctors was conducted through calibration and ROC analysis.

Development of Prediction Models
A multivariable logistic regression analysis was used to develop
the clinical predication model based on patient and clinical
variables. AI index classification was applied as a candidate
predictor for univariate and multivariable logistic regression
analyses for the construction of a DL-based postoperative ONFH
prediction model using hybrid variables. A clinical prediction
nomogram and a DL-based nomogram were then constructed
based on multivariate logistic regression models. The work
flowchart of this study is presented in Figure 1.

Assessment of Nomogram Performance
AI-based nomogram and clinical nomogram calibration
were assessed using a calibration curve. The discrimination
performance of both the AI-based nomogram and clinical
nomogram were quantified using the AUC.
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FIGURE 1 | Flowchart of hybrid nomogram construction.

Clinical Use
Decision curve analysis (DCA) was performed by calculating the
net benefits for a range of threshold probabilities to estimate the
clinical utility of the nomogram.

Statistical Analysis
Median and mean standard deviation (SD) were used to describe
continuous variables. Categorical variables were presented as
frequencies and percentages. Statistical comparisons between
groups were performed using the Mann-Whitney U-test and
Chi-square test. R software version 3.0.1 was used to construct
the nomogram. The “pROC” package was used to plot ROC
curves. Nomogram construction and calibration plot creation
were performed using the “rms” package. DCA was performed
using the “dca.R” package. Model selection was based on the
forward–backward step-wise method using the likelihood ratio
test with Akaike’s information criterion as the stopping rule.
The model with the smallest Akaike Information Criterion was
selected as the final model. The statistical significance levels
reported are all two-sided, with statistical significance set at a
P-value of 0.05.

RESULTS

Patient and Radiograph Characteristics
Postoperative radiographs of a total of 238 patients, including
95 ONFH patients and 143 normal patients were used for
the development of the DL model and construction of the
predictive nomogram. Imaging feature variables were extracted
from each radiograph and were referred to as the AI index of
all patients. Table 2 shows the baseline characteristics of the
patients. Significant differences were found in BMI, Charlson

comorbidity index, Injury Severity Score (ISS), d-dimer, timing
of reduction, Garden classification and AI index between patients
with ONFH and those without ONFH (Table 2).

Performance of the CNN Model
A CNN model was established for the extraction of radiograph
variables. The precision-recall curve of the test set is shown in
Figure 2A, while the threshold value at the break-even point
was 0.425. This point was set as the highest sum of sensitivity
and specificity. Training accuracy values at this threshold for the
training set was 0.903 and 0.873 for the test set. The change
in RMSE and loss during the training process are shown in
Figure 2B. Deviation of the RMSE in the training set and test
set gradually decreased and the two curves leveled off (upper
diagram) along with the increase of iterations. Similarly, as the
number of iterations increased the deviation in loss between the
training set and test set gradually decreased.

Performance of the Predictive Radiograph
AI Variables
The calibration curve of the AI index for the prediction of
postoperative ONFH demonstrated good agreement between
prediction and actual observations, compared with that of Doctor
A andDoctor B (Figure 3A). The sensitivity value was 0.910 (95%
CI, 0.871–0.949) for the AI index, 0.657 (95%CI, 0.591–0.724) for
the less experienced Doctor A and 0.827 (95% CI, 0.776–0.879)
for experienced Doctor B (Figure 3B). The DCA curves shown
in Figure 3C indicate that when the threshold probability for a
doctor or a patient was within the range of 0.09–0.96, the AI index
added more net benefits for the prediction, than that of Doctor A
or Doctor B.

Frontiers in Medicine | www.frontiersin.org 4 October 2020 | Volume 7 | Article 57352245

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhu et al. Deep-Learning Improves Postoperative Osteonecrosis Prediction

TABLE 2 | Patients baseline characteristics stratified by ONFH.

All patients Non-ONFH group ONFH group p

N = 238 N = 143 N = 95

Age 46.4 ± 12.7 45.6 ± 13.3 47.6 ± 11.7 0.215

Sex 0.167

Female 106 (44.5%) 58 (40.6%) 48 (50.5%)

Male 132 (55.5%) 85 (59.4%) 47 (49.5%)

BMI 22.7 ± 2.88 22.4 ± 2.82 23.2 ± 2.93 0.048

Smoking 0.875

No 148 (62.2%) 90 (62.9%) 58 (61.1%)

Yes 90 (37.8%) 53 (37.1%) 37 (38.9%)

Alcohol use 0.696

No 165 (69.3%) 101 (70.6%) 64 (67.4%)

Yes 73 (30.7%) 42 (29.4%) 31 (32.6%)

WIC 1.34 ± 1.40 1.10 ± 1.21 1.68 ± 1.59 0.003

CVD 0.097

No 220 (92.4%) 136 (95.1%) 84 (88.4%)

Yes 18 (7.56%) 7 (4.90%) 11 (11.6%)

ISS score 0.029

≤16 210 (88.2%) 132 (92.3%) 78 (82.1%)

>16 28 (11.8%) 11 (7.69%) 17 (17.9%)

WBC 7.42 ± 2.44 7.51 ± 2.51 7.28 ± 2.34 0.484

RBC 4.30 ± 0.57 4.31 ± 0.59 4.28 ± 0.55 0.638

Hb 130 ± 16.4 130 ± 16.5 131 ± 16.3 0.871

PLT 181 ± 58.2 178 ± 56.6 185 ± 60.6 0.387

ALB 40.9 ± 3.18 41.1 ± 3.18 40.7 ± 3.19 0.360

D-dimer 4.40 ± 5.59 5.16 ± 6.40 3.27 ± 3.86 0.005

Causes of injury 0.192

High energy trauma 63 (26.5%) 33 (23.1%) 30 (31.6%)

Low energy trauma 175 (73.5%) 110 (76.9%) 65 (68.4%)

Timing of reduction <0.001

<72 h 100 (42.0%) 72 (50.3%) 28 (29.5%)

72–120 h 97 (40.8%) 58 (40.6%) 39 (41.1%)

>120 h 41 (17.2%) 13 (9.09%) 28 (29.5%)

ASA grade 0.223

Grade 1 118 (49.6%) 76 (53.1%) 42 (44.2%)

Grade 2–3 120 (50.4%) 67 (46.9%) 53 (55.8%)

Garden classification 0.014

Type 2 19 (7.98%) 17 (11.9%) 2 (2.11%)

Type 3 116 (48.7%) 63 (44.1%) 53 (55.8%)

Type 4 103 (43.3%) 63 (44.1%) 40 (42.1%)

Pauwels angle 53.2 ± 14.8 53.9 ± 15.4 52.1 ± 13.8 0.346

Garden index 0.130

1 43 (18.1%) 29 (20.3%) 14 (14.7%)

2 61 (25.6%) 34 (23.8%) 27 (28.4%)

3 70 (29.4%) 36 (25.2%) 34 (35.8%)

4 64 (26.9%) 44 (30.8%) 20 (21.1%)

Interval to part weightbearing 0.393

<1m 16 (6.72%) 10 (6.99%) 6 (6.32%)

1–3m 89 (37.4%) 58 (40.6%) 31 (32.6%)

3–6m 122 (51.3%) 67 (46.9%) 55 (57.9%)

>6m 11 (4.62%) 8 (5.59%) 3 (3.16%)

Interval to full weightbearing 0.474

<3m 25 (10.5%) 15 (10.5%) 10 (10.5%)

3–6m 161 (67.6%) 93 (65.0%) 68 (71.6%)

>6m 52 (21.8%) 35 (24.5%) 17 (17.9%)

AI index 0.48 ± 0.39 0.24 ± 0.24 0.83 ± 0.29 <0.001
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FIGURE 2 | Performance of CNN model in postoperative ONFH prediction. (A) Precision-recall curve of test set. The threshold value at Break-Even point is 0.425 and

the accuracy at this threshold set is 0.873. (B) The change of root mean square error (RMSE) and loss during the training process. Dotted line, RMSE and loss of the

training set. Blue wave, RMSE of the validation set. Red wave, loss of the validation set.

FIGURE 3 | Performance of predictive value of AI index. (A) Calibration plots for prediction of AI, Doctor A and Doctor B. Calibration curves depict the calibration of

the nomogram in terms of agreement between the predicted risk and outcomes. The 45◦ gray ideal line represents a perfect Prediction. The closer the dotted line fit is

to the ideal line, the better the predictive accuracy of the diagnosis and nomogram is. (B) ROC curves for prediction of AI, Doctor A and Doctor B. (C) DCA analysis

curves for radiodiagnosis of AI, Doctor A and Doctor B. It showed that if the threshold probability is between 0.09 and 0.96, then using the AI index adds more benefit

than testing either all or no patients.

Development of a Hybrid Prediction Model
In the univariate logistic regression analysis, BMI, Injury Severity
Score (ISS), timing of reduction, Garden classification and AI
index were found to be significant factors associated with ONFH
in the training cohort (all P < 0.05; Table 2). In the final
multivariate logistic regression model, BMI (HR 0.471, 95% CI
0.187–1.147, P = 0.101), ISS (HR 3.427, 95% CI 0.919–13.05,
P = 0.068), timing of reduction (72 h-120 h: HR 1.533, 95%
CI 0.564–4.253, P = 0.403; >120 h: HR 9.464, 95% CI 2.471–
40.38, P = 0.002), Garden classification (Type 3: HR 0.336, 95%
CI 0.050–3.315, P = 0.292; Type 4: HR 1.344, 95% CI0.243–
12.98, P = 0.745) and AI index (HR 6.043, 95% CI 4.071–9.717,
P < 0.001) were identified as hybrid independent predictors of
ONFH (Table 3). We then created a prediction nomogram that
incorporated the above independent predictors and presented it

as a hybrid nomogram (Figure 4A). A clinical nomogram was
also constructed based on independent predictors excluded from
the AI index (Figure 4B).

Performance of the Hybrid Nomogram
The calibration curve of the hybrid nomogram for the prediction
of postoperative ONFH demonstrated good agreement between
prediction and actual observations, compared with that of
the clinical nomogram (Figure 5A). The AUC of the AI-
based nomogram was 0.948 (95% CI, 0.920–0.976), while the
AUC for the clinical nomogram was 0.696 (95% CI, 0.629–
0.763) (Figure 5B). The difference was statistically significant,
which indicated that the hybrid nomogram showed better
discrimination and prediction ability for the diagnosis of ONFH.
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TABLE 3 | The results of univariate and step-wise multivariate analyses of confounding variables.

Variable Univariate model Multivariate model

HR (95% CI) P HR (95% CI) P

Age 1.013 (0.992–1.035) 0.227 – –

Sex, male 0.668 (0.395–1.126) 0.131 – –

BMI, ≤24 0.618 (0.361–1.054) 0.077 0.471 (0.187–1.147) 0.101

Smoking, yes 1.083 (0.633–1.847) 0.769 – –

Alcoholism, yes 1.164 (0.663–2.036) 0.593 – –

Causes of injury 1.431 (0.851–2.419) 0.147 – –

ASA grade, grade 2-3 1.412 (0.851–2.419) 0.178 – –

WIC 1.348 (1.116–1.643) 0.002 Not selected –

CVD, yes 2.544 (0.964–7.155) 0.063 Not selected –

ISS score, >16 2.615 (1.178–6.028) 0.020 3.427 (0.919–13.05) 0.068

WBC 0.962 (0.862–1.071) 0.488 – –

RBC 0.897 (0.567–1.414) 0.640 – –

PLT 1.002 (0.998–1.007) 0.379 – –

Hb 1.001 (0.986–1.018) 0.871 – –

Alb 0.962 (0.885–1.044) 0.358 – –

D2D 1.411 (0.839–2.382) 0.195 – –

Timing of reduction – –

<72 h Reference

72–120 h 1.729 (0.956–3.159) 0.072 1.533 (0.564–4.253) 0.403

>120 h 5.538 (2.562–12.53) <0.001 9.464 (2.471–40.38) 0.002

Garden classification

Type 2 Reference Reference

Type 3 5.397 (1.443–35.20) 0.029 0.336 (0.050–3.315) 0.292

Type 4 7.150 (1.932–46.41) 0.011 1.344 (0.243–12.98) 0.745

Pauwells angle 0.992 (0.974–1.009) 0.355 – –

Garden index Not selected –

1 Reference – –

2 1.645 (0.736–3.774) 0.231 – –

3 1.956 (0.896–4.400) 0.097 – –

4 0.942 (0.412–2.181) 0.887 – –

Interval to part weightbearing – –

<1m Reference – –

1–3m 0.891 (0.301–2.831) 0.837 – –

3–6m 1.368 (0.477–4.241) 0.567 – –

>6m 0.625 (0.105–3.207) 0.581 – –

Interval to full weightbearing – –

<3m Reference – –

3–6m 1.098 (0.469–2.662) 0.833 – –

>6m 0.728 (0.271–1.987) 0.529 – –

AI index (per 0.25 increase) 4.594 (3.365–6.572) <0.001 6.043 (4.071–9.717) <0.001

Clinical Use
The DCA for the hybrid nomogram and for the clinical
nomogram are presented in Figure 5C. The DCA indicated that
when the threshold probability for a doctor or a patient was
within the range of 0–0.98, the hybrid nomogram added more
net benefits than “treat all” or “treat none” strategies. The range
for the clinical nomogram was from 0.2 to 0.7, revealing that
use of the hybrid nomogram to predict postoperative ONFH was
more beneficial.

DISCUSSION

Early detection and identification of ONFH after femoral neck
fracture fixation has been a long-term concern in clinical practice.
In this study, we developed and trained aDLmodel that could use
postoperative pelvic radiographs to predict ONFH. The output
values of the CNNmodel successfully stratified patients based on
their risk of developing postoperative ONFH, which was referred
to as AI index classification for prediction. The predictive
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FIGURE 4 | The nomogram for the operative prediction of ONFH. (A) Hybrid AI-based nomogram incorporated hybrid independent radiograph and patient variables.

(B) Clinical-based nomogram constructed based on independent predictors excluded AI index.

FIGURE 5 | Performance of the hybrid predictive model. (A) Calibration plots for AI index, AI-based nomogram and Clinical nomogram. (B) ROC curves for prediction

of AI index, AI-based nomogram and Clinical nomogram. (C) DCA analysis curves for AI radiodiagnosis, AI-based nomogram and Clinical nomogram. The y-axis

measures the net benefit. The blue line represents the hybrid AI-based nomogram. The green line represents the clinical nomogram. The gray line represents the

assumption that all patients have postoperative ONFH. Thin black line represents the assumption that no patients have postoperative ONFH. The x-axis represents

the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. It showed that if

the threshold probability is between 0 and 0.98, then using the AI-based nomogram adds more benefit in predicting ONFH than testing either all or no patients.

performance of the AI index was significantly superior to the
predictive performance of a less experienced orthopedic doctor
and non-inferior to that of an experienced orthopedic doctor.
A combination of patient and radiograph variables were used
to construct an AI-based nomogram for postoperative ONFH
prediction. The hybrid nomogram showed better performance
for the postoperative prediction of ONFH than a single clinical
nomogram, indicating its potential in predicting and targeting
ONFH during clinical follow-up to provide a decision base for
orthopedic doctors.

Hip pain is the most common postoperative symptom after
FNF surgery. It may be associated with fractures, surgery, implant
irritation, and early ONFH that should be identified during
follow-up. Postoperative X-rays are the most common and
readily available imaging examination used for routine clinical
follow-up after internal fixation. The detection of sclerotic
abnormalities and trabecular interruptions of the femoral head

for the diagnosis of postoperative ONFH are subjective and
depend on the level of experience and diagnostic criteria used
by each doctor. Only radiologists who are rich in experience,
may be able to accurately predict ONFH using postoperative X-
rays. Even then, objectivity and consistency may be difficult to be
achieved. The increased workload of radiologists worldwide has
already had a significant impact on the diagnostic performance
of radiologists (29, 30). Therefore, DL can be used as a
potential auxiliary diagnostic tool for orthopedic diagnoses to
obtain stable and accurate diagnoses (16, 31). In this study,
we trained a DL model to read postoperative X-rays to predict
ONFH. The accuracy and consistency of the DL model was
significantly better than that of an orthopedic doctor with less
experience. The DL model was similar in accuracy but better in
consistency, compared with the experienced orthopedic doctor.
This indicated the potential of the use of the DL model for
the diagnosis and prediction of postoperative ONFH. Previous
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studies have indicated that an important feature of the DL
model is its ability to detect key features of images through
cyclic learning undergone by neural networks, which may be
different from the existing understanding and research on
image features in black box models. This makes it possible for
the diagnostic path of the DL model to differ from existing
known diagnostic and prediction criteria, resulting in a positive
difference in the diagnostic accuracy of the DL model, compared
with that of orthopedic doctors. The DL model created in
Chee’s study showed a high level of sensitivity and accuracy
for the diagnosis of pre-collapse ONFH (22). When we applied
the CNN network obtained from this non-traumatic ONFH
predictionmodel to our postoperativeONFHprediction, internal
fixation of the postoperative X-ray was found to be one of the
major differences between the two models. Recent studies have
suggested that different fixation constructs, such as cannulated
screws or dynamic hip screws, produce different fracture fixation
outcomes. The location differences under the implemented
operations standard for the same fixation construct do not
significantly affect outcomes (32). During training, we found that
the output of the DLmodel could still reflect prediction efficiency
and showed good calibration, even though the positions of the
metal internal fixations were not exactly the same and occupied
the recognition area in the finite image pixel.

Existing studies using clinical risk factors, such as
demographic data, fracture classification, and preoperative
interval, to make preoperative predictions for surgical decisions
(33–35). Due to the lack of the incorporation of all perioperative
variables, especially the intraoperative and postoperative
radiograph variables, the preoperative prediction models in these
studies have shown difficulties in achieving an ideal predictive
ability. For example, the clinical nomogram constructed in
our study achieved an AUC of 0.696 (95% CI, 0.629–0.763),
which is similar to the AUC of 0.746 obtain by the Naive Bayes
Classifier constructed by Cui et al. (36). The predictive ability of
a preoperative model is limited for patients who have received
certain internal fixation, for example dynamic hip screws and
cannulated compression screws (34, 36). The hybrid nomogram
showed better prediction performance after the incorporation of
patient and radiograph variables, compared with conventional
clinical nomograms and the simple radiographic-based DL
model for postoperative ONFH prediction. In this study, the
hybrid classifier achieved an AUC of 0.948 (95% CI, 0.920–
0.976). The variables we included after multivariate regression
analysis of all risk factors were similar to that of conventional
preoperative clinical prediction models. High-risk factors
generally include fracture patterns, preoperative interval, and
BMI. Inclusion of the DL model-based imaging prediction
significantly improved the ONFH predictive ability of the
traditional prediction models, indicating the value of using a
combination of variables. The predictive model using hybrid
variables more closely mimicked the diagnostic and predictive
processes of orthopedic doctors, who are better at interpreting
images based on the clinical status of patients (37). The addition
of a combination of patient and hospital process variables
associated with routine clinical care improved the ability of a
DL model trained by Badgeley et al. to predict hip fractures

(38). One explanation for this improvement was the presence
of non-biological signals on radiographs that are predictive
of diseases (39). Although multiple regression analyses were
performed for risk factors, including intraoperative reduction,
and postoperative weight bearing, the variables included in
the single clinical nomogram were all preoperative variables.
Among them, Garden classification showed the most assigned
value, which was similar to the results of previous studies that
found that fracture patterns are crucial for the prediction of
postoperative ONFH (7, 40). When the postoperative AI index
was included, the attribution of Garden classification decreased
significantly, which may be because the AI index already
included certain manually incorporated graded variables from
the images. The information was considered as a non-biological
signal and contributed to the classification. The DL-based
prediction model that incorporated a combination of patient
and radiograph variables showed a significantly higher ability
of prediction postoperative ONFH, and can be used to provide
second opinions and a base for doctors to make decisions during
clinical follow-up.

In the DCA curves analysis, prediction and diagnosis based
on the DL model were found to be non-inferior to that of the
two orthopedic doctors, while that of the AI-based nomogram
using hybrid variables was superior to imaging prediction alone,
allowing for more accurate diagnosis and prediction during
clinical follow-up. There is no doubt that the gold standard
imaging modality for the preliminary stages of ONFH is MRI
(41, 42). However, MRI is not the most common test used to
evaluate treatment options and ONFH during postoperative FNF
follow-up. MRIs are affected by metal implants, which may cause
potential internal fixation losses and thermal effect (43). MRI
tests are more expensive, take longer, and require the radiologist
to have a higher level of diagnostic experience. Nomograms
based on the DL model and clinical variables can improve the
ability of positive diagnostic screening and provide doctors the
opportunity of obtaining a second opinion.

The AI-based nomogram using hybrid variables may
potentially assist in decision making during clinical follow-
up as patients with early-stage ONFH may benefit from
timely interventions (44). Although the definitive method of
treatment for traumatic ONFH remains controversial, certain
early interventions have been widely used during post-operative
clinical follow-up. For patients with a high probability of
developing ONFH, interventions for hip preservation or
delayed joint replacement, including platelet-rich plasma (PRP)-
incorporated autologous granular and free vascularized fibular,
have been proven to be safe and effective procedures for
postoperative ONFH (45, 46). Extracorporeal shock wave
therapy and alendronate administration can also be potentially
performed on patients with a moderate probability of a risk
of developing ONFH (47–49). We assessed whether the AI-
based nomogram assisted decisions that would improve patient
outcomes to justify its clinical usefulness. Our study showed that
if the threshold probability was between 0.06 and 0.96, as shown
by the constructed decision curves, the AI-based nomogram
could predict postoperative ONFH compared with treating
either all or no patients. This indicated that early postoperative
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prediction using this hybrid of patient and radiograph variables
can be useful for the application of early interventions that may
even allow for a reasonable delay of the onset of arthroplasty (50).
Substantial positive rehabilitation can be applied after accurate
predictions are obtained after the operation for patients with
a lower prediction probability, which will also relieve patient
anxiety (51).

This study has some limitations. First, it was conducted
on a retrospective cohort study, and is therefore likely to
have been affected by selection bias. Second, due to the rarity
of the disease, our study included only 238 images in the
CNN model. The performance of the CNN model can be
improved by using a larger multicenter sample size. Third,
our diagnostic criteria for postoperative ONFH was based on
follow-up MRIs and typical pelvic radiographs without the
use of histopathological confirmation. Therefore, false-negative
and false-positive values would not have been avoided due
to the subjectivity of the imaging diagnosis method. At the
same time, transverse comparison was not conducted with
gold standard MRI when postoperative X-rays were included 6
months after surgery. The reason was that, as a retrospective
study, MRIs had been performed on only 197 patients, probably
due to their high cost. In the future, prospective clinical
studies using larger cohorts should be preplanned to investigate
strategies that can be used for ONFH prediction of patients after
internal fixation.

CONCLUSION

In conclusion, this study presents a DL facilitated nomogram
that incorporates hybrid radiograph and patient variables, shows
favorable predictive accuracy for preoperative osteonecrosis of

femoral head in patients with femoral neck fractures after
internal fixation.
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Life science data are often encoded in a non-standard way by means of alpha-numeric
sequences, graph representations, numerical vectors of variable length, or other formats.
Domain-specific or data-driven similarity measures like alignment functions have been
employed with great success. The vast majority of more complex data analysis algorithms
require fixed-length vectorial input data, asking for substantial preprocessing of life science
data. Data-driven measures are widely ignored in favor of simple encodings. These
preprocessing steps are not always easy to perform nor particularly effective, with a
potential loss of information and interpretability. We present some strategies and concepts
of how to employ data-driven similarity measures in the life science context and other
complex biological systems. In particular, we show how to use data-driven similarity
measures effectively in standard learning algorithms.

Keywords: similarity based learning, non-metric learning, kernel methods, indefinite learning, gershgorin circles

INTRODUCTION

Life sciences comprise a broad research field with challenging questions in domains such as (bio-)
chemistry, biology, environmental research, or medicine. Not only recent technological
developments allow the generation of large, high dimensional and very complex data sets in
these fields, but also, the structure of the measured data representing an object of interest is often
challenging. The data may be compositional, such that classical vectorial functions are not easy to
apply and could also be very heterogeneous by combining different measurement sources.
Accordingly, new strategies and algorithms are needed to cope with the complexity of life
science applications. In general, it is a promising way to reflect characteristic data properties in
the employed data processing pipeline. This typically leads to increased performance in tasks such as
clustering, classification, and non-linear regression, which are commonly addressed by machine
learning methods. One possible way to achieve this is to adapt the used metric according to the
underlying data properties and application, respectively [1]. Basically, all machine learning and data
analysis algorithms employ the comparison of objects referred to as similarities or dissimilarities, or
more general as proximities. Hence, the representation of these proximities is a crucial part. These
measures enter the modeling algorithm either by means of distance measures, e.g., in the standard
k-means algorithm or by inner products as employed in the famous support vector machine
(SVM) [2]. The calculation of these proximities is typically based on a vectorial representation of
the input data. If the used machine learning approach is solely based on proximities, a vectorial
representation is in general not needed, but the pairwise proximity values are sufficient. This
approach is referred to as similarity-based learning, where the data are represented by metric
pairwise similarities only.
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We can distinguish similarities, indicating how close or similar
two items are to each other and dissimilarities in the opposite
sense. In the following, we expect that these proximities are at
least symmetric, but do not necessarily obey metric properties.
See e.g., [3] for an extended discussion.

Non-metric measures are common in many disciplines and
occasionally entail so-called non positive semi-definite (non-psd)
kernels if a similarity measure is used. This is particularly
interesting because many classical learning algorithms can be
kernelized [4], but are still expecting a psd measure. As we will
outline in this paper, we can be more flexible in the use of a
proximity measure as long as some basic assumptions are
fulfilled. In particular, it is not necessary, for many real-world
life science data, to restrict the analysis pipeline to a vectorial
Euclidean representation of the data.

In the various domains like spectroscopy, high throughput
sequencing, or medical image analysis, domain-specific measures
have been designed and effectively used. Classical sequence
alignment functions (e.g., Smith-Waterman [5]) produce non-
metric proximity values. There are many more examples and use
cases, as listed in Table 1 and detailed later on.

Multiple authors argue that the non-metric part of the data
contains valuable information and should not be removed [13,
14]. In this work, we highlight recent achievements in the field of
similarity-based learning for non-metric measures and provide
conceptual and experimental evidence on a variety of scenarios
that non-metric measures are legal and effective tools in analyzing
such data. We argue that a restriction to mathematically more
convenient, but from the data perspective unreliable, measures are
not needed anymore.

Along this line, we first provide an introduction to similarity-
based learning in non-metric spaces. Then we provide an outline
and discussion of preprocessing techniques, which can be used to
implement a non-metric similarity measure within a classical
analysis pipeline. In particular, we highlight a novel advanced
shift correction approach. Here we extend prior work published
by the authors in 15, which is substantially extended by novel
theoretical findings (Section 2.4, in particular, the eigenvalue
approximation via Gershgorin), experimental results (Section 3,
with additional experiments and datasets), and an extended
discussion. The highlights of this paper:

• We provide a broad study of life science data encoded by
proximities only.

• We reveal the limitations of former encodings used to
enable standard kernel methods.

• We derive a novel encoding concept widely preserving the
data’s desired properties while showing considerable
performance.

• We improve the efficiency of the encodings using an
approximation concept not considered so far with almost
no loss of performance in the classification process.

In the experiments, we show the effectiveness of appropriately
preprocessed non-metric measures in a variety of real-life use
cases. We conclude by a detailed discussion and provide practical
advice in applying non-metric proximity measures in the analysis
of life science data.

MATERIALS AND METHODS

Notation and Basic Concepts
Given a set of N data items (like N spectral measurements or N
sequences), their pairwise proximity (similarity or dissimilarity)
measures can be conveniently summarized in a N × N proximity
matrix. These proximities can be very generic in practical
applications, but most often come either in the form of
symmetric similarities or dissimilarities only. Focusing on one
of the respective representation forms is not a substantial
restriction. As outlined in 16, a conversion from dissimilarities
to similarities is cheap regarding to computational costs. Also, an
out of sample extension can be easily provided. In the following,
we will refer to similarity and dissimilarity type proximity
matrices as S and D, respectively. These notions enter into
models by means of proximity or score functions f (x, x′) ∈ R

where x and x′ are the compared objects (both are data items).
The objects x, x′ may exist in a d-dimensional vector space, so that
x ∈ Rd, but can also be given without an explicit vectorial
representation, e.g., as biological sequences.

As outlined in 17, the majority of analysis algorithms are
applicable only in a tight mathematical setting. In particular, it is
expected that f (x, x′) obeys a variety of properties. If f (x, x′) is a
dissimilarity measure, it is often assumed to be a metric measure.
Many algorithms become invalid or do not converge if f (x, x′)
does not fulfill metric properties.

For example, the support vector machine formulation [18] no
longer leads to a convex optimization problem [19] when the
given input data is non-metric. Prominent solvers, such as
sequential minimization (SMO), will converge to only a local
optimum [20, 21] and other kernel algorithms may not converge
at all. Accordingly, dedicated strategies for non-metric data are
very desirable.

The score function f (x, x′) could violate the metric properties
to different degrees. In general it is at least expected that f (x, x′)
obeys the symmetry property such that f (x, x′) � f (x′, x). In
general, this property is a fundamental condition, because a large
number of algorithms become meaningless for asymmetric data.
We will also make this assumption. In the considered cases, the
proximities are either already symmetric or can be symmetrized
without expecting a negative impact. While symmetry is a

TABLE 1 | List of commonly used non-metric proximity measures in various
domains.

Measure Application field

Dynamic Time Warping (DTW) (6) Time series or spectral alignment
Inner distance (7) Shape retrieval e.g., in robotics
Compression distance (8) Generic used also for text analysis
Smith Waterman Alignment (5) Bioinformatics
Divergence measures (9) Spectroscopy and audio processing
Generalized Lp norm (10) Time series analysis
Non-metric modified Hausdorff (11) Template matching
(Domain-specific) alignment score (12) Mass spectrometry
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reasonable assumption, the triangle inequality is frequently
violated, proximities become negative, or self-dissimilarities are
not zero. Such violations can be attributed to noise as addressed in
22 or are a natural property of the proximity function f.

If noise is the source, often a simple eigenvalue correction [23]
can be used, although this can become costly for large datasets. As
we will see later on, the noise may cause eigenvalue contributions
close to zero. A simple way to eliminate these contributions is to
calculate a low-rank approximation of the matrix, which can be
realized with small computational cost [24, 25]. In particular, the
small eigenvalues could become negative, also leading to
problems in the use of classical learning algorithms. A recent
analysis of the possible sources of negative eigenvalues is provided
in 26. Such an analysis is particularly helpful in selecting the
appropriate eigenvalue correction method applied to the
proximity matrix. Non-metric proximity measures are part of
the daily work in various domains [27]. An area, frequently
applying such such non-metric proximity measures, is the field
of bioinformatics, spectroscopy, or alike, where classical sequence
alignment algorithms (e.g., Smith-Waterman - [5]) produce non-
metric proximity values. For such data, some authors argue that
the non-metric part of the data contains valuable information and
should not be removed [13]. In particular, this is the motivation
for our work. Evaluating such data with machine learning models
typically asks for discriminative models. In particular, for
classification tasks, a separating plane has to be determined in
order to separate the given data according to their classes.
However, in practice, a linear plane in the original feature
space is rarely separating two classes of such complexity. A
common generalization is to map the training vectors xi into a
higher dimensional space by the function ϕ. In this space, it is
expected that the machine learning model finds a linear
separating hyperplane with a maximal margin. The principle
behind such a so-called kernel function is explained in more
detail in Section 2.1.1. In our setting, the mapping is provided by
some data-driven similarity function, which, however, may not
lead to a psd kernel and hence has to be preprocessed (for more
details, see Section 2.1.4). As a primal representation, we will
focus on similarities because the wide majority of algorithms is
specified in the kernel space. A brief introduction is given in the
following section.1

Kernels and Kernel Functions
LetX be a collection ofN objects xi, i � 1, 2, . . . ,N , in some input
space. Further, let ϕ : X1H be a mapping of patterns fromX to
a high-dimensional or infinite-dimensional Hilbert space H
equipped with the inner product 〈·, ·〉H. The transformation ϕ
is, in general, a non-linear mapping to a high-dimensional space
H and may commonly not be given in an explicit form. Instead
of this, a kernel function k : X × X1R is given which encodes
the inner product inH. The kernel k is a positive (semi) definite
function such that k(x, x′) � 〈ϕ(x)u, ϕ(x′)〉 for any x, x′ ∈ X .

The matrix K :� ΦuΦ is anN × N kernel matrix derived from the
training data, where Φ : [ϕ(x1), . . . , ϕ(xN )] is a matrix of images
(column vectors) of the training data in H. The motivation for
such an embedding comes with the hope that the non-linear
transformation of input data into higher dimensional H allows
for using linear techniques inH. Kernelized methods process the
embedded data points in a feature space utilizing only the inner
products 〈·, ·〉H (kernel trick) [28], without the need to calculate
ϕ explicitly. The specific kernel function can be very generic, but
in general, the kernel is expected to fulfill Mercer conditions [28].
Most prominent are the linear kernel with k(x, x′) � xux′ as the
Euclidean inner product or the RBF kernel
k(x, x′) � exp(−(‖x − x′‖2/2σ2)), with σ as a free parameter.

Support Vector Machine
In this paper, we address data-driven supervised learning;
accordingly, our focus is primal on a domain-specific
representation of the data by means of a generic similarity
measure. There are many approaches for similarity-based
learning and, in particular, kernel methods [28]. We will
evaluate our data-driven encodings employing the support
vector machine (SVM) as a state of the art supervised kernel
method.

Let xi ∈ X, i ∈ {1, . . . ,N} be training points in the input space
X , with labels yi ∈ {−1, 1}, representing the class of each point.2

The input space X is often considered to be Rd but can be any
suitable space due to the kernel trick. For a given positive
penalization term C, the SVM is the minimum of the
following regularized empirical risk functional.

min
ω,ξ,b

1
2
ωuω + C∑

i�1

M

ξi (1)

subject to yi(ωuϕ(xi) + b)≥ 1 − ξi and ξi ≥ 0. Here ω is the
parameter vector of a separating hyperplane and b a bias term.
The variables ξ are so-called slack variables. The goal is to find a
hyperplane that correctly separates the data while maximizing the
sum of distances to the closest positive and negative points (the
margin). The parameter C controls the weight of the classification
errors (C � ∞ in the separable case). Details can be found in 28.

In case of a positive semi-definite kernel function without
metric violations, the underlying optimization problem is easily
solved using, e.g., the Sequential Minimal Optimization
Algorithm [20]. The objective of a SVM is to derive a model
from the training set, which predicts class labels of unclassified
feature sets in the test data. The decision function is given as:

f (x) � ∑N
i�1

yiαik(xi, x) + b,

where the αi are the optimized Lagrange parameters of the dual
formulation of Eq. 1. In case of a non-psd kernel function, the
optimization problem of a SVM is no longer convex, but only a
local optimum is obtained [19, 21]. As a result, the trained SVM
model can become inaccurate and incorrect. However, as we will

1For data given as dissimilarity matrix, the associated similarity matrix can be
obtained, in a non-destructive way, by double centering (17) of the dissimilarity
matrix. S � −JDJ/2 with J � (I − 11u/N), identity matrix I and vector of ones ?. 2In case of more than two classes we use the one vs all approach.
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see in Section 2.1.4, there are several methods to handle non-psd
kernel matrices within a classical SVM.

Representation in the Krein Space
AKrein space is an indefinite inner product space endowed with a
Hilbertian topology. Let K be a real vector space. An inner
product space with an indefinite inner product 〈·, ·〉K on K is
a bi-linear form where all f , g, h ∈ K and α ∈ R obey the following
conditions:

• Symmetry : 〈f , g〉K � 〈g, f 〉K;
• linearity : 〈αf + g, h〉K � α〈f , h〉K + 〈g, h〉K;
• 〈f , g〉K � 0 implies f � 0

An inner product is positive semi definite if ∀f ∈ K,
〈f , f 〉K ≥ 0, negative definite if ∀f ∈ K, 〈f , f 〉K < 0, otherwise it
is indefinite. A vector space K with inner product 〈·, ·〉K is called
an inner product space.

An inner product space (K, 〈·, ·〉K) is a Krein space if we have
two Hilbert spacesH+ andH− spanning K such that ∀f ∈ K we
have f � f+ + f− with f+ ∈ H+ and f− ∈ H− and ∀f , g ∈ K,
〈f , g〉K � 〈f+, g+〉H+ − 〈f−, g−〉H−.

As outlined before, indefinite kernels are typically observed by
means of domain-specific non-metric similarity functions (such
as alignment functions used in biology [29]), by specific kernel
functions - e.g., the Manhattan kernel k(x, x′) � −‖x − x′‖1,
tangent distance kernel [30] or divergence measures, plugged
into standard kernel functions [9]. A finite-dimensional Krein-
space is a so-called pseudo-Euclidean space.

Given a symmetric dissimilarity matrix with zero diagonal, an
embedding of the data in a pseudo-Euclidean vector space
determined by the eigenvector decomposition of the associated
similarity matrix S is always possible [31] - as mentioned
above, e.g., by a prior double centering. Given the
eigendecomposition of S: S � UΛUu, we can compute the
corresponding vectorial representation V in the pseudo-
Euclidean space by

V � Up+q+z
∣∣∣∣Λp+q+z 1/2

∣∣∣∣ (2)

where Λp+q+z consists of p positive, q negative non-zero
eigenvalues and z zero eigenvalues. Up+q+z consists of the
corresponding eigenvectors. The triplet (p, q, z) is also referred
to as the signature of the pseudo-Euclidean space. A detailed
presentation of similarity and dissimilarity measures and
mathematical aspects of metric and non-metric spaces is
provided in 17, 32, 33.

Indefinite Proximity Functions
Proximity functions can be very generic but are often restricted to
fulfill metric properties to simplify the mathematical modeling
and especially the parameter optimization. In 32, a large variety of
such measures was reviewed and basically most common
methods nowadays make still use of metric properties. While
this appears to be a reliable strategy, researchers in the field of e.g.,
psychology [34, 35], vision [14, 26, 36, 37] and machine learning
[13, 38] have criticized this restriction as inappropriate in

multiple cases. In fact, in 38 was shown that many real-life
problems are better addressed by proximity measures, which
are not restricted to be metric.

The triangle inequality is frequently violated, if we consider object
comparisons in daily life problems, like the comparisons of text
documents, biological sequence data, spectral data or graphs [23, 39,
40]. These data are inherently compositional and a representation as
explicit (vectorial) features leads to information loss. As an alternative,
tailored dissimilarity measures such as pairwise alignment functions,
kernels for structures, or other domain-specific similarity and
dissimilarity functions can be used as an interface to the data [41,
42]. Also for vectorial data, non-metric proximity measures are quite
common in some disciplines. An example of this type is the use of
divergence measures [9, 43, 44] which are very popular for spectral
data analysis in chemistry, geo- andmedical sciences [45–49], and are
not metric in general. Also the popular Dynamic Time Warping
(DTW) [6] algorithm provides a non-metric alignment score, which
is often used as a proximity measure between two one-dimensional
functions of different lengths. In image processing and shape retrieval,
indefinite proximities are often obtained by means of the inner
distance. This measure specifies the dissimilarity between two
objects, which are represented by their shape only. Thereby,
several seeding points are used and the shorted paths within the
shape are calculated in contrast to the Euclidean distance between the
landmarks. Further examples can be found in physics where
problems of the special relativity theory or other research topics
naturally lead to indefinite spaces [50].

A list of non-metric proximity measures is provided in Table 1
and some are exemplarily illustrated in Figures 1 and 2. Most of
these measures are very popular but often violate the symmetry or
triangle inequality condition or both. Hence many standard
proximity-based machine learning methods like kernel
methods are not easily accessible for these data.

Eigenspectrum Corrections
Although native models for indefinite learning are available (see
e.g., [27, 51, 52]), they are not frequently used. This is mainly due
to three reasons: 1) the proposed algorithms have in general,
quadratic or cubic complexity [53], 2) the obtained models are
non-sparse [54], and 3) the methods are complicated to
implement [27, 55]. Considering the wide spread of machine
learning frameworks, it would be very desirable to use the therein
implemented algorithms - like an efficient support vector
machine, instead of having the burden to implement another
algorithm, and in general another numerical solver. Therefore, we
focus on eigenspectrum corrections, which can be effectively done
in a large number of frameworks without much effort.

A natural way to address the indefiniteness problem and to
obtain a psd similarity matrix is to correct the eigenspectrum of
the original similarity matrix S. Popular strategies include
eigenvalue correction by flipping, clipping, squaring, and
shifting. The non-psd similarity matrix S is decomposed by an
eigendecomposition: S � UΛUu, where U contains the
eigenvectors of S and Λ contains the corresponding
eigenvalues λi. Now, the eigenvalues in Λ can be manipulated
to eliminate all negative parts. After the correction, the matrix can
be reconstructed, now being psd.
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Clip Eigenvalue Correction
All negative eigenvalues in Λ are set to 0 (see Figure 3B).
The spectrum clip leads to the nearest psd matrix S in terms
of the Frobenius norm [56]. Such a correction can be
achieved by an eigendecomposition of the matrix S, a

clipping operator on the eigenvalues, and the subsequent
reconstruction. This operation has a complexity of O(N3).
The complexity might be reduced by either a low-rank
approximation or the approach shown by 22 with roughly
quadratic complexity.

FIGURE 1 | Visualization of data-driven data description scenarios. In (A) for some Vibrio bacteria and in (B) for Chromosome data. Both datasets are used in the
experiments.

FIGURE 2 | Preprocessing workflow for creating the Tox-21 datasets. Chemicals represented as SMILE codes are translated to Morgan Fingerprints. The kernel is
created by using an application related pairwise similarity measure on the Morgan Fingerprints, in this case so-called Kulczynski.

FIGURE 3 | Visualization of the various preprocessing techniques for a generic eigenspectrum as obtained from a generic similarity matrix. The black line illustrates
the impact of the respective correction method on the eigenspectrum without reordering of the eigenvalues. (A) Visualization of a sample eigenspectrum with pos./neg.
eigenvalues. (B) Preprocessing of the eigenspectrum from Figure 3A using clip. (C) Preprocessing of the eigenspectrum from Figure 3A using flip. (D) Preprocessing of
the eigenspectrum from Figure 3A using shift.
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Flip Eigenvalue Correction
All negative eigenvalues in Λ are set to λi :� |λi|∀i, which at least
keeps the absolute values of the negative eigenvalues and keeps
potentially relevant information [17]. This operation can be
calculated with O(N3) or O(N2) if low-rank approaches are
used. Flip is illustrated in Figure 3C.

Square Eigenvalue Correction
All negative eigenvalues in Λ are set to λi :� λ2i ∀i which amplifies
large and very small eigenvalues. The square eigenvalue correction
can be achieved by matrix multiplication [57] with ≈ O(N2.8).

Classical Shift Eigenvalue Correction
The shift operation was already discussed earlier by different
researchers [58] and modifies Λ such that λi :� λi −minijΛ∀i. The
classical shift eigenvalue correction can be accomplished with
linear costs if the smallest eigenvalue λmin is known. Otherwise,
some estimator for λmin is needed. A few estimators for this
purpose have been suggested: analyzing the eigenspectrum on a
subsample, making a reasonable guess, or using some low-rank
eigendecomposition. In our approach, we suggest employing a
power iteration method, for example the von Mises approach,
which is fast and accurate [59] or using the Gershgorin circle
theorem [60, 61].

A spectrum shift enhances all the self-similarities and,
therefore, the eigenvalues by the amount of λmin and does not
change the similarity between any two different data points.
However, it may also increase the intrinsic dimensionality of
the data space and amplify noise contributions, as shown in
Figure 3D. As already mentioned by 23, small eigenvalue
contributions could be linked to noise in the original data. If
now an eigencorrection step amplifies tiny eigenvalues, this can
be considered as a noise amplification.

Limitations
Multiple approaches have been suggested to correct a similarity
matrix’s eigenspectrum to obtain a psd matrix [17, 27]. Most
approaches modify the eigenspectrum in a radical way and are
also costly due to an involved cubic eigendecomposition. In
particular, the flip, square and clip operator have an apparent
strong impact. The flip operator affects all negative eigenvalues by
changing the sign and this will additionally lead to a
reorganization of the eigenvalues. The square operator is
similar to flip but additionally emphasizes large
eigencontributions while fading out eigenvalues below 1. The
clip method is useful in case of noise; it may also remove valuable
contributions. The clip operator only removes eigenvalues, but
generally keeps the majority of the eigenvalues unaffected. The
classical shift is another alternative operator changing only the
diagonal of the similarity matrix leading to a shift of the whole
eigenspectrum by the provided offset. This may also lead to
reorganizations of the eigenspectrum due to new non-zero
eigenvalue contributions. While this simple approach seems to
be very reasonable, it has the significant drawback that all (!)
eigenvalues are shifted, which also affects small or even 0
eigenvalue contributions. While 0 eigenvalues have no
contribution in the original similarity matrix, they are

artificially upraised by the classical shift operator. This may
introduce a large amount of noise in the eigenspectrum, which
could potentially lead to substantial numerical problems for
employed learning algorithms, for example, kernel machines.
If we consider the number of non-vanishing eigenvalues as a
rough estimate of the intrinsic dimension of the data, a classical
shift will increase this value. This may accelerate the curse of
dimension problem on this modified data [62].

Advanced Shift Correction
To address the aforementioned challenges, we suggest an
alternative formulation of the shift correction, subsequently
referred to as advanced shift. In particular, we would like to
keep the original eigenspectrum structure and aim for a sub-cubic
eigencorrection. As mentioned in Section 2.3 the classical shift
operator introduces noise artifacts for small eigenvalues. In the
advanced shift procedure, we will remove these artificial
contributions by a null space correction. This is particularly
effective if non-zero, but small eigenvalues are also taken into
account. Accordingly, we apply a low-rank approximation of the
similarity matrix as an additional preprocessing step. The
procedure is summarized in Algorithm 1.

The first part of the algorithm applies a low-rank
approximation on the input similarities S using a restricted
SVD or other technique [63]. If the number of samples
N ≤ 1000, then the rank parameter k � 30, otherwise k � 100.3

The shift parameter λ is calculated on the low-rank approximated
matrix, using a vonMises or power iteration [59] to determine the
respective largest negative eigenvalue of the matrix. As shift
parameter, we use the absolute value of λ for further steps.
This procedure provides an accurate estimate of the largest
negative eigenvalue, instead of making an educated guess as
frequently suggested [51]. This is particularly relevant because
the scaling of the eigenvalues can be very different between the
various datasets, which may lead to an ineffective shift (still with
negative eigenvalues left) if the guess is incorrect. The basis B of
the nullspace is calculated, again by a restricted SVD. The
nullspace matrix N is obtained by calculating a product of B.
Due to the low-rank approximation, we ensure that small
eigenvalues, which are indeed close to 0 due to noise, are
shrunk to 0 [64]. In the final step, the original S or the
respective low-rank approximated matrix Ŝ is shifted by the
largest negative eigenvalue λ that is determined by von Mises
iteration. By combining the shift with the nullspace matrixN and
the identity matrix I, the whole matrix will be affected by the shift
and not only the diagonal matrix. Finally, the doubled shift factor
2 ensures that the largest negative eigenvalue λ̂

* of the new matrix
Ŝ
*
will not become 0, but are kept as a contribution.
Complexity: The advanced shift approach shown inAlgorithm1

is comprised of various subtasks with different complexities.
The low-rank approximation can be achieved with O(N2) as well
as the nullspace approximation. The shift parameter is calculated by
von Mises iteration with O(N2). Since B is a rectangular N × k
matrix, the matrix N can be calculated with O(N2). The final

3The settings for k are taken as a rule of thumb without further fine-tuning.
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eigenvalue correction to obtain Ŝ
*
is also O(N2). In summary, the

low-rank advanced shift eigenvalue correction can be achieved
with O(N2) operations.

Efficient Approximation of the Smallest Eigenvalue
An alternative method to accelerate the estimation of the shift
parameter λ is to approximate the region in which the smallest
eigenvalue can be found. The identification of this region can be
efficiently achieved by the Gershgorin circle theorem [60, 61]. Let
S � (sij) be a square matrix (N × N) and ri � ∑

j≠ i

∣∣∣∣sij∣∣∣∣ the row sums
of this matrix. Then, within the Gershgorin circle theorem, one
may define a disc Di in the complex plane with center sii and
radius ri. In 61, it is shown why this can be employed to obtain a
valid estimate of the eigenvalues of S. With
Di � {z ∈ C : |z − sii|≤ ri}, we obtain ranges that contain the
eigenvalues of S: [sii − ri, sii + ri]. Hence one only has to
calculate N row-sums and to evaluate the main diagonal of S.
The obtained results can be used to find the minimum eigenvalue
of S.

As an example, consider the following 3 × 3 matrix for S:

S � ⎛⎜⎝−6 1 −1
1 −2 5
−1 5 10

⎞⎟⎠ (3)

The matrix is symmetric, so all eigenvalues are real. For each row
in S, there is one Gershgorin circle defined by its center and its
radius:

• D1 with the center point c1 � s11 � −6 and
r1 � |1| + | − 1| � 2

• D2 with the center point c2 � s22 � −2 and r2 � |1| + |5| � 6
• D3 with the center point c3 � s33 � 10 and r3 � |−1| + |5| � 6

This implicates, all eigenvalues of S must lie in one of the
ranges

[s11 − r1, s11 + r1] � [ − 8,−4], [s22 − r2, s22 + r2]
� [ − 8, 4], [s33 − r3, s33 + r3] � [4, 16].

Performing the numerical computation shows that the
eigenvalues are approximately {−6.6,−3.2, 11.8}, all inside the
determined ranges. Using the Gershgorin circle approach, we see
that the minimum eigenvalue cannot be smaller than the
minimum border value, in this example −8, while the right
value is ≈ − 6.6. Figure 4 shows that all eigenvalues (green
dots) of our matrix are within at least one of the circles.

Since in a squared matrix, all centers of the circle are already
given by their diagonals and the calculation of the radius only
covers the summation of the elements in the respective row, this
variant of the ShiftParameterDetermination in Algorithm 1 has a
complexity of O(N). In the experiments, we apply the advanced
shift correction on a low-rank approximation of S.

Structure preservation
In this context, the term structure preservation refers to the
structure of the eigenspectrum with the requirement that those
eigenvalues with a contribution in the original spectrum should
keep their contribution in the new (but psd) spectrum. Those
parts of the eigenspectrum that have no need for correction to
construct a psd matrix should be kept unchanged. As illustrated
by a synthetic example above in 3a - 3d, the various correction
methods differently modify the eigenspectrum and some of them
fundamentally change the structure of the eigenspectrum. Those
modifications to the eigenvalues (and implicitly on the
contribution to the matrix) are: changing the sign of an
eigenvalue, changing its magnitude, removing the impact of an
eigenvalue, adding artificial contribution to eigenvalues that had
zero contribution in the original matrix, or changing the position
of the eigenvalue with respect to the original ranking causing a
profound reorganization of the eigenspectrum. Especially the last
one is highly relevant in learning models that make use of only a
few eigenvalues/eigenvectors such as kernel PCA or similar
methods that reduce the dimensionality or make use of only
the most meaningful eigenvalues and eigenvectors.

In order to illustrate the effects of the various correction
methods, Figure 5 shows the impact of the most relevant
correction methods on the properties of the eigenspectrum of
a real-world dataset, here the protein dataset is used (see Section
2.5 for more details about this dataset).

Here, the x-axis represents the index of the eigenvalue, while
the y-axis illustrates the contribution value (or impact) of the
eigenvalue. The left column of Figure 5 (Subfigures 5a, 5c, 5e, 5g,
5i) shows the eigenspectra without a low-rank representation, the
right column (Subfigures 5b, 5d, 5f, 5h, 5j) comprises the low-
rank version of the eigenspectrum: Figure 5A illustrates the
eigenspectrum of the original dataset without any
modification. The red rectangle (solid line) highlights the
negative parts of the eigenvalues for which their contribution
must be preserved in the data. The orange rectangle (dashed line)
represents those eigenvalues that are close to zero or zero. The
values of particularly these eigenvalues should be kept untouched

Algorithm 1 Advanced
shift eigenvalue correction.

Advanced_shift(S, k)
if approximate to low rank then
S :� LowRankApproximation(S, k)
end if
λ :� |ShiftParameterDetermination(S)|
B :� NullSpace(S)
N :� B · B′

S* :� S + 2 · λ · (I − N)
return S*
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such that their contribution is still irrelevant after the correction.
The green rectangle (dotted line) highlights the positive parts of
the eigenvalues which contribution should also be kept
unchanged in order not to manipulate the eigenspectrum too
aggressively. Figure 5B shows the low-rank representation of the
original data of 5a. Here, the major negative and major positive
eigenvalues (red/solid and green/dotted rectangle) are still
present, but many eigenvalues that have been close to zero
before, have now been set to exactly 0 (black/dashed rectangle).

Figures 5 C andD show the eigenvalues after applying the clip
operator to the eigenvalues shown in Figures 5 A and B. In both
cases, the major positive eigenvalues (green/dotted rectangle)
remain unchanged, as well as the positive values close to 0
and exactly 0. However, the negative eigenvalues close to 0
(parts of the orange/dashed rectangle) and, in particular, the
major negative eigenvalues (red/solid rectangle) are all set to
exactly 0. By using the clip operator, the contribution to the
eigenspectrum of both major negative and slightly negative
eigenvalues is completely eliminated.

In contrast to clipping, the flip corrector preserves the
contribution of the negative and slightly negative eigenvalues,
shown in Figures 5 E and F. When using the flip corrector, only
the negative sign of the eigenvalue is changed; thus, only the
diagonal of the matrix is changed and not the rest. Since the
square operator behaves almost analogously to the flip operator
and only squares the negative eigenvalues in addition to flipping
them, it was not listed separately here. Squaring the values of a
matrix drastically increases the impact of the major eigenvalues
compared to the minor eigenvalues. If an essential part of the
data’s information is located in the small eigenvalues, this part
gets a proportionally reduced contribution against the
significantly increased major eigenvalues.

The modified eigenspectra after applications of the classical
shift operator are presented in Figures 5 G and H: by increasing
all eigenvalues of the spectrum, the part with the larger negative
eigenvalues (red/solid rectangle) that had a higher impact now only

remains with zero or close to zero contribution. Furthermore, a
higher contributionwas assigned to those eigenvalues that previously
had no or nearly no effect on the eigenspectrum (orange/dashed
rectangle). As a result, the classical shift increases the number of non-
zero eigencontributions by introducing artificial noise into the data.
The same is also evident for the advanced shift without low-rank
approximation depicted in Figure 5I. Since there are many
eigenvalues close to zero but not exactly zero in this data set, all
these eigenvalues are also increased in the advanced shift, but can be
cured in the low-rank approach.

Unlike the advanced shift approach without low-rank
approximation, depicted in Figure 5I, a low-rank
representation of the data leads to a shifting of only those
eigenvalues that had relevant contributions before (red/solid
rectangle). Eigenvalues with previously slightly zero
contribution (orange/dashed rectangle), derive a contribution
of exactly zero by the approximation and are therefore not
shifted in the advanced shift method.

Considering the description of structure preservation outlined in
2.4, we observe that only the flip and the advanced shift correction
(only with low-rank approximation) widely preserve the structure
of the given eigenspectrum. For all other methods, the
eigenspectrum is substantially modified in particular
contributions are removed, amplified, or artificially introduced.
In particular, this also holds for the clip or the classical shift
corrector, which, however, are frequently recommended in the
literature. Although this section contained results exclusively for
the protein dataset, we observed similar findings for other indefinite
datasets as well. Our findings show that a more sophisticated
treatment of the similarity matrix is needed to obtain a suitable
psd matrix. This makes ourmethod more appropriate compared to
simpler approaches such as the classic shift or clip.

Materials & Experimental Setup
This section contains a series of experiments to highlight the
effectiveness of our approach in combination with a low-rank

FIGURE 4 | Visualization of Gershgorin’s circle theorem on an exemplary matrix.
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approximation. We evaluate the algorithm for a set of benchmark
data that are typically used in the context of proximity-based
learning. The data are briefly described in the following and
summarized in Table 2, with details given in the references. After

a brief overview of the datasets used for the evaluation, the
experimental setup, and the performance of the different
eigenvalue correction methods on the benchmark datasets are
presented and discussed in this section.

FIGURE 5 | Visualizations of the protein data’s eigenspectra after applying various correction methods. (A) Visualization of the original eigenspectrumwith pos. and
neg. eigenvalues of the protein dataset. (B) Low-rank representation of the original eigenspectrum from Figure 5A. (C) Visualization of the original eigenspectrum of
Figure 5A after clipping all neg. eigenvalues. (D) Visualization of the low-rank approximated eigenspectrum after clipping all neg. eigenvalues. (E) Visualization of the
original eigenspectrum of Figure 5A after flipping all neg. eigenvalues. (F) Visualization of the low-rank approximated eigenspectrum after flipping all neg.
eigenvalues. (G) Visualization of the original eigenspectrum of Figure 5A after shifting all neg. eigenvalues. (H) Visualization of the low-rank approximated eigenspectrum
after shifting all neg. eigenvalues. (I) Visualization of the original eigenspectrum of Figure 5A after advanced shift. (J) Visualization of the low-rank approximated
eigenspectrum of Figure 5B after advanced shift.
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Datasets:
In the experiments, all datasets exhibit indefinite spectral
properties and are commonly characterized by pairwise
distances or (dis-)similarities. As mentioned above, if the data
are given as dissimilarities, a corresponding similarity matrix can
be obtained by double centering [17]: S � −JDJ/2 with
J � (I − 11u/N), with identity matrix I and vector of ones 1.
These datasets constitute typical examples of non-Euclidean data.
In particular, the focus is on proximity-based data from the life
science domain. We consider a broad spectrum of domain-
specific data: from sequence analysis, mass spectrometry,
chemical structure analysis to flow cytometry. In particular,
the later one of flow cytometry [65] could also be important
in the analysis of viral data like SARS-CoV-2 [66]. In all cases,
dedicated preprocessing steps and (dis-)similarity measures for
structures were used by the domain experts to create this data
with respect to an appropriate proximity measure. The (dis-)
similarity measures are inherently non-Euclidean and cannot be
embedded isometrically in a Euclidean vector space. The datasets
used for the experiments are described in the following and
summarized in Table 2, with details given in the references.

1. Chromosomes: The Copenhagen chromosomes data set
constitutes a benchmark from cytogenetics [67] with a signature
(2258, 1899, 43). Karyotyping is a crucial process to classify
chromosomes into standard classes and the results are routinely
used by the clinicians to diagnose cancers and genetic diseases. A
set of 4,200 human chromosomes from 21 classes (the autosomal
chromosomes) are represented by grey-valued images. These are
transferred to strings measuring the thickness of their silhouettes.
These strings are compared using edit distance with insertion/
deletion costs 4.5 [40].

2. Flowcyto This dissimilarity dataset is based on 612 FL3-A
DNA flow cytometer histograms from breast cancer tissues in 256
resolution. The initial data were acquired by M. Nap and N. van
Rodijnen of the AtriumMedical Center in Heerlen, TheNetherlands,
during 2000-2004, using tubes 3, 4,5, and 6 of a DACO Galaxy
flowcytometer. Overall, this data set consists of four datasets, each
representing the same data, but with different proximity measure
settings. Histograms are labeled in 3 classes: aneuploid (335 patients),
diploid (131), and tetraploid (146). Dissimilarities between

normalized histograms are computed using the L1 norm,
correcting for possible different calibration factors [68].

3. Prodom: the ProDom dataset with signature (1502,680,422)
consists of 2604 protein sequences with 53 labels. It contains a
comprehensive set of protein families and appeared first in the
work of [69]. The pairwise structural alignments were computed
by 69. Each sequence belongs to a group labeled by experts; here,
we use the data as provided in 68.

4. Protein: the Protein data set has sequence-alignment
similarities for 213 proteins and is used for comparing and
classifying protein sequences according to its four classes of
globins: heterogeneous globin (G), hemoglobin-A (HA),
hemoglobin-B (HB) and myoglobin (M). The signature is
(170,40,3), where class one through four contains 72, 72, 39,
and 30 points, respectively [70].

5. SwissProt: the SwissProt data set (SWISS), with a signature
(8487,2500,1), consists of 10,988 points of protein sequences in 30
classes taken as a subset from the popular SwissProt database of
protein sequences [71]. The considered subset of the SwissProt
database refers to the release 37. A typical protein sequence
consists of a string of amino acids, and the length of the full
sequences varies between 30 to more than 1000 amino acids
depending on the sequence. The ten most common classes such
as Globin, Cytochrome b, Protein kinase st, etc. provided by the
Prosite labeling [72] were taken, leading to 5,791 sequences. Due to
this choice, an associated classification problem maps the sequences
to their corresponding Prosite labels. These sequences are compared
using Smith-Waterman, which computes a local alignment of
sequences [5]. This database is the standard source for identifying
and analyzing protein sequences such that an automated
classification and processing technique would be very desirable.

6. Tox-21: The initial intention of the Tox-21 challenges is to
predict whether certain chemical compounds have the potential
to disrupt processes in the human body that may lead to adverse
health effects, i. e. are toxic to humans [73]. This version of the
dataset contains 14484 molecules encoded as Simplified
Molecular Input Line Entry Specification (SMILE) codes.
SMILE codes are ASCII-strings to encode complex chemical
structures. For example, Lauryldiethanolamine has the
molecular formula of C16H35NO2 and is encoded as
CCCCCCCCCCCCN(CCO)CCO. Each smile code is described
as a morgan fingerprint [74, 75] and encoded as a bit-vector with
a length of 2048 via the RDKit4 framework. The molecules are
compared to each other using the non-psd binary similarity
metrics AllBit, Kulczynski, McConnaughey, and Asymmetric
provided by the RDKIT. The similarity matrix is constructed
based on these pairwise similarities. According to the applied
similarity metrics, the resulting matrices are varying in their
signatures: AllBit (2049, 0, 12435), Asymmetric (1888, 3407,
9189), Kulczynski (2048, 2048, 10388), McConnaughey (2048,
2048,10388). The task of the dataset is binary classification, which
is either toxic or non-toxic for every givenmolecule and should be
predicted by a machine learning algorithm. Note that also graph-
based representations for smile data are possible [76].

TABLE 2 | Overview of the different datasets. Details are given in the textual
description.

Dataset #samples #classes signature

Chromosomes 4, 200 21 (2258, 1899, 43)
Flowcyto-1 612 3 (538, 73, 1)
Flowcyto-2 612 3 (26, 73, 582)
Flowcyto-3 612 3 (541, 70, 1)
Flowcyto-4 612 3 (26, 73, 582)
Prodom 2604 53 (1502, 680, 422)
Protein 213 4 (170, 40, 3)
SwissProt 10, 988 30 (8487, 2500, 1)
Tox-21: AllBit similarity 14484 2 (2049, 0, 12435)
Tox-21: Assymetric similarity 14484 2 (1888, 3407, 9189)
Tox-21: Kulczynski similarity 14484 2 (2048, 2048, 10388)
Tox-21: McConnaughey similarity 14484 2 (2048, 2048, 10388)
Vibrio 1100 49 (851, 248, 1)

4https://www.rdkit.org/
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7. Vibrio: Bacteria of the genus Vibrio are Gram-negative,
primarily facultative anaerobes, forming motile rods. Contact
with contaminated water and consumption of raw seafood are
the primary infection factors for Vibrio-associated diseases.
Vibrio parahaemolyticus, for instance, is one of the leading
causes of foodborne gastroenteritis worldwide. The Vibrio data
set consists of 1,100 samples of Vibrio bacteria populations
characterized by mass spectra. The spectra encounter
approximately 42,000 mass positions. The full data set consists of
49 classes of vibrio-sub-species. The mass spectra are preprocessed
with a standard workflow using the BioTyper software [12]. As
usual, mass spectra display strong functional characteristics due to
the dependency of subsequent masses, such that problem-adapted
similarities such as described in 12, 77 are beneficial. In our case,
similarities are calculated using a specific similarity measure as
provided by the BioTyper software [12] with a signature (851,248,1).

RESULTS

In this section, we evaluate our strategy of data-driven proximity-
based analysis and highlight the performance of the proposed
advanced shift correction on the previously mentioned datasets
against other eigenvalue correction methods using a standard
SVM classifier. For this purpose, the correction approaches
ensure that the input similarity, herein used as a kernel
matrix, is psd. This is particularly important for kernel
methods to keep expected convergence properties. During the
experiments, we measured the algorithm’s mean accuracy and its
standard deviation in a ten-fold cross-validation. Additionally, we
captured the complexity of the model based on the number of
necessary support vectors for the SVM. Therefore, we track the
percentage of training data points, the SVM model needs as
support vectors to indicate the model’s complexity.

In each experiment, the parameter C has been selected for each
correction method by a grid search on independent data not used
during the tests. For better comparability of the considered methods,
the results presented here refer exclusively to the use of the low-rank
approximated matrices in the SVM. Only when employing the
original data for the SVM, no low-rank approximation was
implemented to ensure that small negative eigenvalues were not
inadvertently removed if they were of low-rank. Please note, that a
low-rank approximation only, does not lead to a psd matrix.
Accordingly, convergence problems and uncontrolled information
loss, bymeans of discrimination power, may still occur. Furthermore,
both proposed methods for the determination of the shift parameter
proposed in section 2.4 were tested on the low-rank approximated
datasets against the other eigenvalue correction methods. The results
for the classification performance for the advanced shift methods
against the other correction methods are shown in Table 3. In
column Adv. Shift, we show the classification performance for the
advanced shift with the exact determination of the smallest
eigenvalue, whereas column Adv.-GS contains the classification
performance of the advanced shift, which applied the Gershgorin
theorem to approximate the smallest eigenvalue. For the Prodom
data, it is known from 27 that the SVM has convergence problems
(not converged - subsequently n.c.) on the indefinite input matrix.

In general, the accuracies of the various correction methods are
quite similar and rarely differ significantly. As expected, a correction
step is needed and the plain use of uncorrected data is suboptimal,
often with a clear drop in the performance ormay fail. Also, the use of
the classical shift operator can not be recommended due to
suboptimal results in various cases. In summary, the presented
Advanced Shift with the exact determination of the shift
parameter performed best, followed by the flip corrector. The
results in Table 3 also show that the accuracy of the Gershgorin
shift variant is not substantially lower compared to the othermethods.

In most cases, the Gershgorin advanced shift performs as well as
the clip and the square correction method. Compared to the classic
shift, our Gershgorin advanced shift consistently results in much
better accuracies. The reason for this is the appropriate preservation
of the structure of the eigenspectrum, as shown in Section 2.4. It
becomes evident that not only the dominating eigenvalues have to be
kept, but the preservation of the entire structure of the
eigenspectrum is important to obtain reliable results in general.
As the application of the low-rank approximation to similarity
matrices leads to a large number of truly zero eigenvalues, both
variants of the advanced shift corrections become more effective.
Both proposed approaches benefit from eigenspectra with many
close to zero eigenvalues, which occurs in many practical data,
especially in complex domains like life sciences. Surprisingly, the
classical shift operator is still occasionally preferred in the literature
[51, 58, 78], despite its reoccurring limitations. The herein proposed
advanced shift outperforms the classical shift in almost every
experimental setup. In fact, many datasets have an intrinsic low-
rank nature, which we employ in our approach but which is not
considered in the classical eigenvalue shift. In any case, the classical
shift increases the intrinsic dimensionality, also if many eigenvalues
have already been of zero contribution in the original matrix. This
leads to substantial performance loss in the classification models, as
seen in the results. Considering the results of Table 3, the advanced
shift correction is preferable in most scenarios.

Additionally to the accuracy of the different correction methods,
the number of support vectors of each SVM model was gathered.
Table 4 shows the complexity of the generated SVMmodels in terms
of their required support vectors. Thus, the number of support
vectors is set in relation to the number of all the available training
data points required to build a solid decision boundary. The higher
this percentage, the more data points were needed to create the
separation plane, leading to a more complex model. As explained in
79 or 80, the run time complexity can become considerably higher
with an increasing number of support vectors.

Compared to the original SVM without the low-rank
approximation, it becomes evident that our approach generally
requires fewer and occasionally significantly fewer support
vectors and is therefore considerably less complex.
Furthermore, in comparison to the classic shift corrector, the
advanced shift is significantly superior in both accuracy and
required support vectors. However, compared to clip, flip, and
square, things are slightly different: Table 4 shows, the advanced
shift can keep up with the clipping and flipping but has a higher
percentage of support vectors compared to the square correction
method. Considering the slightly better accuracy and the lower
computational cost from Section 2.2 than clip and flip, the
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advanced shift is preferable to clip and flip eigenvalue correction
and competitive to the square correction.

In summary, as pointed out also in previous work, there is no
simple solution for handling non-psd matrices or the correction
of eigenvalues. The results make evident that the proposed
variants of the advanced shift correction are especially useful if
the negative eigenvalues are meaningful and a low-rank
approximation of the similarity matrix preserves the relevant
eigenvalues. The analysis also shows that domain-specific
measures by means of a data-driven analysis are effectively
possible and keep relevant information. The presented
strategies allow the use of standard machine learning
approaches, like kernel methods without much hassle.

DISCUSSION

In this paper, we addressed the topic of data-driven supervised
learning by general proximity measures. In particular, we

presented an alternative formulation of the classical eigenvalue
shift, preserving the structure of the eigenspectrum of the data,
such that the inherent data properties are kept. For this advanced
shift method, we also presented a novel strategy that
approximates the shift parameter based on the Gershgorin
circles theorem.

Furthermore, we pointed to the limitations of the classical shift
induced by the shift of all eigenvalues, including those with small
or zero eigenvalue contributions. Surprisingly, the classical shift
eigenvalue correction is nevertheless frequently recommended in
the literature, pointing out that only a suitable offset needs to be
applied to shift the matrix to psd. However, it is rarely mentioned
that this shift affects the entire eigenspectrum and thus increases
the contribution of eigenvalues that had no contribution in the
original matrix.

As a result of our approach, the eigenvalues that had vanishing
contribution before the shift remain irrelevant after the shift.
Those eigenvalues with a high contribution keep their relevance,
leading to the preservation of the eigenspectrum but with a
positive (semi-)definite matrix. In combination with the low-
rank approximation, our approach was, in general, better
compared to the classical methods. Moreover, also the
approximated version of the advanced shift via Gershgorin
circles theorem performed as well as the classical methods.

We analyzed the effectiveness of data-driven learning on a
broad spectrum of classification problems from the life science
domain. The use of domain-specific proximity measures
originally caused a number of challenges for practitioners, but
with the recent work on indefinite learning, substantial
improvements are available. In fact, our experiments with
eigenvalue correction methods, especially the advanced shift
approach, which keeps the eigenspectrum intact, have shown
promising results on many real-life problems. In this way,
domain-specific non-standard proximity measures allow the
effective analysis of life science data in a data-driven way.

Future work on this subject will include the reduction of the
computational costs using advanced matrix approximation and
decomposition techniques in the different sub-steps. Another
field of interest is a possible adoption of the advanced shift to
unsupervised scenarios.

TABLE 3 | Prediction accuracy (mean ± standard-deviation) for the various data sets and methods in comparison to the advanced shift method. Column Adv. Shift shows
the performance of the advanced shift method and column Adv.-GS provides the performance of the advanced shift using the Gershgorin approach to estimate the
minimum eigenvalue.

Dataset Adv.-GS Adv. Shift Original Shift Clip Flip Square

Chromosomes 96.90 ± 0.61 97.02 ± 0.86 96.83 ± 0.83 71.38 ± 9.34 97.00 ± 0.69 97.05 ± 1.02 96.45 ± 0.91
Flowcyto-1 69.62 ± 5.28 69.28 ± 5.10 63.74 ± 6.50 66.02 ± 5.45 69.93 ± 6.31 70.26 ± 5.41 70.58 ± 6.09
Flowcyto-2 70.59 ± 4.62 72.4 ± 5.85 62.09 ± 5.36 65.69 ± 6.44 71.39 ± 4.96 70.42 ± 3.84 71.08 ± 2.86
Flowcyto-3 71.25 ± 5.75 70.26 ± 3.58 62.09 ± 0.44 64.55 ± 5.61 70.74 ± 5.70 71.10 ± 4.67 70.75 ± 3.03
Flowcyto-4 70.10 ± 4.68 70.43 ± 6.12 59.88 ± 0.58 63.54 ± 6.97 71.10 ± 4.92 70.25 ± 5.31 68.29 ± 5.68
Prodom 99.77 ± 0.19 99.85 ± 0.25 n.c. 99.77 ± 0.26 99.77 ± 0.31 99.77 ± 0.25 99.65 ± 0.47
Protein 98.12 ± 2.31 99.07 ± 2.12 60.40 ± 1.13 58.23 ± 9.91 98.10 ± 3.16 99.02 ± 1.86 98.59 ± 2.15
SwissProt 97.55 ± 0.36 97.50 ± 0.31 96.46 ± 0.63 96.52 ± 0.37 96.47 ± 0.84 96.53 ± 0.60 97.42 ± 0.39
Tox-21: - AllBit - 97.22 ± 0.31 97.36 ± 0.49 97.37 ± 0.47 97.38 ± 0.44 97.33 ± 0.52 97.38 ± 0.30 97.35 ± 0.38
Tox-21: - Asymmetric - 97.33 ± 0.43 97.46 ± 0.44 90.40 ± 2.01 95.28 ± 0.64 96.96 ± 0.46 97.33 ± 0.35 97.18 ± 0.48
Tox-21: - Kulczynski - 97.34 ± 0.56 97.36 ± 0.39 92.81 ± 2.16 95.28 ± 0.54 97.20 ± 0.26 97.29 ± 0.37 97.30 ± 0.31
Tox-21: - McConnaughey- 97.31 ± 0.44 97.34 ± 0.41 92.08 ± 2.02 94.97 ± 0.56 97.15 ± 0.50 97.33 ± 0.32 97.15 ± 0.54
Vibrio 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

TABLE 4 | Average percentage of data points that are needed by the SVMmodels
for building a well-fitting decision hyperplane.

Dataset Adv.-
GS

Adv.
Shift

Original Shift Clip Flip Square

Chromosomes 45.4% 39.7% 43.9% 99.8% 30.3% 30.6% 24.0%
Flowcyto-1 59.4% 60.6% 63.8% 99.7% 63.6% 63.6% 62.9%
Flowcyto-2 59.6% 59.1% 69.5% 96.7% 57.6% 58.3% 57.7%
Flowcyto-3 58.6% 59.3% 65.1% 99.3% 57.8% 58.5% 59.4%
Flowcyto-4 61.2% 59.9% 65.5% 99.5% 59.3% 59.2% 62.7%
Prodom 46.6% 18.7% n.c. 18.7% 18.7% 18.8% 12.9%
Protein 38.6% 39.6% 80.3% 99.8% 22.9% 23.6% 14.7%
SwissProt 14.1% 13.9% 48.9% 13.9% 13.9% 13.9% 12.2%
Tox-21: AllBit 5.5% 5.5% 5.8% 7.4% 6.5% 7.2% 4.6%
Tox-21:
Assymetric

4.7% 5.4% 7.3% 10.0% 7.6% 7.1% 4.6%

Tox-21:
Kulczynski

5.3% 5.9% 8.0% 10.0% 7.2% 7.1% 5.3%

Tox-21:
McConnaughey

5.1% 5.6% 8.4% 8.3% 7.6% 7.5% 4.2%

Vibrio 99.9% 99.6% 100.0% 99.5% 99.6% 99.6% 92.0%
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Finally, it remains to be said that the analysis of life science
data offers tremendous potential for understanding complex
processes in domains such as (bio)chemistry, biology,
environmental research, or medicine. Many challenges have
already been tackled and solved, but there are still many open
issues in these areas where the analysis of complex data can be a
key component in understanding these processes.
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Sparse time series models have shown promise in estimating contemporaneous and

ongoing brain connectivity. This paper was motivated by a neuroscience experiment

using EEG signals as the outcome of our established interventional protocol, a new

method in neurorehabilitation toward developing a treatment for visual verticality disorder

in post-stroke patients. To analyze the [complex outcome measure (EEG)] that reflects

neural-network functioning and processing in more specific ways regarding traditional

analyses, we make a comparison among sparse time series models (classic VAR,

GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations)

combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM).

These dynamic graphical models were useful in assessing the role of estimating the brain

network structure and describing its causal relationship. In addition, the class of DCGM

was able to visualize and compare experimental conditions and brain frequency domains

[using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the

results corroborate with the susceptibility of sparse dynamic models, bypassing the false

positives problem in estimation algorithms. We conclude that applying sparse dynamic

models to EEG data may be useful for describing intervention-relocated changes in brain

connectivity.

Keywords: state space models, multilayer networks, high-dimensional time series model, transcranial direct

current stimulation, dynamic graphical model

1. INTRODUCTION

In the area of neuroscience, work related to the brain network structure, as well as its
dynamics, has increased due to technological developments (high resolution and storage capacity).
Notwithstanding, the field aims to understand “how” and “why” the effects/events occur based on
learning probabilistic connection structures to assume some feasible causal inference (Pearl, 2014).
There is thus an immediate urge to map its complex organization, and two types of connectivity
are commonly studied: functional and dynamic. Functional connectivity is a statistical measure
of the correlation within observations in the same time-lapse, and dynamic connectivity is the
relationship among the measurements compared with their previous value impact.

Thus, the links among anatomical parcellations of the brain are described by their similarity
patterns; for instance, a channel represents the activity of a group of neurons, and it is measured
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according to its space relation, time, and frequency domains.
Statistical significance tests are often conducted to estimate the
existence of those links in order to project an estimated topology
regarding the interaction among this observed group of neurons.
For example, brain dynamics are measured as biosignals through
an electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), and Doppler
ultrasound. Most recently, effective brain network connectivity
changes following non-invasive transcranial stimulation has been
investigated using fMRI (Fiori et al., 2018), fNIRS (Cao et al.,
2018), and EEG (Baxter et al., 2017).

Biosignals are often presented as time-indexed values in
which their modeling requires components that may also vary
over time; the dynamic factor models, together with graphical
representation, can help this demand. Time-varying Bayesian
dynamic models were introduced, and variations were then
developed, such as the Gaussian graphical model and usage
of splines (for further details, please see Quintana and West,
1987; Queen and Smith, 1993; Carvalho et al., 2007; Anacleto
et al., 2017). Nevertheless, this approach is always suitable for
multivariate series whose component univariate series are similar
and share a common structure.

Network modeling is a mathematical framework, part of
graph theory, used to represent and analyze relationships
in multivariate data. Recent advances in network estimation
have moved the emphasis of the analysis from single-layer
networks to multilayer structures facilitating the interpretation
of multivariate relationships (Kivelä et al., 2014). This paradigm
shift expands the possibilities of extracting information about
complex systems, and conducts a multilayer network estimation
of biosignals that can incorporate the change in time and/or
different frequencies.

Multilayer analysis can reveal the complexity of the human
brain, and investigations can thus show effective functional
roles in brain region activation and visual representation
(De Domenico, 2017; Gratton et al., 2018). In this context,
two main approaches are often seen, multimodal connectivity
or structural-functional relationships (different layers represent
replicated nodes and their interaction) and time-varying
networks (evolution of the temporal snapshots).

The concept of sparse multivariate time series with multiplex
networks benefits the analysis of brain dynamic activation
by using the frequency-domain approaches as physiologically
applicable biosignal denoising. Decomposition methods in the
frequency domain are generally used in conjunction with
graphical models; for example, Bach and Jordan (2004) presented
this methodology for stationary Gaussian time series, which
complement the results obtained from the time domain.
Moreover, sparse models deal directly with the limitations of
complex high-frequency time series, such as complex structural
and computational constraints.

In this paper, the main contribution was the description of a
statistical methodological plot adopting the time domain series
in the frequency domain combined with some dynamic spatial
models, targeting a more in-depth understanding of an applied
neuroscience research question. We demonstrated the validity
and feasibility of this sequence of statistical approaches that

could reveal a pattern toward brain activation, comparing the
brain dynamic before and after a transcranial neuromodulation
stimulation. The data were acquired following a systematic
randomized controlled clinical trial protocol (Santos et al., 2018),
using a sample of the EEG signals collected before applying high-
definition transcranial direct current stimulation (HD-tDCS)
over the temporal-parietal junction, under the polarity anode
center condition and post the 2 mA current intensity in a single
young healthy subject.

The motivation stems from the need to understand neuro-
activation across different brain areas to analyze the effects of a
focal transcranial brain stimulation and establish an innovative
and effective neurorehabilitation strategy to treat verticality
disorder after brain lesions (post-stroke). Moreover, the impact
of this study will extend to the entire neuroscience/medical field
that needs to adopt dynamic modeling for complex data; sparse
models enable the use of big data demanding a low computational
cost (shrinking the number of parameters in the model).

2. METHODS

The paper is organized as follows. In subsection 2.1, we present an
overview of the adopted experimental protocol. In subsection 2.2,
we present the theoretical background for dynamic linearmodels,
sparse estimation, sparsity in modeling, multilayer networks,
network inference, and time series from a frequency-domain
approach. In section 3, we discuss the empirical clinical results
comparing different sparse estimations to distinguish patterns
among different brain wavebands. Finally, some final comments
are given in section 4.

2.1. Protocol Rational and Data
Characterization
Neural systems’ imbalance and degeneration related to postural
control have led to new research regarding their origin and
pathophysiology (Winter, 1995). In humans, different sensory
information is used as pathways in the brain to maintain posture
in the upright position (Day and Cole, 2002), and postural
imbalance is one of the most common disorders after stroke.
However, it has not been well-documented in the literature
(Chern et al., 2010; Baggio et al., 2016). Hence, increasing
knowledge about the effects of this strategy is essential for
developing more effective rehabilitation protocols.

Non-invasive techniques of brain stimulation are current
therapeutic resources related to the pathophysiology and
behavior of the mechanisms that guide the human mind.
Transcranial direct current electrical stimulation (tDCS) is a non-
invasive neuromodulation technique that can model the cerebral
function with a safe profile (Edwards et al., 2013). tDCS consists
of electrodes unleashing weak electrical currents over the scalp,
inducing cortical changes; it increases or decreases the local
network excitability depending on the electrical current polarity.

At the neuronal level, tDCS affects polarization of the resting
membrane potential, and this effect may acutely impact cortical
excitability (Priori et al., 1998). Another effect may be related
to the electrical dynamics of the neuronal membrane potential,
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as well as its change by at least 1 h (Nitsche et al., 2003). In
addition, changes in the effectiveness of synaptic connections
may last during the stimulation period. Studies on peripheral
nerve and spinal cord stimulation have shown that direct current
effects are also non-synaptic, with transient changes in the
density of protein channels below the stimulation area (Ardolino
et al., 2005; Cogiamanian et al., 2008). High definition tDCS
(HD-tDCS) is a contemporary way of transcranial electrical
stimulation, which promotes more focal stimulation than the
conventional tDCS methods (please see Edwards et al., 2013).

In addition to these tDCS direct effects, “indirect”
consequences come from connective-driven alterations of
distant cortical and sub-cortical areas (Brunoni et al., 2012).
Lang et al. (2005) revealed that stimulating the right frontopolar
cortex (M1) with tDCS also activates several connected
regions. Changes in brain activity, after the tDCS session,
were also measured related to regions concerning blood
flow using the sequential H1520 PET scan. In addition, by
observing the stimulus area, the activation of “several motor
areas” was observed, including “the caudal portion of the
anterior cingulate cortex, cerebellum and superior temporal
sulcus.” This could be due to a modulation of the functional
interaction between M1 and these areas via cortico-cortical and
cortico-subcortical connections.

Other studies using transcranial magnetic stimulation (TMS),
also as a non-invasive neuromodulation technique, described the
increased activity of the homologous area, contralateral to the
stimuli (Siebner et al., 2000; Lee et al., 2003). Moreover, cerebral
hemisphere interaction is commonly observed in the literature
(Gilio et al., 2003; Plewnia et al., 2003).

These “indirect” changes on cerebral function are
fundamental issues regarding the objective of the present
study, which evaluated the effects of tDCS in the temporoparietal
junction, the area related to postural control in humans (Winter,
1995). Inter-hemispheric interactions may contribute to defining
the temporal and spatial features of voluntary movements,
and consequently postural control (Meyer et al., 1998). There
is a balance between these inter-hemispheric interactions,
where each human cortex exerts inhibitory influences on the
opposite motor cortex in normal conditions (Ferbert et al., 1992).
Therefore, developing non-invasive techniques that modulate
this balance will be a significant advance in the rehabilitation
setting of stroke patients and other postural control disorders
after more profound knowledge is gained of the technique’s
effects on the human brain.

The current study was derived from a randomized double-
blinded sham-controlled clinical trial that aimed to investigate
a polarity and intensity-dependent shift in high-density
EEG signals, following an intervention using high-definition
transcranial direct current stimulation applied over the temporo-
parietal junction in healthy subjects (Santos et al., 2018). The
study protocol consisted of an HD-tDCS application over the
right temporoparietal junction area, using a Soterixr NY-USA
HD-tDCS with a constant current anode (active control). Four
electrodes were used; the central electrode was placed over
the circumcenter of P4-C4-T8 EEG coordinates, and the three
peripheral electrodes were placed at a distance of 3 centimeters

from the central electrode (over the EEG coordinates P4, C4,
and T8). EEG recordings were made before and after each
stimulation period, thus detecting ongoing changes in the raw
EEG signals in response to tDCS (Figure 1). The total duration
was 5 min of resting-state baseline condition added by 1.5 min
of stimulation plus 5 min of accommodation post-stimulus, as
shown in Figure 2 (for protocol details, please see Santos et al.,
2018).

A dense array EEG signal was acquired using a 256-
channel sensor net from Electrical Geodesics Inc. during the
aforementioned electrical stimulation conditions. All channels
were referenced to the vertex with reduced electrical impedance.
The EEG was recorded continuously before and after the
stimulation, excluding ramp-up and ramp-down periods (1.5
min total). The full trial experimentation lasted ∼120 min.
Previously, we discussed (Nascimento et al., 2019) some
variations toward the Cathodal against the Active Control
(Anodal) at the 2 mA condition; in this work we aimed to
discuss an innovative statistical analyses of only one sample of the
protocol experimentation compared to its reference (baseline).

FIGURE 1 | Visual representation of a resting-state baseline condition (left

illustration; eyes open) in addition to stimulation stage (eyes closed) and

accommodation post-stimulus (right illustration; eyes open). The main interest

in the study is to compare the resting-state vs. accommodation post-stimulus.

FIGURE 2 | Photograph of the experimental trial (left-hand side) and the EEG

cap (right-hand side) with small electrode array covering the scalp, while the

large electrodes identifiable as a triangle configuration (four electrodes total)

represent the tDCS stimulating electrodes (this image was previously

published by Santos et al., 2018, under Open Access and Creative Commons

Attribution License).
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Thus, in the present study, we analyzed and discussed the
data set of a single healthy adult male participant during the
resting state (baseline condition) and 45 s after an electrical
stimulation. Each period (before and after stimulation) contains
5 min of observation, whereas the EEG sample rate was 500
Hz (500 observations per second), representing a total of
300,000 observations.

2.2. The Model
Dynamic structure modeling may be considered as an
alternative to estimate brain connectivity; additionally, it is
natural to aggregate its estimated parameters into a graphical
representation. Nonetheless, the dynamic model class is
overparametrized (West et al., 1985; West and Harrison, 1989),
especially in the time-varying approach, demanding some
shrinkage of the parameter space (i.e., by adding sparsity to the
parameter vector estimation process). A word of caution must
be mentioned here; search patterns in small dimensions may
deal with great noise (Nakao, 2016), added by limitations toward
how to generalize the low-dimensional reduction approach
(Rodrigues et al., 2016) and, for instance, brainwaves present a
highly active process which comes with much noise (Natarajan
et al., 2004). Therefore, filtering preprocessing is suggested to
break the observed/raw time series signal into the frequency
domain and then using the finite impulse response (FIR) filter.
These elements are presented next and visually summarized in
Figure 3.

2.2.1. Dynamic Linear Model
The state space model is a flexible learning linear/non-linear
dynamical system. As a particular case, the state transition
and observation functions, known as a Dynamic Factor Model
(DFM), may be expressed as a Gaussian linear process, often
called a Dynamic linear model (DLM). For instance, consider

a p-dimensional State Vector and m-dimensional observations,
both normally distributed. At the initial time, (t = 0) presents the
mean µ0 and variance σ 2

0 ,

θ0 ∼ Np(µ0, σ
2
0 )

then for the time t ≥ 1,

Yt = Ftθt + υt︸ ︷︷ ︸
observation equation

, υt ∼ Nm(0,Vt),

θt = Gtθt−1 + ωt︸ ︷︷ ︸
state equation

, ωt ∼ Np(0,Wt)

where matrices Gt (dimension p× p) and Ft (m× p) are known,
followed by independent Gaussian random vectors υt and ωt

with mean equal to zero and known variance matricesVt andWt .
Considering anRp-valued andRm-valued time series, we have

the following: (i) (θt) is a Markov chain and (ii) the observed time
series (Yt), conditioned to (θt). They are independent among the
other time series and depends only on the associated state (θt).

Moreover, this class of models is flexible given the possibility
of incorporating more complex structures (locally they are linear,
but globally perform as non-linear dynamic), by allowing the
time-varying parameters, that is, compounding a latent variable
in the estimation process. The estimation toward the state vector
uses the conditional density π(θk | Y), where t = 1, ...,T and Y
are the observed values. Furthermore, k represents the recursive
period and t the current period, where estimation problems are
filtering (k = t), smoothing (k < t), and state prediction (k > t).

Filtering is a procedure that aims to update the current
estimates as new data are observed π(θt | Y1 : t). Smoothing is
a retrospective analysis, already containing all the observations
in the series, which computes the conditional distribution θ

represented by π(θt | Y1 :T), starting from π(θT | Y1 :T) back

FIGURE 3 | Visual summary of the methodological framework. Only one participant/trial was selected, and its biosignals were extracted using EEG during baseline

period and 2 mA post-stimulation in order to compare the brain dynamic responses. As a pre-processing phase, an FIR filter was applied in the raw EEG signal aiming

to estimate the brain frequency-domain phases. Then, five types of dynamic chain graph models were tested and compared, for instance, illustrated only with the

filtered EEG alpha band. Later, all the bandpower were compared, given the outperformed model comparing resting-state vs. port-stimulation electrical brain dynamic.
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to front. Prediction is a forecast procedure that estimates the next
observation based on the data π(θt+1 | Y1 : t). Further details on
Bayesian Forecasting and Dynamic models can be found in West
and Harrison (1989) and Petris et al. (2009).

In contrast, the Vector Autoregressive (VAR) model is
widely used in the literature (Krystal et al., 1999; Prado et al.,
2006; Schlögl and Supp, 2006; Garrison et al., 2015) and
recognize the non-linear dependencies between different brain
regions, although may present limitations toward the curse of
dimensionality. It is possible to impose restrictions on a VAR to
make it “similar” to a factor model, i.e., such as DFM.

2.2.2. Sparse Estimation Framework
Recent discoveries, related to time series modeling, discuss
the challenge of estimating the model’s dependency order,
that is, related to the measure of complexity to high-
dimensionality resolution. For instance, it enables the eigenvalues
and eigenvectors to rotate in the state-space parameter
dimension, given restrictions in the parameter vector space
imposing some parameters to be equal to zero. Therefore,
the main question may concern identifying the “best” and
“simplest” approximation (without losing relevant information)
that corresponds to the dynamic process.

This definition of “the best” is non-trivial given the lack
of knowledge regarding the joint function related to the data
and parameter associated with the phenomenon under study.
The only available information is from the observed data as an
information base in the estimation process. Several inferential
methods may be adopted; among them, the most popular are
maximum likelihood and ordinary least squares.

The sparse approach is equivalent to creating a bias toward
sparsity in the maximum likelihood estimator (MLE), which may
reduce the minimum square error. Thus, it sets conditions in the
least squares aiming to minimize the l1-norm producing sparsity
in the parameter vector θ . Additionally, prior knowledge can be
incorporated, targeting only a subset of the parameter vector; to
minimize a specific parameterization (θ0) problem, then

min
s
‖θ0 + s‖1

truncating a NP hard problem (Chickering, 1996) into a linear
programming (LP) problem in standard form (Zeemering, 2015).
In general terms, adding vectorial assumptions concerning the
reparatrization of the model associated with the parameter vector
θ will impact the adjustment of the model and will be represented
as an error vector [(e(θ)), which can be calculated according to a
criterion, for example, least squares] that depends only on θ .

The search space is limited by models, some of them
equivalent, which produce the same error vector value and least
squares error (Tibshirani et al., 2012). That is, shrinkage may
be applied through a singular value decomposition (SVD) to the
matrix, which associates the number of constraints kernel of the
Jacobian (J(θ)) or Hessian (H(θ)) matrices.

The non-linear least squares minimization method search
direction (s(θ)) to refine the parameters by successive iterations
may be adopted, such as a Newton method, described as

s(θ) = −αH(θ)−1J(θ)′e(θ).

Based on the SVD results, values that assume a value equal to zero
can be determined, thus setting a threshold if needed. A word of
caution regarding the threshold; low valuesmay bound the search
space (then exclude valid directions to search for sparsity) and
high values may change the model’s behavior.

In contrast, other solutions may be obtained by the
dual or primal linear programming (LP) problem. Deviation
toward the search direction accuracy during the optimization
procedure, through setting up a threshold, determines the
quality of the maximization procedure. An application in the
medical field, Zeemering (2015) used regression and state space
classes of models in order to add sparse estimation to atrial
fibrillation research.

The models adopted were classical VAR, Graphical Least
Absolute Shrinkage and Selection Operator (GLASSO), Time
Series Chain Graphical Model (TSCGM) and TSCGM-modified
using Non-linear optimization over log-likelihood and Iterative
optimizing the log-likelihood. The modified TSCGM, adopted
in this work, considered an optimization option that uses the
proportion of parameters equal to zero in relation to the total
number of parameters of the model with a bias toward sparsity,
in the MLE, whose minimization will occur through the l1-norm
of the parameter vector and the Smoothly Clipped Absolute
Deviation (SCAD).

2.2.3. Sparsity in Modeling
The classical method for estimating connectivity matrices often
uses the Vector Autoregressive (VAR) Model, which is a
particular case of DLM when the parameters are invariant in
time. For instance, consider a vector of observed variables Y ,
where I is an identity matrix, Matrices X represent Y lagged
dependence, Ŵj are autoregressive parameters, and u is the error
vector with covariance matrix 6, using an ordinary least squares
(OLS) standard estimation procedure equation by equation. Its
vectorized form would be expressed as

vec(Y) = (Im ⊗ X)Ŵ + vec(u), where vec(u) ∼ N(0,6 ⊗ It)

where the matrix of coefficients Ŵ presents m ×

[# lagged variables + 1] dimension, which is the dynamic
connectivity (also called effective connectivity), and the matrix
of coefficients 6 represents the functional connectivity, where t
represents the length of the Y series. The OLS estimation process
can be translated by

log-likelihood(Ŵ̂, 6̂|observed data) =

argmin
Ŵ,6

[
1

t
tr((Y − XŴ)6−1(Y − XŴ)′)− log|6−1

|

]
.

However, as the graph model also includes small linear
dependencies, implying a number of larger links, it results in
an exponential increase in relation to the number of channels,
jointly impacting the interpretation of complexity and the
processing/interpretation of results. Therefore, it is usual to use
a data-dependent threshold to remove the weak connections, but
selecting an appropriate value can be different according to the
experiment setting and goals (Garrison et al., 2015).
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An alternative approach is to reduce the number of links
during the connectivity matrix estimation, using sparse time
series models. One widely adopted model is the GLASSO, used as
a sparse VAR and proposed by Friedman et al. (2008); themethod
takes into account the sparsity toward the estimation on the
functional connectivity. Inherently, the estimated connectivity
matrices often have few links, but, despite maximizing the
likelihood of the observed biosignals regarding the proposed
theoretical model, they can lead to a distinct dynamic/effective
connectivity estimation.

For instance, consider N multivariate normal observations
of dimension p, with mean µ, and covariance 6. Using the
empirical covariance matrix, the problem is to penalize the
negative log likelihood,

log-likelihood(Ŵ̂, 6̂|observed data) =

argmin
Ŵ,6

[
1

t
tr((Y − XŴ)6−1(Y − XŴ)′)− log|6−1

|+

λ1

G∑

i=1

‖γi‖2 + λ2

∑

k6=k′

‖6−1
kk′

‖]

with λ1 and λ2 penalty parameters, γi is a subvector of Ŵ, G = q2

total number of groups and k block coordinate descent derived
from 6 (that is, shrinking only in part of the covariance matrix).

A generalization of this model is found in the TSCGM,
proposed by Abegaz and Wit (2013), where sparse estimations of
both effective and functional connectivity matrices are obtained.
In this method, both matrices are estimated interactively: first,
a sparse functional connectivity estimate is calculated with
a non-sparse non-concave penalty (smoothly clipped absolute
deviation, SCAD); and, later, sparse effective connectivity using
the previous estimation as an initial value. This cycle is performed
until it reaches convergence. For further details, please see Abegaz
and Wit (2013).

TSCGM has been successfully applied to genetic data, and
when applied to electroencephalograms, numerical experiments
have shown a considerable reduction in the number of estimated
connections. However, TSCGM also distorts the strength of some
links, creating connections that were not present using a VAR
model, because it relies on GLASSO to estimate the functional
connectivity in each iteration.

The approach behind TSCGM is remarkable for increasing the
sparsity of the estimations. Since the algorithmic implementation
presented some issues during its application with biosignals,
we introduced some adjustments. We also used a TSCGM-
modified model that estimates the effective and functional
connectivity that maximizes the loglikelihood of the model
simultaneously using a Newton-type numerical optimization
method. These methods are the non-linear optimization and
iterative optimization. For more in-depth discussions toward
sparsity profile, please see Benson et al. (2003), Wipf and
Nagarajan (2008), and Rakotomamonjy (2011).

2.2.4. Multilayer Networks
Graph models are useful for describing and exploring
patterns of dynamic/effective and functional/contemporaneous

interactions of a given phenomenon. In human neuroscience
experimentation, brain network connectivity activation can
be recorded from the electrical impulse aiming to highlight
interaction among areas.

Given the complexity of the brain, multilayer networks
incorporate the multivariate and multi-scale information scheme
(De Domenico, 2017). In general, multilayer networks can be
seen as a collection of several distinct classic networks, which
separately encode a specific type of information about the system
as a layer, thus composing a multilayer network at the end. Those
layers quantify some elements of similarities, such as (i) activity in
different frequency bands, (ii) time-varying activity, (iii) activity
of different tasks, and (iv) structural and functional connectivity.

Alongside this information, two important concepts about
brain networks are essential; first the functional connectivity,
which expresses the statistical correlation within a time step,
also interpreted as contemporaneous interactions, and the second
concept is related to effective connectivity in which it describes the
dynamics of the current time in relation to previous times (this
is the dynamics of the present response in relation to the lagged
responses) (Friston, 2011).

2.2.5. Inferential Network Analyses
Let us start discussing the concept of conditional independence.
It should be mentioned that part of this subsection was inspired
by Højsgaard et al. (2012). Consider a collection of random
variables (Xν)ν ∈ V associated along with a joint density,
where V is a finite node set. Now, let us arbitrarily select three
subsets of V (suppose A, B, and C); XA = (Xν)ν ∈ A as
well as for XB and XC. The statement XA and XB is said to
be conditionally independent given XC (that is, A |H B | C) if
for each observation xC of XC, XA, and XB are independent in
the conditional distribution given XC = xc. In this context, a
generic probability function, π( ), defines the characterization
A |H B | C as

π(xA, xB | xC) = π(xA | xC)π(xB | xC),

and rewriting as two functions g( ) and h( ), then

π(xA, xB, xC) = g(xA, xC)h(xB, xC). (1)

Whenever possible to describe the joint density as a product
of functions, as in Equation 1, adopting the conditional
independence approach, this is known as the factorization
criterion. Hence (Xν)ν ∈ V can be represented as a set of joint
densities, for instance, described as a parametric model, enabling
us to use the factorization form, adopting the conditional
independence relations between the variables. Often described as
an undirected graph, conditional independence models unravel
patterns out of a complex application. Suppose that G = (V ,E)
is an undirected graph with cliques (maximal complete subset)
C1, . . . ,Ck. The factorization form occurs if the joint density π()
of the variables in V is

π(xν) =

k∏

i=1

(gi(xCi ))
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where functions g1() . . . gk() depend on x only through xCj
according to the condition that π() factorizes according to G.

The global Markov property ensures that through the model
it factorizes in all densities given G, then G encodes the
model’s structure through the conditional independence; that is,
whenever sets are separated by another in the graph, it is said that
conditional independence happens under the model.

Nevertheless, there is not a unique equivalence/representation
corresponding to patterns of conditional independences
represented by a chain graph G, guarded by the Markov
properties. A chain graph is a combination of no bidirected edges
and no semi-directed cycle graphs and may be seen as a natural
generalization of undirected graphs and directed graphs that is
acyclic (DAG).

For instance, the Markov properties can be described as two-
step factorization; the first step represents the joint density as
sub-parts; similar to a DAG, the search for the separation that
maximizes the information is described as a graph form.

π(xV ) =
∏

C∈C

π(xC | xpa(C))

where C is the set of components of G. Each conditional
density π(xC | xpa(C)) will be based according to an undirected
constructed graph;

That is, the form of subgraph G is induced by C ∪ pa(C),
disregarding the directions, in relation to all possible pa (C). A
hierarchy should be considered since some variable sets pa(ν)ν ∈

V , in relation to the variables in pa(ν) precede v. It is worth
mentioning that the vertices of the graph represent the random
variables, enabling us to identify the sets pa(ν) with the parents
(descendent) of ν in the DAG.

Let us consider a chain graph (or complex network) for a
given network defined by a set of vertices V and a set of edges E
order in pairs, then each point is represented as G = (V ,E). The
interpretation of edges (also called links) can be also dynamic, as
they are indexed in time, which represents the evolution of the
interaction between pairs of vertices.

Time series data modeling can combine dynamic graphical
models, which enables us to incorporate sparsity, aiming to
estimate statistical causality and correlation across series. For the
sake of simplicity, let us consider Markovian dynamics (time t
relates only to time t − 1), which are similar to VAR(1), as

(a, b) ∈ Vt × Vt−1 ⇔ Ŵab 6= 0

where effective connectivity is represented by the link between
area a and b at consecutive time steps related to an element
from Ŵ (points across time). Similarly, functional connectivity
is represented by the estimated links associated with the effects
corresponding to the precision matrix 6 (correlation within the
same time period); this is related to the models’ errors as

(a, b) ∈ Vt × Vt ⇔ 6ab 6= 0.

Thus, a multivariate time series can be translated into a
learning probabilistic connection network structure (as a graph

model), aiming to estimate brain connectivity networks. The
Dynamic Chain Graph Model (DCGM) creates a multivariate
dynamic linear model for each chain component, and Wermuth
and Lauritzen (1990) discuss the class of dynamic graphical
models that enables us to estimate different signal phases
and compare their structural relations. For instance, the
dynamic/contemporaneous interactions between brain regions,
presented by Costa et al. (2017), as a particular case of its theory
in the neuroscience field.

2.2.6. TS Frequency Domain Approach
Brain activity can be collected as biosignals, composing the
information flow from a group of connected neurons (called
a neural circuit). These activities may seem at first to be pure
noise, but between specific ranges, they may distinguish hidden
patterns (Prado and West, 2010; Scheffer-Teixeira et al., 2013).
Moreover, different frequency bands can contribute toward the
brain mapping functionality by maximizing the information
flow through the brain regions (according to the observed and
latent components).

The literature presents changes in the frequency cuts
(Fransson, 2005; Su et al., 2013), and those hubs might be
very different when measured at different frequency bands. The
findings concern the topological information measured from
components at different frequencies (in hertz unit—Hz). Thus,
such an enriched representation (decomposed TS signal) is more
valuable than other aggregated representations (raw TS signal).
For instance, some pass band ripple filters are Butterworth,
Chebyshev, Elliptic or Cauer, and Finite Impulse Response
(FIR) filter (for further details, please see Parks and Burrus,
1987).

Moreover, results presented in the literature (Newson and
Thiagarajan, 2018; Wojcik et al., 2018) suggest that a healthy
human brain operates at a transition point between independent
and highly dependent frequency bands (e.g., represented as
functional layers). EEG raw signals enable us to establish
encoding the connectivity between the neural circuit, and are
described within five frequency bands. It is reasonable to adopt
the delimitation of biosignals in frequency bands theta (0.01–
4 Hz), delta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), and
gamma (32–49 Hz).

De Domenico (2017) suggests that brain activity may be
represented in functional layers, without acting independently
between them, adopting existing mechanisms for integration
and segregation across different frequency bands. Thus, adopting
multilayer techniques is shown to be potential in biomarkers as it
integrates the whole concept of interdependence and is applicable
in neurological and mental studies.

Thus, this work adopted the finite impulse response (FIR)
filter, used to filter the limit of the signal coefficients given some
order and frequency cutoff. Additionally, we added a correction
using a Forward and Reverse filter applied to the FIR obtained
signal to correct the phase distortion introduced by a one-
pass filter, although this approach exerts a magnitude in the
process in which it is equivalent to square responses. Both tools
are implemented in R (Octave Forge, 2007), presented in the
package signal.
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The multiplex sparse dynamic model framework enables us
to map the network connections, across different layers encoded
as frequency bands (although integrated as De Domenico,
2017 suggests). Furthermore, the irreducibility of the multilayer
functional representation of the human brain increases the need
for multilayer analysis of the underlying architecture, targeting
the identification of hubs.

3. RESULTS

Neuroscientists have attempted to understand brain connectivity
through the functional and effective connectivity among brain
areas, using biosignals, such as Electroencephalogram (EEG) or
functional Magnetic Resonance Imaging (fMRI). This work tried
to fathom the brain manipulation task related to the perception
of verticality and posturography as a novelty targeting the
development of a therapeutic approach for post-stroke patients.

A previous study performed the recording of high-density
EEG together with the evaluation of visual vertical (VV). The
authors mapped the high-density evoked potential with the
evoked potential analysis discriminating the location of brain
activation during VV evaluation. The authors verified brain
activity during the task with a focus on the right lateral tempo-
occipital cortex (Lopez et al., 2011). These physiological findings
reaffirm the hypothesis of the dominance of the right cerebral
hemisphere in the control of vertical perception. They also
highlighted the right temporoparietal junction (TPJ) as a key
point in the judgment of vertical orientation (Dieterich et al.,
2003; Karnath and Dieterich, 2006; Pérennou et al., 2008; Baier
et al., 2012).

Our group developed a promising brain stimulation protocol
applied on right TPJ using a bipolar mount with conventional
transcranial direct current stimulation (tDCS) and right
hemisphere high-definition tDCS (HD-tDCS). We verified the

efficacy and safety of this protocol in VV manipulation in
healthy individuals.

For instance, Santos and Edwards (2019) pointed out
that investigations toward the influence of cortical activity
using non-invasive electromagnetic brain stimulation (NIBS)
suggests understanding and treating verticality disorders as a
neurorehabilitation. Thereby, Santos et al. (2018) implemented
a protocol toward human verticality manipulation, using
neuromodulation, on healthy participants aiming to understand
the recovery of this intentional artificial brain lesions, briefly
introduced in section 2.1.

Randomly selecting a single participant, Figure 4 illustrates 5
min of brain response in each panel (raw EEG signals), selecting
only seven channels (out of 256), and compares the signals
during the resting state (top panel) vs. post-2 mA stimulation
(bottom panel). Most of the selected EEG channels were located
in the motor cortex; three channels were derived from the right
hemisphere (164, 173, and 183) and located nearby the region
placed the tDCS four electrodes. Then, three other channels
were derived from the left hemisphere (66, 71, and 72) in which
they are physiologically related to those selected from the right
hemisphere; additionally the EEG channel 143 was placed in the
parietal cortical region.

It can be observed in Figure 4 that post-stimulation of the
brain response amplitude from the raw EEG signals increased,
which is more related to the hemisphere side to channels 183,
164, and 173 (related with the tDCS placed region). In addition,
channel 66 has had its signal shifted up, which is physiologically
explicable due to the polarity dependence created by the applied
stimulus (directly related to channel 164, through the anodal
input current electrode). According to Ombao and Ho (2006),
Prado and West (2010), and De Domenico (2017), studies
provide traces that brain connectivity may be better understood
using frequency band decomposition limiting the influence of

FIGURE 4 | Single participant EEG raw signals from 5 min of recorded biosignals (top panel) during the resting state and (bottom panel) after HD-tDCS–Anodal Center

2 mA–stimulation. The brain responses’ amplitude (on the y-axis), from the raw EEG signals, increased after the stimulation.
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noise in the brain signal and describing different brain tasks as
oscillatory bands.

Initially, we filtered the raw EEG signals, adopting the FIR
with pass-band filter, utilizing five fundamental bands of brain
waves (alpha, beta, delta, gamma, and theta). Figure 5 shows only
the filtered signals related to the post-stimulation period, whereas
elucidating the difference in band oscillation (signal phases) for
each channel.

The channels located on the same brain hemisphere side
as the neuromodulation (tDCS), presented greater oscillation.
Thus, this dynamic may be translated/associated with the
electrical transferred activity (energetic dissipation). This activity
is expected given the rise of entropy through electrical synergy in
this area (Nascimento et al., 2019).

The study of the human brain has been developing and
generates an enormous amount of data, however, revealing the
information extracted from this complex system is not trivial and,

often, aggregating this information may lead to erroneous results
(Fiecas and Ombao, 2011; Castruccio et al., 2016; Shen et al.,
2016). Alternatively, the multilayer network approach provides
a mathematical background to model and analyze complex data
with multivariate and multi-scale information (Kivelä et al.,
2014). Multiplex network shapes can be formatted using (i)
activity in different frequency bands, (ii) time-varying activity,
(iii) activity with respect to different tasks, and (iv) structural and
functional connectivity.

Thus, estimations regarding the representation of a joint
distribution of random variables are needed (the network
structure). This procedure seeks to describe the causal
relations across the brain regions. The Vector Autoregression
(VAR) model would be appropriate to describe a brain
connectivity network, nonetheless, it may present a high curse
of dimensionality in large sets. This class of models presents a
significant number of parameters to be estimated. Additionally,

FIGURE 5 | Bandpower from the filtered EEG signals (top left) considering the alpha band, (top right) filter in the beta band, (middle left) in the delta band, (middle

right) in the gamma band, and (bottom center) filter in the theta band. The EEG electrodes placed on the right-side brain hemisphere present higher dynamic/variation

(channels 164, 173, and 183), related to post-2 mA stimulation.
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shrinkage either in the data (such as PCA) or parameter spaces
(like GLASSO and TSCGM) is not straightforward and may lead
to misleading information.

The graphical LASSO (GLASSO) model, proposed by
Friedman et al. (2008), estimates that matrices tended to be
different from those determined by a classical VAR method.
It was noticeable that non-sparse VAR estimation not only
increased the sparsity of the effective connectivity matrix
but also “created links” that did not appear before (based
on our empirical analysis). These models present a high
sensitivity to non-stationary series and might mislead the
estimation point connections (given the shrinkage on the

covariance matrix–Contemporaneous Effect–,thus changing the
dynamic interactions).

Alternatively, TSCGM and TSCGM-modified was performed
using a non-linear optimization over the log-likelihood, and
iterative optimizing the log-likelihood (with l1-norm and SCAD
penalization, not only in the covariance matrix) (Abegaz and
Wit, 2013). Figure 6 shows the supra-adjacency matrix related
with the functional connectivity, across seven EEG channels,
comparing seven estimation methods (classic VAR, GLASSO,
TSCGM, TSCGM non-linear l1-norm, TSCGM non-linear
SCAD, TSCGM-iterative l1-norm, and TSCGM-iterative SCAD),
for instance, only the performance of a single band (alpha).

FIGURE 6 | Functional connectivity as the supra-adjacency matrix in which rows and columns form groups from the seven filtered EEG alpha frequency-band signals,

throughout the methods (VAR, GLASSO, TSCGM, TSCGM non-linear l1-norm and SCAD, and TSCGM-iterative l1-norm and SCAD). The VAR method is the

reference, whereas the target is to maintain the strong links and remove the weak using sparsity. The TSCGM non-linear provided a competitive insight preserving the

structure and function of the human brain.
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The VAR model includes weak linear dependencies, as
mentioned in section 2.2, and it is desirable to use a
data-dependent threshold to remove the weak connections
without losing information. GLASSO and TSCGM led to
different interpretations, compared to the VAR-estimated matrix.
Nevertheless, TSCGM-modified with non-linear optimization
using both l1-norm and SCAD penalization maintained the
strong links presented in the VAR but also eliminated the weak
ones, therefore suggesting a competitive performance among the
others. The same cannot be said for the TSCGMs-modified with
iterative optimization.

Figure 7 shows the estimated brain dynamic/effective
connectivity among the seven filtered channels (top figures)
during the resting state and (bottom figures) post-stimulation,
adopting the performance of TSCGM non-linear optimization

using SCAD. That is, the brain illustrates with the correlation
matrices the neuronal information floating connectivity (in
different frequency-band signals).

No visual modification can be observed through the analysis
of the alpha, beta, and delta bands, according to Figure 7.
Gamma and theta bands show a slight change (considering the
new estimated coefficient intensity during post-stimulus). In
agreement with the present findings, previous results showed
gamma band change after brain stimulation (Santos et al., 2018).

The results were similar to the findings observed in patients
after stroke. Our data thus indicate that the proposed approach
may be a promising tool for methodological-analysis toward the
treatment of verticality error in stroke patients (Santos-Pontelli
et al., 2016; Santos et al., 2018). In previous studies, Nascimento
et al. (2019) compared HD-tDCS dose-response, adopting the

FIGURE 7 | Multiplex EEG signals, per bandpower, (top panels) resting state and (bottom panels) after unilateral HD-tDCS–Anodal Center 2 mA–stimulation.

Comparing the resting state vs. post-stimulation, we obtained additional links within the gamma and theta bands during post-stimulus, which suggests an outgrowth

in the electrical brain dynamic.
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same protocol study, which included the placebo/shamHD-tDCS
trail response, that by its statistical results, it helped to validate the
sparse dynamic models’ feasibility effects search of HD-tDCS and
its pure effect.

4. FINAL REMARKS

This study aimed to implement and discuss the comparison
of sparse methods toward parameter dimension shrinkage.
Nevertheless, preserving information from empirical data
is necessary to develop elements for brain manipulation
intervention related to the perception of verticality and
posturography as a novelty aimed at the recovery of post-
stroke patients. The multilayer network approach enabled us
to integrate the information retained given the electrical post-
stimulus synergy (through different frequency bands).

The findings obtained in this paper contribute to the process
of estimating the neuronal circuit connections, with robust
inference and computational feasibility. Estimating a network
structure can be a non-trivial (Chickering, 1996), highly complex
task (Rodrigues et al., 2016), despite the fact that these sparse
models showed to be promising, bypassing the false positives link
estimation (results in Figure 6).

As demonstrated in the present work, the sparsemodels (using
a dynamic linear model) combined with the frequency domain
approach represented as the multilayer network implement to
the neuroscience field the capability of interpreting/estimating
the dynamic of the neural circuits based on EEG data in
a comprehensive way. Moreover, we aimed to contribute
with more in-depth data analysis toward the protocol (Santos
et al., 2018), discussing its feasibility, enlightening the human
manipulation intervention response dynamic.

This work is limited given that conclusions are based on
a single participant response, whereas future works intend
to extend this modeling using hierarchical models and
interpretation of the entire sample and protocol. Liao et al.
(2017) showed that the modular structures of brain networks
completely vary across individuals. Thus, hierarchical modeling
is required in the form of a set of state vectors for each chain
component, as an exchangeable sample with the common
mean. Therefore, future work shall explore the time-varying
parameters, enclosed by the dynamic linear models, in a
hierarchical version, suitable for interventions, such as those
presented here, indexed in time.
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Exploiting Multiple Timescales in
Hierarchical Echo State Networks
Luca Manneschi 1, Matthew O. A. Ellis1, Guido Gigante2, Andrew C. Lin3,4,
Paolo Del Giudice2† and Eleni Vasilaki 1*†

1Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom, 2National Center for Radiation
Protection and Computational Physics, Italian Institute of Health, Rome, Italy, 3Department of Biomedical Science, The University
of Sheffield, Sheffield, United Kingdom, 4Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom

Echo state networks (ESNs) are a powerful form of reservoir computing that only require
training of linear output weights while the internal reservoir is formed of fixed randomly
connected neurons. With a correctly scaled connectivity matrix, the neurons’ activity exhibits
the echo-state property and responds to the input dynamics with certain timescales. Tuning
the timescales of the network can be necessary for treating certain tasks, and some
environments require multiple timescales for an efficient representation. Here we explore the
timescales in hierarchical ESNs, where the reservoir is partitioned into two smaller linked
reservoirs with distinct properties. Over three different tasks (NARMA10, a reconstruction
task in a volatile environment, and psMNIST), we show that by selecting the hyper-
parameters of each partition such that they focus on different timescales, we achieve a
significant performance improvement over a single ESN. Through a linear analysis, and
under the assumption that the timescales of the first partition are much shorter than the
second’s (typically corresponding to optimal operating conditions), we interpret the
feedforward coupling of the partitions in terms of an effective representation of the input
signal, provided by the first partition to the second, whereby the instantaneous input signal is
expanded into a weighted combination of its time derivatives. Furthermore, we propose a
data-driven approach to optimise the hyper-parameters through a gradient descent
optimisation method that is an online approximation of backpropagation through time.
We demonstrate the application of the online learning rule across all the tasks considered.

Keywords: reservoir computing (RC), echo state network (ESN), timescales, hyperparameter adaptation,
backpropagation through time

1 INTRODUCTION

The high inter-connectivity and asynchronous loop structure of Recurrent Neural Networks (RNNs)
make them powerful techniques for processing temporal signals [1]. However, the complex inter-
connectivity of RNNs means that they cannot be trained using the conventional back-propagation
(BP) algorithm [2] used in feed-forward networks, since each neuron’s state depends on other
neuronal activities at previous times. A method known as Back-Propagation-Through-Time (BPTT)
[3], which relies on an unrolling of neurons’ connectivity through time to propagate the error signal
to earlier time states, can be prohibitively complex for large networks or time series. Moreover, BPTT
is not considered biologically plausible as neurons must retain memory of their activation over the
length of the input and the error signal must be propagated backwards with symmetric synaptic
weights [4].
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Many of these problems can be avoided using an alternative
approach: reservoir computing (RC). In the subset of RC
networks known as Echo State networks, a fixed “reservoir”
transforms a temporal input signal in such a way that only a
single layer output perceptron needs to be trained to solve a
learning task. The advantage of RC is that the reservoir is a fixed
system that can be either computationally or physically defined.
Since it is fixed it is not necessary to train the reservoir parameters
through BPTT, making RC networks much simpler to train than
RNNs. Furthermore, the random structure of a RC network
renders the input history over widely different time-scales,
offering a representation that can be used for a wide variety of
tasks without optimising the recurrent connectivity
between nodes.

Reservoirs have biological analogues in cerebellum-like
networks (such as the cerebellum, the insect mushroom body
and the electrosensory lobe of electric fish), in which input signals
encoded by relatively few neurons are transformed via “expansion
re-coding” into a higher-dimensional space in the next layer of
the network, which has many more neurons than the input layer
[5–8]. This large population of neurons (granule cells in the
cerebellum; Kenyon cells in the mushroom body) acts as a
reservoir because their input connectivity is fixed and learning
occurs only at their output synapses. The principal neurons of the
“reservoir” can form chemical and electrical synapses on each
other (e.g., Kenyon cells: [9–11]), analogous to the recurrent
connectivity in reservoir computing that allows the network to
track and transform temporal sequences of input signals. In some
cases, one neuronal layer with recurrent connectivity might in
turn connect to another neuronal layer with recurrent
connectivity; for example, Kenyon cells of the mushroom body
receive input from olfactory projection neurons of the antennal
lobe, which are connected to each other by inhibitory and
excitatory interneurons [12, 13]. Such cases can be analogised
to hierarchically connected reservoirs. In biological systems, it is
thought that transforming inputs into a higher-dimensional
neural code in the “reservoir” increases the associative
memory capacity of the network [5]. Moreover, it is known
that for the efficient processing of information unfolding in
time, which requires networks to dynamically keep track of
past stimuli, the brain can implement ladders of neural
populations with hierarchically organised “temporal receptive
fields” [14].

The same principles of dimensional expansion in space and/
or time apply to artificial RC networks, depending on the non-
linear transformation of the inputs into a representation useful
for learning the task at the single linear output layer. We focus
here on a popular form of RC called Echo State Networks [15],
where the reservoir is implemented as a RNN with a fixed,
random synaptic connection matrix. This connection matrix is
set so the input “echoes” within the network with decaying
amplitude. The performance of an Echo State Network
depends on certain network hyper-parameters that need to
be optimised through grid search or explicit gradient descent.
Given that the dependence of the network’s performance on
such hyper-parameters is both non-linear and task-dependent,
such optimisation can be tedious.

Previous works have studied the dependence of the
reservoir properties on the structure of the random
connectivity adopted, studying the dependence of the
reservoir performance on the parameters defining the
random connectivity distribution, and formulating
alternatives to the typical Erdos-Renyi graph structure of
the network [16–18]. In this sense, in [17] a model with a
regular graph structure has been proposed, where the nodes
are connected forming a circular path with constant shortest
path lengths equal to the size of the network, introducing long
temporal memory capacity by construction. The memory
capacity has been studied previously for network
parameters such as the spectral radius (ρ) and sparsity; in
general memory capacity is higher for ρ close to one and low
sparsity, but high memory capacity does not guarantee high
prediction [19, 20]. ESNs are known to perform optimally
when at the “edge of criticality” [21], where low prediction
error and high memory can be achieved through network
tuning.

More recently, models composed of multiple reservoirs have
gathered the attention of the community. From the two ESNs
with lateral inhibition proposed in [22], to the hierarchical
structure of reservoirs first analyzed by Jaeger in [23], these
complex architectures of multiple, multilayered reservoirs have
shown improved generalisation abilities over a variety of tasks
[23–25]. In particular, the works [26, 27] have studied different
dynamical properties of such hierarchical structures of ESNs,
while [28] have proposed hierarchical (or deep) ESNs with
projection encoders between layers to enhance the connectivity
of the ESN layers. The partitioning (or modularity) of ESNs was
studied by [29], where the ratio of external to internal
connections was varied. By tuning this partitioning
performance can be increased on memory or recall tasks. Here
we demonstrate that one of the main reasons to adopt a network
composed by multiple, pipelined sub-networks, is the ability to
introduce multiple timescales in the network’s dynamics, which
can be important in finding optimal solutions for complex tasks.
Examples of tasks that require such properties are in the fields of
speech, natural language processing, and reward driven learning
in partially observable Markov decision processes [30]. A
hierarchical structure of temporal kernels [31], as multiple
connected ESNs, can discover higher level features of the
input temporal dynamics. Furthermore, while a single ESN
can be tuned to incorporate a distribution of timescales with a
prefixed mode, optimising the system hyper-parameters to cover
a wide range of timescales can be problematic.

Here, we show that optimisation of hyper-parameters can be
guided by analysing how these hyper-parameters are related to
the timescales of the network, and by optimising them according
to the temporal dynamics of the input signal and the memory
required to solve the considered task. This analysis improves
performance and reduces the search space required in hyper-
parameter optimisation. In particular, we consider the case where
an ESN is split into two sections with different hyper-parameters
resulting in separate temporal properties. In the following, we will
first provide a survey of timescales in ESNs before presenting the
comparative success of these hierarchical ESNs on three different
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tasks. The first is the non-linear auto-regressive moving average
10 (NARMA10) task which requires both memory and fast non-
linear transformation of the input. Second, we explore the
performance of the network in a reconstruction and state
“perception” task with different levels of external white noise
applied on the input signal. Finally, we apply the hierarchical ESN
to a permuted sequential MNIST classification task, where the
usual MNIST hand written digit database is serialised and
permuted as a 1 dimensional time-series.

2 SURVEY OF TIMESCALES IN ECHO
STATE NETWORKS

We begin by describing the operations of an ESN and present a
didactic survey of their inherent timescales, which will be drawn
upon in later sections to analyze the results.

As introduced in the previous section, an ESN is a recurrent
neural network and the activity, x(t), of the neurons due to a
temporal input signal s(t) is given by

x(t + δt) � (1 − α)x(t) + αf (h(t)), (1)

h(t) � cWins(t) + ρWx(t), (2)

where W is a possibly sparse random matrix defining the
connectivity of the network, Win defines the input adjacency
matrix, and γ is a rescaling factor of the input weights. α � δt/τ is
the leakage term of the node, and ρ is a scaling factor for the
spectral radius of the connectivity matrix and will be discussed in
more detail in the following. f () is a non-linear function, which in
this work we define as the hyperbolic tangent. To ensure that the
network exhibits the Echo-State property, and so that the activity
does not saturate, the initial random connectivity matrix, W, is
rescaled by its maximum eigenvalue magnitude (spectral radius),∣∣∣∣λmax

W

∣∣∣∣ � max
∣∣∣∣eig(W)∣∣∣∣, thus ensuring a unitary spectral radius

which can be tuned using ρ as a hyper-parameter. In practice,
W is constructed from a matrix of Normally distributed random
numbers and the sparseness is enforced by randomly setting to
zero a fixed proportion of these elements. Typically 10 non-zero
connections per node are retained in W.

The timescales of this dynamical system are closely linked to
the specific structure of W and to the two hyper-parameters; α
and ρ. Since α is the leakage rate, it directly controls the retention
of information from previous time steps, while ρ specifies the
maximum absolute magnitude of the eigenvalues and as such
tunes the decay time of internal activity of the network. Thus, the
basic hyper-parameters that need to be set are γ, α and ρ.
Considering the nonlinear dependence of the network
performance on these values and the task-dependent nature of
an efficient parameterisation, this process can be challenging.
Such hyper-parameters are commonly optimised through a grid
search or through explicit gradient descent methods in online
learning paradigms [32]. However, the fine tuning procedure can
be guided, and the searchable space reduced, using a simple
analysis of the hyper-parameters’ relation to the timescales of the
network, the external signal’s temporal dynamics, and the
memory required to solve the considered task.

Considering that the eigenvalues λW of the connectivity matrix
are inside the imaginary unit circle due to the normalisation
procedure described previously, and that α is a constant common
to all neurons, the eigenvalues of the linearised system given by
Eq. 1 are

λ � 1 − α(1 − ρλW). (3)

This corresponds to a rescaling of value αρ and to a translation
of value 1 − α across the real axis of the original λW. This
operation on the eigenvalues of W is depicted in Figure 1A.
Thus, considering that each eigenvalue λi can be decomposed in
its corresponding exponential decaying part exp(−δt/τi) and its
oscillatory imaginary component, the timescales of the linearised
system are

τ � δt
1 − Re(λ) (4)

� δt
α(1 − ρRe(λW)) (5)

When the connectivity matrix, W, is given by a sparse matrix
with non-zero elements drawn randomly from a uniform
distribution with the range [−1, 1], then the corresponding
eigenvalues will be uniformly distributed within a circle with a
radius of max(|λW|) in the complex plane [33]. These eigenvalues
are then re-scaled by max(|λW|) to ensure they are within the unit
circle. The distribution of the eigenvalues then reveals the
distribution of timescales of the linearised system. Indeed,
given p(Re(λ), Im(λ)), the distribution of timescales can be
found through computation of the marginal p(Re(λ)) �∫ 
p(Re(λ), Im(λ))dIm(λ) and the change of variable defined in

Eq. 5, giving

p(τ) � 2δt2

πα2ρ2τ2

���������������
α2ρ2 − (α − δt/τ)2

√
(6)

Importantly we note that while the eigenvalues are uniformly
distributed over the unit circle, the timescales are not due to the
inverse relationship between them. The resulting distribution of
the linearised system, shown in Figure 1B (red line), is in
excellent agreement with the numerically computed
distribution for a single ESN (black points + shaded area).

The analytical form of the distribution, together with Eq. 5,
allows us to explicitly derive how changes in α and ρ affect the
network timescales. Notably we can obtain analytical expression
for the minimum, maximum and most probable (peak of the
distribution) timescale:

τmin � δt
α(1 + ρ) , (7)

τmax � δt
α(1 − ρ) , (8)

τpeak � 5δt
4α(1 − ρ2) (1 −

������������
1 − 24

25
(1 − ρ2)√ ) (9)

where Eqs. 8 and 7 can be derived directly from Eq. 5, while Eq. 9
follows from maximisation of Eq. 6. As expected, α strongly
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affects all these three quantities; interestingly, though, α does not
influence the relative range of the distribution,
τmax/τmin � (1 + ρ)/(1 − ρ). Indeed α plays the role of a unit
of measure for the τ’s, and can then be used to scale the
distribution in order to match the relevant timescales for the
specific task. On the other hand, ρ does not strongly affect the
shape of the distribution, but determines how dispersed the τ’s
are. Given the finite number of τ’s expressed by a finite ESN, the
hyper-parameter ρ can be used to balance the raw representation
power of the network (how wide the range of timescales is) with
the capacity to approximate any given timescale in that range.
Figures 1C,D give a more detailed view of how the distribution of
timescales changes as α and ρ, respectively, vary; note the
logarithmic scale on the y-axis, that makes the dependence on
α linear. The link between the eigenvalues and the reservoir
dynamics can be shown through the analysis of the network
response to an impulsive signal, shown in Section 2
Supplementary Material where the experimental activities are
compared with the theoretical ones expected from the linearised
system.

2.1 Hierarchical Echo-State Networks
Different studies have proposed alternatives to the random
structure of the connectivity matrix of ESNs, formulating
models of reservoirs with regular graph structures. Examples
include a delay line [17], where each node receives and provides
information only from the previous node and the following one
respectively, and the concentric reservoir proposed in [18],
where multiple delay lines are connected to form a
concentric structure. Furthermore, the idea of a hierarchical
architecture of ESNs, where each ESN is connected to the

preceding and following one, has attracted the reservoir
computing community for its capability of discovering higher
level features of the external signal [34]. Figure 2 schematically
shows the architecture for (A) a single ESN, (B) 2 sub-reservoir
hierarchical ESN for which the input is fed into only the first
sub-reservoir which in turn feeds into the second and (C) a
parallel ESN, where two unconnected sub-reservoirs receive the
same input. These hierarchical ESNs are identical to the 2 layer
DeepESN given by [27]. A general ensemble of interacting ESNs
can be described by

x(k)(t + δt) � (1 − α(k))x(k) + α(k)f (h(k)(t)), (10)

h(k)(t) � c(k)W(k)
in s(k)(t) + ∑NESN

l

ρ(kl)W(kl)x(l)(t), (11)

where the parameters have the similar definitions as in the case of a
single ESN in Eq. 1. The index k indicates the network number and
NESN is the total number of networks under consideration. In a
hierarchical structure of ESNs W(kl) ≠ 0 for k � l or k � l + 1 only,
andW(kl) can be drawn from any desirable distribution thanks to the
absence of feedback connections to higher-order reservoirs. Indeed,
in this case, the necessary condition for the Echo-State network
property is that all the inner connectivity matrices W(kk) have
eigenvalues with an absolute value less than one. Furthermore, in
the typical hierarchical structure proposed in previous works [23–25,
27, 35], the input is fed to the first network only, and W(k)

in ≠ 0 if
k � 1 only. We emphasise that the values of α(k) and ρ(k), which are
closely related to the timescales and repertoire of dynamics of
network number k (and, in the case of hierarchical reservoirs,
also to all subsequent networks), do not have to be equal for

FIGURE 1 | The analysis of the timescales of the system in the linear regime can guide the search for the optimal values of the hyper-parameters α and ρ. (A):
Translation and scaling of the eigenvalues of the system due to the presence of the leakage factor. (B): Example of distribution of timescales, computed analytically (red
line) and computationally (black points) estimated from the eigenvalues ofW. (C): Pirate plot of the distributions of timescales as α increases. Both axes are logarithmic.
Higher α values correspond to longer timescales and to a more compressed range of timescales (logarithmic y-axis). (D): Pirate plot of the distributions of
timescales: as ρ increases, the range of timescales expands. Again, both axes are logarithmic. (E): Example distributions of timescales for reservoirs with different
connectivity structure. From left to right, a delay line, single ESN, 2 ESNs (connected and unconnected, see text for the reason why the timescales for these two
structures are the same in the linear regime). The higher complexity of the models reported is reflected in a richer distribution of timescales.
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each ESN, but can be chosen differently tofit the necessity of the task.
In particular, some tasks could require memory over a wide range of
timescales that could not effectively be covered by a single ESN.

In Figure 1E we show examples of the timescale distributions
of the corresponding linearised dynamical systems for different
ESN structures, from the simple delay line model to the higher
complexity exhibited from two hierarchical ESNs. In order from
left to right, the histograms of timescales are for a delay line, a
single ESN, and two ESNs (whether hierarchically connected or
unconnected; see below for clarification). All the models share an
ESNwith ρ � 0.9 and α � 0.9;where present, the second reservoir
has α � 0.2. By construction, the richness and range of timescales
distributions reported increases with the complexity of the
models. However, we note how a simple delay line could
exhibit longer temporal scales than the other structures
analyzed thanks to its constant and high value of minimum
path length between any pairs of nodes. Nevertheless, its limited
dynamics restricts its application to simple tasks. The cases with
two ESNs show a bimodal distribution corresponding to the two
values of α.

Yet, the spectrum of the eigenvalues of the linearised system is
only partially informative of the functioning and capabilities of an
ESN. This is clearly demonstrated by the fact that a hierarchical
and a parallel ESN share the same spectrum in the linear regime.
Indeed, for a hierarchical ESN, whose connectivity matrix of the
linearised dynamics is given by:

W � [W(11) 0
W(21) W(22) ], (12)

it is easy to demonstrate that every eigenvalue of W(11) and
W(22) is also an eigenvalue of W , irrespective of W(21), not
unlike what happens for a parallel ESN (where W(21) � 0,
and hence the demonstration follows immediately).

Nonetheless, as we will see in the next sections, the
hierarchical ESN has better performance on different
tasks compared to the other structures considered,
including the parallel ESN.

It is interesting to note, in this respect, that the success of the
hierarchical ESN is generally achieved when the leakage term of
the first reservoir is higher than the leakage term of the second
(or, in other words, when the first network has much shorter
timescales). Such observation opens the way to an alternative
route to understand the functioning of the hierarchical structure,
as the first reservoir expanding the dimensionality of the input
and then feeding the enriched signal into the second network.
Indeed, in the following, we will show how, in a crude
approximation and under the above condition of a wide
separation of timescales, the first ESN extracts information on
the short term behavior of the input signal, notably its derivatives,
and the second ESN integrates such information over
longer times.

We begin with the (continuous time) linearized dynamics of a
Hierarchical ESN given by

_x(1)(t) � −M(1)x(1)(t) +W(1)
in s(t), (13)

_x(2)(t) � −M(2)x(2)(t) +W(21)x(1)(t), (14)

where, for simplicity, we have reabsorbed the ρ(kl) and c(k) factors
into the definitions of W(kl) and W(k)

in respectively, and the new
constants can be derived with reference to Eqs 1,2; for example:

M(k) � α(k)

δt
[I − f ′(0) W(kk)]. (15)

The neuron activity can be projected on to the left eigenvector
of each of the M(i) matrices. As such we define the eigenvector
matrices, V(i), where each row is a left eigenvector and so satisfies
the equation V(i)M(i) � Λ(i)V(i). Λ(1) and Λ(22) are the diagonal

FIGURE 2 | Single and hierarchical echo-state network (ESN) architectures. (A): A single ESNwith internally connected nodes with a single set of hyper-parameters
α and ρ. (B): A hierarchical ESN composed of 2 connected reservoirs where the input is fed into reservoir one only and the connection is unidirectional from R1 to R2,
which is identical to the 2 layer DeepESN of [27]. (C): A parallel (or unconnected hierarchical) ESN where the network is partitioned into 2 reservoirs, R1 and R2, which
each receive the input and provide output but have distinct hyper-parameters.
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matrices of the eigenvalues of the twoMmatrices. Using these we
can define y(k) ≡ V(k)x(k), and so the dynamical equations can be
expressed as

_y(1)(t) � −Λ(1)y(1)(t) + ~W
(1)
in s(t), (16)

_y(2)(t) � −Λ(2)y(2)(t) + ~W
(21)

y(1)(t), (17)

where ~W
(1)
in � V(1)W(1)

in and ~W
(21) � V(2)W(21) (V(1))− 1 are the

input and connection matrices expanded in this basis. Taking the
Fourier transform on both sides of Eq. 16, such that
FT[y(1)(t)] � ~y(1)(ω) and FT[ _y(1)(t)] � −iω~y(1)(ω), where i is
the imaginary unit. The transform ~y(2)(ω) of y(2)(t) can now be
expressed as a function of the transform of the signal ~s(ω) giving

(Λ(1) − iωI)~y(1)(ω) � ~W
(1)
in ~s(ω) (18)

where I is the identity matrix of the same size as Λ(1). If the
second ESN’s timescale are much longer than that of the first one
(i.e., Λ(1) ≫Λ(2)), then we can expand the inverse of the ~y(1)

coefficient on the LHS of Eq. 18 when Λ(1) →∞ as

(Λ(1) − iωI)− 1 � (Λ(1))− 1(1 − iω(Λ(1))− 1)− 1
, (19)

≈ (Λ(1))− 1∑∞
n�0

(iω(Λ(1))− 1)n, (20)

By applying this approximation to Eq. 18, and by defining the
diagonal matrix of characteristic times T(1) ≡ − (Λ(1))− 1, the
relation between the activity of reservoir one and the input in
Fourier space is given by

~y(1)(ω) � −T(1) ∑∞
n�0

( − iωT(1))n ~W(1)
in ~s(ω). (21)

The coefficients of this series are equivalent to taking
successive time derivatives in Fourier space, such that
(−iω)n~s � d(n)~s/dt(n). So by taking the inverse Fourier
transform we find the following differential equation for y(1)

y(1)(t) � −T(1) ∑∞
n�0

(T(1))n ~W(1)
in

d(n)s(t)
dt(n)

, (22)

which can be inserted into Eq. 17 to give

_y(2) � Λ(2)y(2) − ~W
(21)

T(1)⎡⎣ ~W
(1)
in s(t) +∑∞

n�1
(T(1))n ~W(1)

in

d(n)s(t)
dt(n)

⎤⎦.
(23)

Thus the second ESN integrates the signal with a linear
combination of its derivatives. In other words, the first
reservoir expands the dimensionality of the signal to include
information regarding the signal’s derivatives (or, equivalently
in discretized time, the previous values assumed by the signal).
In this respect, Eq. 23 is key to understanding how the
hierarchical connectivity between the two reservoirs enhances
the representational capabilities of the system. The finite-
difference approximation of the time derivatives appearing in
Eq. 23 implies that a combination of past values of the signal

appears, going back in time as much as the retained derivative
order dictates.

2.2 Online Learning of Hyper-Parameter
Selecting the hyper-parameters of such systems can be
challenging. Such selection process can be informed by the
knowledge of the natural timescales of the task/signal at hand.
Alternatively one can resort to a learning method to optimise the
parameters directly. The inherent limitation of these methods is
the same as learning the network weights with BPTT: the whole
history of network activations is required at once. One way to by-
pass this issue is to approximate the error signal by considering
only past and same-time contributions, as suggested by Bellec
et al. [4] in their framework known as e-prop (see also [36]), and
derive from this approximation an online learning rule for the
ESN hyper-parameters. Following their approach, we end up with
a novel learning rule for the leakage terms of connected ESNs that
is similar to the rule proposed by Jaeger et al. [32] but extended to
two hierarchical reservoirs. The main learning rule is given by:

dE
dα(i) (t) � ∑NESN

k�1

zE
zx(k)(t) e

(ki)(t), (24)

where e(ki)(t) � dx(k)(t)/dα(i) is known as the eligibility trace
which tracks the gradient of neuron activities in the reservoir
number k with respect to the ith leakage rate. Given the closed
form for the hierarchical ESNs in Eqs 10,11 these terms can be
readily calculated. For our NESN sub-reservoirs in the hierarchical
structure there will be N2

ESN eligibility traces to track how each
sub-reservoir depends on the other leakage rates. In the
hierarchical case of a fixed feed-forward structure some of
these traces will be zero, and the number of non-zero
eligibility traces would be N(N + 1)/2. Since the update of the
neuron’s activity depends on its previous values, so do the
eligibility traces; therefore, they can be calculated recursively
through

e(ki)(t + δt) � (1 − α(k))e(ki)(t) + δki(f (h(k)(t)) − x(k)(t))
+ α(k)f ′(h(k)(t))∑

l ≠ k

ρ(kl)W(kl)e(li)(t), (25)

where δki � 1 if k � i and 0 otherwise, i. e the Kronecker delta.
The update of Eq. 25 for each k-i pair needs to follow the order of
dependencies given by the structure of connected reservoirs
considered. The eligibility trace is an approximation that only
includes same-time contributions to the gradient but has the
advantage that is can be easily computed online. A complete
description of our method is given in the Supplementary
Material. For an example where the mean squared error
function E(t) � 1

2[~y(t) − y(t)]2 is used in a regression task and
a structure composed by two reservoirs, the updating equations
on the leakage terms are

α(1)←α(1) − ηα[~y(t) − y(t)]Wout( e(11)(t)
e(12)(t))

α(2)←α(2) − ηα[~y(t) − y(t)]Wout( e(21)(t)
e(22)(t))

(26)
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where ηα is the learning rate on the leakage terms and
(e(k1)(t), e(k2)(t)) (k � 1, 2 in this case with two reservoirs) is
a vector composed by the juxtaposition of the eligibility traces,
which can be computed through Eq. 25. Of course, the gradient
can be combined with existing gradient learning techniques,
among which we adopt the Adam optimiser, described in the
Supplementary Material. In all online learning simulations,
training is accomplished through minibatches with updates at
each time step. Training is stopped after convergence. When
learning α′s and the output weights simultaneously, the learning
rates corresponding to these hyper-parameters need to be
carefully set, since the weights need to adapt quickly to the
changing dynamic of the network, but a fast convergence of
Wout can trap the optimisation process around sub-optimal
values of the leakage terms. For a reservoir with trained and
converged output weights, a further variation of α′s, even in the
right direction, could correspond to an undesirable increase in
the error function. We found that this problem of local
minimum can be avoided by applying a high momentum in
the optimisation process of α and randomly re-initialising the
output weights when the α′s are close to convergence. The
random re-initialisation functions to keep the output weights
from being too close to convergence. Thus, we defined the
convergence of the algorithm for α′s as when the α′s do not
change considerably after re-initialisation. When this happens,
it is possible to turn off the learning on the leakage terms and to
optimise the read-out only. More details about online training
can be found in the discussions related to each task.

3 RESULTS

The following sections are dedicated to the study of the role of
timescales and the particular choices of α and ρ in various tasks,
with attention on networks composed by a single ESN, 2
unconnected ESNs and 2 hierarchical ESNs. The number of
trainable parameters in each task for the different models will
be preserved by using the same total number of neurons in each
model. The results analyzed will be consequently interpreted
through the analysis of timescales of the linearised systems.

3.1 NARMA10
A common test signal for reservoir computing systems is the non-
linear auto-regressive moving average sequence computed with a
10 step time delay (NARMA10) [37, 38]. Here we adopt a discrete
time formalism where n � t/δt and the internal state of the
reservoir is denoted as xn � x(nδt). The input, sn, is a
uniformly distributed random number in the range [0, 0.5]
and the output time-series is computed using

yn � yn−1⎛⎝a + b∑D
k�1

yn−k⎞⎠ + csn−1sn−D + d, (27)

where D � 10 is the memory length, a � 0.3, b � 0.05, c � 1.5,
and d � 0.1. The task for the network is to predict the NARMA10
output yn given the input sn. We have adapted this to also

generate a NARMA5 task where D � 5 but the other
parameters are unchanged. This provides an almost identical
task but with different timescales for comparison.

The task of reconstructing the output of the NARMA10
sequence can be challenging for a reservoir as it requires both
a memory (and average) over the previous 10 steps and fast
variation with the current input values to produce the desired
output. A typical input and output signal is shown in Figure 3A
and the corresponding auto-correlation function of the input and
output in B. Since the input is a random sequence it does not
exhibit any interesting features but for the output the auto-
correlation shows a clear peak at a delay of 9 δt in accordance
with the governing equation. For a reservoir to handle this task
well it is necessary to include not only highly non-linear dynamics
on a short timescale but also slower dynamics to handle the
memory aspect of the task.

This regression task is solved by training a set of linear output
weights to minimise the mean squared error (MSE) of the
network output and true output. The predicted output is
computed using linear output weights on the concatenated
network activity (xn � (x(1)n , x(2)n )T ), such that

~yn � xTnWout (28)

whereWout is the weight vector of length N+1 when an additional
bias unit is included. The MSE is minimised by using the ridge
regression method [39] such that the weights are computed using

Wout � (xTx − λI)− 1xTy (29)

where x is a matrix formed from the activation of the internal
states with a shape of number of samples by number of neurons, y
is the desired output vector, λ is the regularisation parameter that
is selected using a validation data set and I the identity matrix. To
analyze the performance of the ESNs on the NARMA10 task we
use the normalised root mean squared error as

NRMSE �

�������������
1
Ns

∑Ns

n
(~yn − yn)2
Var(y)

√√
, (30)

where ~yn is the predicted output of the network and yn is the true
output as defined by Eq. 27.

To test the effectiveness of including multiple time-scales in
ESNs, we simulate first a single ESN with N � 100 neurons and
vary both α and ρ to alter the time-scale distribution. Secondly,
we simulate a hierarchical ESN split into 2 reservoirs each with
N � 50 neurons, where we vary α(1) and α(2) with
ρ(1) � ρ(2) � 0.95. The input factor was set as c(1) � 0.2 and
c(2) � 0 for the connected hierarchical ESN but when they are
unconnected the input is fed into both, such that
c(1) � c(2) � 0.2. In all cases the NRMSE is computed on an
unseen test set and averaged over 20 initialisations of the ESN
with a running median convolution is applied to the error
surfaces to reduce outliers. In parallel to this we have also
applied the online training method for the α hyper-parameters.
The hyper-parameters used for the gradient descent learning
are summarised in Table 1.
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Figures 3E–G and I–M show the NRMSE depending on α(1)
and α(2) for 3 variations of the hierarchical ESN connection
strength on the NARMA10 task. In the unconnected case
(ρ(21) � 0, panels E and I), we find that the NRMSE drops by
increasing both leakage rates but the minimum is when one of the
leakage rates is ≈ 0.5. This is in agreement with the online
learning method for the α’s in shown in I but the error
minimum is shallow and prone to noise in the signal or ESN
structure. For the weakly connected hierarchical ESN (ρ(21) � 0.1,
panels F and J) we find again that when the sub-reservoirs have
different timescales the NRMSE is reduced. In comparison to the
unconnected case the error surface is asymmetric with a
minimum at approximately α(1) � 1.0 and α(2) ≈ 0.5. As the
strength of the connection is increased (ρ(21) � 1.0, Panel G
and K), the minimum error moves to a lower leakage rate in
the second reservoir (α(2) ≈ 0.2) which reflects a better separation

of the timescale distributions. This is a gradual effect with respect
to the connection strength since stronger connection allows for a
relative increase of the expanded input from the first reservoir
compared to the base input signal. Since the input feeds into
reservoir 1, a high α provides a transformation on the input over
short time-scales, expanding the dimensionality of the signal,
offering a representation that preserves much of the dynamic of
the driving input and that is fed to the second reservoir. Then, since
the latter does not have a direct connection to the input it performs a
longer timescale transformation of the internal states of reservoir 1.
In this way the reservoirs naturally act on different parts of the task,
i.e., reservoir one provides a fast non-linear transformation of the
input while reservoir 2 follows the slower varying 10-step average of
the signal, and thus returning a lowerNRMSE. As a side note, we can
demonstrate the validity of the theoretical analysis in Section 2.1 by
replacing the first reservoir by Eq. 23 on the NARMA task (see

FIGURE 3 | Performance of single or hierarchical ESNs on the NARMA10 and NARMA5 task. (A): Example input signal (black) and desired output (red) for the
NARMA10 task. (B): The auto-correlation function of the (black) input (red) NARMA10 and (blue) NARMA5 desired output signals, showing a second peak at about 9
delay steps for the NARMA10 and 4 for the NARMA5. (C): The NRMSE for a single ESN for with ρ � 1.0 and 0.63 over a range of α. The NRMSE is lower for ρ ≈ 1 and
α � 1. The solid lines show the minimum NRMSE for the unconnected (blue line) and connected (red line); for the unconnected case the minimum NRMSE is similar
to the single ESN while the connected case has a smaller NRMSE by about 10%. (D): Average NRMSE of a single ESN for various α compared to the hierarchical ESNs
for the NARMA5 task. (E–K): The average NRMSE surface using a hierarchical ESN computed for varying the leakage rates α(k) of both the reservoir components for (E)
and (I) (no coupling, ρ(21) � 0), (F) and (J) (weak coupling, ρ(21) � 0.1), and (G) and (K) (strong coupling, ρ(21) � 1). Panels (I-L) show a close up in region for the range
α(k) � [0.1,1] to highlight the changing behaviors. The lines on these panels show the trajectory of the α(k) values trained directly using the online method. For each case
of the coupling the online learning trends toward the approximate error minimum. (H) shows the NRMSE surface for the NARMA5 task using a strongly connected
hierarchical ESN, with (N) again showing a zoom of the α � [0.1, 1] region. The region of best performance is with α(2) ≈ 0.5 which matches the shorter timescale
demonstrated in the auto-correlation in (B).
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Section 3 SupplementaryMaterial), resulting in a similar landscape
as in Figure 3G and a similar optimal value for α(2).

Figure 3C shows the relative performance of the single ESN to
the minimum values for the unconnected (ESNu

2) and connected
(ESNc

2) hierarchical reservoirs. The single ESN shows the similar
decrease inNRMSEwith increasing α and reaches a similarminimum
NRMSE as the unconnected case. In comparison with the connected
cases the multiple timescales provides a more optimised result. If we
consider the analysis of the timescales discussed in the previous section
the choice of these hyper-parameters becomes more evident. With
α � 1 the timescale distribution of the network is sharply peaked close
to theminimum timescale of one discrete stepwhilewhen α � 0.1 this
peak is broader and the peak of the distribution is closer to the second
peak present in the auto-correlation function shown in Panel B. We
note that while the most likely timescale is τpeak ≈ 6 for α � 0.1, ρ �
0.95 which is lower than the natural timescale of the problem, the
increased width of the distribution increases the number of timescales
at τ � 10 dramatically which maybe why a lower α is not necessary.

To further investigate the effect of the inherent timescale of the
task on the timescales we performed a similar analysis on
the NARMA5 task. Figures 3H,L show the NRMSE surface for
the strongly connected case. The minimum error occurs at
α(1) ≈ 1.0 (similar to the NARMA10 results in G and K) but
α(2) ≈ 0.5 (as opposed to ≈ 0.2 for NARMA10). This is due to
the shorter timescales required by the NARMA5 task and the peak
timescale for these values is much closer to the peak in the auto-
correlation shown inB. Panel D shows the performance of the single
ESN where again the optimal leakage rate is α � 1 and similar to the
unconnected cases but the NRMSE is higher than the
connected cases.

In this theoretical task where the desired output is designed a
priori, the memory required and the consequent range of
timescales necessary to solve the task are known.

Consequently, considering the mathematical analysis in
Section 2.1, and that for hierarchical ESNs the timescales of
the first ESN should be faster than those of the second Figure 3),
the best-performing values of the leakage terms can be set a priori
without the computationally expensive grid search reported in
Figures 3E–L. However, it can be difficult to guess the leakage
terms in the more complex cases where the autocorrelation
structure of the signal is only partially informative of the
timescales required.

This problem can be solved using the online learning approach
defined through Eq. 24. In this case, learning is accomplished
through minibatches and the error function can be written
explicitly as

E(t) � 1
2Nbatch

∑Nbatch

m�1
[~y(t,m) − y(t,m)]2 (31)

where Nbatch is the minibatch size and m is its corresponding
index. A minibatch is introduced artificially by dividing the input
sequence into Nbatch signals or by generating different NARMA
signals. Of course, the twomethods lead to equivalent results if we
assure that the Nbatch sequences are temporally long enough. A
learning rate ηα/ηW ≈ 10− 2 − 10− 3 was adopted. The optimiser
used for this purpose is Adam, with the suggested value of β1 �
0.9 adopted for the output weights and a higher first momentum
β1 � 0.99 adopted for the leakage terms. Instead, we set β2 �
0.999 of the second momentum for both types of parameters (See
Section 2.2 for a description of the updating rules). Panels I–L
show a zoomed in region of the error surface with the lines
showing the online training trajectory of the α hyper-parameters.
In each case the trajectory is moving toward the minimum
NRMSE of the α phase space.

3.2 A Volatile Environment
We now turn to study the reservoir performance on a task of a
telegraph process in a simulated noisy environment. The
telegraph process s(1)(t) has two states that we will call up 1)
and down (0), where the probability of going from a down state
to an up state p(s � 1|s � 0) (or the opposite p(s � 0|s � 1)) is
fixed for any time step. The environment is also characterised by
a telegraph process s(2)(t), but the transition probability is much
lower and controls the transition probability of the first signal.
To simplify the notation in the following we denote the
probability of the signal i transitioning from state a to state b
as p(s(i)(t) � a

∣∣∣∣s(i)(t − δt) � b) � p(i)ab(t). The signal taken under
consideration is then composed by a fast telegraph process with
probabilities p(1)01 (t) and p(1)10 (t), whose values are interchanged
by following the dynamic of a slower telegraph process s(2)(t).
Every time the slower environment signal changes its state, the
probabilities of the first signal are changed, i. e., p(1)01 (t)↔p(1)10 (t).
The resulting signal is then characterised by

p(1)10 (t) � { p1, if s(2)(t) � 0
p2, if s(2)(t) � 1

(32)

p(1)01 (t) � { p2, if s(2)(t) � 0
p1, if s(2)(t) � 1

(33)

TABLE 1 | Table of the hyper-parameters adopted in the online learning process.
η is the learning rate in each case, while β1 , β2 and ϵ are parameters for the
Adam optimiser (further details are given in the Supplementary Material).

Learning hyper-parameters

NARMA/Telegraph psMNIST
Network size N 100 1200
Minibatch size Nbatch 10 50

Learning Wout

ηW 10− 3 10−3 [10−4]a

β1 0.9 0.9
β2 0.999 0.999
ϵ 10− 8 10− 8

Learning α

ηα 5 × 10− 6 10− 3

β1 0.99 0.999
β2 0.999 0.999
ϵ 10− 8 10− 8

asymbol indicates that the learning rate 10−3 is for the case with 4 hidden states, while the
learning rate [10−4] is for the case with 28 hidden states. This decrease of η is due to the
increase in the dimensionality of the representation for the latter case in comparison to
the situation where the read-out is composed by four concatenated values of activity.
Furthermore, such learning rates are 10 times higher than the case in which only the read-
out is trained (only in the psMNIST task). Thus, the high learning rate adopted has the
purpose to introduce noise in the learning process and to avoid local minima in the
complex case where α and Wout are optimised simultaneously.
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The transition probabilities of the second signal are fixed and
symmetric such that

p(2)01 (t) � p(2)10 (t) � p3, (34)

The probabilities p1, p2 and p3 are fixed parameters of the signal
that define the process. Given that the second signal controls the
probabilities of the first telegraph process, we say that it defines the
regime of the input, while we refer to the up and down values of the
first process simply as states. Thus, the reconstruction of s(1)(t) from
the input will be called state reconstruction, while reconstruction of
s(2)(t) will be called regime reconstruction. These reconstructions
can be considered separately or as a joint task requiring the system to
be modeled on long and short timescales simultaneously. Due to the
probability transition caused by s(2)(t), both states and regime will
be equally present over a infinitely long signal. The values adopted
for the simulation are p1 � 0.05, p2 � 0.1 and p3 � 0.0005.

The input signal corresponds to s(1)(t) + σN (0, 1), that is the
faster telegraph process with additional white noise. The input
signal constructed is a metaphor of a highly stochastic
environment with two states and two possible regimes that define
the probability of switching between the two states. The reservoir will
be asked to understand in which state (s(1)(t) � 1 or 0) and/or regime
(s(2)(t) � 1 or 0) it is for each time t, measuring the understanding of
themodel to estimate the state of the input signal. The input signal and
telegraph processes is shown in Figure 4A, while B shows the
corresponding auto-correlation structure of the processes. The

auto-correlation shows that the input has a temporal structure of
around 10 δt while the slow ‘environment’ process has a structure
close to 1000 δt. This corresponds directly to the timescales defined by
the probabilities of the signals.

Panels C andDof Figure 4 show the performance of a single ESN
when it is tasked to reconstruct the processes s(1)(t) (state
recognition) and s(2)(t) (regime recognition) respectively. In this
simulation, learning is always accomplished online and the error
function is the same as Eq. 31. First, panel C demonstrates how the
leakage term, α, must be tuned to the level of noise of the
environment, and how lower values of α are desirable for
noisier signals, in order to solve the state recognition
problem. Indeed, the need to smooth the fluctuations of the
input signal increases with σ, while for low values of noise the
network should simply mimic the driving input. Second, panel
D shows how the desirable values of αmust be lower in the case
where the network is asked to reproduce the slower dynamic of
s(2)(t) independently of having to output the fast signal, in
order to solve the regime recognition problem. This result
exemplifies how the timescales of the network must be tuned
depending on the desired output. It demonstrates that, even in
this relatively simple environment, it is crucial to adopt
multiple timescales in the network to obtain results that are
robust with respect to a variation of the additional white
noise σ.

Finally, panels E and F of Figure 4 show the accuracy of two
unconnected (E) and connected (F) reservoirs when the network

FIGURE 4 | The best structure and parameters of the model depend on the specific environment considered, that is different values of the additive noise in the input
signal, and on the specific desired output. (A): Example of input signal and of its generative processes, which have a faster and a slower dynamic respectively. When the
slower process (red line) is up (down), the other signal is in a regime where the average time in the zero (one) state is greater than the average time spent in the other state.
The input signal (gray line) corresponds to the faster process (black line) with additional white noise. (B): Auto-correlation structure of the two generative processes.
(C): The accuracy surface for a single ESN on the state recognition sub-task for varying level of noise (σ) and leakage rate of the network showing that for increasing levels
of noise a lower leakage rate is needed to determine the state. The line shows the trajectory of α using the online learning method when the strength of the noise is
changed. (D): The accuracy for a single ESN on the regime recognition sub-task for varying noise and leakage rate. In this case the low leakage rate is preferred for all
values of noise. (E): Accuracy surface for the state recognition sub-task for an unconnected hierarchical ESN showing how either of the leakage rates must be low while
the other is high. (F): Accuracy surface for the regime recognition sub-task for a hierarchical ESN showing the first reservoir must have a high leakage rate and the second
a low leakage rate.
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has to classify the state and the regime of the input signal at the
same time. In this case, the desired output corresponds to a four
dimensional signal that encodes all the possible combinations of
states and regimes; for instance, when the signal is in the state one
and in the regime one, we would require the first dimension of the
output to be equal to one and all other dimensions to be equal to
zero, and so on. The best performance occurs when one leakage
term is high and the other one is low and in the range of
significant delays of the auto-correlation function. This
corresponds to one network solving the regime recognition
and the other network solving the state recognition. For the
unconnected reservoirs, it does not matter which reservoir has
high vs. low leakage terms, reflected by the symmetry of
Figure 4E, while for the connected reservoirs, the best
performance occurs when the first reservoir has the high
leakage term and the second the low leakage terms, see
Figure 4F, similar to Figure 3. Both two-reservoir networks
can achieve accuracy 0.75, but the single ESN can not solve
the task efficiently, since it cannot simultaneously satisfy the need
for high and low αs, reporting a maximum performance of
about 0.64.

The path reported in panel C of Figure 4 and all panels in
Figure 5 show the application of the online training algorithm
in this environment. The values of the hyper-parameters
adopted in the optimisation process through the Adam
optimiser are the same as in Section 3.1, where we used a
slower learning rate and a higher first momentum on the
leakage terms in comparison to the values adopted for the
output weights. The line of panel C (Figure 4) shows the online
adaptation of α for a simulation where the external noise
increases from one to four with six constant steps of 0.5
equally spaced across the computational time of the
simulation. The result shows how the timescales of the
network decrease for each increase in σ, depicted with a
circle along the black line. The path of online adaptation
reports a decrease of the α value for noisier external signals.
This result occurs because as the signal becomes noisier (σ
rises), it becomes more important to dampen signal
fluctuations. This result also shows that the online
algorithm can adapt in environments with varying signal to
noise ratio. Figure 5 shows the online training of α(1) and α(2)

for an environment composed by a faster and a slower
composition of telegraph processes. This specific simulation
is characterised by the alternation of two signals defined by Eqs
32, 33 and 34, each with different values of p1 and p2. In
particular, while p1 � 0.5 and p2 � 0.1 for the ‘fast’ phase of the
external signal, p1 � 0.1 and p2 � 0.05 for the “slow” phase. In
contrast, the slower timescale of the task defined by p3 �
0.0005 remains invariant across the experiment. Panel C
shows the adaptation of the leakage terms for this task in
the case of a hierarchical structure of ESNs. While α(2) adapts
to the change of p1 and p2 following the transition between the
two phases of the external signals, the relatively constant value
of α(1) indicates how the first network sets its timescales to
follow the slower dynamic of the signal, characterised by the
constant value of p3. Thus, the composed network exploits the
two reservoirs separately, and the first (second) reservoir is
used to represent the information necessary to recognise the
regime (state) of the external signal.

3.3 Permuted Sequential MNIST
The Permuted Sequential MNIST (psMNIST) task is
considered a standard benchmark for studying the ability of
recurrent neural networks to understand long temporal
dependencies. The task is based on the MNIST dataset,
which is composed of 60, 000 handwritten digits digitised to
28 × 28 pixel images. In the standard MNIST protocol every
pixel is presented at the same temporal step so a machine has
all the information of the image available at once and needs to
classify the input into one out of ten classes. In contrast, in the
psMNIST task, the model receives each pixel sequentially once
at a time, so that the length of the one dimensional input
sequence is 784. Thus, the machine has to rely on its intrinsic
temporal dynamic and consequent memory ability to classify
the image correctly. Furthermore, each image in the dataset is
transformed through a random permutation of its pixels in
order to include temporal dependencies over a wide range of
input timescales and to destroy the original images’ structure.
Of course, the same permutation is applied on the entire
dataset. The performance of ESNs on the MNIST dataset,
where each columns of pixels in a image is fed to the
network sequentially (each image corresponds to a 28

FIGURE 5 | The online training of the leakage terms can adapt to the changing environment, that is the signal probabilities are increased or decreased periodically.
(A): Scheme of the change of the values of probabilities, where high probabilities of switching are referred to as fast phase of the telegraph process, while low probabilities
as slow phase. (B): Running average of the gradients of α(1) and α(2) as time varies. (C): Online adaptation of the leakage terms.
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dimensional signal of length 28 time steps), has been analyzed
in [40] and in [41]. In [40] the original dataset was
preprocessed through reshaping and rotating the original
image to enhance the network’s ability to understand high
level features of the data. In this case, the original dataset is
used. In [41], the addition of thresholds and the introduction
of sparse representation in the read-out of the reservoir was
used to improve the performance of the network in the online
learning of the standard MNIST task through reservoir
computing. This section is focused on the analysis of the
performance of ESNs on the psMNIST task and on their
dependence on the range of timescales available in the
network, i.e. the values of α and ρ chosen. In contrast to the
previous sections where ESNs are trained through ridge
regression, we have applied an online gradient descent
optimisation method. The cost function chosen to be
minimised is the cross entropy loss

E � − 1
Nbatch

∑Nbatch

m�1
∑Nclass

j�1
[yj(m)log(~yj(m))

+ (1 − yj(m))log(1 − ~yj(m))],
(35)

where m is the minibatch index, Nbatch corresponds to the
minibatch size and Nclass is the number of classes. For this task
the desired output, yj, is a one-hot encoded vector of the
correct classification while the desired output is a sigmoid
function of the readout of the reservoir nodes. Furthermore,
instead of reading out the activity of the reservoir from the
final temporal step of each sequence only, we have expanded
the reservoir representation by using previous temporal
activities of the network. In practice, given the sequence of
activities x(0), x(δt), . . . , x(δtT) (T � 784) that defines the
whole temporal dynamic of the network subjected to an
example input sequence, we trained the network by reading

FIGURE 6 | The additional non linearity added by the hierarchical reservoir structure is responsible for a relevant modification and increase of the performance
surface. (A,C): Auto-correlation structure of the MNIST dataset for two examples of digits, where each pixel is presented one after the other (C), and auto-correlation
structure of the data after the random permutation (A). The oscillatory trend inC reflects the form of the written digits, when this is seen one pixel after the other. The auto-
correlation function of the permuted data is low, but not negligible, for all the temporal steps, showing the necessity to have a wide repertoire of timescales in the
interval corresponding to the image size. (B,D): Accuracy of a single ESN for various α values compared the maximum accuracy of the hierarchical ESNs with 4 hidden
states (B) or 28 hidden states (D). (E–F): case with low sampling frequency of the ESNs which corresponds to a higher demand of internal memory in the reservoir. While
the best region of accuracy for the unconnected reservoirs is characterised by intermediate values of the leakage factors, the hierarchically connected network structure
reports the best performance when the second network has slower dynamics. (G–H): The utilisation of a high sampling frequency alleviates the need for long term
memory, and the reservoirs prefer the regions with fast timescales. In both cases analyzed, the additional complexity of the hierarchical model leads to a considerable
boost in performance. (I–N): Paths (black line, starting from the circle and ending in the star) that describe the online changes of the leakage terms achieved through the
online training algorithm in a zoomed region of the performance surface of α(1) and α(2). The paths are smoothed through a running average.
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out from the expanded vector
X � [x(Mδt), x(2Mδt), . . . , x(Tδt)], where M defines the
“time frame” used to sample the activities of the evolution
of the system across time.

~y � sigm⎛⎝ ∑T/M
n�1

W(n)
outx(nMδt)⎞⎠ (36)

where sigm stands for sigmoid activation function. We then
repeat the simulation for two different time frames of
sampling for each different model, that is a single ESN and a
pair of unconnected or connected ESNs, as in the previous
sections.

The two values of M used are 28 and 196, corresponding to a
sampling of 28 and 4 previous representations of the network
respectively. Of course, a higher value ofM corresponds to a more
challenging task, since the network has to exploit more its
dynamic to infer temporal dependencies. We note, however,
that none of the representation expansions used can guarantee
a good understanding of the temporal dependencies of the task, or
in other words, can guarantee that the system would be able to
discover higher order features of the image, considering that these
features depend on events that could be distant in time.

In Figure 6 we again analyze the performance of two
connected or unconnected ESNs varying α(1) and α(2) for
both M � 28 and 196. In contrast to the previous sections, we
now use gradient descent learning on the output weights
instead of ridge regression and increase the total number of
neurons in each model to N � 1200 due to the complexity of
the task. The Adam optimiser is used; its parameters, for both
the output weights and α learning, are in Table 1. As
previously, we have trained the output weights over a
range of fixed αs and report the performance on an unseen
test data set. In parallel to this we have trained both the
output weights and α values which, as shown by the lines on
the contour plots, converge toward the minimum computed
using the fixed α′s.

As in the other simulations, we found that the values of ρ
corresponding to the best performance was approximately one,
which maximises the range of timescales and the memory
available in the network. Figures 6E,F shows the case with
M � 28, while Figures 6G,H reports the accuracy for the
simulation with M � 196 where E and G are unconnected and
F and H connected reservoirs. The accuracy surface demonstrates
how, in the case of the unconnected ESNs with a fast sampling
rate in panel G, the best performance is achieved when at least one
of the two values of α is close to one. The result is due to the fast
changing dynamic of the temporal sequence that is introduced
through the random permutation of the pixels. On the contrary,
in the case of the unconnected ESNs with a slow sampling rate in
panel E the best accuracy is in a range of intermediate timescales
since both partitions must respond to both fast and slow
timescales.

This relatively simple behavior of the dependence of the accuracy
on the setting of the hyper-parameters changes in the cases of two
connected ESNs, whose additional complexity corresponds to a
considerable increase in the performance. Figure 6H reports how

the network prefers a regime with a fast timescale in the first
reservoir and a intermediate timescale in the second, which acts
as an additional non-linear temporal filter of the input provided by
the first network. The need of memory of events distant in time is
emphasised in 6F, where the best performing network is composed
by reservoirs with fast and slow dynamics respectively. The
performance boost from the panels E–G to the ones F-H has
only two possible explanations: first, the timescales of the second
network are increased naturally thanks to the input from the first
reservoir; second, the connections between the two reservoirs
provide an additional non-linear filter of the input that can be
exploited to discover higher level features of the signal. Thus, we can
conclude once again that achieving high performance in applying
reservoir models requires 1) additional non-linearity introduced
through the interconnections among the reservoirs and 2) an
appropriate choice of timescales, reflecting the task requirements
in terms of external signal and memory.

Panels I, L, M and N show the application of the online
training of αs for the various cases analyzed. In the psMNIST task
we found that the major difficulties in the application of an
iterative learning rule on the leakage terms are: the possibility to
get trapped in local minima, whose abundance can be caused by
the intrinsic complexity of the task, the intrinsic noise of the
dataset, the randomness of the reservoir and of the applied
permutation; the high computational time of a simulation that
exploits an iterative optimisation process on αs arising from a
practical constraint in the implementation. Indeed, while the
activities of the reservoir can be computed once across the whole
dataset and then saved in the case of untrained values of αs, the
activities of the nodes need to be computed every time the leakage
terms change in the online learning paradigm. However, we
found that using a higher learning rate ηW on the output
weights, compared to the value adopted in the paradigm
where the leakage terms are not optimised (as in Panels E, F,
G and H), can introduce beneficial noise in the learning process
and help to avoid local minima. Furthermore, a higher value of
the learning rate on the output weights corresponds to an
increased learning rate on the thresholds, as shown from
Supplementary Equation S7 and from the dependence of the
updating equations on Wout. As in the previous simulations of
Sections 3.1 and 3.2, the output weights are randomly
reinitialised after the convergence of αs, helping the algorithm
to avoid an undesirable quick convergence of weights. The online
process is then ended when the leakage terms remain
approximately constant even after the re-initialisation.
Following this computational recipe, it possible to avoid the
difficulties found and train the leakage terms efficiently.

Finally, we note how the best accuracy of 0.96 reached
throughout all the experiments on the psMNIST is comparable
to the results obtained by recurrent neural networks trained with
BPTT, whose performance on this task are analyzed in [42] and can
vary from 0.88 to 0.95. In comparison to recurrent structures trained
through BPTT, a networkwith two interacting ESNs provide a cheap
and easily trainable model. However, this comparison is limited by
the necessity of recurrent neural networks to carry the information
from the beginning to the end of the sequence, and to use the last
temporal state only or to adopt attention mechanisms.
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4 CONCLUSION

In summary, ESNs are a powerful tool for processing temporal data,
since they contain internal memory and time-scales that can be
adjusted via network hyper-parameters. Here we have highlighted
that multiple internal time-scales can be accessed by adopting a split
network architecture with differing hyper-parameters. We have
explored the performance of this architecture on three different
tasks: NARMA10, a benchmark composed by a fast-slow telegraph
process and PSMNIST. In each task, since multiple timescales
are present the hierarchical ESN performs better than a single
ESN when the two reservoirs have separate slow and fast timescales.
We have demonstrated how choosing the optimal leakage terms of a
reservoir can be aided by the theoretical analysis in the linear regime
of the network, and by studying the auto-correlation structure of the
input and/or desired output and the memory required to solve the
task. The theoretical analysis developed needs to be considered as a
guide for the tuning of the reservoir hyper-parameters, and in some
specific applications it could be insufficient because of the lack of
information about the nature of the task. In this regard, we showed
how to apply a data-driven online learning method to optimise the
timescales of reservoirs with different structures, demonstrating its
ability to find the operating regimes of the network that correspond
to high performance and to the best, task-dependent, choice of
timescales. The necessity of adopting different leakage factors is
emphasised in the case of interactive reservoirs, whose
additional complexity leads to better performance in all cases
analyzed. Indeed, the second reservoir, which acts as an
additional non linear filter with respect to the input, is the
perfect candidate to discover higher temporal features of the
signal, and it consequently prefers to adopt longer timescales in
comparison to the first reservoir, which has instead the role of
efficiently representing the input. We believe such hierarchical
architectures will be useful for addressing complex temporal
problems and there is also potential to further optimise the
connectivity between the component reservoirs by appropriate
adaptation of the online learning framework presented here.
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Generalizable Machine Learning in
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Although a number of studies have explored deep learning in neuroscience, the application
of these algorithms to neural systems on a microscopic scale, i.e. parameters relevant to
lower scales of organization, remains relatively novel. Motivated by advances in whole-
brain imaging, we examined the performance of deep learning models on microscopic
neural dynamics and resulting emergent behaviors using calcium imaging data from the
nematode C. elegans. As one of the only species for which neuron-level dynamics can be
recorded, C. elegans serves as the ideal organism for designing and testing models
bridging recent advances in deep learning and established concepts in neuroscience. We
show that neural networks perform remarkably well on both neuron-level dynamics
prediction and behavioral state classification. In addition, we compared the
performance of structure agnostic neural networks and graph neural networks to
investigate if graph structure can be exploited as a favourable inductive bias. To
perform this experiment, we designed a graph neural network which explicitly infers
relations between neurons from neural activity and leverages the inferred graph structure
during computations. In our experiments, we found that graph neural networks generally
outperformed structure agnostic models and excel in generalization on unseen organisms,
implying a potential path to generalizable machine learning in neuroscience.

Keywords: calcium imaging, graph neural network, deep learning, C elegans, motor action classification

1 INTRODUCTION

Constructing generalizable models in neuroscience poses a significant challenge because systems in
neuroscience are typically complex in the sense that dynamical systems composed of numerous
components collectively participate to produce emergent behaviors. Analyzing these systems can be
difficult because they tend to be highly non-linear in how they interact, can exhibit chaotic behaviors
and are high-dimensional by definition. As such, indistinguishable macroscopic states can arise from
numerous unique combinations of microscopic parameters i.e., parameters relevant to lower scales of
organization. Thus, bottom-up approaches to modeling neural systems often fail since a large
number of microscopic configurations can lead to the same observables (Golowasch et al., (2002);
Prinz et al., (2004)).

Because neural systems are highly degenerate and complex, their analysis is not amenable to many
conventional algorithms. For example, observed correlations between individual neurons and
behavioral states of an organism may not generalize to other organisms or even to repeated
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trials in the same individual (Frégnac (2017); Churchland et al.,
(2010); Goldman et al., (2001)). Hence, individual variability of
neural dynamics remains poorly understood and a fundamental
obstacle to model development as evaluation on unseen
individuals often leads to subpar results. Nevertheless, neural
systems exhibit universal behavior: organisms behave similarly.
Motivated by the need for robust and generalizable analytical
techniques, researchers recently applied tools from dynamical
systems analysis to simple organisms in hopes of discovering a
universal organizational principle underlying behavior. These
studies, made possible by advances in whole-brain imaging,
reveal that neural dynamics live on low-dimensional manifolds
which map to behavioral states [Prevedel et al., (2014); Kato et al.,
(2015)]. This discovery implies that although microscopic neural
dynamics differ between organisms, a macroscopic/global
universal framework may enable generalizable algorithms in
neuroscience. Nevertheless, the need for significant hand-
engineered feature extraction in these studies underscores the
potential of deep learning models for scalable analysis of neural
dynamics.

In this work, we examine the performance and generalizability
of deep learning models applied to the neural activity of C. elegans
(round worm/nematode). In particular, C. elegans is a canonical
species for investigating microscopic neural dynamics because it
remains the only organism whose connectome (the mapping of
all 302 neurons and their synaptic connections) is completely known
and well studied [White et al., (1986); Bargmann andMarder (2013);
Varshney et al., (2011); Cook et al., (2019)]. Furthermore, the
transparent body of these worms allows for calcium imaging of
whole brain neural activity which remains the only imaging
technique capable of spatially resolving the dynamics of
individual neurons (Wen and Kimura, 2020). Leveraging these
characteristics and insight gained from previous studies, we
developed deep learning models that bridge recent advances in
neuroscience and deep learning. Specifically, we first demonstrate
state-of-the-art performance for classifying motor action states-e.g.,
forward and reverse crawling-of C. elegans from calcium imaging
data acquired in previous works. Next, we examine the
generalization performance of our deep learning models on
unseen worms both within the same study and in worms from a
separate study published years later.We then show that graph neural
networks exhibit a favourable inductive bias for analyzing both
higher-order function and microscopic/neuron-level dynamics in C.
elegans.

2 BACKGROUND

In this section we discuss recent advances in neuroscience and
machine learning upon which we build our model and
experiments.

2.1 Universality/Generalizability in
Neuroscience
Themotor action sequence ofC. elegans is one of the only systems
for which experiments on whole-brain microscopic neural

activity may be performed and readily analyzed. As such,
numerous efforts have focused on building models that can
accurately capture the hierarchical nature of neural dynamics
and resulting locomotive behaviors [Sarma et al., (2018); Gleeson
et al., (2018)]. Taking advantage of this, Kato et al., (2015)
investigated neural dynamics corresponding to a pirouette, a
motor action sequence in which worms switch from forward
to backward crawling, turn, and then continue forward crawling.
Their analysis showed that most variations ( ∼ 65%) in neural
dynamics can be expressed by three components found through
principal component analysis (PCA) and that neural dynamics in
the resulting latent space trace cyclical trajectories on well-
defined low dimensional manifolds corresponding to the
motor action sequence (Supplementary Figure S1). By
identifying individual neurons, an experimental feat, these
authors further determined that these topological structures in
latent space were universally found among all five worms imaged
in their study.

Following Kato et al., (2015), the authors published several
studies focusing on global organizational principles of C. Elegant
behavior [Nichols et al., (2017); Kaplan et al., (2020); Skora et al.,
(2018)]. Building on two of these works, Brennan and Proekt
(2019) found consistent differences between each individual’s
neural dynamics, precluding the use of established dimensional
reduction techniques. For example, among 15 neurons uniquely
identified among all 5 worms, only 3 neurons displayed
statistically consistent behavior (Figure 1D). Examples of
inconsistent behavior for unequivocally identified neurons
(ALA and RIML) are shown in Figure 1C where the average
of ALA’s activity fails to resemble the behavior of any worm and
where RIML’s activity is consistent among all animals during
dorsal turns, but inconsistent during reverse crawling. Resulting
from these discrepancies, topological structures identified by
performing PCA on each worm’s neural activity were no
longer observed when data from all worms was pooled together.

To address this issue, Brennan and Proekt (2019) introduced a
new algorithm, Asymmetric Diffusion Map Modeling (ADMM),
which maps the neural activity of any worm to an universal
manifold (Figure 2). To achieve this, ADMM first performs time-
delay embedding of neural activity into phase space. Next, a
transition probability matrix is constructed by calculating
distances between points in phase space using a Gaussian
kernel centered on the subsequent timestep. Finally, this
asymmetric diffusion map is used to construct a manifold
representative of neural activity. Contrasting conventional
dimensional reduction techniques, ADMM allowed
quantitative modeling by mapping neural activity from the
manifold, and enabled the prediction of motor action states up
to 30s ahead. Despite its success, the algorithm heavily relies on
hyperparameters, such as embedding parameters, which are
difficult to justify and tune.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are a class of neural networks
that explicitly use graph structure during computations through
message passing algorithms where features are passed along edges
between nodes and then aggregated for each node [Scarselli et al.,
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(2009); Gilmer et al., (2017)]. These networks were inspired by
the success of convolutional neural networks in the domain of
two-dimensional image processing and failures when extending
conventional convolutional networks to non-euclidean domains
Battaglia et al., (2018). In essence, because graphs can have
arbitrary structure, the inductive bias of convolutional neural
networks [equivariance to translational transformations (Cohen
and Welling, 2016)] often breaks down when applied to graphs.
Addressing this issue, an early work on GNNs showed that one-
hop message passing approximates spectral convolutions on

graphs [Kipf and Welling (2016)]. Subsequent works have
examined the representational power of GNNs in relation to
the Weisfeiler-Lehman isomorphism test Xu et al., (2018) and
limitations of GNNs when learning graph moments [Dehmamy
et al., (2019)]. From an applied perspective, GNNs have been
widely successful in a wide variety of domains including relational
inference [Kipf et al., (2018); Löwe et al., (2020); Raposo et al.,
(2017)], node classification Kipf and Welling (2016) Hamilton
et al., (2017), point cloud segmentation (Wang et al.,, 2019), and
traffic forecasting Yu et al., (2018); Li et al., (2018).

FIGURE 1 | (A) Calcium signals recorded in one animal for ∼ 15 min by Kato et al., (2015). Each row represents a single neuron. The top 15 rows (above the red
line) correspond to neurons unambiguously identified in all animals (shared neurons) (B) Sample trace with corresponding behavioral state colored (C) Neural dynamics
of two neurons for specific behavior states. Colored solid lines are the mean activity for each animal, and the black dashed line is the mean activity for all animals. Shaded
colored regions show 95% confidence intervals (D) Probabilities that neural dynamics from different individuals were drawn from the same distribution (E) Attempt
by Brennan and Proekt (2019) to decode onset of backwards locomotion using neural dynamics for each animal and averaged neural dynamics across other four
animals. Reproduced with permission from Brennan and Proekt (2019).
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2.3 Relational Inference
Relational inference remains a longstanding challenge with early
works in neuroscience seeking to quantify correlations between
neurons Granger (1969). Modern approaches to relational
inference employ graph neural networks as their explicit
reliance on graph structure forms a relational inductive bias
[Battaglia et al., (2016); Battaglia et al., (2018)]. In particular,
our model is inspired by the Neural Relational Inference model
(NRI) which uses a variational autoencoder for generating edges
and a decoder for predicting trajectories of each object in a system
[Kipf et al., (2018)]. By inferring edges, the NRI model explicitly
captures interactions between objects and leverages the resulting
graph as an inductive bias for various machine learning tasks.
This model was successfully used to predict the trajectories of
coupled Kuramoto oscillators, particles connected by springs, the
pick and roll play from basketball, and motion capture
visualizations. Subsequently, the authors developed Amortized
Causal Discovery, a framework based on the NRI model which
infers causal relations from time-dependent data Löwe et al.,
(2020).

2.4 Deep Learning in Neuroscience
With the success of convolutional neural networks, researchers
successfully applied deep learning to numerous domains in
neuroscience Glaser et al., (2019) including MRI imaging
Lundervold and Lundervold (2019) and connectomes Brown
and Hamarneh (2016) where algorithms can predict disorders
such as autism Brown et al., (2018). Further leveraging the explicit
graph structure of neural systems, several studies have
successfully applied GNNs on various tasks such as annotating
cognitive state Zhang and Bellec, 2019, and several frameworks
based on graph neural networks have been proposed for
analyzing fMRI data [Li and Duncan (2020); Kim and Ye (2020)].

Similarly, brain-computer interfaces (BCI) are a well-studied
field related to our work as they focus on decoding macroscopic
variables from measurements of neural activity. These studies
generally involve fMRI or EEG data, which characterize neural
activity on a population level, to varying amounts of success
[Bashivan et al., (2015); Kwak et al., (2017); Mensch et al., (2017);
Makin et al., (2020)]. Regardless, a challenge for the field is
developing generalizable algorithms to individuals unseen during
training Zhang et al., (2019).

3 MODEL

In this section, we first present the general framework of our
behavioral state classification and trajectory prediction models.
Next, we detail the implementation of our neural network
models.

3.1 Framework
We define the set of trajectories (calcium imaging traces) for each
worm as Xα � {x1, . . . , xn, . . . , xN }α where α denotes the label of
the individual, n the name of the neuron, N the total number of
neurons, and xn the feature vector of the neuron. In our case,
xn ∈ RT×2 corresponds to time-dependent normalized calcium
traces and their derivatives for each neuron where T is the total
number of timesteps. Likewise, xn,t ∈ R2 corresponds to the
features of neuron n at timestep t. Finally, the behavioral
states of an individual are encoded as aα �
(a1, . . . , at , . . . , aT )α where a behavioral state a is assigned for
each timestep t.

Separate models were developed for each task: behavioral state
classification and trajectory prediction. In both cases, data from a
worm α is structured as a temporal graph Gα �

FIGURE 2 | (A) Rendering of calcium imaging experiment where activity of neurons in the head of the worm is recorded. Colored arrows show main motor action
behavioral states (B) and (C) Resulting manifold from Brennan and Proekt (2019) (B)Manifold constructed from activity of four worms with colored lines indicating neural
activity of fifth worm (C)Manifold constructed from neural activity of uniquely identified neurons (n � 15) shared among all five worms. Black arrows correspond to cyclical
transition of motor action sequence and colors correspond to motor action states. Modified with permission from Brennan and Proekt (2019).
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(G1, . . . ,Gt , . . . ,GT)α (Figure 3A) where each timestep is
represented by a static graph whose nodes correspond to
neurons. Following the notation above for worm α, the
trajectories of each neuron’s calcium traces are encoded as
node features xn, and the behavioral state of the worm is
interpreted as a graph feature at . For behavioral state
classification, our model consists of the following:

Hα,t � f (Xα,t), (1)

pα,t � softmax(Hα,t), (2)

âα,t � argmax(pα,t). (3)

where Xα,t corresponds to node feature vectors for worm α at
timestep t, f is an universal approximator/neural network model
(described in the next section), Hα,t ∈ Rk corresponds to
embedded features, pα,t is the probability that the worm is in
one of k motor states (Figure 4D), and âα,t is the most probable/
predicted state.

For trajectory prediction, we developed a Markovian model
for inferring trajectories of a consecutive timestep:

Hα,t � f (Xα,t), (4)

X̂α,t+1 � Xα,t +Hα,t , (5)

where f is the same as before, Hα,t is the predicted change of the
trajectory and can be interpreted as ΔX̂α,t , and X̂α,t+1 is the predicted
value of the subsequent timestep.When predictingmultiple timesteps,
the predicted value of the previous timestep is substituted forXα,t .We
also experimented with non-Markovian models (RNNs) for which a
hidden state is included for each timestep.

The structure of our framework allows us to substitute various
models for f. While we include results from several neural
networks, we focus on two representative models: a multi-
layer perceptron (MLP) agnostic to graph structure
(Figure 3B) and a graph neural network (GNN) which
explicitly computes on an inferred graph (Figure 3C).

3.2 Neural Network Models f: MLP and GNN
OurMLPmodel aggregates (sums or concatenates) the features of
a graph and feeds the aggregated features into a 2-layer MLP
neural network:

Hout � ggraph:mlp(aggregation(x1, . . . , xn, . . . , xN)), (6)

where ggraph:mlp is a 2-layer MLP. Contrasting the MLPmodel, our
GNN relies on message passing between connected nodes and
contains an encoder for edge weights Aij:

V � gnode(X), (7)

Eij � gedge(aggregation(vi, vj)), (8)

Aij � sigmoid(Eij), (9)

where in Eq. 7, V � (v1, . . . , vn, . . . , vN) corresponds to the
embedding of each node’s features through the MLP gnode.
Next, the edge embedding Eij is computed by aggregating all
pairs of node embeddings followed by the MLP gedge. Finally,
applying the sigmoid function to the edge embedding Eij
produces edge weights Aij normalized between 0 and 1. A can
be interpreted as an inferred weighted adjacency matrix where Aij

denotes the edge weight between nodes i and j such that i � j

FIGURE 3 | (A) Visualization of temporal graph. Inset shows xn plotted against twhere the top is the calcium trace, and the bottom is its derivative. The dashed line
intercepts the feature vectors at t′ � t + 1 and denotes xt+1n (B) and (C) are simplified visualizations of the MLP and GNN models respectively.
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denotes a self edge. The edge weights either dynamically change
in each timestep’s inferred graph Gt or remain fixed for the whole
temporal graph G of an individual worm. If the edges are static for
the temporal graph, the aggregation step in Eq. 8 also averages
hidden features across all timesteps such that
V � 1

T∑  T
t�1gnode(Xt). Note that in this case, the edge encoder is

given all timesteps Xα in Eqs 1, 4 instead of just one timestep.
After edges are encoded, the GNN performs a message passing

Eq. 10 and aggregation step Eq. 11:

M � AX, (10)

Hout � ggraph:gnn(aggregation(M)) (11)

As mentioned before, our MLP and GNN models can be
subsituted for f in Eqs 1, 4. Depending on the task, the
dimension of Hout for the MLP Eq. 6 and GNN Eq. 11
models differs. For behavioral state classification, Hout ∈ Rk

whereas for trajectory prediction, dim(Hout) � dim(Xα,t) such
that Hout ∈ RN×2.

Theoretically, an arbitrary number of message passing steps
can be implemented; however, we did not find any improvements
when using more than one step. In addition, we find that

performance improves when using concatenation instead of
summation during the aggregation step.

4 EXPERIMENTS AND DATA

Our experiments were performed with data acquired in Kato
et al., (2015) and Nichols et al., (2017). We summarize various
details about the data in this section; however, we direct the
reader to each respective publication for specific experimental
details.

4.1 Calcium Imaging
Kato et al., (2015) showed that neural activity corresponding to
the motor action sequence lives on low dimensional manifolds.
To record neuron level dynamics, they performed whole-brain
genetically encoded Ca2+ imaging with single-cell-resolution and
measured ∼ 100 neurons for around 18 min. They then
normalized each calcium trace by peak fluorescence and
identified neurons using spatial position and previous
literature (Altun et al.,, 2002–2020). Aside from imaging freely
moving worms, the authors also examined robustness of

FIGURE 4 | (A and B) Classification accuracy of our GNN and MLP models where black vertical lines show statistical spread (A): Classification of seven motor
action states within the Kato dataset (B): Classification of four motor action states on both the Kato and Nichols datasets (C) Confusion matrix. Percent occurrence of
predicted states against labeled states when evaluating on the Nichols dataset (D) Mapping of behavioral states between the Kato and Nichols dataset.
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topological features to sensory stimuli changes, hub neuron
silencing, and immobilization. For simplicity, we limited our
experiments to data collected on freely moving worms.

Nichols et al., (2017) focused on differences in neural activity
of C. elegans while awake or asleep and studied two different
strains of worms, n2 (11 total worms) and npr1 (10 total worms).
Because experiments in both studies were performed by the same
group, most experimental procedures were similar, allowing us to
easily process data to match the Kato dataset. While this dataset
includes imaging data of each worm during quiescence, for
consistency with the Kato dataset, we only included data
before sleep was induced. Furthermore, we pooled results for
both strains of worms as we did not notice any statistically
relevant differences between them.

4.2 Dataset Enlargement
Although our data for each worm is relatively small
( ∼ 3,000–4,000 timesteps), our datasets contained calcium
traces from numerous worms. In total, 5 worms were measured
in Kato et al., (2015) and 21 worms weremeasured in Nichols et al.,
(2017). Taking advantage of the large number of wormsmeasured,
we experimented with dataset enlargement where our models were
trained on pooled data from different numbers of worms in the
Kato dataset. Similarly, we pooled data from all 21 worms from the
Nichols dataset; however, we use this dataset only during
evaluation-i.e., the model never sees this dataset in training. In
this way, we define the “seen” population as worms whose data was
seen in training and the “unseen” population as worms the model
did not see during training. More details about how datasets were
used in our experiments can be found in Section 4.2.

To perform dataset enlargement, we separately trained the
models on each worm in the seen population for each epoch. In
other words, we independently optimized the loss function for
each worm in every epoch. We followed this procedure such that
batch normalization was separately performed on each worm’s
features. This technique was motivated by experiments where
batch normalization on data from individual worms improved
both test set and generalization accuracy. In contrast, performing
batch normalization on pooled data from all worms greatly
decreased model performance.

4.3 Data Processing
Wenormalized the calcium trace and its derivative of each neuron to
[0,1]. Normalization was performed for the entire recorded calcium
trace of a worm instead of within each batch because the relative
magnitudes of the traces have been found to contain graded
information about the worm’s behavioral state, (e.g. crawling speed).

For the seen population, we separated each calcium trace of
approximately 3,000–4,000 timesteps into batches of 8 timesteps
where each timestep corresponds to roughly 1/3 of a second. We
chose batch sizes of 8 timesteps because visualization of calcium traces
showed that most local variations occur within this time frame.
Moreover, 8 timesteps roughly corresponds to 3 s which is about
the amount of time a worm needs to execute a behavioral change.
Finally, the batches were shuffled before being divided into 10 folds
later used for cross-validation, ensuring that each fold is representative
across the whole dataset.

When evaluating on the unseen population, we treat the data
differently for each task. For behavioral classification, we infer the
behavioral state of the system using data from one timestep. As
such, we do not split the data and simply run the model separately
on each timestep of the worm’s calcium traces. In contrast, for
trajectory prediction, we split the calcium traces into batches of 16
timesteps and evaluate the model on all batches.

To compare with previous works, we performed our
experiments on uniquely identified neurons between the
datasets that we investigated. Identifying specific neurons is an
experimental challenge, and as such, only a small fraction of
neurons were unequivocally labeled. A total of 15 neurons were
uniquely identified between all 5 worms measured in the Kato
dataset: (AIBL, AIBR, ALA, AVAL, AVAR, AVBL, AVER, RID,
RIML, RIMR, RMED, RMEL, RMER, VB01, VB02). In addition,
the Nichols dataset contained data from 21 worms with 3
uniquely identified neurons shared among all worms in both
datasets: (AIBR, AVAL, VB02).

5 RESULTS

Following Brennan and Proekt (2019), we used data from Kato
et al., (2015) for training/evaluating our models and data from
Nichols et al., (2017) as an extended evaluation set. Because whole
brain imaging is incredibly difficult, our datasets were relatively
small. To address this, we experimented with dataset enlargement
(Section 4.1.2) by combining data from multiple worms in the
Kato dataset during model training. For all experiments, we
performed 10-fold cross validation on all permutations of
worms in our training set. More details, along with
supplemental experiments, can be found in the Supplementary
Information.

5.1 Behavioral State Classification
Our first experiment compared the performance of our models to
state-of-the-art results reported in Brennan and Proekt (2019).
Specifically, this experiment involved the classification of only
twomotor action states, forward and reverse crawling. Along with
our models described above, we also experimented with a support
vector machine (SVM) and a GNN which computes with edges
derived from the physical connectome (White et al.,, 1986). In
particular, we incorporated the connectome into our model to
investigate whether physical/structural connections between
neurons can serve as a favourable inductive bias for our GNN.
Our results are shown in Table 1 where “Seen Population”
denotes test set accuracy after training on the same worm and
“Unseen Population” denotes evaluation/generalization accuracy
on worms unseen during training.

Our deep learning models clearly outperformed the SVM and
state-of-the-art results, demonstrating the ability of our models to
successfully classify behavioral states and generalize to other
worms. Interestingly, the SVM matched the performance of
our deep learning models on the seen population; however, its
generalization performance on unseen individuals was
significantly worse than our deep learning models. As such,
the SVM distinctly illustrates challenges of individual
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variability for model development in neural systems despite the
simplicity of our experiments which involve the same set of
unequivocally identified neurons. Similarly, our GNN using edges
derived from the connectome performed well on the seen
population but generalized worse than when using inferred
edges. We hypothesize that the detrimental effect of using the
connectome may be attributed to the distinction between
inferred/functional and structural connectivity. In particular,
the connectome maps physical connections between neurons
which is generally conserved between different individuals. In
contrast, individual variability of neural activity implicitly implies
that the inferred/functional connectivity is unique to individuals
(Supplementary Section S1.4.3).

Following the previous experiment, we applied our MLP and
GNNmodels to the harder task of classifying all behavioral states
labeled in the Kato dataset (Figure 4A). Within this dataset, 7
states were labeled: Forward Crawling, Forward Slowing, Reverse
1, Reverse 2, Sustained Reverse Crawling, Dorsal Turn, and
Ventral Turn. In comparison to the Kato dataset, only 4 states
were labeled in the Nichols dataset: reverse crawling, forward
crawling, ventral turn, and dorsal turn. For compatibility, we
mapped the 7 states of the Kato dataset to 4 states of the Nichols
dataset when using the Nichols dataset as an extended evaluation
set (Figure 4D).

Despite the harder task of classifying 7 states, our models
achieved a classification accuracy of ∼ 92% on the same worm
(Figure 4A). Moreover, our GNN trained on three worms in
the Kato dataset generalized with an accuracy of 87%
(Figure 4B) when classifying 4 states on the remaining
unseen worms. This substantially exceeds the performance
of our MLP model and Brennan and Proekt (2019) who
report a 81% cross-animal accuracy on two states.
Nevertheless, both MLP and GNN models generalized
equally well ( ∼ 70%) to the 21 unseen worms of the Nichols
dataset. These experiments consistently demonstrate that our
GNN exceeds the performance of state-of-the-art techniques
and also often exceeds the performance of our baseline
MLP model.

5.2 Neuron-Level Trajectory Prediction
For trajectory prediction, we predicted each neuron’s calcium
trace and its derivative (normalized to [0,1]) for 8 timesteps
during training (seen population) and 16 timesteps during
evaluation/validation (unseen population). While training our
Markovian models, scheduled sampling was performed to
minimize the accumulation of error (Bengio et al.,, 2015).
When evaluating on the unseen population, the model was

given one timestep as the initial condition after which the
model predicts 16 timesteps. In addition to our Markovian
models, we also experimented with RNN implementations
trained with burn-in periods of four timesteps (12 timesteps
during training and 20 timesteps during evaluation). Our
experiments primarily focused on generalization performance
of our models on the extended evaluation/Nichols dataset
(Figure 5).

Predicting neuron-level trajectory using deep learning is
fairly novel since advances in whole-brain imaging are
recent and limited to few organisms. Nevertheless, neural
systems generically fall under the category of dynamical
systems where each neuron is described by a differential
equation such that neural activity can be modeled as a
system of coupled differential equations. Under this
formulation, the task of trajectory prediction involves
learning the underlying physical laws in order to predict the
time evolution of the system. To quantify the predictive power
of our models, we evaluated the mean squared error (MSE) of
each prediction timestep relative to the true trajectory. In the
context of our Markovian model, this metric measures the error
of the predicted transition matrix which time evolves the state
of the system and, by extension, demonstrates the ability of our
models to learn the underlying physical laws of the dynamical
system.

Several challenges limited the predictive power of our models.
Most prominently, our system is inherently non-linear and
potentially chaotic, a fact further exasperated by the nature of
calcium imaging which is notoriously noisy and an indirect
measurement of neural activity. In addition, our datasets are
relatively small in spite of our dataset enlargement technique.
Resulting from these challenges, the performance of our model is
poor, especially in comparison to that of models in data
assimilation which leverage a priori knowledge of the
dynamical system (). Nevertheless, inspecting the MSE as a
function of prediction step (Figure 5) reveals that our models
are able to learn how the system transitions up to a short
timescale. Moreover, increasing the number of worms
included during training (dataset enlargement) also improved
generalization performance of our MLP and GNN models.
Perhaps most surprising, our Markovian GNN outperformed all
MLP models and their derived RNN variants. We attribute this
result to the largely deterministic nature of neural dynamics,
characterized by sparse bifurcations on the latent manifold, and
the inductive bias of GNNs. As a result, given 1 timestep, our GNN
outperformed all other models including RNN variants which were
given 4 burn-in timesteps. Therefore, we conclude that our GNN

TABLE 1 | Classification accuracy of forward and reverse crawling.

Seen population Unseen population (kato) Unseen population (nichols)

Brennan and Proekt (2019) 83 81 —

SVM 98.8 ± 0.4 82.8 ± 7.6 79.0 ± 11.7
MLP 99.3 ± 0.6 93.9 ± 10.3 88.9 ± 11.4
GNN (connectome) 99.5 ± 0.6 96.8 ± 4.3 85.5 ± 12.9
GNN 99.5 ± 0.5 97.7 ± 3.1 95.5 ± 6.1
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displays a favourable inductive bias in contrast to graph-agnostic
models on the task of predicting microscopic dynamics.

6 DISCUSSION

For both tasks, our GNN consistently matched or exceeded our
MLP model which we accredit to its favourable inductive bias.
Kato et al., (2015) established that projecting neural dynamics
onto three principal components for each worm reveals universal
topological structures; however, attempts to project neural
dynamics onto shared principal components of all worms
failed to display any meaningful structure. Thus, variability in
each worm’s neural activity, corresponding to low dimensional
manifolds in latent space, is represented by different linear
combinations of neurons. In other words, relevant topological
structures in latent space are loosely related by linear
transformations of node features. We speculate that our
GNN’s performance stems from its explicit structure of
message passing along inferred edges which is analogous to
learning linear transformations of node features (Eq. 10).
Based on our experimental results, we further speculate that
this inductive bias proves favourable on both microscopic and
macroscopic machine learning tasks in neural systems.

Interestingly, our model’s performance was not significantly
impacted by using 3 neurons ( ∼ 1% of all neurons) instead of 15
( ∼ 5% of all neurons). This is not surprising because neurons
strongly coupled to the motor action sequence retain most
information (Gao and Ganguli, 2015), a fact consistent with
Brennan and Proekt (2019) who found that strategically
choosing 1 neuron retains ∼ 75% of the information
contained in the larger set of 15 neurons.

Finally, as a critical question, we ask whether our model’s
performance stems from choosing a stereotyped organism that
is well studied and biologically simple, or if our results imply a
path toward generalizable/universal machine learning in neural
systems. While the neurophysiology of C. elegans is quite

complex, the motor action sequence we studied is relatively
simple, especially in comparison to other organisms and
cognitive functions. Moreover, organisms are adaptive and
capable of learning new behavior, a fact not represented in
our dataset. However, a recent astounding study Gallego et al.,
(2020) measured neural dynamics in monkeys trained to
perform action sequences and determined that learned latent
dynamics live in low-dimensional manifolds that were
conserved throughout the length of the study. By aligning
latent dynamics, their model accurately decoded the action
of monkeys up to two years after the model was trained despite
changes in biology, (e.g. neuron turnover, adaptation to
implants). Consequently, we posit that techniques similar to
those used in our model may broadly apply to more complex
organisms and functions.

7 CONCLUSION

In this study, we examined the ability of neural networks to
classify higher-order function and predict neuron level dynamics.
In addition, inspired by global organizational principles of
behavior discovered in previous studies, we demonstrated the
ability of neural networks to generalize to unseen organisms.
Specifically, we first showed that our models exceed the
performance of previous studies in behavioral state
classification of C. elegans. Next, we found that a simple MLP
performs remarkably well on unseen organisms. Nevertheless,
our graph neural network, which explicitly learns linear
transformations of node features, matched or exceeded the
performance of graph agnostic models in all experiments.
These experiments demonstrate that our models are capable of
successful evaluation on unseen organisms, both within the same
study, and in a separate experiment spaced years apart. Finally,
our results show that dataset enlargement through the inclusion
of more individuals can significantly improve generalization
performance in microscopic neural systems.

FIGURE 5 | (A) Mean squared error (MSE) of the GNN and various MLP models evaluated on the Nichols dataset. All models were trained using data from one
worm or five worms in the Kato Dataset (B) Table of mean MSE values for all models for 1, 8, and 16 timesteps.
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We note that our results of generalization on both higher-
order functions and neuron-level dynamics (macroscopic and
microscopic) suggests wide applicability of our technique to
numerous machine learning tasks in neuroscience and
hierarchical dynamical systems. A promising research
direction is the hierarchical relationship between neuron-level
and population-level dynamics. Breakthroughs in this direction
may inform machine learning models working with
population-level functional and imaging techniques, such as
EEG or fMRI, which are readily available and widespread. In
addition, in this study, we only focused on simple machine learning
tasks and imaging data taken under similar experimental conditions.
Further studies may involve more complex tasks such as those
involving graded information in neural dynamics, changes in
sensory stimuli, acquisition of learned behaviors, and higher-order
functions comprised of complicated sequences of behavior. From a
machine learning perspective, the development of a recurrent graph
neural network for the edge encoder with a suitable attention
mechanism may aid model generalization. Additional work is also
needed in examining and improvingmodel performance on arbitrary
sets of neurons as neuron identification is experimentally challenging
and limited to small systems.
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Reconstructing Complex Cardiac
Excitation Waves From Incomplete
Data Using Echo State Networks and
Convolutional Autoencoders
Sebastian Herzog1,2, Roland S. Zimmermann3,4, Johannes Abele1,4, Stefan Luther1,5,6 and
Ulrich Parlitz 1,4,6*

1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2Third Institute of Physics and Bernstein Center
for Computational Neuroscience, University of Göttingen, Göttingen, Germany, 3Tübingen AI Center, University of Tübingen,
Tübingen, Germany, 4Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany, 5Institute of
Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany, 6German Center for Cardiovascular
Research (DZHK), Partner Site Göttingen, Göttingen, Germany

The mechanical contraction of the pumping heart is driven by electrical excitation waves
running across the heart muscle due to the excitable electrophysiology of heart cells. With
cardiac arrhythmias these waves turn into stable or chaotic spiral waves (also called rotors)
whose observation in the heart is very challenging. While mechanical motion can be
measured in 3D using ultrasound, electrical activity can (so far) not be measured directly
within the muscle and with limited resolution on the heart surface, only. To bridge the gap
between measurable and not measurable quantities we use two approaches from
machine learning, echo state networks and convolutional autoencoders, to solve two
relevant data modelling tasks in cardiac dynamics: Recovering excitation patterns from
noisy, blurred or undersampled observations and reconstructing complex electrical
excitation waves from mechanical deformation. For the synthetic data sets used to
evaluate both methods we obtained satisfying solutions with echo state networks and
good results with convolutional autoencoders, both clearly indicating that the data
reconstruction tasks can in principle be solved by means of machine learning.

Keywords: reservoir computing, convolutional autoencoder, image enhancement, cross-prediction, cardiac
arrhythmias, excitable media, electro-mechanical coupling, cardiac imaging

1 INTRODUCTION

Cardiac arrhythmias, such as ventricular or atrial fibrillation, are electro-mechanical dysfunctions of
the heart that are associated with complex, chaotic spatio-temporal excitation waves within the heart
muscle resulting in incoherent mechanical contraction and a significant loss of pump function [1–3].
Ventricular fibrillation (VF) is the most common deadly manifestation of a cardiac arrhythmia and
requires immediate defibrillation using high-energy electric shocks. Atrial fibrillation (AF) is the most
common form of a cardiac arrhythmia, affecting 33 million patients worldwide [62]. While not
immediately life-threatening, AF is considered to be responsible for 15% of strokes if left untreated [63,
64]. The structural substrate and functional mechanisms that underlie the onset and perpetuation of
VF and AF are not fully understood. It is generally agreed that imaging of the cardiac electrical and
mechanical function is key to an improved mechanistic understanding of cardiac disease and the
development of novel diagnosis and therapy. This has motivated the development of non-invasive and
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invasive electrophysiological measurement and imaging
modalities. Electrical activity of the heart can (so far) non-
invasively be measured on its surface, only. Direct
measurements can be made in vivo inside the heart using so-
called basket catheters with typically 64 electrodes or in ex-vivo
experiments, where an extracted heart in a Langendorff perfusion
set-up is kept beating and the cell membrane voltage on the
epicardial surface is made visible using fluorescent dyes (a
method also known as optical mapping) [4]. A method for
indirect observation of electrical excitation waves is ECG
imaging where an array of EEG-electrodes is placed on the
body surface and an (ill-posed) inverse problem is solved to
estimate the potential on the surface of the heart. Mechanical
contraction and deformation of the heart tissue can be studied in
full 3D using ultrasound, in 2D using real-time MRT [5] or (using
optical mapping) by motion tracking in Langendorff experiments.

The reconstruction of patterns of action potential wave
propagation in cardiac tissue from ultrasound has been
introduced by Otani et al. [6, 7]. They proposed to use
ultrasound to visualize the propagation of these waves through
the mechanical deformations they induce and to reconstruct
action potential-induced active stress from the deformation.
Provost et al. [8] introduced electromechanical wave imaging to
map the mechanical deformation of cardiac tissue at high temporal
and spatial resolutions. The observed deformations resulting from
the electrical activation were found to be closely correlated with
electrical activation sequences. The cardiac excitation-contraction-
coupling (ECC) [9] has also been studied in optical mapping
experiments in Langendorff-perfused isolated hearts [10–12].
Using electromechanical optical mapping [12], it was shown that
during ventricular tachyarrhythmias electrical rotors introduce
corresponding rotating mechanical waves. These co-existing
electro-mechanical rotors were observed on the epicardial surface
of isolated Langendorff-perfused intact pig and rabbit hearts using
optical mapping [13]. Using high-resolution ultrasound, these
mechanical rotors were also observed inside the ventricular wall
during ventricular tachycardia and fibrillation [13].

All these measurement modalities are limited, in particular
those suitable for in vivo applications. Measurements with basket
catheters are effectively undersampling the spatio-temporal wave
pattern. Inverse ECGs suffer from ill-posedness and require
regularization that may lead to loss of spatial resolution and
blurring. Limited spatial resolution is also an issue with
ultrasound measurements, but they are currently the only way
to “look inside” the heart, albeit measuring only mechanical
motion. Electrical excitation waves inside the heart muscle are
so far not accessible by any measurement modality available.

These limitations motivated the search for algorithms to
reconstruct electro-mechanical wave dynamics in cardiac tissue
from measurable quantities. Berg et al. [14] devised

synchronization-based system identification of extended excitable
media, in which model parameters are estimated by minimizing the
synchronization error. Using this approach, Lebert and Christoph
[15] demonstrated that electro-mechanic wave dynamics of
excitable-deformable media can be recovered from a limited set
of observables using a synchronization-based data assimilation
approach. Hoffman et al. reconstructed electrical wave dynamics
using ensemble Kalman filters [16, 17]. In another approach, it was
shown that echo state networks [18] and deep convolutional neural
networks [19, 20] provide excellent cross estimation results for
different variables of a mathematical model describing complex
electrical excitation waves during cardiac arrhythmias. Following
this approach, Christoph and Lebert [21] demonstrated the
reconstruction of electrical excitation and active stress from
deformation using a simulated deformable excitable medium. To
continue this research and to address the general challenge of
missing or impaired observations we consider in this article two
tasks: (i) recovering electrical excitation patterns from noisy, blurred
or undersampled observations and (ii) reconstructing electrical
excitation waves from mechanical deformation. To solve the
corresponding data processing and cross-prediction tasks two
machine learning methods are employed and evaluated: echo
state networks and convolutional autoencoders. Both algorithms
are applied to synthetical data generated by prototypical models for
electrophysiology and electromechanical coupling.

2 METHODS

In this section we will first introduce in Sections 2.1 and 2.2 the
mathematicalmodels describing cardiac dynamics whichwere used to
generate the example data for the two tasks to be solved: (i) recovering
electrical wave pattern from impaired observations and (ii) cross-
predicting electrical excitation frommechanical deformation. Then in
Section 2.3 both machine learning methods used for solving these
tasks, echo state networks (Section 2.3.1) and convolutional
autoencoders (Section 2.3.2), will be briefly introduced.

2.1 Recovering Complex Spatio-Temporal
Wave Patterns From Impaired Observations
For motivating, illustrating, and evaluating the employed
methods for dealing with incomplete or distorted observations
we shall use spatio-temporal time series generated with the
Bueno-Orovio-Cherry-Fenton (BOCF) model [22] describing
complex electrical excitation patterns in the heart during
cardiac arrhythmias. The BOCF model is a set of partial
differential equations (PDEs) with four variables and will be
introduced in Section 2.1.1. In Section 2.1.2 a formal description
of the data recovery tasks will be given.

TABLE 1 | TNNP model parameter values for the BOCF model [22].

uo 0 τ−v2 1150 τ fi 0.11 τs1 2.7342 τs2 3 τo1 6 τo2 6
uu 1.58 τ+v 1.4506 τ−w1 70 τ−w2 20 τso1 43 τso2 0.2 τsi 2.8723
θv 0.3 τw∞ 0.07 τ−v1 60 τ+w 280 ks 2.0994 w*

∞ 0.94 θw 0.015
us 0.9087 θ−v 0.015 k−w 65 θo 0.006 u−w 0.03 kso 2 uso 0.65
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2.1.1 Bueno–Orovio–Cherry–Fenton Model
Cardiac dynamics is controlled by electrical excitation waves
triggering mechanical contractions of the heart. In the case
of cardiac arrhythmias like lethal ventricular fibrillation,
wave break-up and complex chaotic wave patterns occur
resulting in significantly reduced pump performance of the
heart. From the broad range of mathematical models
describing this spatio-temporal dynamics [23] we chose the
Bueno–Orovio–Cherry–Fenton (BOCF) model [22] to generate
spatio-temporal time series that are used as a benchmark to
validate our approaches for reconstructing complex wave
patterns in excitable media from incomplete data. The BOCF
model consists of four system variables whose evolution is given
by four (partial) differential equations

zu
zt

� D · ∇2u − (Jsi + Jfi + Jso)
zv
zt

� 1
τ−v

(1 − H(u − θv))(v∞ − v) − 1
τ+v

H(u − θv)v

zw
zt

� 1
τ−w

(1 − H(u − θw))(w∞ − w) − 1
τ+w

H(u − θw)w

zs
zt

� 1
2τs

((1 + tanh(ks(u − us))) − 2s).

(1)

The variable u represents the continuum limit representation
of the membrane voltage of cardiac cells and the variables v, w,

and s are gating variables controlling ionic transmembrane
currents Jsi, Jfi and Jso given by the equations

Jsi � − 1
τsi

H(u − θw)ws

Jfi � − 1
τfi

vH(u − θv)(u − θv)(uu − u)

Jso� 1
τo

(u − uo)(1 −H(u − θw)) + 1
τso

H(u − θw).

(2)

Here H(·) denotes the Heaviside function and the currents
depend on the following seven voltage controlled variables

τ−v � (1 − H(u − θ−v ))τ−v1 +H(u − θ−v )τ−v2
τ−w � τ−w1 +

1
2
(τ−w2 − τ−w1)(1 + tanh(k−w(u − u−

w)))
τ−so � τso1 + 1

2
(τso2 − τso1)(1 + tanh(kso(u − uso)))

τs � (1 − H(u − θw))τs1 + H(u − θw)τs2
τo � (1 −H(u − θo))τo1 + H(u − θo)τo2

v∞ � ⎧⎨⎩ 1, if u≤ θ−v
0, if u≥ θ−v

w∞ � (1 − H(u − θo))(1 − u
τw∞

) +H(u − θo)wp
∞.

(3)

FIGURE 1 | Snapshots of the four fields u, v, w, s of the BOCF model Eq. (1) (from left to right).

FIGURE2 | Snapshots of the three cases of impaired data based on u [from left to right: (A) reference data u, (B) noisy data, (C) blurred data, and (D) undersampled
data].
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For simulating the dynamics we used the set of parameters
given in Table 1 for which the BOCF model was found [22] to
exhibit excitation wave dynamics similar to the Ten
Tusscher–Noble–Noble–Panfilov (TNNP) model [24] describing
human heart tissue.

Typical snapshots of the four variables during a chaotic
evolution are shown in Figure 1. The spatio-temporal chaotic
dynamics of this system is actually transient chaos whose lifetime
grows exponentially with system size [25, 26]. To obtain chaotic
dynamics with a sufficiently long lifetime the system has been
simulated on a domain of 512 × 512 grid points with a grid
constant of Δx � 1.0 space units and a diffusion constantD � 0.2.
Furthermore, an explicit Euler stepping in time with Δt � 0.1, a 5
point approximation of the Laplace operator, and no-flux
boundary conditions were used for solving the PDEs.

2.1.2 Reconstruction Tasks
Experimental measurements of the dynamics of a system of interest
often allow only the observation of some state variables (e.g., the
membrane voltage) and may provide only incomplete or distorted
information about the measured observable. Typical limitations are
(additive) measurement noise and low-spatial resolution (due to the
experimental conditions and/or the available hardware). Formally,
measurements impaired due to noise, blurring or undersampling can
be described as follows: Let Xn ∈ Rr×c be the measured data (here:
snapshots of the field u) where r and c specify the two spatial
dimensions. Each sample Xn with n � 1, . . . ,N corresponds to a
true system output X′

n ∈ Rr ′×c′ that is assumed to be known only
during the training phase in terms of a training set
D � {Z1 � (X1,X′

1), . . . ,ZN � (XN ,X′
N )}. Note that with coarse

graining r ≤ r ′ and c≤ c′. The task is to predict the true system
output X′ from impaired observationsX which belong to one of the
following three cases:

1. Noisy data: To add noise each element of X′ is replaced with
probability p by 0 or 1 drawn from a Bernoulli distribution B(0.5)
(note that in our case X′ is given by the variable u of the BOCF
model which has a range of [0, 1]). To simulate different levels of
noise different probabilities p � 0.1, 0.2, . . . , 0.9 are used to
generate noisy data sets {Xn}. In the following p is called the
noise level.

2. Blurred data: Date with reduced spatial resolution are obtained
as Fourier low-pass filtered data X � F −1(Pm(F(X′))) where
F and F −1 denote the Fourier transform and its inverse,
respectively, and Pm is a projection where frequencies
outside a radius m ∈ [2, 4, 8, . . . , 18] (Manhattan distance)
centered at frequency zero are set to zero.

3. Undersampled data: To generate undersampled date X′ is
down-sampled Rr′×c′ →Rr×c with r < r′ and c< c′ by
accessing every 2i-th value of X′, where i ∈ [1, 7].

Figure 2 shows examples of the three types of impaired
observations.

2.2 Predicting Electrical Excitation From
Mechanical Contraction
To learn the relation between mechanical deformation and
electrical excitation inverse modelling data were generated by a
conceptual electro-mechanical model consisting of an
Aliev–Panfilov model describing the electrical activity and a
driven mass-spring-system [15].

2.2.1 Aliev–Panfilov Model
Specifically developed to mimic cardiac action potentials in the
myocardium, the Aliev–Panfilov model is a modification of the
FitzHugh–Nagumo model, which reproduces the characteristic
shape of electric pulses occurring in the heart [27]. It is given by a
set of two differential equations,

zu
zt

� ∇(D · ∇u) − ku(u − a)(u − 1) − uv (4)

FIGURE 3 | Two dimensional mass-spring damper system with one
active spring modelling fibre orientation (red) and one passive spring (gray), the
centre of mass xcm, the four points of attachment qi to the structural springs
and the orientation parameter η.

FIGURE 4 | Schematic representation of an ESN. On the left side
(colored in blue) is the input layer where the input signal u→n and a constant
bias bin are fed in. The reservoir is represented as the large circle in the middle,
where the small circles are the nodes. The output layer on the right
(colored in orange) provides the reservoir signals s

→
n that are part of the vector

x→n � [bout; s
→

n; u
→

n] used for computing the output y→n � Wout x
→

n.
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zv
zt

� ϵ(u, v) · ( − v − ku(u − b − 1))

ϵ(u, v) � ϵ0 + μ1v
μ2 + u

(5)

in which u and v are the normalized membrane voltage and the
recovery variable, respectively, and a, b and k are model
parameters. The term ∇(D · ∇u) accounts for the diffusion, in
which the tensor D can be used to model anisotropies in the
myocardial tissue. In addition, the term ϵ(u, v) is introduced to
adjust the shape of the restitution curve by modulating the
parameters μ1 and μ2. The computational advantage of the
Aliev–Panfilov model lies in its simplicity over other ion-flow-
based models which allows shorter runtimes and combined with
the elastomechanical model, keeps computational costs fairly
reasonable. For this reason, the Aliev–Panfilov model was
chosen for generating synthetic data from complex chaotic
electromechnical wave dynamics.

Within the heart muscle, the myocardium, cells contract upon
electrical excitation through a passing action potential. At this
point it is important to note that muscle fibre contracts along its
principal orientation which has to be considered during the
implementation of the mechanical part of the simulation. To
couple the mechanical contraction of the muscle fibre to electrical
excitation of a cell, as an extension to the Aliev–Panfilov model
the active stress Ta was introduced by Nash and Panfilov [28]
which leads to contraction in the principal orientation of the
muscle fibre. The change of the active stress is described by

zTa

zt
� ϵT(u) · (kTu − Ta) , (6)

where kT controls the strength of the build-up of active stress. The
term ϵT(u) regulates the influence of u on Ta for large u. In our
simulations we use a smooth function introduced by Göktepe and
Kuhl [29] given by

ϵT(u) � ϵT ,0 + (ϵ∞ − ϵT ,0) · exp( − exp( − ξT · (u − u0)) . (7)

Here, ξT controls the steepness of the transition between ϵ∞
and ϵT ,0 and u0 denotes the potential threshold for the activation
of the active stress, with ϵ∞ < ϵT ,0 to achieve a physiological time
course [30].

2.2.2 Mass-Spring Damper System
The elasto-mechanical properties of the cardiac muscle fibre were
implemented using a modified two-dimensional mass-spring
damper system [31]. For the current study the mass-spring
system was implemented in two dimensions because this
allows shorter runtimes and primarily serves as a proof-of-
principle for the evaluated reconstruction approach. In its
two-dimensional form this mechanical model might
correspond best to a cut-out of the atrium’s wall, since there
the muscle tissue is less than 4 mm thick. However, this mass-
spring system can easily be expanded to three dimensions
(see [15]).

FIGURE 5 | Stencil for locally sampling data used as input of the ESN
operating at the location of the dark blue pixel in the center. The stencil is
characterized by its width σ and the spatial separation Δσ of sampling points.

FIGURE 6 | Proposed autoencoder architecture for reconstruction of data from noisy or blurred input. Each block is a set of layers. The values written vertically
describe the dimension of the input for each layer, e.g., for noisy and blurred data r � 512, c � 512 and for the inverse modelling data r � 100, c � 100. The horizontally
written values at the layers are the number of channels or number of filters. Group 1 is an combination of layers, consisting of: Conv2D, BatchNormlization, LeakyReLU,
Conv2D, BatchNormlization and LeakyReLU layers. Group 2 is an extension of Group 1 where a MaxPooling2D and Dropout layer are placed before Group 1.
Similar applies to Group 3, it consists of a Dropout layer followed by the layers from Group 1 and finalized by a Conv2DTranspose layer follows. The architecture was
visualized with Net2Vis [55].
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FIGURE 7 | Autoencoder architecture used for reconstruction from undersampled observations. Each block is a set of layers. The layer labeling is the same as in
Figure 6. Visualized with Net2Vis [55].

TABLE 2 | The examined set of hyperparameters σ and Δσ for the local states.

σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ

25 2 29 2 33 2 37 2 41 2 45 2 49 4 101 10
25 4 29 7 33 8 37 4 41 4 45 4 49 8 101 20
25 8 29 14 33 16 37 9 41 8 45 11 49 16 101 25
25 24 29 28 33 32 37 12 41 20 45 22 49 24 101 50

37 18 41 40 45 44 49 48
37 36

FIGURE 8 | Exemplary visualization of the input and output for both networks for data with different noise levels p: (A)–(F) p � 0.1, (G)–(L) p � 0.5, and (M)–(R) p �
0.9. Comparing the absolute differences between the prediction and the ground truth [(D), (J), (P) for the CAE and (F), (L), (R) for the ESN] one can see that the CAE is
less sensitive to noise. Note that the errors develop primarily on the fronts of the waves.
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Placed on a regular lattice, one mechanical cell is made up of
four particles xi at the corners connected by structural springs
and two sets of orthogonal springs connecting the centre of
mass x→cm to each side of the cell (see Figure 3). The springs in
the middle of the cell are called axial springs, of which one is
made to be active (red). Here it is important to point out that
one cell in the electrical model corresponds to one cell in the
mechanical mass-spring system. For setting the fibre
orientation through the active axial spring, the orientation
parameter η ∈ [0, 1] has been introduced, with which the
four points of attachment qi can be computed easily. This
parameter can be set individually for each cell, so that
various fibre orientations can be modelled.

Using x→cm � 1
4∑ 3

i�0 x
→

i the forces from the passive spring f
→

j

and the active spring f
→

a are obtained as.

f
→

j � −kj ( ‖ q→j − x→cm ‖ − lj,0) · e→j , (8)

f
→

a � −ka ( ‖ q→a − x→cm ‖ − la,0
1 + ca · Ta

) · e→a . (9)

Here lj,0, kj and la,0, ka denote the resting lengths and spring
constants of the passive and active spring, respectively. From
Eq. (9) it can be seen that, upon a rise in active stress Ta from Eq.
(6), the active spring contracts and an inward force is generated.
The parameter ca represents a scaling factor to modulate the
influence of the active stress. Through the orientation parameter
the forces from the active and passive spring can be
redistributed to the corresponding particles at the corners.

For example for q→1, the force on x0 would be f
→

0 � η f
→

q1

and on x1 it would amount to f
→

1 � (1 − η) f→q1
.

In addition, the mechanical grid is held together by structural
forces between the corner particles, which can be computed using

f
→

ij � −kij ( ‖ x→i − x→j ‖ − lij) · e→ij , (10)

f
→

ji � − f
→

ij , (11)

with lij being the resting length between particle xi and xj.
Finally, with all the above forces acting on particle xi with mass

mi, its motion is determined according to

mi
d2 x→i

dt2
� ∑

{a}{j}{ij}
fk
→− ]

d x→i

dt
, (12)

with the sum ∑
{a}{j}{ij}

fk
→

of all relevant springs pulling or pushing the

particle. The damping constant ν sets the strength of the damping
to increase the stability of the mechanical system as a whole.

The area of each cell was calculated with a simple formula for a
general quadrilateral using the positions of its four corners. As a
measure of contraction, the relative change of area

ΔA(t) � A(t)
Aundeformed

− 1 (13)

has been used. The numerical algorithm for solving the full set of
electro-mechanical ODEs is summarized in the Appendix.

2.2.3 Reconstruction Task
The inverse modelling data are generated by forward modelling
M : u1ΔA using the output of Equations (4) and (13). The task
is to train an ESN or CAE to approximateM−1 : ΔA1u. To fulfill
this task we use the membrane voltages and the local
deformations at all r × c grid points sampled at times tn. The
training data set D � {Z1 � (X1,X′

1), . . . ,ZN � (XN ,X′
N )} thus

consists of snapshots Xn ∈ Rr×c and X′
n ∈ Rr×c of the relative

mechanical deformation ΔA(tn) and the membrane voltage
u(tn), respectively, and we aim at approximating M−1 :
Xn1X′

n with r, c � 100.

FIGURE 9 | (A) Evolution of the loss function values over the epochs for
noisy input data generated with noise levels p � 0.1, p � 0.5, and p � 0.9
(compare Figure 8). It can be seen that the training always ran up to the point
where early stopping, as defined in Section 3.1, terminated it. The solid
lines are the values of the loss function during training on the training data,
while the dotted lines are the values of the loss function obtained when the
trained model is applied to the validation data. One epoch trained
approximately 110 s on a GTX 1080 Ti. (B) Comparison between CAE and
ESN performance with noisy input data showing boxplots of mean absolute
errors (18) for different noise levels p ∈ [0.1, 0.2, . . . , 0.9]. Each discrete value
on the x-axis is assigned to the boxes of the CAE and ESN, where the ESN
boxplots are colored in orange and the CNNboxplots are colored in blue. Note
that for better visibility the CAE boxes and the ESN boxes a slightly shifted to
the left and to the right, respectively. A tabular overview of the values can be
found in Table 3).
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2.3 Machine Learning Methods
In this section we will introduce the two machine learning
approaches, echo state networks (ESN) [32] and convolutional
autoencoders (CAE) [33], that will be applied to solve the
reconstruction tasks defined in Section 2.1.2.

2.3.1 Echo State Network
Echo state networks have been introduced in 2001 by Jaeger [32]
as a simplified type of recurrent neural network, in which the
weights describing the strength of the connections within the
network are fixed. In its general composition an ESN subdivides
into three sections [32], as illustrated in Figure 4. First of all, there
is the input layer into which the input signal u→n ∈ RNu and a
constant bias bin are fed. Secondly, the intermediate reservoir
consists of N nonlinear units and its state is given by s→n ∈ RN .
And lastly, the output layer provides the output signal y→n ∈ RNy .
Here, n denotes the discrete time steps n � 1, . . . ,T .

The concatenated bias-input vector [bin; u→n] is fed into the
reservoir through the input matrix Win ∈ RN×(1+Nu). Inside the
reservoir connections are given by the weight matrix W ∈ RN×N ,
where N is the reservoir size. Together with the input matrix it is
possible to determine the state of the reservoir at time n through
the update rule

s→n � (1 − α) s→n−1 + αfin(Win[bin; u→n] +W s→n−1) , (14)

in which [·; ·] denotes a concatenated vector. The input bias bin, as
well as the later introduced output bias bout were both set to 1 in the
following. The parameter α ∈ (0, 1] in Eq. (14) represents the
leaking rate which controls how much of a neuron’s activation is
carried over to the next time step and can be used as a parameter to

enhance predictions. As for the transfer function fin(·) we use
tanh(·) and the network dynamics used has no feedback loop. Only
the weights Wout providing the output signal

y→n � Wout x
→

n with x→n � [bout ; s→n; u
→

n] (15)

are adapted during the training process by minimizing the cost
function [34]

C(Wout) � ∑
n

∣∣∣∣∣∣∣∣∣∣∣∣ y→ true
n −Wout x

→
n

∣∣∣∣∣∣∣∣∣∣∣∣2 + λTr(WoutW
T
out) (16)

where Tr denotes the trace of a matrix and λ controls the impact
of the regularization term that prevents overfitting [35]. The final
output matrix is given by the minimum of the cost function at
Wout � YXT(XXT + λ1)− 1 where X and Y are matrices whose
columns are given by the vectors x→n and y→ true

n , respectively.
Both matrices Win and W, are initialized with random values

from the interval [−0.5, 0.5]. Since in experiments it turned out
that more diverse dynamics could be modelled using networks in
which only a small percentage ϵ of weights inside the reservoir
remained non-zero [32], the weight matrixW is made sparse with
only a portion ϵ of its values remaining non-zero. Furthermore, it is
scaled by a factor ρ

|μmax| where
∣∣∣∣μmax

∣∣∣∣ denotes here the largest
eigenvalue of W and ρ is a hyperparameter for optimizing the
performance (by ensuring the so-called echo state property [36]).
To reduce the probability of drawing an dysfunctional set of matrix
entries the randomly generated matricesWin andW were selected
from four different realisations. To optimize the performance of
the ESN five hyperparameters (N , ϵ, ρ, α and λ) are tuned.

TABLE 3 | Comparison of the MAE obtained when applying the CAE method and the ESN method to the test data set.

CAE (MAE ± STD)

Case Blurred data Noisy data Undersampled data

1 0.01644 ± 0.00136 0.00794 ± 0.00096 0.00432 ± 0.00020
2 0.02076 ± 0.00170 0.00835 ± 0.00097 0.00782 ± 0.00053
3 0.02667 ± 0.00227 0.00856 ± 0.00104 0.01613 ± 0.00119
4 0.03450 ± 0.00318 0.00900 ± 0.00096 0.04727 ± 0.00393
5 0.04532 ± 0.00407 0.00919 ± 0.00099 0.12190 ± 0.01061
6 0.06137 ± 0.00585 0.00961 ± 0.00110 0.27821 ± 0.02823
7 0.08913 ± 0.00864 0.01210 ± 0.00103 0.42401 ± 0.02800
8 0.14018 ± 0.01261 0.01156 ± 0.00120 -
9 0.24689 ± 0.01898 0.01873 ± 0.00136 -
10 0.37214 ± 0.02408 - -

ESN (MAE ± STD)

Case Blurred data Noisy data Undersampled data

1 0.05220 ± 0.00347 0.06193 ± 0.00264 0.00362 ± 0.00031
2 0.05910 ± 0.00365 0.07193 ± 0.00288 0.01682 ± 0.00110
3 0.06245 ± 0.00394 0.08070 ± 0.00299 0.03516 ± 0.00242
4 0.07318 ± 0.00469 0.09052 ± 0.00312 0.08491 ± 0.00561
5 0.08476 ± 0.00536 0.09344 ± 0.00341 0.20439 ± 0.01105
6 0.09959 ± 0.00644 0.11136 ± 0.00370 n.A.
7 0.12325 ± 0.00813 0.11889 ± 0.00391 n.A.
8 0.18129 ± 0.01323 0.14548 ± 0.00596 -
9 0.27925 ± 0.01628 0.18259 ± 0.00720 -
10 0.39927 ± 0.01717 - -
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Reservoir computing using ESNs for predicting chaotic
dynamics has already been demonstrated in 2004 by Jaeger
and Haas [37]. Since then many studies appeared analyzing
and optimizing this approach (see, for example [38–44], and
references cited therein). In particular, it has been pointed out
how reservoir computing exploits generalized synchronization of
uni-directionally coupled systems [45, 46].

Recently, applications of ESNs to spatio-temporal time series
have been presented [18, 47] employing many networks
operating in parallel at different spatial locations based on the
concept of (reconstructed) local states [48]. In particular, using
this mode of reservoir computing it was possible to perform a
cross-prediction between the four different variables of the BOCF
model [18]. Therefore, for the current task of reconstructing data
from impaired observations we build on the previous ESN design
and modelling procedure. For each pixel an ESN is trained
receiving input from neighboring pixels, only, representing the
local state at the location of the reference pixel as illustrated in
Figure 5. This design introduces two new hyperparameters σ and
Δσ to the default ESN, where σ is the size of the stencil to define
the local state and Δσ specifies the spatial distance of adjacent
pixels included in the local state. Optimal values for all
hyperparameters are determined by a grid search.

2.3.2 Convolutional Autoencoder
A convolutional autoencoder [33] is a special architecture of a
feed forward network (FFN) with convolutional layers similar to

convolutional neural networks (CNNs) [49]. Generally a CAE
learns a representation of the training set D with the purpose of
dimensionality reduction. For each pair Zi � (Xi,X′

i) ∈ D the
CAE is trained to perform a nonlinear transformation from the
input representation ofXi to the output representation ofX′

i . Like
CNNs a CAE is a partially locally connected feed forward
network, which is typically composed of the following layers:

Convolutional layers: Convolution of the input by a kernel sliding
over the input. The number of rows and columns of the kernel
are hyper-parameters, in this work they are set to be 3 × 3.
Batch normalization layer: Normalization of the activations of
the previous layer during training and for each batch. Batch
normalization allows the use of higher learning rates, being
computationallymore efficient, and also acts as a regularizer [50].
Leaky ReLU [51] layer: Leaky version of a rectified linear unit
(ReLU) [52], such that:

](x) � { αx for x < 0
x for x ≥ 0.

Max pooling layer: Sample-based operation for discretization
based on a kernel that slides over the input like the convolutional
operator but only the maximum value of the kernel is passed
to the next layer. Width and height of the kernel are hyper-
parameters (in this work 2 × 2). In contrast to the convolutional
layer a pooling layer is not trainable.

FIGURE 10 | Exemplary visualization of the input and output for both networks, CAE and ESN, when recovering the original data from blurred measurements.
(A)–(F) corresponds to case one, where m � 20, (G)–(L) to case six with m � 14 and (M)–(R) to seven, m � 8. Comparing the absolute differences between the
prediction and the ground truth [(D), (J), (P) for the CNN and (F), (L), (R) for the ESN] one recognizes that the CAE and ESN exhibit different patterns. The errors of the
CAE are rather pointwise distributed at some locations [see (D), (J)] on the front while they aremore evenly distributed when using ESNs (F), (L). This pattern is even
more pronounced in (P) vs. (R).
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Dropout layer: Regularizationmethod to prevent overfitting where
during training someweights are set randomly to zero [53]. In this
work the probability of setting the weights to zero is 0.05.

The eponymous part of the CAEs are the convolutional layers,
a convolution of A � (aij) ∈ Kn×n with a kernel F � (fij) ∈ Kk×k,
where k< n, is given by:

(ApF)xy � ∑k/2
i�−k/2

∑k/2
j�−k/2

axyf(i−x)(j−y), (17)

with x, y ∈ 1, . . . , n. If i − x− or j − y exceeds the range of A zero-
padding is applied [54].

In this work two architectures are used. The first one
employed to reconstruct the data from noisy, blurred and
inverse modelling data is illustrated in Figure 6. The
architecture is the same for the tasks in Section 2.1.2 and
Section 2.2.3 but the sizes of X and X′ are different, with
X,X′ ∈ R512×512 and X,X′ ∈ R100×100, respectively. Due to the
smaller input size, the data for the inverse modelling
reconstruction is transformed into a latent space with the size
of 25 × 25. The second architecture is sketched in Figure 7 and
deals with the undersampled data reconstruction.

3 RESULTS

In the following both machine learning methods will be applied to
two tasks: (i) Reconstructing electrical excitation waves from noisy
blurred and under sampled data (Section 3.1) and (ii) Predicting
electrical excitation from mechanical contraction (Section 3.2).

3.1 Recovering Complex Spatio-Temporal
Wave Patterns From Impaired Observations
To benchmark both reconstruction methods, using ESNs and
CAEs, we use time series generated by the BOCF model
introduced in Section 2.1.1. The same data were used for both
methods, consisting of 5,002 samples in the training data set,
2,501 samples in the validation data set, and 2,497 samples in the
test data set. The sampling time of all time series equalled
10Δt � 1. We considered nine cases of noisy data (with
different noise levels), ten cases of (differently) blurred data
and seven examples of (spatially) undersampled time series.

For the implemention of the ESN we used the software package
easyesn [56]. To determine the optimal ESN hyperparameters a
grid search is performed as described in [18] using the training and
validation subsets of the data. This search consists of two stages:
first, for each combination of the local states’ hyperparameters σ
and Δσ as listed in Table 2 a grid search is performed to find the
optimal five hyperparameters of the ESN resulting in 37 sets of
optimal hyperparameters. To make these grid searches more
feasible, they were performed just for a single input patch (area
covered by the stencil, see Figure 5) in the spatial center of the
training set and thus not using the full spatial data.

In the second stage, for each of the 37 sets of optimal
hyperparameters determined before (for each combination of σ
and Δσ), an ESN is trained on a larger subset of the training data
and not just on a single patch. Ideally, this step should be
performed on the entire spatial domain of the training set,
however, as we did not notice significant differences in the
results when the ESNs were trained on a spatial subset of size 250 ×
250 to speed up the training process. Following the same
methodology as in [18], for each pixel from this spatial subset a
single ESN is trained and then the obtained output matrices Wout

of these ESNs are averaged over all pixels. Compared to the
procedure used in [18], the handling of boundary values has
been changed. As for boundary pixels fewer adjacent pixels exist
than for those inside, the creation of local states is obstructed, and
boundary pixels require special treatment. In our previous work
[18] individual ESNs have been trained for the boundary pixels
using local states of lower dimensionality. In the following we use
an alternative approach based on padding the boundary pixels by
mirroring their values (motivated by the no-flux boundary
conditions used). In this way, local states can be formally
defined for boundary pixels in the same way as for inner pixels.

Next, the different optimal ESNs obtained for different stencils
(σ,Δσ) were evaluated by comparing their performance on the
validation subset. In this way optimal values for σ and Δσ
were selected by choosing the combination (σ,Δσ) with the
lowest ℓ2 difference between the prediction and ground truth
on the validation set. This process yields an ESN whose

FIGURE 11 | (A) Mean absolute errors of reconstructions using CAE or
ESN from data blurred with different values of the low-pass filter parameterm.
Like in Figure 9B boxes are horizontally shifted for better visibility. A tabular
overview of the values can be found in Table 3. (B) Evolution of the loss
function values over the training epochs for blurred data. Training was always
terminated by reaching the early stopping criterion, defined in Section 3.1.
One epoch trained approximately 108 s on a GTX 1080 Ti.
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hyperparameters and weights are optimized to yield minimal ℓ2
error. Finally, without training the network again on the entire
training set, the optimal ESN found before is used to perform the
prediction on the entire test set. As a pre-processing step, both the
input and target data of the training, validation and test set are
rescaled with min-max scaling, where the minimal and maximal
value are determined over all pixels of the training set.

The CAE was trained using the ADAM optimizer [57],
implemented with TensorFlow [58] in version 2.3, with early
stopping when the validation loss has not improved at least by
10− 6 for 20 epochs. The learning rate was reduced by a factor of
0.2 when the loss metric stopped improving at least by 10− 5 for
ten epochs. Dropout was set to be 0.05 in all cases. As loss
function the mean absolute error (MAE) was chosen:

MAE � 1
N

∑N
i�1

∣∣∣∣X̂i − X′
i

∣∣∣∣, (18)

where N is the number of elements in the data set, X̂i the network
output, X′

i desired ground-truth and |.| stands for the absolute values.

3.1.1 Noisy Data
Figure 8 shows snapshots of the noisy input data, the
corresponding ground truth, the outputs provided by the CAE
and the ESN, respectively, and the absolute values of their
prediction errors with respect to the ground truth.

The evolution of the loss function during the training epochs is
shown in Figure 9A. In all cases the error decreases and the

training converges, but the duration of the training depends on
the complexity of the case.

Figures 9B shows a comparison of the performance of the CAE
and the ESN for noisy data with nine different noise levels
p � 0.1, . . . , 0.9. While the mean absolute error of the CAE
remains below 0.02, the reconstruction error of the ESN increases
from 0.06 for p � 0.1 to 0.18 for p � 0.9, the associated ESN
hyperparameter can be found in Table 4.

3.1.2 Blurred Data
To evaluate the performance of CAE and ESN for recovering full
resolution (ground truth) data from blurred observations we
consider nine cases where the radius m of Fourier low-pass
filtering ranges from m � 2 to m � 18 (in steps of 2). Figure 10
shows snapshots of reconstructions of the u-variable of the
BOCF model using CAE and ESN with filter parameters m �
20 (A-F), m � 14 (G-L), and m � 8 (M-R). Similar to Figure 8
the errors are largest at fronts of the excitation waves, but
in contrast to noisy images the performances of CAE and
ESN differ not much for blurred data. This observation is
also confirmed by a systematic comparison of the mean
absolute errors of both methods for different manhatten
distances m given in Figure 11A. The errors decrease with m
because the larger m the less blurred are the input data of the
CAE or ESN (for hyperparameter see Table 5). Figure 11B
shows the evolution of the loss function during training of
the CAE.

FIGURE 12 | Exemplary visualization of the reconstruction of the u-field of the BOCFmodel from undersampled data. (A)–(F) corresponds to a sampling parameter
i � 1 resulting in X ∈ R256×256, (G)–(L) to case i � 3, X ∈ R64×64 and (M)–(R) to i � 5, X ∈ R16×16. With downsampling by a factor of 21 reconstructions by both networks,
CAEs and ESNs, are both very successful and the absolute differences shown in (D) and (F) are nearly zero. Similar to reconstructions from noisy or blurred data errors
occur mainly at the fronts of the waves, and reconstruction errors of the CAE appear to be more localized compared to ESN results.
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3.1.3 Undersampled Data
Figure 12 shows examples of data reconstructed from
undersampled data. In total we considered seven cases of
undersampling by 2i pixels, where i ranges from i � 1 to i � 7.
For i � 1 input images have a resolution of X ∈ R256×256 and for
i � 7, X ∈ R4×4. In all cases the desired output (ground truth) X′

has a size of 512 × 512 pixels. The used hyperparameter for the ESN
can be found in Table 6). Figure 13B shows the evolution of the
corresponding loss function.

3.2 Predicting Electrical Excitation From
Mechanical Contraction
Echo state networks as well as convolutional autoencoders have
been trained with time series generated by the electromechanical
model introduced in Section 2.2 to predict the membrane
voltage u(x, t) Eq. (4) from the local contraction ΔA(x, t)
given in Eq. (13). The sampling time of all time series
equalled 6Δt � 0.48. Since for periodically rotating spiral
waves this cross-prediction task is quite straightforward we
focus here on the much more demanding case of an example
exhibiting spatio-temporal chaos (corresponding to atrial or
ventricular fibrillation). Figure 14 shows at three instants of
time snapshots of the observed contraction ΔA (first column),
the ground truth of the voltage u (second column), the
prediction of the CAE uCAE and its absolute error |u − uCAE|
(third and fourth column) and the prediction of the ESN uESN
and the corresponding absolute error |u − uESN| (columns five
and six, respectively). Both, the ESN and the CAE were trained

and tested with the same spatio-temporal time series (lengths of
training, validation and test sets are 15,000, 2000 and 2000
samples, respectively). Hyperparameters of the ESN are N �
600, α � 0.5, ρ � 1.1, ϵ � 0.05, λ � 5 · 10− 3, σ � 7 and Δσ � 1. To
make the ESN more robust normally distributed noise with zero
mean and a variance of 10− 4 was added to the arguments of the
activation function.

As illustrated in Figure 14 both networks can solve the
inverse problem and reconstruct the electrical potential
field u from Eq. (4). However, the reconstruction of the CAE
is more precise, which is particularly noticeable at the edges of
the reconstructed electrical potential field. Considering the
median of the MAE over the entire test data the ESN

TABLE 4 | Selected ESN hyperparameters for the case of noisy data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 500 1.25 0.5 0.05 10
2 500 0.50 0.2 0.05 10
3 250 1.00 0.2 0.2 10
4 250 0.05 0.2 0.2 10
5 250 3.00 0.2 0.1 10
6 250 1.25 0.2 0.1 10
7 250 3.00 0.2 0.05 10
8 500 1.25 0.05 0.2 10
9 500 3.00 0.05 0.05 10

TABLE 5 | Selected ESN hyperparameters for the case of blurred data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 10
2 250 1.25 0.05 0.05 10
3 500 2.00 0.05 0.1 10
4 500 0.75 0.2 0.2 5
5 250 1.50 0.2 0.2 10
6 250 1.50 0.2 0.2 10
7 250 1.25 0.2 0.2 10
8 500 0.90 0.2 0.2 5
9 250 1.50 0.5 0.2 10
10 500 0.75 0.7 0.2 10

TABLE 6 | Selected ESN hyperparameters for the case of undersampled data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 5
2 500 0.05 0.05 0.2 0.5
3 250 1.50 0.05 0.2 10
4 250 2.00 0.5 0.2 10
5 500 0.30 0.05 0.1 5
6 500 0.75 0.2 0.05 10
7 250 1.50 0.05 0.1 10

FIGURE 13 | (A) SameasFigures9Bbut for the case of the undersampled
data. A tabular overview of the values can be found in Table 3. (B) Evolution of the
loss function values over the epochs for undersampled input data.
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approach achieves an error of 0.1963 ± 0.0260 while the median
error of the CAE equals 0.0164 ± 0.0028.

4 CONCLUSION

Using synthetic data generated with conceptual models describing
complex cardiac dynamics we have demonstrated possible applications
of machine learning methods to complete and enhance experimental
observations. It was shown that echo state networks as well as
convolution autoencoders provide promising results, where the
latter turned out to be the method of choice in terms of more
faithful reconstructions. At this point, however, we would like to
stress, that we didn’t try to fully optimize the algorithms employed.
One could, for example, increase the size of the ESNs used or extend
and refine the grid search of hyperparameters. Also with the CAE
several options exist to improve the performance evenmore. Instead of
the MAE in the loss function one could use an adaptive robust loss
function [59] or the Jensen-Shannon divergence [19]. The weights of
the CAE could be optimized with a stochastic gradient descend
approach instead of the ADAM algorithm [57]. But we expect such
modificationswould showonlyminor improvements (if at all) [60, 61].

A comparison of the computing times with ESNs and CAEs is
unfortunately not immediately possible. For the CAE the
training time depends on the convergence, as illustrated in
Figures 9A, 11B and 13B. In contrast to this, for ESNs
training times depend strongly on the search for optical
hyperparameters, especially the size of the reservoir, and this
search is strongly dependent on the search space size and the

number of parameters. For the task where electrical excitation is
predicted from mechanical contraction our computations took
3,382 s on two Intel Xeon CPU E5-4620. While the CAE
simulations have been run on GPUs the training and
application of the ESN was on CPUs which makes a direct
comparison difficult. Furthermore, the runtime of the
programmes used is highly dependent on the libraries used
and how well they have been adapted to special system
architectures. In general we would estimate that in this work
the effort to train and search hyperparameters for an ESN was a
bit less demanding, in the sense of computational resources,
compared to the training of the CAE. However, we would not
consider the difference big enough to be an advantage for the
ESN approach. Once trained both approaches need comparable
execution times when applied to new data and executed on a
CPU. In future work, using more realistic numerical simulations
(and experimental data) such an optimization should be
performed to achieve the best possible result for the intended
medical application. Since here we used only data from
conceptual models we refrained from fully optimizing the
machine learning methods applied. The fact that already a
straight-forward application of known algorithms and
architectures provided very good results for the considered
reconstruction tasks is very promising and encourages to
address in future work extended tasks (including other
variables, like calcium concentration, mechanical stress and
strain, etc.) and reconstruction tasks with more realistic
synthetic data (from 3D models, for example) combined with
experimental measurements.

FIGURE 14 | Exemplary visualization of the input and output for both networks for the inverse reconstruction of the membrane voltage u Eq. (4) based on the
mechanical deformation ΔA Eq. (13). (A)–(F) corresponds to t � 1,000, (G)–(L) to t � 1, 500 and M-R to t � 2, 000 of the test data set. The input is the mechanical
deformation given by Eq. (13) caused by the electrical potential u from Eq. (4).
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APPENDIX 1: SOLUTION OF THE
ELECTRO-MECHANICAL DYNAMICS

The differential equations from the extended Aliev-Panfilov
model in Eqs. A1–A3 have been integrated using the forward
Euler method yt+Δti � yti + Δt · f (y) +O(Δt2), in which y is a
place holder for the model variables u, v and Ta; f (y)
represents the right-hand side of the respective equation. The
diffusion tensor D in Equation (4) was set to a scalar constant D
and the diffusion term was approximated with a nine-point
stencil [60]

∇(D · ∇uij) � D · ∇2uij � D
6h2

(4ui+1,j + 4ui−1,j

+ 4ui,j+1 + 4ui,j−1+ ui+1,j+1 + ui+1,j−1
+ ui−1,j+1 + ui−1,j−1 − 20uij) +O(h4) (A1)

where i, j are the indices of the grid points and h denotes the
spacing constant between the cells.

For the excitation variable u in the electrical part of the simulation,
no-flux boundary conditions have been used which were imposed by
setting the two outermost cells to the same value, i.e., u0,j � u1,j. In the
mechanical part of the simulation, numerical calculations were carried
out according to the following scheme for each time step: (1) update of
the position of the centre of mass xcm, (2) calculation of all four points
of attachment qi for each cell, (3) computing of forces from structural
and axial springs for each particle xi, (4) update of the positions of all
particles using the Verletmethod and (5) determine change of area for
each cell. Here the Verlet method refers to the standard Verlet
algorithm which is given as [61]

x→ t+Δt
i � 2 x→ t

i − x→ t−Δt
i + 1

mi
F
→ t

i Δt2 +O(Δt4) , (A2)

with the total force F
→t

i acting on the particle. Because the total
force includes the damping term, it is convenient to rewrite Eq.

A2 with F
→

i � f
→
i − ] d x→i

dt to

x→ t+Δt
i � 2 x→ t

i − x→ t−Δt
i (1 − ]

2mi
Δt) + 1

mi
f
→ t

i Δt2

1 + ]
2mi

Δt +O(Δt4) . (A3)

A padding layer of ten electrically inactive cells was
implemented outside the electrical grid to account for
boundary effects in the mechanical network. In addition, the
active stress variable Ta from Eq. (6) of the last row of cells just at
the edge of the simulation grid was mirrored to the two padding
layers just outside the simulation grid which proved to
dramatically reduce mechanical boundary effects. This is likely
due to the fact that a proper contraction of an electrically active
cell is not guaranteed if one of its sides is connected to an inactive
cell. Lastly, the outermost padding cell’s positions were fixed to
prevent the grid as a whole from moving away from its original
position.

To improve numerical accuracy for each time step Δt of the
electrical equations (Euler method) five time steps of size Δt/5
were computed for the mechanical system (3). All computations
have been performed on a spatial grid of 100 × 100 elements. The
parameter values of the dynamical equations used are given in
Table A1.

TABLE A1 | Parameters of the electro-mechanical model.

u0 0.1 a 0.05 b 0.05 μ1 0.2 μ2 0.3 k 8 ϵ0 0.002
D 0.22 Δt 0.08 kT 3 kij 13 kpadij 23 kj 2 ka 9
kpada 23 ca 10 mi 0.2 ν 6.86 ϵT ,0 1 ϵ∞ 0.1 ξT 30
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Epilepsy is one of the most common neurological disorders typically characterized
by recurrent and uncontrollable seizures, which seriously affects the quality of
life of epilepsy patients. The effective tool utilized in the clinical diagnosis of
epilepsy is the Electroencephalogram (EEG). The emergence of machine learning
promotes the development of automated epilepsy detection techniques. New
algorithms are continuously introduced to shorten the detection time and improve
classification accuracy. This minireview summarized the latest research of epilepsy
detection techniques that focused on acquiring, preprocessing, feature extraction,
and classification of epileptic EEG signals. The application of seizure prediction and
localization based on EEG signals in the diagnosis of epilepsy was also introduced. And
then, the future development trend of epilepsy detection technology has prospected at
the end of the article.

Keywords: epilepsy, neurological disorder, EEG, machine learning, detection

INTRODUCTION

Epilepsy is a neurological disorder caused by the sudden abnormal discharge of brain neurons.
The typical characteristics of epilepsy are recurrent, unconscious body movements, and so on (Sra
et al., 2019). Uncontrollable seizures are more likely to induce Depression, Cardiovascular disease,
and other diseases making patients and their families miserable (Supriya et al., 2020). The World
Health Organization (WHO) report manifests that approximately 50 million people have epilepsy
worldwide (Liu et al., 2020). Knowing the precursors of epilepsy can allow patients to avoid the pain
of epileptic seizures through drug control, so there are an urgent need for simple, fast and effective
epilepsy detection methods.

EEG is a commonly used non-invasive auxiliary method in the clinical diagnosis of epilepsy.
However, it is a highly tedious, laborious, time-consuming, and costly task for neurologists to
identify seizures from EEG for a long time (Yao et al., 2021). Therefore, it is necessary to develop a
reliable epilepsy automatic detection system, which can significantly improve the quality of life of
epilepsy patients (Solaija et al., 2018). Prior et al. (1973) introduced the Cerebral Function Monitor
(CFM) that monitors the long-time EEG, which can record the number of seizures. Subsequently,
Gotman (1982) selectively recorded the EEG signals of epileptic in the interictal and ictal as samples
and used its amplitude, period, and other characteristics to distinguish whether the samples were
in the state of epileptic seizures. Martinerie et al. (1998) realized the epileptic seizure detection
by extracting the non-linear indicators of the EEG signal around seizure onset. The above work
uses computers to automatically collect EEG data of patients with epilepsy and try to extract the
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characteristics of the lesions, but it cannot fully realize the
prediction of epileptic seizures, and it is of limited help to medical
staff and patients. While the emergence of machine learning
promotes the development of epilepsy detection techniques
(Aayesha et al., 2021), it provides the possibility to automatically
detect epilepsy, thus attracting more and more researchers to join
it. Chen et al. (2014) proposed an epilepsy detection framework
based on machine learning to realize epileptic seizure detection.
Later Craley et al. (2021) developed an end-to-end deep
learning model for automatic seizure detection in multichannel
EEG recording. Their outstanding research has made machine
learning a step toward success in the field of automatic epilepsy
detection. At present, most patients with epilepsy can be treated
with drugs (Wang et al., 2021). Liu et al. (2018) and Ito
et al. (2021) used EEG observing epileptic discharges to verify
anti-epileptic drugs’ reliability. For patients with drug-resistant
epilepsy, surgical treatment, such as Temporal Lobectomy (TL)
is necessary to control seizures (Anoop et al., 2021). And for
patients with refractory epilepsy, Vagus nerve stimulation (VNS)
has a significant therapeutic effect (Shimogawa et al., 2021).
Under such circumstances, using machine learning algorithms
in EEG signals to realize epileptic detection, thus realizing the
treatment effect evaluation, will help clinicians treat epileptic
(Assi et al., 2017; Al-Hadeethi et al., 2020).

The machine learning algorithm mainly compares the
abnormal time-frequency domain characteristics of the EEG
signal of patients with epileptic seizures to detect epileptic
seizures. In recent years, seizure detection has also promoted the
development of seizure prediction and location. This minireview
introduced the decisive steps of epileptic seizure detection shown
in Figure 1, including the acquisition, preprocessing, feature
extraction, and classification of epilepsy EEG signals, besides the
application of seizure prediction and localization in the diagnosis
of epilepsy and trend of future seizure detection techniques was
also given here.

ACQUISITION OF EEG AND
PREPROCESSING

There are many devices for obtaining EEG signals, such
as brain-computer interface (BCI) equipment from Neurosky
and portable EEG acquisition equipment by COMPUMEDICS
NeuroScan. The EEG signals can be acquired by placing
EEG electrodes on the scalp of patients with epilepsy. EEG
electrodes can be placed on the whole brain according to the
international 10–20 EEG system for EEG electrode placement
(Herwig et al., 2003).

Before detecting the collected epilepsy EEG signals, it is
a regulation method to use the publicly available epilepsy
EEG signal data set (e.g., epilepsy EEG dataset of Children
Hospital Boston, Massachusetts Institute of Technology (CHB-
MIT), epilepsy EEG dataset of The Freiburg, epilepsy EEG
dataset of Bonn University) to establish and verify the EEG
detection model. In addition to using publicly available datasets,
some researchers used clinical epilepsy EEG data by clinicians
to verify the reliability of the epilepsy detection model

(Iesmantas and Alzbutas, 2020). Furthermore, some researchers
evaluated the model’s reliability through cross-database (Sun
et al., 2019). Raghu et al. (2020) used five different epilepsy EEG
datasets for the first time to verify the generalization capability of
seizure detection models. What’s more, the collected epilepsy data
needs to undergo preprocessing, including artifacts removing and
noise filtering, to obtain a clean epilepsy EEG signal for the next
step, feature extraction (Acharya et al., 2018a).

FEATURE EXTRACTION

Feature extraction is an essential step in epileptic seizure
detection, which is used to establish an epilepsy detection model
via standard epilepsy data, and epilepsy detection from actual
collected EEG signal data. The effect of feature extraction is
closely related to the accuracy of epilepsy detection, so it is
imperative to improve feature extraction. And research shows
that different dimensionality reduction methods can improve the
saliency of features. Al-Hadeethi et al. (2020) proposed for the
first time to use the covariance matrix for reducing EEG signals
dimensionality and extract its statistical features, and use non-
parametric tests to obtain the set that has the most distinguishing
features, which can be used as the input of Adaptive Boosting
Least Square-Support Vector Machines (AB-LS-SVM) model
to achieve satisfactory results (>99% accuracy). Vicnesh and
Hagiwara (2019) extracted the non-linear features from the EEG
data, selected them, and then fed them into the decision tree (DT)
to classify the different epilepsy classes.

EEG signals are non-linear and non-stationary time signals.
Using wavelet transform to re-express EEG signals is a commonly
used method of dimensionality reduction. Ott et al. (2010)
extracted the standard deviation, variance, and higher-order
moments after wavelet transform and used them as the
input of linear discriminant analysis (LDA) and k-nearest
neighbor (KNN) classifiers. On CHB-MIT, the method yielded
a classification accuracy of 99.45% using the KNN classifier.
Wang et al. (2017) presented a three-class classification system
based on discrete wavelet transform (DWT) and the non-linear
sparse extreme learning machine (SELM). Three-level lifting
DWT using Daubechies order four wavelets was introduced to
decompose the Bonn University EEG dataset, and the maximum
and standard deviation values of each subband were computed.
The experiment obtained a classification accuracy of 98.4%. DWT
was also used by Amin et al. (2020) for differentiating epileptic
seizures for standard signals.

In addition to wavelet transform, the transformation of
epilepsy EEG signals can also use empirical mode decomposition
(EMD), wavelet packet decomposition (WPD), etc. A new
method was presented by Ahmet and Aydin (2018) to analyze
intrinsic mode functions (IMFs) decomposed by EMD. The
method showed 97.89% accuracy by using the Bonn University
EEG dataset. Ailckovic et al. (2018) applied EMD, DWT, WPD
to process the Freiburg and CHB-MIT EEG dataset and extracted
six statistical features, after that putting them into Random Forest
(RF), Support vector machine (SVM), Multilayer perceptron
(MLP), and KNN classifiers. This method could discriminate
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FIGURE 1 | The key steps of epilepsy detection.

between inter-ictal and pre-ictal EEG states with an accuracy
of 99.70%. Hassan and Subasi (2016) proposed a new signal
processing scheme for EEG signal segments, namely complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN). Six spectral moments were extracted from the
CEEMDAN mode functions and then inputted into linear
programming boosting (LPBoost) classifier. This model got 100%
accuracy. Tao et al. (2017) applied a fusion method of variational
mode decomposition (VMD) and autoregression (AR) for feature
extraction. Statistical features of the best AR model coefficients
were calculated and fed into RF classifier for classification.
Finally, the test showed 97.352% accuracy. Another critical step
after feature extraction is classification, which will give the final
epilepsy detection results from the extracted features.

CLASSIFICATION

In recent years, the application of machine learning in the
classification of epilepsy diagnosis has attracted more and more
researchers. And some machine learning algorithms used in
epilepsy detection and classification are summarized in Table1,
mainly including SVM, convolutional neural networks (CNN),
extreme learning machines (ELM), and other algorithms.

TABLE 1 | Summary of machine learning methods for epilepsy detection.

Author Dataset Model Accuracy (%)

Janjarasjitt and Suparerk CHB-MIT SVM 96.87

Chen et al. BONN LS-SVM 99.5

Al-Hadeethi et al. BONN AB-LS-SVM 99

Qi et al. BONN ELM 96.5

Li et al. BONN M-ELM 100

Song et al. BONN FF-ELM-SD 97.53

Wang et al. BONN SELM 97.6

Acharya et al. BONN CNN 88.67

Wei et al. CHB-MIT CNN 90.57

Nogay and Adeli CHB-MIT DRNN 100

Choubey and Pandey BONN ANN + KNN KNN:98 ANN:94

Yuan et al. CHB-MIT BLDA 95.74

Zeng et al. BONN GRP-DNet 100

Juarez-Guerra et al. BONN MRW-FFWNN 95.0

SVM is a commonly used classifier, and the classification
results of which can be changed using different kernel functions
and different cross-validation multiples. Janjarasjitt (2017)
applied SVM to classify single-channel scalp EEG data features
times. Moreover, the test got an average classification accuracy
rate of 96.87% using 10-fold cross-validation. Besides, many
researchers combine different algorithms with SVM to obtain
better classification accuracy and detection efficiency. Makaram
et al. (2020) extracted the time domain characteristics and signal
complexity. Further, they used the Support Vector Machine-
Error-Correcting Output Codes (SVM-ECOC) to train the
classification algorithm, and the improvement in classification
accuracy had been obtained. Ramakrishnan and Murugavel
(2019) proposed a new seizure detection model using layered
directed acyclic graph SVM (LDAG-SVM), which improved
classification accuracy and reduced detection time compared
to existing methods. After performing DWT, Chen et al.
(2019) extracted the non-linear features of each sub-band
and inputted them into six different classifiers for training.
Finally, they increased the classification accuracy of Least
Square-Support Vector Machines (LS-SVM) to 99.5%, which
was better than five other classifiers. Based on LS-SVM, Al-
Hadeethi et al. (2020) further applied the AB-LS-SVM model for
epilepsy detection.

In 2006, Huang et al. (2006) improved Backward Propagation
(BP) to improve learning efficiency, simplify learning parameters,
and proposed ELM. Then Qi et al. (2011) extracted non-
linear features and applied ELM for an epilepsy diagnosis.
The classification accuracy was improved to 96.5%, which
was better than BP and SVM in both classification accuracy
and training time. To make ELM better application, Li et al.
(2016) proposed a ternary classification system based on the
Multiplicative Extreme Learning Machine (M-ELM), with a
maximum classification accuracy of 100%. Song et al. (2016)
designed a novel fusion feature and integrated the fusion
feature and ELM. Experimental results demonstrated 97.35%
classification accuracy. Wang et al. (2017) applied SELM for
epilepsy detection. Liu et al. (2017) proposed Kernel ELM and
introduced Cholesky decomposition to reduce the computation
of out weights. The experimental results showed that the method
can achieve an average classification accuracy of 96.5%. On this
basis, Zhang et al. (2019) proposed Expectation Kernel ELM
(EKELM) to further improve ELM classification abilities.
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In 2018, Acharya et al. (2018b) applied CNN to the study
of EEG signals for the first time and realized a 13-layer deep
convolutional neural network for epilepsy detection without
separate feature extraction and feature selection. The proposed
technique achieved an accuracy of 88.67%. Iesmantas and
Alzbutas (2020) extracted different features from clinical epilepsy
EEG signals and applied CNN for training data. Wei et al.
(2019) used the increasing and decreasing sequences (MIDS)
merger to highlight the characteristic of waveforms and a data
augmentation method for increasing the sample diversity and
EEG information. Furthermore, they applied CNN classifier
for epilepsy detection to get 90.57% accuracy. Nogay and
Adeli (2020) proposed a machine learning method for seizure
detection using the pre-trained deep two-dimensional CNN
and transfer learning concept that achieved 100% accuracy
for binary classification and ternary classification for epileptic
seizure detection.

With the continuous development of machine learning,
new algorithms are constantly being introduced into seizure
detection. Akyol (2020) proposed a new deep neural network
for seizure detection that successfully obtained an average
accuracy of 97.17%. Choubey and Pandey (2020) used Artificial
Neural Network (ANN) and KNN to achieve seizure detection.
Yuan et al. (2018) applied a Bayesian linear discriminant
analysis (BLDA) classifier to classify the CHB-MIT scalp
EEG dataset and achieved an average classification accuracy
of 95.74%. Zeng et al. (2021) combined gray recurrence
plot (GRP) and densely connected convolutional network
(DenseNet) for epilepsy detection and even achieved 100%
excellent classification accuracy in each classification experiment.
Mouleeshuwarapprabu and Kasthuri (2020) proposed a
Non-linear Vector Decomposed Neural Network (NVDN)
detect epileptic seizures and obtained 95.60% effective
epilepsy detection results. Sharma et al. (2020) described a
computationally fast seizure classification algorithm using
non-linear higher-order statistics and deep neural network
algorithms. This technique could capture weak information
related to epilepsy EEG signals and achieved 100% seizure
classification accuracy. Juarez-Guerra et al. (2020) proposed a
new epilepsy seizure detection method for classifying epilepsy
seizures, namely Multidimensional Radial Wavelons Feed-
Forward Wavelet Neural Network (MRW-FFWNN). The
experiment showed that the accuracy of the three classifications
was 93.33%. From the above research results, it is not difficult
to find that the research on epilepsy detection has been fruitful,
and even some epilepsy detection algorithms have reached 100%
accuracy. However, scientists’ research on epilepsy does not stop
there. The goal they really want to achieve is to prevent it before
it happens, in other words, to predict epilepsy.

SEIZURE PREDICTION AND
LOCALIZATION

In the 1970s, seizure prediction has become a hot research topic
(Assi et al., 2017). MohanBabu et al. (2020) focused on the seizure
prediction obtained from the CHB-MIT scalp EEG dataset
using an optimized deep learning network model (ODLN), and

the experiment by them provided 100% accuracy of seizure
prediction. Zhang and Parhi (2016) extracted 44 features every 2 s
for each channel and then ranked and selected them in a specific
way. The selected features were processed by the Kalman filter
and then inputted into the SVM classifier. This algorithm could
achieve 100% sensitivity on the Freiburg EEG dataset. Daoud and
Bayoumi (2019) applied deep learning to achieve epileptic seizure
prediction, achieving epileptic seizure prediction while attaining
99.9% accuracy of epileptic seizure prediction.

Identifying epileptogenic zones prior to surgery is an
indispensable step for patient before surgery. Alshebeili et al.
(2020) proposed a framework that uses DWT and SVM to
solve the problem of focus positioning. The framework used
the best frequency band characteristics and wavelet coefficient
characteristics, and its positioning accuracy could reach 88.0%.
Sriraam and Raghu (2017) extracted 26 features from focal
and non-focal EEG, then they used Wilcoxon rank sum test to
select significant features and used an optimized SVM classifier
with 10-fold cross-validation to perform important functions
classification. This method achieved an accuracy of 92.15% and
could be used to identify focal EEG signals to locate epileptic
areas. Myers et al. (2020) also proposed a novel method for
automatic localization of seizure on the scalp from clinical EEG
data, which could get 93.3% accuracy and 100% sensitivity. Wu
et al. (2021) presented a new localization method for epileptic
seizure onset zones (SOZs), an unsupervised clustering method
based on the combination of adaptive-genetic-algorithm-based
matching pursuit (AGA-MP) and k-medoids clustering method.
Moreover, compared with several existing methods, this method
had certain advantages in sensitivity and specificity.

OTHER APPLICATIONS OF MACHINE
LEARNING

Machine learning algorithms applied to EEG signals have also
shined in other fields. Seal et al. (2021) used deep CNN to detect
Depression and the detection accuracy of this algorithm was
99.37%. While Zhang et al. (2021) used CNN for motor imagery
(MI) classification, and the average accuracy of the model reached
over 88.4%. Huang (2021) recognized different psychological
emotions via improved SVM, whose classification accuracy was
as high as 85.9%. Raurale et al. (2021) develop an automated
system combining quadratic time-frequency distribution (TFD)
with CNN to identifying the severity of hypoxic-ischemic
encephalopathy injury (HIE), which could assist clinical decision-
making for neonates with HIE.

CONCLUSION

Since the beginning of the twenty-first century, the rapid
development of artificial intelligence and machine learning,
epilepsy detection techniques based on EEG signals has attracted
more and more attention from researchers. This minireview
briefly introduced the basic idea of epilepsy detection techniques
based on EEG signals. From epilepsy EEG data and preprocessing
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to feature extraction and classification, the research progress of
epilepsy automatic detection techniques in recent years were
reviewed. Due to the random nature of epileptic seizures, fast
and convenient seizure detection is essential for the immediate
treatment of epilepsy patients. There is still much room for the
development of epilepsy detection techniques. Here are a few
points about the future development trend of epilepsy detection
techniques based on EEG signals.

1. Seizure prediction and localization are still one of
the future development directions of epilepsy detection
techniques. Seizure prediction can effectively improve the
quality of epilepsy patients, and non-invasive epilepsy
focus localization can better assist clinicians in epilepsy
diagnosis time and save costs.

2. Epilepsy detection is related to the patient’s age, region,
and other things, but the publicly available epilepsy EEG
datasets are limited. Therefore, many epilepsy clinical EEG
data from different countries and different countries and
different age groups need to be improved.

3. With the development of machine learning, more and
more new methods are applied to the feature extraction

and classification of epilepsy EEG signals. The emergence
of deep learning may gradually replace machine learning
as the mainstream epilepsy diagnosis method in the future.

4. With wireless transmission technology development,
seizure detection may get rid of wired transmission in the
future and realize remote epilepsy detection.

In recent years, more and more new methods have begun
to be applied to the automatic detection of epilepsy. The
development of faster and more accurate epilepsy detection
models will contribute to epilepsy detection techniques in
clinical diagnosis and the development of portable and integrated
epilepsy detection equipment. Therefore, a concise and efficient
epilepsy detection model will become an inevitable development
trend in the future.
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Predicting Motion Patterns Using
Optimal Paths
Mads Fromreide1,2 and Alex Hansen3*

1NORCE Norwegian Research Centre AS, Kristiansand, Norway, 2Department of Applied Mathematics, University of Santiago de
Compostela, Santiago de Compostela, Spain, 3PoreLab, Department of Physics, Norwegian University of Science and
Technology, Trondheim, Norway

The ability to navigate safely and efficiently through a given landscape is relevant for any
intelligent moving object. Examples range from robotic science and traffic analysis, to the
behavior within an ecosystem. Many objects tend to move in patterns depending on their
nature. By establishing models of patterns of motion one may estimate the future motion
within an area. We propose here a method for detecting regular patterns of motion by
modeling the environment as an energy landscape, and locating optimal paths through it.
As an example, we use maritime position Automatic Identification System (AIS) data as
input to work out optimal routes between different start and end points when these are not
located along the standard shipping lanes. These initial tests show that the method has
potential for analyzing and determining regular patterns of motion.

Keywords: optimal paths, machine learning, motion prediction, energy landscape, Dijkstra algorithm

1 INTRODUCTION

Imagine a large town square. The square has fixed structures such as fountains etc. that block direct
pathways across it. It is a busy place where many pass across it in all directions. Cameras have been
set up that record the motion of people across the town square. The question we will address in this
paper is the following: Based on the recordings, is it possible to predict the motion of a single person
from some start point A to some end point B across the town square, even when the points A and B
are not located along the typical paths that people use across the square. This question has since long
been posed in different contexts [1]. Examples range from the behavior of ecosystems to robotic
navigation and traffic systems. A predator needs to account for the future motion of its prey in order
to catch it, just as a ship needs to consider the future positions of other ships to avoid collisions [2].

Moving objects are influenced by both the landscape in which they move, as well as other objects,
moving or not, within the same area [3–5]. There are several different ways to approach motion
prediction. The most straight forward approach is to predict the motion of each object in a system
individually, by assigning to each object a position as a function of time [6]. However, for large
systems, this method would produce a large number of coupled equations. Hence, this approach
would be unproductive in this case. A better approach is to exploit the fact that objects tend to move
in patterns [3, 7]. Depending on their nature and surroundings, moving objects tend to move in
regular patterns. By establishing a model of these motion-patterns in a given area, one may use the
pattern itself when predicting future motion. This is the core idea of our approach.

When applying methods of pattern recognition to motion prediction, the process typically
operates in two stages. The first stage is the actual pattern recognizing, which learns the regular
patterns of motion using a set of training data. The next stage applies the learned pattern to predict
the future motion. Further, this two-stage process may be grouped into two main groups of
techniques; Grid-based techniques and cluster-based techniques [3].

Edited by:
Antonio F. Miguel,

University of Evora, Portugal

Reviewed by:
Gyei-Kark Park,

Mokpo National Maritime University,
South Korea

Mathias Anneken,
Fraunhofer-Institut für Optronik,

Systemtechnik und Bildauswertung
(IOSB), Germany

*Correspondence:
Alex Hansen

alex.hansen@ntnu.no

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 20 January 2021
Accepted: 02 June 2021
Published: 21 June 2021

Citation:
Fromreide M and Hansen A (2021)
Predicting Motion Patterns Using

Optimal Paths.
Front. Phys. 9:656296.

doi: 10.3389/fphy.2021.656296

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6562961

ORIGINAL RESEARCH
published: 21 June 2021

doi: 10.3389/fphy.2021.656296

131

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.656296&domain=pdf&date_stamp=2021-06-21
https://www.frontiersin.org/articles/10.3389/fphy.2021.656296/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.656296/full
http://creativecommons.org/licenses/by/4.0/
mailto:alex.hansen@ntnu.no
https://doi.org/10.3389/fphy.2021.656296
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.656296


The grid-based techniques are derived from the occupancy
grid concept [8]. That is, the landscape is modeled as a grid and
transition probabilities between the cells are calculated from the
training data. The grid is then used directly for motion prediction.
Grid-based techniques are frequently used in robot navigation
systems [9–11].

Cluster-based techniques on the other hand, apply statistical
decision tools in order to group similar trajectories into
representative clusters. Several different clustering techniques
exists, the Expectation-Maximization approach [12] is
considered to be the state of the art [3]. Future motion of a
moving object is then estimated as the representative cluster
which the given route is most likely to belong to.

In this paper, we propose a dynamic grid-based technique for
learning motion patterns by mapping it onto the optimal paths in
a disordered landscape problem [13, 14]. We describe this
problem as follows. Imagine a plane and that x→ is a point on
this plane. There is a stochastic field e( x→) associated with the
plane. We choose a pathP through the plane starting at point x→A

and ending at point x→B. We integrate the field e( x→) along the
path P,

EP � ∫
x
→
∈P
e( x→)d x→. (1)

The optimal path is found by the minimization

EO � min
P

EP � min
P

∫
x
→
∈P
e( x→)d x→. (2)

This problem has produced a large body of work within the
statistical physics community. It is also closely related to the
optimal path problem which is central in a large number of
applications and fields [15–18].

The central idea we present in this paper is to relate the
function e( x→) to the inverse of the density earlier paths raised to
some power. We then identify the optimal path from x→A to x→B

through this landscape.
We apply this idea to vessel traffic, using marine automatic

identification system coordinates. We transform the coordinates
to a dimensionless area and introduce a grid over the area. We
associate each grid point with the local density of AIS coordinates.
We implement the optimal paths through the area using the
iterative algorithm of Hansen and Kertész [19, 21], but any other
algorithms may be used, e.g., the Bellman-Ford or the Dijkstra
algorithms [22–24].

We emphasize that we are not attempting here to present a
fully implementable algorithm ready to be used on ships. Rather,
this is a feasibility study testing whether the central ideas
may work.

We note that optimal paths have been used earlier in
connection with marine motion prediction [20]. However, the
paths in this case are optimized with respect to length. This is a
very different concept than what we present here.

We organize this paper as follows. Section 2 describes the
method we propose. In Section 3, we implement the method for
marine AIS data. We end by a brief summary and discussion.

2 ALGORITHM

We now describe how we transform the AIS coordinates, given in
terms of continuous longitude and latitude, into grid points. We
then go on to describe the concept of optimal paths in this context
and the algorithm used to extract it. Lastly, we describe how we
turn this into path prediction.

2.1 From Automatic Identification System
Coordinates to Grid
The automatic tracking system AIS uses tranceivers to allow ships
to view surrounding marine traffic and to be seen themselves. It
provides, among other services, a record of the position as a
function of time for the equipped vessels passing through the
area. This includes most large vessels.

We define our area of interest as the rectangle defined by the
corners given by the longitudinal and latitudinal coordinates
longmin, longmax, laemin and laemax. A given ship at a given
time is at position (longk, laek) where the subscript refers to
the position record (i.e., which ship and at what time). We
introduce dimensionless Cartesian coordinates to describe its
position, xk ∈ {0,N − 1} and yk ∈ {0,N − 1}, where N is an
integer, given by

xk � longk − longmin

longmax − longmin

(N − 1), (3)

and

yk � laek − laemin

laemax − laemin
(N − 1). (4)

The position of a given ship at a given time k at (xk, yk) is
then located within grid cell defined by the corner nodes
i1kmod(xk), i2kmod(xk) + 1, j1kmod(yk) and j2kmod(yk) + 1. In
order to construct a path density defined at the nodes
(i, j), ρi,j, we assign a weight to the position of ship
position and time k, (xk, yk) distributed among the four
corned nodes (i1k, j1k), (i2k, j1k), (i2k, j2k) and (i1k, j2k). If ri1k ,j1k is the
distance between (xk, yk) and (i1k, j1k), and likewise for ri2k ,j1k , ri2k ,j2k
and ri1k ,j2k , we define

Rxk ,yk � ri1
k
,j1
k
+ ri2

k
,j1
k
+ ri2

k
,j2
k
+ ri1

k
,j2
k
. (5)

We define the weights

Wi1
k
,j1
k
� 1
3Rxk ,yk

(Rxk ,yk − ri1
k
,j1
k
),

Wi2
k
,j1
k
� 1
3Rxk ,yk

(Rxk ,yk − ri2
k
,j1
k
),

Wi2
k
,j2
k
� 1
3Rxk ,yk

(Rxk ,yk − ri2
k
,j2
k
),

Wi1
k
,j2
k
� 1
3Rxk ,yk

(Rxk ,yk − ri1
k
,j2
k
).

(6)

The path density may then be defined as
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ρi,j � ∑K
k�1

Wik ,jk, (7)

when K is the number of position recordings within the grid cell.
We now associate a weight with node (i, j),

ei,j �
⎧⎪⎨⎪⎩

ρ−αi,j , if ρi,j > 0,
m, if ρi,j � 0,
M, if(i, j) is on land, (8)

where α is an adjustable parameter controlling the magnitude of
the fluctuations of ei,j: if α→ 0 the fluctuations are smoothened
out and disappear when α � 0 as all nodes then are assigned the
same weight. The parameterm is chosen so that there is a balance
between the tendency for a path to follow the normal shipping
lanes (where ρi,j is large) and a path being as short as possible. The
other value M≫m ensures that no paths crosses land.

The last step in setting up the system is to assign weights to the
links between neighboring nodes. Let the node (inn, jnn) be one of
the four nearest neighbors of node (i, j). Then, the link between
them is given the weight

ei,j;inn ,jnn �
1
2
(ei,j + einn ,jnn). (9)

We also allow for diagonal paths. The link between node (i, j)
and its diagonal neighbors (inn, jnn) as

ei,j;inn ,jnn �
�
2

√
2

(ei,j + einn ,jnn), (10)

where the factor
�
2

√
is introduced to take into account the

additional length of the diagonal edges.

2.2 Optimal Path Construction
We define a path P between two nodes A at (iA, jA) and B at
(iB, jB) as a continuous chain of neighboring links linking the two
nodes. We associate a weight of the path in the same way as in
Eq. 1,

EP � ∑
(i,j)∈P

ei,j;inn ,jnn. (11)

The optimal path is then

FIGURE 1 | (A) Data set A showing AIS position recordings with positions in degrees relative to the origin. (B) A selected subset of area A spanning 0.3+ in both the
longitudinal and latitudinal directions, transformed into a grid of dimensions 334 × 334 with grid size 100 × 100 m2.

FIGURE 2 | (A) Data set B showing AIS position recordings with positions in degrees relative to the origin. (B) A selected subset of area B spanning 3+ in both the
longitudinal and latitudinal directions, transformed into a grid of dimensions 334 × 334 with cell size 1000 × 1000 m2.
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EO � min
P

EP � min
P

∑
(i,j)∈P

ei,j;inn ,jnn. (12)

We will in the following assume that both nodes A and B lie on
the edges of the grid. In order to identify the optimal path, we use
the algorithm of Hansen and Kertész [19]. It consists of two main
steps; first an initialization and then an updating process. A
variable ei,j is assigned to each node. For the nodes on the edges of
the grid, the values ei,j stay fixed, while it is updated for the
internal nodes iteratively. The iteration algorithm for the internal
nodes is

ei,j → ei,j � min
inn ,jnn

(ei,j;inn ,jnn + einn ,jnn). (13)

After M iterations, the variable ei,j will contain the sum of the
weights along the optimal path starting at node (i, j) of lengthM.
The end point of the optimal path is not specified. Furthermore,
the optimal path may curl up on itself, creating a tadpole
configuration.

Consider now a node (iA, jA) on the boundary of the grid. In
order to find the optimal path from an internal node (i, j) to
(iA, jA), we set the value eiA ,jA to zero, while for the remaining
boundary nodes the value eic ,jc is set to a very large positive value.
The updating process for the internal nodes is carried out
according to Eq. 13, until all values ei,j no longer change. At
this point, the value of ei,j contains the value of EO � Ei,j;iA ,jA along
the optimal path between nodes (i, j) and (iA, jA).

FIGURE 3 |Optimal paths between the lower left and upper right corner
of the grid in Figure 1B for α � 0, 0.25, 0.50, 0.75 and 1. The parameter β,
defined in Eq. 15 was set to zero.

FIGURE 4 | The length of the optimal paths, LO between the lower left
and upper right corner of III as a function of α, while keeping β � 0.

FIGURE 5 |Optimal paths between the lower left and upper right corner
of the grid in Figure 2B for α � 0, 0.25, 0.50, 0.75 and 1. The parameter β,
defined in Eq. 15 was set to zero.

FIGURE 6 | The length of the optimal paths, LO between the lower left
and upper right corner of V as a function of α, while keeping β � 0.
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We now choose another boundary node (iB, jB) as end point
for the optimal paths. Hence, we fix eiB ,jB � 0 and fix all the other
boundary nodes to a large positive value, including boundary
node (iA, jA). The internal node values are initially set to zero,
ei,j � 0. We then iterate according to Eq. 13. When numbers no
longer change, ei,j will contain Ei,j;iB ,jB � EO for the optimal path
between nodes (i, j) and (iB, jB).

We may now combine the optimal paths starting at boundary
node (iA, jA) and ending at internal node (i, j) with the optimal
path starting at internal node (i, j) and ending at boundary node
(iB, jB). The optimal weight EO for this combined path is then
given by,

EiA ,jA;i,j;iB ,jB � min
inn ,jnn

(EiA ,jA;i,j + ei,j;inn ,jnn + Einn ,jnn ;iB ,jB, EiA ,jA ;inn ,jnn + einn ,jnn;i,j

+ Ei,j;iB ,jB).
(14)

Associating each internal node (i, j) with the value ei,j �
EiA ,jA;i,j;iB ,jB leads to the construction of a pathscape [21]. The
optimal path between edge nodes (iA, jA) and (iB, jB) is the
sequence of nodes associated with the smallest ei,j values.
There will then be a sequence of nodes having the second
smallest values ei,j. This sequence will branch out from the
globally optimal path as some node, to rejoin it at a different
node along the path. Then there will be sequence with the third
smallest values ei,j branching off and rejoining nodes
belonging to the two paths containing the two smaller
ei,j—and so on. Each internal node will belong to some path
in this hierarchy.

2.3 Predicting Paths
We now focus our attention on pathscapes where boundary
nodes (iA, jA) and (iB, jB) are placed along different edges.
There are 6N2 possible combinations. It may be convenient to
coarse grain the end points of the optimal paths. Hence, we
divide each edge into intervals of length LI . This means that
we set the weight of all the edge nodes nodes (i′A, j′A)
belonging to the interval, eiA’ ,jA’ � 0. The pathscape will then
consist of all optimal paths starting somewhere in the first

interval, (i′A, j′A), passing through internal node (i, j) and
then ending at a node (iB’, jB’) somewhere in the end interval.
Hence, the number of pathscapes is then reduced from 6N2 to
6n2, where n � N/LI .

Suppose the optimal path (iA’, jA’; i, j; iB’, jB’) has a length
LiA’ ,jA’;i,j;iB’ ,jB’ and a weight EiA’ ,jA’;i,j;iB’ ,jB’. Using the weight alone
in predicting paths does not function well since a short path
through a high-weight region may be as optimal as a longer path
through a low-weight region. We therefore renormalize the
weights, EiA’ ,jA’;i,j;iB’ ,jB’ → E’iA’ ,jA’;i,j;iB’ ,jB’ by setting

E′i
A′ ,jA′ ;i,j;iB’ ,jB′

� Cp

Ei
A′ ,jA′ ;i,j;iB′ ,jB′(Li
A′ ,jA′ ;i,j;iB′ ,jB′

)β , (15)

where β is an adjustable parameter. The constant Cp is introduced
to further separate between different optimal paths. We note that
higher β makes longer paths more favorable.

FIGURE 7 | Area A: (A) The two most optimal paths between the intervals along different edges. (B) The five most optimal paths between different edges. Each
edge has been divided into two intervals, and fixing α � 0.8, and β � 0.8.

FIGURE 8 | The weight EO ranging from the most optimal (No. 0) to the
least optimal (No. 20) for paths between intervals on different edges as shown
in Figure 7.
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3 ANALYSIS OF TWO AUTOMATIC
IDENTIFICATION SYSTEM PATTERNS

We denote the two AIS sets we consider in the following A and
B. Figures 1, 2 show the two areas and the subsets that we use in
our analysis. Both subsets, shown in Figures 1B, 2B, have size
100 × 100 and where each grid block has size 100 × 100 m2 (area
A) and 1000 × 1000 m2 (area B). We see that A has a simpler
structure than B, consisting of two vertical clusters, while B
includes multiple clusters with different orientation. By
“cluster” we mean an area with high density of position
recordings.

We now consider area A. Setting parameter β � 0 in Eq.
15, we show in Figure 3 the optimal path between the lower
left and upper right corners of the grid 1b for different values
of α.

We show in Figure 4 the length of the optimal path between
the lower left and upper right corner in Figure 3 for different
values of α and with β � 0, LO. We note that LO is approximately
linear in α for α< 0.75, at which there is a jump.

Turning to area B, we show in Figure 5 the optimal paths
starting from the lower left corner and ending at the upper right
corner of the grid shown in Figure 2B as a fuction of α while
keeping β � 0.

We show in Figure 6 the length of the optimal path between
the lower left and upper right corner in Figure 5 for different
values of α and β � 0. As in Figure 4 for area A, we find a jump in
the length of the optimal paths for a given value of α, here α ≈ 0.4.
However, there are clearly defined plateaus in the optimal path
length, e.g., for 0.05< α< 0.4.

We now introduce intervals LI as described in Section C.We
consider first a more coarse grained section of area A, covered
by a grid of size 148 × 148 with grid size 100 × 100 m2. We
divide each edge into two sections. Figure 7A shows the two
most optimal paths in this system. In Figure 7B, we show the
five most optimal paths. We see in Figure 7B that several of the
five optimal paths overlap considerably, creating an
impression that there are fewer paths in the figure than
there is in reality.

Figure 8 shows the ordered sequence of weights E’O for the
optimal paths in Figure 7. We see that the weights of the first five
paths is quite similar, whereas from the sixth and onwards, it is
significantly higher. Generating this flat region is accomplished
by adjusting β and it signifies that these optimal paths are
equally good.

We do the same construction as in Figure 7 for area B in
Figure 9. We divide the edges into three intervals and choose the
values α � 0.08 and β � 0.8 for the two adjustable parameters.

Figure 10 shows the ascending sequence of renormalized
weights E’O for the two cases shown in Figures 9A,B. We find
48 optimal paths with slowly increasing weights before it jumps to
a much higher value.

Figure 9 shows the same area as in Figure 5. We have here
divided the edges into three intervals. The weight of the 50 most
optimal paths is shown if Figure 10. As in the much simpler
pucture in Figure 7, there is also in this case considerable overlap
between the optimal paths.

FIGURE 9 | AreaB: Here the grid has been divided into three segments along each edge. In (A)we show the 24most optimal paths and in (B)we show the 48most
optimal paths. We fixed the parameter values to α � 0.08 and β � 0.8.

FIGURE 10 | The weight EO ranging from the most optimal (No. 0) to the
least optimal (No. 50) for paths between intervals on different edges as shown
in Figure 9.
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4 DISCUSSION AND CONCLUSION

We have in this paper introduced a method to predict motion in an
area based on earlier motion in the same region. That is, given the
history of traffic in the area, what would be themost likely path a new
traveler would take between positionsA andB, even if these positions
are outside the usual routes of travel in the area. Themethod is based
on the concept of optimal paths through a landscape formed by the
paths taken earlier. It is a dynamic method as each new trajectory
taken in the area is added to the history.

We have tested the method on marine Automatic
Identification System (AIS) data. From a visual point of view,
the method locates the motion patterns efficiently in both the
simple case we studied (A) and in the more complex traffic
picture (B). However, a proper performance test has not been
performed. Further, the results showed that sectioning the edges
into only a few intervals, were enough to generate a good estimate
of the pattern. As all the grid nodes along the edges, may be
represented by only a few intervals, with a short running time of
the algorithm. The grid dimension and size of the cells does not
seem to influence the results that are found.

This work shows that the method we propose manages to
identify sensible paths that optimize between path length and
frequency of use—two seemingly very different quantities. In

order to turn this into a practical method, much more work is
needed, e.g. with respect to the cluster identification, grid
construction, type of vessel (if it is to be implemented as a
marine tool).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MF did the numerical work based on an idea by AH.MF write the
first draft of the manuscript. AH wrote the second version.

FUNDING

This work was partly supported by the Research Council of
Norway through its Centers of Excellence funding scheme,
project number 262644.

REFERENCES

1. Hirakawa T, Yamashita T, Tamaki T, Fujiyoshi H, Umezu Y, Takeuchi I, et al.
Can AI Predict Animal Movements? Filling Gaps in Animal Trajectories Using
Inverse Reinforcement Learning. Ecosphere (2018) 9:e02447. doi:10.1002/
ecs2.2447

2. Pallotta G, Vespe M, and Bryan K. Vessel Pattern Knowledge Discovery from
AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy
(2013) 15:2218–45. doi:10.3390/e15062218

3. Vasquez D, and Fraichard T. Motion Prediction for Moving Objects: A
Statistical Approach. Proc ICRA’04, IEEE (2004) 4:3931–6. doi:10.1109/
ROBOT.2004.1308883

4. Martinez J, Black MJ, and Romero J. On Human Motion Prediction
Using Recurrent Neural Networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017). p.
2891–900.

5. González D, Pérez J, Milanés V, and Nashashibi F. A Review of Motion
Planning Techniques for Automated Vehicles. IEEE Trans Intell Transport Syst
(2016) 17:1135–45. doi:10.1109/TITS.2015.2498841

6. Zhu Q. A Stochastic Algorithm for Obstacle Motion Prediction in
Visual Guidance of Robot Motion. In: IEEE International
Conference on Systems Engineering. IEEE (1990). doi:10.1109/
ICSYSE.1990.203136

7. Weiming Hu W, Xuejuan Xiao X, Zhouyu Fu Z, Xie D, Tieniu Tan T, and
Maybank S. A System for Learning Statistical Motion Patterns. IEEE Trans
Pattern Anal Mach Intell (2006) 28:1450–64. doi:10.1109/
TPAMI.2006.176

8. Elfes A. Using Occupancy Grids for mobile Robot Perception and Navigation.
Computer (1989) 22:46–57. doi:10.1109/2.30720

9. Tadokoro S, Hayashi M, Manabe Y, Nakami Y, and Takamori T. Motion
Planner of mobile RobotsWhich AvoidMoving HumanObstacles on the Basis
of Stochastic Prediction. Intell Syst 21st Century (1995) 4:3286–91.
doi:10.1109/ICSMC.1995.538292

10. Kruse E, Gutsche R, and Wahl FM. Estimation of Collision Probabilities in
Dynamic Environments for Path Planning with Minimum Collision
Probability. In: Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS’96, 3 (1996). p. 1288–95. doi:10.1109/
IROS.1996.568983

11. Tanaka K. Detecting Collision-free Paths by Observing Walking People. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1
(2002). p. 55–60. doi:10.1109/IRDS.2002.1041362

12. Bennewitz M, Burgard W, and Thrun S. Learning Motion Patterns of Persons
for mobile Service Robots. In: Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292), 4 (2002).
p. 3601–6. doi:10.1109/ROBOT.2002.1014268

13. Halpin-Healy T, and Zhang Y-C. Kinetic Roughening Phenomena, Stochastic
Growth, Directed Polymers and All that. Aspects of Multidisciplinary
Statistical Mechanics. Phys Rep (1995) 254:215–414. doi:10.1016/0370-
1573(94)00087-J

14. Alava M, Duxbury P, Moukarzel C, and Rieger H. Combinatorial
Optimization and Disordered Systems. In: C Domb and JL Lebowitz,
editors. Phase Transitions and Critical Phenomena, Vol. 18. Amsterdam:
Elsevier (2000).

15. Alur R, La Torre S, and Pappas GJ. Optimal Paths in Weighted Timed
Automata. In: International Workshop on Hybrid Systems: Computation
and Control, 49–62. Berlin: Springer (2001). p. 49–62. doi:10.1007/3-540-
45351-2_8

16. Xia Q. Optimal Paths Related to Transport Problems. Commun ContempMath
(2003) 05:251–79. doi:10.1142/S021919970300094X

17. Gendreau M, Ghiani G, and Guerriero E. Time-dependent Routing Problems:
A Review. Comput Operations Res (2015) 64:189–97. doi:10.1016/
j.cor.2015.06.001

18. Yu J, and LaValle SM. Planning Optimal Paths for Multiple Robots on Graphs.
In: IEEE International Conference on Robotics and Automation (2013). p.
3612–7. doi:10.1109/ICRA.2013.6631084

19. Hansen A, and Kertész J. Phase Diagram of Optimal Paths. Phys Rev Lett
(2004) 93:040601. doi:10.1103/PhysRevLett.93.040601

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6562967

Hansen and Fromreide Motion Patterns Using Optimal Paths

137

https://doi.org/10.1002/ecs2.2447
https://doi.org/10.1002/ecs2.2447
https://doi.org/10.3390/e15062218
https://doi.org/10.1109/ROBOT.2004.1308883
https://doi.org/10.1109/ROBOT.2004.1308883
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/ICSYSE.1990.203136
https://doi.org/10.1109/ICSYSE.1990.203136
https://doi.org/10.1109/TPAMI.2006.176
https://doi.org/10.1109/TPAMI.2006.176
https://doi.org/10.1109/2.30720
https://doi.org/10.1109/ICSMC.1995.538292
https://doi.org/10.1109/IROS.1996.568983
https://doi.org/10.1109/IROS.1996.568983
https://doi.org/10.1109/IRDS.2002.1041362
https://doi.org/10.1109/ROBOT.2002.1014268
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1142/S021919970300094X
https://doi.org/10.1016/j.cor.2015.06.001
https://doi.org/10.1016/j.cor.2015.06.001
https://doi.org/10.1109/ICRA.2013.6631084
https://doi.org/10.1103/PhysRevLett.93.040601
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


20. Soleimani BH, De Souza EN, Hilliard C, and Matwin S. Anomaly
Detection in Maritime Data Based on Geometrical Analysis of
Trajectories. In: 18th International Conference on Information Fusion
(Fusion) (2015). p. 1100–5.

21. Talon L, Auradou H, Pessel M, and Hansen A. Geometry of Optimal Path
Hierarchies. EPL (2013) 103:30003. doi:10.1209/0295-5075/103/30003

22. Ford LR, Jr. Network Flow Theory, No. P–923. Rand Corp Santa Monica Ca (1956).
23. Bellman R. On a Routing Problem. Quart Appl Math (1958) 16:87–90.

doi:10.1090/qam/102435
24. Dijkstra EW. A Note on Two Problems in Connexion with Graphs. Numer

Math (1959) 1:269–71. doi:10.1007/bf01386390

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Fromreide and Hansen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6562968

Hansen and Fromreide Motion Patterns Using Optimal Paths

138

https://doi.org/10.1209/0295-5075/103/30003
https://doi.org/10.1090/qam/102435
https://doi.org/10.1007/bf01386390
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


BRIEF RESEARCH REPORT
published: 02 August 2021

doi: 10.3389/fmed.2021.655686

Frontiers in Medicine | www.frontiersin.org 1 August 2021 | Volume 8 | Article 655686

Edited by:

Axel Hutt,

Inria Nancy - Grand-Est Research

Centre, France

Reviewed by:

Ulrich Parlitz,

Max Planck Society (MPG), Germany

Meysam Hashemi,

INSERM U1106 Institut de

Neurosciences des Systèmes, France

*Correspondence:

Cheng-Mao Zhou

zhouchengmao187@foxmail.com

Jian-Jun Yang

yjyangjj@126.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Translational Medicine,

a section of the journal

Frontiers in Medicine

Received: 19 January 2021

Accepted: 12 July 2021

Published: 02 August 2021

Citation:

Xue Q, Wen D, Ji M-H, Tong J,

Yang J-J and Zhou C-M (2021)

Developing Machine Learning

Algorithms to Predict Pulmonary

Complications After Emergency

Gastrointestinal Surgery.

Front. Med. 8:655686.

doi: 10.3389/fmed.2021.655686

Developing Machine Learning
Algorithms to Predict Pulmonary
Complications After Emergency
Gastrointestinal Surgery

Qiong Xue 1†, Duan Wen 1†, Mu-Huo Ji 1,2, Jianhua Tong 1, Jian-Jun Yang 1* and

Cheng-Mao Zhou 1*

1Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University,

Zhengzhou, China, 2Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China

Objective: Investigate whether machine learning can predict pulmonary complications

(PPCs) after emergency gastrointestinal surgery in patients with acute diffuse peritonitis.

Methods: This is a secondary data analysis study. We use five machine learning

algorithms (Logistic regression, DecisionTree, GradientBoosting, Xgbc, and gbm) to

predict postoperative pulmonary complications.

Results: Nine hundred and twenty-six cases were included in this study; 187 cases

(20.19%) had PPCs. The five most important variables for the postoperative weight were

preoperative albumin, cholesterol on the 3rd day after surgery, albumin on the day of

surgery, platelet count on the 1st day after surgery and cholesterol count on the 1st

day after surgery for pulmonary complications. In the test group: the logistic regression

model shows AUC = 0.808, accuracy = 0.824 and precision = 0.621; Decision tree

shows AUC = 0.702, accuracy = 0.795 and precision = 0.486; The GradientBoosting

model shows AUC = 0.788, accuracy = 0.827 and precision = 1.000; The Xgbc model

shows AUC = 0.784, accuracy = 0.806 and precision = 0.583. The Gbm model shows

AUC = 0.814, accuracy = 0.806 and precision = 0.750.

Conclusion: Machine learning algorithms can predict patients’ PPCs with acute diffuse

peritonitis. Moreover, the results of the importance matrix for the Gbdt algorithm model

show that albumin, cholesterol, age, and platelets are the main variables that account

for the highest pulmonary complication weights.

Keywords: machine learning, pulmonary complications, diffuse peritonitis, predict, AUC

INTRODUCTION

Complex intra-abdominal infections may result in localized or diffuse peritonitis (1). Thus, early
prognostic assessment and testing for diffuse peritonitis is essential for assessing disease severity
and optimizing treatment (2). Studies have shown that the mortality rate for patients with diffuse
peritonitis is 9% (3).

Postoperative pulmonary complications (PPCs) are a major cause of morbidity after upper
abdominal surgery, as they lengthen hospital stays and increase medical costs (4). PPC refers
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to postoperative pulmonary abnormalities with clinical
manifestations and negative effects on disease progression
with an incidence of 10–30%. Examples of PPCs include
atelectasis, pulmonary infections, pleural effusion, and
pulmonary thromboembolism (5–7). In clinical application, vital
capacity is used for risk assessment of pulmonary complications,
but critical state of lung function cannot predict complications.
Moreover, there are a variety of interventions which prevent
pulmonary complications, including a pre-emptive strategy to
optimize respiratory physiology, and interventions during and
after surgery. However, due to multiple factors pertaining to
strategy, it is impossible to confirmwhich part of the intervention
is the most important. Therefore, there is an urgent need for
more effective measures and new technologies for predicting and
preventing postoperative pulmonary complications.

Recent years have seen a growing body of research on
machine learning and perioperative medicine (8–11). Machine
Learning (ML)methods can predict clinical outcomes better than
traditional statistical methods (12). For example, Fei et al. (13)
used clinical data on severe acute pancreatitis (SAP) to construct
Artificial Neural Network (ANN) and logistic regression models.
Nijbroek et al. have argued that machine learning can support
the development of more powerful PPC prediction models
(14). However, studies have shown that machine learning has
no performance advantage over logistic regression for clinical
prediction models (15).

The present study explores the use of machine learning
to improve the prediction of postoperative pulmonary
complications in patients with diffuse peritonitis.

MATERIALS AND METHODS

Patients
Ethics Committee Approval and Consent to

Participate

This is a secondary data analysis using database data. Data
are available from the BioStudies (public) database (https://
www.ebi.ac.uk/biostudies/studies?query=S-EPMC6034864).
In accordance with local laws and institutional requirements,
ethical review and approval was not required for this study
on human participants. In accordance with national laws and
institutional requirements, written informed consent was not
required from patients to participate in this study.

The data included medical records from critically ill patients
who had received emergency gastrointestinal surgery for
diffuse peritonitis.

Perioperative Variables
The following variables are included in the analysis: body
mass index, sex, age, ASA score, lesion location, diagnosis,
perioperative shock, preoperative laboratory findings,
postoperative complications (3), and type of surgery.

Machine Learning Algorithms
The aim of classification by logistic regression is to
establish a regression formula to classify boundary lines
based on existing data. Logistic regression is a linear fit

of a response variable to a logarithmic probability ratio.
The coefficients are obtained by maximum likelihood
estimation. The intuitive meaning of the maximum
likelihood is that a pair of estimates for B0 and B1 is
needed to predict the probability of the observations they
produce, as close as possible to the actual observation of
Y (the likelihood). A linear regression model is expressed
as an equation that calculates a particular weight (i.e.,
coefficient b) for the input variable, and then describes
a straight line that best fits the relationship between the
input variable (x) and the output variable (y). For example:
y= B0+ B1 ∗ x.

Decision tree learning is a decision model that incorporates
data attributes into a tree structure. Decision trees are
often constructed based on a given dataset (16). Decision
tree algorithm is a method of approximating discrete
function values. It is a typical classification method, which
first processes the data, generates readable rules and
decision trees using inductive algorithms, and then uses
the decisions to analyze the new data. In short, decision
tree is a process for classifying data based on a series
of rules.

The Gradient Boosting Decision Tree (GBDT) method
(17) is used for data bulletins, to create M models (such
as classification). This model is simple, and it is referred
to as a weak learner. For each classification, the weight of
the data incorrectly divided the previous time is increased
one point before classification. In this way, the final
classifier can produce good results, for both test data and
training data.

Lightgbm (gbm) is another implementation of GBDT (18).
Based on GBDT, it adopts two new strategies.

Our analysis was conducted with R version 3.1.3 (http://
www.R-project) and Python version 3.6 (Python Software
Foundation). We used five machine learning algorithms (Logistic
regression, DecisionTree, GradientBoosting, Xgbc, and gbm)
(19, 20) to predict postoperative pulmonary complications. We
randomly divided all samples into training and test groups at a
ratio of 7:3 using 5-fold cross-validation. We performed the 5-
fold cross-validation in the training group, and then obtained
its optimal model and parameters, and applied them to the test
group. Five-fold cross-validation is a data splitting strategy for
cross-validation, that is, the data set is split into A data set and
B data set. The principle is: First, the whole training data set is
divided into 5-folds, where 4-folds are used as the A data set to
train the model, and the remaining 1-fold is used as the B data set
to score the model, and the above process is repeated five times.
In the weighted correlation analysis, we ranked the variables
from highest to lowest weighted scores accounting for pulmonary
complications. We did this using Pearson correlation analysis.
The variables’ missing values are supplemented by multiple
imputation. The values were normalized and scaled 0–1. ROC is
an abbreviation for “receiver operating characteristic.” The ROC
curve’s area is the AUC (Area Under the Curve). AUC (area under
the ROC curve), i.e., the area under the ROC curve, the larger the
better, indicating that the model had higher prediction value: (1)
AUC≈1.0: the most ideal test index; (2) AUC is within 0.7–0.9:

Frontiers in Medicine | www.frontiersin.org 2 August 2021 | Volume 8 | Article 655686140

https://www.ebi.ac.uk/biostudies/studies?query=S-EPMC6034864
https://www.ebi.ac.uk/biostudies/studies?query=S-EPMC6034864
http://www.R-project
http://www.R-project
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xue et al. Machine Learning and PPCs

FIGURE 1 | Variable importance of features included in machine learning

algorithms for predicting pulmonary complications.

the model has high accuracy; (3) AUC ≤ 0.5: the model has no
predictive value. We can only provide code that runs out of the
results portion of the algorithm because of the patent application
issues involved. See Appendix 1 for specific codes.

RESULTS

Nine hundred and twenty-six cases were included in this study;
187 cases (20.19%) had postoperative pulmonary complications.
The average age of the patients with postoperative pulmonary
complications was 65.6 (± 14.5) years old. One hundred and
twenty-six (67.4%) were males with postoperative pulmonary
complications, and 61 (32.6%) were females with postoperative
pulmonary complications (see Supplementary Table 1).

The fivemost important variables for the postoperative weight
were preoperative albumin, cholesterol on the 3rd day after
surgery, albumin on the day of surgery, platelet count on the
1st day after surgery and cholesterol count on the 1st day after
surgery for pulmonary complications. The correlation heat map
showed that platelets, cholesterol, and albumin were negatively
correlated with pulmonary complications (see Figures 1, 2).

Supplementary Table 2 and Figure 3 present the results of the
machine learning algorithm in the training group. The logistic
regression model shows that AUC= 0.836, accuracy= 0.826 and
precision= 0.625; Decision tree shows AUC= 0.782, accuracy=
0.821 and precision= 0.563; The GradientBoosting model shows
AUC value= 0.853, accuracy= 0.824 and precision= 0.947; The

Xgbc model shows AUC= 0.835, accuracy= 0.833 and precision
= 0.897. The Gbm model shows AUC= 0.856, accuracy= 0.816
and precision= 0.929.

Supplementary Table 2 and Figure 4 present the results of
the machine learning algorithm in the test group. The logistic
regression model shows AUC = 0.808, accuracy = 0.824 and
precision= 0.621; Decision tree shows AUC= 0.702, accuracy=
0.795 and precision= 0.486; The GradientBoosting model shows
AUC= 0.788, accuracy= 0.827 and precision= 1.000; The Xgbc
model shows AUC = 0.784, accuracy =0.806 and precision =

0.583. The Gbm model shows AUC = 0.814, accuracy = 0.806
and precision= 0.750.

DISCUSSION

Postoperative pulmonary complications (PPCs) often occur after
major surgery (18). Any PPC, even if it is “mild,” is associated
with increased long-term hospitalization and hospital mortality
(21). Thus, PPC predictions have the potential to optimize care
for individual patients, normalize the use of scarce resources,
and may even enrich research populations for testing PPC
treatments’ effects. Machine learning, using methods such as
“unbiased cluster analysis” and biophenotypic analysis, likely
improves PPC prediction models (22). The results of the present
study show that machine learning algorithms can predict the
postoperative pulmonary complications of patients with acute
diffuse peritonitis.

Serum albumin levels represent a patient’s nutritional status.
Studies have shown that preoperative hypoproteinemia increases
the incidence of postoperative abdominal complications (23).
Other studies have shown that perioperative changes in serum
albumin are predictors of lung complications in patients with
lung cancer and laparoscopic gastrectomy (24, 25). Our results
also indicate that changes in perioperative albumin are associated
with changes in postoperative pulmonary complications. In
addition, when ASA grade ≥ 3 and BMI is low, the incidence of
pulmonary complications after early lung cancer radical surgery
may increase (26). The present study’s results also indicate that
the ASA score is directly proportional to the occurrence of
pulmonary complications.

Elevated levels of high-density lipoprotein cholesterol may
be associated with decreased lung function in healthy male
adolescents (27). Moreover, lower serum cholesterol levels are
a poor prognostic factor in patients with severe community-
acquired pneumonia (28). High cholesterol/high fat diet-
induced hypercholesterolemia may result in lower respiratory
inflammation associated with TLRs/NFκB pathway in C57BL/6J
mice (29). Our study also supports this view, in that there is
an inverse relationship between cholesterol and postoperative
pulmonary complications.

Red blood cell distribution width and platelet count
are biomarkers of pulmonary hypertension in patients with
connective tissue disease (30). Also, platelet activating factor
receptor regulates lung inflammation caused by colitis by NLRP3
inflammation (31). Platelets are factors in lung development in
mice through Clec-2/podoplanin interactions (32). Our study
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FIGURE 2 | Correlation analysis of various factors.

also shows that perioperative platelet changes are a factor in the
occurrence of PPCs.

Hemoglobin ≤ 100 g/L is an independent risk factor
for postoperative pulmonary complications (33). Similarly,
studies have suggested that serum albumin reduction on

the 1st day after surgery can be a predictor of PPCs in
patients with lung cancer after thoracoscopic anatomy (24).
Our results also suggest that hemoglobin is an important
contributor to postoperative complications, and that the two are
inversely proportional.
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FIGURE 3 | AUC for predicting pulmonary complications using various

machine learning algorithms in the training group.

FIGURE 4 | The AUC for predicting pulmonary complications using various

machine learning algorithms in the test group.

This study has several limitations. First, because it was a
retrospective study, the selected patient entry training and test
datasets did not meet the predictions for the “future” cohort
results. Thus, we needed to build a stable model to predict
future postoperative pulmonary complications. In addition, the
variables involved in this study may be insufficient. Future

research should incorporate etiology and include more relevant
influencing factors for analysis and research. Moreover, due to
the limited predictive utility in our study, especially the ML
algorithm’s lower recall rate, there were several difficulties in
applying the ML model in a clinical setting. However, with
improved accuracy, this study’s results are still reliable. Finally,
the training sample size is still limited, as the cohort is from
only one center. A multi-center prospective study is needed for
training and validation in the future.

In sum, machine learning algorithms can predict the PPCs of
patients with acute diffuse peritonitis. In future studies, specific
machine learning models could be trained with a larger cohort of
patients with acute diffuse peritonitis.
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Investigating Predictability of the
TRHR Seasonal Precipitation at Long
Lead Times Using a Generalized
Regression Model with Regularization
Xiao Peng1, Tiejian Li2 and John D. Albertson1*

1School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States, 2Department of Hydraulic
Engineering, Tsinghua University, Beijing, China

Skillful long-lead climate forecast is of great importance in managing large water systems
and can bemade possible using teleconnections between regional climate and large-scale
circulations. Recent innovations in machine learning provide powerful tools in exploring
linear/nonlinear associations between climate variables. However, while it is hard to give
physical interpretation of the more complex models, the simple models can be vulnerable
to over-fitting, especially when dealingwith the highly “non-square” climate data. Here, as a
compromise of interpretability and complexity, we proposed a regression model by
coupling pooling and a generalized regression with regularization. Performance of the
model is tested in estimating the Three-Rivers Headwater Region wet-season precipitation
using the sea surface temperatures at lead times of 0–24months. The model shows better
predictive skill for certain long lead times when compared with some commonly used
regression methods including the Ordinary Least Squares (OLS), Empirical Orthogonal
Function (EOF), and Canonical Correlation Analysis (CCA) regressions. The high skill is
found to relate to the persistent regional correlation patterns between the predictand
precipitation and predictor SSTs as also confirmed by a correlation analysis. Furthermore,
flexibility of the model is demonstrated using a multinomial regression model which shows
good skill around the long lead time of 22 months. Consistent clusters of SSTs are found to
contribute to both models. Two SST indices are defined based on the major clusters of
predictors and are found to be significantly correlated with the predictand precipitation at
corresponding lead times. In conclusion, the proposed regression model demonstrates
great flexibility and advantages in dealing with collinearity while preserving simplicity and
interpretability, and shows potential as a cheap preliminary analysis tool to guide further
study using more complex models.

Keywords: the three-rivers headwater region, seasonal precipitation prediction, teleconnection, pooling, elastic net
regression, logistic regression, correlation analysis
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1 INTRODUCTION

Skillful long-lead (seasonal to annual) climate forecast is of great
importance in managing large water systems. Examples include
but are not limited to making water transferring plans for multi-
reservoir systems running at annual to inter-annual time scales
(Carpenter and Georgakakos, 2001; Block, 2011), informing long-
term agricultural decision making (Lemos et al., 2002; Hansen
et al., 2011), and developing early warning system for disaster
mitigation (Wilhite and Svoboda, 2000; Verdin et al., 2005).
While local climate variability always fails to persist through
such long lead times, the prediction can be made possible using
long-lead teleconnections between regional climate and large-
scale circulations. Anomalies of large-scale atmospheric
circulations can be anchored by ocean memory due to massive
heat capacity of ocean water and be released to perturb other
circulations at a much later time (Xie et al., 2009; Xie et al., 2016).
These perturbations can therefore be indicated by SST anomalies.
There are already well-established SST-based climate indices that
have seen good use in long-lead climate forecasts such as the Niño
SST indices (Rasmusson and Carpenter, 1982; Trenberth, 1997;
Trenberth and Stepaniak, 2001), the Pacific Decadal Oscillation
(PDO) (Mantua et al., 1997; Zhang et al., 1997), the Tropical
Northern Atlantic (TNA) and the Tropical Southern Atlantic
(TSA) indices (Enfield et al., 1999) etc.

Approaches commonly used in developing long-term
prediction models based on large-scale teleconnections can be
roughly categorized into two classes: 1) physically-based
simulation and 2) statistical models. While the physically-
based simulation is widely used in investigating causality
chains of climate processes, it is usually computationally
intensive and requires expertise for parameter calibration
(Menemenlis et al., 2005; Sahastrabuddhe and Ghosh, 2021).
Its statistical counterpart, in the meantime, provides an easy
access to examining statistical associations between climate
variables which could be further used to develop prediction
models. The statistical models are becoming increasingly
popular thanks to the advances of sensing technology and
internet which makes tremendously more data available at
exceptionally high temporal and spatial resolutions (Liu,
2015). Early efforts of statistical modelling are featured by
qualitative analysis comparing time series of different climate
variables (Thornthwaite, 1948; Von Storch and Zwiers, 2001).
Most early work relied on insights of the expert researchers and
were done with data of rather limited size. Recent innovations in
machine learning have developed powerful tools for examining
linear/non-linear associations between climate variables in
massive volumes in a more automated way. Just to name a
few examples here: Kernelization is used to extend study
domain from linear associations to nonlinear associations (Ali
et al., 2019; Bueso et al., 2020). Data processing tips like pooling
and convolution are used to enhance model robustness by
discarding/smoothing noises (Devineni and
Sankarasubramanian, 2010; Schepen et al., 2018). Of the many
machine learning approaches, neural network has become
extremely popular across a wide range of spatial scales (local-
global) (Goddard et al., 2001; Mekanik et al., 2013; Fan et al.,

2015; Ham et al., 2019; Reichstein et al., 2019). Ham et al. (2019)
even successfully extended lead time of skillful ENSO forecast to
one and a half years using a convolution neural network trained
on historical simulations, which beat many state-of-the-art
dynamical systems in terms of correlation skill for the Niño
3.4 Index. However, even though efforts are being made to
improve model interpretability (Gilpin et al., 2018; Carvalho
et al., 2019; Worland et al., 2019), tools for explaining the
machine learning models are still insufficient (Gilpin et al.,
2018) and to find physical interpretation of these models is
usually hard or even impossible due to high model
complexity. In this study, we looked at a generalized
regularized regression method (i.e., elastic net) coupled with
pooling as a compromise between model interpretability and
complexity, and examined its performance in predicting regional
seasonal precipitation based on large-scale SST anomalies.

Regression has been broadly used in climate research and
related fields. Typical applications include 1) change point
detection (Solow, 1987; Mudelsee, 2000), 2) developing
forecast models (Krishnamurti et al., 1999; Mekanik et al.,
2013; Kharin and Zwiers, 2002), and 3) identification of
covariates with high predictive skill (Wakabayashi and
Kawamura, 2004; Matsui and Konishi, 2011). Not only can the
regression model identify the linear relationships between the
climate variables at a given temporal basis (e.g., monthly or
annual), but it also has good interpretability for guiding
further research using more complex, nonlinear statistical
methods or physically-based modeling experiments. These two
features make regression especially popular in exploring
teleconnections between regional climate and large-scale
circulations. Hurrell (1996) used a multivariate linear
regression model to link changes in northern hemisphere
temperature to extratropical climate indices. Krishnamurti
et al. (1999) developed a superensemble method for improving
weather and climate forecast skills by using coefficients from
multiple regressions. Wakabayashi and Kawamura (2004)
extracted four major teleconnection patterns in predicting
Japan summer climate anomalies by combining the empirical
orthogonal function (EOF) and regression. Van Oldenborgh and
Burgers (2005) developed a synthetic precipitation generator with
regression models using the Niño 3.4 Index as the sole regressor
to examine decadal variation in global ENSO-precipitation
teleconnections. Yang and DelSole (2012) used the regression
coefficient maps to explore teleconnections between ENSO and
different climate fields. More recently, Zhang et al. (2020)
examined teleconnections between the Arctic sea ice decline
and major climate indices using the quantile regression
analysis. Only a few examples are listed here for context, as
our intent is to test a generalized regression model with
regularization in long-term seasonal precipitation forecast
instead of doing a thorough review applications of regression
in climate research.

However, over-fitting and over-parameterization are
important issues for most regression analysis. These issues are
particularly pertinent in climate research, since the remote
sensing data are usually highly “non-square” (i.e., the total
number of time series largely exceeds the length of the time

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 7245992

Peng et al. Precipitation Prediction with Regularized Regression

146

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


series). Therefore, it is necessary to reduce the effective
dimensionality of the problems. Two commonly used
approaches have been: 1) to select only a few predominant
features/patterns (e.g., the Principal Component Analysis, PCA
(Schoof and Pryor, 2001; Wakabayashi and Kawamura, 2004; Li
et al., 2020) or the Canonical Correlation Analysis, CCA (Mo,
2003; Yang and DelSole, 2012)); 2) to use only a few well-
established climate indices (Van Oldenborgh and Burgers,
2005; Rust et al., 2015; Tan and Shao, 2017; Zhang et al.,
2020). However, both methods have intrinsic disadvantages:
Traditional dimensionality reduction methods like PCA and
CCA try to decompose the global covariance structure of the
predictors (PCA) or between the predictand and the predictors
(CCA) and can miss important regional patterns while the climate
indices are only defined by prior knowledge and thus could limit
the domainwherewe want to explore the potential teleconnections.

In the past few decades, regularization has become
increasingly popular in dealing with multicollinearity in
regression. The two regularization approaches commonly used
with regression are the L-1 norm (the least absolute shrinkage and
selection operator, LASSO (Tibshirani, 1996)) and the L-2 norm
(the ridge regression (Hoerl and Kennard, 1970)) of regression

coefficients. Other popular regularization approaches include the
Akaike’s Information Criterion (AIC) (Akaike, 1998) and the
Bayesian Information Criterion (BIC) (Schwarz, 1978). Both L-1
and L-2 norm regularizations have shown good performance in
alleviating or avoiding over-fitting in regressionmodels in climate
research (Matsui and Konishi, 2011; Soleh et al., 2015; DelSole
and Banerjee, 2017; Kim et al., 2017; Li et al., 2020). Yet, it should
be noted that the ridge regression does not directly provoke
sparsity of the regression model while the LASSO regression
tends to assign non-zero value to only one of many correlated
predictors which can make the model difficult to interpret. The
lack of interpretability of the lasso model is also pointed out in a
recent paper from Stevens et al. (2021) where a graph-guided
variation is used as an extra regularization to improve robustness
of the regression model in predicting Southwestern United States
winter precipitation. Here, we propose to use the elastic net
regularization (Zou and Hastie, 2005) which linearly combines
the LASSO and ridge regression regularizations. While the
LASSO regularization guarantees sparsity of the model, the
ridge regression regularization helps improve visualization of
the regression coefficient map and therefore, interpretability of
the model (Peng et al., 2020). On top of that, a pooling layer is

FIGURE 1 | (A) The study region of TRHR (black box) as plotted in an elevation map based on ETOPO-5 (Center, 1988) and (B) time series of the spatially averaged
precipitation from CHIRPS (red) and CMA (blue) after standardization.
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added before developing the regression model. The pooling layer
is commonly used in machine learning for reducing spatial
dimensions (Zeiler and Fergus, 2013; Yu et al., 2014;
Kalchbrenner et al., 2014). And this extra pooling layer should
help improve robustness of the model by avoiding the realistic
problem that major “hot” regions defining large-scale circulations
are not fixed to certain spatial grids naturally.

The proposed model is tested to predict the Three-Rivers
Headwater Region (TRHR) wet-season precipitation using the

Pacific Ocean and Indian Ocean SSTs. The TRHR, located in the
eastern Tibetan Plateau (TP), is often called China’sWater Tower
as from it flow the three major rivers of China: the Yellow River,
the Yangtze River, and the Lancang (Mekong) River.
Consequently, the TRHR plays a critical role in providing
invaluable ecological goods and serviced as well as other
resources like energy and food. While great efforts have been
devoted to studying teleconnections between the broader TP
precipitation and large-scale climates (Benn and Owen, 1998;
Shaman and Tziperman, 2005; Feng and Zhou, 2012; Dong et al.,
2020), the quantitative studies focusing solely on the TRHR are
rather limited and only looks at short lead times (Zhang et al.,
2019; Zhao et al., 2019). In this study, we extend the forecast lead
time up to 24 months and the performance are compared against
some widely-used regression methods including OLSmulti-linear
regression, the EOF regression, and the CCA regression. The
precipitation is predicted in true amplitudes and binary states
(wetter or drier than normal) to demonstrate flexibility of the
model. In this study, we seek a model that is computationally
tractable for fast decision making support for stakeholders while
retaining a relatively direct physical interpretation to aid further
investigation of the underlying physical processes.

2 DATA

We base our analysis on monthly precipitation data from Jan
1981 through Dec 2019 as collected from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS). The
original gridded precipitation data incorporates satellite data with
in-situ station data, with a resolution of 0.05° by 0.05° (Funk et al.,
2015). In this study, we spatially averaged the TRHR precipitation
over a rectangular area masking 89°E to 103°E and 31°N to 37°N as
shown in Figure 1A. The monthly climatology for the spatially
averaged precipitation is monomodal showing that over 80% of
the annual precipitation falls during the 5-month period of May-

FIGURE 2 | A schematic of the proposed the regression model coupling
max pooling and elastic net.

FIGURE 3 | Comparison of the predictive skill in the testing period from the elastic net regression models with no pooling (dark blue), maximum pooling (light blue),
median pooling (green) and minimum pooling (yellow). The p-value � 0.1 significance level is plotted in the black dashed line.
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Sept, which we define as the wet season in this study (also known
as the growing season for the TRHR (Chen et al., 2020)).

The CHIRPS precipitation is double checked against the
station-based precipitation (1988–2017) collected from the
China Meteorological Administration (CMA). 55 stations with
missing data ratio lower than 20% within the study region are
selected and the arithmetically averaged precipitation time series
is compared against that from the CHIRPS precipitation. A
systematic shift is observed around 2000 for both precipitation
though the shift is less significant for the station-based
precipitation. While difference in the shifts can be due to non-
uniform distribution of the CMA stations, we do not want to
diverge into this topic. Instead, the shift is removed by separately
standardizing the precipitation over 1981–2000 and 2001–2019.
The standardization is done by subtracting the mean and dividing
by the standard deviation. The standardized CHIRPS
precipitation shows good consistency with the station-based
precipitation as shown in Figure 1B, and correlation is 0.67
for 39 samples (p-value < 0.01). The binary TRHR precipitation is
used in the multinomial regression model and the two states are

defined as: 0 or dry for standardized precipitations smaller than 0
and 1 or wet for standardized precipitations greater than 0.

SST is selected as the primary predictor since it can indicate
perturbations in large-scale atmospheric circulations “anchored”
in ocean memory (Xie et al., 2009, Xie et al., 2016). Also, the SST
field is less spatially heterogeneous compared to that of other
common climate variables including geopotential height, vertical
velocity of atmosphere (OMEGA) and wind velocities (Peng et al.,
2020), which can help improve robustness of the regression
models. Monthly SST data is collected from the Hadley Centre
Sea Ice and Sea Surface Temperature (HadISST) data set with a
spatial resolution of 1° by 1° (Rayner et al., 2003) over Jan
1979–Dec 2019. Only SSTs from the Pacific Ocean and Indian
Ocean basins are used to limit our study to regional processes and
the basin range is based on the definitions from the National
Oceanic and Atmospheric Administration (NOAA) via https://
www.nodc.noaa.gov/woce/woce_v3/wocedata_1/woce-uot/
summary/bound.htm. Similar positive shifts are observed for
most parts of the Pacific Ocean and Indian Ocean as seen in
Supplementary Figure S1. To be consistent with the
standardization of precipitation, the SSTs are too standardized
separately for 1979–2000 and 2001–2019 to remove effects of the
trends. This step is to ensure that model skill as measured by the
correlation coefficient in the later sections will not be biased by
the trends. The only difference here is that standardization of the
SSTs is done locally for each grid and uses the monthly
climatology means and standard deviations to remove the
seasonal cycle.

3 METHODS

3.1 The Regularized Regression
Here, we propose a two-step generalized regression model with
regularization for dealing with collinearity when developing
linear prediction models. The model first reduces
dimensionality of the predictors using pooling which is a
commonly used method for down-sampling input

FIGURE 4 | Predictive skill for the testing set as a function of lead time
reported in the NSE scores.

FIGURE 5 | Prediction skill for the testing set of 2001–2019 asmeasured by the correlation coefficients as function of lead times for elastic net (red), OLS (blue), EOF
(green), and CCA (yellow). The p-value � 0.1 significance level is plotted in the black dashed lines.
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representations. Then a regularized regression model is fitted
using the pooled predictors to estimate real-valued or categorical
predictand. A schematic is shown in Figure 2. In the pooling step,
a new grid (in green) is defined by some characteristic values (e.g.,
maximum or median) of the four small grids. The extra step of
standardization is to remove the systematic shift in precipitation
around 2000 and to rescale precipitation and SSTs (as they have
different amplitudes). In this study, we compared model
performance using different pooling approaches
(i.e., maximum/median/minimum pooling) with a squared
window of four grids by four grids.

The regularized regression is given by Eq. 1 with regression
coefficient (β, β0) (β0 is the intercept), and it allows flexibility by
using different deviance function (Dev) for predictands of
different types. For example, the mean squared error (MSE)
function is used for estimating the real-valued predictand and
the log-likelihood function is used for categorical predictand
(Hastie et al., 2009). The deviance function is rescaled by one
over the total sample length N. The elastic net regression is
adopted here and the regularization term uses a linear
combination of the L-1 and L-2 norms of the regression
coefficients as shown in Eq. 2.

(β, β0) � min
β,β0

1
N
Dev(β, β0) + λPα(β)( ) (1)

Pα(β) � 1 − α

2

����β����22 + α
����β����1 (2)

There are two hyperparameters in the model: α and λ. α
balances the regularization between the L-1 and L-2 norms of the
regression coefficients β and is set to 0.01 for better visualization
(Peng et al., 2020). λ is usually decided using a k-fold (e.g., 5-fold)
cross validation (CV) (Tibshirani, 1996) and the λ value
associated with minimum cross-validated mean squared errors
is used (often referred to as the MinMSE λ). However, this
procedure can be computationally burdensome since we have
to repeat the CV for all lead times. Therefore, a constant λ is firstly

determined using the training set data at 0-months lead and is
used for all lead times. A preliminary study demonstrates that the
significant predictive skill spikes in the testing period are not
sensitive over a rather broad range of λs as shown in
Supplementary Figure S2. For the true-amplitude predictand,
the Pearson’s correlation coefficient (CC) and the Nash–Sutcliffe
efficiency (NSE) score are used for model performance
evaluation. For the binary predictand, an accuracy score S is
defined as given by Eq. 3 where 1 is an indicator function and ̂y
is the predicted probability of y being 1 (i.e., wet).

S � 1
N

∑N
i�1

yi · 1( ̂yi ≥ 0.5) + (1 − yi) · 1( ̂yi < 0.5)}{ (3)

3.2 Other Regression Models
Performance of the elastic net is compared against some
commonly used regression methods in the two-step scheme
including the OLS mutil-linear regression (see Hurrell (1996)
for details), the EOF regression (see Wakabayashi and Kawamura
(2004) for details), and the CCA regression (see Sun and Kim
(2016) for details). All regression methods use the same pooled
SSTs as the predictors. Though pooling can alleviate the issue of
over-fitting, dimensionality of the pooled predictors is still highly
non-square (39 years by 1,343 grids). The OLS and CCA
regression seek for a linear combination of predictors that
maximizes its correlation with the predictand and does not
regularize the model complexity. The EOF regression first
projects the original predictors onto some “dominant” basis
vectors (often referred as EOFs) by decomposing the
covariance matrix of the predictors, and then uses the EOFs as
the new predictors. It can implicitly regularize the model
complexity by using only a few EOFs explaining most variance
of the original predictors. The EOF is implemented such that the
original (pooled) SSTs are projected onto a set of orthonormal
time series which constitute the predictors. It should be noted that
it impossible to develop a prediction model this way since we are
using data from testing set to construct the basis vectors. Here, the
most dominant 50 EOFs accounting for over 88% variance of the
original SST data are used in the EOF regression model.

3.3 The Correlation Analysis
A correlation analysis is designed to measure if any correlation
patterns between the predictand precipitation and the predictor
SSTs persist through time.We propose a new correlation metric L
to quantitatively measure persistence of any correlation patterns:
for a certain lead time, we first compute lagged correlations

FIGURE 6 | Comparison between the predictive skill from the elastic net
model (bar) and Ls (blue diamond) at varying lead times. The statistical
significance levels are not shown here as we are comparing correlation
coefficients calculated using samples of different lengths (19 for the
predictive skill and 39 for the Ls).

TABLE 1 | Correlations between L and prediction skill at varying lead times for
different regression models.

Model CC

Elastic Net 0.82
OLS 0.01
EOF −0.07
CCA −0.11
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between the TRHR precipitation and SSTs at every grid for
1981–2000 and vectorize the correlation map into a column
vector denoted by M1; then this step is repeated for
2001–2019 to compute the column vector M2; at last, L is
defined by computing the correlation coefficients between the
vectorized correlation mapsM1 andM2. L is bounded by a upper
limit of 1, which represents the extreme scenario where the
correlations between the TRHR precipitation and the SSTs are
perfectly consistent before and after 2001 and therefore, a good
regression model trained on 1981–2000 should produce
significantly high predictive skill on the testing period of
2001–2019. However, L being close to zero does not
necessarily mean no predictive skill for regression models
since L measures persistence of the global correlations between
the TRHR precipitation and the SSTs while the regression model

could pick some regional clusters of SSTs that have a persistent
correlation with the predictand precipitation. Themetric L is used
here to estimate how much degradation of performance is
resulted from over-fitting by comparing against the testing
period predictive skill from the regression models.

4 RESULTS AND DISCUSSIONS

4.1 Comparison of Regression Models
Performance of the regularized regression models in predicting
the TRHR precipitation in true amplitudes is examined in this
section. The period of 1981–2000 is set as the training period
while 2001–2019 is set as the testing period to be consistent with
the standardization procedure. Prelim analysis with randomly

FIGURE 7 | Correlation maps between the TRHR precipitation and the SSTs over the training period of 1981–2000 (top) and the testing period of 2001–2019
(bottom) at the lead time of 14 months.
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split data sets demonstrated consistent model skill patterns as
shown in Supplementary Figure S3. Since both pooling and
regularization are designed for effective dimensionality reduction
and thus to avoid over-fitting, we first justify using the extra step
of pooling by comparing predictive skill of the regularized
regression models with and without pooling. The comparison
of testing period correlation coefficients are shown for regression
models without pooling and with maximum, median, and
minimum pooling in Figure 3. Two spikes are observed at
lead times of 13–14 months and 21–24 months. Significant
improvement in model skill is shown for lead times of
13–14 months when pooling is used and at the lead time of
13 months, the predictive skill drops to below p-value � 0.1
significance level using non-pooled SSTs. For lead times of
21–24 months, consistent improvement, though less
significant, is observed. The improvement could be due to the
fact that while there exist some consistent large-scale circulation
patterns, the signals may not be fixed to certain grids depending
on the spatial resolution and projection coordinate system.

Therefore, the model robustness can be improved by including
signals of the neighboring grids with pooling. However, though
not examined here, one must be careful with choosing the pooling
window size since displacement of some circulation patterns can
be important indicators of climate anomalies (McGregor et al.,
2014; Manatsa et al., 2014) and this information may not be
resolved when the pooling window is too large. It should be noted
that the λ is re-calibrated for the regression models using non-
pooled SSTs. And the statistical significance for the regularized
regression is not straightforward to calculate and thus is not
reported (Javanmard and Montanari, 2014). The maximum
pooling is used in the following analyses.

Model skill for the testing period data as measured by the NSE
scores is reported in Figure 4. Consistent patterns are observed as
two spikes of NSE scores are found around lead times of 14 and
22 months. However, even at those two lead times, the predictive
skill is barely satisfactory. By further looking at comparison
between the observed and estimated precipitation, we figured
that the elastic net model markedly underestimated the

FIGURE 8 | Correlation maps between the TRHR precipitation and the SSTs over the training period of 1981–2000 (top) and the testing period of 2001–2019
(bottom) at the lead time of 22 months.
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predictand amplitude. However, the extent of shrinking is
consistent across the training and testing periods (as shown in
Supplementary Figure S4A) and thus, in practice, one could
‘learn’ how much the amplitude is shrunk by looking at the
training data and can then rescale testing period estimations. The
rescaled estimations show significantly improved NSE scores
(NSE � 0.36 for lead time of 14 months and 0.38 for lead
time of 22 months (as shown in Supplementary Figure S4B)).
A plausible explanation is that the elastic net regression sacrifices
accuracy in amplitude estimation for model robustness by
selecting only a few predictors and shrinking amplitudes of
regression coefficients. This effect is more significant with
highly non-square data as in our case since greater
regularization must be applied. Therefore, amplitude-based
measures such as NSE and the root mean square error
(RMSE) may not be applicable for model evaluation. The
rescaling method discussed above is not recommended since
the model is designed to be biased for more robustness, and
in following analyses, the Pearson’s correlation coefficient is used
as the primary measure of model skill.

We then justify using the regularization by comparing
predictive skill of the regression with and without
regularization. Comparison of the model skill from the elastic
net, OLS, EOF, and CCA regression models are shown in
Figure 5. Statistically significant positive predictive skill is only
observed for the elastic and CCA regressions models. The elastic
net models show two spikes of good predictive skill at lead times
of 13–14 months and 21–24 months. Statistically significant
positive skill is observed for the CCA regression models only
at the lead time of 18 months while that of the elastic net
regression almost hit the p-value � 0.1 significance level at the
lead time of 19 months. Overall, the elastic net regression shows
more potential in finding the linear associations between the
TRHR precipitation and the SSTs. While statistically significant

positive skill are only found at rather long lead times, this does not
necessarily mean that there is no connection between the TRHR
precipitation and large-scale climate fields at shorter lead times.
We are limiting our analysis to only using SSTs from the Pacific
and Indian Oceans which is only one sector of the complex large-
scale circulations including a wider range of variables like
geopotential heights, humidity, vertical velocity of atmosphere
(OMEGA) and horizontal winds etc. Furthermore, we are
limiting our analysis in the frame of linear models as we
compare different types of regression models. Instead of
developing accurate forecast models, our intent is to examine
how pooling and regularization would improve performance of
the linear models at rather low costs. The better performance of
elastic net is understandable here since it explicitly regularizes
model complexity and provokes sparsity in regression coefficients
by using the L-1 norm regularization.

4.2 Source of High Model Skill
A correlation analysis is conducted to measure at a certain lead
time, how well a linear model based on the global correlation
between the TRHR precipitation and the SSTs can perform. The
potential predictive skill is estimated by the new correlation
metric L defined earlier as L measures how the time-shifted
global correlation patterns persist from 1981 to 2000 (the
training period) to 2001–2019 (the testing period). A
comparison between L and the predictive skill of the elastic
net model at varying lead times is shown in Figure 6. Spikes
in L are observed at lead times of 7, 14, 18, and 22 months. Three
of the spikes coincide with good predictive skill from the elastic
net model (i.e., lead times of 14, 19, and 22 months) while only
one of the spike coincide with good skill from other regression
models (i.e., lead time of 18 months for the CCA regression
model). To estimate how much potential are realized for each
model, correlation coefficients between the series of L and model
skill from regression models over the lead times of 0–24 months
are computed and reported in Table 1. The only statistically
significant correlation is found for the elastic net model (0.82 for
25 samples, p-value < 0.01) while rather low correlations are
found for other regression models. The results suggest that the
OLS, EOF, and CCA regression models do not perform well even
when there exist persistent correlations between the predictand
precipitation and the SSTs.

Possible explanations are proposed here based on algorithms
of the regression methods. For the OLS and CCA regression, the
models could be over-fitted to the noisy SST signals for high
training skill as both methods decompose the covariance between
the predictand precipitation and SSTs to seek a linear
combination that either minimizes the MSE (for OLS) or
maximizes the correlation (for CCA). Thus, the models are
less robust and can perform poorly when evaluated using the
testing period samples. As for the EOF regression, the EOF re-
constructs the predictors by projecting the global covariance of
the SSTs onto some dominant orthonormal basis vectors (EOFs).
There are two limiting factors: 1) the assumption of orthogonality
may not be appropriate as the new predictors are constructed
from the physical variable of SST; 2) any regional persistent
correlation patterns between the TRHR precipitation and the

FIGURE 9 | Accuracy of predicting the wet-dry state of TRHR
precipitation at varying lead times. The base skill (the null model of totally
random guess) is plotted in the black dashed line. The one-tailed p-value � 0.1
significance level is estimated using bootstrapping and is plotted in the
blue dashed line. Themean accuracy using a totally random guess strategy for
39 samples is collected from 10,000 repeated experiments and the 90th
quantile value is used as estimation of the p-value � 0.1 significance level.
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SSTs could be lost if they do not make significantly large
contribution to the global covariance. Technically, we are not
predicting the TRHR precipitation with the EOF regression
models since data of the full study period (1981–2019) is used
for constructing the new set of predictors (i.e., EOFs).

Interestingly, comparably high predictive skill are observed for
the elastic net models at lead times of 14 and 22 months while
persistence of the global correlation is much lower at the lead time
of 14 months as indicated by L. We specifically looked at the
correlation maps between the TRHR precipitation and the SSTs
before and after 2000 for the lead times of 14 and 22 months as
shown in Figures 7, 8, respectively. For the lead time of
14 months: before 2000, the correlation map features a cluster
of positive correlations [180E-210E, 45S-15S] to the east of
Australia and an extended band of positive correlations over
the mid-north Pacific Ocean [120E-210E, 15N-30N]. Scattered
and less significant positive correlations are observed over the
northern Indian Ocean and to the west of South America; After

2000, the correlation map is dominated by two major clusters of
positive correlations to the east of Australia [180E-210E, 45S-15S]
and to the west of South America [260E-280E, 60S-15S] and one
major cluster of negative correlations over the southwestern
Indian Ocean [30E-60E, 60S-30S]. Less significantly positive
correlations are observed over the north-western Pacific which
overlaps with the extended band before 2000. For the lead time of
22 months, both correlation maps before and after 2000 are
dominated by large clusters of positive correlations over the
northern Indian Ocean [60E-90E, 15S-15N] and eastern
tropical Pacific Ocean [210E-270E, 15S-0]. The major
difference is that clusters of positive correlations over the
southern-eastern Pacific and the mid-western Pacific [120E-
150E, 15N-30N] get enhanced in correlation amplitude and
extended in spatial coverage. A comparison between Figures
7, 8 suggests a higher level of persistence in the global correlation
between the predictand precipitation and the SSTs at the lead
time of 22 months, which is consistent with the higher value of L

FIGURE 10 |Maps of regression coefficients from the elastic net models using true-amplitude (top) and binary (bottom) predictand precipitation at the lead time of
14 months.
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in Figure 6. However, a lower value of L does not necessarily
mean low predictive skill potential for a linear model as some
regional persistent correlation patterns are observed (i.e., the
positive correlation cluster to the east of Australia) for the lead
time of 14months. The correlation maps are further compared
with the regression coefficientmaps in Section 4.3 as we attempt to
interpret the high model skill of the elastic net regression.

4.3 An Alternative Multinomial Regression
Model
In this section, the binary precipitation is predicted using the
multinomial regression version (i.e., the elastic net logistic
regression) of our model. While new machine learning
techniques like the classification and regression tree (CART)
can have better model skill in multi-class prediction of climate

variables (Choubin et al., 2018; Huang et al., 2021), the elastic net
logistic regression is tested to demonstrate flexibility and
consistency with altered deviance functions. The multinomial
regression may have more use in practical application since
amplitudes of the predictand tend to be underestimated
because of the regularization (Peng et al., 2020). The logistic
regression is implemented by simply replacing the MSE function
with the log-likelihood function for Dev (Hastie et al., 2009).
Though the logistic regression is a special case of the multinomial
regression, the model could be easily generalized for predictand of
more than two categories by separately fitting a regularized
Poisson regression for each category of which the coefficients
are used to estimate the coefficients of the multinomial regression
model (Baker, 1994).

To extend the sample size, the leave-one-out cross validation is
used (the testing sample size is thus increased from 19 to 39 here).

FIGURE 11 |Maps of regression coefficients from the elastic net models using true-amplitude (top) and binary (bottom) predictand precipitation at the lead time of
22 months.
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The leave-one-out CV is not used in the previous analysis for
predicting real-valued predictand since the Pearson’s correlation
coefficient is used for performance evaluation and the leave-one-
out CV could result in bias for violating continuity in data. The
accuracy as measured by the S score as a function of lead time is
shown in Figure 9. A consistent spike of high accuracy (over 70%
accuracy) is observed at around lead times of 22 months. While a
local maximum of accuracy is observed at the lead time of
14 months, it is not statistically significant. A major reason
could be that the S score is not the equivalent measure of the
correlation coefficient as we used in Figures 3, 5. A example of
high correlation but low S is when the model could well predict
the extreme events but performs poorly for the less extreme
events.

Consistency between the regression models using predictand
and deviance function of different types is further examined by
comparing the maps of the regressions coefficients for lead times
of 14 and 22 months as shown in Figures 10, 11, respectively. For
the lead time of 14 months, both models feature a major cluster of
positive coefficients to the east of Australia while more non-zero
coefficients are observed for the logistic regression model over the
southeastern Pacific Ocean and the Indian Ocean. As for the lead
time of 22 months, both maps are dominated by the large cluster
of positive coefficients over the eastern tropical Pacific Ocean.
While positive coefficients are observed over the northern Indian
Ocean for both models, the coefficients are more sparsely
distributed for the model using the true-amplitude predictand.
More non-zero coefficients are found for the logistic regression
model at both lead times, which could be due to a less optimal
regularization as we only did the cross validation on a relatively
sparse sequence of λs with a lead time of 0 months. But overall,
the major clusters of non-zero regression coefficients are
consistent across the models. And this is also confirmed by
the results that statistically significant correlations are found
between the vectorized coefficient maps of the two models.

The correlation coefficients are 0.45 for the lead time of
14 months and 0.44 for the lead time of 22 months (1,343
samples) and are 0.35 for the lead time of 14 months (327
samples) and 0.40 for the lead time of 22 months (359
samples) when only the non-zero coefficients are considered.

The comparably high predictive skill at the lead time of
14 months is easy to interpret if we compare the coefficient
maps from Figures 10, 11 to the correlation maps from
Figures 7, 8. While less persistence is observed for the global
correlation at the lead time of 14 months, the elastic net model
managed to select the regional persistent cluster of positive
correlations to the east of Australia. At last, two SST indices
are defined based on the consistent patterns from the two
regression models: the SST index 1 is defined by the mean
SST over the domain of [180°W-160°W, 42°S-18°S]; the SST
index 2 is defined by the mean SST over the domain of
[120°W-88°W, 22°S-2°N]. Lagged correlations between the
TRHR precipitation and the SST indices calculated using the
non-pooled and pooled SSTs are plotted in Figure 12. Statistically
significant positive correlations are observed at the corresponding
lead times and consistent results are shown for non-pooled and
pooled SSTs. The results suggest that the proposed framework
managed to select certain regional SSTs that are consistently
correlated with the predictand precipitation and demonstrated
good interpretability. While correlation does not necessarily
imply causation, the elastic net regression models show good
potential here in guiding further research with its highly
interpretable and flexible models.

5 CONCLUSION

In this paper, we tested a generalized regression model with
regularization coupled with pooling in predicting the TRHR wet-
season precipitation at lead times of 0–24 months using the

FIGURE 12 | Lagged correlations between the TRHR precipitation and the SST indices. The p-value � 0.01 significance level is plotted in the black dashed line.
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Pacific and Indian Ocean SSTs. The regression is first tested using
the true-amplitude predictand and is compared against some
widely-used regression models including the OLS multi-linear
regression, the EOF regression and the CCA regression.
Significantly good predictive skill are observed using the
elastic net regression models for certain long lead times
which are further examined using a correlation analysis. The
results suggest that the elastic net regression achieves good
performance in identifying and using the persistent
correlation patterns while the other three regression models
show relatively poor performance. Low model skill at shorter
lead times can be due to that only SST is used as the predictor
while teleconnection signals can propagate through other
climate fields chronologically. A multinomial elastic net
regression model is then used to demonstrate flexibility and
consistency of the proposed framework. Consistent model skill
and regression coefficient maps are observed even when
predictand and deviance functions of different types are used.
By comparing the correlation analysis and the regression
coefficient maps, we found that the elastic net model
managed to select regional persistent correlation patterns as
the contributing predictors while the other widely-used
regression models are based on the global covariance either
between the predictand and the predictors or within the
predictors (and thus are vulnerable to over-fitting). At last,
two SST indices are defined based on the major clusters of non-
zeros coefficients from the elastic net models and are found to be
significantly correlated to the TRHR precipitation at the
corresponding lead times. Overall, the proposed framework
demonstrates good interpretability in identifying covariates
with high predictive skill and the potential in guiding further
investigation using more complex, nonlinear statistical models
or physically based modeling experiments.
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Application of Video-to-Video
Translation Networks to
Computational Fluid Dynamics
Hiromitsu Kigure*

Independent Researcher, Kanagawa, Japan

In recent years, the evolution of artificial intelligence, especially deep learning, has been
remarkable, and its application to various fields has been growing rapidly. In this paper, I
report the results of the application of generative adversarial networks (GANs), specifically
video-to-video translation networks, to computational fluid dynamics (CFD) simulations.
The purpose of this research is to reduce the computational cost of CFD simulations with
GANs. The architecture of GANs in this research is a combination of the image-to-image
translation networks (the so-called “pix2pix”) and Long Short-Term Memory (LSTM). It is
shown that the results of high-cost and high-accuracy simulations (with high-resolution
computational grids) can be estimated from those of low-cost and low-accuracy
simulations (with low-resolution grids). In particular, the time evolution of density
distributions in the cases of a high-resolution grid is reproduced from that in the cases
of a low-resolution grid through GANs, and the density inhomogeneity estimated from the
image generated by GANs recovers the ground truth with good accuracy. Qualitative and
quantitative comparisons of the results of the proposed method with those of several
super-resolution algorithms are also presented.

Keywords: deep learning, generative adversarial networks (GANs), image-to-image translation networks (pix2pix),
long short-term memory (LSTM), computational fluid dynamics (CFD)

1 INTRODUCTION

Artificial intelligence is advancing rapidly and has come to be comparable to or outperform humans
in several tasks. In generic object recognition, deep convolutional neural networks have surpassed
human-level performance (e.g, He et al., 2015; He et al., 2016; Ioffe and Szegedy, 2015). The agent
trained by reinforcement learning is capable of reaching a level comparable to professional human
game testers (Mnih et al., 2015). In the case of machine translation, Google’s neural machine
translation system, using Long Short-TermMemory (LSTM) recurrent neural networks [Hochreiter
and Schmidhuber (1997), Gers et al. (2000)], is a typical and famous example and its translation
quality is becoming comparable to that of humans (Wu et al., 2016).

One of the hottest research topics in artificial intelligence is generative models and one approach to
implementing a generative model is generative adversarial networks (GANs) proposed by Goodfellow
et al. (2014). GANs consist of two models trained with conflicting objectives. Radford et al. (2016)
applied deep convolutional neural networks to those two models, whose architecture is called deep
convolutional GANs (DCGAN). DCGAN can generate realistic synthesis images from vectors in the
latent space. Isola et al. (2017) proposed the network learning the mapping from an input image to an
output image to enable the translation between two images. This network, the so-called pix2pix, can
convert black-and-white images into color images, line drawings into photo-realistic images, and so on.
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The combination of deep learning and simulation has been
recently researched. One of such applications is to use simulation
results for improving the prediction performance of deep
learning. Since deep learning requires a lot of data for
training, numerical simulations that can generate various data
by changing physical parameters could help compensate for the
lack of training data. Another application is to speed up the solver
of computational fluid dynamics (CFD). Guo et al. (2016) used a
convolutional neural network (CNN) to predict velocity fields
approximately but fast from the geometric representation of the
object. Another example is that velocity fields are predicted from
parameters such as source position, inflow speed, and time by
CNN (Kim et al. (2019)). Their method is feasible to generate
velocity fields up to 700 times faster than simulations. As a more
general method, not limited to CFD problems, Raissi et al. (2019)
proposed the physics-informed neural network (PINN), which
utilizes a relatively simple deep neural network to find solutions
to various types of nonlinear partial differential equations.

GANs also have been combined with numerical simulations to
enable a new type of solution method. Farimani et al. (2017) used
the conditional GAN (cGAN) to generate the solution of steady-
state heat conduction and incompressible flow from boundary
conditions and calculation domain shape/size. Xie et al. (2018)
proposed a method for super-resolution fluid flow by a
temporally coherent generative model (tempoGAN). They
showed that tempoGAN can infer high-resolution, temporal,
and volumetric physical quantities from those of low-
resolution data.

The above-mentioned studies about the combination of GANs
and simulations show that GANs can generate the three-
dimensional data of the solution of physical equations. The
main topic in this research is the translation of images
(distributions of the physical quantity) by GANs. In the case
that the accuracy of the simulation is particularly important, a
large number of computational grids are needed. Additionally,
the number of simulation cases for design optimization is
typically numerous. It means that the computational cost
(machine power and time) becomes large. In such a case, it is
important to reduce the computational cost, and one way to do so
is to make effective use of low-cost simulations. Based on such an
idea, I investigated the feasibility of time-series image-to-image
translation: translation from time-series distribution plots in the
case of low-resolution computational grids to those in the case of
high-resolution grids. A quantitative evaluation of the quality of
generated images was also performed.

The method proposed in this paper is the video (sequential
images)-to-video translation in which the difference of solutions
between the high- and low-resolution grid simulations is learned.
Meanwhile, the PINN constructs universal function
approximators of physical laws by minimizing the loss
function composed of a mismatch of state variables including
the initial and boundary conditions and the residual for the
partial differential equations (Meng et al., 2020). In other
words, the PINN is an alternative to CFD, while the proposed
method is a complement to CFD.

The paper is organized as follows. In section 2, I describe the
outline of the simulations whose results are input to GANs and

the details of the network architecture. In section 3, I give the
results of time-series image-to-image translation (in other words,
video-to-video translation) of physical quantity distribution and a
discussion mainly about the quality of generated images.
Conclusions are presented in section 4.

2 METHODS

2.1 Numerical Simulations
I solved the following ideal magnetohydrodynamic (MHD)
equations numerically in two dimensions to prepare input
images to GANs:

zρ

zt
+ ∇ · (ρv) � 0 (1)

z

zt
(ρv) + ∇ · ρvv + pTI − BB( ) � 0 (2)

zB
zt

+ ∇ · (vB − Bv) � 0 (3)

ze
zt

+ ∇ · e + pT( )v − B(v · B)( ) � 0 (4)

pT � p + |B|2
2

(5)

e � p
c − 1

+ ρ|v|2
2

+ |B|2
2

(6)

where ρ, p, and v are the density, pressure, and velocity of the gas;
B is the magnetic field; c represents the heat capacity ratio and is
equal to 5/3 in this paper; pT and e represent the total pressure and
the internal energy density; I is the unit matrix.

One of typical test problems for MHD, the so-called
Orszag-Tang vortex problem (Orszag and Tang, 1979), was
solved by the Roe scheme (Roe 1981) with MUSCL
[monotonic upstream-centered scheme for conservation laws;
(van Leer 1979)]. The initial conditions are summarized in
Table 1. B0 is a parameter for controlling the magnetic field
strength. The compuational domain is 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The
periodic boundary condition is applied in both x- and y-
directions. Simulations for each condition were performed
twice on computational grids with different resolutions. The
number of grid points is (Nx × Ny) � (51 × 51) or (251 × 251).
In the case of (Nx × Ny) � (251 × 251), the calculation time is
more than 70 times longer than in the other case though the
obtained solution is expected to be close to the true solution.

TABLE 1 | The initial conditions of simulations.

Physical quantity Description Value

ρ Density 25π/36
vx x-component of velocity −sin(2πy)
vy y-component of velocity sin(2πx)
vz z-component of velocity 0
Bx x-component of magnetic field −B0 sin(2πy)
By y-component of magnetic field B0 sin(4πx)
Bz z-component of magnetic field 0
p Pressure 5π/12
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2.2 Generative Adversarial Network
Architecture
After the original concept of GANs was proposed by Goodfellow
et al. (2014), various GANs have been researched. Among such
networks, I focused on pix2pix, which is a type of conditional
GAN and a network for learning the relationship between the
input and output images. The feasibility of translating from the
results of low-resolution grid simulations to those of high-
resolution grid simulations has been investigated in this
research. Furthermore, in order to enable the translation
across two time-series, the architecture combined pix2pix and
LSTM has been constructed.

Figure 1 shows the schematic picture of the architecture of
the generator in this research. The role of the LSTM layer is to
adjust the image translation dependent on the physical time
of the simulation; for the initial state of the simulation
(T � 0), no translation is needed at all, but as physical
time passes, progressively larger translations are needed.
Note that the weights of the encoder (decoder) before
(after) the LSTM layer are the same in the time direction.

Plots of the time evolution of the density in the low-resolution
simulations are input to the generator (plots are read as
single-channel images). The input images are converted to
vectors by the first-half of a U-shaped network (U-Net). In
Figure 2, I denote the architecture of the first-half of U-Net in
detail. It consists of eight convolutional blocks with a kernel
size of (4 × 4) or (2 × 2). The instance normalization
(Ulyanov et al. (2017)) is applied except for the first and
last blocks. The activation function is a leaky rectified linear
unit [leaky ReLU; Maas et al. (2013)] with a slope of 0.2 for all
blocks. A 512-dimensional vector is generated at the end of
this architecture.

A series of 512-dimensional vectors converted from the
time-series plots is input to the LSTM layer. An input vector xt
originated from the plot at time � t is calculated with the
hidden state ht−1 and memory cell ct−1. A forget gate (f ), an
input gate (i), an output gate (o), and part of the term to be
added to the memory cell (z) in Figure 3 are calculated as
follows:

f � σ W f xt + Rf ht−1 + bf( ) (7)

i � σ W ixt + Riht−1 + bi( ) (8)

o � σ Woxt + Roht−1 + bo( ) (9)

z � tanh Wzxt + Rzht−1 + bz( ) (10)

where σ is the sigmoid function and tanh is the hyperbolic
tangent function; W· and R· are the input-to-hidden weight
matrices and the recurrent weight matrices; b· are bias vectors.
The hidden state and memory cell are updated by:

ct � f ☉ ct−1 + i☉ z (11)

ht � o☉ tanh ct( ) (12)

The hidden state ht is reshaped as (1, 1, 512) . The reshaped
hidden state ht’ is passed to the latter-half of U-Net and is
decoded to the image data (Figure 4). This part consists of
eight deconvolutional blocks with an upsampling of the
feature map, convolution with a kernel size of (2 × 2)or (4 ×
4) (the size of the feature map does not change because the stride

FIGURE 1 | Schematic picture of the architecture of the generator in this
research. The generator in the original pix2pix network is a U-shaped network
(U-Net). In this research, the LSTM layer is inserted into the middle of U-Net.
The skip connections from the first-half of U-Net to the latter-half over the
LSTM layer are implemented.

FIGURE 2 | The details of the first-half of U-Net. The expression “conv4x4 64” refers to a convolutional layer with a kernel size of (4 × 4) and 64 channels. Each
feature map is copied and is concatenated to the feature map of the corresponding block in the latter-half of U-Net denoted in Figure 4.
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of convolution is 1), the instance normalization and activation by
ReLU function except the last block. As seen in Figure 1, the
generator outputs synthetic time-series plots of density
distribution.

The authenticity of the images is judged by the discriminator.
Figure 5 shows the details of the architecture of the
discriminator in this research. A real image (plot of the
density distribution in a high-resolution simulation) or a
synthesis image is input to the discriminator. It consists of
five convolutional blocks with a kernel size of (4 × 4). The
instance normalization is applied except for the first and last
blocks. Except for the last block, the leaky ReLU function with a
slope of 0.2 is applied as the activation function. The 16 × 16
patch is eventually output. The discriminator classifies each
patch into real or synthetic. We call its architecture the
patchGAN (Isola et al., 2017).

The objective of the network is the same as the regular pix2pix
as follows:

FIGURE 4 | The details of the latter-half of U-Net. The expression “Upsampling2x2” refers to an upsampling layer that doubles the size of input by copying one value
twice horizontally and vertically, respectively. From the first-half of U-Net displayed in Figure 2, feature maps are passed to corresponding blocks and are concatenated
to the feature maps output from the previous blocks.

FIGURE 3 | The architecture of LSTM. The input to LSTM (xt) is the
vector transformed from an image of density distribution, and the output is the
reshaped hidden state vector (ht′ ) resulting from several operations. The
vector c is the memory cell, and f, i, o, and z are a forget gate, an input
gate, an output gate, and part of the term to be added to the memory cell (see
equations (7) to (10) for details).

FIGURE 5 | The details of the architecture of the discriminator in this research.
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G* � arg min
G

max
D

LcGAN(G,D) + λLL1(G) (13)

LcGAN(G,D) �E log,D x,y( )]+E[log(1−D(x,G(x)))][ (14)

LL1(G) � E[‖y − G(x)‖] (15)

where G and D denote the generator and discriminator, λ is the
weighted sum parameter and equal to 100 in this research, and x and y

mean the source and target images.G(x) returns a synthesis image and
D(x, y) or D(x,G(x)) returns the probability that y or G(x) is a real
target image. LL1(G) is the mean absolute error (L1 loss) calculated
from the pixel-wise comparison between the real image and the
synthetic image. The optimizer is Adamwith a learning rate of 0.0002.

The architecture is implemented using Keras 2.5.0 and
TensorFlow as a backend. The model was trained on Google

TABLE 2 | The details of the training and testing datasets.

Training/Testing The number of cases The total number of
images

The pixel size of
images

The value of B0

Training 16 320 256 × 256 0.1–1.5 with the interval of 0.1, and 2.0
Testing 19 380 256 × 256 0.15–1.55 and 1.6–1.9 with the interval of 0.1

FIGURE 6 | Two examples of the time-evolution of density distribution for the training datasets.
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Colaboratory with Tesla P100-PCIe GPU. For applying the
convolution and deconvolution to the sequential data, sets of
operations as shown in Figures 2,4,5 are passed to the
TimeDistributed layer. The skip connections are implemented by
feeding the outputs of the previous upsampling block in the latter-
half of U-Net and the same-level (it means that the size of the feature
map is the same) convolutional block in the first-half of U-Net to the
Concatenate layer. The “return_sequences” and “stateful” parameters
in the LSTM layer are set to True and False, respectively.

3 RESULTS AND DISCUSSION

In this chapter, I show the results of time-series image-to-image
translation for the training datasets first and then explain the way

to evaluate the quality of the synthesis images quantitatively. The
evaluation result of the synthesis images for the training datasets is
presented next. Then, I show the results for the testing datasets.
Finally, the quality of the synthesis images is compared with those
of images upsampled by conventional super-resolution algorithms.
The conditions (the magnetic field strength) of the simulations are
shown in Table 2 that summarizes the details of the training and
testing datasets. The sixteen cases were performed to prepare the
training datasets, and the nineteen cases were performed to prepare
the testing datasets. For each case, two simulations were run with
the high-resolution and the low-resolution grids.

3.1 Results for the Training Datasets
Figure 6 shows two examples of the time-evolution of density
distribution for the training datasets. The top and bottom images

FIGURE 7 | Comparison of the inhomogeneity of the density between the high-resolution grid cases and the low-resolution grid cases for the training datasets. (A)
The inhomogeneities for all time-series and all magnetic field strength cases are plotted. (B) The inhomogeneities for T ≥ 0.12 and B0 ≥ 0.6 are plotted.

FIGURE 8 | Comparison of the inhomogeneity calculated from the
density values on the grids and the inhomogeneity predicted from the
distribution maps. The coefficient of determination (R2) is equal to 0.999.

FIGURE 9 |Comparison of the inhomogeneity of the high-resolution grid
simulation results and the inhomogeneity predicted from the synthesis images
for the training datasets.
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of Figures 6A,B show the simulation results, and the middle
images are synthesis ones generated from the top ones (the results
of low-resolution grid simulations) through the generator.
Compared to the high-resolution grid cases, the density
distributions in the low-resolution grid cases show less fine
structure and become closer to the uniform. Figure 7 displays
the comparison of the inhomogeneity of the density between the
high-resolution grid cases and the low-resolution grid cases. The
inhomogeneity is defined by α � σρ/�ρ, where σρ and �ρ are the
standard deviation and the average of the density. In the low-
resolution grid, the numerical diffusion is larger than in the high-
resolution grid, and therefore the inhomogeneity of the density
tends to be smaller especially from the middle stage of the vortex
development and in the relatively strong magnetic field (Figure

7B). The synthesis images reproduce the fine structures of the
density distributions and appear to be well consistent with the
high-resolution grid results.

To quantitatively evaluate the quality of the synthesis images, I
estimated the density inhomogeneity from the distribution map.
When calculating the density inhomogeneity from the simulation
result, we can use the value of the density on each grid; however,
the density distribution maps (including synthesis images in this
research) have only the information of the RGB values. Therefore,
to estimate the density inhomogeneity from the distribution map,
I trained a three-layer fully connected neural network with
196,608 (256pixel × 256pixel × 3) inputs, two hidden layers of
1,024 and 128 neurons and one output layer. Figure 8 shows the
result of the inhomogeneity prediction from the density

FIGURE 10 | Examples of the time-evolution of density distribution for the testing datasets.
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distribution maps. The horizontal axis is the inhomogeneity
calculated from the density values on the grids, and the
vertical axis is the inhomogeneity predicted from the
distribution maps by the trained neural network. The
coefficient of determination (R2) is equal to 0.999. Thus we
conclude that the trained neural network provides an accurate
estimation of the density inhomogeneity from the distribution
maps and the synthesis images.

We can quantitatively evaluate the quality of the synthesis
images by inputting those into the neural network and comparing
the outputted inhomogeneity with the inhomogeneity calculated
from the high-resolution grid simulation results. Figure 9 shows

that the inhomogeneity predicted from the synthesis images
matches that calculated from the high-resolution grid
simulation results with good accuracy; therefore the quality of
the synthesis images is definitely good for the training datasets.

3.2 Results for the Testing Datasets
In the previous subsection, I have shown that the results for the
training datasets are pretty good. However, the generalization
ability needs to be investigated for practical use. The testing
datasets (the magnetic field strength is different from the training
datasets as shown in Table 2) that were not used for training are
input to the trained model, and the synthesis images are output
from the generator. Figures 10A,B show the comparison of the
simulation results and the synthesis images for two example cases.
From the 19 cases in the testing datasets, the results for the cases
with B0 � 0.75 and 1.7 were selected for presentation. The B0 � 1.7
case is especially suitable for verifying the generalization ability
because there is no training data between B0 � 1.5 and 2.0. The top
images show the time evolution of the density distribution of low-
resolution grid simulations, which are input for the generator; the
bottom images show that of high-resolution grid simulations,
which are compared with the synthesis images; the middle images
are synthesis ones generated through the generator. As with the
cases for the training datasets, the synthesis images qualitatively
reproduce the density distributions of the high-resolution grid
simulations. Even in the B0 � 1.7 case, the synthesis images show
the fine structure of the density distribution very similar to that in
the ground truth images, as shown in the zoomed-in image in
Figure 10B.

Figure 11 is almost the same as Figure 9 but for the testing
datasets. The density inhomogeneity predicted from the
synthesis images through the fully connected neural
network (explained in the previous subsection) is in good
agreement with the inhomogeneity calculated from the results

FIGURE 11 | Comparison of the inhomogeneity of the high-resolution
grid simulation results and the inhomogeneity predicted from the synthesis
images for the testing datasets.

FIGURE 12 | Comparison of the results of the conventional super-resolution algorithms with that of the proposed method and ground truth.
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of high-resolution grid simulations. This result indicates that
the method in this research is capable of obtaining high
generalization ability.

3.3 Comparison With Conventional
Super-resolution Algorithms
To demonstrate the effectiveness of the proposed method and the
quality of the generated images, I compare the results with those
obtained by conventional super-resolution algorithms. The
algorithms investigated here are a bicubic interpolation, a
Lanczos interpolation, and Laplacian Pyramid Super-
Resolution Network [LapSRN; Lai et al. (2017)]. The pixel size
of the image to be used as the basis of the super-resolution is 64 ×
64, and each algorithm quadruples the pixel size. These results
were compared qualitatively and quantitatively with the result of
high-resolution grid simulation and the image generated by the
proposed method. Plots of the density distribution in high-
resolution simulations in the training datasets were used to
train LapSRN.

I performed the super-resolution algorithms to the testing
datasets (380 images). As an example, the results for the B0 � 1.7
and T � 0.38 case are compared in Figure 12. In this case, none of
the three conventional super-resolution algorithms can work
with a quality comparable to the method proposed in this
research. To compare the proposed method with the others
quantitatively, the pixel-wise mean squared error (MSE) and
the structural similarity index measure [SSIM; Wang et al.
(2004)] are calculated between the ground truth image and the
synthesis image or the result of super-resolution. Figure 13 shows
that the quality of the synthesis images by the proposed method is
significantly high compared to that of the results by the
conventional super-resolution algorithms.

3.4 Application of This Research
In this subsection, I discuss an application of this research. As
mentioned above, results of high computational cost simulations
can be estimated from those of low-cost simulations by the method
in this paper. However, it is important to note that simulation

results of quite a few cases are needed to train the network1.
Therefore, it is not beneficial for a small number of simulations.
The more simulations are required, the greater the benefits arise.
One such case is optimization based on CFD simulations. As the
number of objective variables to be optimized increases, the
number of calculations required to obtain the desired
performance is expected to increase; in some cases, it takes
several thousand cases to evaluate. In such multi-objective
optimization simulations, for example, the first dozens to
several hundred cases are simulated on both high- and low-
resolution grids, and the results are used to train the GANs.
After the GANs are trained, low-resolution grid simulations are
run, the results are input to the GANs to reproduce the results of
high-resolution grid simulations, and objective variables are
estimated from synthesis images by, for example, a neural network.

I demonstrate the estimation of computational cost reduction.
If the number of simulations required originally and that to train
the GANs are N (several thousands in some cases) and Nt (N >
Nt), the calculation times of the high- and low-resolution grid
simulations are Th and Tl (Th > Tl), and the computational cost to
train the GANs is Tt, the computational cost reduction is roughly
equal to

N × Th − Nt × Th + Tt + N × Tl( ) (16)

where the first term corresponds to the computational cost in the
case that all simulations are run on the high-resolution grid, and
the second term corresponds to that in the case that the method in
this research is applied (the cost to reproduce the results of high-
resolution grid simulations by the GANs is negligible compare to
performing the simulations). In this way, by substituting low-
resolution grid simulations and the result conversion by the
GANs for quite a part of high-resolution grid simulations, a
great reduction of the computational cost should be achieved.

FIGURE 13 | Box plots of the pixel-wise mean squared error (MSE) and the structural similarity index measure (SSIM) calculated in the testing datasets (380
images).

1In this research, simulation results of 16 cases were used as the training datasets;
the training was successful with a relatively small number of data, probably due to
the simple situation. If the target is a simulation of a realistic engineering situation,
it is expected that much more data will be needed for the training.
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4 CONCLUSION

In this paper, I validated an idea to use GANs for reducing the
computational cost of CFD simulations. I studied the idea of
reproducing the results of high-resolution grid simulations
with a high computational cost from those of low-resolution
grid simulations with a low computational cost. More
specifically speaking, distribution maps of a physical
quantity in time series were reproduced using pix2pix and
LSTM. The quality of the reproduced synthesis images was
good for both the training and testing datasets. The conditions
treated in this paper are simple; the computational region is a
square with a constant grid interval, the boundary conditions
are cyclic, and the governing equations are the ideal MHD

equations. In the next step, I need to examine the idea in more
realistic conditions.
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